

Python Machine Learning By
Example
Second Edition

Implement machine learning algorithms and techniques to
build intelligent systems

Yuxi (Hayden) Liu

BIRMINGHAM - MUMBAI

Python Machine Learning By Example
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Reshma Amare
Content Development Editor: Athikho Sapuni Rishana
Technical Editor: Vibhuti Gawde
Copy Editor: Safis Editing
Project Coordinator: Kirti Pisat
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jisha Chirayil
Production Coordinator: Jisha Chirayil

First published: May 2017
Second edition: February 2019

Production reference: 1270219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-672-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

I would like to thank all of the great people that made this book possible. Without any of you,
this book would only exist in my mind. I would like to especially thank all of my editors at Packt

Publishing: Vibhuti, Athikho, Martin, and so many more, as well as my reviewer, Vadim, a
renowned machine learning researcher from MIT. I would also like to thank all of the reviewers
of the code of this book. Without them, this book would be harder to read and apply to real-world

problems. Last but not least, I'd like to thank all the readers for the support they provided,
which encourages me to continue with the second edition of this book.

Foreword
This book is a deep dive into the exciting world of machine learning. What's unique about
this book is the clarity with which it explains concepts from first principles and teaches by
example in a way that is accessible to a wide audience. You will learn how to implement
key algorithms from scratch and compare your code against proven machine learning
libraries.

The discussion in this book is backed by mathematical principles and includes from-scratch
coding exercises that help you gain a deeper understanding of the subject. By reading this
book, you will be learning something new, whether you are a beginner or an experienced
machine learning practitioner.

True to its title, you will learn about a number of interesting applications, such as
predicting click-through rates for targeted advertisements, mining text data for patterns,
and predicting the stock price of a major exchange index. Throughout the book, you will
find exercises and links to help you better understand the material.

I encourage you to turn the page and dive into the exciting world of machine learning.

Vadim Smolyakov

Contributors

About the author
Yuxi (Hayden) Liu is an author of a series of machine learning books and an education
enthusiast. His first book, the first edition of Python Machine Learning By Example, was a #1
bestseller in Amazon India in 2017 and 2018. His other books include R Deep Learning
Projects and Hands-On Deep Learning Architectures with Python published by Packt.

He is an experienced data scientist who's focused on developing machine learning and
deep learning models and systems. He has worked in a variety of data-driven domains and
has applied his machine learning expertise to computational advertising, recommendation,
and network anomaly detection. He published five first-authored IEEE transaction and
conference papers during his master's research at the University of Toronto.

About the reviewer
Vadim Smolyakov is currently pursuing his PhD at MIT in the areas of computer science
and artificial intelligence. His primary research interests include Bayesian inference, deep
learning, and optimization. Prior to coming to MIT, Vadim received his undergraduate
degree in engineering science at the University of Toronto. He previously worked as a data
scientist in the e-commerce space. Vadim is passionate about machine learning and data
science, and is interested in making the field accessible to a broad audience and inspiring
readers to innovate and pursue research in artificial intelligence.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Fundamentals of Machine Learning
Chapter 1: Getting Started with Machine Learning and Python 8

A very high-level overview of machine learning technology 13
Types of machine learning tasks 14
A brief history of the development of machine learning algorithms 16

Core of machine learning – generalizing with data 17
Overfitting, underfitting, and the bias-variance trade-off 19
Avoiding overfitting with cross-validation 23
Avoiding overfitting with regularization 25
Avoiding overfitting with feature selection and dimensionality reduction 28

Preprocessing, exploration, and feature engineering 29
Missing values 31
Label encoding 31
One hot encoding 32
Scaling 33
Polynomial features 33
Power transform 34
Binning 34

Combining models 34
Voting and averaging 35
Bagging 35
Boosting 36
Stacking 38

Installing software and setting up 38
Setting up Python and environments 38
Installing the various packages 40

NumPy 40
SciPy 41
Pandas 41
Scikit-learn 41
TensorFlow 41

Summary 42
Exercises 42

Section 2: Practical Python Machine Learning By
Example

Table of Contents

[ii]

Chapter 2: Exploring the 20 Newsgroups Dataset with Text Analysis
Techniques 44

How computers understand language - NLP 45
Picking up NLP basics while touring popular NLP libraries 47

Corpus 49
Tokenization 51
PoS tagging 53
Named-entity recognition 54
Stemming and lemmatization 54
Semantics and topic modeling 56

Getting the newsgroups data 56
Exploring the newsgroups data 60
Thinking about features for text data 63

Counting the occurrence of each word token 63
Text preprocessing 66
Dropping stop words 67
Stemming and lemmatizing words 68

Visualizing the newsgroups data with t-SNE 69
What is dimensionality reduction? 69
t-SNE for dimensionality reduction 70

Summary 73
Exercises 74

Chapter 3: Mining the 20 Newsgroups Dataset with Clustering and
Topic Modeling Algorithms 75

Learning without guidance – unsupervised learning 76
Clustering newsgroups data using k-means 77

How does k-means clustering work? 78
Implementing k-means from scratch 79
Implementing k-means with scikit-learn 88
Choosing the value of k 89
Clustering newsgroups data using k-means 91

Discovering underlying topics in newsgroups 95
Topic modeling using NMF 96
Topic modeling using LDA 99
Summary 102
Exercises 103

Chapter 4: Detecting Spam Email with Naive Bayes 104
Getting started with classification 105

Types of classification 106
Applications of text classification 109

Exploring Naïve Bayes 110
Learning Bayes' theorem by examples 110
The mechanics of Naïve Bayes 113

Table of Contents

[iii]

Implementing Naïve Bayes from scratch 116
Implementing Naïve Bayes with scikit-learn 126

Classification performance evaluation 127
Model tuning and cross-validation 132
Summary 135
Exercise 136

Chapter 5: Classifying Newsgroup Topics with Support Vector
Machines 137

Finding separating boundary with support vector machines 138
Understanding how SVM works through different use cases 138

Case 1 – identifying a separating hyperplane 139
Case 2 – determining the optimal hyperplane 140
Case 3 – handling outliers 143

Implementing SVM 145
Case 4 – dealing with more than two classes 146

The kernels of SVM 151
Case 5 – solving linearly non-separable problems 151

Choosing between linear and RBF kernels 156
Classifying newsgroup topics with SVMs 158
More example – fetal state classification on cardiotocography 162
A further example – breast cancer classification using SVM with
TensorFlow 164
Summary 166
Exercise 166

Chapter 6: Predicting Online Ad Click-Through with Tree-Based
Algorithms 167

Brief overview of advertising click-through prediction 168
Getting started with two types of data – numerical and categorical 169
Exploring decision tree from root to leaves 170

Constructing a decision tree 172
The metrics for measuring a split 175

Implementing a decision tree from scratch 181
Predicting ad click-through with decision tree 190
Ensembling decision trees – random forest 196

Implementing random forest using TensorFlow 198
Summary 201
Exercise 201

Chapter 7: Predicting Online Ad Click-Through with Logistic
Regression 202

Converting categorical features to numerical – one-hot encoding
and ordinal encoding 203
Classifying data with logistic regression 206

Table of Contents

[iv]

Getting started with the logistic function 206
Jumping from the logistic function to logistic regression 207

Training a logistic regression model 211
Training a logistic regression model using gradient descent 211
Predicting ad click-through with logistic regression using gradient descent 217
Training a logistic regression model using stochastic gradient descent 219
Training a logistic regression model with regularization 221

Training on large datasets with online learning 224
Handling multiclass classification 227
Implementing logistic regression using TensorFlow 229
Feature selection using random forest 231
Summary 232
Exercises 233

Chapter 8: Scaling Up Prediction to Terabyte Click Logs 234
Learning the essentials of Apache Spark 235

Breaking down Spark 235
Installing Spark 236
Launching and deploying Spark programs 238

Programming in PySpark 239
Learning on massive click logs with Spark 242

Loading click logs 242
Splitting and caching the data 245
One-hot encoding categorical features 246
Training and testing a logistic regression model 250

Feature engineering on categorical variables with Spark 254
Hashing categorical features 254
Combining multiple variables – feature interaction 257

Summary 260
Exercises 261

Chapter 9: Stock Price Prediction with Regression Algorithms 262
Brief overview of the stock market and stock prices 263
What is regression? 264
Mining stock price data 265

Getting started with feature engineering 267
Acquiring data and generating features 271

Estimating with linear regression 275
How does linear regression work? 275
Implementing linear regression 276

Estimating with decision tree regression 282
Transitioning from classification trees to regression trees 283
Implementing decision tree regression 285
Implementing regression forest 290

Estimating with support vector regression 292

Table of Contents

[v]

Implementing SVR 293
Estimating with neural networks 294

Demystifying neural networks 294
Implementing neural networks 299

Evaluating regression performance 306
Predicting stock price with four regression algorithms 307
Summary 312
Exercise 313

Section 3: Python Machine Learning Best Practices
Chapter 10: Machine Learning Best Practices 315

Machine learning solution workflow 316
Best practices in the data preparation stage 317

Best practice 1 – completely understanding the project goal 317
Best practice 2 – collecting all fields that are relevant 317
Best practice 3 – maintaining the consistency of field values 318
Best practice 4 – dealing with missing data 318
Best practice 5 – storing large-scale data 323

Best practices in the training sets generation stage 323
Best practice 6 – identifying categorical features with numerical values 323
Best practice 7 – deciding on whether or not to encode categorical features 324
Best practice 8 – deciding on whether or not to select features, and if so,
how to do so 324
Best practice 9 – deciding on whether or not to reduce dimensionality, and if
so, how to do so 326
Best practice 10 – deciding on whether or not to rescale features 327
Best practice 11 – performing feature engineering with domain expertise 327
Best practice 12 – performing feature engineering without domain expertise 328
Best practice 13 – documenting how each feature is generated 329
Best practice 14 – extracting features from text data 330

Best practices in the model training, evaluation, and selection stage 334
Best practice 15 – choosing the right algorithm(s) to start with 335

Naïve Bayes 335
Logistic regression 335
SVM 337
Random forest (or decision tree) 337
Neural networks 337

Best practice 16 – reducing overfitting 337
Best practice 17 – diagnosing overfitting and underfitting 338
Best practice 18 – modeling on large-scale datasets 340

Best practices in the deployment and monitoring stage 341
Best practice 19 – saving, loading, and reusing models 341
Best practice 20 – monitoring model performance 344
Best practice 21 – updating models regularly 345

Summary 345

Table of Contents

[vi]

Exercises 345

Other Books You May Enjoy 346

Index 349

Preface
The surge in interest in machine learning is due to the fact that it revolutionizes automation
by learning patterns in data and using them to make predictions and decisions. If you're
interested in machine learning, this book will serve as your entry point.

This edition of Python Machine Learning By Example begins with an introduction to
important concepts and implementations using Python libraries. Each chapter of the book
walks you through an industry-adopted application. You'll implement machine learning
techniques in areas such as exploratory data analysis, feature engineering, and natural
language processing (NLP) in a clear and easy-to-follow way.

With the help of this extended and updated edition, you'll learn how to tackle data-driven
problems and implement your solutions with the powerful yet simple Python language,
and popular Python packages and tools such as TensorFlow, scikit-learn, Gensim, and
Keras. To aid your understanding of popular machine learning algorithms, this book covers
interesting and easy-to-follow examples such as news topic modeling and classification,
spam email detection, and stock price forecasting.

By the end of the book, you'll have put together a broad picture of the machine learning
ecosystem and will be well-versed with the best practices of applying machine learning
techniques to make the most out of new opportunities.

Who this book is for
If you're a machine learning aspirant, data analyst, or a data engineer who's highly
passionate about machine learning and wants to begin working on machine learning
assignments, this book is for you. Prior knowledge of Python coding is assumed, and basic
familiarity with statistical concepts will be beneficial, although not necessary.

What this book covers
Chapter 1, Getting Started with Machine Learning and Python, will be the starting point for
readers who are looking forward to entering the field of machine learning with Python. It
will introduce the essential concepts of machine learning, which we will dig deeper into
throughout the rest of the book. In addition, it will discuss the basics of Python for machine
learning and explain how to set it up properly for the upcoming examples and projects.

Preface

[2]

Chapter 2, Exploring the 20 Newsgroups Dataset with Text Analysis Techniques, will start
developing the first project of the book, exploring and mining the 20 newsgroups dataset,
which will be split into two parts—Chapter 2, Exploring the 20 Newsgroups Dataset with Text
Analysis Techniques, and Chapter 3, Mining the 20 Newsgroups Dataset with Clustering and
Topic Modeling Algorithms. In this chapter, readers will get familiar with NLP and various
NLP libraries that will be used for this project. We will explain several important NLP
techniques implementing them in NLTK. We will also cover the dimension reduction
technique, especially t-SNE and its use in text data visualization.

Chapter 3, Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms,
will continue our newsgroups project after exploring the 20 newsgroups dataset. In this
chapter, readers will learn about unsupervised learning and clustering algorithms, as well
as some advanced NLP techniques, such as LDA and word embedding. We will cluster the
newsgroups data using the k-means algorithm, and detect topics using NMF and LDA.

Chapter 4, Detecting Spam Emails with Naive Bayes, will start our supervised learning
journey. In this chapter, we focus on classification with Naïve Bayes, and we'll look at an in-
depth implementation. We will also cover other important machine learning concepts, such
as classification performance evaluation, model selection and tuning, and cross-validation.
Examples including spam email detection will be demonstrated.

Chapter 5, Classifying Newsgroup Topics with a Support Vector Machine, will reuse the
newsgroups dataset we used in Chapter 2, Exploring the 20 Newsgroups Dataset with Text
Analysis Techniques, and Chapter 3, Mining the 20 Newsgroups Dataset with Clustering and
Topic Modeling Algorithms. We will cover multiclass classification, as well as SVM and how
they are applied in topic classification. Other important concepts, such as kernel machines,
overfitting, and regularization, will be discussed as well.

Chapter 6, Predicting Online Ad Click-Through with Tree-Based Algorithms, will introduce and
explain decision trees and random forests in depth throughout the course of solving the
advertising click-through rate problem. Important concepts of tree-based models such as
ensemble, feature importance, and feature selection will also be covered.

Chapter 7, Predicting Online Ads Click-Through with Logistic Regression, will introduce and
explain logistic regression classifiers on the same project from the previous chapters. We
will also cover other concepts, such as categorical variable encoding, L1 and L2
regularization, feature selection, online learning and stochastic gradient descent, and, of
course, how to work with large datasets.

Preface

[3]

Chapter 8, Scaling Up Prediction to Terabyte Click Logs, covers online advertising click-
through prediction, where we have millions of labeled samples in a typical large-scale
machine learning problem. In this chapter, we will explore a more scalable solution than
the previous chapters, utilizing powerful parallel computing tools such as Apache Hadoop
and Spark. We will cover the essential concepts of Spark, such installation, RDD, and core
programming, as well as its machine learning components. We will work with the entire
dataset of millions of samples, explore the data, build classification models, perform feature
engineering, and performance evaluation using Spark, which scales up the computation.

Chapter 9, Stock Price Prediction with Regression Algorithms, introduces the aim of this
project, which is to analyze and predict stock market prices using the Yahoo/Google
Finance data, and maybe additional data.

We will start the chapter by covering the challenges in finance and looking at a brief
explanation of the related concepts. The next step is to obtain and explore the dataset and
start feature engineering after exploratory data analysis. The core section, looking at
regression and regression algorithms, linear regression, decision tree regression, SVR, and
neural networks, will follow. Readers will also practice solving regression problems using
scikit-learn and the TensorFlow API.

Chapter 10, Machine Learning Best Practices, covers best practices in machine learning. After
covering multiple projects in this book, you will have gathered a broad picture of the
machine learning ecosystem using Python. However, there will be issues once you start
working on projects in the real world. This chapter aims to foolproof your learning and get
you ready for production by providing 21 best practices throughout the entire machine
learning workflow.

To get the most out of this book
You are expected to have basic knowledge of Python, the basic machine learning
algorithms, and some basic Python libraries, such as TensorFlow and Keras, to create smart
cognitive actions for your projects.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packt.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/​/​github.​com/
PacktPublishing/​Python-​Machine-​Learning-​By-​Example-​Second-​Edition. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github.​com/​PacktPublishing/​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/​/​www.​packtpub.​com/​sites/​default/​files/
downloads/​9781789616729_​ColorImages.​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Then, we'll load the en_core_web_sm model and parse the sentence using this
model."

http://www.packt.com
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/Python-Machine-Learning-By-Example-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789616729_ColorImages.pdf

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

sudo pip install -U nltk

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"A new window will pop up and ask us which collections (the Collections tab in the
following screenshot) or corpus (the identifiers in the Corpora tab in the following
screenshot) to download and where to keep the data."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

http://www.packt.com/submit-errata

Preface

[6]

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Fundamentals of

Machine Learning
In this section, readers will learn about the essential concepts in machine learning,
including types of machine learning tasks, the core of machine learning, and an overview of
data processing and modeling. Readers will also have a chance to set up the working
environment of the rest of the book, and will learn how to install Python machine learning
packages properly.

The following chapter is in this section:

Chapter 1, Getting Started with Machine Learning and Python

1
Getting Started with Machine

Learning and Python
We kick off our Python and machine learning journey with the basic, yet important,
concepts of machine learning. We'll start with what machine learning is about, why we
need it, and its evolution over a few decades. We'll then discuss typical machine learning
tasks and explore several essential techniques of working with data and working with
models. It's a great starting point for the subject and we'll learn it in a fun way. Trust me. At
the end, we'll also set up the software and tools needed for this book.

We'll go into detail on the following topics:

Overview of machine learning and the importance of machine learning
The core of machine learning—generalizing with data
Overfitting
Underfitting
Bias variance trade-off
Techniques to avoid overfitting
Techniques for data preprocessing
Techniques for feature engineering
Techniques for model aggregation
Software installing
Python package setup

Getting Started with Machine Learning and Python Chapter 1

[9]

Defining machine learning and why
we need it
Machine learning is a term coined around 1960, composed of two words—machine
corresponds to a computer, robot, or other device, and learning refers to an activity
intended to acquire or discover event patterns, which we humans are good at.

So, why do we need machine learning and why do we want a machine to learn as a human?
First and foremost, of course, computers and robots can work 24/7 and don't get tired, need
breaks, call in sick, or go on strike. Their maintenance is much lower than a human's and
costs a lot less in the long run. Also, for sophisticated problems that involve a variety of
huge datasets or complex calculations, for instance, it's much more justifiable, not to
mention intelligent, to let computers do all of the work. Machines driven by algorithms
designed by humans are able to learn latent rules and inherent patterns and to fulfill tasks
desired by humans. Learning machines are better suited than humans for tasks that are
routine, repetitive, or tedious. Beyond that, automation by machine learning can mitigate
risks caused by fatigue or inattention. Self-driving cars, as shown in the following
photograph, are a great example: a vehicle capable of navigating by sensing its
environment and making its decision without human input. Another example is the use of
robotic arms in production lines, capable of causing a significant reduction in injuries and
costs:

Getting Started with Machine Learning and Python Chapter 1

[10]

Assume humans don't fatigue or we have resources to hire enough shift workers, would
machine learning still have a place? Of course it would; there are many cases, reported and
unreported, where machines perform comparably or even better than domain experts. As
algorithms are designed to learn from the ground truth, and the best-thought decisions
made by human experts, machines can perform just as well as experts. In reality, even the
best expert makes mistakes. Machines can minimize the chance of making wrong decisions
by utilizing collective intelligence from individual experts. A major study that found
machines are better than doctors at diagnosing some types of cancer proves this
philosophy, for instance. AlphaGo is probably the best known example of machines
beating human masters. Also, it's much more scalable to deploy learning machines than to
train individuals to become experts, economically and socially. We can distribute
thousands of diagnostic devices across the globe within a week but it's almost impossible to
recruit and assign the same number of qualified doctors.

Now you may argue: what if we have sufficient resources and capacity to hire the best
domain experts and later aggregate their opinions—would machine learning still have a
place? Probably not—learning machines might not perform better than the joint efforts of
the most intelligent humans. However, individuals equipped with learning machines can
outperform the best group of experts. This is actually an emerging concept called AI-based
Assistance or AI Plus Human Intelligence, which advocates combining the efforts of
machine learners and humans. We can summarize the previous statement in the following
inequality:

human + machine learning → most intelligent tireless human machine learning > human

A medical operation involving robots is one example of the best human and machine
learning synergy. The following photograph presents robotic arms in an operation room
alongside the surgery doctor:

Getting Started with Machine Learning and Python Chapter 1

[11]

So, does machine learning simply equate to automation that involves the programming and
execution of human-crafted or human-curated rule sets? A popular myth says that the
majority of code in the world has to do with simple rules possibly programmed in
Common Business Oriented Language (COBOL), which covers the bulk of all of the
possible scenarios of client interactions. So, if the answer to that question is yes, why can't
we just hire many software programmers and continue programming new rules or
extending old rules?

One reason is that defining, maintaining, and updating rules becomes more and more
expensive over time. The number of possible patterns for an activity or event could be
enormous and, therefore, exhausting all enumeration isn't practically feasible. It gets even
more challenging when it comes to events that are dynamic, ever-changing, or evolving in
real time. It's much easier and more efficient to develop learning algorithms that command
computers to learn and extract patterns and to figure things out themselves from abundant
data.

The difference between machine learning and traditional programming can be described
using the following diagram:

Another reason is that the volume of data is exponentially growing. Nowadays, the floods
of textual, audio, image, and video data are hard to fathom. The Internet of Things (IoT) is
a recent development of a new kind of internet, which interconnects everyday devices. The
IoT will bring data from household appliances and autonomous cars to the forefront. The
average company these days has mostly human clients but, for instance, social media
companies tend to have many bot accounts. This trend is likely to continue and we'll have
more machines talking to each other. Besides the quantity, the quality of data available has
kept increasing in the past years due to cheaper storage. This has empowered the evolution
of machine learning algorithms and data-driven solutions.

Getting Started with Machine Learning and Python Chapter 1

[12]

Jack Ma, co-founder of the e-commerce company Alibaba, explained in a speech that IT was
the focus of the past 20 years but, for the next 30 years, we'll be in the age of Data
Technology (DT). During the age of IT, companies grew larger and stronger thanks to
computer software and infrastructure. Now that businesses in most industries have already
gathered enormous amounts of data, it's presently the right time to exploit DT to unlock
insights, derive patterns, and boost new business growth. Broadly speaking, machine
learning technologies enable businesses to better understand customer behavior, engage
with customers, and optimize operations management. As for us individuals, machine
learning technologies are already making our lives better every day.

An application of machine learning with which we're all familiar is spam email filtering.
Another is online advertising, where ads are served automatically based on information
advertisers have collected about us. Stay tuned for the next chapters, where we'll learn how
to develop algorithms in solving these two problems and more. A search engine is an
application of machine learning we can't imagine living without. It involves information
retrieval, which parses what we look for, queries related to records, and applies contextual
ranking and personalized ranking, which sorts pages by topical relevance and user
preference. E-commerce and media companies have been at the forefront of employing
recommendation systems, which help customers to find products, services, and articles
faster. The application of machine learning is boundless and we just keep hearing new
examples everyday: credit card fraud detection, disease diagnosis, presidential election
prediction, instant speech translation, and robot advisors—you name it!

In the 1983 War Games movie, a computer made life-and-death decisions that could have
resulted in Word War III. As far as we know, technology wasn't able to pull off such feats at
the time. However, in 1997, the Deep Blue supercomputer did manage to beat a world chess
champion. In 2005, a Stanford self-driving car drove by itself for more than 130 kilometers
in a desert. In 2007, the car of another team drove through regular traffic for more than 50
kilometers. In 2011, the Watson computer won a quiz against human opponents. In 2016,
the AlphaGo program beat one of the best Go players in the world. If we assume that
computer hardware is the limiting factor, then we can try to extrapolate into the future. Ray
Kurzweil did just that and, according to him, we can expect human level intelligence
around 2029. What's next?

Getting Started with Machine Learning and Python Chapter 1

[13]

A very high-level overview of machine
learning technology
Machine learning mimicking human intelligence is a subfield of AI—a field of computer
science concerned with creating systems. Software engineering is another field in computer
science. Generally, we can label Python programming as a type of software engineering.
Machine learning is also closely related to linear algebra, probability theory, statistics, and
mathematical optimization. We usually build machine learning models based on statistics,
probability theory, and linear algebra, then optimize the models using mathematical
optimization. The majority of you reading this book should have a good, or at least
sufficient, command of Python programming. Those who aren't feeling confident about
mathematical knowledge might be wondering how much time should be spent learning or
brushing up on the aforementioned subjects. Don't panic: we'll get machine learning to
work for us without going into any mathematical details in this book. It just requires some
basic 101 knowledge of probability theory and linear algebra, which helps us to understand
the mechanics of machine learning techniques and algorithms. And it gets easier as we'll be
building models both from scratch and with popular packages in Python, a language we
like and are familiar with.

For those who want to learn or brush up on probability theory and linear
algebra, feel free to search for basic probability theory and basic linear algebra.
There are a lot of resources online, for example, https:/​/​people.​ucsc.
edu/​~abrsvn/​intro_​prob_​1.​pdf on probability 101 and http:/​/​www.
maths.​gla.​ac.​uk/​~ajb/​dvi-​ps/​2w-​notes.​pdf about basic linear algebra.

Those who want to study machine learning systematically can enroll into computer science,
Artificial Intelligence (AI), and, more recently, data science masters programs. There are
also various data science boot camps. However, the selection for boot camps is usually
stricter as they're more job-oriented and the program duration is often short, ranging from
4 to 10 weeks. Another option is the free Massive Open Online Courses (MOOCs),
Andrew Ng's popular course on machine learning. Last but not least, industry blogs and
websites are great resources for us to keep up with the latest developments.

Machine learning isn't only a skill but also a bit of sport. We can compete in several
machine learning competitions, such as Kaggle (www.kaggle.com)—sometimes for decent
cash prizes, sometimes for joy, and most of the time to play our strengths. However, to win
these competitions, we may need to utilize certain techniques, which are only useful in the
context of competitions and not in the context of trying to solve a business problem. That's
right, the no free lunch theorem applies here.

https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
https://people.ucsc.edu/~abrsvn/intro_prob_1.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.maths.gla.ac.uk/~ajb/dvi-ps/2w-notes.pdf
http://www.kaggle.com

Getting Started with Machine Learning and Python Chapter 1

[14]

Types of machine learning tasks
A machine learning system is fed with input data—this can be numerical, textual, visual, or
audiovisual. The system usually has an output—this can be a floating-point number, for
instance, the acceleration of a self-driving car, or can be an integer representing a category
(also called a class), for example, a cat or tiger from image recognition.

The main task of machine learning is to explore and construct algorithms that can learn
from historical data and make predictions on new input data. For a data-driven solution,
we need to define (or have it defined to us by an algorithm) an evaluation function called
loss or cost function, which measures how well the models are learning. In this setup, we
create an optimization problem with the goal of learning in the most efficient and effective
way.

Depending on the nature of the learning data, machine learning tasks can be broadly
classified into the following three categories:

Unsupervised learning: When the learning data only contains indicative signals
without any description attached, it's up to us to find the structure of the data
underneath, to discover hidden information, or to determine how to describe the
data. This kind of learning data is called unlabeled data. Unsupervised learning
can be used to detect anomalies, such as fraud or defective equipment, or to
group customers with similar online behaviors for a marketing campaign.
Supervised learning: When learning data comes with a description, targets, or
desired output besides indicative signals, the learning goal becomes to find a
general rule that maps input to output. This kind of learning data is called
labeled data. The learned rule is then used to label new data with unknown
output. The labels are usually provided by event-logging systems and human
experts. Besides, if it's feasible, they may also be produced by members of the
public, through crowd-sourcing, for instance. Supervised learning is commonly
used in daily applications, such as face and speech recognition, products or
movie recommendations, and sales forecasting.

We can further subdivide supervised learning into regression and classification.
Regression trains on and predicts continuous-valued response, for example,
predicting house prices, while classification attempts to find the appropriate class
label, such as analyzing a positive/negative sentiment and prediction loan default.

Getting Started with Machine Learning and Python Chapter 1

[15]

If not all learning samples are labeled, but some are, we'll have semi-supervised
learning. It makes use of unlabeled data (typically a large amount) for training,
besides a small amount of labeled data. Semi-supervised learning is applied in
cases where it's expensive to acquire a fully labeled dataset and more practical to
label a small subset. For example, it often requires skilled experts to label
hyperspectral remote sensing images and lots of field experiments to locate oil at
a particular location, while acquiring unlabeled data is relatively easy.

Reinforcement learning: Learning data provides feedback so that the system
adapts to dynamic conditions in order to achieve a certain goal in the end. The
system evaluates its performance based on the feedback responses and reacts
accordingly. The best known instances include self-driving cars and the chess
master, AlphaGo.

The following diagram depicts types of machine learning tasks:

Getting Started with Machine Learning and Python Chapter 1

[16]

Feeling a little bit confused by the abstract concepts? Don't worry. We'll encounter many
concrete examples of these types of machine learning tasks later in this book. In Chapter 2,
Exploring the 20 Newsgroups Dataset with Text Analysis Techniques, and Chapter 3, Mining the
20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms, we'll explore
unsupervised techniques and algorithms; in Chapter 4, Detecting Spam Email with Naive
Bayes, and Chapter 8, Scaling Up Prediction to Terabyte Click Logs, we'll work on supervised
learning tasks and several classification algorithms; in Chapter 9, Stock Price Prediction with
Regression Algorithms, we'll continue with another supervised learning task, regression, and
assorted regression algorithms.

A brief history of the development of machine
learning algorithms
In fact, we have a whole zoo of machine learning algorithms that have experienced varying
popularity over time. We can roughly categorize them into four main approaches such as
logic-based learning, statistical learning, artificial neural networks, and genetic algorithms.

The logic-based systems were the first to be dominant. They used basic rules specified by
human experts and, with these rules, systems tried to reason using formal logic,
background knowledge, and hypotheses. In the mid-1980s, artificial neural networks
(ANNs) came to the foreground, to be then pushed aside by statistical learning systems in
the 1990s. ANNs imitate animal brains and consist of interconnected neurons that are also
an imitation of biological neurons. They try to model complex relationships between input
and output values and to capture patterns in data. Genetic algorithms (GA) were popular in
the 1990s. They mimic the biological process of evolution and try to find the optimal
solutions using methods such as mutation and crossover.

We are currently seeing a revolution in deep learning, which we might consider a
rebranding of neural networks. The term deep learning was coined around 2006 and refers
to deep neural networks with many layers. The breakthrough in deep learning is caused by
the integration and utilization of Graphical Processing Units (GPUs), which massively
speed up computation. GPUs were originally developed to render video games and are
very good in parallel matrix and vector algebra. It's believed that deep learning resembles
the way humans learn, therefore, it may be able to deliver on the promise of sentient
machines.

Getting Started with Machine Learning and Python Chapter 1

[17]

Some of us may have heard of Moore's law—an empirical observation claiming that
computer hardware improves exponentially with time. The law was first formulated by
Gordon Moore, the co-founder of Intel, in 1965. According to the law, the number of
transistors on a chip should double every two years. In the following diagram, you can see
that the law holds up nicely (the size of the bubbles corresponds to the average transistor
count in GPUs):

The consensus seems to be that Moore's law should continue to be valid for a couple of
decades. This gives some credibility to Ray Kurzweil's predictions of achieving true
machine intelligence in 2029.

Core of machine learning – generalizing with
data
The good thing about data is that there's a lot of it in the world. The bad thing is that it's
hard to process this data. The challenges stem from the diversity and noisiness of the data.
We humans usually process data coming into our ears and eyes. These inputs are
transformed into electrical or chemical signals. On a very basic level, computers and robots
also work with electrical signals. These electrical signals are then translated into ones and
zeroes. However, we program in Python in this book and, on that level, normally we
represent the data either as numbers, images, or texts. Actually, images and text aren't very
convenient, so we need to transform images and text into numerical values.

Getting Started with Machine Learning and Python Chapter 1

[18]

Especially in the context of supervised learning, we have a scenario similar to studying for
an exam. We have a set of practice questions and the actual exams. We should be able to
answer exam questions without knowing the answers to them. This is called
generalization—we learn something from our practice questions and, hopefully, are able to
apply the knowledge to other similar questions. In machine learning, these practice
questions are called training sets or training samples. They're where the models derive
patterns from. And the actual exams are testing sets or testing samples. They're where the
models eventually apply and how compatible they are is what it's all about. Sometimes,
between practice questions and actual exams, we have mock exams to assess how well we'll
do in actual ones and to aid revision. These mock exams are called validation sets or
validation samples in machine learning. They help us to verify how well the models will
perform in a simulated setting, then we fine-tune the models accordingly in order to
achieve greater hits.

An old-fashioned programmer would talk to a business analyst or other expert, then
implement a rule that adds a certain value multiplied by another value corresponding, for
instance, to tax rules. In a machine learning setting, we give the computer example input
values and example output values. Or if we're more ambitious, we can feed the program
the actual tax texts and let the machine process the data further, just like an autonomous car
doesn't need a lot of human input.

This means implicitly that there's some function, for instance, a tax formula, we're trying to
figure out. In physics, we have almost the same situation. We want to know how the
universe works and formulate laws in a mathematical language. Since we don't know the
actual function, all we can do is measure the error produced and try to minimize it. In
supervised learning tasks, we compare our results against the expected values. In
unsupervised learning, we measure our success with related metrics. For instance, we want
clusters of data to be well defined; the metrics could be how similar the data points within
one cluster are, and how different the data points from two clusters are. In reinforcement
learning, a program evaluates its moves, for example, using some predefined function in a
chess game.

Other than the normal generalizing with data, there can be two levels of generalization,
over and under generalization, which we'll explore in the next section.

Getting Started with Machine Learning and Python Chapter 1

[19]

Overfitting, underfitting, and the bias-variance
trade-off
Overfitting is a very important concept, hence, we're discussing it here, early in this book.

If we go through many practice questions for an exam, we may start to find ways to answer
questions that have nothing to do with the subject material. For instance, given only five
practice questions, we find that if there are two occurrences of potatoes, one tomato, and
three occurrences of banana in a question, the answer is always A and if there is one potato,
three occurrences of tomato, and two occurrences of banana in a question, the answer is
always B, then we conclude this is always true and apply such a theory later on, even
though the subject or answer may not be relevant to potatoes, tomatoes, or bananas. Or
even worse, you may memorize the answers to each question verbatim. We can then score
high on the practice questions; we do so with the hope that the questions in the actual
exams will be the same as the practice questions. However, in reality, we'll score very low
on the exam questions as it's rare that the exact same questions will occur in the exams.

The phenomenon of memorization can cause overfitting. This can occur when we're over
extracting too much information from the training sets and making our model just work
well with them, which is called low bias in machine learning. In case you need a quick
recap of bias, here it is: Bias is the difference between the average prediction and the true
value. It's computed as follows:

Here, is the prediction. At the same time, however, overfitting won't help us to generalize
with data and derive true patterns from it. The model, as a result, will perform poorly on
datasets that weren't seen before. We call this situation high variance in machine
learning. Again, a quick recap of variance: Variance measures the spread of the prediction,
which is the variability of the prediction. It can be calculated as follows:

Getting Started with Machine Learning and Python Chapter 1

[20]

The following example demonstrates what a typical instance of overfitting looks like, where
the regression curve tries to flawlessly accommodate all samples:

Overfitting occurs when we try to describe the learning rules based on too many
parameters relative to the small number of observations, instead of the underlying
relationship, such as the preceding example of potato and tomato where we deduced three
parameters from only five learning samples. Overfitting also takes place when we make the
model excessively complex so that it fits every training sample, such as memorizing the
answers for all questions, as mentioned previously.

The opposite scenario is underfitting. When a model is underfit, it doesn't perform well on
the training sets and won't do so on the testing sets, which means it fails to capture the
underlying trend of the data. Underfitting may occur if we aren't using enough data to train
the model, just like we'll fail the exam if we don't review enough material; it may also
happen if we're trying to fit a wrong model to the data, just like we'll score low in any
exercises or exams if we take the wrong approach and learn it the wrong way. We call any
of these situations high bias in machine learning; although its variance is low as
performance in training and test sets are pretty consistent, in a bad way.

Getting Started with Machine Learning and Python Chapter 1

[21]

The following example shows what a typical underfitting looks like, where the regression
curve doesn't fit the data well enough or capture enough of the underlying pattern of the
data:

After the overfitting and underfitting example, let's look at what a well-fitting example
should look like:

We want to avoid both overfitting and underfitting. Recall bias is the error stemming from
incorrect assumptions in the learning algorithm; high bias results in underfitting, and
variance measures how sensitive the model prediction is to variations in the datasets.
Hence, we need to avoid cases where either bias or variance is getting high. So, does it
mean we should always make both bias and variance as low as possible? The answer is yes,
if we can. But, in practice, there's an explicit trade-off between them, where decreasing one
increases the other. This is the so-called bias-variance trade-off. Sounds abstract? Let's take
a look at the next example.

Getting Started with Machine Learning and Python Chapter 1

[22]

Let's say we're asked to build a model to predict the probability of a candidate being the
next president based on phone poll data. The poll was conducted using zip codes. We
randomly choose samples from one zip code and we estimate there's a 61% chance the
candidate will win. However, it turns out he loses the election. Where did our model go
wrong? The first thing we think of is the small size of samples from only one zip code. It's a
source of high bias also, because people in a geographic area tend to share similar
demographics, although it results in a low variance of estimates. So, can we fix it simply by
using samples from a large number of zip codes? Yes, but don't get happy so early. This
might cause an increased variance of estimates at the same time. We need to find the
optimal sample size—the best number of zip codes to achieve the lowest overall bias and
variance.

Minimizing the total error of a model requires a careful balancing of bias and variance.
Given a set of training samples x1, x2, …, xn and their targets y1, y2, …, yn, we want to find a
regression function that estimates the true relation as correctly as possible. We
measure the error of estimation, how good (or bad) the regression model is mean squared
error (MSE):

The E denotes the expectation. This error can be decomposed into bias and variance
components following the analytical derivation as shown in the following formula
(although it requires a bit of basic probability theory to understand):

The Bias term measures the error of estimations and the Variance term describes how much
the estimation moves around its mean. The more complex the learning model is and
the larger size of training samples, the lower the bias will be. However, these will also
create more shift on the model in order to better fit the increased data points. As a result,
the variance will be lifted.

Getting Started with Machine Learning and Python Chapter 1

[23]

We usually employ cross-validation technique as well as regularization and feature
reduction to find the optimal model balancing bias and variance and to diminish
overfitting.

You may ask why we only want to deal with overfitting: how about
underfitting? This is because underfitting can be easily recognized: it
occurs as long as the model doesn't work well on a training set. And we
need to find a better model or tweak some parameters to better fit the
data, which is a must under all circumstances. On the other hand,
overfitting is hard to spot. Sometimes, when we achieve a model that
performs well on a training set, we're overly happy and think it ready for
production right away. This happens all of the time despite how
dangerous it could be. We should instead take extra step to make sure the
great performance isn't due to overfitting and the great performance
applies to data excluding the training data.

Avoiding overfitting with cross-validation
Recall that between practice questions and actual exams, there are mock exams where we
can assess how well we'll perform in actual exams and use that information to conduct
necessary revision. In machine learning, the validation procedure helps evaluate how the
models will generalize to independent or unseen datasets in a simulated setting. In a
conventional validation setting, the original data is partitioned into three subsets, usually
60% for the training set, 20% for the validation set, and the rest (20%) for the testing set.
This setting suffices if we have enough training samples after partitioning and we only
need a rough estimate of simulated performance. Otherwise, cross-validation is preferable.

In one round of cross-validation, the original data is divided into two subsets, for training
and testing (or validation) respectively. The testing performance is recorded. Similarly,
multiple rounds of cross-validation are performed under different partitions. Testing
results from all rounds are finally averaged to generate a more reliable estimate of model
prediction performance. Cross-validation helps to reduce variability and, therefore, limit
overfitting.

When the training size is very large, it's often sufficient to split it into
training, validation, and testing (three subsets) and conduct a
performance check on the latter two. Cross-validation is less preferable in
this case since it's computationally costly to train a model for each single
round. But if you can afford it, there's no reason not to use cross-
validation. When the size isn't so large, cross-validation is definitely a
good choice.

Getting Started with Machine Learning and Python Chapter 1

[24]

There are mainly two cross-validation schemes in use, exhaustive and non-exhaustive. In
the exhaustive scheme, we leave out a fixed number of observations in each round as
testing (or validation) samples and the remaining observations as training samples. This
process is repeated until all possible different subsets of samples are used for testing once.
For instance, we can apply Leave-One-Out-Cross-Validation (LOOCV) and let each datum
be in the testing set once. For a dataset of the size n, LOOCV requires n rounds of cross-
validation. This can be slow when n gets large. This following diagram presents the
workflow of LOOCV:

A non-exhaustive scheme, on the other hand, as the name implies, doesn't try out all
possible partitions. The most widely used type of this scheme is k-fold cross-validation.
The original data first randomly splits the data into k equal-sized folds. In each trial, one of
these folds becomes the testing set, and the rest of the data becomes the training set. We
repeat this process k times, with each fold being the designated testing set once. Finally, we
average the k sets of test results for the purpose of evaluation. Common values for k are 3, 5,
and 10. The following table illustrates the setup for five-fold:

Getting Started with Machine Learning and Python Chapter 1

[25]

K-fold cross-validation often has a lower variance compared to LOOCV, since we're using a
chunk of samples instead a single one for validation.

We can also randomly split the data into training and testing sets numerous times. This is
formally called the holdout method. The problem with this algorithm is that some samples
may never end up in the testing set, while some may be selected multiple times in the
testing set.

Last but not the least, nested cross-validation is a combination of cross-validations. It
consists of the following two phases:

Inner cross-validation: This phase is conducted to find the best fit and can be
implemented as a k-fold cross-validation
Outer cross-validation: This phase is used for performance evaluation and
statistical analysis

We'll apply cross-validation very intensively throughout this entire book. Before that, let's
look at cross-validation with an analogy next, which will help us to better understand it.

A data scientist plans to take his car to work and his goal is to arrive before 9 a.m. every
day. He needs to decide the departure time and the route to take. He tries out different
combinations of these two parameters on some Mondays, Tuesdays, and Wednesdays and
records the arrival time for each trial. He then figures out the best schedule and applies it
every day. However, it doesn't work quite as well as expected. It turns out the scheduling
model is overfit with data points gathered in the first three days and may not work well on
Thursdays and Fridays. A better solution would be to test the best combination of
parameters derived from Mondays to Wednesdays on Thursdays and Fridays and similarly
repeat this process based on different sets of learning days and testing days of the week.
This analogized cross-validation ensures the selected schedule works for the whole week.

In summary, cross-validation derives a more accurate assess of model performance by
combining measures of prediction performance on different subsets of data. This technique
not only reduces variances and avoids overfitting, but also gives an insight into how the
model will generally perform in practice.

Avoiding overfitting with regularization
Another way of preventing overfitting is regularization. Recall that the unnecessary
complexity of the model is a source of overfitting. Regularization adds extra parameters to
the error function we're trying to minimize, in order to penalize complex models.

Getting Started with Machine Learning and Python Chapter 1

[26]

According to the principle of Occam's Razor, simpler methods are to be favored. William
Occam was a monk and philosopher who, in around the year 1320, came up with the idea
that the simplest hypothesis that fits data should be preferred. One justification is that we
can invent fewer simple models than complex models. For instance, intuitively, we know
that there are more high-polynomial models than linear ones. The reason is that a line
(y=ax+b) is governed by only two parameters—the intercept b and slope a. The possible
coefficients for a line span two-dimensional space. A quadratic polynomial adds an extra
coefficient for the quadratic term, and we can span a three-dimensional space with the
coefficients. Therefore, it is much easier to find a model that perfectly captures all training
data points with a High order polynomial function, as its search space is much larger than
that of a linear function. However, these easily obtained models generalize worse than
linear models, which are more prompt to overfitting. And, of course, simpler models
require less computation time. The following diagram displays how we try to fit a Linear
function and a High order polynomial function respectively to the data:

The linear model is preferable as it may generalize better to more data points drawn from
the underlying distribution. We can use regularization to reduce the influence of the high
orders of polynomial by imposing penalties on them. This will discourage complexity, even
though a less accurate and less strict rule is learned from the training data.

We'll employ regularization quite often starting from Chapter 7, Predicting Online Ads
Click-Through with Logistic Regression. For now, next let's see an analogy to help us to
understand it better.

Getting Started with Machine Learning and Python Chapter 1

[27]

A data scientist wants to equip his robotic guard dog with the ability to identify strangers
and his friends. He feeds it with the the following learning samples:

The robot may quickly learn the following rules:

Any middle-aged female of average height without glasses and dressed in black
is a stranger
Any senior short male without glasses and dressed in black is a stranger
Anyone else is his friend

Although these perfectly fit the training data, they seem too complicated and unlikely to
generalize well to new visitors. In contrast, the data scientist limits the learning aspects. A
loose rule that can work well for hundreds of other visitors could be: anyone without
glasses dressed in black is a stranger.

Besides penalizing complexity, we can also stop a training procedure early as a form of
regularization. If we limit the time a model spends learning or we set some internal
stopping criteria, it's more likely to produce a simpler model. The model complexity will be
controlled in this way and hence overfitting becomes less probable. This approach is called
early stopping in machine learning.

Last but not least, it's worth noting that regularization should be kept at a moderate level
or, to be more precise, fine-tuned to an optimal level. Too small a regularization doesn't
make any impact; too large a regularization will result in underfitting, as it moves the
model away from the ground truth. We'll explore how to achieve optimal regularization in
Chapter 7, Predicting Online Ads Click-Through with Logistic Regression, and Chapter 9, Stock
Price Prediction with Regression Algorithms.

Getting Started with Machine Learning and Python Chapter 1

[28]

Avoiding overfitting with feature selection and
dimensionality reduction
We typically represent data as a grid of numbers (a matrix). Each column represents a
variable, which we call a feature in machine learning. In supervised learning, one of the
variables is actually not a feature, but the label that we're trying to predict. And in
supervised learning, each row is an example that we can use for training or testing.

The number of features corresponds to the dimensionality of the data. Our machine
learning approach depends on the number of dimensions versus the number of examples.
For instance, text and image data are very high dimensional, while stock market data has
relatively fewer dimensions.

Fitting high-dimensional data is computationally expensive and is prone to overfitting due
to the high complexity. Higher dimensions are also impossible to visualize, and therefore
we can't use simple diagnostic methods.

Not all of the features are useful and they may only add randomness to our results. It's
therefore often important to do good feature selection. Feature selection is the process of
picking a subset of significant features for use in better model construction. In practice, not
every feature in a dataset carries information useful for discriminating samples; some
features are either redundant or irrelevant, and hence can be discarded with little loss.

In principle, feature selection boils down to multiple binary decisions about whether to
include a feature or not. For n features, we get feature sets, which can be a very large
number for a large number of features. For example, for 10 features, we have 1,024 possible
feature sets (for instance, if we're deciding what clothes to wear, the features can be
temperature, rain, the weather forecast, where we're going, and so on). At a certain point,
brute force evaluation becomes infeasible. We'll discuss better methods in Chapter 6,
Predicting Online Ads Click-Through with Tree-Based Algorithms. Basically, we have two
options: we either start with all of the features and remove features iteratively or we start
with a minimum set of features and add features iteratively. We then take the best feature
sets for each iteration and compare them.

We'll explore how to perform feature selection mainly in Chapter 7, Predicting Online Ads
Click-Through with Logistic Regression.

Another common approach of reducing dimensionality is to transform high-dimensional
data in lower-dimensional space. It's called dimensionality reduction or feature
projection. This transformation leads to information loss, but we can keep the loss to a
minimum.

Getting Started with Machine Learning and Python Chapter 1

[29]

We'll talk about and implement dimensionality reduction in Chapter 2, Exploring the 20
Newsgroups Dataset with Text Analysis Techniques, Chapter 3, Mining the 20 Newsgroups
Dataset with Clustering and Topic Modeling Algorithms, and chapter 10, Machine Learning Best
Practices

Preprocessing, exploration, and feature
engineering
Data mining, a buzzword in the 1990s, is the predecessor of data science (the science of
data). One of the methodologies popular in the data mining community is called Cross-
Industry Standard Process for Data Mining (CRISP-DM). CRISP-DM was created in 1996
and is still used today. I'm not endorsing CRISP-DM, however, I do like its general
framework.

The CRISP DM consists of the following phases, which aren't mutually exclusive and can
occur in parallel:

Business understanding: This phase is often taken care of by specialized domain
experts. Usually, we have a business person formulate a business problem, such
as selling more units of a certain product.
Data understanding: This is also a phase that may require input from domain
experts, however, often a technical specialist needs to get involved more than in
the business understanding phase. The domain expert may be proficient with
spreadsheet programs, but have trouble with complicated data. In this book, it's
usually termed as phase exploration.
Data preparation: This is also a phase where a domain expert with only
Microsoft Excel knowledge may not be able to help you. This is the phase where
we create our training and test datasets. In this book, it's usually termed as phase
preprocessing.
Modeling: This is the phase most people associate with machine learning. In this
phase, we formulate a model and fit our data.
Evaluation: In this phase, we evaluate how well the model fits the data to check
whether we were able to solve our business problem.
Deployment: This phase usually involves setting up the system in a production
environment (it's considered good practice to have a separate production
system). Typically, this is done by a specialized team.

Getting Started with Machine Learning and Python Chapter 1

[30]

When we learn, we require high-quality learning material. We can't learn from gibberish, so
we automatically ignore anything that doesn't make sense. A machine learning system isn't
able to recognize gibberish, so we need to help it by cleaning the input data. It's often
claimed that cleaning the data forms a large part of machine learning. Sometimes cleaning
is already done for us, but you shouldn't count on it.

To decide how to clean the data, we need to be familiar with the data. There are some
projects that try to automatically explore the data and do something intelligent, such as
produce a report. For now, unfortunately, we don't have a solid solution, so you need to do
some manual work.

We can do two things, which aren't mutually exclusive: first, scan the data and second,
visualize the data. This also depends on the type of data we're dealing with—whether we
have a grid of numbers, images, audio, text, or something else. In the end, a grid of
numbers is the most convenient form, and we'll always work toward having numerical
features. Let's pretend that we have a table of numbers in the rest of this section.

We want to know whether features have missing values, how the values are distributed,
and what type of features we have. Values can approximately follow a normal distribution,
a binomial distribution, a Poisson distribution, or another distribution altogether. Features
can be binary: either yes or no, positive or negative, and so on. They can also be categorical:
pertaining to a category, for instance, continents (Africa, Asia, Europe, Latin America,
North America, and so on). Categorical variables can also be ordered, for instance, high,
medium, and low. Features can also be quantitative, for example, temperature in degrees or
price in dollars.

Feature engineering is the process of creating or improving features. It's more of a dark art
than a science. Features are often created based on common sense, domain knowledge, or
prior experience. There are certain common techniques for feature creation, however,
there's no guarantee that creating new features will improve your results. We're sometimes
able to use the clusters found by unsupervised learning as extra features. Deep neural
networks are often able to derive features automatically. We'll briefly look at several
techniques such as polynomial features, power transformations, and binning, as appetizers
in this chapter.

Getting Started with Machine Learning and Python Chapter 1

[31]

Missing values
Quite often we miss values for certain features. This could happen for various reasons. It
can be inconvenient, expensive, or even impossible to always have a value. Maybe we
weren't able to measure a certain quantity in the past because we didn't have the right
equipment or just didn't know that the feature was relevant. However, we're stuck with
missing values from the past.

Sometimes, it's easy to figure out we're missing values and we can discover this just by
scanning the data or counting the number of values we have for a feature and comparing to
the number of values we expect based on the number of rows. Certain systems encode
missing values with, for example, values such as 999,999 or -1. This makes sense if the valid
values are much smaller than 999,999. If you're lucky, you'll have information about the
features provided by whoever created the data in the form of a data dictionary or metadata.

Once we know that we're missing values, the question arises of how to deal with them. The
simplest answer is to just ignore them. However, some algorithms can't deal with missing
values, and the program will just refuse to continue. In other circumstances, ignoring
missing values will lead to inaccurate results. The second solution is to substitute missing
values with a fixed value—this is called imputing. We can impute the arithmetic mean,
median, or mode of the valid values of a certain feature. Ideally, we'll have a relation
between features or within a variable that's somewhat reliable. For instance, we may know
the seasonal averages of temperature for a certain location and be able to impute guesses
for missing temperature values given a date. We'll talk about dealing with missing data in
detail in Chapter 10, Machine Learning Best Practices. Similarly, techniques in the following
sections will be discussed and employed in later chapters, in case you feel lost.

Label encoding
Humans are able to deal with various types of values. Machine learning algorithms (with
some exceptions) need numerical values. If we offer a string such as Ivan, unless we're
using specialized software, the program won't know what to do. In this example, we're
dealing with a categorical feature—names, probably. We can consider each unique value to
be a label. (In this particular example, we also need to decide what to do with the case—is
Ivan the same as ivan?). We can then replace each label with an integer—label encoding.

Getting Started with Machine Learning and Python Chapter 1

[32]

The following example shows how label encoding works:

This approach can be problematic, because the learner may conclude that there's an order.
For example, Asia and North America in the preceding case differ by 4 after encoding,
which is a bit counter-intuitive.

One hot encoding
The one-of-K or one hot encoding scheme uses dummy variables to encode categorical
features. Originally, it was applied to digital circuits. The dummy variables have binary
values such as bits, so they take the values zero or one (equivalent to true or false). For
instance, if we want to encode continents, we'll have dummy variables, such as is_asia,
which will be true if the continent is Asia and false otherwise. In general, we need as many
dummy variables as there are unique labels minus one. We can determine one of the labels
automatically from the dummy variables, because the dummy variables are exclusive. If the
dummy variables all have a false value, then the correct label is the label for which we don't
have a dummy variable. The following table illustrates the encoding for continents:

Getting Started with Machine Learning and Python Chapter 1

[33]

The encoding produces a matrix (grid of numbers) with lots of zeroes (false values) and
occasional ones (true values). This type of matrix is called a sparse matrix. The sparse
matrix representation is handled well by the the scipy package and shouldn't be an issue.
We'll discuss the scipy package later in this chapter.

Scaling
Values of different features can differ by orders of magnitude. Sometimes, this may mean
that the larger values dominate the smaller values. This depends on the algorithm we're
using. For certain algorithms to work properly, we're required to scale the data.

There are following several common strategies that we can apply:

Standardization removes the mean of a feature and divides by the standard
deviation. If the feature values are normally distributed, we'll get a Gaussian,
which is centered around zero with a variance of one.
If the feature values aren't normally distributed, we can remove the median and
divide by the interquartile range. The interquartile range is a range between the
first and third quartile (or 25th and 75th percentile).
Scaling features to a range is a common choice of range between zero and one.

Polynomial features
If we have two features, a and b, we can suspect that there's a polynomial relation, such as
a2 + ab + b2. We can consider each term in the sum to be a feature—in this example, we have
three features. The product ab in the middle is called an interaction. An interaction doesn't
have to be a product—although this is the most common choice—it can also be a sum, a
difference, or a ratio. If we're using a ratio to avoid dividing by zero, we should add a small
constant to the divisor and dividend.

The number of features and the order of the polynomial for a polynomial relation aren't
limited. However, if we follow Occam's razor, we should avoid higher-order polynomials
and interactions of many features. In practice, complex polynomial relations tend to be
more difficult to compute and tend to overfit, but if you really need better results, they may
be worth considering.

Getting Started with Machine Learning and Python Chapter 1

[34]

Power transform
Power transforms are functions that we can use to transform numerical features into a more
convenient form to conform better to a normal distribution. A very common transform for
value, which vary by orders of magnitude, is to take the logarithm. Taking the logarithm of
a zero and negative values isn't defined, so we may need to add a constant to all of the
values of the related feature before taking the logarithm. We can also take the square root
for positive values, square the values, or compute any other power we like.

Another useful transform is the Box-Cox transformation, named after its creators. The Box-
Cox transformation attempts to find the best power needed to transform the original data
into data that's closer to the normal distribution. The transform is defined as follows:

Binning
Sometimes, it's useful to separate feature values into several bins. For example, we may be
only interested whether it rained on a particular day. Given the precipitation values, we can
binarize the values, so that we get a true value if the precipitation value isn't zero and a
false value otherwise. We can also use statistics to divide values into high, low, and
medium bins. In marketing, we often care more about the age group, such as 18 to 24, than
a specific age such as 23.

The binning process inevitably leads to loss of information. However, depending on your
goals, this may not be an issue, and actually reduces the chance of overfitting. Certainly,
there will be improvements in speed and reduction of memory or storage requirements and
redundancy.

Combining models
In high school, we sit together with other students and learn together, but we aren't
supposed to work together during the exam. The reason is, of course, that teachers want to
know what we've learned, and if we just copy exam answers from friends, we may not
have learned anything. Later in life, we discover that teamwork is important. For example,
this book is the product of a whole team or possibly a group of teams.

Getting Started with Machine Learning and Python Chapter 1

[35]

Clearly, a team can produce better results than a single person. However, this goes against
Occam's razor, since a single person can come up with simpler theories compared to what a
team will produce. In machine learning, we nevertheless prefer to have our models
cooperate with the following schemes:

Voting and averaging
Bagging
Boosting
Stacking

Voting and averaging
This is probably the most easily understood type of model aggregation. It just means the
final output will be the majority or average of prediction output values from multiple
models. It's also possible to assign different weights to each model in the ensemble, for
example, some models might consider two votes. However, combining the results of
models that are highly correlated to each other doesn't guarantee spectacular
improvements. It's better to somehow diversify the models by using different features or
different algorithms. If we find that two models are strongly correlated, we may, for
example, decide to remove one of them from the ensemble and increase proportionally the
weight of the other model.

Bagging
Bootstrap aggregating or bagging is an algorithm introduced by Leo Breiman in 1994,
which applies bootstrapping to machine learning problems. Bootstrapping is a statistical
procedure that creates datasets from existing data by sampling with replacement.
Bootstrapping can be used to analyze the possible values that arithmetic mean, variance, or
other quantity can assume.

The algorithm aims to reduce the chance of overfitting with the following steps:

We generate new training sets from input train data by sampling with1.
replacement
For each generated training set, we fit a new model2.
We combine the results of the models by averaging or majority voting3.

Getting Started with Machine Learning and Python Chapter 1

[36]

The following diagram illustrates the steps for bagging, using classification as an example:

We'll explore how to employ bagging mainly in Chapter 6, Predicting Online Ads Click-
Through with Tree-Based Algorithms.

Boosting
In the context of supervised learning, we define weak learners as learners that are just a
little better than a baseline, such as randomly assigning classes or average values. Much
like ants, weak learners are weak individually but together they have the power to do
amazing things.

Getting Started with Machine Learning and Python Chapter 1

[37]

It makes sense to take into account the strength of each individual learner using weights.
This general idea is called boosting. In boosting, all models are trained in sequence, instead
of in parallel as in bagging. Each model is trained on the same dataset, but each data
sample is under a different weight factoring, in the previous model's success. The weights
are reassigned after a model is trained, which will be used for the next training round. In
general, weights for mispredicted samples are increased to stress their prediction difficulty.

The following diagram illustrates the steps for boosting, again using classification as an
example:

Getting Started with Machine Learning and Python Chapter 1

[38]

There are many boosting algorithms; boosting algorithms differ mostly in their weighting
scheme. If you've studied for an exam, you may have applied a similar technique by
identifying the type of practice questions you had trouble with and focusing on the hard
problems.

Face detection in images is based on a specialized framework that also uses boosting.
Detecting faces in images or videos is supervised learning. We give the learner examples of
regions containing faces. There's an imbalance, since we usually have far more regions
(about 10,000 times more) that don't have faces.

A cascade of classifiers progressively filters out negative image areas stage by stage. In each
progressive stage, the classifiers use progressively more features on fewer image windows.
The idea is to spend the most time on image patches, which contain faces. In this context,
boosting is used to select features and combine results.

Stacking
Stacking takes the output values of machine learning estimators and then uses those as
input values for another algorithm. You can, of course, feed the output of the higher-level
algorithm to another predictor. It's possible to use any arbitrary topology but, for practical
reasons, you should try a simple setup first as also dictated by Occam's razor.

