

Mastering Machine Learning
Algorithms

Expert techniques to implement popular machine learning
algorithms and fine-tune your models

Giuseppe Bonaccorso

BIRMINGHAM - MUMBAI

Mastering Machine Learning Algorithms
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Divya Poojari
Content Development Editor: Eisha Dsouza
Technical Editors: Jovita Alva, Ishita Vora
Copy Editor: Safis Editing
Project Coordinator: Shweta H Birwatkar
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: May 2018

Production reference: 1240518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-111-3

www.packtpub.com

http://www.packtpub.com

To my parents, who always supported me in the journey of life!

– Giuseppe Bonaccorso

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Giuseppe Bonaccorso is an experienced team leader/manager in AI, machine/deep learning
solution design, management, and delivery. He got his M.Sc.Eng. in Electronics in 2005
from University of Catania, Italy, and continued his studies at University of Rome Tor
Vergata and University of Essex, UK. His main interests include machine/deep learning,
reinforcement learning, big data, bio-inspired adaptive systems, cryptocurrencies, and
NLP.

I want to thank the people who have been close to me and have supported me, especially my
parents, who never stopped encouraging me.

About the reviewer
Francesco Azzola is an electronics engineer with over 15 years of experience in computer
programming. He is the author of Android Things Projects by Packt. He loves creating IoT
projects using Arduino, Raspberry Pi, Android, and other IoT platforms. He is interested in
convergence of IoT and mobile applications. He is certified in SCEA, SCWCD, and SCJP.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Machine Learning Model Fundamentals 8
Models and data 9

Zero-centering and whitening 11
Training and validation sets 13

Cross-validation 14
Features of a machine learning model 20

Capacity of a model 20
Vapnik-Chervonenkis capacity 22

Bias of an estimator 23
Underfitting 25

Variance of an estimator 27
Overfitting 27
The Cramér-Rao bound 28

Loss and cost functions 31
Examples of cost functions 36

Mean squared error 36
Huber cost function 36
Hinge cost function 37
Categorical cross-entropy 37

Regularization 38
Ridge 39
Lasso 41
ElasticNet 43
Early stopping 43

Summary 45

Chapter 2: Introduction to Semi-Supervised Learning 46
Semi-supervised scenario 46

Transductive learning 47
Inductive learning 48
Semi-supervised assumptions 48

Smoothness assumption 48
Cluster assumption 49
Manifold assumption 50

Generative Gaussian mixtures 51
Example of a generative Gaussian mixture 53

Weighted log-likelihood 59
Contrastive pessimistic likelihood estimation 60

Example of contrastive pessimistic likelihood estimation 63

Table of Contents

[ii]

Semi-supervised Support Vector Machines (S3VM) 66
Example of S3VM 70

Transductive Support Vector Machines (TSVM) 76
Example of TSVM 77

Summary 84

Chapter 3: Graph-Based Semi-Supervised Learning 86
Label propagation 87

Example of label propagation 90
Label propagation in Scikit-Learn 94

Label spreading 96
Example of label spreading 98

Label propagation based on Markov random walks 100
Example of label propagation based on Markov random walks 101

Manifold learning 106
Isomap 106

Example of Isomap 109
Locally linear embedding 111

Example of locally linear embedding 113
Laplacian Spectral Embedding 115

Example of Laplacian Spectral Embedding 116
t-SNE 117

Example of t-distributed stochastic neighbor embedding 119
Summary 120

Chapter 4: Bayesian Networks and Hidden Markov Models 122
Conditional probabilities and Bayes' theorem 122
Bayesian networks 125

Sampling from a Bayesian network 126
Direct sampling 127

Example of direct sampling 128
A gentle introduction to Markov chains 130
Gibbs sampling 132
Metropolis-Hastings sampling 134

Example of Metropolis-Hastings sampling 135
Sampling example using PyMC3 137

Hidden Markov Models (HMMs) 142
Forward-backward algorithm 144

Forward phase 144
Backward phase 146
HMM parameter estimation 147

Example of HMM training with hmmlearn 149
Viterbi algorithm 151

Finding the most likely hidden state sequence with hmmlearn 153
Summary 154

Chapter 5: EM Algorithm and Applications 156

Table of Contents

[iii]

MLE and MAP learning 156
EM algorithm 159

An example of parameter estimation 163
Gaussian mixture 165

An example of Gaussian Mixtures using Scikit-Learn 169
Factor analysis 172

An example of factor analysis with Scikit-Learn 177
Principal Component Analysis 181

An example of PCA with Scikit-Learn 187
Independent component analysis 189

An example of FastICA with Scikit-Learn 193
Addendum to HMMs 195
Summary 196

Chapter 6: Hebbian Learning and Self-Organizing Maps 197
Hebb's rule 198

Analysis of the covariance rule 203
Example of covariance rule application 206

Weight vector stabilization and Oja's rule 208
Sanger's network 209

Example of Sanger's network 212
Rubner-Tavan's network 216

Example of Rubner-Tavan's network 221
Self-organizing maps 223

Example of SOM 227
Summary 230

Chapter 7: Clustering Algorithms 232
k-Nearest Neighbors 233

KD Trees 237
Ball Trees 239
Example of KNN with Scikit-Learn 241

K-means 244
K-means++ 247
Example of K-means with Scikit-Learn 248

Evaluation metrics 251
Homogeneity score 253
Completeness score 253
Adjusted Rand Index 254
Silhouette score 255

Fuzzy C-means 259
Example of fuzzy C-means with Scikit-Fuzzy 264

Spectral clustering 267
Example of spectral clustering with Scikit-Learn 271

Summary 273

Table of Contents

[iv]

Chapter 8: Ensemble Learning 275
Ensemble learning fundamentals 275
Random forests 278

Example of random forest with Scikit-Learn 284
AdaBoost 288

AdaBoost.SAMME 293
AdaBoost.SAMME.R 294
AdaBoost.R2 297
Example of AdaBoost with Scikit-Learn 301

Gradient boosting 306
Example of gradient tree boosting with Scikit-Learn 311

Ensembles of voting classifiers 314
Example of voting classifiers with Scikit-Learn 315

Ensemble learning as model selection 317
Summary 318

Chapter 9: Neural Networks for Machine Learning 319
The basic artificial neuron 320
Perceptron 321

Example of a perceptron with Scikit-Learn 325
Multilayer perceptrons 328

Activation functions 329
Sigmoid and hyperbolic tangent 329
Rectifier activation functions 331
Softmax 332

Back-propagation algorithm 333
Stochastic gradient descent 336
Weight initialization 339

Example of MLP with Keras 341
Optimization algorithms 346

Gradient perturbation 347
Momentum and Nesterov momentum 348

SGD with momentum in Keras 349
RMSProp 350

RMSProp with Keras 350
Adam 351

Adam with Keras 352
AdaGrad 353

AdaGrad with Keras 353
AdaDelta 354

AdaDelta with Keras 355
Regularization and dropout 356

Dropout 358
Example of dropout with Keras 359

Batch normalization 365

Table of Contents

[v]

Example of batch normalization with Keras 367
Summary 370

Chapter 10: Advanced Neural Models 372
Deep convolutional networks 373

Convolutions 375
Bidimensional discrete convolutions 376

Strides and padding 381
Atrous convolution 383
Separable convolution 385
Transpose convolution 386

Pooling layers 387
Other useful layers 390
Examples of deep convolutional networks with Keras 391

Example of a deep convolutional network with Keras and data augmentation 395
Recurrent networks 400

Backpropagation through time (BPTT) 401
LSTM 404
GRU 411
Example of an LSTM network with Keras 413

Transfer learning 418
Summary 420

Chapter 11: Autoencoders 421
Autoencoders 421

An example of a deep convolutional autoencoder with TensorFlow 424
Denoising autoencoders 428

An example of a denoising autoencoder with TensorFlow 429
Sparse autoencoders 432

Adding sparseness to the Fashion MNIST deep convolutional autoencoder 433
Variational autoencoders 434

An example of a variational autoencoder with TensorFlow 438
Summary 440

Chapter 12: Generative Adversarial Networks 441
Adversarial training 441

Example of DCGAN with TensorFlow 446
Wasserstein GAN (WGAN) 453

Example of WGAN with TensorFlow 456
Summary 459

Chapter 13: Deep Belief Networks 460
MRF 461
RBMs 463
DBNs 467

Example of unsupervised DBN in Python 470
Example of Supervised DBN with Python 472

Table of Contents

[vi]

Summary 474

Chapter 14: Introduction to Reinforcement Learning 476
Reinforcement Learning fundamentals 476

Environment 479
Rewards 480
Checkerboard environment in Python 481

Policy 483
Policy iteration 484

Policy iteration in the checkerboard environment 488
Value iteration 493

Value iteration in the checkerboard environment 494
TD(0) algorithm 497

TD(0) in the checkerboard environment 501
Summary 506

Chapter 15: Advanced Policy Estimation Algorithms 507
TD(λ) algorithm 507

TD(λ) in a more complex Checkerboard environment 513
Actor-Critic TD(0) in the checkerboard environment 520

SARSA algorithm 526
SARSA in the checkerboard environment 528

Q-learning 531
Q-learning in the checkerboard environment 533
Q-learning using a neural network 535

Summary 544

Other Books You May Enjoy 545

Index 548

Preface
In the last few years, machine learning has become a more and more important field in the
majority of industries. Many tasks once considered impossible to automate are now
completely managed by computers, allowing human beings to focus on more creative tasks.
This revolution has been made possible by the dramatic improvement of standard
algorithms, together with a continuous reduction in hardware prices. The complexity that
was a huge obstacle only a decade ago is now a problem than even a personal computer
can solve. The general availability of high-level open source frameworks has allowed
everybody to design and train extremely powerful models.

The main goal of this book is to introduce the reader to complex techniques (such as semi-
supervised and manifold learning, probabilistic models, and neural networks), balancing
mathematical theory with practical examples written in Python. I wanted to keep a
pragmatic approach, focusing on the applications but not neglecting the necessary
theoretical foundation. In my opinion, a good knowledge of this field can be acquired only
by understanding the underlying logic, which is always expressed using mathematical
concepts. This extra effort is rewarded with a more solid awareness of every specific choice
and helps the reader understand how to apply, modify, and improve all the algorithms in
specific business contexts.

Machine learning is an extremely wide field and it's impossible to cover all the topics in a
book. In this case, I've done my best to cover a selection of algorithms belonging to
supervised, semi-supervised, unsupervised, and Reinforcement Learning, providing all the
references necessary to further explore each of them. The examples have been designed to
be easy to understand without any deep insight into the code; in fact, I believe it's more
important to show the general cases and let the reader improve and adapt them to cope
with particular scenarios. I apologize for mistakes: even if many revisions have been made,
it's possible that some details (both in the formulas and in the code) got away. I hope this
book will be the starting point for many professionals struggling to enter this fascinating
world with a pragmatic and business-oriented viewpoint!

Preface

[2]

Who this book is for
The ideal audience for this book is computer science students and professionals who want
to acquire detailed knowledge of complex machine learning algorithms and applications.
The approach is always pragmatic; however, the theoretical part requires some advanced
mathematical skills that all graduates (in computer science, engineering, mathematics, or
science) should have acquired. The book can be also utilized by more business-oriented
professionals (such as CPOs and product managers) to understand how machine learning
can be employed to improve existing products and businesses.

What this book covers
Chapter 1, Machine Learning Model Fundamentals, explains the most important theoretical
concepts regarding machine learning models, including bias, variance, overfitting,
underfitting, data normalization, and cost functions. It can be skipped by those readers
with a strong knowledge of these concepts.

Chapter 2, Introduction to Semi-Supervised Learning, introduces the reader to the main
elements of semi-supervised learning, focusing on inductive and transductive learning
algorithms.

Chapter 3, Graph-Based Semi-Supervised Learning, continues the exploration of semi-
supervised learning algorithms belonging to the families of graph-based and manifold
learning models. Label propagation and non-linear dimensionality reduction are analyzed
in different contexts, providing some effective solutions that can be immediately exploited
using Scikit-Learn functionalities.

Chapter 4, Bayesian Networks and Hidden Markov Models, introduces the concepts of
probabilistic modeling using direct acyclic graphs, Markov chains, and sequential
processes.

Chapter 5, EM Algorithm and Applications, explains the generic structure of the Expectation-
Maximization (EM) algorithm. We discuss some common applications, such as Gaussian
mixture, Principal Component Analysis, Factor Analysis, and Independent Component
Analysis. This chapter requires deep mathematical knowledge; however, the reader can
skip the proofs and concentrate on the final results.

Preface

[3]

Chapter 6, Hebbian Learning and Self-Organizing Maps, introduces Hebb's rule, which is one
of the oldest neuro-scientific concepts and whose applications are incredibly powerful. The
chapter explains how a single neuron works and presents two complex models (Sanger
network and Rubner-Tavan network) that can perform a Principal Component Analysis
without the input covariance matrix.

Chapter 7, Clustering Algorithms, introduces some common and important unsupervised
algorithms, such as k-Nearest Neighbors (based on KD Trees and Ball Trees), K-means
(with K-means++ initialization), fuzzy C-means, and spectral clustering. Some important
metrics (such as Silhouette score/plots) are also analyzed.

Chapter 8, Ensemble Learning, explains the main concepts of ensemble learning (bagging,
boosting, and stacking), focusing on Random Forests, AdaBoost (with its variants),
Gradient Boosting, and Voting Classifiers.

Chapter 9, Neural Networks for Machine Learning, introduces the concepts of neural
computation, starting with the behavior of a perceptron and continuing the analysis of
multi-layer perceptron, activation functions, back-propagation, stochastic gradient descent
(and the most important optimization algorithm), regularization, dropout, and batch
normalization.

Chapter 10, Advanced Neural Models, continues the explanation of the most important deep
learning methods focusing on convolutional networks, recurrent networks, LSTM, and
GRU.

Chapter 11, Autoencoders, explains the main concepts of an autoencoder, discussing its
application in dimensionality reduction, denoising, and data generation (variational
autoencoders).

Chapter 12, Generative Adversarial Networks, explains the concept of adversarial training.
We focus on Deep Convolutional GANs and Wasserstein GANs. Both techniques are
extremely powerful generative models that can learn the structure of an input data
distribution and generate brand new samples without any additional information.

Chapter 13, Deep Belief Networks, introduces the concepts of Markov random fields,
Restricted Boltzmann Machines, and Deep Belief Networks. These models can be employed
both in supervised and unsupervised scenarios with excellent performance.

Chapter 14, Introduction to Reinforcement Learning, explains the main concepts of
Reinforcement Learning (agent, policy, environment, reward, and value) and applies them
to introduce policy and value iteration algorithms and Temporal-Difference Learning
(TD(0)). The examples are based on a custom checkerboard environment.

Preface

[4]

Chapter 15, Advanced Policy Estimation Algorithms, extends the concepts defined in the
previous chapter, discussing the TD(λ) algorithm, TD(0) Actor-Critic, SARSA, and Q-
Learning. A basic example of Deep Q-Learning is also presented to allow the reader to
immediately apply these concepts to more complex environments.

To get the most out of this book
There are no strict prerequisites for this book; however, it's important to have basic-
intermediate Python knowledge with a specific focus on NumPy. Whenever necessary, I
will provide instructions/references to install specific packages and exploit more advanced
functionalities. As Python is based on a semantic indentation, the published version can
contain incorrect newlines that raise exceptions when executing the code. For this reason, I
invite all readers without deep knowledge of this language to refer to the original source
code provided with the book.

All the examples are based on Python 3.5+. I suggest using the Anaconda distribution
(https://www.anaconda. com/ download/), which is probably the most complete and
powerful one for scientific projects. The majority of the required packages are already built
in and it's very easy to install the new ones (sometimes with optimized versions). However,
any other Python distribution can be used. Moreover, I invite readers to test the examples
using Jupyter (formerly known as IPython) notebooks so as to avoid rerunning the whole
example when a change is made. If instead an IDE is preferred, I suggest PyCharm, which
offers many built-in functionalities that are very helpful in data-oriented and scientific
projects (such as the internal Matplotlib viewer).

A good mathematics background is necessary to fully understand the theoretical part. In
particular, basic skills in probability theory, calculus, and linear algebra are required.
However, I advise you not to give up when a concept seems too difficult. The reference
sections contain many useful books, and the majority of concepts are explained quite well
on Wikipedia too. When something unknown is encountered, I suggest reading the specific
documentation before continuing. In many cases, it's not necessary to have complete
knowledge and even an introductory paragraph can be enough to understand their
rationale.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Mastering- Machine- Learning- Algorithms. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/MasteringMachineLearningAlgorithms_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "In Scikit-Learn, it's possible to split the original dataset using
the train_test_split() function."

http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/Mastering-Machine-Learning-Algorithms
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMachineLearningAlgorithms_ColorImages.pdf

Preface

[6]

A block of code is set as follows:

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.7,
random_state=1)

Bold: Indicates a new term, an important word, or words that you see onscreen.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Machine Learning Model

Fundamentals
Machine learning models are mathematical systems that share many common features.
Even if, sometimes, they have been defined only from a theoretical viewpoint, research
advancement allows us to apply several concepts to better understand the behavior of
complex systems such as deep neural networks. In this chapter, we're going to introduce
and discuss some fundamental elements that some skilled readers may already know, but
that, at the same time, offer several possible interpretations and applications.

In particular, in this chapter we're discussing the main elements of:

Data-generating processes
Finite datasets
Training and test split strategies
Cross-validation
Capacity, bias, and variance of a model
Vapnik-Chervonenkis theory
Cramér-Rao bound
Underfitting and overfitting
Loss and cost functions
Regularization

Machine Learning Model Fundamentals Chapter 1

[9]

Models and data
Machine learning algorithms work with data. They create associations, find out
relationships, discover patterns, generate new samples, and more, working with well-
defined datasets. Unfortunately, sometimes the assumptions or the conditions imposed on
them are not clear, and a lengthy training process can result in a complete validation
failure. Even if this condition is stronger in deep learning contexts, we can think of a model
as a gray box (some transparency is guaranteed by the simplicity of many common
algorithms), where a vectorial input is transformed into a vectorial output :

Schema of a generic model parameterized with the vector θ

In the previous diagram, the model has been represented by a pseudo-function that
depends on a set of parameters defined by the vector θ. In this section, we are only
considering parametric models, although there's a family of algorithms that are called non-
parametric, because they are based only on the structure of the data. We're going to discuss
some of them in upcoming chapters.

The task of a parametric learning process is therefore to find the best parameter set that
maximizes a target function whose value is proportional to the accuracy (or the error, if we
are trying to minimize them) of the model given a specific input X and output Y. This
definition is not very rigorous, and it will be improved in the following sections; however,
it's useful as a way to understand the context we're working in.

Then, the first question to ask is: What is the nature of X? A machine learning problem is
focused on learning abstract relationships that allow a consistent generalization when new
samples are provided. More specifically, we can define a stochastic data generating process
with an associated joint probability distribution:

Machine Learning Model Fundamentals Chapter 1

[10]

Sometimes, it's useful to express the joint probability p(x, y) as a product of the conditional
p(y|x), which expresses the probability of a label given a sample, and the marginal
probability of the samples p(x). This expression is particularly useful when the prior
probability p(x) is known in semi-supervised contexts, or when we are interested in solving
problems using the Expectation Maximization (EM) algorithm. We're going to discuss this
approach in upcoming chapters.

In many cases, we are not able to derive a precise distribution; however, when considering
a dataset, we always assume that it's drawn from the original data-generating distribution.
This condition isn't a purely theoretical assumption, because, as we're going to see,
whenever our data points are drawn from different distributions, the accuracy of the model
can dramatically decrease.

If we sample N independent and identically distributed (i.i.d.) values from pdata, we can
create a finite dataset X made up of k-dimensional real vectors:

In a supervised scenario, we also need the corresponding labels (with t output values):

When the output has more than two classes, there are different possible strategies to
manage the problem. In classical machine learning, one of the most common approaches is
One-vs-All, which is based on training N different binary classifiers where each label is
evaluated against all the remaining ones. In this way, N-1 is performed to determine the
right class. With shallow and deep neural networks, instead, it's preferable to use a softmax
function to represent the output probability distribution for all classes:

This kind of output (zi represents the intermediate values, and the sum of the terms is
normalized to 1) can be easily managed using the cross-entropy cost function (see the
corresponding paragraph in the Loss and cost functions section).

Machine Learning Model Fundamentals Chapter 1

[11]

Zero-centering and whitening
Many algorithms show better performances (above all, in terms of training speed) when the
dataset is symmetric (with a zero-mean). Therefore, one of the most important
preprocessing steps is so-called zero-centering, which consists in subtracting the feature-
wise mean Ex[X] from all samples:

This operation, if necessary, is normally reversible, and doesn't alter relationships both
among samples and among components of the same sample. In deep learning scenarios, a
zero-centered dataset allows exploiting the symmetry of some activation function, driving
to a faster convergence (we're going to discuss these details in the next chapters).

Another very important preprocessing step is called whitening, which is the operation of
imposing an identity covariance matrix to a zero-centered dataset:

As the covariance matrix Ex[X
TX] is real and symmetric, it's possible to eigendecompose it

without the need to invert the eigenvector matrix:

The matrix V contains the eigenvectors (as columns), and the diagonal matrix Ω contains
the eigenvalues. To solve the problem, we need to find a matrix A, such that:

Using the eigendecomposition previously computed, we get:

Hence, the matrix A is:

Machine Learning Model Fundamentals Chapter 1

[12]

One of the main advantages of whitening is the decorrelation of the dataset, which allows
an easier separation of the components. Furthermore, if X is whitened, any orthogonal
transformation induced by the matrix P is also whitened:

Moreover, many algorithms that need to estimate parameters that are strictly related to the
input covariance matrix can benefit from this condition, because it reduces the actual
number of independent variables (in general, these algorithms work with matrices that
become symmetric after applying the whitening). Another important advantage in the field
of deep learning is that the gradients are often higher around the origin, and decrease in
those areas where the activation functions (for example, the hyperbolic tangent or the
sigmoid) saturate (|x| → ∞). That's why the convergence is generally faster for whitened
(and zero-centered) datasets.

In the following graph, it's possible to compare an original dataset, zero-centering, and
whitening:

Original dataset (left), centered version (center), whitened version (right)

When a whitening is needed, it's important to consider some important details. The first
one is that there's a scale difference between the real sample covariance and the estimation
XTX, often adopted with the singular value decomposition (SVD). The second one
concerns some common classes implemented by many frameworks, like Scikit-
Learn's StandardScaler. In fact, while zero-centering is a feature-wise operation, a
whitening filter needs to be computed considering the whole covariance matrix
(StandardScaler implements only unit variance, feature-wise scaling).

Machine Learning Model Fundamentals Chapter 1

[13]

Luckily, all Scikit-Learn algorithms that benefit from or need a whitening preprocessing
step provide a built-in feature, so no further actions are normally required; however, for
all readers who want to implement some algorithms directly, I've written two Python
functions that can be used both for zero-centering and whitening. They assume a matrix X
with a shape (NSamples × n). Moreover, the whiten() function accepts the parameter
correct, which allows us to apply the scaling correction (the default value is True):

import numpy as np

def zero_center(X):
 return X - np.mean(X, axis=0)

def whiten(X, correct=True):
 Xc = zero_center(X)
 _, L, V = np.linalg.svd(Xc)
 W = np.dot(V.T, np.diag(1.0 / L))
 return np.dot(Xc, W) * np.sqrt(X.shape[0]) if correct else 1.0

Training and validation sets
In real problems, the number of samples is limited, and it's usually necessary to split the
initial set X (together with Y) into two subsets as follows:

Training set used to train the model
Validation set used to assess the score of the model without any bias, with
samples never seen before

According to the nature of the problem, it's possible to choose a split percentage ratio of
70% – 30% (a good practice in machine learning, where the datasets are relatively small), or
a higher training percentage (80%, 90%, up to 99%) for deep learning tasks where the
number of samples is very high. In both cases, we are assuming that the training set
contains all the information required for a consistent generalization. In many simple cases,
this is true and can be easily verified; but with more complex datasets, the problem
becomes harder. Even if we think to draw all the samples from the same distribution, it can
happen that a randomly selected test set contains features that are not present in other
training samples. Such a condition can have a very negative impact on global accuracy and,
without other methods, it can also be very difficult to identify. This is one of the reasons
why, in deep learning, training sets are huge: considering the complexity of the features
and structure of the data generating distributions, choosing large test sets can limit the
possibility of learning particular associations.

Machine Learning Model Fundamentals Chapter 1

[14]

In Scikit-Learn, it's possible to split the original dataset using the train_test_split()
function, which allows specifying the train/test size, and if we expect to have randomly
shuffled sets (default). For example, if we want to split X and Y, with 70% training and 30%
test, we can use:

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.7,
random_state=1)

Shuffling the sets is always a good practice, in order to reduce the correlation between
samples. In fact, we have assumed that X is made up of i.i.d samples, but several times two
subsequent samples have a strong correlation, reducing the training performance. In some
cases, it's also useful to re-shuffle the training set after each training epoch; however, in the
majority of our examples, we are going to work with the same shuffled dataset throughout
the whole process. Shuffling has to be avoided when working with sequences and models
with memory: in all those cases, we need to exploit the existing correlation to determine
how the future samples are distributed.

When working with NumPy and Scikit-Learn, it's always a good practice
to set the random seed to a constant value, so as to allow other people to
reproduce the experiment with the same initial conditions. This can be
achieved by calling np.random.seed(...) and using the random-state
parameter present in many Scikit-Learn methods.

Cross-validation
A valid method to detect the problem of wrongly selected test sets is provided by the cross-
validation technique. In particular, we're going to use the K-Fold cross-validation
approach. The idea is to split the whole dataset X into a moving test set and a training set
(the remaining part). The size of the test set is determined by the number of folds so that,
during k iterations, the test set covers the whole original dataset.

Machine Learning Model Fundamentals Chapter 1

[15]

In the following diagram, we see a schematic representation of the process:

K-Fold cross-validation schema

In this way, it's possible to assess the accuracy of the model using different sampling splits,
and the training process can be performed on larger datasets; in particular, on
(k-1)*N samples. In an ideal scenario, the accuracy should be very similar in all iterations;
but in most real cases, the accuracy is quite below average. This means that the training set
has been built excluding samples that contain features necessary to let the model fit the
separating hypersurface considering the real pdata. We're going to discuss these problems
later in this chapter; however, if the standard deviation of the accuracies is too high (a
threshold must be set according to the nature of the problem/model), that probably means
that X hasn't been drawn uniformly from pdata, and it's useful to evaluate the impact of the
outliers in a preprocessing stage. In the following graph, we see the plot of a 15-fold cross-
validation performed on a logistic regression:

Machine Learning Model Fundamentals Chapter 1

[16]

 Cross-validation accuracies

The values oscillate from 0.84 to 0.95, with an average (solid horizontal line) of 0.91. In this
particular case, considering the initial purpose was to use a linear classifier, we can say that
all folds yield high accuracies, confirming that the dataset is linearly separable; however,
there are some samples (excluded in the ninth fold) that are necessary to achieve a
minimum accuracy of about 0.88.

K-Fold cross-validation has different variants that can be employed to solve specific
problems:

Stratified K-Fold: A Standard K-Fold approach splits the dataset without
considering the probability distribution p(y|x), therefore some folds may
theoretically contain only a limited number of labels. Stratified K-Fold, instead,
tries to split X so that all the labels are equally represented.

Machine Learning Model Fundamentals Chapter 1

[17]

Leave-one-out (LOO): This approach is the most drastic because it creates N
folds, each of them containing N-1 training samples and only 1 test sample. In
this way, the maximum possible number of samples is used for training, and it's
quite easy to detect whether the algorithm is able to learn with sufficient
accuracy, or if it's better to adopt another strategy. The main drawback of this
method is that N models must be trained, and when N is very large this can
cause a performance issue. Moreover, with a large number of samples, the
probability that two random values are similar increases, therefore many folds
will yield almost identical results. At the same time, LOO limits the possibilities
for assessing the generalization ability, because a single test sample is not enough
for a reasonable estimation.
Leave-P-out (LPO): In this case, the number of test samples is set to p (non-
disjoint sets), so the number of folds is equal to the binomial coefficient of n over
p. This approach mitigates LOO's drawbacks, and it's a trade-off between K-Fold
and LOO. The number of folds can be very high, but it's possible to control it by
adjusting the number p of test samples; however, if p isn't small or big enough,
the binomial coefficient can explode. In fact, when p has about n/2 samples, the
number of folds is maximal:

Scikit-Learn implements all those methods (with some other variations), but I suggest
always using the cross_val_score() function, which is a helper that allows applying the
different methods to a specific problem. In the following snippet based on a polynomial
Support Vector Machine (SVM) and the MNIST digits dataset, the function is applied
specifying the number of folds (parameter cv). In this way, Scikit-Learn will automatically
use Stratified K-Fold for categorical classifications, and Standard K-Fold for all other cases:

from sklearn.datasets import load_digits
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC

data = load_digits()
svm = SVC(kernel='poly')

skf_scores = cross_val_score(svm, data['data'], data['target'], cv=10)

print(skf_scores)
[0.96216216 1. 0.93922652 0.99444444 0.98882682 0.98882682
 0.99441341 0.99438202 0.96045198 0.96590909]

Machine Learning Model Fundamentals Chapter 1

[18]

print(skf_scores.mean())
0.978864325583

The accuracy is very high (> 0.9) in every fold, therefore we expect to have even higher
accuracy using the LOO method. As we have 1,797 samples, we expect the same number of
accuracies:

from sklearn.model_selection import cross_val_score, LeaveOneOut

loo_scores = cross_val_score(svm, data['data'], data['target'],
cv=LeaveOneOut())

print(loo_scores[0:100])
[1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

print(loo_scores.mean())
0.988870339455

As expected, the average score is very high, but there are still samples that are
misclassified. As we're going to discuss, this situation could be a potential candidate for
overfitting, meaning that the model is learning perfectly how to map the training set, but
it's losing its ability to generalize; however, LOO is not a good method to measure this
model ability, due to the size of the validation set.

We can now evaluate our algorithm with the LPO technique. Considering what was
explained before, we have selected the smaller Iris dataset and a classification based on a
logistic regression. As there are N=150 samples, choosing p = 3, we get 551,300 folds:

from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score, LeavePOut

data = load_iris()

p = 3
lr = LogisticRegression()

lpo_scores = cross_val_score(lr, data['data'], data['target'],
cv=LeavePOut(p))

print(lpo_scores[0:100])

Machine Learning Model Fundamentals Chapter 1

[19]

[1. 1. 1. 1. 1. 1.
1.
 1. 1. 1. 1. 1. 1.
1.
 1. 1. 1. 1. 1. 1.
1.
 1. 1. 1. 1. 1. 1.
1.
 1. 1. 1. 1. 1. 1.
1.
 1. 1. 1. 1. 1. 1.
1.
 1. 1. 1. 1. 1. 1.
1.
 1. 1. 1. 1. 1. 1.
1.
 1. 1. 1. 1. 1. 1.
1.
 1. 0.66666667 ...

print(lpo_scores.mean())
0.955668420098

As in the previous example, we have printed only the first 100 accuracies; however, the
global trend can be immediately understood with only a few values.

The cross-validation technique is a powerful tool that is particularly useful when the
performance cost is not too high. Unfortunately, it's not the best choice for deep learning
models, where the datasets are very large and the training processes can take even days to
complete. However, as we're going to discuss, in those cases the right choice (the split
percentage), together with an accurate analysis of the datasets and the employment of
techniques such as normalization and regularization, allows fitting models that show an
excellent generalization ability.

Machine Learning Model Fundamentals Chapter 1

[20]

Features of a machine learning model
In this section, we're going to consider supervised models, and try to determine how it's
possible to measure their theoretical potential accuracy and their ability to generalize
correctly over all possible samples drawn from pdata. The majority of these concepts were
developed before the deep learning age, but continue to have an enormous influence on
research projects. The idea of capacity, for example, is an open-ended question that
neuroscientists keep on asking themselves about the human brain. Modern deep learning
models with dozens of layers and millions of parameters reopened the theoretical question
from a mathematical viewpoint. Together with this, other elements, like the limits for the
variance of an estimator, again attracted the limelight because the algorithms are becoming
more and more powerful, and performances that once were considered far from any
feasible solution are now a reality. Being able to train a model, so as to exploit its full
capacity, maximize its generalization ability, and increase the accuracy, overcoming even
human performances, is what a deep learning engineer nowadays has to expect from his
work.

Capacity of a model
If we consider a supervised model as a set of parameterized functions, we can
define representational capacity as the intrinsic ability of a certain generic function to map
a relatively large number of data distributions. To understand this concept, let's consider a
function f(x) that admits infinite derivatives, and rewrite it as a Taylor expansion:

Machine Learning Model Fundamentals Chapter 1

[21]

We can decide to take only the first n terms, so to have an n-degree polynomial function.
Consider a simple bi-dimensional scenario with six functions (starting from a linear one);
we can observe the different behavior with a small set of data points:

Different behavior produced by six polynomial separating curves

The ability to rapidly change the curvature is proportional to the degree. If we choose a
linear classifier, we can only modify its slope (the example is always in a bi-dimensional
space) and the intercept. Instead, if we pick a higher-degree function, we have more
possibilities to bend the curvature when it's necessary. If we consider n=1 and n=2 in the
plot (on the top-right, they are the first and the second functions), with n=1, we can include
the dot corresponding to x=11, but this choice has a negative impact on the dot at x=5.

Machine Learning Model Fundamentals Chapter 1

[22]

Only a parameterized non-linear function can solve this problem efficiently, because this
simple problem requires a representational capacity higher than the one provided by linear
classifiers. Another classical example is the XOR function. For a long time, several
researchers opposed perceptrons (linear neural networks), because they weren't able to
classify a dataset generated by the XOR function. Fortunately, the introduction of
multilayer perceptrons, with non-linear functions, allowed us to overcome this problem,
and many whose complexity is beyond the possibilities of any classic machine learning
model.

Vapnik-Chervonenkis capacity
 A mathematical formalization of the capacity of a classifier is provided by the Vapnik-
Chervonenkis theory. To introduce the definition, it's first necessary to define the concept
of shattering. If we have a class of sets C and a set M, we say that C shatters M if:

In other words, given any subset of M, it can be obtained as the intersection of a particular
instance of C (cj) and M itself. If we now consider a model as a parameterized function:

We want to determine its capacity in relation to a finite dataset X:

According to the Vapnik-Chervonenkis theory, we can say that the model f shatters X if
there are no classification errors for every possible label assignment. Therefore, we can
define the Vapnik-Chervonenkis-capacity or VC-capacity (sometimes called VC-
dimension) as the maximum cardinality of a subset of X so that f can shatter it.

Machine Learning Model Fundamentals Chapter 1

[23]

For example, if we consider a linear classifier in a bi-dimensional space, the VC-capacity is
equal to 3, because it's always possible to label three samples so that f shatters them;
however, it's impossible to do it in all situations where N > 3. The XOR problem is an
example that needs a VC-capacity higher than 3. Let's explore the following plot:

XOR problem with different separating curves

This particular label choice makes the set non-linearly separable. The only way to overcome
this problem is to use higher-order functions (or non-linear ones). The curve lines
(belonging to a classifier whose VC-capacity is greater than 3) can separate both the upper-
left and the lower-right regions from the remaining space, but no straight line can do the
same (while it can always separate one point from the other three).

Bias of an estimator
Let's now consider a parameterized model with a single vectorial parameter (this isn't a
limitation, but only a didactic choice):

Machine Learning Model Fundamentals Chapter 1

[24]

The goal of a learning process is to estimate the parameter θ so as, for example, to maximize
the accuracy of a classification. We define the bias of an estimator (in relation to a
parameter θ):

In other words, the bias is the difference between the expected value of the estimation and
the real parameter value. Remember that the estimation is a function of X, and cannot be
considered a constant in the sum.

An estimator is said to be unbiased if:

Moreover, the estimator is defined as consistent if the sequence of estimations converges
(at least with probability 1) to the real value when k → ∞:

Given a dataset X whose samples are drawn from pdata, the accuracy of an estimator is
inversely proportional to its bias. Low-bias (or unbiased) estimators are able to map the
dataset X with high-precision levels, while high-bias estimators are very likely to have a
capacity that isn't high enough for the problem to solve, and therefore their ability to detect
the whole dynamic is poor.

Let's now compute the derivative of the bias with respect to the vector θ (it will be useful
later):

Machine Learning Model Fundamentals Chapter 1

[25]

Consider that the last equation, thanks to the linearity of E[•], holds also if we add a term
that doesn't depend on x to the estimation of θ. In fact, in line with the laws of probability,
it's easy to verify that:

Underfitting
A model with a high bias is likely to underfit the training set. Let's consider the scenario
shown in the following graph:

Underfitted classifier: The curve cannot separate correctly the two classes

Even if the problem is very hard, we could try to adopt a linear model and, at the end of the
training process, the slope and the intercept of the separating line are about -1 and 0 (as
shown in the plot); however, if we measure the accuracy, we discover that it's close to 0!
Independently from the number of iterations, this model will never be able to learn the
association between X and Y. This condition is called underfitting, and its major indicator
is a very low training accuracy. Even if some data preprocessing steps can improve the
accuracy, when a model is underfitted, the only valid solution is to adopt a higher-capacity
model.

Machine Learning Model Fundamentals Chapter 1

[26]

In a machine learning task, our goal is to achieve the maximum accuracy, starting from the
training set and then moving on to the validation set. More formally, we can say that we
want to improve our models so to get as close as possible to Bayes accuracy. This is not a
well-defined value, but a theoretical upper limit that is possible to achieve using an
estimator. In the following diagram, we see a representation of this process:

Accuracy level diagram

Bayes accuracy is often a purely theoretical limit and, for many tasks, it's almost impossible
to achieve using even biological systems; however, advancements in the field of deep
learning allow to create models that have a target accuracy slightly below the Bayes one. In
general, there's no closed form for determining the Bayes accuracy, therefore human
abilities are considered as a benchmark. In the previous classification example, a human
being is immediately able to distinguish among different dot classes, but the problem can
be very hard for a limited-capacity classifier. Some of the models we're going to discuss can
solve this problem with a very high target accuracy, but at this point, we run another risk
that can be understood after defining the concept of variance of an estimator.

Machine Learning Model Fundamentals Chapter 1

[27]

Variance of an estimator
At the beginning of this chapter, we have defined the data generating process pdata, and we
have assumed that our dataset X has been drawn from this distribution; however, we don't
want to learn existing relationships limited to X, but we expect our model to be able to
generalize correctly to any other subset drawn from pdata. A good measure of this ability is
provided by the variance of the estimator:

The variance can be also defined as the square of the standard error (analogously to the
standard deviation). A high variance implies dramatic changes in the accuracy when new
subsets are selected, because the model has probably reached a very high training accuracy
through an over-learning of a limited set of relationships, and it has almost completely lost
its ability to generalize.

Overfitting
If underfitting was the consequence of a low capacity and a high bias, overfitting is a
phenomenon that a high variance can detect. In general, we can observe a very high
training accuracy (even close to the Bayes level), but not a poor validation accuracy. This
means that the capacity of the model is high enough or even excessive for the task (the
higher the capacity, the higher the probability of large variances), and that the training set
isn't a good representation of pdata. To understand the problem, consider the following
classification scenarios:

Acceptable fitting (left), overfitted classifier (right)

Machine Learning Model Fundamentals Chapter 1

[28]

The left plot has been obtained using logistic regression, while, for the right one, the
algorithm is SVM with a sixth-degree polynomial kernel. If we consider the second model,
the decision boundaries seem much more precise, with some samples just over them.
Considering the shapes of the two subsets, it would be possible to say that a non-linear
SVM can better capture the dynamics; however, if we sample another dataset from pdata and
the diagonal tail becomes wider, logistic regression continues to classify the points
correctly, while the SVM accuracy decreases dramatically. The second model is very likely
to be overfitted, and some corrections are necessary. When the validation accuracy is much
lower than the training one, a good strategy is to increase the number of training samples to
consider the real pdata. In fact, it can happen that a training set is built starting from a
hypothetical distribution that doesn't reflect the real one; or the number of samples used for
the validation is too high, reducing the amount of information carried by the remaining
samples. Cross-validation is a good way to assess the quality of datasets, but it can always
happen that we find completely new subsets (for example, generated when the application
is deployed in a production environment) that are misclassified, even if they were
supposed to belong to pdata. If it's not possible to enlarge the training set, data augmentation
could be a valid solution, because it allows creating artificial samples (for images, it's
possible to mirror, rotate, or blur them) starting from the information stored in the known
ones. Other strategies to prevent overfitting are based on a technique called regularization,
which we're going to discuss in the last part of this chapter. For now, we can say that the
effect of regularization is similar to a partial linearization, which implies a capacity
reduction with a consequent variance decrease.

The Cramér-Rao bound
If it's theoretically possible to create an unbiased model (even asymptotically), this is not
true for variance. To understand this concept, it's necessary to introduce an important
definition: the Fisher information. If we have a parameterized model and a data-generating
process pdata, we can define the likelihood function by considering the following parameters:

Machine Learning Model Fundamentals Chapter 1

[29]

This function allows measuring how well the model describes the original data generating
process. The shape of the likelihood can vary substantially, from well-defined, peaked
curves, to almost flat surfaces. Let's consider the following graph, showing two examples
based on a single parameter:

Very peaked likelihood (left), flatter likelihood (right)

We can immediately understand that, in the first case, the maximum likelihood can be
easily reached by gradient ascent, because the surface is very peaked. In the second case,
instead, the gradient magnitude is smaller, and it's rather easy to stop before reaching the
actual maximum because of numerical imprecisions or tolerances. In worst cases, the
surface can be almost flat in very large regions, with a corresponding gradient close to zero.
Of course, we'd like to always work with very sharp and peaked likelihood functions,
because they carry more information about their maximum. More formally, the Fisher
information quantifies this value. For a single parameter, it is defined as follows:

The Fisher information is an unbounded non-negative number that is proportional to the
amount of information carried by the log-likelihood; the use of logarithm has no impact on
the gradient ascent, but it simplifies complex expressions by turning products into sums.
This value can be interpreted as the speed of the gradient when the function is reaching the
maximum; therefore, higher values imply better approximations, while a hypothetical
value of zero means that the probability to determine the right parameter estimation is also
null.

Machine Learning Model Fundamentals Chapter 1

[30]

When working with a set of K parameters, the Fisher information becomes a positive
semidefinite matrix:

This matrix is symmetric, and also has another important property: when a value is zero, it
means that the corresponding couple of parameters are orthogonal for the purpose of the
maximum likelihood estimation, and they can be considered separately. In many real cases,
if a value is close to zero, it determines a very low correlation between parameters and,
even if it's not mathematically rigorous, it's possible to decouple them anyway.

At this point, it's possible to introduce the Cramér-Rao bound, which states that for every
unbiased estimator that adopts x (with probability distribution p(x; θ)) as a measure set, the
variance of any estimator of θ is always lower-bounded according to the following
inequality:

In fact, considering initially a generic estimator and exploiting Cauchy-Schwarz inequality
with the variance and the Fisher information (which are both expressed as expected
values), we obtain:

Now, if we use the expression for derivatives of the bias with respect to θ, considering that
the expected value of the estimation of θ doesn't depend on x, we can rewrite the right side
of the inequality as:

Machine Learning Model Fundamentals Chapter 1

[31]

If the estimator is unbiased, the derivative on the right side is equal to zero, therefore, we
get:

In other words, we can try to reduce the variance, but it will be always lower-bounded by
the inverse Fisher information. Therefore, given a dataset and a model, there's always a
limit to the ability to generalize. In some cases, this measure is easy to determine; however,
its real value is theoretical, because it provides the likelihood function with another
fundamental property: it carries all the information needed to estimate the worst case for
variance. This is not surprising: when we discussed the capacity of a model, we saw how
different functions could drive to higher or lower accuracies. If the training accuracy is high
enough, this means that the capacity is appropriate or even excessive for the problem;
however, we haven't considered the role of the likelihood p(X| θ).

High-capacity models, in particular, with small or low-informative datasets, can drive to
flat likelihood surfaces with a higher probability than lower-capacity models. Therefore, the
Fisher information tends to become smaller, because there are more and more parameter
sets that yield similar probabilities, and this, at the end of the day, drives to higher
variances and an increased risk of overfitting. To conclude this section, it's useful to
consider a general empirical rule derived from the Occam's razor principle: whenever a
simpler model can explain a phenomenon with enough accuracy, it doesn't make sense to
increase its capacity. A simpler model is always preferable (when the performance is good
and it represents accurately the specific problem), because it's normally faster both in the
training and in the inference phases, and more efficient. When talking about deep neural
networks, this principle can be applied in a more precise way, because it's easier to increase
or decrease the number of layers and neurons until the desired accuracy has been achieved.

Loss and cost functions
At the beginning of this chapter, we discussed the concept of generic target function so as
to optimize in order to solve a machine learning problem. More formally, in a supervised
scenario, where we have finite datasets X and Y:

Machine Learning Model Fundamentals Chapter 1

[32]

We can define the generic loss function for a single sample as:

J is a function of the whole parameter set, and must be proportional to the error between
the true label and the predicted. Another important property is convexity. In many real
cases, this is an almost impossible condition; however, it's always useful to look for convex
loss functions, because they can be easily optimized through the gradient descent method.
We're going to discuss this topic in Chapter 9, Neural Networks for Machine Learning.
However, for now, it's useful to consider a loss function as an intermediate between our
training process and a pure mathematical optimization. The missing link is the complete
data. As already discussed, X is drawn from pdata, so it should represent the true
distribution. Therefore, when minimizing the loss function, we're considering a potential
subset of points, and never the whole real dataset. In many cases, this isn't a limitation,
because, if the bias is null and the variance is small enough, the resulting model will show a
good generalization ability (high training and validation accuracy); however, considering
the data generating process, it's useful to introduce another measure called expected risk:

This value can be interpreted as an average of the loss function over all possible samples
drawn from pdata. Minimizing the expected risk implies the maximization of the global
accuracy. When working with a finite number of training samples, instead, it's common to
define a cost function (often called a loss function as well, and not to be confused with the
log-likelihood):

This is the actual function that we're going to minimize and, divided by the number of
samples (a factor that doesn't have any impact), it's also called empirical risk, because it's
an approximation (based on real data) of the expected risk. In other words, we want to find
a set of parameters so that:

Machine Learning Model Fundamentals Chapter 1

[33]

When the cost function has more than two parameters, it's very difficult and perhaps even
impossible to understand its internal structure; however, we can analyze some potential
conditions using a bidimensional diagram:

 Different kinds of points in a bidimensional scenario

The different situations we can observe are:

The starting point, where the cost function is usually very high due to the error.
Local minima, where the gradient is null (and the second derivative is positive).
They are candidates for the optimal parameter set, but unfortunately, if the
concavity isn't too deep, an inertial movement or some noise can easily move the
point away.
Ridges (or local maxima), where the gradient is null, and the second derivative is
negative. They are unstable points, because a minimum perturbation allows
escaping, reaching lower-cost areas.

Machine Learning Model Fundamentals Chapter 1

[34]

Plateaus, or the region where the surface is almost flat and the gradient is close
to zero. The only way to escape a plateau is to keep a residual kinetic
energy—we're going to discuss this concept when talking about neural
optimization algorithms (Chapter 9, Neural Networks for Machine Learning).
Global minimum, the point we want to reach to optimize the cost function.

Even if local minima are likely when the number of parameters is small, they become very
unlikely when the model has a large number of parameters. In fact, an n-dimensional
point θ* is a local minimum for a convex function (and here, we're assuming L to be convex)
only if:

The second condition imposes a positive semi-definite Hessian matrix (equivalently, all
principal minors Hn made with the first n rows and n columns must be non-negative),
therefore all its eigenvalues λ0, λ1, ..., λN must be non-negative. This probability decreases
with the number of parameters (H is a n×n square matrix and has n eigenvalues), and
becomes close to zero in deep learning models where the number of weights can be in the
order of 10,000,000 (or even more). The reader interested in a complete mathematical proof
can read High Dimensional Spaces, Deep Learning and Adversarial Examples, Dube S.,
arXiv:1801.00634 [cs.CV]. As a consequence, a more common condition to consider is
instead the presence of saddle points, where the eigenvalues have different signs and the
orthogonal directional derivatives are null, even if the points are neither local maxima nor
minima. Consider, for example, the following plot:

 Saddle point in a bidimensional scenario

Machine Learning Model Fundamentals Chapter 1

[35]

The function is y=x3 whose first and second derivatives are y'=3x2 and y''=6x.
Therefore, y'(0)=y''(0)=0. In this case (single-valued function), this point is also called a
point of inflection, because at x=0, the function shows a change in the concavity. In three
dimensions, it's easier to understand why a saddle point has been called in this way.
Consider, for example, the following plot:

 Saddle point in a three-dimensional scenario

The surface is very similar to a horse saddle, and if we project the point on an orthogonal
plane, XZ is a minimum, while on another plane (YZ) it is a maximum. Saddle points are
quite dangerous, because many simpler optimization algorithms can slow down and even
stop, losing the ability to find the right direction. In Chapter 9, Neural Networks for Machine
Learning, we're going to discuss some methods that are able to mitigate this kind of
problem, allowing deep models to converge.

Machine Learning Model Fundamentals Chapter 1

[36]

Examples of cost functions
In this section, we expose some common cost functions that are employed in both
classification and regression tasks. Some of them will be extensively adopted in our
examples in the next chapters, particularly when discussing training processes in shallow
and deep neural networks.

Mean squared error
Mean squared error is one of the most common regression cost functions. Its generic
expression is:

This function is differentiable at every point of its domain and it's convex, so it can be
optimized using the stochastic gradient descent (SGD) algorithm; however, there's a
drawback when employed in regressions where there are outliers. As its value is always
quadratic when the distance between the prediction and the actual value (corresponding to
an outlier) is large, the relative error is high, and this can lead to an unacceptable correction.

Huber cost function
As explained, mean squared error isn't robust to outliers, because it's always quadratic
independently of the distance between actual value and prediction. To overcome this
problem, it's possible to employ the Huber cost function, which is based on threshold tH, so
that for distances less than tH, its behavior is quadratic, while for a distance greater than tH,

it becomes linear, reducing the entity of the error and, therefore, the relative importance of
the outliers.

The analytical expression is:

Machine Learning Model Fundamentals Chapter 1

[37]

Hinge cost function
This cost function is adopted by SVM, where the goal is to maximize the distance between
the separation boundaries (where the support vector lies). It's analytic expression is:

Contrary to the other examples, this cost function is not optimized using classic stochastic
gradient descent methods, because it's not differentiable at all points where:

For this reason, SVM algorithms are optimized using quadratic programming techniques.

Categorical cross-entropy
Categorical cross-entropy is the most diffused classification cost function, adopted by
logistic regression and the majority of neural architectures. The generic analytical
expression is:

This cost function is convex and can be easily optimized using stochastic gradient descent
techniques; moreover, it has another important interpretation. If we are training a classifier,
our goal is to create a model whose distribution is as similar as possible to pdata. This
condition can be achieved by minimizing the Kullback-Leibler divergence between the two
distributions:

Machine Learning Model Fundamentals Chapter 1

[38]

In the previous expression, pM is the distribution generated by the model. Now, if we
rewrite the divergence, we get:

The first term is the entropy of the data-generating distribution, and it doesn't depend on
the model parameters, while the second one is the cross-entropy. Therefore, if we minimize
the cross-entropy, we also minimize the Kullback-Leibler divergence, forcing the model to
reproduce a distribution that is very similar to pdata. This is a very elegant explanation as to
why the cross-entropy cost function is an excellent choice for classification problems.

Regularization
When a model is ill-conditioned or prone to overfitting, regularization offers some valid
tools to mitigate the problems. From a mathematical viewpoint, a regularizer is a penalty
added to the cost function, so to impose an extra-condition on the evolution of the
parameters:

The parameter λ controls the strength of the regularization, which is expressed through the
function g(θ). A fundamental condition on g(θ) is that it must be differentiable so that the
new composite cost function can still be optimized using SGD algorithms. In general, any
regular function can be employed; however, we normally need a function that can contrast
the indefinite growth of the parameters.

Machine Learning Model Fundamentals Chapter 1

[39]

To understand the principle, let's consider the following diagram:

Interpolation with a linear curve (left) and a parabolic one (right)

In the first diagram, the model is linear and has two parameters, while in the second one, it
is quadratic and has three parameters. We already know that the second option is more
prone to overfitting, but if we apply a regularization term, it's possible to avoid the growth
of a (first quadratic parameter), transforming the model into a linearized version. Of course,
there's a difference between choosing a lower-capacity model and applying a regularization
constraint. In fact, in the first case, we are renouncing the possibility offered by the extra
capacity, running the risk of increasing the bias, while with regularization we keep the
same model but optimize it so to reduce the variance. Let's now explore the most common
regularization techniques.

Ridge
Ridge regularization (also known as Tikhonov regularization) is based on the squared L2-
norm of the parameter vector:

This penalty avoids an infinite growth of the parameters (for this reason, it's also known as
weight shrinkage), and it's particularly useful when the model is ill-conditioned, or there is
multicollinearity, due to the fact that the samples are completely independent (a relatively
common condition).

Machine Learning Model Fundamentals Chapter 1

[40]

In the following diagram, we see a schematic representation of the Ridge regularization in a
bidimensional scenario:

Ridge (L2) regularization

The zero-centered circle represents the Ridge boundary, while the shaded surface is the
original cost function. Without regularization, the minimum (w1, w2) has a magnitude (for
example, the distance from the origin) which is about double the one obtained by applying
a Ridge constraint, confirming the expected shrinkage. When applied to regressions solved
with the Ordinary Least Squares (OLS) algorithm, it's possible to prove that there always
exists a Ridge coefficient, so that the weights are shrunk with respect the OLS ones. The
same result, with some restrictions, can be extended to other cost functions.

Machine Learning Model Fundamentals Chapter 1

[41]

Lasso
Lasso regularization is based on the L1-norm of the parameter vector:

Contrary to Ridge, which shrinks all the weights, Lasso can shift the smallest one to zero,
creating a sparse parameter vector. The mathematical proof is beyond the scope of this
book; however, it's possible to understand it intuitively by considering the following
diagram (bidimensional):

Lasso (L1) regularization

Machine Learning Model Fundamentals Chapter 1

[42]

The zero-centered square represents the Lasso boundaries. If we consider a generic line, the
probability of being tangential to the square is higher at the corners, where at least one
(exactly one in a bidimensional scenario) parameter is null. In general, if we have a
vectorial convex function f(x) (we provide a definition of convexity in Chapter 5, EM
Algorithm and Applications), we can define:

As any Lp-norm is convex, as well as the sum of convex functions, g(x) is also convex. The
regularization term is always non-negative, therefore the minimum corresponds to the
norm of the null vector. When minimizing g(x), we need to also consider the contribution of
the gradient of the norm in the ball centered in the origin where, however, the partial
derivatives don't exist. Increasing the value of p, the norm becomes smoothed around the
origin, and the partial derivatives approach zero for |xi| → 0.

On the other side, with p=1 (excluding the L0-norm and all the norms with p ∈]0, 1[that
allow an even stronger sparsity, but are non-convex), the partial derivatives are always +1
or -1, according to the sign of xi (xi ≠ 0). Therefore, it's easier for the L1-norm to push the
smallest components to zero, because the contribution to the minimization (for example,
with a gradient descent) is independent of xi, while an L2-norm decreases its speed when
approaching the origin. This is a non-rigorous explanation of the sparsity achieved using
the L1-norm. In fact, we also need to consider the term f(x), which bounds the value of the
global minimum; however, it may help the reader to develop an intuitive understanding of
the concept. It's possible to find further and mathematically rigorous details in Optimization
for Machine Learning, (edited by) Sra S., Nowozin S., Wright S. J., The MIT Press.

Machine Learning Model Fundamentals Chapter 1

[43]

Lasso regularization is particularly useful whenever a sparse representation of a dataset is
needed. For example, we could be interested in finding the feature vectors corresponding to
a group of images. As we expect to have many features but only a subset present in each
image, applying the Lasso regularization allows forcing all the smallest coefficients to
become null, suppressing the presence of the secondary features. Another potential
application is latent semantic analysis, where our goal is to describe the documents
belonging to a corpus in terms of a limited number of topics. All these methods can be
summarized in a technique called sparse coding, where the objective is to reduce the
dimensionality of a dataset (also in non-linear scenarios) by extracting the most
representative atoms, using different approaches to achieve sparsity.

ElasticNet
In many real cases, it's useful to apply both Ridge and Lasso regularization in order to force
weight shrinkage and a global sparsity. It is possible by employing the ElasticNet
regularization, defined as:

The strength of each regularization is controlled by the parameters λ1 and λ2. ElasticNet can
yield excellent results whenever it's necessary to mitigate overfitting effects while
encouraging sparsity. We are going to apply all the regularization techniques when
discussing some deep learning architectures.

Early stopping
Even though it's a pure regularization technique, early stopping is often considered as a
last resort when all other approaches to prevent overfitting and maximize validation
accuracy fail. In many cases (above all, in deep learning scenarios), it's possible to observe a
typical behavior of the training process considering both training and the validation cost
functions:

Machine Learning Model Fundamentals Chapter 1

[44]

 Example of early stopping before the beginning of ascending phase of U-curve

During the first epochs, both costs decrease, but it can happen that after a threshold epoch es,
the validation cost starts increasing. If we continue with the training process, this results in
overfitting the training set and increasing the variance. For this reason, when there are no
other options, it's possible to prematurely stop the training process. In order to do so, it's
necessary to store the last parameter vector before the beginning of a new iteration and, in
the case of no improvements or the accuracy worsening, to stop the process and recover the
last parameters. As explained, this procedure must never be considered as the best choice,
because a better model or an improved dataset could yield higher performances. With early
stopping, there's no way to verify alternatives, therefore it must be adopted only at the last
stage of the process and never at the beginning. Many deep learning frameworks such as
Keras include helpers to implement an early stopping callback; however, it's important to
check whether the last parameter vector is the one stored before the last epoch or the one
corresponding to es. In this case, it could be useful to repeat the training process, stopping it
at the epoch previous to es (where the minimum validation cost has been achieved).

Machine Learning Model Fundamentals Chapter 1

[45]

Summary
In this chapter, we discussed fundamental concepts shared by almost any machine learning
model. In the first part, we have introduced the data generating process, as a generalization
of a finite dataset. We explained which are the most common strategies to split a finite
dataset into a training block and a validation set, and we introduced cross-validation, with
some of the most important variants, as one of the best approaches to avoid the limitations
of a static split.

In the second part, we discussed the main properties of an estimator: capacity, bias, and
variance. We also introduced the Vapnik-Chervonenkis theory, which is a mathematical
formalization of the concept of representational capacity, and we analyzed the effects of
high biases and high variances. In particular, we discussed effects called underfitting and
overfitting, defining the relationship with high bias and high variance.

In the third part, we introduced the loss and cost functions, first as proxies of the expected
risk, and then we detailed some common situations that can be experienced during an
optimization problem. We also exposed some common cost functions, together with their
main features. In the last part, we discussed regularization, explaining how it can mitigate
the effects of overfitting.

In the next chapter, Chapter 2, Introduction to Semi-Supervised Learning, we're going to
introduce semi-supervised learning, focusing our attention on the concepts of transductive
and inductive learning.

2
Introduction to Semi-
Supervised Learning

Semi-supervised learning is a machine learning branch that tries to solve problems with
both labeled and unlabeled data with an approach that employs concepts belonging to
clustering and classification methods. The high availability of unlabeled samples, in
contrast with the difficulty of labeling huge datasets correctly, drove many researchers to
investigate the best approaches that allow extending the knowledge provided by the
labeled samples to a larger unlabeled population without loss of accuracy. In this chapter,
we're going to introduce this branch and, in particular, we will discuss:

The semi-supervised scenario
The assumptions needed to efficiently operate in such a scenario
The different approaches to semi-supervised learning
Generative Gaussian mixtures algorithm
Contrastive pessimistic likelihood estimation approach
Semi-supervised Support Vector Machines (S3VM)
Transductive Support Vector Machines (TSVM)

Semi-supervised scenario
A typical semi-supervised scenario is not very different from a supervised one. Let's
suppose we have a data generating process, pdata:

Introduction to Semi-Supervised Learning Chapter 2

[47]

However, contrary to a supervised approach, we have only a limited number N of samples
drawn from pdata and provided with a label, as follows:

Instead, we have a larger amount (M) of unlabeled samples drawn from the marginal
distribution p(x):

In general, there are no restrictions on the values of N and M; however, a semi-supervised
problem arises when the number of unlabeled samples is much higher than the number of
complete samples. If we can draw N >> M labeled samples from pdata, it's probably useless to
keep on working with semi-supervised approaches and preferring classical supervised
methods is likely to be the best choice. The extra complexity we need is justified by M >> N,
which is a common condition in all those situations where the amount of available
unlabeled data is large, while the number of correctly labeled samples is quite a lot lower.
For example, we can easily access millions of free images but detailed labeled datasets are
expensive and include only a limited subset of possibilities. However, is it always possible
to apply semi-supervised learning to improve our models? The answer to this question is
almost obvious: unfortunately no. As a rule of thumb, we can say that if the knowledge of
Xu increases our knowledge about the prior distribution p(x), a semi-supervised algorithm
is likely to perform better than a purely supervised (and thus limited to Xl) counterpart. On
the other hand, if the unlabeled samples are drawn from different distributions, the final
result can be quite a lot worse. In real cases, it's not so immediately necessary to decide
whether a semi-supervised algorithm is the best choice; therefore, cross-validation and
comparisons are the best practices to employ when evaluating a scenario.

Transductive learning
When a semi-supervised model is aimed at finding the labels for the unlabeled samples, the
approach is called transductive learning. In this case, we are not interested in modeling the
whole distribution p(x|y), which implies determining the density of both datasets, but
rather in finding p(y|x) only for the unlabeled points. In many cases, this strategy can be
time-saving and it's always preferable when our goal is more oriented at improving our
knowledge about the unlabeled dataset.

Introduction to Semi-Supervised Learning Chapter 2

[48]

Inductive learning
Contrary to transductive learning, inductive learning considers all the X samples and tries
to determine a complete p(x|y) or a function y=f(x) that can map both labeled and unlabeled
points to their corresponding labels. In general, this method is more complex and requires
more computational time; therefore, according to Vapnik's principle, if not required or
necessary, it's always better to pick the most pragmatic solution and, possibly, expand it if
the problem requires further details.

Semi-supervised assumptions
As explained in the previous section, semi-supervised learning is not guaranteed to
improve a supervised model. A wrong choice could lead to a dramatic worsening in
performance; however, it's possible to state some fundamental assumptions which are
required for semi-supervised learning to work properly. They are not always
mathematically proven theorems, but rather empirical observations that justify the choice
of an approach otherwise completely arbitrary.

Smoothness assumption
Let's consider a real-valued function f(x) and the corresponding metric spaces X and Y.
Such a function is said to be Lipschitz-continuous if:

In other words, if two points x1 and x2 are near, the corresponding output values y1 and y2

cannot be arbitrarily far from each other. This condition is fundamental in regression
problems where a generalization is often required for points that are between training
samples. For example, if we need to predict the output for a point xt : x1 < xt < x2 and the
regressor is Lipschitz-continuous, we can be sure that yt will be correctly bounded by y1 and
y2. This condition is often called general smoothness, but in semi-supervised it's useful to
add a restriction (correlated with the cluster assumption): if two points are in a high density
region (cluster) and they are close, then the corresponding outputs must be close too. This
extra condition is very important because, if two samples are in a low density region they
can belong to different clusters and their labels can be very different. This is not always
true, but it's useful to include this constraint to allow some further assumptions in many
definitions of semi-supervised models.

Introduction to Semi-Supervised Learning Chapter 2

[49]

Cluster assumption
This assumption is strictly linked to the previous one and it's probably easier to accept. It
can be expressed with a chain of interdependent conditions. Clusters are high density
regions; therefore, if two points are close, they are likely to belong to the same cluster and
their labels must be the same. Low density regions are separation spaces; therefore, samples
belonging to a low density region are likely to be boundary points and their classes can be
different. To better understand this concept, it's useful to think about supervised SVM: only
the support vectors should be in low density regions. Let's consider the following
bidimensional example:

In a semi-supervised scenario, we couldn't know the label of a point belonging to a high
density region; however, if it is close enough to a labeled point that it's possible to build a
ball where all the points have the same average density, we are allowed to predict the label
of our test sample. Instead, if we move to a low-density region, the process becomes harder,
because two points can be very close but with different labels. We are going to discuss the
semi-supervised, low-density separation problem at the end of this chapter.

Introduction to Semi-Supervised Learning Chapter 2

[50]

Manifold assumption
This is the less intuitive assumption, but it can be extremely useful to reduce the complexity
of many problems. First of all, we can provide a non-rigorous definition of a manifold. An
n-manifold is a topological space that is globally curved, but locally homeomorphic to an n-
dimensional Euclidean space. In the following diagram, there's an example of a manifold:
the surface of a sphere in ℜ3:

2D manifold obtained from a spherical surface

The small patch around P (for ε → 0) can be mapped to a flat circular surface. Therefore, the
properties of a manifold are locally based on the Euclidean geometry, while, globally, they
need a proper mathematical extension which is beyond the scope of this book (further
information can be found in Semi-supervised learning on Riemannian manifolds, Belkin M.,
Niyogi P., Machine Learning 56, 2004).

Introduction to Semi-Supervised Learning Chapter 2

[51]

The manifold assumption states that p-dimensional samples (where p >> 1) approximately
lie on a q-dimensional manifold with p << q. Without excessive mathematical rigor, we can
say that, for example, if we have N 1000-dimensional bounded vectors, they are enclosed
into a 1000-dimensional hypercube with edge-length equal to r. The corresponding n-
volume is rp = r1000, therefore, the probability of filling the entire space is very small (and
decreases with p). What we observe, instead, is a high density on a lower dimensional
manifold. For example, if we look at the Earth from space, we might think that its
inhabitants are uniformly distributed over the whole volume. We know that this is false
and, in fact, we can create maps and atlases which are represented on two-dimensional
manifolds. It doesn't make sense to use three-dimensional vectors to map the position of a
human being. It's easier to use a projection and work with latitude and longitude.

This assumption authorizes us to apply dimensionality reduction methods in order to
avoid the Curse of Dimensionality, theorized by Bellman (in Dynamic Programming and
Markov Process, Ronald A. Howard, The MIT Press). In the scope of machine learning, the
main consequence of such an effect is that when the dimensionality of the samples
increases, in order to achieve a high accuracy, it's necessary to use more and more samples.
Moreover, Hughes observed (the phenomenon has been named after him and it's presented
in the paper Hughes G. F., On the mean accuracy of statistical pattern recognizers, IEEE
Transactions on Information Theory, 1968, 14/1) that the accuracy of statistical classifiers is
inversely proportional to the dimensionality of the samples. This means that whenever it's
possible to work on lower dimensional manifolds (in particular in semi-supervised
scenarios), two advantages are achieved:

Less computational time and memory consumption
Higher classification accuracy

Generative Gaussian mixtures
Generative Gaussian mixtures is an inductive algorithm for semi-supervised clustering.
Let's suppose we have a labeled dataset (Xl, Yl) containing N samples (drawn from pdata) and
an unlabeled dataset Xu containing M >> N samples (drawn from the marginal distribution
p(x)). It's not necessary that M >> N, but we want to create a real semi-supervised scenario,
with only a few labeled samples. Moreover, we are assuming that all unlabeled samples are
consistent with pdata. This can seem like a vicious cycle, but without this assumption, the
procedure does not have a strong mathematical foundation. Our goal is to determine a
complete p(x|y) distribution using a generative model. In general, it's possible to use
different priors, but we are now employing multivariate Gaussians to model our data:

Introduction to Semi-Supervised Learning Chapter 2

[52]

Thus, our model parameters are means and covariance matrices for all Gaussians. In other
contexts, it's possible to use binomial or multinomial distributions. However, the procedure
doesn't change; therefore, let's assume that it's possible to approximate p(x|y) with a
parametrized distribution p(x|y, θ). We can achieve this goal by minimizing the Kullback-
Leibler divergence between the two distributions:

In Chapter 5, EM Algorithm and Applications we are going to show that this is equivalent to
maximizing the likelihood of the dataset. To obtain the likelihood, it's necessary to define
the number of expected Gaussians (which is known from the labeled samples) and a
weight-vector that represents the marginal probability of a specific Gaussian:

Using the Bayes' theorem, we get:

As we are working with both labeled and unlabeled samples, the previous expression has a
double interpretation:

For unlabeled samples, it is computed by multiplying the ith Gaussian weight
times the probability p(xj) relative to the ith Gaussian distribution.
 For labeled samples, it can be represented by a vector p = [0, 0, ... 1, ... 0, 0] where
1 is the ith element. In this way, we force our model to trust the labeled samples in
order to find the best parameter values that maximize the likelihood on the
whole dataset.

With this distinction, we can consider a single log-likelihood function where the term
fw(yi|xj) has been substituted by a per sample weight:

Introduction to Semi-Supervised Learning Chapter 2

[53]

It's possible to maximize the log-likelihood using the EM algorithm (see Chapter 5, EM
Algorithm and Applications). In this context, we provide the steps directly:

p(yi|xj,θ,w) is computed according to the previously explained method
The parameters of the Gaussians are updated using these rules:

N is the total number of samples. The procedure must be iterated until the parameters stop
modifying or the modifications are lower than a fixed threshold.

Example of a generative Gaussian mixture
We can now implement this model in Python using a simple bidimensional dataset, created
using the make_blobs() function provided by Scikit-Learn:

from sklearn.datasets import make_blobs

nb_samples = 1000
nb_unlabeled = 750

X, Y = make_blobs(n_samples=nb_samples, n_features=2, centers=2,
cluster_std=2.5, random_state=100)

unlabeled_idx = np.random.choice(np.arange(0, nb_samples, 1),
replace=False, size=nb_unlabeled)
Y[unlabeled_idx] = -1

Introduction to Semi-Supervised Learning Chapter 2

[54]

We have created 1,000 samples belonging to 2 classes. 750 points have then been randomly
selected to become our unlabeled dataset (the corresponding class has been set to -1). We
can now initialize two Gaussian distributions by defining their mean, covariance, and
weight. One possibility is to use random values:

import numpy as np

First Gaussian
m1 = np.random.uniform(-7.5, 10.0, size=2)
c1 = np.random.uniform(5.0, 15.0, size=(2, 2))
c1 = np.dot(c1, c1.T)
q1 = 0.5

Second Gaussian
m2 = np.random.uniform(-7.5, 10.0, size=2)
c2 = np.random.uniform(5.0, 15.0, size=(2, 2))
c2 = np.dot(c2, c2.T)
q2 = 0.5

However, as the covariance matrices must be positive semi definite, it's useful to alter the
random values (by multiplying each matrix by the corresponding transpose) or to set hard-
coded initial parameters. In this case, we could pick the following example:

import numpy as np

First Gaussian
m1 = np.array([-3.0, -4.5])
c1 = np.array([[25.0, 5.0],
 [5.0, 35.0]])
q1 = 0.5

Second Gaussian
m2 = np.array([5.0, 10.0])
c2 = np.array([[25.0, -10.0],
 [-10.0, 25.0]])
q2 = 0.5

Introduction to Semi-Supervised Learning Chapter 2

[55]

The resulting plot is shown in the following graph, where the small diamonds represent the
unlabeled points and the bigger dots, the samples belonging to the known classes:

Initial configuration of the Gaussian mixture

Introduction to Semi-Supervised Learning Chapter 2

[56]

The two Gaussians are represented by the concentric ellipses. We can now execute the
training procedure. For simplicity, we repeat the update for a fixed number of iterations.
The reader can easily modify the code in order to introduce a threshold:

from scipy.stats import multivariate_normal

nb_iterations = 5

for i in range(nb_iterations):
 Pij = np.zeros((nb_samples, 2))
 for i in range(nb_samples):
 if Y[i] == -1:
 p1 = multivariate_normal.pdf(X[i], m1, c1, allow_singular=True)
* q1
 p2 = multivariate_normal.pdf(X[i], m2, c2, allow_singular=True)
* q2
 Pij[i] = [p1, p2] / (p1 + p2)
 else:
 Pij[i, :] = [1.0, 0.0] if Y[i] == 0 else [0.0, 1.0]
 n = np.sum(Pij, axis=0)
 m = np.sum(np.dot(Pij.T, X), axis=0)
 m1 = np.dot(Pij[:, 0], X) / n[0]
 m2 = np.dot(Pij[:, 1], X) / n[1]
 q1 = n[0] / float(nb_samples)
 q2 = n[1] / float(nb_samples)
 c1 = np.zeros((2, 2))
 c2 = np.zeros((2, 2))

 for t in range(nb_samples):
 c1 += Pij[t, 0] * np.outer(X[t] - m1, X[t] - m1)
 c2 += Pij[t, 1] * np.outer(X[t] - m2, X[t] - m2)
 c1 /= n[0]
 c2 /= n[1]

Introduction to Semi-Supervised Learning Chapter 2

[57]

The first thing at the beginning of each cycle is to initialize the Pij matrix that will be used
to store the p(yi|xj,θ,w) values. Then, for each sample, we can compute p(yi|xj,θ,w)
considering whether it's labeled or not. The Gaussian probability is computed using the
SciPy function multivariate_normal.pdf(). When the whole Pij matrix has been
populated, we can update the parameters (means and covariance matrix) of both Gaussians
and the relative weights. The algorithm is very fast; after five iterations, we get the stable
state represented in the following graph:

Introduction to Semi-Supervised Learning Chapter 2

[58]

The two Gaussians have perfectly mapped the space by setting their parameters so as to
cover the high-density regions. We can check for some unlabeled points, as follows:

print(np.round(X[Y==-1][0:10], 3))

[[1.67 7.204]
 [-1.347 -5.672]
 [-2.395 10.952]
 [-0.261 6.526]
 [1.053 8.961]
 [-0.579 -7.431]
 [0.956 9.739]
 [-5.889 5.227]
 [-2.761 8.615]
 [-1.777 4.717]]

It's easy to locate them in the previous plot. The corresponding classes can be obtained
through the last Pij matrix:

print(np.round(Pij[Y==-1][0:10], 3))

[[0.002 0.998]
 [1. 0.]
 [0. 1.]
 [0.003 0.997]
 [0. 1.]
 [1. 0.]
 [0. 1.]
 [0.007 0.993]
 [0. 1.]
 [0.02 0.98]]

This immediately verifies that they have been correctly labeled and assigned to the right
cluster. This algorithm is very fast and produces excellent results in terms of density
estimation. In Chapter 5, EM Algorithm and Applications, we are going to discuss a general
version of this algorithm, explaining the complete training procedure based on the EM
algorithm.

In all the examples that involve random numbers, the seed is set equal to
1,000 (np.random.seed(1000)). Other values or subsequent experiments
without resetting it can yield slightly different results.

Introduction to Semi-Supervised Learning Chapter 2

[59]

Weighted log-likelihood
In the previous example, we have considered a single log-likelihood for both labeled and
unlabeled samples:

This is equivalent to saying that we trust the unlabeled points just like the labeled ones.
However, in some contexts, this assumption can lead to completely wrong estimations, as
shown in the following graph:

Biased final Gaussian mixture configuration

Introduction to Semi-Supervised Learning Chapter 2

[60]

In this case, the means and covariance matrices of both Gaussian distributions have been
biased by the unlabeled points and the resulting density estimation is clearly wrong. When
this phenomenon happens, the best thing to do is to consider a double weighted log-
likelihood. If the first N samples are labeled and the following M are unlabeled, the log-
likelihood can be expressed as follows:

In the previous formula, the term λ, if less than 1, can underweight the unlabeled terms,
giving more importance to the labeled dataset. The modifications to the algorithm are
trivial because each unlabeled weight has to be scaled according to λ, reducing its estimated
probability. In Semi-Supervised Learning, Chapelle O., Schölkopf B., Zien A., (edited by), The MIT
Press, the reader can find a very detailed discussion about the choice of λ. There are no
golden rules; however, a possible strategy could be based on the cross-validation
performed on the labeled dataset. Another (more complex) approach is to consider
different increasing values of λ and pick the first one where the log-likelihood is maximum.
I recommend the aforementioned book for further details and strategies.

Contrastive pessimistic likelihood
estimation
As explained at the beginning of this chapter, in many real life problems, it's cheaper to
retrieve unlabeled samples, rather than correctly labeled ones. For this reason, many
researchers worked to find out the best strategies to carry out a semi-supervised
classification that could outperform the supervised counterpart. The idea is to train a
classifier with a few labeled samples and then improve its accuracy after adding weighted
unlabeled samples. One of the best results is the Contrastive Pessimistic Likelihood
Estimation (CPLE) algorithm, proposed by M. Loog (in Loog M., Contrastive Pessimistic
Likelihood Estimation for Semi-Supervised Classification, arXiv:1503.00269).

Before explaining this algorithm, an introduction is necessary. If we have a labeled dataset
(X, Y) containing N samples, it's possible to define the log-likelihood cost function of a
generic estimator, as follows:

Introduction to Semi-Supervised Learning Chapter 2

[61]

After training the model, it should be possible to determine p(yi|xi, θ), which is the
probability of a label given a sample xi. However, some classifiers are not based on this
approach (like SVM) and evaluate the right class, for example, by checking the sign of a
parametrized function f(xi, θ). As CPLE is a generic framework that can be used with any
classification algorithm when the probabilities are not available, it's useful to implement a
technique called Platt scaling, which allows transforming the decision function into a
probability through a parametrized sigmoid. For a binary classifier, it can be expressed as
follows:

α and β are parameters that must be learned in order to maximize the likelihood. Luckily
Scikit-Learn provides the method predict_proba(), which returns the probabilities for all
classes. Platt scaling is performed automatically or on demand; for example, the SCV
classifier needs to have the parameter probability=True in order to compute the
probability mapping. I always recommend checking the documentation before
implementing a custom solution.

We can consider a full dataset, made up of labeled and unlabeled samples. For simplicity,
we can reorganize the original dataset, so that the first N samples are labeled, while the
next M are unlabeled:

As we don't know the labels for all xu samples, we can decide to use M k-dimensional (k is
the number of classes) soft-labels qi that can be optimized during the training process:

The second condition in the previous formula is necessary to guarantee that each qi

represents a discrete probability (all the elements must sum up to 1.0). The complete log-
likelihood cost function can, therefore, be expressed as follows:

Introduction to Semi-Supervised Learning Chapter 2

[62]

The first term represents the log-likelihood for the supervised part, while the second one is
responsible for the unlabeled points. If we train a classifier with only the labeled samples,
excluding the second addend, we get a parameter set θsup. CPLE defines a contrastive
condition (as a log-likelihood too), by defining the improvement in the total cost function
given by the semi-supervised approach, compared to the supervised solution:

This condition allows imposing that the semi-supervised solution must outperform the
supervised one, in fact, maximizing it; we both increase the first term and reduce the
second one, obtaining a proportional increase of CL (the term contrastive is very common in
machine learning and it normally indicates a condition which is achieved as the difference
between two opposite constraints). If CL doesn't increase, it probably means that the
unlabeled samples have not been drawn from the marginal distribution p(x) extracted from
pdata.

Moreover, in the previous expression, we have implicitly used soft-labels, but as they are
initially randomly chosen and there's no ground truth to support their values, it's a good
idea not to trust them by imposing a pessimistic condition (as another log-likelihood):

By imposing this constraint, we try to find the soft-labels that minimize the contrastive log-
likelihood; that's why this is defined as a pessimistic approach. It can seem a contradiction;
however, trusting soft-labels can be dangerous, because the semi-supervised log-likelihood
could be increased even with a large percentage of misclassification. Our goal is to find the
best parameter set that is able to guarantee the highest accuracy starting from the
supervised baseline (which has been obtained using the labeled samples) and improving it,
without forgetting the structural features provided by the labeled samples.

Therefore, our final goal can be expressed as follows:

Introduction to Semi-Supervised Learning Chapter 2

[63]

Example of contrastive pessimistic likelihood
estimation
We are going to implement the CPLE algorithm in Python using a subset extracted from the
MNIST dataset. For simplicity, we are going to use only the samples representing the digits
0 and 1:

from sklearn.datasets import load_digits

import numpy as np

X_a, Y_a = load_digits(return_X_y=True)

X = np.vstack((X_a[Y_a == 0], X_a[Y_a == 1]))
Y = np.vstack((np.expand_dims(Y_a, axis=1)[Y_a==0], np.expand_dims(Y_a,
axis=1)[Y_a==1]))

nb_samples = X.shape[0]
nb_dimensions = X.shape[1]
nb_unlabeled = 150
Y_true = np.zeros((nb_unlabeled,))

unlabeled_idx = np.random.choice(np.arange(0, nb_samples, 1),
replace=False, size=nb_unlabeled)
Y_true = Y[unlabeled_idx].copy()
Y[unlabeled_idx] = -1

After creating the restricted dataset (X, Y) which contain 360 samples, we randomly select
150 samples (about 42%) to become unlabeled (the corresponding y is -1). At this point, we
can measure the performance of logistic regression trained only on the labeled dataset:

from sklearn.linear_model import LogisticRegression

lr_test = LogisticRegression()
lr_test.fit(X[Y.squeeze() != -1], Y[Y.squeeze() != -1].squeeze())
unlabeled_score = lr_test.score(X[Y.squeeze() == -1], Y_true)

print(unlabeled_score)
0.573333333333

So, the logistic regression shows 57% accuracy for the classification of the unlabeled
samples. We can also evaluate the cross-validation score on the whole dataset (before
removing some random labels):

from sklearn.model_selection import cross_val_score

Introduction to Semi-Supervised Learning Chapter 2

[64]

total_cv_scores = cross_val_score(LogisticRegression(), X, Y.squeeze(),
cv=10)

print(total_cv_scores)
[0.48648649 0.51351351 0.5 0.38888889 0.52777778 0.36111111
 0.58333333 0.47222222 0.54285714 0.45714286]

Thus, the classifier achieves an average 48% accuracy when using 10 folds (each test set
contains 36 samples) if all the labels are known.

We can now implement a CPLE algorithm. The first thing is to initialize a
LogisticRegression instance and the soft-labels:

lr = LogisticRegression()
q0 = np.random.uniform(0, 1, size=nb_unlabeled)

q0 is a random array of values bounded in the half-open interval [0, 1]; therefore, we also
need a converter to transform qi into an actual binary label:

We can achieve this using the NumPy function np.vectorize(), which allows us to apply
a transformation to all the elements of a vector:

trh = np.vectorize(lambda x: 0.0 if x < 0.5 else 1.0)

In order to compute the log-likelihood, we need also a weighted log-loss (similar to the
Scikit-Learn function log_loss(), which, however, computes the negative log-likelihood
but doesn't support weights):

def weighted_log_loss(yt, p, w=None, eps=1e-15):
 if w is None:
 w_t = np.ones((yt.shape[0], 2))
 else:
 w_t = np.vstack((w, 1.0 - w)).T
 Y_t = np.vstack((1.0 - yt.squeeze(), yt.squeeze())).T
 L_t = np.sum(w_t * Y_t * np.log(np.clip(p, eps, 1.0 - eps)), axis=1)
 return np.mean(L_t)

This function computes the following expression:

Introduction to Semi-Supervised Learning Chapter 2

[65]

We need also a function to build the dataset with variable soft-labels qi:

def build_dataset(q):
 Y_unlabeled = trh(q)
 X_n = np.zeros((nb_samples, nb_dimensions))
 X_n[0:nb_samples - nb_unlabeled] = X[Y.squeeze()!=-1]
 X_n[nb_samples - nb_unlabeled:] = X[Y.squeeze()==-1]
 Y_n = np.zeros((nb_samples, 1))
 Y_n[0:nb_samples - nb_unlabeled] = Y[Y.squeeze()!=-1]
 Y_n[nb_samples - nb_unlabeled:] = np.expand_dims(Y_unlabeled, axis=1)
 return X_n, Y_n

At this point, we can define our contrastive log-likelihood:

def log_likelihood(q):
 X_n, Y_n = build_dataset(q)
 Y_soft = trh(q)
 lr.fit(X_n, Y_n.squeeze())
 p_sup = lr.predict_proba(X[Y.squeeze() != -1])
 p_semi = lr.predict_proba(X[Y.squeeze() == -1])
 l_sup = weighted_log_loss(Y[Y.squeeze() != -1], p_sup)
 l_semi = weighted_log_loss(Y_soft, p_semi, q)
 return l_semi - l_sup

This method will be called by the optimizer, passing a different q vector each time. The first
step is building the new dataset and computing Y_soft, which are the labels
corresponding to q. Then the logistic regression classifier is trained with with the dataset (as
Y_n is a (k, 1) array, it's necessary to squeeze it to avoid a warning. The same thing is done
when using Y as a boolean indicator). At this point, it's possible to compute both psup and
psemi using the method predict_proba() and, finally, we can compute the semi-supervised
and supervised log-loss, which is the term, a function of qi, that we want to minimize, while
the maximization of θ is done implicitly when training the logistic regression.

The optimization is carried out using the BFGS algorithm implemented in SciPy:

from scipy.optimize import fmin_bfgs

q_end = fmin_bfgs(f=log_likelihood, x0=q0, maxiter=5000, disp=False)

Introduction to Semi-Supervised Learning Chapter 2

[66]

This is a very fast algorithm, but the user is encouraged to experiment with methods or
libraries. The two parameters we need in this case are f, which is the function to minimize,
and x0, which is the initial condition for the independent variables. maxiter is useful for
avoiding an excessive number of iterations when no improvements are achieved. Once the
optimization is complete, q_end contains the optimal soft-labels. We can, therefore, rebuild
our dataset:

X_n, Y_n = build_dataset(q_end)

With this final configuration, we can retrain the logistic regression and check the cross-
validation accuracy:

final_semi_cv_scores = cross_val_score(LogisticRegression(), X_n,
Y_n.squeeze(), cv=10)

print(final_semi_cv_scores)
[1. 1. 0.89189189 0.77777778 0.97222222 0.88888889
 0.61111111 0.88571429 0.94285714 0.48571429]

The semi-supervised solution based on the CPLE algorithms achieves an average 84%
accuracy, outperforming, as expected, the supervised approach. The reader can try other
examples using different classifiers, such SVM or Decision Trees, and verify when CPLE
allows obtaining higher accuracy than other supervised algorithms.

Semi-supervised Support Vector Machines
(S3VM)
When we discussed the cluster assumption, we also defined the low-density regions as
boundaries and the corresponding problem as low-density separation. A common
supervised classifier which is based on this concept is a Support Vector Machine (SVM),
the objective of which is to maximize the distance between the dense regions where the
samples must be. For a complete description of linear and kernel-based SVMs, please refer
to Bonaccorso G., Machine Learning Algorithms, Packt Publishing; however, it's useful to
remind yourself of the basic model for a linear SVM with slack variables ξi:

Introduction to Semi-Supervised Learning Chapter 2

[67]

This model is based on the assumptions that yi can be either -1 or 1. The slack variables ξi or
soft-margins are variables, one for each sample, introduced to reduce the strength imposed
by the original condition (min ||w||), which is based on a hard margin that misclassifies all
the samples that are on the wrong side. They are defined by the Hinge loss, as follows:

With those variables, we allow some points to overcome the limit without being
misclassified if they remain within a distance controlled by the corresponding slack
variable (which is also minimized during the training phase, so as to avoid uncontrollable
growth). In the following diagram, there's a schematic representation of this process:

SVM generic scenario

Introduction to Semi-Supervised Learning Chapter 2

[68]

The last elements of each high-density regions are the support vectors. Between them,
there's a low-density region (it can also be zero-density in some cases) where our separating
hyperplane lies. In Chapter 1, Machine Learning Model Fundamentals, we defined the concept
of empirical risk as a proxy for expected risk; therefore, we can turn the SVM problem into
the minimization of empirical risk under the Hinge cost function (with or without Ridge
Regularization on w):

Theoretically, every function which is always bounded by two hyperplanes containing the
support vectors is a good classifier, but we need to minimize the empirical risk (and, so, the
expected risk); therefore we look for the maximum margin between high-density regions.
This model is able to separate two dense regions with irregular boundaries and, by
adopting a kernel function, also in non-linear scenarios. The natural question, at this point,
is about the best strategy to integrate labeled and unlabeled samples when we need to solve
this kind of problem in a semi-supervised scenario.

The first element to consider is the ratio: if we have a low percentage of unlabeled points,
the problem is mainly supervised and the generalization ability learned using the training
set should be enough to correctly classify all the unlabeled points. On the other hand, if the
number of unlabeled samples is much larger, we return to an almost pure clustering
scenario (like the one discussed in the paragraph about the Generative Gaussian mixtures).
In order to exploit the strength of semi-supervised methods in low-density separation
problems, therefore, we should consider situations where the ratio labeled/unlabeled is
about 1.0. However, even if we have the predominance of a class (for example, if we have a
huge unlabeled dataset and only a few labeled samples), it's always possible to use the
algorithms we're going to discuss, even if, sometimes, their performance could be equal to
or lower than a pure supervised/clustering solution. Transductive SMVs, for example,
showed better accuracies when the labeled/unlabeled ratio is very small, while other
methods can behave in a completely different way. However, when working with semi-
supervised learning (and its assumptions), it is always important to bear in mind that each
problem is supervised and unsupervised at the same time and the best solution must be
evaluated in every different context.

Introduction to Semi-Supervised Learning Chapter 2

[69]

A solution for this problem is offered by the Semi-Supervised SVM (also known as S3VM)
algorithm. If we have N labeled samples and M unlabeled samples, the objective function
becomes as follows:

The first term imposes the standard SVM condition about the maximum separation
distance, while the second block is divided into two parts:

We need to add N slack variables ηi to guarantee a soft-margin for the labeled
samples.
At the same time, we have to consider the unlabeled points, which could be
classified as +1 or -1. Therefore, we have two corresponding slack-variable
sets ξi and zi. However, we want to find the smallest variable for each possible
pair, so as to be sure that the unlabeled sample is placed on the sub-space where
the maximum accuracy is achieved.

The constraints necessary to solve the problems become as follows:

The first constraint is limited to the labeled points and it's the same as a supervised SVM.
The following two, instead, take into account the possibility that an unlabeled sample could
be classified as +1 or -1. Let's suppose, for example, that the label yj for the sample xj should
be +1 and the first member of the second inequality is a positive number K (so the
corresponding term of the third equation is -K). It's easy to verify that the first slack variable
is ξi ≥ 1 - K, while the second one is zj ≥ 1 + K.

Introduction to Semi-Supervised Learning Chapter 2

[70]

Therefore, in the objective, ξi is chosen to be minimized. This method is inductive and yields
good (if not excellent) performances; however, it has a very high computational cost and
should be solved using optimized (native) libraries. Unfortunately, it is a non-convex
problem and there are no standard methods to solve it so it always reaches the optimal
configuration.

Example of S3VM
We now implement an S3VM in Python using the SciPy optimization methods, which are
mainly based on C and FORTRAN implementations. The reader can try it with other
libraries such as NLOpt and LIBSVM and compare the results. A possibility suggested by
Bennet and Demiriz is to use the L1-norm for w, so as to linearize the objective function;
however, this choice seems to produce good results only for small datasets. We are going to
keep the original formulation based on the L2-norm, using an Sequential Least Squares
Programming (SLSQP) algorithm to optimize the objective.

