
Jonathan Lebensold

React Native
Cookbook
BRINGING THE WEB TO NATIVE PLATFORMS

Jonathan Lebensold

React Native Cookbook
Bringing the Web to Native Platforms

978-1-491-99384-2

[LSI]

React Native Cookbook
by Jonathan Lebensold

Copyright © 2018 Paradem Consulting. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber and Meg Foley
Production Editor: Kristen Brown
Copyeditor: Kim Cofer
Proofreader: Christina Edwards

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2018: First Edition

Revision History for the First Edition
2018-02-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491993842 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. React Native Cookbook, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491993842

Table of Contents

Preface. v

1. The React Native Toolchain. 1
1.1 Setting Up Your Development Environment 1
1.2 Writing ES6 with Babel 4
1.3 Organizing Project Files 7
1.4 Dealing with Catastrophic Failure 14

2. Living in the React Native Ecosystem. 19
2.1 Stop Repeating Yourself: Implement Custom Components 19
2.2 Adding an Open Source Progress Bar 23
2.3 Sharing Custom Components 30
2.4 Routing Between Login Screens 37
2.5 Using Redux for Global State Management in Redux 47

3. Style and Design. 63
3.1 Composing Stylesheets 63
3.2 Building Flexible Layouts with Flexbox 66
3.3 Importing Image Vectors and Icons 69
3.4 Looping Animations 76

4. Managing Hardware Platforms. 79
4.1 Asking for Permission to Use Device Hardware (iOS) 79
4.2 Fetching Paginated Requests 88
4.3 Save Application State with Redux and Local Storage 93
4.4 Using the Filesystem 95

iii

5. Lift Off! Sharing Your App. 103
5.1 Automate Publishing Your App 103
5.2 Sharing Your iOS App with Beta Testers 108
5.3 Configuring Application Settings 110

6. Making Your App Maintainable. 119
6.1 Protect Your Components with PropTypes 119
6.2 Check Runtime Errors with Flow 124
6.3 Automate Your Component Tests 130
6.4 Maintain Coding Standards with ESLint 136
6.5 Write Your App with Reason 145

Index. 157

iv | Table of Contents

Preface

When my first React Native application landed on the App Store, I knew the folks
behind this technology were onto something special. At the time, I had only spent a
few days working with the iOS ecosystem and found myself overwhelmed with
Xcode, Objective-C, and the libraries for iOS. My last foray into iOS development was
almost 8 years ago and, with a background in web development, I was intimidated. I
also knew there were lots of others in the same boat.

React Native changed all of this overnight. I found myself at home with a design phi‐
losophy and set of skills I had developed as a web application developer. Better still,
my app wasn’t going to be a second-class citizen. I can’t stand rigid animations and
clumsy scrolling. React Native is an open source toolset that brings native application
development to the countless JavaScript developers the world over.

Who Should Read This Book
You are already familiar with programming and JavaScript in particular. This book
assumes you are tackling common software design choices that arise when building
native applications. You may be working in your garage on the next great social
media platform, or turning a lumbering enterprise system into a zippy mobile experi‐
ence. If you’re trying to bring a cross-platform native application to market quickly
and have chosen React, this book is for you. Every section of the book is rooted in
personal experiences building native applications.

Why I Wrote This Book
There is a ton of information online about React Native: the documentation is plenti‐
ful, and between StackOverflow and the React Native issues on GitHub, you will be
able to solve most discrete programming problems. This book tries to go a little
deeper: how do you organize a project? How can you design a user experience that
accounts for asking users for permission to use their camera? These are common

v

questions that require some thought and don’t necessarily have one solution. This is a
cookbook: the recipes should provide a great starting point. Let them inspire you to
come up with your own solutions, or produce something when you’re in a pinch!

A Word on JavaScript Today
It feels like every week JavaScript reinvents itself with a new name, a new set of lan‐
guage features, and new transpilers and compilers! Whether you call it ECMAScript,
ES6, ES6+, or find yourself transpiling from TypeScript, CoffeeScript, NativeScript,
Flow, Elm, or Reason, the ultimate output runs on a JavaScript virtual machine. Java‐
Script fatigue is real: with so much movement, how do you stay focused on a stable set
of technologies?

There is no right answer. Know that all of these tools are simply trying to make you,
the software developer, more productive. If these conditions are satisfied, then you
should sleep well at night knowing that when the next wave crashes, you will be in the
company of a supportive open source community preparing to catch the undercur‐
rent. For the purposes of this book, I use the terms JavaScript and ES6 interchangea‐
bly. In the final section, I challenge you to embrace this shifting landscape by study‐
ing how the same component written in ES6 can be rewritten with Reason, a func‐
tional programming language built on top of OCaml!

Navigating This Book
This book is organized into six chapters:

• Chapter 1 discusses JavaScript tools and how they work with React Native.
• Chapter 2 explores the React Native ecosystem: how you leverage what is avail‐

able and how to bring it into your project.
• Chapters 3 and 4 go into some common challenges seen in most applications:

handling application state, dealing with device I/O, and structuring your design
assets.

• Chapter 5 describes the deployment process and some techniques for reducing
your delivery time.

• Chapter 6 tackles writing maintainable code: making code reusable, portable,
self-documenting, and adding tools that catch bugs before your customers do.

Like any cookbook, it’s best to flip through the examples and see how they connect
with the work you are trying to accomplish. If you are already familiar with React
Native or feel at home with Node, NPM, and Yarn, I suggest skipping Chapter 2. If
you have already written native applications, then Chapter 1 is probably worth flip‐
ping through.

vi | Preface

Online Resources
React Native relies on a suite of tools that can be loosely grouped into three cate‐
gories: JavaScript tools, Apple SDKs, and Android SDKs. React Native bundles all
your code into a JavaScript bundle that then runs on the native platform (for exam‐
ple, Android or iOS). Ensure these native platforms are installed correctly by follow‐
ing the React Native Getting Started guide.

If you have no experience with React, the React Overview should help you stay ori‐
ented. I recommend looking through some of these references before starting this
book. This list touches on a collection of technologies that underpin much of the
React Native developer experience, including JavaScript/ES6, NPM, React, React
Native, and Redux:

• The definitive guide: React Native: Getting Started
• A quick primer on the transpiler powering our JavaScript pipeline: Learn ES2015
• A great introduction to the Node Package Manager (NPM): What is npm?
• An excellent and concise explanation of React: React Overview
• A community directory of all things React Native: Awesome React Native
• Free video tutorials discussing state management by the creator of Redux: Get‐

ting Started with Redux
• A curated directory of React Native packages: Opinionated catalog of Open

Source React Native packages
• A listing of React Native packages available via NPM: An open catalog of React

Native libraries

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Preface | vii

http://bit.ly/2GWQDfo
http://bit.ly/2nIA4vr
http://bit.ly/2GWQDfo
http://bit.ly/2nJb1Z8
http://bit.ly/2EalFyf
http://bit.ly/2nIA4vr
http://bit.ly/2EoLga3
http://bit.ly/2ENagFH
http://bit.ly/2ENagFH
https://native.directory
https://native.directory
http://bit.ly/2E8wuRF
http://bit.ly/2E8wuRF

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

viii | Preface

http://oreilly.com/safari
http://oreilly.com/safari

Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/reactNativeCookbook.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to all the reviewers of this book: Spencer Carli, Matt Hamil, and Arnar Þór
Sveinsson. Their insights and technical feedback on a fast-changing ecosystem gave
me added confidence in the material included in this book. I take full responsibility
for the content of the book, but it would have been much less readable without their
suggestions.

This book would not have been possible without the Paradem team, particularly my
cofounder Kevin Pratt, who made it possible for me to focus on writing. I am also
grateful to Ezra Hopkins, Scott Luetke, and Abdullah Norozi, who were on hand as I
was working through the chapters. Scott Schaffter and Jay Perry at Bivee Inc. pro‐
vided me with the inspiration and encouragement to keep writing. Thank you
O’Reilly Media, and particularly Nan Barber, for offering feedback and guiding the
publishing process.

I would like to thank Facebook for sharing React Native with the world. I am also
grateful to the folks in the Reactiflux Discord server for offering tech support, partic‐
ularly with Reason. I am most thankful to all the individuals and organizations who
are contributing their knowledge and source code with the open source community.

Lastly, I wish to thank my loving wife, Tara, for cheering me on and providing
thoughtful insights.

Preface | ix

http://bit.ly/reactNativeCookbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

The React Native Toolchain

React Native lives in an ecosystem with dozens of little software tools. You have tran‐
spilers (Babel, Metro, Webpack), package managers (NPM, Yarn), linters, unit test
frameworks, and more. This chapter will cover the language basics and the minimum
set of open source tools you will be working with in your React Native project. You’re
probably writing your React Native application with JavaScript or some kind of tran‐
spiled source that compiles down to JavaScript, like TypeScript or ES6+. I hope this
chapter will help acquaint you with JavaScript’s breakneck speed.

Expo

Recently the React Native team has partnered with Expo to deliver
React Native applications in development without running a local
development environment. This is a great way to explore React
Native and get a taste, but you will likely want to work with the
hardware at some point, at which point a local development envi‐
ronment will be critical to your productivity.

1.1 Setting Up Your Development Environment
If you’re working with any of these tools in other web projects, you might find your‐
self having to troubleshoot your environment. Like a carpenter arriving on a job site,
you need to know how all the tools work and if they need to be fixed.

React Native is a package that includes three programming environments: Node.js,
iOS, and Android. NPM, the Node Package Manager, needs to be in good working
order.

1

https://expo.io

Problem
React Native is a software library that depends on a lot of different tools. How do we
know if all of them are configured correctly? Let’s review them and make sure.

Node and Watchman
Node.js (usually abbreviated to “Node”) enables your computer to run JavaScript
locally in the same way that a web browser runs JavaScript when a web page is exe‐
cuted. Because Node.js runs directly on top of your operating system, Node code can
wrap or bind to C libraries and solve the same programming problems that are suited
to languages like PHP, Python, PERL, and Ruby.

Watchman is a little utility that watches for file changes locally and triggers events.
This tool makes it possible to execute updated code on your Simulator without hav‐
ing to recompile the whole project. Installation is quick and easy.