Installing software and setting up
As the title says, Python is the language used to implement all machine learning algorithms
and techniques throughout this entire book. We'll also use many popular Python packages
and tools such as NumPy, SciPy, TensorFlow, and Scikit-learn. So at the end of this kick-off
chapter, let's make sure we set up the tools and working environment properly, even
though some of you are already experts in Python or might be familiar with some tools.

Setting up Python and environments
We'll be using Python 3 in this book. As you may know, Python 2 will no longer be
supported after 2020, so starting with or switching to Python 3 is strongly recommended.
Trust me, the transition is pretty smooth. But if you're stuck with Python 2, you still should
be able to modify the codes to work for you. The Anaconda Python 3 distribution is one of
the best options for data science and machine learning practitioners.

Getting Started with Machine Learning and Python Chapter 1

[39]

Anaconda is a free Python distribution for data analysis and scientific computing. It has its
own package manager, conda. The distribution (https:/​/​docs.​anaconda.​com/​anaconda/
packages/​pkg-​docs/​, depending on your operating system, or version 3.6, 3.7, or 2.7)
includes more than 500 Python packages (as of 2018), which makes it very convenient. For
casual users, the Miniconda (https:/​/​conda.​io/​miniconda.​html) distribution may be the
better choice. Miniconda contains the conda package manager and Python. Obviously,
Miniconda takes more disk space than Anaconda.

The procedures to install Anaconda and Miniconda are similar. You can follow the
instructions from http:/​/​conda.​pydata.​org/​docs/​install/​quick.​html. First, you have to
download the appropriate installer for your operating system and Python version, as
follows:

Sometimes, you can choose between a GUI and a CLI. I used the Python 3 installer
although my system Python version was 2.7 at the time I installed it. This is possible since
Anaconda comes with its own Python. On my machine, the Anaconda installer created an
anaconda directory in my home directory and required about 900 MB. Similarly, the
Miniconda installer installs a miniconda directory in your home directory.

Feel free to play around with it after you set it up. One way to verify you set up Anaconda
properly is by entering the following command line in your Terminal on Linux/Mac or
Command Prompt on Windows (from now on, I'll just mention terminal):

python

The preceding command line will display your Python running environment, as shown in
the following screenshot:

https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://docs.anaconda.com/anaconda/packages/pkg-docs/
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/miniconda.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html

Getting Started with Machine Learning and Python Chapter 1

[40]

If this isn't what you're seeing, please check the system path or the path Python is running
from.

The next step is setting up some of the common packages used throughout this book.

Installing the various packages
For most projects in this book, we'll be using NumPy (http:/​/​www.​numpy.​org/​), scikit-
learn (http:/​/​scikit-​learn.​org/​stable/​), and TensorFlow (https:/​/​www.​tensorflow.
org/​). In the sections that follow, we'll cover the installation of the Python packages that
we'll be using in this book.

NumPy
NumPy is the fundamental package for machine learning with Python. It offers powerful
tools including the following:

The N-dimensional array ndarray class and several subclasses representing
matrices and arrays
Various sophisticated array functions
Useful linear algebra capabilities

Installation instructions for NumPy are at http:/​/​docs.​scipy.​org/​doc/​numpy/​user/
install.​html. Alternatively, an easier method is installing it with pip in the command line
as follows:

pip install numpy

To install conda for Anaconda users, run the following command line:

conda install numpy

A quick way to verify your installation is to import it in the shell as follows:

>>> import numpy

It's installed nicely if there's no error message.

http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html
http://docs.scipy.org/doc/numpy/user/install.html

Getting Started with Machine Learning and Python Chapter 1

[41]

SciPy
In machine learning, we mainly use NumPy arrays to store data vectors or matrices
composed of feature vectors. SciPy (https:/​/​www.​scipy.​org/​scipylib/​index.​html) uses
NumPy arrays and offers a variety of scientific and mathematical functions. Installing SciPy
in the terminal is similar, again as follows:

pip install scipy

Pandas
We also use the pandas library (https:/​/​pandas.​pydata.​org/​) for data wrangling later in
this book. The best way to get pandas is via pip or conda:

conda install pandas

Scikit-learn
The scikit-learn library is a Python machine learning package (probably the most well-
designed machine learning package I've personally ever seen) optimized for performance
as a lot of the code runs almost as fast as equivalent C code. The same statement is true for
NumPy and SciPy. Scikit-learn requires both NumPy and SciPy to be installed. As the
installation guide in http:/​/​scikit-​learn.​org/​stable/​install.​html states, the easiest
way to install scikit-learn is using pip or conda as follows:

pip install -U scikit-learn

TensorFlow
As for TensorFlow, it's a Python-friendly open source library invented by the Google Brain
team for high-performance numerical computation. It makes machine learning faster and
deep learning easier with the Python-based convenient frontend API and high-performance
C++ based backend execution. Plus, it allows easy deployment of computation across CPUs
and GPUs, which empowers expensive and large-scale machine learning. In this book, we
focus on CPU as our computation platform. Hence, according to https:/​/​www.​tensorflow.
org/​install/​, installing TensorFlow is done via the following command line:

pip install tensorflow

https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://www.scipy.org/scipylib/index.html
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/

Getting Started with Machine Learning and Python Chapter 1

[42]

There are many other packages we'll be using intensively, for example, Matplotlib for
plotting and visualization, Seaborn for visualization, NLTK for natural language
processing, and PySpark for large-scale machine learning. We'll provide installation details
for any package when we first encounter it in this book.

Summary
We just finished our first mile on the Python and machine learning journey! Throughout
this chapter, we became familiar with the basics of machine learning. We started with what
machine learning is all about, the importance of machine learning (DT era) and its brief
history, and looked at recent developments as well. We also learned typical machine
learning tasks and explored several essential techniques of working with data and working
with models. Now that we're equipped with basic machine learning knowledge and we've
set up the software and tools, let's get ready for the real-world machine learning examples
ahead.

In particular, we will be exploring newsgroups text data in our first ML project coming up
next chapter.

Exercises
Can you tell the difference between machine learning and traditional
programming (rule-based automation)?
What's overfitting and how do we avoid it?
Name two feature engineering approaches.
Name two ways to combine multiple models.
Install Matplotlib if you're interested.

2
Section 2: Practical Python

Machine Learning By Example
In this section, readers will learn several important machine learning algorithms and
techniques through the process of solving real-world problems. The journey of learning
machine learning by example includes mining natural language text data with
dimensionality reduction and clustering algorithms, content topic discovery and
categorization, online ad click-through prediction with various supervised learning
algorithms, scaling up learning to a million records, and predicting stock prices with
various regression algorithms.

This section includes the following chapters:

Chapter 2, Exploring the 20 Newsgroups Dataset with Text Analysis Techniques
Chapter 3, Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms
Chapter 4, Detecting Spam Email with Naive Bayes
Chapter 5, Classifying News Topic with Support Vector Machine
Chapter 6, Predicting Online Ads Click-Through with Tree-Based Algorithms
Chapter 7, Predicting Online Ads Click-Through with Logistic Regression
Chapter 8, Scaling Up Prediction to Terabyte Click Logs
Chapter 9, Stock Price Prediction with Regression Algorithms

2
Exploring the 20 Newsgroups

Dataset with Text Analysis
Techniques

We went through a bunch of fundamental machine learning concepts in the previous
chapter. We learned about them along with analogies, in a fun way, such as studying for
exams and designing a driving schedule. Starting from this chapter as the second step of
our learning journal, we will be discovering in detail several important machine learning
algorithms and techniques. Beyond analogies, we will be exposed to and solve real-world
examples, which makes our journey more interesting. We will start with a natural language
processing problem—exploring newsgroups data. We will gain hands-on experience in
working with text data, especially how to convert words and phrases into machine-
readable values and how to clean up words with little meaning. We will also visualize text
data by mapping it into a two-dimensional space in an unsupervised learning manner.

We will go into detail for each of the following topics:

What is NLP and its applications
NLP basics
Touring Python NLP libraries
Tokenization
Part-of-speech tagging
Named entities recognition
Stemming and lemmatization
Getting and exploring the newsgroups data

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[45]

Data visualization using seaborn and matplotlib
The Bag of words (BoW) model and token count vectorization
Text preprocessing
Stop words removal
Dimensionality reduction
T-SNE
T-SNE for text visualization

How computers understand language - NLP
In Chapter 1, Getting Started with Machine Learning and Python, it was mentioned that
machine learning driven programs or computers are good at discovering event patterns by
processing and working with data. When the data is well structured or well defined, such
as in a Microsoft Excel spreadsheet table and relational database table, it is intuitively
obvious why machine learning is better at dealing with it than humans. Computers read
such data the same way as humans, for example, revenue: 5,000,000 as the revenue
being 5 million and age: 30 as age being 30; then computers crunch assorted data and
generate insights. However, when the data is unstructured, such as words with which
humans communicate, news articles, or someone's speech in French, it seems computers
cannot understand words as well as human do (yet).

There is a lot of information in the world is words or raw text, or broadly speaking, natural
language. This refers to any language humans use to communicate with each other.
Natural language can take various forms, including, but not limited to, the following:

Text, such as a web page, SMS, email, and menus
Audio, such as speech and commands to Siri
Signs and gestures
Many others such as songs, sheet music, and Morse code

The list is endless and we are all surrounded by natural language all of the time (that's
right, right now as you are reading this book). Given the importance of this type of
unstructured data, natural language data, we must have methods to get computers to
understand and reason with natural language and to extract data from it. Programs
equipped with natural language processing techniques can already do a lot in certain areas,
which already seems magical!

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[46]

Natural language processing (NLP) is a significant subfield of machine learning, which
deals with the interactions between machines (computers) and human (natural) languages.
Natural languages are not limited to speech and conversation; they can be in writing or
sign languages as well. The data for NLP tasks can be in different forms, for example, text
from social media posts, web pages, even medical prescriptions, or audio from voice mail,
commands to control systems, or even a favorite song or movie. Nowadays, NLP has been
broadly involved in our daily lives: we cannot live without machine translation; weather
forecasts scripts are automatically generated; we find voice search convenient; we get the
answer to a question (such as what is the population of Canada) quickly thanks to
intelligent question-answering systems; speech-to-text technology helps people with special
needs.

If machines are able to understand language like humans do, we consider them intelligent.
In 1950, the famous mathematician Alan Turing proposed in an article, Computing
Machinery and Intelligence, a test as a criterion of machine intelligence. It's now called the
Turing test, and its goal is to examine whether a computer is able to adequately understand
languages so as to fool humans into thinking that this machine is another human. It is
probably no surprise to us that no computer has passed the Turing test yet. But the 1950s is
considered when the history of NLP started.

Understanding language might be difficult, but would it be easier to automatically translate
texts from one language to another? In my first ever programming course, the lab booklet
had the algorithm for coarse machine translation. We could imagine that this type of
translation involves looking something up in dictionaries and generating new text. A more
practically feasible approach would be to gather texts that are already translated by
humans and train a computer program on these texts. In 1954, scientists claimed, in the
Georgetown experiment, that machine translation would be solved in three to five years.
Unfortunately, a machine translation system that can beat human expert translators does
not exist yet. But machine translation has been greatly evolving since the introduction of
deep learning and has incredible achievements in certain areas, for example, social media
(Facebook open sourced a neural machine translation system), real-time conversation
(Skype, SwiftKey Keyboard, and Google Pixel Buds), and image-based translation.

Conversational agents, or chatbots, are another hot topic in NLP. The fact that computers
are able to have a conversation with us has reshaped the way businesses are run. In 2016,
Microsoft's AI chatbot, Tay, was unleashed to mimic a teenage girl and converse with
users on Twitter in real time. She learned how to speak from all things users posted and
commented on Twitter. However, she was overwhelmed by tweets from trolls, and
automatically learned their bad behaviors and started to output inappropriate things on her
feeds. She ended up being terminated within 24 hours.

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[47]

There are also several tasks attempting to organize knowledge and concepts in such a way
that they become easier for computer programs to manipulate. The way we organize and
represent concepts is called ontology. An ontology defines concepts and relations between
concepts. For instance, we can have a so-called triple representing the relation between two
concepts, such as Python is a language.

An important use case for NLP at a much lower level, compared to the previous cases, is
part-of-speech (PoS) tagging. A part of speech is a grammatical word category such as
noun or verb. PoS tagging tries to determine the appropriate tag for each word in a
sentence or a larger document. The following table gives examples of English POS:

Part of speech Examples
Noun David, machine
Pronoun Then, her
Adjective Awesome, amazing
Verb Read, write
Adverb Very, quite
Preposition Out, at
Conjunction And, but
Interjection Unfortunately, luckily
Article A, the

Picking up NLP basics while touring popular
NLP libraries
After a short list of real-world applications of NLP, we'll be touring the essential stack of
Python NLP libraries in this chapter. These packages handle a wide range of NLP tasks as
mentioned previously as well as others such as sentiment analysis, text classification, and
named entity recognition.

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[48]

The most famous NLP libraries in Python include the Natural Language Toolkit (NLTK),
spaCy, Gensim, and TextBlob. The scikit-learn library also has impressive NLP-related
features. Let's take a look at the following popular NLP libraries in Python:

nltk: This library (http:/​/​www.​nltk.​org/​) was originally developed for
educational purposes and is now being widely used in industries as well. It is
said that you can't talk about NLP without mentioning NLTK. It is one of the
most famous and leading platforms for building Python-based NLP applications.
You can install it simply by running the following command line in terminal:

sudo pip install -U nltk

If you're using conda, then execute the following command line:

conda install nltk

SpaCy: This library (https:/​/​spacy.​io/​) is a more powerful toolkit in the
industry than NLTK. This is mainly for two reasons: one, spaCy is written in
Cython, which is much more memory-optimized (now you see where the Cy in
spaCy comes from) and excels in NLP tasks; second, spaCy keeps using state-of-
the-art algorithms for core NLP problems, such as, convolutional neural network
(CNN) models for tagging and name entity recognition. But it could seem
advanced for beginners. In case you're interested, here's the installation
instructions.

 Run the following command line in the terminal:

pip install -U spacy

For conda, execute the following command line:

conda install -c conda-forge spacy

Gensim: This library (https:/​/​radimrehurek.​com/​gensim/​), developed by
Radim Rehurek, has been gaining popularity over recent years. It was initially
designed in 2008 to generate a list of similar articles given an article, hence the
name of this library (generate similar—> Gensim). It was later drastically improved
by Radim Rehurek in terms of its efficiency and scalability. Again, we can easily
install it via pip by running the following command line:

pip install --upgrade gensim

http://www.nltk.org/)
http://www.nltk.org/)
http://www.nltk.org/)
http://www.nltk.org/)
http://www.nltk.org/)
http://www.nltk.org/)
http://www.nltk.org/)
http://www.nltk.org/)
http://www.nltk.org/)
http://www.nltk.org/)
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://spacy.io/
https://radimrehurek.com/gensim/)
https://radimrehurek.com/gensim/)
https://radimrehurek.com/gensim/)
https://radimrehurek.com/gensim/)
https://radimrehurek.com/gensim/)
https://radimrehurek.com/gensim/)
https://radimrehurek.com/gensim/)
https://radimrehurek.com/gensim/)
https://radimrehurek.com/gensim/)
https://radimrehurek.com/gensim/)

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[49]

In the case of conda, you can perform the following command line in terminal:

conda install -c conda-forge gensim

You should make sure the dependencies, NumPy and SciPy, are already
installed before gensim.

TextBlob: This library (https:/​/​textblob.​readthedocs.​io/​en/​dev/​) is a
relatively new one built on top of NLTK. It simplifies NLP and text analysis with
easy-to-use built-in functions and methods, as well as wrappers around common
tasks. We can install TextBlob by running the following command line in the
terminal:

pip install -U textblob

TextBlob has some useful features that are not available in NLTK (currently), such
as spell checking and correction, language detection, and translation.

Corpus
As of 2018, NLTK comes with over 100 collections of large and well-structured text
datasets, which are called corpora in NLP. Corpora can be used as dictionaries for checking
word occurrences and as training pools for model learning and validating. Some useful and
interesting corpora include Web Text corpus, Twitter samples, Shakespeare corpus sample,
Sentiment Polarity, Names corpus (it contains lists of popular names, which we will be
exploring very shortly), WordNet, and the Reuters benchmark corpus. The full list can be
found at http:/​/​www.​nltk.​org/​nltk_​data. Before using any of these corpus resources, we
need to first download them by running the following codes in the Python interpreter:

>>> import nltk
>>> nltk.download()

A new window will pop up and ask us which collections (the Collections tab in the
following screenshot) or corpus (the Corpora tab in the following screenshot) to download,
and where to keep the data:

https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data
http://www.nltk.org/nltk_data

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[50]

Installing the whole popular package is the quick solution, since it contains all important
corpora needed for your current study and future research. Installing a particular corpora,
as shown in the following screenshot, is also fine:

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[51]

Once the package or corpus you want to explore is installed, we can now take a look at the
Names corpus (make sure the names corpus is installed).

First, import the corpus names:

>>> from nltk.corpus import names

We can check out the first 10 names in the list:

>>> print(names.words()[:10])
['Abagael', 'Abagail', 'Abbe', 'Abbey', 'Abbi', 'Abbie',
'Abby', 'Abigael', 'Abigail', 'Abigale']

There are, in total, 7944 names, as shown in the following output derived by executing the
following command:

>>> print(len(names.words()))
7944

Other corpora are also fun to explore.

Besides the easy-to-use and abundant corpora pool, more importantly, NLTK is also good
at many NLP and text analysis tasks including tokenization, PoS tagging, named entities
recognition, word stemming, and lemmatization.

Tokenization
Given a text sequence, tokenization is the task of breaking it into fragments, which can be
words, characters, or sentences. Sometimes, certain characters are usually removed, such as
punctuation marks, digits, and emoticons. These fragments are the so-called tokens used
for further processing. Moreover, tokens composed of one word are also called unigrams in
computational linguistics; bigrams are composed of two consecutive words; trigrams of
three consecutive words; and n-grams of n consecutive words. Here is an example of
tokenization:

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[52]

We can implement word-based tokenization using the word_tokenize function in NLTK.
We will use the input text '''I am reading a book., and in the next line, It is
Python Machine Learning By Example,, then 2nd edition.''', as an example as
shown in the following commands:

>>> from nltk.tokenize import word_tokenize
>>> sent = '''I am reading a book.
... It is Python Machine Learning By Example,
... 2nd edition.'''
>>> print(word_tokenize(sent))
['I', 'am', 'reading', 'a', 'book', '.', 'It', 'is', 'Python', 'Machine',
'Learning', 'By', 'Example', ',', '2nd', 'edition', '.']

Word tokens are obtained.

The word_tokenize function keeps punctuation marks and digits, and
only discards whitespaces and newlines.

You might think word tokenization is simply splitting a sentence by space and punctuation.
Here's an interesting example showing that tokenization is more complex than you think:

>>> sent2 = 'I have been to U.K. and U.S.A.'
>>> print(word_tokenize(sent2))
['I', 'have', 'been', 'to', 'U.K.', 'and', 'U.S.A', '.']

The tokenizer accurately recognizes the words 'U.K.' and 'U.S.A' as tokens instead of
'U' and '.' followed by 'K', for example.

SpaCy also has an outstanding tokenization feature. It uses an accurately trained model
that is constantly updated. To install it, we can run the following command:

python -m spacy download en_core_web_sm

Then, we'll load the en_core_web_sm model and parse the sentence using this model:

>>> import spacy
>>> nlp = spacy.load('en_core_web_sm')
>>> tokens2 = nlp(sent2)
>>> print([token.text for token in tokens2])
['I', 'have', 'been', 'to', 'U.K.', 'and', 'U.S.A.']

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[53]

We can also segment text based on sentence. For example, on the same input text, using the
sent_tokenize function from NLTK, we have the following commands:

>>> from nltk.tokenize import sent_tokenize
>>> print(sent_tokenize(sent))
['I am reading a book.', '...', 'It's Python Machine Learning By
Example,\n... 2nd edition.']

Two sentence-based tokens are returned, as there are two sentences in the input text
regardless of a newline following a comma.

PoS tagging
We can apply an off-the-shelf tagger from NLTK or combine multiple taggers to customize
the tagging process. It is easy to directly use the built-in tagging function, pos_tag, as
in: pos_tag(input_tokens), for instance. But behind the scene, it is actually a prediction
from a pre-built supervised learning model. The model is trained based on a large corpus
composed of words that are correctly tagged.

Reusing an earlier example, we can perform PoS tagging as follows:

>>> import nltk
>>> tokens = word_tokenize(sent)
>>> print(nltk.pos_tag(tokens))
[('I', 'PRP'), ('am', 'VBP'), ('reading', 'VBG'), ('a', 'DT'), ('book',
'NN'), ('.', '.'), ('It', 'PRP'), ('is', 'VBZ'), ('Python', 'NNP'),
('Machine', 'NNP'), ('Learning', 'NNP'), ('By', 'IN'), ('Example', 'NNP'),
(',', ','), ('2nd', 'CD'), ('edition', 'NN'), ('.', '.')]

The PoS tag following each token is returned. We can check the meaning of a tag using
the help function. Looking up PRP and VBP, for example, gives us the following output:

>>> nltk.help.upenn_tagset('PRP')
PRP: pronoun, personal
 hers herself him himself hisself it itself me myself one oneself ours
ourselves ownself self she thee theirs them themselves they thou thy us
>>> nltk.help.upenn_tagset('VBP')
VBP: verb, present tense, not 3rd person singular
 predominate wrap resort sue twist spill cure lengthen brush terminate
appear tend stray glisten obtain comprise detest tease attract emphasize
mold postpone sever return wag ...

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[54]

In spaCy, getting a PoS tag is also easy. The token object parsed from an input sentence
has an attribute called pos_, which is the tag we are looking for:

>>> print([(token.text, token.pos_) for token in tokens2])
[('I', 'PRON'), ('have', 'VERB'), ('been', 'VERB'), ('to', 'ADP'), ('U.K.',
'PROPN'), ('and', 'CCONJ'), ('U.S.A.', 'PROPN')]

Named-entity recognition
Given a text sequence, the named-entity recognition (NER) task is to locate and identify
words or phrases that are of definitive categories such as names of persons, companies,
locations, and dates. We will briefly mention it again in Chapter 4, Detecting Spam Email
with Naive Bayes.

As an appetizer, let's take a peep at an example of using spaCy for NER.

First, tokenize an input sentence, The book written by Hayden Liu in 2018 was
sold at $30 in America, as usual as shown in the following command:

>>> tokens3 = nlp('The book written by Hayden Liu in 2018 was sold at $30
in America')

The resultant token object contains an attribute called ents, which is the named entities.
We can extract the tagging for each recognized named entity as follows:

print([(token_ent.text, token_ent.label_) for token_ent in tokens3.ents])
[('Hayden Liu', 'PERSON'), ('2018', 'DATE'), ('30', 'MONEY'), ('America',
'GPE')]

We can see from the results that Hayden Liu is PERSON, 2018 is DATE, 30 is MONEY, and
America is GPE (country). Please refer to https:/​/​spacy.​io/​api/​annotation#section-
named-​entities for a full list of named entity tags.

Stemming and lemmatization
Word stemming is a process of reverting an inflected or derived word to its root form. For
instance, machine is the stem of machines, and learning and learned are generated from learn
as their stem.

https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities
https://spacy.io/api/annotation#section-named-entities

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[55]

The word lemmatization is a cautious version of stemming. It considers the PoS of a word
when conducting stemming. We will discuss these two text preprocessing techniques,
stemming and lemmatization, in further detail shortly. For now, let's take a quick look at
how they're implemented respectively in NLTK by performing the following steps:

Import porter as one of the three built-in stemming algorithms1.
(LancasterStemmer and SnowballStemmer are the other two) and initialize the
stemmer as follows:

>>> from nltk.stem.porter import PorterStemmer
>>> porter_stemmer = PorterStemmer()

Stem machines and learning, as shown in the following codes:2.

>>> porter_stemmer.stem('machines')
'machin'
>>> porter_stemmer.stem('learning')
'learn'

Stemming sometimes involves chopping of letters if necessary, as we can
see in machin in the preceding command output.

Now import a lemmatization algorithm based on the built-in WordNet corpus3.
and initialize a lemmatizer:

>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer()

Similar to stemming, we lemmatize machines, learning:

>>> lemmatizer.lemmatize('machines')
'machine'
>>> lemmatizer.lemmatize('learning')
'learning'

Why is learning unchanged? It turns out that this algorithm only lemmatizes on
nouns by default.

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[56]

Semantics and topic modeling
Gensim is famous for its powerful semantic and topic modeling algorithms. Topic
modeling is a typical text mining task of discovering the hidden semantic structures in a
document. Semantic structure in plain English is the distribution of word occurrences. It is
obviously an unsupervised learning task. What we need to do is to feed in plain text and let
the model figure out the abstract "topics". We will study topic modeling in detail in Chapter
3, Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms.

In addition to robust semantic modeling methods, gensim also provides the following
functionalities:

Word embedding: Also known as word vectorization, this is an innovative way
to represent words while preserving words' co-occurrence features. We will
study word embedding in detail in Chapter 10, Machine Learning Best Practices.
Similarity querying: This functionality retrieves objects that are similar to the
given query object. It's a feature built on top of word embedding.
Distributed computing: This functionality makes it possible to efficiently learn
from millions of documents.

Last but not least, as mentioned in the first chapter, scikit-learn is the main package we use
throughout this entire book. Luckily, it provides all text processing features we need, such
as tokenization, besides comprehensive machine learning functionalities. Plus, it comes
with a built-in loader for the 20 newsgroups dataset.

Now that the tools are available and properly installed, what about the data?

Getting the newsgroups data
The first project in this book is about the 20 newsgroups dataset. It's composed of text taken
from newsgroup articles, as its name implies. It was originally collected by Ken Lang and
now has been widely used for experiments in text applications of machine learning
techniques, specifically NLP techniques.

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[57]

The data contains approximately 20,000 documents across 20 online newsgroups. A
newsgroup is a place on the internet where people can ask and answer questions about a
certain topic. The data is already cleaned to a certain degree and already split into training
and testing sets. The cutoff point is at a certain date.

The original data comes from http:/​/​qwone.​com/​~jason/​20Newsgroups/​, with 20 different
topics listed, as follows:

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

sci.crypt

sci.electronics

sci.med

sci.space

misc.forsale

talk.politics.misc

talk.politics.guns

talk.politics.mideast

talk.religion.misc

alt.atheism

soc.religion.christian

All of the documents in the dataset are in English. And we can easily deduce the topics
from the newsgroups names.

The dataset is labeled and each document is composed of text data and a group label.
This also makes it a perfect fit for supervised learning, such as text classification. And we
will explore it in detail in Chapter 5, Classifying Newsgroup Topic with Support Vector
Machine.

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[58]

Some of the newsgroups are closely related or even overlapping, for instance, those five
computer groups (comp.graphics, comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, and comp.windows.x), while
some are not closely related to each other, such as Christian (soc.religion.christian)
and baseball (rec.sport.baseball). Hence, it's a perfect use case for unsupervised
learning such as clustering with which we can see whether similar topics are grouped
together and unrelated ones are far apart. Moreover, we can even discover abstract topics
beyond the original 20 labels using topic modeling techniques. We will explore clustering
and topic modeling in detail in Chapter 3, Mining the 20 Newsgroups Dataset with Clustering
and Topic Modeling Algorithms.

For now, let's focus on exploring and analyzing the text data. We shall get started with
acquiring the data.

It is possible to download the dataset manually from the original website or many other
online repositories. However, there are also many versions of the dataset—some are
cleaned in a certain way and some are in raw form. To avoid confusion, it is best to use a
consistent acquisition method. The scikit-learn library provides a utility function that loads
the dataset. Once the dataset is downloaded, it's automatically cached. We don't need to
download the same dataset twice.

In most cases, caching the dataset, especially for a relatively small one, is
considered a good practice. Other Python libraries also provide data
download utilities, but not all of them implement automatic caching. This
is another reason why we love scikit-learn.

As always, we first import the loader function for the 20 newsgroups data, as follows:

>>> from sklearn.datasets import fetch_20newsgroups

Then, we download the dataset with all default parameters as follows:

>>> groups = fetch_20newsgroups()
Downloading 20news dataset. This may take a few minutes.
Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14
MB)

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[59]

We can also specify one or more certain topic groups and particular sections (training,
testing, or both) and just load such a subset of data in the program. The full list of
parameters and options for the loader function is summarized in the following table:

You might find random_state interesting. Why do we need to it and why do we need to
fix it? It's actually used for the purpose of reproducibility. You are able to get the same
dataset every time you run the script. Otherwise, working on datasets shuffled under
different orders might bring in unnecessary variations.

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[60]

Exploring the newsgroups data
After we download the 20 newsgroups dataset by whatever means we prefer, the data
object of groups is now cached in memory. The data object is in the form of key-value
dictionary. Its keys are as follows:

>>> groups.keys()
dict_keys(['data', 'filenames', 'target_names', 'target', 'DESCR'])

The target_names key gives the newsgroups names:

>>> groups['target_names']
 ['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x',
'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball',
'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space',
'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast',
'talk.politics.misc', 'talk.religion.misc']

The target key corresponds to a newsgroup but is encoded as an integer:

>>> groups.target
array([7, 4, 4, ..., 3, 1, 8])

Then what are the distinct values for these integers? We can use the unique function from
NumPy to figure it out:

>>> import numpy as np
>>> np.unique(groups.target)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19])

They're ranging from 0 to 19, representing the 1st, 2nd, 3rd, …, 20th newsgroup topics in
groups['target_names'].

In the context of multiple topics or categories, it is important to know what the distribution
of topics is. A uniform class distribution is the easiest to deal with, because there are no
under-represented or over-represented categories. However, frequently we have a skewed
distribution with one or more categories dominating. We herein use the seaborn package
(https:/​/​seaborn.​pydata.​org/​) to compute the histogram of categories and plot it
utilizing the matplotlib package (https:/​/​matplotlib.​org/​). We can install both
packages via pip as follows:

python -m pip install -U matplotlib
pip install seaborn

https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)
https://matplotlib.org/)

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[61]

In the case of conda, you can execute the following command line:

conda install -c conda-forge matplotlib
conda install seaborn

Remember to install matplotlib before seaborn as matplotlib is one of the
dependencies of the seaborn package.

Now let's display the distribution of the classes as follows:

>>> import seaborn as sns
>>> sns.distplot(groups.target)
<matplotlib.axes._subplots.AxesSubplot object at 0x108ada6a0>
>>> import matplotlib.pyplot as plt
>>> plt.show()

Refer to the following screenshot for the end result:

As we can see, the distribution is approximately uniform so that's one less thing to worry
about.

It's good to visualize to get a general idea of how the data is structured,
what possible issues may arise, and whether there are any irregularities
that we have to take care of.

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[62]

Other keys are quite self-explanatory: data contains all newsgroups documents and
filenames stores the path where each document is located in your filesystem.

Now, let's now have a look at the first document and its topic number and name by
executing the following command:

>>> groups.data[0]
"From: lerxst@wam.umd.edu (where's my thing)\nSubject: WHAT car is
this!?\nNntp-Posting-Host: rac3.wam.umd.edu\nOrganization: University of
Maryland, College Park\nLines: 15\n\n I was wondering if anyone out there
could enlighten me on this car I saw\nthe other day. It was a 2-door sports
car, looked to be from the late 60s/\nearly 70s. It was called a Bricklin.
The doors were really small. In addition,\nthe front bumper was separate
from the rest of the body. This is \nall I know. If anyone can tellme a
model name, engine specs, years\nof production, where this car is made,
history, or whatever info you\nhave on this funky looking car, please e-
mail.\n\nThanks,\n- IL\n ---- brought to you by your neighborhood Lerxst --
--\n\n\n\n\n"
>>> groups.target[0]
7
>>> groups.target_names[groups.target[0]]
'rec.autos'

If random_state isn't fixed (42 by default), you may get different results
running the preceding scripts.

As we can see, the first document is from the rec.autos newsgroup, which was assigned
the number 7. Reading this post, we can easily figure out it's about cars. The word car
actually occurs a number of times in the document. Words such as bumper also seem very
car-oriented. However, words such as doors may not necessarily be car related, as they
may also be associated with home improvement or another topic. As a side note, it makes
sense to not distinguish between doors and door, or the same word with different
capitalization such as Doors. There are some rare cases where capitalization does matter,
for instance, if we're trying to find out whether a document is about the band called The
Doors or the more common concept, the doors (in wood).

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[63]

Thinking about features for text data
From the preceding analysis, we can safely conclude that, if we want to figure out whether
a document was from the rec.autos newsgroup, the presence or absence of words such as
car, doors, and bumper can be very useful features. The presence or not of a word is a
boolean variable, and we can also propose looking at the count of certain words. For
instance, car occurs multiple times in the document. Maybe the more times such a word is
found in a text, the more likely it is that the document has something to do with cars.

Counting the occurrence of each word token
It seems that we are only interested in the occurrence of certain words, their count, or a
related measure and not in the order of the words. We can therefore view a text as a
collection of words. This is called the Bag of Words (BoW) model. This is a very basic
model, but it works pretty well in practice. We can optionally define a more complex model
that takes into account the order of words and PoS tags. However, such a model is going to
be more computationally expensive and more difficult to program. In reality, the basic BoW
model in most cases suffices. Have a doubt? We can give it a shot and see whether the BoW
model makes sense.

We start with converting documents into a matrix where each row represents each
newsgroup document and each column represents a word token, or specifically, a unigram
to begin with. And the value of each element in the matrix is the number of times the word
(column) occurs in the document (row). We are utilizing the CountVectorizer class from
scikit-learn to do the work:

>>> from sklearn.feature_extraction.text import CountVectorizer

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[64]

The important parameters and options for the count conversion function are summarized
in the following table:

We first initialize the count vectorizer with 500 top features (500 most frequent tokens):

>>> count_vector = CountVectorizer(max_features=500)

Use it to fit on the raw text data as follows:

>>> data_count = count_vector.fit_transform(groups.data)

Now the count vectorizer captures the top 500 features and generates a token count matrix
out of the original text input:

>>> data_count
<11314x500 sparse matrix of type '<class 'numpy.int64'>'
 with 798221 stored elements in Compressed Sparse Row format>
>>> data_count[0]
<1x500 sparse matrix of type '<class 'numpy.int64'>'
 with 53 stored elements in Compressed Sparse Row format>

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[65]

The resulting count matrix is a sparse matrix where each row only stores non-zero elements
(hence, only 798,221 elements instead of 11314 * 500 = 5,657,000). For example, the first
document is converted into a sparse vector composed of 53 non-zero elements. If you are
interested in seeing the whole matrix, feel free to run the following:

>>> data_count.toarray()

If you just want the first row, run the following:

>>> data_count.toarray()[0]

Let's take a look at the following output derived from the preceding command:

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[66]

So what are those 500 top features? They can be found in the following output:

>>> print(count_vector.get_feature_names())
['00', '000', '10', '100', '11', '12', '13', '14', '145', '15', '16', '17',
'18', '19', '1993', '20', '21', '22', '23', '24', '25', '26', '27', '30',
'32', '34', '40', '50', '93', 'a86', 'able', 'about', 'above', 'ac',
'access', 'actually', 'address', 'after', 'again', 'against', 'ago', 'all',
'already', 'also', 'always', 'am', 'american', 'an', 'and', 'andrew',
'another', 'answer', 'any', 'anyone', 'anything', 'apple', 'apr', 'april',
'are', 'armenian', 'around', 'article', 'as', 'ask', 'at', 'au',
'available', 'away', 'ax', 'b8f', 'back', 'bad', 'based', 'be', 'because',
'been',
……
……
……
, 'that', 'the', 'their', 'them', 'then', 'there', 'these', 'they',
'thing', 'things', 'think', 'this', 'those', 'though', 'thought', 'three',
'through', 'time', 'times', 'to', 'today', 'told', 'too', 'true', 'try',
'trying', 'turkish', 'two', 'type', 'uiuc', 'uk', 'under', 'university',
'unix', 'until', 'up', 'us', 'usa', 'use', 'used', 'using', 'uucp', 've',
'version', 'very', 'vs', 'want', 'war', 'was', 'washington', 'way', 'we',
'well', 'were', 'what', 'when', 'where', 'whether', 'which', 'while',
'who', 'whole', 'why', 'will', 'win', 'window', 'windows', 'with',
'without', 'won', 'word', 'work', 'works', 'world', 'would', 'writes',
'wrong', 'wrote', 'year', 'years', 'yes', 'yet', 'you', 'your']

Our first trial doesn't look perfect. Obviously, the most popular tokens are numbers, or
letters with numbers such as a86, which do not convey important information. Moreover,
there are many words that have no actual meaning, such as you, the, them, and then.
Also, some words contain identical information, for example, tell and told, use and
used, and time and times. Let's tackle these issues.

Text preprocessing
We start with retaining letter-only words so that numbers such as 00 and 000 and
combinations of letter and number such as b8f will be removed. The filter function is
defined as follows:

>>> def is_letter_only(word):
... for char in word:
... if not char.isalpha():
... return False
... return True
...
>>> data_cleaned = []

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[67]

>>> for doc in groups.data:
... doc_cleaned = ' '.join(word for word in doc.split()
 if is_letter_only(word))
... data_cleaned.append(doc_cleaned)

It will generate a cleaned version of the newsgroups data.

Dropping stop words
We didn't talk about stop_words as an important parameter in CountVectorizer. Stop
words are those common words that provide little value in helping documents differentiate
themselves. In general, stop words add noise to the BoW model and can be removed.

There's no universal list of stop words. Hence, depending on the tools or packages you are
using, you will remove different sets of stop words. Take scikit-learn as an example—you
can check the list as follows:

>>> from sklearn.feature_extraction import stop_words
>>> print(stop_words.ENGLISH_STOP_WORDS)
frozenset({'most', 'three', 'between', 'anyway', 'made', 'mine', 'none',
'could', 'last', 'whenever', 'cant', 'more', 'where', 'becomes', 'its',
'this', 'front', 'interest', 'least', 're', 'it', 'every', 'four', 'else',
'over', 'any', 'very', 'well', 'never', 'keep', 'no', 'anything', 'itself',
'alone', 'anyhow', 'until', 'therefore', 'only', 'the', 'even', 'so',
'latterly', 'above', 'hereafter', 'hereby', 'may', 'myself', 'all',
'those', 'down',
……
……
'him', 'somehow', 'or', 'per', 'nowhere', 'fifteen', 'via', 'must',
'someone', 'from', 'full', 'that', 'beyond', 'still', 'to', 'get',
'himself', 'however', 'as', 'forty', 'whatever', 'his', 'nothing',
'though', 'almost', 'become', 'call', 'empty', 'herein', 'than', 'while',
'bill', 'thru', 'mostly', 'yourself', 'up', 'former', 'each', 'anyone',
'hundred', 'several', 'others', 'along', 'bottom', 'one', 'five',
'therein', 'was', 'ever', 'beside', 'everyone'})

To drop stop words from the newsgroups data, we simply just need to specify the
stop_words parameter:

>>> count_vector_sw = CountVectorizer(stop_words="english",
max_features=500)

Besides stop words, you may notice names are included in the top features, such
as andrew. We can filter names with the Name corpus from NLTK we just worked with.

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[68]

Stemming and lemmatizing words
As mentioned earlier, we have two basic strategies to deal with words from the same
root—stemming and lemmatization. Stemming is a quicker approach that involves, if
necessary, chopping off letters, for example, words becomes word after stemming. The result
of stemming doesn't have to be a valid word. For instance, trying and try become tri.
Lemmatizing, on the other hand, is slower but more accurate. It performs a dictionary
lookup and guarantees to return a valid word. Recall we have implemented both stemming
and lemmatization using NLTK in a previous section.

Putting all of these (preprocessing, dropping stop words, lemmatizing, and count
vectorizing) together, we obtain the following:

>>> from nltk.corpus import names
>>> all_names = set(names.words())
>>> count_vector_sw = CountVectorizer(stop_words="english",
max_features=500)
>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer()
>>> data_cleaned = []
>>> for doc in groups.data:
... doc = doc.lower()
... doc_cleaned = ' '.join(lemmatizer.lemmatize(word)
 for word in doc.split()
 if is_letter_only(word) and
 word not in all_names)
... data_cleaned.append(doc_cleaned)
>>> data_cleaned_count = count_vector_sw.fit_transform(data_cleaned)

Now the features are much more meaningful:

>>> print(count_vector_sw.get_feature_names())
['able', 'accept', 'access', 'according', 'act', 'action', 'actually',
'add', 'address', 'ago', 'agree', 'algorithm', 'allow', 'american',
'anonymous', 'answer', 'anybody', 'apple', 'application', 'apr', 'april',
'arab', 'area', 'argument', 'armenian', 'article', 'ask', 'asked',
'assume', 'atheist', 'attack', 'attempt', 'available', 'away', 'bad',
'based', 'belief', 'believe', 'best', 'better', 'bible', 'big', 'bike',
'bit', 'black', 'board', 'body', 'book', 'box', 'build', 'bus', 'buy',
'ca', 'california', 'called', 'came', 'canada', 'car', 'card', 'care',
'carry', 'case', 'cause', 'center', 'certain', 'certainly', 'chance',
'change', 'check', 'child', 'chip', 'christian', 'church', 'city', 'claim',
'clear', 'clinton', 'clipper', 'code', 'college', 'color', 'come',
'coming', 'command', 'comment', 'common', 'communication', 'company',
'computer', 'consider', 'considered', 'contact', 'control', 'copy',
……
……

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[69]

'short', 'shot', 'similar', 'simple', 'simply', 'single', 'site',
'situation', 'size', 'small', 'software', 'sort', 'sound', 'source',
'space', 'special', 'specific', 'speed', 'standard', 'start', 'started',
'state', 'statement', 'steve', 'stop', 'strong', 'study', 'stuff',
'subject', 'sun', 'support', 'sure', 'taken', 'taking', 'talk', 'talking',
'tape', 'tax', 'team', 'technical', 'technology', 'tell', 'term', 'test',
'texas', 'text', 'thanks', 'thing', 'think', 'thinking', 'thought', 'time',
'tin', 'today', 'told', 'took', 'total', 'tried', 'true', 'truth', 'try',
'trying', 'turkish', 'turn', 'type', 'understand', 'united', 'university',
'unix', 'unless', 'usa', 'use', 'used', 'user', 'using', 'usually',
'value', 'various', 'version', 'video', 'view', 'wa', 'want', 'wanted',
'war', 'water', 'way', 'weapon', 'week', 'went', 'western', 'white',
'widget', 'win', 'window', 'woman', 'word', 'work', 'working', 'world',
'worth', 'write', 'written', 'wrong', 'year', 'york', 'young']

Visualizing the newsgroups data with t-SNE
We have just converted text from each raw newsgroup document into a sparse vector of a
size of 500. For a vector from a document, each element represents the number of times a
word token occurring in this document. Also, these 500 word tokens are selected based on
their overall occurrences after text preprocessing, removal of stop words, and
lemmatization. Now you may ask questions such as, is such occurrence vector
representative enough, or does such an occurrence vector convey enough information that
can be used to differentiate the document itself from documents on other topics? We can
answer these questions easily by visualizing those representation vectors—we did a good
job if document vectors from the same topic are nearby. But how? They are of 500
dimensions, while we can visualize data of at most three dimensions. We can resort to t-
SNE for dimensionality reduction.

What is dimensionality reduction?
Dimensionality reduction is an important machine learning technique that reduces the
number of features and, at the same time, retains as much information as possible. It is
usually performed by obtaining a set of new principal features.

As mentioned before, it is difficult to visualize data of high dimension. Given a three-
dimensional plot, we sometimes don't even find it too straightforward to observe any
findings, not to mention 10, 100, or 1,000 dimensions. Moreover, some of the features in
high dimensional data may be correlated and, as a result, bring in redundancy. This is why
we need dimensionality reduction.

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[70]

Dimensionality reduction is not simply taking out a pair of two features from the original
feature space. It is transforming the original feature space to a new space of fewer
dimensions. The data transformation can be linear, such as the famous one principal
component analysis (PCA), which maximizes the variance of projected data, or nonlinear,
such as neural networks and t-SNE coming up shortly. For instance, in PCA, it maps the
data in a higher dimensional space to a lower dimensional space where the variance of the
data is maximized. Non-negative matrix factorization (NMF) is another powerful
algorithm, which we'll study in detail in Chapter 3, Mining the 20 Newsgroups Dataset with
Clustering and Topic Modeling Algorithms.

At the end of the day, most dimensionality reduction algorithms are in the family of
unsupervised learning as the target or label information (if available) is not used in data
transformation.

t-SNE for dimensionality reduction
t-SNE stands for t-distributed Stochastic Neighbor Embedding. It's a nonlinear
dimensionality reduction technique developed by Laurens van der Maaten and Geoffrey
Hinton. t-SNE has been widely used for data visualization in various domains, including
computer vision, NLP, bioinformatics, and computational genomics.

As its name implies, t-SNE embeds high-dimensional data into a low-dimensional (usually
two-dimensional or three-dimensional) space where similarity among data samples
(neighbor information) is preserved. It first models a probability distribution over
neighbors around data points by assigning a high probability to similar data points and an
extremely small probability to dissimilar ones. Note that similar and neighbor are
measured by Euclidean distance or other metrics. Then, it constructs a projection onto a
low-dimensional space where the divergence between the input distribution and output
distribution is minimized. The original high-dimensional space is modeled as Gaussian
distribution, while the output low-dimensional space is modeled as t-distribution.

We'll herein implement t-SNE using the TSNE class from scikit-learn:

>>> from sklearn.manifold import TSNE

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[71]

Now let's use t-SNE to verify our count vector representation.

We pick three distinct topics, talk.religion.misc, comp.graphics, and sci.space,
and visualize documents vectors from these three topics.

First, just load documents of these three labels, as follows:

>>> categories_3 = ['talk.religion.misc', 'comp.graphics', 'sci.space']
>>> groups_3 = fetch_20newsgroups(categories=categories_3)

It goes through the same process and generates a count matrix, data_cleaned_count_3,
with 500 features from the input, groups_3. You can refer to steps in previous sections as
you just need to repeat the same code.

Next, we apply t-SNE to reduce the 500-dimensional matrix to two-dimensional matrix:

>>> tsne_model = TSNE(n_components=2, perplexity=40,
 random_state=42, learning_rate=500)
>>> data_tsne = tsne_model.fit_transform(data_cleaned_count_3.toarray())

The parameters we specify in the TSNE object are as follows:

n_components: The output dimension
perplexity: The number of nearest data points considered neighbors in the
algorithm with a typical value of between 5 and 50
random_state: The random seed for program reproducibility
learning_rate: The factor affecting the process of finding the optimal mapping
space with a typical value of between 10 and 1,000

Note, the TSNE object only takes in dense matrix, hence we convert the sparse
matrix, data_cleaned_count_3, into a dense one using toarray().

We just successfully reduce the input dimension from 500 to 2. Finally, we can easily
visualize it in a two-dimensional scatter plot where x axis is the first dimension, y axis is the
second dimension, and the color, c, is based on the topic label of each original document:

>>> import matplotlib.pyplot as plt
>>> plt.scatter(data_tsne[:, 0], data_tsne[:, 1], c=groups_3.target)
>>> plt.show()

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[72]

Refer to the following screenshot for the end result:

Data points from the three topics are in different colors such as green, purple, and yellow.
We can observe three clear clusters. Data points from the same topic are close to each other
while those from different topics are far away. Obviously, count vectors are great
representations for original text data as they preserve distinction among three different
topics.

You can also play around with the parameters and see whether you can obtain a nicer plot
where the three clusters are better separated.

Count vectorization does well in keeping document disparity. How about maintaining
similarity? We can also check that using documents from overlapping topics, such as five
topics, comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, and comp.windows.x:

>>> categories_5 = ['comp.graphics', 'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x']
>>> groups_5 = fetch_20newsgroups(categories=categories_5)

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[73]

Similar processes (including text clean-up, count vectorization, and t-SNE) are repeated and
the resulting plot is displayed as follows:

Data points from those five computer-related topics are all over the place, which means
they are contextually similar. To conclude, count vectors are great representations for
original text data as they are also good at preserving similarity among related topics.

Summary
In this chapter, we acquired the fundamental concepts of NLP as an important subfield in
machine learning, including tokenization, stemming and lemmatization, and PoS tagging.
We also explored three powerful NLP packages and realized some common tasks using
NLTK and spaCy. Then, we continued with the main project exploring newsgroups data.
We started with extracting features with tokenization techniques and went through text
preprocessing, stop words removal, and stemming and lemmatization. We then performed
dimensionality reduction and visualization with t-SNE and proved that count vectorization
is a good representation for text data.

We had some fun mining the newsgroups data using dimensionality reduction as an
unsupervised approach. Moving forward in the next chapter, we'll be continuing our
unsupervised learning journey, specifically on topic modeling and clustering.

Exploring the 20 Newsgroups Dataset with Text Analysis Techniques Chapter 2

[74]

Exercises
Do you think all of the top 500 word tokens contain valuable information? If not,
can you impose another list of stop words?
Can you use stemming instead of lemmatization to process the newsgroups
data?
Can you increase max_features in CountVectorizer from 500 to 5000 and
see how the t-SNE visualization will be affected?
Try visualizing documents from six topics (similar or dissimilar) and tweak
parameters so that the formed clusters look reasonable.

3
Mining the 20 Newsgroups

Dataset with Clustering and
Topic Modeling Algorithms

In the previous chapter, we went through a text visualization using t-SNE. T-SNE, or any
dimensionality reduction algorithm, is a type of unsupervised learning. Moving forward in
this chapter, we will be continuing our unsupervised learning journey, specifically focusing
specifically on clustering and topic modeling. We will start with how unsupervised
learning learns without guidance and how it is good at discovering hidden information
underneath data. Then we will talk about clustering as an important branch of
unsupervised learning, which identifies different groups of observations from data. For
instance, clustering is useful for market segmentation where consumers of similar
behaviors are grouped into one segment for marketing purposes. We will perform
clustering on the 20 newsgroups text dataset and see what clusters will be produced.
Another unsupervised learning route we take is topic modeling, which is the process of
extracting themes hidden in the dataset. You will be amused by how many interesting
themes we are able to mine from the 20 newsgroups dataset.

We will cover the following topics:

What is unsupervised learning?
Types of unsupervised learning
What is k-means clustering and how does it work?
Implementing k-means clustering from scratch
Implementing k-means with scikit-learn
Optimizing k-means clustering models
Term frequency-inverse document frequency

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[76]

Clustering newsgroups data using k-means
What is topic modeling?
Non-negative matrix factorization for topic modeling
latent Dirichlet allocation for topic modeling
Topic modeling on newsgroups data

Learning without guidance – unsupervised
learning
In the previous chapter, we apply t-SNE to visualize the newsgroup text data in reduced 2
dimensions. T-SNE, or dimensionality reduction in general, is a type of unsupervised
learning. Instead of having a teacher educating what particular output to produce, be it a
class or membership (classification), be it a continuous value (regression), unsupervised
learning identifies inherent structures or commonalities in the input data. Since there is no
guidance in unsupervised learning, there is no clear answer on what is a right or wrong
result. Unsupervised learning has the freedom to discover hidden information underneath
input data.

An easy way to understand unsupervised learning is to think of going through many
practice questions for an exam. In supervised learning, you are given answers to those
practice questions. You basically figure out the relationship between the questions and
answers and learn how to map the questions to the answers. Hopefully, you will do well in
the actual exam in the end by giving the correct answers. However, in unsupervised
learning, you are not provided with the answers to those practice questions. What you
might do in this instance could include the following:

Grouping similar practice questions so that you can later study related questions
together at one time
Finding questions that are highly repetitive so that you will not waste time on
those
Spotting rare questions so that you can be better prepared for them
Extracting the key chunk of each question by removing boilerplate so you can cut
to the point

You will notice that the outcomes of all these tasks are pretty open-ended. They are correct
as long as they are able to describe the commonality, the structure underneath the data.

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[77]

Practice questions are the features in machine learning, which are also often called
attributes, observations, or predictive variables. Answers to questions are the labels in
machine learning, which are also called targets or target variables. Practice questions
with answers provided are labeled data. On the contrary, practice questions without
answers are unlabeled data. Unsupervised learning works with unlabeled data and acts on
that information without guidance.

Unsupervised learning can include the following types:

Clustering: This means grouping data based on commonality, which is often
used for exploratory data analysis. Grouping similar practice questions
mentioned earlier is an example of clustering. Clustering techniques are widely
used in customer segmentation or for grouping similar online behaviors for a
marketing campaign.
Association: This explores the co-occurrence of particular values of two or more
features. Outlier detection (also called anomaly detection) is a typical case, where
rare observations are identified. Spotting rare questions in the preceding example
can be solved using outlier detection techniques.
Projection: This maps the original feature space to a reduced dimensional space
retaining or extracting a set of principal variables. Extracting the key chunk of
practice questions is an example projection, or specifically a dimensionality
reduction.

Unsupervised learning is extensively employed in the area of NLP mainly because of the
difficulty of obtaining labeled text data. Unlike numerical data, such as house and stock
data, online click streams, labeling text can sometimes be subjective, manual, and tedious.
Unsupervised learning algorithms that do not require labels become effective when it
comes to mining text data. In chapter 2 Exploring the 20 Newsgroups Dataset with Text
Analysis Techniques, we have experienced using t-SNE to reduce dimensionality of text data.
Now, let's explore text mining with clustering algorithms and topic modeling techniques.
We start with clustering the newsgroups data.

Clustering newsgroups data using k-means
The newsgroups data comes with labels, the categories of the newsgroups, and a number of
categories that are closely related or even overlapping, for instance, the five computer
groups: comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, and comp.windows.x, and the two religion-related ones,
alt.atheism and talk.religion.misc.

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[78]

Assuming those labels do not exist, will samples from related topics be clustered together?
We, herein, resort to the k-means clustering algorithm.

How does k-means clustering work?
The goal of the k-means algorithm is to partition the data into k groups based on feature
similarities. K is a predefined property of a k-means clustering model. Each of the k clusters
are specified by a centroid (center of a cluster) and each data sample belongs to the cluster
with the nearest centroid. During training, the algorithm iteratively updates the k centroids
based on the data provided. Specifically, it involves the following steps:

Specifying k: The algorithm needs to know how many clusters to generate as an1.
end result.
Initializing centroids: The algorithm starts with randomly selecting k samples2.
from the dataset as centroids.
Assigning clusters: Now that we have k centroids, samples that share the same3.
closest centroid constitute one cluster. K clusters are created as a result. Note
that, closeness is usually measured by the Euclidean distance. Other metrics can
also be used, such as the Manhattan distance and Chebyshev distance, which
are listed in the following table:

Updating centroids: For each cluster, we need to recalculate its center point,4.
which is the mean of all the samples in the cluster. K centroids are updated to be
the means of corresponding clusters. This is why the algorithm is called k-means.
Repeating step 3 and 4: It keeps repeating assigning clusters and updating5.
centroids until the model is converged where the centroids stop moving or move
small enough, or enough iterations have been taken.

The outputs of a trained k-means clustering model include the following:

The cluster ID of each training sample, ranging from 1 to k
K centroids, which can be used to cluster new samples—the new sample will
belong to the cluster of the closest centroid

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[79]

It is very easy to understand the k-means clustering algorithm and its implementation is
also straightforward, as we will discover next.

Implementing k-means from scratch
We use the iris dataset from scikit-learn as an example. Let's first load the data and
visualize it. We herein only use two features out of the original four for simplicity:

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X = iris.data[:, 2:4]
>>> y = iris.target

Since the dataset contains three iris classes, we plot it in three different colors, as follows:

>>> import numpy as np
>>> from matplotlib import pyplot as plt
>>> y_0 = np.where(y==0)
>>> plt.scatter(X[y_0, 0], X[y_0, 1])
>>> y_1 = np.where(y==1)
>>> plt.scatter(X[y_1, 0], X[y_1, 1])
>>> y_2 = np.where(y==2)
>>> plt.scatter(X[y_2, 0], X[y_2, 1])
>>> plt.show()

This will give you the following output for the origin data plot:

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[80]

Assuming we know nothing about the label y, we try to cluster the data into three groups,
as there seem to be three crows in the preceding plot (or you may say two, which we will
come back to later). Let's perform step 1, specifying k, and step 2, initializing centroids, by
randomly selecting three samples as initial centroids:

>>> k = 3
>>> random_index = np.random.choice(range(len(X)), k)
>>> centroids = X[random_index]

We visualize the data (without labels any more) along with the initial random centroids:

>>> def visualize_centroids(X, centroids):
... plt.scatter(X[:, 0], X[:, 1])
... plt.scatter(centroids[:, 0], centroids[:, 1], marker='*',
 s=200, c='#050505')
... plt.show()
>>> visualize_centroids(X, centroids)

Refer to the following screenshot for the data, along with the initial random centroids:

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[81]

Now we perform step 3, which entails assigning clusters based on the nearest centroids.
First, we need to define a function calculating distance that is measured by the Euclidean
distance, as demonstrated herein:

>>> def dist(a, b):
... return np.linalg.norm(a - b, axis=1)

Then, we develop a function that assigns a sample to the cluster of the nearest centroid:

>>> def assign_cluster(x, centroids):
... distances = dist(x, centroids)
... cluster = np.argmin(distances)
... return cluster

With the clusters assigned, we perform step 4, which involves updating the centroids to the
mean of all samples in the individual clusters:

>>> def update_centroids(X, centroids, clusters):
... for i in range(k):
... cluster_i = np.where(clusters == i)
... centroids[i] = np.mean(X[cluster_i], axis=0)

Finally, we have step 5, which involves repeating step 3 and step 4 until the model converges
and whichever of the following occurs:

Centroids move small enough
Sufficient iterations have been taken

We set the tolerance of the first condition and the maximum number of iterations as
follows:

>>> tol = 0.0001
>>> max_iter = 100

Initialize their starting values, along with the starting clusters for all samples as follows:

>>> iter = 0
>>> centroids_diff = 100000
>>> clusters = np.zeros(len(X))

With all the components ready, we can train the model iteration by iteration where it first
checks convergence, before performing steps 3 and step 4, and visualizes the latest centroids:

>>> from copy import deepcopy
>>> while iter < max_iter and centroids_diff > tol:
... for i in range(len(X)):
... clusters[i] = assign_cluster(X[i], centroids)

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[82]

... centroids_prev = deepcopy(centroids)

... update_centroids(X, centroids, clusters)

... iter += 1

... centroids_diff = np.linalg.norm(centroids -
 centroids_prev)
... print('Iteration:', str(iter))
... print('Centroids:\n', centroids)
... print('Centroids move: {:5.4f}'.format(centroids_diff))
... visualize_centroids(X, centroids)

Let's take a look at the following outputs generated from the preceding commands:

Iteration 1: Take a look at the following output of iteration 1:

Iteration: 1
Centroids:
[[5.01827957 1.72258065]
[3.41428571 1.05714286]
[1.464 0.244]]
Centroids move: 0.8274

The plot of centroids after iteration 1 is as follows:

Iteration 2: Take a look at the following output of iteration 2:

Iteration: 2
Centroids:
[[5.20897436 1.81923077]
[3.83181818 1.16818182]
[1.464 0.244]]
Centroids move: 0.4820

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[83]

The plot of centroids after iteration 2 is as follows:

Iteration 3: Take a look at the following output of iteration 3:

Iteration: 3
Centroids:
[[5.3796875 1.9125]
[4.06388889 1.25555556]
[1.464 0.244]]
Centroids move: 0.3152

The plot of centroids after iteration 3 is as follows:

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[84]

Iteration 4: Take a look at the following output of iteration 4:

Iteration: 4
Centroids:
[[5.51481481 1.99444444]
[4.19130435 1.30217391]
[1.464 0.244]]
Centroids move: 0.2083

The plot of centroids after iteration 4 is as follows:

Iteration 5: Take a look at the following output of iteration 5:

Iteration: 5
Centroids:
[[5.53846154 2.01346154]
[4.22083333 1.31041667]
[1.464 0.244]]
Centroids move: 0.0431

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[85]

The plot of centroids after iteration 5 is as follows:

Iteration 6: Take a look at the following output of iteration 6:

Iteration: 6
Centroids:
[[5.58367347 2.02653061]
[4.25490196 1.33921569]
[1.464 0.244]]
Centroids move: 0.0648

The plot of centroids after iteration 6 is as follows:

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[86]

Iteration 7: Take a look at the following output of iteration 7:

Iteration: 7
Centroids:
[[5.59583333 2.0375]
[4.26923077 1.34230769]
[1.464 0.244]]
Centroids move: 0.0220

The plot of centroids after iteration 7 is as follows:

Iteration 8: Take a look at the following output of iteration 8:

Iteration: 8
Centroids:
[[5.59583333 2.0375]
[4.26923077 1.34230769]
[1.464 0.244]]
Centroids move: 0.0000

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[87]

The plot of centroids after iteration 8 is as follows:

The model converges after eight iterations. The resulting centroids look promising, and we
can also plot the clusters:

>>> for i in range(k):
... cluster_i = np.where(clusters == i)
... plt.scatter(X[cluster_i, 0], X[cluster_i, 1])
>>> plt.scatter(centroids[:, 0], centroids[:, 1], marker='*',
 s=200, c='#050505')
>>> plt.show()

Refer to the following screenshot for the end result:

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[88]

Implementing k-means with scikit-learn
Having developed our own k-means clustering model, we can now learn how to use scikit-
learn for a quicker solution by performing the following steps:

First, import the KMeans class and initialize a model with three clusters as1.
follows:

>>> from sklearn.cluster import KMeans
>>> kmeans_sk = KMeans(n_clusters=3, random_state=42)

The KMeans class takes in the following important parameters:

We then fit the model on the data:2.