Let's start by creating a bidimensional dataset with both labeled and unlabeled samples:

from sklearn.datasets import make_classification

nb_samples = 500
nb_unlabeled = 200

X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_redundant=0, random_state=1000)
Y[Y==0] = -1
Y[nb_samples - nb_unlabeled:nb_samples] = 0

Introduction to Semi-Supervised Learning Chapter 2

[71]

For simplicity (and without any impact, because the samples are shuffled), we set last 200
samples as unlabeled (y = 0). The corresponding plot is shown in the following graph:

Original labeled and unlabeled dataset

Introduction to Semi-Supervised Learning Chapter 2

[72]

The crosses represent unlabeled points, which are spread throughout the entire dataset. At
this point we need to initialize all variables required for the optimization problem:

import numpy as np

w = np.random.uniform(-0.1, 0.1, size=X.shape[1])
eta = np.random.uniform(0.0, 0.1, size=nb_samples - nb_unlabeled)
xi = np.random.uniform(0.0, 0.1, size=nb_unlabeled)
zi = np.random.uniform(0.0, 0.1, size=nb_unlabeled)
b = np.random.uniform(-0.1, 0.1, size=1)
C = 1.0

theta0 = np.hstack((w, eta, xi, zi, b))

As the optimization algorithm requires a single array, we have stacked all vectors into a
horizontal array theta0 using the np.hstack() function. We also need to vectorize the
min() function in order to apply it to arrays:

vmin = np.vectorize(lambda x1, x2: x1 if x1 <= x2 else x2)

Now, we can define the objective function:

def svm_target(theta, Xd, Yd):
 wt = theta[0:2].reshape((Xd.shape[1], 1))
 s_eta = np.sum(theta[2:2 + nb_samples - nb_unlabeled])
 s_min_xi_zi = np.sum(vmin(theta[2 + nb_samples - nb_unlabeled:2 +
nb_samples],
 theta[2 + nb_samples:2 + nb_samples +
nb_unlabeled]))
 return C * (s_eta + s_min_xi_zi) + 0.5 * np.dot(wt.T, wt)

Introduction to Semi-Supervised Learning Chapter 2

[73]

The arguments are the current theta vector and the complete datasets Xd and Yd. The dot
product of w has been multiplied by 0.5 to keep the conventional notation used for
supervised SVMs. The constant can be omitted without any impact. At this point, we need
to define all the constraints, as they are based on the slack variables; each function (which
shares the same parameters of the objectives) is parametrized with an index, idx. The
labeled constraint is as follows:

def labeled_constraint(theta, Xd, Yd, idx):
 wt = theta[0:2].reshape((Xd.shape[1], 1))
 c = Yd[idx] * (np.dot(Xd[idx], wt) + theta[-1]) + \
 theta[2:2 + nb_samples - nb_unlabeled][idx] - 1.0
 return (c >= 0)[0]

The unlabeled constraints, instead, are as follows:

def unlabeled_constraint_1(theta, Xd, idx):
 wt = theta[0:2].reshape((Xd.shape[1], 1))
 c = np.dot(Xd[idx], wt) - theta[-1] + \
 theta[2 + nb_samples - nb_unlabeled:2 + nb_samples][idx -
nb_samples + nb_unlabeled] - 1.0
 return (c >= 0)[0]

def unlabeled_constraint_2(theta, Xd, idx):
 wt = theta[0:2].reshape((Xd.shape[1], 1))
 c = -(np.dot(Xd[idx], wt) - theta[-1]) + \
 theta[2 + nb_samples:2 + nb_samples + nb_unlabeled][idx -
nb_samples + nb_unlabeled] - 1.0
 return (c >= 0)[0]

They are parametrized with the current theta vector, the Xd dataset, and an idx index. We
need also to include the constraints for each slack variable (≥ 0):

def eta_constraint(theta, idx):
 return theta[2:2 + nb_samples - nb_unlabeled][idx] >= 0

def xi_constraint(theta, idx):
 return theta[2 + nb_samples - nb_unlabeled:2 + nb_samples][idx -
nb_samples + nb_unlabeled] >= 0

def zi_constraint(theta, idx):
 return theta[2 + nb_samples:2 + nb_samples+nb_unlabeled][idx -
nb_samples + nb_unlabeled] >= 0

Introduction to Semi-Supervised Learning Chapter 2

[74]

We can now set up the problem using the SciPy convention:

svm_constraints = []

for i in range(nb_samples - nb_unlabeled):
 svm_constraints.append({
 'type': 'ineq',
 'fun': labeled_constraint,
 'args': (X, Y, i)
 })
 svm_constraints.append({
 'type': 'ineq',
 'fun': eta_constraint,
 'args': (i,)
 })
for i in range(nb_samples - nb_unlabeled, nb_samples):
 svm_constraints.append({
 'type': 'ineq',
 'fun': unlabeled_constraint_1,
 'args': (X, i)
 })
 svm_constraints.append({
 'type': 'ineq',
 'fun': unlabeled_constraint_2,
 'args': (X, i)
 })
 svm_constraints.append({
 'type': 'ineq',
 'fun': xi_constraint,
 'args': (i,)
 })
 svm_constraints.append({
 'type': 'ineq',
 'fun': zi_constraint,
 'args': (i,)
 })

Each constraint is represented with a dictionary, where type is set to ineq to indicate that
it is an inequality, fun points to the callable object and args contains all extra arguments
(theta is the main x variable and it's automatically added). Using SciPy, it's possible to
minimize the objective using the Sequential Least Squares Programming (SLSQP) or
Constraint Optimization by Linear Approximation (COBYLA) algorithms. We preferred
the former, because it works more rapidly and is more stable:

from scipy.optimize import minimize

result = minimize(fun=svm_target,

Introduction to Semi-Supervised Learning Chapter 2

[75]

 x0=theta0,
 constraints=svm_constraints,
 args=(X, Y),
 method='SLSQP',
 tol=0.0001,
 options={'maxiter': 1000})

After the training process is complete, we can compute the labels for the unlabeled points:

theta_end = result['x']
w = theta_end[0:2]
b = theta_end[-1]

Xu= X[nb_samples - nb_unlabeled:nb_samples]
yu = -np.sign(np.dot(Xu, w) + b)

In the next graph, it's possible to compare the initial plot (left) with the final one where all
points have been assigned a label (right):

Introduction to Semi-Supervised Learning Chapter 2

[76]

As you can see, S3VM succeeded in finding the right label for all unlabeled points,
confirming the existence of two very dense regions for x between [0, 2] (square dots) and y
between [0, 2] (circular dots).

NLOpt is a complete optimization library developed at MIT. It is available
for different operating systems and programming languages. The website
is https:/ / nlopt. readthedocs. io. LIBSVM is an optimized library for
solving SVM problems and it is adopted by Scikit-Learn together with
LIBLINEAR. It's also available for different environments. The homepage
is https:/ / www. csie. ntu. edu. tw/~cjlin/ libsvm/ .

Transductive Support Vector Machines
(TSVM)
Another approach to the same problem is offered by the TSVM, proposed by T. Joachims
(in Transductive Inference for Text Classification using Support Vector Machines, Joachims T.,
ICML Vol. 99/1999). The idea is to keep the original objective with two sets of slack
variables: the first for the labeled samples and the other for the unlabeled ones:

As this is a transductive approach, we need to consider the unlabeled samples as variable-
labeled ones (subject to the learning process), imposing a constraint similar to the
supervised points. As for the previous algorithm, we assume we have N labeled samples
and M unlabeled ones; therefore, the conditions become as follows:

https://nlopt.readthedocs.io
https://nlopt.readthedocs.io
https://nlopt.readthedocs.io
https://nlopt.readthedocs.io
https://nlopt.readthedocs.io
https://nlopt.readthedocs.io
https://nlopt.readthedocs.io
https://nlopt.readthedocs.io
https://nlopt.readthedocs.io
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Introduction to Semi-Supervised Learning Chapter 2

[77]

The first constraint is the classical SVM one and it works only on labeled samples. The
second one uses the variable y(u)

j with the corresponding slack variables ξj to impose a
similar condition on the unlabeled samples, while the third one is necessary to constrain the
labels to being equal to -1 and 1.

Just like the semi-supervised SVMs, this algorithm is non-convex and it's useful to try
different methods to optimize it. Moreover, the author, in the aforementioned paper,
showed how TSVM works better when the test set (unlabeled) is large and the training set
(labeled) is relatively small (when a standard supervised SVM is outperformed). On the
other hand, with large training sets and small test sets, a supervised SVM (or other
algorithms) are always preferable because they are faster and yield better accuracy.

Example of TSVM
In our Python implementation, we are going to use a bidimensional dataset similar to one
employed in the previous method; however, in this case, we impose 400 unlabeled samples
out of a total of 500 points:

from sklearn.datasets import make_classification

nb_samples = 500
nb_unlabeled = 400

X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_redundant=0, random_state=1000)
Y[Y==0] = -1
Y[nb_samples - nb_unlabeled:nb_samples] = 0

The corresponding plot is shown in the following graph:

Introduction to Semi-Supervised Learning Chapter 2

[78]

Original labeled and unlabeled dataset

The procedure is similar to the one we used before. First of all, we need to initialize our
variables:

import numpy as np

w = np.random.uniform(-0.1, 0.1, size=X.shape[1])
eta_labeled = np.random.uniform(0.0, 0.1, size=nb_samples - nb_unlabeled)
eta_unlabeled = np.random.uniform(0.0, 0.1, size=nb_unlabeled)
y_unlabeled = np.random.uniform(-1.0, 1.0, size=nb_unlabeled)
b = np.random.uniform(-0.1, 0.1, size=1)

C_labeled = 1.0
C_unlabeled = 10.0

theta0 = np.hstack((w, eta_labeled, eta_unlabeled, y_unlabeled, b))

Introduction to Semi-Supervised Learning Chapter 2

[79]

In this case, we also need to define the y_unlabeled vector for variable-labels. The author
also suggests using two C constants (C_labeled and C_unlabeled) in order to be able to
weight the misclassification of labeled and unlabeled samples differently. We used a value
of 1.0 for C_labeled and 10.0 for C_unlabled, because we want to penalize more the
misclassification of unlabeled samples.

The objective function to optimize is as follows:

def svm_target(theta, Xd, Yd):
 wt = theta[0:2].reshape((Xd.shape[1], 1))
 s_eta_labeled = np.sum(theta[2:2 + nb_samples - nb_unlabeled])
 s_eta_unlabeled = np.sum(theta[2 + nb_samples - nb_unlabeled:2 +
nb_samples])
 return (C_labeled * s_eta_labeled) + (C_unlabeled * s_eta_unlabeled) +
(0.5 * np.dot(wt.T, wt))

While the labeled and unlabeled constraints are as follows:

def labeled_constraint(theta, Xd, Yd, idx):
 wt = theta[0:2].reshape((Xd.shape[1], 1))
 c = Yd[idx] * (np.dot(Xd[idx], wt) + theta[-1]) + \
 theta[2:2 + nb_samples - nb_unlabeled][idx] - 1.0
 return (c >= 0)[0]

def unlabeled_constraint(theta, Xd, idx):
 wt = theta[0:2].reshape((Xd.shape[1], 1))
 c = theta[2 + nb_samples:2 + nb_samples + nb_unlabeled][idx -
nb_samples + nb_unlabeled] * \
 (np.dot(Xd[idx], wt) + theta[-1]) + \
 theta[2 + nb_samples - nb_unlabeled:2 + nb_samples][idx -
nb_samples + nb_unlabeled] - 1.0
 return (c >= 0)[0]

We need also to impose the constraints on the slack variables and on the y(u):

def eta_labeled_constraint(theta, idx):
 return theta[2:2 + nb_samples - nb_unlabeled][idx] >= 0

def eta_unlabeled_constraint(theta, idx):
 return theta[2 + nb_samples - nb_unlabeled:2 + nb_samples][idx -
nb_samples + nb_unlabeled] >= 0

def y_constraint(theta, idx):
 return np.power(theta[2 + nb_samples:2 + nb_samples +
nb_unlabeled][idx], 2) == 1.0

Introduction to Semi-Supervised Learning Chapter 2

[80]

As in the previous example, we can create the constraint dictionary needed by SciPy:

svm_constraints = []

for i in range(nb_samples - nb_unlabeled):
 svm_constraints.append({
 'type': 'ineq',
 'fun': labeled_constraint,
 'args': (X, Y, i)
 })
 svm_constraints.append({
 'type': 'ineq',
 'fun': eta_labeled_constraint,
 'args': (i,)
 })
for i in range(nb_samples - nb_unlabeled, nb_samples):
 svm_constraints.append({
 'type': 'ineq',
 'fun': unlabeled_constraint,
 'args': (X, i)
 })
 svm_constraints.append({
 'type': 'ineq',
 'fun': eta_unlabeled_constraint,
 'args': (i,)
 })

for i in range(nb_unlabeled):
 svm_constraints.append({
 'type': 'eq',
 'fun': y_constraint,
 'args': (i,)
 })

In this case, the last constraint is an equality, because we want to force y(u) to be equal either
to -1 or 1. At this point, we minimize the objective function:

from scipy.optimize import minimize

result = minimize(fun=svm_target,
 x0=theta0,
 constraints=svm_constraints,
 args=(X, Y),
 method='SLSQP',
 tol=0.0001,
 options={'maxiter': 1000})

Introduction to Semi-Supervised Learning Chapter 2

[81]

When the process is complete, we can compute the labels for the unlabeled samples and
compare the plots:

theta_end = result['x']
w = theta_end[0:2]
b = theta_end[-1]

Xu= X[nb_samples - nb_unlabeled:nb_samples]
yu = -np.sign(np.dot(Xu, w) + b)

The plot comparison is shown in the following graph:

Original dataset (left). Final labeled dataset (right)

The misclassification (based on the density distribution) is slightly higher than S3VM, but
it's possible to change the C values and the optimization method until the expected result
has been reached. A good benchmark is provided by a supervised SVM, which can have
better performances when the training set is huge enough (and when it represents the
whole pdata correctly).

It's interesting to evaluate different combinations of the C parameters, starting from a
standard supervised SVM. The dataset is smaller, with a high number of unlabeled
samples:

nb_samples = 100
nb_unlabeled = 90

Introduction to Semi-Supervised Learning Chapter 2

[82]

X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_redundant=0, random_state=100)
Y[Y==0] = -1
Y[nb_samples - nb_unlabeled:nb_samples] = 0

We use the standard SVM implementation provided by Scikit-Learn (the SVC() class) with
a linear kernel and C=1.0:

from sklearn.svm import SVC

svc = SVC(kernel='linear', C=1.0)
svc.fit(X[Y!=0], Y[Y!=0])

Xu_svc= X[nb_samples - nb_unlabeled:nb_samples]
yu_svc = svc.predict(Xu_svc)

The SVM is trained with the labeled samples and the vector yu_svc contains the prediction
for the unlabeled samples. The resulting plot (in comparison with the original dataset) is
shown in the following graph:

 Original dataset (left). Final labeled dataset (right) with C = 1.0

Introduction to Semi-Supervised Learning Chapter 2

[83]

All the labeled samples are represented with bigger squares and circles. The result meets
our expectations, but there's an area (X [-1, 0] - Y [-2, -1]), where the SVM decided to impose
the circle class even if the unlabeled points are close to a square. This hypothesis can't be
acceptable considering the clustering assumption; in fact, in a high-density region there are
samples belonging to two classes. A similar (or even worse) result is obtained using an
S3VM with CL=10 and CU=5:

Original dataset (left). Final labeled dataset (right) with CL = 10 and CU = 5

In this case, the classification accuracy is lower because the penalty for the unlabeled
samples is lower than the one imposed on the labeled points. A supervised SVM has
obviously better performances. Let's try with CL=10 and CU=50:

Introduction to Semi-Supervised Learning Chapter 2

[84]

Original dataset (left). Final labeled dataset (right) with CL = 10 and CU = 50

Now, the penalty is quite a lot higher for the unlabeled samples and the result appears
much more reasonable considering the clustering assumption. All the high-density regions
are coherent and separated by low-density ones. These examples show how the value
chosen for the parameters and the optimization method can dramatically change the result.
My suggestion is to test several configurations (on sub-sampled datasets), before picking
the final one. In Semi-Supervised Learning, Chapelle O., Schölkopf B., Zien A., (edited by), The
MIT Press, there are further details about possible optimization strategies, with strengths
and weaknesses.

Summary
In this chapter, we introduced semi-supervised learning, starting from the scenario and the
assumptions needed to justify the approaches. We discussed the importance of the
smoothness assumption when working with both supervised and semi-supervised
classifiers in order to guarantee a reasonable generalization ability. Then we introduced the
clustering assumption, which is strictly related to the geometry of the datasets and allows
coping with density estimation problems with a strong structural condition. Finally, we
discussed the manifold assumption and its importance in order to avoid the curse of
dimensionality.

Introduction to Semi-Supervised Learning Chapter 2

[85]

The chapter continued by introducing a generative and inductive model: Generative
Gaussian mixtures, which allow clustering labeled and unlabeled samples starting from the
assumption that the prior probabilities are modeled by multivariate Gaussian distributions.

The next topic was about a very important algorithm: contrastive pessimistic likelihood
estimation, which is an inductive, semi-supervised classification framework that can be
adopted together with any supervised classifier. The main concept is to define a contrastive
log-likelihood based on soft-labels (representing the probabilities for the unlabeled
samples) and impose a pessimistic condition in order to minimize the trust in the soft-
labels. The algorithm can find the best configuration that maximizes the log-likelihood,
taking into account both labeled and unlabeled samples.

Another inductive classification approach is provided by the S3VM algorithm, which is an
extension of the classical SVM approach, based on two extra optimization constraints to
address the unlabeled samples. This method is relatively powerful, but it's non-convex and,
therefore, very sensitive to the algorithms employed to minimize the objective function.

An alternative to S3VM is provided by the TSVM, which tries to minimize the objective with
a condition based on variable labels. The problem is, hence, divided into two parts: the
supervised one, which is exactly the same as standard SVM, and the semi-supervised one,
which has a similar structure but without fixed y labels. This problem is non-convex too
and it's necessary to evaluate different optimization strategies to find the best trade-off
between accuracy and computational complexity. In the reference section, there are some
useful resources so you can examine all these problems in depth and find a suitable
solution for each particular scenario.

In the next chapter, Chapter 3, Graph-Based Semi-Supervised Learning we're continuing this
exploration by discussing some important algorithms based on the structure underlying the
dataset. In particular, we're going to employ graph theory to perform the propagation of
labels to unlabeled samples and to reduce the dimensionality of datasets in non-linear
contexts.

3
Graph-Based Semi-Supervised

Learning
In this chapter, we continue our discussion about semi-supervised learning, considering a
family of algorithms that is based on the graph obtained from the dataset and the existing
relationships among samples. The problems that we are going to discuss belong to two
main categories: the propagation of class labels to unlabeled samples and the use of non-
linear techniques based on the manifold assumption to reduce the dimensionality of the
original dataset. In particular, this chapter covers the following propagation algorithms:

Label propagation based on the weight matrix
Label propagation in Scikit-Learn (based on transition probabilities)
Label spreading
Propagation based on Markov random walks

For the manifold learning section, we're discussing:

Isomap algorithm and multidimensional scaling approach
Locally linear embedding
Laplacian Spectral Embedding
t-SNE

Graph-Based Semi-Supervised Learning Chapter 3

[87]

Label propagation
Label propagation is a family of semi-supervised algorithms based on a graph
representation of the dataset. In particular, if we have N labeled points (with bipolar labels
+1 and -1) and M unlabeled points (denoted by y=0), it's possible to build an undirected
graph based on a measure of geometric affinity among samples. If G = {V, E} is the formal
definition of the graph, the set of vertices is made up of sample labels V = { -1, +1, 0 }, while
the edge set is based on an affinity matrix W (often called adjacency matrix when the
graph is unweighted), which depends only on the X values, not on the labels.

In the following graph, there's an example of such a structure:

Example of binary graph

In the preceding example graph, there are four labeled points (two with y=+1 and two with
y=-1), and two unlabeled points (y=0). The affinity matrix is normally symmetric and square
with dimensions equal to (N+M) x (N+M). It can be obtained with different approaches. The
most common ones, also adopted by Scikit-Learn, are:

Graph-Based Semi-Supervised Learning Chapter 3

[88]

k-Nearest Neighbors (we are going to discuss this algorithm with further details
in Chapter 8, Clustering Algorithms):

Radial basis function kernel:

Sometimes, in the radial basis function kernel, the parameter γ is represented as the
reciprocal of 2σ²; however, small γ values corresponding to a large variance increase the
radius, including farther points and smoothing the class over a number of samples, while
large γ values restrict the boundaries to a subset that tends to a single sample. Instead, in
the k-nearest neighbors kernel, the parameter k controls the number of samples to consider
as neighbors.

To describe the basic algorithm, we also need to introduce the degree matrix (D):

It is a diagonal matrix where each non-null element represents the degree of the
corresponding vertex. This can be the number of incoming edges, or a measure
proportional to it (as in the case of W based on the radial basis function). The general idea
of label propagation is to let each node propagate its label to its neighbors and iterate the
procedure until convergence.

Formally, if we have a dataset containing both labeled and unlabeled samples:

Graph-Based Semi-Supervised Learning Chapter 3

[89]

The complete steps of the label propagation algorithm (as proposed by Zhu and
Ghahramani in Learning from Labeled and Unlabeled Data with Label Propagation, Zhu X.,
Ghahramani Z., CMU-CALD-02-107) are:

Select an affinity matrix type (KNN or RBF) and compute W1.
Compute the degree matrix D2.
Define Y(0) = Y3.
Define YL = {y0, y1, ..., yN}4.
Iterate until convergence of the following steps:5.

The first update performs a propagation step with both labeled and unlabeled points. Each
label is spread from a node through its outgoing edges, and the corresponding weight,
normalized with the degree, increases or decreases the effect of each contribution. The
second command instead resets all y values for the labeled samples. The final labels can be
obtained as:

The proof of convergence is very easy. If we partition the matrix D-1W according to the
relationship among labeled and unlabeled samples, we get:

If we consider that only the first N components of Y are non-null and they are clamped at
the end of each iteration, the matrix can be rewritten as:

Graph-Based Semi-Supervised Learning Chapter 3

[90]

We are interested in proving the convergence for the part regarding the unlabeled samples
(the labeled ones are fixed), so we can write the update rule as:

Transforming the recursion into an iterative process, the previous formula becomes:

In the previous expression, the second term is null, so we need to prove that the first term
converges; however, it's easy to recognize a truncated matrix geometrical series (Neumann
series), and AUU is constructed to have all eigenvalues |λi| < 1, therefore the series converges
to:

Example of label propagation
We can implement the algorithm in Python, using a test bidimensional dataset:

from sklearn.datasets import make_classification

nb_samples = 100
nb_unlabeled = 75

X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_informative=2, n_redundant=0, random_state=1000)
Y[Y==0] = -1
Y[nb_samples - nb_unlabeled:nb_samples] = 0

Graph-Based Semi-Supervised Learning Chapter 3

[91]

As in the other examples, we set y = 0 for all unlabeled samples (75 out of 100). The
corresponding plot is shown in the following graph:

Partially labeled dataset

The dots marked with a cross are unlabeled. At this point, we can define the affinity matrix.
In this case, we compute it using both methods:

from sklearn.neighbors import kneighbors_graph

nb_neighbors = 2

W_knn_sparse = kneighbors_graph(X, n_neighbors=nb_neighbors,
mode='connectivity', include_self=True)
W_knn = W_knn_sparse.toarray()

Graph-Based Semi-Supervised Learning Chapter 3

[92]

The KNN matrix is obtained using the Scikit-Learn function kneighbors_graph() with
the parameters n_neighbors=2 and mode='connectivity'; the alternative is
'distance', which returns the distances instead of 0 and 1 to indicate the
absence/presence of an edge. The include_self=True parameter is useful, as we want to
have Wii = 1.

For the RBF matrix, we need to define it manually:

import numpy as np

def rbf(x1, x2, gamma=10.0):
 n = np.linalg.norm(x1 - x2, ord=1)
 return np.exp(-gamma * np.power(n, 2))

W_rbf = np.zeros((nb_samples, nb_samples))

for i in range(nb_samples):
 for j in range(nb_samples):
 W_rbf[i, j] = rbf(X[i], X[j])

The default value for γ is 10, corresponding to a standard deviation σ equal to 0.22. When
using this method, it's important to set a correct value for γ; otherwise, the propagation can
degenerate in the predominance of a class (γ too small). Now, we can compute the degree
matrices and its inverse. As the procedure is identical, from this point on we continue using
the RBF affinity matrix:

D_rbf = np.diag(np.sum(W_rbf, axis=1))
D_rbf_inv = np.linalg.inv(D_rbf)

The algorithm is implemented using a variable threshold. The value adopted here is 0.01:

tolerance = 0.01

Yt = Y.copy()
Y_prev = np.zeros((nb_samples,))
iterations = 0

while np.linalg.norm(Yt - Y_prev, ord=1) > tolerance:
 P = np.dot(D_rbf_inv, W_rbf)
 Yt = np.dot(P, Yt)
 Yt[0:nb_samples - nb_unlabeled] = Y[0:nb_samples - nb_unlabeled]
 Y_prev = Yt.copy()

Y_final = np.sign(Yt)

Graph-Based Semi-Supervised Learning Chapter 3

[93]

The final result is shown in the following double plot:

Original dataset (left); dataset after a complete label propagation (right)

As it's possible to see, in the original dataset there's a round dot surrounded by square ones
(-0.9, -1). As this algorithm keeps the original labels, we find the same situation after the
propagation of labels. This condition could be acceptable, even if both the smoothness and
clustering assumptions are contradicted. Assuming that it's reasonable, it's possible to force
a correction by relaxing the algorithm:

tolerance = 0.01

Yt = Y.copy()
Y_prev = np.zeros((nb_samples,))
iterations = 0

while np.linalg.norm(Yt - Y_prev, ord=1) > tolerance:
 P = np.dot(D_rbf_inv, W_rbf)
 Yt = np.dot(P, Yt)
 Y_prev = Yt.copy()

Y_final = np.sign(Yt)

Graph-Based Semi-Supervised Learning Chapter 3

[94]

In this way, we don't reset the original labels, letting the propagation change all those
values that disagree with the neighborhood. The result is shown in the following plot:

Original dataset (left); dataset after a complete label propagation with overwrite (right)

Label propagation in Scikit-Learn
Scikit-Learn implements a slightly different algorithm proposed by Zhu and Ghahramani
(in the aforementioned paper) where the affinity matrix W can be computed using both
methods (KNN and RBF), but it is normalized to become a probability transition matrix:

The algorithm operates like a Markov random walk, with the following sequence
(assuming that there are Q different labels):

Define a matrix YM
i = [P(label=y0), P(label=y1), ..., and P(label=yQ)], where P(label=yi)1.

is the probability of the label yi, and each row is normalized so that all the
elements sum up to 1
Define Y(0) = YM2.

Graph-Based Semi-Supervised Learning Chapter 3

[95]

Iterate until convergence of the following steps:3.

The first update performs a label propagation step. As we're working with probabilities, it's
necessary (second step) to renormalize the rows so that their element sums up to 1. The last
update resets the original labels for all labeled samples. In this case, it means imposing a
P(label=yi) = 1 to the corresponding label, and setting all the others to zero. The proof of
convergence is very similar to the one for label propagation algorithms, and can be found
in Learning from Labeled and Unlabeled Data with Label Propagation, Zhu X., Ghahramani Z.,
CMU-CALD-02-107. The most important result is that the solution can be obtained in closed
form (without any iteration) through this formula:

The first term is the sum of a generalized geometric series, where Puu is the unlabeled-
unlabeled part of the transition matrix P. Pul, instead, is the unlabeled-labeled part of the
same matrix.

For our Python example, we need to build the dataset differently, because Scikit-Learn
considers a sample unlabeled if y=-1:

from sklearn.datasets import make_classification

nb_samples = 1000
nb_unlabeled = 750

X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_informative=2, n_redundant=0, random_state=100)
Y[nb_samples - nb_unlabeled:nb_samples] = -1

Graph-Based Semi-Supervised Learning Chapter 3

[96]

We can now train a LabelPropagation instance with an RBF kernel and gamma=10.0:

from sklearn.semi_supervised import LabelPropagation

lp = LabelPropagation(kernel='rbf', gamma=10.0)
lp.fit(X, Y)

Y_final = lp.predict(X)

The result is shown in the following double plot:

Original dataset (left). Dataset after a Scikit-Learn label propagation (right)

As expected, the propagation converged to a solution that respects both the smoothness
and the clustering assumption.

Label spreading
The last algorithm (proposed by Zhou et al.) that we need to analyze is called label
spreading, and it's based on the normalized graph Laplacian:

Graph-Based Semi-Supervised Learning Chapter 3

[97]

This matrix has each a diagonal element lii equal to 1, if the degree deg(lii) > 0 (0 otherwise)
and all the other elements equal to:

The behavior of this matrix is analogous to a discrete Laplacian operator, whose real-value
version is the fundamental element of all diffusion equations. To better understand this
concept, let's consider the generic heat equation:

This equation describes the behavior of the temperature of a room when a point is suddenly
heated. From basic physics concepts, we know that heat will spread until the temperature
reaches an equilibrium point and the speed of variation is proportional to the Laplacian of
the distribution. If we consider a bidimensional grid at the equilibrium (the derivative with
respect to when time becomes null) and we discretize the Laplacian operator (∇2 = ∇ · ∇)
considering the incremental ratios, we obtain:

Therefore, at the equilibrium, each point has a value that is the mean of the direct
neighbors. It's possible to prove the finite-difference equation has a single fixed point that
can be found iteratively, starting from every initial condition. In addition to this idea, label
spreading adopts a clamping factor α for the labeled samples. If α=0, the algorithm will
always reset the labels to the original values (like for label propagation), while with a value
in the interval (0, 1], the percentage of clamped labels decreases progressively until α=1,
when all the labels are overwritten.

The complete steps of the label spreading algorithm are:

Select an affinity matrix type (KNN or RBF) and compute W1.
Compute the degree matrix D2.
Compute the normalized graph Laplacian L3.
Define Y(0) = Y4.

Graph-Based Semi-Supervised Learning Chapter 3

[98]

Define α in the interval [0, 1]5.
Iterate until convergence of the following step:6.

It's possible to show (as demonstrated in Semi-Supervised Learning, Chapelle O., Schölkopf B.,
Zien A., (edited by), The MIT Press) that this algorithm is equivalent to the minimization of a
quadratic cost function with the following structure:

The first term imposes consistency between original labels and estimated ones (for the
labeled samples). The second term acts as a normalization factor, forcing the unlabeled
terms to become zero, while the third term, which is probably the least intuitive, is needed
to guarantee geometrical coherence in terms of smoothness. As we have seen in the
previous paragraph, when a hard-clamping is adopted, the smoothness assumption could
be violated. By minimizing this term (μ is proportional to α), it's possible to penalize the
rapid changes inside the high-density regions. Also in this case, the proof of convergence is
very similar to the one for label propagation algorithms, and will be omitted. The interested
reader can find it in Semi-Supervised Learning, Chapelle O., Schölkopf B., Zien A., (edited
by), The MIT Press.

Example of label spreading
We can test this algorithm using the Scikit-Learn implementation. Let's start by creating a
very dense dataset:

from sklearn.datasets import make_classification

nb_samples = 5000
nb_unlabeled = 1000

X, Y = make_classification(n_samples=nb_samples, n_features=2,
n_informative=2, n_redundant=0, random_state=100)
Y[nb_samples - nb_unlabeled:nb_samples] = -1

Graph-Based Semi-Supervised Learning Chapter 3

[99]

We can train a LabelSpreading instance with a clamping factor alpha=0.2. We want to
preserve 80% of the original labels but, at the same time, we need a smooth solution:

from sklearn.semi_supervised import LabelSpreading

ls = LabelSpreading(kernel='rbf', gamma=10.0, alpha=0.2)
ls.fit(X, Y)

Y_final = ls.predict(X)

The result is shown, as usual, together with the original dataset:

Original dataset (left). Dataset after a complete label spreading (right)

As it's possible to see in the first figure (left), in the central part of the cluster (x [-1, 0]),
there's an area of circle dots. Using a hard-clamping, this aisle would remain unchanged,
violating both the smoothness and clustering assumptions. Setting α > 0, it's possible to
avoid this problem. Of course, the choice of α is strictly correlated with each single
problem. If we know that the original labels are absolutely correct, allowing the algorithm
to change them can be counterproductive. In this case, for example, it would be better to
preprocess the dataset, filtering out all those samples that violate the semi-supervised
assumptions. If, instead, we are not sure that all samples are drawn from the same pdata, and
it's possible to be in the presence of spurious elements, using a higher α value can smooth
the dataset without any other operation.

Graph-Based Semi-Supervised Learning Chapter 3

[100]

Label propagation based on Markov random
walks
The goal of this algorithm proposed by Zhu and Ghahramani is to find the probability
distribution of target labels for unlabeled samples given a mixed dataset. This objective is
achieved through the simulation of a stochastic process, where each unlabeled sample
walks through the graph until it reaches a stationary absorbing state, a labeled sample
where it stops acquiring the corresponding label. The main difference with other similar
approaches is that in this case, we consider the probability of reaching a labeled sample. In
this way, the problem acquires a closed form and can be easily solved.

The first step is to always build a k-nearest neighbors graph with all N samples, and define
a weight matrix W based on an RBF kernel:

Wij = 0 is xi, and xj are not neighbors and Wii = 1. The transition probability matrix, similarly
to the Scikit-Learn label propagation algorithm, is built as:

In a more compact way, it can be rewritten as P = D-1W. If we now consider a test sample,
starting from the state xi and randomly walking until an absorbing labeled state is found
(we call this label y∞), the probability (referred to as binary classification) can be expressed
as:

When xi is labeled, the state is final, and it is represented by the indicator function based on
the condition yi=1. When the sample is unlabeled, we need to consider the sum of all
possible transitions starting from xi and ending in the closest absorbing state, with label y=1
weighted by the relative transition probabilities.

Graph-Based Semi-Supervised Learning Chapter 3

[101]

We can rewrite this expression in matrix form. If we create a vector P∞ = [PL(y
∞=1|XL),

PU(y∞=1|XU)], where the first component is based on labeled samples and the second on the
unlabeled ones, we can write:

If we now expand the matrices, we get:

As we are interested only in the unlabeled samples, we can consider only the second
equation:

Simplifying the expression, we get the following linear system:

The term (Duu - Wuu) is the unlabeled-unlabeled part of the unnormalized graph Laplacian L
= D - W. By solving this system, we can get the probabilities for the class y=1 for all
unlabeled samples.

Example of label propagation based on Markov
random walks
For this Python example of label propagation based on Markov random walks, we are
going to use a bidimensional dataset containing 50 labeled samples belonging to two
different classes, and 1,950 unlabeled samples:

from sklearn.datasets import make_blobs

nb_samples = 2000
nb_unlabeled = 1950
nb_classes = 2

X, Y = make_blobs(n_samples=nb_samples,
 n_features=2,

Graph-Based Semi-Supervised Learning Chapter 3

[102]

 centers=nb_classes,
 cluster_std=2.5,
 random_state=500)

Y[nb_samples - nb_unlabeled:] = -1

The plot of the dataset is shown in the following diagram (the crosses represent the
unlabeled samples):

Partially labeled dataset

Graph-Based Semi-Supervised Learning Chapter 3

[103]

We can now create the graph (using n_neighbors=15) and the weight matrix:

import numpy as np

from sklearn.neighbors import kneighbors_graph

def rbf(x1, x2, sigma=1.0):
 d = np.linalg.norm(x1 - x2, ord=1)
 return np.exp(-np.power(d, 2.0) / (2 * np.power(sigma, 2)))

W = kneighbors_graph(X, n_neighbors=15, mode='connectivity',
include_self=True).toarray()

for i in range(nb_samples):
 for j in range(nb_samples):
 if W[i, j] != 0.0:
 W[i, j] = rbf(X[i], X[j])

Now, we need to compute the unlabeled part of the unnormalized graph Laplacian and the
unlabeled-labeled part of the matrix W:

D = np.diag(np.sum(W, axis=1))
L = D - W
Luu = L[nb_samples - nb_unlabeled:, nb_samples - nb_unlabeled:]
Wul = W[nb_samples - nb_unlabeled:, 0:nb_samples - nb_unlabeled,]
Yl = Y[0:nb_samples - nb_unlabeled]

At this point, it's possible to solve the linear system using the NumPy function
np.linalg.solve(), which accepts as parameters the matrix A and the vector b of a
generic system in the form Ax=b. Once we have the solution, we can merge the new labels
with the original ones (where the unlabeled samples have been marked with -1). In this
case, we don't need to convert the probabilities, because we are using 0 and 1 as labels. In
general, it's necessary to use a threshold (0.5) to select the right label:

Yu = np.round(np.linalg.solve(Luu, np.dot(Wul, Yl)))
Y[nb_samples - nb_unlabeled:] = Yu.copy()

Graph-Based Semi-Supervised Learning Chapter 3

[104]

Replotting the dataset, we get:

Dataset after a complete Markov random walk label propagation

Graph-Based Semi-Supervised Learning Chapter 3

[105]

As expected, without any iteration, the labels have been successfully propagated to all
samples in perfect compliance with the clustering assumption. Both this algorithm and
label propagation can work using a closed-form solution, so they are very fast even when
the number of samples is high; however, there's a fundamental problem regarding the
choice of σ/γ for the RBF kernel. As the same authors Zhu and Ghahramani remark, there is
no standard solution, but it's possible to consider when σ → 0 and when σ → ∞. In the first
case, only the nearest point has an influence, while in the second case, the influence is
extended to the whole sample space, and the unlabeled points tend to acquire the same
label. The authors suggest considering the entropy of all samples, trying to find the best σ
value that minimizes it. This solution can be very effective, but sometimes the minimum
entropy corresponds to a label configuration that isn't impossible to achieve using these
algorithms. The best approach is to try different values (at different scales) and select the
one corresponding to a valid configuration with the lowest entropy. In our case, it's
possible to compute the entropy of the unlabeled samples as:

The Python code to perform this computation is:

Pu = np.linalg.solve(Luu, np.dot(Wul, Yl))
H = -np.sum(Pu * np.log(Pu + 1e-6))

The term 1e-6 has been added to avoid numerical problems when the probability is null.
Repeating this process for different values allows us to find a set of candidates that can be
restricted to a single value with a direct evaluation of the labeling accuracy (for example,
when there is no precise information about the real distribution, it's possible to consider the
coherence of each cluster and the separation between them). Another approach is called
class rebalancing, and it's based on the idea of reweighting the probabilities of unlabeled
samples to rebalance the number of points belonging to each class when the new unlabeled
samples are added to the set. If we have N labeled points and M unlabeled ones, with K
classes, the weight factor wj for the class j can be obtained as:

Graph-Based Semi-Supervised Learning Chapter 3

[106]

The numerator is the average computed over the labeled samples belonging to class k,
while the denominator is the average over the unlabeled ones whose estimated class is k.
The final decision about a class is no longer based only on the highest probability, but on:

Manifold learning
In Chapter 02, Introduction to Semi-Supervised Learning, we discussed the manifold
assumption, saying that high-dimensional data normally lies on low-dimensional
manifolds. Of course, this is not a theorem, but in many real cases, the assumption is
proven to be correct, and it allows us to work with non-linear dimensionality reduction
algorithms that would be otherwise unacceptable. In this section, we're going to analyze
some of these algorithms. They are all implemented in Scikit-Learn, therefore it's easy to try
them with complex datasets.

Isomap
Isomap is one of the simplest algorithms, and it's based on the idea of reducing the
dimensionality while trying to preserve the geodesic distances measured on the original
manifold where the input data lies. The algorithm works in three steps. The first operation
is a k-nearest neighbors clustering and the construction of the following graph. The vertices
will be the samples, while the edges represent the connections among nearest neighbors,
and their weight is proportional to the distance to the corresponding neighbor.

Graph-Based Semi-Supervised Learning Chapter 3

[107]

The second step adopts the Dijkstra algorithm to compute the shortest pairwise distances
on the graph of all couples of samples. In the following graph, there's a portion of a graph,
where some shortest distances are marked:

Example of a graph with marked shortest distances

For example, as x3 is a neighbor of x5 and x7, applying the Dijkstra algorithm, we could get
the shortest paths d(x3, x5) = w53 and d(x3, x7) = w73. The computational complexity of this step
is about O(n²log n + n²k), which is lower than O(n³) when k << n (a condition normally met);
however, for large graphs (with n >> 1), this is often the most expensive part of the whole
algorithm.

The third step is called metric multidimensional scaling, which is a technique for finding a
low-dimensional representation while trying to preserve the inner product among samples.
If we have a P-dimensional dataset X, the algorithm must find a Q-dimensional set Φ with
Q < P minimizing the function:

Graph-Based Semi-Supervised Learning Chapter 3

[108]

As proven in Semi-Supervised Learning Chapelle O., Schölkopf B., Zien A., (edited by), The MIT
Press, the optimization is achieved by taking the top Q eigenvectors of the Gram matrix Gij

= xi · xj (or in matrix form, G=XXT if X ∈ ℜn × M); however, as the Isomap algorithm works
with pairwise distances, we need to compute the matrix D of squared distances:

If the X dataset is zero-centered, it's possible to derive a simplified Gram matrix from D, as
described by M. A. A. Cox and T. F. Cox:

Isomap computes the top Q eigenvalues λ1, λ2, ..., λQ of GD and the corresponding
eigenvectors ν1, ν2, ..., νQ and determines the Q-dimensional vectors as:

As we're going to discuss in Chapter 5, EM Algorithm and Applications (and also as pointed
out by Saul, Weinberger, Sha, Ham, and Lee in Spectral Methods for Dimensionality
Reduction, Saul L. K., Weinberger K. Q., Sha F., Ham J., and Lee D. D.), this kind of projection is
also exploited by Principal Component Analysis (PCA), which finds out the direction with
the highest variance, corresponding to the top k eigenvectors of the covariance matrix. In
fact, when applying the SVD to the dataset X, we get:

Graph-Based Semi-Supervised Learning Chapter 3

[109]

The diagonal matrix Λ contains the eigenvalues of both XXT and XTX; therefore, the
eigenvalues λGi of G are equal to MλΣi where λΣi are the eigenvalues of the covariance matrix
Σ = M-1XTX. Hence, Isomap achieves the dimensionality reduction, trying to preserve the
pairwise distances, while projecting the dataset in the subspace determined by a group of
eigenvectors, where the maximum explained variance is achieved. In terms of information
theory, this condition guarantees the minimum loss with an effective reduction of
dimensionality.

Scikit-Learn also implements the Floyd-Warshall algorithm, which is
slightly slower. For further information, please refer to Introduction to
Algorithms, Cormen T. H., Leiserson C. E., Rivest R. L., The MIT Press.

Example of Isomap
We can now test the Scikit-Learn Isomap implementation using the Olivetti faces dataset
(provided by AT&T Laboratories, Cambridge), which is made up of 400 64 × 64 grayscale
portraits belonging to 40 different people. Examples of these images are shown here:

Subset of the Olivetti faces dataset

The original dimensionality is 4096, but we want to visualize the dataset in two dimensions.
It's important to understand that using the Euclidean distance for measuring the similarity
of images might not the best choice, and it's surprising to see how well the samples are
clustered by such a simple algorithm.

The first step is loading the dataset:

from sklearn.datasets import fetch_olivetti_faces

faces = fetch_olivetti_faces()

Graph-Based Semi-Supervised Learning Chapter 3

[110]

The faces dictionary contains three main elements:

images: Image array with shape 400 × 64 × 64
data: Flattened array with shape 400 × 4096
target: Array with shape 400 × 1 containing the labels (0, 39)

At this point, we can instantiate the Isomap class provided by Scikit-Learn, setting
n_components=2 and n_neighbors=5 (the reader can try different configurations), and
then fitting the model:

from sklearn.manifold import Isomap

isomap = Isomap(n_neighbors=5, n_components=2)
X_isomap = isomap.fit_transform(faces['data'])

As the resulting plot with 400 elements is very dense, I preferred to show in the following
plot only the first 100 samples:

Isomap applied to 100 samples drawn from the Olivetti faces dataset

Graph-Based Semi-Supervised Learning Chapter 3

[111]

As it's possible to see, samples belonging to the same class are grouped in rather dense
agglomerates. The classes that seem better separated are 7 and 1. Checking the
corresponding faces, for class 7, we get:

Samples belonging to class 7

The set contains portraits of a young woman with a fair complexion, quite different from
the majority of other people. Instead, for class 1, we get:

Samples belonging to class 1

In this case, it's a man with big glasses and a particular mouth expression. In the dataset,
there are only a few people with glasses, and one of them has a dark beard. We can
conclude that Isomap created a low-dimensional representation that is really coherent with
the original geodesic distances. In some cases, there's a partial clustering overlap that can be
mitigated by increasing the dimensionality or adopting a more complex strategy.

Locally linear embedding
Contrary to Isomap, which works with the pairwise distances, this algorithm is based on
the assumption that a high-dimensional dataset lying on a smooth manifold can have local
linear structures that it tries to preserve during the dimensionality reduction
process. Locally Linear Embedding (LLE), like Isomap, is based on three steps. The first
one is applying the k-nearest neighbor algorithm to create a directed graph (in Isomap, it
was undirected), where the vertices are the input samples and the edges represent a
neighborhood relationship. As the graph is direct, a point xi can be a neighbor of xj, but the
opposite could be false. It means that the weight matrix can be asymmetric.

Graph-Based Semi-Supervised Learning Chapter 3

[112]

The second step is based on the main assumption of local linearity. For example, consider
the following graph:

Graph where a neighborhood is marked with a shaded rectangle

The rectangle delimits a small neighboorhood. If we consider the point x5, the local linearity
assumption allows us to think that x5 = w56x6 + w53x3, without considering the cyclic
relationship. This concept can be formalized for all N P-dimensional points through the
minimization of the following function:

In order to address the problem of low-rank neighborhood matrices (think about the
previous example, with a number of neighbors equal to 20), Scikit-Learn also implements a
regularizer that is based on a small arbitrary additive constant that is added to the local
weights (according to a variant called Modified LLE or MLLE). At the end of this step, the
matrix W that better matches the linear relationships among neighbors will be selected for
the next phase.

Graph-Based Semi-Supervised Learning Chapter 3

[113]

In the third step, locally linear embedding tries to determine the low-dimensional (Q < P)
representation that best reproduces the original relationship among nearest neighbors. This
is achieved by minimizing the following function:

The solution for this problem is obtained through the adoption of the Rayleigh-Ritz
method, an algorithm to extract a subset of eigenvectors and eigenvalues from a very large
sparse matrix. For further details, read A spectrum slicing method for the Kohn–Sham
problem, Schofield G. Chelikowsky J. R.; Saad Y., Computer Physics Communications. 183. The
initial part of the final procedure consists of determining the matrix D:

It's possible to prove the last eigenvector (if the eigenvalues are sorted in descending order,
it's the bottom one) has all components v1

(N), v2
(N), ..., vN

(N) = v, and the corresponding
eigenvalue is null. As Saul and Roweis (An introduction to locally linear embedding, Saul L. K.,
Roweis S. T.) pointed out, all the other Q eigenvectors (from the bottom) are orthogonal, and
this allows them to have zero-centered embedding. Hence, the last eigenvector is discarded,
while the remaining Q eigenvectors determine the embedding vectors φi.

For further details about MLLE, please refer to MLLE: Modified Locally
Linear Embedding Using Multiple Weights, Zhang Z., Wang J., http:/ /
citeseerx. ist. psu. edu/ viewdoc/ summary? doi= 10.1. 1.70. 382.

Example of locally linear embedding
 We can now apply this algorithm to the Olivetti faces dataset, instantiating the Scikit-Learn
class LocallyLinearEmbedding with n_components=2 and n_neighbors=15:

from sklearn.manifold import LocallyLinearEmbedding

lle = LocallyLinearEmbedding(n_neighbors=15, n_components=2)
X_lle = lle.fit_transform(faces['data'])

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382

Graph-Based Semi-Supervised Learning Chapter 3

[114]

The result (limited to the first 100 samples) is shown in the following plot:

Locally linear embedding applied to 100 samples drawn from the Olivetti faces dataset

Even if the strategy is different from Isomap, we can determine some coherent clusters. In
this case, the similarity is obtained through the conjunction of small linear blocks; for the
faces, they can represent particular micro-features, like the shape of the nose or the
presence of glasses, that remain invariant in the different portraits of the same person. LLE
is, in general, preferable when the original dataset is intrinsically locally linear, possibly
lying on a smooth manifold. In other words, LLE is a reasonable choice when small parts of
a sample are structured in a way that allows the reconstruction of a point given the
neighbors and the weights. This is often true for images, but it can be difficult to determine
for a generic dataset. When the result doesn't reproduce the original clustering, it's possible
to employ the next algorithm or t-SNE, which is one the most advanced.

Graph-Based Semi-Supervised Learning Chapter 3

[115]

Laplacian Spectral Embedding
This algorithm, based on the spectral decomposition of a graph Laplacian, has been
proposed in order to perform a non-linear dimensionality reduction to try to preserve the
nearness of points in the P-dimensional manifold when remapping on a Q-dimensional
(with Q < P) subspace.

The procedure is very similar to the other algorithms. The first step is a k-nearest neighbor
clustering to generate a graph where the vertices (we can assume to have N elements) are
the samples, and the edges are weighted using an RBF kernel:

The resulting graph is undirected and symmetric. We can now define a pseudo-degree
matrix D:

The low-dimensional representation Φ is obtained by minimizing the function:

If the two points xi and xj are near, the corresponding Wij is close to 1, while it tends to 0
when the distance tends to ∞. Dii is the sum of all weights originating from xi (and the same
for Djj). Now, let's suppose that xi is very close only to xj so, to approximate Dii = Djj ≈ Wij.
The resulting formula is a square loss based on the difference between the vectors φi and φj.
When instead there are multiple closeness relationships to consider, the factor Wij divided by
the square root of DiiDjj allows reweighting the new distances to find the best trade-off for
the whole dataset. In practice, LΦ is not minimized directly. In fact, it's possible to prove that
the minimum can be obtained through the spectral decomposition of the symmetric
normalized graph Laplacian (the name derives from this procedure):

Graph-Based Semi-Supervised Learning Chapter 3

[116]

Just like for the LLE algorithm, Laplacian Spectral Embedding also works with the bottom
Q + 1 eigenvectors. The mathematical theory behind the last step is always based on the
application of the Rayleigh-Ritz method. The last one is discarded, and the remaining Q
determines the low-dimensional representation φi.

Example of Laplacian Spectral Embedding
Let's apply this algorithm to the same dataset using the Scikit-Learn class
SpectralEmbedding, with n_components=2 and n_neighbors=15:

from sklearn.manifold import SpectralEmbedding

se = SpectralEmbedding(n_components=2, n_neighbors=15)
X_se = se.fit_transform(faces['data'])

The resulting plot (zoomed in due to the presence of a high-density region) is shown in the
following graph:

Laplacian Spectral Embedding applied to the Olivetti faces dataset

Graph-Based Semi-Supervised Learning Chapter 3

[117]

Even in this case, we can see that some classes are grouped into small clusters, but at the
same time, we observe many agglomerates where there are mixed samples. Both this and
the previous method work with local pieces of information, trying to find low-dimensional
representations that could preserve the geometrical structure of micro-features. This
condition drives to a mapping where close points share local features (this is almost always
true for images, but it's very difficult to prove for generic samples). Therefore, we can
observe small clusters containing elements belonging to the same class, but also some
apparent outliers, which, on the original manifold, can be globally different even if they
share local patches. Instead, methods like Isomap or t-SNE work with the whole
distribution, and try to determine a representation that is almost isometric with the original
dataset considering its global properties.

t-SNE
This algorithm, proposed by Van der Mateen and Hinton and formally known as t-
Distributed Stochastic Neighbor Embedding (t-SNE), is one of the most powerful
manifold dimensionality reduction techniques. Contrary to the other methods, this
algorithm starts with a fundamental assumption: the similarity between two N-dimensional
points xi and xj can be represented as the conditional probability p(xj|xi) where each point is
represented by a Gaussian distribution centered in xi and with variance σi. The variances
are selected starting from the desired perplexity, defined as:

Low-perplexity values indicate a low uncertainty, and are normally preferable. In common
t-SNE tasks, values in the range 10÷50 are normally acceptable.

The assumption on the conditional probabilities can be interpreted thinking that if two
samples are very similar, the probability associated with the first sample conditioned to the
second one is high, while dissimilar points yield low conditional probabilities. For example,
thinking about images, a point centered in the pupil can have as neighbors some points
belonging to an eyelash. In terms of probabilities, we can think that p(eyelash|pupil) is quite
high, while p(nose|pupil) is obviously lower. t-SNE models these conditional probabilities
as:

Graph-Based Semi-Supervised Learning Chapter 3

[118]

The probabilities p(xi|xi) are set to zero, so the previous formula can be extended to the
whole graph. In order to solve the problem in an easier way, the conditional probabilities
are also symmetrized:

The probability distribution so obtained represents the high-dimensional input
relationship. As our goal is to reduce the dimensionality to a value M < N, we can think
about a similar probabilistic representation for the target points φi, using a student-t
distribution with one degree of freedom:

We want the low-dimensional distribution Q to be as close as possible to the high-
dimensional distribution P; therefore, the aim of the t-SNE algorithm is to minimize the
Kullback-Leibler divergence between P and Q:

Graph-Based Semi-Supervised Learning Chapter 3

[119]

The first term is the entropy of the original distribution P, while the second one is the cross-
entropy H(P, Q), which has to be minimized to solve the problem. The best approach is
based on a gradient-descent algorithm, but there are also some useful variations that can
improve the performance discussed in Visualizing High-Dimensional Data Using t-SNE, Van
der Maaten L.J.P., Hinton G.E., Journal of Machine Learning Research 9 (Nov), 2008.

Example of t-distributed stochastic neighbor
embedding
We can apply this powerful algorithm to the same Olivetti faces dataset, using the Scikit-
Learn class TSNE with n_components=2 and perplexity=20:

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, perplexity=20)
X_tsne = tsne.fit_transform(faces['data'])

The result for all 400 samples is shown in the following graph:

t-SNE applied to the Olivetti faces dataset

Graph-Based Semi-Supervised Learning Chapter 3

[120]

A visual inspection of the label distribution can confirm that t-SNE recreated the optimal
clustering starting from the original high-dimensional distribution. This algorithm can be
employed in several non-linear dimensionality reduction tasks, such as images, word
embeddings, or complex feature vectors. Its main strength is hidden in the assumption to
consider the similarities as probabilities, without the need to impose any constraint on the
pairwise distances, either global or local. Under a certain viewpoint, it's possible to
consider t-SNE as a reverse multiclass classification problem based on a cross-entropy cost
function. Our goal is to find the labels (low-dimensional representation) given the original
distribution and an assumption about the output distribution.

At this point, we could try to answer a natural question: which algorithm must be
employed? The obvious answer is it depends on the single problem. When it's useful to
reduce the dimensionality, preserving the global similarity among vectors (this is the case
when the samples are long feature vectors without local properties, such as word
embeddings or data encodings), t-SNE or Isomap are good choices. When instead it's
necessary to keep the local distances (for example, the structure of a visual patch that can be
shared by different samples also belonging to different classes) as close as possible to the
original representation, locally linear embedding or spectral embedding algorithms are
preferable.

Summary
In this chapter, we have introduced the most important label propagation techniques. In
particular, we have seen how to build a dataset graph based on a weighting kernel, and
how to use the geometric information provided by unlabeled samples to determine the
most likely class. The basic approach works by iterating the multiplication of the label
vector times the weight matrix until a stable point is reached and we have proven that,
under simple assumptions, it is always possible.

Another approach, implemented by Scikit-Learn, is based on the transition probability from
a state (represented by a sample) to another one, until the convergence to a labeled point.
The probability matrix is obtained using a normalized weight matrix to encourage
transitions associated to close points and discourage all the long jumps. The main drawback
of these two methods is the hard-clamping of labeled samples; this constraint can be useful
if we trust our dataset, but it can be a limitation in the presence of outliers whose label has
been wrongly assigned.

Graph-Based Semi-Supervised Learning Chapter 3

[121]

Label spreading solves this problem by introducing a clamping factor that determines the
percentage of clamped labels. The algorithm is very similar to label propagation, but it's
based on graph Laplacian and can be employed in all those problems where the data-
generating distribution is not well-determined and the probability of noise is high.

The propagation based on Markov random walks is a very simple algorithm that can
estimate the class distribution of unlabeled samples through a stochastic process. It's
possible to imagine it as a test sample that walks through the graph until it reaches a final
labeled state (acquiring the corresponding label). The algorithm is very fast and it has a
closed-form solution that can be found by solving a linear system.

The next topic was the introduction of manifold learning with the Isomap algorithm, which
is a simple but powerful solution based on a graph built using a k-nearest neighbors
algorithm (this is a common step in most of these algorithms). The original pairwise
distances are processed using the multidimensional scaling technique, which allows
obtaining a low-dimensional representation where the distances between samples are
preserved.

Two different approaches, based on local pieces of information, are locally linear
embedding and Laplacian Spectral Embedding. The former tries to preserve the local
linearity present in the original manifold, while the latter, which is based on the spectral
decomposition of the normalized graph Laplacian, tries to preserve the nearness of original
samples. Both methods are suitable for all those tasks where it's important not to consider
the whole original distribution, but the similarity induced by small data patches.

We closed this chapter by discussing t-SNE, which is a very powerful algorithm that tries to
model a low-dimensional distribution that is as similar as possible to the original high-
dimensional one. This task is achieved by minimizing the Kullback-Leibler divergence
between the two distributions. t-SNE is a state-of-the-art algorithm, useful whenever it's
important to consider the whole original distribution and the similarity between entire
samples.

In the next chapter, Chapter 4, Bayesian Networks and Hidden Markov Models we're going to
introduce Bayesian networks in both a static and dynamic context, and hidden Markov
models, with practical prediction examples. These algorithms allow modeling complex
probabilistic scenarios made up of observed and latent variables, and infer future states
using optimized sampling methods based only on the observations.

4
Bayesian Networks and Hidden

Markov Models
In this chapter, we're going to introduce the basic concepts of Bayesian models, which
allow working with several scenarios where it's necessary to consider uncertainty as a
structural part of the system. The discussion will focus on static (time-invariant) and
dynamic methods that can be employed where necessary to model time sequences.

In particular, the chapter covers the following topics:

Bayes' theorem and its applications
Bayesian networks
Sampling from a Bayesian network using direct methods and Markov chain
Monte Carlo (MCMC) ones (Gibbs and Metropolis-Hastings samplers)
Modeling a Bayesian network with PyMC3
Hidden Markov Models (HMMs)
Examples with hmmlearn

Conditional probabilities and Bayes'
theorem
If we have a probability space S and two events A and B, the probability of A given B is
called conditional probability, and it's defined as:

Bayesian Networks and Hidden Markov Models Chapter 4

[123]

As P(A, B) = P(B, A), it's possible to derive Bayes' theorem:

This theorem allows expressing a conditional probability as a function of the opposite one
and the two marginal probabilities P(A) and P(B). This result is fundamental to many
machine learning problems, because, as we're going to see in this and in the next chapters,
normally it's easier to work with a conditional probability in order to get the opposite, but
it's hard to work directly from the latter. A common form of this theorem can be expressed
as:

Let's suppose that we need to estimate the probability of an event A given some
observations B, or using the standard notation, the posterior probability of A; the previous
formula expresses this value as proportional to the term P(A), which is the marginal
probability of A, called prior probability, and the conditional probability of the
observations B given the event A. P(B|A) is called likelihood, and defines how event A is
likely to determine B. Therefore, we can summarize the relation as posterior probability ∝
likelihood · prior probability. The proportion is not a limitation, because the term P(B) is
always a normalizing constant that can be omitted. Of course, the reader must remember to
normalize P(A|B) so that its terms always sum up to one.

This is a key concept of Bayesian statistics, where we don't directly trust the prior
probability, but we reweight it using the likelihood of some observations. As an example,
we can think to toss a coin 10 times (event A). We know that P(A) = 0.5 if the coin is fair. If
we'd like to know what the probability is to get 10 heads, we could employ the Binomial
distribution obtaining P(10 heads) = 0.5k; however, let's suppose that we don't know whether
the coin is fair or not, but we suspect it's loaded with a prior probability P(Loaded) = 0.7 in
favor of tails. We can define a complete prior probability P(Coin status) using the indicator
functions:

Where P(Fair) = 0.5 and P(Loaded) = 0.7, the indicator ICoin=Fair is equal to 1 only if the coin is
fair, and 0 otherwise. The same happens with ICoin=Loaded when the coin is loaded. Our goal
now is to determine the posterior probability P(Coin status|B1, B2, ..., Bn) to be able to
confirm or to reject our hypothesis.

Bayesian Networks and Hidden Markov Models Chapter 4

[124]

Let's imagine to observe n = 10 events with B1 = Head and B2, ..., Bn = Tail. We can express the
probability using the binomial distribution:

After simplifying the expression, we get:

We still need to normalize by dividing both terms by 0.083 (the sum of the two terms), so
we get the final posterior probability P(Coin status|B1, B2, ..., Bn) = 0.04IFair + 0.96ILoaded. This
result confirms and strengthens our hypothesis. The probability of a loaded coin is now
about 96%, thanks to the sequence of nine tail observations after one head.

This example was presented to show how the data (observations) is plugged into the
Bayesian framework. If the reader is interested in studying these concepts in more detail, in
Introduction to Statistical Decision Theory, Pratt J., Raiffa H., Schlaifer R., The MIT Press, it's
possible to find many interesting examples and explanations; however, before introducing
Bayesian networks, it's useful to define two other essential concepts.

The first concept is called conditional independence, and it can be formalized considering
two variables A and B, which are conditioned to a third one, C. We say that A and B are
conditionally independent given C if:

Now, let's suppose we have an event A that is conditioned to a series of causes C1, C2, ...,
Cn; the conditional probability is, therefore, P(A|C1, C2, ..., Cn). Applying Bayes' theorem, we
get:

 If there is conditional independence, the previous expression can be simplified and
rewritten as:

Bayesian Networks and Hidden Markov Models Chapter 4

[125]

This property is fundamental in Naive Bayes classifiers, where we assume that the effect
produced by a cause does not influence the other causes. For example, in a spam detector,
we could say that the length of the mail and the presence of some particular keywords are
independent events, and we only need to compute P(Length|Spam) and P(Keywords|Spam)
without considering the joint probability P(Length, Keywords|Spam).

Another important element is the chain rule of probabilities. Let's suppose we have the
joint probability P(X1, X2, ..., Xn). It can be expressed as:

Repeating the procedure with the joint probability on the right side, we get:

In this way, it's possible to express a full joint probability as the product of hierarchical
conditional probabilities, until the last term, which is a marginal distribution. We are going
to use this concept extensively in the next paragraph when exploring Bayesian networks.

Bayesian networks
A Bayesian network is a probabilistic model represented by a direct acyclic graph G = {V,
E}, where the vertices are random variables Xi, and the edges determine a conditional
dependence among them. In the following diagram, there's an example of simple Bayesian
networks with four variables:

Example of Bayesian network

Bayesian Networks and Hidden Markov Models Chapter 4

[126]

The variable x4 is dependent on x3, which is dependent on x1 and x2. To describe the
network, we need the marginal probabilities P(x1) and P(x2) and the conditional
probabilities P(x3|x1,x2) and P(x4|x3). In fact, using the chain rule, we can derive the full joint
probability as:

The previous expression shows an important concept: as the graph is direct and acyclic,
each variable is conditionally independent of all other variables that are not successors
given its predecessors. To formalize this concept, we can define the function Predecessors(xi),
which returns the set of nodes that influence xi directly, for example, Predecessors(x3) = {x1,x2}
(we are using lowercase letters, but we are considering the random variable, not a sample).
Using this function, it's possible to write a general expression for the full joint probability of
a Bayesian network with N nodes:

The general procedure to build a Bayesian network should always start with the first
causes, adding their effects one by one, until the last nodes are inserted into the graph. If
this rule is not respected, the resulting graph can contain useless relations that can increase
the complexity of the model. For example, if x4 is caused indirectly by both x1 and x2,
therefore adding the edges x1 → x4 and x2 → x4 could seem a good modeling choice;
however, we know that the final influence on x4 is determined only by the values of
x3, whose probability must be conditioned on x1 and x2, hence we can remove the spurious
edges. I suggest reading Introduction to Statistical Decision Theory, Pratt J., Raiffa H., Schlaifer
R., The MIT Press to learn many best practices that should be employed in this procedure.

Sampling from a Bayesian network
Performing a direct inference on a Bayesian network can be a very complex operation when
the number of variables and edges is high. For this reason, several sampling methods have
been proposed. In this paragraph, we are going to show how to determine the full joint
probability sampling from a network using a direct approach, and two MCMC algorithms.

Bayesian Networks and Hidden Markov Models Chapter 4

[127]

Let's start considering the previous network and, for simplicity, let's assume to have only
Bernoulli distributions. X1 and X2 are modeled as:

The conditional distribution X3 is defined as:

While the conditional distribution X4 is defined as:

We can now use a direct sampling to estimate the full joint probability P(x1, x2, x3, x4) using
the chain rule previously introduced.

Direct sampling
With direct sampling, our goal is to approximate the full joint probability through a
sequence of samples drawn from each conditional distribution. If we assume that the graph
is well-structured (without unnecessary edges) and we have N variables, the algorithm is
made up of the following steps:

Initialize the variable NSamples.1.
Initialize a vector S with shape (N, NSamples).2.
Initialize a frequency vector FSamples with shape (N, NSamples). In Python, it's better to3.
employ a dictionary where the key is a combination (x1, x2, x3, ..., xN).
For t=1 to NSamples:4.

For i=1 to N:1.
Sample from P(Xi|Predecessors(Xi))1.
Store the sample in S[i, t]2.

If FSamples contains the sampled tuple S[:, t]:2.
FSamples[S[:, t]] += 11.

Else:3.
FSamples[S[:, t]] = 1 (both these operations are immediate with1.

Bayesian Networks and Hidden Markov Models Chapter 4

[128]

Python dictionaries)

Create a vector PSampled with shape (N, 1).5.
Set PSampled[i, 0] = FSamples[i]/N.6.

From a mathematical viewpoint, we are first creating a frequency vector FSamples(x1, x2, x3, ...,
xN; NSamples) and then we approximate the full joint probability considering NSamples → ∞:

Example of direct sampling
We can now implement this algorithm in Python. Let's start by defining the sample
methods using the NumPy function np.random.binomial(1, p), which draws a sample
from a Bernoulli distribution with probability p:

import numpy as np

def X1_sample(p=0.35):
 return np.random.binomial(1, p)

def X2_sample(p=0.65):
 return np.random.binomial(1, p)

def X3_sample(x1, x2, p1=0.75, p2=0.4):
 if x1 == 1 and x2 == 1:
 return np.random.binomial(1, p1)
 else:
 return np.random.binomial(1, p2)
def X4_sample(x3, p1=0.65, p2=0.5):
 if x3 == 1:
 return np.random.binomial(1, p1)
 else:
 return np.random.binomial(1, p2)

At this point, we can implement the main cycle. As the variables are Boolean, the total
number of probabilities is 16, so we set Nsamples to 5000 (smaller values are also
acceptable):

N = 4
Nsamples = 5000

S = np.zeros((N, Nsamples))

Bayesian Networks and Hidden Markov Models Chapter 4

[129]

Fsamples = {}

for t in range(Nsamples):
 x1 = X1_sample()
 x2 = X2_sample()
 x3 = X3_sample(x1, x2)
 x4 = X4_sample(x3)
 sample = (x1, x2, x3, x4)
 if sample in Fsamples:
 Fsamples[sample] += 1
 else:
 Fsamples[sample] = 1

When the sampling is complete, it's possible to extract the full joint probability:

samples = np.array(list(Fsamples.keys()), dtype=np.bool_)
probabilities = np.array(list(Fsamples.values()), dtype=np.float64) /
Nsamples

for i in range(len(samples)):
 print('P{} = {}'.format(samples[i], probabilities[i]))

P[True False True True] = 0.0286
P[True True False True] = 0.024
P[True True True False] = 0.06
P[False False False False] = 0.0708
P[True False True False] = 0.0166
P[False True True True] = 0.1006
P[False False True True] = 0.054
...

We can also query the model. For example, we could be interested in P(X4=True). We can do
this by looking for all the elements where X4=True, and summing up the relative
probabilities:

p4t = np.argwhere(samples[:, 3]==True)
print(np.sum(probabilities[p4t]))

0.5622

This value is coherent with the definition of X4, which is always p >= 0.5. The reader can try
to change the values and repeat the simulation.

Bayesian Networks and Hidden Markov Models Chapter 4

[130]

A gentle introduction to Markov chains
In order to discuss the MCMC algorithms, it's necessary to introduce the concept of Markov
chains. In fact, while the direct sample method draws samples without any particular
order, the MCMC strategies draw a sequence of samples according to a precise transition
probability from a sample to the following one.

Let's consider a time-dependent random variable X(t), and let's assume a discrete time
sequence X1, X2, ..., Xt, Xt+1, ... where Xt represents the value assumed at time t. In the
following diagram, there's a schematic representation of this sequence:

 Structure of a generic Markov chain

We can suppose to have N different states si for i=1..N, therefore it's possible to consider the
probability P(Xt=si|Xt-1=sj, ..., X1=sp). X(t) is defined as a first-order Markov process if:

In other words, in a Markov process (from now on, we omit first-order, even if there are
cases when it's useful to consider more previous states), the probability that X(t) is in a
certain state depends only on the state assumed in the previous time instant. Therefore, we
can define a transition probability for every couple i, j:

Considering all the couples (i, j), it's also possible to build a transition probability matrix
T(i, j) = P(i → j). The marginal probability that Xt=si using a standard notation is defined as:

At this point, it's easy to prove (Chapman-Kolmogorov equation) that:

Bayesian Networks and Hidden Markov Models Chapter 4

[131]

In the previous expression, in order to compute πi(t+1), we need to sum over all possible
previous states, considering the relative transition probability. This operation can be
rewritten in matrix form, using a vector π(t) containing all states and the transition
probability matrix T (the uppercase superscript T means that the matrix is transposed). The
evolution of the chain can be computed recursively:

For our purposes, it's important to consider Markov chains that are able to reach a stationary
distribution πs:

In other words, the state does not depend on the initial condition π(1), and it's no longer
able to change. The stationary distribution is unique if the underlying Markov process is
ergodic. This concept means that the process has the same properties if averaged over time
(which is often impossible), or averaged vertically (freezing the time) over the states (which
is simpler in the majority of cases).

The process of ergodicity for Markov chains is assured by two conditions. The first
is aperiodicity for all states, which means that it is impossible to find a positive number p so
that the chain returns in the same state sequence after a number of instants equal to
a multiple of p. The second condition is that all states must be positive recurrent: this means
that, given a random variable Ninstants(i), describing the number of time instants needed to
return to the state si, E[Ninstants(i)] < ∞; therefore, potentially, all the states can be revisited in a
finite time.

The reason why we need the ergodicity condition, and hence the existence of a unique
stationary distribution, is that we are considering the sampling processes modeled as
Markov chains, where the next value is sampled according to the current state. The
transition from one state to another is done in order to find better samples, as we're going
to see in the Metropolis-Hastings sampler, where we can also decide to reject a sample and
keep the chain in the same state. For this reason, we need to be sure that the algorithms
converge to the unique stable distribution (that approximates the real full joint distribution
of our Bayesian network). It's possible to prove that a chain always reaches a stationary
distribution if:

Bayesian Networks and Hidden Markov Models Chapter 4

[132]

The previous equation is called detailed balance, and implies the reversibility of the chain.
Intuitively, it means that the probability of finding the chain in the state A times the
probability of a transition to the state B is equal to the probability of finding the chain in the
state B times the probability of a transition to A.

For both methods that we are going to discuss, it's possible to prove that they satisfy the
previous condition, and therefore their convergence is assured.

Gibbs sampling
Let's suppose that we want to obtain the full joint probability for a Bayesian network P(x1,
x2, x3, ..., xN); however, the number of variables is large and there's no way to solve this
problem easily in a closed form. Moreover, imagine that we would like to get some
marginal distribution, such as P(x2), but to do so we should integrate the full joint
probability, and this task is even harder. Gibbs sampling allows approximating of all
marginal distributions with an iterative process. If we have N variables, the algorithm
proceeds with the following steps:

Initialize the variable NIterations1.
Initialize a vector S with shape (N, NIterations)2.
Randomly initialize x1

(0), x2
(0), ..., xN

(0) (the superscript index is referred to the3.
iteration)
For t=1 to NIterations:4.

Sample x1
(t) from p(x1|x2

(t-1), x3
(t-1), ..., xN

(t-1)) and store it in S[0, t]1.
Sample x2

(t) from p(x2|x1
(t), x3

(t-1), ..., xN
(t-1)) and store it in S[1, t]2.

Sample x3
(t) from p(x3|x1

(t), x2
(t), ..., xN

(t-1)) and store it in S[2, t]3.
...4.
Sample xN

(t) from p(xN|x1
(t), x2

(t), ..., xN-1
(t)) and store it in S[N-1, t]5.

At the end of the iterations, vector S will contain NIterations samples for each distribution. As
we need to determine the probabilities, it's necessary to proceed like in the direct sampling
algorithm, counting the number of single occurrences and normalizing dividing by NIterations.
If the variables are continuous, it's possible to consider intervals, counting how many
samples are contained in each of them.

Bayesian Networks and Hidden Markov Models Chapter 4

[133]

For small networks, this procedure is very similar to direct sampling, except that when
working with very large networks, the sampling process could become slow; however, the
algorithm can be simplified after introducing the concept of the Markov blanket of Xi,
which is the set of random variables that are predecessors, successors, and successors'
predecessors of Xi (in some books, they use the terms parents and children). In a Bayesian
network, a variable Xi is a conditional independent of all other variables given its Markov
blanket. Therefore, if we define the function MB(Xi), which returns the set of variables in
the blanket, the generic sampling step can be rewritten as p(xi|MB(Xi)), and there's no more
need to consider all the other variables.

To understand this concept, let's consider the network shown in the following diagram:

Bayesian network for the Gibbs sampling example

The Markov blankets are:

MB(X1) = { X2, X3 }
MB(X2) = { X1, X3, X4 }
MB(X3) = { X1, X2, X4, X5 }
MB(X4) = { X3 }
MB(X5) = { X3 }
MB(X6) = { X2 }

In general, if N is very large, the cardinality of |MB(Xi)| << N, thus simplifying the process
(the vanilla Gibbs sampling needs N-1 conditions for each variable). We can prove that the
Gibbs sampling generates samples from a Markov chain that is in detailed balance:

Bayesian Networks and Hidden Markov Models Chapter 4

[134]

Therefore, the procedure converges to the unique stationary distribution. This algorithm is
quite simple; however, its performance is not excellent, because the random walks are not
tuned up in order to explore the right regions of the state-space, where the probability to
find good samples is high. Moreover, the trajectory can also return to bad states, slowing
down the whole process. An alternative (also implemented by PyMC3 for continuous
random variables) is the No-U-Turn algorithm, which we don't discuss in this book. The
reader interested in this topic can find a full description in The No-U-Turn Sampler:
Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, Hoffmann M. D., Gelman A.,
arXiv:1111.4246.

Metropolis-Hastings sampling
We have seen that the full joint probability distribution of a Bayesian network P(x1, x2, x3, ...,
xN) can become intractable when the number of variables is large. The problem can become
even harder when it's needed to marginalize it in order to obtain, for example, P(xi),
because it's necessary to integrate a very complex function. The same problem happens
when applying the Bayes' theorem in simple cases. Let's suppose we have the expression
p(A|B) = K · P(B|A)P(A). I've expressly inserted the normalizing constant K, because if we
know it, we can immediately obtain the posterior probability; however, finding it normally
requires integrating P(B|A)P(A), and this operation can be impossible in closed form.

The Metropolis-Hastings algorithm can help us in solving this problem. Let's imagine that
we need to sample from P(x1, x2, x3, ..., xN), but we know this distribution up to a
normalizing constant, so P(x1, x2, x3, ..., xN) ∝ g(x1, x2, x3, ..., xN). For simplicity, from now on
we collapse all variables into a single vector, so P(x) ∝ g(x).

Let's take another distribution q(x'|x(i-1)), which is called candidate-generating distribution.
There are no particular restrictions on this choice, only that q is easy to sample. In some
situations, q can be chosen as a function very similar to the distribution p(x), which is our
target, while in other cases, it's possible to use a normal distribution with mean equal
to x(i-1). As we're going to see, this function acts as a proposal-generator, but we're not
obliged to accept all the samples drawn from it therefore, potentially any distribution with
the same domain of P(X) can be employed. When a sample is accepted, the Markov chain
transitions to the next state, otherwise it remains in the current one. This decisional process
is based on the idea that the sampler must explore the most important state-space regions
and discard the ones where the probability to find good samples is low.

Bayesian Networks and Hidden Markov Models Chapter 4

[135]

The algorithm proceeds with the following steps:

Initialize the variable NIterations1.
Initialize x(0) randomly2.
For t=1 to NIterations:3.

Draw a candidate sample x' from q(x'|x(i-1))1.
Compute the following value:2.

If α ≥ 1:3.
Accept the sample x(t) = x'1.

Else if 0 < α < 1:4.
Accept the sample x(t) = x' with probability α; or1.
Reject the sample x' setting x(t) = x(t-1) with probability 1 - α2.

It's possible to prove (the proof will be omitted, but it's available in Markov Chain Monte
Carlo and Gibbs Sampling, Walsh B., Lecture Notes for EEB 596z) that the transition probability
of the Metropolis-Hastings algorithm satisfies the detailed balance equation, and therefore
the algorithm converges to the true posterior distribution.

Example of Metropolis-Hastings sampling
We can implement this algorithm to find the posterior distribution P(A|B) given the
product of P(B|A) and P(A), without considering the normalizing constant that requires a
complex integration.

Let's suppose that:

Therefore, the resulting g(x) is:

Bayesian Networks and Hidden Markov Models Chapter 4

[136]

To solve this problem, we adopt the random walk Metropolis-Hastings, which consists of
choosing q ∼ Normal(μ=x(t-1)). This choice allows simplifying the value α, because the two
terms q(x(t-1)|x') and q(x'|x(t-1)) are equal (thanks to the symmetry around the vertical axis
passing through xmean) and can be canceled out, so α becomes the ratio between g(x') and
g(x(t-1)).

The first thing is defining the functions:

import numpy as np

def prior(x):
 return 0.1 * np.exp(-0.1 * x)

def likelihood(x):
 a = np.sqrt(0.2 / (2.0 * np.pi * np.power(x, 3)))
 b = - (0.2 * np.power(x - 1.0, 2)) / (2.0 * x)
 return a * np.exp(b)

def g(x):
 return likelihood(x) * prior(x)

def q(xp):
 return np.random.normal(xp)

Now, we can start our sampling process with 100,000 iterations and x(0) = 1.0:

nb_iterations = 100000
x = 1.0
samples = []

for i in range(nb_iterations):
 xc = q(x)
 alpha = g(xc) / g(x)
 if np.isnan(alpha):
 continue
 if alpha >= 1:
 samples.append(xc)
 x = xc
 else:
 if np.random.uniform(0.0, 1.0) < alpha:
 samples.append(xc)
 x = xc

Bayesian Networks and Hidden Markov Models Chapter 4

[137]

To get a representation of the posterior distribution, we need to create a histogram through
the NumPy function np.histogram(), which accepts an array of values and the number
of desired intervals (bins); in our case, we set 100 intervals:

hist, _ = np.histogram(samples, bins=100)
hist_p = hist / len(samples)

The resulting plot of p(x) is shown in the following graph:

Sampled probability density function

Sampling example using PyMC3
PyMC3 is a powerful Python Bayesian framework that relies on Theano to perform high-
speed computations (see the information box at the end of this paragraph for the
installation instructions). It implements all the most important continuous and discrete
distributions, and performs the sampling process mainly using the No-U-Turn and
Metropolis-Hastings algorithms. For all the details about the API (distributions, functions,
and plotting utilities), I suggest visiting the documentation home page http:/ /docs. pymc.
io/index.html, where it's also possible to find some very intuitive tutorials.

http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html

Bayesian Networks and Hidden Markov Models Chapter 4

[138]

The example we want to model and simulate is based on this scenario: a daily flight from
London to Rome has a scheduled departure time at 12:00 am, and a standard flight time of
two hours. We need to organize the operations at the destination airport, but we don't want
to allocate resources when the plane hasn't landed yet. Therefore, we want to model the
process using a Bayesian network and considering some common factors that can influence
the arrival time. In particular, we know that the onboarding process can be longer than
expected, as well as the refueling one, even if they are carried out in parallel. London air
traffic control can also impose a delay, and the same can happen when the plane is
approaching Rome. We also know that the presence of rough weather can cause another
delay due to a change of route. We can summarize this analysis with the following plot:

 Bayesian network representing the air traffic control problem

Considering our experience, we decide to model the random variables using the following
distributions:

Passenger onboarding ∼ Wald(μ=0.5, λ=0.2)
Refueling ∼ Wald(μ=0.25, λ=0.5)
Departure traffic delay ∼ Wald(μ=0.1, λ=0.2)
Arrival traffic delay ∼ Wald(μ=0.1, λ=0.2)
Departure time = 12 + Departure traffic delay + max(Passenger onboarding, Refueling)
Rough weather ∼ Bernoulli(p=0.35)
Flight time ∼ Exponential(λ=0.5 - (0.1 · Rough weather)) (The output of a Bernoulli
distribution is 0 or 1 corresponding to False and True)
Arrival time = Departure time + Flight time + Arrival traffic delay

Bayesian Networks and Hidden Markov Models Chapter 4

[139]

The probability density functions are:

Departure Time and Arrival Time are functions of random variables, and the
parameter λ of Flight Time is also a function of Rough Weather.

Even if the model is not very complex, the direct inference is rather inefficient, and
therefore we want to simulate the process using PyMC3.

The first step is to create a model instance:

import pymc3 as pm

 model = pm.Model()

From now on, all operations must be performed using the context manager provided by
the model variable. We can now set up all the random variables of our Bayesian network:

import pymc3.distributions.continuous as pmc
import pymc3.distributions.discrete as pmd
import pymc3.math as pmm

with model:
 passenger_onboarding = pmc.Wald('Passenger Onboarding', mu=0.5,
lam=0.2)
 refueling = pmc.Wald('Refueling', mu=0.25, lam=0.5)
 departure_traffic_delay = pmc.Wald('Departure Traffic Delay', mu=0.1,
lam=0.2)
 departure_time = pm.Deterministic('Departure Time',
 12.0 + departure_traffic_delay +
 pmm.switch(passenger_onboarding >=
refueling,
 passenger_onboarding,
 refueling))
 rough_weather = pmd.Bernoulli('Rough Weather', p=0.35)
 flight_time = pmc.Exponential('Flight Time', lam=0.5 - (0.1 *

Bayesian Networks and Hidden Markov Models Chapter 4

[140]

rough_weather))
 arrival_traffic_delay = pmc.Wald('Arrival Traffic Delay', mu=0.1,
lam=0.2)
 arrival_time = pm.Deterministic('Arrival time',
 departure_time +
 flight_time +
 arrival_traffic_delay)

We have imported two namespaces, pymc3.distributions.continuous
and pymc3.distributions.discrete, because we are using both kinds of variable.
Wald and exponential are continuous distributions, while Bernoulli is discrete. In the
first three rows, we declare the variables passenger_onboarding, refueling, and
departure_traffic_delay. The structure is always the same: we need to specify the
class corresponding to the desired distribution, passing the name of the variable and all the
required parameters.

The departure_time variable is declared as pm.Deterministic. In PyMC3, this means
that, once all the random elements have been set, its value becomes completely determined.
Indeed, if we sample from departure_traffic_delay, passenger_onboarding, and
refueling, we get a determined value for departure_time. In this declaration, we've
also used the utility function pmm.switch, which operates a binary choice based on its first
parameter (for example, if A > B, return A, else return B).

The other variables are very similar, except for flight_time, which is an exponential
variable with a parameter λ, which is a function of another variable (rough_weather). As a
Bernoulli variable outputs 1 with probability p and 0 with probability 1 - p, λ = 0.4 if there's
rough weather, and 0.5 otherwise.

Once the model has been set up, it's possible to simulate it through a sampling process.
PyMC3 picks the best sampler automatically, according to the type of variables. As the
model is not very complex, we can limit the process to 500 samples:

nb_samples = 500

with model:
 samples = pm.sample(draws=nb_samples, random_seed=1000)

Bayesian Networks and Hidden Markov Models Chapter 4

[141]

The output can be analyzed using the built-in pm.traceplot() function, which generates
the plots for each of the sample's variables. The following graph shows the detail of one of
them:

 Distribution and samples for the arrival time random variable

The right column shown the samples generated for the random variable (in this case, the
arrival time), while the left column shows the relative frequencies. This plot can be useful to
have a visual confirmation of our initial ideas; in fact, the arrival time has the majority of its
mass concentrated in the interval 14:00 to 16:00 (the numbers are always decimal, so it's
necessary to convert the times); however, we should integrate to get the probabilities.
Instead, through the pm.summary() function, PyMC3 provides a statistical summary that
can help us in making the right decisions. In the following snippet, the output containing
the summary of a single variable is shown:

pm.summary(samples)

...

Arrival time:

 Mean SD MC Error 95% HPD interval

 15.174 2.670 0.102 [12.174, 20.484]

 Posterior quantiles:
 2.5 25 50 75 97.5
 |--------------|==============|==============|--------------|
 12.492 13.459 14.419 16.073 22.557

For each variable, it contains mean, standard deviation, Monte Carlo error, 95% highest
posterior density interval, and the posterior quantiles. In our case, we know that the plane
will land at about 15:10 (15.174).

Bayesian Networks and Hidden Markov Models Chapter 4

[142]

This is only a very simple example to show the power of Bayesian networks. For deep
insight, I suggest the book Introduction to Statistical Decision Theory, Pratt J., Raiffa H.,
Schlaifer R., The MIT Press, where it's possible to study different Bayesian applications that
are out of the scope of this book.

PyMC3 (http:/ / docs. pymc. io/index. html) can be installed using
the pip install -U pymc3 command. As it requires Theano (which is
installed automatically), it's also necessary to provide it with a C/C++
compiler. I suggest using distributions such as Anaconda (https:/ /www.
anaconda. com/ download/), which allows installing MinGW through
the conda install -c anaconda mingw command. For any problems,
on the website you can find detailed installation instructions. For further
information on how to configure Theano to work with GPU support (the
default installation is based on CPU NumPy algorithms), please visit this
page: http:/ /deeplearning. net/ software/ theano/ .

Hidden Markov Models (HMMs)
Let's consider a stochastic process X(t) that can assume N different states: s1, s2, ..., sN with
first-order Markov chain dynamics. Let's also suppose that we cannot observe the state of
X(t), but we have access to another process O(t), connected to X(t), which produces
observable outputs (often known as emissions). The resulting process is called a Hidden
Markov Model (HMM), and a generic schema is shown in the following diagram:

Structure of a generic Hidden Markov Model

http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
http://docs.pymc.io/index.html
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/

Bayesian Networks and Hidden Markov Models Chapter 4

[143]

For each hidden state si, we need to define a transition probability P(i → j), normally
represented as a matrix if the variable is discrete. For the Markov assumption, we have:

Moreover, given a sequence of observations o1, o2, ..., oM, we also assume the following
assumption about the independence of the emission probability:

In other words, the probability of the observation oi (in this case, we mean the value at time
i) is conditioned only by the state of the hidden variable at time i (xi). Conventionally, the
first state x0 and the last one xEnding are never emittied, and therefore all the sequences start
with the index 1 and end with an extra timestep corresponding to the final state.

HMMs can be employed in all those contexts where it's impossible to measure the state of a
system (we can only model it as a stochastic variable with a known transition probability),
but it's possible to access some data connected to it. An example can be a complex engine
that is made up of a large number of parts. We can define some internal states and learn a
transition probability matrix (we're going to learn how to do that), but we can only receive
measures provided by specific sensors.

Sometimes, even if not extremely realistic, but it's useful to include the Markov assumption
and the emission probability independence into our model. The latter can be justified
considering that we can sample all the peak emissions corresponding to precise states and,
as the random process O(t) is implicitly dependent on X(t), it's not unreasonable to think of
it like a pursuer of X(t).

The Markov assumption holds for many real-life processes if either they are naturally first-
order Markov ones, or if the states contain all the history needed to justify a transition. In
other words, in many cases, if the state is A, then there's a transit to B and finally to C. We
assume that when in C, the system moved from a state (B) that carries a part of the
information provided by A.

For example, if we are filling a tank, we can measure the level (the state of our system) at
time t, t+1, ... If the water flow is modeled by a random variable because we don't have a
stabilizer, we can find the probability that the water has reached a certain level at time t,
p(Lt=x|Lt-1). Of course, it doesn't make sense to condition over all the previous states,
because if the level is, for example, 80 m at time t-1, all the information needed to determine
the probability of a new level (state) at time t is already contained in this state (80 m).

Bayesian Networks and Hidden Markov Models Chapter 4

[144]

At this point, we can start analyzing how to train a hidden Markov model, and how to
determine the most likely hidden states given a sequence of observations. For simplicity,
we call A the transition probability matrix, and B the matrix containing all P(oi|xt). The
resulting model can be determined by the knowledge of those elements: HMM = { A, B }.

Forward-backward algorithm
The forward-backward algorithm is a simple but effective method to find the transition
probability matrix T given a sequence of observations o1, o2, ..., ot. The first step is called the
forward phase, and consists of determining the probability of a sequence of observations P(o1,
o2, ..., oSequence Length|A, B). This piece of information can be directly useful if we need to know
the likelihood of a sequence and it's necessary, together with the backward phase, to estimate
the structure (A and B) of the underlying HMM.

Both algorithms are based on the concept of dynamic programming, which consists of
splitting a complex problem into sub-problems that can be easily solved, and reusing the
solutions to solve more complex steps in a recursive/iterative fashion. For further
information on this, please refer to Dynamic Programming and Markov Process, Ronald A.
Howard, The MIT Press.

Forward phase
If we call pij the transition probability P(i → j), we define a recursive procedure considering
the following probability:

The variable ft
i represents the probability that the HMM is in the state i (at time t) after t

observations (from 1 to t). Considering the HMM assumptions, we can state that ft
i depends

on all possible ft-1
j. More precisely, we have:

Bayesian Networks and Hidden Markov Models Chapter 4

[145]

With this process, we are considering that the HMM can reach any of the states at time t-1
(with the first t-1 observations), and transition to the state i at time t with probability pji. We
need also to consider the emission probability for the final state ot conditioned to each of the
possible previous states.

For definition, the initial and ending states are not emitting. It means that we can write any
sequence of observations as 0, o1, o2, ..., oSequence Length, 0, where the first and the final values are
null. The procedure starts with computing the forward message at time 1:

The non-emitting ending state must be also considered:

The expression for the last state xEnding is interpreted here as the index of the ending state in
both A and B matrices. For example, we indicate pij as A[i, j], meaning the transition
probability at a generic time instant from the state xt = i to the state xt+1 = j. In the same way,
piEnding is represented as A[i, xEnding], meaning the transition probability from the penultimate
state xSequence Length-1 = i to the ending one xSequence Length = Ending State.

The Forward algorithm can, therefore, be summarized in the following steps (we assume to
have N states, hence we need to allocate N+2 positions, considering the initial and the
ending states):

Initialization of a Forward vector with shape (N + 2, Sequence Length).1.
Initialization of A (transition probability matrix) with shape (N, N). Each element2.
is P(xi|xj).
Initialization of B with shape (Sequence Length, N). Each element is P(oi|xj).3.
For i=1 to N:4.

Set Forward[i, 1] = A[0, i] · B[1, i]1.

For t=2 to Sequence Length-1:5.
For i=1 to N:1.

Set S = 01.
For j=1 to N:2.

Set S = S + Forward[j, t-1] · A[j, i] · B[t, i]1.

Set Forward[i, t] = S3.

Bayesian Networks and Hidden Markov Models Chapter 4

[146]

Set S = 0.6.
For i=1 to N:7.

Set S = S + Forward[i, Sequence Length] · A[i, xEnding]1.

Set Forward[xEnding, Sequence Length] = S.8.

Now it should be clear that the name forward derives from the procedure to propagate the
information from the previous step to the next one, until the ending state, which is not
emittied.

Backward phase
During the backward phase, we need to compute the probability of a sequence starting at
time t+1: ot+1, ot+2, ..., oSequence Length, given that the state at time t is i. Just like we have done
before, we define the following probability:

The backward algorithm is very similar to the forward one, but in this case, we need to
move in the opposite direction, assuming we know that the state at time t is i. The first state
to consider is the last one xEnding, which is not emitting, like the initial state; therefore we
have:

We terminate the recursion with the initial state:

The steps are the following ones:

Initialization of a vector Backward with shape (N + 2, Sequence Length).1.
Initialization of A (transition probability matrix) with shape (N, N). Each element2.
is P(xi|xj).
Initialization of B with shape (Sequence Length, N). Each element is P(oi|xj).3.

Bayesian Networks and Hidden Markov Models Chapter 4

[147]

For i=1 to N:4.
Set Backward[xEndind, Sequence Length] = A[i, xEndind]1.

For t=Sequence Length-1 to 1:5.
For i=1 to N:1.

Set S = 01.
For j=1 to N2.

Set S = S + Backward[j, t+1] · A[j, i] · B[t+1, i]1.

Set Backward[i, t] = S3.

Set S = 0.6.
For i=1 to N:7.

Set S = S + Backward[i, 1] · A[0, i] · B[1, i]1.

Set Backward[0, 1] = S.8.

HMM parameter estimation
Now that we have defined both the forward and the backward algorithms, we can use
them to estimate the structure of the underlying HMM. The procedure is an application of
the Expectation-Maximization algorithm, which will be discussed in the next chapter,
Chapter 5, EM Algorithm and Applications, and its goal can be summarized as defining how
we want to estimate the values of A and B. If we define N(i, j) as the number of transitions
from the state i to the state j, and N(i) the total number of transitions from the state i, we can
approximate the transition probability P(i → j) with:

In the same way, if we define M(i, p) the number of times we have observed the emission op

in the state i, we can approximate the emission probability P(op|xi) with:

Bayesian Networks and Hidden Markov Models Chapter 4

[148]

Let's start with the estimation of the transition probability matrix A. If we consider the
probability that the HMM is in the state i at time t, and in the state j at time t+1 given the
observations, we have:

We can compute this probability using the forward and backward algorithms, given a
sequence of observations o1, o2, ..., oSequence Length. In fact, we can use both the forward
message ft

i, which is the probability that the HMM is in the state i after t observations, and
the backward message bt+1

j, which is the probability of a sequence ot+1, ot+1, ..., oSequence Length

starting at time t+1, given that the HMM is in state j at time t+1. Of course, we need also to
include the emission probability and the transition probability pij, which is what we are
estimating. The algorithm, in fact, starts with a random hypothesis and iterates until the
values of A become stable. The estimation αij at time t is equal to:

In this context, we are omitting the full proof due to its complexity; however, the reader can
find it in A tutorial on hidden Markov models and selected applications in speech recognition,
Rabiner L. R., Proceedings of the IEEE 77.2.

To compute the emission probabilities, it's easier to start with the probability of being in the
state i at time t given the sequence of observations:

In this case, the computation is immediate, because we can multiply the forward and
backward messages computed at the same time t and state i (remember that considering the
observations, the backward message is conditioned to xt = i, while the forward message
computes the probability of the observations joined with xt = i. Hence, the multiplication is
the unnormalized probability of being in the state i at time t). Therefore, we have:

Bayesian Networks and Hidden Markov Models Chapter 4

[149]

The proof of how the normalizing constant is obtained can be found in the aforementioned
paper. We can now plug these expressions to the estimation of aij and bip:

In the numerator of the second formula, we adopted the indicator function (it's 1 only if the
condition is true, 0 otherwise) to limit the sum only where those elements are ot = p. During
an iteration k, pij is the estimated value aij found in the previous iteration k-1.