Installing Node.js

Installing Node depends on your operating system. The best place
to get started is The Node.js website. If you are running on Mac
OS, you may find it preferable to install Node.js through Home‐
brew, a Mac OS package manager.

Check that Node is properly installed. You may find yourself with many versions of
Node.js installed on your computer. Version managers like the Node Version Man‐
ager (NVM) can help you keep different versions of Node installed, with each devel‐
opment project configured with its own version of Node.

POSIX-style operating systems (Linux, BSD, Mac OS) can rely on symbolic links
(symlink) to support multiple versions.

You shouldn’t be surprised if you have two versions of Node installed using Home‐
brew with Mac OS. This is what your installation should look like, except with your
own username and date information next to the directories listed:

$> which node
/usr/local/bin/node
$> node -v
v8.6.0

I’m using version 8.6.0 of Node; however, if I check the Homebrew directory (default
is /usr/local/Cellar) I will discover a symlink (alias to the actual location):

$>ls -l /usr/local/bin/node
lrwxr-xr-x 1 jon admin 29 27 Sep 15:14 /usr/local/bin/node ->
../Cellar/node/8.6.0/bin/node

2 | Chapter 1: The React Native Toolchain

http://bit.ly/2FUNzyJ
https://nodejs.org
https://github.com/creationix/nvm
https://github.com/creationix/nvm

A little more digging and I’ll find other versions of Node that have been superseded:

$>ls -l /usr/local/Cellar/node
 total 0
 drwxr-xr-x 14 jon admin 476 11 May 14:14 7.10.0
 drwxr-xr-x 14 jon admin 476 25 Apr 13:41 7.9.0
 drwxr-xr-x 14 jon admin 448 27 Sep 15:14 8.6.0

Your results will likely be different; however, what is important is that you have a
recent version of Node installed and accessible to your project.

NPM
The NPM is two things: a package management tool running from the command line
and a global catalog of open source packages available at your fingertips.

The react-native package in NPM includes JavaScript ES6 modules that rely on
platform-specific code. For example, the <Text /> React Native component is imple‐
mented by RCTText.m in iOS and ReactTextView.java in Android.

What About Using Yarn?

React Native has historically been set up with NPM, but Yarn is
gaining ground in the JavaScript community. Yarn is a faster alter‐
native to NPM that still relies on the NPM registry. A yarn.lock file
ensures that dependencies are maintained correctly. Yarn will start
by checking the yarn.lock file, then look for package.json, making
the transition to Yarn seamless.

NPM packages can live globally or within a node_modules folder for a given project.
React Native is best installed globally, whereas project-related dependencies should be
downloaded to a local folder. This approach allows you to run React Native’s
command-line tool, react-native-cli, anywhere. Specific versions of the React
Native can be part of your project’s dependencies.

Check that NPM is properly installed
$> which npm
/usr/local/bin/npm

Your terminal should return with a path. Check the version:

$> npm -v
4.2.0

Install the React Native command-line tools
$> npm install -g react-native-cli

1.1 Setting Up Your Development Environment | 3

Xcode (required for iOS)
Xcode is Apple’s official development environment for building and running applica‐
tions on Mac OS and iOS. You will need Xcode (available only on Mac OS) installed
in order to compile the React Native components that are backed by Objective-C and
Swift.

Xcode also ships with command-line tools, which are necessary to build code from
the command line and to bind to the Mac OS libraries from Node.js.

Running Xcode Beta

With regular updates to iOS, you may have a beta of Xcode on your
development machine. Having multiple versions of Xcode will
result in multiple versions of the iOS Simulator. I’ve found it best
under these circumstances to launch the Simulator from Xcode
rather than the command line.

JDK
Android and Java go together like sugar and butter—together they make delicious
experiences possible. React Native on Android is no different. The React components
you write in JavaScript will ultimately touch the Android Java Virtual Machine. In
order to run Android locally, you need the Java Development Kit (JDK) installed.

Download the JDK (minimum version 8) from the Oracle website.

Android Studio
Android Studio is the official development environment for building and deploying
Android applications. It’s free to download. Once you have it set up, it comes with yet
another package manager. Fortunately, the React Native Getting Started guide goes
through all the details step by step.

1.2 Writing ES6 with Babel
Babel brings a 20-year programming language into the twenty-first century. With
Babel, you can write JavaScript with some syntactic enhancements that make your
code more expressive. Common patterns, like transforming data structures, handling
this in the appropriate scope, and inheriting from classes become part of the native
development experience.

Babel enables these syntactic improvements to the language through a series of syntax
transformers. Each transformer runs through your code, taking newer ES6 language
features and transforming them into equivalent behaviors in JavaScript syntax.

The following ES6 code is transformed automatically using the react-native preset.

4 | Chapter 1: The React Native Toolchain

http://bit.ly/1X9h0Ea
http://bit.ly/2Dbnmeu
http://bit.ly/2GWQDfo

Save the following to a file called babel-transform.js:
AsyncStorage.getItem("loginParameters").then((login) => {
 this.setState({ login });
});

From the command line, run:

$> babel babel-transform.js

Babel should return (formatted for readability):

var _this=this;

AsyncStorage.getItem("loginParams").then(function(login) {
 _this.setState({
 login: login
 });
});

The React Native preset has:

1. Expanded { login } into { login: login }.
2. Replaced the => operator with a reference to _this defined in the outer method

scope.

Working with React Native almost always means using React and the JSX preproces‐
sor. The JSX preprocessor enables XML syntax inside of JavaScript files. The Babel
transpiler has plug-ins for handling JSX out of the box.

Any of the React Native initialization scripts will include a .babelrc file in the root
folder of the application. It should look like this:

{
 "presets": ["react-native"]
}

At the time of this writing, the React Native preset is shorthand for the following
Babel transpilations:

• class-properties

• es2015-arrow-functions

• es2015-block-scoping

• es2015-classes

• es2015-computed-properties

• es2015-destructuring

• es2015-for-of

1.2 Writing ES6 with Babel | 5

• es2015-function-name

• es2015-literals

• es2015-modules-commonjs

• es2015-parameters

• es2015-shorthand-properties

• es2015-spread

• es2015-template-literals

• flow-strip-types

• object-assign

• object-rest-spread

• react-display-name

• react-jsx-source

• react-jsx

Problem
In the previous example, es2015-shorthand-properties and es2015-arrow-

functions were applied to the one-line code snippet referenced at the beginning of
this recipe.

Let’s add a new syntax transformer that will add support for do blocks to our environ‐
ment.

Solution
The do block is a helpful combination of a switch operator and a function. You may
find this syntax useful when switching out the appropriate React component based on
something in this.state or this.props:

$>npm i --save-dev babel-plugin-transform-do-expressions

Create a simple file called babel.js in your project folder:

WelcomeHeader = (username) => do {
 if(username !== undefined) {
 `Welcome, ${username}.`;
 } else {
 'Hello there, stranger!';
 }
}

6 | Chapter 1: The React Native Toolchain

console.log(WelcomeHeader('Mr. Robot'));
console.log(WelcomeHeader());

Add the transform to babel.rc:

{
 "presets": ["react-native"],
 "plugins": ["syntax-do-expressions"]
}

Now try converting the file with Babel:

$>babel babel.js
WelcomeHeader=function WelcomeHeader(username)
{return username!==undefined?'Welcome,
'+username+'.':'Hello there, stranger!';};
console.log(WelcomeHeader('Mr. Robot'));
console.log(WelcomeHeader());

Try running the code example with babel-node:

$>babel-node babel.js
Welcome, Mr. Robot.
Hello there, stranger!

See Also
Support for decorators is upcoming in Babel. Currently this transform can be han‐
dled using the transform-decorators-legacy transform.

Decorators are functions that wrap existing code. Since higher order functions—func‐
tions that call JSX components in other functions—are wrapping code, the decorator
transform provides syntax for declaring this wrapping code.

1.3 Organizing Project Files
Organizing code is tricky. One of the greatest software engineers of our time, Robert
C. Martin, shared the following insight about directory structures and how they
impact software architecture:

So what does the architecture of your application scream? ... do they scream: Rails, or
Spring/Hibernate, or ASP? ... Tell readers about the system, not about the frameworks
you used in your system. If you are building a health-care system, then when new pro‐
grammers look at the source repository, their first impression should be: “Oh, this is a
health-care system.”

—Robert C. Martin, Screaming
Architecture (30 September 2011)

With tools like react-native init and create-react-native-app we’re given a
great starting point for structuring our application. You should treat this as a starting
point and nothing more.

1.3 Organizing Project Files | 7

https://babeljs.io/docs/usage/cli/
http://bit.ly/2GX9kPW

Create React Native App

If you are looking for some project scaffolding, the React Commu‐
nity has put together create-react-native-app, a library that will
help you set up a React Native project with some helpful defaults.
This is a great tool as long as your project is purely written in Java‐
Script and a limited list of supported Expo libraries. Eventually, you
may want to eject the app from the scaffolding and manage the
build process yourself.

Problem
Your React Native application is taking off! You can barely keep the bits on the digital
shelves. You are responding to feature requests as soon as they come in. The result is
lots of new code. The architectural seams of your project are giving way: code is being
duplicated and you find yourself repeating components and business logic. Worst of
all, these duplicates are hard to find because your project structure doesn’t surface
dependencies to your project team.

Solution
There’s no one-size-fits-all solution to how to structure your application. Most React
Native applications will have directories that describe components, screens, state man‐
agement, and utilities. You will know that your structure fits well when you strike a
balance: having directories with a cluster of files that implement a feature and not
having too many folders to keep track of at any given time.

Some examples
It’s helpful to see the end in the beginning: how sophisticated will the application ulti‐
mately become? Will it need to be localized into multiple languages? Will it have to
support different user types or roles? Following are three example folder structures
from some popular open source React Native applications.

Notice how they all communicate a blueprint of the main aspects of the application.