>>> kmeans_sk.fit(X)

After that, we can obtain the clustering results, including the clusters for data3.
samples and centroids of individual clusters:

>>> clusters_sk = kmeans_sk.labels_
>>> centroids_sk = kmeans_sk.cluster_centers_

Similarly, we plot the clusters along with the centroids:4.

>>> for i in range(k):
... cluster_i = np.where(clusters_sk == i)
... plt.scatter(X[cluster_i, 0], X[cluster_i, 1])
>>> plt.scatter(centroids_sk[:, 0], centroids_sk[:, 1],
 marker='*', s=200, c='#050505')
>>> plt.show()

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[89]

This will result in the following output:

Choosing the value of k
Let's return to our earlier discussion on what is the right value for k. In the preceding
example, it is more intuitive to set it to 3 since we know there are three classes in total.
However, in most cases, we don't know how many groups are sufficient or efficient, while
the algorithm needs a specific value of k to start with. So, how can we choose the value for
k? There is a famous approach called the Elbow method.

In the Elbow method, different values of k are chosen and corresponding models are
trained; for each trained model, the sum of squared errors, or SSE (also called the sum of
within-cluster distances) to centroids is calculated and is plotted against k. Note, for one
cluster, the squared error (or the within-cluster distance) is computed as the sum of the
squared distances from individual samples in the cluster to the centroid. The optimal k is
chosen where the marginal drop of SSE starts to decrease dramatically. It means further
clustering does not provide any substantial gain.

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[90]

Let's apply the Elbow method to the example we covered in the previous section (that's
what this book is all about). We perform k-means clustering under different values of k on
the iris data:

>>> iris = datasets.load_iris()
>>> X = iris.data
>>> y = iris.target
>>> k_list = list(range(1, 7))
>>> sse_list = [0] * len(k_list)

We, herein, use the whole feature space and k ranges from 1 to 6. Then, we train individual
models and record the resulting SSE respectively:

>>> for k_ind, k in enumerate(k_list):
... kmeans = KMeans(n_clusters=k, random_state=42)
... kmeans.fit(X)
... clusters = kmeans.labels_
... centroids = kmeans.clustercenters
... sse = 0
... for i in range(k):
... cluster_i = np.where(clusters == i)
... sse += np.linalg.norm(X[cluster_i] - centroids[i])
... print('k={}, SSE={}'.format(k, sse))
... sse_list[k_ind] = sse
k=1, SSE=26.103076447039722
k=2, SSE=16.469773740281195
k=3, SSE=15.089477089696558
k=4, SSE=15.0307321707491
k=5, SSE=14.858930749063735
k=6, SSE=14.883090350867239

Finally, plot the SSE versus the various k ranges as follows:

>>> plt.plot(k_list, sse_list)
>>> plt.show()

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[91]

This will result in the following output:

Apparently, the Elbow point is k=3, since the drop in SSE slows down dramatically right
after 3. Hence, k=3 is an optimal solution in this case, which is consistent with the fact.

Clustering newsgroups data using k-means
Up to this point, you should be very familiar with k-means clustering. Let's see what we are
able to mine from the newsgroups dataset using this algorithm. We, herein, use all data
from four categories as an example.

We first load the data from those newsgroups and preprocess it as we did in Chapter 2,
Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms:

>>> from sklearn.datasets import fetch_20newsgroups
>>> categories = [
... 'alt.atheism',
... 'talk.religion.misc',
... 'comp.graphics',
... 'sci.space',
...]
>>> groups = fetch_20newsgroups(subset='all',
 categories=categories)
>>> labels = groups.target
>>> label_names = groups.target_names
>>> def is_letter_only(word):
... for char in word:
... if not char.isalpha():

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[92]

... return False

... return True
>>> from nltk.corpus import names
>>> all_names = set(names.words())
>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer()
>>> data_cleaned = []
>>> for doc in groups.data:
... doc = doc.lower()
... doc_cleaned = ' '.join(lemmatizer.lemmatize(word) for
 word in doc.split() if is_letter_only(word)
 and word not in all_names)
... data_cleaned.append(doc_cleaned)

We then convert the cleaned text data into count vectors using CountVectorizer of
scikit-learn:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count_vector = CountVectorizer(stop_words="english",
 max_features=None, max_df=0.5, min_df=2)
>>> data = count_vector.fit_transform(data_cleaned)

Note the vectorizer we use here does not limit the number of features (word tokens), but
the minimum and maximum document frequency, which are 2 and 50% of the dataset
respectively. Document frequency of a word is measured by the fraction of documents
(samples) in the dataset that contain this word.

With the input data ready, we now try to cluster them into four groups as follows:

>>> from sklearn.cluster import KMeans
>>> k = 4
>>> kmeans = KMeans(n_clusters=k, random_state=42)
>>> kmeans.fit(data)

Let's do a quick check on the sizes of the resulting clusters:

>>> clusters = kmeans.labels_
>>> from collections import Counter
>>> print(Counter(clusters))
Counter({3: 3360, 0: 17, 1: 7, 2: 3})

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[93]

The clusters don't look absolutely correct, with most samples (3360 samples) congested in
one big cluster (cluster 3). What could have gone wrong? It turns out that our count-based
features are not sufficiently representative. A better numerical representation for text data
is the term frequency-inverse document frequency (tf-idf). Instead of simply using the
token count, or the so-called term frequency (tf), it assigns each term frequency a
weighting factor that is inversely proportional to the document frequency. In practice, the
idf factor of a term t in documents D is calculated as follows:

Here, nD is the total number of documents, nt is the number of documents containing the
term t, and the 1 is added to avoid division by zero.

With the idf factor incorporated, the tf-idf representation diminishes the weight of common
terms (such as get, and make) occurring frequently, and emphasizes terms that rarely occur,
but that convey an important meaning.

To use the tf-idf representation, we just need to replace CountVectorizer with
TfidfVectorizer from scikit-learn as follows:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> tfidf_vector = TfidfVectorizer(stop_words='english',
 max_features=None, max_df=0.5, min_df=2)

Now, redo feature extraction using the tf-idf vectorizer and the k-means clustering
algorithm on the resulting feature space:

>>> data = tfidf_vector.fit_transform(data_cleaned)
>>> kmeans.fit(data)
>>> clusters = kmeans.labels_
print(Counter(clusters))
Counter({1: 1560, 2: 686, 3: 646, 0: 495})

The clustering result becomes more reasonable.

We also take a closer look at the clusters by examining what they contain and the top 10
terms (the terms with the 10 highest tf-idf) representing each cluster:

>>> cluster_label = {i: labels[np.where(clusters == i)] for i in
 range(k)}
>>> terms = tfidf_vector.get_feature_names()
>>> centroids = kmeans.clustercenters
>>> for cluster, index_list in cluster_label.items():
... counter = Counter(cluster_label[cluster])
... print('cluster_{}: {} samples'.format(cluster, len(index_list)))

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[94]

... for label_index, count in sorted(counter.items(),
 key=lambda x: x[1], reverse=True):
... print('{}: {} samples'.format(label_names[label_index], count))
... print('Top 10 terms:')
... for ind in centroids[cluster].argsort()[-10:]:
... print(' %s' % terms[ind], end="")
... print()

cluster_0: 495 samples
sci.space: 494 samples
comp.graphics: 1 samples
Top 10 terms:
toronto moon zoology nasa hst mission wa launch shuttle space
cluster_1: 1560 samples
sci.space: 459 samples
alt.atheism: 430 samples
talk.religion.misc: 352 samples
comp.graphics: 319 samples
Top 10 terms:
people new think know like ha just university article wa
cluster_2: 686 samples
comp.graphics: 651 samples
sci.space: 32 samples
alt.atheism: 2 samples
talk.religion.misc: 1 samples
Top 10 terms:
know thanks need format looking university program file graphic image
cluster_3: 646 samples
alt.atheism: 367 samples
talk.religion.misc: 275 samples
sci.space: 2 samples
comp.graphics: 2 samples
Top 10 terms:
moral article morality think jesus people say christian wa god

From what we observe in the preceding results:

cluster_0 is obviously about space and includes almost all sci.space samples
and related terms such as moon, nasa, launch, shuttle, and space.
cluster_1 is more of a generic topic.

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[95]

cluster_2 is more about computer graphics and related terms, such as format,
program, file, graphic, and image.
cluster_3 is an interesting one, which successfully brings together two
overlapping topics, atheism and religion, with key terms including moral,
morality, jesus, christian, and god.

Feel free to try different values of k, or use the Elbow method to find the
optimal one (this is actually an exercise for this chapter).

It is quite interesting to find key terms for each text group via clustering. Topic modeling is
another approach for doing so, but in a much more direct way. It does not simply search for
the key terms in individual clusters generated beforehand. What it does do is that it directly
extracts collections of key terms over documents. You will see how this works in the next
section.

Discovering underlying topics in
newsgroups
A topic model is a type of statistical model for discovering the probability distributions of
words linked to the topic. The topic in topic modeling does not exactly match the dictionary
definition, but corresponds to a nebulous statistical concept, an abstraction occurs in a
collection of documents.

When we read a document, we expect certain words appearing in the title or the body of
the text to capture the semantic context of the document. An article about Python
programming will have words such as class and function, while a story about snakes will
have words such as eggs and afraid. Documents usually have multiple topics; for instance,
this recipe is about three things, topic modeling, non-negative matrix factorization, and
latent Dirichlet allocation, which we will discuss shortly. We can therefore define an
additive model for topics by assigning different weights to topics.

Topic modeling is widely used for mining hidden semantic structures in given text data.
There are two popular topic modeling algorithms—non-negative matrix factorization, and
latent Dirichlet allocation. We will go through both of these in the next two sections.

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[96]

Topic modeling using NMF
Non-negative matrix factorization (NMF) relies heavily on linear algebra. It factorizes an
input matrix, V, into a product of two smaller matrices, W and H, in such a way that these
three matrices have no negative values. In the context of NLP, these three matrices have the
following meanings:

The input matrix V is the term counts or tf-idf matrix of size n * m, where n is the
number of documents or samples, and m is the number of terms.
The first decomposition output matrix W is the feature matrix of size t * m, where
t is the number of topics specified. Each row of W represents a topic with each
element in the row representing the rank of a term in the topic.
The second decomposition output matrix H is the coefficient matrix of size n * t.
Each row of H represents a document, with each element in the row representing
the weight of a topic within the document.

How to derive the computation of W and H is beyond the scope of this book. However, you
can refer to the following diagram to get a better sense of how NMF works:

If you are interested in reading more about NMF, feel free to check out the original
paper Generalized Nonnegative Matrix Approximations with Bregman Divergences
by Inderjit S. Dhillon and Suvrit Sra in NIPS 2005.

http://suvrit.de/papers/nips05.pdf
http://suvrit.de/papers/nips05.pdf
http://suvrit.de/papers/nips05.pdf

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[97]

Let's now apply NMF to our newsgroups data. Scikit-learn has a nice module for
decomposition that includes NMF:

>>> from sklearn.decomposition import NMF
>>> t = 20
>>> nmf = NMF(n_components=t, random_state=42)

We specify 20 topics (n_components) as an example. Important parameters of the model
are included in the following table:

We use the term matrix as input to the NMF model, but you could also use the tf-idf one
instead. We, herein, reuse count_vector, , as defined previously:

>>> data = count_vector.fit_transform(data_cleaned)

Now, fit the NMF model nmf on the term matrix data:

>>> nmf.fit(data)

We can obtain the resulting topic-feature rank W after the model is trained:

>>> nmf.components_
[[0.00000000e+00 0.00000000e+00 0.00000000e+00 ... 0.00000000e+00
 0.00000000e+00 1.81952400e-04]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 ... 0.00000000e+00
 7.35497518e-04 3.65665719e-03]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 ... 0.00000000e+00
 0.00000000e+00 0.00000000e+00]
...
[0.00000000e+00 0.00000000e+00 0.00000000e+00 ... 2.69725134e-02
 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 ... 0.00000000e+00
 0.00000000e+00 4.26844886e-05]

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[98]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 ... 0.00000000e+00
 0.00000000e+00 0.00000000e+00]]

For each topic, we display the top 10 terms based on their ranks:

>>> terms = count_vector.get_feature_names()
>>> for topic_idx, topic in enumerate(nmf.components_):
... print("Topic {}:" .format(topic_idx))
... print(" ".join([terms[i] for i in topic.argsort()[-10:]]))
Topic 0:
available quality program free color version gif file image jpeg
Topic 1:
ha article make know doe say like just people think
Topic 2:
include available analysis user software ha processing data tool image
Topic 3:
atmosphere kilometer surface ha earth wa planet moon spacecraft solar
Topic 4:
communication technology venture service market ha commercial space
satellite launch
Topic 5:
verse wa jesus father mormon shall unto mcconkie lord god
Topic 6:
format message server object image mail file ray send graphic
Topic 7:
christian people doe atheism believe religion belief religious god atheist
Topic 8:
file graphic grass program ha package ftp available image data
Topic 9:
speed material unified star larson book universe theory physicist physical
Topic 10:
planetary station program group astronaut center mission shuttle nasa space
Topic 11:
infrared high astronomical center acronym observatory satellite national
telescope space
Topic 12:
used occurs true form ha ad premise conclusion argument fallacy
Topic 13:
gospel people day psalm prophecy christian ha matthew wa jesus
Topic 14:
doe word hanging say greek matthew mr act wa juda
Topic 15:
siggraph graphic file information format isbn data image ftp available
Topic 16:
venera mar lunar surface space venus soviet mission wa probe
Topic 17:
april book like year time people new did article wa
Topic 18:

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[99]

site retrieve ftp software data information client database gopher search
Topic 19:
use look xv color make program correction bit gamma image

There are a number of interesting topics, for instance, computer graphics-related topics,
such as 0, 2, 6, and 8, space-related ones, such as 3, 4, and 9, and religion-related ones, such
as 5, 7, and 13. There are also two topics, 1 and 12, that are hard to interpret, which is
totally fine since topic modeling is a kind of free-form learning.

Topic modeling using LDA
Let's explore another popular topic modeling algorithm, latent Dirichlet allocation (LDA).
LDA is a generative probabilistic graphical model that explains each input document by
means of a mixture of topics with certain probabilities. Again, topic in topic modeling
means a collection of words with a certain connection. In other words, LDA basically deals
with two probability values, P(term | topic) and P(topic | document). This can be difficult
to understand at the beginning. So, let's start from the bottom, the end result of an LDA
model.

Let's take a look at the following set of documents:

Document 1: This restaurant is famous for fish and chips.
Document 2: I had fish and rice for lunch.
Document 3: My sister bought me a cute kitten.
Document 4: Some research shows eating too much rice is bad.
Document 5: I always forget to feed fish to my cat.

Now, let's say we want two topics. The topics derived from these documents may appear as
follows:

Topic 1: 30% fish, 20% chip, 30% rice, 10% lunch, 10% restaurant (which we
can interpret Topic 1 to be food related)
Topic 2: 40% cute, 40% cat, 10% fish, 10% feed (which we can interpret
Topic 1 to be about pet)

Therefore, we find how each document is represented by these two topics:

Documents 1: 85% Topic 1, 15% Topic 2
Documents 2: 88% Topic 1, 12% Topic 2
Documents 3: 100% Topic 2
Documents 4: 100% Topic 1
Documents 5: 33% Topic 1, 67% Topic 2

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[100]

After seeing a dummy example, we come back to its learning procedure:

Specify the number of topics, T. Now we have topic 1, 2, …, and T.1.
For each document, randomly assign one of the topics to each term in the2.
document.
For each document, calculate P(topic=t | document), which is the proportion of3.
terms in the document that are assigned to the topic t.
For each topic, calculate P(term=w | topic), which is the proportion of term w4.
among all terms that are assigned to the topic.
For each term w, reassign its topic based on the latest probabilities P(topic=t |5.
document) and P(term=w | topic=t).
Repeat steps 3 to step 5 under the latest topic distributions for each iteration. The6.
training stops if the model converges or reaches the maximum number of
iterations.

LDA is trained in a generative manner, where it tries to abstract from the documents a set
of hidden topics that are likely to generate a certain collection of words.

With all this in mind, let's see LDA in action. The LDA model is also included in scikit-
learn:

>>> from sklearn.decomposition import LatentDirichletAllocation
>>> t = 20
>>> lda = LatentDirichletAllocation(n_components=t,
 learning_method='batch',random_state=42)

Again, we specify 20 topics (n_components). The key parameters of the model are
included in the following table:

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[101]

For the input data to LDA, remember that LDA only takes in term counts as it is a
probabilistic graphical model. This is unlike NMF, which can work with both the term
count matrix and the tf-idf matrix as long as they are non-negative data. Again, we use the
term matrix defined previously as input to the lda model:

>>> data = count_vector.fit_transform(data_cleaned)

Now, fit the LDA model on the term matrix, data:

>>> lda.fit(data)

We can obtain the resulting topic-term rank after the model is trained:

>>> lda.components_
[[0.05 2.05 2.05 ... 0.05 0.05 0.05]
 [0.05 0.05 0.05 ... 0.05 0.05 0.05]
 [0.05 0.05 0.05 ... 4.0336285 0.05 0.05]
 ...
 [0.05 0.05 0.05 ... 0.05 0.05 0.05]
 [0.05 0.05 0.05 ... 0.05 0.05 0.05]
 [0.05 0.05 0.05 ... 0.05 0.05 3.05]]

Similarly, for each topic, we display the top 10 terms based on their ranks as follows:

>>> terms = count_vector.get_feature_names()
>>> for topic_idx, topic in enumerate(lda.components_):
... print("Topic {}:" .format(topic_idx))
... print(" ".join([terms[i] for i in
 topic.argsort()[-10:]]))
Topic 0:
atheist doe ha believe say jesus people christian wa god
Topic 1:
moment just adobe want know ha wa hacker article radius
Topic 2:
center point ha wa available research computer data graphic hst
Topic 3:
objective argument just thing doe people wa think say article
Topic 4:
time like brian ha good life want know just wa
Topic 5:
computer graphic think know need university just article wa like
Topic 6:
free program color doe use version gif jpeg file image
Topic 7:
gamma ray did know university ha just like article wa
Topic 8:
tool ha processing using data software color program bit image
Topic 9:

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[102]

apr men know ha think woman just university article wa
Topic 10:
jpl propulsion mission april mar jet command data spacecraft wa
Topic 11:
russian like ha university redesign point option article space station
Topic 12:
ha van book star material physicist universe physical theory wa
Topic 13:
bank doe book law wa article rushdie muslim islam islamic
Topic 14:
think gopher routine point polygon book university article know wa
Topic 15:
ha rocket new lunar mission satellite shuttle nasa launch space
Topic 16:
want right article ha make like just think people wa
Topic 17:
just light space henry wa like zoology sky article toronto
Topic 18:
comet venus solar moon orbit planet earth probe ha wa
Topic 19:
site format image mail program available ftp send file graphic

There are a number of interesting topics that we just mined, for instance, computer
graphics-related topics, such as 2, 5, 6, 8, and 19, space-related ones, such as 10, 11, 12,
and 15, and religion-related ones, such as 0 and 13. There are also topics involving noise,
for example, 9 and 16, which may require some imagination to interpret. Again, this is not
surprising at all, since LDA, or topic modeling in general, is a kind of free-form learning.

Summary
The project in this chapter was about finding hidden similarity underneath newsgroups
data, be it semantic groups, be it themes, or word clouds. We started with what
unsupervised learning does and the typical types of unsupervised learning algorithms. We
then introduced unsupervised learning clustering and studied a popular clustering
algorithm, k-means, in detail. We also talked about tf-idf as a more efficient feature
extraction tool for text data. After that, we performed k-means clustering on the
newsgroups data and obtained four meaningful clusters. After examining the key terms in
each resulting cluster, we went straight to extracting representative terms among original
documents using topic modeling techniques. Two powerful topic modeling approaches,
NMF and LDA, were discussed and implemented. Finally, we had some fun interpreting
the topics we obtained from both methods.

Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling
Algorithms Chapter 3

[103]

Hitherto, we have covered all the main categories of unsupervised learning, including
dimensionality reduction in Chapter 2, Mining the 20 Newsgroups Dataset with Clustering and
Topic Modeling Algorithms, clustering in this chapter, as well as topic modeling, which is also
dimensionality reduction in a way. Starting from the next chapter, we will talk about
supervised learning; specifically, binary classification will be our entry point.

Exercises
Perform k-means clustering on newsgroups data using different values of k, or
use the Elbow method to find the optimal one. See if you get better grouping
results.
Try different numbers of topics, in either NMF or LDA, and see which one
produces more meaningful topics in the end. It should be a fun exercise.
Can you experiment with NMF or LDA on the entire 20 groups of newsgroups
data? Are the resulting topics full of noise or gems?

4
Detecting Spam Email with

Naive Bayes
As promised, in this chapter, we kick off our supervised learning journey with machine
learning classification, specifically, binary classification. We will be learning with the goal
of building a high-performing spam email detector. It is a good starting point to learn
classification with a real-life example—our email service providers are already doing this
for us, and so can we. We will be learning the fundamental concepts of classification,
including what it does and its various types and applications, with a focus on solving spam
detection using a simple yet powerful algorithm, Naïve Bayes. One last thing: we will be
demonstrating how to fine-tune a model, which is an important skill for every data science
or machine learning practitioner to learn.

We will get into detail on the following topics:

What is machine learning classification?
Types of classification
Applications of text classification
The Naïve Bayes classifier
The mechanics of Naïve Bayes
The Naïve Bayes implementations
Spam email detection with Naïve Bayes
Classification performance evaluation
Cross-validation
Tuning a classification model

Detecting Spam Email with Naive Bayes Chapter 4

[105]

Getting started with classification
Spam email detection is basically a machine learning classification problem. Let's get
started by learning important concepts of machine learning classification. Classification is
one of the main instances of supervised learning. Given a training set of data containing
observations and their associated categorical outputs, the goal of classification is to learn a
general rule that correctly maps the observations (also called features or predictive
variables) to the target categories (also called labels or classes). Put another way, a trained
classification model will be generated after learning from features and targets of training
samples, as shown in the first half of the following diagram. When new or unseen data
comes in, the trained model will be able to determine their desired memberships. Class
information will be predicted based on the known input features using the trained
classification model, as displayed in the second half of the following diagram:

Detecting Spam Email with Naive Bayes Chapter 4

[106]

Types of classification
Based on the possibility of class output, machine learning classification can be categorized
into binary classification, multiclass classification, and multilabel classification, as follows:

Binary classification: This classifies observations into one of two possible classes.
The example of spam email filtering we mentioned earlier is a typical use case of
binary classification, which identifies email messages (input observations) as
spam or not spam (output classes). Customer churn prediction is another
frequently mentioned example, where the prediction system takes in customer
segment data and activity data from CRM systems and identifies which
customers are likely to churn. Another application in the marketing and
advertising industry is click-through prediction for online ads—that is, whether
or not an ad will be clicked, given users' cookie information and browsing
history. Last, but not least, binary classification has also been employed in
biomedical science, for example, in early cancer diagnosis, classifying patients
into high or low risk groups based on MRI images. As demonstrated in the
following example, binary classification tries to find a way to separate data from
two classes:

Detecting Spam Email with Naive Bayes Chapter 4

[107]

Multiclass classification: This classification is also called multinomial
classification, and allows more than two possible classes, as opposed to only two
in binary cases. Handwritten digit recognition is a common instance of
classification and has a long history of research and development since the early
1900s. A classification system, for example, learns to read and understand
handwritten ZIP codes (digits from 0 to 9 in most countries) by which envelopes
are automatically sorted. Handwritten digit recognition has become a hello world
in the journey of studying machine learning, and the scanned document dataset
constructed from the National Institute of Standards and Technology, called
MNIST (short for Modified National Institute of Standards and Technology), is a
benchmark dataset frequently used to test and evaluate multiclass classification
models. The following screenshot shows the four samples taken from the MNIST
dataset:

In the following example, the multiclass classification model tries to find
segregation boundaries to separate data from the following three different
classes:

Detecting Spam Email with Naive Bayes Chapter 4

[108]

Multi-label classification: This classification is different from the first two types
of classification, where target classes are disjointed. Research attention to this
field has been increasingly drawn by the nature of the omnipresence of
categories in modern applications. For example, a picture that captures a sea and
sunset can simultaneously belong to both conceptual scenes, whereas it can only
be an image of either cat or dog in a binary case, or one type of fruit among
oranges, apples, and bananas in a multiclass case. Similarly, adventure films are
often combined with other genres, such as fantasy, science fiction, horror, and
drama. Another typical application is protein function classification, as a protein
may have more than one function—storage, antibody, support, transport, and so
on. One approach to solve an n label classification problem is to transform it into
a set of n binary classifications problem, which is then handled by individual
binary classifiers. Refer to the following diagram of restructuring a multi-label
classification problem into multiple binary classification problems:

Detecting Spam Email with Naive Bayes Chapter 4

[109]

Applications of text classification
As was discussed in Chapter 3, Mining the 20 Newsgroups Dataset with Clustering and Topic
Modeling Algorithms, unsupervised learning, including clustering and topic modeling, can
be applied to text data. We will continue to see how supervised learning, specifically
classification, is used in the text domain.

In fact, classification has been widely used in text analysis and news analytics. For instance,
classification algorithms are used to identify news sentiment, positive or negative in a
binary case, or positive, neutral, or negative in a multiclass classification case. News
sentiment analysis provides a significant signal to trading in the stock market.

Another example that comes to mind is news topic classification, where classes may or may
not be mutually exclusive. In the newsgroup example that we just worked on, classes are
mutually exclusive (despite slight overlapping), such as computer graphics, motorcycles,
baseball, hockey, space, and religion. We will demonstrate how to use machine learning
algorithms to solve such multiclass classification problems in Chapter 5, Classifying
Newsgroup Topic with Support Vector Machine. It is, however, good to realize that a news
article is occasionally assigned multiple categories, where, properly speaking, multi-label
classification is more suitable. For example, an article about the Olympic Games may be
labeled as both sports and politics if there is an unexpected political involvement.

Finally, a text classification application that is perhaps difficult to realize is named-entity
recognition (NER). Named entities are phrases of definitive categories, such as names of
persons, companies, geographic locations, dates and times, quantities, and monetary
values. NER is an important subtask of information extraction, to seek and identify such
entities. For example, we can conduct NER on the following sentence:
SpaceX[Organization], a California[Location]-based company founded by a famous tech
entrepreneur Elon Musk[Person], announced that it would manufacture the next-
generation, 9[Quantity]-meter-diameter launch vehicle and spaceship for the first orbital
flight in 2020[Date].

To solve these problems, researchers have developed many power classification algorithms,
among which Naïve Bayes and support vector machine (SVM) models are often used for
text classification. In the following sections, we will cover the mechanics of Naïve Bayes
and its in-depth implementation, along with other important concepts, including classifier
tuning and classification performance evaluation.

Detecting Spam Email with Naive Bayes Chapter 4

[110]

Exploring Naïve Bayes
The Naïve Bayes classifier belongs to the family of probabilistic classifiers that computes
the probabilities of each predictive feature (also called attribute) of the data belonging to
each class in order to make a prediction of probability distribution over all classes (of
course, including the most likely class that the data sample is associated with). What it
does, as its name indicates, is as follows:

Bayes: As in, it maps the probabilities of observing input features given
belonging classes, to the probability distribution over classes based on Bayes'
theorem. We will explain Bayes' theorem with the later examples in this chapter
Naïve: As in, it simplifies probability computation by assuming that predictive
features are mutually independent.

Learning Bayes' theorem by examples
It is important to understand Bayes' theorem before diving into the classifier. Let A and B
denote two events. Events could be that it will rain tomorrow; 2 kings are drawn from a deck of
cards; or a person has cancer. In Bayes' theorem, P(A |B) is the probability that A occurs given
that B is true. It can be computed as follows:

Here, P(B|A) is the probability of observing B given that A occurs, while P(A) and P(B) are
the probability that A and B occur, respectively. Too abstract? Let's look at some of the
following concrete examples:

Example 1: Given two coins, one is unfair with 90% of flips getting a head and
10% getting a tail, while the other one is fair. Randomly pick one coin and flip it.
What is the probability that this coin is the unfair one, if we get a head?

We solve it by first denoting U for the event of picking the unfair coin, F for the
fair coin, and H for the event of getting a head. So the probability that the unfair
has been picked when we get a head, P(U|H) can be calculated with the
following:

Detecting Spam Email with Naive Bayes Chapter 4

[111]

As we know P(H|U) is 90% . P(U) is 0.5 because we randomly pick a coin out of
two. However, deriving the probability of getting a head P(H) is not that
straightforward, as two events can lead to the following, where U is when the
unfair one is picked and F is when the fair coin is picked:

So P(U |H) becomes the following:

Example 2: Suppose a physician reported the following cancer screening test
scenario among 10,000 people:

Cancer No cancer Total
Text positive 80 900 980
Text negative 20 9,000 9,020

Total 100 9,900 10,000

It indicates for example 80 out of 100 cancer patients are correctly diagnosed,
while the other 20 are not; cancer is falsely detected in 900 out of 9,900 healthy
people.

If the result of this screening test on a person is positive, what is the probability
that they actually has cancer?

Let's assign the event of having cancer and positive testing result as C and Pos
respectively. Apply Bayes' theorem to calculate P(C|Pos):

Given a positive screening result, the chance that the subject has cancer is 8.16%,
which is significantly higher than the one under general assumption
(100/10000=1%) without undergoing the screening.

Detecting Spam Email with Naive Bayes Chapter 4

[112]

Example 3: Three machines A, B, and C in a factory account for 35%, 20%, and
45% of the bulb production. And the fraction of defective bulbs produced by each
machine is 1.5%, 1%, and 2% respectively. A bulb produced by this factory was
identified defective, which is denoted as event D. What are the probabilities that
this bulb was manufactured by machine A, B, and C respectively?

 Again, simply just follow Bayes' theorem, as follows:

Also, either way, we do not even need to calculate P(D) since we know that the
following is the case:

We too know the following concept:

So we have the following formula:

After making sense of Bayes' theorem as the backbone of Naïve Bayes, we can easily move
forward with the classifier itself.

Detecting Spam Email with Naive Bayes Chapter 4

[113]

The mechanics of Naïve Bayes
Let's start with understanding the magic behind the algorithm—how Naïve Bayes works.
Given a data sample x with n features, x1, x2, …, xn (x represents a feature vector and x = (x1,
x2, …, xn)), the goal of Naïve Bayes is to determine the probabilities that this sample belongs
to each of K possible classes y1, y2, …, yK, that is P(yk |x) or P(x1, x2, …, xn), where k = 1, 2, …,
K. It looks no different from what we have just dealt with: x, or x1, x2, …, xn, is a joint event
that the sample has features with values x1, x2, …, xn respectively, yk is an event that the
sample belongs to class k. We can apply Bayes' theorem right away:

Let's look at each component in detail:

P (yk) portrays how classes are distributed, provided with no further knowledge
of observation features. Thus, it is also called prior in Bayesian probability
terminology. Prior can be either predetermined (usually in a uniform manner
where each class has an equal chance of occurrence) or learned from a set of
training samples.
P(yk |x), in contrast to prior P (yk), is the posterior with extra knowledge of
observation.
P(x | yk), or P(x1, x2, …, xn|yk) is the joint distribution of n features, given the
sample belongs to class yk. This is how likely the features with such values co-
occur. This is named likelihood in Bayesian terminology. Obviously, the
likelihood will be difficult to compute as the number of features increases. In
Naïve Bayes, this is solved thanks to the feature independence assumption. The
joint conditional distribution of n features can be expressed as the joint product
of individual feature conditional distributions:

Each conditional distribution can be efficiently learned from a set of training
samples.

P(x), also called evidence, solely depends on the overall distribution of features,
which is not specific to certain classes and is therefore constant. As a result,
posterior is proportional to prior and likelihood:

Detecting Spam Email with Naive Bayes Chapter 4

[114]

The following diagram summarizes how a Naïve Bayes classification model is trained and
applied to new data:

Let's see a Naïve Bayes classifier in action through an example before we jump to its
implementations. Given four (pseudo) emails shown in the following table, we are asked to
predict how likely it is that a new email is spam:

Detecting Spam Email with Naive Bayes Chapter 4

[115]

First, define the S and NS events as an email being spam or not spam respectively. From the
training set, we can easily get the following:

Or we can also impose an assumption of prior that P (S)= 1%.

To calculate P(S |x) where x = (free, setup, meeting, free), the first step is to compute P(free |S),
P(setup |S), and P(meeting |S) based on the training set; that is, the ratio of the occurrence of
a term to that of all terms in the S class. However, as the term free was not seen in the NS
class training set, P(free |NS) will become 0, so will P(x |NS) and P(NS |x). It will be
predicted as spam email, falsely. To eliminate the zero multiplication factor, the unseen
term, we usually set each term frequency an initial value 1, that is, we start counting term
occurrence from one. This technique is also called Laplace smoothing. With this
amendment, now we have the following:

Here, 9 is the total number of term occurrences from the S class (3+3+3), 4 is the total term
occurrences from the NS class, and 6 comes from the 1 additional count per term (click, win,
prize, meeting, setup, free). Similarly, we can compute the following:

Hence we have the following formula:

Detecting Spam Email with Naive Bayes Chapter 4

[116]

Also, remember this:

So, finally, we have the following:

There is 47.1% chance that the new email is spam.

Implementing Naïve Bayes from scratch
After a hand-calculating spam email detection example, as promised, we are going to code
it through a genuine dataset, taken from the Enron email dataset http:/​/​www.​aueb.​gr/
users/​ion/​data/​enron-​spam/​. The specific dataset we are using can be directly
downloaded via http:/​/​www.​aueb.​gr/​users/​ion/​data/​enron-​spam/​preprocessed/
enron1.​tar.​gz. You can either unzip it using software, or run the following command line
on your terminal:

tar -xvz enron1.tar.gz

The uncompressed folder includes a folder of ham, or non-spam, email text files, and a
folder of spam email text files, as well as a summary description of the database:

enron1/
 ham/
 0001.1999-12-10.farmer.ham.txt
 0002.1999-12-13.farmer.ham.txt
 ……
 ……
 5172.2002-01-11.farmer.ham.txt
 spam/
 0006.2003-12-18.GP.spam.txt
 0008.2003-12-18.GP.spam.txt
 ……
 ……
 5171.2005-09-06.GP.spam.txt
 Summary.txt

http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz
http://www.aueb.gr/users/ion/data/enron-spam/preprocessed/enron1.tar.gz

Detecting Spam Email with Naive Bayes Chapter 4

[117]

Given a dataset for a classification problem, it is always good to keep in mind the number
of samples per class and the proportion of samples from each class before applying any
machine learning techniques. As written in the Summary.txt file, there are 3,672 ham
(legitimate) emails and 1,500 spam emails so the spam: the legitimate-to-spam ratio is
approximately 1:3 here. If such information was not given, you can also get the numbers by
running the following commands:

ls -1 enron1/ham/*.txt | wc -l
3672
ls -1 enron1/spam/*.txt | wc -l
1500

Class imbalance is critical to classification performance. Imagine if most
samples are from one class—the classifier tends to only learn from the
dominant class and neglect the minorities. Hence, paying extra attention
to class imbalance is always recommended. If it does occur, we need to
either downsample the majority class, or upsample the minor class, in
order to mitigate the disproportion.

Let's have a look at a legitimate and a spam email by running the following scripts from the
same path where the unzipped folder is located:

>>> file_path = 'enron1/ham/0007.1999-12-14.farmer.ham.txt'
>>> with open(file_path, 'r') as infile:
... ham_sample = infile.read()
>>> print(ham_sample)
Subject: mcmullen gas for 11 / 99
jackie ,
since the inlet to 3 river plant is shut in on 10 / 19 / 99 (the
last day of flow) :
at what meter is the mcmullen gas being diverted to ?
at what meter is hpl buying the residue gas ? (this is the gas
from teco ,vastar , vintage , tejones , and swift)
i still see active deals at meter 3405 in path manager for teco ,
vastar ,vintage , tejones , and swift
i also see gas scheduled in pops at meter 3404 and 3405 .
please advice . we need to resolve this as soon as possible so
settlement can send out payments .
thanks

Similarly, the spam sample is as follows:

>>> file_path = 'enron1/spam/0058.2003-12-21.GP.spam.txt'
>>> with open(file_path, 'r') as infile:
... spam_sample = infile.read()
>>> print(spam_sample)

Detecting Spam Email with Naive Bayes Chapter 4

[118]

Subject: stacey automated system generating 8 k per week parallelogram
people are
getting rich using this system ! now it ' s your
turn !
we ' ve
cracked the code and will show you
this is the
only system that does everything for you , so you can make
money
.
because your
success is . . . completely automated !
let me show
you how !
click
here
to opt out click here % random _ text

Next, we read all of the email text files and keep the ham/spam class information in the
labels variable, where 1 represents spam emails, and 0 is for ham.

First, import the necessary modules, glob and os, in order to find all the .txt email files,
and initialize the variables, keeping the text data and labels:

>>> import glob
>>> import os
>>> emails, labels = [], []

Then, to load the spam email files, run the following commands:

>>> file_path = 'enron1/spam/'
>>> for filename in glob.glob(os.path.join(file_path, '*.txt')):
... with open(filename, 'r', encoding="ISO-8859-1") as infile:
... emails.append(infile.read())
... labels.append(1)

Load the legitimate email files by running the following commands:

>>> file_path = 'enron1/ham/'
>>> for filename in glob.glob(os.path.join(file_path, '*.txt')):
... with open(filename, 'r', encoding="ISO-8859-1") as infile:
... emails.append(infile.read())
... labels.append(0)
>>> len(emails)
5172
>>> len(labels)
5172

Detecting Spam Email with Naive Bayes Chapter 4

[119]

The next step is to preprocess and clean the raw text data. To briefly recap, this includes the
following:

Number and punctuation removal
Human name removal (optional)
Stop-word removal
Lemmatization

We herein reuse the code we developed in the previous two chapters:

>>> from nltk.corpus import names
>>> from nltk.stem import WordNetLemmatizer
>>> def is_letter_only(word):
... return word.isalpha()
>>> all_names = set(names.words())
>>> lemmatizer = WordNetLemmatizer()

Put together a function performing text cleaning as follows:

>>> def clean_text(docs):
... docs_cleaned = []
... for doc in docs:
... doc = doc.lower()
... doc_cleaned = ' '.join(lemmatizer.lemmatize(word)
 for word in doc.split() if is_letter_only(word)
 and word not in all_names)
... docs_cleaned.append(doc_cleaned)
... return docs_cleaned
>>> emails_cleaned = clean_text(emails)

This leads to stop-word removal and term feature extraction, as follows:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> cv = CountVectorizer(stop_words="english", max_features=1000,
 max_df=0.5, min_df=2)
>>> docs_cv = cv.fit_transform(emails_cleaned)

The max_features parameter is set to 1000, so it only considers the 1,000 most frequent
terms, excluding those that are too common (50% max_df) and too rare (2 min_df). We can
definitely tweak this parameter later on in order to achieve higher classification accuracy.

In case you forget what the resulting term vectors look like, let's take a peek:

>>> print(docs_cv[0])
 (0, 932) 1
 (0, 968) 1
 (0, 715) 1

Detecting Spam Email with Naive Bayes Chapter 4

[120]

 (0, 151) 1
 (0, 585) 1
 (0, 864) 1
 (0, 506) 1
 (0, 691) 1
 (0, 897) 1
 (0, 476) 1
 (0, 72) 1
 (0, 86) 2
 (0, 997) 1
 (0, 103) 1
 (0, 361) 2
 (0, 229) 1
 (0, 363) 2
 (0, 482) 2
 (0, 265) 2

The sparse vector is in the form of the following:

 (row index, term index) term_frequency

We can also see what the corresponding terms are, as follows:

>>> terms = cv.get_feature_names()
>>> print(terms[932])
unsubscribe
>>> print(terms[968])
website
>>> print(terms[715])
read

With the docs_cv feature matrix just generated, we can now develop and train our Naïve
Bayes model, from scratch as always.

Starting with the prior, we first group the data by label and record the index of samples:

>>> def get_label_index(labels):
... from collections import defaultdict
... label_index = defaultdict(list)
... for index, label in enumerate(labels):
... label_index[label].append(index)
... return label_index
>>> label_index = get_label_index(labels)

Detecting Spam Email with Naive Bayes Chapter 4

[121]

The resulting label_index looks like {0: [3000, 3001, 3002, 3003, …… 6670,

6671], 1: [0, 1, 2, 3, …., 2998, 2999]}, where training sample indices are
grouped by class. With this, we calculate prior:

>>> def get_prior(label_index):
... """
... Compute prior based on training samples
... @param label_index: grouped sample indices by class
... @return: dictionary, with class label as key, corresponding
 prior as the value
... """
... prior = {label: len(index) for label, index in
 label_index.items()}
... total_count = sum(prior.values())
... for label in prior:
... prior[label] /= float(total_count)
... return prior
>>> prior = get_prior(label_index)
>>> print('Prior:', prior)
Prior: {1: 0.2900232018561485, 0: 0.7099767981438515}

With prior calculated, we continue with likelihood:

>>> import numpy as np
>>> def get_likelihood(term_matrix, label_index, smoothing=0):
... """
... Compute likelihood based on training samples
... @param term_matrix: sparse matrix of the term frequency features
... @param label_index: grouped sample indices by class
... @param smoothing: integer, additive Laplace smoothing parameter
... @return: dictionary, with class as key, corresponding conditional
 probability P(feature|class) vector as value
... """
... likelihood = {}
... for label, index in label_index.items():
... likelihood[label] = term_matrix[index, :].sum(axis=0) +
 smoothing
... likelihood[label] = np.asarray(likelihood[label])[0]
... total_count = likelihood[label].sum()
... likelihood[label] = likelihood[label] /
 float(total_count)
... return likelihood

Detecting Spam Email with Naive Bayes Chapter 4

[122]

We set the smoothing value to 1 here, which can also be 0 for no smoothing, and any other
positive value, as long as high classification performance is achieved:

>>> smoothing = 1
>>> likelihood = get_likelihood(docs_cv, label_index, smoothing)
>>> len(likelihood[0])
1000

The likelihood[0] parameter is the conditional probability P(feature | legitimate) vector of
length 1,000 (1,000 features) for the legitimate class. Probabilities P(feature | legitimate) for
the first five features are as follows:

>>> likelihood[0][:5]
[0.00024653 0.00090705 0.00080007 0.00032096 0.00073495]

And you can probably guess that likelihood[1] would be for the spam class. Similarly,
the first five conditional probabilities P(feature | spam) are:

>>> likelihood[1][:5]
[0.00063304 0.00078026 0.00101581 0.00022083 0.00326826]

If you ever find any of these confusing, feel free to check the following toy example to
refresh (14 comes from 2 + 1 + 1 + 1 + 1 + 1 + 1 + smoothing 1 * 5, 16 comes from 1 + 1 + 2 + 1
+ 3 + 2 + 1 + smoothing 1 * 5):

Detecting Spam Email with Naive Bayes Chapter 4

[123]

With prior and likelihood ready, we can now compute the posterior for the testing/new
samples. There is a trick we use: instead of calculating the multiplication of hundreds of
thousands of small value conditional probabilities of P(feature | class) (for
example, 0.00024653, as we just saw), which may cause overflow error, we instead
calculate the summation of their natural logarithms, then convert it back to its natural
exponential value:

>>> def get_posterior(term_matrix, prior, likelihood):
... """
... Compute posterior of testing samples, based on prior and likelihood
... @param term_matrix: sparse matrix of the term frequency features
... @param prior: dictionary, with class label as key,
 corresponding prior as the value
... @param likelihood: dictionary, with class label as key,
 corresponding conditional probability vector as value
... @return: dictionary, with class label as key, corresponding
 posterior as value
... """
... num_docs = term_matrix.shape[0]
... posteriors = []
... for i in range(num_docs):
... # posterior is proportional to prior * likelihood
... # = exp(log(prior * likelihood))
... # = exp(log(prior) + log(likelihood))
... posterior = {key: np.log(prior_label) for key,
 prior_label in prior.items()}
... for label, likelihood_label in likelihood.items():
... term_document_vector = term_matrix.getrow(i)
... counts = term_document_vector.data
... indices = term_document_vector.indices
... for count, index in zip(counts, indices):
... posterior[label] +=
 np.log(likelihood_label[index]) * count
... # exp(-1000):exp(-999) will cause zero division error,
... # however it equates to exp(0):exp(1)
... min_log_posterior = min(posterior.values())
... for label in posterior:
... try:
... posterior[label] = np.exp(
 posterior[label] - min_log_posterior)
... except:
... posterior[label] = float('inf')
... # normalize so that all sums up to 1
... sum_posterior = sum(posterior.values())
... for label in posterior:
... if posterior[label] == float('inf'):
... posterior[label] = 1.0

Detecting Spam Email with Naive Bayes Chapter 4

[124]

... else:

... posterior[label] /= sum_posterior

... posteriors.append(posterior.copy())

... return posteriors

The prediction function is finished. Let's take one ham and one spam sample from another
Enron email dataset to quickly verify our algorithm:

>>> emails_test = [
... '''Subject: flat screens
... hello ,
... please call or contact regarding the other flat screens
... requested .
... trisha tlapek - eb 3132 b
... michael sergeev - eb 3132 a
... also the sun blocker that was taken away from eb 3131 a .
... trisha should two monitors also michael .
... thanks
... kevin moore''',
... '''Subject: let ' s stop the mlm insanity !
... still believe you can earn $ 100 , 000 fast in mlm ? get real !
... get emm , a brand new system that replaces mlm with something that
works !
... start earning 1 , 000 ' s now ! up to $ 10 , 000 per week doing
simple
... online tasks .
... free info - breakfree @ luxmail . com - type " send emm info " in
the
... subject box .
... this message is sent in compliance of the proposed bill section 301
. per
... section 301 , paragraph (a) (2) (c) of s . 1618 . further
transmission
... to you by the sender of this e - mail may be stopped at no cost to
you by
... sending a reply to : " email address " with the word remove in the
subject
... line .''',
...]

Go through the same cleaning and preprocessing steps as in training stage:

>>> emails_cleaned_test = clean_text(emails_test)
>>> term_docs_test = cv.transform(emails_cleaned_test)
>>> posterior = get_posterior(term_docs_test, prior, likelihood)
>>> print(posterior)
[{1: 5.958269329017321e-08, 0: 0.9999999404173067},
{1: 0.9999999999999948, 0: 5.2138625988879895e-15}]

Detecting Spam Email with Naive Bayes Chapter 4

[125]

For the first email, 99.5% legitimate; the second email nearly 100% spam. Both are predicted
correctly.

Further, to comprehensively evaluate our classifier's performance, we can randomly split
the original dataset into two sets, the training and testing sets, which simulate learning data
and prediction data respectively. Generally, the proportion of the original dataset to
include in the testing split can be 25%, 33.3%, or 40%. We use the train_test_split
function from scikit-learn to do the random splitting and to preserve the percentage of
samples for each class:

>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, Y_train, Y_test =
 train_test_split(emails_cleaned, labels, test_size=0.33,
 random_state=42)

It is a good practice to assign a fixed random_state (for example, 42)
during experiments and exploration in order to guarantee that the same
training and testing sets are generated every time the program runs. This
allows us to make sure that the classifier functions and performs well on a
fixed dataset before we incorporate randomness and proceed further.

Check the training size and testing size as follows:

>>> len(X_train), len(Y_train)
(3465, 3465)
>>> len(X_test), len(Y_test)
(1707, 1707)

Retrain the term frequency CountVectorizer based on the training set and recompute
prior and likelihood accordingly:

>>> term_docs_train = cv.fit_transform(X_train)
>>> label_index = get_label_index(Y_train)
>>> prior = get_prior(label_index)
>>> likelihood = get_likelihood(term_docs_train, label_index, smoothing)

We then convert the testing documents into term matrix as follows:

>>> term_docs_test = cv.transform(X_test)

It is noted that we can't train CountVectorizer using both the training
and testing sets. Otherwise, it will cause data leakage, as the testing set is
supposed to be unknown beforehand to all feature extractors. Hence, the
term pool and the term counter should be built solely on the training set.

Detecting Spam Email with Naive Bayes Chapter 4

[126]

Now, predict the posterior of the testing/new dataset as follows:

>>> posterior = get_posterior(term_docs_test, prior, likelihood)

Finally, we evaluate the model's performance with classification accuracy, which is the
proportion of correct prediction:

>>> correct = 0.0
>>> for pred, actual in zip(posterior, Y_test):
... if actual == 1:
... if pred[1] >= 0.5:
... correct += 1
... elif pred[0] > 0.5:
... correct += 1
>>> print('The accuracy on {0} testing samples is:
 {1:.1f}%'.format(len(Y_test), correct/len(Y_test)*100))
The accuracy on 1707 testing samples is: 93.0%

The Naïve Bayes classifier we just developed line by line correctly classifies 93% emails!

Implementing Naïve Bayes with scikit-learn
Coding from scratch and implementing on your own solutions is the best way to learn
about machine learning model. Of course, we can take a shortcut by directly using the
MultinomialNB class from the scikit-learn API:

>>> from sklearn.naive_bayes import MultinomialNB

Let's initialize a model with a smoothing factor (specified as alpha in scikit-learn) of
1.0, and prior learned from the training set (specified as fit_prior in scikit-learn):

>>> clf = MultinomialNB(alpha=1.0, fit_prior=True)

To train the Naïve Bayes classifier with the fit method, use the following command:

>>> clf.fit(term_docs_train, Y_train)

And to obtain the prediction results with the predict_proba method, use the following
commands:

>>> prediction_prob = clf.predict_proba(term_docs_test)
>>> prediction_prob[0:10]
[[1.00000000e+00 3.96500362e-13]
[1.00000000e+00 2.15303766e-81]
[6.59774100e-01 3.40225900e-01]
[1.00000000e+00 2.28043493e-15]

Detecting Spam Email with Naive Bayes Chapter 4

[127]

[1.00000000e+00 1.77156705e-15]
[5.53261316e-05 9.99944674e-01]
[0.00000000e+00 1.00000000e+00]
[1.00000000e+00 3.49697719e-28]
[1.00000000e+00 4.43498548e-14]
[3.39263684e-01 6.60736316e-01]]

Do the following to directly acquire the predicted class values with the predict method (0.5
is the default threshold; if the predicted probability of class 1 is great than 0.5, class 1 is
assigned, otherwise, 0 is used):

>>> prediction = clf.predict(term_docs_test)
>>> prediction[:10]
[0 0 0 0 0 1 1 0 0 1]

Finally, we measure the accuracy performance by calling the score method:

>>> accuracy = clf.score(term_docs_test, Y_test)
>>> print('The accuracy using MultinomialNB is:
 {0:.1f}%'.format(accuracy*100))
The accuracy using MultinomialNB is: 93.0%

Classification performance evaluation
So far, we have covered in depth the first machine learning classifier and evaluated its
performance by prediction accuracy. Beyond accuracy, there are several measurements that
give us more insight and allow us to avoid class imbalance effects. They are as follows:

Confusion matrix
Precision
recall
F1 score
AUC

Detecting Spam Email with Naive Bayes Chapter 4

[128]

A confusion matrix summarizes testing instances by their predicted values and true values,
presented as a contingency table:

To illustrate this, we compute the confusion matrix of our Naïve Bayes classifier. Herein,
the confusion_matrix function of scikit-learn is used, but it is very easy to code it
ourselves:

>>> from sklearn.metrics import confusion_matrix
>>> confusion_matrix(Y_test, prediction, labels=[0, 1])
[[1102 89]
[31 485]]

Note that we consider 1, the spam class, to be positive. From the confusion matrix, for
example, there are 93 false-positive cases (where it misinterprets a legitimate email as a
spam one), and 43 false-negative cases (where it fails to detect a spam email). So,
classification accuracy is just the proportion of all true cases:

Precision measures the fraction of positive calls that are correct, which is and

 in our case.

Recall, on the other hand, measures the fraction of true positives that are correctly

identified, which is and in our case. Recall is also called true
positive rate.

The f1 score comprehensively includes both the precision and the recall, and equates to their

harmonic mean: . We tend to value the f1 score above precision
or recall alone.

Detecting Spam Email with Naive Bayes Chapter 4

[129]

Let's compute these three measurements using corresponding functions from scikit-learn,
as follows:

>>> from sklearn.metrics import precision_score, recall_score, f1_score
>>> precision_score(Y_test, prediction, pos_label=1)
0.8449477351916377
>>> recall_score(Y_test, prediction, pos_label=1)
0.939922480620155
>>> f1_score(Y_test, prediction, pos_label=1)
0.889908256880734

0, the legitimate class, can also be viewed as positive, depending on the context. For
example, assign the 0 class as pos_label:

>>> f1_score(Y_test, prediction, pos_label=0)
0.9483648881239244

To obtain the precision, recall, and f1 score for each class, instead of exhausting all class
labels in the three function calls above, a quicker way is to call the
classification_report function:

>>> from sklearn.metrics import classification_report
>>> report = classification_report(Y_test, prediction)
>>> print(report)
 precision recall f1-score support
 0 0.97 0.93 0.95 1191
 1 0.84 0.94 0.89 516

 micro avg 0.93 0.93 0.93 1707
 macro avg 0.91 0.93 0.92 1707
weighted avg 0.93 0.93 0.93 1707

Here, avg is the weighted average according to the proportions of the class.

The measurement report provides a comprehensive view on how the classifier performs on
each class. It is, as a result, useful in imbalanced classification, where we can easily obtain a
high accuracy by simply classifying every sample as the dominant class, while the
precision, recall, and f1 score measurements for the minority class however will be
significantly low.

Precision, recall, and f1 score are also applicable to the multiclass classification, where we
can simply treat a class we are interested in as a positive case, and any other classes as
negative cases.

Detecting Spam Email with Naive Bayes Chapter 4

[130]

During the process of tweaking a binary classifier (that is, trying out different combinations
of hyperparameters, for example, term feature dimension, a smoothing factor in our spam
email classifier), it would be perfect if there was a set of parameters in which the highest
averaged and class individual f1 scores achieve at the same time. It is, however, usually not
the case. Sometimes, a model has a higher average f1 score than another model, but a
significantly low f1 score for a particular class; sometimes, two models have the same
average f1 scores, but one has a higher f1 score for one class and lower score for another
class. In situations like these, how can we judge which model works better? Area under the
curve (AUC) of the receiver operating characteristic (ROC) is a united measurement
frequently used in binary classification.

The ROC curve is a plot of the true positive rate versus the false positive rate at various
probability thresholds, ranging from 0 to 1. For a testing sample, if the probability of a
positive class is greater than the threshold, then a positive class is assigned; otherwise, we
use negative. To recap, the true positive rate is equivalent to recall, and the false positive
rate is the fraction of negatives that are incorrectly identified as positive. Let's code and
exhibit the ROC curve (under thresholds of 0.0, 0.1, 0.2, …, 1.0) of our model:

>>> pos_prob = prediction_prob[:, 1]
>>> thresholds = np.arange(0.0, 1.2, 0.1)
>>> true_pos, false_pos = [0]*len(thresholds), [0]*len(thresholds)
>>> for pred, y in zip(pos_prob, Y_test):
... for i, threshold in enumerate(thresholds):
... if pred >= threshold:
 # if truth and prediction are both 1
... if y == 1:
... true_pos[i] += 1
 # if truth is 0 while prediction is 1
... else:
... false_pos[i] += 1
... else:
... break

Then calculate the true and false positive rates for all threshold settings (remember, there
are 516.0 positive testing samples and 1191 negative ones):

>>> true_pos_rate = [tp / 516.0 for tp in true_pos]
>>> false_pos_rate = [fp / 1191.0 for fp in false_pos]

Now we can plot the ROC curve with matplotlib:

>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> lw = 2
>>> plt.plot(false_pos_rate, true_pos_rate, color='darkorange', lw=lw)
>>> plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')

Detecting Spam Email with Naive Bayes Chapter 4

[131]

>>> plt.xlim([0.0, 1.0])
>>> plt.ylim([0.0, 1.05])
>>> plt.xlabel('False Positive Rate')
>>> plt.ylabel('True Positive Rate')
>>> plt.title('Receiver Operating Characteristic')
>>> plt.legend(loc="lower right")
>>> plt.show()

Refer to the following screenshot for the resulting ROC curve:

In the graph, the dashed line is the baseline representing random guessing where the true
positive rate increases linearly with the false positive rate. Its AUC is 0.5; the orange line is
the ROC plot of our model, and its AUC is somewhat less than 1. In a perfect case, the true
positive samples have a probability of 1, so that the ROC starts at the point with 100% true
positive and 0 false positive. The AUC of such a perfect curve is 1. To compute the exact
AUC of our model, we can resort to the roc_auc_score function of scikit-learn:

>>> from sklearn.metrics import roc_auc_score
>>> roc_auc_score(Y_test, pos_prob)
0.965361984912685

Detecting Spam Email with Naive Bayes Chapter 4

[132]

Model tuning and cross-validation
Having learned what metrics to use to measure a classification model, we'll now study how
to measure it properly. We simply can avoid adopting the classification results from one
fixed testing set, which we did in experiments previously. Instead, we usually apply the k-
fold cross-validation technique to assess how a model will generally perform in practice.

In the k-fold cross-validation setting, the original data is first randomly divided into the k
equal-sized subsets, in which class proportion is often preserved. Each of these k subsets is
then successively retained as the testing set for evaluating the model. During each trial, the
rest k -1 subsets (excluding the one-fold holdout) form the training set for driving the
model. Finally, the average performance across all k trials is calculated to generate an
overall result:

Statistically, the averaged performance of k-fold cross-validation is an accurate estimate of
how a model performs in general. Given different sets of parameters pertaining to a
machine learning model and/or data preprocessing algorithms, or even two or more
different models, the goal of model tuning and/or model selection is to pick a set of
parameters of a classifier so that the best averaged performance is achieved. With these
concepts in mind, we can now start to tweak our Naïve Bayes classifier, incorporating
cross-validation and AUC of ROC measurement.

In k-fold cross-validation, k is usually set 3, 5, or 10. If the training size is
small, a large k (5 or 10) is recommended to ensure enough training
samples in each fold. If the training size is large, a small value (such 3 or 4)
works fine since a higher k will lead to even higher computational cost of
training on large dataset.