The algorithm is based on the following steps:

Randomly initialize the matrices A and B1.
Initialize a tolerance variable Tol (for example, Tol = 0.001)2.
While Norm(Ak - Ak-1) > Tol and Norm(Bk - Bk-1) > Tol (k is the iteration index):3.

For t=1 to Sequence Length-1:1.
For i=1 to N: 1.

For j=1 to N: 1.
Compute αt

ij1.

Compute βt
i2.

Compute the estimations of aij and bip and store them in Ak2.

Alternatively, it's possible to fix the number of iterations, even if the best solution is using
both a tolerance and a maximum number of iterations, to terminate the process when the
first condition is met.

Example of HMM training with hmmlearn
For this example, we are going to use hmmlearn, which is a package for HMM
computations (see the information box at the end of this section for further details). For
simplicity, let's consider the airport example discussed in the paragraph about the Bayesian
networks, and let's suppose we have a single hidden variable that represents the weather
(of course, this is not a real hidden variable!), modeled as a multinomial distribution with
two components (good and rough).

Bayesian Networks and Hidden Markov Models Chapter 4

[150]

We observe the arrival time of our flight London-Rome (which partially depends on the
weather conditions), and we want to train an HMM to infer future states and compute the
posterior probability of hidden states corresponding to a given sequence.

The schema for our example is shown in the following diagram:

HMM for the weather-arrival delay problem

Let's start by defining our observation vector. As we have two states, its values will be 0
and 1. Let's assume that 0 means On-time and 1 means Delay:

import numpy as np

observations = np.array([[0], [1], [1], [0], [1], [1], [1], [0], [1],
 [0], [0], [0], [1], [0], [1], [1], [0], [1],
 [0], [0], [1], [0], [1], [0], [0], [0], [1],
 [0], [1], [0], [1], [0], [0], [0], [0], [0]],
dtype=np.int32)

We have 35 consecutive observations whose values are either 0 or 1.

To build the HMM, we are going to use the MultinomialHMM class, with
n_components=2, n_iter=100, and random_state=1000 (it's important to always use
the same seed to avoid differences in the results). The number of iterations is sometimes
hard to determine; for this reason, hmmlearn provides a utility ConvergenceMonitor class
which can be checked to be sure that the algorithm has successfully converged.

Now we can train our model using the fit() method, passing as argument the list of
observations (the array must be always bidimensional with shape Sequence Length ×
NComponents):

from hmmlearn import hmm

hmm_model = hmm.MultinomialHMM(n_components=2, n_iter=100,
random_state=1000)

Bayesian Networks and Hidden Markov Models Chapter 4

[151]

hmm_model.fit(observations)

print(hmm_model.monitor_.converged)
True

The process is very fast, and the monitor (available as instance variable monitor) has
confirmed the convergence. If the model is very big and needs to be retrained, it's also
possible to check smaller values of n_iter). Once the model is trained, we can immediately
visualize the transition probability matrix, which is available as an instance variable
transmat_:

print(hmm_model.transmat_)

[[0.0025384 0.9974616]
 [0.69191905 0.30808095]]

We can interpret these values as saying that the probability to transition from 0 (good
weather) to 1 (rough weather) is higher (p01 is close to 1) than the opposite, and it's more
likely to remain in state 1 than in state 0 (p00 is almost null). We could deduce that the
observations have been collected during the winter period! After explaining the Viterbi
algorithm in the next paragraph, we can also check, given some observations, what the
most likely hidden state sequence is.

hmmlearn (http:/ /hmmlearn. readthedocs. io/ en/ latest/ index. html) is
a framework originally built to be a part of Scikit-Learn. It supports
multinomial and Gaussian HMM, and allows training and inferring using
the most common algorithms. It can be installed using the pip install
hmmlearn command.

Viterbi algorithm
The Viterbi algorithm is one of most common decoding algorithms for HMM. Its goal is to
find the most likely hidden state sequence corresponding to a series of observations. The
structure is very similar to the forward algorithm, but instead of computing the probability
of a sequence of observations joined with the state at the last time instant, this algorithm
looks for:

http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html
http://hmmlearn.readthedocs.io/en/latest/index.html

Bayesian Networks and Hidden Markov Models Chapter 4

[152]

The variable vt
i represents that maximum probability of the given observation sequence

joint with xt = i, considering all possible hidden state paths (from time instant 1 to t-1). We
can compute vt

i recursively by evaluating all the vt-1
j multiplied by the corresponding

transition probabilities pji and emission probability P(ot|xi), and always picking the
maximum overall possible values of j:

The algorithm is based on a backtracking approach, using a backpointer bpt
i whose

recursive expression is the same as vt
i, but with the argmax function instead of max:

Therefore, bpt
i represents the partial sequence of hidden states x1, x2, ..., xt-1 that maximizes vt

i.
During the recursion, we add the timesteps one by one, so the previous path could be
invalidated by the last observation. That's why we need to backtrack the partial result and
replace the sequence built at time t that doesn't maximize vt+1

i anymore.

The algorithm is based on the following steps (like in the other cases, the initial and ending
states are not emitting):

Initialization of a vector V with shape (N + 2, Sequence Length).1.
Initialization of a vector BP with shape (N + 2, Sequence Length).2.
Initialization of A (transition probability matrix) with shape (N, N). Each element3.
is P(xi|xj).
Initialization of B with shape (Sequence Length, N). Each element is P(oi|xj).4.
For i=1 to N:5.

Set V[i, 1] = A[i, 0] · B[1, i]1.
BP[i, 1] = Null (or any other value that cannot be interpreted as a state)2.

For t=1 to Sequence Length:6.
For i=1 to N:1.

Set V[i, t] = maxj V[j, t-1] · A[j, i] · B[t, i]1.
Set BP[i, t] = argmaxj V[j, t-1] · A[j, i] · B[t, i]2.

Set V[xEndind, Sequence Length] = maxj V[j, Sequence Length] · A[j, xEndind].7.

Bayesian Networks and Hidden Markov Models Chapter 4

[153]

Set BP[xEndind, Sequence Length] = argmaxj V[j, Sequence Length] · A[j, xEndind].8.
Reverse BP.9.

The output of the Viterbi algorithm is a tuple with the most likely sequence BP, and the
corresponding probabilities V.

Finding the most likely hidden state sequence with
hmmlearn
At this point, we can continue with the previous example, using our model to find the most
likely hidden state sequence given a set of possible observations. We can use either the
decode() method or the predict() method. The first one returns the log probability of
the whole sequence and the sequence itself; however, they all use the Viterbi algorithm as a
default decoder:

sequence = np.array([[1], [1], [1], [0], [1], [1], [1], [0], [1],
 [0], [1], [0], [1], [0], [1], [1], [0], [1],
 [1], [0], [1], [0], [1], [0], [1], [0], [1],
 [1], [1], [0], [0], [1], [1], [0], [1], [1]],
dtype=np.int32)

lp, hs = hmm_model.decode(sequence)

print(hs)
[0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1]

print(lp)
-30.489992468878615

The sequence is coherent with the transition probability matrix; in fact, it's more likely the
persistence of rough weather (1) than the opposite. As a consequence, the transition from 1
to X is less likely than the one from 0 to 1. The choice of state is made by selecting the
highest probability; however, in some cases, the differences are minimal (in our example, it
can happen to have p = [0.49, 0.51], meaning that there's a high error chance), so it's useful
to check the posterior probabilities for all the states in the sequence:

pp = hmm_model.predict_proba(sequence)
print(pp)

[[1.00000000e+00 5.05351938e-19]
 [3.76687160e-05 9.99962331e-01]
 [1.31242036e-03 9.98687580e-01]
 [9.60384736e-01 3.96152641e-02]

Bayesian Networks and Hidden Markov Models Chapter 4

[154]

 [1.27156616e-03 9.98728434e-01]
 [3.21353749e-02 9.67864625e-01]
 [1.23481962e-03 9.98765180e-01]

...

In our case, there are a couple of states that have p ∼ [0.495, 0.505], so even if the output
state is 1 (rough weather), it's also useful to consider a moderate probability to observe
good weather. In general, if a sequence is coherent with the transition probability
previously learned (or manually input), those cases are not very common. I suggest trying
different configurations and observations sequences, and to also assess the probabilities for
the strangest situations (like a sequence of zero second). At that point, it's possible to retrain
the model and recheck the new evidence has been correctly processed.

Summary
In this chapter, we have introduced Bayesian networks, describing their structure and
relations. We have seen how it's possible to build a network to model a probabilistic
scenario where some elements can influence the probability of others. We have also
described how to obtain the full joint probability using the most common sampling
methods, which allow reducing the computational complexity through an approximation.

The most common sampling methods belong to the family of MCMC algorithms, which
model the transition probability from a sample to another one as a first-order Markov
chain. In particular, the Gibbs sampler is based on the assumption that it's easier to sample
from conditional distribution than work directly with the full joint probability. The method
is very easy to implement, but it has some performance drawbacks that can be avoided by
adopting more complex strategies. The Metropolis-Hastings sampler, instead, works with a
candidate-generating distribution and a criterion to accept or reject the samples. Both
methods satisfy the detailed balance equation, which guarantees the convergence (the
underlying Markov chain will reach the unique stationary distribution).

Bayesian Networks and Hidden Markov Models Chapter 4

[155]

In the last part of the chapter, we introduced HMMs, which allow modeling time sequences
based on observations corresponding to a series of hidden states. The main concept of such
models, in fact, is the presence of unobservable states that condition the emission of a
particular observation (which is observable). We have discussed the main assumptions and
how to build, train, and infer from a model. In particular, the Forward-Backward algorithm
can be employed when it's necessary to learn the transition probability matrix and the
emission probabilities, while the Viterbi algorithm is adopted to find the most likely hidden
state sequence given a set of consecutive observations.

In the next chapter, Chapter 5, EM Algorithm and Applications, we're going to briefly discuss
the Expectation-Maximization algorithm, focusing on some important applications based
on the Maximum Likelihood Estimation (MLE) approach.

5
EM Algorithm and Applications

In this chapter, we are going to introduce a very important algorithmic framework for
many statistical learning tasks: the EM algorithm. Contrary to its name, this is not a method
to solve a single problem, but a methodology that can be applied in several contexts. Our
goal is to explain the rationale and show the mathematical derivation, together with some
practical examples. In particular, we are going to discuss the following topics:

Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP)
learning approaches
The EM algorithm with a simple application for the estimation of unknown
parameters
The Gaussian mixture algorithm, which is one the most famous EM applications
Factor analysis
Principal Component Analysis (PCA)
Independent Component Analysis (ICA)
A brief explanation of the Hidden Markov Models (HMMs) forward-backward
algorithm considering the EM steps

MLE and MAP learning
Let's suppose we have a data generating process pdata, used to draw a dataset X:

In many statistical learning tasks, our goal is to find the optimal parameter set θ according
to a maximization criterion. The most common approach is based on the likelihood and is
called MLE. In this case, the optimal set θ is found as follows:

EM Algorithm and Applications Chapter 5

[157]

This approach has the advantage of being unbiased by wrong preconditions, but, at the
same time, it excludes any possibility of incorporating prior knowledge into the model. It
simply looks for the best θ in a wider subspace, so that p(X|θ) is maximized. Even if this
approach is almost unbiased, there's a higher probability of finding a sub-optimal solution
that can also be quite different from a reasonable (even if not sure) prior. After all, several
models are too complex to allow us to define a suitable prior probability (think, for
example, of reinforcement learning strategies where there's a huge number of complex
states). Therefore, MLE offers the most reliable solution. Moreover, it's possible to prove
that the MLE of a parameter θ converges in probability to the real value:

On the other hand, if we consider Bayes' theorem, we can derive the following relation:

The posterior probability, p(θ|X), is obtained using both the likelihood and a prior
probability, p(θ), and hence takes into account existing knowledge encoded in p(θ). The
choice to maximize p(θ|X) is called the MAP approach and it's often a good alternative to
MLE when it's possible to formulate trustworthy priors or, as in the case of Latent Dirichlet
Allocation (LDA), where the model is on purpose based on some specific prior
assumptions.

Unfortunately, a wrong or incomplete prior distribution can bias the model leading to
unacceptable results. For this reason, MLE is often the default choice even when it's
possible to formulate reasonable assumptions on the structure of p(θ). To understand the
impact of a prior on an estimation, let's consider to have observed n=1000 binomial
distributed (θ corresponds to the parameter p) experiments and k=800 had a successful
outcome. The likelihood is as follows:

For simplicity, let's compute the log-likelihood:

EM Algorithm and Applications Chapter 5

[158]

If we compute the derivative with respect to θ and set it equal to zero, we get the following:

So the MLE for θ is 0.8, which is coherent with the observations (we can say that after
observing 1000 experiments with 800 successful outcomes, p(X|Success)=0.8). If we have
only the data X, we could say that a success is more likely than a failure because 800 out of
1000 experiments are positive.

However, after this simple exercise, an expert can tell us that, considering the largest
possible population, the marginal probability p(Success)=0.001 (Bernoulli distributed with
p(Failure) = 1 - P(success)) and our sample is not representative. If we trust the expert, we
need to compute the posterior probability using Bayes' theorem:

Surprisingly, the posterior probability is very close to zero and we should reject our initial
hypothesis! At this point, there are two options: if we want to build a model based only on
our data, the MLE is the only reasonable choice, because, considering the posterior, we
need to accept we have a very poor dataset (this is probably a bias when drawing the
samples from the data generating process pdata).

On the other hand, if we really trust the expert, we have a few options for managing the
problem:

Checking the sampling process in order to assess its quality (we can discover that
a better sampling leads to a very lower k value)
Increasing the number of samples
Computing the MAP estimation of θ

EM Algorithm and Applications Chapter 5

[159]

I suggest that the reader tries both approaches with simple models, to be able to compare
the relative accuracies. In this book, we're always going to adopt the MLE when it's
necessary to estimate the parameters of a model with a statistical approach. This choice is
based on the assumption that our datasets are correctly sampled from pdata. If this is not
possible (think about an image classifier that must distinguish between horses, dogs, and
cats, built with a dataset where there are pictures of 500 horses, 500 dogs, and 5 cats), we
should expand our dataset or use data augmentation techniques to create artificial samples.

EM algorithm
The EM algorithm is a generic framework that can be employed in the optimization of
many generative models. It was originally proposed in Maximum likelihood from incomplete
data via the em algorithm, Dempster A. P., Laird N. M., Rubin D. B., Journal of the Royal
Statistical Society, B, 39(1):1–38, 11/1977, where the authors also proved its convergence at
different levels of genericity.

For our purposes, we are going to consider a dataset, X, and a set of latent variables, Z, that
we cannot observe. They can be part of the original model or introduced artificially as a
trick to simplify the problem. A generative model parameterized with the vector θ has a
log-likelihood equal to the following:

Of course, a large log-likelihood implies that the model is able to generate the original
distribution with a small error. Therefore, our goal is to find the optimal set of parameters θ
that maximizes the marginalized log-likelihood (we need to sum—or integrate out for
continuous variables—the latent variables out because we cannot observe them):

EM Algorithm and Applications Chapter 5

[160]

Theoretically, this operation is correct, but, unfortunately, it's almost always impracticable
because of its complexity (in particular, the logarithm of a sum is often very problematic to
manage). However, the presence of the latent variables can help us in finding a good proxy
that is easy to compute and whose maximization corresponds to the maximization of the
original log-likelihood. Let's start by rewriting the expression of the likelihood using the
chain rule:

If we consider an iterative process, our goal is to find a procedure that satisfies the
following condition:

We can start by considering a generic step:

The first problem to solve is the logarithm of the sum. Fortunately, we can employ the
Jensen's inequality, which allows us to move the logarithm inside the summation. Let's first
define the concept of a convex function: a function, f(x), defined on a convex set, D, is said to
be convex if the following applies:

If the inequality is strict, the function is said to be strictly convex. Intuitively, and
considering a function of a single variable f(x), the previous definition states that the
function is never above the segment that connects two points (x1, f(x1)) and (x2, f(x2)). In the
case of strict convexity, f(x) is always below the segment. Inverting these definitions, we
obtain the conditions for a function to be concave or strictly concave.

EM Algorithm and Applications Chapter 5

[161]

If a function f(x) is concave in D, the function -f(x) is convex in D; therefore, as log(x) is
concave in [0, ∞) (or with an equivalent notation in [0, ∞[), -log(x) is convex in [0, ∞), as
shown in the following diagram:

The Jensen's inequality (the proof is omitted but further details can be found in Jensen's
Operator Inequality, Hansen F., Pedersen G. K., arXiv:math/0204049 [math.OA] states that if
f(x) is a convex function defined on a convex set D, if we select n points x1, x2, ..., xn ∈ D and
n constants λ1, λ2, ..., λn ≥ 0 satisfying the condition λ1 + λ2 + ... + λn = 1, then the following
applies:

Therefore, considering that -log(x) is convex, the Jensen's inequality for log(x) becomes as
follows:

EM Algorithm and Applications Chapter 5

[162]

Hence, the generic iterative step can be rewritten, as follows:

Applying the Jensen's inequality, we obtain the following:

All the conditions are met, because the terms P(zi|X, θt) are, by definition, bounded
between [0, 1] and the sum over all z must always be equal to 1 (laws of probability). The
previous expression implies that the following is true:

Therefore, if we maximize the right side of the inequality, we also maximize the log-
likelihood. However, the problem can be further simplified, considering that we are
optimizing only the parameter vector θ and we can remove all the terms that don't depend
on it. Hence, we can define a Q function (there are no relationships with the Q-Learning that
we're going to discuss in Chapter 14, Introduction to Reinforcement Learning) whose
expression is as follows:

Q is the expected value of the log-likelihood considering the complete data Y = (X, Z) and
the current iteration parameter set θt. At each iteration, Q is computed considering the
current estimation θt and it's maximized considering the variable θ. It's now clearer why the
latent variables can be often artificially introduced: they allow us to apply the Jensen's
inequality and transform the original expression into an expected value that is easy to
evaluate and optimize.

EM Algorithm and Applications Chapter 5

[163]

At this point, we can formalize the EM algorithm:

Set a threshold Thr (for example, Thr = 0.01)1.
Set a random parameter vector θ0.2.
While |L(θt|X, Z) - L(θt-1|X, Z)| > Thr:3.

E-Step: Compute the Q(θ|θt). In general, this step consists in
computing the conditional probability p(z|X, θt) or some of its
moments (sometimes, the sufficient statistics are limited to mean and
covariance) using the current parameter estimation θt.
M-Step: Find θt+1 = argmaxθ Q(θ|θt). The new parameter estimation is
computed to maximize the Q function.

The procedure ends when the log-likelihood stops increasing or after a fixed number of
iterations.

An example of parameter estimation
In this example, we see how it's possible to apply the EM algorithm for the estimation of
unknown parameters (inspired by an example discussed in the original paper Maximum
likelihood from incomplete data via the em algorithm, Dempster A. P., Laird N. M., Rubin D. B.,
Journal of the Royal Statistical Society, B, 39(1):1–38, 11/1977).

Let's consider a sequence of n independent experiments modeled with a multinomial
distribution with three possible outcomes x1, x2, x3 and corresponding probabilities p1, p2

and p3. The probability mass function is as follows:

Let's suppose that we can observe z1 = x1 + x2 and x3, but we don't have any direct access to
the single values x1 and x2. Therefore, x1 and x2 are latent variables, while z1 and x3 are
observed ones. The probability vector p is parameterized in the following way:

EM Algorithm and Applications Chapter 5

[164]

Our goal is to find the MLE for θ given n, z1, and x3. Let's start computing the log-likelihood:

We can derive the expression for the corresponding Q function, exploiting the linearity of
the expected value operator E[•]:

The variables x1 and x2, given z1, are binomially distributed and can be expressed as a
function of θt (we need to recompute them at each iteration). Hence, the expected value of
x1

(t+1) becomes as follows:

While the expected value of x2
(t+1) is as follows:

If we apply these expressions in and compute the derivative with respect to θ, we get
the following:

EM Algorithm and Applications Chapter 5

[165]

Therefore, solving for θ, we get the following:

At this point, we can derive the iterative expression for θ:

Let's compute the value of θ for z1 = 50 and x3 = 10:

def theta(theta_prev, z1=50.0, x3=10.0):
 num = (8.0 * z1 * theta_prev) + (4.0 * x3 * (12.0 - theta_prev))
 den = (z1 + x3) * (12.0 - theta_prev)
 return num / den

theta_v = 0.01

for i in range(1000):
 theta_v = theta(theta_v)

print(theta_v)
1.999999999999999

p = [theta_v/6.0, (1-(theta_v/4.0)), theta_v/12.0]

print(p)
[0.33333333333333315, 0.5000000000000002, 0.16666666666666657]

In this example, we have parameterized all probabilities and, considering that z1 = x1 + x2,
we have one degree of freedom for the choice of θ. The reader can repeat the example by
setting the value of one of p1 or p2 and leaving the other probabilities as functions of θ. The
computation is almost identical but in this case, there are no degrees of freedom.

Gaussian mixture
In Chapter 2, Introduction to Semi-Supervised Learning, we discussed the generative
Gaussian mixture model in the context of semi-supervised learning. In this paragraph,
we're going to apply the EM algorithm to derive the formulas for the parameter updates.

EM Algorithm and Applications Chapter 5

[166]

Let's start considering a dataset, X, drawn from a data generating process, pdata:

We assume that the whole distribution is generated by the sum of k Gaussian distributions
so that the probability of each sample can be expressed as follows:

In the previous expression, the term wj = P(N=j) is the relative weight of the jth Gaussian,
while μj and Σj are the mean and the covariance matrix. For consistency with the laws of
probability, we also need to impose the following:

Unfortunately, if we try to solve the problem directly, we need to manage the logarithm of
a sum and the procedure becomes very complex. However, we have learned that it's
possible to use latent variables as helpers, whenever this trick can simplify the solution.

Let's consider a single parameter set θ=(wj, μj, Σj) and a latent indicator matrix Z where each
element zij is equal to 1 if the point xi has been generated by the jth Gaussian, and 0
otherwise. Therefore, each zij is Bernoulli distributed with parameters equal to p(j|xi, θt).

The joint log-likelihood can hence be expressed using the exponential-indicator notation, as
follows:

The index, i, is referred to the samples, while j refers to the Gaussian distributions. If we
apply the chain rule and the properties of a logarithm, the expression becomes as follows:

EM Algorithm and Applications Chapter 5

[167]

The first term represents the probability of xi under the jth Gaussian, while the second one is
the relative weight of the jth Gaussian. We can now compute the Q(θ;θt) function using the
joint log-likelihood:

Exploiting the linearity of E[•], the previous expression becomes as follows:

The term p(j|xi, θt) corresponds to the expected value of zij considering the complete data,
and expresses the probability of the jth Gaussian given the sample xi. It can be simplified
considering Bayes' theorem:

The first term is the probability of xi under the jth Gaussian with parameters θt, while the
second one is the weight of the jth Gaussian considering the same parameter set θt. In order
to derive the iterative expressions for the parameters, it's useful to write the complete
formula for the logarithm of a multivariate Gaussian distribution:

To simplify this expression, we use the trace trick. In fact, as (xi - μj)
T Σ-1 (xi - μj) is a scalar, we

can exploit the properties tr(AB) = tr(BA) and tr(c) = c where A and B are matrices and c ∈ ℜ:

EM Algorithm and Applications Chapter 5

[168]

Let's start considering the estimation of the mean (only the first term of Q(θ;θt) depends on
mean and covariance):

Setting the derivative equal to zero, we get the following:

In the same way, we obtain the expression of the covariance matrix:

To obtain the iterative expressions for the weights, the procedure is a little bit more
complex, because we need to use the Lagrange multipliers (further information can be
found in http://www. slimy. com/ ~steuard/ teaching/ tutorials/ Lagrange. html).
Considering that the sum of the weights must always be equal to 1, it's possible to write the
following equation:

Setting both derivatives equal to zero, from the first one, considering that wj = p(j|θ), we get
the following:

http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html
http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html

EM Algorithm and Applications Chapter 5

[169]

While from the second derivative, we obtain the following:

The last step derives from the fundamental condition:

Therefore, the final expression of the weights is as follows:

At this point, we can formalize the Gaussian mixture algorithm:

Set random initial values for wj
(0), θ(0)

j and Σ(0)
j

E-Step: Compute p(j|xi, θt) using Bayes' theorem: p(j|xi, θt) = α w(t)
j p(xi|j, θt)

M-Step: Compute wj
(t+1), θ(t+1)

j and Σ(t+1)
j using the formulas provided previously

The process must be iterated until the parameters become stable. In general, the best
practice is using both a threshold and a maximum number of iterations.

An example of Gaussian Mixtures using Scikit-
Learn
We can now implement the Gaussian mixture algorithm using the Scikit-Learn
implementation. The direct approach has already been shown in Chapter 2, Introduction to
Semi-Supervised Learning. The dataset is generated to have three cluster centers and a
moderate overlap due to a standard deviation equal to 1.5:

from sklearn.datasets import make_blobs

nb_samples = 1000
X, Y = make_blobs(n_samples=nb_samples, n_features=2, centers=3,
cluster_std=1.5, random_state=1000)

EM Algorithm and Applications Chapter 5

[170]

The corresponding plot is shown in the following diagram:

The Scikit-Learn implementation is based on the GaussianMixture class , which accepts
as parameters the number of Gaussians (n_components), the type of covariance
(covariance_type), which can be full (the default value), if all components have their
own matrix, tied if the matrix is shared, diag if all components have their own diagonal
matrix (this condition imposes an uncorrelation among the features), and spherical when
each Gaussian is symmetric in every direction. The other parameters allow setting
regularization and initialization factors (for further information, the reader can directly
check the documentation). Our implementation is based on full covariance:

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=3)
gm.fit(X)

After fitting the model, it's possible to access to the learned parameters through the instance
variables weights_, means_, and covariances_:

print(gm.weights_)

[0.32904743 0.33027731 0.34067526]

print(gm.means_)

EM Algorithm and Applications Chapter 5

[171]

[[3.03902183 -7.69186648]
 [9.04414279 -0.37455175]
 [7.37103878 -5.77496152]]

print(gm.covariances_)

[[[2.34943036 0.08492009]
 [0.08492009 2.36467211]]

 [[2.10999633 0.02602279]
 [0.02602279 2.21533635]]

 [[2.71755196 -0.0100434]
 [-0.0100434 2.39941067]]]

Considering the covariance matrices, we can already understand that the features are very
uncorrelated and the Gaussians are almost spherical. The final plot can be obtained by
assigning each point to the corresponding cluster (Gaussian distribution) through the Yp =
gm.transform(X) command:

Labeled dataset obtained through the application of a Gaussian mixture with three components

EM Algorithm and Applications Chapter 5

[172]

The reader should have noticed a strong analogy between Gaussian mixture and k-
means (which we're going to discuss in Chapter 7, Clustering Algorithms). In particular, we
can state that K-means is a particular case of spherical Gaussian mixture with a covariance
Σ → 0. This condition transforms the approach from a soft clustering, where each sample
belongs to all clusters with a precise probability distribution, into a hard clustering, where
the assignment is done by considering the shortest distance between sample and centroid
(or mean). For this reason, in some books, the Gaussian mixture algorithm is also called soft
K-means. A conceptually similar approach that we are going to present is Fuzzy K-means,
which is based on assignments characterized by membership functions, which are
analogous to probability distributions.

Factor analysis
Let's suppose we have a Gaussian data generating process, pdata ∼ N(0, Σ), and M n-
dimensional zero-centered samples drawn from it:

If pdata has a mean μ ≠ 0, it's also possible to use this model, but it's necessary to account for
this non-null value with slight changes in some formulas. As the zero-centering normally
has no drawbacks, it's easier to remove the mean to simplify the model.

One of the most common problems in unsupervised learning is finding a lower
dimensional distribution plower such that the Kullback-Leibler divergence with pdata is
minimized. When performing a factor analysis (FA), following the original proposal
published in EM algorithms for ML factor analysis, Rubin D., Thayer D., Psychometrika, 47/1982,
Issue 1, and The EM algorithm for Mixtures of Factor Analyzers, Ghahramani Z., Hinton G. E.,
CRC-TG-96-1, 05/1996, we start from the assumption to model the generic sample x as a
linear combination of Gaussian latent variables, z, (whose dimension p is normally p < n)
plus an additive and decorrelated Gaussian noise term, ν:

EM Algorithm and Applications Chapter 5

[173]

The matrix, A, is called a factor loading matrix because it determines the contribution of each
latent variable (factor) to the reconstruction of x. Factors and input data are assumed to be
statistically independent. Instead, considering the last term, if ω0

2 ≠ ω1
2 ≠ ... ≠ ωn

2 the noise is
called heteroscedastic, while it's defined homoscedastic if the variances are equal ω0

2 = ω1
2 = ... =

ωn
2 = ω2. To understand the difference between these two kinds of noise, think about a

signal x which is the sum of two identical voices, recorded in different places (for example,
an airport and a wood). In this case, we can suppose to also have different noise variances
(the first one should be higher than the second considering the number of different noise
sources). If instead both voices are recorded in a soundproofed room or even in the same
airport, homoscedastic noise is surely more likely (we're not considering the power, but the
difference between the variances).

One of the most important strengths of FA in respect to other methods (such as PCA) is its
intrinsic robustness to heteroscedastic noise. In fact, including the noise term in the model
(with only the constraint to be decorrelated) allows partial denoising filtering based on the
single components, while one of the preconditions for the PCA is to impose only
homoscedastic noise (which, in many cases, is very similar to the total absence of noise).
Considering the previous example, we could make the assumption to have the first
variance be ω0

2 = k ω1
2 with k > 1. In this way, the model will be able to understand that a

high variance in the first component should be considered (with a higher probability) as the
product of the noise and not an intrinsic property of the component.

Let's now analyze the linear relation:

Considering the properties of Gaussian distributions, we know that x ∼ N(μ, Σ) and it's easy
to determine either the mean or the covariance matrix:

Therefore, in order to solve the problem, we need to find the best θ=(A, Ω) so that AAT

+ Ω ≈ Σ (with a zero-centered dataset, the estimation is limited to the input covariance
matrix Σ).The ability to cope with noisy variables should be clearer now. If AAT + Ω is
exactly equal to Σ and the estimation of Ω is correct, the algorithm will optimize the factor
loading matrix A, excluding the interference produced by the noise term; therefore, the
components will be approximately denoised.

EM Algorithm and Applications Chapter 5

[174]

In order to adopt the EM algorithm, we need to determine the joint probability p(X, z; θ) =
p(X|z; θ)p(z|θ). The first term on the right side can be easily determined, considering that x
- Az ∼ N(0, Ω); therefore, we get the following:

We can now determine the Q(θ;θt) function, discarding the constant term (2π)k and term zTz,
which don't depend on θ (in this particular case, as we're going to see, we don't need to
compute the probability p(z|X;θ) because it's enough to obtain sufficient statistics for
expected value and second moment). Moreover, it's useful to expand the multiplication in
the exponential:

Using the trace trick with the last term (which is a scalar), we can rewrite it as follows:

Exploiting the linearity of E[•], we obtain the following:

This expression is similar to what we have seen in the Gaussian mixture model, but in this
case, we need to compute the conditional expectation and the conditional second moment
of z. Unfortunately, we cannot do this directly, but it's possible to compute them exploiting
the joint normality of x and z. In particular, using a classic theorem, we can partition the full
joint probability p(z, x), considering the following relations:

EM Algorithm and Applications Chapter 5

[175]

The conditional distribution p(z|x=xi) has a mean equal to the following:

The conditional variance is as follows:

Therefore, the conditional second moment is equal to the following:

If we define the auxiliary matrix K = (AAT + Ω)-1, the previous expressions become as
follows:

The reader in search of further details about this technique can read Preview
Introduction to Statistical Decision Theory, Pratt J., Raiffa H., Schlaifer R., The MIT Press.

Using the previous expression, it's possible to build the inverse model (sometimes called
a recognition model because it starts with the effects and rebuilds the causes), which is still
Gaussian distributed:

We are now able to maximize Q(θ;θt) with respect to A and Ω, considering θt=(At, Ωt) and
both the conditional expectation and the second moment computed according to the
previous estimation θt-1=(At-1, Ωt-1). For this reason, they are not involved in the derivation
process. We are adopting the convention that the term subject to maximization is computed
at time t, while all the others are obtained through the previous estimations (t - 1):

EM Algorithm and Applications Chapter 5

[176]

The expression for At is therefore as follows (Q is the biased input covariance matrix E[XTX]
for a zero-centered dataset):

In the same way, we can obtain an expression for Ωt by computing the derivative with
respect to Ω-1 (this choice simplifies the calculation and doesn't affect the result, because we
must set the derivative equal to zero):

The derivative of the first term, which is the determinant of a real diagonal matrix, is
obtained using the adjugate matrix Adj(Ω) and exploiting the properties of the inverse
matrix T-1 = det(T)-1Adj(T) and the properties det(T)-1 = det(T-1) and det(TT) = det(T):

The expression for Ωt (imposing the diagonality constraint) is as follows:

EM Algorithm and Applications Chapter 5

[177]

Summarizing the steps, we can define the complete FA algorithm:

Set random initial values for A(0) and Ω(0)1.
Compute the biased input covariance matrix Q = E[XTX]2.
E-Step: Compute A(t), Ω(t), and K(t)3.
M-Step: Compute A(t+1), Ω(t+1), and K(t+1) using the previous estimations and the4.
formulas provided previously
Compute the matrices B and Ψ for the inverse model5.

The process must be repeated until A(t), Ω(t), and K(t) stop modifying their values (using a
threshold) together with a constraint on the maximum number of iterations. The factors can
be easily obtained using the inverse model z = Bx + λ.

An example of factor analysis with Scikit-Learn
We can now make an example of FA with Scikit-Learn using the MNIST handwritten digits
dataset (70,000 28 × 28 grayscale images) in the original version and with added
heteroscedastic noise (ωi randomly selected from [0, 0.75]).

The first step is to load and zero-center the original dataset (I'm using the functions defined
in the first chapter, Chapter 1, Machine Learning Model Fundamentals):

import numpy as np

from sklearn.datasets import fetch_mldata

digits = fetch_mldata('MNIST original')
X = zero_center(digits['data'].astype(np.float64))
np.random.shuffle(X)

Omega = np.random.uniform(0.0, 0.75, size=X.shape[1])
Xh = X + np.random.normal(0.0, Omega, size=X.shape)

After this step, the X variable will contain the zero-center original dataset, while Xh is the
noisy version. The following screenshot shows a random selection of samples from both
versions:

EM Algorithm and Applications Chapter 5

[178]

We can perform FA on both datasets using the Scikit-Learn FactorAnalysis class with the
n_components=64 parameter and check the score (the average log-likelihood over all
samples). If the noise variance is known (or there's a good estimation), it's possible to
include the starting point through the noise_variance_init parameter; otherwise, it will
be initialized with the identity matrix:

from sklearn.decomposition import FactorAnalysis

fa = FactorAnalysis(n_components=64, random_state=1000)
fah = FactorAnalysis(n_components=64, random_state=1000)

Xfa = fa.fit_transform(X)
Xfah = fah.fit_transform(Xh)

print(fa.score(X))
-2162.70193446

print(fah.score(Xh))
-3046.19385694

As expected, the presence of noise has reduced the final accuracy (MLE). Following an
example provided by A. Gramfort and D. A. Engemann in the original Scikit-Learn
documentation, we can create a benchmark for the MLE using the Lodoit-Wolf algorithm (a
shrinking method for improving the condition of the covariance that is beyond the scope of
this book.

EM Algorithm and Applications Chapter 5

[179]

For further information, read A Well-Conditioned Estimator for Large-Dimensional Covariance
Matrices, Ledoit O., Wolf M., Journal of Multivariate Analysis, 88, 2/2004":

from sklearn.covariance import LedoitWolf

ldw = LedoitWolf()
ldwh = LedoitWolf()

ldw.fit(X)
ldwh.fit(Xh)

print(ldw.score(X))
-2977.12971009

print(ldwh.score(Xh))
-2989.27874799

With the original dataset, FA performs much better than the benchmark, while it's slightly
worse in the presence of heteroscedastic noise. The reader can try other combinations using
the grid search with different numbers of components and noise variances, and experiment
with the effect of removing the zero-centering step. It's possible to plot the extracted
components using the components_ instance variable:

A plot of the 64 components extracted with the factor analysis on the original dataset

EM Algorithm and Applications Chapter 5

[180]

A careful analysis shows that the components are a superimposition of many low-level
visual features. This is a consequence of the assumption to have a Gaussian prior
distribution over the components (z ∼ N(0, I)). In fact, one of the disadvantages of this
distribution is its intrinsic denseness (the probability of sampling values far from the mean
is often too high, while in some case, it would be desirable to have a peaked distribution
that discourages values not close to its mean, to be able to observe more selective
components). Moreover, considering the distribution p[Z|X; θ], the covariance matrix ψ
could not be diagonal (trying to impose this constraint can lead to an unsolvable problem),
leading to a resulting multivariate Gaussian distribution, which isn't normally made up of
independent components. In general, the single variables zi, (conditioned to an input
sample, xi) are statistically dependent and the reconstruction xi, is obtained with the
participation of almost all extracted features. In all these cases, we say that the coding is
dense and the dictionary of features in under-complete (the dimensionality of the components
is lower than dim(xi)).

The lack of independence can be also an issue considering that any orthogonal
transformation Q applied to A (the factor loading matrix) don't affect the distribution
p[X|Z, θ]. In fact, as QQT=I, the following applies:

In other words, any feature rotation (x = AQz + ν) is always a solution to the original
problem and it's impossible to decide which is the real loading matrix. All these conditions
lead to the further conclusion that the mutual information among components is not equal
to zero and neither close to a minimum (in this case, each of them carries a specific portion
of information). On the other side, our main goal was to reduce the dimensionality.
Therefore, it's not surprising to have dependent components because we aim to preserve
the maximum amount of original information contained in p(X) (remember that the amount
of information is related to the entropy and the latter is proportional to the variance).

The same phenomenon can be observed in the PCA (which is still based on the Gaussian
assumption), but in the last paragraph, we're going to discuss a technique, called ICA,
whose goal is to create a representation of each sample (without the constraint of the
dimensionality reduction) after starting from a set of statistically independent features. This
approach, even if it has its peculiarities, belongs to a large family of algorithms called sparse
coding. In this scenario, if the corresponding dictionary has dim(zi) > dim(xi),it is called over-
complete (of course, the main goal is no longer the dimensionality reduction).

EM Algorithm and Applications Chapter 5

[181]

However, we're going to consider only the case when the dictionary is at most
complete dim(zi) = dim(xi), because ICA with over-complete dictionaries requires a more
complex approach. The level of sparsity, of course, is proportional to dim(zi) and with ICA,
it's always achieved as a secondary goal (the primary one is always the independence
between components).

Principal Component Analysis
Another common approach to the problem of reducing the dimensionality of a high-
dimensional dataset is based on the assumption that, normally, the total variance is not
explained equally by all components. If pdata is a multivariate Gaussian distribution with
covariance matrix Σ, then the entropy (which is a measure of the amount of information
contained in the distribution) is as follows:

Therefore, if some components have a very low variance, they also have a limited
contribution to the entropy, providing little additional information. Hence, they can be
removed without a high loss of accuracy.

Just as we've done with FA, let's consider a dataset drawn from pdata ∼ N(0, Σ) (for simplicity,
we assume that it's zero-centered, even if it's not necessary):

Our goal is to define a linear transformation, z = ATx (a vector is normally considered a
column, therefore x has a shape (n × 1)), such as the following:

As we want to find out the directions where the variance is higher, we can build our
transformation matrix, A, starting from the eigen decomposition of the input covariance
matrix, Σ (which is real, symmetric, and positive definite):

EM Algorithm and Applications Chapter 5

[182]

V is an (n × n) matrix containing the eigenvectors (as columns), while Ω is a diagonal matrix
containing the eigenvalues. Moreover, V is also orthogonal, hence the eigenvectors
constitute a basis. An alternative approach is based on the singular value decomposition
(SVD), which has an incremental variant and there are algorithms that can perform a
decomposition truncated at an arbitrary number of components, speeding up the
convergence process (such as the Scikit-Learn implementation TruncatedSVD).

In this case, it's immediately noticeable that the sample covariance is as follows:

If we apply the SVD to the matrix X (each row represents a single sample with a shape (1,
n)), we obtain the following:

U is a unitary matrix containing (as rows) the left singular vectors (the eigenvectors of XXT),
V (also unitary) contains (as rows) the right singular vectors (corresponding to the
eigenvectors of XTX), while Λ is a diagonal matrix containing the singular values of Σs

(which are the square roots of the eigenvalues of both XXT and XTX). Conventionally, the
eigenvalues are sorted by descending order and the eigenvectors are rearranged to match
the corresponding position.

Hence, we can directly use the matrix Λ to select the most relevant eigenvalues (the square
root is an increasing function and doesn't change the order) and the matrix V to retrieve the
corresponding eigenvectors (the factor 1/M is a proportionality constant). In this way, we
don't need to compute and eigen decompose the covariance matrix Σ (contains n × n
elements) and we can exploit some very fast approximate algorithms that work only with
the dataset (without computing XTX). Using the SVD, the transformation of X can be done
directly, considering that U and V are unitary matrices (this means that UUT = UTU = I;
therefore, the conjugate transpose is also the inverse):

Right now, X has only been projected in the eigenvector space (it has been simply rotated)
and its dimensionality hasn't changed. However, from the definition of the eigenvector, we
know that the following is true:

EM Algorithm and Applications Chapter 5

[183]

If λ is large, the projection of v will be amplified proportionally to the variance explained by
the direction of the corresponding eigenvector. Therefore, if it has not been already done,
we can sort (and rename) the eigenvalues and the corresponding eigenvectors to have the
following:

If we select the first top k eigenvalues, we can build a transformation matrix based on the
corresponding eigenvectors (principal components) that projects X onto a subspace of the
original eigenvector space:

Using the SVD, instead of Ak, we can directly truncate U and Λ, creating the matrices Uk

(which contains only the top k eigenvectors) and Λk, a diagonal matrix with the top k
eigenvalues.

When choosing the value for k, we are assuming that the following is true:

To achieve this goal, it is normally necessary to compare the performances with a different
number of components. In the following graph, there's a plot where the variance ratio
(variance explained by component n/total variance) and the cumulative variance are
plotted as functions of the components:

Explained variance per component (left) and cumulative variance per component (right)

EM Algorithm and Applications Chapter 5

[184]

In this case, the first 10 components are able to explain 80% of the total variance. The
remaining 25 components have a slighter and slighter impact and could be removed.
However, the choice must be always based on the specific context, considering the loss of
value induced by the loss of information.

A trick for determining the right number of components is based on the
analysis of the eigenvalues of X. After sorting them, it's possible to
consider the differences between subsequent values d = {λ1 - λ2, λ2 - λ3,
..., λn-1 - λn}. The highest difference λk - λk+1 determines the index k of a
potential optimal reduction (obviously, it's necessary to consider a
constraint on the minimum value, because normally λ1 - λ2 is the highest
difference). For example, if d = {4, 4, 3, 0.2, 0.18, 0.05} the original
dimensionality is n=6; however, λ4 - λ5 is the smallest difference, so, it's
reasonable to reduce the dimensionality to (n + 1) - k = 3. The reason is
straightforward, the eigenvalues determine the magnitude of each
component, but we need a relative measure because the scale changes. In
the example, the last three eigenvectors point to directions where the
explained variance is negligible when compared to the first three
components.

Once we've defined the transformation matrix Ak, it's possible to perform the actual
projection of the original vectors in the new subspace, through the relation:

The complete transformation of the whole dataset is simply obtained as follows:

Now, let's analyze the new covariance matrix E[ZTZ]. If the original distribution pdata x ∼
N(0, Σ), p(z) will also be Gaussian with mean and covariance:

EM Algorithm and Applications Chapter 5

[185]

We know that Σ is orthogonal; therefore, vi • vj = 0 if i ≠ j. If we analyze the term ATV, we get
the following:

Considering that Ω is diagonal, the resulting matrix Σz will be diagonal as well. This means
that the PCA decorrelates the transformed covariance matrix. At the same time, we can
state that every algorithm that decorrelates the input covariance matrix performs a PCA
(with or without dimensionality reduction). For example, the whitening process is a
particular PCA without dimensionality reduction, while Isomap (see Chapter 3, Graph-
Based Semi-Supervised Learning) performs the same operation working with the Gram matrix
with a more geometric approach. This result will be used in Chapter 6, Hebbian Learning, to
show how some particular neural networks can perform a PCA without eigen
decomposing Σ.

Let's now consider a FA with homoscedastic noise. We have seen that the covariance matrix
of the conditional distribution, p(X|Z; θ), is equal to AAT + Ω. In the case of homoscedastic
noise, it becomes AAT + ωI. For a generic covariance matrix, Σ, it's possible to prove that
adding a constant diagonal matrix (Σ + aI) doesn't modify the original eigenvectors and
shifts the eigenvalues by the same quantity:

Therefore, we can consider the generic case of absence of noise without loss of generality.
We know that the goal of FA (with Ω = (0)) is finding the matrix, A, so that AAT ≈ Q (the
input covariance). Hence, thanks to the symmetry and imposing the asymptotic equality,
we can write the following:

EM Algorithm and Applications Chapter 5

[186]

This result implies that the FA is a more generic (and robust) way to manage the
dimensionality reduction in the presence of heteroscedastic noise, and the PCA is a
restriction to homoscedastic noise. When a PCA is performed on datasets affected by
heteroscedastic noise, the MLE worsens because the different noise components, altering
the magnitude of the eigenvalues at different levels, can drive to the selection of
eigenvectors that, in the original dataset, explain only a low percentage of the variance (and
in a noiseless scenario, it would be normally discarded in favor of more important
directions). If you think of the example discussed at the beginning of the previous
paragraph, we know that the noise is strongly heteroscedastic, but we don't have any tools
to inform the PCA to cope with it and the variance of the first component will be much
higher than expected, considering that the two sources are identical. Unfortunately, in a
real- life scenario, the noise is correlated and neither a factor nor a PCA can efficiently solve
the problem when the noise power is very high. In all those cases, more sophisticated
denoising techniques must be employed. Whenever, instead, it's possible to define an
approximate diagonal noise covariance matrix, FA is surely more robust and efficient than
PCA. The latter should be considered only in noiseless or quasi-noiseless scenarios. In both
cases, the results can never lead to well-separated features. For this reason, the ICA has
been studied and many different strategies have been engineered.

The complete algorithm for the PCA is as follows:

Create a matrix X(M × n) containing all the samples xi as rows1.
Eigen decomposition version:1.

Compute the covariance matrix Σ = [XTX]1.
Eigen decompose Σ = VΩVT2.

SVD version:2.
Compute the SVD on the matrix X = UΛVT1.

Select the top k eigenvalues (from Ω or Λ) and the corresponding3.
eigenvectors (from V)
Create the matrix A with shape (n × k), whose columns are the top k4.
eigenvectors (each of them has a shape (n × 1))
Project the dataset into the low-dimensional space Z = XA (eigen5.
decomposition) or Z = UΛ (SVD)

Some packages (such as Scipy, which is the backend for many NumPy
function, such asnp.linalg.svd()) return the matrix V (right singular
vectors) already transposed. In this case, it's necessary to use VT instead of
V in step 3 of the algorithm. I suggest always checking the documentation
when implementing these kinds of algorithms.

EM Algorithm and Applications Chapter 5

[187]

An example of PCA with Scikit-Learn
We can repeat the same experiment made with the FA and heteroscedastic noise to assess
the MLE score of the PCA. We are going to use the PCA class with the same number of
components (n_components=64). To achieve the maximum accuracy, we also set
the svd_solver='full' parameter, to force Scikit-Learn to apply a full SVD instead of
the truncated version. In this way, the top eigenvalues are selected only after the
decomposition, avoiding the risk of imprecise estimations:

from sklearn.decomposition import PCA

pca = PCA(n_components=64, svd_solver='full', random_state=1000)
Xpca = pca.fit_transform(Xh)

print(pca.score(Xh))
-3772.7483580391995

The result is not surprising: the MLE is much lower than FA, because of the wrong
estimations made due to the heteroscedastic noise. I invite the reader to compare the results
with different datasets and noise levels, considering that the training performance of PCA
is normally higher than FA. Therefore, when working with large datasets, a good trade-off
is surely desirable. As with FA, it's possible to retrieve the components through
the components_ instance variable.

It's interesting to check the total explained variance (as a fraction of the total input variance)
through the component-wise instance array explained_variance_ratio_:

print(np.sum(pca.explained_variance_ratio_))
0.862522337381

With 64 components, we are explaining 86% of the total input variance. Of course, it's also
useful to compare the explained variance using a plot:

EM Algorithm and Applications Chapter 5

[188]

As usual, the first components explain the largest part of the variance; however, after about
the twentieth component, each contribution becomes lower than 1% (decreasing till about
0%). This analysis suggests two observations: it's possible to further reduce the number of
components with an acceptable loss (using the previous snippet, it's easy to extend the sum
only the first n components and compare the results) and, at the same time, the PCA will be
able to overcome a higher threshold (such as 95%) only by adding a large number of new
components. In this particular case, we know that the dataset is made up of handwritten
digits; therefore, we can suppose that the tail is due to secondary differences (a line slightly
longer than average, a marked stroke, and so on); hence, we can drop all the components
with n > 64 (or less) without problems (it's also easy to verify visually a rebuilt image using
the inverse_transform() method). However, it is always best practice to perform a
complete analysis before moving on to further processing steps, particularly when the
dimensionality of X is high.

EM Algorithm and Applications Chapter 5

[189]

Another interesting approach to determine the optimal number of
components has been proposed by Minka (Automatic Choice of
Dimensionality for PCA, Minka T.P., NIPS 2000") and it's based on the
Bayesian model selection. The idea is to use the MLE to optimize the
likelihood p(X|k) where k is a parameter indicating the number of
components. In other words, it doesn't start analyzing the explained
variance, but determines a value of k < n so that the likelihood keeps being
the highest possible (implicitly, k will explain the maximum possible
variance under the constraint of max(k) = kmax). The theoretical foundation
(with tedious mathematical derivations) of the method is presented in the
previously mentioned paper however, it's possible to use this method
with Scikit-Learn by setting the n_components='mle' and
svd_solver='full' parameters.

Independent component analysis
We have seen that the factors extracted by a PCA are decorrelated, but not independent. A
classic example is the cocktail party: we have a recording of many overlapped voices and we
would like to separate them. Every single voice can be modeled as a random process and
it's possible to assume that they are statistically independent (this means that the joint
probability can be factorized using the marginal probabilities of each source). Using FA or
PCA, we are able to find uncorrelated factors, but there's no way to assess whether they are
also independent (normally, they aren't). In this section, we are going to study a model that
is able to produce sparse representations (when the dictionary isn't under-complete) with a
set of statistically independent components.

Let's assume we have a zero-centered and whitened dataset X sampled from N(0, I) and
noiseless linear transformation:

In this case, the prior over, z, is modeled as a product of independent variables (α is the
normalization factor), each of them represented as a generic exponential where the function
fk(z) must be non-quadratic, that is, p(z; θ) cannot be Gaussian. Furthermore, we assume that
the variance of zi is equal to 1, therefore, p(x|z; θ) ∼ N(Az, AAT). The joint probability p(X,
z; θ) = p(X|z; θ)p(z|θ) is equal to the following:

EM Algorithm and Applications Chapter 5

[190]

If X has been whitened, A is orthogonal (the proof is straightforward); hence, the previous
expression can be simplified. However, applying the EM algorithm requires determining
p(z|X; θ) and this is quite difficult. The process could be easier after choosing a suitable
prior distribution for z, that is, fk(z), but as we discussed at the beginning of the chapter, this
assumption can have dramatic consequences if the real factors are distributed differently.
For these reasons, other strategies have been studied.

The main concept that we need to enforce is having a non-Gaussian distribution of the
factors. In particular, we'd like to have a peaked distribution (inducing sparseness) with
heavy tails. From the theory, we know that the standardized fourth moment (also called
Kurtosis) is a perfect measure:

For a Gaussian distribution, Kurt[X] is equal to three (which is often considered as the
reference point, determining the so called Excess Kurtosis = Kurtosis - 3), while it's larger for
a family of distributions, called Leptokurtotic or super-Gaussian, which are peaked and
heavy-tailed (also, the distributions with Kurt[X] < 3, called Platykurtotic or sub-Gaussian,
can be good candidates, but they are less peaked and normally only the super-Gaussian
distributions are taken into account). However, even if accurate, this measure is very
sensitive to outliers because of the fourth power. For example, if x ∼ N(0, 1) and z = x + ν,
where ν is a noise term that alters a few samples, increasing their value to two, the result
can be a super-Gaussian (Kurt[x] > 3) even if, after filtering the outliers out, the distribution
has Kurt[x] = 3 (Gaussian).

To overcome this problem, Hyvärinen and Oja (Independent Component Analysis: Algorithms
and Applications, Hyvarinen A., Oja E., Neural Networks 13/2000) proposed a solution based
on another measure, the negentropy. We know that the entropy is proportional to the
variance and, given the variance, the Gaussian distribution has the maximum entropy (for
further information, read Mathematical Foundations of Information Theory, Khinchin A. I.,
Dover Publications); therefore, we can define the measure:

EM Algorithm and Applications Chapter 5

[191]

Formally, the negentropy of X is the difference between the entropy of a Gaussian
distribution with the same covariance and the entropy of X (we are assuming both zero-
centered). It's immediately possible to understand that HN(X) ≥ 0, hence the only way to
maximize it is by reducing H(X). In this way, X becomes less random, concentrating the
probability around the mean (in other words, it becomes super-Gaussian). However, the
previous expression cannot be easily adapted to closed-form solutions, because H(X) needs
to be computed over all the distribution of X, which must be estimated. For this reason, the
same authors proposed an approximation based on non-quadratic functions (remember
that in the context of ICA, a quadratic function can be never be employed because it would
lead to a Gaussian distribution) that is useful to derive a fixed-point iterative algorithm
called FastICA (indeed, it's really faster than EM).

Using k functions fk(x), the approximation becomes as follows:

In many real-life scenarios, a single function is enough to achieve a reasonable accuracy and
one of the most common choices for f(x) is as follows:

In the aforementioned paper, the reader can find some alternatives that can be employed
when this function fails in forcing statistical independence between components.

If we invert the model, we get z = Wx with W = A-1; therefore, considering a single sample,
the approximation becomes as follows:

Clearly, the second term doesn't depend on w (in fact, it's only a reference) and can be
excluded from the optimization. Moreover, considering the initial assumptions, E[ZTZ]=W
E[XTX] WT = I, therefore WWT = I, i.e. ||w||2 = 1. Hence, our goal is to find the following:

EM Algorithm and Applications Chapter 5

[192]

In this way, we are forcing the matrix W to transform the input vector x, so that z has the
lowest possible entropy; therefore, it's super-Gaussian. The maximization process is based
on convex optimization techniques that are beyond the scope of this book (the reader can
find all the details of Lagrange theorems in Luenberger D. G., Optimization by Vector Space
Methods, Wiley); therefore, we directly provide the iterative step that must be performed:

Of course, to ensure ||w||2 = 1, after each step, the weight vector w must be normalized
(wt+1 = wt+1 / ||wt+1||).

In a more general context, the matrix W contains more than one weight vector and, if we
apply the previous rule to find out the independent factors, it can happen that some
elements, wi

Tx, are correlated. A strategy to avoid this problem is based on the gram-
schmidt orthonormalization process, which decorrelates the components one by one,
subtracting the projections of the current component (wn) onto all the previous ones (w1, w2,
..., wn-1) to wn. In this way, wn is forced to be orthogonal to all the other components.

Even if this method is simple and doesn't require much effort, it's preferable a
global approach that can work directly with the matrix W at the end of an iteration (so that
the order of the weights is not fixed). As explained in Fast and robust fixedpoint
algorithms for independent component analysis, Hyvarinen A., IEEE Transactions on Neural
Networks this result can be achieved with a simple sub-algorithm that we are including in
the final FastICA algorithm:

Set random initial values for W01.
Set a threshold Thr (for example 0.001) 2.

Independent component extraction1.
For each w in W:2.

While ||wt+1 - wt|| > Thr:1.
Compute wt+1 = E[x · f'(wt

Tx)] - E[f''(wt
Tx)] wt1.

wt+1 = wt+1 / ||wt+1||2.

Orthonormalization3.
While ||Wt+1 - Wt||F > Thr:4.

Wt = Wt / sqrt(||WtWt
T||)1.

Wt+1 = (3/2)Wt - (1/2)WWTW2.

EM Algorithm and Applications Chapter 5

[193]

This process can be also iterated for a fixed number of times, but the best approach is based
on using both a threshold and a maximum number of iterations.

An example of FastICA with Scikit-Learn
Using the same dataset, we can now test the performance of the ICA. However, in this case,
as explained, we need to zero-center and whiten the dataset, but fortunately these
preprocessing steps are done by the Scikit-Learn implementation (if the parameter
whiten=True is omitted).

To perform the ICA on the MNIST dataset, we're going to instantiate the FastICA class,
passing the arguments n_components=64 and the maximum number of iterations
max_iter=5000. It's also possible to specify which function will be used to approximate
the negentropy; however, the default is log cosh(x), which is normally a good choice:

from sklearn.decomposition import FastICA

fastica = FastICA(n_components=64, max_iter=5000, random_state=1000)
fastica.fit(X)

At this point, we can visualize the components (which are always available through
the components_ instance variance):

Independent components of the MNIST dataset extracted by the FastICA algorithm (64 components)

EM Algorithm and Applications Chapter 5

[194]

There are still some redundancies (the reader can try to increase the number of
components) and background noise; however, it's now possible to distinguish some low-
level features (such as oriented stripes) that are common to many digits. This
representation isn't very sparse yet. In fact, we're always using 64 components (like for FA
and PCA); therefore, the dictionary is under-complete (the input dimensionality is 28 × 28 =
784). To see the difference, we can repeat the experiment with a dictionary ten times larger,
setting n_components=640:

fastica = FastICA(n_components=640, max_iter=5000, random_state=1000)
fastica.fit(Xs)

A subset of the new components (100) is shown in the following screenshot:

Independent components of the MNIST dataset extracted by the FastICA algorithm (640 components)

The structure of these components is almost elementary. They represent oriented stripes
and positional dots. To check how an input is rebuilt, we can consider the mixing matrix A
(which is available as the mixing_ instance variable). Considering the first input sample,
we can check how many factors have a weight less than half of the average:

M = fastica.mixing_
M0 = M[0] / np.max(M[0])

print(len(M0[np.abs(M0) < (np.mean(np.abs(M0)) / 2.0)]))
233

EM Algorithm and Applications Chapter 5

[195]

The sample is rebuilt using approximately 410 components. The level of sparsity is higher,
but considering the granularity of the factors, it's easy to understand that many of them are
needed to rebuild even a single structure (like the image of a 1) where long lines are
present. However, this is not a drawback because, as already mentioned, the main goal of
the ICA is to extract independent components. Considering an analogy with the cocktail
party example, we could deduce that each component represents a phoneme, not the
complete sound of a word or a sentence.

The reader can test a different number of components and compare the results with the
ones achieved by other sparse coding algorithms (such as Dictionary Learning or Sparse
PCA).

Addendum to HMMs
In the previous chapter, we discussed how it's possible to train a HMM using the forward-
backward algorithm and we have seen that it is a particular application of the EM
algorithm. The reader can now understand the internal dynamic in terms of E and M steps.
In fact, the procedure starts with randomly initialized A and B matrices and proceeds in an
alternating manner:

E-Step:
The estimation of the probability αt

ij that the HMM is in the state i
at time t and in the state j at time t+1 given the observations and
the current parameter estimations (A and B)
The estimation of the probability βt

i that the HMM is in the state i at
time t given the observations and the current parameter
estimations (A and B)

M-Step:
Computing the new estimation for the transition probabilities
aij (A) and for the emission probabilities bip (B)

The procedure is repeated until the convergence is reached. Even if there's no explicit
definition of a Q function, the E-step determines a split expression for the expected
complete data likelihood of the model given the observations (using both the Forward and
Backward algorithms), while the M-Step corrects parameters A and B to maximize this
likelihood.

EM Algorithm and Applications Chapter 5

[196]

Summary
In this chapter, we presented the EM algorithm, explaining the reasons that justify its
application in many statistical learning contexts. We also discussed the fundamental role of
hidden (latent) variables, in order to derive an expression that is easier to maximize (the Q
function).

We applied the EM algorithm to solve a simple parameter estimation problem and
afterward to prove the Gaussian Mixture estimation formulas. We showed how it's possible
to employ the Scikit-Learn implementation instead of writing the whole procedure from
scratch (like in Chapter 2, Introduction to Semi-Supervised Learning).

Afterward, we analyzed three different approaches to component extraction. FA assumes
that we have a small number of Gaussian latent variables and a Gaussian decorrelated
noise term. The only restriction on the noise is to have a diagonal covariance matrix, so two
different scenarios are possible. When we are in the presence of heteroscedastic noise, the
process is an actual FA. When, instead, the noise is homoscedastic, the algorithm becomes
the equivalent of a PCA. In this case, the process is equivalent to check the sample space in
order to find the directions where the variance is higher. Selecting only the most important
directions, we can project the original dataset onto a low-dimensional subspace, where the
covariance matrix becomes decorrelated.

One of the problems of both FA and PCA is their assumption to model the latent variables
with Gaussian distributions. This choice simplifies the model, but at the same time, yields
dense representations where the single components are statistically dependent. For this
reason, we have investigated how it's possible to force the factor distribution to become
sparse. The resulting algorithm, which is generally faster and more accurate than the MLE,
is called FastICA and its goal is to extract a set of statistically independent components with
the maximization of an approximation of the negentropy.

In the end, we provided a brief explanation of the HMM forward-backward algorithm
(discussed in the previous chapter) considering the subdivision into E and M steps. Other
EM-specific applications will be discussed in the next chapters.

In the next chapter, we are going to introduce the fundamental concepts of Hebbian
learning and self-organizing maps, which are still very useful to solve many specific
problems, such as principal component extraction, and have a strong neurophysiological
foundation.

6
Hebbian Learning and Self-

Organizing Maps
In this chapter, we're going to introduce the concept of Hebbian learning, based on the
methods defined by the psychologist Donald Hebb. These theories immediately showed
how a very simple biological law is able to describe the behavior of multiple neurons in
achieving complex goals and was a pioneering strategy that linked the research activities in
the fields of artificial intelligence and computational neurosciences.

In particular, we are going to discuss the following topics:

The Hebb rule for a single neuron, which is a simple but biologically plausible
behavioral law
Some variants that have been introduced to overcome a few stability problems
The final result achieved by a Hebbian neuron, which consists of computing the
first principal component of the input dataset
Two neural network models (Sanger's network and Rubner-Tavan's network)
that can extract a generic number of principal components
The concept of Self-Organizing Maps (SOMs) with a focus on the Kohonen
Networks

Hebbian Learning and Self-Organizing Maps Chapter 6

[198]

Hebb's rule
Hebb's rule has been proposed as a conjecture in 1949 by the Canadian psychologist
Donald Hebb to describe the synaptic plasticity of natural neurons. A few years after its
publication, this rule was confirmed by neurophysiological studies, and many research
studies have shown its validity in many application, of Artificial Intelligence. Before
introducing the rule, it's useful to describe the generic Hebbian neuron, as shown in the
following diagram:

Generic Hebbian neuron with a vectorial input

The neuron is a simple computational unit that receives an input vector x, from the pre-
synaptic units (other neurons or perceptive systems) and outputs a single scalar value, y.
The internal structure of the neuron is represented by a weight vector, w, that models the
strength of each synapse. For a single multi-dimensional input, the output is obtained as
follows:

In this model, we are assuming that each input signal is encoded in the corresponding
component of the vector, x; therefore, xi is processed by the synaptic weight wi, and so on. In
the original version of Hebb's theory, the input vectors represent neural firing rates, which
are always non-negative. This means that the synaptic weights can only be strengthened
(the neuroscientific term for this phenomenon is long-term potentiation (LTP)). However,
for our purposes, we assume that x is a real-valued vector, as is w. This condition allows
modeling more artificial scenarios without a loss of generality.

The same operation performed on a single vector holds when it's necessary to process many
input samples organized in a matrix. If we have N m-dimensional input vectors, the
formula becomes as follows:

Hebbian Learning and Self-Organizing Maps Chapter 6

[199]

The basic form of Hebb's rule in a discrete form can be expressed (for a single input) as
follows:

The weight correction is hence a vector that has the same orientation of x and magnitude
equal to |x| multiplied by a positive parameter, η, which is called the learning rate and the
corresponding output, y (which can have either a positive or a negative sign). The sense of
Δw is determined by the sign of y; therefore, under the assumption that x and y are real
values, two different scenarios arise from this rule:

If xi > 0 (< 0) and y > 0 (< 0), wi is strengthened
If xi > 0 (< 0) and y < 0 (> 0), wi is weakened

It's easy to understand this behavior considering two-dimensional vectors:

Therefore, if the initial angle α between w and x is less than 90°, w will have the same
orientation of x and viceversa if α is greater than 90°. In the following diagram, there's a
schematic representation of this process:

Vectorial analysis of Hebb's rule

Hebbian Learning and Self-Organizing Maps Chapter 6

[200]

It's possible to simulate this behavior using a very simple Python snippet. Let's start with a
scenario where α is less than 90° and 50 iterations:

import numpy as np

w = np.array([1.0, 0.2])
x = np.array([0.1, 0.5])
alpha = 0.0

for i in range(50):
 y = np.dot(w, x.T)
 w += x*y
 alpha = np.arccos(np.dot(w, x.T) / (np.linalg.norm(w) *
np.linalg.norm(x)))

print(w)
[8028.48942243 40137.64711215]

print(alpha * 180.0 / np.pi)
0.00131766983584

As expected, the final angle, α, is close to zero and w has the same orientation and sense of
x. We can now repeat the experiment with α greater than 90° (we change only the value of
w because the procedure is the same):

w = np.array([1.0, -1.0])

...

print(w)
[-16053.97884486 -80275.89422431]

print(alpha * 180.0 / np.pi)
179.999176456

In this case, the final angle, α, is about 180° and, of course, w has the opposite sense with
respect to x.

The scientist S. Löwel expressed this concept with the famous sentence:

"Neurons that fire together wire together"

Hebbian Learning and Self-Organizing Maps Chapter 6

[201]

We can re-express this concept (adapting it to a machine learning scenario) by saying that
the main assumption of this approach is based on the idea that when pre- and post-synaptic
units are coherent (their signals have the same sign), the connection between neurons
becomes stronger and stronger. On the other side, if they are discordant, the corresponding
synaptic weight is decreased. For the sake of precision, if x is a spiking rate, it should be
represented as a real function x(t) as well as y(t). According to the original Hebbian theory,
the discrete equation must be replaced by a differential equation:

If x(t) and y(t) have the same fire rate, the synaptic weight is strengthened proportionally to
the product of both rates. If instead there's a relatively long delay between the pre-synaptic
activity x(t) and the post-synaptic one y(t), the corresponding weight is weakened. This is a
more biologically plausible explanation of the relation fire together → wire together.

However, even if the theory has a strong neurophysiological basis, some modifications are
necessary. In fact, it's easy to understand that the resulting system is always unstable. If two
inputs are repeatedly applied (both real values and firing rates), the norm of the vector, w,
grows indefinitely and this isn't a plausible assumption for a biological system. In fact, if we
consider a discrete iteration step, we have the following equation:

The previous output, yk, is always multiplied by a factor greater than 1 (except in the case of
null input), therefore it grows without a bound. As y = w · x, this condition implies that the
magnitude of w increases (or remains constant if the magnitude of x is null) at each iteration
(a more rigorous proof can be easily obtained considering the original differential
equation).

Such a situation is not only biologically unacceptable, but it's also necessary to properly
manage it in machine learning problems in order to avoid a numerical overflow after a few
iterations. In the next paragraph, we're going to discuss some common methods to
overcome this issue. For now, we can continue our analysis without introducing a
correction factor.

Let's now consider a dataset, X:

Hebbian Learning and Self-Organizing Maps Chapter 6

[202]

We can apply the rule iteratively to all elements, but it's easier (and more useful) to average
the weight modifications over the input samples (the index now refers to the whole specific
vector, not to the single components):

In the previous formula, C is the input correlation matrix:

For our purposes, however, it's useful to consider a slightly different Hebbian rule based on
a threshold θ for the input vector (there's also a biological reason that justifies this choice,
but it's beyond the scope of this book; the reader who is interested can find it in Theoretical
Neuroscience, Dayan P., Abbott F. L., The MIT Press).

It's easy to understand that in the original theory where x(t) and y(t) are firing rates, this
modification allows a phenomenon opposite to LTP and called long-term depression
(LTD). In fact, when x(t) < θ and y(t) is positive, the product (x(t) - θ)y(t) is negative and the
synaptic weight is weakened.

If we set θ = 〈x〉 ≈ E[X], we can derive an expression very similar to the previous one, but
based on the input covariance matrix (unbiased through the Bessel's correction):

Hebbian Learning and Self-Organizing Maps Chapter 6

[203]

For obvious reasons, this variant of the original Hebb's rule is called the covariance rule.

It's also possible to use the Maximum Likelihood Estimation (MLE) (or
biased) covariance matrix (dividing by N), but it's important to check
which version is adopted by the mathematical package that is employed.
When using NumPy, it's possible to decide the version using
the np.cov() function and setting the bias=True/False parameter (the
default value is False). However, when N >> 1, the difference between
versions decreases and can often be discarded. In this book, we'll use the
unbiased version. The reader who wants to see further details about the
Bessel's correction can read Applied Statistics, Warner R., SAGE Publications.

Analysis of the covariance rule
The covariance matrix Σ is real and symmetric. If we apply the eigendecomposition, we get
(for our purposes it's more useful to keep V-1 instead of the simplified version VT):

V is an orthogonal matrix (thanks to the fact that Σ is symmetric) containing the
eigenvectors of Σ (as columns), while Ω is a diagonal matrix containing the eigenvalues.
Let's suppose we sort both eigenvalues (λ1, λ2, ..., λm) and the corresponding eigenvectors (v1,
v2, ..., vm) so that:

Moreover, let's suppose that λ1 is dominant over all the other eigenvalues (it's enough that
λ1 > λi with i ≠ 1). As the eigenvectors are orthogonal, they constitute a basis and it's
possible to express the vector w, with a linear combination of the eigenvectors:

The vector u contains the coordinates in the new basis. Let's now consider the modification
to the covariance rule:

Hebbian Learning and Self-Organizing Maps Chapter 6

[204]

If we apply the rule iteratively, we get a matrix polynomial:

Exploiting the Binomial theorem and considering that Σ
0
=I, we can get a general expression

for w(k) as a function of w(0):

Let's now rewrite the previous formula using the change of basis:

The vector u(0) contains the coordinates of w(0) in the new basis; hence, w(k) is expressed as a
polynomial where the generic term is proportional to VΩiu(0).

Let's now consider the diagonal matrix Ωk:

The last step derives from the hypothesis that λ1 is greater than any other eigenvalue and
when k → ∞, all λi≠1

k
 << λ1

k. Of course, if λi≠1 > 1, λi≠1
k will grow as well as λ1

k however, the
contribution of the secondary eigenvalues to w(k) becomes significantly weaker when k → ∞.
Just to understand the validity of this approximation, let's consider the following situation
where λ1 is slightly larger that λ2:

Hebbian Learning and Self-Organizing Maps Chapter 6

[205]

The result shows a very important property: not only is the approximation correct, but as
we're going to show, if an eigenvalue λi is larger than all the other ones, the covariance rule
will always converge to the corresponding eigenvector vi. No other stable fixed points
exist!

This hypothesis is no more valid if λ1 = λ2 = ... = λn. In this case, the total variance is
explained equally by the direction of each eigenvector (a condition that implies a symmetry
which isn't very common in real-life scenarios). This situation can also happen when
working with finite-precision arithmetic, but in general, if the difference between the
largest eigenvalue and the second one is less than the maximum achievable precision (for
example, 32-bit floating point), it's plausible to accept the equality.

Of course, we assume that the dataset is not whitened, because our goal (also in the next
paragraphs) is to reduce the original dimensionality considering only a subset of
components with the highest total variability (the decorrelation, like in Principal
Component Analysis (PCA), must be an outcome of the algorithm, not a precondition). On
the other side, zero-centering the dataset could be useful, even if not really necessary for
this kind of algorithm.

If we rewrite the expression for wk considering this approximation, we obtain the following:

As a1v + a2v + ... + akv ∝ v, this result shows that, when k → ∞, wk will become proportional to
the first eigenvector of the covariance matrix Σ (if u1

(0) is not null) and its magnitude,
without normalization, will grow indefinitely. The spurious effect due to the other
eigenvalues becomes negligible (above all, if w is divided by its norm, so that the length is
always ||w|| = 1) after a limited number of iterations.

Hebbian Learning and Self-Organizing Maps Chapter 6

[206]

However, before drawing our conclusions, an important condition must be added:

In fact, if w(0) were orthogonal to v1, we would get (the eigenvectors are orthogonal to each
other):

This important result shows how a Hebbian neuron working with the covariance rule is
able to perform a PCA limited to the first component without the need for
eigendecomposing Σ. In fact, the vector w (we're not considering the problem of the
increasing magnitude, which can be easily managed) will rapidly converge to the
orientation where the input dataset X has the highest variance. In Chapter 5, EM Algorithm
and Applications, we discussed the details of PCA; in the next paragraph, we're going to
discuss a couple of methods to find the first N principal components using a variant of the
Hebb's rule.

Example of covariance rule application
Before moving on, let's simulate this behavior with a simple Python example. We first
generate 1000 values sampled from a bivariate Gaussian distribution (the variance is
voluntarily asymmetric) and then we apply the covariance rule to find the first principal
component (w(0) has been chosen so not to be orthogonal to v1):

import numpy as np

rs = np.random.RandomState(1000)
X = rs.normal(loc=1.0, scale=(20.0, 1.0), size=(1000, 2))

w = np.array([30.0, 3.0])

S = np.cov(X.T)

for i in range(10):
 w += np.dot(S, w)
 w /= np.linalg.norm(w)
w *= 50.0

Hebbian Learning and Self-Organizing Maps Chapter 6

[207]

print(np.round(w, 1))
[50. -0.]

The algorithm is straightforward, but there are a couple of elements that we need to
comment on. The first one is the normalization of vector w at the end of each iteration. This
is one of the techniques needed to avoid the uncontrolled growth of w. The second tricky
element is the final multiplication, w • 50. As we are multiplying by a positive scalar, the
direction of w is not impacted, but it's easier to show the vector in the complete plot.

The result is shown in the following diagram:

 Application of the covariance rule. w∞ becomes proportional to the first principal component

After a limited number of iterations, w∞ has the same orientation of the principal
eigenvector which is, in this case, parallel to the x axes. The sense depends on the initial
value w0; however, in a PCA, this isn't an important element.

Hebbian Learning and Self-Organizing Maps Chapter 6

[208]

Weight vector stabilization and Oja's rule
The easiest way to stabilize the weight vector is normalizing it after each update. In this
way, its length will be always kept equal to one. In fact, in this kind of neural networks we
are not interested in the magnitude, but only in the direction (that remains unchanged after
the normalization). However, there are two main reasons that discourage this approach:

It's non-local. To normalize vector w, we need to know all its values and this isn't
biologically plausible. A real synaptic weight model should be self-limiting,
without the need to have access to external pieces of information that cannot be
available.
The normalization must be performed after having applied the correction and
hence needs a double iterative step.

In many machine learning contexts, these conditions are not limiting and they can be freely
adopted, but when it's necessary to work with neuroscientific models, it's better to look for
other solutions. In a discrete form, we need to determine a correction term for the standard
Hebb's rule:

The f function can work both as a local and non-local normalizer. An example of the first
type is Oja's rule:

The α parameter is a positive number that controls the strength of the normalization. A
non-rigorous proof of the stability of this rule can be obtained considering the condition:

The second expression implies that:

Hebbian Learning and Self-Organizing Maps Chapter 6

[209]

Therefore, when t → ∞, the magnitude of the weight correction becomes close to zero and
the length of the weight vector w will approach a finite limit value:

Sanger's network
A Sanger's network is a neural network model for online Principal Component extraction
proposed by T. D. Sanger in Optimal Unsupervised Learning in a Single-Layer Linear
Feedforward Neural Network, Sanger T. D., Neural Networks, 1989/2. The author started with
the standard version of Hebb's rule and modified it to be able to extract a variable number
of principal components (v1, v2, ..., vm) in descending order (λ1 > λ2 > ... > λm). The resulting
approach, which is a natural extension of Oja's rule, has been called the Generalized
Hebbian Rule (GHA) (or Learning). The structure of the network is represented in the
following diagram:

The network is fed with samples extracted from an n-dimensional dataset:

Hebbian Learning and Self-Organizing Maps Chapter 6

[210]

The m output neurons are connected to the input through a weight matrix, W = {wij}, where
the first index refers to the input components (pre-synaptic units) and the second one to the
neuron. The output of the network can be easily computed with a scalar product; however,
in this case, we are not interested in it, because just like for the covariance (and Oja's) rules,
the principal components are extracted through the weight updates.

The problem that arose after the formulation of Oja's rule was about the extraction of
multiple components. In fact, if we applied the original rule to the previous network, all
weight vectors (the rows of w) would converge to the first principal component. The main
idea (based on the Gram-Schmidt orthonormalization method) to overcome this limitation
is based on the observation that once we have extracted the first component w1, the second
one w2 can be forced to be orthogonal to w1, the third one w3 can be forced to be orthogonal
to w1 and w2, and so on. Consider the following representation:

Orthogonalization of two weight vectors

In this case, we are assuming that w1 is stable and w20 is another weight vector that is
converging to w1. The projection of w20 onto w1 is as follows:

In the previous formula, we can omit the norm if we don't need to normalize (in the
network, this process is done after a complete weight update). The orthogonal component
of w20 is simply obtained with a difference:

Hebbian Learning and Self-Organizing Maps Chapter 6

[211]

Applying this method to the original Oja's rule, we obtain a new expression for the weight
update (called Sanger's rule):

The rule is referred to a single input vector x, hence xj is the jth component of x. The first
term is the classic Hebb's rule, which forces weight w to become parallel to the first
principal component, while the second one acts in a way similar to the Gram-Schmidt
orthogonalization, by subtracting a term proportional to the projection of w onto all the
weights connected to the previous post-synaptic units and considering, at the same time,
the normalization constraint provided by Oja's rule (which is proportional to the square of
the output).

In fact, expanding the last term, we get the following:

The term subtracted to each component wij is proportional to all the components where the
index j is fixed and the first index is equal to 1, 2, ..., i. This procedure doesn't produce an
immediate orthogonalization but requires several iterations to converge. The proof is non-
trivial, involving convex optimization and dynamic systems methods, but, it can be found
in the aforementioned paper. Sanger showed that the algorithm converges always to the
sorted first n principal components (from the largest eigenvalue to the smallest one) if the
learning_rate η(t) decreases monotonically and converges to zero when t → ∞. Even if
necessary for the formal proof, this condition can be relaxed (a stable η < 1 is normally
sufficient). In our implementation, matrix W is normalized after each iteration, so that, at
the end of the process, WT (the weights are in the rows) is orthonormal and constitutes a
basis for the eigenvector subspace.

In matrix form, the rule becomes as follows:

Tril(•) is a matrix function that transforms its argument into a lower-triangular matrix and
the term yyT is equal to WxxTW.

Hebbian Learning and Self-Organizing Maps Chapter 6

[212]

The algorithm for a Sanger's network is as follows:

Initialize W(0) with random values. If the input dimensionality is n and m1.
principal components must be extracted, the shape will be (m × n).
Set a learning_rate η (for example, 0.01).2.
Set a threshold Thr (for example, 0.001).3.
Set a counter T = 0.4.
While ||W(t) - W(t-1)||F > Thr:5.

Set ΔW = 0 (same shape of W)1.
For each x in X:2.

Set T = T + 1 1.
Compute y = W(t)x 2.
Compute and accumulate ΔW += η(yxT - Tril(yyT)W(t)3.

 Update W(t+1) = W(t) + (η / T)ΔW3.
Set W(t+1) = W(t+1) / ||W(t+1)||(rows) (the norm must be computed row-wise)4.

The algorithm can also be iterated a fixed number of times (like in our example), or the two
stopping approaches can be used together.

Example of Sanger's network
For this Python example, we consider a bidimensional zero-centered dataset X with 500
samples (we are using the function defined in the first chapter). After the initialization of X,
we also compute the eigendecomposition, to be able to double-check the result:

import numpy as np

from sklearn.datasets import make_blobs

X, _ = make_blobs(n_samples=500, centers=2, cluster_std=5.0,
random_state=1000)
Xs = zero_center(X)

Q = np.cov(Xs.T)
eigu, eigv = np.linalg.eig(Q)

print(eigu)
[24.5106037 48.99234467]

print(eigv)

Hebbian Learning and Self-Organizing Maps Chapter 6

[213]

[[-0.75750566 -0.6528286]
 [0.6528286 -0.75750566]]

n_components = 2

W_sanger = np.random.normal(scale=0.5, size=(n_components, Xs.shape[1]))
W_sanger /= np.linalg.norm(W_sanger, axis=1).reshape((n_components, 1))

The eigenvalues are in reverse order; therefore, we expect to have a final W with the rows
swapped. The initial condition (with the weights multiplied by 15) is shown in the
following diagram:

Hebbian Learning and Self-Organizing Maps Chapter 6

[214]

Dataset with W initial condition, we can implement the algorithm. For simplicity, we
preferred a fixed number of iterations (5000) with a learning_rate of η=0.01. The reader
can modify the snippet to stop when the weight matrix becomes stable:

learning_rate = 0.01
nb_iterations = 5000
t = 0.0

for i in range(nb_iterations):
 dw = np.zeros((n_components, Xs.shape[1]))
 t += 1.0
 for j in range(Xs.shape[0]):
 Ysj = np.dot(W_sanger, Xs[j]).reshape((n_components, 1))
 QYd = np.tril(np.dot(Ysj, Ysj.T))
 dw += np.dot(Ysj, Xs[j].reshape((1, X.shape[1]))) - np.dot(QYd,
W_sanger)
 W_sanger += (learning_rate / t) * dw
 W_sanger /= np.linalg.norm(W_sanger, axis=1).reshape((n_components, 1))

The first thing to check is the final state of W (we transposed the matrix to be able to
compare the columns):

print(W_sanger.T)
[[-0.6528286 -0.75750566]
 [-0.75750566 0.6528286]]

Hebbian Learning and Self-Organizing Maps Chapter 6

[215]

As expected, W has converged to the eigenvectors of the input correlation matrix (the sign –
which is associated with the sense of w—is not important because we care only about the
orientation). The second eigenvalue is the highest, so the columns are swapped. Replotting
the diagram, we get the following:

Final condition, w has converged to the two principal components

Hebbian Learning and Self-Organizing Maps Chapter 6

[216]

The two components are perfectly orthogonal (the final orientations can change according
to the initial conditions or the random state) and w0 points in the direction of the first
principal component, while w1 points in the direction of the second component.
Considering this nice property, it's not necessary to check the magnitude of the eigenvalues;
therefore, this algorithm can operate without eigendecomposing the input covariance
matrix. Even if a formal proof is needed to explain this behavior, it's possible to understand
it intuitively. Every single neuron converges to the first principal component given a full
eigenvector subspace. This property is always maintained, but after the orthogonalization,
the subspace is implicitly reduced by a dimension. The second neuron will always converge
to the first component, which now corresponds to the global second component, and so on.

One of the advantages of this algorithm (and also of the next one) is that a standard PCA is
normally a bulk process (even if there are batch algorithms), while a Sanger's network is an
online algorithm that is trained incrementally. In general, the time performance of a
Sanger's network is worse than the direct approach because of the iterations (some
optimizations can be achieved using more vectorization or GPU support). On the other
side, a Sanger's network is memory-saving when the number of components is less than the
input dimensionality (for example, the covariance matrix for n=1000 has 106 elements, if m =
100, the weight matrix has 104 elements).

Rubner-Tavan's network
In Chapter 5, EM Algorithm and Applications, we said that any algorithm that decorrelates
the input covariance matrix is performing a PCA without dimensionality reduction.
Starting from this approach, Rubner, and Tavan (in the paper A Self-Organizing Network for
Principal-Components Analysis, Rubner J., Tavan P., Europhysics. Letters, 10(7), 1989) proposed
a neural model whose goal is decorrelating the output components to force the consequent
decorrelation of the output covariance matrix (in lower-dimensional subspace). Assuming a
zero-centered dataset and E[y] = 0, the output covariance matrix for m principal
components is as follows:

Hebbian Learning and Self-Organizing Maps Chapter 6

[217]

Hence, it's possible to achieve an approximate decorrelation, forcing the terms yiyj with i ≠ j
to become close to zero. The main difference with a standard approach (such as whitening
or vanilla PCA) is that this procedure is local, while all the standard methods operate
globally, directly with the covariance matrix. The neural model proposed by the authors is
shown in the following diagram (the original model was proposed for binary units, but it
works quite well also for linear ones):

 Rubner-Tavan network. The connections vjk are based on the anti-Hebbian rule

The network has m output units and the last m-1 neurons have a summing node that
receives the weighted output of the previous units (hierarchical lateral connections). The
dynamic is simple: the first output isn't modified. The second one is forced to become
decorrelated with the first one. The third one is forced to become decorrelated with both the
first and the second one and so on. This procedure must be iterated a number of times
because the inputs are presented one by one and the cumulative term that appears in the
correlation/covariance matrix (it's always easier to zero-center the dataset and work with
the correlation matrix) must be implicitly split into its addends. It's not difficult to
understand that the convergence to the only stable fixed point (which has been proven to
exist by the authors) needs some iterations to correct the wrong output estimations.

Hebbian Learning and Self-Organizing Maps Chapter 6

[218]

The output of the network is made up of two contributions:

The notation y/x(i) indicates the ith element of y/x. The first term produces a partial output
based only on the input, while the second one uses hierarchical lateral connections to
correct the values and enforce the decorrelation. The internal weights wij are updated using
the standard version of Oja's rule (this is mainly responsible for the convergence of each
weight vector to the first principal component):

Instead, the external weights vjk are updated using an anti-Hebbian rule:

The previous formula can be split into two parts: the first term -ηyjyk acts in the opposite
direction of a standard version of Hebb's rule (that's why it's called anti-Hebbian) and
forces the decorrelation. The second one -ηyjykvjk acts as a regularizer and it's analogous to
Oja's rule. The term -ηyjyk works as a feedback signal for the Oja's rule that readapts the
updates according to the new magnitude of the actual output. In fact, after modifying the
lateral connections, the outputs are also forced to change and this modification impacts on
the update of wij. When all the outputs are decorrelated, the vectors wi are implicitly obliged
to be orthogonal. It's possible to imagine an analogy with the Gram-Schmidt
orthogonalization, even if in this case the relation between the extraction of different
components and the decorrelation is more complex. Like for Sanger's network, this
model extracts the first m principal components in descending order (the reason is the same
that has been intuitively explained), but for a complete (non-trivial) mathematical proof,
please refer to the aforementioned paper.

If input dimensionality is n and the number of components is equal to m, it's possible to use
a lower-triangular matrix V (m × m) with all diagonal elements set to 0 and a standard
matrix for W (n × m).

The structure of W is as follows:

Hebbian Learning and Self-Organizing Maps Chapter 6

[219]

Therefore, wi is a column-vector that must converge to the corresponding eigenvector. The
structure of V is instead:

Using this notation, the output becomes as follows:

As the output is based on recurrent lateral connections, its value must be stabilized by
iterating the previous formula for a fixed number times or until the norm between two
consecutive values becomes smaller than a predefined threshold. In our example, we use a
fixed number of iterations equal to five. The update rules cannot be written directly in
matrix notation, but it's possible to use the vectors wi (columns) and vj (rows):

In this case, y(i) means the ith component of y. The two matrices must be populated with a
loop.

The complete Rubner-Tavan's network algorithm is (the dimensionality of x is n, the
number of components is denoted with m):

Initialize W(0) randomly. The shape is (n × m).1.
Initialize V(0) randomly. The shape is (m × m).2.
Set V(0)

 = Tril(V(0)). Tril(•) transforms the input argument in a lower-triangular3.
matrix.
Set all diagonal components of V(0) equal to 0.4.
Set the learning_rate η (for example, 0.001).5.
Set a threshold Thr (for example, 0.0001).6.
Set a cycle counter T=0.7.

Hebbian Learning and Self-Organizing Maps Chapter 6

[220]

Set a maximum number of iterations max_iterations (for example, 1000).8.
Set a number of stabilization_cycles (for example, 5):9.

While ||W(t) - W(t-1)||F > Thr and T < max_iterations:1.
Set T = T + 1.1.
For each x in X:2.

Set yprev to zero. The shape is (m, 1).1.
For i=1 to stabilization_cycles:2.

y = WTx + Vyprev.1.
yprev = y.2.

Compute the updates for W and V:3.
Create two empty matrices ΔW (n × m)1.
and ΔV (m × m)
for t=1 to m:2.

Δwt = ηy(t)(x - y(t)wt)1.
Δvt = -ηy(t)(y + y(t)vt)2.

Update W and V:3.
W(t+1) = W(t) + ΔW1.
V(t+1) = V(t) + ΔV2.

Set V = Tril(V) and set all the diagonal4.
elements to 0
Set W(t+1) = W(t+1) / ||W(t+1)||(columns) (The5.
norm must be computed column-wise)

In this case, we have adopted both a threshold and a maximum number of iterations
because this algorithms normally converges very quickly. Moreover, I suggest the reader
always checks the shapes of vectors and matrices when performing dot products.

In this example, as well as in all the other ones, the NumPy random seed
is set equal to 1000 (np.random.seed(1000)). Using different values (or
repeating more times the experiments without resetting the seed) can lead
to slightly different results (which are always coherent).

Hebbian Learning and Self-Organizing Maps Chapter 6

[221]

Example of Rubner-Tavan's network
For our Python example, we are going to use the same dataset already created for the
Sanger's network (which is expected to be available in the variable Xs). Therefore, we can
start setting up all the constants and variables:

import numpy as np

n_components = 2
learning_rate = 0.0001
max_iterations = 1000
stabilization_cycles = 5
threshold = 0.00001

W = np.random.normal(0.0, 0.5, size=(Xs.shape[1], n_components))
V = np.tril(np.random.normal(0.0, 0.01, size=(n_components, n_components)))
np.fill_diagonal(V, 0.0)

prev_W = np.zeros((Xs.shape[1], n_components))
t = 0

At this point, it's possible to implement the training loop:

while(np.linalg.norm(W - prev_W, ord='fro') > threshold and t <
max_iterations):
 prev_W = W.copy()
 t += 1
 for i in range(Xs.shape[0]):
 y_p = np.zeros((n_components, 1))
 xi = np.expand_dims(Xs[i], 1)
 y = None

 for _ in range(stabilization_cycles):
 y = np.dot(W.T, xi) + np.dot(V, y_p)
 y_p = y.copy()
 dW = np.zeros((Xs.shape[1], n_components))
 dV = np.zeros((n_components, n_components))
 for t in range(n_components):
 y2 = np.power(y[t], 2)
 dW[:, t] = np.squeeze((y[t] * xi) + (y2 * np.expand_dims(W[:,
t], 1)))
 dV[t, :] = -np.squeeze((y[t] * y) + (y2 * np.expand_dims(V[t,
:], 1)))

 W += (learning_rate * dW)
 V += (learning_rate * dV)
 V = np.tril(V)

Hebbian Learning and Self-Organizing Maps Chapter 6

[222]

 np.fill_diagonal(V, 0.0)
 W /= np.linalg.norm(W, axis=0).reshape((1, n_components))

The final W and the output covariance matrix are as follows:

print(W)
[[-0.65992841 0.75897537]
 [-0.75132849 -0.65111933]]

Y_comp = np.zeros((Xs.shape[0], n_components))

for i in range(Xs.shape[0]):
 y_p = np.zeros((n_components, 1))
 xi = np.expand_dims(Xs[i], 1)

 for _ in range(stabilization_cycles):
 Y_comp[i] = np.squeeze(np.dot(W.T, xi) + np.dot(V.T, y_p))
 y_p = y.copy()

print(np.cov(Y_comp.T))
[[48.9901765 -0.34109965]
 [-0.34109965 24.51072811]]

As expected, the algorithm has successfully converged to the eigenvectors (in descending
order) and the output covariance matrix is almost completely decorrelated (the sign of the
non-diagonal elements can be either positive or negative). Rubner-Tavan's networks are
generally faster than Sanger's network, thanks to the feedback signal created by the anti-
Hebbian rule; however, it's important to choose the right value for the learning rate. A
possible strategy is to implement a temporal decay (as done in Sanger's network) starting
with a value not greater than 0.0001. However, it's important to reduce η when n increases
(for example, η = 0.0001 / n), because the normalization strength of Oja's rule on the lateral
connections vjk is often not enough to avoid over and underflows when n >> 1. I don't
suggest any extra normalization on V (which must be carefully analyzed considering that V
is singular) because it can slow down the process and reduce the final accuracy.

Hebbian Learning and Self-Organizing Maps Chapter 6

[223]

Self-organizing maps
Self-organizing maps (SOMs) have been proposed by Willshaw and Von Der Malsburg
(Willshaw D. J., Von Der Malsburg C., How patterned neural connections can be set up by self-
organization, Proceedings of the Royal Society of London, B/194, N. 1117) to model different
neurobiological phenomena observed in animals. In particular, they discovered that some
areas of the brain develop structures with different areas, each of them with a high
sensitivity for a specific input pattern. The process behind such a behavior is quite different
from what we have discussed up until now, because it's based on competition among
neural units based on a principle called winner-takes-all. During the training period, all the
units are excited with the same signal, but only one will produce the highest response. This
unit is automatically candidate to become the receptive basin for that specific pattern. The
particular model we are going to present has been introduced by Kohonen (in the paper
Kohonen T., Self-organized formation of topologically correct feature maps, Biological Cybernetics,
43/1) and it's named after him.