Bullet
Bullet is a cryptocurrency management tool:

.
├── actions
├── api
├── assets
│ ├── fonts
│ └── icons
├── components
│ ├── adverts

8 | Chapter 1: The React Native Toolchain

http://bit.ly/2nQF0Oi

│ ├── bull
│ ├── converter
│ ├── currencies
│ ├── errors
│ ├── graphs
│ ├── navigations
│ ├── news
│ ├── portfolio
│ ├── search
│ └── utilities
├── configuration
├── constants
├── middleware
├── mock
├── navigations
├── properties
│ ├── languages
│ └── themes
├── reducers
├── schematics
├── screens
├── styles
└── utilities

Chain Conference app
This mobile application was built for a conference:

├── App
│ ├── Components
│ │ └── Styles
│ ├── Config
│ ├── Containers
│ │ └── Styles
│ ├── Fixtures
│ ├── I18n
│ │ └── languages
│ ├── Images
│ │ ├── Icons
│ │ │ └── sun-phases
│ │ └── sponsors
│ ├── Lib
│ ├── Navigation
│ │ └── Styles
│ ├── Redux
│ ├── Sagas
│ ├── Services
│ ├── Themes
│ ├── Transforms
│ └── Videos
├── AppIcon
├── Tests
│ ├── Components

1.3 Organizing Project Files | 9

│ ├── Sagas
│ └── Services
├── _art
├── android
└── ios

MatterMost mobile chat application
A sophisticated asynchronous chat application frontend to a cloud-based team
collaboration product:

├── android
├── app
│ ├── actions
│ │ ├── device
│ │ └── views
│ ├── components
│ │ ├── at_mention
│ │ ├── autocomplete
│ │ │ ├── at_mention
│ │ │ ├── channel_mention
│ │ │ └── emoji_suggestion
│ │ ├── channel_drawer
│ │ │ ├── channels_list
│ │ │ │ ├── filtered_list
│ │ │ │ ├── list
│ │ │ │ └── switch_teams
│ │ │ ├── drawer_swipper
│ │ │ └── teams_list
│ │ ├── channel_intro
│ │ ├── channel_link
│ │ ├── custom_list
│ │ │ ├── channel_list_row
│ │ │ └── user_list_row
│ │ ├── emoji
│ │ ├── emoji_picker
│ │ ├── error_list
│ │ ├── file_attachment_list
│ │ ├── file_upload_preview
│ │ ├── inverted_flat_list
│ │ ├── layout
│ │ ├── markdown
│ │ │ └── markdown_code_block
│ │ ├── offline_indicator
│ │ ├── options_context
│ │ ├── post
│ │ ├── post_attachment_opengraph
│ │ ├── post_body
│ │ ├── post_body_additional_content
│ │ ├── post_header
│ │ ├── post_list
│ │ ├── post_profile_picture

10 | Chapter 1: The React Native Toolchain

│ │ ├── post_textbox
│ │ │ └── components
│ │ │ └── typing
│ │ ├── profile_picture
│ │ ├── radio_button
│ │ ├── reactions
│ │ ├── root
│ │ ├── search_bar
│ │ ├── search_preview
│ │ ├── slack_attachments
│ │ ├── status_bar
│ │ └── status_icons
│ ├── constants
│ ├── i18n
│ ├── mattermost_managed
│ ├── notification_preferences
│ ├── push_notifications
│ ├── reducers
│ │ ├── device
│ │ ├── navigation
│ │ └── views
│ ├── screens
│ │ ├── about
│ │ ├── add_reaction
│ │ ├── channel
│ │ │ └── channel_post_list
│ │ ├── channel_add_members
│ │ ├── channel_info
│ │ ├── channel_members
│ │ ├── code
│ │ ├── create_channel
│ │ ├── edit_post
│ │ ├── image_preview
│ │ ├── load_team
│ │ ├── login
│ │ ├── login_options
│ │ ├── mfa
│ │ ├── more_channels
│ │ ├── more_dms
│ │ │ └── selected_users
│ │ ├── notification
│ │ ├── options_modal
│ │ ├── root
│ │ ├── search
│ │ ├── select_server
│ │ ├── select_team
│ │ ├── settings
│ │ │ ├── advanced_settings
│ │ │ ├── general
│ │ │ ├── notification_settings
│ │ │ ├── notification_settings_email
│ │ │ ├── notification_settings_mentions

1.3 Organizing Project Files | 11

1 Dan Abramov discusses the difference between presentational components and container components in
greater detail in this Medium post.

│ │ │ ├── notification_settings_mentions_keywords
│ │ │ ├── notification_settings_mobile
│ │ │ └── settings_item
│ │ ├── sso
│ │ ├── thread
│ │ └── user_profile
│ ├── selectors
│ ├── store
│ ├── styles
│ └── utils
│ └── sentry
├── assets
├── fastlane
└── test

Components
React Native applications will use React components. Each React component will live
in its own file. These components are usually presentational components,1 meaning
that they can be used without any knowledge of an external dependency. React appli‐
cations assume that it is the component’s responsibility to declare what it needs from
its consumer. A simple component could just be a single JavaScript file in the compo‐
nents/ folder.

Here are some files you may wish to include with a component. This is an example of
a Dropdown component that depends on a few different files:

JSX component file
components/dropdown/dropdown.js

Specific styles
components/dropdown/styles.js

Subcomponents
components/dropdown/row.js

Index file
components/dropdown/index.js

12 | Chapter 1: The React Native Toolchain

http://bit.ly/2Er6xAc

Writing Cross-Platform Components

Sometimes the iOS and Android version of a component differ so
greatly that it makes sense to have a completely different compo‐
nent for each. The React Native compiler is intelligent enough to
infer the correct variation based on the file suffix and folder struc‐
ture. For example, a Dropdown component can be inside of a /drop‐
down folder with three files: dropdown.android.js, dropdown.ios.js,
and index.js. The index.js will automatically reference the correct
version of the component based on the suffix:

import Dropdown from './dropdown';
export default Dropdown;

The rest of your application is spared from having to know that
there are two implementations of Dropdown!

Screens
Screens, also called containers, are components that also have some sort of state man‐
agement. Most applications will have some library or framework for handling state
across different pages. By using a library like React Navigation described in Recipe
2.4, you will already be indicating which components are screens that a user will navi‐
gate to. Not all containers can be considered screens; for example, a login form could
be considered a container that will rest inside a number of different screens.

// components/root/container.js
import Guest from "../guest";
import LoggedIn from "../loggedIn";
import { StackNavigator } from 'react-navigation';

const RouteConfig = {
 guest: { screen: Guest.container },
 loggedIn: { screen: LoggedIn.container },
}
export default StackNavigator(RouteConfig);

Screens are often kept in their own folder, making the state management dependen‐
cies very clear.

GraphQL mutations
components/guest/mutations.js

GraphQL queries
components/guest/queries.js

Redux actions
components/guest/actions.js

Redux types
components/guest/types.js

1.3 Organizing Project Files | 13

State management
Global state management is often handled outside the components/ and screens/ direc‐
tories.

GraphQL libraries like Relay and Apollo will bring their own conventions for manag‐
ing GraphQL queries and mutations. If you decide to use a Flux-inspired architec‐
ture, like Redux or MobX, it may make sense to keep Action Creators or any code that
the screen may call to talk to the larger application in the folder. See Recipe 2.5 for an
example of global state management.

Utilities
Most projects will also include files with functions, business logic, or other helper
code. These files will often live in a lib/ or utils/ folder. If you find yourself writing a
lot of utility code, it may be a sign that a separate package or module needs to be writ‐
ten that can simply be referenced by your React Native application.

Discussion
Let the application domain dictate the structure. For example, you may be working
on a reporting application with hundreds of little components that come together in a
beautiful mobile dashboard. You will likely have hundreds of components in
a /components folder with slight variations.

Another application might be dozens of little forms as part of a customer loan appli‐
cation. In this case state might need to be managed across views and validated
throughout. Business logic might find its way peppered through the components or
in some state management library like redux. Another approach is called Ducks, a
proposed way of structuring redux-driven applications.

How do you know if your project files are well organized? Interview someone on
your team and see if they can find their way around the the project intuitively. If you
find yourself changing files across several directories every time a new, distinct fea‐
ture is developed, then you might want to consider reorganizing your project files.

1.4 Dealing with Catastrophic Failure
Like a mousse that won’t set, sometimes we have to face catastrophic failure. Fortu‐
nately React Native provides a set of common tools for debugging applications.

Problem
You have an error and you don’t know what you changed or you find yourself with a
warning and are struggling to track it down.

14 | Chapter 1: The React Native Toolchain

http://bit.ly/2BeMEdr

Solution
Unlike real cooking, we can save ourselves the unpleasant task of starting from
scratch simply by using version control. Even if I don’t plan on sharing my React
Native experiments with the world, I make a point of using git locally to keep differ‐
ent versions of my project. This way I can refactor away and always have a waypoint
in my development trail to refer to. A git checkout is all that’s required to undo a
fatal red screen of death as shown in Figure 1-1.

Figure 1-1. The React Native red screen of death (RedBox)

Rely on the React Native debugger. You can access it by doing a Hardware > Shake
Gesture in the iOS Simulator. With Android, you will need to run ⌘M on a Mac. You
can refresh your app by typing rr in the Android Simulator or ⌘R in the iOS Simula‐
tor. See more details in the React Native Debugging Guide. See an example of the
React Native debugging toolbar on iOS in Figure 1-2.

1.4 Dealing with Catastrophic Failure | 15

http://bit.ly/2EJxlZX

Figure 1-2. React Native applications have a debugging toolbar

Because React Native relies on JavaScript, you can use console.log() or the debug
ger directive in your components to output a variable or stop the render midstream
and treat the Chrome console as an expression viewer.

If you think everything should be running correctly, try quitting the React Native
Packager (usually a node process), clean your build with Xcode or Android Studio,
and reinstall and run the application.

16 | Chapter 1: The React Native Toolchain

If your application uses the popular Redux state management library, the redux-
devtools-extension might help with stepping through the state changes in your
application. You might also want to try the react-devtools standalone debugger
provided by Facebook. The React Native Debugging guide provides some helpful
insights as well. Lastly, Reactotron provides a desktop application for inspecting React
Native applications in real time.