Detecting Spam Email with Naive Bayes Chapter 4

[133]

We herein use the split() method from the StratifiedKFold class of scikit-learn to
divide the data into chunks with preserved class fractions:

>>> from sklearn.model_selection import StratifiedKFold
>>> k = 10
>>> k_fold = StratifiedKFold(n_splits=k, random_state=42)
>>> cleaned_emails_np = np.array(cleaned_emails)
>>> labels_np = np.array(labels)

After initializing a 10-fold generator, we choose to explore the following values for the
following parameters:

max_features: This represents the n most frequent terms used as feature space
alpha: This represents the smoothing factor, the initial count for a term
fit_prior: This represents whether or not to use prior tailored to the training
data

We start with the following options:

>>> max_features_option = [2000, 8000, None]
>>> smoothing_factor_option = [0.5, 1.0, 2.0, 4.0]
>>> fit_prior_option = [True, False]
>>> auc_record = {}

Then, for each fold generated by the split() method of the k_fold object, repeat the
process of term count feature extraction, classifier training, and prediction with one of the
aforementioned combinations of parameters, and record the resulting AUCs:

>>> for train_indices, test_indices in k_fold.split(emails_cleaned,
 labels):
... X_train, X_test = cleaned_emails_np[train_indices],
 cleaned_emails_np[test_indices]
... Y_train, Y_test = labels_np[train_indices],
 labels_np[test_indices]
... for max_features in max_features_option:
... if max_features not in auc_record:
... auc_record[max_features] = {}
... cv = CountVectorizer(stop_words="english",
 max_features=max_features, max_df=0.5, min_df=2)
... term_docs_train = cv.fit_transform(X_train)
... term_docs_test = cv.transform(X_test)
... for alpha in smoothing_factor_option:
... if alpha not in auc_record[max_features]:
... auc_record[max_features][alpha] = {}
... for fit_prior in fit_prior_option:
... clf = MultinomialNB(alpha=alpha, fit_prior=fit_prior)

Detecting Spam Email with Naive Bayes Chapter 4

[134]

... clf.fit(term_docs_train, Y_train)

... prediction_prob = clf.predict_proba(term_docs_test)

... pos_prob = prediction_prob[:, 1]

... auc = roc_auc_score(Y_test, pos_prob)

... auc_record[max_features][alpha][fit_prior] =
 auc+ auc_record[max_features][alpha].get(
 fit_prior, 0.0)

Finally, we present the results as follows:

>>> print('max features smoothing fit prior auc')
>>> for max_features, max_feature_record in auc_record.items():
... for smoothing, smoothing_record in max_feature_record.items():
... for fit_prior, auc in smoothing_record.items():
... print(' {0} {1} {2}
 {3:.5f}'.format(
 max_features, smoothing, fit_prior, auc/k))
max features smoothing fit prior auc
 2000 0.5 False 0.97421
 2000 1.0 True 0.97237
 2000 1.0 False 0.97238
 2000 2.0 . True 0.97043
 2000 2.0 False 0.97057
 2000 4.0 True 0.96853
 2000 4.0 False 0.96843
 8000 0.5 True 0.98533
 8000 0.5 False 0.98530
 8000 1.0 True 0.98428
 8000 1.0 False 0.98430
 8000 2.0 True 0.98338
 8000 2.0 False 0.98337
 8000 4.0 True 0.98291
 8000 4.0 False 0.98296
 None 0.5 True 0.98890
 None 0.5 False 0.98884
 None 1.0 True 0.98899
 None 1.0 False 0.98904
 None 2.0 True 0.98906
 None 2.0 False 0.98915
 None 4.0 True 0.98965
 None 4.0 False 0.98969

Detecting Spam Email with Naive Bayes Chapter 4

[135]

The (None, 4.0, False) set enables the best AUC, at 0.98969. In fact, not limiting the
maximal number of features outperforms doing so, as 4.0, the highest smoothing factor,
always beats other values. Hence, we conduct a second tweak, with the following options
for greater values of smoothing factor:

>>> max_features_option = [None]
>>> smoothing_factor_option = [4.0, 10, 16, 20, 32]
>>> fit_prior_option = [True, False]

Repeat the cross-validation process and we get the following results:

max features smoothing fit prior auc
 None 4.0 True 0.98965
 None 4.0 False 0.98969
 None 10 True 0.99208
 None 10 False 0.99211
 None 16 True 0.99329
 None 16 False 0.99329
 None 20 True 0.99362
 None 20 False 0.99362
 None 32 True 0.99307
 None 32 False 0.99307

The (None, 20, False) set enables the best AUC, at 0.99362!

Summary
In this chapter, we acquired the fundamental and important concepts of machine learning
classification, including types of classification, classification performance evaluation, cross-
validation, and model tuning, as well as learning about the simple yet powerful classifier,
Naïve Bayes. We went in depth through the mechanics and implementations of Naïve
Bayes with couple of examples and the most important one, the spam email detection
project. In the end, we developed a high-performing spam detector with AUC score close to
1.

Binary classification is our main talking point of this chapter, and as you can imagine,
multiclass classification will be that of the next chapter. Specifically, we will talk about
support vector machines (SVMs) for classification.

Detecting Spam Email with Naive Bayes Chapter 4

[136]

Exercise
Can you also tweak other hyperparameters, such as the max_df and1.
min_df parameters in CountVectorizer? What are their optimal values?
Practice makes perfect—another great project to deepen your understanding2.
could be sentiment (positive/negative) classification for movie review data,
which can be downloaded directly at http:/​/​www.​cs.​cornell.​edu/​people/
pabo/​movie-​review-​data/​review_​polarity.​tar.​gz, or from the page at http:/​/
www.​cs.​cornell.​edu/​people/​pabo/​movie-​review-​data/​.

http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/

5
Classifying Newsgroup Topics
with Support Vector Machines

In the previous chapter, we built a spam email detector with Naïve Bayes. This chapter
continues our journey of supervised learning and classification. Specifically, we will be
focusing on multiclass classification and support vector machine classifiers. The support
vector machine has been one of the most popular algorithms when it comes to text
classification. The goal of the algorithm is to search for a decision boundary in order to
separate data from different classes. We will be discussing in detail how that works. Also,
we will be implementing the algorithm with scikit-learn and TensorFlow, and applying it to
solve various real-life problems, including newsgroup topic classification, fetal state
categorization on cardiotocography, as well as breast cancer prediction.

We will go into detail as regards the topics mentioned:

What is support vector machine?
The mechanics of SVM through three cases
The implementations of SVM with scikit-learn
Multiclass classification strategies
The kernel method
SVM with non-linear kernels
How to choose between linear and Gaussian kernels
Overfitting and reducing overfitting in SVM
Newsgroup topic classification with SVM
Tuning with grid search and cross-validation
Fetal state categorization using SVM with non-linear kernel
Breast cancer prediction with TensorFlow

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[138]

Finding separating boundary with support
vector machines
After introducing a powerful, yet simple classifier Naïve Bayes, we will continue with
another great classifier that is popular for text classification, the support vector machine
(SVM).

In machine learning classification, SVM finds an optimal hyperplane that best segregates
observations from different classes. A hyperplane is a plane of n -1 dimension that
separates the n dimensional feature space of the observations into two spaces. For example,
the hyperplane in a two-dimensional feature space is a line, and a surface in a three-
dimensional feature space. The optimal hyperplane is picked so that the distance from its
nearest points in each space to itself is maximized. And these nearest points are the so-
called support vectors. The following toy example demonstrates what support vector and a
separating hyperplane (along with the distance margin which we will explain later) look
like in a binary classification case:

Understanding how SVM works through different
use cases
Based on the preceding stated definition of SVM, there can be an infinite number of feasible
hyperplanes. How can we identify the optimal one? Let's discuss the logic behind SVM in
further detail through a few cases.

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[139]

Case 1 – identifying a separating hyperplane
First, we need to understand what qualifies for a separating hyperplane. In the following
example, hyperplane C is the only correct one, as it successfully segregates observations by
their labels, while hyperplanes A and B fail:

This is an easy observation. Let's express a separating hyperplane in a formal or
mathematical way.

In a two-dimensional space, a line can be defined by a slope vector w (represented as a two-
dimensional vector), and an intercept b. Similarly, in a space of n dimensions, a hyperplane
can be defined by an n-dimensional vector w, and an intercept b. Any data point x on the
hyperplane satisfies wx + b = 0. A hyperplane is a separating hyperplane if the following
conditions are satisfied:

For any data point x from one class, it satisfies wx + b > 0
For any data point x from another class, it satisfies wx + b < 0

However, there can be countless possible solutions for w and b. You can move or rotate
hyperplane C to certain extents and it still remains a separating hyperplane. So next, we
will learn how to identify the best hyperplane among possible separating hyperplanes.

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[140]

Case 2 – determining the optimal hyperplane
Look at the following example, hyperplane C is the preferred one as it enables the
maximum sum of the distance between the nearest data point in the positive side to itself
and the distance between the nearest data point in the negative side to itself:

The nearest point(s) in the positive side can constitute a hyperplane parallel to the decision
hyperplane, which we call a Positive hyperplane; on the other hand, the nearest point(s) in
the negative side constitute the Negative hyperplane. The perpendicular distance between
the positive and negative hyperplanes is called the Margin, whose value equates to the sum
of the two aforementioned distances. A Decision hyperplane is deemed optimal if the
margin is maximized.

The optimal (also called maximum-margin) hyperplane and distance margins for a trained
SVM model are illustrated in the following diagram. Again, samples on the margin (two
from one class, and one from another class, as shown) are the so-called support vectors:

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[141]

We can interpret it in a mathematical way by first describing the positive and negative
hyperplanes as follows:

Here, is a data point on the positive hyperplane, and a data point on the negative
hyperplane, respectively.

The distance between a point to the decision hyperplane can be calculated as follows:

Similarly, the distance between a point to the decision hyperplane is as follows:

So the margin becomes . As a result, we need to minimize |w| in order to maximize the
margin. Importantly, to comply with the fact that the support vectors on the positive and
negative hyperplanes are the nearest data points to the decision hyperplane, we add a
condition that no data point falls between the positive and negative hyperplanes:

Here, is an observation. And this can be combined further into the following:

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[142]

To summarize, w and b, which determine the SVM decision hyperplane, are trained and
solved by the following optimization problem:

Minimizing

Subject to , for a training set of , ,…

…,

To solve this optimization problem, we need to resort to quadratic programming
techniques, which are beyond the scope of our learning journey. Therefore, we will not
cover the computation methods in detail and will implement the classifier using the SVC
and LinearSVC modules from scikit-learn, which are realized respectively based on
libsvm (https:/​/​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsvm/​) and liblinear (https:/​/​www.
csie.​ntu.​edu.​tw/​~cjlin/​liblinear/​) as two popular open source SVM machine learning
libraries. But it is always encouraging to understand the concepts of computing SVM.

Shai Shalev-Shwartz et al. "Pegasos: Primal estimated sub-gradient solver for
SVM" (Mathematical Programming, March 2011, volume 127, issue 1, pp.
3-30), and Cho-Jui Hsieh et al. "A dual coordinate descent method for large-scale
linear SVM" (Proceedings of the 25th international conference on machine
learning, pp 408-415) would be great learning materials. They cover two
modern approaches, sub-gradient descent and coordinate descent,
accordingly.

The learned model parameters w and b are then used to classify a new sample x', based on
the following conditions:

Moreover, |wx'+b| can be portrayed as the distance from the data point x' to the decision
hyperplane, and also interpreted as the confidence of prediction: the higher the value, the
further away from the decision boundary, hence the higher prediction certainty.

Although you might be eager to implement the SVM algorithm, let's take a step back and
look at a common scenario where data points are not linearly separable, in a strict way. Try
to find a separating hyperplane in the following example:

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[143]

Case 3 – handling outliers
How can we deal with cases where it is unable to linearly segregate a set of observations
containing outliers? We can actually allow misclassification of such outliers and try to

minimize the error introduced. The misclassification error (also called hinge loss) for a
sample can be expressed as follows:

Together with the ultimate term ‖w‖ to reduce, the final objective value we want to
minimize becomes the following:

As regards a training set of m samples , ,… …, ,
where the hyperparameter C controls the trade-off between two terms:

If a large value of C is chosen, the penalty for misclassification becomes relatively
high. It means the thumb rule of data segregation becomes stricter and the model
might be prone to overfit, since few mistakes are allowed during training. An
SVM model with a large C has a low bias, but it might suffer high variance.

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[144]

Conversely, if the value of C is sufficiently small, the influence of
misclassification becomes fairly low. The model allows more misclassified data
points than the model with large C does. Thus, data separation becomes less
strict. Such a model has a low variance, but it might be compromised by a high
bias.

A comparison between a large and small C is shown in the following diagram:

The parameter C determines the balance between bias and variance. It can be fine-tuned
with cross-validation, which we will practice shortly.

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[145]

Implementing SVM
We have largely covered the fundamentals of the SVM classifier. Now, let's apply it right
away to newsgroup topic classification. We start with a binary case classifying two topics
– comp.graphics and sci.space:

Let's take a look at the following steps:

First, we load the training and testing subset of the computer graphics and1.
science space newsgroup data respectively:

>>> from sklearn.datasets import fetch_20newsgroups
>>> categories = ['comp.graphics', 'sci.space']
>>> data_train = fetch_20newsgroups(subset='train',
 categories=categories, random_state=42)
>>> data_test = fetch_20newsgroups(subset='test',
 categories=categories, random_state=42)

Don't forget to specify a random state in order to reproduce experiments.

Clean the text data using the clean_text function we developed in previous2.
chapters and retrieve the label information:

>>> cleaned_train = clean_text(data_train.data)
>>> label_train = data_train.target
>>> cleaned_test = clean_text(data_test.data)
>>> label_test = data_test.target
>>> len(label_train), len(label_test)
(1177, 783)

There are 1,177 training samples and 783 testing ones.

By way of good practice, check whether the two classes are imbalanced:3.

>>> from collections import Counter
>>> Counter(label_train)
Counter({1: 593, 0: 584})
>>> Counter(label_test)
Counter({1: 394, 0: 389})

They are quite balanced.

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[146]

Next, we extract the tf-idf features from the cleaned text data:4.

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> tfidf_vectorizer = TfidfVectorizer(stop_words='english',
max_features=None)
>>> term_docs_train = tfidf_vectorizer.fit_transform(cleaned_train)
>>> term_docs_test = tfidf_vectorizer.transform(cleaned_test)

We can now apply the SVM classifier to the data. We first initialize an SVC model5.
with the kernel parameter set to linear (we will explain what kernel means in
the next section) and the penalty hyperparameter C set to the default value, 1.0:

>>> from sklearn.svm import SVC
>>> svm = SVC(kernel='linear', C=1.0, random_state=42)

We then fit our model on the training set as follows:6.

>>> svm.fit(term_docs_train, label_train)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape=None, degree=3, gamma='auto',
 kernel='linear',max_iter=-1, probability=False, random_state=42,
 shrinking=True, tol=0.001, verbose=False)

And we predict on the testing set with the trained model and obtain the7.
prediction accuracy directly:

>>> accuracy = svm.score(term_docs_test, label_test)
>>> print('The accuracy of binary classification is:
{0:.1f}%'.format(accuracy*100))
The accuracy of binary classification is: 96.4%

Our first SVM model works just great, achieving an accuracy of 96.4%. How about more
than two topics? How does SVM handle multiclass classification?

Case 4 – dealing with more than two classes
SVM and many other classifiers can be applied to cases with more than two classes. There
are two typical approaches we can take, one-vs-rest (also called one-versus-all), and one-
vs-one.

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[147]

In the one-vs-rest setting, for a K-class problem, it constructs K different binary SVM
classifiers. For the kth classifier, it treats the kth class as the positive case and the
remaining K-1 classes as the negative case as a whole; the hyperplane denoted as is
trained to separate these two cases. To predict the class of a new sample, x', it compares the
resulting predictions from K individual classifiers from 1 to k. As we discussed in
the previous section, the larger value of means higher confidence that x' belongs to
the positive case. Therefore, it assigns x' to the class i where has the largest value
among all prediction results:

The following diagram presents how the one-vs-rest strategy works in a three-class case:

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[148]

For instance, if we have the following (r, b, and g denote the red, blue, and green classes
respectively):

We can say x' belongs to the red class since 0.78 > 0.35 > -0.64. If we have the following:

Then, we can determine that x' belongs to the blue class regardless of the sign since -0.35 >
-0.64 > -0.78.

In the one-vs-one strategy, it conducts pairwise comparison by building a set of SVM

classifiers distinguishing data points from each pair of classes. This will result in
 different classifiers.

For a classifier associated with classes i and j, the hyperplane denoted as is
trained only on the basis of observations from i (can be viewed as a positive case) and j (can
be viewed as a negative case); it then assigns the class, either i or j, to a new sample, x',
based on the sign of . Finally, the class with the highest number of assignments
is considered the predicting result of x'. The winner is the one that gets the most votes.

The following diagram presents how the one-vs-one strategy works in a three-class case:

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[149]

In general, an SVM classifier with one-vs-rest and with one-vs-one setting perform
comparably in terms of accuracy. The choice between these two strategies is largely

computational. Although one-vs-one requires more classifiers than one-vs-rest
(K), each pairwise classifier only needs to learn on a small subset of data, as opposed to the
entire set in the one-vs-rest setting. As a result, training an SVM model in the one-vs-one
setting is generally more memory-efficient and less computationally expensive, and hence
more preferable for practical use, as argued in Chih-Wei Hsu and Chih-Jen Lin's A comparison
of methods for multiclass support vector machines (IEEE Transactions on Neural Networks, March
2002, Volume 13, pp. 415-425).

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[150]

In scikit-learn, classifiers handle multiclass cases internally, and we do not need to
explicitly write any additional codes to enable it. We can see how simple it is in the
following example of classifying five topics - comp.graphics, sci.space, alt.atheism,
talk.religion.misc, and rec.sport.hockey:

>>> categories = [
... 'alt.atheism',
... 'talk.religion.misc',
... 'comp.graphics',
... 'sci.space',
... 'rec.sport.hockey'
...]
>>> data_train = fetch_20newsgroups(subset='train',
 categories=categories, random_state=42)
>>> data_test = fetch_20newsgroups(subset='test',
 categories=categories, random_state=42)
>>> cleaned_train = clean_text(data_train.data)
>>> label_train = data_train.target
>>> cleaned_test = clean_text(data_test.data)
>>> label_test = data_test.target
>>> term_docs_train = tfidf_vectorizer.fit_transform(cleaned_train)
>>> term_docs_test = tfidf_vectorizer.transform(cleaned_test)

In an SVC model, multiclass support is implicitly handled according to the one-vs-one
scheme:

>>> svm = SVC(kernel='linear', C=1.0, random_state=42)
>>> svm.fit(term_docs_train, label_train)
>>> accuracy = svm.score(term_docs_test, label_test)
>>> print('The accuracy of 5-class classification is:
 {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 88.6%

We also check how it performs for individual classes:

>>> from sklearn.metrics import classification_report
>>> prediction = svm.predict(term_docs_test)
>>> report = classification_report(label_test, prediction)
>>> print(report)
 precision recall f1-score support

 0 0.79 0.77 0.78 319
 1 0.92 0.96 0.94 389
 2 0.98 0.96 0.97 399
 3 0.93 0.94 0.93 394
 4 0.74 0.73 0.73 251

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[151]

 micro avg 0.89 0.89 0.89 1752
 macro avg 0.87 0.87 0.87 1752
weighted avg 0.89 0.89 0.89 1752

Not bad! Also, we could further tweak the values of the hyperparameters kernel and C. As
discussed, the factor C controls the strictness of separation, and it can be tuned to achieve
the best trade-off between bias and variance. How about the kernel? What does it mean and
what are the alternatives to a linear kernel?

The kernels of SVM
In this section, we will answer those two questions we raised in the preceding case as a
result of the fifth case. You will see how the kernel trick makes SVM so powerful.

Case 5 – solving linearly non-separable problems
The hyperplanes we have found up till now are linear, for instance, a line in a two-
dimensional feature space, or a surface in a three-dimensional one. However, in the
following example, we are not able to find any linear hyperplane that can separate two
classes:

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[152]

Intuitively, we observe that data points from one class are closer to the origin than those
from another class. The distance to the origin provides distinguishable information. So we
add a new feature, , and transform the original two-dimensional space into a
three-dimensional one. In the new space, as displayed in the following, we can find a
surface hyperplane separating the data, or a line in the two-dimension view. With the
additional feature, the dataset becomes linearly separable in the higher dimensional space,

:

Based upon similar logics, SVMs with kernels are invented to solve non-linear
classification problems by converting the original feature space, , to a higher
dimensional feature space with a transformation function, , such that the transformed

dataset is linearly separable. A linear hyperplane is then learned using
observations . For an unknown sample , it is first transformed into ; the
predicted class is determined by .

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[153]

An SVM with kernels enables non-linear separation. But it does not explicitly map each
original data point to the high-dimensional space and then perform expensive computation
in the new space. Instead, it approaches this in a tricky way:

During the course of solving the SVM quadratic optimization problems, feature vectors
 are involved only in the form of a pairwise dot product ,

although we will not expand this mathematically in this book. With kernels, the new
feature vectors are and their pairwise dot products can be
expressed as . It would be computationally efficient if we can first implicitly
conduct pairwise operation on two low-dimensional vectors and later map the result to the
high-dimensional space. In fact, a function K that satisfies this does exist:

The function K is the so-called kernel function. With this trick, the transformation
becomes implicit, and the non-linear decision boundary can be efficiently learned by simply

replacing the term with .

The most popular kernel function is probably the radial basis function (RBF) kernel (also
called the Gaussian kernel), which is defined as follows:

Here, . In the Gaussian function, the standard deviation controls the amount of
variation or dispersion allowed: the higher (or lower), the larger width of the bell, the
wider range of data points allowed to spread out over. Therefore, as the kernel
coefficient determines how particularly or generally the kernel function fits the
observations. A large implies a small variance allowed and a relatively exact fit on the
training samples, which might lead to overfitting. On the other hand, a small implies a
high variance allowed and a loose fit on the training samples, which might cause
underfitting. To illustrate this trade-off, let's apply the RBF kernel with different values to a
toy dataset:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> X = np.c_[# negative class
... (.3, -.8),
... (-1.5, -1),

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[154]

... (-1.3, -.8),

... (-1.1, -1.3),

... (-1.2, -.3),

... (-1.3, -.5),

... (-.6, 1.1),

... (-1.4, 2.2),

... (1, 1),

... # positive class

... (1.3, .8),

... (1.2, .5),

... (.2, -2),

... (.5, -2.4),

... (.2, -2.3),

... (0, -2.7),

... (1.3, 2.1)].T
>>> Y = [-1] * 8 + [1] * 8

Eight data points are from one class, and eight from another. We take three values, 1, 2, and
4, for kernel coefficient as an example:

>>> gamma_option = [1, 2, 4]

Under each kernel coefficient, we fit an individual SVM classifier and visualize the trained
decision boundary:

>>> import matplotlib.pyplot as plt
>>> gamma_option = [1, 2, 4]
>>> for i, gamma in enumerate(gamma_option, 1):
... svm = SVC(kernel='rbf', gamma=gamma)
... svm.fit(X, Y)
... plt.scatter(X[:, 0], X[:, 1], c=['b']*8+['r']*8, zorder=10,
cmap=plt.cm.Paired)
... plt.axis('tight')
... XX, YY = np.mgrid[-3:3:200j, -3:3:200j]
... Z = svm.decision_function(np.c_[XX.ravel(), YY.ravel()])
... Z = Z.reshape(XX.shape)
... plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
... plt.contour(XX, YY, Z, colors=['k', 'k', 'k'],
 linestyles=['--', '-', '--'], levels=[-.5, 0, .5])
... plt.title('gamma = %d' % gamma)
... plt.show()

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[155]

Refer to the following screenshot for the end results:

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[156]

We can observe that a larger results in a stricter fit on the dataset. Of course, can be fine-
tuned through cross-validation to obtain the best performance.

Some other common kernel functions include polynomial kernel and sigmoid kernel:

In the absence of prior knowledge of the distribution, the RBF kernel is usually preferable
in practical usage, as there is an additional parameter to tweak in the polynomial kernel
(polynomial degree d) and the empirical sigmoid kernel can perform approximately on a
par with the RBF, but only under certain parameters. Hence, we come to a debate between
linear (also considered no kernel) and RBF kernel given a dataset.

Choosing between linear and RBF kernels
Of course, linear separability is the rule of thumb when choosing the right kernel to start
with. However, most of the time, this is very difficult to identify, unless you have sufficient
prior knowledge of the dataset, or its features are of low dimensions (1 to 3).

Some general prior knowledge we have include: text data is often linearly
separable, while data generated from the XOR function is not.

Now, let's look at the following three scenarios where linear kernel is favored over RBF:

Scenario 1: Both the numbers of features and instances are large (more than 104 or 105).
Since the dimension of the feature space is high enough, additional features as a result of
RBF transformation will not provide any performance improvement, but will increase
computational expense. Some examples from the UCI machine learning repository are of
this type:

URL Reputation Dataset: https:/​/​archive.​ics.​uci.​edu/​ml/​datasets/
URL+Reputation (number of instances: 2,396,130; number of features:
3,231,961). This is designed for malicious URL detection based on their
lexical and host information.
YouTube Multiview Video Games Dataset: https:/​/​archive.​ics.​uci.​edu/​ml/
datasets/​YouTube+Multiview+Video+Games+Dataset (number of instances:
120,000; number of features: 1,000,000). This is designed for topic
classification.

https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/URL+Reputation
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[157]

Scenario 2: The number of features is noticeably large compared to the number of training
samples. Apart from the reasons stated in scenario 1, the RBF kernel is significantly more
prone to overfitting. Such a scenario occurs, for example, in the following referral links:

Dorothea Dataset: https:/​/​archive.​ics.​uci.​edu/​ml/​datasets/​Dorothea
(number of instances: 1,950; number of features: 100,000). This is designed
for drug discovery that classifies chemical compounds as active or inactive
according to their structural molecular features.
Arcene Dataset: https:/​/​archive.​ics.​uci.​edu/​ml/​datasets/​Arcene
(number of instances: 900; number of features: 10,000). This represents a
mass-spectrometry dataset for cancer detection.

Scenario 3: The number of instances is significantly large compared to the number of
features. For a dataset of low dimension, the RBF kernel will, in general, boost the
performance by mapping it to a higher-dimensional space. However, due to the training
complexity, it usually becomes no longer efficient on a training set with more than 106 or
107 samples. Example datasets include the following:

Heterogeneity Activity Recognition Dataset: https:/​/​archive.​ics.​uci.​edu/
ml/​datasets/​Heterogeneity+Activity+Recognition (number of instances:
43,930,257; number of features: 16). This is designed for human activity
recognition.
HIGGS Dataset: https:/​/​archive.​ics.​uci.​edu/​ml/​datasets/​HIGGS
(number of instances: 11,000,000; number of features: 28). This is designed to
distinguish between a signal process producing Higgs bosons or a
background process

Aside from these three scenarios, RBF is ordinarily the first choice.

The rules for choosing between linear and RBF kernel can be summarized as follows:

https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Dorothea
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[158]

Once again, first choice means what we can begin with this option; it does not mean that
this is the only option moving forward.

Classifying newsgroup topics with SVMs
Finally, it is time to build our state-of-the-art SVM-based newsgroup topic classifier using
everything we just learned.

First we load and clean the dataset with the entire 20 groups as follows:

>>> categories = None
>>> data_train = fetch_20newsgroups(subset='train',
 categories=categories, random_state=42)
>>> data_test = fetch_20newsgroups(subset='test',
 categories=categories, random_state=42)
>>> cleaned_train = clean_text(data_train.data)
>>> label_train = data_train.target
>>> cleaned_test = clean_text(data_test.data)
>>> label_test = data_test.target
>>> term_docs_train = tfidf_vectorizer.fit_transform(cleaned_train)
>>> term_docs_test = tfidf_vectorizer.transform(cleaned_test)

As we have seen that the linear kernel is good at classifying text data, we will continue
using linear as the value of the kernel hyperparameter so we only need to tune the
penalty C, through cross-validation:

>>> svc_libsvm = SVC(kernel='linear')

The way we have conducted cross-validation so far is to explicitly split data into folds and
repetitively write a for loop to consecutively examine each hyperparameter. To make this
less redundant, we introduce a more elegant approach utilizing the GridSearchCV module
from scikit-learn. GridSearchCV handles the entire process implicitly, including data
splitting, fold generation, cross training and validation, and finally, an exhaustive search
over the best set of parameters. What is left for us is just to specify the hyperparameter(s) to
tune and the values to explore for each individual hyperparameter:

>>> parameters = {'C': (0.1, 1, 10, 100)}
>>> from sklearn.model_selection import GridSearchCV
>>> grid_search = GridSearchCV(svc_libsvm, parameters, n_jobs=-1, cv=5)

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[159]

The GridSearchCV model we just initialized will conduct five-fold cross-validation (cv=5)
and will run in parallel on all available cores (n_jobs=-1). We then perform
hyperparameter tuning by simply applying the fit method, and record the running time:

>>> import timeit
>>> start_time = timeit.default_timer()
>>> grid_search.fit(term_docs_train, label_train)
>>> print("--- %0.3fs seconds ---" % (timeit.default_timer() - start_time))
--- 525.728s seconds ---

We can obtain the optimal set of parameters (the optimal C in this case) using the following
code:

>>> grid_search.best_params_
{'C': 10}

And the best five-fold averaged performance under the optimal set of parameters by using
the following code:

>>> grid_search.best_score_
0.8888987095633728

We then retrieve the SVM model with the optimal hyperparameter and apply it to the
testing set:

>>> svc_libsvm_best = grid_search.best_estimator_
>>> accuracy = svc_libsvm_best.score(term_docs_test, label_test)
>>> print('The accuracy of 20-class classification is:
 {0:.1f}%'.format(accuracy*100))
The accuracy of 20-class classification is: 78.7%

It should be noted that we tune the model based on the original training set, which is
divided into folds for cross training and validation, and that we adopt the optimal model to
the original testing set. We examine the classification performance in this manner in order
to measure how well generalized the model is to make correct predictions on a completely
new dataset. An accuracy of 78.7% is achieved with our first SVC model.

There is another SVM classifier, LinearSVC, from scikit-learn. How will we perform
this? LinearSVC is similar to SVC with linear kernels, but it is implemented based on the
liblinear library, which is better optimized than libsvm with linear kernel. We then
repeat the same preceding process with LinearSVC as follows:

>>> from sklearn.svm import LinearSVC
>>> svc_linear = LinearSVC()
>>> grid_search = GridSearchCV(svc_linear, parameters,
 n_jobs=-1, cv=5))

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[160]

>>> start_time = timeit.default_timer()
>>> grid_search.fit(term_docs_train, label_train)
>>> print("--- %0.3fs seconds ---" %
 (timeit.default_timer() - start_time))
--- 19.915s seconds ---
>>> grid_search.best_params_
{'C': 1}
>>> grid_search.best_score_
0.894643804136468
>>> svc_linear_best = grid_search.best_estimator_
>>> accuracy = svc_linear_best.score(term_docs_test, label_test)
>>> print('The accuracy of 20-class classification is:
 {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 79.9%

The LinearSVC model outperforms SVC, and its training is more than 26 times faster. This
is because the liblinear library with high scalability is designed for large datasets, while
the libsvm library with more than quadratic computation complexity is not able to scale
well with more than training instances.

We can also tweak the feature extractor, the TfidfVectorizer model, to further improve
the performance. Feature extraction and classification as two consecutive steps should be
cross-validated collectively. We utilize the pipeline API from scikit-learn to facilitate this.

The tfidf feature extractor and linear SVM classifier are first assembled in the pipeline:

>>> from sklearn.pipeline import Pipeline
>>> pipeline = Pipeline([
... ('tfidf', TfidfVectorizer(stop_words='english')),
... ('svc', LinearSVC()),
...])

The hyperparameters to tune are defined as follows, with a pipeline step name joined with
a parameter name by a __ as the key, and a tuple of corresponding options as the value:

>>> parameters_pipeline = {
... 'tfidf__max_df': (0.25, 0.5, 1.0),
... 'tfidf__max_features': (10000, None),
... 'tfidf__sublinear_tf': (True, False),
... 'tfidf__smooth_idf': (True, False),
... 'svc__C': (0.3, 1, 3),
... }

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[161]

Besides the penalty C, for the SVM classifier, we tune the tfidf feature extractor in terms
of the following:

max_df: The maximum document frequency of a term to be allowed, in order to
avoid common terms generally occurring in documents
max_features: The number of top features to consider
sublinear_tf: Whether scaling term frequency with the logarithm function or
not
smooth_idf: Adding an initial 1 to the document frequency or not, similar to
smoothing factor for the term frequency

The grid search model searches for the optimal set of parameters throughout the entire
pipeline:

>>> grid_search = GridSearchCV(pipeline, parameters_pipeline,
 n_jobs=-1, cv=5)
>>> start_time = timeit.default_timer()
>>> grid_search.fit(cleaned_train, label_train)
>>> print("--- %0.3fs seconds ---" %
 (timeit.default_timer() - start_time))
--- 333.761s seconds ---
>>> grid_search.best_params_
{'svc__C': 1, 'tfidf__max_df': 0.5, 'tfidf__max_features': None,
'tfidf__smooth_idf': False, 'tfidf__sublinear_tf': True}
>>> grid_search.best_score_
0.9018914619056037
>>> pipeline_best = grid_search.best_estimator_

Finally, the optimal model is applied to the testing set as follows:

>>> accuracy = pipeline_best.score(cleaned_test, label_test)
>>> print('The accuracy of 20-class classification is:
 {0:.1f}%'.format(accuracy*100))
The accuracy of 20-class classification is: 81.0%

The set of hyperparameters, {max_df: 0.5, smooth_idf: False, max_features:
40000, sublinear_tf: True, C: 1}, facilitates the best classification accuracy, 81.0%,
on the entire 20 groups of text data.

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[162]

More example – fetal state classification on
cardiotocography
After a successful application of SVM with linear kernel, we will look at one more example
of an SVM with RBF kernel to start with.

We are going to build a classifier that helps obstetricians categorize cardiotocograms
(CTGs) into one of the three fetal states (normal, suspect, and pathologic). The
cardiotocography dataset we use is from https:/​/​archive.​ics.​uci.​edu/​ml/​datasets/
Cardiotocography under the UCI Machine Learning Repository and it can be directly
downloaded from https:/​/​archive.​ics.​uci.​edu/​ml/​machine-​learning-​databases/
00193/​CTG.​xls as an .xls Excel file. The dataset consists of measurements of fetal heart
rate and uterine contraction as features, and the fetal state class code (1=normal, 2=suspect,
3=pathologic) as a label. There are in total 2,126 samples with 23 features. Based on the
numbers of instances and features (2,126 is not far more than 23), the RBF kernel is the first
choice.

We work with the Excel file using pandas, which is suitable for table data. It might request
an additional installation of the xlrd package when you run the following lines of codes,
since its Excel module is built based on xlrd. If so, just run pip install xlrd in the
terminal to install xlrd.

We first read the data located in the sheet named Raw Data:

>>> import pandas as pd
>>> df = pd.read_excel('CTG.xls', "Raw Data")

Then, we take these 2,126 data samples, and assign the feature set (from columns D to AL in
the spreadsheet), and label set (column AN) respectively:

>>> X = df.ix[1:2126, 3:-2].values
>>> Y = df.ix[1:2126, -1].values

Don't forget to check the class proportions:

>>> Counter(Y)
Counter({1.0: 1655, 2.0: 295, 3.0: 176})

We set aside 20% of the original data for final testing:

>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
 test_size=0.2,
random_state=42)

https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls
https://archive.ics.uci.edu/ml/machine-learning-databases/00193/CTG.xls

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[163]

Now, we tune the RBF-based SVM model in terms of the penalty C, and the kernel
coefficient :

>>> svc = SVC(kernel='rbf')
>>> parameters = {'C': (100, 1e3, 1e4, 1e5),
... 'gamma': (1e-08, 1e-7, 1e-6, 1e-5)}
>>> grid_search = GridSearchCV(svc, parameters, n_jobs=-1, cv=5)
>>> start_time = timeit.default_timer()
>>> grid_search.fit(X_train, Y_train)
>>> print("--- %0.3fs seconds ---" %
 (timeit.default_timer() - start_time))
--- 11.751s seconds ---
>>> grid_search.best_params_
{'C': 100000.0, 'gamma': 1e-07}
>>> grid_search.best_score_
0.9547058823529412
>>> svc_best = grid_search.best_estimator_

Finally, we apply the optimal model to the testing set:

>>> accuracy = svc_best.score(X_test, Y_test)
>>> print('The accuracy on testing set is:
 {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 96.5%

Also, we have to check the performance for individual classes since the data is not quite
balanced:

>>> prediction = svc_best.predict(X_test)
>>> report = classification_report(Y_test, prediction)
>>> print(report)
 precision recall f1-score support

 1.0 0.98 0.98 0.98 333
 2.0 0.89 0.91 0.90 64
 3.0 0.96 0.93 0.95 29

micro avg 0.96 0.96 0.96 426
macro avg 0.95 0.94 0.94 426
weighted avg 0.96 0.96 0.96 426

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[164]

A further example – breast cancer
classification using SVM with TensorFlow
So far, we have been using scikit-learn to implement SVMs. Let's now look at how to do so
with TensorFlow. Note that, up until now (the end of 2018), the only SVM API provided in
TensorFlow is with linear kernel for binary classification.

We are using the breast cancer dataset (https:/​/​archive.​ics.​uci.​edu/​ml/​datasets/
Breast+Cancer+Wisconsin+(Diagnostic)) as an example. Its feature space is 30-
dimensional, and its target variable is binary. Let's see how it's done by performing the
following steps:

First, import the requisite modules and load the dataset as well as check its class1.
distribution:

>>> import tensorflow as tf
>>> from sklearn import datasets
>>> cancer_data = datasets.load_breast_cancer()
>>> X = cancer_data.data
>>> Y = cancer_data.target
>>> print(Counter(Y))
Counter({1: 357, 0: 212})

Split the data into training and testing sets as follows:2.

>>> np.random.seed(42)
>>> train_indices = np.random.choice(len(Y), round(len(Y) * 0.8),
replace=False)
>>> test_indices = np.array(list(set(range(len(Y))) -
set(train_indices)))
>>> X_train = X[train_indices]
>>> X_test = X[test_indices]
>>> Y_train = Y[train_indices]
>>> Y_test = Y[test_indices]

Now, initialize the SVM classifier as follows:3.

>>> svm_tf = tf.contrib.learn.SVM(
feature_columns=(tf.contrib.layers.real_valued_column(column_name='
x'),),
example_id_column='example_id')

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[165]

Then, we construct the input function for training data, before calling the4.
fit method:

>>> input_fn_train = tf.estimator.inputs.numpy_input_fn(
... x={'x': X_train,
 'example_id': np.array(['%d' % i for i in
range(len(Y_train))])},
... y=Y_train,
... num_epochs=None,
... batch_size=100,
... shuffle=True)

The example_id is something different to scikit-learn. It is basically a placeholder
for the id of samples.

Fit the model on the training set as follows:5.

>>> svm_tf.fit(input_fn=input_fn_train, max_steps=100)

Evaluate the classification accuracy on the training set as follows:6.

>>> metrics = svm_tf.evaluate(input_fn=input_fn_train, steps=1)
>>> print('The training accuracy is:
 {0:.1f}%'.format(metrics['accuracy']*100))
The training accuracy is: 94.0%

To predict on the testing set, we construct the input function for testing data in a7.
similar way:

>>> input_fn_test = tf.estimator.inputs.numpy_input_fn(
... x={'x': X_test,
 'example_id': np.array(
 ['%d' % (i + len(Y_train)) for i in
range(len(X_test))])},
... y=Y_test,
... num_epochs=None,
... shuffle=False)

Finally, evaluate its classification accuracy as follows:8.

>>> metrics = svm_tf.evaluate(input_fn=input_fn_test, steps=1)
>>> print('The testing accuracy is:
 {0:.1f}%'.format(metrics['accuracy']*100))
The testing accuracy is: 90.6%

Classifying Newsgroup Topics with Support Vector Machines Chapter 5

[166]

Note, you will get different results every time you run the codes. This is because, for the
underlying optimization of the tf.contrib.learn.SVM module, the Stochastic Dual
Coordinate Ascent (SDCA) method is used, which incorporates inevitable randomness.

Summary
In this chapter, we continued our journey of classifying news data with the SVM classifier,
where we acquired the mechanics of an SVM, kernel techniques and implementations of
SVM, and other important concepts of machine learning classification, including multiclass
classification strategies and grid search, as well as useful tips for using an SVM (for
example, choosing between kernels and tuning parameters). Then, we finally put into
practice what we had learned in the form of two use cases: news topic classification and
fetal state classification.

We have learned and adopted two classification algorithms so far, Naïve Bayes and SVM.
Naïve Bayes is a simple algorithm (as its name implies). For a dataset with independent, or
close to independent, features, Naïve Bayes will usually perform well. SVM is versatile and
adaptive to the linear separability of data. In general, high accuracy can be achieved by
SVM with the right kernel and parameters. However, this might be at the expense of
intense computation and high memory consumption. When it comes to text classification,
since text data is, in general, linearly separable, an SVM with linear kernels and Naïve
Bayes often end up performing in a comparable way. In practice, we can simply try both
and select the better one with optimal parameters.

In the next chapter, we will look at online advertising and predict whether a user will click
through an ad. This will be accomplished by means of tree-based algorithms, including
decision tree and random forest.

Exercise
Can you also tweak the kernel hyperparameter in the newsgroup topic
classifier? For example, if you go with RBF kernels, you will also need to tune
gamma. Can you achieve higher accuracy?
Can you classify the 20 newsgroup dataset using Naïve Bayes? What is the best
accuracy you can achieve using grid search and cross-validation?

6
Predicting Online Ad Click-

Through with Tree-Based
Algorithms

In this chapter and the next, we will be solving one of the most data-driven problems in
digital advertising: ad click-through prediction - given a user and the page he/she is
visiting, this predicts how likely it is that they will click on a given ad. We will be focusing
on learning tree-based algorithms (decision tree and random forest) and utilizing them to
tackle this billion-dollar problem. We will be exploring decision trees from the root to the
leaves, as well as the aggregated version, a forest of trees. This won't be a bland chapter, as
there are a lot of hand-calculations and implementations of tree models from scratch, and
using scikit-learn and TensorFlow.

We will cover the following topics in this chapter:

Introduction to online advertising click-through
Two types of feature: numerical and categorical
What is decision tree
The mechanics of a decision tree classifier
The construction of decision tree
The implementation of decision tree from scratch
The implementation of decision tree using scikit-learn
Click-through predictions with decision tree
The ensemble method and bagging technique

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[168]

What is random forest?
The mechanics of random forest
Click-through predictions with random forest
Tuning a tree model using grid search and cross-validation
The implementation of random forest using TensorFlow

Brief overview of advertising click-through
prediction
Display online advertising is a multibillion-dollar industry. It comes in different formats,
including banner ads composed of text, images, flash, and rich media such as audio and
video. Advertisers or their agencies place advertisements on a variety of websites, even
mobile apps, across the internet to reach potential customers and deliver an advertising
message.

Display online advertising has served as one of the greatest examples of machine learning
utilization. Obviously, advertisers and consumers are keenly interested in well-targeted
ads. The industry has relied heavily on the ability of machine learning models to predict the
effectiveness of ad targeting: how likely it is that an audience in a certain age group will be
interested in this product, customers with a certain household income will purchase this
product after seeing the ad, frequent sports site visitors will spend more time reading this
ad, and so on. The most common measurement of effectiveness is the click-through rate
(CTR), which is the ratio of clicks on a specific ad to its total number of views. The higher
the CTR in general, the better targeted an ad is, and the more successful an online
advertising campaign is.

Click-through prediction entails both promise and challenges for machine learning. It
mainly involves binary classification of whether a given ad on a given page (or app) will be
clicked by a given user, with predictive features from the following three aspects:

Ad content and information (category, position, text, format, and so on)
Page content and publisher information (category, context, domain, and so on)
User information (age, gender, location, income, interests, search history,
browsing history, device, and so on)

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[169]

Suppose we as an agency are operating ads on behalf of several advertisers, and our job is
to place the right ads for the right audience. With an existing dataset in hand (the following
small chunk is an example; the number of predictive features can easily go into the
thousands in reality) taken from millions records of campaigns running a month ago (let's
say), we need to develop a classification model to learn and predict future ad placement
outcomes:

Getting started with two types of data –
numerical and categorical
At first glance, the features in the preceding dataset are categorical, for example, male or
female, one of four age groups, one of the predefined site categories, and whether or not the
user is interested in sports. Such data is different from the numerical feature data we have
worked with till now.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[170]

Categorical (also called qualitative) features represent characteristics, distinct groups, and a
countable number of options. Categorical features may or may not have logical order. For
example, household income from low, median, to high is an ordinal feature, while the
category of an ad is not ordinal. Numerical (also called quantitative) features, on the other
hand, have mathematical meaning as a measurement and, of course, are ordered. For
instance, term frequency and the tf-idf variant are discrete and continuous numerical
features respectively; the cardiotocography dataset contains both discrete (such as number
of accelerations per second and number of fetal movements per second) and continuous
(such as the mean value of long-term variability) numerical features.

Categorical features can also take on numerical values. For example, 1 to 12 can represent
months of the year, and 1 and 0 can indicate male and female. Still, these values do not
have mathematical implications.

Of the two classification algorithms we learned previously, Naïve Bayes and SVM, the
Naïve Bayes classifier works for both numerical and categorical features as likelihoods

 or are calculated in the same way, while SVM requires features to be
numerical in order to compute and maximize distance margins.

Now, we are thinking of predicting click-through using Naïve Bayes, and trying to explain
the model to our advertising clients. However, our clients may find it difficult to
understand the prior and the likelihood of individual attributes, and their multiplication. Is
there a classifier that is easy to interpret and explain to clients, and is also able to directly
handle categorical data? Decision trees are the answer!

Exploring decision tree from root to leaves
A decision tree is a tree-like graph, a sequential diagram illustrating all of the possible
decision alternatives and the corresponding outcomes. Starting from the root of a tree,
every internal node represents the basis on which a decision is made; each branch of a node
represents how a choice may lead to the next nodes; and finally, each terminal node, the
leaf, represents the outcome produced.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[171]

For example, we have just made a couple of decisions that brought us to the point of using
a decision tree to solve our advertising problem:

The first condition, or the root is whether the feature type is numerical or categorical. Ad
click stream data contain mostly categorical features, so it goes to the right branch. In the
next node, our work needs to be interpretable by non-technical clients. So, it goes to the
right branch and reaches the leaf of choosing the decision tree classifier. You can also look
at paths and see what kinds of problems they can fit in.

Decision tree classifier operates in a form of a decision tree, which maps observations to
class assignments (symbolized as leaf nodes) through a series of tests (represented as
internal nodes) based on feature values and corresponding conditions (represented as
branches). In each node, a question regarding the values and characteristics of a feature is
asked; depending on the answer to the question, observations are split into subsets.
Sequential tests are conducted until a conclusion about the observations' target label is
reached. The paths from root to end leaves represent the decision-making process, the
classification rules.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[172]

In a much simplified scenario, shown in the following diagram, where we want to predict
Click or No click on a self-driven car ad, we manually construct a decision tree classifier
that works for an available dataset. For example, if a user is interested in technology and
has a car, they will tend to click on the ad; for a person outside of this subset, if the person
is a high-income woman, then she is unlikely to click on the ad. We then use the trained
tree to predict two new inputs, whose results are Click and No click respectively:

After a decision tree has been constructed, classifying a new sample is straightforward, as
we just saw: starting from the root, apply the test condition and follow the branch
accordingly until a leaf node is reached, and the class label associated will be assigned to
the new sample.

So, how can we build an appropriate decision tree?

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[173]

Constructing a decision tree
A decision tree is constructed by partitioning the training samples into successive subsets.
The partitioning process is repeated in a recursive fashion on each subset. For each
partitioning at a node, a condition test is conducted based on the value of a feature of the
subset. When the subset shares the same class label, or no further splitting can improve the
class purity of this subset, recursive partitioning on this node is finished.

Theoretically, for a partitioning on a feature (numerical or categorical) with n different
values, there are n different ways of binary splitting (yes or no to the condition test), not to
mention other ways of splitting. Without considering the order of features partitioning is
taking place on, there are already nm possible trees for an m-dimension dataset:

Many algorithms have been developed to efficiently construct an accurate decision tree.
Popular ones include the following:

Iterative Dichotomiser 3 (ID3): This algorithm uses a greedy search in a top-
down manner by selecting the best attribute to split the dataset on each iteration
without backtracking.
C4.5: An improved version on ID3 that introduces backtracking; it traverses the
constructed tree and replaces branches with leaf nodes if purity is improved this
way.
Classification and Regression Tree (CART): It constructs the tree using binary
splitting, which we will discuss in detail shortly.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[174]

CHi-squared Automatic Interaction Detector (CHAID): This algorithm is often
used in direct marketing. It involves complicated statistical concepts, but
basically determines the optimal way of merging predictive variables in order to
best explain the outcome.

The basic idea of these algorithms is to grow the tree greedily by making a series of local
optimizations on choosing the most significant feature to use to partition the data. The
dataset is then split based on the optimal value of that feature. We will discuss the
measurement of a significant feature and the optimal splitting value of a feature in the next
section.

We now study the CART algorithm in detail and will implement it as the most notable
decision tree algorithm after. It constructs the tree using binary splitting and growing each
node into left and right children. In each partition, it greedily searches for the most
significant combination of a feature and its value; all different possible combinations are
tried and tested using a measurement function. With the selected feature and value as a
splitting point, it then divides the dataset as follows:

Samples with the feature of this value (for a categorical feature) or a greater value
(for a numerical feature) become the right child
The remainder becomes the left child

This partitioning process repeats and recursively divides up the input samples into two
subgroups. When the dataset becomes unmixed, a splitting process stops at a subgroup
where either of the following two criteria are met:

The minimum number of samples for a new node: When the number of
samples is not greater than the minimum number of samples required for a
further split, the partitioning stops in order to prevent the tree from excessively
tailoring to the training set and, as a result, overfitting.
The maximum depth of the tree: A node stops growing when its depth, which is
defined as the number of partitioning taking place from the top down, starting
from the root node ending in a terminal node, is not less than the maximum tree
depth. Deeper trees are more specific to the training set and lead to overfitting.

A node with no branches becomes a leaf, and the dominant class of samples at this node is
the prediction. Once all splitting processes finish, the tree is constructed and is portrayed
with the assigned labels at the terminal nodes and the splitting points (feature + value) at all
the internal nodes above.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[175]

We will implement the CART decision tree algorithm from scratch after studying the
metrics of selecting the optimal splitting feature and value, as promised.

The metrics for measuring a split
When selecting the best combination of feature and value as the splitting point, two criteria
such as Gini Impurity and Information Gain can be used to measure the quality of
separation.

Gini Impurity, as its name implies, measures the impurity rate of the class distribution of
data points, or the class mixture rate. For a dataset with K classes, suppose data from class

 take up a fraction of the entire dataset, the Gini Impurity of this
dataset is written as follows:

Lower Gini Impurity indicates a purer dataset. For example, when the dataset contains only
one class, say the fraction of this class is 1 and that of others is 0, its Gini Impurity becomes

. In another example, a dataset records a large number of coin flips, and
heads and tails each take up half of the samples. The Gini Impurity is
. In binary cases, Gini Impurity under different values of the positive class' fraction can be
visualized by the following code blocks:

>>> import matplotlib.pyplot as plt
>>> import numpy as np

The fraction of the positive class varies from 0 to 1:

>>> pos_fraction = np.linspace(0.00, 1.00, 1000)

Gini Impurity is calculated accordingly, followed by the plot of Gini Impurity versus
Positive fraction:

>>> gini = 1 – pos_fraction**2 – (1-pos_fraction)**2
>>> plt.plot(pos_fraction, gini)
>>> plt.ylim(0, 1)
>>> plt.xlabel(‘Positive fraction')
>>> plt.ylabel(‘Gini Impurity')
>>> plt.show()

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[176]

Refer to the following screenshot for the end result:

Given the labels of a dataset, we can implement the Gini Impurity calculation function as
follows:

>>> def gini_impurity(labels):
... # When the set is empty, it is also pure
... if not labels:
... return 0
... # Count the occurrences of each label
... counts = np.unique(labels, return_counts=True)[1]
... fractions = counts / float(len(labels))
... return 1 - np.sum(fractions ** 2)

Test it out with some examples:

>>> print('{0:.4f}'.format(gini_impurity([1, 1, 0, 1, 0])))
0.4800
>>> print('{0:.4f}'.format(gini_impurity([1, 1, 0, 1, 0, 0])))
0.5000
>>> print('{0:.4f}'.format(gini_impurity([1, 1, 1, 1])))
0.0000

In order to evaluate the quality of a split, we simply add up the Gini Impurity of all
resulting subgroups, combining the proportions of each subgroup as corresponding weight
factors. And again, the smaller the weighted sum of Gini Impurity, the better the split.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[177]

Take a look at the following self-driving car ad example, where we split the data based on
user's gender and interest in technology respectively:

The weighted Gini Impurity of the first split can be calculated as follows:

The second split is as follows:

Thus, splitting based on the user's interest in technology is a better strategy than gender.

Another metric, Information Gain, measures the improvement of purity after splitting, or
in other words, the reduction of uncertainty due to a split. Higher Information Gain implies
better splitting. We obtain the Information Gain of a split by comparing the entropy before
and after the split.

Entropy is the probabilistic measure of uncertainty. Given a K-class dataset, and
 denoted as the fraction of data from class , the entropy of the

dataset is defined as follows:

Lower entropy implies a purer dataset with less ambiguity. In a perfect case where the
dataset contains only one class, the entropy is . In the coin flip example,
the entropy becomes .

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[178]

Similarly, we can visualize how entropy changes with different values of the positive class's
fraction in binary cases using the following lines of codes:

>>> pos_fraction = np.linspace(0.00, 1.00, 1000)
>>> ent = - (pos_fraction * np.log2(pos_fraction) +
 (1 - pos_fraction) * np.log2(1 - pos_fraction))
>>> plt.plot(pos_fraction, ent)
>>> plt.xlabel('Positive fraction')
>>> plt.ylabel('Entropy')
>>> plt.ylim(0, 1)
>>> plt.show()

This will give us the following output:

Given the labels of a dataset, the entropy calculation function can be implemented as
follows:

>>> def entropy(labels):
... if not labels:
... return 0
... counts = np.unique(labels, return_counts=True)[1]
... fractions = counts / float(len(labels))
... return - np.sum(fractions * np.log2(fractions))

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[179]

Test it out with some examples:

>>> print('{0:.4f}'.format(entropy([1, 1, 0, 1, 0])))
0.9710
>>> print('{0:.4f}'.format(entropy([1, 1, 0, 1, 0, 0])))
1.0000
>>> print('{0:.4f}'.format(entropy([1, 1, 1, 1])))
-0.0000

Now that we have fully understood entropy, we can look into how Information Gain
measures how much uncertainty was reduced after splitting, which is defined as the
difference in entropy before a split (parent) and after the split (children):

Entropy after a split is calculated as the weighted sum of the entropy of each child,
similarly to the weighted Gini Impurity.

During the process of constructing a node at a tree, our goal is to search for the splitting
point where the maximum Information Gain is obtained. As the entropy of the parent node
is unchanged, we just need to measure the entropy of the resulting children due to a split.
The best split is the one with the lowest entropy of its resulting children.

To understand it better, let's look at the self-driving car ad example again.

For the first option, the entropy after the split can be calculated as follows:

The second way of splitting is as follows:

For exploration, we can also calculate their Information Gain by:

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[180]

According to the Information Gain = entropy-based evaluation, the second split is
preferable, which is the conclusion of the Gini Impurity criterion.

In general, the choice of two metrics, Gini Impurity and Information Gain, has little effect
on the performance of the trained decision tree. They both measure the weighted impurity
of the children after a split. We can combine them into one function to calculate the
weighted impurity:

>>> criterion_function = {'gini': gini_impurity,
 'entropy': entropy}
>>> def weighted_impurity(groups, criterion='gini'):
... """
... Calculate weighted impurity of children after a split
... @param groups: list of children, and a child consists a
 list of class labels
... @param criterion: metric to measure the quality of a split,
 'gini' for Gini Impurity or 'entropy' for Information Gain
... @return: float, weighted impurity
... """
... total = sum(len(group) for group in groups)
... weighted_sum = 0.0
... for group in groups:
... weighted_sum += len(group) / float(total) *
 criterion_function[criterion](group)
... return weighted_sum

Test it with the example we just hand-calculated, as follows:

>>> children_1 = [[1, 0, 1], [0, 1]]
>>> children_2 = [[1, 1], [0, 0, 1]]
>>> print('Entropy of #1 split:
 {0:.4f}'.format(weighted_impurity(children_1, 'entropy')))
Entropy of #1 split: 0.9510
>>> print('Entropy of #2 split:
 {0:.4f}'.format(weighted_impurity(children_2, 'entropy')))
Entropy of #2 split: 0.5510

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[181]

Implementing a decision tree from scratch
With a solid understanding of partitioning evaluation metrics, let's practice the CART tree
algorithm by hand on a toy dataset:

To begin, we decide on the first splitting point, the root, by trying out all possible values for
each of the two features. We utilize the weighted_impurity function we just defined to
calculate the weighted Gini Impurity for each possible combination as follows:

Gini(interest, tech) = weighted_impurity([[1, 1, 0], [0, 0, 0, 1]]) = 0.405
Gini(interest, Fashion) = weighted_impurity([[0, 0], [1, 0, 1, 0, 1]]) = 0.343
Gini(interest, Sports) = weighted_impurity([[0, 1], [1, 0, 0, 1, 0]]) = 0.486
Gini(occupation, professional) = weighted_impurity([[0, 0, 1, 0], [1, 0, 1]]) = 0.405
Gini(occupation, student) = weighted_impurity([[0, 0, 1, 0], [1, 0, 1]]) = 0.405
Gini(occupation, retired) = weighted_impurity([[1, 0, 0, 0, 1, 1], [1]]) = 0.429

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[182]

The root goes to the user interest feature with the fashion value, as this combination
achieves the lowest weighted impurity, or the highest Information Gain. We can now build
the first level of the tree as follows:

If we are satisfied with a one-level-deep tree, we can stop here by assigning the right branch
label 0 and the left branch label 1 as the majority class. Alternatively, we can go further
down the road, constructing the second level from the left branch (the right branch cannot
be further split):

Gini(interest, tech) = weighted_impurity([[0, 1], [1, 1, 0]]) = 0.467
Gini(interest, Sports) = weighted_impurity([[1, 1, 0], [0, 1]]) = 0.467
Gini(occupation, professional) = weighted_impurity([[0, 1, 0], [1, 1]]) = 0.267
Gini(occupation, student) = weighted_impurity([[1, 0, 1], [0, 1]]) = 0.467
Gini(occupation, retired) = weighted_impurity([[1, 0, 1, 1], [0]]) = 0.300

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[183]

With the second splitting point specified by (occupation, professional) with the lowest
Gini Impurity, our tree becomes this:

We can repeat the splitting process as long as the tree does not exceed the maximum depth
and the node contains enough samples.

It is now time for coding after the process of tree construction has been made clear.

We start with the criterion of the best splitting point; the calculation of the weighted
impurity of two potential children is what we defined previously, while that of two metrics
are slightly different. The inputs now become NumPy arrays for computational efficiency:

>>> def gini_impurity_np(labels):
... # When the set is empty, it is also pure
... if labels.size == 0:
... return 0
... # Count the occurrences of each label
... counts = np.unique(labels, return_counts=True)[1]
... fractions = counts / float(len(labels))
... return 1 - np.sum(fractions ** 2)

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[184]

Also, take a look at the following code:

>>> def entropy_np(labels):
... # When the set is empty, it is also pure
... if labels.size == 0:
... return 0
... counts = np.unique(labels, return_counts=True)[1]
... fractions = counts / float(len(labels))
... return - np.sum(fractions * np.log2(fractions))

Also update the weighted_impurity function as follows:

>>> def weighted_impurity(groups, criterion='gini'):
... """
... Calculate weighted impurity of children after a split
... @param groups: list of children, and a child consists a list
 of class labels
... @param criterion: metric to measure the quality of a split,
 'gini' for Gini Impurity or 'entropy' for Information Gain
... @return: float, weighted impurity
... """
... total = sum(len(group) for group in groups)
... weighted_sum = 0.0
... for group in groups:
... weighted_sum += len(group) / float(total) *
 criterion_function_np[criterion](group)
... return weighted_sum

Next, we define a utility function to split a node into left and right children based on a
feature and a value:

>>> def split_node(X, y, index, value):
... """
... Split dataset X, y based on a feature and a value
... @param X: numpy.ndarray, dataset feature
... @param y: numpy.ndarray, dataset target
... @param index: int, index of the feature used for splitting
... @param value: value of the feature used for splitting
... @return: list, list, left and right child, a child is in the
 format of [X, y]
... """
... x_index = X[:, index]
... # if this feature is numerical
... if X[0, index].dtype.kind in ['i', 'f']:
... mask = x_index >= value
... # if this feature is categorical
... else:
... mask = x_index == value

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[185]

... # split into left and right child

... left = [X[~mask, :], y[~mask]]

... right = [X[mask, :], y[mask]]

... return left, right

We check whether the feature is numerical or categorical and split the
data accordingly.