The main idea is to implement a gradual winner-takes-all paradigm, to avoid the
premature convergence of a neuron (as a definitive winner) and increment the level of
plasticity of the network. This concept is expressed graphically in the following graph
(where we are considering a linear sequence of neurons):

 Mexican-hat dynamic implemented by a Kohonen network

Hebbian Learning and Self-Organizing Maps Chapter 6

[224]

In this case, the same pattern is presented to all the neurons. At the beginning of the
training process (t=0), a positive response is observed in xi-2 to xi+2 with a peak in xi. The
potential winner is obviously xi, but all these units are potentiated according to their
distance from xi. In other words, the network (which is trained sequentially) is still
receptive to change if other patterns produce a stronger activation. If instead xi keeps on
being the winner, the radius is slightly reduced, until the only potentiated unit will be xi.
Considering the shape of this function, this dynamic is often called Mexican Hat. With this
approach, the network remains plastic until all the patterns have been repeatedly
presented. If, for example, another pattern elicits a stronger response in xi, it's important
that its activation is still not too high, to allow a fast reconfiguration of the network. At the
same time, the new winner will probably be a neighbor of xi, which has received a partial
potentiation and can easily take the place of xi.

A Kohonen SOM (also known as Kohonen network or simply Kohonen map) is normally
represented as a bidimensional map (for example, a square matrix m × m, or any other
rectangular shape), but 3D surfaces, such as spheres or toruses are also possible (the only
necessary condition is the existence of a suitable metric). In our case, we always refer to a
square matrix where each cell is a receptive neuron characterized by a synaptic weight w
with the dimensionality of the input patterns:

During both training and working phases, the winning unit is determined according to a
similarity measure between a sample and each weight vector. The most common metric is
the Euclidean; hence, if we consider a bidimensional map W with a shape (k × p) so that
W ∈ ℜk × p × n, the winning unit (in terms of its coordinates) is computed as follows:

Hebbian Learning and Self-Organizing Maps Chapter 6

[225]

As explained before, it's important to avoid the premature convergence because the
complete final configuration could be quite different from the initial one. Therefore, the
training process is normally subdivided into two different stages. During the first one,
whose duration is normally about 10-20% of the total number of iterations (let's call this
value tmax), the correction is applied to the winning unit and its neighbors (computed by
adopting a decaying radius). Instead, during the second one, the radius is set to 1.0 and the
correction is applied only to the winning unit. In this way, it's possible to analyze a larger
number of possible configurations, automatically selecting the one associated with the least
error. The neighborhood can have different shapes; it can be square (in closed 3D maps, the
boundaries don't exist anymore), or, more easily, it's possible to employ a radial basis
function based on an exponentially decaying distance-weight:

The relative weight of each neuron is determined by the σ(t). σ0 function is the initial radius
and τ is a time-constant that must be considered as a hyperparameter which determines the
slope of the decaying weight. Suitable values are 5-10% of the total number of iterations.
Adopting a radial basis function, it's not necessary to compute an actual neighborhood
because the multiplication factor n(i, j) becomes close to zero outside of the boundaries. A
drawback is related to the computational cost, which is higher than a square neighborhood
(as the function must be computed for the whole map); however, it's possible to speed up
the process by precomputing all the squared distances (the numerator) and exploiting the
vectorization features offered by packages such as NumPy (a single exponential is
computed every time).

The update rule is very simple and it's based on the idea to move the winning unit synaptic
weights closer to the pattern, xi, (repeated for the whole dataset, X):

Hebbian Learning and Self-Organizing Maps Chapter 6

[226]

The η(t) function is the learning rate, which can be fixed, but it's preferable to start with a
higher value, η0 and let it decay to a target final value, η∞:

In this way, the initial changes force the weights to align with the input patterns, while all
the subsequent updates allow slight modifications to improve the overall accuracy.
Therefore, each update is proportional to the learning rate, the neighborhood weighted
distance, and the difference between each pattern and the synaptic vector. Theoretically,
if Δwij is equal to 0.0 for the winning unit, it means that a neuron has become the attractor of
a specific input pattern, and its neighbors will be receptive to noisy/altered versions. The
most interesting aspect is that the complete final map will contain the attractors for all
patterns which are organized to maximize the similarity between adjacent units. In this
way, when a new pattern is presented, the area of neurons that maps the most similar
shapes will show a higher response. For example, if the patterns are made up of
handwritten digits, attractors for the digit 1 and for digit 7 will be closer than the attractor,
for example, for digit 8. A malformed 1 (which could be interpreted as 7) will elicit a
response that is between the first two attractors, allowing us to assign a relative probability
based on the distance. As we're going to see in the example, this feature yields to a smooth
transition between different variants of the same pattern class avoiding rigid boundaries
that oblige a binary decision (like in a K-means clustering or in a hard classifier).

The complete Kohonen SOM algorithm is as follows:

Randomly initialize W(0). The shape is (k × p × n).1.
Initialize nb_iterations, the total number of iterations, and tmax (for example,2.
nb_iterations = 1000 and tmax = 150).
Initialize τ (for example, τ = 100).3.
Initialize η0 and η∞ (for example, η0 = 1.0 and η∞ = 0.05).4.
For t = 0 to nb_iterations:5.

If t < tmax:1.
Compute η(t)1.
Compute σ(t)2.

Otherwise:2.
Set η(t) = η∞1.
Set σ(t) = σ∞2.

Hebbian Learning and Self-Organizing Maps Chapter 6

[227]

For each xi in X:3.
Compute the winning unit u* (let's assume that the1.
coordinates are i, j)
Compute n(i, j)2.
Apply the weight correction Δwij

(t) to all synaptic weights W(t)3.

Renormalize W(t) = W(t) / ||W(t)||(columns) (the norm must be computed4.
column-wise)

Example of SOM
We can now implement an SOM using the Olivetti faces dataset. As the process can be very
long, in this example we limit the number of input patterns to 100 (with a 5 × 5 matrix). The
reader can try with the whole dataset and a larger map.

The first step is loading the data, normalizing it so that all values are bounded between 0.0
and 1.0, and setting the constants:

import numpy as np

from sklearn.datasets import fetch_olivetti_faces

faces = fetch_olivetti_faces(shuffle=True)

Xcomplete = faces['data'].astype(np.float64) / np.max(faces['data'])
np.random.shuffle(Xcomplete)

nb_iterations = 5000
nb_startup_iterations = 500
pattern_length = 64 * 64
pattern_width = pattern_height = 64
eta0 = 1.0
sigma0 = 3.0
tau = 100.0

X = Xcomplete[0:100]
matrix_side = 5

At this point, we can initialize the weight matrix using a normal distribution with a small
standard deviation:

W = np.random.normal(0, 0.1, size=(matrix_side, matrix_side,
pattern_length))

Hebbian Learning and Self-Organizing Maps Chapter 6

[228]

Now, we need to define the functions to determine the winning unit based on the least
distance:

def winning_unit(xt):
 distances = np.linalg.norm(W - xt, ord=2, axis=2)
 max_activation_unit = np.argmax(distances)
 return int(np.floor(max_activation_unit / matrix_side)),
max_activation_unit % matrix_side

It's also useful to define the functions η(t) and σ(t):

def eta(t):
 return eta0 * np.exp(-float(t) / tau)

def sigma(t):
 return float(sigma0) * np.exp(-float(t) / tau)

As explained before, instead of computing the radial basis function for each unit, it's
preferable to use a precomputed distance matrix (in this case, 5 × 5 × 5 × 5) containing all
the possible distances between couples of units. In this way, NumPy allows a faster
calculation thanks to its vectorization features:

precomputed_distances = np.zeros((matrix_side, matrix_side, matrix_side,
matrix_side))

for i in range(matrix_side):
 for j in range(matrix_side):
 for k in range(matrix_side):
 for t in range(matrix_side):
 precomputed_distances[i, j, k, t] = \
 np.power(float(i) - float(k), 2) + np.power(float(j) -
float(t), 2)

def distance_matrix(xt, yt, sigmat):
 dm = precomputed_distances[xt, yt, :, :]
 de = 2.0 * np.power(sigmat, 2)
 return np.exp(-dm / de)

The distance_matrix function returns the value of the radial basis function for the whole
map given the center point (the winning unit) xt, yt and the current value of σ sigmat.
Now, it's possible to start the training process (in order to avoid correlations, it's preferable
to shuffle the input sequence at the beginning of each iteration):

sequence = np.arange(0, X.shape[0])
t = 0

for e in range(nb_iterations):

Hebbian Learning and Self-Organizing Maps Chapter 6

[229]

 np.random.shuffle(sequence)
 t += 1
 if e < nb_startup_iterations:
 etat = eta(t)
 sigmat = sigma(t)
 else:
 etat = 0.2
 sigmat = 1.0
 for n in sequence:
 x_sample = X[n]
 xw, yw = winning_unit(x_sample)
 dm = distance_matrix(xw, yw, sigmat)
 dW = etat * np.expand_dims(dm, axis=2) * (x_sample - W)
 W += dW
 W /= np.linalg.norm(W, axis=2).reshape((matrix_side, matrix_side, 1))

In this case, we have set η∞ = 0.2 but I invite the reader to try different values and evaluate
the final result. After training for 5000 epochs, we got the following weight matrix (each
weight is plotted as a bidimensional array):

Hebbian Learning and Self-Organizing Maps Chapter 6

[230]

As it's possible to see, the weights have converged to faces with slightly different features.
In particular, looking at the shapes of the faces and the expressions, it's easy to notice the
transition between different attractors (some faces are smiling, while others are more
serious; some have glasses, mustaches, and beards, and so on). It's also important to
consider that the matrix is larger than the minimum capacity (there are ten different
individuals in the dataset). This allows mapping more patterns that cannot be easily
attracted by the right neuron. For example, an individual can have pictures with and
without a beard and this can lead to confusion. If the matrix is too small, it's possible to
observe an instability in the convergence process, while if it's too large, it's easy to see
redundancies. The right choice depends on each different dataset and on the internal
variance and there's no way to define a standard criterion. A good starting point is picking
a matrix whose capacity is between 2.0 and 3.0 times larger than the number of desired
attractors and then increasing or reducing its size until the accuracy reaches a maximum.
The last element to consider is the labeling phase. At the end of the training process, we
have no knowledge about the weight distribution in terms of winning neurons, so it's
necessary to process the dataset and annotate the winning unit for each pattern. In this
way, it's possible to submit new patterns to get the most likely label. This process has not
been shown, but it's straightforward and the reader can easily implement it for every
different scenario.

Summary
In this chapter, we have discussed Hebb's rule, showing how it can drive the computation
of the first principal component of the input dataset. We have also seen that this rule is
unstable because it leads to the infinite growth of the synaptic weights and how it's possible
to solve this problem using normalization or Oja's rule.

We have introduced two different neural networks based on Hebbian learning (Sanger's
and Rubner-Tavan's networks), whose internal dynamics are slightly different, which are
able to extract the first n principal components in the right order (starting from the largest
eigenvalue) without eigendecomposing the input covariance matrix.

Hebbian Learning and Self-Organizing Maps Chapter 6

[231]

Finally, we have introduced the concept of SOM and presented a model called a Kohonen
network, which is able to map the input patterns onto a surface where some attractors (one
per class) are placed through a competitive learning process. Such a model is able to
recognize new patterns (belonging to the same distribution) by eliciting a strong response
in the attractor, that is most similar to the pattern. In this way, after a labeling process, the
model can be employed as a soft classifier that can easily manage noisy or altered patterns.

In the next chapter, we're going to discuss some important clustering algorithms, focusing
on the difference (already discussed in the previous chapters) between hard and soft
clustering and discussing the main techniques employed to evaluate the performance of an
algorithm.

7
Clustering Algorithms

In this chapter, we are going to introduce some fundamental clustering algorithms,
discussing both their strengths and weaknesses. The field of unsupervised learning, as well
as any other machine learning approach, must be always based on the concept of Occam's
razor. Simplicity must always be preferred when performance meets the requirements.
However, in this case, the ground truth can be unknown. When a clustering algorithm is
adopted as an exploratory tool, we can only assume that the dataset represents a precise
data generating process. If this assumption is correct, the best strategy is to determine the
number of clusters to maximize the internal cohesion (denseness) and the external
separation. This means that we expect to find blobs (or isles) whose samples share some
common and partially unique features.

In particular, the algorithms we are going to present are:

k-Nearest Neighbors (KNN) based on KD Trees and Ball Trees
K-means and K-means++
Fuzzy C-means
Spectral clustering based on the Shi-Malik algorithm

Clustering Algorithms Chapter 7

[233]

k-Nearest Neighbors
This algorithm belongs to a particular family called instance-based (the methodology is
called instance-based learning). It differs from other approaches because it doesn't work
with an actual mathematical model. On the contrary, the inference is performed by direct
comparison of new samples with existing ones (which are defined as instances). KNN is an
approach that can be easily employed to solve clustering, classification, and regression
problems (even if, in this case, we are going to consider only the first technique). The main
idea behind the clustering algorithm is very simple. Let's consider a data generating process
pdata and a finite a dataset drawn from this distribution:

Each sample has a dimensionality equal to N. We can now introduce a distance function
d(x1, x2), which in the majority of cases can be generalized with the Minkowski distance:

When p = 2, dp represents the classical Euclidean distance, that is normally the default
choice. In particular cases, it can be useful to employ other variants, such as p = 1 (which is
the Manhattan distance) or p > 2. Even if all the properties of a metric function remain
unchanged, different values of p yield results that can be semantically diverse. As an
example, we can consider the distance between points x1 = (0, 0) and x2 = (15, 10) as a
function of p:

Clustering Algorithms Chapter 7

[234]

Minkowski distance between (0, 0) and (15, 10) as a function of parameter p

The distance decreases monotonically with p and converges to the largest component
absolute difference, |x1

(j) - x2
(j)|, when p → ∞. Therefore, whenever it's important to weight

all the components in the same way in order to have a consistent metric, small values of p
are preferable (for example, p=1 or 2). This result has also been studied and formalized
by Aggarwal, Hinneburg, and Keim (in On the Surprising Behavior of Distance Metrics in High
Dimensional Space, Aggarwal C. C., Hinneburg A., Keim D. A., ICDT 2001), who proved a
fundamental inequality. If we consider a generic distribution G of M points xi ∈ (0, 1)d, a
distance function based on the Lp norm, and the maximum Dmax

p and minimum Dmin
p

distances (computed using the Lp norm) between two points, xj and xk drawn from G and (0,
0), the following inequality holds:

Clustering Algorithms Chapter 7

[235]

It's clear that when the input dimensionality is very high and p >> 2, the expected value,
E[Dmax

p - Dmin
p], becomes bounded between two constants, k1 (Cpd

1/p-1/2) and
k2 ((M-1)Cpd

1/p-1/2) → 0, reducing the actual effect of almost any distance. In fact, given two
generic couples of points (x1, x2) and (x3, x4) drawn from G, the natural consequence of the
following inequality is that dp(x1, x2) ≈ dp(x3, x4) when p → ∞, independently of their relative
positions. This important result confirms the importance of choosing the right metric
according to the dimensionality of the dataset and that p = 1 is the best choice when d >> 1,
while p >> 1 can produce inconsistent results due the ineffectiveness of the metric. To see
direct confirmation of this phenomenon, it's possible to run the following snippet, which
computes the average difference between maximum and minimum distances considering
100 sets containing 100 samples drawn from a uniform distribution, G ∼ U(0, 1). In the
snippet, the case of d=2, 100, 1000 is analyzed with Minkowski metrics with P= 1, 2, 10,
100 (the final values depend on the random seed and how many times the experiment is
repeated):

import numpy as np

from scipy.spatial.distance import pdist

nb_samples = 100
nb_bins = 100

def max_min_mean(p=1.0, d=2):
 Xs = np.random.uniform(0.0, 1.0, size=(nb_bins, nb_samples, d))
 pd_max = np.zeros(shape=(nb_bins,))
 pd_min = np.zeros(shape=(nb_bins,))

 for i in range(nb_bins):
 pd = pdist(Xs[i], metric='minkowski', p=p)
 pd_max[i] = np.max(pd)
 pd_min[i] = np.min(pd)
 return np.mean(pd_max - pd_min)

print('P=1 -> {}'.format(max_min_mean(p=1.0)))
print('P=2 -> {}'.format(max_min_mean(p=2.0)))
print('P=10 -> {}'.format(max_min_mean(p=10.0)))
print('P=100 -> {}'.format(max_min_mean(p=100.0)))

P=1 -> 1.79302317381
P=2 -> 1.27290283592
P=10 -> 0.989257369005
P=100 -> 0.983016242436

print('P=1 -> {}'.format(max_min_mean(p=1.0, d=100)))
print('P=2 -> {}'.format(max_min_mean(p=2.0, d=100)))

Clustering Algorithms Chapter 7

[236]

print('P=10 -> {}'.format(max_min_mean(p=10.0, d=100)))
print('P=100 -> {}'.format(max_min_mean(p=100.0, d=100)))

P=1 -> 17.1916057948
P=2 -> 1.76155714836
P=10 -> 0.340453945928
P=100 -> 0.288625281313

print('P=1 -> {}'.format(max_min_mean(p=1.0, d=1000)))
print('P=2 -> {}'.format(max_min_mean(p=2.0, d=1000)))
print('P=10 -> {}'.format(max_min_mean(p=10.0, d=1000)))
print('P=100 -> {}'.format(max_min_mean(p=100.0, d=1000)))

P=1 -> 55.2865105705
P=2 -> 1.77098913218
P=10 -> 0.130444336657
P=100 -> 0.0925427145923

A particular case, that is a direct consequence of the previous inequality is when the largest
absolute difference between components determines the most important factor of a
distance, large values of p can be employed. For example, if we consider three points, x1 =
(0, 0), x2 = (15, 10), and x3 = (15, 0), d2(x1, x2) ≈ 18 and d2(x1, x3) = 15. So, if we set a threshold at
d = 16 centered at x1, x2 is outside the boundaries. If instead p = 15, both distances become
close to 15 and the two points (x2 and x3) are inside the boundaries. A particular use of large
values of p is when it's important to take into account the inhomogeneity among
components. For example, some feature vectors can represent the age and height of a set of
people. Considering a test person x = (30, 175), with large p values, the distances between x
and two samples (35, 150) and (25, 151) are almost identical (about 25.0), and the only
dominant factor becomes the height difference (independent from the age).

The KNN algorithm determines the k closest samples of each training point. When a new
sample is presented, the procedure is repeated with two possible variants:

With a predefined value of k, the KNN are computed
With a predefined radius/threshold r, all the neighbors whose distance is less
than or equal to the radius are computed

Clustering Algorithms Chapter 7

[237]

The philosophy of KNN is that similar samples can share their features. For example, a
recommendation system can cluster users using this algorithm and, given a new user, find
the most similar ones (based, for example, on the products they bought) to recommend the
same category of items. In general, a similarity function is defined as the reciprocal of a
distance (there are some exceptions, such as the cosine similarity):

Two different users, A and B, who are classified as neighbors, will differ under some
viewpoints, but, at the same time, they will share some peculiar features. This statement
authorizes us to increase the homogeneity by suggesting the differences. For example, if A
liked book b1 and B liked b2, we can recommend b1 to B and b2 to A. If our hypothesis was
correct, the similarity between A and B will be increased; otherwise, the two users will
move towards other clusters that better represent their behavior.

Unfortunately, the vanilla algorithm (in Scikit-Learn it is called the brute-force algorithm)
can become extremely slow with a large number of samples because it's necessary to
compute all the pairwise distances in order to answer any query. With M points, this
number is equal to M2, which is often unacceptable (if M = 1,000, each query needs to
compute a million distances). More precisely, as the computation of a distance in an N-
dimensional space requires N operations, the total complexity becomes O(M2N), which can
be reasonable only for small values of both M and N. That's why some important strategies
have been implemented to reduce the computational complexity.

KD Trees
As all KNN queries can be considered search problems, one of the most efficient way to
reduce the overall complexity is to reorganize the dataset into a tree structure. In a binary
tree (one-dimensional data), the average computational complexity of a query is O(log M),
because we assume we have almost the same number of elements in each branch (if the tree
is completely unbalanced, all the elements are inserted sequentially and the resulting
structure has a single branch, so the complexity becomes O(M)). In general, the real
complexity is slightly higher than O(log M), but the operation is always much more efficient
than a vanilla search, which is O(M2).

Clustering Algorithms Chapter 7

[238]

However, we normally work with N-dimensional data and the previous structure cannot
be immediately employed. KD Trees extend the concept of a binary for N > 1. In this case, a
split cannot be immediately performed and a different strategy must be chosen. The easiest
way to solve this problem is to select a feature at each level (1, 2, ..., N) and repeat the
process until the desired depth is reached. In the following diagram, there's an example of
KD Trees with three-dimensional points:

Example of three-dimensional KD Tree

The root is point (5, 3, 7). The first split is performed considering the first feature, so two
children are (2, 1, 1) and (8, 4, 3). The second one operates on the second feature and so
on. The average computational complexity is O(N log M), but if the distribution is very
asymmetric, the probability that the tree becomes unbalanced is very high. To mitigate this
issue, it's possible to select the feature corresponding to the median of the (sub-)dataset and
to continue splitting with this criterion. In this way, the tree is guaranteed to be balanced.
However, the average complexity is always proportional to the dimensionality and this can
dramatically affect the performance.

For example, if M = 10,000 and N = 10, using the log10, O(N log M) = O(40), while, with N =
1,000, the complexity becomes O(40,000). Generally, KD Trees suffers the curse of
dimensionality and when N becomes large, the average complexity is about O(MN), which is
always better than the vanilla algorithm, but often too expensive for real-life applications.
Therefore, KD Trees is really effective only when the dimensionality is not too high. In all
other cases, the probability of having an unbalanced tree and the resulting computational
complexity suggest employing a different method.

Clustering Algorithms Chapter 7

[239]

Ball Trees
An alternative to KD Trees is provided by Ball Trees. The idea is to rearrange the dataset in
a way that is almost insensitive to high-dimensional samples. A ball is defined as a set of
points whose distance from a center sample is less than or equal to a fixed radius:

Starting from the first main ball, it's possible to build smaller ones nested into the parent
ball and stop the process when the desired depth has been reached. A fundamental
condition is that a point can always belong to a single ball. In this way, considering the cost
of the N-dimensional distance, the computational complexity is O(N log M) and doesn't
suffer the curse of dimensionality like KD Trees. The structure is based on hyperspheres,
whose boundaries are defined by the equations (given a center point x and a radius Ri):

Therefore, the only operation needed to find the right ball is measuring the distance
between a sample and the centers starting from the smallest balls. If a point is outside the
ball, it's necessary to move upwards and check the parents, until the ball containing the
sample is found. In the following diagram, there's an example of Ball Trees with two levels:

Example of Ball Trees with seven bidimensional points and two levels

Clustering Algorithms Chapter 7

[240]

In this example, the seven bidimensional points are split first into two balls containing
respectively three and four points. At the second level, the second ball is split again into
two smaller balls containing two points each. This procedure can be repeated until a fixed
depth is reached or by imposing the maximum number of elements that a leaf must contain
(in this case, it can be equal to 3).

Both KD Trees and Ball Trees can be efficient structures to reduce the complexity of KNN
queries. However, when fitting a model, it's important to consider both the k parameter
(which normally represents the average or the standard number of neighbors computed in
a query) and the maximum tree depth. These particular structures are not employed for
common tasks (such as sorting) and their efficiency is maximized when all the requested
neighbors can be found in the same sub-structure (with a size K<< M, to avoid an implicit
fallback to the vanilla algorithm). In other words, the tree has the role of reducing the
dimensionality of the search space by partitioning it into reasonably small regions.

At the same time, if the number of samples contained in a leaf is small, the number of tree
nodes grows and the complexity is subsequently increased. The negative impact is doubled
because on average it's necessary to explore more nodes and if k is much greater than the
number of elements contained in a node, it's necessary to merge the samples belonging to
different nodes. On the other side, a very large number of samples per node leads to a
condition that is close to the vanilla algorithm. For example, if M = 1,000 and each node
contains 250 elements, once the right node is computed, the number of distances to
compute is comparable with the initial dataset size and no real advantage is achieved by
employing a tree structure. An acceptable practice is to set the size of a life equal to 5 ÷ 10
times the average value of k, to maximize the probability to find all the neighbors inside the
same leaf. However, every specific problem must be analyzed (while also benchmarking
the performances) in order to find the most appropriate value. If different values for k are
necessary, it's important to consider the relative frequencies of the queries. For example, if a
program needs 10 5-NN queries and 1 50-NN query, it's probably better to set a leaf size
equal to 25, even if the 50-NN query will be more expensive. In fact, setting a good value for
a second query (for example, 200) will dramatically increase the complexity of the first 10
queries, driving to a performance loss.

Clustering Algorithms Chapter 7

[241]

Example of KNN with Scikit-Learn
In order to test the KNN algorithm, we are going to use the MNIST handwritten digit
dataset provided directly by Scikit-Learn. It is made up of 1,797 8 × 8 grayscale images
representing the digits from 0 to 9. The first step is loading it and normalizing all the values
to be bounded between 0 and 1:

import numpy as np

from sklearn.datasets import load_digits

digits = load_digits()
X_train = digits['data'] / np.max(digits['data'])

The dictionary digits contains both the images, digits['images'], and the flattened 64-
dimensional arrays, digits['data']. Scikit-Learn implements different classes (for
example, it's possible to work directly with KD Trees and Ball Trees using the KDTree and
BallTree classes) that can be used in the context of KNN (as clustering, classification, and
regression algorithms). However, we're going to employ the main class,
NearestNeighbors, which allows performing clustering and queries based either on the
number of neighbors or on the radius of a ball centered on a sample:

from sklearn.neighbors import NearestNeighbors

knn = NearestNeighbors(n_neighbors=50, algorithm='ball_tree')
knn.fit(X_train)

We have chosen to have a default number of neighbors equal to 50 and an algorithm based
on a ball_tree. The leaf size (leaf_size) parameter has been kept to its default value
equal to 30. We have also employed the default metric (Euclidean), but it's possible to
change it using the metric and p parameters (which is the order of the Minkowski metric).
Scikit-Learn supports all the metrics implemented by SciPy in the
scipy.spatial.distance package. However, in the majority of cases, it's sufficient to
use a Minkowski metric and adjust the value of p if the results are not acceptable with any
number of neighbors. Other metrics, such as the cosine distance, can be employed when the
similarity must not be affected by the Euclidean distance, but only by the angle between
two vectors pointing at the samples. Applications that use this metric include, for example,
deep learning models for natural language processing, where the words are embedded into
feature vectors whose semantic similarity is proportional to their Cosine distance.

Clustering Algorithms Chapter 7

[242]

We can now query the model in order to find 50 neighbors of a sample. For our purposes,
we have selected the sample with index 100, which represents a 4 (the images have a very
low resolution, but it's always possible to distinguish the digit):

Sample digit used to query the KNN model

The query can be performed using the instance method kneighbors, which allows
specifying the number of neighbors (n_neighbors parameter the default is the value
selected during the instantiation of the class) and whether we want to also get the distances
of each neighbor (the return_distance parameter). In this example, we are also
interested in evaluating how far the neighbors are from the center, so we set
return_distance=True:

distances, neighbors = knn.kneighbors(X_train[100].reshape(1, -1),
return_distance=True)

print(distances[0])

[0. 0.91215747 1.16926793 1.22633855 1.24058958 1.32139841
 1.3564084 1.36645069 1.41972709 1.43341812 1.45236875 1.50130152
 1.52709897 1.5499496 1.62379763 1.62620148 1.6345871 1.64292993
 1.66770801 1.70934929 1.71619128 1.71619128 1.72187216 1.73317808
 1.74888357 1.75445861 1.75668367 1.75779514 1.76555586 1.77878118
 1.788636 1.79408751 1.79626348 1.80169191 1.80277564 1.80385871
 1.80494113 1.8125 1.81572988 1.83498978 1.84771819 1.87291551
 1.87916205 1.88020112 1.88538789 1.88745861 1.88952706 1.90906554
 1.91213232 1.92333532]

Clustering Algorithms Chapter 7

[243]

The first neighbor is always the center, so its distance is 0. The other ones range from 0.9 to
1.9. Considering that, in this case, the maximum possible distance is 8 (between a 64-
dimensional vector a = (1, 1, ..., 1) and the null vector), the result could be acceptable. In
order to get confirmation, we can plot the neighbors as bidimensional 8 × 8 arrays (the
returned array, neighbors, contains the indexes of the samples). The result is shown in the
following screenshot:

50 neighbors selected by the KNN model

As it's possible to see, there are no errors, but all the shapes are slightly different. In
particular, the last one, which is also the farthest, has a lot of white pixels (corresponding to
the value 1.0), explaining the reason of a distance equal to about 2.0. I invite the reader to
test the radius_neighbors method until spurious values appear among the results. It's
also interesting to try this algorithm with the Olivetti faces dataset, whose complexity is
higher and many more geometrical parameters can influence the similarity.

Clustering Algorithms Chapter 7

[244]

K-means
When we discussed the Gaussian mixture algorithm, we defined it as Soft K-means. The
reason is that each cluster was represented by three elements: mean, variance, and weight.
Each sample always belongs to all clusters with a probability provided by the Gaussian
distributions. This approach can be very useful when it's possible to manage the
probabilities as weights, but in many other situations, it's preferable to determine a single
cluster per sample. Such an approach is called hard clustering and K-means can be
considered the hard version of a Gaussian mixture. In fact, when all variances Σi → 0, the
distributions degenerate to Dirac's Deltas, which represent perfect spikes centered at a
specific point. In this scenario, the only possibility to determine the most appropriate
cluster is to find the shortest distance between a sample point and all the centers (from now
on, we are going to call them centroids). This approach is also based on an important double
principle that should be taken into account in every clustering algorithm. The clusters must
be set up to maximize:

The intra-cluster cohesion
The inter-cluster separation

This means that we expect to label high-density regions that are well separated from each
other. When this is not possible, the criterion must try to minimize the intra-cluster average
distance between samples and centroid. This quantity is also called inertia and it's defined
as:

High levels of inertia imply low cohesion because there are probably too many points
belongings to clusters whose centroids are too far away. The problem can be solved by
minimizing the previous quantity. However, the computational complexity needed to find
the global minimum is exponential (K-means belongs to the class of NP-Hard problems).
The alternative approach employed by the K-means algorithm, also known as Lloyd's
algorithm, is iterative and starts from selecting k random centroids (in the next section,
we're going to analyze a more efficient method) and adjusting them until their
configuration becomes stable.

Clustering Algorithms Chapter 7

[245]

The dataset to cluster (with M samples) is represented as:

An initial guess for the centroids is:

There are no particular restrictions on the initial values. However, the choice can influence
both the convergence speed and the minimum that is found. The iterative procedure will
loop over the dataset, computing the Euclidean distance between xi and each μj and
assigning a cluster based on the criterion:

Once all the samples have been clustered, the new centroids are computed:

The quantity NCj represents the number of points belonging to cluster j. At this point, the
inertia is recomputed and the new value is compared with the previous one. The procedure
will stop either after a fixed number of iterations or when the variations in the inertia
become smaller than a predefined threshold. Lloyd's algorithm is very similar to a
particular case of the EM algorithm. In fact, the first step of each iteration is the
computation of an expectation (the centroid configuration), while the second step maximizes
the intra-cluster cohesion by minimizing the inertia.

The complete vanilla K-means algorithm is:

Set a maximum number of iterations Nmax.1.
Set a tolerance Thr.2.
Set the value of k (number of expected clusters).3.
Initialize vector C(0) with random values. They can be points belonging to the4.
dataset or sampled from a suitable distribution.
Compute the initial inertia S(0)5.

Clustering Algorithms Chapter 7

[246]

Set N = 0.6.
While N < Nmax or ||S(t) - S(t-1)|| > Thr:7.

N = N + 11.
For xi in X:2.

Assign xi to a cluster using the shortest distance between xi1.
and μj

Recompute the centroid vector C(t)3.
Recompute the inertia S(t)4.

The algorithm is quite simple and intuitive, and there are many real-life applications based
on it. However, there are two important elements to consider. The first one is the
convergence speed. It's easy to show that every initial guess drives to a convergence point,
but the number of iterations is dramatically influenced by this choice and there's no
guarantee to find the global minimum. If the initial centroids are close to the final ones, the
algorithm needs only a few steps to correct the values, but when the choice is totally
random, it's not uncommon to need a very high number of iterations. If there are N samples
and k centroids, Nk distances must be computed at each iteration, leading to an inefficient
result. In the next paragraph, we'll show how it's possible to initialize the centroids to
minimize the convergence time.

Another important aspect is that, contrary to KNN, K-means needs to predefine the number
of expected clusters. In some cases, this is a secondary problem because we already know
the most appropriate value for k. However, when the dataset is high-dimensional and our
knowledge is limited, this choice could be hazardous. A good approach to solve the issue is
to analyze the final inertia for a different number of clusters. As we expect to maximize the
intra-cluster cohesion, a small number of clusters will lead to an increased inertia. We try to
pick the highest point below a maximum tolerable value. Theoretically, we can also pick k =
N. In this case, the inertia becomes zero because each point represents the centroid of its
cluster, but a large value for k transforms the clustering scenario into a fine-grained
partitioning that might not be the best strategy to capture the feature of a consistent group.
It's impossible to define a rule for the upper bound kmax, but we assume that this value is
always much less than N. The best choice is achieved by selecting k to minimize the inertia,
selecting the values from a set bounded, for example, between 2 and kmax.

Clustering Algorithms Chapter 7

[247]

K-means++
We have said that a good choice for the initial centroids can improve the convergence speed
and leads to a minimum that is closer to the global optimum of the inertia S. Arthur and
Vassilvitskii (in The Advantages of Careful Seeding, Arthur, D., Vassilvitskii S., k-means++:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms) proposed
a method called K-means++, which allows increasing the accuracy of the initial centroid
guess considering the most likely final configuration.

In order to expose the algorithm, it's useful to introduce a function, D(x, i), which is defined
as:

D(x, i) defines the shortest distance between each sample and one of the centroids already
selected. As the process is incremental, this function must be recomputed after all steps. For
our purposes, let's also define an auxiliary probability distribution (we omit the index
variable for simplicity):

The first centroid μ0 is sampled from X using a uniform distribution. The next steps are:

Compute D(x, i) for all x ∈ X considering the centroids already selected1.
Compute G(x)2.
Select the next centroid μi from X with a probability G(x)3.

In the aforementioned paper, the authors showed a very important property. If we define S*

as the global optimum of S, a K-means++ initialization determines an upperbound for the
expected value of the actual inertia:

Clustering Algorithms Chapter 7

[248]

This condition is often expressed by saying that K-means++ is O(log k)-competitive. When k
is sufficiently small, the probability of finding a local minimum close to the global one
increases. However, K-means++ is still a probabilistic approach and different initializations
on the same dataset lead to different initial configurations. A good practice is to run a
limited number of initializations (for example, ten) and pick the one associated with the
smallest inertia. When training complexity is not a primary issue, this number can be
increased, but different experiments showed that the improvement achievable with a very
large number of trials is negligible when compared to the actual computational cost. The
default value in Scikit-Learn is ten and the author suggests to keep this value in the
majority of cases. If the result continues to be poor, it's preferable to pick another method.
Moreover, there are problems that cannot be solved using K-means (even with the best
possible initialization), because one of the assumptions of the algorithm is that each cluster
is a hypersphere and the distances are measured using a Euclidean function. In the
following sections, we're going to analyze other algorithms that are not constrained to work
with such limitations and can easily solve clustering problems using asymmetric cluster
geometries.

Example of K-means with Scikit-Learn
In this example, we continue using the MNIST dataset (the X_train array is the same
defined in the paragraph dedicated to KNN), but we want also to analyze different
clustering evaluation methods. The first step is visualizing the inertia corresponding to
different numbers of clusters. We are going to use the KMeans class, which accepts the
n_clusters parameter and employs the K-means++ initialization as the default method (as
explained in the previous section, in order to find the best initial configuration, Scikit-Learn
performs several attempts and selects the configuration with the lowest inertia; it's possible
to change the number of attempts through the n_iter parameter):

import numpy as np

from sklearn.cluster import KMeans

min_nb_clusters = 2
max_nb_clusters = 20

inertias = np.zeros(shape=(max_nb_clusters - min_nb_clusters + 1,))

for i in range(min_nb_clusters, max_nb_clusters + 1):
 km = KMeans(n_clusters=i, random_state=1000)
 km.fit(X_train)
 inertias[i - min_nb_clusters] = km.inertia_

Clustering Algorithms Chapter 7

[249]

We are supposing to analyze the range [2, 20]. After each training session, the final inertia
can be retrieved using the inertia_ instance variable. The following graph shows the plot
of the values as a function of the number of clusters:

Inertia as a function of the number of clusters

As expected, the function is decreasing, starting from a value of about 7,500 and reaching
about 3,700 with 20 clusters. In this case, we know that the real number is 10, but it's
possible to discover it by observing the trend. The slope is quite high before 10, but it starts
decreasing more and more slowly after this threshold. This is a signal that informs us that
some clusters are not well separated, even if their internal cohesion is high. In order to
confirm this hypothesis, we can set n_clusters=10 and, first of all, check the centroids at
the end of the training process:

km = KMeans(n_clusters=10, random_state=1000)
Y = km.fit_predict(X_train)

Clustering Algorithms Chapter 7

[250]

The centroids are available through the cluster_centers_ instance variable. In the
following screenshot, there's a plot of the corresponding bidimensional arrays:

K-means centroid at the end of the training process

All the digits are present and there are no duplicates. This confirms that the algorithm has
successfully separated the sets, but the final inertia (which is about 4,500) informs us that
there are probably wrong assignments. To obtain confirmation, we can plot the dataset
using a dimensionality-reduction method, such as t-SNE (see Chapter 3, Graph-Based Semi-
Supervised Learning for further details):

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, perplexity=20.0, random_state=1000)
X_tsne = tsne.fit_transform(X_train)

At this point, we can plot the bidimensional dataset with the corresponding cluster labels:

t-SNE representation of the MNIST dataset; the labels correspond to the clusters

Clustering Algorithms Chapter 7

[251]

The plot confirms that the dataset is made up of well-separated blobs, but a few samples
are assigned to the wrong cluster (this is not surprising considering the similarity between
some pairs of digits). An important observation can further explain the trend of the inertia.
In fact, the point where the slope changes almost abruptly corresponds to 9 clusters.
Observing the t-SNE plot, we can immediately discover the reason: the cluster
corresponding to the digit 7 is indeed split into 3 blocks. The main one contains the
majority of samples, but there are another 2 smaller blobs that are wrongly attached to
clusters 1 and 9. This is not surprising, considering that the digit 7 can be very similar to a
distorted 1 or 9. However, these two spurious blobs are always at the boundaries of the
wrong clusters (remember that the geometric structures are hyperspheres), confirming that
the metric has successfully detected a low similarity. If a group of wrongly assigned
samples were in the middle of a cluster, it would have meant that the separation failed
dramatically and another method should be employed.

Evaluation metrics
In many cases, it's impossible to evaluate the performance of a clustering algorithm using
only a visual inspection. Moreover, it's important to use standard objective metrics that
allow for comparing different approaches. We are now going to introduce some methods
based on the knowledge of the ground truth (the correct assignment for each sample) and
one common strategy employed when the true labels are unknown.

Before discussing the scoring functions, we need to introduce a standard notation. If there
are k clusters, we define the true labels as:

In the same way, we can define the predicted labels:

Clustering Algorithms Chapter 7

[252]

Both sets can be considered as sampled from two discrete random variables (for simplicity,
we denote them with the same names), whose probability mass functions are Ptrue(y) and
Ppred(y) with a generic y ∈ {y1, y2, ..., yk} (yi represents the index of the ith cluster). These two
probabilities can be approximated with a frequency count; so, for example, the probability
Ptrue(1) is computed as the number of samples whose true label is 1 ntrue(1) over the total
number of samples M. In this way, we can define the entropies:

These quantities describe the intrinsic uncertainty of the random variables. They are
maximized when all the classes have the same probability, while, for example, they are null
if all the samples belong to a single class (minimum uncertainty). We also need to know the
uncertainty of a random variable Y given another one X. This can be achieved using the
conditional entropy H(Y|X). In this case, we need to compute the joint probability p(x, y)
because the definition of H(Y|X) is:

In order to approximate the previous expression, we can define the function n(itrue, jpred),
which counts the number of samples with the true label i assigned to cluster j. In this way,
if there are M samples, the approximated conditional entropies become:

Clustering Algorithms Chapter 7

[253]

Homogeneity score
This score is useful to check whether the clustering algorithm meets an important
requirement: a cluster should contain only samples belonging to a single class. It's defined
as:

It's bounded between 0 and 1, with low values indicating a low homogeneity. In fact, when
the knowledge of Ypred reduces the uncertainty of Ytrue, H(Ytrue|Ypred) becomes smaller (h → 1)
and viceversa. For our example, the homogeneity score can be computed as:

from sklearn.metrics import homogeneity_score

print(homogeneity_score(digits['target'], Y))
0.739148799605

The digits['target'] array contains the true labels while Y contains the predictions (all
the functions we are going to use accept the true labels as the first parameter and the
predictions as the second one). The homogeneity score confirms that the clusters are rather
homogeneous, but there's still a moderate level of uncertainty because some clusters
contain wrong assignments. This method, together with the other ones, can be used to
search for the right number of clusters and tune up all supplementary hyperparameters
(such as the number of iterations or the metric function).

Completeness score
This score is complementary to the previous one. Its purpose is to provide a piece of
information about the assignment of samples belonging to the same class. More precisely, a
good clustering algorithm should assign all samples with the same true label to the same
cluster. From our previous analysis, we know that, for example, the digit 7 has been
wrongly assigned to both clusters 9 and 1; therefore, we expect a non-perfect completeness
score. The definition is symmetric to the homogeneity score:

Clustering Algorithms Chapter 7

[254]

The rationale is very intuitive. When H(Ypred|Ytrue) is low (c → 1), it means that the
knowledge of the ground truth reduces the uncertainty about the predictions. Therefore, if
we know that all the sample of subset A have the same label yi, we are quite sure that all the
corresponding predictions have been assigned to the same cluster. The completeness score
for our example is:

from sklearn.metrics import completeness_score

print(completeness_score(digits['target'], Y))
0.747718831945

Again, the value confirms our hypothesis. The residual uncertainty is due to a lack of
completeness because a few samples with the same label have been split into blocks that are
assigned to wrong clusters. It's obvious that a perfect scenario is characterized by having
both homogeneity and completeness scores equal to 1.

Adjusted Rand Index
This score is useful to compare the original label distribution with the clustering prediction.
Ideally, we'd like to reproduce the exact ground truth distribution, but in general, this is
very difficult in real-life scenarios. A way to measure the discrepancy is provided by the
Adjusted Rand Index. In order to compute this score, we need to define the auxiliary
variables:

a: Number of sample pairs (yi, yj) that have the same true label and that are
assigned to the same cluster
b: Number of sample pairs (yi, yj) that have a different true label and that are
assigned to different clusters

The Rand Index is defined as:

The Adjusted Rand Index is the Rand Index corrected for chance and it's defined as:

Clustering Algorithms Chapter 7

[255]

The RA measure is bounded between -1 and 1. A value close to -1 indicates a prevalence of
wrong assignments, while a value close to 1 indicates that the clustering algorithm is
correctly reproducing the ground truth distribution. The Adjusted Rand Score for our
example is:

from sklearn.metrics import adjusted_rand_score

print(adjusted_rand_score(digits['target'], Y))
0.666766395716

This value confirms that the algorithm is working well (because it's positive), but it can be
further optimized by trying to reduce the number of wrong assignments. The Adjusted
Rand Score is a very powerful tool when the ground truth is known and can be employed
as a single method to optimize all the hyperparameters.

Silhouette score
This measure doesn't need to know the ground truth and can be used to check, at the same
time, the intra-cluster cohesion and the inter-cluster separation. In order to define the
Silhouette score, we need to introduce two auxiliary functions. The first one is the average
intra-cluster distance of a sample xi belonging to a cluster Cj:

In the previous expression, n(k) is the number of samples assigned to the cluster Cj and d(a,
b) is a standard distance function (in the majority of cases, the Euclidean distance is chosen).
We need also to define the lowest inter-cluster distance which can be interpreted as the
average nearest-cluster distance. In the sample xi ∈ Cj, let's call Ct the nearest cluster;
therefore, the function is defined as:

Clustering Algorithms Chapter 7

[256]

The Silhouette score for sample xi is:

The value of s(xi), like for the Adjusted Rand Index, is bounded between -1 and 1. A value
close to -1 indicates that b(xi) << a(xi), so the average intra-cluster distance is greater than the
average nearest-cluster index and sample xi is wrongly assigned. Viceversa, a value close to
1 indicates that the algorithm achieved a very good level of internal cohesion and inter-
cluster separation (because a(xi) << b(xi)). Contrary to the other measure, the Silhouette score
isn't a cumulative function and must be computed for each sample. A feasible strategy is to
analyze the average value, but in this way, it's not possible to determine which clusters
have the highest impact on the result. Another approach (the most common), is based on
Silhouette plots, which display the score for each cluster in descending order. In the
following snippet, we create plots for four different values of n_clusters (3, 5, 10, 12):

import matplotlib.pyplot as plt
import matplotlib.cm as cm

import numpy as np

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples

fig, ax = plt.subplots(2, 2, figsize=(15, 10))

nb_clusters = [3, 5, 10, 12]
mapping = [(0, 0), (0, 1), (1, 0), (1, 1)]

for i, n in enumerate(nb_clusters):
 km = KMeans(n_clusters=n, random_state=1000)
 Y = km.fit_predict(X_train)

 silhouette_values = silhouette_samples(X_train, Y)

 ax[mapping[i]].set_xticks([-0.15, 0.0, 0.25, 0.5, 0.75, 1.0])
 ax[mapping[i]].set_yticks([])
 ax[mapping[i]].set_title('%d clusters' % n)
 ax[mapping[i]].set_xlim([-0.15, 1])
 ax[mapping[i]].grid()
 y_lower = 20

 for t in range(n):
 ct_values = silhouette_values[Y == t]

Clustering Algorithms Chapter 7

[257]

 ct_values.sort()

 y_upper = y_lower + ct_values.shape[0]

 color = cm.Accent(float(t) / n)
 ax[mapping[i]].fill_betweenx(np.arange(y_lower, y_upper), 0,
ct_values, facecolor=color, edgecolor=color)

 y_lower = y_upper + 20

The result is shown in the following graph:

Silhouette plots for different number of clusters

Clustering Algorithms Chapter 7

[258]

The analysis of a Silhouette plot should follow some common guidelines:

The width of each block must be proportional to the number of samples that are
expected to belong to the corresponding cluster. If the label distribution is
uniform, all the blocks must have a similar width. Any asymmetry indicates
wrong assignments. For example, in our case, we know that the right number of
clusters is ten, but a couple of blocks are thinner than the other ones. This means
that a cluster contains fewer samples than expected and the remaining ones have
been assigned to wrong partitions.
The shape of a block shouldn't be sharp and peaked (like a knife) because it
means that many samples have a low Silhouette score. The ideal (realistic)
scenario is made up of shapes similar to cigars with a minimum difference
between the highest and lowest values. Unfortunately, this is not always possible
to achieve, but it's always preferable to tune up the algorithm if the shapes are
like the ones plotted in the first diagram (three clusters).
The maximum Silhouette score should be close to 1. Lower values (like in our
example) indicate the presence of partial overlaps and wrong assignments.
Negative values must be absolutely avoided (or limited to a very small number
of samples) because they show a failure in the clustering process. Moreover, it's
possible to prove that convex clusters (like K-means hyperspheres) lead to higher
values. This is due to the properties of the commons distance functions (like the
Euclidean distance) that can suggest a low internal cohesion whenever the shape
of a cluster is concave (think about a circle and a half-moon). In this case, the
process of embedding the shape into a convex geometry leads to a lower density
and this negatively affects the Silhouette score.

In our particular case, we cannot accept having a number of clusters different from ten.
However, the corresponding Silhouette plot is not perfect. We know the reasons for such
imperfections (the structure of the samples and the high similarity of different digits) and
it's quite difficult to avoid them using an algorithm like K-means. The reader can try to
improve the performances by increasing the number of iterations, but in these cases, if the
result doesn't meet the requirements, it's preferable to adopt another method (like the
spectral clustering method, which can manage asymmetric clusters and more complex
geometries).

Clustering Algorithms Chapter 7

[259]

Fuzzy C-means
We have already talked about the difference between hard and soft clustering, comparing
K-means with Gaussian mixtures. Another way to address this problem is based on the
concept of fuzzy logic, which was proposed for the first time by Lotfi Zadeh in 1965 (for
further details, a very good reference is An Introduction to Fuzzy Sets, Pedrycz W., Gomide F.,
The MIT Press). Classic logic sets are based on the law of excluded middle that, in a
clustering scenario, can be expressed by saying that a sample xi can belong only to a single
cluster cj. Speaking more generally, if we split our universe into labeled partitions, a hard
clustering approach will assign a label to each sample, while a fuzzy (or soft) approach
allows managing a membership degree (in Gaussian mixtures, this is an actual
probability), wij which expresses how strong the relationship is between sample xi and
cluster cj. Contrary to other methods, by employing fuzzy logic it's possible to define
asymmetric sets that are not representable with continuous functions (such as trapezoids).
This allows for achieving further flexibility and an increased ability to adapt to more
complex geometries. In the following graph, there's an example of fuzzy sets:

Example of fuzzy sets representing the seniority level of an employee according to years of experience

Clustering Algorithms Chapter 7

[260]

The graph represents the seniority level of an employee given his/her years of experience.
As we want to cluster the entire population into three groups (Junior, Middle level, and
Senior), three fuzzy sets have been designed. We have assumed that a young employee is
keen and can quickly reach a Junior level after an initial apprenticeship period. The
possibility to work with complex problems allows him/her to develop skills that are
fundamental to allowing the transition between the Junior and Middle levels. After about
10 years, the employee can begin to consider himself/herself as a senior apprentice and, after
about 25 years, the experience is enough to qualify him/her as a full Senior until the end of
his/her career. As this is an imaginary example, we haven't tuned all the values up, but it's
easy to compare, for example, employee A with 9 years of experience with another
employee B with 18 years of experience. The former is about 50% Junior (decreasing), 90%
Middle level (reaching its climax), and 10% Senior (increasing). The latter, instead, is 0%
Junior (ending plateau), 30% Middle level (decreasing), and 60% Senior (increasing). In
both cases, the values are not normalized so always sum up to 1 because we are more
interested in showing the process and the proportions. The fuzziness level is lower in
extreme cases, while it becomes higher when two sets intersect. For example, at about 15%,
the Middle level and Senior are about 50%. As we're going to discuss, it's useful to avoid a
very high fuzziness when clustering a dataset because it can lead to a lack of precision as
the boundaries fade out, becoming completely fuzzy.

Fuzzy C-means is a generalization of a standard K-means, with a soft assignment and more
flexible clusters. The dataset to cluster (containing M samples) is represented by:

If we assume we have k clusters, it's necessary to define a matrix W ∈ ℜM × k containing the
membership degrees for each sample:

Clustering Algorithms Chapter 7

[261]

Each degree wij ∈ [0, 1] and all rows must be normalized so that they always sum up to 1. In
this way, the membership degrees can be considered as probabilities (with the same
semantics) and it's easier to make decisions with a prediction result. If a hard assignment is
needed, it's possible to employ the same approach normally used with Gaussian mixtures:
the winning cluster is selected by applying the argmax function. However, it's a good
practice to employ soft clustering only when it's possible to manage the vectorial output.
For example, the probabilities/membership degrees can be fed into a classifier in order to
yield more complex predictions.

As with K-means, the problem can be expressed as the minimization of a generalized inertia:

The constant m (m > 1) is an exponent employed to re-weight the membership degrees. A
value very close to 1 doesn't affect the actual values. Greater m values reduce their
magnitude. The same parameter is also used when recomputing the centroids and the new
membership degrees and can drive to a different clustering result. It's rather difficult to
define a global acceptable value; therefore, a good practice is to start with an average m (for
example, 1.5) and perform a grid search (it's possible to sample from a Gaussian or uniform
distribution) until the desired accuracy has been achieved.

Minimizing the previous expression is even more difficult than with a standard inertia;
therefore, a pseudo-Lloyd's algorithm is employed. After a random initialization, the
algorithm proceeds, alternating two steps (like an EM procedure) in order to determine the
centroids, and recomputing the membership degrees to maximize the internal cohesion.
The centroids are determined by a weighted average:

Clustering Algorithms Chapter 7

[262]

Contrary to K-means, the sum is not limited to the points belonging to a specific cluster
because the weight factor will force the farthest points (wij ≈ 0.0) to produce a contribution
close to 0. At the same time, as this is a soft-clustering algorithm, no exclusions are
imposed, to allow a sample to belong to any number of clusters with different membership
degrees. Once the centroids have been recomputed, the membership degrees must be
updated using this formula:

This function behaves like a similarity. In fact, when sample xi is very close to centroid μj

(and relatively far from μp with p ≠ j), the denominator becomes small and wij increases. The
exponent m directly influences the fuzzy partitioning, because when m ≈ 1 (m > 1), the
denominator is a sum of quasi-squared terms and the closest centroid can dominate the
sum, yielding to a higher preference for a specific cluster. When m >> 1, all the terms in the
sum tend to 1, producing a more flat weight distribution with no well-defined preference.
It's important to understand that, even when working with soft clustering, a fuzziness
excess leads to inaccurate decisions because there are no factors that push a sample to
clearly belong to a specific cluster. This means that problem is either ill-posed or, for
example, the number of expected clusters is too high and doesn't represent the real
underlying data structure. A good way to measure how much this algorithm is similar to a
hard-clustering approach (such as K-means) is provided by the normalized Dunn's
partitioning coefficient:

Clustering Algorithms Chapter 7

[263]

When Pc is bounded between 0 and 1, when it's close to 0, it means that the membership
degrees have a flat distribution and the level of fuzziness is the highest possible. On the
other side, if it's close to 1, each row of W has a single dominant value, while all the others
are negligible. This scenario resembles a hard-clustering approach. Higher Pc values are
normally preferable because, even without renouncing to a degree of fuzziness, it allows
making more precise decisions. Considering the previous example, Pc tends to 1 when the
sets don't intersect, while it becomes 0 (complete fuzziness) if, for example, the three
seniority levels are chosen to be identical and overlapping. Of course, we are interested in
avoiding such extreme scenarios by limiting the number of borderline cases. A grid search
can be performed by analyzing different numbers of clusters and m values (in the example,
we're going to do it with the MNIST handwritten digit dataset). A reasonable rule of thumb
is to accept Pc values higher than 0.8, but in some cases, that can be impossible. If we are
sure that the problem is well-posed, the best approach is to choose the configuration that
maximizes Pc, considering, however, that a final value less than 0.3-0.5 will lead to a very
high level of uncertainty because the clusters are extremely overlapping.

The complete Fuzzy C-means algorithm is:

Set a maximum number of iteration Nmax1.
Set a tolerance Thr2.
Set the value of k (number of expected clusters)3.
Initialize the matrix W(0) with random values and normalize each row, dividing it4.
by its sum
Set N = 05.
While N < Nmax or ||W(t) - W(t-1)|| > Thr:6.

N = N + 11.
For j = 1 to k:2.

Compute the centroid vectors μj1.

Recompute the weight matrix W(t)3.
Normalize the rows of W(t)4.

Clustering Algorithms Chapter 7

[264]

Example of fuzzy C-means with Scikit-Fuzzy
Scikit-Fuzzy (http:/ /pythonhosted. org/ scikit- fuzzy/) is a Python package based on
SciPy that allows implementing all the most important fuzzy logic algorithms (including
fuzzy C-means). In this example, we continue using the MNIST dataset, but with a major
focus on fuzzy partitioning. To perform the clustering, Scikit-Fuzzy implements the cmeans
method (in the skfuzzy.cluster package) which requires a few mandatory parameters:
data, which must be an array D ∈ ℜN × M (N is the number of features; therefore, the array
used with Scikit-Learn must be transposed); c, the number of clusters; the coefficient m,
error, which is the maximum tolerance; and maxiter, which is the maximum number of
iterations. Another useful parameter (not mandatory) is the seed parameter which allows
specifying the random seed to be able to easily reproduce the experiments. I invite the
reader to check the official documentation for further information.

The first step of this example is performing the clustering:

from skfuzzy.cluster import cmeans

fc, W, _, _, _, _, pc = cmeans(X_train.T, c=10, m=1.25, error=1e-6,
maxiter=10000, seed=1000)

The cmeans function returns many values, but for our purposes, the most important are:
the first one, which is the array containing the cluster centroids; the second one, which is
the final membership degree matrix; and the last one, the partition coefficient. In order to
analyze the result, we can start with the partition coefficient:

print(pc)
0.632070870735

This value informs us that the clustering is not very far from a hard assignment, but there's
still a residual fuzziness. In this particular case, such a situation may be reasonable because
we know that many digits are partially distorted and may appear very similar to other ones
(such as 1, 7, and 9). However, I invite the reader to try different values for m and check
how the partition coefficient changes. We can now display the centroids:

Centroids obtained by fuzzy C-means

http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/

Clustering Algorithms Chapter 7

[265]

All the different digit classes have been successfully found, but now, contrary to K-means,
we can check the fuzziness of a problematic digit (representing a 7, with index 7), as shown
in the following diagram:

Sample digit (a 7) selected to test the fuzziness

The membership degrees associated with the previous sample are:

print(W[:, 7])
[0.00373221 0.01850326 0.00361638 0.01032591 0.86078292 0.02926149
 0.03983662 0.00779066 0.01432076 0.0118298]

The corresponding plot is:

Fuzzy membership plot corresponding to a digit representing a 7

Clustering Algorithms Chapter 7

[266]

In this case, the choice of m has forced the algorithm to reduce the fuzziness. However, it's
still possible to see three smaller peaks corresponding to the clusters centered respectively
on 1, 8, and 5 (remember that the cluster indexes correspond to digits shown previously in
the centroid plot). I invite the reader to analyze the fuzzy partitioning of different digits and
replot it with different values of the m parameter. It will be possible to observe an increased
fuzziness (corresponding also to smaller partitioning coefficients) with larger m values. This
effect is due to a stronger overlap among clusters (observable also by plotting the centroids)
and could be useful when it's necessary to detect the distortion of a sample. In fact, even if
the main peak indicates the right cluster, the secondary ones, in descending order, inform
us how much the sample is similar to other centroids and, therefore, if it contains features
that are characteristics of other subsets.

Contrary to Scikit-Learn, in order to perform predictions, Scikit-Fuzzy implements the
cmeans_predict method (in the same package), which requires the same parameters of
cmeans, but instead of the number of clusters, c needs the final centroid array (the name of
the parameter is cntr_trained). The function returns as a first value the corresponding
membership degree matrix (the other ones are the same as cmeans). In the following
snippet, we repeat the prediction for the same sample digit (representing a 7):

import numpy as np

from skfuzzy.cluster import cmeans_predict

new_sample = np.expand_dims(X_train[7], axis=1)
Wn, _, _, _, _, _ = cmeans_predict(new_sample, cntr_trained=fc, m=1.25,
error=1e-6, maxiter=10000, seed=1000)

print(Wn.T)
[[0.00373221 0.01850326 0.00361638 0.01032591 0.86078292 0.02926149
 0.03983662 0.00779066 0.01432076 0.0118298]]

Scikit-Fuzzy can be installed using the pip install -U scikit-
fuzzy command. For further instructions, please visit http:/ /
pythonhosted. org/ scikit- fuzzy/ install. html

http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html
http://pythonhosted.org/scikit-fuzzy/install.html

Clustering Algorithms Chapter 7

[267]

Spectral clustering
One of the most common problems of K-means and other similar algorithms is the
assumption we have only hyperspherical clusters. This condition can be acceptable when
the dataset is split into blobs that can be easily embedded into a regular geometric
structure. However, it fails whenever the sets are not separable using regular shapes. Let's
consider, for example, the following bidimensional dataset:

Sinusoidal dataset

As we are going to see in the example, any attempt to separate the upper sinusoid from the
lower one using K-means will fail. The reason is quite obvious: a circle that contains the
upper set will also contain part of the (or the whole) lower set. Considering the criterion
adopted by K-means and imposing two clusters, the inertia will be minimized by a vertical
separation corresponding to about x0 = 0. Therefore, the resulting clusters are completely
mixed and only a dimension is contributing to the final configuration. However, the two
sinusoidal sets are well-separated and it's not difficult to check that, selecting a point xi

from the lower set, it's always possible to find a ball containing only samples belonging to
the same set. We have already discussed this kind of problem when Label Propagation
algorithms were discussed and the logic behind spectral clustering is essentially the same
(for further details, I invite the reader to check Chapter 2, Graph-Based Semi-Supervised
Learning).

Clustering Algorithms Chapter 7

[268]

Let's suppose we have a dataset X sampled from a data generating process pdata:

We can build a graph G = {V, E}, where the vertices are the points and the edges are
determined using an affinity matrix W. Each element wij must express the affinity between
sample xi and sample xj. W is normally built using two different approaches:

KNN: In this case, we can build the number of neighbors to take into account for
each point xi. W can be built as a connectivity matrix (expressing only the existence
of a connection between two samples) if we adopt the criterion:

Alternatively, it's possible to build a distance matrix:

Radial basis function (RBF): The previous methods can lead to graphs which are
not fully connected because samples can exist that have no neighbors. In order to
obtain a fully connected graph, it's possible to employ an RBF (this approach has
also been used in the Kohonen map algorithm):

The γ parameter allows controlling the amplitude of the Gaussian function,
reducing or increasing the number of samples with a high weight (so actual
neighbors). However, a weight is assigned to all points and the resulting graph
will always be connected (even if many elements are close to zero).

Clustering Algorithms Chapter 7

[269]

In both cases, the elements of W will represent a measure of affinity (or closeness) between
points and no restrictions are imposed on the global geometry (contrary to K-means). In
particular, using a KNN connectivity matrix, we are implicitly segmenting the original
dataset into smaller regions with a high level of internal cohesion. The problem that we
need to solve now is to find out a way to merge all the regions belonging to the same
cluster. The approach we are going to present here has been proposed by Normalized Cuts
and Image Segmentation, J. Shi and J. Malik, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 22, 08/2000, and it's based on the normalized graph Laplacian:

The matrix D, called the degree matrix, is the same as discussed in Chapter 3, Graph-Based
Semi-Supervised Learning and it's defined as:

It's possible to prove the following properties (the formal proofs are omitted but they can
be found in texts such as Functions and Graphs Vol. 2, Gelfand I. M., Glagoleva E. G., Shnol E.
E., The MIT Press:

The eigenvalues λi and the eigenvectors vi of Ln can be found by solving the
problem Lv = λDv, where L is the unnormalized graph Laplacian L = D - W
Ln always has an eigenvalue equal to 0 (with a multiplicity k) with a
corresponding eigenvector vo = (1, 1, ..., 1)
As G is undirected and all wij ≥ 0, the number of connected components k of G is
equal to the multiplicity of the null eigenvalue

In other words, the normalized graph Laplacian encodes the information about the number
of connected components and provides us with a new reference system where the clusters
can be separated using regular geometric shapes (normally hyperspheres). To better
understand how this approach works without a non-trivial mathematical approach, it's
important to expose another property of Ln.

Clustering Algorithms Chapter 7

[270]

From linear algebra, we know that each eigenvalue λ of a matrix M ∈ ℜn × n spans a
corresponding eigenspace, which is a subset of ℜn containing all eigenvectors associated
with λ plus the null vector. Moreover, given a set S ⊆ ℜn and a countable subset C (it's
possible to extend the definition to generic subsets but in our context the datasets are
always countable), we can define a vector v ∈ ℜn as an indicator vector, if v(i) = 1 if the vector
ci ∈ S and v(i) = 0 otherwise. If we consider the null eigenvalues of Ln and we assume that
their number is k (corresponding to the multiplicity of the eigenvalue 0), it's possible to
prove that the corresponding eigenvectors are indicator vectors for eigenspaces spanned by
each of them. From the previous statements, we know that these eigenspaces correspond to
the connected components of the graph G; therefore, performing a standard clustering (like
K-means or K-means++) with the points projected into these subspaces allows for an easy
separation with symmetric shapes.

As Ln ∈ ℜM × M, its eigenvectors vi ∈ ℜM. Selecting the first k eigenvectors, it's possible to build
a matrix A ∈ ℜM × k:

Each row of A, aj ∈ ℜk can be considered as the projection of an original sample xj in the low-
dimensional subspace spanned by each of the null eigenvalues of Ln. At this point, the
separability of the new dataset A = {aj} depends only on the structure of the graph G and, in
particular, on the number of neighbors or the γ parameter for RBFs. As in many other
similar cases, it's impossible to define a standard value suitable for all problems, above all
when the dimensionality doesn't allow a visual inspection. A reasonable approach should
start with a small number of neighbors (for example, five) or γ = 1.0 and increase the values
until a performance metric (such as the Adjusted Rand Index) reaches its maximum.
Considering the nature of the problems, it can also be useful to measure the homogeneity
and the completeness because these two measures are more sensitive to irregular geometric
structures and can easily show when the clustering is not separating the sets correctly. If the
ground truth is unknown, the Silhouette score can be employed to assess the intra-cluster
cohesion and the inter-cluster separation as functions of all hyperparameters (number of
clusters, number of neighbors, or γ).

Clustering Algorithms Chapter 7

[271]

The complete Shi-Malik spectral clustering algorithm is:

Select a graph construction a method between KNN (1) and RBF (2):1.
Select parameter k1.
Select parameter γ2.

Select the expected number of clusters Nk.2.
Compute the matrices W and D.3.
Compute the normalized graph Laplacian Ln.4.
Compute the first k eigenvectors of Ln.5.
Build the matrix A.6.
Cluster the rows of A using K-means++ (or any other symmetric algorithm). The7.
output of this process is this set of clusters: Ckm

(1), Ckm
(2), ..., Ckm

(Nk) .

Example of spectral clustering with Scikit-Learn
In this example, we are going to use the sinusoidal dataset previously shown. The first step
is creating it (with 1,000 samples):

import numpy as np

from sklearn.preprocessing import StandardScaler

nb_samples = 1000

X = np.zeros(shape=(nb_samples, 2))

for i in range(nb_samples):
 X[i, 0] = float(i)
 if i % 2 == 0:
 X[i, 1] = 1.0 + (np.random.uniform(0.65, 1.0) * np.sin(float(i) /
100.0))
 else:
 X[i, 1] = 0.1 + (np.random.uniform(0.5, 0.85) * np.sin(float(i) /
100.0))
ss = StandardScaler()
Xs = ss.fit_transform(X)

Clustering Algorithms Chapter 7

[272]

At this point, we can try to cluster it using K-means (with n_clusters=2):

from sklearn.cluster import KMeans

km = KMeans(n_clusters=2, random_state=1000)
Y_km = km.fit_predict(Xs)

The result is shown in the following graph:

K-means clustering result using the sinusoidal dataset

As expected, K-means isn't able to separate the two sinusoids. The reader is free to try with
different parameters, but the result will always be unacceptable because K-means
bidimensional clusters are circles and no valid configurations exist. We can now employ
spectral clustering using an affinity matrix based on the KNN algorithm (in this case, Scikit-
Learn can produce a warning because the graph is not fully connected, but this normally
doesn't affect the results). Scikit-Learn implements the SpectralClustering class, whose
most important parameters are n_clusters, the number of expected clusters; affinity,
which can be either 'rbf' or 'nearest_neighbors'; gamma (only for RBF); and
n_neighbors (only for KNN). For our test, we have chosen to have 20 neighbors:

from sklearn.cluster import SpectralClustering

sc = SpectralClustering(n_clusters=2, affinity='nearest_neighbors',
n_neighbors=20, random_state=1000)
Y_sc = sc.fit_predict(Xs)

Clustering Algorithms Chapter 7

[273]

The result of the spectral clustering is shown in the following graph:

Spectral clustering result using the sinusoidal dataset

As expected, the algorithm was able to separate the two sinusoids perfectly. As an exercise,
I invite the reader to apply this method to the MNIST dataset, using both an RBF (with
different gamma values) and KNN (with different numbers of neighbors). I also suggest to
replot the t-SNE diagram and compare all the assignment errors. As the clusters are strictly
non-convex, we don't expect a high Silhouette score. Other useful exercises can be: drawing
the Silhouette plot and checking the result, assigning ground truth labels, and measuring
the homogeneity and the completeness.

Summary
In this chapter, we presented some fundamental clustering algorithms. We started with
KNN, which is an instance-based method that restructures the dataset to find the most
similar samples given a query point. We discussed three approaches: a naive one, which is
also the most expensive in terms of computational complexity, and two strategies based
respectively on the construction of a KD Tree and a Ball Tree. These two data structures can
dramatically improve performance even when the number of samples is very large.

Clustering Algorithms Chapter 7

[274]

The next topic was a classic algorithm: K-means, which is a symmetric partitioning
strategy, comparable to a Gaussian mixture with variances close to zero, that can solve
many real-life problems. We discussed both a vanilla algorithm, which wasn't able to find a
valid sub-optimal solution, and an optimized initialization method, called K-means++,
which was able to speed up the convergence towards solutions quite close to the global
minimum. In the same section, we also presented some evaluation methods that can be
employed to assess the performance of a generic clustering algorithm.

We also presented a soft-clustering method called fuzzy C-means, which resembles the
structure of a standard K-means, but allows managing membership degrees (analogous to
probabilities) that encode the similarity of a sample with all cluster centroids. This kind of
approach allows processing the membership vectors in a more complex pipeline, where the
output of a clustering process, for example, is fed into a classifier.

One of the most important limitations of K-means and similar algorithms is the symmetric
structure of the clusters. This problem can be solved with methods such as spectral
clustering, which is a very powerful approach based on the dataset graph and is quite
similar to non-linear dimensionality reduction methods. We analyzed an algorithm
proposed by Shi and Malik, showing how it can easily separate a non-convex dataset.

In the next chapter, Chapter 8, Ensemble Learning, we're going to discuss some common
ensemble learning methods, which are based on the use of a large set of weak classifiers.
We focused on their peculiarities, comparing the performances of different ensembles with
single strong classifiers.

8
Ensemble Learning

In this chapter, we are going to discuss some important algorithms that exploit different
estimators to improve the overall performance of an ensemble or committee. These
techniques work either by introducing a medium level of randomness in every estimator
belonging to a predefined set or by creating a sequence of estimators where, each new
model is forced to improve the performance of the previous ones. These techniques allow
us to reduce both the bias and the variance (thereby increasing validation accuracy) when
employing models with a limited capacity or more prone to overfit the training set.

In particular, the topics covered in the chapter are as follows:

Introduction to ensemble learning
A brief introduction to decision trees
Random forest and extra randomized forests
AdaBoost (algorithms M1, SAMME, SAMME.R, and R2)
Gradient boosting
Ensembles of voting classifiers, stacking, and bucketing

Ensemble learning fundamentals
The main concept behind ensemble learning is the distinction between strong and weak
learners. In particular, a strong learner is a classifier or a regressor which has enough
capacity to reach the highest potential accuracy, minimizing both bias and variance (thus
achieving also a satisfactory level of generalization). More formally, if we consider a
parametrized binary classifier f(x; θ), we define it as a strong learner if the following is true:

Ensemble Learning Chapter 8

[276]

This expression can appear cryptic; however, it's very easy to understand. It simply
expresses the concept that a strong learner is theoretically able to achieve any non-null
probability of misclassification with a probability greater than or equal to 0.5 (that is, the
threshold for a binary random guess). All the models normally employed in Machine
Learning tasks are normally strong learners, even if their domain can be limited (for
example, a logistic regression cannot solve non-linear problems). On the other hand, a weak
learner is a model that is generically able to achieve an accuracy slightly higher than a
random guess, but whose complexity is very low (they can be trained very quickly, but can
never be used alone to solve complex problems). There is a formal definition also in this
case, but it's simpler to consider that the real main property of a weak learner is a limited
ability to achieve a reasonable accuracy. In some very particular and small regions of the
training space, a weak learner could reach a low probability of misclassification, but in the
whole space its performance is only a little bit superior to a random guess. The previous
one is more a theoretical definition than a practice one, because all the models currently
available are normally quite better than a random oracle. However, an ensemble is defined
as a set of weak learners that are trained together (or in a sequence) to make up a
committee. Both in classification and regression problems, the final result is obtained by
averaging the predictions or employing a majority vote.

At this point, a reasonable question is—Why do we need to train many weak learners
instead of a single strong one? The answer is double—in ensemble learning, we normally
work with medium-strong learners (such as decision trees or support vector machines
(SVMs)) and we use them as a committee to increase the overall accuracy and reduce the
variance thanks to a wider exploration of the sample space. In fact, while a single strong
learner is often able to overfit the training set, it's more difficult to keep a high accuracy
over the whole sample subspace without saturating the capacity. In order to avoid
overfitting, a trade-off must be found and the result is a less accurate classifier/regressor
with a simpler separation hyperplane. The adoption of many weak learners (that are
actually quite strong, because even the simplest models are more accurate than a random
guess), allows us to force them to focus only on a limited subspace, so as to be able to reach
a very high local accuracy with a low variance. The committee, employing an averaging
technique, can easily find out which prediction is the most suitable. Alternatively, it can ask
each learner to vote, assuming that a successful training process must always lead the
majority to propose the most accurate classification or prediction.

Ensemble Learning Chapter 8

[277]

The most common approaches to ensemble learning are as follows:

Bagging (bootstrap aggregating): This approach trains n weak learners fw1, fw2,
..., fwn (very often they are decision trees) using n training sets (D1, D2, ..., Dn)
created by randomly sampling the original dataset D. The sampling process
(called bootstrap sampling) is normally performed with replacement, so as to
determine different data distributions. Moreover, in many real algorithms, the
weak learners are also initialized and trained using a medium degree of
randomness. In this way, the probability of having clones becomes very small
and, at the same, time it's possible to increase the accuracy by keeping the
variance under a tolerable threshold (thus avoiding overfitting).
Boosting: This is an alternative approach that builds an incremental ensemble
starting with a single weak learner fw1 and adding a new one fwi at each
iteration. The goal is to reweight the dataset, so as to force the new learner to
focus on the samples that were previously misclassified. This strategy yields a
very high accuracy because the new learners are trained with a positively-biased
dataset that allows them to adapt to the most difficult internal conditions.
However, in this way, the control over the variance is weakened and the
ensemble can more easily overfit the training set. It's possible to mitigate this
problem by reducing the complexity of the weak learners or imposing a
regularization constraint.
Stacking: This method can be implemented in different ways but the philosophy
is always the same—use different algorithms (normally a few strong learners)
trained on the same dataset and filter the final result using another classifier,
averaging the predictions or using a majority vote. This strategy can be very
powerful if the dataset has a structure that can be partially managed with
different approaches. Each classifier or regressor should discover some data
aspects that are peculiar; that's why the algorithms must be structurally different.
For example, it can be useful to mix a decision tree with a SVM or linear and
kernel models. The evaluation performed on the test set should clearly show the
prevalence of a classifier only in some cases. If an algorithm is finally the only
one that produces the best prediction, the ensemble becomes useless and it's
better to focus on a single strong learner.

Ensemble Learning Chapter 8

[278]

Random forests
A random forest is the bagging ensemble model based on decision trees. If the reader is not
familiar with this kind of model, I suggest reading the Introduction to Machine Learning,
Alpaydin E., The MIT Press, where a complete explanation can be found. However, for our
purposes, it's useful to provide a brief explanation of the most important concepts. A
decision tree is a model that resembles a standard hierarchical decision process. In the
majority of cases, a special family is employed, called binary decision trees, as each decision
yields only two outcomes. This kind of tree is often the simplest and most reasonable choice
and the training process (which consists in building the tree itself) is very intuitive. The root
contains the whole dataset:

Each level is obtained by applying a selection tuple, defined as follows:

The first index of the tuple corresponds to an input feature, while the threshold ti is a value
chosen in the specific range of each feature. The application of a selection tuple leads to a
split and two nodes that contain each a non-overlapping subset of the input dataset. In the
following diagram, there's an example of a slip performed at the level of the root (initial
split):

Example of initial split in a decision tree

Ensemble Learning Chapter 8

[279]

The set X is split into two subsets defined as X11 and X12 whose samples have respectively
the feature with i=2 less or greater than the threshold ti=0.8. The intuition behind
classification decision trees is to continue splitting until the leaves contain samples
belonging to a single category yi (these nodes are defined as pure). In this way, a new
sample xj can traverse the tree with a computation complexity O(log(M)) and reach a final
node that determines its category. In a very similar way, it's possible to build regression
trees whose output is continuous (even if, for our purposes, we are going to consider only
classification scenarios).

At this point, the main problem is how to perform each split. We cannot pick any feature
and any threshold, because the final tree will be completely unbalanced and very deep. Our
goal is to find the optimal selection tuple at each node considering the final goal, which is
classification into discrete categories (the process is almost identical for regressions). The
technique is very similar to a problem based on a cost function that must be minimized,
but, in this case, we operate locally, applying an impurity measure proportional to the
heterogeneity of a node. A high impurity indicates that samples belonging to many
different categories are present, while an impurity equal to 0 indicates that a single category
is present. As we need to continue splitting until a pure leaf appears, the optimal choice is
based on a function that scores each selection tuple, allowing us to select the one that yields
the lowest impurity (theoretically, the process should continue until all the leaves are pure,
but normally a maximum depth is provided, so as to avoid excessive complexity). If there
are p classes, the category set can be defined as follows:

A very common impurity measure is called Gini impurity and it's based on the probability
of a misclassification if a sample is categorized using a label randomly chosen from the
node subset distribution. Intuitively, if all the samples belong to the same category, any
random choice leads to a correct classification (and the impurity becomes 0). On the other
side, if the node contains samples from many categories, the probability of a
misclassification increases. Formally, the measure is defined as follows:

Ensemble Learning Chapter 8

[280]

The subset is indicated by Xk and p(j|k) is obtained as the ratio of the samples belonging to
the class j over the total number of samples. The selection tuple must be chosen so as to
minimize the Gini impurity of the children. Another common approach is the cross-entropy
impurity, defined as follows:

The main difference between this measure and the previous one is provided by some
fundamental information theory concepts. In particular, the goal we want to reach is the
minimization of the uncertainty, which is measured using the (Cross-)Entropy. If we have a
discrete distribution and all the samples belong to the same category, a random choice is
can fully describe the distribution; therefore, the uncertainty is null. On the contrary, if, for
example, we have a fair die, the probability of each outcome is 1/6 and the corresponding
entropy is about 2.58 bits (if the base of the logarithm is 2). When the nodes become purer
and purer, the cross-entropy impurity decreases and reaches 0 in an optimal scenario.
Moreover, adopting the concept of mutual information, we can define the information gain
obtained after a split has been performed:

Given a node, we want to create two children to maximize the information gain. In other
words, by choosing the cross-entropy impurity we implicitly grow the tree until the
information gain becomes null. Considering again the example of a fair die, we need 2.58
bits of information to decide which is the right outcome. If, instead, the die is loaded and
the probability of an outcome is 1.0, we need no information to make a decision. In a
decision tree, we'd like to resemble this situation, so that, when a new sample has
completely traversed the tree, we don't need any further information to classify it. If a
maximum depth is imposed, the final information gain cannot be null. This means that we
need to pay an extra cost to finalize the classification. This cost is proportional to the
residual uncertainty and should be minimized to increase the accuracy.

Other methods can also be employed (even if Gini and cross-entropy are the most common)
and I invite the reader to check the references for further information. However, at this
point, a consideration naturally arises. Decision trees are simple models (they are not weak
learners!), but the procedure for building them is more complex than, for example, training
a logistic regression or a SVM. Why are they so popular? One reason is already clear—they
represent a structural process that can be shown using a diagram; however, this is not
enough to justify their usage. Two important properties allow the employment of decision
trees without any data preprocessing.

Ensemble Learning Chapter 8

[281]

In fact, it's easy to understand that, contrary to other methods, there's no need for any
scaling or whitening and it's possible to use continuous and categorical features at the same
time. For example, if in a bidimensional dataset a feature has a variance equal to 1 and the
other equal to 100, the majority of classifiers will achieve a low accuracy; therefore, a
preprocessing step becomes necessary. In a decision tree, a selection tuple has the same
effect also when the ranges are very different. It goes without saying that a split can be
easily performed considering also categorical features and there's no need, for example, to
use techniques such as one-hot encoding (which is necessary in most cases to avoid
generalization errors). However, unfortunately, the separation hypersurface obtained with
a decision tree is normally much more complex than the one obtained using other
algorithms and this drives to a higher variance with a consequential loss of generalization
ability.

To understand the reason, it's possible to imagine a very simple bidimensional dataset
made up of two blobs located in the second and fourth quarters. The first set is
characterized by (x < 0, y > 0), but the second one by (x < 0, y < 0). Let's also suppose that we
have a few outliers, but our knowledge about the data generating process is not enough to
qualify them as noisy samples (the original distribution can have tails that are extended
over the axes; for example, it may be a mixture of two Gaussians). In this scenario, the
simplest separation line is a diagonal splitting the plane into two subplanes containing
regions belonging also to the first and third quarters. However, this decision can be made
only considering both coordinates at the same time. Using a decision tree, we need to split
initially, for example, using the first feature and again with the second one. The result is a
piece-wise separation line (for example, splitting the plane into the region corresponding to
the second quarter and its complement), leading to a very high classification variance.
Paradoxically, a better solution can be obtained with an incomplete tree (limiting the
process, for example, to a single split) and with the selection of the y-axis as the separation
line (this is why it's important to impose a maximum depth), but the price you pay is an
increased bias (and a consequently worse accuracy).

Another important element to consider when working with decision trees (and related
models) is the maximum depth. It's possible to grow the tree until the all leaves are pure,
but sometimes it's preferable to impose a maximum depth (and, consequently, a maximum
number of terminal nodes). A maximum depth equal to 1 drives to binary models called
decision stumps, which don't allow any interaction among the features (they can simply be
represented as If... Then conditions). Higher values yield more terminal nodes and allow an
increasing interaction among features (it's possible to think about a combination of many
If... Then statements together with AND logical operators). The right value must be tuned
considering every single problem and it's important to remember that very deep trees are
more prone to overfitting than pruned ones.

Ensemble Learning Chapter 8

[282]

In some contexts, it's preferable to achieve a slightly worse accuracy with a higher
generalization ability and, in those case, a maximum depth should be imposed. The
common tool to determine the best value is always a grid search together with a cross-
validation technique.

Random forests provide us with a powerful tool to solve the bias-variance trade-off
problem. They were proposed by L. Breiman (in Breiman L., Random Forests, Machine
Learning, 45, 2001) and their logic is very simple. As already explained in the previous
section, the bagging method starts with the choice of the number of weak learners, Nc. The
second step is the generation of Nc datasets (called bootstrap samples) D1, D2, ..., DNc:

Each decision tree is trained using the corresponding dataset using a common impurity
criterion; however, in a random forest, in order to reduce the variance, the selection splits
are not computed considering all the features, but only via a random subset containing a
quite smaller number of features (common choices are the rounded square root, log2 or
natural logarithm). This approach indeed weakens each learner, as the optimality is
partially lost, but allows us to obtain a drastic variance reduction by limiting the over-
specialization. At the same time, a bias reduction and an increased accuracy are a result of
the ensemble (in particular for a large number of estimators). In fact, as the learners are
trained with slightly different data distributions, the average of a prediction converges to
the right value when Nc → ∞ (in practice, it's not always necessary to employ a very large
number of decision trees, however, the correct value must be tuned using a grid search
with cross-validation). Once all the models, represented with a function di(x), have been
trained, the final prediction can be obtained as an average:

Alternatively, it's possible to employ a majority vote (but only for classifications):

These two methods are very similar and, in most cases, they yield the same result.
However, averaging is more robust and allows an improved flexibility when the samples
are almost on the boundaries. Moreover, it can be used for both classification and
regression tasks.

Ensemble Learning Chapter 8

[283]

Random forests limit their randomness by picking the best selection tuple from a smaller
sample subset. In some cases, for example, when the number of features is not very large,
this strategy drives to a minimum variance reduction and the computational cost is no
longer justified by the result. It's possible to achieve better performances with a variant
called extra-randomized trees (or simply extra-trees). The procedure is almost the same;
however, in this case, before performing a split, n random thresholds are computed (for
each feature) and the one which leads to the least impurity is chosen. This approach further
weakens the learners but, at the same time, reduces residual variance and prevents
overfitting. The dynamic is not very different from many techniques such as regularization
or dropout (we're going to discuss this approach in the next chapter); in fact, the extra-
randomness reduces the capacity of the model, forcing it to a more linearized solution
(which is clearly sub-optimal). The price to pay for this limitation is a consequent bias
worsening, which, however, is compensated by the presence of many different learners.
Even with random splits, when Nc is large enough, the probability of a wrong classification
(or regression prediction) becomes smaller and smaller because both the average and the
majority vote tend to compensate the outcome of trees whose structure is strongly sub-
optimal in particular regions. This result is easier to obtain, in particular, when the number
of training samples is large. In this case, in fact, sampling with replacement leads to slightly
different distributions that could be considered (even if this is not formally correct) as
partially and randomly boosted. Therefore, every weak learner will implicitly focus on the
whole dataset with extra-attention to a smaller subset that, however, is randomly selected
(differently from actual boosting).

The complete random forest algorithm is as follows:

Set the number of decision trees Nc1.
For i=1 to Nc:2.

Create a dataset Di sampling with replacements from the original1.
dataset X

Set the number of features to consider during each split Nf (for example, sqrt(n))3.
Set an impurity measure (for example, Gini impurity)4.
Define an optional maximum depth for each tree5.
For i=1 to Nc:6.

Random forest:1.
Train the decision tree di(x) using the dataset Di and1.
selecting the best split among Nf features randomly sampled

Ensemble Learning Chapter 8

[284]

Extra-trees:2.
Train the decision tree di(x) using the dataset Di, computing1.
before each split n random thresholds and selecting the one
that yields the least impurity

Define an output function averaging the single outputs or employing a majority4.
vote

Example of random forest with Scikit-Learn
In this example, we are going to use the famous Wine dataset (178 13-dimensional samples
split into three classes) that is directly available in Scikit-Learn. Unfortunately, it's not so
easy to find good and simple datasets for ensemble learning algorithms, as they are
normally employed with large and complex sets that require too long a computational time.
As the Wine dataset is not particularly complex, the first step is to assess the performances
of different classifiers (logistic regression, decision tree, and polynomial SVM) using a k-
fold cross-validation:

import numpy as np

from sklearn.datasets import load_wine
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC

X, Y = load_wine(return_X_y=True)

lr = LogisticRegression(max_iter=1000, random_state=1000)
print(np.mean(cross_val_score(lr, X, Y, cv=10)))
0.956432748538

dt = DecisionTreeClassifier(criterion='entropy', random_state=1000)
print(np.mean(cross_val_score(dt, X, Y, cv=10)))
0.933298933609

svm = SVC(kernel='poly', random_state=1000)
print(np.mean(cross_val_score(svm, X, Y, cv=10)))
0.961403508772

Ensemble Learning Chapter 8

[285]

As expected, the performances are quite good, with a top value of average cross-validation
accuracy equal to about 96% achieved by the polynomial (the default degree is 3) SVM. A
very interesting element is the performance of the decision tree, the worst of the set (with
Gini impurity it's lower). Even if it's not correct, we can define this model as the weakest of
the group and it's a perfect candidate for our bagging test. We can now fit a Random Forest
by instantiating the class RandomForestClassifier and selecting n_estimators=50 (I
invite the reader to try different values):

from multiprocessing import cpu_count

from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=50, n_jobs=cpu_count(),
random_state=1000)
print(np.mean(cross_val_score(rf, X, Y, cv=10)))
0.983333333333

As expected, the average cross-validation accuracy is the highest, about 98.3%. Therefore,
the random forest has successfully found a global configuration of decision trees, so as to
specialize them in almost any region of the sample space. The parameter
n_jobs=cpu_count() tells Scikit-Learn to parallelize the training process using all of the
CPU cores available in the machine.

To better understand the dynamics of this model, it's useful to plot the cross-validation
accuracy as a function of the number of trees:

Cross-validation accuracy of a random forest as a function of the number of trees

Ensemble Learning Chapter 8

[286]

It's not surprising to observe some oscillations and a plateau when the number of trees
becomes greater at about 320. The effect of the randomness can cause a performance loss,
even increasing the number of learners. In fact, even if the training accuracy grows, the
validation accuracy on different folds can be affected by an over-specialization. Moreover,
in this case, it's very interesting to notice that the top accuracy is achievable with 50 trees
instead of 400 or more. For this reason, I always suggest performing at least a grid search,
in order not only to achieve the best accuracy but also to minimize the complexity of the
model.

Another important element to consider when working with decision trees and random
forests is feature importance (also called Gini importance when this criterion is chosen),
which is a measure proportional to the impurity reduction that a particular feature allows
us achieve. For a decision tree, it is defined as follows:

In the previous formula, n(j) denotes the number of samples reaching the node j (the sum
must be extended to all nodes where the feature is chosen) and ΔIi is the impurity reduction
achieved at node j after splitting using the feature i. In a random forest, the importance
must be computed by averaging over all trees:

After fitting a model (decision tree or random forest), Scikit-Learn outputs the feature
importance vector in the feature_importances_ instance variable. In the following
graph, there's a plot showing the importance of each feature (the labels can be obtained
with the command load_wine()['feature_names']) in descending order:

Ensemble Learning Chapter 8

[287]

Feature importances for Wine dataset

We don't want to analyze the chemical meaning of each element, but it's clear that, for
example, the presence of proline and the color intensity are much more important than the
presence of non-flavonoid phenols. As the model is working with features that are
semantically independent (it's not the same for the pixels of an image), it's possible to
reduce the dimensionality of a dataset by removing all those features whose importance
doesn't have a high impact on the final accuracy. This process, called feature selection,
should be performed using more complex statistical techniques, such as Chi-squared, but
when a classifier is able to produce an importance index, it's also possible to use a Scikit-
Learn class called SelectFromModel. Passing an estimator (that can be fitted or not) and a
threshold, it's possible to transform the dataset by filtering out all the features whose value
is below the threshold. Applying it to our model and setting a minimum importance equal
to 0.02, we get the following:

from sklearn.feature_selection import SelectFromModel

sfm = SelectFromModel(estimator=rf, prefit=True, threshold=0.02)

Ensemble Learning Chapter 8

[288]

X_sfm = sfm.transform(X)

print(X_sfm.shape)
(178, 10)

The new dataset now contains 10 features instead of the 13 of the original Wine dataset (for
example., it's easy to verify that ash and non-flavonoid phenols have been removed). Of
course, as for any other dimensionality reduction method, it's always suggested you verify
the final accuracy with a cross-validation and make decisions only if the trade-off between
loss of accuracy and complexity reduction is reasonable.

AdaBoost
In the previous section, we have seen that sampling with a replacement leads to datasets
where the samples are randomly reweighted. However, if M is very large, most of the
samples will appear only once and, moreover, all the choices are totally random. AdaBoost
is an algorithm proposed by Schapire and Freund that tries to maximize the efficiency of
each weak learner by employing adaptive boosting (the name derives from this). In
particular, the ensemble is grown sequentially and the data distribution is recomputed at
each step so as to increase the weight of those samples that were misclassified and reduce
the weight of the ones that were correctly classified. In this way, every new learner is forced
to focus on those regions that were more problematic for the previous estimators. The
reader can immediately understand that, contrary to random forests and other bagging
methods, boosting doesn't rely on randomness to reduce the variance and improve the
accuracy. Rather, it works in a deterministic way and each new data distribution is chosen
with a precise goal. In this paragraph, we are going to consider a variant called Discrete
AdaBoost (formally AdaBoost.M1), which needs a classifier whose output is thresholded
(for example, -1 and 1). However, real-valued versions (whose output behaves like a
probability) have been developed (a classical example is shown in Additive Logistic
Regression: a Statistical View of Boosting, Friedman J., Hastie T., Tibshirani R., Annals of
Statistics, 28/1998). As the main concepts are always the same, the reader interested in the
theoretical details of other variants can immediately find them in the referenced papers.

Ensemble Learning Chapter 8

[289]

For simplicity, the training dataset of AdaBoost.M1 is defined as follow:

This choice is not a limitation because, in multi-class problems, a one-versus-the-rest
strategy can be easily employed, even if algorithms like AdaBoost.SAMME guarantee a
much better performance. In order to manipulate the data distribution, we need to define a
weight set:

The weight set allows defining an implicit data distribution D(t)(x), which initially is
equivalent to the original one but that can be easily reshaped by changing the values wi.
Once the family and the number of estimators, Nc, have been chosen, it's possible to start
the global training process. The algorithm can be applied to any kind of learner that is able
to produce thresholded estimations (while the real-valued variants can work with
probabilities, for example, obtained through the Platt scaling method).

The first instance d1(x) is trained with the original dataset, which means with the data
distribution D(1)(x). The next instances, instead, are trained with the reweighted
distributions D(2)(x), D(3)(x), ..., D(Nc)(x). In order to compute them, after each training
process, the normalized weighted error sum is computed:

This value is bounded between 0 (no misclassifications) and 1 (all samples have been
misclassified) and it's employed to compute the estimator weight α(t):

Ensemble Learning Chapter 8

[290]

To understand how this function works, it's useful to consider its plot (shown in the
following diagram):

Estimator weight plot as a function of the normalized weighted error sum

This diagram unveils an implicit assumption: the worst classifier is not the one that
misclassifies all samples (ε(t) = 1), but a totally random binary guess (corresponding to ε(t) =
0.5). In this case, α(t) is null and, therefore, the outcome if the estimator is completely
discarded. When ε(t) < 0.5, a boosting is applied (between about 0.05 and 0.5, the trend is
almost linear), but it becomes greater than 1 only when ε(t) < about 0.25 (larger values drive
to a penalty because the weight is smaller than 1). This value is a threshold to qualify an
estimator as trusted or very strong and α(t) → +∞ in the particular case of a perfect
estimator (no errors).