Discussion
There are a number of developer tools for React. If something works with React,
there’s a good chance that someone is making it work with React Native.

1.4 Dealing with Catastrophic Failure | 17

http://bit.ly/2nQfit0
http://bit.ly/2nQfit0
http://bit.ly/2nvFKar
http://bit.ly/2EpxvrD
https://github.com/infinitered/reactotron

CHAPTER 2

Living in the React Native Ecosystem

The smallest logical unit in a React application is the component: a function that
transforms input into a nested set of views rendered based on a set of parameters.
The React ecosystem is overflowing with these components; oftentimes we import
them from external libraries.

This chapter will introduce you to the mechanics involved in importing components,
building your own components, and using JavaScript libraries that support the React
approach to building complex applications.

2.1 Stop Repeating Yourself: Implement Custom
Components
React applications with lots of components that do one thing are easier to compose,
organize, and maintain.

Problem
Your application has a <Header /> on every screen. With over a dozen screens, how
do you avoid writing a haiku of configuration every time you build a new part of the
application?

Solution
Cut down the repetition by implementing your own <ScreenHeader /> component.

In this example, I’m using the react-native-elements component library to render
a <Header /> component. See Recipe 2.3 for an example of how to import a custom
component.

19

Global Styles

You will notice in this example the references to colors and global
Styles. These were imported from an external file at the top of the
file: import { colors, globalStyles } from '../styles';.
See Chapter 3 for more details on defining global colors and styles.

A Home screen has the following JSX inside the render() function:

<View style={globalStyles.headerContainer}>
 <Header
 leftComponent={
 <Button
 icon={{name: 'arrow-back'}}
 buttonStyle={{
 backgroundColor: null,
 padding: 0,
 }}
 title=''
 color={colors.WHITE}
 onPress={this.backPressed}
 />}
 centerComponent={
 <Text
 style={globalStyles.siteHeaderText}
 >{this.props.data.me.first_name}</Text>
 }
 rightComponent={
 <Button
 icon={{name: 'home'}}
 buttonStyle={{
 backgroundColor: null,
 padding: 0,
 }}
 title=''
 color={colors.WHITE}
 onPress={this.goHome}
 />}
 />
</View>

A Course screen has something that looks very similar:

<View style={globalStyles.headerContainer}>
 <Header
 leftComponent={
 <Button
 icon={{name: 'arrow-back'}}
 buttonStyle={{
 backgroundColor: null,
 padding: 0,
 }}

20 | Chapter 2: Living in the React Native Ecosystem

 title=''
 color={colors.WHITE}
 onPress={this.back}
 />}
 centerComponent={
 <Text
 style={globalStyles.siteHeaderText}
 >{this.course().name}</Text>
 }
 rightComponent={
 <Button
 icon={{name: 'settings'}}
 buttonStyle={{
 backgroundColor: null,
 padding: 0,
 }}
 title=''
 color={colors.WHITE}
 onPress={this.goHome}
 />}
 />
</View>

I see a lot of repetition, especially given that every single screen will have some varia‐
tion of this <Header />. Ideally, I would be able to reference a component that
emphasizes the differences and hides the complexity:

<ScreenHeader
 leftComponentIcon='arrow-back'
 leftOnPress={this.back}
 centerText={this.course().name}
 rightIcon='settings'
 rightOnPress{this.goHome}
 />

Create a new file in your project in a components folder—components/screenHeader.js:
import React, { Component } from 'react';

import {
 Text,
 View,
} from 'react-native';

import {
 Button,
 Header,
} from 'react-native-elements';

import { colors, globalStyles } from '../styles';

import PropTypes from 'prop-types';

2.1 Stop Repeating Yourself: Implement Custom Components | 21

class ScreenHeader extends Component {

 render() {
 return <View style={globalStyles.headerContainer}>
 <Header
 leftComponent={
 <Button
 icon={{name: this.props.leftIcon}}
 buttonStyle={{
 backgroundColor: null,
 padding: 0,
 }}
 title=''
 color={colors.WHITE}
 onPress={this.props.leftOnPress}
 />
 }
 centerComponent={
 <Text style={globalStyles.siteHeaderText}>{this.props.centerText}</Text>
 }
 rightComponent={
 <Button
 icon={{name: this.props.rightIcon}}
 buttonStyle={{
 backgroundColor: null,
 padding: 0,
 }}
 title=''
 color={colors.WHITE}
 onPress={this.props.rightOnPress}
 />}
 />
 </View>
 }
}
ScreenHeader.propTypes = {
 leftIcon: PropTypes.string,
 rightIcon: PropTypes.string,
 centerText: PropTypes.string,
 leftOnPress: PropTypes.func,
 rightOnPress: PropTypes.func,
};
export default ScreenHeader;

We can now keep our screen code focused on the different implementations and
expose an API with a handful of PropTypes that the developer can pass to <Screen
Header />.

22 | Chapter 2: Living in the React Native Ecosystem

2.2 Adding an Open Source Progress Bar
Almost all applications rely on activities that require the user to wait for an operation
to complete. In some cases this can simply be the time required for a client to receive
a message from a web server or third-party API. Another example might be waiting
for an image to be processed in a background thread on the device.

Problem
How do we communicate to users that they need to wait?

Solution
Let’s add a progress bar. This is a great task to introduce the steps required to import
React Native components. Here we will import the component and discuss linking
the libART.a library to our project. In Recipe 3.4 we will create an indeterminate
progress animation.

Most open source React Native components have comprehensive README.md files
that describe how to include the component and whether it’s been designed to work
in iOS, Android, or both.

Discussion

Make sure the development server isn’t running when you add new
packages using Yarn or Node. The React Packager may not pick up
the new libraries and you will probably need to run react-native
link and rebuild the project binary.

Start by adding react-native-progress to your project:

$> npm install react-native-progress --save
$> react-native link

Usually calling react-native link is all that’s required to add the necessary iOS or
Android libraries to the project build process. In this case, react-native-progress
relies on a special library for iOS called ReactART for drawing pie charts.

Let’s link the ReactART library manually after calling react-native link. Figure 2-1
shows a project I created called RNScratchPad in Xcode.

2.2 Adding an Open Source Progress Bar | 23

Figure 2-1. The RNScratchPad project shown in the Xcode interface

24 | Chapter 2: Living in the React Native Ecosystem

Expand the Libraries folder in the project view, as shown in Figure 2-2.

Figure 2-2. Choose Libraries → Add Files to add a new reference under Libraries

2.2 Adding an Open Source Progress Bar | 25

Start by adding a reference to the ART.xcodeproject file included with React Native in
node_modules/react-native/Libraries/ART (Figure 2-3).

Figure 2-3. Find ART.xcodeproject in the react-native project files

26 | Chapter 2: Living in the React Native Ecosystem

Under Linked Frameworks and Libraries, find the + symbol. libART.a should be
available as a library to add to your project (Figure 2-4).

Figure 2-4. Select libART.a from the list

2.2 Adding an Open Source Progress Bar | 27

Your project configuration should now include this reference (Figure 2-5).

Figure 2-5. Reference the project in your configuration

Now rebuild the project and deploy the app on your Simulator or development
device. Let’s add a simple progress bar to one of our components:

import React, { Component } from 'react';
import {
 View
} from 'react-native';

import * as Progress from 'react-native-progress';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={{flex: 1, justifyContent: 'center', alignItems: 'center' }}>
 <Progress.Pie progress={0.2} size={50} color="#2245FF" />
 </View>
);
 }
}

28 | Chapter 2: Living in the React Native Ecosystem

You should see something like this in the Simulator:

Notice that by changing the progress attribute, the progress bar changes.

We can animate progress changes by relying on a local this.state.progress vari‐
able. Here is a more complete example:

import React, { Component } from 'react';
import {
 Text,
 TouchableHighlight,
 View
} from 'react-native';

import * as Progress from 'react-native-progress';

2.2 Adding an Open Source Progress Bar | 29

export default class App extends Component<{}> {
 constructor(props) {
 super(props);
 this.state = { progress: 0.2 }
 }

 randomProgress = () => {
 const progress = Math.random();
 this.setState({ progress });
 }

 render() {
 return (
 <View style={{flex: 1, justifyContent: 'center', alignItems: 'center' }}>
 <View style={{marginBottom: 10}}>
 <Progress.Pie borderWidth={2} borderColor='#62321B'
 unfilledColor='#F5F5F5'
 progress={this.state.progress} size={100} color='#D6C598' />
 </View>
 <TouchableHighlight onPress={this.randomProgress }
 style={{padding: 10, backgroundColor: '#CACACA', borderRadius: 5 }}>
 <Text style={{fontSize: 18, fontWeight: 'bold' }} >Apple Pie Me!</Text>
 </TouchableHighlight>
 </View>
);
 }
}

Tapping <TouchableHighlight /> will result in different pie servings!

See Also
Learn how to animate the progress bar in Recipe 3.4.

2.3 Sharing Custom Components
You have a collection of components that are worth using on multiple projects. Copy‐
ing and pasting them between projects is not going to cut it.

Problem
How do you reuse a whole section of your React Native application in another
project? For example, you might have created a component library that includes all of
the visual identity requirements for your product. Naturally, you want to share this
across multiple projects and only have to make visual changes for these components
in one place. This approach enables reuse and also means that you can version por‐
tions of your application more easily and reinforce your product’s architectural
boundaries. In my case, I’ve built a <PastryPicker /> component—critical to visual‐

30 | Chapter 2: Living in the React Native Ecosystem

izing the relative amount of flour, sugar, butter, and eggs across baked goods
(Figure 2-6).

Figure 2-6. The PastryPicker Component

2.3 Sharing Custom Components | 31

Solution
The sample project includes one component that I will separate into its own NPM
package, pastryPicker.js. See Recipe 1.1 for details.