With the splitting measurement and generation functions available, we now define the
greedy search function, which tries out all possible splits and returns the best one given a
selection criterion, along with the resulting children:

>>> def get_best_split(X, y, criterion):
... """
... Obtain the best splitting point and resulting children for
 the dataset X, y
... @param X: numpy.ndarray, dataset feature
... @param y: numpy.ndarray, dataset target
... @param criterion: gini or entropy
... @return: dict {index: index of the feature, value: feature
 value, children: left and right children}
... """
... best_index, best_value, best_score, children =
 None, None, 1, None
... for index in range(len(X[0])):
... for value in np.sort(np.unique(X[:, index])):
... groups = split_node(X, y, index, value)
... impurity = weighted_impurity(
 [groups[0][1], groups[1][1]], criterion)
... if impurity < best_score:
... best_index, best_value, best_score, children =
 index, value, impurity, groups
... return {'index': best_index, 'value': best_value,
 'children': children}

The selection and splitting process occurs in a recursive manner on each of the subsequent
children. When a stopping criterion is met, the process stops at a node and the major label
will be assigned to this leaf node:

>>> def get_leaf(labels):
... # Obtain the leaf as the majority of the labels
... return np.bincount(labels).argmax()

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[186]

And finally, the recursive function links all these together:

It assigns a leaf node if one of two child nodes is empty
It assigns a leaf node if the current branch depth exceeds the maximum depth
allowed
It assigns a leaf node if it does not contain sufficient samples required for a
further split
Otherwise, it proceeds with a further split with the optimal splitting point

This is done with the following function:

>>> def split(node, max_depth, min_size, depth, criterion):
... """
... Split children of a node to construct new nodes or assign
 them terminals
... @param node: dict, with children info
... @param max_depth: int, maximal depth of the tree
... @param min_size: int, minimal samples required to further
 split a child
... @param depth: int, current depth of the node
... @param criterion: gini or entropy
... """
... left, right = node['children']
... del (node['children'])
... if left[1].size == 0:
... node['right'] = get_leaf(right[1])
... return
... if right[1].size == 0:
... node['left'] = get_leaf(left[1])
... return
... # Check if the current depth exceeds the maximal depth
... if depth >= max_depth:
... node['left'], node['right'] =
 get_leaf(left[1]), get_leaf(right[1])
... return
... # Check if the left child has enough samples
... if left[1].size <= min_size:
... node['left'] = get_leaf(left[1])
... else:
... # It has enough samples, we further split it
... result = get_best_split(left[0], left[1], criterion)
... result_left, result_right = result['children']
... if result_left[1].size == 0:
... node['left'] = get_leaf(result_right[1])
... elif result_right[1].size == 0:
... node['left'] = get_leaf(result_left[1])
... else:

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[187]

... node['left'] = result

... split(node['left'], max_depth, min_size,
 depth + 1, criterion)
... # Check if the right child has enough samples
... if right[1].size <= min_size:
... node['right'] = get_leaf(right[1])
... else:
... # It has enough samples, we further split it
... result = get_best_split(right[0], right[1], criterion)
... result_left, result_right = result['children']
... if result_left[1].size == 0:
... node['right'] = get_leaf(result_right[1])
... elif result_right[1].size == 0:
... node['right'] = get_leaf(result_left[1])
... else:
... node['right'] = result
... split(node['right'], max_depth, min_size,
 depth + 1, criterion)

Finally, the entry point of the tree's construction is as follows:

>>> def train_tree(X_train, y_train, max_depth, min_size,
 criterion='gini'):
... """
... Construction of a tree starts here
... @param X_train: list of training samples (feature)
... @param y_train: list of training samples (target)
... @param max_depth: int, maximal depth of the tree
... @param min_size: int, minimal samples required to further
 split a child
... @param criterion: gini or entropy
... """
... X = np.array(X_train)
... y = np.array(y_train)
... root = get_best_split(X, y, criterion)
... split(root, max_depth, min_size, 1, criterion)
... return root

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[188]

Now, let's test it with the preceding hand-calculated example:

>>> X_train = [['tech', 'professional'],
... ['fashion', 'student'],
... ['fashion', 'professional'],
... ['sports', 'student'],
... ['tech', 'student'],
... ['tech', 'retired'],
... ['sports', 'professional']]
>>> y_train = [1, 0, 0, 0, 1, 0, 1]
>>> tree = train_tree(X_train, y_train, 2, 2)

To verify that the resulting tree from the model is identical to what we constructed by
hand, we write a function displaying the tree:

>>> CONDITION = {'numerical': {'yes': '>=', 'no': '<'},
... 'categorical': {'yes': 'is', 'no': 'is not'}}
>>> def visualize_tree(node, depth=0):
... if isinstance(node, dict):
... if node['value'].dtype.kind in ['i', 'f']:
... condition = CONDITION['numerical']
... else:
... condition = CONDITION['categorical']
... print('{}|- X{} {} {}'.format(depth * ' ',
 node['index'] + 1, condition['no'], node['value']))
... if 'left' in node:
... visualize_tree(node['left'], depth + 1)
... print('{}|- X{} {} {}'.format(depth * ' ',
 node['index'] + 1, condition['yes'], node['value']))
... if 'right' in node:
... visualize_tree(node['right'], depth + 1)
... else:
... print('{}[{}]'.format(depth * ' ', node))
>>> visualize_tree(tree)
|- X1 is not fashion
 |- X2 is not professional
 [0]
 |- X2 is professional
 [1]
|- X1 is fashion
 [0]

We can test it with a numerical example as follows:

>>> X_train_n = [[6, 7],
... [2, 4],
... [7, 2],
... [3, 6],

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[189]

... [4, 7],

... [5, 2],

... [1, 6],

... [2, 0],

... [6, 3],

... [4, 1]]
>>> y_train_n = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
>>> tree = train_tree(X_train_n, y_train_n, 2, 2)
>>> visualize_tree(tree)
|- X2 < 4
 |- X1 < 7
 [1]
 |- X1 >= 7
 [0]
|- X2 >= 4
 |- X1 < 2
 [1]
 |- X1 >= 2
 [0]

The resulting trees from our decision tree model are the same as those we hand-crafted.

Now that we have a more solid understanding of decision trees by implementing one from
scratch, we can try the decision tree package from scikit-learn, which is already well
developed and optimized:

>>> from sklearn.tree import DecisionTreeClassifier
>>> tree_sk = DecisionTreeClassifier(criterion='gini',
 max_depth=2, min_samples_split=2)
>>> tree_sk.fit(X_train_n, y_train_n)

To visualize the tree we just built, we utilize the built-in export_graphviz function, as
follows:

>>> export_graphviz(tree_sk, out_file='tree.dot',
 feature_names=['X1', 'X2'], impurity=False, filled=True,
 class_names=['0', '1'])

Running this will generate a file called tree.dot, which can be converted to a PNG image
file using Graphviz (introduction and installation instructions can be found
at http://www.graphviz.org) by running the following command in the terminal:

dot -Tpng tree.dot -o tree.png

http://www.graphviz.org/)
http://www.graphviz.org/)

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[190]

Refer to the following screenshot for the result:

The generated tree is essentially the same as the one we had before.

Predicting ad click-through with decision
tree
After several examples, it is now time to predict ad click-through with the decision tree
algorithm we have just thoroughly learned about and practiced. We will use the dataset
from a Kaggle machine learning competition, Click-Through Rate Prediction (https:/​/​www.
kaggle.​com/​c/​avazu-​ctr-​prediction). The dataset can be downloaded from https:/​/
www.​kaggle.​com/​c/​avazu-​ctr-​prediction/​data.

Only the train.gz file contains labeled samples, so we only need to
download this and unzip it (it will take a while). In this chapter, we focus
on only the first 300,000 samples from the train file unzipped from
train.gz.

https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[191]

The fields in the raw file are as follows:

We take a glance at the head of the file by running the following command:

head train | sed 's/,,/, ,/g;s/,,/, ,/g' | column -s, -t

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[192]

Rather than simple head train, the output is cleaner as all the columns are aligned:

Don't be scared by the anonymized and hashed values. They are categorical features, and
each possible value of them corresponds to a real and meaningful value, but is presented
this way out of privacy policy. Maybe C1 means user gender, and 1005 and 1002 represent
male and female respectively.

Now, let's get started with reading the dataset using pandas. That's right, pandas is
extremely good at handling data in a tabular format:

>>> import pandas as pd
>>> n_rows = 300000
>>> df = pd.read_csv("train.csv", nrows=n_rows)

The first 300,000 lines of the file are loaded and stored in a dataframe. Take a quick look at
the first five rows of the dataframe:

>>> print(df.head(5))
id click hour C1 banner_pos site_id ... C16 C17 C18 C19 C20 C21
0 1.000009e+18 0 14102100 1005 0 1fbe01fe ... 50 1722 0 35
-1 79
1 1.000017e+19 0 14102100 1005 0 1fbe01fe ... 50 1722 0 35
100084 79
2 1.000037e+19 0 14102100 1005 0 1fbe01fe ... 50 1722 0 35

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[193]

100084 79
3 1.000064e+19 0 14102100 1005 0 1fbe01fe ... 50 1722 0 35
100084 79
4 1.000068e+19 0 14102100 1005 1 fe8cc448 ... 50 2161 0 35
-1 157

The target variable is the click column:

>>> Y = df['click'].values

For the remaining columns, there are several columns that should be removed from the
features (id, hour, device_id, and device_ip) as they do not contain much useful
information:

>>> X = df.drop(['click', 'id', 'hour', 'device_id', 'device_ip'],
 axis=1).values
>>> print(X.shape)
(300000, 19)

Each sample has 19 predictive attributes.

Next, we need to split the data into training and testing sets. Normally, we do so by
randomly picking samples. However, in our case, samples are in chronological order as
indicated in the hour field. Obviously, we cannot use future samples to predict the past
ones. Hence, we take the first 90% as training samples and the rest as testing samples:

>>> n_train = int(n_rows * 0.9)
>>> X_train = X[:n_train]
>>> Y_train = Y[:n_train]
>>> X_test = X[n_train:]
>>> Y_test = Y[n_train:]

As mentioned, decision tree models can take in categorical features. However, because the
tree-based algorithms in scikit-learn (the current version is 0.20.0 as of the end of 2018)
only allow numerical input, we need to transform categorical features into numerical ones.
But note that in general we do not need to do so; for example, the decision tree classifier we
developed from scratch earlier can directly take in categorical features.

We now transform string-based categorical features into one-hot encoded vectors using the
OneHotEncoder module from scikit-learn. One-hot encoding was briefly mentioned in
Chapter 1, Getting Started with Machine Learning and Python. To recap, it basically converts a
categorical feature with k possible values into k binary features. For example, the site
category feature with three possible values, news, education, and sports, will be
encoded into three binary features, such as is_news, is_education, and is_sports,
whose values are either 1 or 0.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[194]

Initialize a OneHotEncoder object as follows:

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder(handle_unknown='ignore')

Fit it on the training set as follows:

>>> X_train_enc = enc.fit_transform(X_train)
>>> X_train_enc[0]
<1x8385 sparse matrix of type '<class 'numpy.float64'>'
with 19 stored elements in Compressed Sparse Row format>
>>> print(X_train_enc[0])
 (0, 2) 1.0
 (0, 6) 1.0
 (0, 30) 1.0
 (0, 1471) 1.0
 (0, 2743) 1.0
 (0, 3878) 1.0
 (0, 4000) 1.0
 (0, 4048) 1.0
 (0, 6663) 1.0
 (0, 7491) 1.0
 (0, 7494) 1.0
 (0, 7861) 1.0
 (0, 8004) 1.
 (0, 8008) 1.0
 (0, 8085) 1.0
 (0, 8158) 1.0
 (0, 8163) 1.0
 (0, 8202) 1.0
 (0, 8383) 1.0

Each converted sample is a sparse vector.

Transform the testing set using the trained one-hot encoder as follows:

>>> X_test_enc = enc.transform(X_test)

Remember, we specify the handle_unknown='ignore' parameter in the one-hot encoder
earlier. This is to prevent errors due to any unseen categorical values. Use the previous site
category example, if there is a sample with the value movie, three converted binary
features (is_news, is_education, and is_sports) all become 0s. If we do not specify
ignore, an error will be raised.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[195]

Next, we train a decision tree model using grid search, which we learned about in Chapter
5, Classifying Newsgroup Topics with a Support Vector Machine. For demonstration purposes,
we only tweak the max_depth hyperparameter. Other hyperparameters, such as
min_samples_split and class_weight, are also highly recommended. The classification
metric should be AUC of ROC, as it is an imbalanced binary case (only 51,211 out of 300,000
training samples are clicks, that, is a 17% positive click-through rate):

>>> from sklearn.tree import DecisionTreeClassifier
>>> parameters = {'max_depth': [3, 10, None]}

Pick three options for the maximal depth, 3, 10, and unbounded. Initialize a decision tree
model with Gini Impurity as the metric and 30 as the minimum number of samples
required to split further:

>>> decision_tree = DecisionTreeClassifier(criterion='gini',
 min_samples_split=30)
>>> from sklearn.model_selection import GridSearchCV

As for grid search, we use three-fold (as there are enough training samples) cross-validation
and select the best performing hyperparameter measured by AUC:

>>> grid_search = GridSearchCV(decision_tree, parameters,
 n_jobs=-1, cv=3, scoring='roc_auc')

Note n_jobs=-1 means that we use all available CPU processors:

>>> grid_search.fit(X_train, y_train)
>>> print(grid_search.best_params_)
{'max_depth': 10}

Use the model with the optimal parameter to predict future test cases, as follows:

>>> decision_tree_best = grid_search.bestestimator
>>> pos_prob = decision_tree_best.predict_proba(X_test)[:, 1]
>>> from sklearn.metrics import roc_auc_score
>>> print('The ROC AUC on testing set is:
 {0:.3f}'.format(roc_auc_score(y_test, pos_prob)))
The ROC AUC on testing set is: 0.719

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[196]

The AUC we can achieve with the optimal decision tree model is 0.72. It does not seem very
high, but click-through involves many intricate human factors, which is why predicting it is
not an easy problem. Although we can further optimize its hyperparameters, an AUC of
0.72 is pretty good, actually. Randomly selecting 17% of the samples to be click will
generate an AUC of 0.496:

>>> pos_prob = np.zeros(len(Y_test))
>>> click_index = np.random.choice(len(Y_test),
 int(len(Y_test) * 51211.0/300000), replace=False)
>>> pos_prob[click_index] = 1
>>> roc_auc_score(Y_test, pos_prob)
0.496

Looking back, we can see that a decision tree is a sequence of greedy searches for the best
splitting point at each step, based on the training dataset. However, this tends to cause
overfitting as it is likely that the optimal points only work well for the training samples.
Fortunately, ensembling is the technique to correct this, and random forest is an ensemble
tree model that usually outperforms a simple decision tree.

Ensembling decision trees – random forest
The ensemble technique bagging (which stands for bootstrap aggregating), which we
briefly mentioned in Chapter 1, Getting Started with Machine Learning and Python, can
effectively overcome overfitting. To recap, different sets of training samples are randomly
drawn with replacements from the original training data; each resulting set is used to fit an
individual classification model. The results of these separately trained models are then
combined together through a majority vote to make the final decision.

Tree bagging, described in the preceding section, reduces the high variance that a decision
tree model suffers from and hence, in general, performs better than a single tree. However,
in some cases, where one or more features are strong indicators, individual trees are
constructed largely based on these features and as a result become highly correlated.
Aggregating multiple correlated trees will not make much difference. To force each tree to
be uncorrelated, random forest only consider a random subset of the features when
searching for the best splitting point at each node. Individual trees are now trained based
on different sequential sets of features, which guarantees more diversity and better
performance. Random forest is a variant tree bagging model with additional feature-based
bagging.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[197]

To employ random forest in our click-through prediction project, we use the package from
scikit-learn. Similar to the way we implemented the decision tree in the preceding
section, we only tweak the max_depth parameter:

>>> from sklearn.ensemble import RandomForestClassifier
>>> random_forest = RandomForestClassifier(n_estimators=100,
 criterion='gini', min_samples_split=30, n_jobs=-1)

Besides max_depth, min_samples_split, and class_weight, which are important
hyperparameters related to a single decision tree, hyperparameters that are related to a
random forest (a set of trees) such as n_estimators are also highly recommended:

>>> grid_search = GridSearchCV(random_forest, parameters,
 n_jobs=-1, cv=3, scoring='roc_auc')
>>> grid_search.fit(X_train, y_train)
>>> print(grid_search.best_params_)
{'max_depth': None}

Use the model with the optimal parameter None for max_depth (nodes are expanded until
another stopping criterion is met) to predict future unseen cases:

>>> random_forest_best = grid_search.bestestimator
>>> pos_prob = random_forest_best.predict_proba(X_test)[:, 1]
>>> print('The ROC AUC on testing set is:
 {0:.3f}'.format(roc_auc_score(y_test, pos_prob)))
The ROC AUC on testing set is: 0.759

It turns out that the random forest model gives a substantial lift to the performance.

Let's summarize several critical hyperparameters to tune in random forest:

max_depth: This is the deepest individual tree. It tends to overfit if it is too deep,
or to underfit if it is too shallow.
min_samples_split: This hyperparameter represents the minimum number of
samples required for further splitting at a node. Too small a value tends to cause
overfitting, while too large a value is likely to introduce underfitting. 10, 30, and
50 might be good options to start with.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[198]

The preceding two hyperparameters are generally related to individual decision trees. The
following two parameters are more related to a random forest, a collection of trees:

max_features: This parameter represents the number of features to consider for
each best splitting point search. Typically, for an m-dimensional dataset,
 (rounded) is a recommended value for max_features. This can be specified as
max_features="sqrt" in scikit-learn. Other options include log2, 20% of
the original features to 50%.
n_estimators: This parameter represents the number of trees considered for
majority voting. Generally speaking, the more trees, the better the performance,
but more computation time. It is usually set as 100, 200, 500, and so on.

Implementing random forest using TensorFlow
This is a bonus section where we implement a random forest with TensorFlow. Let's take a
look at the following steps and see how it is done:

First, we import the modules we need, as follows:1.

>>> import tensorflow as tf
>>> from tensorflow.contrib.tensor_forest.python import
tensor_forest
>>> from tensorflow.python.ops import resources

Specify the parameters of the model, including 20 iterations during the training2.
process, 10 trees in total, and 30000 maximal splitting nodes:

>>> n_iter = 20
>>> n_classes = 2
>>> n_features = int(X_train_enc.toarray().shape[1])
>>> n_trees = 10
>>> max_nodes = 30000

Next, we create placeholders and build the TensorFlow graph:3.

>>> x = tf.placeholder(tf.float32, shape=[None, n_features])
>>> y = tf.placeholder(tf.int64, shape=[None])
>>> hparams = tensor_forest.ForestHParams(num_classes=n_classes,
 num_features=n_features, num_trees=n_trees,
 max_nodes=max_nodes, split_after_samples=30).fill()
>>> forest_graph = tensor_forest.RandomForestGraphs(hparams)

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[199]

After defining the graph for the random forest model, we get the training graph4.
and loss, as well as the measurement of performance, the AUC:

>>> train_op = forest_graph.training_graph(x, y)
>>> loss_op = forest_graph.training_loss(x, y)
>>> infer_op, _, _ = forest_graph.inference_graph(x)
>>> auc = tf.metrics.auc(tf.cast(y, tf.int64), infer_op[:, 1])[1]

Then, initialize the variables and start a TensorFlow session:5.

>>> init_vars = tf.group(tf.global_variables_initializer(),
 tf.local_variables_initializer(),
resources.initialize_resources(resources.shared_resources()))
>>> sess = tf.Session()
>>> sess.run(init_vars)

In TensorFlow, models are usually trained in a batch. That is, the training set is5.
split into many small chunks and the model fits them chunk by chunk. Here, we
set the batch size to 1000 and define a function to get randomized chunks of
samples in each training iteration:

>>> batch_size = 1000
>>> import numpy as np
>>> indices = list(range(n_train))
>>> def gen_batch(indices):
... np.random.shuffle(indices)
... for batch_i in range(int(n_train / batch_size)):
... batch_index = indices[batch_i*batch_size:
 (batch_i+1)*batch_size]
... yield X_train_enc[batch_index], Y_train[batch_index]

Finally, we start the training process and conduct a performance check-up for6.
each iteration:

>>> for i in range(1, n_iter + 1):
... for X_batch, Y_batch in gen_batch(indices):
... _, l = sess.run([train_op, loss_op], feed_dict=
 {x: X_batch.toarray(), y: Y_batch})
... acc_train = sess.run(auc, feed_dict=
 {x: X_train_enc.toarray(), y: Y_train})
... print('Iteration %i, AUC of ROC on training set: %f' %
 (i, acc_train))
... acc_test = sess.run(auc, feed_dict=
 {x: X_test_enc.toarray(), y: Y_test})
... print("AUC of ROC on testing set:", acc_test)
Iteration 1, AUC of ROC on training set: 0.740271
AUC of ROC on testing set: 0.7418298

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[200]

Iteration 2, AUC of ROC on training set: 0.745904
AUC of ROC on testing set: 0.74665743
Iteration 3, AUC of ROC on training set: 0.749690
AUC of ROC on testing set: 0.7501322
Iteration 4, AUC of ROC on training set: 0.752632
AUC of ROC on testing set: 0.7529533
Iteration 5, AUC of ROC on training set: 0.755357
AUC of ROC on testing set: 0.75560063
Iteration 6, AUC of ROC on training set: 0.757673
AUC of ROC on testing set: 0.75782216
Iteration 7, AUC of ROC on training set: 0.759688
AUC of ROC on testing set: 0.7597882
Iteration 8, AUC of ROC on training set: 0.761526
AUC of ROC on testing set: 0.76160187
Iteration 9, AUC of ROC on training set: 0.763228
AUC of ROC on testing set: 0.7632776
Iteration 10, AUC of ROC on training set: 0.764791
AUC of ROC on testing set: 0.76481616
Iteration 11, AUC of ROC on training set: 0.766269
AUC of ROC on testing set: 0.7662764
Iteration 12, AUC of ROC on training set: 0.767667
AUC of ROC on testing set: 0.76765794
Iteration 13, AUC of ROC on training set: 0.768994
AUC of ROC on testing set: 0.768983
Iteration 14, AUC of ROC on training set: 0.770247
AUC of ROC on testing set: 0.770225
Iteration 15, AUC of ROC on training set: 0.771437
AUC of ROC on testing set: 0.7714067
Iteration 16, AUC of ROC on training set: 0.772580
AUC of ROC on testing set: 0.772544
Iteration 17, AUC of ROC on training set: 0.773677
AUC of ROC on testing set: 0.7736392
Iteration 18, AUC of ROC on training set: 0.774740
AUC of ROC on testing set: 0.7746992
Iteration 19, AUC of ROC on training set: 0.775768
AUC of ROC on testing set: 0.77572197
Iteration 20, AUC of ROC on training set: 0.776747
AUC of ROC on testing set: 0.7766986

After 20 iterations, we are able to achieve 0.78 AUC using the TensorFlow random forest
model.

Finally, you may wonder how to implement decision tree with TensorFlow. Well, that's
easy. Simply use one tree (n_trees=1), and the whole random forest is basically a decision
tree.

Predicting Online Ad Click-Through with Tree-Based Algorithms Chapter 6

[201]

Summary
In this chapter, we started with an introduction to a typical machine learning problem,
online advertising click-through prediction, and the inherent challenges, including
categorical features. We then looked at tree-based algorithms that can take in both
numerical and categorical features. We then had an in-depth discussion about the decision
tree algorithm: the mechanics, different types, how to construct a tree, and two metrics
(Gini Impurity and entropy) that measure the effectiveness of a split at a node. After
constructing a tree in an example by hand, we implemented the algorithm from scratch. We
also learned how to use the decision tree package from scikit-learn and applied it to
predict click-through. We continued to improve the performance by adopting the feature-
based random forest bagging algorithm and the chapter ended with some ways to tune a
random forest model, as well as a bonus section in which we implemented a random forest
with TensorFlow.

More practice is always good for honing skills. We recommend you complete the following
exercise before going to the next chapter, where we will solve ad click-through prediction
using another algorithm: logistic regression.

Exercise
In the decision tree click-through prediction project, can you also tweak other
hyperparameters, such as min_samples_split and class_weight? What is the
highest AUC you are able to achieve?
In the random forest-based click-through prediction project, can you also tweak
other hyperparameters, such as min_samples_split, max_features, and
n_estimators, in scikit-learn? What is the highest AUC you are able to
achieve?

7
Predicting Online Ad Click-

Through with Logistic
Regression

In this chapter, we will be continuing our journey of tackling the billion-dollar worth
problem of advertising click-through prediction. We will be focusing on learning a very
(probably the most) scalable classification model—logistic regression. We will be exploring
what logistic function is, how to train a logistic regression model, adding regularization to
the model, and variants of logistic regression that are applicable to very large datasets.
Besides the application in classification, we will also be discussing how logistic regression
and random forest are used in picking significant features. Again, you won't get bored as
there will be lots of implementations from scratch, and with scikit-learn and TensorFlow.

In this chapter, we will cover the following topics:

Categorical feature encoding
Logistic function
What is logistic regression
Training a logistic regression model via gradient descent
Training a logistic regression model via stochastic gradient descent
The implementations of logistic regression from scratch
The implementations of logistic regression with scikit-learn
The implementations of logistic regression with TensorFlow
Click-through prediction with logistic regression
Logistic regression with L1 and L2 regularization
Logistic regression for feature selection
Online learning
Another way to select features—random forest

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[203]

Converting categorical features to numerical
– one-hot encoding and ordinal encoding
In the previous chapter, Predicting Online Ads Click-through with Tree-Based Algorithms, we
mentioned how one-hot encoding transforms categorical features to numerical features in
order to be used in the tree algorithms in scikit-learn and TensorFlow. This will not limit
our choice to tree-based algorithms if we can adopt one-hot encoding to any other
algorithms that only take in numerical features.

The simplest solution we can think of in terms of transforming a categorical feature with k
possible values is to map it to a numerical feature with values from 1 to k. For example,
[Tech, Fashion, Fashion, Sports, Tech, Tech, Sports] becomes [1, 2, 2, 3, 1, 1, 3]. However, this
will impose an ordinal characteristic, such as Sports being greater than Tech, and a distance
property, such as Sports being closer to Fashion than to Tech.

Instead, one-hot encoding converts the categorical feature to k binary features. Each binary
feature indicates the presence or absence of a corresponding possible value. Hence, the
preceding example becomes the following:

Previously, we have used OneHotEncoder from scikit-learn to convert a matrix of string
into a binary matrix, but here, let's take a look at another module, DictVectorizer, which
also provides an efficient conversion. It transforms dictionary objects (categorical feature:
value) into one-hot encoded vectors.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[204]

For example, take a look at the following codes:

>>> from sklearn.feature_extraction import DictVectorizer
>>> X_dict = [{'interest': 'tech', 'occupation': 'professional'},
... {'interest': 'fashion', 'occupation': 'student'},
... {'interest': 'fashion','occupation':'professional'},
... {'interest': 'sports', 'occupation': 'student'},
... {'interest': 'tech', 'occupation': 'student'},
... {'interest': 'tech', 'occupation': 'retired'},
... {'interest': 'sports','occupation': 'professional'}]
>>> dict_one_hot_encoder = DictVectorizer(sparse=False)
>>> X_encoded = dict_one_hot_encoder.fit_transform(X_dict)
>>> print(X_encoded)
[[0. 0. 1. 1. 0. 0.]
 [1. 0. 0. 0. 0. 1.]
 [1. 0. 0. 1. 0. 0.]
 [0. 1. 0. 0. 0. 1.]
 [0. 0. 1. 0. 0. 1.]
 [0. 0. 1. 0. 1. 0.]
 [0. 1. 0. 1. 0. 0.]]

We can also see the mapping by executing the following:

>>> print(dict_one_hot_encoder.vocabulary_)
{'interest=fashion': 0, 'interest=sports': 1,
'occupation=professional': 3, 'interest=tech': 2,
'occupation=retired': 4, 'occupation=student': 5}

When it comes to new data, we can transform it by:

>>> new_dict = [{'interest': 'sports', 'occupation': 'retired'}]
>>> new_encoded = dict_one_hot_encoder.transform(new_dict)
>>> print(new_encoded)
[[0. 1. 0. 0. 1. 0.]]

We can inversely transform the encoded features back to the original features by:

>>> print(dict_one_hot_encoder.inverse_transform(new_encoded))
[{'interest=sports': 1.0, 'occupation=retired': 1.0}]

One important thing to note is that if a new (not seen in training data) category is
encountered in new data, it should be ignored. DictVectorizer handles this implicitly
(while OneHotEncoder needs to specify parameter ignore):

>>> new_dict = [{'interest': 'unknown_interest',
 'occupation': 'retired'},
... {'interest': 'tech', 'occupation':
 'unseen_occupation'}]

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[205]

>>> new_encoded = dict_one_hot_encoder.transform(new_dict)
>>> print(new_encoded)
[[0. 0. 0. 0. 1. 0.]
 [0. 0. 1. 0. 0. 0.]]

Sometimes, we do prefer transforming a categorical feature with k possible values into a
numerical feature with values ranging from 1 to k. We conduct ordinal encoding in order
to employ ordinal or ranking knowledge in our learning; for example, large, medium, and
small become 3, 2, and 1 respectively, good and bad become 1 and 0, while one-hot encoding
fails to preserve such useful information. We can realize ordinal encoding easily through
the use of pandas, for example:

>>> import pandas as pd
>>> df = pd.DataFrame({'score': ['low',
... 'high',
... 'medium',
... 'medium',
... 'low']})
>>> print(df)
 score
0 low
1 high
2 medium
3 medium
4 low
>>> mapping = {'low':1, 'medium':2, 'high':3}
>>> df['score'] = df['score'].replace(mapping)
>>> print(df)
 score
0 1
1 3
2 2
3 2
4 1

We convert the string feature into ordinal values based on the mapping we define.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[206]

Classifying data with logistic regression
As seen in the last chapter, we trained the tree-based models only based on the first 300,000
samples out of 40 million. We did so simply because training a tree on a large dataset is
extremely computationally expensive and time-consuming. Since we are now not limited to
algorithms directly taking in categorical features thanks to one-hot encoding, we should
turn to a new algorithm with high scalability to large datasets. Logistic regression is one of
the most, or perhaps the most, scalable classification algorithms.

Getting started with the logistic function
Let's start with an introduction to the logistic function (which is more commonly referred
to as the sigmoid function) as the algorithm core before we dive into the algorithm itself. It
basically maps an input to an output of a value between 0 and 1, and is defined as follows:

We can visualize what it looks like by performing the following steps:

Define the logistic function:1.

>>> import numpy as np
>>> def sigmoid(input):
... return 1.0 / (1 + np.exp(-input))

Input variables from -8 to 8, and the corresponding output, as follows:2.

>>> z = np.linspace(-8, 8, 1000)
>>> y = sigmoid(z)
>>> import matplotlib.pyplot as plt
>>> plt.plot(z, y)
>>> plt.axhline(y=0, ls='dotted', color='k')
>>> plt.axhline(y=0.5, ls='dotted', color='k')
>>> plt.axhline(y=1, ls='dotted', color='k')
>>> plt.yticks([0.0, 0.25, 0.5, 0.75, 1.0])
>>> plt.xlabel('z')
>>> plt.ylabel('y(z)')
>>> plt.show()

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[207]

Refer to the following screenshot for the end result:

In the S-shaped curve, all inputs are transformed into the range from 0 to 1. For
positive inputs, a greater value results in an output closer to 1; for negative
inputs, a smaller value generates an output closer to 0; when the input is 0, the
output is the midpoint, 0.5.

Jumping from the logistic function to logistic
regression
Now that we have some knowledge of the logistic function, it is easy to map it to the
algorithm that stems from it. In logistic regression, the function input z becomes the
weighted sum of features. Given a data sample x with n features, x1, x2, …, xn (x represents a
feature vector and x = (x1, x2, …, xn)), and weights (also called coefficients) of the model w
(w represents a vector (w1, w2, …, wn)), z is expressed as follows:

Also, occasionally, the model comes with an intercept (also called bias), w0. In this instance,
the preceding linear relationship becomes:

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[208]

As for the output y(z) in the range of 0 to 1, in the algorithm, it becomes the probability of
the target being 1 or the positive class:

Hence, logistic regression is a probabilistic classifier, similar to the Naïve Bayes classifier.

A logistic regression model or, more specifically, its weight vector w is learned from the
training data, with the goal of predicting a positive sample as close to 1 as possible and
predicting a negative sample as close to 0 as possible. In mathematical language, the
weights are trained so as to minimize the cost defined as the mean squared error (MSE),
which measures the average of squares of difference between the truth and the prediction.
Given m training samples, (x(1), y(1)), (x(2),y(2)), … (x(i), y(i))…, (x(m), y(m)), where y(i) is either 1
(positive class) or 0 (negative class), the cost function J(w) regarding the weights to be
optimized is expressed as follows:

However, the preceding cost function is non-convex, which means that, when searching for
the optimal w, many local (suboptimal) optimums are found and the function does not
converge to a global optimum.

Examples of the convex and non-convex functions are plotted respectively below:

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[209]

To overcome this, the cost function in practice is defined as follows:

We can take a closer look at the cost of a single training sample:

If y(i)=1, when it predicts correctly (positive class in 100% probability), the sample cost j is 0;
the cost keeps increasing when it is less likely to be the positive class; when it incorrectly
predicts that there is no chance to be the positive class, the cost is infinitely high. We can
visualize it as follows:

>>> y_hat = np.linspace(0, 1, 1000)
>>> cost = -np.log(y_hat)
>>> plt.plot(y_hat, cost)
>>> plt.xlabel('Prediction')
>>> plt.ylabel('Cost')
>>> plt.xlim(0, 1)
>>> plt.ylim(0, 7)
>>> plt.show()

Refer to the following screenshot for the end result:

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[210]

On the contrary, if y(i)=0, when it predicts correctly (positive class in 0 probability, or
negative class in 100% probability), the sample cost j is 0; the cost keeps increasing when it
is more likely to be the positive class; when it incorrectly predicts that there is no chance to
be the negative class, the cost goes infinitely high. We can visualize it using the following
codes:

>>> y_hat = np.linspace(0, 1, 1000)
>>> cost = -np.log(1 - y_hat)
>>> plt.plot(y_hat, cost)
>>> plt.xlabel('Prediction')
>>> plt.ylabel('Cost')
>>> plt.xlim(0, 1)
>>> plt.ylim(0, 7)
>>> plt.show()

The following screenshot is the resultant output:

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[211]

Minimizing this alternative cost function is actually equivalent to minimizing the MSE-
based cost function. The advantages of choosing it over the other one include the following:

Obviously, being convex, so that the optimal model weights can be found

A summation of the logarithms of prediction or simplifies the
calculation of its derivative with respect to the weights, which we will talk about
later

Due to the logarithmic function, the cost function

 is also called logarithmic loss, or
simply log loss.

Training a logistic regression model
Now, the question is how we can obtain the optimal w such that

 is minimized. We can do so using
gradient descent:

Training a logistic regression model using
gradient descent
Gradient descent (also called steepest descent) is a procedure of minimizing an objective
function by first-order iterative optimization. In each iteration, it moves a step that is
proportional to the negative derivative of the objective function at the current point. This
means the to-be-optimal point iteratively moves downhill towards the minimal value of the
objective function. The proportion we just mentioned is called learning rate, or step size. It
can be summarized in a mathematical equation as follows:

Here, the left w is the weight vector after a learning step, and the right w is the one before
moving, η is the learning rate, and ∆w is the first-order derivative, the gradient.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[212]

In our case, let's start with the derivative of the cost function J(w) with respect to w. It might
require some knowledge of calculus, but don't worry, we will walk through it step by step:

We first calculate the derivative of with respect to w. We herein take the j-th1.
weight wj, as an example (note z=wTx, and we omit the (i) for simplicity):

Then, we calculate the derivative of the sample cost J(w) as follows:2.

Finally, we calculate the entire cost over m samples as follows:3.

We then generalize it to ∆w:4.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[213]

Combined with the preceding derivations, the weights can be updated as5.
follows:

 Here, w gets updated in each iteration.

After a substantial number of iterations, the learned w and b are then used to6.
classify a new sample x' by means of the following equation:

The decision threshold is 0.5 by default, but it definitely can be other values. In a
case where a false negative is, by all means, supposed to be avoided, for example,
when predicting fire occurrence (positive class) for alerts, the decision threshold
can be lower than 0.5, such as 0.3, depending on how paranoid we are and how
proactively we want to prevent the positive event from happening. On the other
hand, when false positive class is the one should be evaded, for instance, when
predicting the product success (positive class) rate for quality assurance, the
decision threshold can be greater than 0.5, such as 0.7, based on how high the
standard we set is.

With a thorough understanding of the gradient descent based training and predicting
process, we now implement the logistic regression algorithm from scratch:

We begin by defining the function computing the prediction with current1.
weights:

>>> def compute_prediction(X, weights):
... """ Compute the prediction y_hat based on current weights
... Args:
... X (numpy.ndarray)
... weights (numpy.ndarray)
... Returns:
... numpy.ndarray, y_hat of X under weights
... """
... z = np.dot(X, weights)
... predictions = sigmoid(z)
... return predictions

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[214]

With this, we are able to continue with the function updating the weights 2.

 by one step in a gradient descent
manner. Take a look at the following codes:

>>> def update_weights_gd(X_train, y_train, weights,
 learning_rate):
... """ Update weights by one step
... Args:
... X_train, y_train (numpy.ndarray, training data set)
... weights (numpy.ndarray)
... learning_rate (float)
... Returns:
... numpy.ndarray, updated weights
... """
... predictions = compute_prediction(X_train, weights)
... weights_delta = np.dot(X_train.T, y_train - predictions)
... m = y_train.shape[0]
... weights += learning_rate / float(m) * weights_delta
... return weights

Then, the function calculating the cost J(w) is depicted as well:3.

>>> def compute_cost(X, y, weights):
... """ Compute the cost J(w)
... Args:
... X, y (numpy.ndarray, data set)
... weights (numpy.ndarray)
... Returns:
... float
... """
... predictions = compute_prediction(X, weights)
... cost = np.mean(-y * np.log(predictions)
 - (1 - y) * np.log(1 - predictions))
... return cost

Now, we connect all these functions to the model training function by executing4.
the following:

Updating the weights vector in each iteration
Printing out the current cost for every 100 (can be other values) iterations to
ensure cost is decreasing and that things are on the right track

Take a look at the following:

>>> def train_logistic_regression(X_train, y_train, max_iter,
 learning_rate, fit_intercept=False):

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[215]

... """ Train a logistic regression model

... Args:

... X_train, y_train (numpy.ndarray, training data set)

... max_iter (int, number of iterations)

... learning_rate (float)

... fit_intercept (bool, with an intercept w0 or not)

... Returns:

... numpy.ndarray, learned weights

... """

... if fit_intercept:

... intercept = np.ones((X_train.shape[0], 1))

... X_train = np.hstack((intercept, X_train))

... weights = np.zeros(X_train.shape[1])

... for iteration in range(max_iter):

... weights = update_weights_gd(X_train, y_train,
 weights, learning_rate)
... # Check the cost for every 100 (for example)
 iterations
... if iteration % 100 == 0:
... print(compute_cost(X_train, y_train, weights))
... return weights

Finally, predict the results of new inputs using the trained model as follows:5.

>>> def predict(X, weights):
... if X.shape[1] == weights.shape[0] - 1:
... intercept = np.ones((X.shape[0], 1))
... X = np.hstack((intercept, X))
... return compute_prediction(X, weights)

Implementing logistic regression is very simple, as we just saw. Let's now examine it using
a brief example:

>>> X_train = np.array([[6, 7],
... [2, 4],
... [3, 6],
... [4, 7],
... [1, 6],
... [5, 2],
... [2, 0],
... [6, 3],
... [4, 1],
... [7, 2]])
>>> y_train = np.array([0,
... 0,
... 0,
... 0,
... 0,

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[216]

... 1,

... 1,

... 1,

... 1,

... 1])

Train a logistic regression model by 1000 iterations, at a learning rate of 0.1 based on
intercept-included weights:

>>> weights = train_logistic_regression(X_train, y_train,
 max_iter=1000, learning_rate=0.1, fit_intercept=True)
0.574404237166
0.0344602233925
0.0182655727085
0.012493458388
0.00951532913855
0.00769338806065
0.00646209433351
0.00557351184683
0.00490163225453
0.00437556774067

The decreasing cost means that the model is being optimized over time. We can check the
model's performance on new samples as follows:

>>> X_test = np.array([[6, 1],
... [1, 3],
... [3, 1],
... [4, 5]])
>>> predictions = predict(X_test, weights)
>>> predictions
array([0.9999478 , 0.00743991, 0.9808652 , 0.02080847])

To visualize this, execute the following codes:

>>> import matplotlib.pyplot as plt
>>> plt.scatter(X_train[:,0], X_train[:,1], c=['b']*5+['k']*5,
 marker='o')

Blue dots are training samples from class 0, while black dots are those from class 1. Use 0.5
as the classification decision threshold:

>>> colours = ['k' if prediction >= 0.5 else 'b'
 for prediction in predictions]
>>> plt.scatter(X_test[:,0], X_test[:,1], marker='*', c=colours)

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[217]

Blue stars are testing samples predicted from class 0, while black stars are those predicted
from class 1:

>>> plt.xlabel('x1')
>>> plt.ylabel('x2')
>>> plt.show()

Refer to the following screenshot for the end result:

The model we trained correctly predicts classes of new samples (the stars).

Predicting ad click-through with logistic
regression using gradient descent
After a brief example, we now deploy the algorithm we just developed in our click-through
prediction project.

We herein start with only 10,000 training samples (you will soon see why we don't start
with 270,000, as we did in the previous chapter):

>>> import pandas as pd
>>> n_rows = 300000
>>> df = pd.read_csv("train", nrows=n_rows)
>>> X = df.drop(['click', 'id', 'hour', 'device_id', 'device_ip'],
 axis=1).values
>>> Y = df['click'].values
>>> n_train = 10000

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[218]

>>> X_train = X[:n_train]
>>> Y_train = Y[:n_train]
>>> X_test = X[n_train:]
>>> Y_test = Y[n_train:]
>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder(handle_unknown='ignore')
>>> X_train_enc = enc.fit_transform(X_train)
>>> X_test_enc = enc.transform(X_test)

Train a logistic regression model over 10000 iterations, at a learning rate of 0.01 with bias:

>>> import timeit
>>> start_time = timeit.default_timer()
>>> weights = train_logistic_regression(X_train_enc.toarray(),
 Y_train, max_iter=10000, learning_rate=0.01,
 fit_intercept=True)
0.6820019456743648
0.4608619713011896
0.4503715555130051
…
…
…
0.41485094023829017
0.41477416506724385
0.41469802145452467
>>> print("--- %0.3fs seconds ---" % (timeit.default_timer() -
 start_time))

--- 232.756s seconds ---

It takes 232 seconds to optimize the model. The trained model performs on the testing set as
follows:

>>> pred = predict(X_test_enc.toarray(), weights)
>>> from sklearn.metrics import roc_auc_score
>>> print('Training samples: {0}, AUC on testing set:
 {1:.3f}'.format(n_train, roc_auc_score(Y_test, pred)))
Training samples: 10000, AUC on testing set: 0.703

Now, let's use 100,000 training samples (n_train = 100000) and repeat the same process.
It will take 5240.4 seconds, which is almost 1.5 hours. It takes 22 times longer to fit data of
10 times the size. As we mentioned at the beginning of the chapter, the logistic regression
classifier can be good at training on large datasets. But our testing results seem to contradict
this. How could we even handle larger training datasets efficiently, not just 100,000, but
millions? Let's look at a more efficient way to train a logistic regression in the next section.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[219]

Training a logistic regression model using
stochastic gradient descent
In gradient descent based logistic regression models, all training samples are used to
update the weights in each single iteration. Hence, if the number of training samples is
large, the whole training process will become very time-consuming and computationally
expensive, as we just witnessed in our last example.

Fortunately, a small tweak will make logistic regression suitable for large-size data. For
each weight update, only one training sample is consumed, instead of the complete
training set. The model moves a step based on the error calculated by a single training
sample. Once all samples are used, one iteration finishes. This advanced version of gradient
descent is called stochastic gradient descent (SGD). Expressed in a formula, for each
iteration, we do the following:

SGD generally converges much faster than gradient descent where a large number of
iterations is usually needed.

To implement SGD-based logistic regression, we just need to slightly modify the
update_weights_gd function:

>>> def update_weights_sgd(X_train, y_train, weights,
 learning_rate):
... """ One weight update iteration: moving weights by one
 step based on each individual sample
... Args:
... X_train, y_train (numpy.ndarray, training data set)
... weights (numpy.ndarray)
... learning_rate (float)
... Returns:
... numpy.ndarray, updated weights
... """
... for X_each, y_each in zip(X_train, y_train):
... prediction = compute_prediction(X_each, weights)
... weights_delta = X_each.T * (y_each - prediction)
... weights += learning_rate * weights_delta
... return weights

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[220]

In the train_logistic_regression function, SGD is applied:

>>> def train_logistic_regression_sgd(X_train, y_train, max_iter,
 learning_rate, fit_intercept=False):
... """ Train a logistic regression model via SGD
... Args:
... X_train, y_train (numpy.ndarray, training data set)
... max_iter (int, number of iterations)
... learning_rate (float)
... fit_intercept (bool, with an intercept w0 or not)
... Returns:
... numpy.ndarray, learned weights
... """
... if fit_intercept:
... intercept = np.ones((X_train.shape[0], 1))
... X_train = np.hstack((intercept, X_train))
... weights = np.zeros(X_train.shape[1])
... for iteration in range(max_iter):
... weights = update_weights_sgd(X_train, y_train, weights,
 learning_rate)
... # Check the cost for every 2 (for example) iterations
... if iteration % 2 == 0:
... print(compute_cost(X_train, y_train, weights))
... return weights

Now, let's see how powerful SGD is. We work with 100,000 training samples and choose 10
as the number of iterations, 0.01 as the learning rate, and print out current costs every
other iteration:

>>> start_time = timeit.default_timer()
>>> weights = train_logistic_regression_sgd(X_train_enc.toarray(),
 Y_train, max_iter=10, learning_rate=0.01, fit_intercept=True)
0.4127864859625796
0.4078504597223988
0.40545733114863264
0.403811787845451
0.4025431351250833
>>> print("--- %0.3fs seconds ---" %
 (timeit.default_timer() - start_time))
--- 40.690s seconds ---
>>> pred = predict(X_test_enc.toarray(), weights)
>>> print('Training samples: {0}, AUC on testing set:
 {1:.3f}'.format(n_train, roc_auc_score(Y_test, pred)))
Training samples: 100000, AUC on testing set: 0.732

The training process finishes in just 40 seconds! And it also performs better than the
previous one using gradient descent.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[221]

As usual, after successfully implementing the SGD-based logistic regression algorithm from
scratch, we realize it using the SGDClassifier module of scikit-learn:

>>> from sklearn.linear_model import SGDClassifier
>>> sgd_lr = SGDClassifier(loss='log', penalty=None,
 fit_intercept=True, n_iter=10,
 learning_rate='constant', eta0=0.01)

Here, 'log' for the loss parameter indicates that the cost function is log loss, penalty is
the regularization term to reduce overfitting that we will discuss further in the next section,
n_iter is the number of iterations, and the remaining two parameters mean the learning
rate is 0.01 and unchanged during the course of training. It should be noted that the
default learning_rate is 'optimal', where the learning rate slightly decreases as more
and more updates are taken. This can be beneficial for finding the optimal solution on large
datasets.

Now, train the model and test it:

>>> sgd_lr.fit(X_train_enc.toarray(), Y_train)
>>> pred = sgd_lr.predict_proba(X_test_enc.toarray())[:, 1]
>>> print('Training samples: {0}, AUC on testing set:
 {1:.3f}'.format(n_train, roc_auc_score(Y_test, pred)))
Training samples: 100000, AUC on testing set: 0.734

Quick and easy!

Training a logistic regression model with
regularization
As we briefly mentioned in the previous section, the penalty parameter in the logistic
regression SGDClassifier is related to model regularization. There are two basic forms of
regularization, L1 (also called Lasso) and L2 (also called ridge). In either way, the
regularization is an additional term on top on the original cost function:

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[222]

Here, α is the constant that multiplies the regularization term, and q is either 1 or 2
representing L1 or L2 regularization where the following applies:

Training a logistic regression model is a process of reducing the cost as a function of
weights w. If it gets to a point where some weights, such as wi, wj, and wk are considerably
large, the whole cost will be determined by these large weights. In this case, the learned
model may just memorize the training set and fail to generalize to unseen data. The
regularization term herein is introduced in order to penalize large weights, as the weights
now become part of the cost to minimize. Regularization as a result eliminates overfitting.
Finally, parameter α provides a trade-off between log loss and generalization. If α is too
small, it is not able to compromise large weights and the model may suffer from high
variance or overfitting; on the other hand, if α is too large, the model becomes over
generalized and performs poorly in terms of fitting the dataset, which is the syndrome of
underfitting. α is an important parameter to tune in order to obtain the best logistic
regression model with regularization.

As for choosing between the L1 and L2 form, the rule of thumb is whether feature selection
is expected. In machine learning classification, feature selection is the process of picking a
subset of significant features for use in better model construction. In practice, not every
feature in a dataset carries information useful for discriminating samples; some features are
either redundant or irrelevant, and hence can be discarded with little loss. In a logistic
regression classifier, feature selection can only be achieved with L1 regularization. To
understand this, we consider two weight vectors, w1=(1, 0) and w2=(0.5, 0.5), and,
supposing they produce the same amount of log loss, the L1 and L2 regularization terms of
each weight vector are as follows:

The L1 term of both vectors is equivalent, while the L2 term of w2 is less than that of w1. This
indicates that L2 regularization penalizes more on weights composed of significantly large
and small weights than L1 regularization does. In other words, L2 regularization favors
relative small values for all weights, and avoids significantly large and small values for any
weight, while L1 regularization allows some weights with significantly small value, and
some with significantly large value. Only with L1 regularization can some weights be
compressed to close to or exactly 0, which enables feature selection.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[223]

In scikit-learn, the regularization type can be specified by the penalty parameter with
options as none (without regularization), "l1", "l2", and "elasticnet" (a mixture of L1
and L2), and the multiplier α by the alpha parameter.

We herein examine L1 regularization for feature selection.

Initialize an SGD logistic regression model with L1 regularization, and train the model
based on 10,000 samples:

>>> sgd_lr_l1 = SGDClassifier(loss='log', penalty='l1', alpha=0.0001,
 fit_intercept=True, n_iter=10,
 learning_rate='constant', eta0=0.01)
>>> sgd_lr_l1.fit(X_train_enc.toarray(), Y_train)

With the trained model, we obtain the absolute values of its coefficients:

>>> coef_abs = np.abs(sgd_lr_l1.coef_)
>>> print(coef_abs)
[[0. 0.09963329 0. ... 0. 0. 0.07431834]]

The bottom 10 coefficients and their values are printed as follows:

>>> print(np.sort(coef_abs)[0][:10])
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
>>> bottom_10 = np.argsort(coef_abs)[0][:10]

We can see what these 10 features are using the following codes:

>>> feature_names = enc.get_feature_names()
>>> print('10 least important features are:\n',
 feature_names[bottom_10])
10 least important features are:
 ['x0_1001' 'x8_851897aa' 'x8_85119990' 'x8_84ebbcd4' 'x8_84eb6b0e'
 'x8_84dda655' 'x8_84c2f017' 'x8_84ace234' 'x8_84a9d4ba' 'x8_84915a27']

They are 1001 from the 0 column (that is the C1 column) in X_train, "851897aa" from
the 8 column (that is the device_model column), and so on and so forth.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[224]

Similarly, the top 10 coefficients and their values can be obtained as follows:

>>> print(np.sort(coef_abs)[0][-10:])
[0.67912376 0.70885933 0.79975917 0.8828797 0.98146351 0.98275124
 1.08313767 1.13261091 1.18445527 1.40983505]
>>> top_10 = np.argsort(coef_abs)[0][-10:]
>>> print('10 most important features are:\n', feature_names[top_10])
10 most important features are:
 ['x7_cef3e649' 'x3_7687a86e' 'x18_61' 'x18_15' 'x5_9c13b419'
'x5_5e3f096f' 'x2_763a42b5' 'x2_d9750ee7' 'x3_27e3c518'
'x5_1779deee']

They are "cef3e649" from the 7 column (that is app_category) in X_train, "7687a86e"
from the third column (that is site_domain), and so on and so forth.

Training on large datasets with online
learning
So far, we have trained our model on no more than 300,000 samples. If we go beyond this
figure, memory might be overloaded since it holds too much data, and the program will
crash. In this section, we will be presenting how to train on a large-scale dataset with
online learning.

Stochastic gradient descent grows from gradient descent by sequentially updating the
model with individual training samples one at a time, instead of the complete training set at
once. We can scale up stochastic gradient descent further with online learning techniques.
In online learning, new data for training is available in a sequential order or in real time, as
opposed to all at once in an offline learning environment. A relatively small chunk of data
is loaded and preprocessed for training at a time, which releases the memory used to hold
the entire large dataset. Besides better computational feasibility, online learning is also used
because of its adaptability to cases where new data is generated in real time and needed in
modernizing the model. For instance, stock price prediction models are updated in an
online learning manner with timely market data; click-through prediction models need to
include the most recent data reflecting users' latest behaviors and tastes; spam email
detectors have to be reactive to the ever-changing spammers by considering new features
that are dynamically generated.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[225]

The existing model trained by previous datasets is now updated based on the most recently
available dataset only, instead of rebuilt from scratch based on previous and recent datasets
together, as in offline learning:

The SGDClassifier module in scikit-learn implements online learning with
the partial_fit method (while the fit method is applied in offline learning, as we have
seen). We train the model with 1,000,000 samples, where we feed in 100,000 samples at one
time to simulate an online learning environment. And we will test the trained model on the
next 100,000 samples as follows:

>>> n_rows = 100000 * 11
>>> df = pd.read_csv("train", nrows=n_rows)
>>> X = df.drop(['click', 'id', 'hour', 'device_id', 'device_ip'],
 axis=1).values
>>> Y = df['click'].values
>>> n_train = 100000 * 10
>>> X_train = X[:n_train]

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[226]

>>> Y_train = Y[:n_train]
>>> X_test = X[n_train:]
>>> Y_test = Y[n_train:]

Fit the encoder on the whole training set as follows:

>>> enc = OneHotEncoder(handle_unknown='ignore')
>>> enc.fit(X_train)

Initialize an SGD logistic regression model where we set the number of iterations to 1 in
order to partially fit the model and enable online learning:

>>> sgd_lr_online = SGDClassifier(loss='log', penalty=None,
 fit_intercept=True, n_iter=1,
 learning_rate='constant', eta0=0.01)

Loop over every 100000 samples and partially fit the model:

>>> start_time = timeit.default_timer()
>>> for i in range(10):
... x_train = X_train[i*100000:(i+1)*100000]
... y_train = Y_train[i*100000:(i+1)*100000]
... x_train_enc = enc.transform(x_train)
... sgd_lr_online.partial_fit(x_train_enc.toarray(), y_train,
 classes=[0, 1])

Again, we use the partial_fit method for online learning. Also, we specify the classes
parameter, which is required in online learning:

>>> print("--- %0.3fs seconds ---" % (timeit.default_timer() -
 start_time))
--- 167.399s seconds ---

Apply the trained model on the testing set, the next 100,000 samples, as follows:

>>> x_test_enc = enc.transform(X_test)
>>> pred = sgd_lr_online.predict_proba(x_test_enc.toarray())[:, 1]
>>> print('Training samples: {0}, AUC on testing set:
 {1:.3f}'.format(n_train * 10, roc_auc_score(Y_test, pred)))
Training samples: 10000000, AUC on testing set: 0.761

With online learning, training based on a total of 1 million samples only takes 167 seconds
and yields better accuracy.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[227]

Handling multiclass classification
One last thing worth noting is how logistic regression algorithms deal with multiclass
classification. Although we interact with the scikit-learn classifiers in multiclass cases the
same way as in binary cases, it is encouraging to understand how logistic regression works
in multiclass classification.

Logistic regression for more than two classes is also called multinomial logistic regression,
or better known latterly as softmax regression. As we have seen in the binary case, the
model is represented by one weight vector w, the probability of the target being 1 or the
positive class is written as follows:

In the K class case, the model is represented by K weight vectors, w1, w2, …, wK, and the
probability of the target being class k is written as follows:

Note that the term normalizes probabilities (k from 1 to K) so that they
total 1. The cost function in the binary case is expressed as follows:

Similarly, the cost function in the multiclass case becomes the following:

Here, function 1{y(i)=j} is 1 only if y(i)=j is true, otherwise 0.

With the cost function defined, we obtain the step ∆wj, for the j weight vector in the same
way we derived the step ∆w in the binary case:

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[228]

In a similar manner, all K weight vectors are updated in each iteration. After sufficient
iterations, the learned weight vectors w1, w2, …, wK are then used to classify a new
sample x' by means of the following equation:

To have a better sense, we experiment on it with a classic dataset, the handwritten digits for
classification:

>>> from sklearn import datasets
>>> digits = datasets.load_digits()
>>> n_samples = len(digits.images)

As the image data is stored in 8*8 matrices, we need to flatten them, as follows:

>>> X = digits.images.reshape((n_samples, -1))
>>> Y = digits.target

We then split the data as follows:

>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
 test_size=0.2, random_state=42)

We then combine grid search and cross-validation to find the optimal multiclass logistic
regression model as follows:

>>> from sklearn.model_selection import GridSearchCV
>>> parameters = {'penalty': ['l2', None],
... 'alpha': [1e-07, 1e-06, 1e-05, 1e-04],
... 'eta0': [0.01, 0.1, 1, 10]}
>>> sgd_lr = SGDClassifier(loss='log', learning_rate='constant',
 eta0=0.01, fit_intercept=True, n_iter=10)
>>> grid_search = GridSearchCV(sgd_lr, parameters,
 n_jobs=-1, cv=3)
>>> grid_search.fit(term_docs_train, label_train)
>>> print(grid_search.best_params_)
{'alpha': 1e-07, 'eta0': 0.1, 'penalty': None}

To predict using the optimal model, we apply the following:

>>> sgd_lr_best = grid_search.best_estimator_
>>> accuracy = sgd_lr_best.score(term_docs_test, label_test)
>>> print('The accuracy on testing set is:
 {0:.1f}%'.format(accuracy*100))
The accuracy on testing set is: 94.2%

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[229]

It doesn't look much different from the previous example, since SGDClassifier handles
multiclass internally.

Implementing logistic regression using
TensorFlow
This is a bonus section where we implement logistic regression with TensorFlow and use
click prediction as example. We herein use 90% of the first 300,000 samples for training, the
remaining 10% for testing, and assume that X_train_enc, Y_train, X_test_enc, and
Y_test contain the correct data.