Ensemble Learning Chapter 8

[291]

In practice, an upper bound should be imposed in order to avoid overflows or divisions by
zero. Instead, when ε(t) > 0.5, the estimator is unacceptably weak, because it's worse than a
random guess and the resulting boosting would be negative. To avoid this problem, real
implementations must invert the output of such estimators, transforming them de facto into
learners with ε(t) < 0.5 (this is not an issue, as the transformation is applied to all output
values in the same way). It's important to consider that this algorithm shouldn't be directly
applied to multi-class scenarios because, as pointed out in Multi-class AdaBoost, Zhu J.,
Rosset S., Zou H., Hastie T., 01/2006, the threshold 0.5 corresponds to a random guess
accuracy only for binary choices. When the number of classes is larger than two, a random
estimator outputs a class with a probability 1/Ny (where Ny is the number of classes) and,
therefore, AdaBoost.M1 will boost the classifiers in a wrong way, yielding poor final
accuracies (the real threshold should be 1 - 1/Ny, which is larger than 0.5 when Ny > 2). The
AdaBoost.SAMME algorithm (implemented by Scikit-Learn) has been proposed to solve
this problem and exploit the power of boosting also in multi-class scenarios.

The global decision function is defined as follows:

In this way, as the estimators are added sequentially, the importance of each of them will
decrease while the accuracy of di(x) increases. However, it's also possible to observe a
plateau if the complexity of X is very high. In this case, many learners will have a high
weight, because the final prediction must take into account a sub-combination of learners in
order to achieve an acceptable accuracy. As this algorithm specializes the learners at each
step, a good practice is to start with a small number of estimators (for example, 10 or 20)
and increase the number until no improvement is achieved. Sometimes, a minimum
number of good learners (like SVM or decision trees) is sufficient to reach the highest
possible accuracy (limited to this kind of algorithm), but in some other cases, the number of
estimators can be some thousands. Grid search and cross-validation are again the only
good strategies to make the right choice.

Ensemble Learning Chapter 8

[292]

After each training step it is necessary to update the weights in order to produce a boosted
distribution. This is achieved using an exponential function (based on bipolar outputs {-1,
1}):

Given a sample xi, if it has been misclassified, its weight will be increased considering the
overall estimator weight. This approach allows a further adaptive behavior because a
classifier with a high α(t) is already very accurate and it's necessary a higher attention level
to focus only on the (few) misclassified samples. On the contrary, if α(t) is small, the
estimator must improve its overall performance and the over-weighting process must be
applied to a large subset (therefore, the distribution won't peak around a few samples, but
will penalize only the small subset that has been correctly classified, leaving the estimator
free to explore the remaining space with the same probability). Even if not present in the
original proposal, it's also possible to include a learning rate η that multiplies the exponent:

A value η = 1 has no effect, while smaller values have been proven to increase the accuracy
by avoiding a premature specialization. Of course, when η << 1, the number of estimators
must be increased in order to compensate the minor reweighting and this can drive to a
training performance loss. As for the other hyperparameters, the right value for η must be
discovered using a cross-validation technique (alternatively, if it's the only value that must
be fine-tuned, it's possible to start with one and proceed by decreasing its value until the
maximum accuracy has been reached).

The complete AdaBoost.M1 algorithm is as follows:

Set the family and the number of estimators Nc1.
Set the initial weights W(1) equal to 1/M2.
Set the learning rate η (for example, η = 1)3.
Set the initial distribution D(1) equal to the dataset X4.

Ensemble Learning Chapter 8

[293]

For i=1 to Nc:5.
Train the ith estimator di(x) with the data distribution D(i)1.
Compute the normalized weighted error sum ε(i):2.

If ε(i) > 0.5, invert all estimator outputs1.

Compute the estimator weight α(i)3.
Update the weights using the exponential formula (with or without the4.
learning rate)
Normalize the weights5.

Create the global estimator applying the sign(•) function to the weighted6.
sum α(i)di(x) (for i=1 to Nc)

AdaBoost.SAMME
This variant, called Stagewise Additive Modeling using a Multi-class Exponential loss
(SAMME), was proposed by Zhu, Rosset, Zou, and Hastie in Multi-class AdaBoost, Zhu J.,
Rosset S., Zou H., Hastie T., 01/2006. The goal is to adapt AdaBoost.M1 in order to work
properly in multi-class scenarios. As this is a discrete version, its structure is almost the
same, with a difference in the estimator weight computation. Let's consider a label dataset,
Y:

Now, there are p different classes and it's necessary to consider that a random guess
estimator cannot reach an accuracy equal to 0.5; therefore, the new estimator weights are
computed as follows:

In this way, the threshold is pushed forward and α(t) will be zero when the following is
true:

Ensemble Learning Chapter 8

[294]

The following graph shows the plot of α(t) with p = 10:

Estimator weight plot as a function of the normalized weighted error sum when p = 10

Employing this correction, the boosting process can successfully cope with multi-class
problems without the bias normally introduced by AdaBoost.M1 when p > 2 (α(t) > 0 when
the error is less than an actual random guess, which is a function of the number of classes).
As the performance of this algorithm is clearly superior, the majority of AdaBoost
implementations aren't based on the original algorithm anymore (as already mentioned, for
example, Scikit-Learn implements AdaBoost.SAMME and the real-valued version
AdaBoost.SAMME.R). Of course, when p = 2, AdaBoost.SAMME is exactly equivalent to
AdaBoost.M1.

AdaBoost.SAMME.R
AdaBoost.SAMME.R is a variant that works with classifiers that can output prediction
probabilities. This is normally possible employing techniques such as Platt scaling, but it's
important to check whether a specific classifier implementation is able to output the
probabilities without any further action. For example, SVM implementations provided by
Scikit-Learn don't compute the probabilities unless the parameter probability=True
(because they require an extra step that could be useless in some cases).

Ensemble Learning Chapter 8

[295]

In this case, we assume that the output of each classifier is a probability vector:

Each component is the conditional probability that the jth class is output given the input xi.
When working with a single estimator, the winning class is obtained through the argmax(•)
function; however, in this case, we want to re-weight each learner so as to obtain a
sequentially grown ensemble. The basic idea is the same as AdaBoost.M1, but, as now we
manage probability vectors, we also need an estimator weighting function that depends on
the single sample xi (this function indeed wraps every single estimator that is now
expressed as a probability vectorial function pi(t)(y=i|x)):

Considering the properties of logarithms, the previous expression is equivalent to a
discrete α(t); however, in this case, we don't rely on a weighted error sum (the theoretical
explanation is rather complex and is beyond the scope of this book. The reader can find it in
the aforementioned paper, even if the method presented in the next chapter discloses a
fundamental part of the logic). To better understand the behavior of this function, let's
consider a simple scenario with p = 2. The first case is a sample that the learner isn't able to
classify (p=(0.5, 0.5)):

In this case, the uncertainty is maximal and the classifier cannot be trusted for this sample,
so the weight becomes null for all output probabilities. Now, let's apply the boosting,
obtaining the probability vector p=(0.7, 0.3):

Ensemble Learning Chapter 8

[296]

The first class will become positive and its magnitude will increase when p → 1, while the
other one is the opposite value. Therefore, the functions are symmetric and allow working
with a sum:

This approach is very similar to a weighted majority vote because the winning class yi is
computed taking into account not only the number of estimators whose output is yi but
also their relative weight and the negative weight of the remaining classifiers. A class can
be selected only if the strongest classifiers predicted it and the impact of the other learners
is not sufficient to overturn this result.

In order to update the weights, we need to consider the impact of all probabilities. In
particular, we want to reduce the uncertainty (which can degenerate to a purely random
guess) and force a superior attention focused on all those samples that have been
misclassified. To achieve this goal, we need to define the yi and p(t)(xi) vectors, which
contain, respectively, the one-hot encoding of the true class (for example, (0, 0, 1, ..., 0)) and
the output probabilities yielded by the estimator (as a column vector). Hence, the update
rule becomes as follows:

If, for example, the true vector is (1, 0) and the output probabilities are (0.1, 0.9), with η=1,
the weight of the sample will be multiplied by about 3.16. If instead, the output
probabilities are (0.9, 0.1), meaning the sample has been successfully classified, the
multiplication factor will become closer to 1. In this way, the new data distribution D(t+1),
analogously to AdaBoost.M1, will be more peaked on the samples that need more attention.
All implementations include the learning rate as a hyperparameter because, as already
explained, the default value equal to 1.0 cannot be the best choice for specific problems. In
general, a lower learning rate allows reducing the instability when there are many outliers
and improves the generalization ability thanks to a slower convergence towards the
optimum. When η < 1, every new distribution is slightly more focused on the misclassified
samples, allowing the estimators to search for a better parameter set without big jumps
(that can lead the estimator to skip an optimal point). However, contrary to Neural
Networks that normally work with small batches, AdaBoost can often perform quite well
also with η=1 because the correction is applied only after a full training step. As usual, I
recommend performing a grid search to select the right values for each specific problem.

Ensemble Learning Chapter 8

[297]

The complete AdaBoost.SAMME.R algorithm is as follows:

Set the family and the number of estimators Nc1.
Set the initial weights W(1) equal to 1/M2.
Set the learning rate η (for example, η = 1)3.
Set the initial distribution D(1) equal to the dataset X4.
For i=1 to Nc:5.

Train the ith estimator di(x) with the data distribution D(i)1.
Compute the output probabilities for each class and each training2.
sample
Compute the estimator weights αj(i)3.
Update the weights using the exponential formula (with or without the4.
learning rate)
Normalize the weights5.

Create the global estimator applying the argmax(•) function to the sum αj(i) (for6.
i=1 to Nc)

AdaBoost.R2
A slightly more complex variant has been proposed by Drucker (in Improving Regressors
using Boosting Techniques, Drucker H., ICML 1997) to manage regression problems. The weak
learners are commonly decision trees and the main concepts are very similar to the other
variants (in particular, the re-weighting process applied to the training dataset). The real
difference is the strategy adopted in order to choose the final prediction yi given the input
sample xi. Assuming that there are Nc estimators and each of them is represented as
function dt(x), we can compute the absolute residual ri(t) for every input sample:

Once the set Ri containing all the absolute residuals has been populated, we can compute
the quantity Sr = sup Ri and compute the values of a cost function that must be proportional
to the error. The common choice that is normally implemented (and suggested by the
author himself) is a linear loss:

Ensemble Learning Chapter 8

[298]

This loss is very flat and it's directly proportional to the error. In most cases, it's a good
choice because it avoids premature over-specialization and allows the estimators to readapt
their structure in a gentler way. The most obvious alternative is the square loss, which
starts giving more importance to those samples whose prediction error is larger. It is
defined as follows:

The last cost function is strictly related to AdaBoost.M1 and it's exponential:

This is normally a less robust choice because, as we are also going to discuss in the next
section, it penalizes small errors in favor of larger ones. Considering that these functions are
also employed in the re-weighting process, an exponential loss can force the distribution to
assign very high probabilities to samples whose misclassification error is high, driving the
estimators to become over-specialized with effect from the first iterations. In many cases
(such as in neural networks), the loss functions are normally chosen according to their
specific properties but, above all, to the ease to minimize them. In this particular scenario,
loss functions are a fundamental part of the boosting process and they must be chosen
considering the impact on the data distribution. Testing and cross-validation provide the
best tool to make a reasonable decision.

Once the loss function has been evaluated for all training samples, it's possible to build the
global cost function as the weighted average of all losses. Contrary to many algorithms that
simply sum or average the losses, in this case, it's necessary to consider the structure of the
distribution. As the boosting process reweights the samples, also the corresponding loss
values must be filtered to avoid a bias. At the iteration t, the cost function is computed as
follows:

Ensemble Learning Chapter 8

[299]

This function is proportional to the weighted errors, which can be either linearly filtered or
emphasized using a quadratic or exponential function. However, in all cases, a sample
whose weight is lower will yield a smaller contribution, letting the algorithm focus on the
samples more difficult to be predicted. Consider that, in this case, we are working with
classifications; therefore, the only measure we can exploit is the loss. Good samples yield
low losses, hard samples yield proportionally higher losses. Even if it's possible to use C(t)
directly, it's preferable to define a confidence measure:

This index is inversely proportional to the average confidence at the iteration t. In fact,
when C(t) → 0, γ(t) → 0 and when C(t) → ∞, γ(t) → 1. The weight update is performed
considering the overall confidence and the specific loss value:

A weight will be decreased proportionally to the loss associated with the corresponding
absolute residual. However, instead of using a fixed base, the global confidence index is
chosen. This strategy allows a further degree of adaptability, because an estimator with a
low confidence doesn't need to focus only on a small subset and, considering that γ(t) is
bounded between 0 and 1 (worst condition), the exponential becomes ineffective when the
cost function is very high (1x = 1), so that the weights remain unchanged. This procedure is
not very dissimilar to the one adopted in other variants, but it tries to find a trade-off
between global accuracy and local misclassification problems, providing an extra degree of
robustness.

The most complex part of this algorithm is the approach employed to output a global
prediction. Contrary to classification algorithms, we cannot easily compute an average,
because it's necessary to consider the global confidence at each iteration. Drucker proposed
a method based on the weighted median of all outputs. In particular, given a sample xi, we
define the set of predictions:

As weights, we consider the log(1 / γ(t)), so we can define a weight set:

Ensemble Learning Chapter 8

[300]

The final output is the median of Y weighted according to Γ (normalized so that the sum is
1.0). As γ(t) → 1 when the confidence is low, the corresponding weight will tend to 0. In the
same way, when the confidence is high (close to 1.0), the weight will increase
proportionally and the chance to pick the output associated with it will be higher. For
example, if the outputs are Y = {1, 1.2, 1.3, 2.0, 2.2, 2.5, 2.6} and the weights are Γ = { 0.35,
0.15, 0.12, 0.11, 0.1, 0.09, 0.08 }, the weighted median corresponds to the second index,
therefore the global estimator will output 1.2 (which is, also intuitively, the most reasonable
choice).

The procedure to find the median is quite simple:

The yi(t) must be sorted in ascending order, so that yi(1) < yi(2) < ... < yi(Nc)1.
The set Γ is sorted accordingly to the index of yi(t) (each output yi(t) must carry2.
its own weight)
The set Γ is normalized, dividing it by its sum3.
The index corresponding to the smallest element that splits Γ into two blocks4.
(whose sums are less than or equal to 0.5) is selected
The output corresponding to this index is chosen5.

The complete AdaBoost.R2 algorithm is as follows:

Set the family and the number of estimators Nc1.
Set the initial weights W(1) equal to 1/M2.
Set the initial distribution D(1) equal to the dataset X3.
Select a loss function L4.
For i=1 to Nc:5.

Train the ith estimator di(x) with the data distribution D(i)1.
Compute the absolute residuals, the loss values, and the confidence2.
measures
Compute the global cost function3.
Update the weights using the exponential formula4.

Create the global estimator using the weighted median6.

Ensemble Learning Chapter 8

[301]

Example of AdaBoost with Scikit-Learn
Let's continue using the Wine dataset in order to analyze the performance of AdaBoost with
different parameters. Scikit-Learn, like almost all algorithms, implements both a classifier
AdaBoostClassfier (based on the algorithm SAMME and SAMME.R) and a regressor
AdaBoostRegressor (based on the algorithm R2). In this case, we are going to use the
classifier, but I invite the reader to test the regressor using a custom dataset or one of the
built-in toy datasets. In both classes, the most important parameters are n_estimators and
learning_rate (default value set to 1.0). The default underlying weak learner is always a
decision tree, but it's possible to employ other models creating a base instance and passing
it through the parameter base_estimator. As explained in the chapter, real-valued
AdaBoost algorithms require an output based on a probability vector. In Scikit-Learn, some
classifiers/regressors (such as SVM) don't compute the probabilities unless it is explicitly
required (setting the parameter probability=True); therefore, if an exception is raised, I
invite you to check the documentation in order to learn how to force the algorithm to
compute them.

The examples we are going to discuss have only a didactic purpose because they focus on a
single parameter. In a real-world scenario, it's always better to perform a grid search (which
is more expensive), so as to analyze a set of combinations. Let's start analyzing the cross-
validation score as a function of the number of estimators (the vectors X and Y are the ones
defined in the previous example):

import numpy as np

from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import cross_val_score

scores_ne = []

for ne in range(10, 201, 10):
 adc = AdaBoostClassifier(n_estimators=ne, learning_rate=0.8,
random_state=1000)
 scores_ne.append(np.mean(cross_val_score(adc, X, Y, cv=10)))

Ensemble Learning Chapter 8

[302]

We have considered a range starting from 10 trees and ending with 200 trees with steps of
10 trees. The learning rate is kept constant and equal to 0.8. The resulting plot is shown in
the following graph:

10-fold cross-validation accuracy as a function of the number of estimators

The maximum is reached with 50 estimators. Larger values cause performance worsening
due to the over-specialization and a consequent variance increase. As explained also in
other chapters, the capacity of a model must be tuned according to the Occam's Razor
principle, not only because the resulting model can be faster to train, but also because a
capacity excess is normally saturated, overfitting the training set and reducing the scope for
generalization. Cross-validation can immediately show this effect, which, instead, can
remain hidden when a standard training/test set split is done (above all when the samples
are not shuffled).

Let's now check the performance with different learning rates (keeping the number of trees
fixed):

import numpy as np

scores_eta_adc = []

for eta in np.linspace(0.01, 1.0, 100):
 adc = AdaBoostClassifier(n_estimators=50, learning_rate=eta,

Ensemble Learning Chapter 8

[303]

random_state=1000)
 scores_eta_adc.append(np.mean(cross_val_score(adc, X, Y, cv=10)))

The final plot is shown in the following graph:

10-fold Cross-validation accuracy as a function of the learning rate (number of estimators = 50)

Again, different learning rates yield different accuracies. The choice of η = 0.8 seems to be
the most effective, as higher and lower values lead to performance worsening. As
explained, the learning rate has a direct impact on the re-weighting process. Very small
values require a larger number of estimators because subsequent distributions are very
similar. On the other side, large values can lead to a premature over-specialization. Even if
the default value is 1.0, I always suggest checking the accuracy also with smaller values.
There's no golden rule for picking the right learning rate in every case, but it's important to
remember that lower values allow the algorithm to smoothly adapt to fit the training set in
a gentler way, while higher values reduce the robustness to outliers, because the samples
that have been misclassified are immediately boosted and the probability of sampling them
increases very rapidly. The result of this behavior is a constant focus on those samples that
may be affected by noise, almost forgetting the structure of the remaining sample space.

Ensemble Learning Chapter 8

[304]

The last experiment we want to make is analyzing the performance after a dimensionality
reduction performed with Principal Component Analysis (PCA) and Factor Analysis (FA)
(with 50 estimators and η = 0.8):

import numpy as np

from sklearn.decomposition import PCA, FactorAnalysis

scores_pca = []

for i in range(13, 1, -1):
 if i < 12:
 pca = PCA(n_components=i, random_state=1000)
 X_pca = pca.fit_transform(X)
 else:
 X_pca = X
 adc = AdaBoostClassifier(n_estimators=50, learning_rate=0.8,
random_state=1000)
 scores_pca.append(np.mean(cross_val_score(adc, X_pca, Y, cv=10)))

scores_fa = []

for i in range(13, 1, -1):
 if i < 12:
 fa = FactorAnalysis(n_components=i, random_state=1000)
 X_fa = fa.fit_transform(X)
 else:
 X_fa = X
 adc = AdaBoostClassifier(n_estimators=50, learning_rate=0.8,
random_state=1000)
 scores_fa.append(np.mean(cross_val_score(adc, X_fa, Y, cv=10)))

Ensemble Learning Chapter 8

[305]

The resulting plot is shown in the following graph:

 10-fold cross-validation accuracy as a function of the number of components (PCA and factor analysis)

This exercise confirms some important features analyzed in Chapter 5, EM Algorithm and
Applications. First of all, performances are not dramatically affected even by a 50%
dimensionality reduction. This consideration is further confirmed by the feature
importance analysis performed in the previous example. Decision trees can perform quite a
good classification considering only 6/7 features because the remaining ones offer a
marginal contribution to the characterization of a sample. Moreover, FA is almost always
superior to PCA. With 7 components, the accuracy achieved using the FA algorithm is
higher than 0.95 (very close to the value achieved with no reduction), while a PCA reaches
this value with 12 components. The reader should remember that PCA is a particular case
of FA, with the assumption of homoscedastic noise. The diagram confirms that this
condition is not acceptable with the Wine dataset. Assuming different noise variances
allows remodeling the reduced dataset in a more accurate way, minimizing the cross-effect
of the missing features. Even if PCA is normally the first choice, with large datasets, I
suggest you always compare the performance with a Factor Analysis and choose the
technique that guarantees the best result (given also that FA is more expensive in terms of
computational complexity).

Ensemble Learning Chapter 8

[306]

Gradient boosting
At this point, we can introduce a more general method of creating boosted ensembles. Let's
choose a generic algorithm family, represented as follows:

Each model is parametrized using the vector θi and there are no restrictions on the kind of
method that is employed. In this case, we are going to consider decision trees (which is one
of the most diffused algorithms when this boosting strategy is employed—in this case, the
algorithm is known as gradient tree boosting), but the theory is generic and can be easily
applied to more complex models, such as neural networks. In a decision tree, the parameter
vector θi is made up of selection tuples, so the reader can think of this method as a pseudo-
random forest where, instead of randomness, we look for extra optimality exploiting the
previous experience. In fact, as with AdaBoost, a gradient boosting ensemble is built
sequentially, using a technique that is formally defined as Forward Stage-wise Additive
Modeling. The resulting estimator is represented as a weighted sum:

Therefore the variables to manage are the single estimator weights αi and the parameter
vectors θi. However, we don't have to work with the whole set, but with a single tuple
(αi, θi), without modifying the values already chosen during the previous iterations. The
general procedure can be summarized with a loop:

The estimator sum is initialized to a null value1.
For i=1 to Nc:2.

 The best tuple(αi, θi) is chosen and the estimator f(x; θi) is trained1.
di(x) = di-1(x) + αif(x; θi)2.

The final estimator d(x) is output3.

Ensemble Learning Chapter 8

[307]

How is it possible to find out the best tuple? We have already presented a strategy for
improving the performance of every learner through boosting the dataset. In this case,
instead, the algorithm is based on a cost function that we need to minimize:

In particular, the generic optimal tuple is obtained as follows:

As the process is sequential, each estimator is optimized to improve the previous one's
accuracy. However, contrary to AdaBoost, we are not constrained to impose a specific loss
function (it's possible to prove that AdaBoost.M1 is equivalent to this algorithm with an
exponential loss but the proof is beyond the scope of this book). As we are going to discuss,
other cost functions can yield better performances in several different scenarios, because
they avoid the premature convergence towards sub-optimal minima.

The problem could be considered as solved by employing the previous formula to optimize
each new learner; however, the argmin(•) function needs a complete exploration of the
cost function space and, as C(•) depends on each specific model instance and, therefore,
on θi, it's necessary to perform several retraining processes in order to find the optimal
solution. Moreover, the problem is generally non-convex and the number of variables can
be very high. Numerical algorithms such as L-BFGS or other quasi-Newton methods need
too many iterations and a prohibitive computational time. It's clear that such an approach is
not affordable in the vast majority of cases and the Gradient Boosting algorithm has been
proposed as an intermediate solution. The idea is to find a sub-optimal solution with a
gradient descent strategy limited to a single step for each iteration.

In order to present the algorithm, it's useful to rewrite the additive model with an explicit
reference to the optimal goal:

Ensemble Learning Chapter 8

[308]

Note that the cost function is computed carrying on all the previously trained models;
therefore, the correction is always incremental. If the cost function L is differentiable (a
fundamental condition that is not difficult to meet), it's possible to compute the gradient
with respect to the current additive model (at the ith iteration, we need to consider the
additive model obtained summing all the previous i-1 models):

At this point, a new classifier can be added by moving the current additive model into the
negative direction of the gradient:

We haven't considered the parameter αi yet (nor the learning rate η, which is a constant),
however the reader familiar with some basic calculus can immediately understand the
effect of an update is to reduce the value of the global loss function by forcing the next
model to improve its accuracy with respect to its predecessors. However, a single gradient
step isn't enough to guarantee an appropriate boosting strategy. In fact, as discussed
previously, we also need to weight each classifier according to its ability to reduce the loss.
Once the gradient has been computed, it's possible to determine the best value for the
weight αi with a direct minimization of the loss function (using a line search algorithm)
computed considering the current additive model with α as an extra variable:

Ensemble Learning Chapter 8

[309]

When using the gradient tree boosting variant, an improvement can be achieved by
splitting the weight αi into m sub-weights αi(j) associated with each terminal node of the
tree. The computational complexity is slightly increased, but the final accuracy can be
higher than the one obtained with a single weight. The reason derives from the functional
structure of a tree. As the boosting forces a specialization in specific regions, a single weight
could drive to an over-estimation of a learner also when a specific sample cannot be
correctly classified. Instead, using different weights, it's possible to operate a fine-grained
filtering of the result, accepting or discarding an outcome according to its value and to the
properties of the specific tree.

This solution cannot provide the same accuracy of a complete optimization, but it's rather
fast and it's possible to compensate for this loss using more estimators and a lower learning
rate. Like many other algorithms, gradient boosting must be tuned up in order to yield the
maximum accuracy with a low variance. The learning rate is normally quite smaller than
1.0 and its value should be found by validating the results and considering the total
number of estimators (it's better to reduce it when more learners are employed). Moreover,
a regularization technique could be added in order to prevent overfitting. When working
with specific classifier families (such as logistic regression or neural networks), it's very
easy to include an L1 or L2 penalty, but it's not so easy with other estimators. For this
reason, a common regularization technique (implemented also by Scikit-Learn) is the
downsampling of the training dataset. Selecting P < N random samples allows the
estimators to reduce the variance and prevent overfitting. Alternatively, it's possible to
employ a random feature selection (for gradient tree boosting only) as in a random forest;
picking a fraction of the total number of features increases the uncertainty and avoids over-
specialization. Of course, the main drawback to these techniques is a loss of accuracy
(proportional to the downsampling/feature selection ratio) that must be analyzed in order
to find the most appropriate trade-off.

Before moving to the next section, it's useful to briefly discuss the main cost functions that
are normally employed with this kind of algorithms. In the first chapter, we have presented
some common cost functions, like mean squared error, Huber Loss (very robust in
regression contexts), and cross-entropy. They are all valid examples, but there are other
functions that are peculiar to classification problems. The first one is Exponential Loss,
defined as follows:

Ensemble Learning Chapter 8

[310]

As pointed out by Hastie, Tibshirani and, Friedman, this function transforms the gradient
boosting into an AdaBoost.M1 algorithm. The corresponding cost function has a very
precise behavior that sometimes is not the most adequate to solve particular problems. In
fact, the result of an exponential loss has a very high impact when the error is large,
yielding distributions that are strongly peaked around a few samples. The subsequent
classifiers can be consequently driven to over-specialize their structure to cope only with a
small data region, with a concrete risk of losing the ability to correctly classify other
samples. In many situations, this behavior is not dangerous and the final bias-variance
trade-off is absolutely reasonable; however, there are problems where a softer loss function
can allow a better final accuracy and generalization ability. The most common choice for
real-valued binary classification problems is Binomial Negative Log-Likelihood Loss
(deviance), defined as follows (in this case we are assuming that the classifier f(•) is not
thresholded, but outputs a positive-class probability):

This loss function is the same employed in Logistic Regressions and, contrary to
Exponential Loss, doesn't yield peaked distributions. Two misclassified samples with
different probabilities are boosted proportionally to the error (not the exponential value), so
as to force the classifiers to focus on all the misclassified population with almost the same
probability (of course, a higher probability assigned to samples whose error is very large is
desirable, assuming that all the other misclassified samples have always a good chance to
be selected). The natural extension of the Binomial Negative Log-Likelihood Loss to multi-
class problems is the Multinomial Negative Log-Likelihood Loss, defined as follows (the
classifier f(•) is represented as probability vector with p components):

In the previous formula, the notation Iy=j must be interpreted as an indicator function,
which is equal to 1 when y=j and 0 otherwise. The behavior of this loss function is perfectly
analogous to the binomial variant and, in general, it is the default choice for classification
problems. The reader is invited to test the examples with both exponential loss and
deviance and compare the results.

Ensemble Learning Chapter 8

[311]

The complete gradient boosting algorithm is as follows:

Set the family and the number of estimators Nc1.
Select a loss function L (for example, deviance)2.
Initialize the base estimator d0(x) as a constant (such as 0) or using another model3.
Set the learning rate η (such as η = 1)4.
For i=1 to Nc:5.

Compute the gradient ∇d L(•) using the additive model at the step i-11.
Train the ith estimator di(x) with the data distribution {2.
(xi, ∇d L(yi, di-1(xi)) }
Perform a line search to compute αi3.
Add the estimator to the ensemble4.

Example of gradient tree boosting with Scikit-
Learn
In this example, we want to employ a gradient tree boosting classifier (class
GradientBoostingClassifier) and check the impact of the maximum tree depth
(parameter max_depth) on the performance. Considering the previous example, we start
by setting n_estimators=50 and learning_rate=0.8:

import numpy as np

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_val_score

scores_md = []
eta = 0.8

for md in range(2, 13):
 gbc = GradientBoostingClassifier(n_estimators=50, learning_rate=eta,
max_depth=md, random_state=1000)
 scores_md.append(np.mean(cross_val_score(gbc, X, Y, cv=10)))

Ensemble Learning Chapter 8

[312]

The result is shown in the following diagram:

10-fold Cross-validation accuracy as a function of the maximum tree depth

As explained in the first section, the maximum depth of a decision tree is strictly related to
the possibility of interaction among features. This can be a positive or negative aspect when
the trees are employed in an ensemble. A very high interaction level can create over-
complex separation hyperplanes and reduce the overall variance. In other cases, a limited
interaction results in a higher bias. With this particular (and simple) dataset, the gradient
boosting algorithm can achieve better performances when the max depth is 2 (consider that
the root has a depth equal to zero) and this is partially confirmed by both the feature
importance analysis and dimensionality reductions. In many real-world situations, the
result of such a research could be completely different, with increased performance,
therefore I suggest you cross-validate the results (it's better to employ a grid search)
starting from a minimum depth and increasing the value until the maximum accuracy has
been achieved. With max_depth=2, we want now to tune up the learning rate, which is a
fundamental parameter in this algorithm:

import numpy as np

scores_eta = []

for eta in np.linspace(0.01, 1.0, 100):

Ensemble Learning Chapter 8

[313]

 gbr = GradientBoostingClassifier(n_estimators=50, learning_rate=eta,
max_depth=2, random_state=1000)
 scores_eta.append(np.mean(cross_val_score(gbr, X, Y, cv=10)))

The corresponding plot is shown in the following diagram:

10-fold Cross-validation accuracy as a function of the learning rate (max depth equal to 2)

Unsurprisingly, gradient tree boosting outperforms AdaBoost with η ≈ 0.9, achieving a
cross-validation accuracy slightly lower than 0.99. The example is very simple, but it clearly
shows the power of this kind of techniques. The main drawback is the complexity. Contrary
to single models, ensembles are more sensitive to changes to the hyperparameters and
more detailed research must be conducted in order to optimize the models. When the
datasets are not excessively large, cross-validation remains the best choice. If, instead, we
are pretty sure that the dataset represents almost perfectly the underlying data generating
process, it's possible to shuffle it and split it into two (training/test) or three blocks
(training/test/validation) and proceed by optimizing the hyperparameters and trying to
overfit the test set (this expression can seem strange, but overfitting the test set means
maximizing the generalization ability while learning perfectly the training set structure).

Ensemble Learning Chapter 8

[314]

Ensembles of voting classifiers
A simpler but no less effective way to create an ensemble is based on the idea of exploiting
a limited number of strong learners whose peculiarities allow them to yield better
performances in particular regions of the sample space. Let's start considering a set of Nc
discrete-valued classifiers f1(x), f2(x), ..., fNc(x). The algorithms are different, but they are all
trained with the same dataset and output the same label set. The simplest strategy is based
on a hard-voting approach:

In this case, the function n(•) counts the number of estimators that output the label yi. This
method is rather powerful in many cases, but has some limitations. If we rely only on a
majority vote, we are implicitly assuming that a correct classification is obtained by a large
number of estimators. Even if, Nc/2 + 1 votes are necessary to output a result, in many cases
their number is much higher. Moreover, when k is not very large, also Nc/2 + 1 votes imply
a symmetry that involves a large part of the population. This condition often drives to the
training of useless models that could be simply replaced by a single well-fitted strong
learner. In fact, let's suppose that the ensemble is made up of three classifiers and one of
them is more specialized in regions where the other two can easily be driven to
misclassifications. A hard-voting strategy applied to this ensemble could continuously
penalize the more complex estimator in favor of the other classifiers. A more accurate
solution can be obtained by considering real-valued outcomes. If each estimator outputs a
probability vector, the confidence of a decision is implicitly encoded in the values. For
example, a binary classifier whose output is (0.52, 0.48) is much more uncertain than
another classifier outputting (0.95, 0.05). Applying a threshold is equivalent to flattening the
probability vectors and discarding the uncertainty. Let's consider an ensemble with three
classifiers and a sample that is hard to classify because it's very close to the separation
hyperplane. A hard-voting strategy decides for the first class because the thresholded
output is (1, 1, 2). Then we check the output probabilities, obtaining (0.51, 0.49), (0.52, 0.48),
(0.1, 0.9). After averaging the probabilities, the ensemble output becomes about (0.38, 062)
and by applying argmax(•), we get the second class as the final decision. In general, it's
also a good practice to consider a weighted average, so that the final class is obtained as
follows (assuming the output of the classifier is a probability vector):

Ensemble Learning Chapter 8

[315]

The weights can be simply equal to 1.0 if no weighting is required or they can reflect the
level of trust we have for each classifier. An important rule is to avoid the dominance of a
classifier in the majority of cases because it would be an implicit fallback to a single
estimator scenario. A good voting example should always allow a minority to overturn a
result when their confidence is quite higher than the majority. In this strategies, the weights
can be considered as hyperparameters and tuned up using a grid search with cross-
validation. However, contrary to other ensemble methods, they are not fine-grained,
therefore the optimal value is often a compromise among some different possibilities.

A slightly more complex technique is called stacking and consists of using an extra
classifier as a post-filtering step. The classical approach consists of training the classifiers
separately, then the whole dataset is transformed into a prediction set (based on class labels
or probabilities) and the combining classifier is trained to associate the predictions to the
final classes. Using even very simple models like Logistic Regressions or Perceptrons, it's
possible to mix up the predictions so as to implement a dynamic reweighting that is a
function of the input values. A more complex approach is feasible only when a single
training strategy can be used to train the whole ensemble (including the combiner). For
example, it could be employed with neural networks that, however, have already an
implicit flexibility and can often perform quite better than complex ensembles.

Example of voting classifiers with Scikit-Learn
In this example, we are going to employ the MNIST handwritten digits dataset. As the
concept is very simple, our goal is to show how to combine two completely different
estimators to improve the overall cross-validation accuracy. For this reason, we have
selected a Logistic Regression and a decision tree, which are structurally different. In
particular, while the former is a linear model that works with the whole vectors, the latter is
a feature-wise estimator that can support the decision only in particular cases (images are
not made up of semantically consistent features, but the over-complexity of a Decision Tree
can help with particular samples which are very close to the separation hyperplane and,
therefore, more difficult to classify with a linear method). The first step is loading and
normalizing the dataset (this operation is not important with a Decision Tree, but has a
strong impact on the performances of a Logistic Regression):

import numpy as np

from sklearn.datasets import load_digits

X, Y = load_digits(return_X_y=True)
X /= np.max(X)

Ensemble Learning Chapter 8

[316]

At this point, we need to evaluate the performances of both estimators individually:

import numpy as np

from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score

dt = DecisionTreeClassifier(criterion='entropy', random_state=1000)
print(np.mean(cross_val_score(dt, X, Y, cv=10)))
0.830880960443

lr = LogisticRegression(C=2.0, random_state=1000)
print(np.mean(cross_val_score(lr, X, Y, cv=10)))
0.937021649942

As expected, the Logistic Regression (∼94% accuracy) outperforms the decision tree (83%
accuracy); therefore, a hard-voting strategy is not the best choice. As we trust the Logistic
Regression more, we can employ soft voting with a weight vector set to (0.9, 0.1). The class
VotingClassifier accepts a list of tuples (name of the estimator, instance) that must
be supplied through the estimators parameter. The strategy can be specified using
parameter voting (it can be either "soft" or "hard") and the optional weights, using the
parameter with the same name:

import numpy as np

from sklearn.ensemble import VotingClassifier

vc = VotingClassifier(estimators=[
 ('LR', LogisticRegression(C=2.0, random_state=1000)),
 ('DT', DecisionTreeClassifier(criterion='entropy',
random_state=1000))],
 voting='soft', weights=(0.9, 0.1))

print(np.mean(cross_val_score(vc, X, Y, cv=10)))
0.944835154373

Using a soft-voting strategy, the estimator is able to outperform Logistic Regression by
reducing the global uncertainty. I invite the reader to test this algorithm with other
datasets, using more estimators, and try to find out the optimal combination using both the
hard and soft voting strategies.

Ensemble Learning Chapter 8

[317]

Ensemble learning as model selection
This is not a proper ensemble learning technique, but it is sometimes known as bucketing.
In the previous section, we have discussed how a few strong learners with different
peculiarities can be employed to make up a committee. However, in many cases, a single
learner is enough to achieve a good bias-variance trade-off but it's not so easy to choose
among the whole Machine Learning algorithm population. For this reason, when a family
of similar problems must be solved (they can differ but it's better to consider scenarios that
can be easily compared), it's possible to create an ensemble containing several models and
use cross-validation to find the one whose performances are the best. At the end of the
process, a single learner will be used, but its choice can be considered like a grid search
with a voting system. Sometimes this technique can unveil important differences even
using similar datasets. For example, during the development of a system, a first dataset (X1,
Y1) is provided. Everybody expects that it is correctly sampled from an underlying data
generating process pdata and, so, a generic model is fitted and evaluated. Let's imagine that a
SVM achieves a very high validation accuracy (evaluated using a k-fold cross-validation)
and, therefore, it is chosen as the final model. Unfortunately, a second, larger dataset (X2,
Y2) is provided and the final mean accuracy worsens. We might simply think that the
residual variance of the model cannot let it generalize correctly or, as sometimes happens,
we can say the second dataset contains many outliers which are not correctly classified. The
real situation is a little more complex: given a dataset, we can only suppose that it
represents a complete data distribution. Even when the number of samples is very high or
we use data augmentation techniques, the population might not represent some particular
samples that will be analyzed by the system we are developing. Bucketing is a good way to
create a security buffer that can be exploited whenever the scenario changes. The ensemble
can be made up of completely different models, models belonging to the same family but
differently parametrized (for example, different kernel SVMs) or a mixture of composite
algorithms (like PCA + SVM, PCA + decision trees/random forests, and so on). The most
important element is the cross-validation. As explained in the first chapter, splitting the
dataset into training and test sets can be an acceptable solution only when the number of
samples and their variability is high enough to justify the belief that it correctly represents
the final data distribution. This often happens in deep learning, where the dimensions of
the datasets are quite large and the computational complexity doesn't allow retraining the
model too many times. Instead, in classical Machine Learning contexts, cross-validation is
the only way to check the behavior of a model when trained with a large random subset
and tested on the remaining samples. Ideally, we'd like to observe the same performances,
but it can also happen that the accuracy is higher in some folds and quite lower in other.
When this phenomenon is observed and the dataset is the final one, it probably means that
the model is not able to manage one or more regions of the sample space and a boosting
approach could dramatically improve the final accuracy.

Ensemble Learning Chapter 8

[318]

Summary
In this chapter, we introduced the main concepts of ensemble learning, focusing on both
bagging and boosting techniques. In the first section, we explained the difference between
strong and weak learners and we presented the big picture of how it's possible to combine
the estimators to achieve specific goals.

The next topic focused on the properties of decision trees and their main strengths and
weaknesses. In particular, we explained that the structure of a tree causes a natural increase
in the variance. The bagging technique called random forests allow mitigating this problem,
improving at the same time the overall accuracy. A further variance reduction can be
achieved by increasing the randomness and employing a variant called extra randomized
trees. In the example, we have also seen how it's possible to evaluate the importance of
each input feature and perform dimensionality reduction without involving complex
statistical techniques.

In the third section, we presented the most famous boosting techniques, AdaBoost, which is
based on the concept of creating a sequential additive model, when each new estimator is
trained using a reweighted (boosted) data distribution. In this way, every learner is added
to focus on the misclassified samples without interfering with the previously added
models. We analyzed the original M1 discrete variant and the most effective alternatives
called SAMME and SAMME.R (real-valued), and R2 (for regressions), which are
implemented in many Machine Learning packages.

After AdaBoost, we extended the concept to a generic Forward Stage-wise Additive Model,
where the task of each new estimator is to minimize a generic cost function. Considering
the complexity of a full optimization, a gradient descent technique was presented that,
combined with an estimator weight line search, can yield excellent performances both in
classification and in regression problems.

The final topics concerned how to build ensembles using a few strong learners, averaging
their prediction or considering a majority vote. We discussed the main drawback of
thresholded classifiers and we showed how it's possible to build a soft-voting model that is
able to trust the estimator that show less uncertainty. Other useful topics are the Stacking
method, which consists of using an extra classifier to process the prediction of each member
of the ensemble and how it's possible to create candidate ensembles that are evaluated
using a cross-validation technique to find out the best estimator for each specific problem.

In the next chapter, we are going to begin discussing the most important deep learning
techniques, introducing the fundamental concepts regarding neural networks and the
algorithms involved in their training processes.

9
Neural Networks for Machine

Learning
This chapter is the introduction to the world of deep learning, whose methods make it
possible to achieve the state-of-the-art performance in many classification and regression
fields often considered extremely difficult to manage (such as image segmentation,
automatic translation, voice synthesis, and so on). The goal is to provide the reader with the
basic instruments to understand the structure of a fully connected neural network and
model it using the Python tool Keras (employing all the modern techniques to speed the
training process and prevent overfitting).

In particular, the topics covered in the chapter are as follows:

The structure of a basic artificial neuron
Perceptrons, linear classifiers, and their limitations
Multilayer perceptrons with the most important activation functions (such as
ReLU)
Back-propagation algorithms based on stochastic gradient descent (SGD)
optimization method
Optimized SGD algorithms (Momentum, RMSProp, Adam, AdaGrad, and
AdaDelta)
Regularization and dropout
Batch normalization

Neural Networks for Machine Learning Chapter 9

[320]

The basic artificial neuron
The building block of a neural network is the abstraction of a biological neuron, a quite
simplistic but powerful computational unit that was proposed for the first time by F.
Rosenblatt in 1957, to make up the simplest neural architecture, called a perceptron, that we
are going to analyze in the next section. Contrary to Hebbian Learning, which is more
biologically plausible but has some strong limitations, the artificial neuron has been
designed with a pragmatic viewpoint and, of course, only its structure is based on a few
elements characterizing a biological cell. However, recent deep learning research activities
have unveiled the enormous power of this kind of architecture. Even if there are more
complex and specialized computational cells, the basic artificial neuron can be summarized
as the conjunction of two blocks, which are clearly shown in the following diagram:

The input of a neuron is a real-valued vector x ∈ ℜn, while the output is a scalar y ∈ ℜ. The
first operation is linear:

The vector w ∈ ℜn is called weight-vector (or synaptic weight vector, because, analogously
to a biological neuron, it reweights the input values), while the scalar term b ∈ ℜ is a
constant called bias. In many cases, it's easier to consider only the weight vector. It's
possible to get rid of the bias by adding an extra input feature equal to 1 and a
corresponding weight:

Neural Networks for Machine Learning Chapter 9

[321]

In this way, the only element that must be learned is the weight vector. The following block
is called an activation function, and it's responsible for remapping the input into a different
subset. If the function is fa(z) = z, the neuron is called linear and the transformation can be
omitted. The first experiments were based on linear neurons that are much less powerful
than non-linear ones, and this was a reason that led many researchers to consider the
perceptron as a failure, but, at the same time, this limitation opened the door for a new
architecture that, instead, showed its excellent abilities. Let's now start this analysis with
the first neural network ever proposed.

Perceptron
Perceptron was the name that Frank Rosenblatt gave to the first neural model in 1957. A
perceptron is a neural network with a single layer of input linear neurons, followed by an
output unit based on the sign(•) function (alternatively, it's possible to consider a bipolar
unit whose output is -1 and 1). The architecture of a perceptron is shown in the following
diagram:

Neural Networks for Machine Learning Chapter 9

[322]

Even if the diagram can appear as quite complex, a perceptron can be summarized by the
following equation:

All the vectors are conventionally column-vectors; therefore, the dot product wTxi

transforms the input into a scalar, then the bias is added, and the binary output is obtained
using the step function, which outputs 1 when z > 0 and 0 otherwise. At this point, a reader
could object that the step function is non-linear; however, a non-linearity applied to the
output layer is only a filtering operation that has no effect on the actual computation.
Indeed, the output is already decided by the linear block, while the step function is
employed only to impose a binary threshold. Moreover, in this analysis, we are considering
only single-value outputs (even if there are multi-class variants) because our goal is to show
the dynamics and also the limitations, before moving to more generic architectures that can
be used to solve extremely complex problems.

A perceptron can be trained with an online algorithm (even if the dataset is finite) but it's
also possible to employ an offline approach that repeats for a fixed number of iterations or
until the total error becomes smaller than a predefined threshold. The procedure is based
on the squared error loss function (remember that, conventionally, the term loss is applied
to single samples, while the term cost refers to the sum/average of every single loss):

When a sample is presented, the output is computed, and if it is wrong, a weight correction
is applied (otherwise the step is skipped). For simplicity, we don't consider the bias, as it
doesn't affect the procedure. Our goal is to correct the weights so as to minimize the loss.
This can be achieved by computing the partial derivatives with respect to wi:

Let's suppose that w(0) = (0, 0) (ignoring the bias) and the sample, x = (1, 1), has y = 1. The
perceptron misclassifies the sample, because sign(wTx) = 0. The partial derivatives are both
equal to -1; therefore, if we subtract them from the current weights, we obtain w(1) = (1, 1)
and now the sample is correctly classified because sign(wTx) = 1. Therefore, including a
learning rate η, the weight update rule becomes as follows:

Neural Networks for Machine Learning Chapter 9

[323]

When a sample is misclassified, the weights are corrected proportionally to the difference
between actual linear output and true label. This is a variant of a learning rule called
the delta rule, which represented the first step toward the most famous training algorithm,
employed in almost any supervised deep learning scenario (we're going to discuss it in the
next sections). The algorithm has been proven to converge to a stable solution in a finite
number of states as the dataset is linearly separable. The formal proof is quite tedious and
very technical, but the reader who is interested can find it in Perceptrons, Minsky M. L.,
Papert S. A., The MIT Press.

In this chapter, the role of the learning rate becomes more and more important, in
particular when the update is performed after the evaluation of a single sample (like in a
perceptron) or a small batch. In this case, a high learning rate (that is, one greater than 1.0)
can cause an instability in the convergence process because of the magnitude of the single
corrections. When working with neural networks, it's preferable to use a small learning rate
and repeat the training session for a fixed number of epochs. In this way, the single
corrections are limited, and only if they are confirmed by the majority of samples/batches,
they can become stable, driving the network to converge to an optimal solution. If, instead,
the correction is the consequence of an outlier, a small learning rate can limit its action,
avoiding destabilizing the whole network only for a few noisy samples. We are going to
discuss this problem in the next sections.

Now, we can describe the full perceptron algorithm and close the paragraph with some
important considerations:

Select a value for the learning rate η (such as 0.1).1.
Append a constant column (set to 1.0) to the sample vector X. Therefore Xb ∈ ℜM2.
× (n+1).
Initialize the weight vector w ∈ ℜn+1 with random values sampled from a normal3.
distribution with a small variance (such as 0.05).
Set an error threshold Thr (such as 0.0001).4.
Set a maximum number of iterations Ni.5.
Set i = 0.6.
Set e = 1.0.7.

Neural Networks for Machine Learning Chapter 9

[324]

While i < Ni and e > Thr:8.
Set e = 0.0.1.
For k=1 to M:2.

Compute the linear output lk = wTxk and the threshold one tk =1.
sign(lk).
If tk != yk:2.

Compute Δwj = η(lk - yk)xk
(j).1.

Update the weight vector.2.
Set e += (lk - yk)

2 (alternatively it's possible to use the absolute3.
value |lk - yk|).

Set e /= M.3.

The algorithm is very simple, and the reader should have noticed an analogy with a logistic
regression. Indeed, this method is based on a structure that can be considered as a
perceptron with a sigmoid output activation function (that outputs a real value that can be
considered as a probability). The main difference is the training strategy—in a logistic
regression, the correction is performed after the evaluation of a cost function based on the
negative log likelihood:

This cost function is the well-known cross-entropy and, in the first chapter, we showed that
minimizing it is equivalent to reducing the Kullback-Leibler divergence between the true
and predicted distribution. In almost all deep learning classification tasks, we are going to
employ it, thanks to its robustness and convexity (this is a convergence guarantee in a
logistic regression, but unfortunately the property is normally lost in more complex
architectures).

Neural Networks for Machine Learning Chapter 9

[325]

Example of a perceptron with Scikit-Learn
Even if the algorithm is very simple to implement from scratch, I prefer to employ the
Scikit-Learn implementation Perceptron, so as to focus the attention on the limitations
that led to non-linear neural networks. The historical problem that showed the main
weakness of a perceptron is based on the XOR dataset. Instead of explaining, it's better to
build it and visualize the structure:

import numpy as np

from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle

np.random.seed(1000)

nb_samples = 1000
nsb = int(nb_samples / 4)

X = np.zeros((nb_samples, 2))
Y = np.zeros((nb_samples,))

X[0:nsb, :] = np.random.multivariate_normal([1.0, -1.0], np.diag([0.1,
0.1]), size=nsb)
Y[0:nsb] = 0.0

X[nsb:(2 * nsb), :] = np.random.multivariate_normal([1.0, 1.0],
np.diag([0.1, 0.1]), size=nsb)
Y[nsb:(2 * nsb)] = 1.0

X[(2 * nsb):(3 * nsb), :] = np.random.multivariate_normal([-1.0, 1.0],
np.diag([0.1, 0.1]), size=nsb)
Y[(2 * nsb):(3 * nsb)] = 0.0

X[(3 * nsb):, :] = np.random.multivariate_normal([-1.0, -1.0],
np.diag([0.1, 0.1]), size=nsb)
Y[(3 * nsb):] = 1.0

ss = StandardScaler()
X = ss.fit_transform(X)

X, Y = shuffle(X, Y, random_state=1000)

Neural Networks for Machine Learning Chapter 9

[326]

The plot showing the true labels is shown in the following diagram:

Example of XOR dataset

As it's possible to see, the dataset is split into four blocks that are organized as the output of
a logical XOR operator. Considering that the separation hypersurface of a two-dimensional
perceptron (as well as the one of a logistic regression) is a line; it's easy to understand that
any possible final configuration can achieve an accuracy that is about 50% (a random
guess). To have a confirmation, let's try to solve this problem:

import numpy as np

from multiprocessing import cpu_count

from sklearn.linear_model import Perceptron
from sklearn.model_selection import cross_val_score

pc = Perceptron(penalty='l2', alpha=0.1, max_iter=1000, n_jobs=cpu_count(),

Neural Networks for Machine Learning Chapter 9

[327]

random_state=1000)
print(np.mean(cross_val_score(pc, X, Y, cv=10)))
0.498

The Scikit-Learn implementation offers the possibility to add a regularization term (see
Chapter 1, Machine Learning Models Fundamentals) through the parameter penalty (it can
be 'l1', 'l2' or 'elasticnet') to avoid overfitting and improve the convergence speed
(the strength can be specified using the parameter alpha). This is not always necessary, but
as the algorithm is offered in a production-ready package, the designers decided to add this
feature. Nevertheless, the average cross-validation accuracy is slightly higher than 0.5 (the
reader is invited to test any other possible hyperparameter configuration). The
corresponding plot (that can change with different random states or subsequent
experiments) is shown in the following diagram:

XOR dataset labeled using a perceptron

Neural Networks for Machine Learning Chapter 9

[328]

It's obvious that a perceptron is another linear model without specific peculiarities, and its
employment is discouraged in favor of other algorithms like logistic regression or SVM.
After 1957, for a few years, many researchers didn't hide their delusion and considered the
neural network like a promise never fulfilled. It was necessary to wait until a simple
modification to the architecture, together with a powerful learning algorithm, opened
officially the door of a new fascinating machine learning branch (later called deep
learning).

In Scikit-Learn > 0.19, the class Perceptron allows adding max_iter or
tol (tolerance) parameters. If not specified, a warning will be issued to
inform the reader about the future behavior. This piece of information
doesn't affect the actual results.

Multilayer perceptrons
The main limitation of a perceptron is its linearity. How is it possible to exploit this kind of
architecture by removing such a constraint? The solution is easier than any speculation.
Adding at least a non-linear layer between input and output leads to a highly non-linear
combination, parametrized with a larger number of variables. The resulting architecture,
called Multilayer Perceptron (MLP) and containing a single (only for simplicity) Hidden
Layer, is shown in the following diagram:

Neural Networks for Machine Learning Chapter 9

[329]

This is a so-called feed-forward network, meaning that the flow of information begins in
the first layer, proceeds always in the same direction and ends at the output layer.
Architectures that allow a partial feedback (for example, in order to implement a local
memory) are called recurrent networks and will be analyzed in the next chapter.

In this case, there are two weight matrices, W and H, and two corresponding bias vectors, b
and c. If there are m hidden neurons, xi ∈ ℜn × 1 (column vector), and yi ∈ ℜk × 1, the dynamics
are defined by the following transformations:

A fundamental condition for any MLP is that at least one hidden-layer activation function
fh(•) is non-linear. It's straightforward to prove that m linear hidden layers are equivalent to
a single linear network and, hence, an MLP falls back into the case of a standard
perceptron. Conventionally, the activation function is fixed for a given layer, but there are
no limitations in their combinations. In particular, the output activation is normally chosen
to meet a precise requirement (such as multi-label classification, regression, image
reconstruction, and so on). That's why the first step of this analysis concerns the most
common activation functions and their features.

Activation functions
In general, any continuous and differentiable function could be employed as activation;
however, some of them have particular properties that allow achieving a good accuracy
while improving the learning process speed. They are commonly used in the state-of-the-
art models, and it's important to understand their properties in order to make the most
reasonable choice.

Sigmoid and hyperbolic tangent
These two activations are very similar but with an important difference. Let's start defining
them:

Neural Networks for Machine Learning Chapter 9

[330]

The corresponding plots are shown in the following diagram:

Sigmoid and hyperbolic tangent plots

A sigmoid σ(x) is bounded between 0 and 1, with two asymptotes (σ(x) → 0 when x → -∞
and σ(x) → 1 when x → ∞). Similarly, the hyperbolic tangent (tanh) is bounded between -1
and 1 with two asymptotes corresponding to the extreme values. Analyzing the two plots,
we can discover that both functions are almost linear in a short range (about [-2, 2]), and
they become almost flat immediately after. This means that the gradient is high and about
constant when x has small values around 0 and it falls down to about 0 for larger absolute
values. A sigmoid perfectly represents a probability or a set of weights that must be
bounded between 0 and 1, and therefore, it can be a good choice for some output layers.
However, the hyperbolic tangent is completely symmetric, and, for optimization purposes,
it's preferable because the performances are normally superior. This activation function is
often employed in intermediate layers, whenever the input is normally small. The reason
will be clear when the back-propagation algorithm is analyzed; however, it's obvious that
large absolute inputs lead to almost constant outputs, and as the gradient is about 0, the
weight correction can become extremely slow (this problem is formally known as
vanishing gradients). For this reason, in many real-world applications, the next family of
activation functions is often employed.

Neural Networks for Machine Learning Chapter 9

[331]

Rectifier activation functions
These functions are all linear (or quasi-linear for Swish) when x > 0, while they differ when
x < 0. Even if some of them are differentiable when x = 0, the derivative is set to 0 in this
case. The most common functions are as follows:

The corresponding plots are shown in the following diagram:

Neural Networks for Machine Learning Chapter 9

[332]

The basic function (and also the most commonly employed) is the ReLU, which has a
constant gradient when x > 0, while it is null for x < 0. This function is very often employed
in visual processing when the input is normally greater than 0 and has the extraordinary
advantage to mitigate the vanishing gradient problem, as a correction based on the gradient
is always possible. On the other side, ReLU is null (together with its first derivative) when x
< 0, therefore every negative input doesn't allow any modification. In general, this is not an
issue, but there are some deep networks that perform much better when a small negative
gradient was allowed. This consideration drove to the other variants, which are
characterized by the presence of the hyperparameter α, that controls the strength of the
negative tail. Common values between 0.01 and 0.1 allow a behavior that is almost identical
to ReLU, but with the possibility of a small weight update when x < 0. The last function,
called Swish and proposed in Searching for Activation Functions, Ramachandran P., Zoph P., Le
V. L., arXiv:1710.05941 [cs.NE], is based on the sigmoid and offers the extra advantage to
converge to 0 when x → 0, so the non-null effect is limited to a short region bounded
between [-b, 0] with b > 0. This function can improve the performance of some particular
visual processing deep networks, as discussed in the aforementioned paper. However, I
always suggest starting the analysis with ReLU (that is very robust and computationally
inexpensive) and switch to an alternative only if no other techniques can improve the
performance of a model.

Softmax
This function characterized the output layer of almost all classification networks, as it can
immediately represent a discrete probability distribution. If there are k outputs yi, the
softmax is computed as follows:

In this way, the output of a layer containing k neurons is normalized so that the sum is
always 1. It goes without saying that, in this case, the best cost function is the cross-entropy.
In fact, if all true labels are represented with a one-hot encoding, they implicitly become
probability vectors with 1 corresponding to the true class. The goal of the classifier is hence
to reduce the discrepancy between the training distribution of its output by minimizing the
function (see Chapter 1, Machine Learning Models Fundamentals, for further information):

Neural Networks for Machine Learning Chapter 9

[333]

Back-propagation algorithm
We can now discuss the training approach employed in an MLP (and almost all other
neural networks). This algorithm is more a methodology than an actual one; therefore I
prefer to define the main concepts without focusing on a particular case. The reader who is
interested in implementing it will be able to apply the same techniques to different kinds of
networks with minimal effort (assuming that all requirements are met).

The goal of a training process using a deep learning model is normally achieved by
minimizing a cost function. Let's suppose to have a network parameterized with a global
vector θ, the cost function (using the same notation for loss and cost but with different
parameters to disambiguate) is defined as follows:

We have already explained that the minimization of the previous expression (which is the
empirical risk) is a way to minimize the real expected risk and, therefore, to maximize the
accuracy. Our goal is, hence, to find an optimal parameter set so that the following applies:

If we consider a single loss function (associated with a sample xi and a true label yi), we
know that such a function can be expressed with an explicit dependence on the predicted
value:

Now, the parameters have been embedded into the prediction. From calculus (without an
excessive mathematical rigor that can be found in many books about optimization
techniques), we know that the gradient of L, a scalar function, computed at any point (we
are assuming the L is differentiable) is a vector with components:

Neural Networks for Machine Learning Chapter 9

[334]

As ∇L points always in the direction of the closest maximum, so the negative gradient
points in the direction of the closest minimum. Hence, if we compute the gradient of L, we
have a ready-to-use piece of information that can be used to minimize the cost function.
Before proceeding, it's useful to expose an important mathematical property called the
chain rule of derivatives:

Now, let's consider a single step in an MLP (starting from the bottom) and let's exploit the
chain rule:

Each component of the vector y is independent of the others, so we can simplify the
example by considering only an output value:

In the previous expression (discarding the bias), there are two important elements—the
weights, hj (that are the columns of H), and the expression, zj, which is a function of the
previous weights. As L is, in turn, a function of all predictions, yi, applying the chain rule
(using the variable t as the generic argument of the activation functions), we get the
following:

As we normally cope with vectorial functions, it's easier to express this concept using the
gradient operator. Simplifying the transformations performed by a generic layer, we can
express the relations (with respect to a row of H, so to a weight vector hi corresponding to a
hidden unit, zi) as follows:

Neural Networks for Machine Learning Chapter 9

[335]

Employing the gradient and considering the vectorial output y can be written as y = (y1, y2,
..., ym), we can derive the following expression:

In this way we get all the components of the gradient of L computed with respect to the
weightvectors, hi. If we move back, we can derive the expression of zj:

Reapplying the chain rule, we can compute the partial derivative of L with respect to wpj (to
avoid confusion, the argument of the prediction yi is called t1, while the argument of zj is
called t2):

Observing this expression (that can be easily rewritten using the gradient) and comparing it
with the previous one, it's possible to understand the philosophy of the back-propagation
algorithm, presented for the first time in Learning representations by back-propagating errors,
Rumelhart D. E., Hinton G. E., Williams R. J., Nature 323/1986. The samples are fed into the
network and the cost function is computed. At this point, the process starts from the
bottom, computing the gradients with respect to the closest weights and reusing a part of
the calculation δi (proportional to the error) to move back until the first layer is reached.

The correction is indeed propagated from the source (the cost function) to the origin (the
input layer), and the effect is proportional to the responsibility of each different weight
(and bias).

Neural Networks for Machine Learning Chapter 9

[336]

Considering all the possible different architectures, I think that writing all the equations for
a single example is useless. The methodology is conceptually simple, and it's purely based
on the chain rule of derivatives. Moreover, all existing frameworks, such as Tensorflow,
Caffe, CNTK, PyTorch, Theano, and so on, can compute the gradients for all weights of a
complete network with a single operation, so as to allow the user to focus attention on more
pragmatic problems (like finding the best way to avoid overfitting and improving the
training process).

A very important phenomenon that is worth considering was already outlined in the
previous section and now it should be clearer: the chain rule is based on multiplications;
therefore, when the gradients start to become smaller than 1, the multiplication effect forces
the last values to be close to 0. This problem is known as vanishing gradients and can
really stop the training process of very deep models that use saturating activation functions
(like sigmoid or tanh). Rectifier units provide a good solution to many specific issues, but
sometimes when functions like hyperbolic tangent are necessary, other methods, like
normalization, must be employed to mitigate the phenomenon. We are going to discuss
some specific techniques in this chapter and in the next one, but a generic best practice is to
work always with normalized datasets and, if necessary, also testing the effect of
whitening.

Stochastic gradient descent
Once the gradients have been computed, the cost function can be moved in the direction of
its minimum. However, in practice, it is better to perform an update after the evaluation of
a fixed number of training samples (batch). Indeed, the algorithms that are normally
employed don't compute the global cost for the whole dataset, because this operation could
be very computationally expensive. An approximation is obtained with partial steps,
limited to the experience accumulated with the evaluation of a small subset. According to
some literature, the expression stochastic gradient descent (SGD) should be used only
when the update is performed after every single sample. When this operation is carried out
on every k sample, the algorithm is also known as mini-batch gradient descent; however,
conventionally SGD is referred to all batches containing k ≥ 1 samples, and we are going to
use this expression from now on.

The process can be expressed considering a partial cost function computed using a batch
containing k samples:

Neural Networks for Machine Learning Chapter 9

[337]

The algorithm performs a gradient descent by updating the weights according to the
following rule:

If we start from an initial configuration θstart, the stochastic gradient descent process can be
imagined like the path shown in the following diagram:

The weights are moved towards the minimum θopt, with many subsequent corrections that
could also be wrong considering the whole dataset. For this reason, the process must be
repeated several times (epochs), until the validation accuracy reaches its maximum. In a
perfect scenario, with a convex cost function L, this simple procedure converges to the
optimal configuration. Unfortunately, a deep network is a very complex and non-convex
function where plateaus and saddle points are quite common (see Chapter 1, Machine
Learning Models Fundamentals). In such a scenario, a vanilla SGD wouldn't be able to find the
global optimum and, in many cases, could not even find a close point. For example, in flat
regions, the gradients can become so small (also considering the numerical imprecisions) as
to slow down the training process until no change is possible (so θ(t+1) ≈ θ(t)). In the next
section, we are going to present some common and powerful algorithms that have been
developed to mitigate this problem and dramatically accelerate the convergence of deep
models.

Neural Networks for Machine Learning Chapter 9

[338]

Before moving on, it's important to mark two important elements. The first one concerns
the learning rate, η. This hyperparameter plays a fundamental role in the learning process.
As also shown in the figure, the algorithm proceeds jumping from a point to another one
(which is not necessarily closer to the optimum). Together with the optimization
algorithms, it's absolutely important to correctly tune up the learning rate. A high value
(such as 1.0) could move the weights too rapidly increasing the instability. In particular, if a
batch contains a few outliers (or simply non-dominant samples), a large η will consider
them as representative elements, correcting the weights so to minimize the error. However,
subsequent batches could better represent the data generating process, and, therefore, the
algorithm must partially revert its modifications in order to compensate the wrong update.
For this reason, the learning rate is usually quite small with common values bounded
between 0.0001 and 0.01 (in some particular cases, η = 0.1 can be also a valid choice). On the
other side, a very small learning rate leads to minimum corrections, slowing down the
training process. A good trade-off, which is often the best practice, is to let the learning rate
decay as a function of the epoch. In the beginning, η can be higher, because the probability
to be close to the optimum is almost null; so, larger jumps can be easily adjusted. While the
training process goes on, the weights are progressively moved towards their final
configuration and, hence, the corrections become smaller and smaller. In this case, large
jumps should be avoided, preferring a fine-tuning. That's why the learning rate is decayed.
Common techniques include the exponential decay or a linear one. In both cases, the initial
and final values must be chosen according to the specific problem (testing different
configurations) and the optimization algorithm. In many cases, the ratio between the start
and end value is about 10 or even larger.

Another important hyperparameter is the batch size. There are no silver bullets that allow
us to automatically make the right choice, but some considerations can be made. As SGD is
an approximate algorithm, larger batches drive to corrections that are probably more
similar to the ones obtained considering the whole dataset. However, when the number of
samples is extremely high, we don't expect the deep model to map them with a one-to-one
association, but instead our efforts are directed to improving the generalization ability. This
feature can be re-expressed saying that the network must learn a smaller number of
abstractions and reuse them in order to classify new samples. A batch, if sampled correctly,
contains a part of these abstract elements and part of the corrections automatically improve
the evaluation of a subsequent batch. You can imagine a waterfall process, where a new
training step never starts from scratch. However, the algorithm is also called mini-batch
gradient descent, because the usual batch size normally ranges from 16 to 512 (larger sizes
are uncommon, but always possible), which are values smaller than the number of total
samples (in particular in deep learning contexts). A reasonable default value could be 32
samples, but I always invite the reader to test larger values, comparing the performances in
terms of training speed and final accuracy.

Neural Networks for Machine Learning Chapter 9

[339]

When working with deep neural networks, all the values (number of
neurons in a layer, batch size, and so on) are normally powers of two. This
is not a constraint, but only an optimization tip (above all when using
GPUs), as the memory can be more efficiently filled when the blocks are
based on a 2N elements. However, this is only a suggestion, whose benefits
could also be negligible; so, don't be afraid to test architectures with
different values. For example, in many papers, the batch size is 100 or
some layers have 1,000 neurons.

Weight initialization
A very important element is the initial configuration of a neural network. How should the
weights be initialized? Let's imagine we that have set them all to zero. As all neurons in a
layer receive the same input, if the weights are 0 (or any other common, constant number),
the output will be equal. When applying the gradient correction, all neurons will be treated
in the same way; so, the network is equivalent to a sequence of single neuron layers. It's
clear that the initial weights must be different to achieve a goal called symmetry breaking,
but which is the best choice?

If we knew (also approximately) the final configuration, we could set them to easily reach
the optimal point in a few iterations, but, unfortunately, we have no idea where the
minimum is located. Therefore, some empirical strategies have been developed and tested,
with the goal of minimizing the training time (obtaining state-of-the-art accuracies). A
general rule of thumb is that the weights should be small (compared to the input sample
variance). Large values lead to large outputs that negatively impact on saturating functions
(such as tanh and sigmoid), while small values can be more easily optimized because the
corresponding gradients are larger and the corrections have a stronger effect. The same is
true also for rectifier units because the maximum efficiency is achieved by working in a
segment crossing the origin (where the non-linearity is actually located). For example, when
coping with images, if the values are positive and large, a ReLU neuron becomes almost a
linear unit, losing a lot of its advantages (that's why images are normalized, so as to bound
each pixel value between 0 and 1 or -1 and 1).

At the same time, ideally, the activation variances should remain almost constant
throughout the network, as well as the weight variances after every back-propagation step.
These two conditions are fundamental in order to improve the convergence process and to
avoid the vanishing and exploding gradient problems (the latter, which is the opposite of
vanishing gradients, will be discussed in the section dedicated to recurrent network
architectures).

Neural Networks for Machine Learning Chapter 9

[340]

A very common strategy considers the number of neurons in a layer and initializes the
weights as follows:

This method is called variance scaling and can be applied using the number of input units
(Fan-In), the number of output units (Fan-Out), or their average. The idea is very intuitive:
if the number of incoming or outgoing connections is large, the weights must be smaller, so
as to avoid large outputs. In the degenerate case of a single neuron, the variance is set to
1.0, which is the maximum value allowed(in general, all methods keep the initial values
for the biases equal to 0.0 because it's not necessary to initialize them with a random value).

Other variations have been proposed, even if they all share the same basic ideas. LeCun
proposed initializing the weights as follows:

Another method called Xavier initialization (presented in Understanding the difficulty of
training deep feedforward neural networks, Glorot X., Bengio Y., Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics), is similar to LeCun
initialization, but it's based on the average between the number of units of two consecutive
layers (to mark the sequentiality, we have substituted the terms Fan-In and Fan-Out with
explicit indices):

This is a more robust variant, as it considers both the incoming connections and also the
outgoing ones (which are in turn incoming connections). The goal (widely discussed by the
authors in the aforementioned papers) is trying to meet the two previously presented
requirements. The first one is to avoid oscillations in the variance of the activations of each
layer (ideally, this condition can avoid saturation). The second one is strictly related to the
back-propagation algorithm, and it's based on the observation that, when employing a
variance scaling (or an equivalent uniform distribution), the variance of a weight matrix is
proportional to the reciprocal of 3nk.

Neural Networks for Machine Learning Chapter 9

[341]

Therefore, the averages of Fan-In and Fan-Out are multiplied by three, trying to avoid large
variations in the weights after the updates. Xavier initialization has been proven to be very
effective in many deep architectures, and it's often the default choice.

Other methods are based on a different way to measure the variance during both the feed-
forward and back-propagation phases and trying to correct the values to minimize residual
oscillations in specific contexts. For example, He, Zhang, Ren, and Sun (in Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, He K., Zhang X., Ren
S., Sun J., arXiv:1502.01852 [cs.CV]) analyzed the initialization problem in the context of
convolutional networks (we are going to discuss them in the next chapter) based on ReLU
or variable Leaky-ReLU activations (also known as PReLU, parametric ReLU), deriving an
optimal criterion (often called the He initializer), which is slightly different from the Xavier
initializer:

All these methods share some common principles and, in many cases, they are
interchangeable. As already mentioned, Xavier is one of the most robust and, in the
majority of real-life problems, there's no need to look for other methods; however, the
reader should be always aware that the complexity of deep models must be often faced
using empirical methods based on sometimes simplistic mathematical assumptions. Only
the validation with real dataset can confirm if a hypothesis is correct or it's better to
continue the investigation in another direction.

Example of MLP with Keras
Keras (https:// keras. io) is a powerful Python toolkit that allows modeling and training
complex deep learning architectures with minimum effort. It relies on low-level
frameworks, such as Tensorflow, Theano, or CNTK, and provides high-level blocks to build
the single layers of a model. In this book, we need to be very pragmatic because there's no
room for a complete explanation; however, all the examples will be structured to allow the
reader to try different configurations and options without a full knowledge (for further
details, I suggest the book Deep Learning with Keras, Gulli A, Pal S., Packt Publishing).

https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://keras.io

Neural Networks for Machine Learning Chapter 9

[342]

In this example, we want to build a small MLP with a single hidden layer to solve the XOR
problem (the dataset is the same created in the previous example). The simplest and most
common way is to instantiate the class Sequential, which defines an empty container for an
indefinite model. In this initial part, the fundamental method is add(), which allows
adding a layer to the model. For our example, we want to employ four hidden layers with
hyperbolic tangent activation and two softmax output layers. The following snippet defines
the MLP:

from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential()

model.add(Dense(4, input_dim=2))
model.add(Activation('tanh'))

model.add(Dense(2))
model.add(Activation('softmax'))

The Dense class defines a fully connected layer (a classical MLP layer), and the first
parameter is used to declare the number of desired units. The first layer must declare the
input_shape or input_dim, which specify the dimensions (or the shape) of a single
sample (the batch size is omitted as it's dynamically set by the framework). All the
subsequent layers compute the dimensions automatically. One of the strengths of Keras is
the possibility to avoid setting many parameters (like weight initializers), as they will be
automatically configured using the most appropriate default values (for example, the
default weight initializer is Xavier). In the next examples, we are going to explicitly set
some of them, but I suggest that the reader checks the official documentation to get
acquainted with all the possibilities and features. The other layer involved in this
experiment is Activation, which specifies the desired activation function (it's also
possible to declare it using the parameter activation implemented by almost all layers,
but I prefer to decouple the operations to emphasize the single roles, and also because some
techniques—such as batch normalization—are normally applied to the linear output, before
the activation).

At this point, we must ask Keras to compile the model (using the preferred backend):

model.compile(optimizer='adam',
 loss='categorical_crossentropy',
 metrics=['accuracy'])

Neural Networks for Machine Learning Chapter 9

[343]

The parameter optimizer defines the stochastic gradient descent algorithm that we want
to employ. Using optimizer='sgd', it's possible to implement a standard version (as
described in the previous paragraph). In this case, we are employing Adam (with the
default parameters), which is a much more performant variant that will be discussed in the
next section. The parameter loss is used to define the cost function (in this case, cross-
entropy) and metrics is a list of all the evaluation score we want to be computed
('accuracy' is enough for many classification tasks). Once the model is compiled, it's
possible to train it:

from keras.utils import to_categorical

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3,
random_state=1000)

model.fit(X_train,
 to_categorical(Y_train, num_classes=2),
 epochs=100,
 batch_size=32,
 validation_data=(X_test, to_categorical(Y_test, num_classes=2)))

Train on 700 samples, validate on 300 samples
Epoch 1/100
700/700 [==============================] - 1s 2ms/step - loss: 0.7227 -
acc: 0.4929 - val_loss: 0.6943 - val_acc: 0.5933
Epoch 2/100
700/700 [==============================] - 0s 267us/step - loss: 0.7037 -
acc: 0.5371 - val_loss: 0.6801 - val_acc: 0.6100
Epoch 3/100
700/700 [==============================] - 0s 247us/step - loss: 0.6875 -
acc: 0.5871 - val_loss: 0.6675 - val_acc: 0.6733

...

Epoch 98/100
700/700 [==============================] - 0s 236us/step - loss: 0.0385 -
acc: 0.9986 - val_loss: 0.0361 - val_acc: 1.0000
Epoch 99/100
700/700 [==============================] - 0s 261us/step - loss: 0.0378 -
acc: 0.9986 - val_loss: 0.0355 - val_acc: 1.0000
Epoch 100/100
700/700 [==============================] - 0s 250us/step - loss: 0.0371 -
acc: 0.9986 - val_loss: 0.0347 - val_acc: 1.0000

Neural Networks for Machine Learning Chapter 9

[344]

The operations are quite simple. We have split the dataset into training and test/validation
sets (in deep learning, cross-validation is seldom employed) and, then, we have trained the
model setting batch_size=32 and epochs=100. The dataset is automatically shuffled at
the beginning of each epoch, unless setting shuffle=False. In order to convert the
discrete labels into one-hot encoding, we have used the utility function to_categorical.
In this case, the label 0 becomes (1, 0) and the label 1 (0, 1). The model converges before
reaching 100 epochs; therefore, I invite the reader to optimize the parameters as an exercise.
However, at the end of the process, the training accuracy is about 0.999 and the validation
accuracy is 1.0.

The final classification plot is shown in the following diagram:

MLP classification of the XOR dataset

Neural Networks for Machine Learning Chapter 9

[345]

Only three points have been misclassified, but it's clear that the MLP successfully separated
the XOR dataset. To have a confirmation of the generalization ability, we've plotted the
decision surfaces for a hyperbolic tangent hidden layer and ReLU one:

MLP decision surfaces with Tanh (left) and ReLU (right) hidden layer

In both cases, the MLPs delimited the areas in a reasonable way. However, while a tanh
hidden layer seems to be overfitted (this is not true in our case, as the dataset represents
exactly the data generating process), the ReLU layer generates less smooth boundaries with
an apparent lower variance (in particular for considering the outliers of a class). We know
that the final validation accuracies confirm an almost perfect fit, and the decision plots
(which is easy to create with two dimensions) show in both cases acceptable boundaries,
but this simple exercise is useful to understand the complexity and the sensitivity of a deep
model. For this reason, it's absolutely necessary to select a valid training set (representing
the ground-truth) and employ all possible techniques to avoid the overfitting (as we're
going to discuss later). The easiest way to detect such a situation is checking the validation
loss. A good model should reduce both training and validation loss after each epoch,
reaching a plateau for the latter. If, after n epochs, the validation loss (and, consequently,
the accuracy) begins to increase, while the training loss keeps decreasing, it means that the
model is overfitting the training set.

Neural Networks for Machine Learning Chapter 9

[346]

Another empirical indicator that the training process is evolving correctly is that, at least at
the beginning, the validation accuracy should be higher than the training one. This can
seem strange, but we need to consider that the validation set is slightly smaller and less
complex than the training set; therefore, if the capacity of the model is not saturated with
training samples, the probability of misclassification is higher for the training set than for
the validation set. When this trend is inverted, the model is very likely to overfit after a few
epochs. To verify these concepts, I invite the reader to repeat the exercise using a large
number of hidden neurons (so as to increase dramatically the capacity), but they will be
clearer when working with much more complex and unstructured datasets.

Keras can be installed using the command pip install -U keras. The
default framework is Theano with CPU support. In order to use other
frameworks (such as Tensorflow GPU), I suggest reading the instructions
reported on the home page https:/ /keras. io. As also suggested by the
author, the best backend is Tensorflow, which is available for Linux, Mac
OSX, and Windows. To install it (together with all dependencies), please
follow the instructions on the following page: https:/ /www. tensorflow.
org/install/

Optimization algorithms
When discussing the back-propagation algorithm, we have shown how the SGD strategy
can be easily employed to train deep networks with large datasets. This method is quite
robust and effective; however, the function to optimize is generally non-convex and the
number of parameters is extremely large. These conditions increase dramatically the
probability to find saddle points (instead of local minima) and can slow down the training
process when the surface is almost flat.

https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://keras.io
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/

Neural Networks for Machine Learning Chapter 9

[347]

A common result of applying a vanilla SGD algorithm to these systems is shown in the
following diagram:

Instead of reaching the optimal configuration, θopt, the algorithm reaches a sub-optimal
parameter configuration, θsubopt, and loses the ability to perform further corrections. To
mitigate all these problems and their consequences, many SGD optimization algorithms
have been proposed, with the purpose of speeding up the convergence (also when the
gradients become extremely small) and avoiding the instabilities of ill-conditioned systems.

Gradient perturbation
A common problem arises when the hypersurface is flat (plateaus) the gradients become
close to zero. A very simple way to mitigate this problem is based on adding a small
homoscedastic noise component to the gradients:

Neural Networks for Machine Learning Chapter 9

[348]

The covariance matrix is normally diagonal with all elements set to σ2(t), and this value is
decayed during the training process to avoid perturbations when the corrections are very
small. This method is conceptually reasonable, but its implicit randomness can yield
undesired effects when the noise component is dominant. As it's very difficult to tune up
the variances in deep models, other (more deterministic) strategies have been proposed.

Momentum and Nesterov momentum
A more robust way to improve the performance of SGD when plateaus are encountered is
based on the idea of momentum (analogously to physical momentum). More formally, a
momentum is obtained employing the weighted moving average of subsequent gradient
estimations instead of the punctual value:

The new vector v(t), contains a component which is based on the past history (and weighted
using the parameter μ which is a forgetting factor) and a term referred to the current
gradient estimation (multiplied by the learning rate). With this approach, abrupt changes
become more difficult, and when the exploration leaves a sloped region to enter a plateau,
the momentum doesn't become immediately null (but for a time proportional to μ) a
portion of the previous gradients will be kept, making it possible to traverse flat regions.
The value assigned to the hyperparameter μ is normally bounded between 0 and 1.
Intuitively, small values imply a short memory as the first term decays very quickly, while
values close to 1.0 (for example, 0.9) allow a longer memory, less influenced by local
oscillations. Like for many other hyperparameters, μ needs to be tuned according to the
specific problem, considering that a high momentum is not always the best choice. High
values could slow down the convergence when very small adjustments are needed, but, at
the same time, values close to 0.0 are normally ineffective because the memory contribution
decays too early. Using momentum, the update rule becomes as follows:

Neural Networks for Machine Learning Chapter 9

[349]

A variant is provided by Nesterov momentum, which is based on the results obtained in
the field of mathematical optimization by Nesterov that have been proven to speed up the
convergence of many algorithms. The idea is to determine a temporary parameter update
based on the current momentum and then apply the gradient to this vector to determine the
next momentum (it can be interpreted as a look-ahead gradient evaluation aimed to mitigate
the risk of a wrong correction considering the moving history of each parameter):

This algorithm showed a performance improvement in several deep models; however, its
usage is still limited because the next algorithms very soon outperformed the standard SGD
with momentum, and they became the first choice in almost any real-life task.

SGD with momentum in Keras
When using Keras, it's possible to customize the SGD optimizer by directly instantiating the
SGD class and using it while compiling the model:

from keras.optimizers import SGD

...

sgd = SGD(lr=0.0001, momentum=0.8, nesterov=True)

model.compile(optimizer=sgd,
 loss='categorical_crossentropy',
 metrics=['accuracy'])

The class SGD accepts the parameter lr (the learning rate η with a default set to 0.01),
momentum (the parameter μ), nesterov (a boolean indicating whether employing the
Nesterov momentum), and an optional decay parameter to indicate whether the learning
rate must be decayed over the updates with the following formula:

Neural Networks for Machine Learning Chapter 9

[350]

RMSProp
RMSProp was proposed by Hinton as an adaptive algorithm, partially based on the
concept of momentum. Instead of considering the whole gradient vector, it tries to optimize
each parameter separately to increase the corrections of slowly changing weights (that
probably need more drastic modifications) and decreasing the update magnitudes of
quickly changing ones (which are normally the more unstable). The algorithm computes
the exponentially weighted moving average of the changing speed of every parameter
considering the square of the gradient (which is insensitive to the sign):

The weight update is then performed, as follows:

The parameter δ is a small constant (such as 10-6) that is added to avoid numerical
instabilities when the changing speed becomes null. The previous expression could be
rewritten in a more compact way:

Using this notation, it is clear that the role of RMSProp is adapting the learning rate for
every parameter so it can increase it when necessary (almost frozen weights) and decrease it
when the risk of oscillations is higher. In a practical implementation, the learning rate is
always decayed over the epochs using an exponential or linear function.

RMSProp with Keras
The following snippet shows the usage of RMSProp with Keras:

from keras.optimizers import RMSprop

...

rms_prop = RMSprop(lr=0.0001, rho=0.8, epsilon=1e-6, decay=1e-2)

model.compile(optimizer=rms_prop,

Neural Networks for Machine Learning Chapter 9

[351]

 loss='categorical_crossentropy',
 metrics=['accuracy'])

The learning rate and decay are the same as SGD. The parameter rho corresponds to the
exponential moving average weight, μ, and epsilon is the constant added to the changing
speed to improve the stability. As with any other algorithm, if the user wants to use the
default values, it's possible to declare the optimizer without instantiating the class (for
example, optimizer='rmsprop').

Adam
Adam (the contraction of Adaptive Moment Estimation) is an algorithm proposed by
Kingma and Ba (in Adam: A Method for Stochastic Optimization, Kingma D. P., Ba J.,
arXiv:1412.6980 [cs.LG]) to further improve the performance of RMSProp. The algorithm
determines an adaptive learning rate by computing the exponentially weighted averages of
both the gradient and its square for every parameter:

In the aforementioned paper, the authors suggest to unbias the two estimations (which
concern the first and second moment) by dividing them by 1 - μi, so the new moving
averages become as follows:

The weight update rule for Adam is as follows:

Neural Networks for Machine Learning Chapter 9

[352]

Analyzing the previous expression, it is possible to understand why this algorithm is often
called RMSProp with momentum. In fact, the term g(•) acts just like the standard
momentum, computing the moving average of the gradient for each parameter (with all the
advantages of this procedure), while the denominator acts as an adaptive term with the
same exact semantics of RMSProp. For this reason, Adam is very often one of the most
widely employed algorithms, even if, in many complex tasks, its performances are
comparable to a standard RMSProp. The choice must be made considering the extra
complexity due to the presence of two forgetting factors. In general, the default values (0.9)
are acceptable, but sometimes it's better to perform an analysis of several scenarios before
deciding on a specific configuration. Another important element to remember is that all
momentum based methods can lead to instabilities (oscillations) when training some deep
architectures. That's why RMSProp is very diffused in almost any research paper; however,
don't consider this statement as a limitation, because Adam has shown outstanding
performances in many tasks. It's helpful to remember that, whenever the training process
seems unstable also with low learning rates, it's preferable to employ methods that are not
based on momentum (the inertial term, in fact, can slow down the fast modifications
necessary to avoid oscillations).

Adam with Keras
The following snippet shows the usage of Adam with Keras:

from keras.optimizers import Adam

...

adam = Adam(lr=0.0001, beta_1=0.9, beta_2=0.9, epsilon=1e-6, decay=1e-2)

model.compile(optimizer=adam,
 loss='categorical_crossentropy',
 metrics=['accuracy'])

The forgetting factors, μ1 and μ2, are represented by the parameters beta_1 and beta_2. All
the other elements are the same as the other algorithms.

Neural Networks for Machine Learning Chapter 9

[353]

AdaGrad
This algorithm has been proposed by Duchi, Hazan, and Singer (in Adaptive Subgradient
Methods for Online Learning and Stochastic Optimizatioln, Duchi J., Hazan E., Singer Y., Journal
of Machine Learning Research 12/2011). The idea is very similar to RMSProp, but, in this case,
the whole history of the squared gradients is taken into account:

The weights are updated exactly like in RMSProp:

However, as the squared gradients are non-negative, the implicit sum v(t)(•) → ∞ when t →
∞. As the growth continues until the gradients are non-null, there's no way to keep the
contribution stable while the training process proceeds. The effect is normally quite strong
at the beginning, but vanishes after a limited number of epochs, yielding a null learning
rate. AdaGrad keeps on being a powerful algorithm when the number of epochs is very
limited, but it cannot be a first-choice solution for the majority of deep models (the next
algorithm has been proposed to solve this problem).

AdaGrad with Keras
The following snippet shows the use of AdaGrad with Keras:

from keras.optimizers import Adagrad

...

adagrad = Adagrad(lr=0.0001, epsilon=1e-6, decay=1e-2)

model.compile(optimizer=adagrad,
 loss='categorical_crossentropy',
 metrics=['accuracy'])

The AdaGrad implementation has no other parameters but the common ones.

Neural Networks for Machine Learning Chapter 9

[354]

AdaDelta
AdaDelta is an algorithm (proposed in ADADELTA: An Adaptive Learning Rate Method,
Zeiler M. D., arXiv:1212.5701 [cs.LG]) in order to address the main issue of AdaGrad, which
arises to managing the whole squared gradient history. First of all, instead of the
accumulator, AdaDelta employs an exponentially weighted moving average, like
RMSProp:

However, the main difference with RMSProp is based on the analysis of the update rule.
When we consider the operation x + Δx, we assume that both terms have the same unit;
however, the author noticed that the adaptive learning rate η(θi) obtained with RMSProp
(as well as AdaGrad) is unitless (instead of having the unit of θi). In fact, as the gradient is
split into partial derivatives that can be approximated as ΔL/Δθi and the cost function L is
assumed to be unitless, we obtain the following relations:

Therefore, Zeiler proposed to apply a correction term proportional to the unit of each
weight θi. This factor is obtained by considering the exponentially weighted moving
average of every squared difference:

Neural Networks for Machine Learning Chapter 9

[355]

The resulting updated rule hence becomes as follows:

This approach is indeed more similar to RMSProp than AdaGrad, but the boundaries
between the two algorithms are very thin, in particular when the history is limited to a
finite sliding window. AdaDelta is a powerful algorithm, but it can outperform Adam or
RMSProp only in very particular tasks. My suggestion is to employ a method and, before
moving to another one, try to optimize the hyperparameters until the accuracy reaches its
maximum. If the performances keep on being bad and the model cannot be improved in
any other way, it's a good idea to test other optimization algorithms.

AdaDelta with Keras
The following snippet shows the usage of AdaDelta with Keras:

from keras.optimizers import Adadelta

...

adadelta = Adadelta(lr=0.0001, rho=0.9, epsilon=1e-6, decay=1e-2)

model.compile(optimizer=adadelta,
 loss='categorical_crossentropy',
 metrics=['accuracy'])

The forgetting factor, μ, is represented by the parameter rho.

Neural Networks for Machine Learning Chapter 9

[356]

Regularization and dropout
Overfitting is a common issue in deep models. Their extremely high capacity can often
become problematic even with very large datasets because the ability to learn the structure
of the training set is not always related to the ability to generalize. A deep neural network
can easily become an associative memory, but the final internal configuration couldn't be
the most suitable to manage samples belonging to the same distribution but was never
presented during the training process. It goes without saying that this behavior is
proportional to the complexity of the separation hypersurface. A linear classifier has a
minimum chance to overfit, and a polynomial classifier is incredibly more prone to do it. A
combination of hundreds, thousands, or more non-linear functions yields a separation
hypersurface, which is beyond any possible analysis. In 1991, Hornik (in Approximation
Capabilities of Multilayer Feedforward Networks,Hornik K., Neural Networks, 4/2) generalized a
very important result obtained two years before by the mathematician Cybenko (and
published in Approximations by Superpositions of Sigmoidal Functions, Cybenko G., Mathematics
of Control, Signals, and Systems, 2 /4). Without any mathematical detail (which is, however,
not very complex), the theorem states that an MLP (not the most complex architecture!) can
approximate any function that is continuous in a compact subset of ℜn. It's clear that such a
result formalized what almost any researcher already intuitively knew, but its power goes
beyond the first impact, because the MLP is a finite system (not a mathematical series) and
the theorem assumes a finite number of layers and neurons. Obviously, the precision is
proportional to the complexity; however, there are no unacceptable limitations for almost
any problem. However, our goal is not learning an existing continuous function, but
managing samples drawn from an unknown data generating process with the purpose to
maximize the accuracy when a new sample is presented. There are no guarantees that the
function is continuous or that the domain is a compact subset.

In Chapter 1, Machine Learning Models Fundamentals, we have presented the main
regularization techniques based on a slightly modified cost function:

Neural Networks for Machine Learning Chapter 9

[357]

The additional term g(θ) is a non-negative function of the weights (such as L2 norm) that
forces the optimization process to keep the parameters as small as possible. When working
with saturating functions (such as tanh), regularization methods based on the L2 norm try
to limit the operating range of the function to the linear part, reducing de facto its capacity.
Of course, the final configuration won't be the optimal one (that could be the result of an
overfitted model) but the suboptimal trade-off between training and validation accuracy
(alternatively, we can say between bias and variance). A system with a bias close to 0 (and a
training accuracy close to 1.0) could be extremely rigid in the classification, succeeding only
when the samples are very similar to ones evaluated during the training process. That's
why this price is often paid considering the advantages obtained when working with new
samples. L2 regularization can be employed with any kind of activation function, but the
effect could be different. For example, ReLU units have an increased probability to become
linear (or constantly null) when the weights are very large. Trying to keep them close to 0.0
means forcing the function to exploit its non-linearity without the risk of extremely large
outputs (that can negatively affect very deep architectures). This result can sometimes be
more useful, because it allows training bigger models in a smoother way, obtaining better
final performances. In general, it's almost impossible to decide whether a regularization can
improve the result without several tests, but there are some scenarios where it's very
common to introduce a dropout (we discuss this approach in the next paragraph) and tune
up its hyperparameter. This is more an empirical choice than a precise architectural
decision because many real-life examples (including state-of-the-art models) obtained
outstanding results employing this regularization technique. I suggest the reader prefer a
rational skepticism to blind trust and double-checking its models before picking a specific
solution. Sometimes, an extremely high-performing network turns to being ineffective
when a different (but analogous) dataset is chosen. That's why testing different alternatives
can provide the best experience in order to solve specific problem classes.

Before moving on, I want to show how it's possible to implement an L1 (useful to enforce
sparsity), L2, or ElasticNet (the combination of L1 and L2) regularization using Keras. The
framework provides a fine-grained approach that allows imposing a different constraint to
each layer. For example, the following snippet shows how to add a l2 constraint with the
strength parameter set to 0.05 to a generic fully connected layer:

from keras.layers import Dense
from keras.regularizers import l2

...

model.add(Dense(128, kernel_regularizer=l2(0.05)))

Neural Networks for Machine Learning Chapter 9

[358]

The keras.regularizers package contains the functions l1(), l2(), and l1_l2(),
which can be applied to Dense and convolutional layers (we're going to discuss them in the
next chapter). These layers allow us to impose a regularization on the weights
(kernel_regularizer), on the bias (bias_regularizer), and on the activation output
(activation_regularizer), even if the first one is normally the most widely employed.