The main application, App.js, references <PastryPicker />:

// App.js
import React, { Component } from 'react';
import {
 Text,
 TouchableHighlight,
 View
} from 'react-native';

import { PastryPicker } from './pastryPicker';
export default class App extends Component {
 render() {
 return (
 <View style={{flex: 1, justifyContent: 'center', alignItems: 'center' }}>
 <PastryPicker />
 </View>
);
 }
};

The PastryPicker component lives in one file (note that the pastry icon characters pic‐
tured in Figure 2-6 have been omitted from the code for font reasons):

// pastryPicker.js
import React, { Component } from 'react';
import {
 Animated,
 StyleSheet,
 Text,
 TouchableHighlight,
 View,
} from 'react-native';

const PASTRIES = {
 croissant: { label: 'Croissants', flour: 0.7, butter: 0.5, sugar: 0.2,
 eggs: 0 },
 cookie: { label: 'Cookies', flour: 0.5, butter: 0.4, sugar: 0.5,
 eggs: 0.2},
 pancake: { label: 'Pancakes', flour: 0.7, butter: 0.5, sugar: 0.3,
 eggs: 0.3 },
 doughnut: { label: 'Dougnuts', flour: 0.5, butter: 0.2, sugar: 0.8,
 eggs: 0.1 },
};

export default class PastryPicker extends Component {
 constructor(props) {
 super(props);

32 | Chapter 2: Living in the React Native Ecosystem

 this.state = {
 selectedPastry: 'croissant'
 }
 }

 setPastry = (selectedPastry) => {
 this.setState({ selectedPastry });
 }

 renderIngredient(backgroundColor, flex, label) {
 return <View style={styles.ingredientColumn}>
 <View style={styles.bar} />
 <View style={{ backgroundColor, flex }} />
 <View style={styles.label}><Text>{label}</Text></View>
 </View>
 }

 render() {
 const { flour, butter, sugar, eggs } = PASTRIES[this.state.selectedPastry];
 return <View style={styles.pastryPicker}>
 <View style={styles.buttons}>
 {
 Object.keys(PASTRIES).map((key) => <View key={key}
 style={styles.buttonContainer}>
 <TouchableHighlight
 style={[styles.button, {
 backgroundColor: key === this.state.selectedPastry ?
 '#CD7734' : '#54250B' }
]} underlayColor='CD7734' onPress={() => {
 this.setPastry(key) } }>
 <Text style={styles.buttonText} >{PASTRIES[key].label}</Text>
 </TouchableHighlight>
 </View>)
 }
 </View>
 <View style={styles.ingredientContainer}>
 {this.renderIngredient('#F2D8A6', flour, 'Flour')}
 {this.renderIngredient('#FFC049', butter, 'Butter')}
 {this.renderIngredient('#CACACA', sugar, 'Sugar')}
 {this.renderIngredient('#FFDE59', eggs, 'Eggs')}
 </View>
 </View>
 }
}

const styles = StyleSheet.create({
 pastryPicker: {
 flex: 1,
 flexDirection: 'column',
 margin: 20,
 },
 ingredientContainer: {

2.3 Sharing Custom Components | 33

 flex: 1,
 flexDirection: 'row',
 },
 ingredientColumn: {
 flexDirection: 'column',
 flex: 1,
 justifyContent: 'flex-end',
 },
 buttonContainer: {
 margin: 10,
 },
 bar: {
 alignSelf: 'flex-start',
 flexGrow: 0,
 },
 button: {
 padding: 10,
 minWidth: 140,
 justifyContent: 'center',
 backgroundColor: '#5A8282',
 borderRadius: 10,
 },
 buttonText: {
 fontSize: 18,
 color: '#FFF',
 },
 buttons: {
 flexDirection: 'column',
 flexWrap: 'wrap',
 paddingRight: 20,
 paddingLeft: 20,
 flex: 0.3,
 },
 label: {
 flex: 0.2,
 },
});

Discussion
Let’s go through the steps required to pull a collection of components into a separate
project where they can be included in multiple React Native projects.

In Recipe 2.2 we referenced an external NPM package for rendering progress bars.
Our component is much simpler: it relies entirely on existing React Native compo‐
nents, which means that in our case we can simply create an NPM package with the
correct dependencies.

Assuming you have NPM correctly installed, you should be able to create a new pack‐
age from the command line. Create a folder for the package and run npm init inside
it:

34 | Chapter 2: Living in the React Native Ecosystem

$> mkdir react-native-pastry-picker
$> cd react-native-pastry-picker
$> npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See `npm help json` for definitive documentation on these fields
and exactly what they do.

Use `npm install <pkg>` afterwards to install a package and
save it as a dependency in the package.json file.

package name: (projects) react-native-pastry-picker
...

You will be presented with a series of questions (package name, version, main entry
point, etc.). Use the defaults for now; you can change them later. Only the package
name is important since that will be the package folder and the reference for the main
application.

An emerging convention in the React Native community is to pre‐
fix component libraries with react-native- and host them on
GitHub.

If the command is successful, a package.json file should be automatically created. Let’s
add React as a development dependency—a required package for development
purposes:

$> npm i --save-dev react

You should now have a node_modules folder and a package.lock file in the project file.
Your package.json file should look something like this:

{
 "name": "react-native-pastry-picker",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Jon Lebensold",
 "license": "MIT",
 "devDependencies": {
 "react": "^16.0.0"
 }
}

2.3 Sharing Custom Components | 35

You will notice that key main points to index.js. The index.js file should serve as a
manifest for all public components. Let’s do a sanity check of our component by cre‐
ating an index.js file that wraps a simple <Text /> component:

import React, { Component } from 'react';
import {
 Text,
 View,
} from 'react-native';

export class SanityCheck extends Component {
 render() {
 return <View><Text>I am an externally referenced component!</Text></View>
 }
}

We can now add the component to our main project with a relative reference and
restart our development server. Once the package is ready to be published, we can
change our package.json file to reference the published name on npmjs.com.

$> npm install --save ../react-native-pastry-picker
$> yarn start --reset-cache

Dependency Management

Referencing packages locally from package.json sometimes causes
the React Native Packager to forget to refresh the internal cache. I
recommend using Yarn instead of NPM or react-native start
when relying on a locally referenced dependency.
Learn how to install Yarn at https://yarnpkg.com/en/docs/install.

We can adjust our App.js file to reference the new dependency:

import React, { Component } from 'react';
import {
 View
} from 'react-native';
import { SanityCheck } from 'react-native-pastry-picker'
export default class App extends Component<{}> {
 render() {
 return (
 <View style={{flex: 1, justifyContent: 'center',
 alignItems: 'center' }}>
 <SanityCheck />
 </View>
);
 }
}

36 | Chapter 2: Living in the React Native Ecosystem

https://yarnpkg.com/en/docs/install

The main application should render <SanityCheck /> as though it was part of the
local library. You can now safely move the components out of the main project and
update the index.js in react-native-pastry-picker to reference the components
internally like this:

export { default as PastryPicker } from './pastryPicker';

See Also
Once your component library is taking shape, make sure you update the package.json
file with the appropriate metadata fields. You will probably want to publish the
project to NPM so that it can be referenced like any other React Native package.

If you need to call native libraries, then more setup will be required. I recommend
looking at well-supported packages like react-native-camera. Remember that you
can use this same approach for sharing application constants, stylesheets, and default
typography or image assets as well!

2.4 Routing Between Login Screens
Most mobile applications need to provide a mechanism for someone to travel
between screens seamlessly. The classic example is a list of items, where tapping any
item allows the user to drill into the list element. It’s also often the case that there is a
portion of the application that is available to someone logged in.

Problem
How do we maintain all these different screens without losing track of the global state
of our application? How do we ensure seamless transitions between pages? The React
Navigation community project aims to address these challenges by providing a set of
nesting navigator components.

Solution
Start by adding react-navigation to your project:

$> npm install --save react-navigation

Let’s break out our application into three navigators:

Root navigator
The top-level navigator for the application.

Guest navigator
Provides screen navigation before a user is logged in.

2.4 Routing Between Login Screens | 37

http://bit.ly/2nTlvVo
http://bit.ly/2nTlvVo
http://bit.ly/2C2DM7s
https://reactnavigation.org/
https://reactnavigation.org/

User navigator
Provides screen navigation inside the application. The root navigator is passed by
reference via screenProps.

See how the navigators deliver the Login, About, Profile, and Dashboard screens in
Figure 2-7.

Figure 2-7. Nested navigation route structure

This example uses two navigators, one of which relies on tab navigation at the bottom
of the screen in iOS. See Recipe 3.3 for more information on dealing with vector
images.

The styles were pulled into a styles.js file in order to keep the navigation code focused
on the problem at hand:

// styles.js
import {
 StyleSheet
} from 'react-native';

export const styles = StyleSheet.create({

 container: {
 paddingTop: 30,
 flex: 1
 },

 paragraphText: {
 fontSize: 16,
 lineHeight: 20,
 },

 titleText: {
 fontSize: 24,
 lineHeight: 30,

38 | Chapter 2: Living in the React Native Ecosystem

 },

 primaryButton: {
 padding: 20,
 backgroundColor: '#124473'
 },

 primaryButtonText: {
 color: '#FFF',
 textAlign: 'center',
 },

 altButton: {
 padding: 20,
 backgroundColor: '#23CdA4'
 },

 altButtonText: {
 color: '#FFF',
 textAlign: 'center',
 }
});

There are four screens in this example: AboutScreen, LoginScreen, Dash

boardScreen, and ProfileScreen. Each screen has its own file and is referenced in
App.js. The flow through the different screens can be seen in Figure 2-8.

// About Screen
import React, { Component } from 'react';
import {
 TouchableHighlight,
 View,
 Text
} from 'react-native';

import { styles } from './styles';

export default class AboutScreen extends Component<{}> {
 render() {
 return <View style={styles.container}>
 <Text style={styles.titleText} >About Screen</Text>
 <TouchableHighlight style={styles.primaryButton}
 onPress={this.props.navigation.goBack}
 <Text style={styles.primaryButtonText}>Go Back</Text>
 </TouchableHighlight>
 </View>
 }
}

2.4 Routing Between Login Screens | 39

Figure 2-8. The About Screen

40 | Chapter 2: Living in the React Native Ecosystem

See Figure 2-9 for an example of the LoginScreen component.