First, we import TensorFlow and specify parameters for the model, including 201.
iterations during the training process and a learning rate of 0.001:

>>> import tensorflow as tf
>>> n_features = int(X_train_enc.toarray().shape[1])
>>> learning_rate = 0.001
>>> n_iter = 20

Then, we define placeholders and construct the model by computing the logits2.
(output of logistic function based on the input and model coefficients):

>>> x = tf.placeholder(tf.float32, shape=[None, n_features])
>>> y = tf.placeholder(tf.float32, shape=[None])
>>> W = tf.Variable(tf.zeros([n_features, 1]))
>>> b = tf.Variable(tf.zeros([1]))
>>> logits = tf.add(tf.matmul(x, W), b)[:, 0]
>>> pred = tf.nn.sigmoid(logits)

After defining the graph for the model, we get the loss function, as well as the3.
measurement of performance, the AUC:

>>> cost = tf.reduce_mean(
 tf.nn.sigmoid_cross_entropy_with_logits(labels=y,
logits=logits))
>>> auc = tf.metrics.auc(tf.cast(y, tf.int64), pred)[1]

We then define a gradient descent optimizer that searches for the best coefficients4.
by minimizing the loss. We herein use Adam as our optimizer, which is an
advanced gradient descent with a learning rate adaptive to gradients:

>>> optimizer =
tf.train.AdamOptimizer(learning_rate).minimize(cost)

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[230]

Now, we can initialize the variables and start a TensorFlow session:5.

>>> init_vars = tf.group(tf.global_variables_initializer(),
 tf.local_variables_initializer())
>>> sess = tf.Session()
>>> sess.run(init_vars)

Again, the model is trained in a batch manner. We herein reuse the gen_batch6.
function defined in the previous chapter and set the batch size to 1000:

>>> batch_size = 1000
>>> import numpy as np
>>> indices = list(range(n_train))
>>> def gen_batch(indices):
... np.random.shuffle(indices)
... for batch_i in range(int(n_train / batch_size)):
... batch_index = indices[batch_i*batch_size:
 (batch_i+1)*batch_size]
... yield X_train_enc[batch_index], Y_train[batch_index]

Finally, we start the training process and print out the loss after each iteration:7.

>>> for i in range(1, n_iter+1):
... avg_cost = 0.
... for X_batch, Y_batch in gen_batch(indices):
... _, c = sess.run([optimizer, cost],
 feed_dict={x: X_batch.toarray(), y:
Y_batch})
... avg_cost += c / int(n_train / batch_size)
... print('Iteration %i, training loss: %f' % (i, avg_cost))
Iteration 1, training loss: 0.464850
Iteration 2, training loss: 0.414757
Iteration 3, training loss: 0.409064
Iteration 4, training loss: 0.405977
Iteration 5, training loss: 0.403816
Iteration 6, training loss: 0.402151
Iteration 7, training loss: 0.400824
Iteration 8, training loss: 0.399730
Iteration 9, training loss: 0.398788
Iteration 10, training loss: 0.397975
Iteration 11, training loss: 0.397248
Iteration 12, training loss: 0.396632
Iteration 13, training loss: 0.396041
Iteration 14, training loss: 0.395555
Iteration 15, training loss: 0.395057
Iteration 16, training loss: 0.394610
Iteration 17, training loss: 0.394210
Iteration 18, training loss: 0.393873

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[231]

Iteration 19, training loss: 0.393489
Iteration 20, training loss: 0.393181

We then conduct a performance check-up on the testing set afterward:8.

>>> auc_test = sess.run(auc,
 feed_dict={x: X_test_enc.toarray(), y: Y_test})
>>> print("AUC of ROC on testing set:", auc_test)
AUC of ROC on testing set: 0.7713197

Feature selection using random forest
We have seen how feature selection works with L1-regularized logistic regression in one of
the previous sections, where weights of unimportant features are compressed to close to, or
exactly, 0. Besides L1-regularized logistic regression, random forest is another frequently
used feature selection technique.

To recap, random forest is bagging over a set of individual decision trees. Each tree
considers a random subset of the features when searching for the best splitting point at each
node. And, as an essence of the decision tree algorithm, only those significant features
(along with their splitting values) are used to constitute tree nodes. Consider the forest as
a whole: the more frequently a feature is used in a tree node, the more important it is. In
other words, we can rank the importance of features based on their occurrences in nodes
among all trees, and select the top most important ones.

A trained RandomForestClassifier module in scikit-learn comes with an
attribute, feature_importances_, indicating the feature importance, which are calculated
as the proportions of occurrences in tree nodes. Again, we examine feature selection with
random forest on the dataset with 100,000 ad click samples:

>>> from sklearn.ensemble import RandomForestClassifier
>>> random_forest = RandomForestClassifier(n_estimators=100,
 criterion='gini', min_samples_split=30, n_jobs=-1)
>>> random_forest.fit(X_train_enc.toarray(), Y_train)

After fitting the random forest model, we obtain the feature importance scores by:

>>> feature_imp = random_forest.feature_importances_
>>> print(feature_imp)
[1.60540750e-05 1.71248082e-03 9.64485853e-04 ... 5.41025913e-04
 7.78878273e-04 8.24041944e-03]

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[232]

Take a look at the bottom 10 feature scores and the corresponding 10 least important
features:

>>> feature_names = enc.get_feature_names()
>>> print(np.sort(feature_imp)[:10])
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
>>> bottom_10 = np.argsort(feature_imp)[:10]
>>> print('10 least important features are:\n', feature_names[bottom_10])
10 least important features are:
 ['x8_ea4912eb' 'x8_c2d34e02' 'x6_2d332391' 'x2_ca9b09d0'
'x2_0273c5ad' 'x8_92bed2f3' 'x8_eb3f4b48' 'x3_535444a1' 'x8_8741c65a'
'x8_46cb77e5']

And now, take a look at the top 10 feature scores and the corresponding 10 most important
features:

>>> print(np.sort(feature_imp)[-10:])
[0.00809279 0.00824042 0.00885188 0.00897925 0.01080301 0.01088246
 0.01270395 0.01392431 0.01532718 0.01810339]
>>> top_10 = np.argsort(feature_imp)[-10:]
>>> print('10 most important features are:\n', feature_names[top_10])
10 most important features are:
 ['x17_-1' 'x18_157' 'x12_300' 'x13_250' 'x3_98572c79' 'x8_8a4875bd'
 'x14_1993' 'x15_2' 'x2_d9750ee7' 'x18_33']

Summary
In this chapter, we continued working on the online advertising click-through prediction
project. This time, we overcame the categorical feature challenge by means of the one-hot
encoding technique. We then resorted to a new classification algorithm logistic regression
for its high scalability to large datasets. The in-depth discussion of the logistic regression
algorithm stared with the introduction of the logistic function, which led to the mechanics
of the algorithm itself. This was followed by how to train a logistic regression using
gradient descent. After implementing a logistic regression classifier by hand and testing it
on our click-through dataset, we learned how to train the logistic regression model in a
more advanced manner, using stochastic gradient descent, and adjusted our algorithm
accordingly. We also practiced how to use the SGD-based logistic regression classifier from
scikit-learn and applied it to our project. We continued to tackle problems we might face in
using logistic regression, including L1 and L2 regularization for eliminating overfitting,
online learning techniques for training on large-scale datasets, and handling multiclass
scenarios. We also learned how to implement logistic regression with TensorFlow. Finally,
the chapter ended with applying the random forest model to feature selection, as an
alternative to L1-regularized logistic regression.

Predicting Online Ad Click-Through with Logistic Regression Chapter 7

[233]

You might be curious as to how we can efficiently train the model on the entire dataset of
40 million samples. In the next chapter, we will utilize tools such as Spark and the PySpark
module to scale up our solution.

Exercises
In the logistic regression-based click-through prediction project, can you also
tweak hyperparameters such as penalty, eta0, and alpha in the
SGDClassifier model? What is the highest testing AUC you are able to
achieve?
Can you try to use more training samples, for instance, 10 million samples, in the
online learning solution?

8
Scaling Up Prediction to

Terabyte Click Logs
In the previous chapter, we accomplished developing an ad click-through predictor using a
logistic regression classifier. We proved that the algorithm is highly scalable by training
efficiently on up to 1 million click log samples. Moving on to this chapter, we will be
further boosting the scalability of the ad click-through predictor by utilizing a powerful
parallel computing (or, more specifically, distributed computing) tool called Apache Spark.
We will be demystifying how Apache Spark is used to scale up learning on massive data, as
opposed to limiting model learning to one single machine. We will be using PySpark,
which is the Python API, to explore the click log data, to develop classification solutions
based on the entire click log dataset, and to evaluate performance, all in a distributed
manner. Aside from this, we will be introducing two approaches to play around with the
categorical features; one is related to hashing in computer science, while the other fuses
multiple features. They will be implemented in Spark as well.

In this chapter, we will cover the following topics:

The main components of Apache Spark
Spark installation
Deployment of Spark application
Fundamental data structures in PySpark
Core programming in PySpark
The implementations of ad click-through predictions in PySpark
Data exploratory analysis in PySpark
Caching and persistence in Spark
What feature hashing is
The implementations of feature hashing in PySpark
What is feature interaction?
The implementations of feature interaction in PySpark

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[235]

Learning the essentials of Apache Spark
Apache Spark is a distributed cluster-computing framework designed for fast and general-
purpose computation. It is an open-source technology originally developed by Berkeley's
AMPLab at the University of California. It provides an easy-to-use interface for
programming interactive queries and stream processing of data. What makes it a popular
big data analytics tool is its implicit data parallelism, where it automates operation on data
in parallel across processors in the computing cluster. Users only need to focus on how they
like to manipulate the data without worrying about how data is distributed among all
computing nodes, or which part of the data a node is responsible for.

Bear in mind that this book is mainly about machine learning. Hence, we will only brief on
the fundamentals of Spark, including its components, installation, deployment, data
structure, and core programming.

Breaking down Spark
We start with the main components of Spark, which are depicted in the following diagram:

Now, let's explore all the main components of Spark:

Spark Core: This is the foundation and the execution engine of the overall
platform. It provides task distribution, scheduling, and in-memory computing.
As its name implies, Spark Core is where all the other functionalities are built on
top. It can also be exposed through an API of multiple languages, including
Python, Java, Scala, and R.

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[236]

Spark SQL: This is a component built upon Spark Core that introduces a high-
level data abstraction called dataframes. We will talk about data structures in
Spark soon. Spark SQL supports SQL-like data manipulation in Python, Java,
and Scala, which works great with structured and semi-structured data. We will
be using modules from Spark SQL in this chapter.
Spark Streaming: This performs real-time (or nearly real-time) data analytics by
leveraging Spark Core's fast scheduling and in-memory computing capabilities.
MLlib: Short for machine learning library, this is a distributed machine learning
framework built on top of Spark Core. It allows learning on large-scale data
efficiently thanks to the distributed architecture and in-memory computing
capability. In in-memory computation, data are kept in the random-access
memory (RAM) if it has sufficient capacity, instead of disk. This largely reduces
the cost of memory and of reloading data back and forward during the iterative
process. The training of a machine learning model is basically an iterative
learning process. Hence, the in-memory computing capability of Spark makes it
extremely applicable to machine learning modeling. According to major
performance benchmarks, learning using MLlib is nearly ten times as fast as the
disk-based solution. In this chapter, we will be using modules from Spark MLlib.
GraphX: This is an another functionality built on top of Spark Core that focuses
on distributed graph-based processing. PageRank and Pregel abstraction are two
typical use cases.

The main goal of this section is to understand Spark as distributed cluster
computing designed for fast computation, and which facilitates both data
analytics and iterative learning. If you are looking for more detailed
information on Spark, there is a lot of useful documentation along with
tutorials available online, such as https:/​/​spark.​apache.​org/​docs/
latest/​quick-​start.​html.

Installing Spark
For learning purposes, let's now install Spark in the local computer (even though it is more
frequently used in a cluster of servers). Full instructions can be found at: https:/​/​spark.
apache.​org/​downloads.​html.

https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[237]

There are many stable versions, and we take version 2.3.2 (Sep 24 2018) as an example. As
illustrated in the following screenshot, after selecting 2.3.2 in step 1, we choose Pre-built for
Apache Hadoop 2.7 and later for step 2. Then, click the link in step 3 to download the
spark-2.3.2-bin-hadoop2.7.tgz file. Unzip the file and the resulting folder contains a
complete Spark package. The steps are in the following screenshot:

Before running any Spark program, we need to make sure the following dependencies are
installed:

Java 8+, and that it is included in the system environment variables
Scala version 2.11

To check whether Spark is installed properly, we run the following tests:

First, we approximate the value of π using Spark by typing in the following1.
command in Terminal (note bin is a folder in spark-2.3.2-bin-hadoop2.7):

./bin/run-example SparkPi 10

It should print out something similar to the following (the values may differ):2.

Pi is roughly 3.141851141851142

This test is actually similar to the following:

./bin/spark-submit examples/src/main/python/pi.py 10

Next, we test the interactive shell with the following command:3.

./bin/pyspark --master local[2]

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[238]

This should open a Python interpreter, as shown in the following screenshot:

By now, the Spark program should be installed properly. We will talk about those
commands (pyspark, and spark-submit) in the following sections.

Launching and deploying Spark programs
A Spark program can run by itself or over cluster managers. The first option is similar to
running a program locally with multiple threads, and one thread is considered one Spark
job worker. Of course, there is no parallelism at all, but it is a quick and easy way to launch
a Spark application, and we will be deploying it in this model by way of demonstration,
throughout the chapter. For example, we can run the following script to launch a Spark
application:

./bin/spark-submit examples/src/main/python/pi.py

This is precisely as we did in the previous section. Or, we can specify the number of
threads:

./bin/spark-submit --master local[4] examples/src/main/python/pi.py

In the previous code, we run Spark locally with four worker threads, or as many cores as
there are on the machine by using the following command:

./bin/spark-submit --master local[*] examples/src/main/python/pi.py

Similarly, we can launch the interactive shell by replacing spark-submit with pyspark:

./bin/pyspark --master local[2] examples/src/main/python/pi.py

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[239]

As for the cluster mode, it (version 2.3.2) currently supports the following approaches:

Standalone: This is the simplest mode to launch a Spark application. It means
that the master and workers are located on the same machine. Details of how to
launch a Spark application in standalone cluster mode can be found at the
following link: https:/​/​spark.​apache.​org/​docs/​latest/​spark-​standalone.
html.
Apache Mesos: As a centralized and fault-tolerant cluster manager, Mesos is
designed for managing distributed computing environments. In Spark, when a
driver submits tasks for scheduling, Mesos determines which machines handle
which tasks. Refer to https:/​/​spark.​apache.​org/​docs/​latest/​running-​on-
mesos.​html for further details.
Apache Hadoop YARN: The task scheduler in this approach becomes YARN, as
opposed to Mesos in the previous one. YARN, which is short for Yet Another
Resource Negotiator, is the resource manager in Hadoop. With YARN, Spark
can be integrated into the Hadoop ecosystem (such as MapReduce, Hive, and File
System) more easily. For more information, please go to the following
link: https:/​/​spark.​apache.​org/​docs/​latest/​running-​on-​yarn.​html.
Kubernetes: This is an open-source system providing container-centric
infrastructure. It helps automate job deployment and management, and has
gained in popularity over recent years. Kubernetes for Spark is still pretty new
but, if you are interested, feel free to read more at the following link: https:/​/
spark.​apache.​org/​docs/​latest/​running-​on-​kubernetes.​html.

Programming in PySpark
This section provides a quick introduction to programming with Python in Spark. We will
start with the basic data structures in Spark.

Resilient Distributed Datasets (RDD) is the primary data structure in Spark. It is a
distributed collection of objects and has the following three main features:

Resilient: When any node fails, affected partitions will be reassigned to healthy
nodes, which makes Spark fault-tolerant
Distributed: Data resides on one or more nodes in a cluster, which can be
operated on in parallel
Dataset: This contains a collection of partitioned data with their values or
metadata

https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[240]

RDD was the main data structure in Spark before version 2.0. After that, it is replaced by
the DataFrame , which is also a distributed collection of data but organized into named
columns. DataFrame utilizes the optimized execution engine of Spark SQL. Therefore, it is
conceptually similar to a table in a relational database or a DataFrame object in the Python
pandas library.

Although the current version of Spark still supports RDD, programming
with DataFrames is highly recommended. Hence, we won't spent too
much time here on programming with RDD. Refer to https:/​/​spark.
apache.​org/​docs/​latest/​rdd-​programming-​guide.​html if you are
interested. We will go through the basics of programming with a
dataframe.

The entry point to a Spark program is creating a Spark session, which can be done by using
the following lines:

>>> from pyspark.sql import SparkSession
>>> spark = SparkSession \
... .builder \
... .appName("test") \
... .getOrCreate()

Note that this is not needed if you run it in PySpark shell. Right after we spin up a PySpark
shell, a Spark session is automatically created. We can check the running Spark application
at the following link: localhost:4040/jobs/. Refer to the following screenshot for the
resulting page:

With a Spark session spark, a DataFrame object can be created by reading a file (which is
usually the case) or manual input. In the following example, we create a DataFrame object
from a CSV file:

>>> df = spark.read.csv("examples/src/main/resources/people.csv",
 header=True, sep=';')

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[241]

Columns in the CSV file people.csv are separated by ;.

Once this is done, we can see an accomplished job in localhost:4040/jobs/:

We can display the content of the DataFrame object by using the following command:

>>> df.show()
+-----+---+---------+
| name|age| job|
+-----+---+---------+
|Jorge| 30|Developer|
| Bob| 32|Developer|
+-----+---+---------+

We can count the number of rows by using the following command:

>>> df.count()
2

The schema of the DataFrame object can be displayed using the following command:

>>> df.printSchema()
root
 |-- name: string (nullable = true)
 |-- age: string (nullable = true)
 |-- job: string (nullable = true)

One or more columns can be selected as follows:

>>> df.select("name").show()
+-----+
| name|
+-----+

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[242]

|Jorge|
| Bob|
+-----+
>>> df.select(["name", "job"]).show()
+-----+---------+
| name| job|
+-----+---------+
|Jorge|Developer|
| Bob|Developer|
+-----+---------+

We can filter rows by condition, for instance, by the value of one column using the
following command:

>>> df.filter(df['age'] > 31).show()
+----+---+---------+
|name|age| job|
+----+---+---------+
| Bob| 32|Developer|
+----+---+---------+

We will continue programming in PySpark in the next section, where we use Spark to solve
the ad click-through problem.

Learning on massive click logs with Spark
Normally, in order to take advantage of Spark, data is stored in a Hadoop Distributed File
System (HDFS), which is a distributed filesystem designed to store large volumes of data,
and computation occurs over multiple nodes on clusters. For demonstration purposes, we
are keeping the data on a local machine and running Spark locally. It is no different from
running it on a distributed computing cluster.

Loading click logs
To train a model on massive click logs, we first need to load the data in Spark. We do so by
taking the following steps:

First, we spin up the PySpark shell by using the following command:1.

./bin/pyspark --master local[*] --driver-memory 20G

Here, we specify a large driver memory as we are dealing with a dataset of more
than 6 GB.

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[243]

Start a Spark session with an application named CTR:2.

>>> spark = SparkSession\
... .builder\
... .appName("CTR")\
... .getOrCreate()

Then, we load the click log data from the train file into a DataFrame object.3.
Note, the data load function spark.read.csv allows custom schema, which
guarantees data is loaded as expected, as opposed to inferring by default. So first,
we define the schema:

>>> from pyspark.sql.types import StructField, StringType,
 StructType, IntegerType
>>> schema = StructType([
... StructField("id", StringType(), True),
... StructField("click", IntegerType(), True),
... StructField("hour", IntegerType(), True),
... StructField("C1", StringType(), True),
... StructField("banner_pos", StringType(), True),
... StructField("site_id", StringType(), True),
... StructField("site_domain", StringType(), True),
... StructField("site_category", StringType(), True),
... StructField("app_id", StringType(), True),
... StructField("app_domain", StringType(), True),
... StructField("app_category", StringType(), True),
... StructField("device_id", StringType(), True),
... StructField("device_ip", StringType(), True),
... StructField("device_model", StringType(), True),
... StructField("device_type", StringType(), True),
... StructField("device_conn_type", StringType(), True),
... StructField("C14", StringType(), True),
... StructField("C15", StringType(), True),
... StructField("C16", StringType(), True),
... StructField("C17", StringType(), True),
... StructField("C18", StringType(), True),
... StructField("C19", StringType(), True),
... StructField("C20", StringType(), True),
... StructField("C21", StringType(), True),
...])

Each field of the schema contains the name of the column (such as id, click,
and hour), the data type (such as integer, and string), and whether missing
values are allowed (allowed in this case).

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[244]

With the defined schema, we create a DataFrame object:

>>> df = spark.read.csv("file://path_to_file/train", schema=schema,
 header=True)

Remember to replace path_to_file with the absolute path of where
the train data file is located. The file:// prefix indicates that data is
read from a local file. Another prefix, dbfs://, is used for data stored in
HDFS.

We will now double-check the schema as follows:4.

>>> df.printSchema()
root
 |-- id: string (nullable = true)
 |-- click: integer (nullable = true)
 |-- hour: integer (nullable = true)
 |-- C1: string (nullable = true)
 |-- banner_pos: string (nullable = true)
 |-- site_id: string (nullable = true)
 |-- site_domain: string (nullable = true)
 |-- site_category: string (nullable = true)
 |-- app_id: string (nullable = true)
 |-- app_domain: string (nullable = true)
 |-- app_category: string (nullable = true)
 |-- device_id: string (nullable = true)
 |-- device_ip: string (nullable = true)
 |-- device_model: string (nullable = true)
 |-- device_type: string (nullable = true)
 |-- device_conn_type: string (nullable = true)
 |-- C14: string (nullable = true)
 |-- C15: string (nullable = true)
 |-- C16: string (nullable = true)
 |-- C17: string (nullable = true)
 |-- C18: string (nullable = true)
 |-- C19: string (nullable = true)
 |-- C20: string (nullable = true)
 |-- C21: string (nullable = true)

And the data size is checked as follows:5.

>>> df.count()
40428967

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[245]

Also, we need to drop several columns that provide little information. We will6.
use the following code to do that:

>>> df =
 df.drop('id').drop('hour').drop('device_id').drop('device_ip')

We rename the column from click to label, as this will be consumed more7.
often in the downstream operations:

>>> df = df.withColumnRenamed("click", "label")

Let's look at the current columns in the DataFrame object:8.

>>> df.columns
['label', 'C1', 'banner_pos', 'site_id', 'site_domain',
'site_category', 'app_id', 'app_domain', 'app_category',
'device_model', 'device_type', 'device_conn_type', 'C14', 'C15',
'C16', 'C17', 'C18', 'C19', 'C20', 'C21']

Splitting and caching the data
Here, we split the data into a training and testing set, as follows:

>>> df_train, df_test = df.randomSplit([0.7, 0.3], 42)

Here, 70% of samples are used for training and the remaining for testing, with a random
seed specified, as always, for reproduction.

Before we perform any heavy lifting (such as model learning) on the training
set, df_train, it is good practice to cache the object. In Spark, caching and persistence is
an optimization technique that reduces the computation overhead. It saves the intermediate
results of RDD or DataFrame operations in memory and/or on disk. Without caching or
persistence, whenever an intermediate DataFrame is needed, it will be recalculated again
according to how it was created originally. Depending on the storage level, persistence
behaves differently:

MEMORY_ONLY: The object is only stored in memory. If it does not fit in memory,
the remaining part will be recomputed each time it is needed.
DISK_ONLY: The object is only kept on disk. A persisted object can be extracted
directly from storage without being recalculated.

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[246]

MEMORY_AND_DISK: The object is stored in memory, and might be on disk as
well. If the full object does not fit in memory, the remaining partition will be
stored on disk, instead of being recalculated every time it is needed. This is the
default mode for caching and persistence in Spark. It takes advantage of both fast
retrieval of in-memory storage and the high accessibility and capacity of disk
storage.

In PySpark, caching is simple. All that is required is a cache method.

Let's cache both the training and testing DataFrame:

>>> df_train.cache()
DataFrame[label: int, C1: string, banner_pos: string, site_id: string,
site_domain: string, site_category: string, app_id: string, app_domain:
string, app_category: string, device_model: string, device_type: string,
device_conn_type: string, C14: string, C15: string, C16: string, C17:
string, C18: string, C19: string, C20: string, C21: string]
>>> df_train.count()
28297027
>>> df_test.cache()
DataFrame[label: int, C1: string, banner_pos: string, site_id: string,
site_domain: string, site_category: string, app_id: string, app_domain:
string, app_category: string, device_model: string, device_type: string,
device_conn_type: string, C14: string, C15: string, C16: string, C17:
string, C18: string, C19: string, C20: string, C21: string]
>>> df_test.count()
12131940

Now, we have the training and testing data ready for downstream analysis.

One-hot encoding categorical features
Similar to the previous chapter, we need to encode categorical features into sets of multiple
binary features by executing the following steps:

In our case, the categorical features include the following:1.

>>> categorical = df_train.columns
>>> categorical.remove('label')
>>> print(categorical)
['C1', 'banner_pos', 'site_id', 'site_domain', 'site_category',
'app_id', 'app_domain', 'app_category', 'device_model',
'device_type', 'device_conn_type', 'C14', 'C15', 'C16', 'C17',
'C18', 'C19', 'C20', 'C21']

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[247]

In PySpark, one-hot encoding is not as direct as scikit-learn (specifically, with
the OneHotEncoder module).

We first need to index each categorical column using2.
the StringIndexer module:

>>> from pyspark.ml.feature import StringIndexer
>>> indexers = [
... StringIndexer(inputCol=c, outputCol=
 "{0}_indexed".format(c)).setHandleInvalid("keep")
... for c in categorical
...]

The setHandleInvalid("keep") handle makes sure it won't crash if any new
categorical value occurs. Try to omit it and you will see error messages related to
unknown values.

Then, we perform one-hot encoding on each individual indexed categorical3.
column using the OneHotEncoderEstimator module:

>>> from pyspark.ml.feature import OneHotEncoderEstimator
>>> encoder = OneHotEncoderEstimator(
... inputCols=[indexer.getOutputCol() for indexer in indexers],
... outputCols=["{0}_encoded".format(indexer.getOutputCol())
 for indexer in indexers]
...)

Next, we concatenate all sets of generated binary vectors into a single one using4.
the VectorAssembler module:

>>> from pyspark.ml.feature import VectorAssembler
>>> assembler = VectorAssembler(
... inputCols=encoder.getOutputCols(),
... outputCol="features"
...)

This creates the final encoded vector column called features.

We chain all these three stages together into a pipeline with the Pipeline5.
module in PySpark, which better organizes our one-hot encoding workflow:

>>> stages = indexers + [encoder, assembler]
>>> from pyspark.ml import Pipeline
>>> pipeline = Pipeline(stages=stages)

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[248]

Finally, we can fit the pipeline one-hot encoding model over the training set:6.

>>> one_hot_encoder = pipeline.fit(df_train)

Once this is done, we use the trained encoder to transform both the training and7.
testing sets. For the training set, we use the following code:

>>> df_train_encoded = one_hot_encoder.transform(df_train)
>>> df_train_encoded.show()

At this point, we skip displaying the results as there are dozens of columns with
several additional ones added on top of df_train.

However, we can see the one we are looking for, the features column, which8.
contains the one-hot encoded results. Hence, we only select this column along
with the target variable:

>>> df_train_encoded = df_train_encoded.select(
 ["label", "features"])
>>> df_train_encoded.show()
+-----+--------------------+
|label| features|
+-----+--------------------+
| 0|(31458,[5,7,3527,...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,1271,...|
| 0|(31458,[5,7,1271,...|
| 0|(31458,[5,7,1271,...|
| 0|(31458,[5,7,1271,...|
| 0|(31458,[5,7,1532,...|
| 0|(31458,[5,7,4366,...|
| 0|(31458,[5,7,14,45...|
+-----+--------------------+
only showing top 20 rows

The feature column contains sparse vectors of size 31,458.

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[249]

Don't forget to cache df_train_encoded, as we will be using it to iteratively9.
train our classification model:

>>> df_train_encoded.cache()
DataFrame[label: int, features: vector]

To release some space, we uncache df_train, since we will no longer need it:10.

>>> df_train.unpersist()
DataFrame[label: int, C1: string, banner_pos: string, site_id:
string, site_domain: string, site_category: string, app_id: string,
app_domain: string, app_category: string, device_model: string,
device_type: string, device_conn_type: string, C14: string, C15:
string, C16: string, C17: string, C18: string, C19: string, C20:
string, C21: string]

Now, we will repeat the preceding steps for the testing set:11.

>>> df_test_encoded = one_hot_encoder.transform(df_test)
>>> df_test_encoded = df_test_encoded.select(["label", "features"])
>>> df_test_encoded.show()
+-----+--------------------+
|label| features|
+-----+--------------------+
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,788,4...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,14,45...|
| 0|(31458,[5,7,2859,...|
| 0|(31458,[1,7,651,4...|
+-----+--------------------+
only showing top 20 rows
>>> df_test_encoded.cache()
DataFrame[label: int, features: vector]

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[250]

>>> df_test.unpersist()
DataFrame[label: int, C1: string, banner_pos: string, site_id:
string, site_domain: string, site_category: string, app_id: string,
app_domain: string, app_category: string, device_model: string,
device_type: string, device_conn_type: string, C14: string, C15:
string, C16: string, C17: string, C18: string, C19: string, C20:
string, C21: string]

If you check the Spark UI localhost:4040/jobs/ in your browser, you will see12.
several completed jobs, such as the following:

Training and testing a logistic regression model
With the encoded training and testing set ready, we can now train our classification model.
We use logistic regression as an example, but there are many other classification models
supported in PySpark, such as decision tree classifiers, random forests, neural networks
(which we will be studying in Chapter 9, Stock Price Prediction with Regression Algorithms),
linear SVM, and Naïve Bayes. For further details, please refer to the following link: https:/
/​spark.​apache.​org/​docs/​latest/​ml-​classification-​regression.​html#classification.

https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[251]

We train and test a logistic regression model by the following steps:

We first import the logistic regression module and initialize a model:1.

>>> from pyspark.ml.classification import LogisticRegression
>>> classifier = LogisticRegression(maxIter=20, regParam=0.001,
 elasticNetParam=0.001)

Here, we set the maximum iterations as 20, and the regularization parameter
as 0.001.

Now, fit the model on the encoded training set:2.

>>> lr_model = classifier.fit(df_train_encoded)

Be aware that this might take a while. You can check the running or completed
jobs in the Spark UI in the meantime. Refer to the following screenshot for some
completed jobs:

Note that each RDDLossFunction represents an iteration of optimizing the
logistic regression classifier.

After all iterations, we apply the trained model on the testing set:3.

>>> predictions = lr_model.transform(df_test_encoded)

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[252]

Cache the prediction results, as we will compute the prediction's performance:4.

>>> predictions.cache()
DataFrame[label: int, features: vector, rawPrediction: vector,
probability: vector, prediction: double]
Take a look at the prediction DataFrame:
>>> predictions.show()
+-----+--------------------+--------------------+------------------
--+----------+
|label| features| rawPrediction|
probability|prediction|
+-----+--------------------+--------------------+------------------
--+----------+
|
0|(31458,[5,7,788,4...|[2.80267740289335...|[0.94282033454271...|
0.0|
|
0|(31458,[5,7,788,4...|[2.72243908463177...|[0.93833781006061...|
0.0|
|
0|(31458,[5,7,788,4...|[2.72243908463177...|[0.93833781006061...|
0.0|
|
0|(31458,[5,7,788,4...|[2.82083664358057...|[0.94379146612755...|
0.0|
|
0|(31458,[5,7,788,4...|[2.82083664358057...|[0.94379146612755...|
0.0|
|
0|(31458,[5,7,14,45...|[4.44920221201642...|[0.98844714081261...|
0.0|
|
0|(31458,[5,7,14,45...|[4.44920221201642...|[0.98844714081261...|
0.0|
|
0|(31458,[5,7,14,45...|[4.44920221201642...|[0.98844714081261...|
0.0|
|
0|(31458,[5,7,14,45...|[4.54759977096521...|[0.98951842852058...|
0.0|
|
0|(31458,[5,7,14,45...|[4.54759977096521...|[0.98951842852058...|
0.0|
|
0|(31458,[5,7,14,45...|[4.38991492595212...|[0.98775013592573...|
0.0|
|
0|(31458,[5,7,14,45...|[4.38991492595212...|[0.98775013592573...|

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[253]

0.0|
|
0|(31458,[5,7,14,45...|[4.38991492595212...|[0.98775013592573...|
0.0|
|
0|(31458,[5,7,14,45...|[4.38991492595212...|[0.98775013592573...|
0.0|
|
0|(31458,[5,7,14,45...|[5.58870435258071...|[0.99627406423617...|
0.0|
|
0|(31458,[5,7,14,45...|[5.66066729150822...|[0.99653187592454...|
0.0|
|
0|(31458,[5,7,14,45...|[5.66066729150822...|[0.99653187592454...|
0.0|
|
0|(31458,[5,7,14,45...|[5.61336061100621...|[0.99636447866332...|
0.0|
|
0|(31458,[5,7,2859,...|[5.47553763410082...|[0.99582948965297...|
0.0|
|
0|(31458,[1,7,651,4...|[1.33424801682849...|[0.79154243844810...|
0.0|
+-----+--------------------+--------------------+------------------
--+----------+
only showing top 20 rows

This contains the predictive features, ground truth, probabilities of the two
classes, and the final prediction (with a decision threshold of 0.5).

We evaluate the AUC of ROC on the testing set using5.
the BinaryClassificationEvaluator function with the
areaUnderROC evaluation metric:

>>> from pyspark.ml.evaluation import BinaryClassificationEvaluator
>>> ev = BinaryClassificationEvaluator(rawPredictionCol =
 "rawPrediction", metricName = "areaUnderROC")
>>> print(ev.evaluate(predictions))
0.7488839207716323

We are hereby able to obtain an AUC of 74.89%.

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[254]

Feature engineering on categorical variables
with Spark
We have demonstrated how to build an ad click predictor that learns from massive click
logs using Spark. Thus far, we have been using one-hot encoding to employ the categorical
inputs. In this section, we will be talking about two popular feature engineering techniques:
feature hashing and feature interaction. One is an alternative to one-hot encoding, another
is a variant of one-hot encoding. Feature engineering means generating new features based
on domain knowledge or defined rules, in order to improve learning performance achieved
with existing feature space.

Hashing categorical features
In machine learning, feature hashing (also called hashing trick) is an efficient way to
encode categorical features. It is based on hashing functions in computer science that map
data of variable sizes to data of a fixed (and usually smaller) size. It is easier to understand
feature hashing through an example.

Let's say we have three features—gender, site_domain, and device_model, for example:

With one-hot encoding, this will become feature vectors of size 9, which come from 2 (from
gender) + 4 (from site_domain) + 3 (from device_model). With feature hashing, we want to
obtain a feature vector of size 4. We define a hash function as the sum of Unicode code
points of each character, and then divide the result by 4 and take the remainder as the
hashed output. Take the first row as an example, ord(m) + ord(a) + ord(l) + ord(e) + … + ord(s)
+ ord(u) + ord(n) + ord(g) = 109 + 97 + 108 + 101 + … + 115 + 117 + 110 + 103 = 1500, then 1500 %
4 = 0, which means [1 0 0 0]. If the remainder is 1, a sample is hashed into [0, 1, 0, 0]; [0, 0, 1,
0] for a sample with 2 as the remainder; [0, 0, 0, 1] for a sample with 3 as the remainder.

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[255]

Similarly, for other rows, we have the following:

In the end, we use the four-dimension hashed vectors to represent the original data, instead
of the nine-dimension one-hot encoded ones.

There are a few things to note about feature hashing:

The same input will always be converted to the same output, for instance, the
second and fifth rows.
Two different inputs might be converted to the same output, such as the first and
fourth rows. This phenomenon is called hashing collision.

Hence, the choice of the resulting fixed size is important. It will result in serious
collision and information loss if the size is too small. If it is too large, it is
basically a redundant one-hot encoding. With the correct size, it will make it
space-efficient and, at the same time, preserve important information, which
further benefits downstream tasks.
Hashing is one-way, which means we cannot revert the output to its input; while
one-hot encoding is two-way mapping.

Let's now adopt feature hashing to our click prediction project. Recall that the one-hot
encoded vectors are of size 31,458. If we choose 10,000 as the fixed hashing size, we will be
able to cut the space to less than one third, and reduce the memory consumed by training
the classification model. Also, we will see how quick it is to perform feature hashing
compared to one-hot encoding, as there is no need to keep track of all unique values across
all columns. It just maps each individual row of string values to a sparse vector through
internal hash functions as follows:

We begin by importing the feature hashing module from PySpark and initialize a1.
feature hasher with an output size of 10,000:

>>> from pyspark.ml.feature import FeatureHasher
>>> hasher = FeatureHasher(numFeatures=10000,
 inputCols=categorical, outputCol="features")

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[256]

Use the defined hasher to convert the input DataFrame:2.

>>> hasher.transform(df_train).select("features").show()
+--------------------+
| features|
+--------------------+
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[29,1228,1...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[1228,1289...|
|(10000,[746,1060,...|
|(10000,[675,1228,...|
|(10000,[1289,1695...|
+--------------------+
only showing top 20 rows

As we can see, the size of the resulting column, features, is 10,000. Again, there
is no training or fitting in feature hashing. The hasher is a predefined mapping.

For better organization of the entire workflow, we chain the hasher and3.
classification model together into a pipeline:

>>> classifier = LogisticRegression(maxIter=20, regParam=0.000,
 elasticNetParam=0.000)
>>> stages = [hasher, classifier]
>>> pipeline = Pipeline(stages=stages)

Fit the pipelined model on the training set as follows:4.

>>> model = pipeline.fit(df_train)

Apply the trained model on the testing set and record the prediction results:5.

>>> predictions = model.transform(df_test)
>>> predictions.cache()

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[257]

Evaluate its performance in terms of AUC of ROC:6.

>>> ev = BinaryClassificationEvaluator(rawPredictionCol =
 "rawPrediction", metricName = "areaUnderROC")
>>> print(ev.evaluate(predictions))
0.7448097180769776

We are able to achieve an AUC of 74.48%, which is close to the previous one of 74.89% with
one-hot encoding. At the end of the day, we save a substantial amount of computational
resources and attain a comparable prediction accuracy. That is a win.

With feature hashing, we lose interpretability but gain computational
advantage.

Combining multiple variables – feature
interaction
Among all the features of the click log data, some are very weak signals in themselves. For
example, gender itself doesn't tell you much regarding whether someone will click an ad,
and the device model itself doesn't provide much information either. However, by
combining multiple features, we will be able to create a stronger synthesized signal.
Feature interaction is introduced for this purpose. For numerical features, it usually
generates new features by multiplying multiples of them. We can also define whatever
integration rules we want. For example, we generate an additional feature, income/person,
from two original features, household income and household size:

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[258]

For categorical features, feature interaction becomes an AND operation on two or more
features. In the following example, we generate an additional feature, gender:site_domain,
from two original features, gender and site_domain:

We then use one-hot encoding to transform string values. On top of six one-hot encoded
features (two from gender and four from site_domain), feature interaction between
gender and site_domain adds eight further features (two by four).

Let's now adopt feature interaction to our click prediction project. We take two features,
C14 and C15, as an example of AND interaction:

First, we will import the feature interaction module, RFormula, from PySpark:1.

>>> from pyspark.ml.feature import RFormula

An RFormula model takes in a formula that describes how features interact. For
instance, y ~ a + b means it takes in input features, a and b, and outputs y; y ~
a + b + a:b means it predicts y based on features a, b, and iteration term, a
AND b; y ~ a + b + c + a:b means it predicts y based on features a, b, c, and
iteration terms, a AND b.

We need to define an interaction formula accordingly:2.

>>> cat_inter = ['C14', 'C15']
>>> cat_no_inter = [c for c in categorical if c not in cat_inter]
>>> concat = '+'.join(categorical)
>>> interaction = ':'.join(cat_inter)
>>> formula = "label ~ " + concat + '+' + interaction
>>> print(formula)
label ~
C1+banner_pos+site_id+site_domain+site_category+app_id+app_domain+a
pp_category+device_model+device_type+device_conn_type+C14+C15+C16+C
17+C18+C19+C20+C21+C14:C15

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[259]

Now, we can initialize a feature interactor with this formula:3.

>>> interactor = RFormula(
... formula=formula,
... featuresCol="features",
... labelCol="label").setHandleInvalid("keep")

Again, the setHandleInvalid("keep") handle here makes sure it won't crash
if any new categorical value occurs.

Use the defined feature interactor to fit and transform the input DataFrame:4.

>>>
interactor.fit(df_train).transform(df_train).select("features").
show()
+--------------------+
| features|
+--------------------+
|(54930,[5,7,3527,...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,788,4...|
|(54930,[5,7,1271,...|
|(54930,[5,7,1271,...|
|(54930,[5,7,1271,...|
|(54930,[5,7,1271,...|
|(54930,[5,7,1532,...|
|(54930,[5,7,4366,...|
|(54930,[5,7,14,45...|
+--------------------+
only showing top 20 rows

More than 20,000 features are added to the feature space due to the interaction
term of C14 and C15.

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[260]

Again, we chain the feature interactor and classification model together into a5.
pipeline for better organizing the entire workflow:

>>> classifier = LogisticRegression(maxIter=20, regParam=0.000,
 elasticNetParam=0.000)
>>> stages = [interactor, classifier]
>>> pipeline = Pipeline(stages=stages)
>>> model = pipeline.fit(df_train)
>>> predictions = model.transform(df_test)
>>> predictions.cache()
>>> from pyspark.ml.evaluation import BinaryClassificationEvaluator
>>> ev = BinaryClassificationEvaluator(rawPredictionCol =
 "rawPrediction", metricName = "areaUnderROC")
>>> print(ev.evaluate(predictions))
0.7490392990518315

An AUC of 74.90%, with additional interaction between features C14 and C15, is a boost
from 74.89% without any interaction.

Summary
In this chapter, we continued working on the online advertising click-through prediction
project. This time, we were able to train the classifier on the entire dataset with millions of
records, with the help of the parallel computing tool, Apache Spark. We have discussed the
basics of Spark, including its major components, deployment of Spark programs,
programming essentials of PySpark, and the Python interface of Spark. And we
programmed using PySpark to explore the click log data, perform one-hot encoding, cache
intermediate results, develop classification solutions based on the entire click log dataset,
and evaluate performance. In addition, we introduced two feature engineering techniques,
feature hashing and feature interaction, in order to improve prediction performance. We
had fun implementing them in PySpark as well.

Looking back on our learning journey, we have been working on classification problems
since Chapter 4, Detecting Spam Email with Naive Bayes. Actually, we have covered all
powerful and popular classification models in machine learning. And yes, we will move on
to solving regression problems in the chapter, which is the sibling of classification in
supervised learning. We will resort to regression models, including linear regression,
decision trees for regression, and support vector regression, which all sound very familiar,
as well as neural networks that have gained significantly in popularity recently.

Scaling Up Prediction to Terabyte Click Logs Chapter 8

[261]

Exercises
In the one-hot encoding solution, can you use different classifiers supported in
PySpark instead of logistic regression, such as decision tree, random forest, and
linear SVM?
In the feature hashing solution, can you try other hash sizes, such as 5,000, and
20,000? What do you observe?
In the feature interaction solution, can you try other interactions, such as C1 and
C20?
Can you first use feature interaction and then feature hashing in order to lower
the expanded dimension? Are you able to obtain higher AUC?

9
Stock Price Prediction with

Regression Algorithms
In this chapter, we will be solving a problem that absolutely interests everyone—predicting
stock prices. Getting wealthy by means of smart investment—who isn't interested?! In fact,
stock market movements and stock price predictions have been actively researched by a
large number of financial, trading, and even technology corporations. A variety of methods
have been developed to predict stock prices using machine learning techniques. Herein, we
will be focusing on learning several popular regression algorithms, including linear
regression, regression tree and regression forest, and support vector regression, as well as
neural networks, and utilizing them to tackle this billion (or trillion) dollar problem.

We will cover the following topics in this chapter:

An introduction to the stock market and stock prices
What is regression
Feature engineering
Acquiring stock data and generating predictive features
What is linear regression
Mechanics of linear regression
Implementations of linear regression (from scratch, and using scikit-learn and
TensorFlow)
What is decision tree regression
Mechanics of regression tree
Implementations of regression tree (from scratch and using scikit-learn)
From regression tree to regression forest

Stock Price Prediction with Regression Algorithms Chapter 9

[263]

Implementations of regression forest (using scikit-learn and TensorFlow)
What is support vector regression
Mechanics of support vector regression
Implementations of support vector regression with scikit-learn
What is a neural network
Mechanics of neural networks
Implementations of neural networks (from scratch, and using scikit-learn,
TensorFlow, and Keras)
Regression performance evaluation
Predicting stock prices with regression algorithms

Brief overview of the stock market and stock
prices
The stock of a corporation signifies ownership in the corporation. A single share of the
stock represents a claim on fractional assets and earnings of the corporation in proportion
to the total number of shares. For example, if an investor owns 50 shares of stock in a
company that has, in total, 1,000 outstanding shares, that investor (or shareholder) would
own and have claim on 5% of the company's assets and earnings.

Stocks of a company can be traded between shareholders and other parties via stock
exchanges and organizations. Major stock exchanges include New York Stock Exchange,
NASDAQ, London Stock Exchange Group, Shanghai Stock Exchange, and Hong Kong
Stock Exchange. The prices that a stock is traded at fluctuate essentially due to the law of
supply and demand. At any one moment, the supply is the number of shares that are in the
hands of public investors, the demand is the number of shares investors want to buy, and
the price of the stock moves up and down in order to attain and maintain equilibrium.

In general, investors want to buy low and sell high. This sounds simple enough but it's very
challenging to implement as it's monumentally difficult to say whether a stock price will go
up or down. There are two main streams of studies attempting to understand factors and
conditions that lead to price changes or even to forecast future stock prices, fundamental
analysis and technical analysis:

Fundamental analysis: This stream focuses on underlying factors that influence a
company's value and business, including overall economy and industry
conditions from macro perspectives, the company's financial conditions,
management, and competitors from micro perspectives.

Stock Price Prediction with Regression Algorithms Chapter 9

[264]

Technical analysis: On the other hand, this stream predicts future price
movements through the statistical study of past trading activity, including price
movement, volume, and market data. Predicting prices via machine learning
techniques is an important topic in technical analysis nowadays. Many quant
trading firms have been using machine learning to empower automated and
algorithmic trading. In this chapter, we'll be working as a quantitative
analyst/researcher, exploring how to predict stock prices with several typical
machine learning regression algorithms.

What is regression?
Regression is another main instance of supervised learning in machine learning. Given a
training set of data containing observations and their associated continuous output values,
the goal of regression is to explore the relationships between the observations (also called
features) and the targets, and to output a continuous value based on the input features of
an unknown sample, which is depicted in the following diagram:

Stock Price Prediction with Regression Algorithms Chapter 9

[265]

The major difference between regression and classification is that the output values in
regression are continuous while they are discrete in classification. This leads to different
application areas for these two supervised learning methods. Classification is basically used
in determining the desired memberships or characteristics as we've seen in previous
chapters, such as email being spam or not, newsgroup topics, ad click-through or not. On
the other hand, regression mainly involves estimating an outcome or forecasting a
response. An example of estimating continuous targets with linear regression is depicted as
follows:

Typical machine learning regression problems include the following:

Predicting house prices based on location, square footage, number of bedrooms,
and bathrooms
Estimating power consumption based on information of a system's processes and
memory
Forecasting retail inventory
And of course, predicting stock prices

Mining stock price data
In theory, we can apply regression techniques in predicting prices of a particular stock.
However, it's difficult to ensure the stock we pick is suitable enough for learning
purposes—its price should follow some learnable patterns and it hasn't been affected by
unprecedented instances or irregular events. Hence, we'll herein be focusing on one of the
most popular stock indexes to better illustrate and generalize our price regression
approach.

Stock Price Prediction with Regression Algorithms Chapter 9

[266]

Let's first cover what an index is. A stock index is a statistical measure of the value of a
portion of the overall stock market. An index includes several stocks that are diverse
enough to represent a section of the whole market. And the price of an index is typically
computed as the weighted average of the prices of selected stocks.

The Dow Jones Industrial Average (DJIA) is one of the longest established and most
commonly watched indexes in the world. It consists of 30 of the most significant stocks in
the U.S., such as Microsoft, Apple, General Electric, and the Walt Disney Company, and
represents around a quarter of the value of the entire U.S. market. We can view its daily
prices and performance in Yahoo Finance at https:/​/​finance.​yahoo.​com/​quote/​%5EDJI/
history?​p=​%5EDJI:

https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI

Stock Price Prediction with Regression Algorithms Chapter 9

[267]

In each trading day, price of a stock changes and is recorded in real time. Five values
illustrating movements in the price over one unit of time (usually one day, but can also be
one week or one month) are key trading indicators. They are as follows:

Open: The starting price for a given trading day
Close: The final price on that day
High: The highest prices at which the stock traded on that day
Low: The lowest prices at which the stock traded on that day
Volume: The total number of shares traded before the market is closed on that
day

Other major indexes besides DJIA include the following:

S&P 500 (short for Standard & Poor's 500) Index is made up of 500 of the most
commonly traded stocks in the U.S., representing 80% of the value of the entire
U.S. market (https:/​/​finance.​yahoo.​com/​quote/​%5EGSPC/​history?​p=​%5EGSPC).
NASDAQ Composite is composed of all stocks traded on NASDAQ (https:/​/
finance.​yahoo.​com/​quote/​%5EIXIC/​history?​p=​%5EIXIC).
Russell 2000 (RUT) index is a collection of the last 2,000 out of 3,000 largest
publicly-traded companies in the U.S. (https:/​/​finance.​yahoo.​com/​quote/
%5ERUT/​history?​p=​%5ERUT).
London FTSE-100 is composed of the top 100 companies in market capitalization
listed on the London Stock Exchange (https:/​/​finance.​yahoo.​com/​quote/
%5EFTSE/​).

We will be focusing on DJIA and using its historical prices and performance to predict
future prices. In the following sections, we will be exploring how to develop price
prediction models, specifically regression models, and what can be used as indicators or
predictive features.

Getting started with feature engineering
When it comes to a machine learning algorithm, the first question to ask is usually what
features are available or what the predictive variables are.

The driving factors that are used to predict future prices of DJIA, the close prices, include
historical and current open prices as well as historical performance (high, low, and
volume). Note that current or same-day performance (high, low, and volume) shouldn't be
included because we simply can't foresee the highest and lowest prices at which the stock
traded or the total number of shares traded before the market is closed on that day.

https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5ERUT/history?p=%5ERUT
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/
https://finance.yahoo.com/quote/%5EFTSE/

Stock Price Prediction with Regression Algorithms Chapter 9

[268]

Predicting the close price with only those preceding four indicators doesn't seem promising
and might lead to underfitting. So we need to think of ways to generate more features in
order to increase predictive power. To recap, in machine learning, feature engineering is
the process of creating domain-specific features based on existing features in order to
improve the performance of a machine learning algorithm. Feature engineering usually
requires sufficient domain knowledge and can be very difficult and time-consuming. In
reality, features used to solve a machine learning problem are not usually directly available
and need to be particularly designed and constructed, for example, term frequency or tf-idf
features in spam email detection and newsgroup classification. Hence, feature engineering
is essential in machine learning and is usually where we spend most efforts in solving a
practical problem.

When making an investment decision, investors usually look at historical prices over a
period of time, not just the price the day before. Therefore, in our stock price prediction
case, we can compute the average close price over the past week (five trading days), over
the past month and over the past year as three new features. We can also customize the
time window to the size we want, such as the past quarter or the past six months. On top of
these three averaged price features, we can generate new features associated with the price
trend by computing the ratios between each pair of average prices in three different time
frames. For instance, the ratio between the average price over the past week and that over
the past year. Besides prices, volume is another important factor that investors analyze.
Similarly, we can generate new volume-based features by computing the average volumes
in several different time frames and ratios between each pair of averaged values.

Besides historical averaged values in a time window, investors also greatly consider stock
volatility. Volatility describes the degree of variation of prices for a given stock or index
over time. In statistical term, it's basically the standard deviation of the close prices. We can
easily generate new sets of features by computing the standard deviation of close prices in a
particular time frame, as well as the standard deviation of volumes traded. In a similar
manner, ratios between each pair of standard deviation values can be included in our
engineered feature pool.

Last but not least, return is a significant financial metric that investors closely watch for.
Return is the percentage of gain or loss of close price for a stock/index in a particular
period. For example, daily return and annual return are financial terms we frequently hear.
They are calculated as follows:

Stock Price Prediction with Regression Algorithms Chapter 9

[269]

Here, pricei is the price on the ith day and pricei-1 is the price on the day before. Weekly and
monthly returns can be computed in a similar way. Based on daily returns, we can produce
a moving average over a particular number of days. For instance, given daily returns of the
past week, returni:i-1, returni-1:i-2, returni-2:i-3, returni-3:i-4, returni-4:i-5, we can calculate the moving
average over that week as follows:

In summary, we can generate the following predictive variables by applying feature
engineering techniques:

Stock Price Prediction with Regression Algorithms Chapter 9

[270]

Eventually, we are able to generate in total 31 sets of features, along with the following six
original features:

OpenPricei: This feature represents the open price
OpenPricei-1: This feature represents the open price on the past day
ClosePricei-1: This feature represents the close price on the past day
HighPricei-1: This feature represents the highest price on the past day
LowPricei-1: This feature represents the lowest price on the past day
Volumei-1: This feature represents the volume on the past day

Stock Price Prediction with Regression Algorithms Chapter 9

[271]

Acquiring data and generating features
For easier reference, we will implement the code for generating features here rather than in
later sections. We will start with obtaining the dataset we need for our project.

Throughout the entire project, we acquire stock index price and performance data from
Yahoo Finance. For example, in the Historical Data page, https:/​/​finance.​yahoo.​com/
quote/​%5EDJI/​history?​p=​%5EDJI, we can change the Time Period to Dec 01, 2005 - Dec10,
2005, select Historical Prices in Show, and Daily in Frequency (or open this
link directly: https:/​/​finance.​yahoo.​com/​quote/​%5EDJI/​history?​period1=​1133413200
amp;period2=​1134190800​amp;interval=​1d​amp;filter=​history​amp;frequency=​1d), then
click on the Apply button. Click the Download data button to download the data and name
the file 20051201_20051210.csv.

We can load the data we just downloaded as follows:

>>> mydata = pd.read_csv('20051201_20051210.csv', index_col='Date')
>>> mydata
 Open High Low Close
Date
2005-12-01 10806.030273 10934.900391 10806.030273 10912.570312
2005-12-02 10912.009766 10921.370117 10861.660156 10877.509766
2005-12-05 10876.950195 10876.950195 10810.669922 10835.009766
2005-12-06 10835.410156 10936.200195 10835.410156 10856.860352
2005-12-07 10856.860352 10868.059570 10764.009766 10810.910156
2005-12-08 10808.429688 10847.250000 10729.669922 10755.120117
2005-12-09 10751.759766 10805.950195 10729.910156 10778.580078

 Volume Adjusted Close
Date
2005-12-01 256980000.0 10912.570312
2005-12-02 214900000.0 10877.509766
2005-12-05 237340000.0 10835.009766
2005-12-06 264630000.0 10856.860352
2005-12-07 243490000.0 10810.910156
2005-12-08 253290000.0 10755.120117
2005-12-09 238930000.0 10778.580078

Note the output is a pandas dataframe object. The Date column is the index column, and
the rest columns are the corresponding financial variables. If you have not installed
pandas, the powerful package designed to simplify data analysis on relational (or table-
like) data, you can do so via the following command line:

 pip install pandas

https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?p=%5EDJI
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d
https://finance.yahoo.com/quote/%5EDJI/history?period1=1133413200&period2=1134190800&interval=1d&filter=history&frequency=1d

Stock Price Prediction with Regression Algorithms Chapter 9

[272]

Next, we implement feature generation by starting with a sub-function that directly creates
features from the original six features, as follows:

>>> def add_original_feature(df, df_new):
... df_new['open'] = df['Open']
... df_new['open_1'] = df['Open'].shift(1)
... df_new['close_1'] = df['Close'].shift(1)
... df_new['high_1'] = df['High'].shift(1)
... df_new['low_1'] = df['Low'].shift(1)
... df_new['volume_1'] = df['Volume'].shift(1)

Then we develop a sub-function that generates six features related to average close prices:

>>> def add_avg_price(df, df_new):
... df_new['avg_price_5'] = df['Close'].rolling(5).mean().shift(1)
... df_new['avg_price_30'] = df['Close'].rolling(21).mean().shift(1)
... df_new['avg_price_365'] = df['Close'].rolling(252).mean().shift(1)
... df_new['ratio_avg_price_5_30'] =
 df_new['avg_price_5'] / df_new['avg_price_30']
... df_new['ratio_avg_price_5_365'] =
 df_new['avg_price_5'] / df_new['avg_price_365']
... df_new['ratio_avg_price_30_365'] =
 df_new['avg_price_30'] / df_new['avg_price_365']

Similarly, a sub-function that generates six features related to average volumes is as
follows:

>>> def add_avg_volume(df, df_new):
... df_new['avg_volume_5'] = df['Volume'].rolling(5).mean().shift(1)
... df_new['avg_volume_30'] = df['Volume'].rolling(21).mean().shift(1)
... df_new['avg_volume_365'] =
 df['Volume'].rolling(252).mean().shift(1)
... df_new['ratio_avg_volume_5_30'] =
 df_new['avg_volume_5'] / df_new['avg_volume_30']
... df_new['ratio_avg_volume_5_365'] =
 df_new['avg_volume_5'] / df_new['avg_volume_365']
... df_new['ratio_avg_volume_30_365'] =
 df_new['avg_volume_30'] / df_new['avg_volume_365']

As for the standard deviation, we develop the following sub-function for the price-related
features:

>>> def add_std_price(df, df_new):
... df_new['std_price_5'] = df['Close'].rolling(5).std().shift(1)
... df_new['std_price_30'] = df['Close'].rolling(21).std().shift(1)
... df_new['std_price_365'] = df['Close'].rolling(252).std().shift(1)
... df_new['ratio_std_price_5_30'] =
 df_new['std_price_5'] / df_new['std_price_30']

Stock Price Prediction with Regression Algorithms Chapter 9

[273]

... df_new['ratio_std_price_5_365'] =
 df_new['std_price_5'] / df_new['std_price_365']
... df_new['ratio_std_price_30_365'] =
 df_new['std_price_30'] / df_new['std_price_365']

Similarly, a sub-function that generates six volume-based standard deviation features is as
follows:

>>> def add_std_volume(df, df_new):
... df_new['std_volume_5'] = df['Volume'].rolling(5).std().shift(1)
... df_new['std_volume_30'] = df['Volume'].rolling(21).std().shift(1)
... df_new['std_volume_365'] = df['Volume'].rolling(252).std().shift(1)
... df_new['ratio_std_volume_5_30'] =
 df_new['std_volume_5'] / df_new['std_volume_30']
... df_new['ratio_std_volume_5_365'] =
 df_new['std_volume_5'] / df_new['std_volume_365']
... df_new['ratio_std_volume_30_365'] =
 df_new['std_volume_30'] / df_new['std_volume_365']

And seven return-based features are generated using the following sub-function:

>>> def add_return_feature(df, df_new):
... df_new['return_1'] = ((df['Close'] - df['Close'].shift(1)) /
 df['Close'].shift(1)).shift(1)
... df_new['return_5'] = ((df['Close'] - df['Close'].shift(5)) /
 df['Close'].shift(5)).shift(1)
... df_new['return_30'] = ((df['Close'] - df['Close'].shift(21)) /
 df['Close'].shift(21)).shift(1)
... df_new['return_365'] = ((df['Close'] - df['Close'].shift(252)) /
 df['Close'].shift(252)).shift(1)
... df_new['moving_avg_5'] =
 df_new['return_1'].rolling(5).mean().shift(1)
... df_new['moving_avg_30'] =
 df_new['return_1'].rolling(21).mean().shift(1)
... df_new['moving_avg_365'] =
 df_new['return_1'].rolling(252).mean().shift(1)

Finally, we put together the main feature generation function that calls all preceding sub-
functions:

>>> def generate_features(df):
... """
... Generate features for a stock/index based on historical price
 and performance
... @param df: dataframe with columns "Open", "Close", "High",
 "Low", "Volume", "Adjusted Close"
... @return: dataframe, data set with new features
... """

Stock Price Prediction with Regression Algorithms Chapter 9

[274]

... df_new = pd.DataFrame()

... # 6 original features

... add_original_feature(df, df_new)

... # 31 generated features

... add_avg_price(df, df_new)

... add_avg_volume(df, df_new)

... add_std_price(df, df_new)

... add_std_volume(df, df_new)

... add_return_feature(df, df_new)

... # the target

... df_new['close'] = df['Close']

... df_new = df_new.dropna(axis=0)

... return df_new

It is noted that the window sizes here are 5, 21, and 252, instead of 7, 30, and 365
representing the weekly, monthly, and yearly window. This is because there are 252
(rounded) trading days in a year, 21 trading days in a month, and 5 in a week.