Alternatively, it's possible to impose specific constraints on the weights and biases that in a
more selective way. The following snippet shows how to set a maximum norm (equal to
1.5) on the weights of a layer:

from keras.layers import Dense
from keras.constraints import maxnorm

...

model.add(Dense(128, kernel_constraint=maxnorm(1.5)))

Keras, in the keras.constraints package, provides some functions that can be used to
impose a maximum norm on the weights or biases maxnorm(), a unit norm along an axis
unit_norm(), non-negativity non_neg(), and upper and lower bounds for the norm
min_max_norm(). The difference between this approach and regularization is that it is
applied only if necessary. Considering the previous example, imposing an L2
regularization always has an effect, while a constraint on the maximum norm is inactive
until the value is lower than the predefined threshold.

Dropout
This method has been proposed by Hinton and co. (in Improving neural networks by
preventing co-adaptation of feature detectors, Hinton G. E., Srivastava N., Krizhevsky A., Sutskever
I., Salakhutdinov R. R., arXiv:1207.0580 [cs.NE]) as an alternative to prevent overfitting and
allow bigger networks to explore more regions of the sample space. The idea is rather
simple—during every training step, given a predefined percentage nd, a dropout layer
randomly selects ndN incoming units and sets them to 0.0 (the operation is only active
during the training phase, while it's completely removed when the model is employed for
new predictions).

Neural Networks for Machine Learning Chapter 9

[359]

This operation can be interpreted in many ways. When more dropout layers are employed,
the result of their selection is a sub-network with a reduced capacity that can, with more
difficultly, overfit the training set. The overlap of many trained sub-networks makes up an
implicit ensemble whose prediction is an average over all models. If the dropout is applied
on input layers, it works like a weak data augmentation, by adding a random noise to the
samples (setting a few units to zero can lead to potential corrupted patterns). At the same
time, employing several dropout layers allows exploring several potential configurations
that are continuously combined and refined.

This strategy is clearly probabilistic, and the result can be affected by many factors that are
impossible to anticipate; however, several tests confirmed that the employment of a
dropout is a good choice when the networks are very deep because the resulting sub-
networks have a residual capacity that allows them to model a wide portion of the samples,
without driving the whole network to freeze its configuration overfitting the training set. On
the other hand, this method is not very effective when the networks are shallow or contain
a small number of neurons (in these cases, L2 regularization is probably a better choice).

According to the authors, dropout layers should be used in conjunction with high learning
rates and maximum norm constraints on the weights. In this way, in fact, the model can
easily learn more potential configurations that would be avoided when the learning rate is
kept very small. However, this is not an absolute rule because many state-of-the-art models
use a dropout together with optimization algorithms, such as RMSProp or Adam, and not
excessively high learning rates.

The main drawback of a dropout is that it slows down the training process and can lead to
an unacceptable sub-optimality. The latter problem can be mitigated by adjusting the
percentages of dropped units, but, in general, it's very difficult to solve it completely. For
this reason, some new image-recognition models (like residual networks) avoid the
dropout and employ more sophisticated techniques to train very deep convolutional
networks that overfit both training and validation sets.

Example of dropout with Keras
We cannot test the effectiveness of the dropout with a more challenging classification
problem. The dataset is the classical MNIST handwritten digits, but Keras allows
downloading and working with the original version that is made up of 70 thousand
(60 thousand training and 10 thousand test) 28 × 28 grayscale images. Even if this is not the
best strategy, because a convolutional network should be the first choice to manage images,
we want to try to classify the digits considering them as flattened 784-dimensional arrays.

Neural Networks for Machine Learning Chapter 9

[360]

The first step is loading and normalizing the dataset so that each value becomes a float
bounded between 0 and 1:

import numpy as np

from keras.datasets import mnist
from keras.utils import to_categorical

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

width = height = X_train.shape[1]

X_train = X_train.reshape((X_train.shape[0], width *
height)).astype(np.float32) / 255.0
X_test = X_test.reshape((X_test.shape[0], width *
height)).astype(np.float32) / 255.0

Y_train = to_categorical(Y_train, num_classes=10)
Y_test = to_categorical(Y_test, num_classes=10)

At this point, we can start testing a model without dropout. The structure, which is
common to all experiments, is based on three fully connected ReLU layers (2048-1024-1024)
followed by a softmax layer with 10 units. Considering the problem, we can try to train the
model using an Adam optimizer with η = 0.0001 and a decay set to 10-6:

from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import Adam

model = Sequential()

model.add(Dense(2048, input_shape=(width * height,)))
model.add(Activation('relu'))

model.add(Dense(1024))
model.add(Activation('relu'))

model.add(Dense(1024))
model.add(Activation('relu'))

model.add(Dense(10))
model.add(Activation('softmax'))

model.compile(optimizer=Adam(lr=0.0001, decay=1e-6),
 loss='categorical_crossentropy',
 metrics=['accuracy'])

Neural Networks for Machine Learning Chapter 9

[361]

The model is trained for 200 epochs with a batch size of 256 samples:

history = model.fit(X_train, Y_train,
 epochs=200,
 batch_size=256,
 validation_data=(X_test, Y_test))

Train on 60000 samples, validate on 10000 samples
Epoch 1/200
60000/60000 [==============================] - 11s 189us/step - loss:
0.4026 - acc: 0.8980 - val_loss: 0.1601 - val_acc: 0.9523
Epoch 2/200
60000/60000 [==============================] - 7s 116us/step - loss: 0.1338
- acc: 0.9621 - val_loss: 0.1062 - val_acc: 0.9669
Epoch 3/200
60000/60000 [==============================] - 7s 124us/step - loss: 0.0872
- acc: 0.9744 - val_loss: 0.0869 - val_acc: 0.9732

...

Epoch 199/200
60000/60000 [==============================] - 7s 114us/step - loss:
1.1935e-07 - acc: 1.0000 - val_loss: 0.1214 - val_acc: 0.9838
Epoch 200/200
60000/60000 [==============================] - 7s 116us/step - loss:
1.1935e-07 - acc: 1.0000 - val_loss: 0.1214 - val_acc: 0.9840

Even without a further analysis, we can immediately notice that the model is overfitted.
After 200 epochs, the training accuracy is 1.0 with a loss close to 0.0, while the validation
accuracy is reasonably high, but with a validation loss slightly lower than the one obtained
at the end of the second epoch.

Neural Networks for Machine Learning Chapter 9

[362]

To better understand what happened, it's useful to plot both accuracy and loss during the
training process:

As it's possible to see, the validation loss reached a minimum during the first 10 epochs and
immediately restarted to grow (this is sometimes called a U-curve because of its shape). At
the same moment, the training accuracy reached 1.0. From that epoch on, the model started
overfitting, learning a perfect structure of the training set, but losing the generalization
ability. In fact, even if the final validation accuracy is rather high, the loss function indicates
a lack of robustness when new samples are presented. As the loss is a categorical cross-
entropy, the result can be interpreted as saying that the model has learned a distribution
that partially mismatches the validation set one. As our goal is to use the model to predict
new samples, this configuration could not be acceptable. Therefore, we try again, using
some dropout layers. As suggested by the authors, we also increment the learning rate to
0.1 (switching to a Momentum SGD optimizer in order to avoid explosions due to adaptivity
of RMSProp or Adam), initialize the weight with a uniform distribution (-0.05, 0.05), and
impose a maximum norm constraint set to 2.0. This choice allows the exploration of more
sub-configurations without the risk of excessively high weights. The dropout is applied to
the 25% of input units and to all ReLU fully connected layers with a percentage set to 50%:

from keras.constraints import maxnorm
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD

model = Sequential()

model.add(Dropout(0.25, input_shape=(width * height,), seed=1000))

Neural Networks for Machine Learning Chapter 9

[363]

model.add(Dense(2048, kernel_initializer='uniform',
kernel_constraint=maxnorm(2.0)))
model.add(Activation('relu'))
model.add(Dropout(0.5, seed=1000))

model.add(Dense(1024, kernel_initializer='uniform',
kernel_constraint=maxnorm(2.0)))
model.add(Activation('relu'))
model.add(Dropout(0.5, seed=1000))

model.add(Dense(1024, kernel_initializer='uniform',
kernel_constraint=maxnorm(2.0)))
model.add(Activation('relu'))
model.add(Dropout(0.5, seed=1000))

model.add(Dense(10))
model.add(Activation('softmax'))

model.compile(optimizer=SGD(lr=0.1, momentum=0.9),
 loss='categorical_crossentropy',
 metrics=['accuracy'])

The training process is performed with the same parameters:

history = model.fit(X_train, Y_train,
 epochs=200,
 batch_size=256,
 validation_data=(X_test, Y_test))

Train on 60000 samples, validate on 10000 samples
Epoch 1/200
60000/60000 [==============================] - 11s 189us/step - loss:
0.4964 - acc: 0.8396 - val_loss: 0.1592 - val_acc: 0.9511
Epoch 2/200
60000/60000 [==============================] - 6s 97us/step - loss: 0.2300
- acc: 0.9300 - val_loss: 0.1081 - val_acc: 0.9645
Epoch 3/200
60000/60000 [==============================] - 6s 93us/step - loss: 0.1867
- acc: 0.9435 - val_loss: 0.0941 - val_acc: 0.9713

...

Epoch 199/200
60000/60000 [==============================] - 6s 99us/step - loss: 0.0184
- acc: 0.9939 - val_loss: 0.0473 - val_acc: 0.9884
Epoch 200/200
60000/60000 [==============================] - 6s 101us/step - loss: 0.0190
- acc: 0.9941 - val_loss: 0.0484 - val_acc: 0.9883

Neural Networks for Machine Learning Chapter 9

[364]

The final condition is dramatically changed. The model is no longer overfitted (even if it's
possible to improve it in order to increase the validation accuracy) and the validation loss is
lower than the initial one. To have a confirmation, let's analyze the accuracy/loss plots:

The result shows some imperfections because the validation loss is almost flat for many
epochs; however, the same model, with a higher learning rate and a weaker algorithm
achieved a better final performance (0.988 validation accuracy) and a superior
generalization ability. State-of-the-art models can also reach a validation accuracy equal to
0.995, but our goal was to show the effect of dropout layers in preventing the overfitting
and, moreover, yielding a final configuration that is much more robust to new samples or
noisy ones. I invite the reader to repeat the experiment with different parameters, bigger or
smaller networks, and other optimization algorithms, trying to further reduce the final
validation loss.

Keras also implements two additional dropout layers: GaussianDropout, which multiplies
the input samples by a Gaussian noise:

Neural Networks for Machine Learning Chapter 9

[365]

The value for the constant ρ can be set through the parameter rate (bounded between 0
and 1). When ρ → 1, σ2 → ∞, while small values yield a null effect as n ≈ 1. This layer can be
very useful as input one, in order to simulate a random data augmentation process. The
other class is AlphaDropout, which works like the previous one, but renormalizing the
output to keep the original mean and variance (this effect is very similar to the one obtained
employing the technique described in the next paragraph together with noisy layers).

When working with probabilistic layers (such as dropout), I always
suggest setting the random seed (np.random.seed(...) and
tf.set_random_seed(...) when Tensorflow backend is used). In this
way, it's possible to repeat the experiments comparing the results without
any bias. If the random seed is not explicitly set, every new training
process will be different and it's not easy to compare the performances, for
example, after a fixed number of epochs.

Batch normalization
Let's consider a mini-batch of k samples:

Before traversing the network, we can measure a mean and a variance:

After the first layer (for simplicity, let's suppose that the activation function, f(•), is the
always the same), the batch is transformed into the following:

Neural Networks for Machine Learning Chapter 9

[366]

In general, there's no guarantee that the new mean and variance are the same. On the
contrary, it's easy to observe a modification that increases throughout the network. This
phenomenon is called covariate shift, and it's responsible for a progressive training speed
decay due to the different adaptations needed in each layer. Ioffe and Szegedy (in Batch
Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Ioffe S.,
Szegedy C., arXiv:1502.03167 [cs.LG]) proposed a method to mitigate this problem, which has
been called batch normalization (BN).

The idea is to renormalize the linear output of a layer (before or after applying the
activation function), so that the batch has null mean and unit variance. Therefore, the first
task of a BN layer is to compute:

Then each sample is transformed into a normalized version (the parameter δ is included to
improve the numerical stability):

However, as the batch normalization has no computational purposes other than speeding
up the training process, the transformation must always be an identity (in order to avoid to
distort and bias the data); therefore, the actual output will be obtained by applying the
linear operation:

Neural Networks for Machine Learning Chapter 9

[367]

The two parameters α(j) and β(j) are variables optimized by the SGD algorithm; therefore,
each transformation is guaranteed not to alter the scale and the position of data. These
layers are active only during the training phase (like dropout), but, contrary to other
algorithms, they cannot be simply discarded when the model is used to make predictions
on new samples because the output would be constantly biased. To avoid this problem, the
authors suggest approximating both mean and variance of X by averaging over the batches
(assuming that there are Nb batches with k samples):

Using these values, the batch normalization layers can be transformed into the following
linear operations:

It's not difficult to prove that this approximation becomes more and more accurate when
the number of batches increases and that the error is normally negligible. However, when
the batch size is very small, the statistics can be quite inaccurate; therefore, this method
should be used considering the representativeness of a batch. If the data generating process is
simple, even a small batch can be enough to describe the actual distribution. When, instead,
pdata is more complex, batch normalization requires larger batches to avoid wrong
adjustments (a feasible strategy is to compare global mean and variance with the ones
computed sampling some batches and trying to set the batch size that minimizes the
discrepancy). However, this simple process can dramatically reduce the covariate shift and
improve the convergence speed of very deep networks (including the famous residual
networks). Moreover, it allows employing higher learning rates as the layers are implicitly
saturated and can never explode. Additionally, it has been proven that batch normalization
has also a secondary regularization effect even if it doesn't work on the weights. The reason
is not very different from the one proposed for L2, but, in this case, there's a residual effect
due to the transformation itself (partially caused by the variability of the parameters α(j) and
β(j)) that can encourage the exploration of different regions of the sample space. However,
this is not the primary effect, and it's not a good practice employing this method as a
regularizer.

Neural Networks for Machine Learning Chapter 9

[368]

Example of batch normalization with Keras
In order to show the feature of this technique, let's repeat the previous example using an
MLP without dropout but applying a batch normalization after each fully connected layer
before the ReLU activation. The example is very similar to the first one, but, in this case, we
increase the Adam learning rate to 0.001 keeping the same decay:

from keras.models import Sequential
from keras.layers import Dense, Activation, BatchNormalization
from keras.optimizers import Adam

model = Sequential()

model.add(Dense(2048, input_shape=(width * height,)))
model.add(BatchNormalization())
model.add(Activation('relu'))

model.add(Dense(1024))
model.add(BatchNormalization())
model.add(Activation('relu'))

model.add(Dense(1024))
model.add(BatchNormalization())
model.add(Activation('relu'))

model.add(Dense(10))
model.add(BatchNormalization())
model.add(Activation('softmax'))

model.compile(optimizer=Adam(lr=0.001, decay=1e-6),
 loss='categorical_crossentropy',
 metrics=['accuracy'])

We can now train using the same parameters again:

history = model.fit(X_train, Y_train,
 epochs=200,
 batch_size=256,
 validation_data=(X_test, Y_test))

Train on 60000 samples, validate on 10000 samples
Epoch 1/200
60000/60000 [==============================] - 16s 274us/step - loss:
0.3848 - acc: 0.9558 - val_loss: 0.3338 - val_acc: 0.9736
Epoch 2/200
60000/60000 [==============================] - 8s 139us/step - loss: 0.1977
- acc: 0.9844 - val_loss: 0.1904 - val_acc: 0.9789

Neural Networks for Machine Learning Chapter 9

[369]

Epoch 3/200
60000/60000 [==============================] - 8s 137us/step - loss: 0.1292
- acc: 0.9903 - val_loss: 0.1397 - val_acc: 0.9835

...

Epoch 199/200
60000/60000 [==============================] - 8s 132us/step - loss:
4.7805e-05 - acc: 1.0000 - val_loss: 0.0599 - val_acc: 0.9877
Epoch 200/200
60000/60000 [==============================] - 8s 133us/step - loss:
2.6056e-05 - acc: 1.0000 - val_loss: 0.0593 - val_acc: 0.9879

The model is again overfitted, but now the final validation accuracy is only slightly higher
than the one achieved using the dropout layers. Let's plot accuracy and loss to better
analyze the training process:

Neural Networks for Machine Learning Chapter 9

[370]

The effect of the batch normalization improved the performances and slowed down the
overfitting. At the same time, the elimination of the covariate shift avoided the U-curve
keeping a quite low validation loss. Moreover, the model reached a validation accuracy of
about 0.99 during the epochs 135-140 with a residual positive trend. Analogously to the
previous example, this solution is imperfect, but it's a good starting point for further
optimization. It would be a good idea to continue the training process for a larger number
of epochs, monitoring both the validation loss and accuracy. Moreover, it's possible to mix
dropout and batch normalization or experiment with the Keras AlphaDropout layer.
However, if, in the first example (without dropout), the climax of training accuracy was
associated with a starting positive trend for the validation loss, in this case, the learned
distribution doesn't seem to be very different from the validation set one. In other words,
batch normalization is not preventing overfitting the training set, but it's avoiding a decay
in the generalization ability (observed when there was no batch normalization). I suggest
repeating the test with other hyperparameter and architectural configurations in order to
decide whether this model can be used for prediction purposes or it's better to look for
other solutions.

Summary
In this chapter, we started the exploration of the deep learning world by introducing the
basic concepts that led the first researchers to improve the algorithms until they achieved
the top results we have nowadays. The first part explained the structure of a basic artificial
neuron, which combines a linear operation followed by an optional non-linear scalar
function. A single layer of linear neurons was initially proposed as the first neural network,
with the name of the perceptron.

Even though it was quite powerful for many problems, this model soon showed its
limitations when working with non-linear separable datasets. A perceptron is not very
different from a logistic regression, and there's no concrete reason to employ it.
Nevertheless, this model opened the doors to a family of extremely powerful models
obtained combining multiple non-linear layers. The multilayer perceptron, which has been
proven to be a universal approximator, is able to manage almost any kind of dataset,
achieving high-level performances when other methods fail.

Neural Networks for Machine Learning Chapter 9

[371]

In the next section, we analyzed the building bricks of an MLP. We started with the
activation functions, describing their structure and features, and focusing on the reasons
they lead the choice for specific problems. Then, we discussed the training process,
considering the basic idea behind the back-propagation algorithm and how it can be
implemented using the stochastic gradient descent method. Even if this approach is quite
effective, it can be slow when the complexity of the network is very high. For this reason,
many optimization algorithms were proposed. In this chapter, we analyzed the role of
momentum and how it's possible to manage adaptive corrections using RMSProp. Then, we
combined both, momentum and RMSProp to derive a very powerful algorithm called
Adam. In order to provide a complete vision, we also presented two slightly different
adaptive algorithms, called AdaGrad and AdaDelta.

In the next sections, we discussed the regularization methods and how they can be plugged
into a Keras model. An important section was dedicated to a very diffused technique called
dropout, which consists in setting to zero (dropping) a fixed percentage of samples through
a random selection. This method, although very simple, prevents the overfitting of very
deep networks and encourages the exploration of different regions of the sample space,
obtaining a result not very dissimilar to the ones analyzed in Chapter 8, Ensemble Learning.
The last topic was the batch normalization technique, which is a method to reduce the
mean and variance shift (called covariate shift) caused by subsequent neural
transformations. This phenomenon can slow down the training process as each layer
requires different adaptations and it's more difficult to move all the weights in the best
direction. Applying batch normalization means very deep networks can be trained in a
shorter time, thanks also to the possibility of employing higher learning rates.

In the next chapter, we are going to continue this exploration, analyzing very important
advanced layers like convolutions (that achieve extraordinary performances in image-
oriented tasks) and recurrent units (for the processing of time series) and discussing some
practical applications that can be experimented on and readapted using Keras and
Tensorflow.

10
Advanced Neural Models

In this chapter, we continue our pragmatic exploration of the world of deep learning,
analyzing two very important elements: deep convolutional networks and recurrent neural
networks (RNN). The former represents the most accurate and best performing visual
processing technique for almost any purpose. Results like the ones obtained in fields such
as real-time image recognition, self-driving cars, and Deep Reinforcement Learning have
been possible thanks to the expressivity of this kind of network. On the other hand, in
order to fully manage the temporal dimension, it is necessary to introduce advanced
recurrent layers, whose performance must be greater than any other regression method.
Employing these two techniques together with all the elements already discussed in the
previous chapter makes it possible to achieve extraordinary results in the field of video
processing, decoding, segmentation, and generation.

In particular, in this chapter, we are going to discuss the following topics:

Deep convolutional networks
Convolutions, atrous convolutions, separable convolutions, and transpose
convolutions
Pooling and other support layers
Recurrent neural networks
LSTM and GRU cells
Transfer learning

Advanced Neural Models Chapter 10

[373]

Deep convolutional networks
In the previous chapter, Chapter 9, Neural Networks for Machine Learning we have seen how
a multi-layer perceptron can achieve a very high accuracy when working with an complex
image dataset that is not very complex, such as the MNIST handwritten digits one.
However, as the fully-connected layers are horizontal, the images, which in general are
three-dimensional structures (width × height × channels), must be flattened and transformed
into one-dimensional arrays where the geometric properties are definitively lost. With more
complex datasets, where the distinction between classes depends on more details and on
their relationships, this approach can yield moderate accuracies, but it can never reach the
precision required by production-ready applications.

The conjunction of neuroscientific studies and image processing techniques suggested
experimenting with neural networks where the first layers work with bidimensional
structures (without the channels), trying to extract a hierarchy of features that are strictly
dependent on the geometric properties of the image. In fact, as confirmed by neuroscientific
research about the visual cortex, a human being doesn't decode an image directly. The
process is sequential and starts by detecting low-level elements such as lines are
orientations; progressively, it proceeds by focusing on sub-properties that define more and
more complex shapes, different colors, structural features, and so on, until the amount of
information is enough to resolve any possible ambiguity (for further scientific details, I
recommend the book Vision and Brain: How We Perceive the World, Stone J. V., MIT Press).

For example, we can image the decoding process of an eye as a sequence made up of these
filters (of course, this is only a didactic example): directions (dominant horizontal
dimension), a central circle inside an ellipsoidal shape, a darker center (pupil) and a clear
background (bulb), a smaller darker circle in the middle of the pupil, the presence of
eyebrows, and so on. Even if the process is not biologically correct, it can be considered as a
reasonable hierarchical process where a higher level sub-feature is obtained after a lower-
level filtering.

Advanced Neural Models Chapter 10

[374]

This approach has been synthesized using the bidimensional convolutional operator, which
was already known as a powerful image processing tool. However, in this case, there's a
very important difference: the structure of the filters is not pre-imposed but learned by the
network using the same back-propagation algorithm employed for MLPs. In this way, the
model can adapt the weights considering a final goal (which is the classification output),
without taking into account any pre-processing steps. In fact, a deep convolutional
network, more than an MLP, is based on the concept of end-to-end learning, which is a
different way to express what we have described before. The input is the source; in the
middle, there's a flexible structure; and, at the end, we define a global cost function,
measuring the accuracy of the classification. The learning process has to back-propagate the
errors and correct the weights to reach a specific goal, but we don't know exactly how this
process works. What we can easily do is analyze the structure of the filters at the end of the
learning phase, discovering that the network has specialized the first layers on low-level
details (such as orientations) and the last ones on high-level, sometimes recognizable, ones
(such as the components of a face). It's not surprising that such models achieved state-of-
the-art performance in tasks such as image recognition, segmentation (detecting the
boundaries of different parts composing an image), and tracking (detecting the position of
moving objects). Nevertheless, deep convolutional networks have become the first block of
many different architectures (such as deep reinforcement learning or neural style transfer)
and, even with a few known limitations, continue to be the first choice for solving several
complex real-life problems. The main drawback of such models (which is also a common
objection) is that they require very large datasets to reach high accuracies. All the most
important models are trained with millions of images and their generalization ability (that
is, the main goal) is proportional to the number of different samples. There were
researchers who noticed that a human being learns to generalize without this huge amount
of experience and, in the coming decades, we are likely to observe improvements under
this viewpoint. However, deep convolutional networks have revolutionized many Artificial
Intelligence fields, allowing results that were considered almost impossible just a few years
ago.

In this section, we are going to discuss different kinds of convolutions and how they can be
implemented using Keras; therefore, for specific technical details I continue suggesting to
check the official documentation and the book Deep Learning with Keras, Gulli A, Pal
S., Packt.

Advanced Neural Models Chapter 10

[375]

Convolutions
Even if we work only with finite and discrete convolutions, it's useful to start providing the
standard definition based on integrable functions. For simplicity, let's suppose that f(τ) and
k(τ) are two real functions of a single variable defined in ℜ. The convolution of f(τ) and k(τ)
(conventionally denoted as f ∗ k), which we are going to call kernel, is defined as follows:

The expression may not be very easy to understand without a mathematical background,
but it can become exceptionally simple with a few considerations. First of all, the integral
sums over all values of τ; therefore, the convolution is a function of the remaining variable,
t. The second fundamental element is a sort of dynamic property: the kernel is reversed (-τ)
and transformed into a function of a new variable z = t - τ. Without deep mathematical
knowledge, it's possible to understand that this operation shifts the function along the τ
(independent variable) axis. In the following graphs, there's an example based on a
parabola:

Advanced Neural Models Chapter 10

[376]

The first diagram is the original kernel (which is also symmetric). The other two plots show,
respectively, a forward and a backward shift. It should be clearer now that a convolution
multiplies the function f(τ) times the shifted kernel and computes the area under the
resulting curve. As the variable t is not integrated, the area is a function of t and defines a
new function, which is the convolution itself. In other words, the value of convolution of
f(τ) and k(τ) computed for t = 5 is the area under the curve obtained by the multiplication
f(τ)k(5 - τ). By definition, a convolution is commutative (f ∗ k = k ∗ f) and distributive (f ∗ (k +
g) = (f ∗ k) + (f ∗ g)). Moreover, it's also possible to prove that it's associative (f ∗ (k ∗ g) = (f ∗ k)
∗ g).

However, in deep learning, we never work with continuous convolutions; therefore, I omit
all the properties and mathematical details, focusing the attention on the discrete case. The
reader who is interested in the theory can find further details in Circuits, Signals, and
Systems, Siebert W. M., MIT Press. A common practice is, instead, to stack multiple
convolutions with different kernels (often called filters), to transform an input containing n
channels into an output with m channels, where m corresponds to the number of kernels.
This approach allows the unleashing of the full power of convolutions, thanks to the
synergic actions of different outputs. Conventionally, the output of a convolution layer
with n filters is called a feature map (w(t) × h(t) × n), because its structure is no longer related
to a specific image but resembles the overlap of different feature detectors. In this chapter,
we often talk about images (considering a hypothetical first layer), but all the
considerations are implicitly extended to any feature map.

Bidimensional discrete convolutions
The most common type of convolution employed in deep learning is based on
bidimensional arrays with any number of channels (such as grayscale or RGB images). For
simplicity, let's analyze a single layer (channel) convolution because the extension to n
layers is straightforward. If X ∈ ℜw × h and k ∈ ℜn × m, the convolution X ∗ k is defined as (the
indexes start from 0):

Advanced Neural Models Chapter 10

[377]

It's clear that the previous expression is a natural derivation of the continuous definition. In
the following graph, there's an example with a 3 × 3 kernel:

Example of bidimensional convolution with a 3x3 kernel

The kernel is shifted horizontally and vertically, yielding the sum of the element-wise
multiplication of corresponding elements. Therefore, every operation leads to the output of
a single pixel. The kernel employed in the example is called the discrete Laplacian operator
(because it's obtained by discretizing the real Laplacian); let's observe the effect of this
kernel on a complete greyscale diagram:

Example of convolution with a Discrete Laplacian Kernel

Advanced Neural Models Chapter 10

[378]

As it's possible to notice, the effect of the convolution is to emphasize the borders of the
various shapes. The reader can now understand how variable kernels can be tuned up in
order to fulfill precise requirements. However, instead of trying to do it manually, a deep
convolutional network leaves this tasks to the learning process, which is subject to a precise
goal expressed as the minimization of a cost function. A parallel application of different
filters yields complex overlaps that can simplify the extraction of those features that are
really important for a classification. The main difference between a fully-connected layer
and a convolutional one is the ability of the latter to work with an existing geometry, which
encodes all the elements needed to distinguish an object from another one. These elements
cannot be immediately generalizable (think about the branches of a decision tree, where a
split defines a precise path towards a final class), but require subsequent processing steps
to perform a necessary disambiguation. Considering the previous photo, for example, eyes
and nose are rather similar. How is it possible to segment the picture correctly? The answer
is provided by a double analysis: there are subtle differences that can be discovered by fine-
grained filters and, above all, the global geometry of real objects is based on internal
relationships that are almost invariant. For example (only for didactic purposes), eyes and
nose should make up an isosceles triangle, because the symmetry of a face implies the same
distance between each eye and the nose. This consideration can be made apriori, like in
many visual processing techniques, or, thanks to the power of deep learning, it can be left
to the training process. As the cost function and the output classes implicitly control the
differences, a deep convolutional network can learn what is important to reach a specific
goal, discarding at the same time all those details that are useless.

In the previous section, we have said that the feature extraction process is mainly
hierarchical. Now, it should be clear that different kernel sizes and subsequent
convolutions achieve exactly this objective. Let's suppose that we have a 100 × 100 image
and a (3 × 3) kernel. The resulting image will be 98 × 98 pixels (we will explain this concept
later). However, each pixel encodes the information of a 3 × 3 block and, as these blocks are
overlapping, two consecutive pixels will share some knowledge but, at the same time, they
emphasize the difference between the corresponding blocks.

Advanced Neural Models Chapter 10

[379]

In the following diagram, the same Laplacian Kernel is applied to a simple white square on
a black background:

Orginal image (left); convolution with Laplacian kernel result (right)

Even if the image is very simple, it's possible to notice that the result of a convolution
enriched the output image with some very important pieces of information: the borders of
the square are now clearly visible (they are black and white) and they can be immediately
detected by thresholding the image. The reason is straightforward: the effect of the kernel
on the compact surfaces is compact too but, when the kernel is shifted upon the border, the
effect of the difference becomes visible. Three adjacent pixels in the original image can be
represented as (0, 1, 1), indicating the horizontal transition between black and white. After
the convolution, the result is approximately (0.75, 0.0, 0.25). All the original black pixels
have been transformed into a light gray, the white square became darker, and the border
(which is not marked in the original picture) is now black (or white, depending on the shift
direction). Reapplying the same filter to the output of the previous convolution, we obtain
the following:

Advanced Neural Models Chapter 10

[380]

Second application of the Laplacian kernel

A sharp eye can immediately notice three results: the compact surfaces (black and white)
are becoming more and more similar, the borders are still visible, and, above all, the top
and lower left corners are now more clearly marked with white pixels. Therefore, the result
of the second convolution added a finer-grained piece of information, which was much
more difficult to detect in the original image. Indeed, the effect of the Laplacian operator is
very straightforward and it's useful only for didactic purposes. In real deep convolutional
networks, the filters are trained to perform more complex processing operations that can
reveal details (together with their internal and external relationships) that are not
immediately exploited to classify the image. Their isolation (obtained thanks to the effect of
many parallel filters) allows the network to mark similar elements (like the corners of the
square) in a different way and make more accurate decisions.

Advanced Neural Models Chapter 10

[381]

The purpose of this example is to show how a sequence of convolutions allows the
generation of a hierarchical process that will extract coarse-grained features at the
beginning and very high-level ones at the end, without losing the information already
collected. Metaphorically, we could say that a deep convolutional network starts placing
labels indicating lines, orientations, and borders and proceeds by enriching the existing
ontology with further details (such as corners, particular shapes, and so on). Thanks to this
ability, such models can easily outperform any MLP and reach almost to the Bayes level if
the number of training samples is large enough. The main drawback of this models is their
inability to easily recognize objects after the application of affine transformations (such as
rotations or translations). In other words, if a network is trained with a dataset containing
only faces in their natural position, it will achieve poor performance when a rotated (or
upside-down) sample is presented. In the next sections, we are going to discuss a couple of
methods that are helpful for mitigating this problem (in the case of translations); however, a
new experimental architecture called a capsule network (which is beyond the scope of this
book) has been proposed in order to solve this problem with a slightly different and much
more robust approach (the reader can find further details in Dynamic Routing Between
Capsules, Sabour S., Frosst N., Hinton G. E., arXiv:1710.09829 [cs.CV]).

Strides and padding
Two important parameters common to all convolutions are padding and strides. Let's
consider the bidimensional case, but keep in mind that the concepts are always the same.
When a kernel (n × m with n, m > 1) is shifted upon an image and it arrives at the end of a
dimension, there are two possibilities. The first one, called valid padding, consists of not
continuing even if the resulting image is smaller than the original. In particular, if X is a w ×
h matrix, the resulting convolution output will have dimensions equal to (w - n + 1) × (h - m
+ 1). However, there are many cases when it's useful to keep the original dimensions, for
example, to be able to sum different outputs. This approach is called same padding and it's
based on the simple idea to add n - 1 blank columns and m - 1 blank rows to allow the
kernel to shift over the original image, yielding a number of pixels equal to the initial
dimensions. In many implementations, the default value is set to valid padding.

Advanced Neural Models Chapter 10

[382]

The other parameter, called strides, defines the number of pixels to skip during each shift.
For example, a value set to (1, 1) corresponds to a standard convolution, while strides set to
(2, 1) are shown in the following diagram:

Example of bidimensional convolution with strides=2 on the x-axis

In this case, every horizontal shift skips a pixel. Larger strides force a dimensionality
reduction when a high granularity is not necessary (for example, in the first layers), while
strides set to (1, 1) are normally employed in the last layers to capture smaller details. There
are no standard rules to find out the optimal value and testing different configurations is
always the best approach. Like any other hyperparameter, too many elements should be
taken into account when determining whether a choice is acceptable or not; however, some
general pieces of information about the dataset (and therefore about the underlying data
generating process) can help in making a reasonable initial decision. For example, if we are
working with pictures of buildings whose dimension is vertical, it's possible to start picking
a value of (1, 2), because we can assume that there's more informative redundancy in the y-
axis than in the x-axis. This choice can dramatically speed up the training process, as the
output has one dimension, which is half (with the same padding) of the original one. In this
way, larger strides produce a partial denoising and can improve the training speed. At the
same time, the information loss could have a negative impact on the accuracy. If that
happens, it probably means that the scale isn't high enough to allow skipping some
elements without compromising the semantics. For example, an image with very small faces
could be irreversibly damaged with large strides, yielding an inability to detect the right
feature and a consequent worsening of the classification accuracy.

Advanced Neural Models Chapter 10

[383]

Atrous convolution
In some cases, a stride larger than one could be a good solution because it reduces the
dimensionality and speeds up the training process, but it can lead to distorted images
where the main features are not detectable anymore. An alternative approach is provided
by the atrous convolution (also known as dilated convolution). In this case, the kernel is
applied to a larger image patch, but skips some pixels inside the area itself (that's why
someone called it convolution with holes). In the following graph, there's an example with
(3 × 3) and dilation rate set to 2:

Example of atrous convolution with a Laplacian kernel

Advanced Neural Models Chapter 10

[384]

Every patch is now 9 × 9, but the kernel remains a 3 × 3 Laplacian operator. The effect of
this approach is more robust than increasing the strides because the kernel perimeter will
always contain a group of pixels with the same geometrical relationships. Of course, fine-
grained features could be distorted, but as the strides are normally set to (1, 1), the final
result is normally more coherent. The main difference with a standard convolution is that
in this case, we are assuming that farther elements can be taken into account to determine
the nature of an output pixel. For example, if the main features don't contain very small
details, an atrous convolution can consider larger areas, focusing directly on elements that a
standard convolution can detect only after several operations. The choice of this technique
must be made considering the final accuracy, but just like for the strides, it can be
considered from the beginning whenever the geometric properties can be detected more
efficiently, considering larger patches with a few representative elements. Even if this
method can be very effective in particular contexts, it isn't normally the first choice for very
deep models. In the most important image classification models, standard convolutions
(with or without larger strides) are employed because they have been proven to yield the
best performance with very generic datasets (such as ImageNet or Microsoft Coco).
However, I suggest the reader experiment with this method and compare the results. In
particular, it would be a good idea to analyze which classes are better classified and try to
find a rational explanation for the observed behavior.

In some frameworks, such as Keras, there are no explicit layers to define
an atrous convolution. Instead, a standard convolutional layer normally
has a parameter to define the dilation rate (in Keras, it's called
dilation_rate). Of course, the default value is 1, meaning that the
kernel will be applied to patches matching its size.

Advanced Neural Models Chapter 10

[385]

Separable convolution
If we consider an image X ∈ ℜw × h (single channel) and a kernel k ∈ ℜn × m, the number of
operations is nmwh. When the kernel is not very small and the image is large, the cost of
this computation can be quite high, even with GPU support. An improvement can be
achieved by taking into account the associated property of convolutions. In particular, if the
original kernel can be split into the dot product of two vectorial kernels, k(1) with
dimensions (n × 1) and k(2) with dimensions (1 × m), the convolution is said to be separable.
This means that we can perform a (n × m) convolution with two subsequent operations:

The advantage is clear, because now the number of operations is (n + m)wh. In particular,
when nm >> n + m, it's possible to avoid a large number of multiplications and speed up
both the training and the prediction process.

A slightly different approach has been proposed in Xception: Deep Learning with Depthwise
Separable Convolutions, Chollet F., arXiv:1610.02357 [cs.CV]. In this case, which is properly
called depthwise separable convolution, the process is split into two steps. The first one
operates along the channel axis, transforming it into a single dimensional map with a
variable number of channels (for example, if the original diagram is 768 × 1024 × 3, the
output of the first stage will be n × 768 × 1024 × 1). Then, a standard convolution is applied
to the single layer (which can have indeed more than one channel). In the majority of
implementations, the default number of output channels for the depthwise convolution is 1
(this is conventionally expressed by saying that the depth multiplier is 1). This approach
allows a dramatic parameter reduction with respect to a standard convolution. In fact, if the
input generic feature map is X ∈ ℜw × h × p and we want to perform a standard convolution
with q kernels k(i) ∈ ℜn × m, we need to learn nmqp parameters (each kernel k(i) is applied to all
input channels). Employing the Depthwise Separable Convolution, the first step (working
with only the channels) requires nmp parameters. As the output has still p feature maps and
we need to output q channels, the process employs a trick: processing each feature map
with q 1 × 1 kernels (in this way, the output will have q layers and the same dimensions).
The number of parameters required for the second step is pq, so the total number of
parameters becomes nmp + pq. Comparing this value with the one required for a standard
convolution, we obtain an interesting result:

Advanced Neural Models Chapter 10

[386]

As this condition is easily true, this approach is extremely effective in optimizing the
training and prediction processes, as well as the memory consumption in any scenario. It's
not surprising that the Xception model has been immediately implemented in mobile
devices, allowing real-time image classification with very limited resources. Of course,
depthwise separable convolutions don't always have the same accuracy as standard ones,
because they are based on the assumption that the geometrical features observable inside a
channel of a composite feature map are independent of each other. This is not always true,
because we know that the effect of multiple layers is based also on their combinations
(which increases the expressivity of a network). However, in many cases the final result has
an accuracy comparable to some state-of-the-art models; therefore, this technique can very
often be considered as a valid alternative to a standard convolution.

Since version 2.1.5, Keras has introduced a layer called DepthwiseConv2D
that implements a depthwise separable convolution. This layer extends
the existing SeparableConv2D.

Transpose convolution
A transpose convolution (sometimes wrongly called deconvolution, even if the
mathematical definition is different) is not very different from a standard convolution, but
its goal is to rebuild a structure with the same features as the input sample. Let's suppose
that the output of a convolutional network is the feature map X ∈ ℜw' × h' × p and we need to
build an output element Y ∈ ℜw × h × 3 (assuming the w and h are the original dimensions). We
can achieve this result by applying a transpose convolution with appropriate strides and
padding to X. For example, let's suppose that X ∈ ℜ128 × 128 × 256 and our output must be 512 ×
512 × 3. The last transpose convolution must learn three filters with strides set to four
and same padding. We are going to see some practical examples of this method in the next
chapter Chapter 11, Autoencoders when discussing autoencoders; however, there are no
very important differences between transpose and standard convolution in terms of
internal dynamics. The main difference is the cost function, because when a transpose
convolution is used as the last layer, the comparison must be done between a target image
and a reconstructed one. In the next chapter, Chapter 11, Autoencoders we are also going
to analyze some techniques to improve the quality of the output even when the cost
function doesn't focus on specific areas of the image.

Advanced Neural Models Chapter 10

[387]

Pooling layers
In a deep convolutional network, pooling layers are extremely useful elements. There are
mainly two kinds of these structures: max pooling and average pooling. They both work
on patches p ∈ ℜn × m, shifting horizontally and vertically according to the predefined stride
value and transforming the patches into single pixels according to the following rules:

There are two main reasons that justify the use of these layers. The first one is a
dimensionality reduction with limited information loss (for example, setting the strides to
(2, 2), it's possible to halve the dimensions of an image/feature map). Clearly, all pooling
techniques can be more or less lossy (in particular max pooling) and the specific result
depends on the single image. In general, pooling layers try to summarize the information
contained in a small chunk into a single pixel. This idea is supported by a perceptual-
oriented approach; in fact, when the pools are not too large, it's rather unlikely to find high
variances in subsequent shifts (natural images have very few isolated pixels). Therefore, all
the pooling operations allow us to set up strides greater than one with a mitigated risk of
compromising the information content. However, considering several experiments and
architectures, I suggest that you set up larger strides in the convolutional layers (in
particular, in the first layer of a convolutional sequence) instead of in pooling ones. In this
way, it's possible to apply the transformation with a minimum loss and to fully exploit the
next fundamental property.

The second (and probably the most important) reason is that they slightly increase the
robustness to translations and limited distortions with an effect that is proportional to the
pool size. Let's consider the following diagram, representing an original image of a cross
and the version after a 10-pixel diagonal translation:

Advanced Neural Models Chapter 10

[388]

Original image (left); diagonally translated image (right)

This is a very simple example and the translated image is not very different from the
original one. However, in a more complex scenario, a classifier could also fail to correctly
classify an object in similar conditions. Applying a max pooling (with a (2 × 2) pool size
and 2-pixel strides) on the translated image, we get the following:

Original image (left); result of a max pooling on the translated image (right)

Advanced Neural Models Chapter 10

[389]

The result is a larger cross, whose arms are slightly more aligned to the axis. When
compared with the original image, it's easier for a classifier with a good generalization
ability to filter out the spurious elements and recognize the original shape (which can be
considered a cross surrounded by a noisy frame). Repeating the same experiment with
average pooling (same parameters), we obtain the following:

Original image (left); result of an average pooling on the translated image (right)

In this case, the picture is partially smoothed, but it's still possible to see a better alignment
(thanks mainly to the fading effect). Also, if these methods are simple and somewhat
effective, the robustness to invariant transformations is never dramatically improved and
higher levels of invariance are possible only by increasing the pool size. This choice leads to
coarser-grained feature maps whose amount of information is drastically reduced;
therefore, whenever it's necessary to extend the classification to samples that can be
distorted or rotated, it can be a good idea (which allows working with a dataset that better
represents the real data generating process) to use a data augmentation technique to
produce artificial images and to also train the classifier on them. However, as pointed out
in Deep Learning, Goodfellow I., Bengio Y., Courville A., MIT Press, pooling layers can also
provide a robust invariance to rotations when they are used together with the output of a
multiple convolution layer or a rotated image stack. In fact, in these cases, a single pattern
response is elicited and the effect of the pooling layer becomes similar to a collector that
standardizes the output. In other words, it will produce the same result without an explicit
selection of the best matching pattern. For this reason, if the dataset contains enough
samples, pooling layers in intermediate positions of the network can provide a moderate
robustness to small rotations, increasing the generalization ability of the whole deep
architecture.

Advanced Neural Models Chapter 10

[390]

As it's easy to see in the previous example, the main difference between the two variants is
the final result. Average pooling performs a sort of very simple interpolation, smoothing
the borders and avoiding abrupt changes. On the other hand, max pooling is less noisy and
can yield better results when the features need to be detected without any kind of
smoothing (which could alter their geometry). I always suggest testing both techniques,
because it's almost impossible to pick the best method with the right pool size according
only to heuristic considerations (above all, when the datasets are not made up of very
simple images).

Clearly, it's always preferable to use these layers after a group of convolutions, avoiding
very large pool sizes that can irreversibly destroy the information content. In many
important deep architectures, the pooling layers are always based on (2, 2) or (3, 3) pools,
independently of their position, and the strides are always set to 1 or 2. In both cases, the
information loss is proportional to the pool size/strides; therefore, large pools are normally
avoided when small features must be detected together with larger ones (for example,
foreground and background faces).

Other useful layers
Even if convolution and pooling layers are the backbone of almost all deep convolutional
networks, other layers can be helpful to manage specific situations. They are as follows:

Padding layers: These can be employed to increase the size of a feature map (for
example, to align it with another one) by surrounding it with a blank frame (n
black pixels are added before and after each side).
Upsampling layers: These increase the size of a feature map by creating larger
blocks out of a single pixel. To a certain extent, they can be considered as a
transformation opposite to a pooling layer, even if, in this case, the upsampling is
not based on any kind of interpolation. These kinds of layers can be used to
prepare the feature maps for transformations similar to the ones obtained with a
transpose convolution, even if many experiments confirmed that using larger
strides can yield very accurate results without the need of an extra computational
step.

Advanced Neural Models Chapter 10

[391]

Cropping layers: These are helpful for selecting specific rectangular areas of an
image/feature map. They are particularly useful in modular architectures, where
the first part determines the cropping boundaries (for example, of a face), while
the second part, after having removed the background, can perform high-level
operations such as detail segmentation (marking the areas of eyes, nose, mouth,
and so on). The possibility of inserting these layers directly into a deep neural
model avoids multiple data transfers. Unfortunately, many frameworks (such as
Keras) don't allow us to use variable boundaries, limiting de facto the number of
possible use cases.
Flattening layers: These are the conjunction link between feature maps and fully-
connected layers. Normally, a single flattening layer is used before processing the
output of the convolutional blocks, with a few dense layers terminating in a final
Softmax layer (for classifications). The operation is computationally very cheap
as it works only with the metadata and doesn't perform any calculations.

Examples of deep convolutional networks with
Keras
In the first example, we want to consider again the complete MNIST handwritten digit
dataset, but instead of using an MLP, we are going to employ a small deep convolutional
network. The first step consists of loading and normalizing the dataset:

import numpy as np

from keras.datasets import mnist
from keras.utils import to_categorical

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

width = height = X_train.shape[1]

X_train = X_train.reshape((X_train.shape[0], width, height,
1)).astype(np.float32) / 255.0
 X_test = X_test.reshape((X_test.shape[0], width, height,
1)).astype(np.float32) / 255.0

Y_train = to_categorical(Y_train, num_classes=10)
Y_test = to_categorical(Y_test, num_classes=10)

Advanced Neural Models Chapter 10

[392]

We can now define the model architecture. The samples are rather small (28 × 28); therefore
it can be helpful to use small kernels. This is not a general rule and it's useful to also
evaluate larger kernels (in particular in the first layers); however, many state-of-the-art
architectures confirmed large kernel sizes with small images can lead to a performance loss.
In my personal experiments, I've always obtained the best results when the largest kernels
were 8 ÷ 10 smaller than the image dimensions. Our model is made up of the following
layers:

Input dropout 25%.1.
Convolution with 16 filters, (3 × 3) kernel, strides equal to 1, ReLU activation, and2.
the same padding (the default weight initializer is Xavier). Keras implements the
Conv2D class, whose main parameters are immediately understandable.
Dropout 50%.3.
Convolution with 32 filters, (3 × 3) kernel, strides equal to 1, ReLU activation, and4.
the same padding.
Dropout 50%.5.
Average pooling with (2 × 2) pool size and strides equal to 1 (using the Keras6.
class AveragePooling2D).
Convolution with 64 filters, (3 × 3) kernel, strides equal to 1, ReLU activation, and7.
the same padding.
Average pooling with (2 × 2) pool size and strides equal to 1.8.
Convolution with 64 filters, (3 × 3) kernel, strides equal to 1, ReLU activation, and9.
the same padding.
Dropout 50%.10.
Average pooling with (2 × 2) pool size and strides equal to 1.11.
Fully-connected layer with 1024 ReLU units.12.
Dropout 50%.13.
Fully-connected layer with 10 Softmax units.14.

The goal is to capture the low-level features (horizontal and vertical lines, intersections, and
so on) in the first layers and use the pooling layers and all the subsequent convolutions to
increase the accuracy when distorted samples are presented. At this point, we can create
and compile the model (using the Adam optimizer with η = 0.001 and a decay rate equal to
10-5):

from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, Conv2D,
AveragePooling2D, Flatten
from keras.optimizers import Adam

Advanced Neural Models Chapter 10

[393]

model = Sequential()

model.add(Dropout(0.25, input_shape=(width, height, 1), seed=1000))

model.add(Conv2D(16, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Dropout(0.5, seed=1000))

model.add(Conv2D(32, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Dropout(0.5, seed=1000))

model.add(AveragePooling2D(pool_size=(2, 2), padding='same'))

model.add(Conv2D(64, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))

model.add(AveragePooling2D(pool_size=(2, 2), padding='same'))

model.add(Conv2D(64, kernel_size=(3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Dropout(0.5, seed=1000))

model.add(AveragePooling2D(pool_size=(2, 2), padding='same'))

model.add(Flatten())

model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5, seed=1000))

model.add(Dense(10))
model.add(Activation('softmax'))

model.compile(optimizer=Adam(lr=0.001, decay=1e-5),
 loss='categorical_crossentropy',
 metrics=['accuracy'])

We can now proceed to train the model with 200 epochs and a batch size of 256 samples:

history = model.fit(X_train, Y_train,
 epochs=200,
 batch_size=256,
 validation_data=(X_test, Y_test))

Train on 60000 samples, validate on 10000 samples
Epoch 1/200
60000/60000 [==============================] - 30s 496us/step - loss:

Advanced Neural Models Chapter 10

[394]

0.4474 - acc: 0.8531 - val_loss: 0.0993 - val_acc: 0.9693
Epoch 2/200
60000/60000 [==============================] - 20s 338us/step - loss:
0.1497 - acc: 0.9530 - val_loss: 0.0682 - val_acc: 0.9780
Epoch 3/200
60000/60000 [==============================] - 21s 346us/step - loss:
0.1131 - acc: 0.9647 - val_loss: 0.0598 - val_acc: 0.9839

...

Epoch 199/200
60000/60000 [==============================] - 21s 349us/step - loss:
0.0083 - acc: 0.9974 - val_loss: 0.0137 - val_acc: 0.9950
Epoch 200/200
60000/60000 [==============================] - 22s 373us/step - loss:
0.0083 - acc: 0.9972 - val_loss: 0.0143 - val_acc: 0.9950

The final validation accuracy is now 0.9950, which means that only 50 samples (out of
10,000) have been misclassified. To better understand the behavior, we can plot the
accuracy and loss diagrams:

As it's possible to see, both validation accuracy and loss easily reach the optimal values. In
particular, the initial validation accuracy is about 0.97 and the remaining epochs are
necessary to improve the performance with all those samples, whose shapes can lead to
confusion (for example, malformed 8s that resemble 0s, or 7s that are very similar to 1s). It's
evident that the geometric approach employed by convolutions guarantees a much higher
robustness than a standard fully-connected network, thanks also to the contribution of
pooling layers, which reduce the variance due to noisy samples.

Advanced Neural Models Chapter 10

[395]

Example of a deep convolutional network with Keras
and data augmentation
In this example, we are going to use the Fashion MNIST dataset, which was freely provided
by Zalando as a more difficult replacement for the standard MNIST dataset. In this case,
instead of handwritten digits, there are greyscale photos of different articles of clothing. An
example of a few samples is shown in the following screenshot:

However, in this case, we want to employ a utility class provided by Keras
(ImageDataGenerator) in order to create a data-augmented sample set to improve the
generalization ability of the deep convolutional network. This class allows us to add
random transformations (such as standardization, rotations, shifting, flipping, zooming,
shearing, and so on) and output the samples using a Python generator (with an infinite
loop). Let's start loading the dataset (we don't need to standardize it, as this transformation
is performed by the generator):

from keras.datasets import fashion_mnist

(X_train, Y_train), (X_test, Y_test) = fashion_mnist.load_data()

At this point, we can create the generators, selecting the transformation that best suits our
case. As the dataset is rather standard (all the samples are represented only in a few
positions), we've decided to augment the dataset by applying a sample-wise
standardization (which doesn't rely on the entire dataset), horizontal flip, zooming, small
rotations, and small shears. This choice has been made according to an objective analysis,
but I suggest the reader repeat the experiment with different parameters (for example,
adding whitening, vertical flip, horizontal/vertical shifting, and extended rotations). Of
course, increasing the augmentation variability needs larger processed sets. In our case, we
are going to use 384,000 training samples (the original size is 60,000), but larger values can
be employed to train deeper networks:

import numpy as np

from keras.preprocessing.image import ImageDataGenerator
from keras.utils import to_categorical

nb_classes = 10
train_batch_size = 256
test_batch_size = 100

Advanced Neural Models Chapter 10

[396]

train_idg = ImageDataGenerator(rescale=1.0 / 255.0,
 samplewise_center=True,
 samplewise_std_normalization=True,
 horizontal_flip=True,
 rotation_range=10.0,
 shear_range=np.pi / 12.0,
 zoom_range=0.25)

train_dg = train_idg.flow(x=np.expand_dims(X_train, axis=3),
 y=to_categorical(Y_train,
num_classes=nb_classes),
 batch_size=train_batch_size,
 shuffle=True,
 seed=1000)

test_idg = ImageDataGenerator(rescale=1.0 / 255.0,
 samplewise_center=True,
 samplewise_std_normalization=True)

test_dg = train_idg.flow(x=np.expand_dims(X_test, axis=3),
 y=to_categorical(Y_test, num_classes=nb_classes),
 shuffle=False,
 batch_size=test_batch_size,
 seed=1000)

Once an image data generator has been initialized, it must be fitted, specifying the input
dataset and the desired batch size (the output of this operation is the actual Python
generator). The test image generator is voluntarily kept without transformations except for
normalization and standardization, in order to avoid a validation on a dataset drawn from
a different distribution. At this point, we can create and compile our network, using 2D
convolutions based on Leaky ReLU activations (using the LeakyReLU class, which replaces
the standard layer Activation), batch normalizations, and max poolings:

from keras.models import Sequential
from keras.layers import Activation, Dense, Flatten, LeakyReLU, Conv2D,
MaxPooling2D, BatchNormalization
from keras.optimizers import Adam

model = Sequential()

model.add(Conv2D(filters=32,
 kernel_size=(3, 3),
 padding='same',
 input_shape=(X_train.shape[1], X_train.shape[2], 1)))

model.add(BatchNormalization())
model.add(LeakyReLU(alpha=0.1))

Advanced Neural Models Chapter 10

[397]

model.add(Conv2D(filters=64,
 kernel_size=(3, 3),
 padding='same'))

model.add(BatchNormalization())
model.add(LeakyReLU(alpha=0.1))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(filters=64,
 kernel_size=(3, 3),
 padding='same'))

model.add(BatchNormalization())
model.add(LeakyReLU(alpha=0.1))

model.add(Conv2D(filters=128,
 kernel_size=(3, 3),
 padding='same'))

model.add(BatchNormalization())
model.add(LeakyReLU(alpha=0.1))

model.add(Conv2D(filters=128,
 kernel_size=(3, 3),
 padding='same'))

model.add(BatchNormalization())
model.add(LeakyReLU(alpha=0.1))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(units=1024))
model.add(BatchNormalization())
model.add(LeakyReLU(alpha=0.1))

model.add(Dense(units=1024))
model.add(BatchNormalization())
model.add(LeakyReLU(alpha=0.1))

model.add(Dense(units=nb_classes))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
 optimizer=Adam(lr=0.0001, decay=1e-5),
 metrics=['accuracy'])

Advanced Neural Models Chapter 10

[398]

All the batch normalizations are always applied to the linear transformation before the
activation function. Considering the additional complexity, we are also going to use a
callback, which is a class that Keras uses in order to perform in-training operations. In our
case, we want to reduce the learning rate when the validation loss stops improving. The
specific callback is called ReduceLROnPlateau and it's tuned in order to reduce η
multiplying it by 0.1 (after a number of epochs equal to the value of the
patience parameter) with a cooldown period (the number of epochs to wait before
restoring the original learning rate) of 1 epoch and a minimum η = 10-6. The training method
is now fit_generator(), which accepts Python generators instead of finite datasets and
the number of iterations per epoch (all the other parameters are the same as implemented
by fit()):

from keras.callbacks import ReduceLROnPlateau

nb_epochs = 100
steps_per_epoch = 1500

history = model.fit_generator(generator=train_dg,
 epochs=nb_epochs,
 steps_per_epoch=steps_per_epoch,
 validation_data=test_dg,
 validation_steps=int(X_test.shape[0] /
test_batch_size),
 callbacks=[
 ReduceLROnPlateau(factor=0.1, patience=1,
cooldown=1, min_lr=1e-6)
])

Epoch 1/100
1500/1500 [==============================] - 471s 314ms/step - loss: 0.3457
- acc: 0.8722 - val_loss: 0.2863 - val_acc: 0.8952
Epoch 2/100
1500/1500 [==============================] - 464s 309ms/step - loss: 0.2325
- acc: 0.9138 - val_loss: 0.2721 - val_acc: 0.8990
Epoch 3/100
1500/1500 [==============================] - 460s 307ms/step - loss: 0.1929
- acc: 0.9285 - val_loss: 0.2522 - val_acc: 0.9112

...

Epoch 99/100
1500/1500 [==============================] - 449s 299ms/step - loss: 0.0438
- acc: 0.9859 - val_loss: 0.2142 - val_acc: 0.9323
Epoch 100/100
1500/1500 [==============================] - 449s 299ms/step - loss: 0.0443

Advanced Neural Models Chapter 10

[399]

- acc: 0.9857 - val_loss: 0.2136 - val_acc: 0.9339

In this case, the complexity is higher and the result is not as accurate as the one obtained
with the standard MNIST dataset. The validation and loss plots are shown in the following
graph:

The loss plot doesn't show a U-curve, but it seems that there are no real improvements
starting from the 20th epoch. This is also confirmed by the validation plot, which continues
oscillating between 0.935 and about 0.94. On the other side, the training loss hasn't reached
its minimum (nor has the training accuracy), mainly because of the batch normalizations.
However, considering several benchmarks, the result is not bad (even if state-of-the-art
models can reach a validation accuracy of about 0.96). I suggest that the reader try different
configurations (with and without dropout and other activations) based on deeper
architectures with larger training sets. This example offers many chances to practice with
this kind of models, as the complexity is not as high as to require dedicated hardware, but
at the same time, there are many ambiguities (for example, between shirts and t-shirts) that
can reduce the generalization ability.

Advanced Neural Models Chapter 10

[400]

Recurrent networks
All the models that we have analyzed until now have a common feature. Once the training
process is completed, the weights are frozen and the output depends only on the input
sample. Clearly, this is the expected behavior of a classifier, but there are many scenarios
where a prediction must take into account the history of the input values. A time series is a
classic example. Let's suppose that we need to predict the temperature for the next week. If
we try to use only the last known x(t) value and an MLP trained to predict x(t+1), it's
impossible to take into account temporal conditions like the season, the history of the
season over the years, the position in the season, and so on. The regressor will be able to
associate the output that yields the minimum average error, but in real-life situations, this
isn't enough. The only reasonable way to solve this problem is to define a new architecture
for the artificial neuron, to provide it with a memory. This concept is shown in the
following diagram:

Advanced Neural Models Chapter 10

[401]

Now the neuron is no longer a pure feed-forward computational unit because the feedback
connection forces it to remember its past and use it in order to predict new values. The new
dynamic rule is now as follows:

The previous prediction is fed back and summed to new linear output. The resulting value
is transformed by the activation function in order to produce the actual new output
(conventionally the first output is null, but this is not a constraint). An immediate
consideration concerns the activation function—this is a dynamic system that could easily
become unstable. The only way to prevent this phenomenon is to employ saturating
functions (such as the sigmoid or hyperbolic tangent). In fact, whatever the input is, the
output can never explode by moving towards +∞ or -∞.

Suppose that, instead, we were to use a ReLU activation—under some conditions, the
output will grow indefinitely, leading to an overflow. Clearly, the situation is even worse
with a linear activation and could be very similar even when using a Leaky ReLU or ELU.
Hence, it's obvious that we need to select saturating functions, but is this enough to ensure
stability? Even if a hyperbolic tangent (as well as a sigmoid) has two stable points (-1 and
+1), this isn't enough to ensure stability. Let's imagine that the output is affected by noise
and oscillates around 0.0. The unit cannot converge towards a value and remains trapped
in a limit cycle.

Luckily, the possibility to learn the weights allows us to increase the robustness to noise,
avoiding that limited changes in the input could invert the dynamic of the neuron. This is a
very important (and easy to prove) result that guarantees stability under very simple
conditions, but again, what is the price that we need to pay? Is it anything simple and
straightforward? Unfortunately, the answer is negative and the price for stability is
extremely high. However, before discussing this problem, let's show how a simple
recurrent network can be trained.

Backpropagation through time (BPTT)
The simplest way to train an RNN is based on a representational trick. As the input
sequences are limited and their length can be fixed, it's possible to restructure the simple
neuron with a feedback connection as an unrolled feed-forward network. In the following
diagram, there's an example with k timesteps:

Advanced Neural Models Chapter 10

[402]

Example of unrolled recurrent network

This network (which can be easily extended to more complex architecture with several
layers) is exactly like an MLP, but in this case, the weights of each clone are the same. The
algorithm called BPTT is the natural extension of the standard learning technique to
unrolled recurrent networks. The procedure is straightforward. Once all the outputs have
been computed, it's possible to determine the value of the cost function for every single
network. At this point, starting from the last step, the corrections (the gradients) are
computed and stored, and the process is repeated until the initial step. Then, all of the
gradients are summed and applied to the network. As every single contribution is based on
a precise temporal experience (made up of a local sample and a previous memory element),
the standard backpropagation will learn how to manage a dynamic condition as if it were a
point-wise prediction. However, we know that the actual network is not unrolled and the
past dependencies are theoretically propagated and remembered. I voluntarily used the
word theoretically, because all practical experiments show a completely different behavior
that we are going to discuss. This technique is very easy to implement, but it can be very
expensive for deep networks that must be unrolled for a large number of timesteps. For this
reason, a variant called truncated backpropagation through time (TBPTT) has been
proposed (in Subgrouping reduces complexity and speeds up learning in recurrent networks,
Zipser D., Advances in Neural Information Processing Systems, II 1990).

Advanced Neural Models Chapter 10

[403]

The idea is to use two sequence lengths t1 and t2 (with t1 >> t2)—the longer one (t1) is
employed for the feed-forward phase, while the shorter length (t2) is used to train the
network. At first sight, this version seems like a normal BPTT with a short sequence;
however, the key idea is to force the network to update the hidden states with more pieces
of information and then compute the corrections according to the result of the longer
sequence (even if the updates are propagated to a limited number of previous timesteps).
Clearly, this is an approximation that can speed up the training process, but the final result
is normally comparable with the one obtained by processing long sequences, in particular
when the dependencies can be split into shorter temporal chunks (and therefore the
assumption is that there are no very long dependencies).

Even if the BPTT algorithm is mathematically correct and it's not difficult to learn short-
term dependencies (corresponding to short unrolled networks), several experiments
confirmed that it's extremely difficult (or almost impossible) learning long-term
dependencies. In other words, it's easy to exploit past experiences whose contribution is
limited to a short window (and therefore whose importance is limited because they cannot
manage the most complex trends) but the network cannot easily learn all behaviors that, for
example, have a periodicity of hundreds of timesteps. In 1994, Bengio, Simard, and Frasconi
provided a theoretical explanation of the problem (in Learning Long-Term Dependencies with
Gradient Descent is Difficult, Bengio Y., Simard P., Frasconi P., IEEE Transactions on Neural
Networks, 5/1994). The mathematical details are rather complex, because they involve
dynamic system theory; however, the final result is that a network whose neurons are
forced to become robust to noise (the normal expected behavior) is affected by the
vanishing gradients problem when t → ∞. More generally, we can represent a vectorial
recurrent neuron dynamic as follows:

The multiplicative effect of BPTT forces the gradients to be proportional to Wt. If the largest
absolute eigenvalue (also known as spectral radius) of W is smaller than 1, then the
following applies:

Advanced Neural Models Chapter 10

[404]

More simply, we can re-express the result saying that the magnitude of the gradients is
proportional to the length of the sequences and even if the condition is asymptotically
valid, many experiments confirmed that the limited precision of numeric computations and
the exponential decay due to subsequent multiplications can force the gradients to vanish
even when the sequences are not extremely long. This seems to be the end of any RNN
architecture, but luckily more recent approaches have been designed and proposed to
resolve this problem, allowing RNNs to learn both short and long-term dependencies
without particular complications. A new era of RNNs started and the results were
immediately outstanding.

LSTM
This model (which represents the state-of-the-art recurrent cell in many fields) was
proposed in 1997 by Hochreiter and Schmidhuber (in Long Short-Term Memory, Hochreiter S.,
Schmidhuber J., Neural Computation, Vol. 9, 11/1997) with the emblematic name long-short-
term memory (LSTM). As the name suggests, the idea is to create a more complex artificial
recurrent neuron that can be plugged into larger networks and trained without the risk of
vanishing and, of course, exploding gradients. One of the key elements of classic recurrent
networks is that they are focused on learning, but not on selectively forgetting. This ability
is indeed necessary for optimizing the memory in order to remember what is really
important and removing all those pieces of information that are not necessary to predict
new values.

To achieve this goal, LSTM exploits two important features (it's helpful to expose them
before discussing the model). The first one is an explicit state, which is a separate set of
variables that store the elements necessary to build long and short-term dependencies,
including the current state. These variables are the building blocks of a mechanism called
constant error carousel (CEC), named in this way because it's responsible for the cyclical
and internal management of the error provided by the backpropagation algorithm. This
approach allows the correction of the weights without suffering the multiplicative effect
anymore. The internal LSTM dynamics allow better understanding of how the error is
safely fed back; however, the exact explanation of the training procedure (which is always
based on the gradient descent) is beyond the scope of this book and can be found in the
aforementioned paper.

Advanced Neural Models Chapter 10

[405]

The second feature is the presence of gates. We can simply define a gate as an element that
can modulate the amount of information flowing through it. For example, if y = ax and a is a
variable bounded between 0 and 1, it can be considered as a gate, because when it's equal to
0, it blocks the input x; when it's equal to 1, it allows the input to flow in without
restrictions; and when it has an intermediate value, it reduces the amount of information
proportionally. In LSTMs, gates are managed by sigmoid functions, while the activations
are based on hyperbolic tangents (whose symmetry guarantees better performances). At
this point, we can show the structural diagram of an LSTM cell and discuss its internal
dynamics:

The first (and most important) element is the memory state, which is responsible for the
dependencies and for the actual output. In the diagram, it is represented by the upper line
and its dynamics are represented by the following general equation:

So, the state depends on the previous value, on the current input, and on the previous
output. Let's start with the first term, introducing the forget gate. As the name says, it's
responsible for the persistence of the existing memory elements or for their deletion. In the
diagram, it's represented by the first vertical block and its value is obtained by considering
the concatenation of previous output and current input:

Advanced Neural Models Chapter 10

[406]

The operation is a classical neuron activation with a vectorial output. An alternative version
can use two weight matrices and keep the input elements separated:

However, I prefer the previous version, because it can better express the homogeneity of
input and output, and also their consequentiality. Using the forget gate, it's possible to
determine the value of g1(C

(t)) using the Hadamard (or element-wise) product:

The effect of this computation is filtering the content of C(t) that must be preserved and the
validity degree (which is proportional to the value of f(t+1)). If the forget gate outputs a value
close to 1, the corresponding element is still considered valid, while lower values determine
a sort of obsolescence that can even lead the cell to completely remove an element when the
forget gate value is 0 or close to it. The next step is to consider the amount of the input
sample that must be considered to update the state. This task is achieved by the input gate
(second vertical block). The equation is perfectly analogous to the previous one:

However, in this case, we also need to compute the term that must be added to the current
state. As already mentioned, LSTM cells employ hyperbolic tangents for the activations;
therefore, the new contribution to the state is obtained as follows:

Using the input gate and the state contribution, it's possible to determine the function
g2(x

(t+1), y(t)):

Advanced Neural Models Chapter 10

[407]

Hence, the complete state equation becomes as follows:

Now, the inner logic of an LSTM cell is more evident. The state is based on the following:

A dynamic balance between previous experience and its re-evaluation according
to new experience (modulated by the forget gate)
The semantic effect of the current input (modulated by the input gate) and the
potential additive activation

Realistic scenarios are many. It's possible that a new input forces the LSTM to reset the state
and store the new incoming value. On the other hand, the input gate can also remain
closed, giving a very low priority to the new input (together with the previous output). In
this case, the LSTM, considering the long-term dependencies, can decide to discard a
sample that is considered noisy and not necessarily able to contribute to an accurate
prediction. In other situations, both the forget and input gates can be partially open, letting
only some values influence the state. All these possibilities are managed by the learning
process through the correction of the weight matrices and the biases. The difference with
BPTT is that the long-term dependencies are no longer impeded by the vanishing gradients
problem.

The last step is determining the output. The third vertical block is called the output gate
and controls the information that must transit from the state to the output unit. Its equation
is as follows:

The actual output is hence determined as follows:

Advanced Neural Models Chapter 10

[408]

An important consideration concerns the gates. They are all fed with the same vector,
containing the previous output and the current input. As they are homogenous values, the
concatenation yields a coherent entity that encodes a sort of inverse cause-effect relationship
(this is an improper definition, as we work with previous effect and current cause). The
gates work like logistic regressions without thresholding; therefore, they can be considered
as pseudo-probability vectors (not distributions, as each element is independent). The
forget gate expresses the probability that last sequence (effect, cause) is more important
than the current state; however, only the input gate has the responsibility to grant it the
right to influence the new state. Moreover, the output gate expresses the probability that
the current sequence is able to let the current state flow out. The dynamic is indeed very
complex and has some drawbacks. For example, when the output gate remains closed, the
output is close to zero and this influences both forget and input gates. As they control the
new state and the CEC, they could limit the amount of incoming information and
consequent corrections, leading to poor performance.

A simple solution that can mitigate this problem is provided by a variant called peephole
LSTM. The idea is to feed the previous state to every gate so that they can take decisions
more independently. The generic gate equation becomes as follows:

The new set of weights Ug (for all three gates) must be learned in the same way as the
standard Wg and bg. The main difference with a classic LSTM is that the sequential dynamic:
forget gate | input gate | new state | output gate | actual output is now partially
shortcutted. The presence of the state in every gate activation allows them to exploit
multiple recurrent connections, yielding a better accuracy in many complex situations.
Another important consideration is about the learning process: in this case, the peepholes
are closed and the only feedback channel is the output gate. Unfortunately, not every LSTM
implementation support peepholes; however, several studies confirmed that in most cases
all the models yield similar performances.

Advanced Neural Models Chapter 10

[409]

Xingjian et al. (in Convolutional LSTM Network: A Machine Learning Approach for Precipitation
Nowcasting, Xingjian S., Zhourong C., Hao W., Dit-Yan Y., Wai-kin W., Wang-Chun W.,
arXiv:1506.04214 [cs.CV]) proposed a variant called convolutional LSTM, which clearly
mixes Convolutions and LSTM cells. The main internal difference concerns the gate
computations, which now become (without peepholes, which however, can always be
added):

Wg is now a kernel that is convoluted with the input-output vector (which is usually the
concatenation of two images). Of course, it's possible to train any number of kernels to
increase the decoding power of the cell and the output will have a shape equal to (batch size
× width × height × kernels). This kind of cell is particularly useful for joining spatial
processing with a robust temporal approach. Given a sequence of images (for example,
satellite images, game screenshots, and so on), a convolutional LSTM network can learn
long-term relationships that are manifested through geometric feature evolutions (for
example, cloud movements or specific sprite strategies that it's possible to anticipate
considering a long history of events). This approach (even with a few modifications) is
widely employed in Deep Reinforcement Learning in order to solve complex problems
where the only input is provided by a sequence of images. Of course, the computational
complexity is very high, in particular when many subsequent layers are used; however, the
results outperformed any existing method and this approach became one of the first choices
to manage this kind of problem.

Advanced Neural Models Chapter 10

[410]

Another important variant, which is common to many Recurrent Neural Networks, is
provided by a bidirectional interface. This isn't an actual layer, but a strategy that is
employed in order to join the forward analysis of a sequence with the backward one. Two
cellblocks are fed with a sequence and its inverse and the output, for example, is
concatenated and used for further processing steps. In fields such as NLP, this method
allows us to dramatically improve the accuracy of classifications and real-time translations.
The reason is strictly related to the rules underlying the structure of a sequence. In natural
language, a sentence w1 w2 ... wn has forward relationships (for example, a singular noun can
be followed by is), but the knowledge of backward relationships (for example, the sentence
this place is pretty awful) permits avoiding common mistakes that, in the past, had to be
corrected using post-processing steps (the initial translation of pretty could be similar to the
translation of nice, but a subsequent analysis can reveal that the adjective mismatches and a
special rule can be applied). Deep learning, on the other side, is not based on special rules,
but on the ability to learn an internal representation that should be autonomous in making
final decisions (without further external aids) and bidirectional LSTM networks help in
reaching this goal in many important contexts.

Keras implements the classes LSTM since its origins. It also provides a
Bidirectional class wrapper that can be used with every RNN layer in
order to obtain a double output (computed with the forward and
backward sequences). Moreover, in Keras 2 there are optimized versions
of LSTM based on NVIDIA CUDA (CuDNNLSTM), which provide very high
performance when a compatible GPU is available. In the same package,
it's possible to also find the ConvLSTM2D class, which implements a
convolutional LSTM layer. In this case, the reader can immediately
identify many of the parameters, as they are the same as a standard
convolutional layer.

Advanced Neural Models Chapter 10

[411]

GRU
This model, named Gated recurrent unit (GRU), proposed by Cho et al. (in Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation, Cho K., Van
Merrienboer B., Gulcehre C., Bahdanau D., Bougares F., Schwenk H., Bengio Y.,
arXiv:1406.1078 [cs.CL]) can be considered as a simplified LSTM with a few variations. The
structure of a generic full-gated unit is represented in the following diagram:

The main differences from LSTM are the presence of only two gates and the absence of an
explicit state. These simplifications can speed both the training and the prediction phases
while avoiding the vanishing gradient problem.

The first gate is called the reset gate (conventionally denoted with the letter r) and its
function is analogous to the forget gate:

Advanced Neural Models Chapter 10

[412]

Similar to the forget gate, its role is to decide what content of the previous output must be
preserved and the relative degree. In fact, the additive contribution to new output is
obtained as follows:

In the previous expression, I've preferred to separate the weight matrices to better exposes
the behavior. The argument of tanh(•) is the sum of a linear function of the new input and a
weighted term that is a function of the previous state. Now, it's clear how the reset gate
works: it modulates the amount of history (accumulated in the previous output value) that
must be preserved and what instead can be discarded. However, the reset gate is not
enough to determine the right output with enough accuracy, considering both short and
long-term dependencies. In order to increase the expressivity of the unit, an update gate
(with a role similar to the LSTM input gate) has been added:

The update gate controls the amount of information that must contribute to the new output
(and hence to the state). As it's a value bounded between 0 and 1, GRUs are trained to mix
old output and new additive contribution with an operation similar to a weighted average:

Therefore, the update gate becomes a modulator that can select which components of each
flow must be output and stored for the next operation. This unit is structurally simpler than
an LSTM, but several studies confirmed that its performance is on average, equivalent to
LSTM, with some particular cases when GRU has even outperformed the more complex
cell. My suggestion is that you test both models, starting with LSTM. The computational
cost has been dramatically reduced by modern hardware and in many contexts the
advantage of GRUs is negligible. In both cases, the philosophy is the same: the error is kept
inside the cell and the weights of the gates are corrected in order to maximize the accuracy.
This behavior prevents the multiplicative cascade of small gradients and increases the
ability to learn very complex temporal behaviors.

Advanced Neural Models Chapter 10

[413]

However, a single cell/layer would not be able to successfully achieve the desired accuracy.
In all these cases, it's possible to stack multiple layers made up of a variable number of
cells. Every layer can normally output the last value or the entire sequence. The former is
used when connecting the LSTM/GRU layer to a fully-connected one, while the whole
sequence is necessary to feed another recurrent layer. We are going to see how to
implement these techniques with Keras in the following example.

Just like for LSTMs, Keras implements theGRU class and its NVIDIA
CUDA optimized version CuDNNGRU.

Example of an LSTM network with Keras
In this example, we want to test the ability of an LSTM network to learn long-term
dependencies. For this reason, we employ a dataset called Zuerich Monthly Sunspots
(freely provided by Andrews and Herzberg in 1985) containing the numbers observed in all
the months starting from 1749 to 1983 (please read the information box for how to
download the dataset). As we are not interested in the dates, we need to parse the file in
order to extract only the values needed for the time series (which contains 2,820 steps):

import numpy as np

dataset_filename = '<YOUR_PATH>\dataset.csv'

n_samples = 2820
data = np.zeros(shape=(n_samples,), dtype=np.float32)

with open(dataset_filename, 'r') as f:
 lines = f.readlines()
for i, line in enumerate(lines):
 if i == 0:
 continue
 if i == n_samples + 1:
 break
 _, value = line.split(',')
 data[i-1] = float(value)

Advanced Neural Models Chapter 10

[414]

Alternatively, it's possible to load the CSV dataset using pandas (https:/ /pandas. pydata.
org), which is a powerful data manipulation/analysis library (for further information,
please refer to Learning pandas Second Edition, Heydt M., Packt):

import pandas as pd

dataset_filename = '<YOUR_PATH>\dataset.csv'

df = pd.read_csv(dataset_filename, index_col=0, header=0).dropna()
data = df.values.astype(np.float32).squeeze()

The values are unnormalized and as LSTMs work with hyperbolic tangents, it's helpful to
normalize them in the interval -1 and 1. We can easily perform this step using the Scikit-
Learn class MinMaxScaler:

from sklearn.preprocessing import MinMaxScaler

mmscaler = MinMaxScaler((-1.0, 1.0))
data = mmscaler.fit_transform(data.reshape(-1, 1))

The complete dataset is shown in the following diagram:

https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org

Advanced Neural Models Chapter 10

[415]

In order to train the model, we have decided to use 2,300 samples for training and the
remaining 500 for validation (corresponding to about 42 years). The input of the model is a
batch of sequences of 15 samples (shifted along the time axis) and the output is the
subsequent month; therefore, before training, we need to prepare the dataset:

sequence_length = 15

X_ts = np.zeros(shape=(n_samples - sequence_length, sequence_length, 1),
dtype=np.float32)
Y_ts = np.zeros(shape=(n_samples - sequence_length, 1), dtype=np.float32)

for i in range(0, data.shape[0] - sequence_length):
 X_ts[i] = data[i:i + sequence_length]
 Y_ts[i] = data[i + sequence_length]

X_ts_train = X_ts[0:2300, :]
Y_ts_train = Y_ts[0:2300]

X_ts_test = X_ts[2300:2800, :]
Y_ts_test = Y_ts[2300:2800]

Now, we can create and compile a simple model with a single stateful LSTM layer
containing four cells, followed by a hyperbolic tangent output neuron (I always suggest
that the reader experiment with more complex architectures and different parameters):

from keras.models import Sequential
from keras.layers import LSTM, Dense, Activation
from keras.optimizers import Adam

model = Sequential()

model.add(LSTM(4, stateful=True, batch_input_shape=(20, sequence_length,
1)))

model.add(Dense(1))
model.add(Activation('tanh'))

model.compile(optimizer=Adam(lr=0.001, decay=0.0001),
 loss='mse',
 metrics=['mse'])

Advanced Neural Models Chapter 10

[416]

Setting the stateful=True parameter in the LSTM class forces Keras not to reset the state
after each batch. In fact, our goal is learning long-term dependencies and the internal LSTM
state must reflect the overall trend. When an LSTM network is stateful, it's also necessary to
specify the batch size in the input shape (through the batch_input_shape parameter). In
our case, we have selected a batch size equal to 20 samples. The optimizer is Adam with a
higher decay (to avoid instabilities) and a loss based on the mean squared error (which is
the most common choice in this kind of scenario). At this point, we can train the model (for
100 epochs):

model.fit(X_ts_train, Y_ts_train,
 batch_size=20,
 epochs=100,
 shuffle=False,
 validation_data=(X_ts_test, Y_ts_test))

Train on 2300 samples, validate on 500 samples
Epoch 1/100
2300/2300 [==============================] - 11s 5ms/step - loss: 0.4905 -
mean_squared_error: 0.4905 - val_loss: 0.1827 - val_mean_squared_error:
0.1827
Epoch 2/100
2300/2300 [==============================] - 4s 2ms/step - loss: 0.1214 -
mean_squared_error: 0.1214 - val_loss: 0.1522 - val_mean_squared_error:
0.1522
Epoch 3/100
2300/2300 [==============================] - 4s 2ms/step - loss: 0.0796 -
mean_squared_error: 0.0796 - val_loss: 0.1154 - val_mean_squared_error:
0.1154

...

Epoch 99/100
2300/2300 [==============================] - 4s 2ms/step - loss: 0.0139 -
mean_squared_error: 0.0139 - val_loss: 0.0247 - val_mean_squared_error:
0.0247
Epoch 100/100
2300/2300 [==============================] - 4s 2ms/step - loss: 0.0139 -
mean_squared_error: 0.0139 - val_loss: 0.0247 - val_mean_squared_error:
0.0247

Advanced Neural Models Chapter 10

[417]

This is an example whose purpose is only didactic; therefore, the final validation mean
squared error is not extremely low. However, as it's possible to see in the following
diagram (representing the predictions on the validation set), the model has successfully
learned the global trend:

LSTM predictions on the Zuerich dataset

The model is still unable to achieve a very high accuracy in correspondence of all the very
rapid spikes, but it's able to correctly model the amplitude of the oscillations and the length
of the tails. For the sake of intellectual honesty, we must consider that this validation is
performed on true data; however, when working with time series, it's normal to predict a
new value using the ground truth. In this case, it's like a moving prediction where each
value is obtained using the training history and a set of real observations. It's clear that the
model is able to predict the long-term oscillations and also some local ones (for example,
the sequence starting from step 300), but it can be improved in order to have better
performance on the whole validation set. To achieve this goal, it is necessary to increase the
network complexity and tune up the learning rate (it's a very interesting exercise on a real
dataset).

Advanced Neural Models Chapter 10

[418]

Observing the previous diagram, it's possible to see that the model is relatively more
accurate at some high frequencies (rapid changes), while it's more imprecise on others. This
is not a strange behavior, because very oscillating functions need more non-linearity (think
about the Taylor expansion and the relative error when it's truncated to a specific degree) to
achieve high accuracies (this means employing more layers). My suggestion is that you
repeat the experiment using more LSTM layers, considering that we need to pass the whole
output sequence to the following recurrent layer (this can be achieved by setting
the return_sequences=True parameter). The last layer, instead, must return only the
final value (which is the default behavior). I also suggest testing the GRU layers, comparing
the performance with the LSTM version and picking the simplest (benchmarking the
training time) and most accurate solution.

The dataset can be freely downloaded in CSV format from https:/ /
datamarket. com/ data/ set/ 22ti/ zuerich- monthly- sunspot- numbers-
1749- 1983#!ds= 22ti display= line.

Transfer learning
We have discussed how deep learning is fundamentally based on gray-box models that
learn how to associate input patterns to specific classification/regression outcomes. All the
processing pipeline that is often employed to prepare the data for specific detections is
absorbed by the complexity of the neural architecture. However, the price to pay for high
accuracies is a proportionally large number of training samples. State-of-the-art visual
networks are trained with millions of images and, obviously, each of them must be
properly labeled. Even if there are many free datasets that can be employed to train several
models, many specific scenarios need hard preparatory work that sometimes is very
difficult to achieve.

Luckily, deep neural architectures are hierarchical models that learn in a structured way.
As we have seen in the examples of deep convolutional networks, the first layers become
more and more sensitive to detect low-level features, while the higher ones concentrate
their work on extracting more detailed high-level features. In several tasks, it's reasonable
to think that a network trained, for example, with a large visual dataset (such as ImageNet
or Microsoft Coco) could be reused to achieve a specialization in a slightly different task.
This concept is known as transfer learning and it's one of the most useful techniques when
it's necessary to create state-of-the-art models with brand new datasets and specific
objectives. For example, a customer can ask for a system to monitor a few cameras with the
goal to segment the images and highlight the boundaries of specific targets.

https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line
https://datamarket.com/data/set/22ti/zuerich-monthly-sunspot-numbers-1749-1983#!ds=22ti&display=line

Advanced Neural Models Chapter 10

[419]

The input is made up of video frames with the same geometric properties as thousands of
images employed in training very powerful models (for example, Inception, ResNet, or
VGG); therefore, we can take a pre-trained model, remove the highest layers (normally
dense ones ending in a softmax classification layer) and connect the flattening layer to an
MLP that outputs the coordinates of the bounding boxes. The first part of the network can
be frozen (the weights are not modified anymore), while the SGD is applied to tune up the
weights of the newly specialized sub-network.

Clearly, such an approach can dramatically speed up the training process, because the most
complex part of the model is already trained and can also guarantee an extremely high
accuracy (with respect to a naive solution), thanks to the optimization already performed
on the original model. Obviously, the most natural question is how does this method work?
Is there any formal proof? Unfortunately, there are no mathematical proofs, but there's
enough evidence to assure about us of this approach. Generally speaking, the goal of a
neural training process is to specialize each layer in order to provide a more particular
(detailed, filtered, and so on) representation to the following one. Convolutional networks
are a clear example of this behavior, but the same is observable in MLPs as well. The
analysis of very deep convolutional networks showed how the content is still visual until
reaching the flattening layer, where it's sent to a series of dense layers that are responsible
for feeding the final softmax layer. In other words, the output of the convolutional block is
a higher-level, segmented representation of the input, which is seldom affected by the
specific classification problem. For this reason, transfer learning is generally sound and
doesn't normally require a retraining of the lower layers. However, it's difficult to
understand which model can yield the best performances and it's very useful to know
which dataset has been used to train the original network. General purpose datasets (for
example, ImageNet) are very useful in many contexts, while specific ones (such as Cifar-10
or Fashion; MNIST can be too restrictive). Luckily, Keras offers (in the package
keras.applications) many models (even quite complex ones) that are always trained
with ImageNet datasets and that can be immediately employed in a production-ready
application. Even if using them is extremely simple, it requires a deeper knowledge of this
framework, which is beyond the scope of this book. I invite the reader interested in this
topic to check the book Deep Learning with Keras, Gulli A., Pal S., Packt.

Advanced Neural Models Chapter 10

[420]

Summary
In this chapter, we have presented the concept of a deep convolutional network, which is a
generic architecture that can be employed in any visual processing task. The idea is based
on hierarchical information management, aimed at extracting the features starting from
low-level elements and moving forward until the high-level details that can be helpful to
achieve specific goals.

The first topic was the concept of convolution and how it's applied in discrete and finite
samples. We discussed the properties of standard convolution, before analyzing some
important variants such as atrous (or dilated convolution), separable (and depthwise
separable) convolution and, eventually, transpose convolution. All these methods can work
with 1D, 2D, and 3D samples, even if the most diffused applications are based on
bidimensional (not considering the channels) matrices representing static images. In the
same section, we also discussed how pooling layers can be employed to reduce the
dimensionality and improve the robustness to small translations.

In the next section, we introduced the concept of RNN, emphasizing the issues that
normally arise when classic models are trained using the backpropagation through time
algorithm. In particular, we explained why these networks cannot easily learn long-term
dependencies. For this reason, new models have been proposed, whose performance was
immediately outstanding. We discussed the most famous recurrent cell, called Long-short-
term memory (LSTM), which can be used in layers that can easily learn all the most
important dependencies of a sequence, allowing us to minimize the prediction error even in
contexts with a very high variance (such as stock market quotations). The last topic was a
simplified version of the idea implemented in LSTMs, which led to a model called a Gated
recurrent unit (GRU). This cell is simpler and more computationally efficient, and many
benchmarks confirmed that its performance is approximately the same as LSTM.

In the next chapter, Chapter 11, Autoencoders we are going to discuss some particular
models called autoencoders, whose main property is to create internal representations of an
arbitrarily complex input distribution.

11
Autoencoders

In this chapter, we are going to look at an unsupervised model family whose performance
has been boosted by modern deep learning techniques. Autoencoders offer a different
approach to classic problems such as dimensionality reduction or dictionary learning, but
unlike many other algorithms, they don't suffer the capacity limitations that affect many
famous models. Moreover, they can exploit specific neural layers (such as convolutions) to
extract pieces of information based on specialized criteria. In this way, the internal
representations can be more robust to different kinds of distortions and much more
efficient in terms of the amount of information they can process.

In particular, we are going to discuss the following:

Standard autoencoders
Denoising autoencoders
Sparse autoencoders
Variational autoencoders

Autoencoders
In the previous chapters, we discussed how real datasets are very often high-dimensional
representations of samples that lie on low-dimensional manifolds (this is one of the semi-
supervised pattern's assumptions, but it's generally true). As the complexity of a model is
proportional to the dimensionality of the input data, many techniques have been analyzed
and optimized in order to reduce the actual number of valid components. For example, PCA
selects the features according to the relative explained variance, while ICA and generic
dictionary learning techniques look for basic atoms that can be combined to rebuild the
original samples. In this chapter, we are going to analyze a family of models based on a
slightly different approach, but whose capabilities are dramatically increased by the
employment of deep learning methods.

Autoencoders Chapter 11

[422]

A generic autoencoder is a model that is split into two separate (but not completely
autonomous) components called an Encoder and a Decoder. The task of the encoder is to
transform an input sample into an encoded feature vector, while the task of the decoder is
the opposite: rebuilding the original sample using the feature vector as input. The following
diagram shows a schematic representation of a generic model:

Schema of a generic autoencoder

More formally, we can describe the encoder as a parametrized function:

The output zi is a vectorial code whose dimensionality is normally quite lower than the
inputs. Analogously, the decoder is described as the following:

The goal of a standard algorithm is to minimize a cost function that is proportional to the
reconstruction error. A classic method is based on the mean squared error (working on a
dataset with M samples):

Autoencoders Chapter 11

[423]

This function depends only on the input samples (which are constant) and the parameter
vectors; therefore, this is de facto an unsupervised method where we can control the internal
structure and the constraints imposed on the zi code. From a probabilistic viewpoint, if the
input xi samples are drawn from a p(X) data-generating process, our goal is to find
a q(•) parametric distribution that minimizes the Kullback–Leibler divergence with p(X).
Considering the previous definitions, we can define q(•) as follows:

Therefore, the Kullback–Leibler divergence becomes the following:

The first term represents the negative entropy of the original distribution, which is constant
and isn't involved in the optimization process. The other term is the cross-entropy between
the p and q. If we assume Gaussian distributions for p and q, the mean squared error is
proportional to the cross-entropy (for optimization purposes, it's equivalent to it), and
therefore this cost function is still valid under a probabilistic approach. Alternatively, it's
possible to consider Bernoulli distributions for p and q, and the cross-entropy becomes the
following:

The main difference between the two approaches is that while a mean squared error can be
applied to xi ∈ ℜq (or multidimensional matrices), Bernoulli distributions need xi ∈ [0,
1]q (formally, this condition should be xi ∈ {0, 1}q; however, the optimization can also be
successfully performed when the values are not binary). The same constraint is necessary
for the reconstructions; therefore, when using neural networks, the most common choice is
to employ sigmoid layers.

Autoencoders Chapter 11

[424]

An example of a deep convolutional autoencoder
with TensorFlow
This example (like all the others in this and the following chapters) is based on TensorFlow
(for information about the installation of TensorFlow, please refer to the information box at
the end of the section), because this framework allows a greater flexibility that is sometimes
much more problematic with Keras. We will approach this example pragmatically, and so
we are not going to explore all the features because they are beyond the scope of this book;
however, interested readers can refer to Deep Learning with TensorFlow - Second Edition,
Zaccone G., Karim R., Packt.