Figure 2-9. The Login Screen

2.4 Routing Between Login Screens | 41

// Login Screen
import React, { Component } from 'react';
import {
 TouchableHighlight,
 View,
 Text
} from 'react-native';

import { styles } from './styles';

export default class LoginScreen extends Component<{}> {
 about = () => {
 const { navigate } = this.props.navigation
 navigate('about');
 }

 login = () => {
 const { navigate } = this.props.navigation;
 // some login code here...
 navigate('user', { user: { name: 'Sam Smith',
 email: 'sam.smith@example.com' } })
 }

 render() {
 return <View style={styles.container}>
 <Text style={styles.titleText} >Login Screen</Text>
 <TouchableHighlight style={styles.primaryButton}
 onPress={this.about}>
 <Text style={styles.primaryButtonText}>About</Text>
 </TouchableHighlight>
 <TouchableHighlight style={[styles.altButton, { marginTop: 20 }]}
 onPress={this.login}>
 <Text style={styles.altButtonText}>Login</Text>
 </TouchableHighlight>
 </View>
 }
}

42 | Chapter 2: Living in the React Native Ecosystem

The Dashboard Screen component extracts user() state from the RootNavigator
(Figure 2-10).

Figure 2-10. The Dashboard Screen

2.4 Routing Between Login Screens | 43

// Dashboard Screen
import React, { Component } from 'react';
import {
 View,
 Text
} from 'react-native';

import { styles } from './styles';
import Icon from 'react-native-vector-icons/FontAwesome';

export default class Screen extends Component {
 static navigationOptions = {
 title: 'Dashboard',
 tabBarIcon: ({ tintColor }) => <Icon name='home' color={tintColor} />
 }

 user() {
 const { rootNavigation } = this.props.screenProps;
 return rootNavigation.state.params.user;
 }

 render() {
 const { name, email } = this.user();
 return <View style={styles.container}>
 <Text style={styles.titleText} >{`Welcome, ${name} <${email}>,
 let's get cooking!`}</Text>
 </View>
 }
}

44 | Chapter 2: Living in the React Native Ecosystem

The Profile Screen (seen in Figure 2-11) demonstrates resetting the navigation state
with the logout().

Figure 2-11. The Profile Screen

// Profile Screen
import React, { Component } from 'react';
import {
 TouchableHighlight,
 View,
 Text
} from 'react-native';

2.4 Routing Between Login Screens | 45

import Icon from 'react-native-vector-icons/FontAwesome';
import { styles } from './styles';

export default class Screen extends Component<{}> {
 static navigationOptions = {
 title: 'Profile',
 tabBarIcon: ({ tintColor }) => <Icon name='user' color={tintColor} />
 }

 logout = () => {
 const { rootNavigation } = this.props.screenProps;
 rootNavigation.goBack()
 }

 render() {
 return <View style={styles.container}>
 <Text style={styles.titleText} >Profile Screen</Text>
 <TouchableHighlight style={styles.primaryButton} onPress={this.logout}>
 <Text style={styles.primaryButtonText}>Log Out</Text>
 </TouchableHighlight>
 </View>
 }
}

Finally, App.js ties the whole thing together with three navigators:

// App.js
import React, { Component } from 'react';
import { StackNavigator, TabNavigator } from 'react-navigation';

// Screens
import DashboardScreen from './dashboardScreen';
import ProfileScreen from './profileScreen';
import LoginScreen from './loginScreen';
import AboutScreen from './aboutScreen';

// Navigators
const GuestRouteConfig = {
 login: { screen: LoginScreen },
 about: { screen: AboutScreen },
}
const GuestNavigator = StackNavigator(GuestRouteConfig, { headerMode: 'none'});

const UserRouteConfig = {
 dashboard: { screen: DashboardScreen },
 profile: { screen: ProfileScreen },
}

const UserNavigator = TabNavigator(UserRouteConfig, {
activeTintColor: '#125000' });

// Pass the RootNavigator down to the UserNavigator:
const WrappedNavigator = ({ navigation }) => <UserNavigator

46 | Chapter 2: Living in the React Native Ecosystem

 screenProps={ { rootNavigation: navigation } } />

const RootRouteConfig = {
 guest: { screen: GuestNavigator },
 user: { screen: WrappedNavigator },
}

export default StackNavigator(RootRouteConfig, { headerMode: 'none' });

Discussion
Even though this is a lengthy example, it is a very common pattern and worth explor‐
ing. You will notice that the UserNavigator is actually wrapped in a higher order com‐
ponent, which passes the RootNavigator down as an additional screenProp called
rootNavigation. This parameter is critical for passing successful login parameters
down to the UserNavigator and enables the ProfileScreen to trigger a logout,
resetting the RootNavigator to a default state.

See Also
React Navigation works very well with libraries like Redux and the ApolloClient for
handling client/server interactions. The React Navigation Redux Integration guide
provides a starting point. React Navigation isn’t the only navigation library available
to React Native developers. React Native Navigation is a well-maintained alternative.

2.5 Using Redux for Global State Management in Redux
The moment you find yourself with more than one screen, state management deci‐
sions will need to be made. Whether you decide to follow a flux-inspired architecture
like Redux or to implement your own global storage with AsyncStorage, the question
of how to keep the data that matters locally decoupled from broader state manage‐
ment will enter the picture.

Problem
How do you manage state components without creating bidirectional dependencies?
These problems are everywhere in application design. A common case is a long-
running task that can be interrupted by a user, but also must announce its comple‐
tion. Enter global state management with Redux. This example app will store a pass‐
word based on four word-tiles. Once logged in, users will be able to set some secret
text. This app enables a user to:

1. Set a tile-based password and log in (like a pin-pad)
2. Set some secret text

2.5 Using Redux for Global State Management in Redux | 47

http://bit.ly/2nK6J3J
http://bit.ly/2E8WrAi

3. Log out
4. Log in with the password
5. Reset the application state
6. Correct their login attempt and retry

Solution
First we need a few libraries for Redux and React to work together. I also use redux-
logger in development mode to log all state transitions in the React remote debugger.

Install react-redux, redux, and redux-logger (optional):

$>npm i --save react-redux
$>npm i --save redux
$>npm i --save redux-logger

The project folder structure looks like this:

App.js
reduxStore.js
...
src
├── actions.js
├── appContainer.js
├── components
│ ├── tile.js
│ └── tileMap.js
├── constants.js
├── loginForm.js
├── myHome.js
├── reducers.js
├── setPassword.js
├── styles.js
└── types.js

See Recipe 1.3 for examples on organizing your project files. Given
that this example focuses on Redux, I’ve tried to limit the number
of files and folders. In a larger application, screen-based (e.g.,
home/, login/) or type (e.g., reducers/, actions/) folders are more
appropriate.

The same TileMap component can be used to set a password, as in Figure 2-12.

48 | Chapter 2: Living in the React Native Ecosystem

Figure 2-12. Users can access a secret message after setting a visual password by selecting
a set of tiles

2.5 Using Redux for Global State Management in Redux | 49

Redux integration
The App.js file is devoted entirely to the redux integration:

// App.js
import React, { Component } from 'react';
import AppContainer from './src/appContainer';
import { Provider } from 'react-redux';
import store from './reduxStore';

export default class App extends Component<{}> {
 render() {
 return <Provider store={store}><AppContainer /></Provider>
 }
}

The store is defined in a separate file so that it can be referenced globally. This is not
commonly required, but in some exceptional circumstances (particularly when there
is no remote backend store), access to the state from actions can be necessary. The
redux-logger is configured as middleware in the store. This library is an optional
piece of additional functionality that will log all state and action changes to the web
browser debugger console:

// reduxStore.js
import * as reducers from './src/reducers'
import { createStore, applyMiddleware, combineReducers, compose} from 'redux';
import logger from 'redux-logger';
export default createStore(
 combineReducers(reducers),
 applyMiddleware(logger)
);

The AppContainer relies on the appState reducer to determine which screens to ren‐
der:

// src/appContainer.js
import ActionCreators from './actions';
import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';

import SetPassword from './setPassword';
import LoginForm from './loginForm';
import MyHome from './myHome';
import { styles } from './styles';

class AppContainer extends Component {

 renderLoginMessage() {
 return <Text style={styles.loginMessage}>
 {this.props.appState.loginMessage}
 </Text>
 }

50 | Chapter 2: Living in the React Native Ecosystem

 render() {
 const { isLoggedIn, loginMessage, isPasswordSet } = this.props.appState;
 return <View style={styles.container}>
 { isLoggedIn && <MyHome /> }
 { !isLoggedIn && !isPasswordSet && <SetPassword /> }
 { !isLoggedIn && isPasswordSet && <LoginForm /> }
 { loginMessage && this.renderLoginMessage() }
 </View>
 }
}

export default connect(
 ({ appState }) => { return { appState } },
 (dispatch) => bindActionCreators(ActionCreators, dispatch)
)(AppContainer);

Actions and types
Redux applications naturally produce a listing of supported events that the applica‐
tion must support. There are a number of libraries that aim to reduce the amount of
boilerplate, but in the interest of simplicity, I’ve decided to rely on the minimum
number of external dependencies:

// src/types.js
export const LOGIN = 'LOGIN';
export const LOGOUT = 'LOGOUT';
export const RESET = 'RESET';
export const SET_PASSWORD_AND_LOGIN = 'SET_PASSWORD_AND_LOGIN';
export const SET_SECRET = 'SET_SECRET';
export const SET_LOGIN_MESSAGE = 'SET_LOGIN_MESSAGE';

These actions are exposed to the entire application as ActionCreators, which can be
used to dispatch events that the reducers can choose to respond to. ActionCreators
can sometimes also handle some delegation to global business logic. Instead of rely‐
ing on a backend service for user authentication, I’ve referred to the store in order to
extract the user state and trigger the correct action. This example demonstrates how
actions don’t always map one-to-one with types and stores:

// src/actions.
import * as types from './types';
// Used for authentication
import store from '../reduxStore';

function setSecret(secret) {
 return {
 type: types.SET_SECRET,
 secret
 }
}

2.5 Using Redux for Global State Management in Redux | 51

function setPasswordAndLogin(password) {
 return {
 type: types.SET_PASSWORD_AND_LOGIN,
 password
 }
}

function attemptLogin(password) {
 const { user } = store.getState();
 return (user.password === password) ? { type: types.LOGIN } : {
 type: types.SET_LOGIN_MESSAGE,
 loginMessage: "Login Incorrect"
 }
}

function reset() {
 return {
 type: types.RESET,
 }
}

function logout() {
 return {
 type: types.LOGOUT,
 }
}

function setLoginMessage(message) {
 return {
 type: types.SET_LOGIN_MESSAGE,
 message
 }
}

export default ActionCreators = {
 setSecret,
 setPasswordAndLogin,
 attemptLogin,
 reset,
 logout,
 setLoginMessage,
}

Reducers

We will rely on a single store with two reducers, an appState and a user reducer.
Unlike a more common TODO example, this example demonstrates multiple reduc‐
ers and how actions can be used for global state management.