We can apply this feature engineering strategy on the DJIA data queried from 1988 to 2016
as follows:

>>> data_raw = pd.read_csv('19880101_20161231.csv', index_col='Date')
>>> data = generate_features(data_raw)

Take a look at what the data with the new features looks like:

>>> print(data.round(decimals=3).head(5))

The preceding command line generates the following output:

Stock Price Prediction with Regression Algorithms Chapter 9

[275]

Since all features and driving factors are ready, we should now focus on regression
algorithms that estimate the continuous target variables based on these predictive features.

Estimating with linear regression
The first regression model that comes to our mind is linear regression. Does it mean fitting
data points using a linear function, as its name implies? Let's explore it.

How does linear regression work?
In simple terms, linear regression tries to fit as many of the data points as possible with a
line in two-dimensional space or a plane in three-dimensional space, and so on. It explores
the linear relationship between observations and targets and the relationship is represented
in a linear equation or weighted sum function. Given a data sample x with n features, x1, x2,
…, xn (x represents a feature vector and x = (x1, x2, …, xn)), and weights (also called
coefficients) of the linear regression model w (w represents a vector (w1, w2, …, wn)), the
target y is expressed as follows:

Also, sometimes, the linear regression model comes with an intercept (also called bias) w0,
so the preceding linear relationship becomes as follows:

Doesn't it look familiar? The logistic regression algorithm we learned in Chapter 7,
Predicting Online Ads Click-through with Logistic Regression, is just an addition of logistic
transformation on top of the linear regression, which maps the continuous weighted sum to
0 (negative) or 1 (positive) class. Similarly, a linear regression model, or specifically, its
weight vector w is learned from the training data, with the goal of minimizing the
estimation error defined as mean squared error (MSE), which measures the average of
squares of difference between the truth and prediction. Give m training samples, (x(1),y(1)),
(x(2),y(2)),… (x(i),y(i))…, (x(m),y(m)), the cost function J(w) regarding the weights to be optimized
is expressed as follows:

Stock Price Prediction with Regression Algorithms Chapter 9

[276]

Here, is the prediction.

Again, we can obtain the optimal w so that J(w) is minimized using gradient descent. The
first-order derivative, the gradient ∆w, is derived as follows:

Combined with the gradient and learning rate η, the weight vector w can be updated in
each step as follows:

After a substantial number of iterations, the learned w is then used to predict a new sample
x' as follows:

Implementing linear regression
With a thorough understanding of the gradient descent based linear regression, we'll now
implement it from scratch.

We start with defining the function computing the prediction with the current
weights:

>>> def compute_prediction(X, weights):
... """ Compute the prediction y_hat based on current weights
... Args:
... X (numpy.ndarray)
... weights (numpy.ndarray)
... Returns:
... numpy.ndarray, y_hat of X under weights
... """
... predictions = np.dot(X, weights)
... return predictions

Stock Price Prediction with Regression Algorithms Chapter 9

[277]

Then, we can continue with the function updating the weight w by one step in a gradient
descent manner, as follows:

>>> def update_weights_gd(X_train, y_train, weights, learning_rate):
... """ Update weights by one step
... Args:
... X_train, y_train (numpy.ndarray, training data set)
... weights (numpy.ndarray)
... learning_rate (float)
... Returns:
... numpy.ndarray, updated weights
... """
... predictions = compute_prediction(X_train, weights)
... weights_delta = np.dot(X_train.T, y_train - predictions)
... m = y_train.shape[0]
... weights += learning_rate / float(m) * weights_delta
... return weights

Then we add the function that calculates the cost J(w) as well:

>>> def compute_cost(X, y, weights):
... """ Compute the cost J(w)
... Args:
... X, y (numpy.ndarray, data set)
... weights (numpy.ndarray)
... Returns:
... float
... """
... predictions = compute_prediction(X, weights)
... cost = np.mean((predictions - y) ** 2 / 2.0)
... return cost

Now, put all functions together with a model training function by performing the following
tasks:

Update the weight vector in each iteration1.
Print out the current cost for every 100 (or can be any) iterations to ensure cost is2.
decreasing and things are on the right track

Stock Price Prediction with Regression Algorithms Chapter 9

[278]

Let's see how it's done by executing the following commands:

>>> def train_linear_regression(X_train, y_train, max_iter,
 learning_rate, fit_intercept=False):
... """ Train a linear regression model with gradient descent
... Args:
... X_train, y_train (numpy.ndarray, training data set)
... max_iter (int, number of iterations)
... learning_rate (float)
... fit_intercept (bool, with an intercept w0 or not)
... Returns:
... numpy.ndarray, learned weights
... """
... if fit_intercept:
... intercept = np.ones((X_train.shape[0], 1))
... X_train = np.hstack((intercept, X_train))
... weights = np.zeros(X_train.shape[1])
... for iteration in range(max_iter):
... weights = update_weights_gd(
 X_train, y_train, weights, learning_rate)
... # Check the cost for every 100 (for example) iterations
... if iteration % 100 == 0:
... print(compute_cost(X_train, y_train, weights))
... return weights

Finally, predict the results of new input values using the trained model as follows:

>>> def predict(X, weights):
... if X.shape[1] == weights.shape[0] - 1:
... intercept = np.ones((X.shape[0], 1))
... X = np.hstack((intercept, X))
... return compute_prediction(X, weights)

Implementing linear regression is very similar to logistic regression as we just saw. Let's
examine it with a small example:

>>> X_train = np.array([[6], [2], [3], [4], [1],
 [5], [2], [6], [4], [7]])
>>> y_train = np.array([5.5, 1.6, 2.2, 3.7, 0.8,
 5.2, 1.5, 5.3, 4.4, 6.8])

Train a linear regression model by 100 iterations, at a learning rate of 0.01 based on
intercept-included weights:

>>> weights = train_linear_regression(X_train, y_train,
 max_iter=100, learning_rate=0.01, fit_intercept=True)

Stock Price Prediction with Regression Algorithms Chapter 9

[279]

Check the model's performance on new samples as follows:

>>> X_test = np.array([[1.3], [3.5], [5.2], [2.8]])
>>> predictions = predict(X_test, weights)
>>> import matplotlib.pyplot as plt
>>> plt.scatter(X_train[:, 0], y_train, marker='o', c='b')
>>> plt.scatter(X_test[:, 0], predictions, marker='*', c='k')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.show()

Refer to the following screenshot for the end result:

The model we trained correctly predicts new samples (depicted by the stars).

Let's try it on another dataset, the diabetes dataset from scikit-learn:

>>> from sklearn import datasets
>>> diabetes = datasets.load_diabetes()
>>> print(diabetes.data.shape)
(442, 10)
>>> num_test = 30
>>> X_train = diabetes.data[:-num_test, :]
>>> y_train = diabetes.target[:-num_test]

Stock Price Prediction with Regression Algorithms Chapter 9

[280]

Train a linear regression model by 5000 iterations, at a learning rate of 1 based on
intercept-included weights (the cost is displayed every 500 iterations):

>>> weights = train_linear_regression(X_train, y_train,
 max_iter=5000, learning_rate=1, fit_intercept=True)
2960.1229915
1539.55080927
1487.02495658
1480.27644342
1479.01567047
1478.57496091
1478.29639883
1478.06282572
1477.84756968
1477.64304737
>>> X_test = diabetes.data[-num_test:, :]
>>> y_test = diabetes.target[-num_test:]
>>> predictions = predict(X_test, weights)
>>> print(predictions)
[232.22305668 123.87481969 166.12805033 170.23901231
 228.12868839 154.95746522 101.09058779 87.33631249
 143.68332296 190.29353122 198.00676871 149.63039042
 169.56066651 109.01983998 161.98477191 133.00870377
 260.1831988 101.52551082 115.76677836 120.7338523
 219.62602446 62.21227353 136.29989073 122.27908721
 55.14492975 191.50339388 105.685612 126.25915035
 208.99755875 47.66517424]
>>> print(y_test)
[261. 113. 131. 174. 257. 55. 84. 42. 146. 212. 233.
 91. 111. 152. 120. 67. 310. 94. 183. 66. 173. 72.
 49. 64. 48. 178. 104. 132. 220. 57.]

The estimate is pretty close to the ground truth.

So far, we have been using gradient descent in weight optimization but, the same as logistic
regression, linear regression is also open to stochastic gradient descent (SGD). To realize it,
we can simply replace the update_weights_gd function with update_weights_sgd we
created in Chapter 7, Predicting Online Ads Click-through with Logistic Regression.

We can also directly use the SGD-based regression algorithm, SGDRegressor, from scikit-
learn:

>>> from sklearn.linear_model import SGDRegressor
>>> regressor = SGDRegressor(loss='squared_loss', penalty='l2',
 alpha=0.0001, learning_rate='constant', eta0=0.01, n_iter=1000)

Stock Price Prediction with Regression Algorithms Chapter 9

[281]

Here 'squared_loss' for the loss parameter indicates the cost function is MSE; penalty
is the regularization term and it can be None, l1, or l2, which is similar to SGDClassifier
in Chapter 7, Predicting Online Ads Click-through with Logistic Regression, in order to reduce
overfitting; n_iter is the number of iterations; and the remaining two parameters mean
the learning rate is 0.01 and unchanged during the course of training. Train the model and
output prediction on the testing set as follows:

>>> regressor.fit(X_train, y_train)
>>> predictions = regressor.predict(X_test)
>>> print(predictions)
[231.03333725 124.94418254 168.20510142 170.7056729
 226.52019503 154.85011364 103.82492496 89.376184
 145.69862538 190.89270871 197.0996725 151.46200981
 170.12673917 108.50103463 164.35815989 134.10002755
 259.29203744 103.09764563 117.6254098 122.24330421
 219.0996765 65.40121381 137.46448687 123.25363156
 57.34965405 191.0600674 109.21594994 128.29546226
 207.09606669 51.10475455]

Of course, we won't miss its implementation in TensorFlow. First, we import TensorFlow
and specify the parameters of the model, including 1000 iterations during the training
process and a 0.5 learning rate:

>>> import tensorflow as tf
>>> n_features = int(X_train.shape[1])
>>> learning_rate = 0.5
>>> n_iter = 1000

Then, we define placeholder and Variable, including the weights and bias of the model
as follows:

>>> x = tf.placeholder(tf.float32, shape=[None, n_features])
>>> y = tf.placeholder(tf.float32, shape=[None])
>>> W = tf.Variable(tf.ones([n_features, 1]))
>>> b = tf.Variable(tf.zeros([1]))

Construct the model by computing the prediction as follows:

>>> pred = tf.add(tf.matmul(x, W), b)[:, 0]

After assembling the graph for the model, we define the loss function, the MSE, and a
gradient descent optimizer that searches for the best coefficients by minimizing the loss:

>>> cost = tf.losses.mean_squared_error(labels=y, predictions=pred)
>>> optimizer =
 tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

Stock Price Prediction with Regression Algorithms Chapter 9

[282]

Now we can initialize the variables and start a TensorFlow session:

>>> init_vars = tf.initialize_all_variables()
>>> sess = tf.Session()
>>> sess.run(init_vars)

Finally, we start the training process and print out loss after every 100 iterations as follows:

>>> for i in range(1, n_iter+1):
... _, c = sess.run([optimizer, cost],
 feed_dict={x: X_train, y: y_train})
... if i % 100 == 0:
... print('Iteration %i, training loss: %f' % (i, c))
Iteration 100, training loss: 3984.505859
Iteration 200, training loss: 3465.406494
Iteration 300, training loss: 3258.358398
Iteration 400, training loss: 3147.374023
Iteration 500, training loss: 3080.261475
Iteration 600, training loss: 3037.964111
Iteration 700, training loss: 3010.845947
Iteration 800, training loss: 2993.270752
Iteration 900, training loss: 2981.771240
Iteration 1000, training loss: 2974.175049
Apply the trained model on the testing set:
>>> predictions = sess.run(pred, feed_dict={x: X_test})
>>> print(predictions)
[230.2237 124.89581 170.9626 170.43433 224.11993 153.07018
 105.98048 90.66377 149.22597 191.74197 194.04721 153.0992
 170.85931 104.24113 169.2757 135.45589 260.55713 102.38674
 118.585556 123.41965 219.20732 67.479996 138.3001 122.41016
 57.012245 189.88608 114.48331 131.13383 202.2418 53.08335]

Estimating with decision tree regression
After linear regression, the next regression algorithm we'll be learning is decision tree
regression, which is also called regression tree. It is easy to understand regression trees by
comparing it with its sibling, the classification trees, which you are familiar with.

Stock Price Prediction with Regression Algorithms Chapter 9

[283]

Transitioning from classification trees to
regression trees
In classification, a decision tree is constructed by recursive binary splitting and growing
each node into left and right children. In each partition, it greedily searches for the most
significant combination of feature and its value as the optimal splitting point. The quality of
separation is measured by the weighted purity of labels of two resulting children,
specifically via metric Gini Impurity or Information Gain. In regression, the tree
construction process is almost identical to the classification one, with only two differences
due to the fact that the target becomes continuous:

The quality of splitting point is now measured by the weighted mean squared
error (MSE) of two children; the MSE of a child is equivalent to the variance of all
target values, and the smaller the weighted MSE, the better the split.
The average value of targets in a terminal node becomes the leaf value, instead of
the majority of labels in the classification tree.

To make sure we understand regression tree, let's work on a small example of house price
estimation:

We first define the MSE and weighted MSE computation functions as they'll be used in our
calculation:

>>> def mse(targets):
... # When the set is empty
... if targets.size == 0:
... return 0
... return np.var(targets)
>>> def weighted_mse(groups):
... """ Calculate weighted MSE of children after a split
... Args:
... groups (list of children, and a child consists a list
 of targets)

Stock Price Prediction with Regression Algorithms Chapter 9

[284]

... Returns:

... float, weighted impurity

... """

... total = sum(len(group) for group in groups)

... weighted_sum = 0.0

... for group in groups:

... weighted_sum += len(group) / float(total) * mse(group)

... return weighted_sum

Test things out by executing the following commands:

>>> print('{0:.4f}'.format(mse(np.array([1, 2, 3]))))
0.6667
>>> print('{0:.4f}'.format(weighted_mse([np.array([1, 2, 3]),
 np.array([1, 2])])))
0.5000

To build the house price regression tree, we first exhaust all possible pairs of feature and
value and compute the corresponding MSE:

MSE(type, semi) = weighted_mse([[600, 400, 700], [700, 800]]) = 10333
MSE(bedroom, 2) = weighted_mse([[700, 400], [600, 800, 700]]) = 13000
MSE(bedroom, 3) = weighted_mse([[600, 800], [700, 400, 700]]) = 16000
MSE(bedroom, 4) = weighted_mse([[700], [600, 700, 800, 400]]) = 17500

The lowest MSE is achieved with the type, semi pair, and the root node is then formed
by such a splitting point:

Stock Price Prediction with Regression Algorithms Chapter 9

[285]

If we are satisfied with a one level deep regression tree, we can stop here by assigning both
branches as leaf nodes with value as the average of targets of the samples included.
Alternatively, we can go further down the road constructing the second level from the right
branch (the left branch can't be further split):

MSE(bedroom, 2) = weighted_mse([[], [600, 400, 700]]) = 15556
MSE(bedroom, 3) = weighted_mse([[400], [600, 700]]) = 1667
MSE(bedroom, 4) = weighted_mse([[400, 600], [700]]) = 6667

With the second splitting point specified by the bedroom, 3 pair with the least MSE, our
tree becomes as shown in the following diagram:

We can finish up the tree by assigning average values to both leaf nodes.

Implementing decision tree regression
It's now time for coding after we're clear about the regression tree construction process.

The node splitting utility function we define as follow is identical to what we had in
Chapter 6, Predicting Online Ads Click-through with Tree-Based Algorithms, which separates
samples in a node into left and right branches based on a pair of feature and value:

>>> def split_node(X, y, index, value):
... """ Split data set X, y based on a feature and a value

Stock Price Prediction with Regression Algorithms Chapter 9

[286]

... Args:

... X, y (numpy.ndarray, data set)

... index (int, index of the feature used for splitting)

... value (value of the feature used for splitting)

... Returns:

... list, list: left and right child, a child is in the
 format of [X, y]
... """
... x_index = X[:, index]
... # if this feature is numerical
... if type(X[0, index]) in [int, float]:
... mask = x_index >= value
... # if this feature is categorical
... else:
... mask = x_index == value
... # split into left and right child
... left = [X[~mask, :], y[~mask]]
... right = [X[mask, :], y[mask]]
... return left, right

Next, we define the greedy search function trying out all possible splits and returning the
one with the least weighted MSE:

>>> def get_best_split(X, y):
... """ Obtain the best splitting point and resulting children
 for the data set X, y
... Args:
... X, y (numpy.ndarray, data set)
... criterion (gini or entropy)
... Returns:
... dict {index: index of the feature, value: feature
 value, children: left and right children}
... """
... best_index, best_value, best_score, children =
 None, None, 1e10, None
... for index in range(len(X[0])):
... for value in np.sort(np.unique(X[:, index])):
... groups = split_node(X, y, index, value)
... impurity = weighted_mse([groups[0][1],
 groups[1][1]])
... if impurity < best_score:
... best_index, best_value, best_score, children =
 index, value, impurity, groups
... return {'index': best_index, 'value': best_value,
 'children': children}

Stock Price Prediction with Regression Algorithms Chapter 9

[287]

The preceding selection and splitting process occurs in a recursive manner on each of
subsequent children. When a stopping criterion is met, the process at a node stops, and the
mean value of the sample targets will be assigned to this terminal node:

>>> def get_leaf(targets):
... # Obtain the leaf as the mean of the targets
... return np.mean(targets)

And finally, the recursive function split that links all of these preceding together by
checking whether any of stopping criteria is met and assigning the leaf node if so or
proceeding with further separation otherwise:

>>> def split(node, max_depth, min_size, depth):
... """ Split children of a node to construct new nodes or
 assign them terminals
... Args:
... node (dict, with children info)
... max_depth (int, maximal depth of the tree)
... min_size (int, minimal samples required to further
 split a child)
... depth (int, current depth of the node)
... """
... left, right = node['children']
... del (node['children'])
... if left[1].size == 0:
... node['right'] = get_leaf(right[1])
... return
... if right[1].size == 0:
... node['left'] = get_leaf(left[1])
... return
... # Check if the current depth exceeds the maximal depth
... if depth >= max_depth:
... node['left'], node['right'] =
 get_leaf(left[1]), get_leaf(right[1])
... return
... # Check if the left child has enough samples
... if left[1].size <= min_size:
... node['left'] = get_leaf(left[1])
... else:
... # It has enough samples, we further split it
... result = get_best_split(left[0], left[1])
... result_left, result_right = result['children']
... if result_left[1].size == 0:
... node['left'] = get_leaf(result_right[1])
... elif result_right[1].size == 0:
... node['left'] = get_leaf(result_left[1])
... else:

Stock Price Prediction with Regression Algorithms Chapter 9

[288]

... node['left'] = result

... split(node['left'], max_depth, min_size,
 depth + 1)
... # Check if the right child has enough samples
... if right[1].size <= min_size:
... node['right'] = get_leaf(right[1])
... else:
... # It has enough samples, we further split it
... result = get_best_split(right[0], right[1])
... result_left, result_right = result['children']
... if result_left[1].size == 0:
... node['right'] = get_leaf(result_right[1])
... elif result_right[1].size == 0:
... node['right'] = get_leaf(result_left[1])
... else:
... node['right'] = result
... split(node['right'], max_depth, min_size,
 depth + 1)

Finally, the entry point of the regression tree construction is as follows:

>>> def train_tree(X_train, y_train, max_depth, min_size):
... """ Construction of a tree starts here
... Args:
... X_train, y_train (list, list, training data)
... max_depth (int, maximal depth of the tree)
... min_size (int, minimal samples required to further
 split a child)
... """
... root = get_best_split(X_train, y_train)
... split(root, max_depth, min_size, 1)
... return root

Now, let's test it with the preceding hand-calculated example:

>>> X_train = np.array([['semi', 3],
... ['detached', 2],
... ['detached', 3],
... ['semi', 2],
... ['semi', 4]], dtype=object)
>>> y_train = np.array([600, 700, 800, 400, 700])
>>> tree = train_tree(X_train, y_train, 2, 2)

To verify the trained tree is identical to what we constructed by hand, we write a function
displaying the tree:

>>> CONDITION = {'numerical': {'yes': '>=', 'no': '<'},
... 'categorical': {'yes': 'is', 'no': 'is not'}}

Stock Price Prediction with Regression Algorithms Chapter 9

[289]

>>> def visualize_tree(node, depth=0):
... if isinstance(node, dict):
... if type(node['value']) in [int, float]:
... condition = CONDITION['numerical']
... else:
... condition = CONDITION['categorical']
... print('{}|- X{} {} {}'.format(depth * ' ',
 node['index'] + 1, condition['no'], node['value']))
... if 'left' in node:
... visualize_tree(node['left'], depth + 1)
... print('{}|- X{} {} {}'.format(depth * ' ',
 node['index'] + 1, condition['yes'], node['value']))
... if 'right' in node:
... visualize_tree(node['right'], depth + 1)
... else:
... print('{}[{}]'.format(depth * ' ', node))

>>> visualize_tree(tree)
|- X1 is not detached
 |- X2 < 3
 [400.0]
 |- X2 >= 3
 [650.0]
|- X1 is detached
 [750.0]

Now that we have a better understanding of regression tree by realizing it from scratch, we
can directly use the DecisionTreeRegressor package from scikit-learn. Apply it on
an example of predicting Boston house prices as follows:

>>> boston = datasets.load_boston()
>>> num_test = 10 # the last 10 samples as testing set
>>> X_train = boston.data[:-num_test, :]
>>> y_train = boston.target[:-num_test]
>>> X_test = boston.data[-num_test:, :]
>>> y_test = boston.target[-num_test:]
>>> from sklearn.tree import DecisionTreeRegressor
>>> regressor = DecisionTreeRegressor(max_depth=10,
 min_samples_split=3)
>>> regressor.fit(X_train, y_train)
>>> predictions = regressor.predict(X_test)
>>> print(predictions)
[12.7 20.9 20.9 20.2 20.9 30.8
 20.73076923 24.3 28.2 20.73076923]

Stock Price Prediction with Regression Algorithms Chapter 9

[290]

Compare predictions with the ground truth as follows:

>>> print(y_test)
[19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9 22. 11.9]

Implementing regression forest
As seen in Chapter 6, Predicting Online Ads Click-through with Tree-Based Algorithms, we
introduced random forest as an ensemble learning method by combining multiple decision
trees that are separately trained and randomly subsampling training features in each node
of a tree. In classification, a random forest makes a final decision by majority vote of all tree
decisions. Applied to regression, a random forest regression model (also called regression
forest) assigns the average of regression results from all decision trees to the final decision.

Here, we'll use the regression forest package, RandomForestRegressor, from scikit-learn
and deploy it to our Boston house price prediction example:

>>> from sklearn.ensemble import RandomForestRegressor
>>> regressor = RandomForestRegressor(n_estimators=100,
 max_depth=10, min_samples_split=3)
>>> regressor.fit(X_train, y_train)
>>> predictions = regressor.predict(X_test)
>>> print(predictions)
[19.34404351 20.93928947 21.66535354 19.99581433 20.873871
 25.52030056 21.33196685 28.34961905 27.54088571 21.32508585]

As a bonus section, we implement regression forest with TensorFlow. It is actually quite
similar to the implementation of random forest in Chapter 6, Predicting Online Ads Click-
through with Tree-Based Algorithms. First, we import the necessary modules as follows:

>>> import tensorflow as tf
>>> from tensorflow.contrib.tensor_forest.python import tensor_forest
>>> from tensorflow.python.ops import resources

And we specify the parameters of the model, including 20 iterations during training
process, 10 trees in total, and 30000 maximal splitting nodes:

>>> n_iter = 20
>>> n_features = int(X_train.shape[1])
>>> n_trees = 10
>>> max_nodes = 30000

Stock Price Prediction with Regression Algorithms Chapter 9

[291]

Next, we create placeholders and build the TensorFlow graph:

>>> x = tf.placeholder(tf.float32, shape=[None, n_features])
>>> y = tf.placeholder(tf.float32, shape=[None])
>>> hparams = tensor_forest.ForestHParams(num_classes=1,
 regression=True, num_features=n_features,
 num_trees=n_trees, max_nodes=max_nodes,
 split_after_samples=30).fill()
>>> forest_graph = tensor_forest.RandomForestGraphs(hparams)

Note we need to set num_classes to 1 and regression to True as the forest is used for
regression.

After defining the graph for the regression forest model, we specify the training graph and
loss and the MSE:

>>> train_op = forest_graph.training_graph(x, y)
>>> loss_op = forest_graph.training_loss(x, y)
>>> infer_op, _, _ = forest_graph.inference_graph(x)
>>> cost = tf.losses.mean_squared_error(labels=y, predictions=infer_op[:,
0])

We then initialize the variables and start a TensorFlow session:

>>> init_vars = tf.group(tf.global_variables_initializer(),
 tf.local_variables_initializer(),
 resources.initialize_resources(resources.shared_resources()))
>>> sess = tf.Session()
>>> sess.run(init_vars)

Finally, we start the training process and conduct a performance check-up for each
iteration:

>>> for i in range(1, n_iter + 1):
... _, c = sess.run([train_op, cost], feed_dict={x: X_train, y:
y_train})
... print('Iteration %i, training loss: %f' % (i, c))
Iteration 1, training loss: 596.255005
Iteration 2, training loss: 51.917843
Iteration 3, training loss: 35.395966
Iteration 4, training loss: 28.848433
Iteration 5, training loss: 22.499760
Iteration 6, training loss: 18.685938
Iteration 7, training loss: 16.956488
Iteration 8, training loss: 14.832330
Iteration 9, training loss: 13.048509
Iteration 10, training loss: 12.084823
Iteration 11, training loss: 11.044588

Stock Price Prediction with Regression Algorithms Chapter 9

[292]

Iteration 12, training loss: 10.433226
Iteration 13, training loss: 9.818905
Iteration 14, training loss: 8.900123
Iteration 15, training loss: 7.952868
Iteration 16, training loss: 7.417612
Iteration 17, training loss: 6.849032
Iteration 18, training loss: 6.213216
Iteration 19, training loss: 5.869020
Iteration 20, training loss: 5.467315

After 20 iterations, we apply the trained model on the testing set as follows:

>>> pred = sess.run(infer_op, feed_dict={x: X_test})[:, 0]
>>> print(pred)
[15.446515 20.10433 21.38516 19.37373 19.593092 21.932205 22.259298
24.194878 24.095112 22.541391]

Estimating with support vector regression
The third regression algorithm that we want to explore is support vector regression (SVR).
As the name implies, SVR is part of the support vector family and sibling of the support
vector machine (SVM) for classification (or we can just call it SVC) we learned in Chapter
5, Classifying Newsgroup Topic with Support Vector Machine.

To recap, SVC seeks an optimal hyperplane that best segregates observations from different
classes. Suppose a hyperplane is determined by a slope vector w and intercept b, the

optimal hyperplane is picked so that the distance (which can be expressed as) from its
nearest points in each of segregated spaces to the hyperplane itself is maximized. Such
optimal w and b can be learned and solved by the following optimization problem:

Minimizing ‖w‖
Subject to wx(i)+b≥1 if y(i)=1 and wx(i)+b≤1 if y(i)=-1, given a training set of (x(1),y(1)),
(x(2),y(2)),… (x(i),y(i))…, (x(m),y(m)).

Stock Price Prediction with Regression Algorithms Chapter 9

[293]

In SVR, our goal is to find a hyperplane (defined by a slope vector w and intercept b) so that
two hyperplanes, wx+b=-ε and wx+b=ε, that are a distance away from itself covers most
training data. In other words, most of data points are bounded in the ε bands of the optimal
hyperplane. And at the same time, the optimal hyperplane is as flat as possible, which
means ‖w‖ is as small as possible, as shown in the following diagram:

This translates into deriving the optimal w and b by solving the following optimization
problem:

Minimizing ‖w‖
Subject to |y(i)-(wx(i)+b)| ≤ ε , given a training set of (x(1),y(1)), (x(2),y(2)),… (x(i),y(i))…,
(x(m),y(m))

Implementing SVR
Again to solve the preceding optimization problem, we need to resort to quadratic
programming techniques, which are beyond the scope of our learning journey. Therefore,
we won't cover the computation methods in detail and will implement the regression
algorithm using the SVR package from scikit-learn.

Important techniques of SVC, such as penalty as a trade off between bias and variance,
kernel (RBF, for example) handling linear non-separation, are transferable to SVR. The SVR
package from scikit-learn also supports these techniques.

Stock Price Prediction with Regression Algorithms Chapter 9

[294]

Let's solve the previous house price prediction problem with SVR this time:

>>> from sklearn.svm import SVR
>>> regressor = SVR(C=0.1, epsilon=0.02, kernel='linear')
>>> regressor.fit(X_train, y_train)
>>> predictions = regressor.predict(X_test)
>>> print(predictions)
[14.59908201 19.32323741 21.16739294 18.53822876 20.1960847
 23.74076575 22.65713954 26.98366295 25.75795682 22.69805145]

Estimating with neural networks
Here comes our fourth model, artificial neural networks (ANNs) or more often we just call
them neural networks. The neural network is probably the most frequently mentioned
model in the media. It has been (falsely) considered equivalent to machine learning or
artificial intelligence by the general public. Regardless, it is one of the most important
machine learning models and has been rapidly evolving along with the revolution of deep
learning (DL). Let's first understand how neural networks works.

Demystifying neural networks
A simple neural network is composed of three layers, the Input layer, Hidden layer, and
Output layer as shown in the following diagram:

Stock Price Prediction with Regression Algorithms Chapter 9

[295]

A layer is a conceptual collection of nodes (also called units), which simulate neurons in a
biological brain. The input layer represents the input features x and each node is a
predictive feature x. The output layer represents the target variable(s). In binary
classification, the output layer contains only one node, whose value is the probability of the
positive class. In multiclass classification, the output layer consists of n nodes where n is the
number of possible classes and the value of each node is the probability of predicting that
class. In regression, the output layer contains only one node the value of which is the
prediction result. The hidden layer can be considered a composition of latent information
extracted from the previous layer. There can be more than one hidden layer. Learning with
a neural network with two or more hidden layers is called DL. We will focus on one hidden
layer to begin with.

Two adjacent layers are connected by conceptual edges, sort of like the synapses in a
biological brain, which transmit signal from one neuron in a layer to another neuron in the
next layer. The edges are parameterized by the weights W of the model. For example, W(1) in
the preceding diagram connects the input and hidden layers and W(2) connects the hidden
and output layers.

In a standard neural network, data are conveyed only from the input layer to the output
layer, through hidden layer(s). Hence, this kind of network is called feed-forward neural
network. Basically, logistic regression is a feed-forward neural network with no hidden
layer where the output layer connects directly with the input. Neural networks with one or
more hidden layer between the input and output layer should be able to learn more about
the the underneath relationship between the input data and target.

Suppose input x is of n dimension and the hidden layer is composed of H hidden units, the
weight matrix W(1) connecting the input and hidden layer is of size n by H where each

column represents the coefficients associating the input with the h-th hidden unit. The
output (also called activation) of the hidden layer can be expressed mathematically as
follows:

Stock Price Prediction with Regression Algorithms Chapter 9

[296]

Here f(z) is an activation function. As its name implies, the activation function checks how
activated each neuron is simulating the way our brains work. Typical activation functions
include the logistic function (more often called the sigmoid function in neural networks)
and the tanh function, which is considered a re-scaled version of logistic function, as well
as ReLU (short for Rectified Linear Unit), which is often used in DL:

We plot the following three activation functions as follows:

The logistic (sigmoid) function plot is as follows:

Stock Price Prediction with Regression Algorithms Chapter 9

[297]

The tanh function plot is as follows:

The relu function plot is as follows:

Stock Price Prediction with Regression Algorithms Chapter 9

[298]

As for the output layer, let's assume there's one output unit (regression or binary
classification) and the weight matrix W(2) connecting the hidden layer to the output layer is
of the size H by 1. In regression, the output can be expressed mathematically as follows (for
consistency, we here denote it as a(3) instead of y):

So, how can we obtain the optimal weights W = {W(1), W(2)} of the model? Similar to logistic
regression, we learn all weights using gradient descent with the goal of minimizing the
MSE cost J(W). The difference is that the gradients ΔW are computed through
backpropagation. In a single-layer network, the detailed steps of backpropagation are as
follows:

We travel through the network from the input to output and compute the output1.
values a(2) of the hidden layer as well as the output layer a(3). This is the
feedforward step.
For the last layer, we calculate the derivative of the cost function with regards to2.
the input to the output layer:

For the hidden layer, we compute the derivative of the cost function with regards3.
to the input to the hidden layer:

We compute the gradients by applying the chain rule:4.

Stock Price Prediction with Regression Algorithms Chapter 9

[299]

We update the weights with the computed gradients and learning rate a:5.

We repeatedly update all weights by taking these steps with the latest weights6.
until the cost function converges or it goes through enough iterations.

This might not be easy to digest at first glance, so let's implement it from scratch, which will
help you to understand neural networks better.

Implementing neural networks
We herein use sigmoid as the activation function as an example. We first need to define the
sigmoid function and its derivative function:

>>> def sigmoid(z):
... return 1.0 / (1 + np.exp(-z))
>>> def sigmoid_derivative(z):
... return sigmoid(z) * (1.0 - sigmoid(z))

You can derive the derivative yourselves if you want to verify it.

We then define the training function, which takes in the training dataset, the number of
units in the hidden layer (we only use one hidden layer as an example), and the number of
iterations:

>>> def train(X, y, n_hidden, learning_rate, n_iter):
... m, n_input = X.shape
... W1 = np.random.randn(n_input, n_hidden)
... b1 = np.zeros((1, n_hidden))
... W2 = np.random.randn(n_hidden, 1)
... b2 = np.zeros((1, 1))
... for i in range(1, n_iter+1):
... Z2 = np.matmul(X, W1) + b1
... A2 = sigmoid(Z2)
... Z3 = np.matmul(A2, W2) + b2
... A3 = Z3
... dZ3 = A3 - y
... dW2 = np.matmul(A2.T, dZ3)
... db2 = np.sum(dZ3, axis=0, keepdims=True)
... dZ2 = np.matmul(dZ3, W2.T) * sigmoid_derivative(Z2)

Stock Price Prediction with Regression Algorithms Chapter 9

[300]

... dW1 = np.matmul(X.T, dZ2)

... db1 = np.sum(dZ2, axis=0)

... W2 = W2 - learning_rate * dW2 / m

... b2 = b2 - learning_rate * db2 / m

... W1 = W1 - learning_rate * dW1 / m

... b1 = b1 - learning_rate * db1 / m

... if i % 100 == 0:

... cost = np.mean((y - A3) ** 2)

... print('Iteration %i, training loss: %f' % (i, cost))

... model = {'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}

... return model

Note besides weights W, we also employ bias b. Before training, we first randomly initialize
weights and biases. In each iteration, we feed all layers of the network with the latest
weights and biases, then calculate the gradients using the backpropagation algorithm, and
finally update the weights and biases with the resulting gradients. For training
performance inspection, we print out the loss and the MSE for every 100 iterations.

Again, we use Boston house prices as the toy dataset. As a reminder, data normalization is
usually recommended whenever gradient descent is used. Hence, we standardize the input
data by removing the mean and scaling to unit variance:

>>> boston = datasets.load_boston()
>>> num_test = 10 # the last 10 samples as testing set
>>> from sklearn import preprocessing
>>> scaler = preprocessing.StandardScaler()
>>> X_train = boston.data[:-num_test, :]
>>> X_train = scaler.fit_transform(X_train)
>>> y_train = boston.target[:-num_test].reshape(-1, 1)
>>> X_test = boston.data[-num_test:, :]
>>> X_test = scaler.transform(X_test)
>>> y_test = boston.target[-num_test:]

With the scaled dataset, we can now train a one-layer neural network with 20 hidden units,
a 0.1 learning rate, and 2000 iterations:

>>> n_hidden = 20
>>> learning_rate = 0.1
>>> n_iter = 2000
>>> model = train(X_train, y_train, n_hidden, learning_rate, n_iter)
Iteration 100, training loss: 13.500649
Iteration 200, training loss: 9.721267
Iteration 300, training loss: 8.309366
Iteration 400, training loss: 7.417523
Iteration 500, training loss: 6.720618
Iteration 600, training loss: 6.172355
Iteration 700, training loss: 5.748484

Stock Price Prediction with Regression Algorithms Chapter 9

[301]

Iteration 800, training loss: 5.397459
Iteration 900, training loss: 5.069072
Iteration 1000, training loss: 4.787303
Iteration 1100, training loss: 4.544623
Iteration 1200, training loss: 4.330923
Iteration 1300, training loss: 4.141120
Iteration 1400, training loss: 3.970357
Iteration 1500, training loss: 3.814482
Iteration 1600, training loss: 3.673037
Iteration 1700, training loss: 3.547397
Iteration 1800, training loss: 3.437391
Iteration 1900, training loss: 3.341110
Iteration 2000, training loss: 3.255750

Then, we define a prediction function, which takes in a model and produces regression
results:

>>> def predict(x, model):
... W1 = model['W1']
... b1 = model['b1']
... W2 = model['W2']
... b2 = model['b2']
... A2 = sigmoid(np.matmul(x, W1) + b1)
... A3 = np.matmul(A2, W2) + b2
... return A3

Finally, we apply the trained model on the testing set:

>>> predictions = predict(X_test, model)
>>> print(predictions)
[[16.28103034]
 [19.98591039]
 [22.17811179]
 [19.37515137]
 [20.5675095]
 [24.90457042]
 [22.92777643]
 [26.03651277]
 [25.35493394]
 [23.38112184]]
>>> print(y_test)
[19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9 22. 11.9]

Stock Price Prediction with Regression Algorithms Chapter 9

[302]

After successfully building a neural network model from scratch, we move on with the
implementation with scikit-learn. We utilize the MLPRegressor class (MLP stands for
multi-layer perceptron, a nickname of neural networks):

>>> from sklearn.neural_network import MLPRegressor
>>> nn_scikit = MLPRegressor(hidden_layer_sizes=(20, 8),
... activation='logistic', solver='lbfgs',
... learning_rate_init=0.1, random_state=42,
... max_iter=2000)

The hidden_layer_sizes hyperparameter represents the number(s) of hidden neurons.
In our previous example, the network contains two hidden layers with 20 and 8 nodes
respectively.

We fit the neural network model on the training set and predict on the testing data:

>>> nn_scikit.fit(X_train, y_train)
>>> predictions = nn_scikit.predict(X_test)
>>> print(predictions)
[14.73064216 19.77077071 19.77422245 18.95256283 19.73320899 24.15010593
19.78909311 28.36477319 24.17612634 19.80954273]

Neural networks are often implemented with TensorFlow, which is one of the most popular
deep learning (multilayer neural network) frameworks.

First, we specify parameters of the model, including two hidden layers with 20 and 8 nodes
respectively, 2000 iterations, and a 0.1 learning rate:

>>> n_features = int(X_train.shape[1])
>>> n_hidden_1 = 20
>>> n_hidden_2 = 8
>>> learning_rate = 0.1
>>> n_iter = 2000

Then, we define placeholders and construct the network from input to hidden layers to
output:

>>> x = tf.placeholder(tf.float32, shape=[None, n_features])
>>> y = tf.placeholder(tf.float32, shape=[None, 1])
>>> layer_1 = tf.nn.sigmoid(tf.layers.dense(x, n_hidden_1))
>>> layer_2 = tf.nn.sigmoid(tf.layers.dense(layer_1, n_hidden_2))
>>> pred = tf.layers.dense(layer_2, 1)

Stock Price Prediction with Regression Algorithms Chapter 9

[303]

After assembling the components for the model, we define the loss function, the MSE, and a
gradient descent optimizer that searches for the best coefficients by minimizing the loss:

>>> cost = tf.losses.mean_squared_error(labels=y, predictions=pred)
>>> optimizer =
 tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

Now we can initialize the variables and start a TensorFlow session:

>>> init_vars = tf.initialize_all_variables()
>>> sess = tf.Session()
>>> sess.run(init_vars)

Finally, we start the training process and print out the loss after every 100 iterations:

>>> for i in range(1, n_iter+1):
... _, c = sess.run([optimizer, cost],
 feed_dict={x: X_train, y: y_train})
... if i % 100 == 0:
... print('Iteration %i, training loss: %f' % (i, c))
Iteration 100, training loss: 12.995015
Iteration 200, training loss: 8.587905
Iteration 300, training loss: 6.319847
Iteration 400, training loss: 5.524787
Iteration 500, training loss: 5.200356
Iteration 600, training loss: 4.217351
Iteration 700, training loss: 4.070641
Iteration 800, training loss: 3.825407
Iteration 900, training loss: 3.301410
Iteration 1000, training loss: 3.124229
Iteration 1100, training loss: 3.220546
Iteration 1200, training loss: 2.895406
Iteration 1300, training loss: 2.680367
Iteration 1400, training loss: 2.504926
Iteration 1500, training loss: 2.362953
Iteration 1600, training loss: 2.257992
Iteration 1700, training loss: 2.154428
Iteration 1800, training loss: 2.170816
Iteration 1900, training loss: 2.052284
Iteration 2000, training loss: 1.971042

We apply the trained model on the testing set:

>>> predictions = sess.run(pred, feed_dict={x: X_test})
>>> print(predictions)
[[16.431433]
 [17.861343]
 [20.286907]

Stock Price Prediction with Regression Algorithms Chapter 9

[304]

 [17.6935]
 [18.380125]
 [22.405527]
 [19.216259]
 [24.333553]
 [23.02146]
 [18.86538]]

A bonus section is its implementation in Keras (https:/​/​keras.​io/​), another popular
package for neural networks. Keras is a high-level API written on top of TensorFlow and
two other deep learning frameworks. It was developed for fast prototyping and
experimenting neural network models. We can install Keras using PyPI:

pip install keras

We import the necessary modules after installation as follows:

>>> from keras import models
>>> from keras import layers

Then, we initialize a Sequential model of Keras:

>>> model = models.Sequential()

We add layer by layer, from the first hidden layer (20 units), to the second hidden layer (8
units), then the output layer:

>>> model.add(layers.Dense(n_hidden_1, activation="sigmoid",
 input_shape=(n_features,)))
>>> model.add(layers.Dense(n_hidden_2, activation="sigmoid"))
>>> model.add(layers.Dense(1))

It's quite similar to building LEGO. We also need an optimizer, which we define as follows
with a 0.01 learning rate:

>>> from keras import optimizers
>>> sgd = optimizers.SGD(lr=0.01)

Now we can compile the model by specifying the loss function and optimizer:

>>> model.compile(loss='mean_squared_error', optimizer=sgd)

Finally, we fit the model on the training set, with 100 iterations, and validate the
performance on the testing set:

>>> model.fit(
... X_train, y_train,
... epochs=100,

https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/

Stock Price Prediction with Regression Algorithms Chapter 9

[305]

... validation_data=(X_test, y_test)

...)
Train on 496 samples, validate on 10 samples
Epoch 1/100
496/496 [==============================] - 0s 356us/step - loss: 255.7313 -
val_loss: 10.7765
Epoch 2/100
496/496 [==============================] - 0s 24us/step - loss: 83.0557 -
val_loss: 21.5385
Epoch 3/100
496/496 [==============================] - 0s 25us/step - loss: 70.7806 -
val_loss: 22.5854
Epoch 4/100
496/496 [==============================] - 0s 24us/step - loss: 58.7843 -
val_loss: 25.0963
Epoch 5/100
496/496 [==============================] - 0s 27us/step - loss: 51.1305 -
val_loss: 20.6070
……
……
Epoch 96/100
496/496 [==============================] - 0s 21us/step - loss: 6.4766 -
val_loss: 18.2094
Epoch 97/100
496/496 [==============================] - 0s 21us/step - loss: 6.2356 -
val_loss: 13.1832
Epoch 98/100
496/496 [==============================] - 0s 21us/step - loss: 6.0728 -
val_loss: 13.2538
Epoch 99/100
496/496 [==============================] - 0s 21us/step - loss: 6.0512 -
val_loss: 14.1940
Epoch 100/100
496/496 [==============================] - 0s 23us/step - loss: 6.2514 -
val_loss: 13.1176

In each iteration, the training loss and validation loss are displayed.

As usually, we obtain the prediction of the testing set using the trained model:

>>> predictions = model.predict(X_test)
>>> print(predictions)
[[16.521835]
 [18.425688]
 [19.65961]
 [19.23118]
 [18.676624]
 [21.917233]

Stock Price Prediction with Regression Algorithms Chapter 9

[306]

 [21.794016]
 [25.537102]
 [24.175468]
 [22.05365]]

Evaluating regression performance
So far, we've covered in depth four popular regression algorithms and implemented them
from scratch and by using several prominent libraries. Instead of judging how well a model
works on testing sets by printing out the prediction, we need to evaluate its performance by
the following metrics which give us better insight:

The MSE, as we mentioned, measures the squared loss corresponding to the
expected value. Sometimes the square root is taken on top of the MSE in order to
convert the value back into the original scale of the target variable being
estimated. This yields the root mean squared error (RMSE).
The mean absolute error (MAE) on the other hand measures the absolute loss. It
uses the same scale as the target variable and gives an idea of how close
predictions are to the actual values.

For both the MSE and MAE, the smaller value, the better regression
model.

R2 (pronounced as r squared) indicates the goodness of the fit of a regression
model. It ranges from 0 to 1, meaning from no fit to perfect prediction.

Let's compute these three measurements on a linear regression model using corresponding
functions from scikit-learn:

We re-work on the diabetes dataset and fine-tune the parameters of linear1.
regression model using the grid search technique:

>>> diabetes = datasets.load_diabetes()
>>> num_test = 30 # the last 30 samples as testing set
>>> X_train = diabetes.data[:-num_test, :]
>>> y_train = diabetes.target[:-num_test]
>>> X_test = diabetes.data[-num_test:, :]
>>> y_test = diabetes.target[-num_test:]
>>> param_grid = {
... "alpha": [1e-07, 1e-06, 1e-05],
... "penalty": [None, "l2"],

Stock Price Prediction with Regression Algorithms Chapter 9

[307]

... "eta0": [0.001, 0.005, 0.01],

... "n_iter": [300, 1000, 3000]

... }
>>> from sklearn.model_selection import GridSearchCV
>>> regressor = SGDRegressor(loss='squared_loss',
 learning_rate='constant')
>>> grid_search = GridSearchCV(regressor, param_grid, cv=3)

We obtain the optimal set of parameters:2.

>>> grid_search.fit(X_train, y_train)
>>> print(grid_search.best_params_)
{'penalty': None, 'alpha': 1e-05, 'eta0': 0.01, 'n_iter': 300}
>>> regressor_best = grid_search.best_estimator_

We predict the testing set with the optimal model:3.

>>> predictions = regressor_best.predict(X_test)

We evaluate the performance on testing sets based on the MSE, MAE, and R24.
metrics:

>>> from sklearn.metrics import mean_squared_error,
 mean_absolute_error, r2_score
>>> mean_squared_error(y_test, predictions)
1862.0518552093429
>>> mean_absolute_error(y_test, predictions)
34.605923224169558
>>> r2_score(y_test, predictions)
0.63859162277753756

Predicting stock price with four regression
algorithms
Now that we've learned four (or five, you could say) commonly used and powerful
regression algorithms and performance evaluation metrics, let's utilize each of them to
solve our stock price prediction problem.

We generated features based on data from 1988 to 2016 earlier, and we'll now continue with
constructing the training set with data from 1988 to 2015 and the testing set with data from
2016:

>>> data_raw = pd.read_csv('19880101_20161231.csv', index_col='Date')
>>> data = generate_features(data_raw)

Stock Price Prediction with Regression Algorithms Chapter 9

[308]

>>> start_train = '1988-01-01'
>>> end_train = '2015-12-31'
>>> start_test = '2016-01-01'
>>> end_test = '2016-12-31'
>>> data_train = data.ix[start_train:end_train]
>>> X_train = data_train.drop('close', axis=1).values
>>> y_train = data_train['close'].values
>>> print(X_train.shape)
(6804, 37)
>>> print(y_train.shape)
(6804,)

All fields in the dataframe data except 'close' are feature columns, and 'close' is the
target column. We have 6,553 training samples and each sample is 37-dimensional. And we
have 252 testing samples:

>>> print(X_test.shape)
(252, 37)

We first experiment with SGD-based linear regression. Before we train the model, we
should realize that SGD-based algorithms are sensitive to data with features at largely
different scales, for example, in our case, the average value of the open feature is around
8,856, while that of the moving_avg_365 feature is 0.00037 or so. Hence, we need to
normalize features into the same or a comparable scale. We do so by removing the mean
and rescaling to unit variance:

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()

We rescale both sets with scaler taught by the training set:

>>> X_scaled_train = scaler.fit_transform(X_train)
>>> X_scaled_test = scaler.transform(X_test)

Now we can search for the SGD-based linear regression with the optimal set of parameters.
We specify l2 regularization and 1,000 iterations and tune the regularization term
multiplier, alpha, and initial learning rate, eta0:

>>> param_grid = {
... "alpha": [1e-5, 3e-5, 1e-4],
... "eta0": [0.01, 0.03, 0.1],
... }
>>> lr = SGDRegressor(penalty='l2', n_iter=1000)
>>> grid_search = GridSearchCV(lr, param_grid, cv=5, scoring='r2')
>>> grid_search.fit(X_scaled_train, y_train)

Stock Price Prediction with Regression Algorithms Chapter 9

[309]

Select the best linear regression model and make predictions of the testing samples:

>>> print(grid_search.best_params_)
{'alpha': 3e-05, 'eta0': 0.03}
>>> lr_best = grid_search.best_estimator_
>>> predictions_lr = lr_best.predict(X_scaled_test)

Measure the prediction performance via the MSE, MAE, and R2:

>>> print('MSE: {0:.3f}'.format(
 mean_squared_error(y_test, predictions_lr)))
MSE: 18934.971
>>> print('MAE: {0:.3f}'.format(
 mean_absolute_error(y_test, predictions_lr))
MAE: 100.244
>>> print('R^2: {0:.3f}'.format(r2_score(y_test, predictions_lr)))
R^2: 0.979

We achieve 0.979 R2 with a fine-tuned linear regression model.

Similarly, we experiment with random forest, where we specify 500 trees to ensemble and
tune the the maximum depth of the tree, max_depth; the minimum number of samples
required to further split a node, min_samples_split; and the number of features used for
each tree, as well as the following:

>>> param_grid = {
... 'max_depth': [50, 70, 80],
... 'min_samples_split': [5, 10],
... 'max_features': ['auto', 'sqrt'],
... 'min_samples_leaf': [3, 5]
... }
>>> rf = RandomForestRegressor(n_estimators=500, n_jobs=-1)
>>> grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='r2',
 n_jobs=-1)
>>> grid_search.fit(X_train, y_train)

Note this may take a while, hence we use all available CPU cores for training.

Select the best regression forest model and make predictions of the testing samples:

>>> print(grid_search.best_params_)
{'max_depth': 70, 'max_features': 'auto', 'min_samples_leaf': 3,
'min_samples_split': 5}
>>> rf_best = grid_search.best_estimator_
>>> predictions_rf = rf_best.predict(X_test)

Stock Price Prediction with Regression Algorithms Chapter 9

[310]

Measure the prediction performance as follows:

>>> print('MSE: {0:.3f}'.format(mean_squared_error(y_test,
 predictions_rf)))
MSE: 260349.365
>>> print('MAE: {0:.3f}'.format(mean_absolute_error(y_test,
 predictions_rf)))
MAE: 299.344
>>> print('R^2: {0:.3f}'.format(r2_score(y_test, predictions_rf)))
R^2: 0.706

An R2 of 0.706 is obtained with a tweaked forest regressor.

Next, we work with SVR with linear and RBF kernel and leave the penalty parameter C
and ε as well as the kernel coefficient of RBF for fine tuning. Similar to SGD-based
algorithms, SVR doesn't work well on data with feature scale disparity:

>>> param_grid = [
... {'kernel': ['linear'], 'C': [100, 300, 500],
 'epsilon': [0.00003, 0.0001]},
... {'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
 'C': [10, 100, 1000], 'epsilon': [0.00003, 0.0001]}
...]

Again, to work around this, we use the rescaled data to train the SVR model:

>>> svr = SVR()
>>> grid_search = GridSearchCV(svr, param_grid, cv=5, scoring='r2')
>>> grid_search.fit(X_scaled_train, y_train)

Select the best SVR model and make predictions of the testing samples:

>>> print(grid_search.best_params_)
{'C': 500, 'epsilon': 3e-05, 'kernel': 'linear'}
>>> svr_best = grid_search.best_estimator_
>>> predictions_svr = svr_best.predict(X_scaled_test)
>>> print('MSE: {0:.3f}'.format(mean_squared_error(y_test,
predictions_svr)))
MSE: 17466.596
>>> print('MAE: {0:.3f}'.format(mean_absolute_error(y_test,
predictions_svr)))
MAE: 95.070
>>> print('R^2: {0:.3f}'.format(r2_score(y_test, predictions_svr)))
R^2: 0.980

Stock Price Prediction with Regression Algorithms Chapter 9

[311]

With SVR, we're able to achieve R2 0.980 on the testing set.

Finally, we experiment with the neural network where we fine-tune from the following
options for hyperparameters including a list of hidden layer sizes, activation function,
optimizer, learning rate, penalty factor, and mini-batch size:

>>> param_grid = {
... 'hidden_layer_sizes': [(50, 10), (30, 30)],
... 'activation': ['logistic', 'tanh', 'relu'],
... 'solver': ['sgd', 'adam'],
... 'learning_rate_init': [0.0001, 0.0003, 0.001, 0.01],
... 'alpha': [0.00003, 0.0001, 0.0003],
... 'batch_size': [30, 50]
... }
>>> nn = MLPRegressor(random_state=42, max_iter=2000)
>>> grid_search = GridSearchCV(nn, param_grid, cv=5, scoring='r2',
 n_jobs=-1)
>>> grid_search.fit(X_scaled_train, y_train)

Select the best neural network model and make predictions of the testing samples:

>>> print(grid_search.best_params_)
{'activation': 'relu', 'alpha': 0.0003, 'hidden_layer_sizes': (50, 10),
'learning_rate_init': 0.001, 'solver': 'adam'}
>>> nn_best = grid_search.best_estimator_
>>> predictions_nn = nn_best.predict(X_scaled_test)
>>> print('MSE: {0:.3f}'.format(mean_squared_error(y_test,
 predictions_nn)))
MSE: 19619.618
>>> print('MAE: {0:.3f}'.format(mean_absolute_error(y_test,
 predictions_nn)))
MAE: 100.956
>>> print('R^2: {0:.3f}'.format(r2_score(y_test, predictions_nn)))
R^2: 0.978

We're able to achieve a 0.978 R2 with a fine-tuned neural network model.

Stock Price Prediction with Regression Algorithms Chapter 9

[312]

We'll also plot the prediction generated by each of the three algorithms, along with the
ground truth:

Summary
In this chapter, we worked on the last project of this entire book, predicting stock
(specifically stock index) prices using machine learning regression techniques. We started
with a short introduction to the stock market and factors that influence trading prices. To
tackle this billion dollar problem, we investigated machine learning regression, which
estimates a continuous target variable, as opposed to discrete output in classification. We
followed with an in-depth discussion of three popular regression algorithms, linear
regression, regression tree and regression forest, and SVR as well as neural networks. We
covered the definition, mechanics, and implementation from scratch and with several
popular frameworks including scikit-learn, tensorflow, and keras, along with their
applications on toy datasets. We also learned the metrics used to evaluate a regression
model. Finally, we applied what we learned in this whole chapter to solve our stock price
prediction problem.

Stock Price Prediction with Regression Algorithms Chapter 9

[313]

At last, recall that we briefly mentioned several major stock indexes besides DJIA. Is it
possible to better the DJIA price prediction model we just developed by considering
historical prices and performance of these major indexes? It's highly likely! The idea behind
this is that no stock or index is isolated and that there are weak or strong influences
between stocks and different financial markets. This should be intriguing to explore.

In the next and final chapter, we'll wrap up this book with best practices of real-world
machine learning. It aims to foolproof your learning and get you ready for the entire
machine learning workflow and productionization.

Exercise
As mentioned, can you add more signals to our stock prediction system, such as
performance of other major indexes? Does this improve prediction?

3
Section 3: Python Machine

Learning Best Practices
After working on several projects in the previous chapters, you will have got a broad
overview of the machine learning ecosystem. However, there will be issues once you start
working on projects in the real world. In this section, you will have a chance to fullproof
your learning and get ready for production by following 21 best practices throughout the
entire machine learning workflow.

This section contains the following chapter:

Chapter 10, Machine Learning Best Practices

10
Machine Learning Best

Practices
After working on multiple projects covering important machine learning concepts,
techniques, and widely used algorithms, we have gathered a broad picture of the machine
learning ecosystem, as well as solid experience in tackling practical problems using
machine learning algorithms and Python. However, there will be issues once we start
working on projects from scratch in the real world. This chapter aims to get us ready for it
with 21 best practices to follow throughout the entire machine learning solution workflow.

We will cover the following topics in this chapter:

Machine learning solution workflow
Tasks in the data preparation stage
Tasks in the training sets generation stage
Tasks in the algorithm training, evaluation, and selection stage
Tasks in the system deployment and monitoring stage
Best practices in the data preparation stage
Best practices in the training sets generation stage
Word embedding
Best practices in the model training, evaluation, and selection stage
Best practices in the system deployment and monitoring stage

Machine Learning Best Practices Chapter 10

[316]

Machine learning solution workflow
In general, the main tasks involved in solving a machine learning problem can be
summarized into four areas, as follows:

Data preparation
Training sets generation
Model training, evaluation, and selection
Deployment and monitoring

Starting from data sources to the final machine learning system, a machine learning
solution basically follows the following paradigm:

Machine Learning Best Practices Chapter 10

[317]

In the following sections, we will be learning about the typical tasks, common challenges,
and best practices for each of these four stages.

Best practices in the data preparation stage
No machine learning system can be built without data. Therefore, data collection should be
our first focus.

Best practice 1 – completely understanding the
project goal
Before starting to collect data, we should make sure that the goal of the project and the
business problem, is completely understood, as this will guide us on what data sources to
look into, and where sufficient domain knowledge and expertise is also required. For
example, in the previous chapter, Chapter 9, Stock Price Prediction with Regression
Algorithms, our goal was to predict the future prices of the DJIA index, so we first collected
data of its past performance, instead of past performance of an irrelevant European stock.
In Chapter 6, Predicting Online Ads Click-through with Tree-Based Algorithms, and Chapter 7,
Predicting Online Ads Click-through with Logistic Regression, the business problem was to
optimize advertising targeting efficiency measured in click-through rate, so we collected
the clickstream data of who clicked or did not click on what ad on what page, instead of
merely how many ads were displayed in a web domain.

Best practice 2 – collecting all fields that are
relevant
With a set goal in mind, we can narrow down potential data sources to investigate. Now
the question becomes: is it necessary to collect the data of all fields available in a data
source, or is a subset of attributes enough? It would be perfect if we knew in advance which
attributes were key indicators or key predictive factors. However, it is in fact very difficult
to ensure that the attributes hand-picked by a domain expert will yield the best prediction
results. Hence, for each data source, it is recommended to collect all of the fields that are
related to the project, especially in cases where recollecting the data is time consuming, or
even impossible.

Machine Learning Best Practices Chapter 10

[318]

For example, in the stock price prediction example, we collected the data of all fields
including open, high, low, and volume, even though we were initially not certain of how
useful high and low predictions would be. Retrieving the stock data is quick and easy,
however. In another example, if we ever want to collect data ourselves by scraping online
articles for topic classification, we should store as much information as possible. Otherwise,
if any piece of information is not collected but is later found valuable, such as hyperlinks in
an article, the article might be already removed from the web page; if it still exists,
rescraping those pages can be costly.