In this example, we are going to create a deep convolutional autoencoder and train it using
the Fashion MNIST dataset. The first step is loading the data (using the Keras helper
function), normalizing, and in order to speed up the computation, limiting the training set
to 1,000 samples:

import numpy as np

from keras.datasets import fashion_mnist

(X_train, _), (_, _) = fashion_mnist.load_data()

nb_samples = 1000
nb_epochs = 400
batch_size = 200
code_length = 256

X_train = X_train.astype(np.float32)[0:nb_samples] / 255.0

width = X_train.shape[1]
height = X_train.shape[2]

At this point, we can create the Graph, setting up the whole architecture, which is made up
of the following:

The encoder (all layers have padding "same" and ReLU activation):
Convolution with 32 filters, kernel size equal to (3 × 3), and strides
(2 × 2)
Convolution with 64 filters, kernel size equal to (3 × 3), and strides
(1× 1)
Convolution with 128 filters, kernel size equal to (3 × 3), and
strides (1 × 1)

Autoencoders Chapter 11

[425]

The decoder:
Transpose convolution with 128 filters, kernel size equal to (3 × 3),
and strides (2 × 2)
Transpose convolution with 64 filters, kernel size equal to (3 × 3),
and strides (1× 1)
Transpose convolution with 32 filters, kernel size equal to (3 × 3),
and strides (1 × 1)
Transpose convolution with 1 filter, kernel size equal to (3 × 3),
strides (1 × 1), and sigmoid activation

As the images are (28 × 28), we prefer to resize each batch to the dimensions of (32 × 32) to
easily manage all the subsequent operations that are based on sizes which are a power of 2:

import tensorflow as tf

graph = tf.Graph()

with graph.as_default():
 input_images = tf.placeholder(tf.float32, shape=(None, width, height,
1))
 r_input_images = tf.image.resize_images(input_images, (32, 32))
 # Encoder
 conv_0 = tf.layers.conv2d(inputs=r_input_images,
 filters=32,
 kernel_size=(3, 3),
 strides=(2, 2),
 activation=tf.nn.relu,
 padding='same')
 conv_1 = tf.layers.conv2d(inputs=conv_0,
 filters=64,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 conv_2 = tf.layers.conv2d(inputs=conv_1,
 filters=128,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 # Code layer
 code_input = tf.layers.flatten(inputs=conv_2)
 code_layer = tf.layers.dense(inputs=code_input,
 units=code_length,
 activation=tf.nn.sigmoid)
 # Decoder

Autoencoders Chapter 11

[426]

 decoder_input = tf.reshape(code_layer, (-1, 16, 16, 1))
 convt_0 = tf.layers.conv2d_transpose(inputs=decoder_input,
 filters=128,
 kernel_size=(3, 3),
 strides=(2, 2),
 activation=tf.nn.relu,
 padding='same')
 convt_1 = tf.layers.conv2d_transpose(inputs=convt_0,
 filters=64,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 convt_2 = tf.layers.conv2d_transpose(inputs=convt_1,
 filters=32,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 convt_3 = tf.layers.conv2d_transpose(inputs=convt_2,
 filters=1,
 kernel_size=(3, 3),
 activation=tf.sigmoid,
 padding='same')
 # Loss
 loss = tf.nn.l2_loss(convt_3 - r_input_images)
 # Training step
 training_step = tf.train.AdamOptimizer(0.001).minimize(loss)

The loss function is a standard L2 without any other constraint. I invite the reader to test
different optimizers and learning rates to employ a solution that guarantees the minimum
loss value. After defining the Graph, it's possible to set up an InteractiveSession (or a
standard one), initialize all variables, and begin the training process:

import numpy as np
import tensorflow as tf

session = tf.InteractiveSession(graph=graph)
tf.global_variables_initializer().run()

for e in range(nb_epochs):
 np.random.shuffle(X_train)
 total_loss = 0.0
 for i in range(0, nb_samples - batch_size, batch_size):
 X = np.zeros((batch_size, width, height, 1), dtype=np.float32)
 X[:, :, :, 0] = X_train[i:i + batch_size, :, :]
 _, n_loss = session.run([training_step, loss],
 feed_dict={
 input_images: X

Autoencoders Chapter 11

[427]

 })
 total_loss += n_loss
 print('Epoch {}) Total loss: {}'.format(e + 1, total_loss))

Once the training process is finished, we can check the average code length for the whole
dataset (this information is useful to compare this result with the one achieved by imposing
a sparsity constraint):

import numpy as np

codes = session.run([code_layer],
 feed_dict={
 input_images: np.expand_dims(X_train, axis=3),
 })[0]

print(np.mean(codes))
0.5545144

This value is very small, indicating that the representations are already rather sparse;
however, we are going to compare it with the mean obtained by a sparse autoencoder. We
can now process a few images (10) by encoding and decoding them:

import numpy as np

Xs = np.reshape(X_train[0:10], (10, width, height, 1))

Ys = session.run([convt_3],
 feed_dict={
 input_images: Xs
 })

Ys = np.squeeze(Ys[0] * 255.0)

The result is shown in the following figure:

Original images (upper row); decoded images (lower row)

Autoencoders Chapter 11

[428]

As you can see, the reconstructions are rather lossy, but the autoencoder successfully
learned how to reduce the dimensionality of the input samples. As an exercise, I invite the
reader to split the code into two separate sections (encoder and decoder) and to optimize
the architecture in order to achieve better accuracy on the whole Fashion MNIST dataset.

TensorFlow is available for Linux, Windows, and OS X with both CPU
and CUDA GPU support. In many cases, it's possible to install it using the
pip install -U tensorflow command; however, I suggest that you
read the updated instructions for each platform at https:/ /www.
tensorflow. org/ install/ .

Denoising autoencoders
Autoencoders can be used to determine under-complete representations of a dataset;
however, Bengio et al. (in P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol's
book Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a
Local Denoising Criterion, from the Journal of Machine Learning Research 11/2010) proposed to
use them not to learn the exact representation of a sample in order to rebuild it from a low-
dimensional code, but rather to denoise input samples. This is not a brand new idea,
because, for example, Hopfield networks (proposed a few decades ago) had the same
purpose, but its limitations in terms of capacity led researchers to look for different
methods. Nowadays, deep autoencoders can easily manage high-dimensional data (such as
images) with a consequent space requirement, that's why many people are now
reconsidering the idea of teaching a network how to rebuild a sample image starting from a
corrupted one.

Formally, there are not many differences between denoising autoencoders and standard
autoencoders. However, in this case, the encoder must work with noisy samples:

The decoder's cost function remains the same. If the noise is sampled for each batch,
repeating the process for a sufficiently large number of iterations allows the autoencoder to
learn how to rebuild the original image when some fragments are missing or corrupted. To
achieve this goal, the authors suggested different possible kinds of noise. The most
common choice is to sample Gaussian noise, which has some helpful features and is
coherent with many real noisy processes:

https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/

Autoencoders Chapter 11

[429]

Another possibility is to employ an input dropout layer, zeroing some random elements:

This choice is clearly more drastic, and the rate must be properly tuned. A very large
number of dropped pixels can irreversibly delete many pieces of information and the
reconstruction can become more difficult and rigid (our purpose is to extend the
autoencoder's ability to other samples drawn from the same distribution). Alternatively, it's
possible to mix up Gaussian noise and the dropout's, switching between them with a fixed
probability. Clearly, the models must be more complex than standard autoencoders
because now they have to cope with missing information; the same concept applies to the
code length: very under-complete code wouldn't be able to provide all the elements needed
to reconstruct the original image in the most accurate way. I suggest testing all the
possibilities, in particular when the noise is constrained by external conditions (for
example, old photos or messages transmitted through channels affected by precise noise
processes). If the model must also be employed for never-before-seen samples, it's
extremely important to select samples that represent the true distribution, using data
augmentation techniques (limited to operations compatible with the specific problem)
whenever the number of elements is not enough to reach the desired level of accuracy.

An example of a denoising autoencoder with
TensorFlow
In this example (based on the previous one), we are going to employ a very similar
architecture, but as the goal is denoising the images, we will impose a code length equal to
(width × height), setting all the strides to (1 × 1), and therefore we won't need to resize the
images anymore:

import tensorflow as tf

graph = tf.Graph()

with graph.as_default():
 input_noisy_images = tf.placeholder(tf.float32, shape=(None, width,
height, 1))
 input_images = tf.placeholder(tf.float32, shape=(None, width, height,
1))
 # Encoder
 conv_0 = tf.layers.conv2d(inputs=input_noisy_images,
 filters=32,
 kernel_size=(3, 3),

Autoencoders Chapter 11

[430]

 activation=tf.nn.relu,
 padding='same')
 conv_1 = tf.layers.conv2d(inputs=conv_0,
 filters=64,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 conv_2 = tf.layers.conv2d(inputs=conv_1,
 filters=128,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 # Code layer
 code_input = tf.layers.flatten(inputs=conv_2)
 code_layer = tf.layers.dense(inputs=code_input,
 units=width * height,
 activation=tf.nn.sigmoid)
 # Decoder
 decoder_input = tf.reshape(code_layer, (-1, width, height, 1))
 convt_0 = tf.layers.conv2d_transpose(inputs=decoder_input,
 filters=128,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 convt_1 = tf.layers.conv2d_transpose(inputs=convt_0,
 filters=64,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 convt_2 = tf.layers.conv2d_transpose(inputs=convt_1,
 filters=32,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 convt_3 = tf.layers.conv2d_transpose(inputs=convt_2,
 filters=1,
 kernel_size=(3, 3),
 activation=tf.sigmoid,
 padding='same')
 # Loss
 loss = tf.nn.l2_loss(convt_3 - input_images)
 # Training step
 training_step = tf.train.AdamOptimizer(0.001).minimize(loss)

Autoencoders Chapter 11

[431]

In this case, we need to pass both the noisy images (through the placeholder
input_noisy_images) and the original ones (which are used to compute the final L2 loss
function). For our example, we have decided to employ Gaussian noise with a standard
deviation of σ = 0.2 (clipping the final values so that they are always constrained between
0 and 1):

import numpy as np
import tensorflow as tf

session = tf.InteractiveSession(graph=graph)
tf.global_variables_initializer().run()

for e in range(nb_epochs):
 total_loss = 0.0
 for i in range(0, nb_samples - batch_size, batch_size):
 X = np.zeros((batch_size, width, height, 1), dtype=np.float32)
 X[:, :, :, 0] = X_train[i:i + batch_size, :, :]
 Xn = np.clip(X + np.random.normal(0.0, 0.2, size=(batch_size,
width, height, 1)), 0.0, 1.0)
 _, n_loss = session.run([training_step, loss],
 feed_dict={
 input_images: X,
 input_noisy_images: Xn
 })
 total_loss += n_loss
 print('Epoch {}) Total loss: {}'.format(e + 1, total_loss))

The result after 200 epochs is shown in the following figure:

Noisy samples (upper row); denoised samples (lower row)

The denoising autoencoder has successfully learned to rebuild the original images in the
presence of Gaussian noise. I invite the reader to test other methods (such as using an initial
dropout) and increase the noise level to understand what the maximum corruption is that
this model can effectively remove.

Autoencoders Chapter 11

[432]

Sparse autoencoders
In general, standard autoencoders produce dense internal representations. This means that
most of the values are different from zero. In some cases, however, it's more useful to have
sparse codes that can better represent the atoms belonging to a dictionary. In this case, if zi =
(0, 0, zi

n, ..., 0, zi
m, ...), we can consider each sample as the overlap of specific atoms weighted

accordingly. To achieve this objective, we can simply apply an L1 penalty to the code layer,
as explained in Chapter 1, Machine Learning Models Fundamentals. The loss function for a
single sample therefore becomes the following:

In this case, we need to consider the extra hyperparameter α, which must be tuned to
increase the sparsity without a negative impact on the accuracy. As a general rule of thumb,
I suggest starting with a value equal to 0.01 and reducing it until the desired result has been
achieved. In most cases, higher values yield very poor performance, and therefore they are
generally avoided.

A different approach has been proposed by Andrew Ng (in his book Sparse Autoencoder,
CS294A, Stanford University). If we consider the code layer as a set of independent Bernoulli
random variables, we can enforce sparsity by considering a generic reference Bernoulli
variable with a very low mean (for example, pr = 0.01) and adding the Kullback–Leibler
divergence between the generic element zi

(j) and pr to the cost function. For a single sample,
the extra term is as follows (p is the code length):

The resulting loss function becomes the following:

Autoencoders Chapter 11

[433]

The effect of this penalty is similar to L1 (with the same considerations about the α
hyperparameter), but many experiments have confirmed that the resulting cost function is
easier to optimize, and it's possible to achieve the same level of sparsity that reaches higher
reconstruction accuracies. When working with sparse autoencoders, the code length is often
larger because of the assumption that a single element is made up of a small number of
atoms (compared to the dictionary size). As a result, I suggest that you evaluate the level of
sparsity with different code lengths and select the combination that maximizes the former
and minimizes the latter.

Adding sparseness to the Fashion MNIST deep
convolutional autoencoder
In this example, we are going to add an L1 regularization term to the cost function that was
defined in the first exercise:

import tensorflow as tf

...

Loss
sparsity_constraint = tf.reduce_sum(0.001 * tf.norm(code_layer, ord=1,
axis=1))
loss = tf.nn.l2_loss(convt_3 - r_input_images) + sparsity_constraint

...

The training process is exactly the same, and therefore we can directly show the final code
mean after 200 epochs:

import numpy as np

codes = session.run([code_layer],
 feed_dict={
 input_images: np.expand_dims(X_train, axis=3),
 })[0]

print(np.mean(codes))
0.45797634

Autoencoders Chapter 11

[434]

As you can see, the mean is now lower, indicating that more code values are close to 0. I
invite the reader to implement the other strategy, considering that it's easier to create a
constant vector filled with small values (for example, 0.01) and exploit the vectorization
properties offered by TensorFlow. I also suggest simplifying the Kullback–Leibler
divergence by splitting it into an entropy term H(pr) (which is constant) and a cross-entropy
H(z, pr) term.

Variational autoencoders
A variational autoencoder (VAE) is a generative model proposed by Kingma and Wellin
(in their work Auto-Encoding Variational Bayes, arXiv:1312.6114 [stat.ML]) that partially
resembles a standard autoencoder, but it has some fundamental internal differences. The
goal, in fact, is not finding an encoded representation of a dataset, but determining the
parameters of a generative process that is able to yield all possible outputs given an input
data-generating process.

Let's take the example of a model based on a learnable parameter vector θ and a set of
latent variables z that have a probability density function p(z;θ). Our goal can therefore be
expressed as the research of the θ parameters that maximize the likelihood of the
marginalized distribution p(x;θ) (obtained through the integration of the joint probability
p(x,z;θ)):

Autoencoders Chapter 11

[435]

If this problem could be easily solved in closed form, a large set of samples drawn from the
p(x) data generating process would be enough to find a p(x;θ) good approximation.
Unfortunately, the previous expression is intractable in the majority of cases because the
true prior p(z) is unknown (this is a secondary issue, as we can easily make some helpful
assumptions) and the posterior distribution p(x|z;θ) is almost always close to zero. The first
problem can be solved by selecting a simple prior (the most common choice is z ∼ N(0, I)),
but the second one is still very hard because only a few z values can lead to the generation
of acceptable samples. This is particularly true when the dataset is very high dimensional
and complex (for example, images). Even if there are millions of combinations, only a small
number of them can yield realistic samples (if the images are photos of cars, we expect four
wheels in the lower part, but it's still possible to generate samples where the wheels are on
the top). For this reason, we need to exploit a method to reduce the sample space.
Variational Bayesian methods (read C. Fox and S. Roberts's work A Tutorial on Variational
Bayesian Inference from Orchid for further information) are based on the idea of employing
proxy distributions, which are easy to sample and, in this case, whose density is very high
(that is, the probability of generating a reasonable output is much higher than the true
posterior).

In this case, we define an approximate posterior, considering the architecture of a standard
autoencoder. In particular, we can introduce a q(z|x;θq) distribution that acts as an encoder
(that doesn't behave determinastically anymore), which can be easily modeled with a
neural network. Our goal, of course, is to find the best θq parameter set to maximize the
similarity between q and the true posterior distribution p(z|x;θ). This result can be achieved
by minimizing the Kullback–Leibler divergence:

Autoencoders Chapter 11

[436]

In the last formula, the term log p(x;θ) doesn't depend on z, and therefore it can be extracted
from the expected value operator and the expression can be manipulated to simplify it:

The equation can be also rewritten as the following:

On the right-hand side, we now have the term ELBO (short for evidence lower bound) and
the Kullback–Leibler divergence between the probabilistic encoder q(z|x;θq) and the true
posterior distribution p(z|x;θ). As we want to maximize the log-probability of a sample
under the θ parametrization, and considering that the KL divergence is always non-
negative, we can only work with the ELBO (which is a lot easier to manage than the other
term). Indeed, the loss function that we are going to optimize is the negative ELBO. To
achieve this goal, we need two more important steps.

The first one is choosing an appropriate structure for q(z|x;θq). As p(z;θ) is assumed to be
normal, we can supposedly model q(z|x;θq) as a multivariate Gaussian distribution,
splitting the probabilistic encoder into two blocks fed with the same lower layers:

A mean μ(z|x;θq) generator that outputs a μi ∈ ℜp vector
A Σ(z|x;θq) covariance generator (assuming a diagonal matrix) that outputs a σi ∈
ℜp vector so that Σi=diag(σi)

In this way, q(z|x;θq) = N(μ(z|x;θq), Σ(z|x;θq)), and therefore the second term on the right-
hand side is the Kullback-Leibler divergence between two Gaussian distributions that can
be easily expressed as follows (p is the dimension of both the mean and covariance vector):

Autoencoders Chapter 11

[437]

This operation is simpler than expected because, as Σ is diagonal, the trace corresponds to
the sum of the elements Σ1 + Σ2 + [...] + Σp and log(|Σ|) = log(Σ1Σ2...Σp) = log Σ1 + log Σ2 + ... +
log Σp.

At this point, maximizing the right-hand side of the previous expression is equivalent to
maximizing the expected value of the log probability to generate acceptable samples and
minimizing the discrepancy between the normal prior and the Gaussian distribution
synthesized by the encoder. Everything seems much simpler now, but there is still a
problem to solve. We want to use neural networks and the stochastic gradient descent
algorithm, and therefore we need differentiable functions. As the Kullback-Leibler
divergence can be computed only using minibatches with n elements (the approximation
becomes close to the true value after a sufficient number of iterations), it's necessary to
sample n values from the distribution N(μ(z|x;θq), Σ(z|x;θq)) and, unfortunately, this
operation is not differentiable. To solve this problem, the authors suggested a
reparameterization trick: instead of sampling from q(z|x;θq), we can sample from a normal
distribution, ε ∼ N(0, I), and build the actual samples as μ(z|x;θq) + ε · Σ(z|x;θq)

2. Considering
that ε is a constant vector during a batch (both the forward and backward phases), it's easy
to compute the gradient with respect to the previous expression and optimize both the
decoder and the encoder.

The last element to consider is the first term on the right-hand side of the expression that
we want to maximize:

This term represents the negative cross-entropy between the actual distribution and the
reconstructed one. As discussed in the first section, there are two feasible choices: Gaussian
or Bernoulli distributions. In general, variational autoencoders employ a Bernoulli
distribution with input samples and reconstruction values constrained between 0 and 1.
However, many experiments have confirmed that the mean squared error can speed up the
training process, and therefore I suggest that the reader test both methods and pick the one
that guarantees the best performance (both in terms of accuracy and training speed).

Autoencoders Chapter 11

[438]

An example of a variational autoencoder with
TensorFlow
Let's continue working with the Fashion MNIST dataset to build a variational autoencoder.
As explained, the output of the encoder is now split into two components: the mean and
covariance vectors (both with dimensions equal to (width · height)) and the decoder input is
obtained by sampling from a normal distribution and projecting the code components. The
complete Graph is as follows:

import tensorflow as tf

graph = tf.Graph()

with graph.as_default():
 input_images = tf.placeholder(tf.float32, shape=(batch_size, width,
height, 1))
 # Encoder
 conv_0 = tf.layers.conv2d(inputs=input_images,
 filters=32,
 kernel_size=(3, 3),
 strides=(2, 2),
 activation=tf.nn.relu,
 padding='same')
 conv_1 = tf.layers.conv2d(inputs=conv_0,
 filters=64,
 kernel_size=(3, 3),
 strides=(2, 2),
 activation=tf.nn.relu,
 padding='same')
 conv_2 = tf.layers.conv2d(inputs=conv_1,
 filters=128,
 kernel_size=(3, 3),
 activation=tf.nn.relu,
 padding='same')
 # Code layer
 code_input = tf.layers.flatten(inputs=conv_2)
 code_mean = tf.layers.dense(inputs=code_input,
 units=width * height)
 code_log_variance = tf.layers.dense(inputs=code_input,
 units=width * height)
 code_std = tf.sqrt(tf.exp(code_log_variance))
 # Normal samples
 normal_samples = tf.random_normal(mean=0.0, stddev=1.0,
shape=(batch_size, width * height))
 # Sampled code

Autoencoders Chapter 11

[439]

 sampled_code = (normal_samples * code_std) + code_mean
 # Decoder
 decoder_input = tf.reshape(sampled_code, (-1, 7, 7, 16))
 convt_0 = tf.layers.conv2d_transpose(inputs=decoder_input,
 filters=64,
 kernel_size=(3, 3),
 strides=(2, 2),
 activation=tf.nn.relu,
 padding='same')
 convt_1 = tf.layers.conv2d_transpose(inputs=convt_0,
 filters=32,
 kernel_size=(3, 3),
 strides=(2, 2),
 activation=tf.nn.relu,
 padding='same')
 convt_2 = tf.layers.conv2d_transpose(inputs=convt_1,
 filters=1,
 kernel_size=(3, 3),
 padding='same')
 convt_output = tf.nn.sigmoid(convt_2)
 # Loss
 reconstruction =
tf.nn.sigmoid_cross_entropy_with_logits(logits=convt_2,
labels=input_images)
 kl_divergence = 0.5 * tf.reduce_sum(tf.square(code_mean) +
tf.square(code_std) - tf.log(1e-8 + tf.square(code_std)) - 1, axis=1)
 loss = tf.reduce_sum(reconstruction) + kl_divergence
 # Training step
 training_step = tf.train.AdamOptimizer(0.001).minimize(loss)

As you can see, the only differences are as follows:

The generation of the encoder input is (normal_samples * code_std) +
code_mean

The use of sigmoid cross-entropy as reconstruction loss
The presence of the Kullback-Leibler divergence as a regularization term

Autoencoders Chapter 11

[440]

The training process is identical to the first example in this chapter, as the sampling
operations are performed directly by TensorFlow. The result after 200 epochs is shown in
the following figure:

Variational autoencoder output

As an exercise, I invite the reader to use RGB datasets (such as Cifar-10, which is found at
https://www.cs.toronto. edu/ ~kriz/ cifar. html) to test the generation ability of the VAE
by comparing the output samples with the one drawn from the original distribution.

In these kinds of experiments, where the random numbers are generated
by both NumPy and TensorFlow, the random seeds are always set equal
to 1,000 (np.random.seed(1000) and tf.set_random_seed(1000)).
Other values or subsequent tests without resetting the seeds can yield
slightly different results.

Summary
In this chapter, we presented autoencoders as unsupervised models that can learn to
represent high-dimensional datasets with lower-dimensional codes. They are structured
into two separate blocks (which, however, are trained together): an encoder, responsible for
mapping the input sample to an internal representation, and a decoder, which must
perform the inverse operation, rebuilding the original image starting from the code.

We have also discussed how autoencoders can be used to denoise samples and how it's
possible to impose a sparsity constraint on the code layer to resemble the concept of
standard dictionary learning. The last topic was about a slightly different pattern called a
variational autoencoder. The idea is to build a generative model that is able to reproduce all
the possible samples belonging to a training distribution.

In the next chapter, we are going to briefly introduce a very important model family called
generative adversarial networks (GANs), which are not very different from the purposes
of a variational autoencoder, but which have a much more flexible approach.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

12
Generative Adversarial

Networks
In this chapter, we are going to provide a brief introduction to a family of generative
models based on some game theory concepts. Their main peculiarity is an adversarial
training procedure that is aimed at learning to distinguish between true and fake samples,
driving, at the same time, another component that generates samples more and more
similar to the training examples.

In particular, we will be discussing:

Adversarial training and standard Generative Adversarial Networks (GANs)
Deep Convolutional GANs (DCGAN)
Wasserstein GANs (WGAN)

Adversarial training
The brilliant idea of adversarial training, proposed by Goodfellow and others (in Generative
Adversarial Networks, Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair
S., Courville A., Bengio Y., arXiv:1406.2661 [stat.ML]), ushered in a new generation of
generative models that immediately outperformed the majority of existing algorithms. All
of the derived models are based on the same fundamental concept of adversarial training,
which is an approach partially inspired by game theory.

Generative Adversarial Networks Chapter 12

[442]

Let's suppose that we have a data generating process, pdata(x), that represents an actual data
distribution and a finite number of samples that we suppose are drawn from pdata:

Our goal is to train a model called a generator, whose distribution must be as close as
possible to pdata. This is the trickiest part of the algorithm, because instead of standard
methods (for example, variational autoencoders), adversarial training is based on a
minimax game between two players (we can simply say that, given an objective, the goal of
both players is to minimize the maximum possible loss; but in this case, each of them works
on different parameters). One player is the generator, we can define as a parameterized
function of a noise sample:

The generator is fed with a noise vector (in this case, we have employed a uniform
distribution, but there are no particular restrictions; therefore, we are simply going to say
that z is drawn from a noise distribution pnoise), and outputs a value that has the same
dimensionality of the samples drawn from pdata. Without any further control, the generator
distribution will be completely different from the data generating process, but this is the
moment for the other player to enter the scene. The second model is called the discriminator
(or Critic), and it has the responsibility of evaluating the samples drawn from pdata and the
ones produced by the generator:

The role of this model is to output a probability that must reflect the fact that the sample is
drawn from pdata, instead of being generated by G(z; θg). What happens is very simple: the
first player (the generator) outputs a sample, x. If x actually belongs to pdata, the
discriminator will output a value close to 1, while if it's very different from the other true
samples, D(x; θd) will output a very low probability. The real structure of the game is based
on the idea of training the generator to deceive the discriminator, by producing samples
that can potentially be drawn from pdata. This result can be achieved by trying to maximize
the log-probability, log(D(x; θd)), when x is a true sample (drawn from pdata), while
minimizing the log-probability, log(1 - D(G(z; θg); θd)), with z sampled from a noise
distribution.

Generative Adversarial Networks Chapter 12

[443]

The first operation forces the discriminator to become more and more aware of the true
samples (this condition is necessary to avoid being deceived too easily). The second
objective is a little bit more complex, because the discriminator has to evaluate a sample
that can be acceptable or not. Let's suppose that the generator is not smart enough, and
outputs a sample that cannot belong to pdata. As the discriminator is learning how pdata is
structured, it will very soon distinguish the wrong sample, outputting a low probability.
Hence, by minimizing log(1 - D(G(z; θg); θd)), we are forcing the discriminator to become
more and more critical when the samples are quite different from the ones drawn from pdata,
and the becomes generator more and more able to produce acceptable samples. On the
other hand, if the generator outputs a sample that belongs to the data generating process,
the discriminator will output a high probability, and the minimization falls back in the
previous case.

The authors expressed this minimax game using a shared value function, V(G, D), that must
be minimized by the generator and maximized by the discriminator:

This formula represents the dynamics of a non-cooperative game between two players (for
further information, refer to Tadelis S., Game Theory, Princeton University Press) that
theoretically admits a special configuration, called a Nash equilibrium, that can be described
by saying that if the two players know each other's strategy, they have no reason to change
their own strategy if the other player doesn't. In this case, both the discriminator and
generator will pursue their strategies until no change is needed, reaching a final, stable
configuration, which is potentially a Nash equilibrium (even if there are many factors that
can prevent reaching this goal). A common problem is the premature convergence of the
discriminator, which forces the gradients to vanish because the loss function becomes flat in
a region close to 0. As this is a game, a fundamental condition is the possibility to provide
information to allow the player to make corrections. If the discriminator learns how to
separate true samples from fake ones too quickly, the generator convergence slows down,
and the player can remain trapped in a sub-optimal configuration. In general, when the
distributions are rather complex, the discriminator is slower than the generator; but, in
some cases, it is necessary to update the generator more times after each single
discriminator update. Unfortunately, there are no rules of thumb; but, for example, when
working with images, it's possible to observe the samples generated after a sufficiently
large number of iterations. If the discriminator loss has become very small and the samples
appear corrupted or incoherent, it means that the generator did not have enough time to
learn the distribution, and it's necessary to slow down the discriminator.

Generative Adversarial Networks Chapter 12

[444]

The authors in the aforementioned paper showed that, given a generator characterized by a
distribution pg(x), the optimal discriminator is:

At this point, considering the previous value function V(G, D) and using the optimal
discriminator, we can rewrite it in a single objective (as a function of G) that must be
minimized by the generator:

To better understand how a GAN works, we need to expand the previous expression:

Applying some simple manipulations, we get the following:

The last term represents the Jensen-Shannon divergence between pdata and pg. This measure
is similar to the Kullback-Leibler divergence, but it's symmetric and bounded between 0
and log(2). When the two distributions are identical, DJS = 0, but if their supports (the value
sets where p(x) > 0) are disjoint, DJS = log(2) (while DKL = ∞). Therefore, the value function
can be expressed as:

Generative Adversarial Networks Chapter 12

[445]

Now, it should be clearer that a GAN tries to minimize the Jensen-Shannon divergence
between the data generating process and the generator distribution. In general, this
procedure is quite effective; however, when the supports are disjointed, a GAN has no
pieces of information about the true distance. This consideration (analyzed with more
mathematical rigor in Improved Techniques for Training GANs, Salimans T., Goodfellow I.,
Zaremba W., Cheung V., Radford A., and Chen X., arXiv:1606.03498 [cs.LG]) explains why
training a GAN can become quite difficult, and, consequently, why the Nash equilibrium
cannot be found in many cases. For these reasons, we are going to analyze an alternative
approach in the next section.

The complete GAN algorithm (as proposed by the authors) is:

Set the number of epochs, Nepochs1.
Set the number of discriminator iterations, Niter (in most cases, Niter = 1)2.
Set the batch size, k3.
Define a noise generating process, M (for example, U(-1, 1))4.
For e=1 to Nepochs:5.

Sample k values from X1.
Sample k values from N2.
For i=1 to Niter:3.

Compute the gradients, ∇d V(G, D) (only with respect to the1.
discriminator variables). The expected value is
approximated with a sample mean.
Update the discriminator parameters by Stochastic Gradient2.
Ascent (as we are working with logarithms, it's possible to
minimize the negative loss).

Sample k values from N4.
Compute the gradients, ∇g Vnoise(G, D) (only with respect to the5.
generator variables)
Update the generator parameters by Stochastic Gradient Descent6.

As these models need to sample noisy vectors in order to guarantee the
reproducibility, I suggest setting the random seed in both NumPy
(np.random.seed(...)) and TensorFlow
(tf.set_random_seed(...)). The default value chosen for all of these
experiments is 1,000.

Generative Adversarial Networks Chapter 12

[446]

Example of DCGAN with TensorFlow
In this example, we want to build a DCGAN (proposed in Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks, Radford A., Metz L., Chintala
S., , arXiv:1511.06434 [cs.LG]) with the Fashion-MNIST dataset (obtained through the keras
helper function). As the training speed is not very high, we limit the number of samples to
5,000, but I suggest repeating the experiment with larger values. The first step is loading
and normalizing (between -1 and 1) the dataset:

import numpy as np

from keras.datasets import fashion_mnist

nb_samples = 5000

(X_train, _), (_, _) = fashion_mnist.load_data()
X_train = X_train.astype(np.float32)[0:nb_samples] / 255.0
X_train = (2.0 * X_train) - 1.0

width = X_train.shape[1]
height = X_train.shape[2]

According to the original paper, the generator is based on four transpose convolutions with
kernel sizes equal to (4, 4) and strides equal to (2, 2). The input is a single multi-channel
pixel (1 × 1 × code_length) that is expanded by subsequent convolutions. The number of
filters is 1024, 512, 256, 128, and 1 (we are working with grayscale images). The authors
suggest employing a symmetric-valued dataset (that's why we have normalized between -1
and 1), batch normalization after each layer, and leaky ReLU activation (with a default
negative slope set to 0.2):

import tensorflow as tf

def generator(z, is_training=True):
 with tf.variable_scope('generator'):
 conv_0 = tf.layers.conv2d_transpose(inputs=z,
 filters=1024,
 kernel_size=(4, 4),
 padding='valid')

 b_conv_0 = tf.layers.batch_normalization(inputs=conv_0,
training=is_training)

 conv_1 =
tf.layers.conv2d_transpose(inputs=tf.nn.leaky_relu(b_conv_0),
 filters=512,

Generative Adversarial Networks Chapter 12

[447]

 kernel_size=(4, 4),
 strides=(2, 2),
 padding='same')

 b_conv_1 = tf.layers.batch_normalization(inputs=conv_1,
training=is_training)
 conv_2 =
tf.layers.conv2d_transpose(inputs=tf.nn.leaky_relu(b_conv_1),
 filters=256,
 kernel_size=(4, 4),
 strides=(2, 2),
 padding='same')

 b_conv_2 = tf.layers.batch_normalization(inputs=conv_2,
training=is_training)
 conv_3 =
tf.layers.conv2d_transpose(inputs=tf.nn.leaky_relu(b_conv_2),
 filters=128,
 kernel_size=(4, 4),
 strides=(2, 2),
 padding='same')

 b_conv_3 = tf.layers.batch_normalization(inputs=conv_3,
training=is_training)

 conv_4 =
tf.layers.conv2d_transpose(inputs=tf.nn.leaky_relu(b_conv_3),
 filters=1,
 kernel_size=(4, 4),
 strides=(2, 2),
 padding='same')

 return tf.nn.tanh(conv_4)

The strides are set to work with 64 × 64 images (unfortunately, the Fashion-MNIST dataset
has 28 × 28 samples, which cannot be generated with power-of-two modules); therefore, we
are going to resize the samples while training. As we need to compute the gradients of the
discriminator and generator separately, it's necessary to set the variable scope (using the
context manager tf.variable_scope()) to immediately extract only the variables whose
names have the scope as a prefix (for example, generator/Conv_1_1/...).
The is_training parameter is necessary to disable the batch normalization during the
generation phase.

Generative Adversarial Networks Chapter 12

[448]

The discriminator is almost the same as a generator (the only main differences are the
inverse convolution sequence and the absence of batch normalization after the first layer):

import tensorflow as tf

def discriminator(x, is_training=True, reuse_variables=True):
 with tf.variable_scope('discriminator', reuse=reuse_variables):
 conv_0 = tf.layers.conv2d(inputs=x,
 filters=128,
 kernel_size=(4, 4),
 strides=(2, 2),
 padding='same')

 conv_1 = tf.layers.conv2d(inputs=tf.nn.leaky_relu(conv_0),
 filters=256,
 kernel_size=(4, 4),
 strides=(2, 2),
 padding='same')
 b_conv_1 = tf.layers.batch_normalization(inputs=conv_1,
training=is_training)
 conv_2 = tf.layers.conv2d(inputs=tf.nn.leaky_relu(b_conv_1),
 filters=512,
 kernel_size=(4, 4),
 strides=(2, 2),
 padding='same')
 b_conv_2 = tf.layers.batch_normalization(inputs=conv_2,
training=is_training)
 conv_3 = tf.layers.conv2d(inputs=tf.nn.leaky_relu(b_conv_2),
 filters=1024,
 kernel_size=(4, 4),
 strides=(2, 2),
 padding='same')
 b_conv_3 = tf.layers.batch_normalization(inputs=conv_3,
training=is_training)
 conv_4 = tf.layers.conv2d(inputs=tf.nn.leaky_relu(b_conv_3),
 filters=1,
 kernel_size=(4, 4),
 padding='valid')
 return conv_4

Generative Adversarial Networks Chapter 12

[449]

In this case, we have an extra parameter (reuse_variables) that is necessary when
building the loss functions. In fact, we need to declare two discriminators (fed with real
samples and with the generator output), but they are not made up of separate layers; hence,
the second one must reuse the variables defined by the first one. We can now create a graph
and define all of the placeholders and operations:

import tensorflow as tf

code_length = 100

graph = tf.Graph()

with graph.as_default():
 input_x = tf.placeholder(tf.float32, shape=(None, width, height, 1))
 input_z = tf.placeholder(tf.float32, shape=(None, code_length))
 is_training = tf.placeholder(tf.bool)
 gen = generator(z=tf.reshape(input_z, (-1, 1, 1, code_length)),
is_training=is_training)
 r_input_x = tf.image.resize_images(images=input_x, size=(64, 64))
 discr_1_l = discriminator(x=r_input_x, is_training=is_training,
reuse_variables=False)
 discr_2_l = discriminator(x=gen, is_training=is_training,
reuse_variables=True)
 loss_d_1 =
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(
discr_1_l), logits=discr_1_l))
 loss_d_2 =
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like
(discr_2_l), logits=discr_2_l))
 loss_d = loss_d_1 + loss_d_2
 loss_g =
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(
discr_2_l), logits=discr_2_l))
 variables_g = [variable for variable in tf.trainable_variables() if
variable.name.startswith('generator')]
 variables_d = [variable for variable in tf.trainable_variables() if
variable.name.startswith('discriminator')]
 with
tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
 training_step_d = tf.train.AdamOptimizer(0.0002,
beta1=0.5).minimize(loss=loss_d, var_list=variables_d)
 training_step_g = tf.train.AdamOptimizer(0.0002,
beta1=0.5).minimize(loss=loss_g, var_list=variables_g)

Generative Adversarial Networks Chapter 12

[450]

The first step is defining the placeholders:

input_x contains the true samples drawn from X
input_z contains the noise samples
is_training is a Boolean indicating whether or not the batch normalization
must be active

Then, we define the generator instance after reshaping the noise sample as a (1 × 1 ×
code_length) matrix (this is necessary to work efficiently with transpose convolutions). As
this is a fundamental hyperparameter, I suggest testing different values and comparing the
final performances.

As explained previously, the input images are resized before defining the two
discriminators (the second one reuses the variables previously defined).
The discr_1_l instance is fed with the true samples, while discr_2_l works with the
generator output.

The next step is defining the loss functions. As we are working with logarithms, there can
be stability problems when the values become close to 0. For this reason, it's preferable to
employ the TensorFlow built-in function
tf.nn.sigmoid_cross_entropy_with_logits(), which guarantees numerical stability
in every case. This function takes a logit as input and applies the sigmoid transformation
internally. In general, the output is:

Therefore, setting the label equal to 1 forces the second term to be null, and vice versa. At
this point, we need to create two lists containing the variables belonging to each scope (this
can be easily achieved by using the tf.trainable_variables() function, which outputs
a list of all variables). The last step consists of defining the optimizers. As suggested in the
official TensorFlow documentation, when working with batch normalizations, it's necessary
to wrap the training operations in a context manager that checks whether all dependencies
(in this case, batch average and variance) have been computed. We have employed the
Adam optimizer with η = 0.0002, and a gradient momentum forgetting factor (μ1) equal to
0.5 (this is a choice motivated by the potential instability that a high momentum can yield).
As it's possible to see, in both cases, the minimization is limited to a specific subset of the
variables (providing a list through the var_list parameter).

Generative Adversarial Networks Chapter 12

[451]

At this point, we can create a Session (we are going to use an InteractiveSession),
initialize all variables, and start the training procedure (with 200 epochs and a batch size
equal to 128):

import numpy as np
import tensorflow as tf

nb_epochs = 200
batch_size = 128
nb_iterations = int(nb_samples / batch_size)

session = tf.InteractiveSession(graph=graph)
tf.global_variables_initializer().run()

samples_range = np.arange(nb_samples)

for e in range(nb_epochs * 5):
 d_losses = []
 g_losses = []
 for i in range(nb_iterations):
 Xi = np.random.choice(samples_range, size=batch_size)
 X = np.expand_dims(X_train[Xi], axis=3)
 Z = np.random.uniform(-1.0, 1.0, size=(batch_size,
code_length)).astype(np.float32)
 _, d_loss = session.run([training_step_d, loss_d],
 feed_dict={
 input_x: X,
 input_z: Z,
 is_training: True
 })
 d_losses.append(d_loss)
 Z = np.random.uniform(-1.0, 1.0, size=(batch_size,
code_length)).astype(np.float32)
 _, g_loss = session.run([training_step_g, loss_g],
 feed_dict={
 input_x: X,
 input_z: Z,
 is_training: True
 })
 g_losses.append(g_loss)
 print('Epoch {}) Avg. discriminator loss: {} - Avg. generator loss:
{}'.format(e + 1, np.mean(d_losses), np.mean(g_losses)))

Generative Adversarial Networks Chapter 12

[452]

The training step (with a single discriminator iteration) is split into two phases:

Discriminator training with a batch of true images and noise samples1.
Generator training with a batch of noise samples2.

Once the training process has finished, we can generate some images (50) by executing the
generator with a matrix of noise samples:

Z = np.random.uniform(-1.0, 1.0, size=(50, code_length)).astype(np.float32)

Ys = session.run([gen],
 feed_dict={
 input_z: Z,
 is_training: False
 })

Ys = np.squeeze((Ys[0] + 1.0) * 0.5 * 255.0).astype(np.uint8)

The result is shown in the following screenshot:

Samples generated by a DCGAN trained with the Fashion-MNIST dataset

As an exercise, I invite the reader to employ more complex convolutional architectures and
an RGB dataset such as CIFAR-10 (https:/ /www. cs. toronto. edu/ ~kriz/ cifar. html).

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Generative Adversarial Networks Chapter 12

[453]

The training phase of this example and the following one, even if limited
to 5,000 samples, can be quite slow (around 12-15 hours) particularly
when no GPU is available. The reader can simplify the examples by
reducing the complexity of the networks (paying attention to the shapes)
and reducing the number of samples. To avoid mismatches, I suggest
adding the print(gen.shape) command after the generator instance.
The expected shape should be (?, 64, 64, 1). Alternatively, it's
possible to employ smaller target dimensions (like 32 × 32), setting one of
the strides (possibly the last one) equal to (1, 1).

Wasserstein GAN (WGAN)
As explained in the previous section, one of the most difficult problems with standard
GANs is caused by the loss function based on the Jensen-Shannon divergence, whose value
becomes constant when two distributions have disjointed supports. This situation is quite
common with high-dimensional, semantically structured datasets. For example, images are
constrained to having particular features in order to represent a specific subject (this is a
consequence of the manifold assumption discussed in Chapter 2, Introduction to Semi-
Supervised Learning). The initial generator distribution is very unlikely to overlap a true
dataset, and in many cases, they are also very far from each other. This condition increases
the risk of learning a wrong representation (a problem known as mode collapse), even
when the discriminator is able to distinguish between true and generated samples (such a
condition arises when the discriminator learns too quickly, with respect to the generator).
Moreover, the Nash equilibrium becomes harder to achieve, and the GAN can easily
remain blocked in a sub-optimal configuration.

In order to mitigate this problem, Arjovsky, Chintala, and Bottou (in Wasserstein
GAN, Arjovsky M., Chintala S., Bottou L., arXiv:1701.07875 [stat.ML]) proposed employing a
different divergence, called the Wasserstein distance (or Earth Mover's distance), which is
formally defined as follows:

Generative Adversarial Networks Chapter 12

[454]

The term ∏(pdata, pg) represents the set of all possible joint probability distributions between
pdata, pg. Hence, the Wasserstein distance is the infimum (considering all joint distributions)
of the set of expected values of ||x - y||, where x and y are sampled from the joint
distribution μ. The main property of DW is that, even when two distributions have
disjointed support, its value is proportional to the actual distributional distance. The formal
proof is not very complex, but it's easier to understand the concept intuitively. In fact, given
two distributions with disjointed support, the infimum operator forces taking the shortest
distance between each possible couple of samples. Clearly, this measure is more robust
than the Jensen-Shannon divergence, but there's a practical drawback: it's extremely
difficult to compute. As we cannot work with all possible joint distributions (nor with an
approximation), a further step is necessary to employ this loss function. In the
aforementioned paper, the authors proved that it's possible to apply a transformation,
thanks to the Kantorovich-Rubinstein theorem (the topic is quite complex, but the reader
can find further information in On the Kantorovich–Rubinstein Theorem, Edwards D. A.,
Expositiones Mathematicae, 2011):

The first element to consider is the nature of f(•). The theorem imposes considering only L-
Lipschitz functions, which means that f(•) (assuming a real-valued function of a single
variable) must obey:

At this point, the Wasserstein distance is proportional to the supremum (with respect to
all L-Lipschitz functions) of the difference between two expected values, which are
extremely easy to compute. In a WGAN, the f(•) function is represented by a neural
network; therefore, we have no warranties about the Lipschitz condition. To solve this
problem, the author suggested a very simple procedure: clipping the discriminator (which
is normally called Critic, and whose responsibility is to represent the parameterized
function f(•)) variables after applying the corrections. If the input is bounded, all of the
transformations will yield a bounded output; however, the clipping factor must be small
enough (0.01, or even smaller) to avoid the additive effect of multiple operations leading to
an inversion of the Lipschitz condition. This is not an efficient solution (because it slows
down the training process when it's not necessary), but it allows for exploiting
the Kantorovich-Rubinstein theorem, even when there are no formal constraints imposed
on the function family.

Generative Adversarial Networks Chapter 12

[455]

Using a parameterized function (such as a Deep Convolutional Network), the Wasserstein
distance becomes as follows (omitting the term L, which is constant):

In the previous expression, we explicitly extracted the generator output, and in the last
step, separated the term that will be optimized separately. The reader has probably noticed
that the computation is simpler than a standard GAN because, in this case, we have to
average over only the f(•) values of a batch (there's no more need for a logarithm).
However, as the Critic variables are clipped, the number of required iterations is normally
larger, and in order to compensate the difference between the training speeds of the Critic
and generator, it's often necessary to set Ncritic > 1 (the authors suggest a value equal to 5, but
this is a hyperparameter that must be tuned in every specific context).

The complete WGAN algorithm is:

Set the number of epochs, Nepochs.1.
Set the number of Critic iterations, Ncritic (in most cases, Niter = 5).2.
Set the batch size, k.3.
Set a clipping constant, c (for example, c = 0.01).4.
Define a noise generating process, M (for example, U(-1, 1)).5.
For e=1 to Nepochs:6.

Sample k values from X.1.
Sample k values from N.2.
For i=1 to Ncritic:3.

Compute the gradients, ∇c DW(pdata||pg) (only with respect to1.
the Critic variables). The expected values are approximated
by sample means.
Update the Critic parameters by Stochastic Gradient Ascent.2.
Clip the Critic parameters in the range [-c, c].3.

Sample k values from N.4.
Compute the gradients, ∇g Wnoise (only with respect to the generator5.
variables).
Update the generator parameters by Stochastic Gradient Descent.6.

Generative Adversarial Networks Chapter 12

[456]

Example of WGAN with TensorFlow
This example can be considered a variant of the previous one because it uses the same
dataset, generator, and discriminator. The only main difference is that in this case, the
discriminator (together with its variable scope) has been renamed critic():

import tensorflow as tf

def critic(x, is_training=True, reuse_variables=True):
 with tf.variable_scope('critic', reuse=reuse_variables):
...

At this point, we can step directly to the creation of the Graph containing all of the
placeholders, operations, and loss functions:

import tensorflow as tf

graph = tf.Graph()

with graph.as_default():
 input_x = tf.placeholder(tf.float32, shape=(None, width, height, 1))
 input_z = tf.placeholder(tf.float32, shape=(None, code_length))
 is_training = tf.placeholder(tf.bool)
 gen = generator(z=tf.reshape(input_z, (-1, 1, 1, code_length)),
is_training=is_training)
 r_input_x = tf.image.resize_images(images=input_x, size=(64, 64))
 crit_1_l = critic(x=r_input_x, is_training=is_training,
reuse_variables=False)
 crit_2_l = critic(x=gen, is_training=is_training, reuse_variables=True)
 loss_c = tf.reduce_mean(crit_2_l - crit_1_l)
 loss_g = tf.reduce_mean(-crit_2_l)
 variables_g = [variable for variable in tf.trainable_variables() if
variable.name.startswith('generator')]
 variables_c = [variable for variable in tf.trainable_variables() if
variable.name.startswith('critic')]
 with
tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
 optimizer_c = tf.train.AdamOptimizer(0.00005, beta1=0.5,
beta2=0.9).minimize(loss=loss_c, var_list=variables_c)
 with tf.control_dependencies([optimizer_c]):
 training_step_c = tf.tuple(tensors=[tf.assign(variable,
tf.clip_by_value(variable, -0.01, 0.01))
 for variable in
variables_c])
 training_step_g = tf.train.AdamOptimizer(0.00005, beta1=0.5,
beta2=0.9).minimize(loss=loss_g, var_list=variables_g)

Generative Adversarial Networks Chapter 12

[457]

As it's possible to see, there are no differences in the placeholder section, in the definition of
the generator, and in the image resizing to the target dimensions of 64 × 64. In the next
block, we define the two Critic instances (which are perfectly analogous to the ones
declared in the previous example).

The two loss functions are simpler than a standard GAN, as they work directly with the
Critic outputs, computing the sample mean over a batch. In the original paper, the authors
suggest using RMSProp as the standard optimizer, in order to avoid the instabilities that a
momentum-based algorithm can produce. However, Adam, with lower forgetting factors
(μ1 = 0.5 and μ2 = 0.9) and a learning rate η = 0.00005, is faster than RMSProp, and doesn't
lead to instabilities. I suggest testing both options, trying to maximize the training speed
while preventing the mode collapse. Contrary to the previous example, in this case we need
to clip all of the Critic variables after each training step. To avoid that, the internal
concurrency can alter the order of some operations; it's necessary to employ a nested
dependency control context manager. In this way, the actual
training_step_c (responsible for clipping and reassigning the values to each variable)
will be executed only after the optimizer_c step has completed.

Now, we can create the InteractiveSession, initialize the variables, and start the
training process, which is very similar to the previous one:

import numpy as np
import tensorflow as tf

nb_epochs = 200
nb_critic = 5
batch_size = 64
nb_iterations = int(nb_samples / batch_size)

session = tf.InteractiveSession(graph=graph)
tf.global_variables_initializer().run()

samples_range = np.arange(nb_samples)

for e in range(nb_epochs):
 c_losses = []
 g_losses = []
 for i in range(nb_iterations):
 for j in range(nb_critic):
 Xi = np.random.choice(samples_range, size=batch_size)
 X = np.expand_dims(X_train[Xi], axis=3)
 Z = np.random.uniform(-1.0, 1.0, size=(batch_size,
code_length)).astype(np.float32)
 _, c_loss = session.run([training_step_c, loss_c],
 feed_dict={

Generative Adversarial Networks Chapter 12

[458]

 input_x: X,
 input_z: Z,
 is_training: True
 })
 c_losses.append(c_loss)
 Z = np.random.uniform(-1.0, 1.0, size=(batch_size,
code_length)).astype(np.float32)
 _, g_loss = session.run([training_step_g, loss_g],
 feed_dict={
 input_x: np.zeros(shape=(batch_size,
width, height, 1)),
 input_z: Z,
 is_training: True
 })
 g_losses.append(g_loss)
 print('Epoch {}) Avg. critic loss: {} - Avg. generator loss:
{}'.format(e + 1, np.mean(c_losses), np.mean(g_losses)))

The main difference is that, in this case, the Critic is trained n_critic times before each
generator training step. The result of the generation of 50 random samples is shown in the
following screenshot:

Samples generated by a WGAN trained with the Fashion MNIST dataset

Generative Adversarial Networks Chapter 12

[459]

As it's possible to see, the quality is slightly higher, and the samples are smoother. I invite
the reader to also test this model with an RGB dataset, because the final quality is normally
excellent.

When working with these models, the training time can be very long. To
avoid waiting to see the initial results (and to perform the required
tuning), I suggest using Jupyter. In this way, it's possible to stop the
learning process, check the generator ability, and restart it without any
problem. Of course, the graph must remain the same, and the variable
initialization must be performed only at the beginning.

Summary
In this chapter, we discussed the main principles of adversarial training, and explained the
roles of two players: the generator and discriminator. We described how to model and train
them using a minimax approach whose double goal is to force the generator to learn the
true data distribution pdata, and get the discriminator to distinguish perfectly between true
samples (belonging to pdata) and unacceptable ones. In the same section, we analyzed the
inner dynamics of a Generative Adversarial Network and some common problems that can
slow down the training process and lead to a sub-optimal final configuration.

One of the most difficult problems experienced with standard GANs arises when the data
generating process and the generator distribution have disjointed support. In this case, the
Jensen-Shannon divergence becomes constant and doesn't provide precise information
about the distance. An excellent alternative is provided by the Wasserstein measure, which
is employed in a more efficient model, called WGAN. This method can efficiently manage
disjointed distributions, but it's necessary to enforce the L-Lipschitz condition on the Critic.
The standard approach is based on clipping the parameters after each gradient ascent
update. This simple technique guarantees the L-Lipschitz condition, but it's necessary to
use very small clipping factors, and this can lead to a slower conversion. For this reason, it's
normally necessary to repeat the training of the Critic a fixed number of times (such as five)
before each single generator training step.

In the next chapter, we are going to introduce another probabilistic generative neural
model, based on a particular kind of neural network, called the Restricted Boltzmann
Machine.

13
Deep Belief Networks

In this chapter, we are going to present two probabilistic generative models that employ a
set of latent variables to represent a specific data generation process. Restricted Boltzmann
Machines (RBMs), proposed in 1986, are the building blocks of a more complex model,
called a Deep Belief Network (DBN), which is capable of capturing complex relationships
among features at different levels (in a way not dissimilar to a deep convolutional
network). Both models can be used in unsupervised and supervised scenarios as
preprocessors or, as is usual with DBN, fine-tuning the parameters using a standard
backpropagation algorithm.

In particular, we will discuss:

Markov random fields (MRF)
RBM
Contrastive Divergence (CD-k) algorithm
DBN with supervised and unsupervised examples

Deep Belief Networks Chapter 13

[461]

MRF
Let's consider a set of random variables, xi, organized in an undirected graph, G=(V, E), as
shown in the following diagram:

 Example of a probabilistic undirected graph

Two random variables, a and b, are conditionally independent given the random variable, c
if:

Now, consider the graph again; if all generic couples of subsets of variables Si and Sj are
conditionally independent given a separating subset, Sk (so that all connections between
variables belonging to Si to variables belonging to Sj pass through Sk), the graph is called
a Markov random field (MRF).

Deep Belief Networks Chapter 13

[462]

Given G=(V, E), a subset containing vertices such that every couple is adjacent is called
a clique (the set of all cliques is often denoted as cl(G)). For example, consider the graph
shown previously; (x0, x1) is a clique and if x0 and x5 were connected, (x0, x1, x5) would be a
clique. A maximal clique is a clique that cannot be expanded by adding new vertices. A
particular family of MRF is made up of all those graphs whose joint probability distribution
can be factorized as:

In this case, α is the normalizing constant and the product is extended to the set of all
maximal cliques. According to the Hammersley–Clifford theorem (for further information,
please refer to Proof of Hammersley-Clifford Theorem, Cheung S., University of Kentucky, 2008),
if the joint probability density function is strictly positive, the MRF can be factorized and all
the ρi functions are strictly positive too. Hence p(x), after some straightforward
manipulations based on the properties of logarithms, can be rewritten as a Gibbs (or
Boltzmann) distribution:

The term E(x) is called energy, as it derives from the first application of such a distribution
in statistical physics. 1/Z is now the normalizing constant employing the standard notation.
In our scenarios, we always consider graphs containing observed (xi) and latent variables
(hj). Therefore, it's useful to express the joint probability as:

Whenever it's necessary to marginalize to obtain p(x), we can simply sum over hj:

Deep Belief Networks Chapter 13

[463]

RBMs
A RBM (originally called Harmonium) is a neural model proposed by Smolensky (in
Information processing in dynamical systems: Foundations of harmony theory, Smolensky P.,
Parallel Distributed Processing, Vol 1, The MIT Press) that is made up of a layer of input
(observable) neurons and a layer of hidden (latent) neurons. A generic structure is shown in
the following diagram:

 Structure of Restricted Boltzmann Machine

As the undirected graph is bipartite (there are no connections between neurons belonging
to the same layer), the underlying probabilistic structure is MRF. In the original model
(even if this is not a restriction), all the neurons are assumed to be Bernoulli-distributed (xi,
hi = {0, 1}), with a bias, bi (for the observed units) and cj (for the latent neurons). The
resulting energy function is:

A RBM is a probabilistic generative model that can learn a data-generating process, pdata,
which is represented by the observed units but exploits the presence of the latent variables
in order to model all the internal relationships. If we summarized all the parameters in a
single vector, θ = {wij, bi, cj}, the Gibbs distribution becomes:

The training goal of a RBM is to maximize the log-likelihood with respect to an input
distribution. Hence, the first step is determining L(θ; x) after the marginalization of the
previous expression:

Deep Belief Networks Chapter 13

[464]

As we need to maximize the log-likelihood, it's useful to compute the gradient with respect
to θ:

Applying the chain rule of derivatives, we get:

Using the conditional and joint probability equalities, the previous expression becomes:

Considering the full joint probability, after some tedious manipulations (which we omit),
it's possible to derive the following expressions (σ(•) is the sigmoid function):

At this point, we can compute the gradient of the log-likelihood with respect to each single
parameter, wij, bi, and cj. Starting with wij, and considering that ∇wij E(x, h; θ) = -xihj, we get:

The expression can be rewritten as:

Deep Belief Networks Chapter 13

[465]

Now, considering that all the units are Bernoulli-distributed, and isolating only the jth

hidden unit, it's possible to apply the simplification:

Therefore, the gradient becomes:

Analogously, we can derive the gradient of L with respect to bi and cj:

Hence, the first term of every gradient is very easy to compute, while the second one
requires summing over all observed values. As this operation is impracticable, the only
feasible alternative is an approximation based on sampling, using a method such as Gibbs
sampling (for further information, see Chapter 4, Bayesian Networks and Hidden Markov
Models). However, as this algorithm samples from the conditionals p(x|h) and p(h|x), rather
than from the full joint distribution p(x, h), it requires the associated Markov chain to reach
its stationary distribution, π, in order to provide valid samples. As we don't know how
many sampling steps are required to reach π, Gibbs sampling can also be an unfeasible
solution because of its potentially high computational cost.

In order to solve this problem, Hinton proposed (in A Practical Guide to Training Restricted
Boltzmann Machines, Hinton G., Dept. Computer Science, University of Toronto) an alternative
algorithm called CD-k. The idea is very simple but extremely effective: instead of waiting
for the Markov chain to reach the stationary distribution, we sample a fixed number of
times starting from a training sample at t=0 x(0) and computing h(1) by sampling from
p(h(1)|x(0)). Then, the hidden vector is employed to sample the reconstruction, x(2), from
p(x(2)|h(1)). This procedure can be repeated any number of times, but in practice, a single
sampling step is normally enough to ensure quite good accuracy. At this point, the gradient
of the log-likelihood is approximated as (considering t steps):

Deep Belief Networks Chapter 13

[466]

The single gradients with respect to wij, bi, and cj can be easily obtained considering the
preceding procedure. The term contrastive derives from the approximation of the gradient
of L computed at x(0) with a weighted difference between a term called the positive gradient
and another defined as the negative gradient. This approach is analogous to the
approximation of a derivative with this incremental ratio:

The complete RBM training algorithm, based on a single-step CD-k is (assuming that there
are M training samples):

Set the number, Nh, of hidden units1.
Set a number of epochs, Ne2.
Set a learning_rate η (for example, η = 0.01)3.
For e=1 to Ne:4.

Set Δw = 0, Δb = 0, and Δc = 01.
For i=1 to M:2.

Sample h(i) from p(h|x(i))1.
Sample a reconstruction x(i+1) from p(x(i+1)|h(i)) 2.
Accumulate the updates for weights and biases:3.

Δw += p(h = 1|x(i))x(i) - p(h = 1|x(i+1))x(i+1) (as outer1.
product)
Δb += x(i) - x(i+1)2.
Δc += p(h = 1|x(i)) - p(h = 1|x(i+1))3.

Update weights and biases:3.
w += ηΔw1.
b += ηΔb2.
c += ηΔc3.

Deep Belief Networks Chapter 13

[467]

The outer product between two vectors is defined as:

If vector a has an (n, 1) shape and b has an (m, 1) shape, the result is a matrix with a (n,
m) shape.

DBNs
A Belief or Bayesian network is a concept already explored in Chapter 4, Bayesian Networks
and Hidden Markov Models. In this particular case, we are going to consider Belief Networks
where there are visible and latent variables, organized into homogeneous layers. The first
layer always contains the input (visible) units, while all the remaining ones are latent.
Hence, a DBN can be structured as a stack of RBMs, where each hidden layer is also the
visible one of the subsequent RBM, as shown in the following diagram (the number of units
can be different for each layer):

 Structure of a generic Deep Belief Network

Deep Belief Networks Chapter 13

[468]

The learning procedure is usually greedy and step-wise (as proposed in A fast learning
algorithm for deep belief nets, Hinton G. E., Osindero S., Teh Y. W., Neural Computation, 18/7).
The first RBM is trained with the dataset and optimized to reconstruct the original
distribution using the CD-k algorithm. At this point, the internal (hidden) representations
are employed as input for the next RBM, and so on until all the blocks are fully trained. In
this way, the DBN is forced to create subsequent internal representations of the dataset that
can be used for different purposes. Of course, when the model is trained, it's possible to
infer from the recognition (inverse) model sampling from the hidden layers and compute
the activation probability as (x represents a generic cause):

As a DBN is always a generative process, in an unsupervised scenario, it can perform a
component analysis/dimensionality reduction with an approach that is based on the idea of
creating a chain of sub-processes, which are able to rebuild an internal representation.
While a single RBM focuses on a single hidden layer and hence cannot learn sub-features, a
DBN greedily learns how to represent each sub-feature vector using a refined hidden
distribution. The concept behind this process is not very different from a cascade of
convolutional layers, with the main difference that in this case, the learning procedure is
greedy. Another distinction with methods such as PCA is that we don't know exactly how
the internal representation is built. As the latent variables are optimized by maximizing the
log-likelihood, there are possibly many optimal points but we cannot easily impose
constraints on them. However, DBNs show very powerful properties in different scenarios,
even if their computational cost is normally considerably higher than other methods. One
of the main problems (common to the majority of deep learning methods) concerns the
right choice of hidden units in every layer. As they represent latent variables, their number
is a crucial factor for the success of a training procedure. The right choice is not immediate,
because it's necessary to know the complexity of the data-generating process, however, as a
rule of thumb, I suggest starting with a couple of layers containing 32/64 units and
proceeding to increase the number of hidden neurons and the layers until the desired
accuracy is reached (in the same way, I suggest starting with a small learning rate, for
example, 0.01 -, increasing it if necessary).

Deep Belief Networks Chapter 13

[469]

As the first RBM is responsible for reconstructing the original dataset, it's very useful to
monitor the log-likelihood (or the error) after each epoch in order to understand whether
the process is learning correctly (decreasing error) or it's saturating the capacity. It's clear
that an initial bad reconstruction leads to subsequently worse representations. As the
learning process is greedy, in an unsupervised task there's no way to improve the
performance of lower layers when the previous training steps are finished therefore, I
always suggest tuning up the parameters so that the first reconstruction is very accurate. Of
course, all the considerations about overfitting are still valid, so, it's also important to
monitor the generalization ability with validation samples. However, in a component
analysis, we assume we're working with a distribution that is representative of the
underlying data-generating process, so the risk of finding before-seen features should be
minimal.

In a supervised scenario, there are generally two options whose first step is always a greedy
training of the DBN. However, the first approach performs a subsequent refinement using a
standard algorithm, such as backpropagation (considering the whole architecture as a
single deep network), while the second one uses the last internal representation as the input
of a separate classifier. It goes without saying that the first method has many more degrees
of freedom because it works with a pre-trained network whose weights can be adjusted
until the validation accuracy reaches its maximum value. In this case, the first greedy step
works with the same assumption that has been empirically confirmed by observing the
internal behavior of deep models (similar to convolutional networks). The first layers learn
how to detect low-level features, while all the subsequent ones increase the details.
Therefore, the backpropagation step presumably starts from a point that is already quite
close to the optimum and can converge more quickly. Conversely, the second approach is
analogous to applying the kernel trick to a standard Support Vector Machine (SVM). In
fact, the external classifier is generally a very simple one (such as a logistic regression or an
SVM) and the increased accuracy is normally due to an improved linear separability
obtained by projecting the original samples onto a sub-space (often higher-dimensional)
where they can be easily classified. In general, this method yields worse performance than
the first one because there's no way to tune up the parameters once the DBN is trained.
Therefore, when the final projections are not suitable for a linear classification, it's necessary
to employ more complex models and the resulting computational cost can be very high
without a proportional performance gain. As deep learning is generally based on the
concept of end-to-end learning, training the whole network can be useful to implicitly
include the pre-processing steps in the complete structure, which becomes a black box that
associates input samples with specific outcomes. On the other hand, whenever an explicit
pipeline is requested, greedy-training the DBN and employing a separate classifier could be
a more suitable solution.

Deep Belief Networks Chapter 13

[470]

Example of unsupervised DBN in Python
In this example, we are going to use a Python library freely available on GitHub (https:/ /
github.com/albertbup/ deep- belief- network) that allows working with supervised and
unsupervised DBN using NumPy (CPU-only) or Tensorflow (CPU or GPU support) with
the standard Scikit-Learn interface. Our goal is to create a lower-dimensional
representation of a subset of the mnist dataset (as the training process can be quite slow,
we'll limit it to 400 samples). The first step is loading (using the Keras helper function),
shuffling, and normalizing the dataset:

import numpy as np

from keras.datasets import mnist
from sklearn.utils import shuffle

(X_train, Y_train), (_, _) = mnist.load_data()
X_train, Y_train = shuffle(X_train, Y_train, random_state=1000)

nb_samples = 400

width = X_train.shape[1]
height = X_train.shape[2]

X = X_train[0:nb_samples].reshape((nb_samples, width *
height)).astype(np.float32) / 255.0
Y = Y_train[0:nb_samples]

At this point, we can create an instance of the the UnsupervisedDBN class, setting three
layers with respectively 512, 256, and 64 sigmoid units (as we want to bind the values
between 0 and 1). The learning rate, η (learning_rate_rbm), is set equal to 0.05, the
batch size (batch_size) to 64, and the number of epochs for each RBM (n_epochs_rbm)
to 100. The default value for the number of CD-k steps is 1, but it's possible to change it
using the contrastive_divergence_iter parameter:

from dbn.tensorflow import UnsupervisedDBN

unsupervised_dbn = UnsupervisedDBN(hidden_layers_structure=[512, 256, 64],
 learning_rate_rbm=0.05,
 n_epochs_rbm=100,
 batch_size=64,
 activation_function='sigmoid')

X_dbn = unsupervised_dbn.fit_transform(X)

[START] Pre-training step:

https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network

Deep Belief Networks Chapter 13

[471]

>> Epoch 1 finished RBM Reconstruction error 55.562027
>> Epoch 2 finished RBM Reconstruction error 53.663380

...

>> Epoch 99 finished RBM Reconstruction error 5.169244
>> Epoch 100 finished RBM Reconstruction error 5.130809
[END] Pre-training step

Once the training process is complete, the X_dbn array contains the values sampled from
the last hidden layer. Unfortunately, this library doesn't implement an inverse
transformation method, but we can use the t-SNE algorithm to project the distribution onto
a bidimensional space:

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, perplexity=20, random_state=1000)
X_tsne = tsne.fit_transform(X_dbn)

The corresponding plot is shown in the following graph:

 t-SNE plot of the last DBN hidden layer distribution (64-dimensional)

Deep Belief Networks Chapter 13

[472]

As you can see, even if there are still a few anomalies, the hidden low-dimensional
representation is globally coherent with the original dataset because the group containing
the same digits is organized in compact clusters that preserve some geometrical properties.
For example, the group containing the digits representing a 1 is very close to the one
containing the images of 7s, as well as the groups of 3s and 8s. This result confirms that a
DBN can be successfully employed as a preprocessing layer for classification purposes, but
in this case, rather than reducing the dimensionality, it's often preferable to increase it, in
order to exploit the redundancy to use a simpler linear classifier (to better understand this
concept, think about augmenting a dataset with polynomial features). I invite you to test
this ability by preprocessing the whole MNIST dataset and then classifying it using a
logistic regression, comparing the results with a direct approach.

The library can be installed using the pip install
git+git://github.com/albertbup/deep-belief-

network.git command (NumPy or Tensorflow CPU) or pip install
git+git://github.com/albertbup/deep-belief-

network.git@master_gpu (Tensorflow GPU). In both cases, the
commands will also install Tensorflow and other dependencies that are
often present in common Python distributions (such as Anaconda);
therefore, in order to limit the installation only to the DBN component, it's
necessary to add the --no-deps attribute to the pip command. For
further information, please refer to the GitHub page.

Example of Supervised DBN with Python
In this example, we are going to employ the KDD Cup '99 dataset (provided by Scikit-
Learn), which contains the logs generated by an intrusion detection system exposed to
normal and dangerous network activities. We are focusing only on the smtp sub-dataset,
which is the smallest one, because, as explained before, the training process can be very
long. This dataset is not extremely complex and it can be successfully classified with
simpler methods; however, the example has only a didactic purpose and can be useful for
understanding how to work with this kind of data.

The first step is to load the dataset, encode the labels (which are strings), and standardize
the values:

from sklearn.datasets import fetch_kddcup99
from sklearn.preprocessing import LabelEncoder, StandardScaler

kddcup = fetch_kddcup99(subset='smtp', shuffle=True, random_state=1000)

Deep Belief Networks Chapter 13

[473]

ss = StandardScaler()
X = ss.fit_transform(kddcup['data']).astype(np.float32)

le = LabelEncoder()
Y = le.fit_transform(kddcup['target']).astype(np.float32)

At this point, we can create train and test sets:

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=1000)

The model is based on an instance of the SupervisedDBNClassification class, which
implements the backpropagation method. The parameters are very similar to the
unsupervised case, but now we can also specify the stochastic gradient descent (SGD)
learning rate (learning_rate), the number of backpropagation epochs
(n_iter_backprop), and an optional dropout (dropout_p). The algorithm performs an
initial greedy training (whose computational cost is normally higher than the SGD phase),
followed by a fine-tuning:

from dbn.tensorflow import SupervisedDBNClassification

classifier = SupervisedDBNClassification(hidden_layers_structure=[64, 64],
 learning_rate_rbm=0.001,
 learning_rate=0.01,
 n_epochs_rbm=20,
 n_iter_backprop=150,
 batch_size=256,
 activation_function='relu',
 dropout_p=0.25)

classifier.fit(X_train, Y_train)

[START] Pre-training step:
>> Epoch 1 finished RBM Reconstruction error 2.478997
>> Epoch 2 finished RBM Reconstruction error 2.459004

...

>> Epoch 147 finished ANN training loss 0.006651
>> Epoch 148 finished ANN training loss 0.006631
>> Epoch 149 finished ANN training loss 0.006612
[END] Fine tuning step

SupervisedDBNClassification(batch_size=256, dropout_p=0.25,
 idx_to_label_map={0: 1.0, 1: 0.0, 2: 2.0},

Deep Belief Networks Chapter 13

[474]

 l2_regularization=1.0,
 label_to_idx_map={0.0: 1, 1.0: 0, 2.0: 2},
 learning_rate=0.01, n_iter_backprop=150, verbose=True)

Once the training process is finished, we can evaluate performance on the test set:

from sklearn.metrics.classification import accuracy_score

Y_pred = classifier.predict(X_test)
print(accuracy_score(Y_test, Y_pred))
1.0

The validation accuracy is 1.0 (there are no misclassifications), but this is really a simple
dataset that needs only a few minutes of training. I invite you to test the performance of a
DBN in the classification of the MNIST/Fashion MNIST dataset, comparing the results with
the one obtained using a deep convolutional network. In this case, it's important to monitor
the reconstruction error of each RBM, trying to minimize it before running the
backpropagation phase. At the end of this exercise, you should be able to answer this
question: which is preferable, an end-to-end or a preprocessing-based approach?

When running these experiments, where there's an intensive use of
sampling, I always suggest setting the random seed (and keeping it
constant) in NumPy in order to guarantee reproducibility (using
the np.random.seed(...) command). As this library also works with
Tensorflow, it's necessary to repeat the operation using
the tf.set_random_seed(...) command.

Summary
In this chapter, we presented the MRF as the underlying structure of an RBM. An MRF is
represented as an undirected graph whose vertices are random variables. In particular, for
our purposes, we considered MRFs whose joint probability can be expressed as a product
of the positive functions of each random variable. The most common distribution, based on
an exponential, is called the Gibbs (or Boltzmann) distribution and it is particularly suitable
for our problems because the logarithm cancels the exponential, yielding simpler
expressions.

Deep Belief Networks Chapter 13

[475]

An RBM is a simple bipartite, undirected graph, made up of visible and latent variables,
with connections only between different groups. The goal of this model is to learn a
probability distribution, thanks to the presence of hidden units that can model the
unknown relationships. Unfortunately, the log-likelihood, although very simple, cannot be
easily optimized because the normalization term requires summing over all the input
values. For this reason, Hinton proposed an alternative algorithm, called CD-k, which
outputs an approximation of the gradient of the log-likelihood based on a fixed number
(normally 1) of Gibbs sampling steps.

Stacking multiple RBMs allows modeling DBNs, where the hidden layer of each block is
also the visible layer of the following one. DBN can be trained using a greedy approach,
maximizing the log-likelihood of each RBM in sequence. In an unsupervised scenario, a
DBN is able to extract the features of a data-generating process in a hierarchical way, and
therefore the application includes component analysis and dimensionality reduction. In a
supervised scenario, a DBN can be greedily pre-trained and fine-tuned using the
backpropagation algorithm (considering the whole network) or sometimes using a
preprocessing step in a pipeline where the classifier is generally a very simple model (such
as a logistic regression).

 In the next chapter, Chapter 14, Introduction to Reinforcement Learning, we are going to
introduce the concept of reinforcement learning, discussing the most important elements of
systems that can autonomously learn to play a game or allow a robot to walk, jump, and
perform tasks that are extremely difficult to model and control using classic methods.

14
Introduction to Reinforcement

Learning
In this chapter, we are going to introduce the fundamental concepts of Reinforcement
Learning (RL), which is a set of approaches that allows an agent to learn how to behave in
an unknown environment, thanks to the rewards that are provided after each possible
action. RL has been studied for decades, but it has reached a very high maturity level in the
last few years when it became possible to employ deep learning models together with
standard (and often simple) algorithms in order to solve extremely complex problems (such
as learning how to play an Atari game perfectly).

In particular, we will discuss:

The concepts of environment, agent, policy, and reward
The concept of the Markov Decision Process (MDP)
The policy iteration algorithm
The value iteration algorithm
The TD(0) algorithm

Reinforcement Learning fundamentals
Imagine that you want to learn to ride a bike and ask a friend for advice. They explain how
the gears work, how to release the brake and a few other technical details. In the end, you
ask the secret to keeping balanced. What kind of answer do you expect? In an imaginary
supervised world, you should be able to perfectly quantify your actions and correct the
errors by comparing the outcomes with precise reference values. In the real world, you
have no idea about the quantities underlying your actions and, above all, you will never
know what the right value is. Increasing the level of abstraction, the scenario we're
considering can be described as: a generic agent performs actions inside an environment
and receives feedback that is somehow proportional to the competence of its actions.

Introduction to Reinforcement Learning Chapter 14

[477]

According to this feedback, the agent can correct its actions in order to reach a specific
goal. This basic schema is represented in the following diagram:

Basic RL schema

Returning to our initial example, when you ride a bike for the first time and try to keep
your balance, you will notice that the wrong movement causes an increase in the slope,
which in turn increases the horizontal component of the gravity force, pushing the bike
laterally. As the vertical component is compensated, the result is a rotation that ends when
the bike falls down completely. However, as you can use your legs to control the balance,
when the bike starts falling, thanks to Newton's third law, the force on the leg increases and
your brain understands that it's necessary to make a movement in the opposite direction.
Even if this problem can be easily expressed in terms of physical laws, nobody learns to
ride a bike by computing forces and momentums. This is one of the main concepts of RL: an
agent must always make its choices considering a piece of information, usually defined as a
reward, that represents the response, provided by the environment. If the action is correct,
the reward will be positive, otherwise, it will be negative. After receiving a reward, an
agent can fine-tune the strategy, called policy, in order to maximize the expected future
reward. For example, after a few rides, you will be able to slightly move your body so as to
keep the balance while turning, but probably, in the beginning, you needed to extend your
leg to avoid falling down. Hence, your initial policy suggested a wrong action, which
received repeated negative rewards and so your brain corrected it by increasing the
probability of choosing another action. The implicit hypothesis that underlies this approach
is that an agent is always rational, meaning that its goal is to maximize the expected return
of its actions (nobody would like to fall down just to feel a different emotion).

Introduction to Reinforcement Learning Chapter 14

[478]

Before discussing the single components of an RL system, it's necessary to add a couple of
fundamental assumptions. The first one is that an agent can repeat the experiences an
infinite number of times. In other words, we assume that it's possible to learn a valid policy
(possibly the optimal one) only if we have enough time. Clearly, this is unacceptable in the
animal world and we all know that many experiences are extremely dangerous; however,
this assumption is necessary to prove the convergence of some algorithms. Indeed, sub-
optimal policies sometimes can be learned very quickly, but it's necessary to iterate many
times to reach the optimal one. In real artificial systems, we always stop the learning
process after a finite number of iterations, but it's almost impossible to find valid solutions
if some experiences prevent the agent from continuing to interact with the environment. As
many tasks have final states (either positive or negative), we assume that the agent can play
any number of episodes (somewhat analogous to the epochs of supervised learning),
exploiting the experience previously learned.

The second assumption is a little bit more technical and it's usually known as the Markov
property. When the agent interacts with the environment, it observes a sequence of states.
Even if it can seem like an oxymoron, we assume that each state is stateful. We can explain
this concept with a simple example; suppose that you're filling a tank and every five
seconds you measure the level. Imagine that at t = 0, the level L = 10 and the water is
flowing in. What do you expect at t = 1? Obviously, L > 10. In other words, without external
unknown causes, we assume that a state contains the previous history, so that the sequence,
even if discretized, represents a continuous evolution where no jumps are allowed. When
an RL task satisfies this property, it's called a Markov Decision Process and it's very easy to
employ simple algorithms to evaluate the actions. Luckily, the majority of natural events
can be modeled as MDPs (when you're walking toward a door, every step in the right
direction must decrease the distance), but there are some games that are implicitly stateless.
For example, if you want to employ an RL algorithm to learn how to guess the outcome of a
probabilistic sequence of independent events (such as tossing a coin), the result could be
dramatically wrong. The reason is clear: any state is independent of the previous ones and
every attempt to build up a history is a failure. Therefore, if you observe a sequence of 0, 0,
0, 0, ... you are not justified in increasing the value of betting on 0 unless, after considering
the likelihood of the events, you suppose that the coin is loaded. However, if there's no
reason to do so, the process isn't an MDP and every episode (event) is completely
independent. All the assumptions that we, either implicitly or explicitly, make are based on
this fundamental concept, so pay attention when evaluating new, unusual scenarios
because you may discover that the employment of a specific algorithm isn't theoretically
justified.

Introduction to Reinforcement Learning Chapter 14

[479]

Environment
The environment is the entity where the agent has to reach its goals. For our purposes, a
generic environment is a system that receives an input action, at (we use the index t because
this is a natural time process), and outputs a tuple composed by a state, st+1, and a
reward, rt+1. These two elements are the only pieces of information provided to the agent to
make its next decision. If we are working with an MDP and the sets of possible actions, A,
and states, S, are discrete and finite, the problem is a defined finite MDP (in many
continuous cases, it's possible to treat the problem as a finite MDP by discretizing the
spaces). If there are final states, the task is called episodic and, in general, the goal is to reach
a positive final state in the shortest amount of time or maximize a score. The schema of the
cyclic interaction between agent an environment is shown in the following diagram:

Agent-environment interaction schema

A very important feature of an environment is its internal nature. It can be either
deterministic or stochastic. A deterministic environment is characterized by a function that
associates each possible action, at, in a specific state, st, to a well-defined successor, st+1, with
a precise reward, rt+1:

Conversely, a stochastic environment is characterized by a transition probability between
the current state, st, and a set of possible successors, si

t+1, given an action, at:

Introduction to Reinforcement Learning Chapter 14

[480]

If a state, si, has a transitional probability, T(si, si, at) = 1 ∀ at ∈ A, the state is defined as
absorbing. In general, all ending states in episodic tasks are modeled as absorbing ones, to
avoid any further transition. When an episode is not limited to a fixed number of steps, the
only criterion to determine its end is to check whether the agent has reached an absorbing
state.

As we don't know which state will be the successor, it's necessary to consider the expected
value of all possible rewards considering the initial state, st, and the action, at:

In general, it's easier to manage stochastic environments because they can be immediately
converted into deterministic ones by setting all probabilities to zero except the one
corresponding to the actual successor (for example, T(•) = (0, 0, ..., 1, ..., 0)). In the same way,
the expected return can be set equal to rt+1. The knowledge of T(•), as well as E[ri

t+1], is
necessary to employ some specific algorithms, but it can become problematic when finding
a suitable model for the environment requires an extremely complex analysis. In all those
cases, model-free methods can be employed and, therefore, the environment is considered
as a black-box, whose output at time, t (subsequent to an action performed by the
agent, at-1), is the only available piece of information for the evaluation of a policy.

Rewards
We have seen that rewards (sometimes negative rewards are called penalties, but it's
preferable to use a standardized notation) are the only feedback provided by the
environment after each action. However, there are two different approaches to the use of
rewards. The first one is the strategy of a very short-sighted agent and consists in taking
into account only the reward just received. The main problem with this approach is clearly
the inability to consider longer sequences that can lead to a very high reward. For example,
an agent has to traverse a few states with negative reward (for example, -0.1), but after
them, they arrive at a state with a very positive reward (for example, +5.0). A short-sighted
agent couldn't find out the best policy because it will simply try to avoid the immediate
negative rewards. On the other side, it's better to suppose that a single reward contains a
part of the future rewards that will be obtained following the same policy. This concept can
be expressed by introducing a discounted reward, which is defined as:

Introduction to Reinforcement Learning Chapter 14

[481]

In the previous expression, we are assuming an infinite horizon with a discount factor, γ,
which is a real number bounded between 0 and 1 (not included). When γ = 0, the agent is
extremely short-sighted, because of Rt = rt+1, but when γ → 1, the current reward takes into
account the future contributions discounted in a way that is inversely proportional to the
time-step. In this way, very close rewards will have a higher weight than very distant ones.
If the absolute value of all rewards is limited by a maximum immediate absolute reward,
|ri| ≤ |rmax|, the previous expression will be always bounded. In fact, considering the
properties of a geometric series, we get:

Clearly, the right choice of γ is a crucial factor in many problems and cannot be easily
generalized. As in many other similar cases, I suggest testing different values, picking the
one that minimizes the convergence speed while yielding a quasi-optimal policy. Of course,
if the tasks are episodic with length, T(ei), the discounted reward becomes:

Checkerboard environment in Python
We are going to consider an example based on a checkerboard environment representing a
tunnel. The goal of the agent is to reach the ending state (lower-right corner), avoiding 10
wells that are negative absorbing states. The rewards are:

Ending state: +5.0
Wells: -5.0
All other states: -0.1

Selecting a small negative reward for all non-terminal states is helpful to force the agent to
move forward until the maximum (final) reward has been achieved. Let's start modeling an
environment that has a 5 × 15 matrix:

import numpy as np

width = 15

Introduction to Reinforcement Learning Chapter 14

[482]

height = 5

y_final = width - 1
x_final = height - 1

y_wells = [0, 1, 3, 5, 5, 7, 9, 11, 12, 14]
x_wells = [3, 1, 2, 0, 4, 1, 3, 2, 4, 1]

standard_reward = -0.1
tunnel_rewards = np.ones(shape=(height, width)) * standard_reward

for x_well, y_well in zip(x_wells, y_wells):
 tunnel_rewards[x_well, y_well] = -5.0

tunnel_rewards[x_final, y_final] = 5.0

The graphical representation of the environment (in terms of rewards) is shown in the
following chart:

Rewards in the tunnel environment

The agent is allowed to move in four directions: up, down, left, and right. Clearly, in this
case, the environment is deterministic because every action moves the agent to a predefined
cell. We assume that whenever an action is forbidden (such as trying to move on the left
when the agent is in the first column), the successor state is the same one (with the
corresponding reward).

Introduction to Reinforcement Learning Chapter 14

[483]

Policy
A policy is formally a deterministic or stochastic law that the agent follows in order to
maximize its return. Conventionally, all policies are denoted with the letter π. A
deterministic policy is usually a function of the current state that outputs a precise action:

A stochastic policy, analogously to environments, outputs the probability of each action (in
this case, we are assuming we work with a finite MPD):

However, contrary to the environment, an agent must always pick a specific action,
transforming any stochastic policy into a deterministic sequence of choices. In general, a
policy where π(s, a) > 0 ∀ a ∈ A, is called soft and it's often very useful during the training
process because it allows a more flexible modeling without the premature selection of a
suboptimal action. Instead, when π(s, ai) = 0 ∀ i ≠ j and π(s, aj) = 1, the policy is also defined
as hard. This transformation can be performed in many ways, but the most common one is
to define a policy that is greedy with respect to a value (we're going to discuss this concept
in the next section). This means that, at every step, the policy will select the action that
maximizes the value of the successor state. Obviously, this is a very rational approach,
which could be too pragmatic. In fact, when the values of some states don't change, a
greedy policy will always force the agent to perform the same actions.

Such a problem is known as the exploration-exploitation dilemma and arises when it would be
better to allow the agent to evaluate alternative strategies that could appear initially to be
suboptimal. In other words, we want the agent to explore the environment before starting
to exploit the policy, to know whether the policy is really the best one or if there are hidden
alternatives. To solve this problem, it's possible to employ an ε-greedy policy, where the
value, ε, is called the exploration factor and represents a probability. In this case, the policy
will pick a random action with probability ε and a greedy one with probability 1 - ε. In
general, at the beginning of the training process, ε is kept very close to 1.0 to incentivize the
exploration and it's progressively decreased when the policy becomes more stable. In many
Deep RL applications, this approach is fundamental, in particular, when there are no
models of the environment. The reason is that greedy policies can be initially wrong and it's
necessary to allow the agent to explore many possible state and action sequences before
forcing a deterministic decision.

Introduction to Reinforcement Learning Chapter 14

[484]

Policy iteration
In this section, we are going to analyze a strategy to find an optimal policy based on a
complete knowledge of the environment (in terms of transition probability and expected
returns). The first step is to define a method that can be employed to build a greedy policy.
Let's suppose we're working with a finite MDP and a generic policy, π; we can define the
intrinsic value of a state, st, as the expected discounted return obtained by the agent starting
from st and following the stochastic policy, π:

In this case, we are assuming that, as the agent will follow π, state sa is more useful than sb if
the expected return starting from sa is greater than the one obtained starting from sb.
Unfortunately, trying to directly find the value of each state using the previous definition is
almost impossible when γ > 0. However, this a problem that can be solved using Dynamic
Programming (for further information, please refer to Dynamic Programming and Markov
Process, Ronald A. Howard, The MIT Press), which allows us to solve the problem iteratively.

In particular, we need to turn the previous formula into a Bellman equation:

The first term on the right-hand side can be expressed as:

In other words, it is the weighted average of all expected returns considering that the agent
is state, st, and evaluates all possible actions and the consequent state transitions. For the
second term, we need a small trick. Let's suppose we start from st+1, so that the expected
value corresponds to V(st+1;π); however, as the sum starts from st, we need to consider all
possible transitions starting from st. In this case, we can rewrite the term as:

Introduction to Reinforcement Learning Chapter 14

[485]

Again, the first terms take into account all possible transitions starting from st (and ending
in st+1), while the second one is the value of each ending state. Therefore the complete
expression becomes:

For a deterministic policy, instead, the formula is:

The previous equations are particular cases of a generic discrete Bellman equation for a finite
MDP that can be expressed as a vectorial operator, Lπ, applied to the value vector:

It's easy to prove that there exists a unique fixed point that corresponds to V(s; π),
so Lπ V(s; π) = V(s; π). However, in order to solve the system, we need to consider all
equations at the same time because, both on the left-hand and on the right-hand side of the
Bellman equation, there is the V(•; π) term. Is it possible to transform the problem into an
iterative procedure, so that a previous computation can be exploited for the following one?
The answer is yes and it's the consequence of an important property of Lπ. Let's consider the
infinity norm of the difference between two value vectors computed at time t and t+1:

As the discount factor γ ∈ [0, 1[, the Bellman operator, Lπ, is a γ-contraction that reduces the
distance between the arguments by a factor of γ (they get more and more similar). The
Banach Fixed-Point Theorem states that a contraction, L: D → D, on a metric space, D, admits
a unique fixed point, d* ∈ D, that can be found by repeatedly applying the contraction to any
d(0) ∈ D.

Introduction to Reinforcement Learning Chapter 14

[486]

Hence, we know about the existence of a unique fixed point, V(s; π), that is the goal of our
research. If we now consider a generic starting point, V(t), and we compute the norm of the
difference with V(s; π), we obtain:

Repeating this procedure iteratively until t = 0, we get:

The term γt+1 → 0, while continuing the iterations over the distance between V(t) and V(s; π),
gets smaller and smaller, authorizing us to employ the iterative approach instead of the
one-shot closed method. Hence, the Bellman equation becomes:

This formula allows us to find the value for each state (the step is formally called policy
evaluation), but, of course, it requires a policy. At the first step, we can randomly select the
actions because we don't have any other piece of information, but after a complete
evaluation cycle, we can start defining a greedy policy with respect to the values. In order
to achieve this goal, we need to introduce a very important concept in RL, the Q
function (which must not be confused with the Q function defined in the EM algorithm),
which is defined as the expected discounted return obtained by an agent starting from the
state, st, and selecting a specific action, at:

The definition is very similar to V(s; π), but, in this case, we include the action, at, as a
variable. Clearly, it's possible to define a Bellman equation for Q(s, a; π) by simply
removing the policy/action summation:

Introduction to Reinforcement Learning Chapter 14

[487]

Sutton and Barto (in Reinforcement Learning, Sutton R. S., Barto A. G., The MIT Press) proved
a simple but very important theorem (called the Policy improvement theorem), which states
that given the deterministic policies, π1 and π2, if Q(s, π2(s); π2) ≥ V(s; π1) ∀ s ∈ S, then π2 is
better than or equal to π1. The proof is very compact and can be found in their book,
however, the result can be understood intuitively. If we consider a sequence of states, s1 →
s2 → ... → sn and π2(si) = π1(si) ∀ i < m < n, while π2(si) ≥ π1(si) ∀ i ≥ m, the policy, π2, is at least
equal to π1 and it's become better if at least an inequality is strict. Conversely,
if Q(s, π2(s); π2) ≥ V(s; π1), this means that π2(s) ≥ π1(s) and, again, Q(s, π2(s); π2) > V(s; π1) if
there's at least a state, si, where π2(si) > π1(si). Hence, after a complete policy evaluation cycle,
we are authorized to define a new greedy policy as:

This step is called policy improvement and its goal is to set the action associated with each
state as the one that leads to the transition to the successor state with the maximum value.
It's not difficult to understand that an optimal policy will remain stable when V(t) → V(s; π).
In fact, when t → ∞, the Q function will converge to a stable fixed point determined
by V(s; π) and the argmax(•) will always select the same actions. However, if we start with a
random policy, in general, a single policy evaluation cycle isn't enough to assure the
convergence. Therefore, after a policy improvement step, it's often necessary to repeat the
evaluation and continue alternating the two phases until the policy becomes stable (that's
why the algorithm is called policy iteration). In general, the convergence is quite fast, but
the actual speed depends on the nature of the problem, the number of states and actions,
and the consistency of the rewards.

The complete policy iteration algorithm (as proposed by Sutton and Barto) is:

Set an initial deterministic random policy π(s)1.
Set the initial value array V(s) = 0 ∀ s ∈ S2.
Set a tolerance threshold Thr (for example, Thr = 0.0001)3.
Set a maximum number of iterations Niter4.
Set a counter e = 05.

Introduction to Reinforcement Learning Chapter 14

[488]

While e < Niter:1.
e += 11.
Do:2.

Set Vold(s) = V(s) ∀ s ∈ S1.
Perform a Policy Evaluation step reading the current value2.
from Vold(s) and updating V(s)

While Avg(|V(s) - Vold(s)|) > Thr3.
Set πold(s) = π(s) ∀ s ∈ S4.
Perform a policy improvement step5.
If πold(s) == π(s):6.

Break1.

Output the final deterministic policy π(s)2.

In this case, as we have a full knowledge of the environment, there's no
need for an exploration phase. The policy is always exploited as it's built
to be greedy to the real value (obtained when t → ∞).