52 | Chapter 2: Living in the React Native Ecosystem

Both reducers are exported from src/reducers.js. A createReducer() function pro‐
vides some syntactic sugar for avoiding pure case statements in the reducer. Notice
how the appState and user reducers both respond to types.RESET and
types.SET_PASSWORD_AND_LOGIN. Also consider that the reducers do not determine
whether the person should log in; they merely process the event and return the
appropriate state transformation to their part of the store:

// src/reducers.js
import * as types from './types'
// Helper function for avoiding switch() statements (commonly viewed
// as a code smell) in reducers:
function createReducer(initialState, handlers) {
 return function reducer(state = initialState, action) {
 if (handlers.hasOwnProperty(action.type)) {
 return handlers[action.type](state, action);
 } else {
 return state;
 }
 }
}

export const user = createReducer({ password: null, secret: null }, {
 [types.RESET](state, { }) {
 return { password: null, secret: null }
 },
 [types.SET_SECRET](state, { secret }) {
 return { ...state, secret }
 },
 [types.SET_PASSWORD_AND_LOGIN](state, { password }) {
 return { ...state, password };
 },
});

const initialAppState = {
 loginMessage: null,
 isLoggedIn: false,
 isPasswordSet: false
};

export const appState = createReducer(initialAppState, {
 [types.LOGOUT](state, {}) {
 return { ...state, isLoggedIn: false }
 },
 [types.LOGIN](state, {}) {
 return { ...state, isLoggedIn: true, loginMessage: null }
 },
 [types.SET_LOGIN_MESSAGE](state, { loginMessage }) {
 return { ...state, loginMessage }
 },
 [types.RESET](state, { }) {
 return { ...initialAppState };

2.5 Using Redux for Global State Management in Redux | 53

 },
 [types.SET_PASSWORD_AND_LOGIN](state, { }) {
 return { isLoggedIn: true, isPasswordSet: true, loginMessage: null }
 },

});

Styles and constants
Most of the application styles have been centralized into a global src/styles.js file:

// src/styles.js
import {
 StyleSheet
} from 'react-native';

export const styles = StyleSheet.create({
 loginMessage: {
 margin: 10,
 fontSize: 16,
 padding: 10
 },

 rootContainer: {
 flex: 1,
 paddingTop: 30,
 backgroundColor: '#FFF',
 },

 buttonGroup: {
 marginTop: 10,
 },

 container: {
 paddingTop: 30,
 flex: 1
 },

 title: {
 fontSize: 24,
 lineHeight: 30,
 textAlign: 'center',
 },

 tileRow: {
 flexWrap: 'wrap',
 flexDirection: 'row',
 justifyContent: 'space-around' ,
 },

 button: {
 borderWidth: 1,
 borderColor: '#333',

54 | Chapter 2: Living in the React Native Ecosystem

 borderStyle: 'solid',
 height: 50,
 },

 buttonText: {
 color: '#144595',
 fontWeight: 'bold',
 fontSize: 16,
 padding: 10,
 textAlign: 'center',
 },
});

The src/constants.js file provides a central list of TILES that will be used for rendering
the <TileMap /> component, whether for setting a password or for logging in:

// src/constants.js
export const TILES = {
 'Pizza': { text: 'Pizza', value: 'pizza', index: null,
 isActive: false },
 'Pie': { text: 'Pie', value: 'pie', index: null,
 isActive: false },
 'Salad': { text: 'Salad', value: 'salad', index: null,
 isActive: false },
 'Omelette': { text: 'Omelette', value: 'omelette', index: null,
 isActive: false },
}

The Tile and TileMap components
The src/components/ folder contains a few components that were designed to function
without any knowledge of Redux. The <Tile /> component is a pure function that
simply returns a JSX transformation of the tile props:

// src/components/tile.js
import React, { Component } from 'react';
import {
 StyleSheet,
 TouchableHighlight,
 Text
} from 'react-native'

export default function Tile({ text, id, isActive, onPress }) {
 const activeStyle = isActive ? { borderColor: '#F00' } : null;
 return <TouchableHighlight style={[styles.tile, activeStyle]}
 onPress={() => onPress(id) }>
 <Text style={styles.tileText}>{text}</Text>
 </TouchableHighlight>
}

2.5 Using Redux for Global State Management in Redux | 55

const styles = StyleSheet.create({
 container: {
 flex: 1,
 paddingTop: 30,
 backgroundColor: '#FFF',
 },

 headerText: {
 color: '#144595',
 fontSize: 16,
 fontWeight: 'bold',
 textAlign: 'center',
 },

 header: {
 borderBottomWidth: 1,
 borderBottomColor: '#222',
 borderStyle: 'solid',
 },

 tileText: {
 fontSize: 16,
 textAlign: 'center',
 marginTop: 60,
 },

 tile: {
 width: 150,
 height: 150,
 alignItems: 'center',
 backgroundColor: '#CCC',
 borderRadius: 20,
 borderColor: '#222',
 borderWidth: 1,
 borderStyle: 'solid',
 margin: 10,

 }
})

The <TileMap /> component renders a collection of <Tile /> components and
orchestrates their state and tap events. Each <Tile /> provides an onTileChange
handler that returns a password as a string. <Tile /> will render anything in
this.props.children that the parent component may want to include, such as spe‐
cial buttons.

Here’s an implementation of the <TileMap />:

// src/components/tileMap.js
import React, { Component } from 'react';
import {
 View,

56 | Chapter 2: Living in the React Native Ecosystem

 TouchableHighlight,
 Text
} from 'react-native';

import Tile from './tile';
import { TILES } from '../constants';
import { styles } from '../styles';

function computePassword(tiles) {
 let password = []
 Object.keys(tiles).forEach((key) => {
 const tile = tiles[key];
 if (tile.isActive) {
 password[tile.index] = tile.value;
 }
 });
 // chop off the 0
 return password.slice(1).join('-');
}

export default class TileMap extends Component<{}> {

 constructor(props) {
 super(props);
 this.state = { tiles: {...TILES}, index: 0 }
 }

 reset = () => {
 this.setState({ tiles: {...TILES}, index: 0 });
 this.props.onTileChanged(computePassword(this.state.tiles));
 }

 setPassword = () => {
 this.props.setPasswordAndLogin(this.state.tiles);
 }

 tilePressed = (id) => {
 if (this.state.tiles[id].isActive) { return; }
 this.setState((prevState) => {
 const tiles = prevState.tiles;
 const newIndex = prevState.index + 1;
 const currentTile = tiles[id];
 tiles[id] = { ...currentTile,
 index: newIndex,
 text: `(${newIndex}) - ${currentTile.text}`,
 isActive: true
 }
 return {...tiles, index: newIndex }
 });
 this.props.onTileChanged(computePassword(this.state.tiles));
}

2.5 Using Redux for Global State Management in Redux | 57

 render() {
 return <View>
 <View style={styles.tileRow}>
 {Object.keys(this.state.tiles).map((key) => {
 const tile = this.state.tiles[key];
 return <Tile {...tile} id={key} key={key} onPress={this.tilePressed} />
 }
)}
 </View>
 <View style={styles.buttonGroup}>
 <TouchableHighlight style={styles.button} onPress={this.reset}>
 <Text style={styles.buttonText}>Reset</Text>
 </TouchableHighlight>
 {this.props.children}
 </View>
 </View>
 }
}

Application screens
Now that we have all the components and their Redux dependencies, we can look at
the screens that trigger state changes. These screens are considered presentational
components, meaning that they trigger actions and are accepting props from the store.
These components are imported from <AppContainer />.

The first screen the user sees is the <SetPassword /> screen. Notice that the <Tile
Map /> is used and the this.state.password value is sent as a message to the set
PasswordAndLogin() action creator:

// src/setPassword.js
import React, { Component } from 'react';
import {
 View,
 TouchableHighlight,
 Text
} from 'react-native'

import ActionCreators from './actions'
import { bindActionCreators } from 'redux'
import { connect } from 'react-redux'
import TileMap from './components/tileMap'
import { styles } from './styles'

class SetPassword extends Component<{}> {

 constructor(props) {
 super(props);
 this.state = { password: null }
 }

58 | Chapter 2: Living in the React Native Ecosystem

 onTileChanged = (password) => {
 this.setState({ password });
 }

 setPassword = () => {
 this.props.setPasswordAndLogin(this.state.password);
 }

 render() {
 return <View>
 <Text style={styles.title}>Set Password</Text>
 <TileMap onTileChanged={this.onTileChanged}>
 <TouchableHighlight style={styles.button} onPress={this.setPassword}>
 <Text style={styles.buttonText}>Set Password and Login</Text>
 </TouchableHighlight>
 </TileMap>
 </View>
 }
}

export default connect(
 ({ user }) => { return { user } },
 (dispatch) => bindActionCreators(ActionCreators, dispatch)
)(SetPassword);

When a user isLoggedIn, the <MyHome /> component is rendered. This may appear
to be a contrived example, but it demonstrates the difference between local and global
state. The user reducer is maintaining the secret, but only after setSecret() is
called, triggering a state transformation in the user reducer. Notice that the compo‐
nent does not know what logout() does; it merely sends the message and relies on
the appState reducer:

// src/myHome.js
import React, { Component } from 'react';
import {
 TextInput,
 TouchableHighlight,
 View,
 Text
} from 'react-native';
import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import Tile from './components/tile';
import { TILES } from './constants';
import { styles } from './styles';

class MyHome extends Component<{}> {
 constructor(props) {
 super(props);
 this.state = { secret: props.user.secret || '' }
 }