After collecting the datasets that we think are useful, we need to assure the data quality by
inspecting its consistency and completeness. Consistency refers to how the distribution of
data is changing over time. Completeness means how much data is present across fields
and samples. They are explained in detail in the following two practices.

Best practice 3 – maintaining the consistency of
field values
In a dataset that already exists, or in one we collect from scratch, oftentimes we see
different values representing the same meaning. For example, there are American, US, and
U.S.A in the country field, and male and M in the gender field. It is necessary to unify or
standardize values in a field. For example, we can only keep M and F in the gender field
and replace other alternatives. Otherwise it will mess up the algorithms in later stages as
different feature values will be treated differently even if they have the same meaning. It is
also a great practice to keep track of what values are mapped to the default value of a field.

In addition, the format of values in the same field should also be consistent. For instance, in
the age field, there are true age values, such as 21 and 35, and incorrect age values, such as
1990 and 1978; in the rating field, both cardinal numbers and English numerals are found,
such as 1, 2, and 3, and one, two, and three. Transformation and reformatting should be
conducted in order to ensure data consistency.

Best practice 4 – dealing with missing data
Due to various reasons, datasets in the real world are rarely completely clean and often
contain missing or corrupted values. They are usually presented as blanks, Null, -1, 999999,
unknown, or any other placeholder. Samples with missing data not only provide incomplete
predictive information, but also confuse the machine learning model as it can not tell
whether -1 or unknown holds a meaning. It is important to pinpoint and deal with missing
data in order to avoid jeopardizing the performance of models in later stages.

Machine Learning Best Practices Chapter 10

[319]

Here are three basic strategies that we can use to tackle the missing data issue:

Discarding samples containing any missing value
Discarding fields containing missing values in any sample

Inferring the missing values based on the known part from the attribute. This
process is called missing data imputation. Typical imputation methods include
replacing missing values with mean or median value of the field across all
samples, or the most frequent value for categorical data.

The first two strategies are simple to implement; however, they come at the expense of the
data lost, especially when the original dataset is not large enough. The third strategy
doesn't abandon any data, but does try to fill in the blanks.

Let's look at how each strategy is applied in an example where we have a dataset (age,
income) consisting of six samples (30, 100), (20, 50), (35, unknown), (25, 80), (30, 70), and (40,
60):

If we process this dataset using the first strategy, it becomes (30, 100), (20, 50),
(25, 80), (30, 70), and (40, 60)
If we employ the second strategy, the dataset becomes (30), (20), (35), (25), (30),
and (40), where only the first field remains
If we decide to complete the unknown value instead of skipping it, the sample
(35, unknown) can be transformed into (35, 72) with the mean of the rest values in
the second field, or (35, 70), with the median value in the second field

In scikit-learn, the Imputer class provides a nicely written imputation transformer. We
herein use it for the following small example:

>>> import numpy as np
>>> from sklearn.preprocessing import Imputer

Represent the unknown value by np.nan in numpy, as detailed in the following:

>>> data_origin = [[30, 100],
... [20, 50],
... [35, np.nan],
... [25, 80],
... [30, 70],
... [40, 60]]

Machine Learning Best Practices Chapter 10

[320]

Initialize the imputation transformer with the mean value and obtain such information
from the original data:

>>> imp_mean = Imputer(missing_values='NaN', strategy='mean')
>>> imp_mean.fit(data_origin)

Complete the missing value as follows:

>>> data_mean_imp = imp_mean.transform(data_origin)
>>> print(data_mean_imp)
[[30. 100.]
 [20. 50.]
 [35. 72.]
 [25. 80.]
 [30. 70.]
 [40. 60.]]

Similarly, initialize the imputation transformer with the median value, as detailed in the
following:

>>> imp_median = Imputer(missing_values='NaN', strategy='median')
>>> imp_median.fit(data_origin)
>>> data_median_imp = imp_median.transform(data_origin)
>>> print(data_median_imp)
[[30. 100.]
 [20. 50.]
 [35. 70.]
 [25. 80.]
 [30. 70.]
 [40. 60.]]

When new samples come in, the missing values (in any attribute) can be imputed using the
trained transformer, for example, with the mean value, as shown here:

>>> new = [[20, np.nan],
... [30, np.nan],
... [np.nan, 70],
... [np.nan, np.nan]]
>>> new_mean_imp = imp_mean.transform(new)
>>> print(new_mean_imp)
[[20. 72.]
 [30. 72.]
 [30. 70.]
 [30. 72.]]

Note that 30 in the age field is the mean of those six age values in the original dataset.

Machine Learning Best Practices Chapter 10

[321]

Now that we have seen how imputation works as well as its implementation, let's explore
how the strategy of imputing missing values and discarding missing data affects the
prediction results through the following example:

First we load the diabetes dataset and simulate a corrupted dataset with missing1.
values, as shown here:

>>> from sklearn import datasets
>>> dataset = datasets.load_diabetes()
>>> X_full, y = dataset.data, dataset.target

Simulate a corrupted dataset by adding 25% missing values:2.

>>> m, n = X_full.shape
>>> m_missing = int(m * 0.25)
>>> print(m, m_missing)
442 110

Randomly select the m_missing samples, as follows:3.

>>> np.random.seed(42)
>>> missing_samples = np.array([True] * m_missing +
 [False] * (m - m_missing))
>>> np.random.shuffle(missing_samples)

For each missing sample, randomly select 1 out of n features:4.

>>> missing_features = np.random.randint(low=0, high=n,
 size=m_missing)

Represent missing values by nan, as shown here:5.

>>> X_missing = X_full.copy()
>>> X_missing[np.where(missing_samples)[0], missing_features] =
 np.nan

Then we deal with this corrupted dataset by discarding the samples containing a6.
missing value:

>>> X_rm_missing = X_missing[~missing_samples, :]
>>> y_rm_missing = y[~missing_samples]

Machine Learning Best Practices Chapter 10

[322]

Measure the effects of using this strategy by estimating the averaged regression7.
score, R2, with a regression forest model in a cross-validation manner. Estimate R2

on the dataset with the missing samples removed, as follows:

>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.model_selection import cross_val_score
>>> regressor = RandomForestRegressor(random_state=42,
 max_depth=10, n_estimators=100)
>>> score_rm_missing = cross_val_score(regressor, X_rm_missing,
 y_rm_missing).mean()
>>> print('Score with the data set with missing samples removed:
 {0:.2f}'.format(score_rm_missing))
Score with the data set with missing samples removed: 0.39

Now we approach the corrupted dataset differently by imputing missing values8.
with the mean, shown here:

>>> imp_mean = Imputer(missing_values='NaN', strategy='mean')
>>> X_mean_imp = imp_mean.fit_transform(X_missing)

Similarly, measure the effects of using this strategy by estimating the averaged9.
R2, as follows:

>>> regressor = RandomForestRegressor(random_state=42,
 max_depth=10, n_estimators=100)
>>> score_mean_imp = cross_val_score(regressor, X_mean_imp,
 y).mean()
>>> print('Score with the data set with missing values replaced by
 mean: {0:.2f}'.format(score_mean_imp))
Score with the data set with missing values replaced by mean: 0.42

An imputation strategy works better than discarding in this case. So, how far is10.
the imputed dataset from the original full one? We can check it again by
estimating the averaged regression score on the original dataset, as follows:

>>> regressor = RandomForestRegressor(random_state=42,
 max_depth=10, n_estimators=500)
>>> score_full = cross_val_score(regressor, X_full, y).mean()
>>> print 'Score with the full data set:
 {0:.2f}'.format(score_full)
Score with the full data set: 0.44

Machine Learning Best Practices Chapter 10

[323]

It turns out that little information is comprised in the completed dataset.

However, there is no guarantee that an imputation strategy always works better, and
sometimes dropping samples with missing values can be more effective. Hence, it is a great
practice to compare the performances of different strategies via cross-validation as we have
done previously.

Best practice 5 – storing large-scale data
With the ever-growing size of data, oftentimes we can't simply fit the data in our single
local machine and need to store it on the cloud or distributed filesystems. As this is mainly
a book on machine learning with Python, we will just touch on some basic areas that you
can look into. The two main strategies of storing big data are scale-up and scale-out:

A scale-up approach increases storage capacity if data exceeds the current system
capacity, such as by adding more disks. This is useful in fast-access platforms.
In a scale-out approach, storage capacity grows incrementally with additional
nodes in a storage cluster. Apache Hadoop (https:/​/​hadoop.​apache.​org/​) is
used to store and process big data on scale-out clusters, where data is spread
across hundreds or even thousands of nodes. Also, there are cloud-based
distributed file services, such as S3 in Amazon Web Services (https:/​/​aws.
amazon.​com/​s3/​), and Google Cloud Storage in Google Cloud (https:/​/​cloud.
google.​com/​storage/​). They are massively scalable and are designed for secure
and durable storage.

Best practices in the training sets
generation stage
With well-prepared data, it is safe to move on with the training sets generation stage.
Typical tasks in this stage can be summarized into two major categories: data
preprocessing and feature engineering.

To begin, data preprocessing usually involves categorical feature encoding, feature scaling,
feature selection, and dimensionality reduction.

https://hadoop.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/

Machine Learning Best Practices Chapter 10

[324]

Best practice 6 – identifying categorical features
with numerical values
In general, categorical features are easy to spot, as they convey qualitative information,
such as risk level, occupation, and interests. However, it gets tricky if the feature takes on a
discreet and countable (limited) number of numerical values, for instance, 1 to 12
representing months of the year, and 1 and 0 indicating true and false. The key to
identifying whether such a feature is categorical or numerical is whether it provides a
mathematical or ranking implication: if so, it is a numerical feature, such as a product rating
from 1 to 5; otherwise, it is categorical, such as the month, or day of the week.

Best practice 7 – deciding on whether or not to
encode categorical features
If a feature is considered categorical, we need to decide whether we should encode it. This
depends on what prediction algorithm(s) we will use in later stages. Naïve Bayes and tree-
based algorithms can directly work with categorical features, while other algorithms in
general cannot, in which case, encoding is essential.

As the output of the feature generation stage is the input of the model training stage, steps
taken in the feature generation stage should be compatible with the prediction algorithm.
Therefore, we should look at two stages of feature generation and predictive model training
as a whole, instead of two isolated components. The following practical tips also emphasize
this point.

Best practice 8 – deciding on whether or not to
select features, and if so, how to do so
We have seen in Chapter 7, Predicting Online Ads Click-through with Logistic Regression,
where feature selection was performed using L1-based regularized logistic regression and
random forest. The benefits of feature selection include the following:

Reducing the training time of prediction models, as redundant, or irrelevant
features are eliminated
Reducing overfitting for the preceding same reason
Likely improving performance as prediction models will learn from data with
more significant features

Machine Learning Best Practices Chapter 10

[325]

Note we used the word likely because there is no absolute certainty that feature selection
will increase prediction accuracy. It is therefore good practice to compare the performances
of conducting feature selection and not doing so via cross-validation. For example, by
executing the following steps, we can measure the effects of feature selection by estimating
the averaged classification accuracy with an SVC model in a cross-validation manner:

First, we load the handwritten digits dataset from scikit-learn, as follows:1.

>>> from sklearn.datasets import load_digits
>>> dataset = load_digits()
>>> X, y = dataset.data, dataset.target
>>> print(X.shape)
(1797, 64)

Next, estimate the accuracy of the original dataset, which is 64 dimensional, as2.
detailed here:

>>> from sklearn.svm import SVC
>>> from sklearn.model_selection import cross_val_score
>>> classifier = SVC(gamma=0.005)
>>> score = cross_val_score(classifier, X, y).mean()
>>> print('Score with the original data set:
 {0:.2f}'.format(score))
Score with the original data set: 0.88

Then conduct feature selection based on random forest and sort the features3.
based on their importance scores:

>>> from sklearn.ensemble import RandomForestClassifier
>>> random_forest = RandomForestClassifier(n_estimators=100,
 criterion='gini', n_jobs=-1)
>>> random_forest.fit(X, y)
>>> feature_sorted =
 np.argsort(random_forest.feature_importances_)

Now select a different number of top features to construct a new dataset, and4.
estimate the accuracy on each dataset, as follows:

>>> K = [10, 15, 25, 35, 45]
>>> for k in K:
... top_K_features = feature_sorted[-k:]
... X_k_selected = X[:, top_K_features]
... # Estimate accuracy on the data set with k
 selected features
... classifier = SVC(gamma=0.005)
... score_k_features =
 cross_val_score(classifier, X_k_selected, y).mean()

Machine Learning Best Practices Chapter 10

[326]

... print('Score with the data set of top {0} features:
 {1:.2f}'.format(k, score_k_features))
...
Score with the data set of top 10 features: 0.88
Score with the data set of top 15 features: 0.93
Score with the data set of top 25 features: 0.94
Score with the data set of top 35 features: 0.92
Score with the data set of top 45 features: 0.88

Best practice 9 – deciding on whether or not to
reduce dimensionality, and if so, how to do so
Feature selection and dimensionality are different in the sense that the former chooses
features from the original data space, while the latter does so from a projected space from
the original space. Dimensionality reduction has the following advantages that are similar
to feature selection, as follows:

Reducing the training time of prediction models, as redundant, or correlated
features are merged into new ones
Reducing overfitting for the same reason as previously
Likely improving performance as prediction models will learn from data with
less redundant or correlated features

Again, it is not guaranteed that dimensionality reduction will yield better prediction
results. In order to examine its effects, integrating dimensionality reduction in the model
training stage is recommended. Reusing the preceding handwritten digits example, we can
measure the effects of principal component analysis (PCA)-based dimensionality
reduction, where we keep a different number of top components to construct a new dataset,
and estimate the accuracy on each dataset:

>>> from sklearn.decomposition import PCA
>>> # Keep different number of top components
>>> N = [10, 15, 25, 35, 45]
>>> for n in N:
... pca = PCA(n_components=n)
... X_n_kept = pca.fit_transform(X)
... # Estimate accuracy on the data set with top n components
... classifier = SVC(gamma=0.005)
... score_n_components =
 cross_val_score(classifier, X_n_kept, y).mean()
... print('Score with the data set of top {0} components:
 {1:.2f}'.format(n, score_n_components))
Score with the data set of top 10 components: 0.95

Machine Learning Best Practices Chapter 10

[327]

Score with the data set of top 15 components: 0.95
Score with the data set of top 25 components: 0.91
Score with the data set of top 35 components: 0.89
Score with the data set of top 45 components: 0.88

Best practice 10 – deciding on whether or not to
rescale features
As seen in Chapter 9, Stock Price Prediction with Regression Algorithms, SGD-based linear
regression, SVR, and the neural network model require features to be standardized by
removing the mean and scaling to unit variance. So, when is feature scaling needed and
when is it not?

In general, Naïve Bayes and tree-based algorithms are not sensitive to features at different
scales, as they look at each feature independently.

In most cases, an algorithm that involves any form of distance (or separation in spaces) of
samples in learning requires scaled/standardized inputs, such as SVC, SVR, k-means
clustering, and k-nearest neighbors (KNN) algorithms. Feature scaling is also a must for
any algorithm using SGD for optimization, such as linear or logistic regression with
gradient descent, and neural networks.

We have so far covered tips regarding data preprocessing and will next discuss best
practices of feature engineering as another major aspect of training sets generation. We will
do so from two perspectives.

Best practice 11 – performing feature engineering
with domain expertise
If we are lucky enough to possess sufficient domain knowledge, we can apply it in creating
domain-specific features; we utilize our business experience and insights to identify what is
in the data and to formulate what from the data correlates to the prediction target. For
example, in Chapter 9, Stock Price Prediction with Regression Algorithms, we designed and
constructed feature sets for the prediction of stock prices based on factors that investors
usually look at when making investment decisions.

Machine Learning Best Practices Chapter 10

[328]

While particular domain knowledge is required, sometimes we can still apply some general
tips in this category. For example, in fields related to customer analytics, such as market
and advertising, the time of the day, day of the week, and month are usually important
signals. Given a data point with the value 2017/02/05 in the date column and 14:34:21 in the
time column, we can create new features including afternoon, Sunday, and February. In
retail, information over a period of time is usually aggregated to provide better insights.
The number of times a customer visits a store for the past three months, or the average
number of products purchased weekly for the previous year, for instance, can be good
predictive indicators for customer behavior prediction.

Best practice 12 – performing feature engineering
without domain expertise
If we unfortunately have very little domain knowledge, how can we generate features?
Don't panic. There are several generic approaches that you can follow:

Binarization: This is the process of converting a numerical feature to a binary
one with a preset threshold. For example, in spam email detection, for the feature
(or term) prize, we can generate a new feature whether prize occurs: any term
frequency value greater than 1 becomes 1, otherwise it is 0. The feature number of
visits per week can be used to produce a new feature is frequent visitor by judging
whether the value is greater than or equal to 3. We implement such binarization
using scikit-learn, as follows:

>>> from sklearn.preprocessing import Binarizer
>>> X = [[4], [1], [3], [0]]
>>> binarizer = Binarizer(threshold=2.9)
>>> X_new = binarizer.fit_transform(X)
>>> print(X_new)
[[1]
 [0]
 [1]
 [0]]

Discretization: This is the process of converting a numerical feature to a
categorical feature with limited possible values. Binarization can be viewed as a
special case of discretization. For example, we can generate an age group feature:
"18-24" for age from 18 to 24, "25-34" for age from 25 to 34, "34-54", and "55+".

Machine Learning Best Practices Chapter 10

[329]

Interaction: This includes the sum, multiplication, or any operations of two
numerical features, joint condition check of two categorical features. For
example, the number of visits per week and the number of products purchased per week
can be used to generate the number of products purchased per visit feature; interest
and occupation, such as sports and engineer, can form occupation AND interest, such
as engineer interested in sports.
Polynomial transformation: This is a process of generating polynomial and
interaction features. For two features, a and b, the two degree of polynomial
features generated are a2, ab, and b2. In scikit-learn, we can use the
PolynomialFeatures class to perform polynomial transformation, as follows:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = [[2, 4],
... [1, 3],
... [3, 2],
... [0, 3]]
>>> poly = PolynomialFeatures(degree=2)
>>> X_new = poly.fit_transform(X)
>>> print(X_new)
[[1. 2. 4. 4. 8. 16.]
 [1. 1. 3. 1. 3. 9.]
 [1. 3. 2. 9. 6. 4.]
 [1. 0. 3. 0. 0. 9.]]

Note the resulting new features consist of 1 (bias, intercept), a, b, a2, ab, and b2.

Best practice 13 – documenting how each feature
is generated
We have covered the rules of feature engineering with domain knowledge and in general,
there is one more thing worth noting: documenting how each feature is generated. It
sounds trivial, but oftentimes we just forget about how a feature is obtained or created. We
usually need to go back to this stage after some failed trials in the model training stage and
attempt to create more features with the hope of improving performance. We have to be
clear on what and how features are generated, in order to remove those that do not quite
work out, and to add new ones that have more potential.

Machine Learning Best Practices Chapter 10

[330]

Best practice 14 – extracting features from text
data
We have worked intensively with text data in Chapter 2, Exploring the 20 Newsgroups
Dataset with Text Analysis Techniques, Chapter 3, Mining the 20 Newsgroups Dataset with
Clustering, and Topic Modeling Algorithms, Chapter 4, Detecting Spam Email with Naive Bayes,
and Chapter 5, Classifying News Topics with a Support Vector Machine, where we extracted
features from text based on term frequency (tf) and term frequency-inverse document
frequency (tf-idf). Both methods consider each document of words (terms) a collection of
words, or a bag of words (BoW), disregarding the order of words, but keeping multiplicity.
A tf approach simply uses the counts of tokens, while tf-idf extends tf by assigning each tf a
weighting factor that is inversely proportional to the document frequency. With the idf
factor incorporated, tf-idf diminishes the weight of common terms (such as get, make) that
occur frequently, and emphasizes terms that rarely occur, but convey important meaning.
Hence, oftentimes features extracted from tf-idf are more representative than those from tf.

As you may remember, a document is represented by a very sparse vector where only
present terms have non-zero values. And its dimensionality is usually high, which is
determined by the size of vocabulary and the number of unique terms. Also, such one-hot
encoding approaching treats each term as an independent item and does not consider the
relationship across words (referred to as "context" in linguistics).

On the contrary, another approach, called word embedding, is able to capture the
meanings of words and their context. In this approach, a word is represented by a vector of
float numbers. Its dimensionality is a lot lower than the size of vocabulary and is usually
several hundreds only. For example, the word machine can be represented as [1.4, 2.1, 10.3,
0.2, 6.81]. So, how can we embed a word into a vector? One solution is word2vec, which
trains a shallow neural network to predict a word given other words around it (called
CBOW) or to predict words around a word (called skip-gram). The coefficients of the
trained neural network are the embedding vectors for corresponding words.

CBOW is short for Continuous Bag of Words. Given a sentence I love reading Python
machine learning by example in a corpus, and 5 as the size of word window, we can have the
following training sets for the CBOW neural network:

Machine Learning Best Practices Chapter 10

[331]

Of course, the inputs and outputs of the neural network are one-hot encoding vectors,
where values are either 1 for present words, or 0 for absent words. And we can have
millions of training samples constructed from a corpus sentence by sentence. After the
network is trained, the weights that connect the input layer and hidden layer embed
individual input words. A skip-gram-based neural network embeds words in a similar
way. But its input and output is an inverse version of CBOW. Given the same sentence I
love reading Python machine learning by example and 5 as the size of word window, we can
have the following training sets for the skip-gram neural network:

The embedding vectors are of real values where each dimension encodes an aspect of
meaning for words in the vocabulary. This helps reserve the semantics information of
words, as opposed to discarding it as in the dummy one-hot encoding approach using tf or
td-idf. An interesting phenomenon is that vectors from semantically similar words are
proximate to each other in geometric space. For example, both the word clustering and
grouping refer to unsupervised clustering in the context of machine learning, hence their
embedding vectors are close together.

Machine Learning Best Practices Chapter 10

[332]

Training a word embedding neural network can be time-consuming and computationally
expensive. Fortunately, there are several big tech companies that have trained word
embedding models on different kinds of corpora and open sourced them. We can simply
use these pre-trained models to map words to vectors. Some popular pretrained word
embedding models are as follows:

Machine Learning Best Practices Chapter 10

[333]

Once we have embedding vectors for individual words, we can represent a document
sample by averaging all of the vectors of present words in this document. The resulting
vectors of document samples are then consumed by downstream predictive tasks, such as
classification, similarity ranking in search engine, and clustering.

Now let's play around with gensim, a popular NLP package with powerful word
embedding modules. If you have not installed the package in Chapter 2, Exploring the 20
Newsgroups Dataset with Text Analysis Techniques, you can do so using pip.

First, we import the package and load a pretrained model, glove-twitter-25, as follows:

>>> import gensim.downloader as api
>>> model = api.load("glove-twitter-25")
[==] 100.0%
104.8/104.8MB downloaded

You will see the process bar if you first run this line of code. The glove-twitter-25
model is one of the smallest ones so the download will not take very long.

We can obtain the embedding vector for a word (computer, for example), as follows:

>>> vector = model.wv['computer']
>>> print('Word computer is embedded into:\n', vector)
Word computer is embedded into:
[0.64005 -0.019514 0.70148 -0.66123 1.1723 -0.58859 0.25917
-0.81541 1.1708 1.1413 -0.15405 -0.11369 -3.8414 -0.87233
 0.47489 1.1541 0.97678 1.1107 -0.14572 -0.52013 -0.52234
 -0.92349 0.34651 0.061939 -0.57375]

The result is a 25-dimension float vector as expected.

We can also get the top 10 words that are most contextually relevant to computer using
the most_similar method, as follows:

>>> similar_words = model.most_similar("computer")
>>> print('Top ten words most contextually relevant to computer:\n',
 similar_words)
Top ten words most contextually relevant to computer:
 [('camera', 0.907833456993103), ('cell', 0.891890287399292), ('server',
0.8744666576385498), ('device', 0.869352400302887), ('wifi',
0.8631256818771362), ('screen', 0.8621907234191895), ('app',
0.8615544438362122), ('case', 0.8587921857833862), ('remote',
0.8583616018295288), ('file', 0.8575270771980286)]

Machine Learning Best Practices Chapter 10

[334]

The result looks promising.

Finally, we demonstrate how to generate representing vectors for a document with a simple
example, as follows:

>>> doc_sample = ['i', 'love', 'reading', 'python', 'machine',
 'learning', 'by', 'example']
>>> import numpy as np
>>> doc_vector = np.mean([model.wv[word] for word in doc_sample],
 axis=0)
>>> print('The document sample is embedded into:\n', doc_vector)
The document sample is embedded into:
 [-0.17100249 0.1388764 0.10616798 0.200275 0.1159925 -0.1515975
 1.1621187 -0.4241785 0.2912 -0.28199488 -0.31453252 0.43692702
 -3.95395 -0.35544625 0.073975 0.1408525 0.20736426 0.17444688
 0.10602863 -0.04121475 -0.34942 -0.2736689 -0.47526264 -0.11842456
 -0.16284864]

The resulting vector is the average of embedding vectors of eight input words.

In traditional NLP applications, such as text classification and topic modeling, tf or td-idf is
still an outstanding solution for feature extraction. In more complicated areas, such as text
summarization, machine translation, named entity resolution, question answering, and
information retrieval, word embedding is used extensively and extracts far better features
than the two traditional approaches.

Best practices in the model training,
evaluation, and selection stage
Given a supervised machine learning problem, the first question many people ask is
usually what is the best classification or regression algorithm to solve it. However, there is no
one-size-fits-all solution, or no free lunch. No one could know which algorithm will work
the best before trying multiple ones and fine-tuning the optimal one. We will be looking
into best practices around this in the following sections.

Machine Learning Best Practices Chapter 10

[335]

Best practice 15 – choosing the right algorithm(s)
to start with
Due to the fact that there are several parameters to tune for an algorithm, exhausting all
algorithms and fine-tuning each one can be extremely time-consuming and
computationally expensive. We should instead shortlist one to three algorithms to start
with using the general guidelines that follow (note we herein focus on classification, but the
theory transcends in regression and there is usually a counterpart algorithm in regression).

There are several things we need to be clear about before shortlisting potential algorithms,
as described in the following:

Size of the training dataset
Dimensionality of the dataset
Whether the data is linearly separable
Whether features are independent
Tolerance and trade-off of bias and variance
Whether online learning is required

Naïve Bayes
This is a very simple algorithm. For a relatively small training dataset, if features are
independent, Naïve Bayes will usually perform well. For a large dataset, Naïve Bayes will
still work well as feature independence can be assumed in this case, regardless of the truth.
The training of Naïve Bayes is usually faster than any other algorithms due to its
computational simplicity. However, this may lead to a high bias (but a low variance).

Logistic regression
This is probably the most widely used classification algorithm, and the first algorithm that a
machine learning practitioner usually tries when given a classification problem. It performs
well when data is linearly separable or approximately linearly separable. Even if it is not
linearly separable, it might be possible to convert the linearly non-separable features into
separable ones and apply logistic regression afterward.

Machine Learning Best Practices Chapter 10

[336]

In the following instance, data in the original space is not linearly separable, but they
become separable in a transformed space created from the interaction of two features:

Also, logistic regression is extremely scalable to large datasets with SGD optimization,
which makes it efficient in solving big data problems. Plus, it makes online learning
feasible. Although logistic regression is a low-bias, high-variance algorithm, we overcome
the potential overfitting by adding L1, L2, or a mix of two regularizations.

Machine Learning Best Practices Chapter 10

[337]

SVM
This is versatile enough to adapt to the linear separability of data. For a separable dataset,
SVM, with linear kernel, performs comparably to logistic regression. Beyond this, SVM also
works well for a non-separable one, if equipped with a non-linear kernel, such as RBF. For
a high-dimensional dataset, the performance of logistic regression is usually compromised,
while SVM still performs well. A good example of this can be in news classification, where
the feature dimensionality is in the tens of thousands. In general, very high accuracy can be
achieved by SVM with the right kernel and parameters. However, this might be at the
expense of intense computation and high memory consumption.

Random forest (or decision tree)
Linear separability of data does not matter to the algorithm. And it works directly with
categorical features without encoding, which provides great ease of use. Also, the trained
model is very easy to interpret and explain to non-machine learning practitioners, which
cannot be achieved with most other algorithms. Additionally, random forest boosts
decision tree, which might lead to overfitting by ensembling a collection of separate trees.
Its performance is comparable to SVM, while fine-tuning a random forest model is less
difficult compared to SVM and neural networks.

Neural networks
These are extremely powerful, especially with the development of deep learning. However,
finding the right topology (layers, nodes, activation functions, and so on) is not easy, not to
mention the time-consuming model of training and tuning. Hence, they are not
recommended as an algorithm to start with.

Best practice 16 – reducing overfitting
We've touched on ways to avoid overfitting when discussing the pros and cons of
algorithms in the last practice. We herein formally summarize them, as follows:

Cross-validation, a good habit that we have built over all of the chapters in this
book.
Regularization. It adds penalty terms to reduce the error caused by fitting the
model perfectly on the given training set.

Machine Learning Best Practices Chapter 10

[338]

Simplification, if possible. The more complex the mode is, the higher chance of
overfitting. Complex models include a tree or forest with excessive depth, a
linear regression with high degree polynomial transformation, and an SVM with
a complicated kernel.
Ensemble learning, combining a collection of weak models to form a stronger
one.

Best practice 17 – diagnosing overfitting and
underfitting
So, how can we tell whether a model suffers from overfitting, or the other extreme,
underfitting? A learning curve is usually used to evaluate the bias and variance of a model.
A learning curve is a graph that compares the cross-validated training and testing scores
over a various number of training samples.

For a model that fits well on the training samples, the performance of training samples
should be above desire. Ideally, as the number of training samples increases, the model
performance on testing samples improves; eventually the performance on testing samples
becomes close to that on training samples.

When the performance on testing samples converges at a value far from the performance
on training samples, overfitting can be concluded. In this case, the model fails to generalize
to instances that are not seen.

For a model that does not even fit well on the training samples, underfitting is easily
spotted: both performances on training and testing samples are below desire in the learning
curve.

Machine Learning Best Practices Chapter 10

[339]

Here is an example of the learning curve in an ideal case:

An example of the learning curve for an overfitted model is shown in the following
diagram:

Machine Learning Best Practices Chapter 10

[340]

The learning curve for an underfitted model may look like the following diagram:

To generate the learning curve, we can utilize the learning_curve package from scikit-
learn, and the plot_learning_curve function defined in http:/​/​scikit-​learn.​org/
stable/​auto_​examples/​model_​selection/​plot_​learning_​curve.​html.

Best practice 18 – modeling on large-scale
datasets
We have gained experience working with large datasets in Chapter 8, Scaling Up Prediction
to Terabyte Click Logs. There are a few tips that can help you model on large-scale data more
efficiently.

First, start with a small subset, for instance, a subset that can fit on your local machine. This
can help speed up early experimentation. Obviously, you don't want to train on the entire
dataset just to find out whether SVM or random forest works better. Instead, you can
randomly sample data points and quickly run a few models on the selected set.

The second tip is choosing scalable algorithms, such as logistic regression, linear SVM, and
SGD-based optimization. This is quite intuitive.

http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html

Machine Learning Best Practices Chapter 10

[341]

Once you figure out which model works best, you can fine-tune it using more data points
and eventually train on the entire dataset. After that, don't forget to save the trained model.
This is the third tip. Training on a large dataset takes a long time, which you would want to
avoid redoing, if possible. We will explore saving and loading models in detail in the Best
practice 19 – saving, loading, and reusing section later in this chapter.

Best practices in the deployment and
monitoring stage
After performing all of the processes in the previous three stages, we now have a well-
established data preprocessing pipeline and a correctly trained prediction model. The last
stage of a machine learning system involves saving those resulting models from previous
stages and deploying them on new data, as well as monitoring the performance, and
updating the prediction models regularly.

Best practice 19 – saving, loading, and reusing
models
When machine learning is deployed, new data should go through the same data
preprocessing procedures (scaling, feature engineering, feature selection, dimensionality
reduction, and so on) as in previous stages. The preprocessed data is then fed in the trained
model. We simply cannot rerun the entire process and retrain the model every time new
data comes in. Instead, we should save the established preprocessing models and trained
prediction models after corresponding stages have been completed. In deployment mode,
these models are loaded in advance, and are used to produce the prediction results of the
new data.

We illustrate it via the diabetes example where we standardize the data and employ an SVR
model, as follows:

>>> dataset = datasets.load_diabetes()
>>> X, y = dataset.data, dataset.target
>>> num_new = 30 # the last 30 samples as new data set
>>> X_train = X[:-num_new, :]
>>> y_train = y[:-num_new]
>>> X_new = X[-num_new:, :]
>>> y_new = y[-num_new:]

Machine Learning Best Practices Chapter 10

[342]

Preprocess the training data with scaling, as shown in the following commands:

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()
>>> scaler.fit(X_train)

Now save the established standardizer, the scaler object with pickle, as follows:

>>> import pickle
>>> pickle.dump(scaler, open("scaler.p", "wb"))

This generates the scaler.p file.

Move on with training a SVR model on the scaled data, as follows:

>>> X_scaled_train = scaler.transform(X_train)
>>> from sklearn.svm import SVR
>>> regressor = SVR(C=20)
>>> regressor.fit(X_scaled_train, y_train)

Save the trained regressor object with pickle, as follows:

>>> pickle.dump(regressor, open("regressor.p", "wb"))

This generates the regressor.p file.

In the deployment stage, we first load the saved standardizer and regressor object from
the preceding two files, as follows:

>>> my_scaler = pickle.load(open("scaler.p", "rb"))
>>> my_regressor = pickle.load(open("regressor.p", "rb"))

Then preprocess the new data using the standardizer and make prediction with the
regressor object just loaded, as follows:

>>> X_scaled_new = my_scaler.transform(X_new)
>>> predictions = my_regressor.predict(X_scaled_new)

We also demonstrate how to save and restore models in TensorFlow as a bonus session. As
an example, we train a simple logistic regression model on the cancer dataset, as follows:

>>> import tensorflow as tf
>>> from sklearn import datasets
>>> cancer_data = datasets.load_breast_cancer()
>>> X = cancer_data.data
>>> Y = cancer_data.target
>>> n_features = int(X.shape[1])
>>> learning_rate = 0.005

Machine Learning Best Practices Chapter 10

[343]

>>> n_iter = 200
>>> x = tf.placeholder(tf.float32, shape=[None, n_features])
>>> y = tf.placeholder(tf.float32, shape=[None])
>>> W = tf.Variable(tf.zeros([n_features, 1]), name='W')
>>> b = tf.Variable(tf.zeros([1]), name='b')
>>> logits = tf.add(tf.matmul(x, W), b)[:, 0]
>>> cost = tf.reduce_mean(
 tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=logits))
>>> optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
>>> sess = tf.Session()
>>> sess.run(tf.global_variables_initializer())
>>> for i in range(1, n_iter+1):
... _, c = sess.run([optimizer, cost], feed_dict={x: X, y: Y})
... if i % 10 == 0:
... print('Iteration %i, training loss: %f' % (i, c))
Iteration 10, training loss: 0.744104
Iteration 20, training loss: 0.299996
Iteration 30, training loss: 0.278439
...
...
...
Iteration 180, training loss: 0.189589
Iteration 190, training loss: 0.186912
Iteration 200, training loss: 0.184381

Hopefully, these all look familiar to you. If not, feel free to review our TensorFlow
implementation of logistic regression in Chapter 7, Predicting Online Ads Click-through with
Logistic Regression. Now here comes the model saving part. Let's see how it is done by
performing the following steps:

First we create a saver object in TensorFlow, as follows:1.

>>> saver = tf.train.Saver()

Save the model (or more specifically, the weight and bias variables) in a local file,2.
as follows:

>>> file_path = './model_tf'
>>> saved_path = saver.save(sess, file_path)
>>> print('model saved in path: {}'.format(saved_path))
model saved in path: ./model_tf

Then we can restore the saved model. Before that, let's delete the current graph3.
so it is more clear that we are actually loading a model from a file, as follows:

>>> tf.reset_default_graph()

Machine Learning Best Practices Chapter 10

[344]

Now we import the graph and see all tensors in the graph, as follows:4.

>>> imported_graph = tf.train.import_meta_graph(file_path+'.meta')

Finally, run a session and restore the model, as follows:5.

>>> with tf.Session() as sess:
... imported_graph.restore(sess, file_path)
... W_loaded, b_loaded = sess.run(['W:0','b:0'])
... print('Saved W = ', W_loaded)
... print('Saved b = ', b_loaded)
Saved W = [[7.76923299e-02]
 [1.78780090e-02]
 [6.56032786e-02]
 [1.02017745e-02]
...
...
...
 [-2.42149338e-01]
 [1.18054114e-02]
 [-1.14070164e-04]]
Saved b = [0.13216525]

We print out the weight and bias of the trained and saved model.

Best practice 20 – monitoring model performance
The machine learning system is now up and running. To make sure everything is on the
right track, we need to conduct a performance check on a regular basis. To do so, besides
making a prediction in real time, we should record the ground truth at the same time.

Continue the previous diabetes example with a performance check as follows:

>>> from sklearn.metrics import r2_score
>>> print('Health check on the model, R^2:
 {0:.3f}'.format(r2_score(y_new, predictions)))
Health check on the model, R^2: 0.613

We should log the performance and set an alert for a decayed performance.

Machine Learning Best Practices Chapter 10

[345]

Best practice 21 – updating models regularly
If the performance is getting worse, chances are that the pattern of data has changed. We
can work around this by updating the model. Depending on whether online learning is
feasible or not with the model, the model can be modernized with the new set of data
(online updating), or retrained completely with the most recent data.

Summary
The purpose of the last chapter of this book is to prepare ourselves for real-world machine
learning problems. We started with the general workflow that a machine learning solution
follows: data preparation, training sets generation, algorithm training, evaluation and
selection, and finally, system deployment and monitoring. We then went through in depth
the typical tasks, common challenges, and best practices for each of these four stages.

Practice makes perfect. The most important best practice is practice itself. Get started with a
real-world project to deepen your understanding and apply what we have learned
throughout the entire book.

Exercises
Can you use word embedding to extract text features and redo the newsgroup
classification project in Chapter 5, Classifying Newsgroup Topics with Support
Vector Machines? (note that you might not be able to get better results with word
embedding than tf-idf, but it is good practice.)
Can you find several challenges in Kaggle (www.kaggle.com) and practice what
you have learned throughout the entire book?

https://www.kaggle.com/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Building Machine Learning Systems with Python - Third Edition
Luis Pedro Coelho, Willi Richert, Matthieu Brucher

ISBN: 978-1-78862-322-3

Build a classification system that can be applied to text, images, and sound
Employ Amazon Web Services (AWS) to run analysis on the cloud
Solve problems related to regression using scikit-learn and TensorFlow
Recommend products to users based on their past purchases
Understand different ways to apply deep neural networks on structured data
Address recent developments in the field of computer vision and reinforcement
learning

https://www.packtpub.com/big-data-and-business-intelligence/building-machine-learning-systems-python-third-edition

Other Books You May Enjoy

[347]

Machine Learning Algorithms - Second Edition
Giuseppe Bonaccorso

ISBN: 978-1-78934-799-9

Study feature selection and the feature engineering process
Assess performance and error trade-offs for linear regression
Build a data model and understand how it works by using different types of
algorithm
Learn to tune the parameters of Support Vector Machines (SVM)
Explore the concept of natural language processing (NLP) and recommendation
systems
Create a machine learning architecture from scratch

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-algorithms-second-edition

Other Books You May Enjoy

[348]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
accuracy 127
activation function 296
advertising click-through prediction
 overview 168
AI Plus Human Intelligence 10
AI-based Assistance 10
algorithms
 selecting 335
AlphaGo 10
Amazon Web Services
 URL 323
Anaconda
 reference link 39
anomaly detection 77
Apache Hadoop
 URL 323
Apache Spark, components
 GraphX 236
 machine learning library (MLlib) 236
 spark core 235
 spark sql 236
 spark streaming 236
Apache Spark
 Apache Hadoop YARN 239
 Apache Mesos 239
 breaking down 235
 essentials, learning 235
 installing 236
 kubernetes 239
 programs, deploying 238
 programs, launching 238
 standalone 239
Arcene Dataset
 reference link 157
Area Under the Curve (AUC) 130

Artificial Intelligence (AI) 13
artificial neural networks (ANNs) 16, 294
attribute 110

B
backpropagation 298
Bag of Words (BoW) 63, 330
bagging 35
Bayes' theorem
 about 110
 learning, by examples 110, 112
bias 19
bias-variance trade-off 21
binary classification 106
boosting 37
bootstrap aggregating 35, 196
bootstrapping 35
Box-Cox transformation 34
breast cancer classification
 with TensorFlow, using SVM 164, 166

C
cardiotocography
 fetal state classification 162, 163
categorical data 169, 170
categorical features
 converting, to numerical 203, 204
 dimensionality, reducing 326
 documenting 329
 encoding 324
 extracting, from text data 330, 332, 333
 feature engineering, performing with domain

expertise 328
 feature engineering, performing without domain

expertise 328
 features, selecting 324
 hashing 254

[350]

 identifying, with numerical values 324
 rescale features, deciding 327
class imbalance 117
classification
 about 105
 performance evaluation 127, 130, 131
 working with 105
click-through rate (CTR) 168
coefficients 207
Common Business Oriented Language (COBOL)

11

computers
 language, interpretation 45, 47
confusion matrix 128
Continuous Bag of Words (CBOW) 330
convex 208
Convolutional Neural Network (CNN) models 48
corpora 49
corpus 49, 51
cost function 14
Cross-Industry Standard Process for Data Mining

(CRISP-DM)
 about 29
 business understanding 29
 data preparation 29
 data understanding 29
 deployment 29
 evaluation 29
 exploring 29
 feature engineering 29
 modeling 29
 preprocessing 29
crossover 16

D
data mining 29
data preparation stage
 best practices 317
 field values, maintaining 318
 fields, collecting 317
 large-scale data, storing 323
 missing data, dealing with 318, 321
 project goal 317
data preprocessing 323
Data Technology (DT) 12

data
 classifying, with logistic regression 206
dataframes 236
datasets
 training, with online learning 224, 226
decision tree regression
 about 283
 estimating 285
 implementing 285, 288
decision tree
 ad click-through, predicting 190, 193, 195
 C4.5 173
 CHi-squared Automatic Interaction Detector

(CHAID) 174
 Classification and Regression Tree (CART) 174
 constructing 173
 ensembling 196
 exploring, from root to leaves 170, 172
 implementing, from scratch 181, 182, 184, 187,

189

 Iterative Dichotomiser 3 (ID3) 173
 metrics, for measuring split 175, 176, 179
 random forest, implementing TensorFlow used

198, 199
deep learning (DL) 294
deep neural networks
 about 30
 binning 34
 label encoding 31
 missing values 31
 one hot encoding 32
 polynomial features 33
 power transform 34
 scaling 33
deployment stage
 best practices 341
dimensionality reduction 28, 69
Dorothea Dataset
 reference link 157
Dow Jones Industrial Average (DJIA) 266

E
early stopping approach 27
edges 295
Elbow method 89

[351]

ensemble technique 196
entropy 177
evaluation
 best practices 334

F
feature engineering
 about 30, 254, 268, 270, 323
 binarization 328
 discretization 328
 interaction 329
 polynomial transformation 329
feature hashing 254
feature hashing, features
 device_model 254
 gender 254
 site_domain 254
feature interaction 257
feature projection 28
feature selection 28, 222
feature-based bagging 196
features 264
feed-forward neural network 295
fetal state classification
 on cardiotocography 162, 163
frequency-inverse document frequency (tf-idf 93
fundamental analysis 263

G
Gaussian 33
Gaussian kernel 153
generalization 18
Genetic Algorithms (GA) 16
Gensim
 about 48
 functionalities 56
 semantics 56
 topic modeling 56
Gini Impurity 175, 283
Google Cloud Storage
 URL 323
gradient descent 211
Graphical Processing Units (GPUs) 16

H
Hadoop Distributed File System (HDFS) 242
hashing collision 255
hashing trick 254
Heterogeneity Activity Recognition Dataset
 reference link 157
HIGGS Dataset
 reference link 157
high bias 20
high variance 19
hinge loss 143
holdout method 25
hot encoding 203
hyperplane 138

I
imputing 31
Information Gain 175, 177, 283
interaction 33
Internet of Things (IoT) 11
interquartile range 33

K
k equal-sized 24
k-fold cross-validation 24, 132, 133, 135
k-means clustering
 implementing, from scikit-learn 88
 implementing, from scratch 79, 81, 83, 84, 85,

87

 k value, selecting 89, 91
 working 78, 79
k-means
 used, for clustering newsgroups data 77, 91, 93,

94

k-nearest neighbors (KNN) 327
kernel function 153
kernels, support vector machine (SVM)
 used, for solving linearly non-separable problems

151, 152, 156
Kubernetes, for Spark
 reference link 239

[352]

L
label encoding 31
labeled data 14
labels 105
Laplace smoothing 115
large-scale datasets
 modeling 340
latent Dirichlet allocation (LDA)
 used, for topic modeling 99, 100, 102
leaf 171
learning 9
learning curve 338
learning rate 211
Leave-One-Out-Cross-Validation (LOOCV) 24
likelihood 113
linear kernels
 and RBF kernels, selecting between 156, 158
linear regression
 about 275
 implementing 276, 278, 281
Linearly separable 335
logistic (sigmoid) function 296
logistic function
 about 206
 jumping, to logistic regression 207, 210
logistic regression model
 ad click-through, predicting gradient descent

used 217
 training 211
 training, gradient descent used 211, 213, 215,

217

 training, stochastic gradient descent used 219
 training, with regularization 221
logistic regression
 about 275, 335
 decision tree 337
 implementing, TensorFlow used 229
 neural networks 337
 SVM 337
 used, for classifying data 206
loss function 14
low bias 19

M
machine 9, 330
machine learning algorithms
 development, history 16
machine learning library (MLlib) 236
machine learning tasks
 reinforcement learning 15
 supervised learning 14
 types 14
 unsupervised learning 14
machine learning technology
 overview 13
machine learning
 about 9
 bias-variance trade-off 19
 data, generalizing 17
 defining 9
 need for 9
 overfitting 19
 overfitting, avoiding with cross-validation 23
 overfitting, avoiding with regularization 26, 27
 solution workflow 316
 underfitting 19
Massive Open Online Courses (MOOCs) 13
matplotlib package
 reference link 60
matrix 28
mean 31
mean absolute error (MAE) 306
mean squared error (MSE) 22, 208, 275
median 31
Microsoft's AI chatbot 46
Miniconda
 reference link 39
missing data imputation 319
mode 31
model performance
 monitoring 344
model training
 best practices 334
model tuning 132, 133, 135
models
 averaging 35
 bagging 35

[353]

 boosting 37
 combining 34
 loading 341
 reusing 341
 saving 341
 stacking 38
 updating 345
 voting 35
Modified National Institute of Standards and

Technology (MNIST) 107
monitoring stage
 best practices 341
Moore's law 17
multi-label classification 108
multi-layer perceptron (MLP) 302
multiclass classification 107
 handling 227, 228
multinomial classification 107
multinomial logistic regression 227
mutation 16

N
named-entity recognition (NER) 109
Named-Entity Recognition (NER)
 about 54
 reference link 54
National Institute of Standards and Technology

107

natural language 45
natural language processing (NLP) 46, 333
Natural Language Toolkit (NLTK)
 about 42, 48
 reference link 48
Naïve 110
Naïve Bayes 335
Naïve Bayes (NB)
 exploring 110
Naïve Bayes
 implementing, from scratch 116, 118, 120, 123,

125

 implementing, with scikit-learn 126, 127
 mechanics 113, 114, 116
nested cross-validation
 about 25
 inner cross-validation 25

 outer cross-validation 25
neural networks
 about 294
 Hidden layer 294
 implementing 299, 301, 304
 Input layer 294
 Output layer 294
newsgroup topics
 classifying, with SVM 158, 161
newsgroups data
 clustering, k-means used 77, 91, 93, 94
 exploring 60, 62
 k-means clustering, working 78, 79
 obtaining 56, 58, 59
 reference link 57
 underlying topics, discovering in 95
 visualizing, with t-distributed Stochastic Neighbor

Embedding (t-SNE) 69
NLP libraries
 NLP basics, selecting 47, 48
no free lunch theorem 13
nodes 295
non-convex 208
Non-negative matrix factorization (NMF)
 about 70
 used, for topic modeling 96, 97, 99
numerical data 169, 170
NumPy
 URL 40

O
offline learning 224
one hot encoding 32
one-of-K 32
one-versus-one strategy
 with SVM 146, 148, 151
one-versus-rest strategy
 with SVM 146, 148, 151
online learning 224
optimal hyperplane
 determining, with SVM 140, 141, 142
ordinal feature 170
outliers
 handling, with SVM 143, 144
overfitting

[354]

 about 19
 diagnosing 338, 340
 reducing 337

P
PageRank (PR) 236
Pandas
 URL 41
Part-Of-Speech (PoS) 47
phase exploration 29
phase preprocessing 29
PoS tagging 53
posterior 113
predictive variables 105
Pregel 236
pretrained models 332
principal component analysis (PCA) 70, 326
prior 113
PySpark
 click logs, loading 243, 245
 data, caching 245
 data, splitting 245
 logistic regression model, testing 250, 252
 logistic regression model, training 250, 252
 massive click logs, learning on Spark 242
 one-hot encoding categorical features 246, 249
 programming 239, 241
Python, packages
 installing 40
 NumPy 40
 Pandas 41
 scikit-learn 41
 SciPy 41
 TensorFlow 41
Python
 environment, setting up 38

Q
qualitative 170
quantitative 170

R
radial basis function (RBF) kernel 153
Radim Rehurek
 reference link 48

random forest
 used, for feature selection 231
random-access memory (RAM) 236
Receiver Operating Characteristic (ROC) 130
Rectified Linear Unit (ReLU) 296
regression 264, 265
regression algorithms
 data, acquiring 271, 274
 decision tree regression, estimating 282, 285,

291

 decision tree regression, implementing 285,
288, 291

 feature engineering 267, 270
 features, generating 271, 274
 linear regression, estimating 275
 linear regression, implementing 276, 278, 281
 neural networks, estimating 294, 298
 neural networks, implementing 299, 301, 304
 regression performance, evaluating 306
 stock price, predicting 307, 309, 312
 stock prices, predicting 265
 support vector regression (SVR), estimating 292
 support vector regression (SVR), implementing

293

regression tree 283
regularization 25, 222
relu function 297
Resilient Distributed Datasets (RDD)
 about 239
 dataset 239
 distributed 239
 resilient 239
Reuters 49
root 170
root mean squared error (RMSE) 306

S
scale-out 323
scale-up 323
scheduling model 25
Scikit-learn
 URL 41
scikit-learn
 used, for implementing Naïve Bayes 126, 127
SciPy

[355]

 URL 41
seaborn package
 reference link 60
selection stage
 best practices 334
semantic 56
separating boundaries
 finding, with SVM 138
separating hyperplane
 identifying, with SVM 139
Sigmoid function 206
softmax regression 227
software
 installing 38
 setting up 38
spaCy
 about 48
 reference link 48
spark core 236
Spark
 multiple variables, combining 257, 259
 used, for feature engineering on categorical

variables 254
sparse matrix 33
stacking 38
steepest descent 211
step size 211
Stochastic Dual Coordinate Ascent (SDCA) 166
stochastic gradient descent (SGD) 219, 280
stock index 265
stock market
 overview 263
stock price
 overview 263
 predicting, with regression algorithms 265, 307,

309, 312
stop words 67
sum of squared errors (SSE) 89
support vector machine (SVM)
 about 138, 292
 implementing 145, 146
 kernels 151
 used, for breast cancer classification with

TensorFlow 164, 166
 used, for classifying newsgroup topics 158, 161

 used, for determining optimal hyperplane 140,
141, 142

 used, for finding separating boundaries 138
 used, for handling outliers 143, 144
 used, for identifying separating hyperplane 139
 used, for one-versus-one strategy 146, 148, 151
 used, for one-versus-rest strategy 146, 148, 151
 working, through use cases 138
support vector regression (SVR)
 about 292
 estimating 292
 implementing 293
support vectors 138

T
t-distributed Stochastic Neighbor Embedding (t-

SNE)
 for dimensionality reduction 70, 71, 73
 newsgroups data, visualizing with 69
 parameters 71
tanh function 297
Tay 46
technical analysis 264
TensorFlow
 URL 41
 used, for implementing logistic regression 229
term frequency (tf) 93, 330
term frequency-inverse document frequency (tf-idf)

330

terminal node 171
testing samples 18
testing sets 18
text classification application 109
text data
 features 63
 lemmatizing words 68
 preprocessing 66
 stemming 68
 stop words, dropping 67
 word token occurrence, counting 63, 65, 66
TextBlob
 about 48
 reference link 49
tokenization 51, 53
topic modeling

 about 56
 LDA, using 99, 100, 102
 NMF, using 96, 97, 99
training samples 18
training sets 18
training sets generation stage
 best practices 323
true positive rate 128
Turing test 46
types, classification
 about 106
 binary classification 106
 multi-label classification 108
 multiclass classification 107
types, unsupervised learning
 association 77
 clustering 77
 projection 77

U
underfitting
 about 20
 diagnosing 338
underlying topics

 discovering, in newsgroups data 95
units 295
unsupervised learning 70, 76, 77
URL Reputation Dataset
 reference link 156

V
validation samples 18
validation sets 18
variance 19

W
weak learners 36
weighted MSE 283
word embedding 330
word lemmatization 55
word stemming 54
WordNet 49

Y
Yet Another Resource Negotiator (YARN) 239
YouTube Multiview Video Games Dataset
 reference link 156

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1: Fundamentals of Machine Learning
	Getting Started with Machine Learning and Python
	A very high-level overview of machine learning technology
	Types of machine learning tasks
	A brief history of the development of machine learning algorithms

	Core of machine learning – generalizing with data
	Overfitting, underfitting, and the bias-variance trade-off
	Avoiding overfitting with cross-validation
	Avoiding overfitting with regularization
	Avoiding overfitting with feature selection and dimensionality reduction

	Preprocessing, exploration, and feature engineering
	Missing values
	Label encoding
	One hot encoding
	Scaling
	Polynomial features
	Power transform
	Binning

	Combining models
	Voting and averaging
	Bagging
	Boosting
	Stacking

	Installing software and setting up
	Setting up Python and environments
	Installing the various packages
	NumPy
	SciPy
	Pandas
	Scikit-learn
	TensorFlow

	Summary
	Exercises

	Section 2: Practical Python Machine Learning By Example
	Exploring the 20 Newsgroups Dataset with Text Analysis Techniques
	How computers understand language - NLP
	Picking up NLP basics while touring popular NLP libraries
	Corpus
	Tokenization
	PoS tagging
	Named-entity recognition
	Stemming and lemmatization
	Semantics and topic modeling

	Getting the newsgroups data
	Exploring the newsgroups data
	Thinking about features for text data
	Counting the occurrence of each word token
	Text preprocessing
	Dropping stop words
	Stemming and lemmatizing words

	Visualizing the newsgroups data with t-SNE
	What is dimensionality reduction?
	t-SNE for dimensionality reduction

	Summary
	Exercises

	Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms
	Learning without guidance – unsupervised learning
	Clustering newsgroups data using k-means
	How does k-means clustering work?
	Implementing k-means from scratch
	Implementing k-means with scikit-learn
	Choosing the value of k
	Clustering newsgroups data using k-means

	Discovering underlying topics in newsgroups
	Topic modeling using NMF
	Topic modeling using LDA
	Summary
	Exercises

	Detecting Spam Email with Naive Bayes
	Getting started with classification
	Types of classification
	Applications of text classification

	Exploring Naïve Bayes
	Learning Bayes' theorem by examples
	The mechanics of Naïve Bayes
	Implementing Naïve Bayes from scratch
	Implementing Naïve Bayes with scikit-learn

	Classification performance evaluation
	Model tuning and cross-validation
	Summary
	Exercise

	Classifying Newsgroup Topics with Support Vector Machines
	Finding separating boundary with support vector machines
	Understanding how SVM works through different use cases
	Case 1 – identifying a separating hyperplane
	Case 2 – determining the optimal hyperplane
	Case 3 – handling outliers

	Implementing SVM
	Case 4 – dealing with more than two classes

	The kernels of SVM
	Case 5 – solving linearly non-separable problems

	Choosing between linear and RBF kernels

	Classifying newsgroup topics with SVMs
	More example – fetal state classification on cardiotocography
	A further example – breast cancer classification using SVM with TensorFlow
	Summary
	Exercise

	Predicting Online Ad Click-Through with Tree-Based Algorithms
	Brief overview of advertising click-through prediction
	Getting started with two types of data – numerical and categorical
	Exploring decision tree from root to leaves
	Constructing a decision tree
	The metrics for measuring a split

	Implementing a decision tree from scratch
	Predicting ad click-through with decision tree
	Ensembling decision trees – random forest
	Implementing random forest using TensorFlow

	Summary
	Exercise

	Predicting Online Ad Click-Through with Logistic Regression
	Converting categorical features to numerical – one-hot encoding and ordinal encoding
	Classifying data with logistic regression
	Getting started with the logistic function
	Jumping from the logistic function to logistic regression

	Training a logistic regression model
	Training a logistic regression model using gradient descent
	Predicting ad click-through with logistic regression using gradient descent
	Training a logistic regression model using stochastic gradient descent
	Training a logistic regression model with regularization

	Training on large datasets with online learning
	Handling multiclass classification
	Implementing logistic regression using TensorFlow
	Feature selection using random forest
	Summary
	Exercises

	Scaling Up Prediction to Terabyte Click Logs
	Learning the essentials of Apache Spark
	Breaking down Spark
	Installing Spark
	Launching and deploying Spark programs

	Programming in PySpark
	Learning on massive click logs with Spark
	Loading click logs
	Splitting and caching the data
	One-hot encoding categorical features
	Training and testing a logistic regression model

	Feature engineering on categorical variables with Spark
	Hashing categorical features
	Combining multiple variables – feature interaction

	Summary
	Exercises

	Stock Price Prediction with Regression Algorithms
	Brief overview of the stock market and stock prices
	What is regression?
	Mining stock price data
	Getting started with feature engineering
	Acquiring data and generating features

	Estimating with linear regression
	How does linear regression work?
	Implementing linear regression

	Estimating with decision tree regression
	Transitioning from classification trees to regression trees
	Implementing decision tree regression
	Implementing regression forest

	Estimating with support vector regression
	Implementing SVR

	Estimating with neural networks
	Demystifying neural networks
	Implementing neural networks

	Evaluating regression performance
	Predicting stock price with four regression algorithms
	Summary
	Exercise

	Section 3: Python Machine Learning Best Practices
	Machine Learning Best Practices
	Machine learning solution workflow
	Best practices in the data preparation stage
	Best practice 1 – completely understanding the project goal
	Best practice 2 – collecting all fields that are relevant
	Best practice 3 – maintaining the consistency of field values
	Best practice 4 – dealing with missing data
	Best practice 5 – storing large-scale data

	Best practices in the training sets generation stage
	Best practice 6 – identifying categorical features with numerical values
	Best practice 7 – deciding on whether or not to encode categorical features
	Best practice 8 – deciding on whether or not to select features, and if so, how to do so
	Best practice 9 – deciding on whether or not to reduce dimensionality, and if so, how to do so
	Best practice 10 – deciding on whether or not to rescale features
	Best practice 11 – performing feature engineering with domain expertise
	Best practice 12 – performing feature engineering without domain expertise
	Best practice 13 – documenting how each feature is generated
	Best practice 14 – extracting features from text data

	Best practices in the model training, evaluation, and selection stage
	Best practice 15 – choosing the right algorithm(s) to start with
	Naïve Bayes
	Logistic regression
	SVM
	Random forest (or decision tree)
	Neural networks

	Best practice 16 – reducing overfitting
	Best practice 17 – diagnosing overfitting and underfitting
	Best practice 18 – modeling on large-scale datasets

	Best practices in the deployment and monitoring stage
	Best practice 19 – saving, loading, and reusing models
	Best practice 20 – monitoring model performance
	Best practice 21 – updating models regularly

	Summary
	Exercises

	Other Books You May Enjoy
	Index