Policy iteration in the checkerboard environment
We want to apply the policy iteration algorithm in order to find an optimal policy for the
tunnel environment. Let's start by defining a random initial policy and a value matrix with
all values (except the terminal states) equal to 0:

import numpy as np

nb_actions = 4

policy = np.random.randint(0, nb_actions, size=(height,
width)).astype(np.uint8)
tunnel_values = np.zeros(shape=(height, width))

Introduction to Reinforcement Learning Chapter 14

[489]

The initial random policy (t=0) is shown in the following chart:

Initial (t=0) random policy

The states denoted with ⊗ represent the wells, while the final positive one is represented by
the capital letter E. Hence, the initial value matrix (t=0) is:

Initial (t=0) value matrix

Introduction to Reinforcement Learning Chapter 14

[490]

At this point, we need to define the functions to perform the policy evaluation and
improvement steps. As the environment is deterministic, the processes are slightly simpler
because the generic transition probability, T(si, sj; ak), is equal to 1 for the only possible
successor and 0 otherwise. In the same way, the policy is deterministic and only a single
action is taken into account. The policy evaluation step is performed, freezing the current
values and updating the whole matrix, V(t+1), with V(t); however, it's also possible to use the
new values immediately. I invite the reader to test both strategies in order to find the fastest
way. In this example, we are employing a discount factor, γ = 0.9 (it goes without saying
that an interesting exercise consists of testing different values and comparing the result of
the evaluation process and the final behavior):

import numpy as np

gamma = 0.9

def policy_evaluation():
 old_tunnel_values = tunnel_values.copy()
 for i in range(height):
 for j in range(width):
 action = policy[i, j]
 if action == 0:
 if i == 0:
 x = 0
 else:
 x = i - 1
 y = j
 elif action == 1:
 if j == width - 1:
 y = width - 1
 else:
 y = j + 1
 x = i
 elif action == 2:
 if i == height - 1:
 x = height - 1
 else:
 x = i + 1
 y = j
 else:
 if j == 0:
 y = 0
 else:
 y = j - 1
 x = i
 reward = tunnel_rewards[x, y]
 tunnel_values[i, j] = reward + (gamma * old_tunnel_values[x,

Introduction to Reinforcement Learning Chapter 14

[491]

y])

def is_final(x, y):
 if (x, y) in zip(x_wells, y_wells) or (x, y) == (x_final, y_final):
 return True
 return False

def policy_improvement():
 for i in range(height):
 for j in range(width):
 if is_final(i, j):
 continue
 values = np.zeros(shape=(nb_actions,))
 values[0] = (tunnel_rewards[i - 1, j] + (gamma *
tunnel_values[i - 1, j])) if i > 0 else -np.inf
 values[1] = (tunnel_rewards[i, j + 1] + (gamma *
tunnel_values[i, j + 1])) if j < width - 1 else -np.inf
 values[2] = (tunnel_rewards[i + 1, j] + (gamma *
tunnel_values[i + 1, j])) if i < height - 1 else -np.inf
 values[3] = (tunnel_rewards[i, j - 1] + (gamma *
tunnel_values[i, j - 1])) if j > 0 else -np.inf
 policy[i, j] = np.argmax(values).astype(np.uint8)

Once the functions have been defined, we start the policy iteration cycle (with a maximum
number of epochs, Niter = 100,000, and a tolerance threshold equal to 10-5):

import numpy as np

nb_max_epochs = 100000
tolerance = 1e-5

e = 0

while e < nb_max_epochs:
 e += 1
 old_tunnel_values = tunnel_values.copy()
 policy_evaluation()
 if np.mean(np.abs(tunnel_values - old_tunnel_values)) < tolerance:
 old_policy = policy.copy()
 policy_improvement()

 if np.sum(policy - old_policy) == 0:
 break

Introduction to Reinforcement Learning Chapter 14

[492]

At the end of the process (in this case, the algorithm converged after 182 iterations, but this
value can change with different initial policies), the value matrix is:

Final value matrix

Analyzing the values, it's possible to see how the algorithm discovered that they are an
implicit function of the distance between a cell and the ending state. Moreover, the policy
always avoids the wells because the maximum value is always found in an adjacent state.
It's easy to verify this behavior by plotting the final policy:

Final policy

Picking a random initial state, the agent will always reach the ending one, avoiding the
wells and confirming the optimality of the policy iteration algorithm.

Introduction to Reinforcement Learning Chapter 14

[493]

Value iteration
An alternative approach to policy iteration is provided by the value iteration algorithm. The
main assumption is based on the empirical observation that the policy evaluation step
converges rather quickly and it's reasonable to stop the process after a fixed number of
steps (normally 1). In fact, policy iteration can be imagined like a game where the first
player tries to find the correct values considering a stable policy, while the other one creates
a new policy that is greedy with respect to the new values. Clearly, the second step
compromises the validity of the previous evaluation, forcing the first player to repeat the
process. However, as the Bellman equation uses a single fixed point, the algorithm
converges to a solution characterized by the fact that the policy doesn't change anymore
and, consequently, the evaluation becomes stable. This process can be simplified by
removing the policy improvement step and continuing the evaluation in a greedy fashion.
Formally, each step is based on the following update rule:

Now the iteration doesn't consider the policy anymore (assuming implicitly that it will be
greedy with respect to the values), and selects V(t+1) as the maximum possible value among
all V(t)(at). In other words, value iteration anticipates the choice that is made by the policy
improvement step by selecting the value that corresponds to the action that is likely (p → 1)
to be selected. It's not difficult to extend the convergence proof presented in the previous
section to this case, therefore, V(∞) → V(opt), as well as policy iteration does. However, the
average number of iterations is normally smaller because we are starting with a random
policy that can contrast the value iteration process.

When the values become stable, the optimal greedy policy is simply obtained as:

This step is formally equivalent to a policy improvement iteration, which, however, is done
only once at the end of the process.

Introduction to Reinforcement Learning Chapter 14

[494]

The complete value iteration algorithm (as proposed by Sutton and Barto) is:

Set the initial value array, V(s) = 0 ∀ s ∈ S1.
Set a tolerance threshold, Thr, (for example, Thr = 0.0001)2.
Set a maximum number of iteration, Niter3.
Set a counter, e = 04.
While e < Niter:5.

e += 11.
Do:2.

Set Vold(s) = V(s) ∀ s ∈ S1.
Perform a value evaluation step reading the current value2.
from Vold(s) and updating V(s)

While Avg(|V(s) - Vold(s)|) > Thr3.

Output the final deterministic policy π(s) = argmaxa Q(s, a)6.

Value iteration in the checkerboard environment
To test this algorithm, we need to set an initial value matrix with all values equal to 0 (they
can be also randomly chosen but, as we don't have any prior information on the final
configuration, every initial choice is probabilistically equivalent):

import numpy as np

tunnel_values = np.zeros(shape=(height, width))

At this point, we can define the two functions to perform the value evaluation and the final
policy selection (the function is_final() is the one defined in the previous example):

import numpy as np

def value_evaluation():
 old_tunnel_values = tunnel_values.copy()
 for i in range(height):
 for j in range(width):
 rewards = np.zeros(shape=(nb_actions,))
 old_values = np.zeros(shape=(nb_actions,))
 for k in range(nb_actions):
 if k == 0:
 if i == 0:
 x = 0
 else:

Introduction to Reinforcement Learning Chapter 14

[495]

 x = i - 1
 y = j

 elif k == 1:
 if j == width - 1:
 y = width - 1
 else:
 y = j + 1
 x = i

 elif k == 2:
 if i == height - 1:
 x = height - 1
 else:
 x = i + 1
 y = j

 else:
 if j == 0:
 y = 0
 else:
 y = j - 1
 x = i
 rewards[k] = tunnel_rewards[x, y]
 old_values[k] = old_tunnel_values[x, y]
 new_values = np.zeros(shape=(nb_actions,))
 for k in range(nb_actions):
 new_values[k] = rewards[k] + (gamma * old_values[k])
 tunnel_values[i, j] = np.max(new_values)

def policy_selection():
 policy = np.zeros(shape=(height, width)).astype(np.uint8)
 for i in range(height):
 for j in range(width):
 if is_final(i, j):
 continue
 values = np.zeros(shape=(nb_actions,))
 values[0] = (tunnel_rewards[i - 1, j] + (gamma *
tunnel_values[i - 1, j])) if i > 0 else -np.inf
 values[1] = (tunnel_rewards[i, j + 1] + (gamma *
tunnel_values[i, j + 1])) if j < width - 1 else -np.inf
 values[2] = (tunnel_rewards[i + 1, j] + (gamma *
tunnel_values[i + 1, j])) if i < height - 1 else -np.inf
 values[3] = (tunnel_rewards[i, j - 1] + (gamma *
tunnel_values[i, j - 1])) if j > 0 else -np.inf
 policy[i, j] = np.argmax(values).astype(np.uint8)
 return policy

Introduction to Reinforcement Learning Chapter 14

[496]

The main differences are in the value_evaluation() function, which now has to consider
all possible successor states and select the value corresponding to the action that leads to
the state with the highest value. Instead, the policy_selection() function is equivalent
to policy_improvement(), but, as it is invoked only once, it outputs directly to the final
optimal policy.

At this point, we can run a training cycle (assuming the same constants as before):

import numpy as np

e = 0

policy = None

while e < nb_max_epochs:
 e += 1
 old_tunnel_values = tunnel_values.copy()
 value_evaluation()
 if np.mean(np.abs(tunnel_values - old_tunnel_values)) < tolerance:
 policy = policy_selection()
 break

The final value configuration (after 127 iterations) is shown in the following chart:

Final value matrix

Introduction to Reinforcement Learning Chapter 14

[497]

As in the previous example, the final value configuration is a function of the distance
between each state and the ending one, but, in this case, the choice of γ = 0.9 isn't optimal.
In fact, the wells close to the final state aren't considered very dangerous anymore. Plotting
the final policy can help us understand the behavior:

Final policy

As expected, the wells that are far from the target are avoided, but the two that are close to
the final state are accepted as reasonable penalties. This happens because the value iteration
algorithm is very greedy with respect to the value and the discount factor, γ < 1.0; the effect
of negative states can be compensated for by the final reward. In many scenarios, these
states are absorbing, therefore their implicit reward is +∞ or -∞, meaning that no other
actions can change the final value. I invite the reader to repeat the example with different
discount factors (remember that an agent with γ → 1 is very short-sighted and will avoid
any obstacle, even reducing the efficiency of the policy) and change the values of the final
states. Moreover, the reader should be able to answer the question: What is the agent's
behavior when the standard reward (whose default value is -0.1) is increased or decreased?

TD(0) algorithm
One of the problems with Dynamic Programming algorithms is the need for a full
knowledge of the environment in terms of states and transition probabilities.
Unfortunately, there are many cases where these pieces of information are unknown before
the direct experience. In particular, the states can be discovered by letting the agent explore
the environment, but the transition probabilities require us to count the number of
transitions to a certain state and this is often impossible.

Introduction to Reinforcement Learning Chapter 14

[498]

Moreover, an environment with absorbing states can prevent visiting many states if the
agent has learned a good initial policy. For example, in a game, which can be described as
an episodic MDP, the agent discovers the environment while learning how to move
forward without ending in a negative absorbing state.

A general solution to these problems is provided by a different evaluation strategy, called
Temporal Difference (TD) RL. In this case, we start with an empty value matrix and we let
the agent follow a greedy policy with respect to the value (but the initial one, which is
generally random). Once the agent observes a transition, si → sj, due to an action, at, with a
reward, rij, it updates the estimation of V(si). The process is structured in episodes (which is
the most natural way) and ends when a maximum number of steps have been done or a
terminal state is met. In particular, the TD(0) algorithm updates the value according to the
rule:

The constant, α, is bound between 0 and 1 and acts as a learning rate. Each update
considers a variation with respect to the current value, V(t)(si), which is proportional to the
difference between the actual return and the previous estimation. The term rij + γV(t)(sj) is
analogous to the one employed in the previous methods and represents the expected value
given the current return and the discounted value starting from the successor state.
However, as V(t)(sj) is an estimation, the process is based on a bootstrap from the previous
values. In other words, we start from an estimation to determine the next one, which
should be closer to the stable fixed point. Indeed, TD(0) is the simplest example of a family
of TD algorithms that are based on a sequence (usually called backup) that can be
generalized as (considering k steps):

As we're using a single reward to approximate the expected discounted return, TD(0) is
usually called a one-step TD method (or one-step backup). A more complex algorithm can
be built considering more subsequent rewards or alternative strategies. We're going to
analyze a generic variant called TD(λ) in Chapter 15, Advanced Policy Estimation
Algorithms and explain why this algorithm corresponds to a choice of λ = 0.

Introduction to Reinforcement Learning Chapter 14

[499]

TD(0) has been proven to converge, even if the proof (which can be found for a model-
based approach in Convergence of Model-Based Temporal Difference Learning for Control, Van
Hasselt H., Wiering M. A., Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)) is more complex because
it's necessary to consider the evolution of the Markov Process. In fact, in this case, we are
approximating the expected discounted return with both a truncated estimation and a
bootstrap value, V(sj), which is initially (and for a large number of iterations)
unstable. However, assuming the convergence for t → ∞, we get:

The last formula expresses the value of the state, si, assuming that the greedy optimal policy
forces the agent to perform the action that causes the transition to sj. Of course, at this point,
it's natural to ask under which conditions the algorithm converges. In fact, we are
considering episodic tasks and the estimation, V(∞)(si), can be correct only if the agent
performs a transition to si an infinite number of times, selecting all possible actions an
infinite number of times. Such a condition is often expressed by saying that the policy must
be Greedy in the Limit with Infinite Explorations (GLIE). In other words, the real
greediness is achieved only as an asymptotic state when the agent is able to explore the
environment without limitations for an unlimited number of episodes.

This is probably the most important limitation of TD RL, because, in real-life scenarios,
some states can be very unlikely and, hence, the estimation can never accumulate the
experience needed to converge to the actual value. We are going to analyze some methods
to solve this problem in Chapter 15, Advanced Policy Estimation Algorithms, but, in our
example, we employ a random start. In other words, as the policy is greedy and could
always avoid some states, we force the agent to start each episode in a random nonterminal
cell. In this way, we allow a deep exploration even with a greedy policy. Whenever this
approach is not feasible (because, for example, the environment dynamics are not
controllable), the exploration-exploitation dilemma can be solved only by employing an ε-
greedy policy, which selects a fraction of suboptimal (or even wrong) actions. In this way,
it's possible to observe a higher number of transitions paying the price of a slower
convergence.

Introduction to Reinforcement Learning Chapter 14

[500]

However, as pointed out by Sutton and Barto, TD(0) converges to the maximum-likelihood
estimation of the value function determined by the MDP, finding the implicit transition
probabilities of the model. Therefore, if the number of observations is high enough, TD(0)
can quickly find an optimal policy, but, at the same time, it's also more sensitive to biased
estimations if some couple's state-action are never experienced (or experienced very
seldom). In our example, we don't know which the initial state is, hence selecting a fixed
starting point yields a policy that is extremely rigid and almost completely unable to
manage noisy situations. For example, if the starting point is changed to an adjacent (but
never explored) cell, the algorithm could fail to find the optimal path to the positive
terminal state. On the other hand, if we know that the dynamics are well-defined, TD(0)
will force the agent to select the actions that are most likely to produce the optimal result
given the current knowledge of the environment. If the dynamics are partially stochastic,
the advantage of an ε-greedy policy can be understood considering a sequence of episodes
where the agent experiences the same transitions and the corresponding values are
increased proportionally. If, for example, the environment changes one transition after
many experiences, the agent has to face a brand new experience when the policy is already
almost stable. The correction requires many episodes and, as this random change has a very
low probability, it's possible that the agent will never learn the correct behavior. Instead, by
selecting a few random actions, the probability of encountering a similar state (or even the
same one) increases (think about a game where the state is represented by a screenshot) and
the algorithm can become more robust with respect to very unlikely transitions.

The complete TD(0) algorithm is:

Set an initial deterministic random policy, π(s)1.
Set the initial value array, V(s) = 0 ∀ s ∈ S2.
Set the number of episodes, Nepisodes3.
Set a maximum number of steps per episode, Nmax4.
Set a constant, α (for example, α = 0.1)5.
Set a constant, γ (for example, γ = 0.9)6.
Set a counter, e = 07.
For i = 1 to Nepisodes:8.

Observe the initial state, si 1.
While sj is non-terminal and e < Nmax:2.

e += 11.
Select the action, at = π(si)2.

Introduction to Reinforcement Learning Chapter 14

[501]

Observe the transition, (at, si) → (sj, rij)2.
Update the value function for the state, si3.
Set si = sj4.

Update the policy to be greedy with respect to the value function, π(s)2.
= argmaxa Q(s, a)

TD(0) in the checkerboard environment
At this point, we can test the TD(0) algorithm on the checkerboard environment. The first
step is to define an initial random policy and a value matrix with all elements equal to 0:

import numpy as np

policy = np.random.randint(0, nb_actions, size=(height,
width)).astype(np.uint8)
tunnel_values = np.zeros(shape=(height, width))

As we want to select a random starting point at the beginning of each episode, we need to
define a helper function that must exclude the terminal states (all the constants are the same
as previously defined):

import numpy as np

xy_grid = np.meshgrid(np.arange(0, height), np.arange(0, width),
sparse=False)
xy_grid = np.array(xy_grid).T.reshape(-1, 2)

xy_final = list(zip(x_wells, y_wells))
xy_final.append([x_final, y_final])

xy_start = []

for x, y in xy_grid:
 if (x, y) not in xy_final:
 xy_start.append([x, y])
xy_start = np.array(xy_start)

def starting_point():
 xy = np.squeeze(xy_start[np.random.randint(0, xy_start.shape[0],
size=1)])
 return xy[0], xy[1]

Introduction to Reinforcement Learning Chapter 14

[502]

Now we can implement the function to evaluate a single episode (setting the maximum
number of steps equal to 500 and the constant to α = 0.25):

max_steps = 1000
alpha = 0.25

def episode():
 (i, j) = starting_point()
 x = y = 0
 e = 0
 while e < max_steps:
 e += 1
 action = policy[i, j]
 if action == 0:
 if i == 0:
 x = 0
 else:
 x = i - 1
 y = j
 elif action == 1:
 if j == width - 1:
 y = width - 1
 else:
 y = j + 1
 x = i
 elif action == 2:
 if i == height - 1:
 x = height - 1
 else:
 x = i + 1
 y = j
 else:
 if j == 0:
 y = 0
 else:
 y = j - 1
 x = i
 reward = tunnel_rewards[x, y]
 tunnel_values[i, j] += alpha * (reward + (gamma * tunnel_values[x,
y]) - tunnel_values[i, j])
 if is_final(x, y):
 break
 else:
 i = x
 j = y

Introduction to Reinforcement Learning Chapter 14

[503]

The function to determine the greedy policy with respect to the values is the same as
already implemented in the previous examples; however, we report it to guarantee the
consistency of the example:

def policy_selection():
 for i in range(height):
 for j in range(width):
 if is_final(i, j):
 continue
 values = np.zeros(shape=(nb_actions,))
 values[0] = (tunnel_rewards[i - 1, j] + (gamma *
tunnel_values[i - 1, j])) if i > 0 else -np.inf
 values[1] = (tunnel_rewards[i, j + 1] + (gamma *
tunnel_values[i, j + 1])) if j < width - 1 else -np.inf
 values[2] = (tunnel_rewards[i + 1, j] + (gamma *
tunnel_values[i + 1, j])) if i < height - 1 else -np.inf
 values[3] = (tunnel_rewards[i, j - 1] + (gamma *
tunnel_values[i, j - 1])) if j > 0 else -np.inf
 policy[i, j] = np.argmax(values).astype(np.uint8)

At this point, we can start a training cycle with 5,000 episodes:

n_episodes = 5000

for _ in range(n_episodes):
 episode()
 policy_selection()

The final value matrix is shown in the following chart:

Final value matrix with random starts

Introduction to Reinforcement Learning Chapter 14

[504]

Like in the previous examples, the final values are inversely proportional to the distance
from the final positive state. Let's analyze the resulting policy to understand whether the
algorithm converged to a consistent solution:

Final policy with random starts

As can be seen, the random choice of the starting state is allowed to find the best path
independently from the initial condition. To better understand the advantage of this
strategy, let's plot the final value matrix when the initial state is fixed to the cell (0, 0),
corresponding to the upper-left corner:

Final value matrix with a fixed initial state (0, 0)

Introduction to Reinforcement Learning Chapter 14

[505]

Without any further analysis, it's possible to see that many states have never been visited or
visited only a few times, and the resulting policy is therefore extremely greedy with respect
to the specific initial state. The blocks containing values equal to -1.0 indicate states where
the agent often has to pick a random action because there's no difference in the values,
hence it can be extremely difficult to solve the environment with a different initial state. The
resulting policy confirms this analysis:

Final policy with a fixed initial state (0, 0)

As it's possible to see, the agent is able to reach the final state only when the initial point
allows us to cross the trajectory starting from (0, 0). In all these cases, it's possible to recover
the optimal policy, even if the paths longer than the ones obtained in the previous example.
Instead, states such as (0, 4) are clearly situations where there's a loss of policy. In other
words, the agent acts without any knowledge or awareness and the probability of success
converges to 0. As an exercise, I invite the reader to test this algorithm with different
starting points (for example, a set of fixed ones) and higher α values. The goal is also to
answer these questions: Is it possible to speed up the learning process? Is it necessary to
start from all possible states in order to obtain a global optimal policy?

Introduction to Reinforcement Learning Chapter 14

[506]

Summary
In this chapter, we introduced the most important RL concepts, focusing on the
mathematical structure of an environment as a Markov Decision Process, and on the
different kinds of policy and how they can be derived from the expected reward obtained
by an agent. In particular, we defined the value of a state as the expected future reward
considering a sequence discounted by a factor, γ. In the same way, we introduced the
concept of the Q function, which is the value of an action when the agent is in a specific
state.

These concepts directly employed the policy iteration algorithm, which is based on a
Dynamic Programming approach assuming complete knowledge of the environment. The
task is split into two stages; during the first one, the agent evaluates all the states given the
current policy, while in the second one, the policy is updated in order to be greedy with
respect to the new value function. In this way, the agent is forced to always pick the action
that leads to a transition that maximizes the obtained value.

We also analyzed a variant, called value iteration, that performs a single evaluation and
selects the policy in a greedy manner. The main difference from the previous approach is
that now the agent immediately selects the highest value assuming that the result of this
process is equivalent to a policy iteration. Indeed, it's easy to prove that, after infinite
transitions, both algorithms converge on the optimal value function.

The last algorithm is called TD(0) and it's based on a model-free approach. In fact, in many
cases, it's difficult to know all the transition probabilities and, sometimes, even all possible
states are unknown. This method is based on the Temporal Difference evaluation, which is
performed directly while interacting with the environment. If the agent can visit all the
states an infinite number of times (clearly, this is only a theoretical condition), the algorithm
has been proven to converge to the optimal value function more quickly than other
methods.

In the next chapter, Chapter 15, Advanced Policy Estimation Algorithms we'll continue the
discussion of RL algorithms, introducing some more advanced methods that can be
immediately implemented using Deep Convolutional Networks.

15
Advanced Policy Estimation

Algorithms
In this chapter, we will continue our exploration of the world of Reinforcement Learning
(RL), focusing our attention on complex algorithms that can be employed to solve difficult
problems. As this is still the introductory part of RL (the whole topic is extremely large), the
structure of the chapter is based on many practical examples that can be used as a basis to
work on more complex scenarios.

The topics that will be discussed in this chapter are:

TD(λ) algorithm
Action-Critic TD(0)
SARSA
Q-learning
Q-learning with a simple visual input and a neural network

TD(λ) algorithm
In the previous chapter, we introduced the temporal difference strategy, and we discussed
a simple example called TD(0). In the case of TD(0), the discounted reward is approximated
by using a one-step backup. Hence, if the agent performs an action at in the state st, and the
transition to the state st+1 is observed, the approximation becomes the following:

Advanced Policy Estimation Algorithms Chapter 15

[508]

If the task is episodic (as in many real-life scenarios) and has T(ei) steps, the complete
backup for the episode ei is as follows:

The previous expression ends when the MDP process reaches an absorbing state; therefore,
Rt is the actual value of the discounted reward. The difference between TD(0) and this
choice is clear: in the first case, we can update the value function after each transition,
whereas with a complete backup, we need to wait for the end of the episode. We can say
that this method (which is called Monte Carlo, because it's based on the idea of averaging
the overall reward of an entire sequence) is exactly the opposite of TD(0); therefore, it's
reasonable to think about an intermediate solution, based on k-step backups. In particular,
our goal is to find an online algorithm that can exploit the backups once they are available.

Let's imagine a sequence of four steps. The agent is in the first state and observes a
transition; at this point, only a one-step backup is possible, and it's a good idea to update
the value function in order to improve the convergence speed. After the second transition,
the agent can use a two-step backup; however, it can also consider the first one-step backup
in addition to the newer, longer one. So, we have two approximations:

Which of the preceding is the most reliable? Obviously, the second one depends on the first
one (in particular, when the value function is almost stabilized), and so on until the end of
the episode. Hence, the most common strategy is to employ a weighted average that
assigns a different level of importance to each backup (assuming the longest backup has k
steps):

Watkins (in Learning from Delayed Rewards, Watkins C.I.C.H., Ph.D. Thesis, University of
Cambridge, 1989) proved that this approach (with or without averaging) has the
fundamental property of reducing the absolute error of the expected Rt

k, with respect to the
optimal value function, V(s; π). In fact, he proved that the following inequality holds:

Advanced Policy Estimation Algorithms Chapter 15

[509]

As γ is bounded between 0 and 1, the right-hand side is always smaller than the maximum
absolute error V(t) - V(s;π), where V(s) is the value of a state during an episode. Therefore,
the expected discounted return of a k-step backup (or of a combination of different
backups) yields a more accurate estimation of the optimal value function if the policy is
chosen to be greedy with respect to it. This is not surprising, as a longer backup
incorporates more actual returns, but the importance of this theorem resides in its validity
when an average of different k-step backups are employed. In other words, it provides us
with the mathematical proof that an intuitive approach actually converges, and it can also
effectively improve both the convergence speed and the final accuracy.

However, managing k coefficients is generally problematic, and in many cases, useless. The
main idea behind TD(λ) is to employ a single factor, λ, that can be tuned in order to meet
specific requirements. The theoretical analysis (or forward view, as referred to by Sutton and
Barto) is based, in a general case, on an exponentially decaying average. If we consider a
geometric series with λ bounded between 0 and 1 (exclusive), we get:

Hence, we can consider the averaged discounted return Rt
(λ) with infinite backups as:

Before defining the finite case, it's helpful to understand how Rt
(λ) was built. As λ is

bounded between 0 and 1, the factors decay proportionally to λ, so the first backup has the
highest impact, and all of the subsequent ones have smaller and smaller influences on the
estimation. This means that, in general, we are assuming that the estimation of Rt has more
importance to the immediate backups (which become more and more precise), and we
exploit the longer ones only to improve the estimated value. Now, it should be clear that λ =
0 is equivalent to TD(0), because only the one-step backup remains in the sum (remember
that 0

0
 = 1), while higher values involve all of the remaining backups. Let's now consider an

episode ei whose length is T(ei).

Advanced Policy Estimation Algorithms Chapter 15

[510]

Conventionally, if the agent reached an absorbing state at t = T(ei), all of the remaining t+i
returns are equal to Rt (this is straightforward, as all of the possible rewards have already
been collected); therefore, we can truncate Rt

(λ):

The first term of the previous expression involves all of the non-terminal states, while the
second is equal to Rt discounted proportionally to the distance between the first time step
and the final state. Again, if λ = 0, we obtain TD(0), but we are now also authorized to
consider λ = 1 (because the sum is always extended to a finite number of elements). When λ
= 1, we obtain Rt

(λ) = Rt, which means that we need to wait until the end of the episode to get
the actual discounted reward. As explained previously, this method is normally not a first-
choice solution, because when the episodes are very long, the agent selects the actions with
a value function that is not up to date in the majority of cases. Therefore, TD(λ) is normally
employed with λ values less than 1, in order to obtain the advantage of an online update,
together with a correction based on the new states. To achieve this goal without looking at
the future (we want to update V(s) as soon as new pieces of information are available), we
need to introduce the concept of eligibility trace e(s) (sometimes, in the context of
computational neuroscience, e(s) is also called stimulus trace).

An eligibility trace for a state s is a function of time that returns the weight (greater than 0)
of the specific state. Let's imagine a sequence, s1, s2, ..., sn, and consider a state, si. After a
backup V(si) is updated, the agent continues its exploration. When is a new update of si

(given longer backups) important? If si is not visited anymore, the effect of longer backups
must be smaller and smaller, and si is said to not be eligible for changes in V(s). This is a
consequence of the previous assumption that shorter backups must generally have higher
importance. So, if si is an initial state (or is immediately after the initial state) and the agent
moves to other states, the effect of si must decay. Conversely, if si is revisited, it means that
the previous estimation of V(si) is probably wrong, and hence si is eligible for a change. (To
better understand this concept, imagine a sequence, s1, s2, s1, It's clear that when the agent
is in s1, as well as in s2, it cannot select the right action; therefore, it's necessary to reevaluate
V(s) until the agent is able to move forward.)

Advanced Policy Estimation Algorithms Chapter 15

[511]

The most common strategy (which is also discussed in Reinforcement Learning, Sutton R. S.,
Barto A. G., The MIT Press) is to define the eligibility traces in a recursive fashion. After each
time step, et(s) decays by a factor equal to γλ (to meet the requirement imposed by the
forward view); but, when the state s is revisited, et(s) is also increased by 1 (et(s) = γλet-1(s) +
1). In this way, we impose a jump in the trend of e(s) whenever we desire to emphasize its
impact. However, as e(s) decays independently of the jumps, the states that are visited and
revisited later have a lower impact than the ones that are revisited very soon. The reason
for this choice is very intuitive: the importance of a state revisited after a long sequence is
clearly lower than the importance of a state that is revisited after a few steps. In fact, the
estimation of Rt is obviously wrong if the agent moves back and forth between two states at
the beginning of the episode, but the error becomes less significant when the agent revisits
a state after having explored other areas. For example, a policy can allow an initial phase in
order to reach a partial goal, and then it can force the agent to move back to reach a
terminal state.

Exploiting the eligibility traces, TD(λ) can achieve a very fast convergence in more complex
environments, with a trade-off between a one-step TD method and a Monte Carlo one
(which is normally avoided). At this point, the reader might wonder if we are sure about
the convergence, and luckily, the answer is positive. Dayan proved (in The convergence of TD
(λ) for General λ, Dayan P., Machine Learning 8, 3–4/1992) that TD(λ) converges for a generic λ
with only a few specific assumptions and the fundamental condition that the policy is
GLIE. The proof is very technical, and it's beyond the scope of this book; however, the most
important assumptions (which are generally met) are:

The Markov Decision Process (MDP) has absorbing states (in other words, all of
the episodes end in a finite number of steps).
All of the transition probabilities are not-null (all states can be visited an infinite
number of times).

The first condition is obvious, the absence of absorbing states yields infinite explorations,
which are not compatible with a TD method (sometimes it's possible to prematurely end an
episode, but this can either be unacceptable (in some contexts) or a sub-optimal choice (in
many others)). Moreover, Sutton and Barto (in the aforementioned book) proved that TD(λ)
is equivalent to employing the weighted average of discounted return approximations, but
without the constraint of looking ahead in the future (which is clearly impossible).

The complete TD(λ) algorithm (with an optional forced termination of the episode) is:

Set an initial deterministic random policy, π(s)1.
Set the initial value array, V(s) = 0 ∀ s ∈ S2.

Advanced Policy Estimation Algorithms Chapter 15

[512]

Set the initial eligibility trace array, e(s) = 0 ∀ s ∈ S3.
Set the number of episodes, Nepisodes4.
Set a maximum number of steps per episode, Nmax5.
Set a constant, α (α = 0.1)6.
Set a constant, γ (γ = 0.9)7.
Set a constant, λ (λ = 0.5)8.
Set a counter, e = 09.
For i = 1 to Nepisodes:10.

Create an empty state list, L1.
Observe the initial state, si, and append si to L2.
While sj is non-terminal and e < Nmax:3.

e += 11.
Select the action, at = π(si)2.
Observe the transition, (at, si) → (sj, rij)3.
Compute the TD error as TDerror = rij + γV(sj) - V(si)4.
Increment the eligibility trace, e(si) += 1.05.
For s in L:6.

Update the value, V(s) += α · TDerror · e(s)1.
Update the eligibility trace, e(s) *= γλ2.

Set si = sj7.
Append sj to L8.

Update the policy to be greedy with respect to the value function, π(s)4.
= argmaxa Q(s, a)

The reader can better understand the logic of this algorithm by considering the TD error
and its back-propagation. Even if this is only a comparison, it's possible to imagine the
behavior of TD(λ) as similar to the Stochastic Gradient Descent (SGD) algorithms
employed to train a neural network. In fact, the error is propagated to the previous states
(analogous to the lower layers of an MLP) and affects them proportionally to their
importance, which is defined by their eligibility traces. Hence, a state with a higher
eligibility trace can be considered more responsible for the error; therefore, the
corresponding value must be corrected proportionally. This isn't a formal explanation, but
it can simplify comprehension of the dynamics without an excessive loss of rigor.

Advanced Policy Estimation Algorithms Chapter 15

[513]

TD(λ) in a more complex Checkerboard
environment
At this point, we want to test the TD(λ) algorithm with a slightly more complex tunnel
environment. In fact, together with the absorbing states, we will also consider some
intermediate positive states, which can be imagined as checkpoints. An agent should learn
the optimal path from any cell to the final state, trying to pass through the highest number
of checkpoints possible. Let's start by defining the new structure:

import numpy as np

width = 15
height = 5

y_final = width - 1
x_final = height - 1

y_wells = [0, 1, 3, 5, 5, 6, 7, 9, 10, 11, 12, 14]
x_wells = [3, 1, 2, 0, 4, 3, 1, 3, 1, 2, 4, 1]

y_prizes = [0, 3, 4, 6, 7, 8, 9, 12]
x_prizes = [2, 4, 3, 2, 1, 4, 0, 2]

standard_reward = -0.1
tunnel_rewards = np.ones(shape=(height, width)) * standard_reward

def init_tunnel_rewards():
 for x_well, y_well in zip(x_wells, y_wells):
 tunnel_rewards[x_well, y_well] = -5.0

 for x_prize, y_prize in zip(x_prizes, y_prizes):
 tunnel_rewards[x_prize, y_prize] = 1.0

 tunnel_rewards[x_final, y_final] = 5.0

init_tunnel_rewards()

Advanced Policy Estimation Algorithms Chapter 15

[514]

The reward structure is shown in the following diagram:

Reward schema in the new tunnel environment

At this point, we can proceed to initialize all of the constants (in particular, we have chosen
λ = 0.6, which is an intermediate solution that guarantees an awareness close to a Monte
Carlo method, without compromising the learning speed):

import numpy as np

nb_actions = 4
max_steps = 1000
alpha = 0.25
lambd = 0.6
gamma = 0.95

tunnel_values = np.zeros(shape=(height, width))
eligibility_traces = np.zeros(shape=(height, width))
policy = np.random.randint(0, nb_actions, size=(height,
width)).astype(np.uint8)

As in Python, the keyword lambda is reserved; we used the truncated
expression lambd to declare the constant.

Advanced Policy Estimation Algorithms Chapter 15

[515]

As we want to start from a random cell, we need to repeat the same procedure presented in
the previous chapter; but, in this case, we are also including the checkpoint states:

import numpy as np

xy_grid = np.meshgrid(np.arange(0, height), np.arange(0, width),
sparse=False)
xy_grid = np.array(xy_grid).T.reshape(-1, 2)

xy_final = list(zip(x_wells, y_wells)) + list(zip(x_prizes, y_prizes))
xy_final.append([x_final, y_final])

xy_start = []

for x, y in xy_grid:
 if (x, y) not in xy_final:
 xy_start.append([x, y])
xy_start = np.array(xy_start)

def starting_point():
 xy = np.squeeze(xy_start[np.random.randint(0, xy_start.shape[0],
size=1)])
 return xy[0], xy[1]

We can now define the episode() function, which implements a complete TD(λ) cycle. As
we don't want the agent to roam around trying to pass through the checkpoints an infinite
number of times, we have decided to reduce the reward during the exploration, to
incentivize the agent to pass through only the necessary checkpoints—trying, at the same
time, to reach the final state as soon as possible:

import numpy as np

def is_final(x, y):
 if (x, y) in zip(x_wells, y_wells) or (x, y) == (x_final, y_final):
 return True
 return False

def episode():
 (i, j) = starting_point()
 x = y = 0
 e = 0
 state_history = [(i, j)]
 init_tunnel_rewards()
 total_reward = 0.0
 while e < max_steps:
 e += 1
 action = policy[i, j]

Advanced Policy Estimation Algorithms Chapter 15

[516]

 if action == 0:
 if i == 0:
 x = 0
 else:
 x = i - 1
 y = j
 elif action == 1:
 if j == width - 1:
 y = width - 1
 else:
 y = j + 1
 x = i
 elif action == 2:
 if i == height - 1:
 x = height - 1
 else:
 x = i + 1
 y = j
 else:
 if j == 0:
 y = 0
 else:
 y = j - 1
 x = i
 reward = tunnel_rewards[x, y]
 total_reward += reward
 td_error = reward + (gamma * tunnel_values[x, y]) -
tunnel_values[i, j]
 eligibility_traces[i, j] += 1.0
 for sx, sy in state_history:
 tunnel_values[sx, sy] += (alpha * td_error *
eligibility_traces[sx, sy])
 eligibility_traces[sx, sy] *= (gamma * lambd)
 if is_final(x, y):
 break
 else:
 i = x
 j = y
 state_history.append([x, y])
 tunnel_rewards[x_prizes, y_prizes] *= 0.85
 return total_reward

Advanced Policy Estimation Algorithms Chapter 15

[517]

def policy_selection():
 for i in range(height):
 for j in range(width):
 if is_final(i, j):
 continue
 values = np.zeros(shape=(nb_actions,))
 values[0] = (tunnel_rewards[i - 1, j] + (gamma *
tunnel_values[i - 1, j])) if i > 0 else -np.inf
 values[1] = (tunnel_rewards[i, j + 1] + (gamma *
tunnel_values[i, j + 1])) if j < width - 1 else -np.inf
 values[2] = (tunnel_rewards[i + 1, j] + (gamma *
tunnel_values[i + 1, j])) if i < height - 1 else -np.inf
 values[3] = (tunnel_rewards[i, j - 1] + (gamma *
tunnel_values[i, j - 1])) if j > 0 else -np.inf
 policy[i, j] = np.argmax(values).astype(np.uint8)

The is_final() and policy_selection() functions are the same ones defined in the
previous chapter, and need no explanation. Even if it's not really necessary, we have
decided to implement a forced termination after a number of steps, equal to max_steps.
This is helpful at the beginning because as the policy is not ε-greedy, the agent can remain
stuck in a looping exploration that never ends. We can now train the model for a fixed
number of episodes (alternatively, it's possible to stop the process when the value array
doesn't change anymore):

n_episodes = 5000

total_rewards = []

for _ in range(n_episodes):
 e_reward = episode()
 total_rewards.append(e_reward)
 policy_selection()

Advanced Policy Estimation Algorithms Chapter 15

[518]

The episode() function returns the total rewards; therefore, it's useful to check how the
agent learning process evolved:

Total rewards achieved by the agent

At the beginning (for about 500 episodes), the agent employs an unacceptable policy that
yields very negative total rewards. However, in about 1,000 iterations, the algorithm
reaches an optimal policy that is only slightly improved by the following episodes. The
oscillations are due to the different starting points; however, the total rewards are never
negative, and as the checkpoint weights decay, this is a positive signal, indicating that the
agent reaches the final positive state. To have a confirmation of this hypothesis, we can plot
the learned value function:

Advanced Policy Estimation Algorithms Chapter 15

[519]

Final value matrix

The values are coherent with our initial analysis; in fact, they tend to be higher when the
cell is close to a checkpoint, but, at the same time, the global configuration (considering a
policy greedy with respect to V(s)) forces the agent to reach the ending state whose
surrounding values are the highest. The last step is checking the actual policy, with a
particular focus on the checkpoints:

Final policy

Advanced Policy Estimation Algorithms Chapter 15

[520]

As it's possible to observe, the agent tries to pass through the checkpoints, but when it's
close to the final state, it (correctly) prefers to end the episode as soon as possible. I invite
the reader to repeat the experiment using different values for the constant λ, and changing
the environment dynamics for the checkpoints. What happens if their values remain the
same? Is it possible to improve the policy with a higher λ?

It's important to remember that, as we are extensively using random
values, successive experiments can yield different results due to different
initial conditions. However, the algorithm should always converge to an
optimal policy when the number of episodes is high enough.

Actor-Critic TD(0) in the checkerboard
environment
In this example, we want to employ an alternative algorithm called Actor-Critic, together
with TD(0). In this method, the agent is split into two components, a Critic, which is
responsible for evaluating the quality of the value estimation, and an actor, which selects
and performs an action. As pointed out by Dayan (in Theoretical Neuroscience, Dayan
P., Abbott L. F., The MIT Press), the dynamics of an Actor-Critic approach are similar to the
interleaving policy evaluation and policy improvement steps. In fact, the knowledge of the
Critic is obtained through an iterative process, and its initial evaluations are normally sub-
optimal.

The structural schema is shown in the following diagram:

Actor-Critic schema

Advanced Policy Estimation Algorithms Chapter 15

[521]

In this particular case, it's preferable to employ a ε-greedy soft policy, based on the softmax
function. The model stores a matrix (or an approximating function) called policy importance,
where each entry pi(s, a) is a value representing the preference for a specific action in a
certain state. The actual stochastic policy is obtained by applying the softmax with a simple
trick to increase the numerical stability when the exponentials become very large:

After performing the action a in the state si and observing the transition to the state sj with a
reward rij, the Critic evaluates the TD error:

If V(si) < rij + γV(sj), the transition is considered positive, because the value is increasing.
Conversely, when V(si) > rij + γV(sj), the Critic evaluates the action as negative, because the
previous value was higher than the new estimation. A more general approach is based on
the concept of advantage, which is defined as:

Normally, one of the terms from the previous expression can be approximated. In our case,
we cannot compute the Q function directly; hence, we approximate it with the term rij

+ γV(sj). It's clear that the role of the advantage is analogous to the one of the TD error
(which is an approximation) and must represent the confirmation that an action in a certain
state is a good or bad choice. An analysis of all advantage Actor-Critic (A3C) algorithms (in
other words, improvements of the standard policy gradient algorithm) is beyond the scope of
this book. However, the reader can find some helpful pieces of information in High-
Dimensional Continuous Control Using Generalized Advantage Estimation, Schulman J., Moritz
P., Levine S., Jordan M. I., Abbeel P., ICLR 2016.

Of course, an Actor-Critic correction is not sufficient. To improve the policy, it's necessary
to employ a standard algorithm (such as TD(0), TD(λ), or least square regression, which can
be implemented using a neural network) in order to learn the correct value function, V(s).
As for many other algorithms, this process can converge only after a sufficiently high
number of iterations, which must be exploited to visit the states many times, experimenting
with all possible actions.

Advanced Policy Estimation Algorithms Chapter 15

[522]

Hence, with a TD(0) approach, the first step after evaluating the TD error is updating V(s)
using the rule defined in the previous chapter:

The second step is more pragmatic; in fact, the main role of the Critic is actually to criticize
every action, deciding when it's better to increase or decrease the probability of selecting it
again in a certain state. This goal can be achieved by simply updating the policy
importance:

The role of the learning rate ρ is extremely important; in fact, incorrect values (in other
words, values that are too high) can yield initial wrong corrections that may compromise
the convergence. It's essential to not forget that the value function is almost completely
unknown at the beginning, and therefore the Critic has no chance to increase the right
probability with awareness. For this reason, I always suggest to start with very small value
(ρ = 0.001) and increase it only if the convergence speed of the algorithm is effectively
improved.

As the policy is based on the softmax function, after a Critic update, the values will always
be renormalized, resulting in an actual probability distribution. After an adequately large
number of iterations, with the right choice of both ρ and γ, the model is able to learn both a
stochastic policy and a value function. Therefore, it's possible to employ the trained agent
by always selecting the action with the highest probability (which corresponds to an
implicitly greedy behavior):

Let's now apply this algorithm to the tunnel environment. The first step is defining the
constants (as we are looking for a long sighted agent, we are setting the discount factor γ =
0.99):

import numpy as np

tunnel_values = np.zeros(shape=(height, width))

gamma = 0.99
alpha = 0.25
rho = 0.001

Advanced Policy Estimation Algorithms Chapter 15

[523]

At this point, we need to define the policy importance array, and a function to generate the
softmax policy:

import numpy as np

nb_actions = 4

policy_importances = np.zeros(shape=(height, width, nb_actions))

def get_softmax_policy():
 softmax_policy = policy_importances - np.amax(policy_importances,
axis=2, keepdims=True)
 return np.exp(softmax_policy) / np.sum(np.exp(softmax_policy), axis=2,
keepdims=True)

The functions needed to implement a single training step are very straightforward, and the
reader should already be familiar with their structure:

import numpy as np

def select_action(epsilon, i, j):
 if np.random.uniform(0.0, 1.0) < epsilon:
 return np.random.randint(0, nb_actions)
 policy = get_softmax_policy()
 return np.argmax(policy[i, j])

def action_critic_episode(epsilon):
 (i, j) = starting_point()
 x = y = 0
 e = 0
 while e < max_steps:
 e += 1
 action = select_action(epsilon, i, j)
 if action == 0:
 if i == 0:
 x = 0
 else:
 x = i - 1
 y = j
 elif action == 1:
 if j == width - 1:
 y = width - 1
 else:
 y = j + 1
 x = i
 elif action == 2:
 if i == height - 1:

Advanced Policy Estimation Algorithms Chapter 15

[524]

 x = height - 1
 else:
 x = i + 1
 y = j
 else:
 if j == 0:
 y = 0
 else:
 y = j - 1
 x = i
 reward = tunnel_rewards[x, y]
 td_error = reward + (gamma * tunnel_values[x, y]) -
tunnel_values[i, j]
 tunnel_values[i, j] += (alpha * td_error)
 policy_importances[i, j, action] += (rho * td_error)
 if is_final(x, y):
 break
 else:
 i = x
 j = y

At this point, we can train the model with 50,000 iterations, and 30,000 explorative ones
(with a linear decay of the exploration factor):

n_episodes = 50000
n_exploration = 30000

for t in range(n_episodes):
 epsilon = 0.0
 if t <= n_exploration:
 epsilon = 1.0 - (float(t) / float(n_exploration))
 action_critic_episode(epsilon)

The resulting greedy policy is shown in the following figure:

Advanced Policy Estimation Algorithms Chapter 15

[525]

 Final greedy policy

The final greedy policy is consistent with the objective, and the agent always reaches the
final positive state by avoiding the wells. This kind of algorithm can appear more complex
than necessary; however, in complex situations, it turns out to be extremely effective. In
fact, the learning process can be dramatically improved, thanks to the fast corrections
performed by the Critic. Moreover, the author has noticed that the Actor-Critic is more
robust to wrong (or noisy) evaluations. As the policy is learned separately, the effect of
small variations in V(s) cannot easily change the probabilities π(s, a) (in particular, when an
action is generally much stronger than the others). On the other hand, as discussed
previously, it's necessary to avoid a premature convergence in order to let the algorithm
modify the importance/probabilities, without an excessive number of iterations. The right
trade-off can be found only after a complete analysis of each specific scenario, and
unfortunately, there are no general rules that work in every case. My suggestion is to test
various configurations, starting with small values (and, for example, a discount factor of γ ∈
[0.7, 0.9]), evaluating the total reward achieved after the same exploration period.

Complex deep learning models (such as asynchronous A3C; see Asynchronous Methods for
Deep Reinforcement Learning, Mnih V., Puigdomènech Badia A., Mirza M., Graves A., Lillicrap
T. P., Harley T., Silver D., Kavukcuoglu K., arXiv:1602.01783 [cs.LG] for further information)
are based on a single network that outputs both the softmax policy (whose actions are
generally proportional to their probability) and the value. Instead of employing an
explicitly ε-greedy soft policy, it's possible to add a maximum-entropy constraint to the global
cost function:

Advanced Policy Estimation Algorithms Chapter 15

[526]

As the entropy is at the maximum when all of the actions have the same probability, this
constraint (with an appropriate weight) forces the algorithm to increase the exploration
probability until an action becomes dominant and there's no more need to avoid a greedy
selection. This is a sound and easy way to employ an adaptive ε-greedy policy, because as the
model works with each state separately, the states where the uncertainty is very low can
become greedy; it's possible to automatically keep a high entropy whenever it's necessary
to continue the exploration, in order to maximize the reward.

The effect of double correction, together with a maximum-entropy constraint, improves the
convergence speed of the model, encourages the exploration during the initial iterations,
and yields very high final accuracy. I invite the reader to implement this variant with other
scenarios and algorithms. In particular, at the end of this chapter, we are going to
experiment with an algorithm based on a neural network. As the example is pretty simple, I
suggest using Tensorflow to create a small network based on the Actor-Critic approach.
The reader can employ a mean squared error loss for the value and softmax cross entropy for
the policy. Once the models work successfully with our toy examples, it will be possible to
start working with more complex scenarios (like the ones proposed in OpenAI Gym
at https://gym.openai. com/).

SARSA algorithm
SARSA (whose name is derived from the sequence state-action-reward-state-action) is a
natural extension of TD(0) to the estimation of the Q function. Its standard formulation
(which is sometimes called one-step SARSA, or SARSA(0), for the same reasons explained
in the previous chapter) is based on a single next reward, rt+1, which is obtained by
executing the action at in the state st. The temporal difference computation is based on the
following update rule:

The equation is equivalent to TD(0), and if the policy is chosen to be GLIE, it has been
proven (in Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms,
Singh S., Jaakkola T., Littman M. L., Szepesvári C., Machine Learning, 39/2000) that SARSA
converges to an optimal policy, πopt(s), with the probability 1, when all couples (state,
action) are experienced an infinite number of times. This means that if the policy is updated
to be greedy with respect to the current value function induced by Q, it holds that:

https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/
https://gym.openai.com/

Advanced Policy Estimation Algorithms Chapter 15

[527]

The same result is valid for the Q function. In particular, the most important conditions
required by the proof are:

The learning rate, α ∈ [0, 1], with the constraints Σα = ∞ and Σα2 < ∞
The variance of the rewards must be finite

The first condition is particularly important when α is a function of the state and the time
step; however, in many cases, it is a constant bounded between 0 and 1, and hence, Σα2 = ∞.
A common way to solve this problem (above all when a large number of iterations are
required) is to let the learning rate decay (in other words, exponentially) during the training
process. Instead, to mitigate the effect of very large rewards, it's possible to clip them in a
suitable range ([-1, 1]). In many cases, it's not necessary to employ these strategies, but in
more complex scenarios, they can become crucial in order to ensure the convergence of the
algorithm. Moreover, as pointed out in the previous chapter, these kinds of algorithms need
a long exploration phase before starting to stabilize the policy. The most common strategy
is to employ a ε-greedy policy, with a temporal decay of the exploration factor. During the
first iterations, the agent must explore without caring about the returns of the actions. In
this way, it's possible to assess the actual values before the beginning of a final refining
phase characterized by a purely greedy exploration, based on a more precise
approximation of V(s).

The complete SARSA(0) algorithm (with an optional forced termination of the episode) is:

Set an initial deterministic random policy, π(s)1.
Set the initial value array, Q(s, a) = 0 ∀ s ∈ S and ∀ a ∈ A2.
Set the number of episodes, Nepisodes3.
Set a maximum number of steps per episode, Nmax4.
Set a constant, α (α = 0.1)5.
Set a constant, γ (γ = 0.9)6.
Set an initial exploration factor, ε(0) (ε(0) = 1.0)7.
Define a policy to let the exploration factor ε decay (linear or exponential)8.
Set a counter, e = 09.
For i = 1 to Nepisodes:10.

Observe the initial state, si1.
While sj is non-terminal and e < Nmax:2.

e += 11.
Select the action, at = π(si), with an exploration factor ε(e)2.
Observe the transition, (at, si) → (sj, rij)3.

Advanced Policy Estimation Algorithms Chapter 15

[528]

Select the action, at+1 = π(sj), with an exploration factor ε(e)4.
Update the Q(st, at) function (if sj is terminal, set Q(st+1, at+1) =5.
0)
Set si = sj6.

The concept of eligibility trace can also be extended to SARSA (and other
TD methods); however, that is beyond the scope of this book. A reader
who is interested can find all of the algorithms (together with their
mathematical formulations) in Sutton R. S., Barto A. G., Reinforcement
Learning, A Bradford Book.

SARSA in the checkerboard environment
We can now test the SARSA algorithm in the original tunnel environment (all of the
elements that are not redefined are the same as the previous chapter). The first step is
defining the Q(s, a) array and the constants employed in the training process:

import numpy as np

nb_actions = 4

Q = np.zeros(shape=(height, width, nb_actions))

x_start = 0
y_start = 0

max_steps = 2000
alpha = 0.25

As we want to employ a ε-greedy policy, we can set the starting point to (0, 0), forcing
the agent to reach the positive final state. We can now define the functions needed to
perform a training step:

import numpy as np

def is_final(x, y):
 if (x, y) in zip(x_wells, y_wells) or (x, y) == (x_final, y_final):
 return True
 return False

def select_action(epsilon, i, j):
 if np.random.uniform(0.0, 1.0) < epsilon:
 return np.random.randint(0, nb_actions)

Advanced Policy Estimation Algorithms Chapter 15

[529]

 return np.argmax(Q[i, j])

def sarsa_step(epsilon):
 e = 0
 i = x_start
 j = y_start
 while e < max_steps:
 e += 1
 action = select_action(epsilon, i, j)
 if action == 0:
 if i == 0:
 x = 0
 else:
 x = i - 1
 y = j
 elif action == 1:
 if j == width - 1:
 y = width - 1
 else:
 y = j + 1
 x = i
 elif action == 2:
 if i == height - 1:
 x = height - 1
 else:
 x = i + 1
 y = j
 else:
 if j == 0:
 y = 0
 else:
 y = j - 1
 x = i
 action_n = select_action(epsilon, x, y)
 reward = tunnel_rewards[x, y]
 if is_final(x, y):
 Q[i, j, action] += alpha * (reward - Q[i, j, action])
 break
 else:
 Q[i, j, action] += alpha * (reward + (gamma * Q[x, y,
action_n]) - Q[i, j, action])
 i = x
 j = y

Advanced Policy Estimation Algorithms Chapter 15

[530]

The select_action() function has been designed to select a random action with the
probability ε, and a greedy one with respect to Q(s, a), with the probability 1 - ε.
The sarsa_step() function is straightforward, and executes a complete episode updating
the Q(s, a) (that's why this is an online algorithm). At this point, it's possible to train the
model for 20,000 episodes and employ a linear decay for ε during the first 15,000 episodes
(when t > 15,000, ε is set equal to 0 in order to employ a purely greedy policy):

n_episodes = 20000
n_exploration = 15000

for t in range(n_episodes):
 epsilon = 0.0
 if t <= n_exploration:
 epsilon = 1.0 - (float(t) / float(n_exploration))
 sarsa_step(epsilon)

As usual, let's check the learned values (considering that the policy is greedy, we're going
to plot V(s) = maxa Q(s, a)):

Final value matrix (as V(s) = maxa Q(s, a))

As expected, the Q function has been learned in a consistent way, and we can get a
confirmation plotting the resulting policy:

Advanced Policy Estimation Algorithms Chapter 15

[531]

Final policy

The policy is coherent with the initial objective, and the agent avoids all negative absorbing
states, always trying to move towards the final positive state. However, some paths seem
longer than expected. As an exercise, I invite the reader to retrain the model for a larger
number of iterations, adjusting the exploration period. Moreover, is it possible to improve the
model by increasing (or decreasing) the discount factor γ? Remember that γ → 0 leads to a short-
sighted agent, which is able to select actions only considering the immediate reward,
while γ → 1 forces the agent to take into account a larger number of future rewards. This
particular example is based on a long environment, because the agent always starts from (0,
0) and must reach the farthest point; therefore, all intermediate states have less importance,
and it's helpful to look at the future to pick the optimal actions. Using random starts can
surely improve the policy for all initial states, but it's interesting to investigate how
different γ values can affect the decisions; hence, I suggest repeating the experiment in
order to evaluate the various configurations and increase awareness about the different
factors that are involved in a TD algorithm.

Q-learning
This algorithm was proposed by Watkins (in Learning from delayed rewards, Watkins
C.I.C.H., Ph.D. Thesis, University of Cambridge, 1989; and further analyzed in Watkins
C.I.C.H., Dayan P., Technical Note Q-Learning, Machine Learning 8, 1992) as a more efficient
alternative to SARSA. The main feature of Q-learning is that the TD update rule is
immediately greedy with respect to the Q(st+1, a) function:

Advanced Policy Estimation Algorithms Chapter 15

[532]

The key idea is to compare the current Q(st, at) value with the maximum Q value achievable
when the agent is in the successor state. In fact, as the policy must be GLIE, the convergence
speed can be increased by avoiding wrong estimations due to the selection of a Q value that
won't be associated with the final action. By choosing the maximum Q value, the algorithm
will move towards the optimal solution faster than SARSA, and also, the convergence proof
is less restrictive. In fact, Watkins and Dayan (in the aforementioned papers) proved that, if
|ri| < R, the learning rate α ∈ [0, 1[(in this case, α must be always smaller than 1) with the
same constraints imposed for SARSA (Σα = ∞ and Σα2 < ∞), then the estimated Q function
converges with probability 1 to the optimal one:

As discussed for SARSA, the conditions on the rewards and the learning rate can be
managed by employing a clipping function and a temporal decay, respectively. In almost
all deep Q-learning applications, these are extremely important factors to guarantee the
convergence; therefore, I invite the reader to consider them whenever the training process
isn't able to converge to an acceptable solution.

The complete Q-learning algorithm (with an optional forced termination of the episode) is:

Set an initial deterministic random policy, π(s)1.
Set the initial value array, Q(s, a) = 0 ∀ s ∈ S and ∀ a ∈ A2.
Set the number of episodes, Nepisodes3.
Set a maximum number of steps per episode, Nmax4.
Set a constant, α (α = 0.1)5.
Set a constant, γ (γ = 0.9)6.
Set an initial exploration factor, ε(0) (ε(0) = 1.0)7.
Define a policy to let the exploration factor ε decay (linear or exponential)8.
Set a counter, e = 09.
For i = 1 to Nepisodes:10.

Observe the initial state, si1.
While sj is non-terminal and e < Nmax:2.

e += 11.
Select the action, at = π(si), with an exploration factor ε(e)2.
Observe the transition (at, si) → (sj, rij)3.
Select the action, at+1 = π(sj), with an exploration factor ε(e)4.

Advanced Policy Estimation Algorithms Chapter 15

[533]

Update the Q(st, at) function (if sj is terminal, set Q(st+1, at+1) =5.
0) using maxa Q(st+1, a)
Set si = sj6.

Q-learning in the checkerboard environment
Let's repeat the previous experiment with the Q-learning algorithm. As all of the constants
are the same (as well as the choice of a ε-greedy policy and the starting point set to (0, 0)),
we can directly define the function that implements the training for a single episode:

import numpy as np

def q_step(epsilon):
 e = 0
 i = x_start
 j = y_start
 while e < max_steps:
 e += 1
 action = select_action(epsilon, i, j)
 if action == 0:
 if i == 0:
 x = 0
 else:
 x = i - 1
 y = j
 elif action == 1:
 if j == width - 1:
 y = width - 1
 else:
 y = j + 1
 x = i
 elif action == 2:
 if i == height - 1:
 x = height - 1
 else:
 x = i + 1
 y = j
 else:
 if j == 0:
 y = 0
 else:
 y = j - 1
 x = i
 reward = tunnel_rewards[x, y]

Advanced Policy Estimation Algorithms Chapter 15

[534]

 if is_final(x, y):
 Q[i, j, action] += alpha * (reward - Q[i, j, action])
 break
 else:
 Q[i, j, action] += alpha * (reward + (gamma * np.max(Q[x, y]))
- Q[i, j, action])
 i = x
 j = y

We can now train the model for 5,000 iterations, with 3,500 explorative ones:

n_episodes = 5000
n_exploration = 3500

for t in range(n_episodes):
 epsilon = 0.0
 if t <= n_exploration:
 epsilon = 1.0 - (float(t) / float(n_exploration))
 q_step(epsilon)

The resulting value matrix (defined as in the SARSA experiment) is:

Final value matrix

Again, the learned Q function (and obviously, also the greedy V(s)) is coherent with the
initial objective (in particular, considering the starting point set to (0, 0)), and the resulting
policy can immediately confirm this result:

Advanced Policy Estimation Algorithms Chapter 15

[535]

Final policy

The behavior of Q-learning is not very different from SARSA (even if the convergence is
faster), and some initial states are not perfectly managed. This is a consequence of our
choice; therefore, I invite the reader to repeat the exercise using random starts and
comparing the training speed of Q-learning and SARSA.

Q-learning using a neural network
Now, we want to test the Q-learning algorithm using a smaller checkerboard environment
and a neural network (with Keras). The main difference from the previous examples is that
now, the state is represented by a screenshot of the current configuration; hence, the model
has to learn how to associate a value with each input image and action. This isn't actual
deep Q-learning (which is based on Deep Convolutional Networks, and requires more
complex environments that we cannot discuss in this book), but it shows how such a model
can learn an optimal policy with the same input provided to a human being. In order to
reduce the training time, we are considering a square checkerboard environment, with four
negative absorbing states and a positive final one:

import numpy as np

width = 5
height = 5
nb_actions = 4

y_final = width - 1
x_final = height - 1

Advanced Policy Estimation Algorithms Chapter 15

[536]

y_wells = [0, 1, 3, 4]
x_wells = [3, 1, 2, 0]

standard_reward = -0.1
tunnel_rewards = np.ones(shape=(height, width)) * standard_reward

for x_well, y_well in zip(x_wells, y_wells):
 tunnel_rewards[x_well, y_well] = -5.0

tunnel_rewards[x_final, y_final] = 5.0

A graphical representation of the rewards is shown in the following figure:

Rewards in the smaller checkerboard environment

As we want to provide the network with a graphical input, we need to define a function to
create a matrix representing the tunnel:

import numpy as np

def reset_tunnel():
 tunnel = np.zeros(shape=(height, width), dtype=np.float32)

 for x_well, y_well in zip(x_wells, y_wells):
 tunnel[x_well, y_well] = -1.0

Advanced Policy Estimation Algorithms Chapter 15

[537]

 tunnel[x_final, y_final] = 0.5
 return tunnel

The reset_tunnel() function sets all values equal to 0, except for (which is marked with
-1) and the final state (defined by 0.5). The position of the agent (defined with the value 1)
is directly managed by the training function. At this point, we can create and compile our
neural network. As the problem is not very complex, we are employing an MLP:

from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential()

model.add(Dense(8, input_dim=width * height))
model.add(Activation('tanh'))
model.add(Dense(4))
model.add(Activation('tanh'))

model.add(Dense(nb_actions))
model.add(Activation('linear'))

model.compile(optimizer='rmsprop',
 loss='mse')

The input is a flattened array, while the output is the Q function (all of the values
corresponding to each action). The network is trained using RMSprop and a mean squared
error loss function (our goal is to reduce the MSE between the actual value and the
prediction). In order to train and query the network, it's helpful to create two dedicated
functions:

import numpy as np

def train(state, q_value):
 model.train_on_batch(np.expand_dims(state.flatten(), axis=0),
np.expand_dims(q_value, axis=0))

def get_Q_value(state):
 return model.predict(np.expand_dims(state.flatten(), axis=0))[0]

def select_action_neural_network(epsilon, state):
 Q_value = get_Q_value(state)
 if np.random.uniform(0.0, 1.0) < epsilon:
 return Q_value, np.random.randint(0, nb_actions)
 return Q_value, np.argmax(Q_value)

Advanced Policy Estimation Algorithms Chapter 15

[538]

The behavior of these functions is straightforward. The only element that may be new to
the reader is the use of the train_on_batch() method. Contrary to fit(), this function
allows us to perform a single training step, given a batch of input-output couples (in our
case, we always have a single couple). As our goal is finding an optimal path to the final
state, starting from every possible cell, we are going to employ random starts:

import numpy as np

xy_grid = np.meshgrid(np.arange(0, height), np.arange(0, width),
sparse=False)
xy_grid = np.array(xy_grid).T.reshape(-1, 2)

xy_final = list(zip(x_wells, y_wells))
xy_final.append([x_final, y_final])

xy_start = []

for x, y in xy_grid:
 if (x, y) not in xy_final:
 xy_start.append([x, y])
xy_start = np.array(xy_start)

def starting_point():
 xy = np.squeeze(xy_start[np.random.randint(0, xy_start.shape[0],
size=1)])
 return xy[0], xy[1]

Now, we can define the functions needed to perform a single training step:

import numpy as np

def is_final(x, y):
 if (x, y) in zip(x_wells, y_wells) or (x, y) == (x_final, y_final):
 return True
 return False

def q_step_neural_network(epsilon, initial_state):
 e = 0
 total_reward = 0.0
 (i, j) = starting_point()
 prev_value = 0.0
 tunnel = initial_state.copy()
 tunnel[i, j] = 1.0
 while e < max_steps:
 e += 1
 q_value, action = select_action_neural_network(epsilon, tunnel)
 if action == 0:

Advanced Policy Estimation Algorithms Chapter 15

[539]

 if i == 0:
 x = 0
 else:
 x = i - 1
 y = j
 elif action == 1:
 if j == width - 1:
 y = width - 1
 else:
 y = j + 1
 x = i
 elif action == 2:
 if i == height - 1:
 x = height - 1
 else:
 x = i + 1
 y = j
 else:
 if j == 0:
 y = 0
 else:
 y = j - 1
 x = i
 reward = tunnel_rewards[x, y]
 total_reward += reward
 tunnel_n = tunnel.copy()
 tunnel_n[i, j] = prev_value
 tunnel_n[x, y] = 1.0
 prev_value = tunnel[x, y]
 if is_final(x, y):
 q_value[action] = reward
 train(tunnel, q_value)
 break
 else:
 q_value[action] = reward + (gamma *
np.max(get_Q_value(tunnel_n)))
 train(tunnel, q_value)
 i = x
 j = y
 tunnel = tunnel_n.copy()
 return total_reward

Advanced Policy Estimation Algorithms Chapter 15

[540]

The q_step_neural_network() function is very similar to the one defined in the
previous example. The only difference is the management of the visual state. Every time
there's a transition, the value 1.0 (denoting the agent) is moved from the old position to the
new one, and the value of the previous cell is reset to its default (saved in the prev_value
variable). Another secondary difference is the absence of α because there's already a
learning rate set in the SGD algorithm, and it doesn't make sense to add another parameter
to the model. We can now train the model for 10,000 iterations, with 7,500 explorative ones:

n_episodes = 10000
n_exploration = 7500

total_rewards = []

for t in range(n_episodes):
 tunnel = reset_tunnel()
 epsilon = 0.0
 if t <= n_exploration:
 epsilon = 1.0 - (float(t) / float(n_exploration))
 t_reward= q_step_neural_network(epsilon, tunnel)
 total_rewards.append(t_reward)

When the training process has finished, we can analyze the total rewards, in order to
understand whether the network has successfully learned the Q functions:

Total rewards obtained by the neural network Q-learning algorithm

Advanced Policy Estimation Algorithms Chapter 15

[541]

It's clear that the model is working well, because after the exploration period, the total
reward becomes stationary around 4, with small oscillations due to the different path
lengths (however, the final plot can be different because of the internal random state
employed by Keras). To see a confirmation, let's generate the trajectories for all of the
possible initial states, using the greedy policy (equivalent to ε = 0):

import numpy as np

trajectories = []
tunnels_c = []

for i, j in xy_start:
 tunnel = reset_tunnel()

 prev_value = 0.0

 trajectory = [[i, j, -1]]

 tunnel_c = tunnel.copy()
 tunnel[i, j] = 1.0
 tunnel_c[i, j] = 1.0

 final = False
 e = 0

 while not final and e < max_steps:
 e += 1

 q_value = get_Q_value(tunnel)
 action = np.argmax(q_value)

 if action == 0:
 if i == 0:
 x = 0
 else:
 x = i - 1
 y = j

 elif action == 1:
 if j == width - 1:
 y = width - 1
 else:
 y = j + 1
 x = i

 elif action == 2:
 if i == height - 1:

Advanced Policy Estimation Algorithms Chapter 15

[542]

 x = height - 1
 else:
 x = i + 1
 y = j

 else:
 if j == 0:
 y = 0
 else:
 y = j - 1
 x = i

 trajectory[e - 1][2] = action
 trajectory.append([x, y, -1])

 tunnel[i, j] = prev_value

 prev_value = tunnel[x, y]

 tunnel[x, y] = 1.0
 tunnel_c[x, y] = 1.0

 i = x
 j = y

 final = is_final(x, y)
 trajectories.append(np.array(trajectory))
 tunnels_c.append(tunnel_c)
trajectories = np.array(trajectories)

Advanced Policy Estimation Algorithms Chapter 15

[543]

Twelve random trajectories are shown in the following figure:

Twelve trajectories generated using the greedy policy

The agent always follows the optimal policy, independent from the initial state, and never
ends up in a well. Even if the example is quite simple, it's helpful to introduce the reader to
the concept of deep Q-learning (for further details, the reader can check the introductory
paper, Deep Reinforcement Learning: An Overview, Li Y., arXiv:1701.07274 [cs.LG]).

In a general case, the environment can be a more complex game (like Atari or Sega), and the
number of possible actions is very limited. Moreover, there's no possibility to employ
random starts, but it's generally a good practice to skip a number of initial frames, in order
to avoid a bias to the estimator. Clearly, the network must be more complex (involving
convolutions to better learn the geometric dependencies), and the number of iterations
must be extremely large. Many other tricks and specific algorithms can be employed in
order to speed up the convergence, but due to a lack of space, they are beyond the scope of
this book.

Advanced Policy Estimation Algorithms Chapter 15

[544]

However, the general process and its logic are almost the same, and it's not difficult to
understand why some strategies are preferable, and how the accuracy can be improved. As
an exercise, I invite the reader to create more complex environments, with or without
checkpoints and stochastic rewards. It's not surprising to see how the model will be able to
easily learn the dynamics with a sufficiently large number of episodes. Moreover, as
suggested in the Actor-Critic section, it's a good idea to use Tensorflow to implement such
a model, comparing the performances with Q-learning.

Summary
In this chapter, we presented the natural evolution of TD(0), based on an average of
backups with different lengths. The algorithm, called TD(λ), is extremely powerful, and it
assures a faster convergence than TD(0), with only a few (non-restrictive) conditions. We
also showed how to implement the Actor-Critic method with TD(0), in order to learn about
both a stochastic policy and a value function.

In further sections, we discussed two methods based on the estimation of the Q function:
SARSA and Q-learning. They are very similar, but the latter has a greedy approach, and its
performance (in particular, the training speed) results in it being superior to SARSA. The Q-
learning algorithm is one of the most important models for the latest developments. In fact,
it was the first RL approach employed with a Deep Convolutional Network to solve
complex environments (like Atari games). For this reason, we also presented a simple
example, based on an MLP that processes a visual input and outputs the Q values for each
action.

The world of RL is extremely fascinating, and hundreds of researchers work every day to
improve algorithms and solve more and more complex problems. I invite the reader to
check the references in order to find useful resources that can be exploited to obtain a
deeper understanding of the models and their developments. Moreover, I suggest
reading the blog posts written by the Google DeepMind team, which is one of the pioneers
in the field of deep RL. I also suggest searching for the papers freely available on arXiv.

I'm happy to end this book with this topic, because I believe that RL can provide new and
more powerful tools that will dramatically change our lives!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Feature Engineering Made Easy
Sinan Ozdemir, Divya Susarla

ISBN: 978-1-78728-760-0

Identify and leverage different feature types
Clean features in data to improve predictive power
Understand why and how to perform feature selection, and model error analysis
Leverage domain knowledge to construct new features
Deliver features based on mathematical insights
Use machine-learning algorithms to construct features
Master feature engineering and optimization
Harness feature engineering for real-world applications through a structured
case study

https://www.packtpub.com/big-data-and-business-intelligence/feature-engineering-made-easy

Other Books You May Enjoy

[546]

Machine Learning Solutions
Jalaj Thanaki

ISBN: 978-1-78839-004-0

Select the right algorithm to derive the best solution in ML domains
Perform predictive analysis efficiently using ML algorithms
Predict stock prices using the stock index value
Perform customer analytics for an e-commerce platform
Build recommendation engines for various domains
Build NLP applications for the health domain
Build language generation applications using different NLP techniques
Build computer vision applications such as facial emotion recognition

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-solutions

Other Books You May Enjoy

[547]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
activation functions
 about 321, 329
 hyperbolic tangent 329
 rectifier activation functions 331, 332
 sigmoid 329
 softmax function 332
Actor-Critic TD(0)
 in checkerboard environment 520, 521
AdaBoost 288, 289, 291, 292
AdaBoost, with Scikit-Learn
 example 301, 302, 303, 305
AdaBoost.R2 297, 298, 299, 300
AdaBoost.SAMME 293, 294
AdaBoost.SAMME.R 294, 296, 297
AdaDelta
 about 354, 355
 with Keras 355
AdaGrad
 about 353
 with Keras 353
Adam
 about 351, 352
 with Keras 352
adjacency matrix 87
Adjusted Rand Index 254
advantage Actor-Critic (A3C) 521
adversarial training 441, 443, 444, 445
affinity matrix 87
approaches, ensemble learning
 bagging 277
 boosting 277
 stacking 277
approaches, spectral clustering
 k-Nearest Neighbors (KNN) 268
 radial basis function (RBF) 268

artificial neuron 320
assumptions, semi-supervised model
 cluster assumption 49
 manifold assumption 50, 51
 smoothness assumption 48
atrous convolution 383, 384
autoencoders 421, 423
average pooling 387

B
back-propagation algorithm
 about 333, 334, 335, 336
 stochastic gradient descent (SGD) 336, 337,

338

 weight initialization 339, 341
backpropagation through time (BPTT) 401, 403
Ball Trees 239, 240
batch normalization (BN) 365, 367
batch normalization (BN), with Keras
 example 368
Bayes accuracy 26
Bayes' theorem 122, 124, 125
Bayesian network
 about 125, 126
 direct sampling 127
 Gibbs sampling 132, 133, 134
 Markov chains 130, 131
 Metropolis-Hastings sampling 134, 135
 sampling from 126
bidimensional discrete convolutions
 about 376, 377, 378, 379, 381
 padding 381, 382
 strides 381, 382
binary classification 100
bootstrap sampling 277
brute-force algorithm 237

[549]

bucketing 317

C
candidate-generating distribution 134
capacity, models
 defining 20, 22
 Vapnik-Chervonenkis capacity 22
categorical cross-entropy 37, 38
CD-k algorithm 465
chain rule of derivatives 334
chain rule of probabilities 125
Chapman-Kolmogorov 130
checkerboard environment
 Actor-Critic TD(0) 520, 521
 policy iteration 488, 490, 491, 492
 Q-learning 533, 534
 SARSA algorithm 528, 530, 531
 TD(0) algorithm 501, 503, 504, 505
 value iteration 494, 496, 497
CIFAR-10
 reference link 452
Cifar
 reference link 440
class rebalancing 105
clique 462
completeness score 253
complex checkerboard environment
 temporal difference algorithm 513, 514, 515,

517, 519
conditional independence 124
conditional probability 122, 124, 125
consistent estimator 24
constant error carousel (CEC) 404
Constraint Optimization by Linear Approximation

(COBYLA) 74
Contrastive Pessimistic Likelihood Estimation

(CPLE) algorithm
 about 60, 62
 example 63, 64, 66
convolutional LSTM 409
convolutions
 about 375
 bidimensional discrete convolutions 376, 377,

378, 379, 381
 separable convolution 385

 transpose convolution 386
cost function
 about 31, 32
 categorical cross-entropy 37, 38
 examples 36
 global minimum 34
 Hinge cost function 37
 Huber cost function 36
 local minima 33
 mean squared error 36
 plateaus 34
 regularization 38
 ridges/local maxima 33
 starting point 33
covariance rule
 about 203
 analysis 203, 204, 205, 206
 application, example 206
 example 207
Cramér-Rao bound 28, 29, 30, 31
cross-validation 14, 16, 18, 19

D
data 9, 10
data generating process 9
DCGAN, with TensorFlow
 example 446, 447, 449, 452
decision stumps 281
decoder 422
Deep Belief Network (DBN)
 about 460, 467, 468, 469
 reference link 470
deep convolutional autoencoder
 with TensorFlow 424, 425, 426, 428
Deep Convolutional GANs (DCGAN) 441
deep convolutional network, with data

augmentation
 example 395, 398
deep convolutional network, with Keras
 example 391, 392, 395, 398
deep convolutional networks
 about 373, 374
 convolutions 375
 cropping layers 391
 flattening layers 391

[550]

 padding layers 390
 pooling layers 387, 389
 upsampling layers 390
deep learning 328
degree matrix 88
denoising autoencoders
 about 428, 429
 with TensorFlow 429, 431
depth multiplier 385
depthwise separable convolution 385
Dijkstra algorithm 107
dilated convolution 383
direct sampling
 about 127
 example 128, 129
Discrete AdaBoost 288
discrete Laplacian operator 377
dropout 356, 357, 358, 359
dropout, with Keras
 example 359, 362, 365
Dunn's partitioning coefficient 262

E
early stopping 43, 44
ElasticNet 43
emissions 142
empirical risk 32
encoder 422
ensemble learning
 fundamentals 275, 276
 using, as model selection 317
environment, Reinforcement Learning (RL)
 checkerboard environment, in Python 481, 482
 rewards 480, 481
estimator
 bias, measuring 24
 Cramér-Rao bound 28, 29, 30, 31
 overfitting 27, 28
 underfitting 25, 26
 variance, measuring 27
evaluation metrics
 about 251, 252
 Adjusted Rand Index 254
 completeness score 253
 homogeneity score 253

 silhouette score 255, 258
Expectation Maximization (EM) algorithm
 about 10, 159, 160, 162
 parameter estimation, example 163, 165
expected risk 32

F
factor analysis (FA) 172, 173, 175, 176, 304
factor analysis (FA), with Scikit-Learn
 example 178, 180, 181
FastICA with Scikit-Learn
 example 193, 194, 195
feature map 376
feature selection 287
feed-forward network 329
Fisher information 28
Forward Stage-wise Additive Modeling 306
forward-backward algorithm
 about 144
 backward phase 146
 forward phase 144, 145
 HMM parameter estimation 147, 148, 149
fuzzy C-means 259, 260, 261, 263
fuzzy C-means, with Scikit-Fuzzy
 example 264, 265, 266
fuzzy logic 259

G
Gated recurrent unit (GRU) 411, 412
Gaussian mixture 165, 167, 168, 169
Gaussian mixture, with Scikit-Learn
 example 169, 171, 172
Generalized Hebbian Rule (GHA) 209
Generative Adversarial Networks (GAN) 441
Generative Gaussian mixtures
 about 51, 53
 example 53, 57
 weighted log-likelihood 59, 60
Gibbs sampling 132, 133, 134
Gini impurity 279
gradient boosting 306, 307, 309, 310, 311
gradient perturbation 347, 348
gradient tree boosting, with Scikit-Learn
 example 311, 312, 313

[551]

Gram-Schmidt 210
Greedy in the Limit with Infinite Explorations

(GLIE) 499

H
Hammersley–Clifford theorem 462
Harmonium 463
He initializer 341
Hebb's rule 198, 199, 200, 202, 203
Hidden Markov Models (HMMs)
 about 122, 142, 143, 156, 195
 forward-backward algorithm 144
 Viterbi algorithm 151, 152
Hinge cost function 37
HMM parameter estimation 147, 148, 149
HMM training
 hmmlearn 149, 151
hmmlearn
 most likely hidden state sequence, finding 153
 reference link 151
homogeneity score 253
Huber cost function 36
hyperbolic tangent 330

I
independent and identically distributed (i.i.d.) 10
independent component analysis 189, 190, 191,

192

Independent Component Analysis (ICA) 156
inductive learning 48
instance-based learning 233
Isomap algorithm
 about 106, 108
 example 109, 110, 111

K
K-Fold cross-validation
 about 14
 Leave-one-out (LOO) 17
 Leave-P-out (LPO) 17
 Stratified K-Fold 16
K-means 244, 245, 246
K-means++ 247, 248
K-means, with Scikit-Learn

 example 248, 249, 251
k-Nearest Neighbors (KNN)
 about 233, 235, 236
 Ball Trees 239, 240
 KD Trees 237, 238
KD Trees 237, 238
Keras
 reference link 346
 SGD with momentum 349
KNN, with Scikit-Learn
 example 241, 242, 243
Kohonen 223

L
label propagation, based on Markov random walks
 about 100, 101
 example 101, 103, 105
label propagation
 about 87, 88, 90
 example 90, 92, 93
label spreading
 about 96, 97, 98
 example 98, 99
Laplacian Spectral Embedding
 about 115
 example 116, 117
Lasso regularization 41, 42
Latent Dirichlet Allocation (LDA) 157
Leave-one-out (LOO) 17
Leave-P-out (LPO) 17
LeCun initialization 340
likelihood 123
Lloyd's algorithm 244
Locally Linear Embedding (LLE)
 about 111, 113
 example 113, 114
long-short-term memory (LSTM) 404, 405, 406,

407, 408, 409, 410
long-term depression (LTD) 202
long-term potentiation (LTP) 198
loss function
 about 31
 defining 32
LSTM network, with Keras
 example 413, 415, 416, 417

[552]

M
manifold learning
 about 106
 Isomap algorithm 106, 108
 Locally Linear Embedding (LLE) 111, 113
Markov chain Monte Carlo (MCMC) 122
Markov chains 130, 131
Markov Decision Process (MDP) 478, 511
Markov random field (MRF) 461, 462
max pooling 387
maximal clique 462
Maximum A Posteriori (MAP) learning 156, 157,

158

Maximum Likelihood Estimation (MLE) learning
156, 157, 158, 203

mean squared error 36
metric multidimensional scaling 107
Metropolis-Hastings sampling
 about 134, 135
 example 135, 137
mini-batch gradient descent 336
MLLE
 reference link 113
MLP, with Keras
 example 341, 342, 345, 346
models, features
 about 20
 capacity, defining 20, 22
 estimator bias, measuring 23
 estimator variance, measuring 27
models
 about 9, 10
 cross-validation 14, 15, 16, 18, 19
 training set 13, 14
 validation set 13, 14
 whitening 11, 12, 13
 zero-centering 11, 12, 13
Modified LLE 112
momentum 348, 349
Multilayer Perceptron (MLP)
 about 328, 329
 activation functions 329
 back-propagation algorithm 333, 334, 335, 336

N
Nesterov momentum 348, 349
neural network
 used, in Q-learning 535, 537, 538, 540, 543
non-parametric models 9

O
Occam's razor principle 31
Oja's rule 208
optimization algorithms
 about 346, 347
 AdaDelta 354, 355
 AdaGrad 353
 Adam 351, 352
 gradient perturbation 347, 348
 momentum 348, 349
 Nesterov momentum 348, 349
 RMSProp 350
Ordinary Least Squares (OLS) 40
overfitting 27, 28

P
pandas
 reference link 414
parametric models 9
PCA with Scikit-Learn
 about 188
 example 187
peephole LSTM 408
perceptron 321, 322, 324
perceptron, with Scikit-Learn
 example 325, 327
point of inflection 35
policy iteration
 about 484, 485, 486, 487
 in checkerboard environment 488, 490, 491,

492

pooling layers 387, 389
Principal Component Analysis (PCA) 108, 156,

181, 182, 183, 184, 186, 205, 304
prior probability 123
PyMC3
 reference link 137

[553]

Q
Q-learning
 about 531, 532
 in checkerboard environment 533, 534
 neural network, using 535, 537, 538, 540, 543

R
random forests 278, 279, 280, 281, 282, 284
random forests, with Scikit-Learn
 example 284, 285, 286, 288
Rayleigh-Ritz method 113
rectifier activation functions 331, 332
recurrent networks
 about 329, 400, 401
 backpropagation through time (BPTT) 401, 403
 Gated recurrent unit (GRU) 411, 412
 long-short-term memory (LSTM) 404, 405, 406,

407, 408, 409, 410
recurrent neural networks (RNN) 372
regularization
 about 28, 38, 39, 356, 357, 358
 early stopping 43, 44
 ElasticNet 43
 Lasso regularization 41, 42
 Ridge regularization 39
Reinforcement Learning (RL)
 about 476
 environment 479, 480
 fundamentals 476, 477, 478
 policy 483
representational capacity 20
Restricted Boltzmann Machines (RBM) 460, 463,

464, 465
Ridge regularization 39
RMSProp
 about 350
 with Keras 350
Rubner-Tavan's network
 about 216, 217, 218, 219, 220
 example 221, 222

S
saddle points 34
same padding 381

Sanger's network
 about 209, 210, 211, 212
 example 212, 216
SARSA algorithm
 about 526
 in checkerboard environment 528, 530, 531
Scikit-Fuzzy
 reference link 264
Scikit-Learn
 label propagation 94, 96
Self-Organizing Maps (SOMs)
 about 197, 223, 224, 225, 226
 example 227, 228, 230
semi-supervised model
 assumptions 48
 inductive learning 48
 scenario 46
 transductive learning 47
semi-supervised Support Vector Machines (S3VM)
 about 66, 68, 69
 example 70, 72, 75
separable convolution 385
Sequential Least Squares Programming (SLSQP)

74

SGD, with momentum
 in Keras 349
shattering 22
Shi-Malik spectral clustering algorithm 271
sigmoid 329
silhouette score 255, 258
singular value decomposition (SVD) 12, 182
softmax function 10, 332
sparse autoencoders 432, 433
sparse coding 43
sparseness
 adding, to Fashion MNIST deep convolutional

autoencoder 433
spectral clustering 267, 269, 270
spectral clustering, with Scikit-Learn
 example 271
stacking 315
Stagewise Additive Modeling using Multi-class

Exponential loss (SAMME) 293
Standard K-Fold 17
stochastic gradient descent (SGD) 36, 319, 336,

337, 338
Stochastic Gradient Descent (SGD) 512
Stratified K-Fold 16
supervised DBN, with Python
 example 472, 474
Support Vector Machine (SVM) 17, 66, 469
support vector machines (SVM) 276
synaptic weight vector 320

T
t-Distributed Stochastic Neighbor Embedding (t-

SNE)
 about 117, 118
 example 119, 120
TD(0) algorithm
 about 497, 499, 500
 in checkerboard environment 501, 503, 504,

505

temporal difference algorithm
 about 498, 507, 508, 511, 512
 in complex checkerboard environment 513, 514,

515, 517, 519
TensorFlow
 installation link 346, 428
Tikhonov regularization 39
training set 13, 14
transductive learning 47
Transductive Support Vector Machines (TSVM)
 about 76
 example 77, 80, 83
transfer learning 418
transition probability 130
transpose convolution 386
truncated backpropagation through time (TBPTT)

402

U
unbiased estimator 24
underfitting 25, 26
unsupervised DBN, in Python
 example 470, 472

V
valid padding 381
validation set 13, 14
value iteration
 about 493
 in checkerboard environment 494, 496, 497
vanishing gradients 330, 336
Vapnik-Chervonenkis theory 22
Vapnik-Chervonenkis-capacity 22
variance scaling 340
variational autoencoder (VAE)
 about 434, 436, 437
 with TensorFlow 438, 440
VC-capacity 22
VC-dimension 22
Viterbi algorithm 151, 152
voting classifiers, with Scikit-Learn
 example 315, 316
voting classifiers
 ensemble, creating 314, 315

W
Wasserstein GAN (WGAN) 441, 453, 454, 455
weight initialization 339, 341
weight shrinkage 39
weight vector
 about 320
 stabilization 208
weighted log-likelihood 59, 60
WGAN, with TensorFlow
 example 456, 457, 458
whitening
 about 11, 13
 advantages 12
winner-takes-all 223

X
Xavier initialization 340

Z
zero-centering 11, 12, 13

	Cover
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Machine Learning Model Fundamentals
	Models and data
	Zero-centering and whitening
	Training and validation sets
	Cross-validation

	Features of a machine learning model
	Capacity of a model
	Vapnik-Chervonenkis capacity

	Bias of an estimator
	Underfitting

	Variance of an estimator
	Overfitting
	The Cramér-Rao bound

	Loss and cost functions
	Examples of cost functions
	Mean squared error
	Huber cost function
	Hinge cost function
	Categorical cross-entropy

	Regularization
	Ridge
	Lasso
	ElasticNet
	Early stopping

	Summary

	Chapter 2: Introduction to Semi-Supervised Learning
	Semi-supervised scenario
	Transductive learning
	Inductive learning
	Semi-supervised assumptions
	Smoothness assumption
	Cluster assumption
	Manifold assumption

	Generative Gaussian mixtures
	Example of a generative Gaussian mixture
	Weighted log-likelihood

	Contrastive pessimistic likelihood estimation
	Example of contrastive pessimistic likelihood estimation

	Semi-supervised Support Vector Machines (S3VM)
	Example of S3VM

	Transductive Support Vector Machines (TSVM)
	Example of TSVM

	Summary

	Chapter 3: Graph-Based Semi-Supervised Learning
	Label propagation
	Example of label propagation
	Label propagation in Scikit-Learn

	Label spreading
	Example of label spreading

	Label propagation based on Markov random walks
	Example of label propagation based on Markov random walks

	Manifold learning
	Isomap
	Example of Isomap

	Locally linear embedding
	Example of locally linear embedding

	Laplacian Spectral Embedding
	Example of Laplacian Spectral Embedding

	t-SNE
	Example of t-distributed stochastic neighbor embedding

	Summary

	Chapter 4: Bayesian Networks and Hidden Markov Models
	Conditional probabilities and Bayes' theorem
	Bayesian networks
	Sampling from a Bayesian network
	Direct sampling
	Example of direct sampling

	A gentle introduction to Markov chains
	Gibbs sampling
	Metropolis-Hastings sampling
	Example of Metropolis-Hastings sampling

	Sampling example using PyMC3

	Hidden Markov Models (HMMs)
	Forward-backward algorithm
	Forward phase
	Backward phase
	HMM parameter estimation
	Example of HMM training with hmmlearn

	Viterbi algorithm
	Finding the most likely hidden state sequence with hmmlearn

	Summary

	Chapter 5: EM Algorithm and Applications
	MLE and MAP learning
	EM algorithm
	An example of parameter estimation

	Gaussian mixture
	An example of Gaussian Mixtures using Scikit-Learn

	Factor analysis
	An example of factor analysis with Scikit-Learn

	Principal Component Analysis
	An example of PCA with Scikit-Learn

	Independent component analysis
	An example of FastICA with Scikit-Learn

	Addendum to HMMs
	Summary

	Chapter 6: Hebbian Learning and Self-Organizing Maps
	Hebb's rule
	Analysis of the covariance rule
	Example of covariance rule application

	Weight vector stabilization and Oja's rule

	Sanger's network
	Example of Sanger's network

	Rubner-Tavan's network
	Example of Rubner-Tavan's network

	Self-organizing maps
	Example of SOM

	Summary

	Chapter 7: Clustering Algorithms
	k-Nearest Neighbors
	KD Trees
	Ball Trees
	Example of KNN with Scikit-Learn

	K-means
	K-means++
	Example of K-means with Scikit-Learn
	Evaluation metrics
	Homogeneity score
	Completeness score
	Adjusted Rand Index
	Silhouette score

	Fuzzy C-means
	Example of fuzzy C-means with Scikit-Fuzzy

	Spectral clustering
	Example of spectral clustering with Scikit-Learn

	Summary

	Chapter 8: Ensemble Learning
	Ensemble learning fundamentals
	Random forests
	Example of random forest with Scikit-Learn

	AdaBoost
	AdaBoost.SAMME
	AdaBoost.SAMME.R
	AdaBoost.R2
	Example of AdaBoost with Scikit-Learn

	Gradient boosting
	Example of gradient tree boosting with Scikit-Learn

	Ensembles of voting classifiers
	Example of voting classifiers with Scikit-Learn

	Ensemble learning as model selection
	Summary

	Chapter 9: Neural Networks for Machine Learning
	The basic artificial neuron
	Perceptron
	Example of a perceptron with Scikit-Learn

	Multilayer perceptrons
	Activation functions
	Sigmoid and hyperbolic tangent
	Rectifier activation functions
	Softmax

	Back-propagation algorithm
	Stochastic gradient descent
	Weight initialization

	Example of MLP with Keras

	Optimization algorithms
	Gradient perturbation
	Momentum and Nesterov momentum
	SGD with momentum in Keras

	RMSProp
	RMSProp with Keras

	Adam
	Adam with Keras

	AdaGrad
	AdaGrad with Keras

	AdaDelta
	AdaDelta with Keras

	Regularization and dropout
	Dropout
	Example of dropout with Keras

	Batch normalization
	Example of batch normalization with Keras

	Summary

	Chapter 10: Advanced Neural Models
	Deep convolutional networks
	Convolutions
	Bidimensional discrete convolutions
	Strides and padding

	Atrous convolution
	Separable convolution
	Transpose convolution

	Pooling layers
	Other useful layers
	Examples of deep convolutional networks with Keras
	Example of a deep convolutional network with Keras and data augmentation

	Recurrent networks
	Backpropagation through time (BPTT)
	LSTM
	GRU
	Example of an LSTM network with Keras

	Transfer learning
	Summary

	Chapter 11: Autoencoders
	Autoencoders
	An example of a deep convolutional autoencoder with TensorFlow
	Denoising autoencoders
	An example of a denoising autoencoder with TensorFlow

	Sparse autoencoders
	Adding sparseness to the Fashion MNIST deep convolutional autoencoder

	Variational autoencoders
	An example of a variational autoencoder with TensorFlow

	Summary

	Chapter 12: Generative Adversarial Networks
	Adversarial training
	Example of DCGAN with TensorFlow

	Wasserstein GAN (WGAN)
	Example of WGAN with TensorFlow

	Summary

	Chapter 13: Deep Belief Networks
	MRF
	RBMs
	DBNs
	Example of unsupervised DBN in Python
	Example of Supervised DBN with Python

	Summary

	Chapter 14: Introduction to Reinforcement Learning
	Reinforcement Learning fundamentals
	Environment
	Rewards
	Checkerboard environment in Python

	Policy

	Policy iteration
	Policy iteration in the checkerboard environment

	Value iteration
	Value iteration in the checkerboard environment

	TD(0) algorithm
	TD(0) in the checkerboard environment

	Summary

	Chapter 15: Advanced Policy Estimation Algorithms
	TD(λ) algorithm
	TD(λ) in a more complex Checkerboard environment
	Actor-Critic TD(0) in the checkerboard environment

	SARSA algorithm
	SARSA in the checkerboard environment

	Q-learning
	Q-learning in the checkerboard environment
	Q-learning using a neural network

	Summary

	Other Books You May Enjoy
	Index