2.5 Using Redux for Global State Management in Redux | 59

 saveSecret = () => {
 this.props.setSecret(this.state.secret);
 }

 logout = () => {
 this.props.logout();
 }

 render() {
 return <View>
 <Text>Enter Your Secret:</Text>
 <TextInput value={this.state.secret}
 style={{borderWidth: 1, borderColor: "#CCC", padding: 5, }}
 onChangeText={(secret) => { this.setState({ secret }) }} />
 <TouchableHighlight style={styles.button} onPress={this.saveSecret}>
 <Text style={styles.buttonText}>Save</Text>
 </TouchableHighlight>
 <TouchableHighlight style={styles.button} onPress={this.logout}>
 <Text style={styles.buttonText}>Logout</Text>
 </TouchableHighlight>
 </View>
 }
}

export default connect(
 ({ user }) => ({ user }),
 (dispatch) => bindActionCreators(ActionCreators, dispatch)
)(MyHome);

The <LoginForm /> component is almost identical to the <SetPassword /> compo‐
nent in structure, but it maps components to a different set of action creators for han‐
dling account reset and user login. This is an example of repurposing the
<TileMap /> component for a completely different use case:

import React, { Component } from 'react';
import {
 View,
 TouchableHighlight,
 Text
} from 'react-native';

import ActionCreators from './actions';
import { bindActionCreators } from 'redux';
import { connect } from 'react-redux';
import TileMap from './components/tileMap';
import { styles } from './styles';

class LoginForm extends Component<{}> {

 constructor(props) {
 super(props);

60 | Chapter 2: Living in the React Native Ecosystem

 this.state = { password: null }
 }

 onTileChanged = (password) => {
 this.setState({ password });
 }

 resetAccount = () => {
 this.props.reset();
 }

 login = () => {
 this.props.attemptLogin(this.state.password);
 }

 render() {
 return <View>
 <Text style={styles.title}>Login</Text>
 <TileMap onTileChanged={this.onTileChanged}>
 <TouchableHighlight style={styles.button} onPress={this.login}>
 <Text style={styles.buttonText}>Login</Text>
 </TouchableHighlight>
 <TouchableHighlight style={styles.button} onPress={this.resetAccount}>
 <Text style={styles.buttonText}>Reset Account</Text>
 </TouchableHighlight>
 </TileMap>
 </View>
 }

}

export default connect(
 ({ user }) => ({ user }),
 (dispatch) => bindActionCreators(ActionCreators, dispatch)
)(LoginForm);

Discussion
Redux can be intimidating if you are new to JavaScript. This is because the library is
simple, but not simplistic: the programming concepts are profound and require some
experience to grasp, but there are few of them and they elegantly support one
another. It’s helpful to think of Redux as a software design pattern and a JavaScript
library at the same time. Adopting one without the other will leave a sour taste in
your mouth.

Even if you decide to use another state management library, you will probably face a
library, like react-navigation, with Redux under the hood. Understanding the pro‐
grammer attitudes around mutable state, pure functions, composition, and higher
order functions will bring state management in the React ecosystem into focus.

2.5 Using Redux for Global State Management in Redux | 61

I would not be able to do justice to the fantastic Redux documentation and the
incredible wealth of free video tutorials (including some of my own on YouTube).
However, there are three principles worth keeping in mind as we implement Redux in
our app:

Single source of truth: The state of your whole application is stored in an object tree
within a single store. … State is read-only: The only way to change the state is to emit
an action, an object describing what happened. … Changes are made with pure func‐
tions: To specify how the state tree is transformed by actions, you write pure reducers.

—redux.js.org, Three Principles

See Also
redux-thunk and redux-saga provide some helpful extensions to the Redux architec‐
ture for dealing with any asynchronous calls. Given that your app is likely going to
talk to a server or read sensor data, asynchronous actions are inevitable.

62 | Chapter 2: Living in the React Native Ecosystem

http://redux.js.org
https://egghead.io/courses/getting-started-with-redux
https://youtu.be/3msLwu25SQY

CHAPTER 3

Style and Design

Most of the work involved in making a native app feel polished comes from having
well-designed components that can communicate a strong visual identity within the
user-experience conventions of the platform. For example, iOS applications tend to
rely on bottom tab navigation. The lefthand drawer or the Snackbar notifications are
typically seen in Android.

Building a cross-platform application will probably mean making certain design
choices that balance user experience, platform conventions, and technical complexity.
These tips should help you make those choices more easily.

3.1 Composing Stylesheets
Maintaining a growing stylesheet is a challenge in any web application. Native appli‐
cations are no different. Fortunately, React components allow us to create a unit of
code that combines everything required for a user interface element to render cor‐
rectly.

In the last few years, the debate around how to organize web styles has led to all sorts
of semantics for describing what something is supposed to look like. Whether you are
familiar with Object-Oriented CSS, SMACCS, Tachyons, or BEM, any of these design
choices rely on the language’s ability to compose stylesheet declarations.

React Native does not support CSS. CSS is a language for describing how something
looks, with syntax that reduces the effort in defining common styles. This section
illustrates how we can achieve many of the features of CSS using simple JavaScript
declarations.

63

Problem
How do we reuse as many styles as possible and keep the application’s look and feel
consistent?

Solution
All applications will have a common set of applicable fonts, colors, and component
styles. These might include how rounded a button corner should be, or what the
appropriate padding should be between typographic elements. I like to keep these bits
of style information in a styles.js file in my project root with key sections that will
broadly define the aesthetic of my application:

1. Color Palette
2. Typography Choices
3. Global Styles

Inheriting styles
Here’s an example of what a styles.js file might look like:

import { Dimensions } from 'react-native';
const { width, height } = Dimensions.get('window');

// COLOR
export const colors = {
 PRIMARY: '#005D64',
 SECONDARY: '#CA3F27',
}

// TYPOGRAPHY
const scalingFactors = {
 small: 40,
 normal: 30,
 big: 20,
}

export const fontSizes = {
 H1: {
 fontSize: width / scalingFactors.big,
 lineHeight: (width / scalingFactors.big) * 1.3,
 },

 P: {
 fontSize: width / scalingFactors.normal,
 lineHeight: (width / scalingFactors.normal) * 1.3,
 },

64 | Chapter 3: Style and Design

1 See Chapter 9 of Learning React Native, 1E (O’Reilly Media) for more about responsive design and font sizes.

 SMALL: {
 fontSize: width / scalingFactors.small,
 },
}

// GLOBAL STYLES
export const globalStyles = {
 textHeader: {...fontSizes.H1,
 color: colors.PRIMARY,
 paddingTop: 20,
 fontWeight: 'bold',
 },
}

The textHeader component illustrates a classic form of composition. It relies on the
fontSizes.H1 key as a basis for the textHeader. If we need to change the overall size
of the primary header in our application, we need only change the scaling factors to
see these adjustments happen everywhere.

By importing the Dimensions library from React Native, we can perform some simple
math operations in our definition of these fontSizes, ensuring that the typography
feels the same across platforms and device sizes.1

The biggest benefit to this approach is that all the styles are defined using the same
programming language we use to build the rest of the application.

Overriding inline styles
With global styles defined, they can be referenced in your own flavor of the base com‐
ponents. For example, here is a definition for <TextHeading /> and <SecondaryTex
tHeading /> components:

import React from 'react';
import {
 Text,
} from 'react-native';
import { globalStyles, colors } from '../styles';

export function TextHeading (props) {
 return <Text style={globalStyles.textHeader} >{props.children}</Text>
}

export function SecondaryTextHeading(props) {
 return <Text
 style={[globalStyles.textHeader, { color: colors.SECONDARY }]} >
 {props.children}

3.1 Composing Stylesheets | 65

 </Text>
}

In the preceding example, rather than implement a class that extends React.Compo
nent, I use a shorthand for a pure function—a function with no side effects—which
supports two JSX components. This syntax provides a hint to the developer that this
function will not have any local state.

The <SecondaryTextHeading /> component overrides the color declaration with a
style array attribute. Each item in the array is merged together, with the last item in
the array overriding any previous declarations. The style attribute in this case will
be:

{
 fontSize: width / scalingFactors.big,
 lineHeight: (width / scalingFactors.big) * 1.3,
 color: colors.SECONDARY,
 paddingTop: 20,
 fontWeight: 'bold',
}

See Also
There are some great component libraries in the React Native ecosystem. react-
native-elements provides an excellent set of cross-platform components with some of
the most common components. NativeBase accomplishes the same goals with a more
featureful component library. These libraries are a great way of ensuring that your
app will be functional and consistent.

react-native-material-kit aims to provide a complete component library based on
Google’s Material Design.

If you find yourself customizing every component, you might be better off developing
your own component library.

3.2 Building Flexible Layouts with Flexbox
Your app will run on a number of different form factors and device sizes. This means
that setting up a pixel-based design will result in a lot of testing and per-device
rework. Avoid most of those headaches by using a flexbox layout.

Problem
How do you build a flexible layout system that will work with different device sizes?
Using just a handful of style declarations we can build complex views like the one in
Figure 3-1.

66 | Chapter 3: Style and Design

http://bit.ly/2Embj1R
http://bit.ly/2Embj1R
https://nativebase.io/
http://bit.ly/2E9d4Aa
https://material.io/

Figure 3-1. A 3-column flexbox layout

Solution
The layout in Figure 3-1 was rendered using this simple component. While I would
recommend using the StyleSheet class for performance and reusability, writing the
styles inline helps illustrate how each parent <View /> configures the flow direction
of the child <View />:

import React, { Component } from 'react';
import {
 Text,
 View
} from 'react-native';

export default class ThreeColumns extends Component {

 sidebar() {
 const avatarStyle = {
 width: 40,
 height: 40,
 borderRadius: 40,
 justifyContent: 'center',
 backgroundColor: '#A0'
 }
 return <View style={{ flex: 0.2, backgroundColor: '#333' }}>
 <View style={{ flex: 0.2, backgroundColor: '#666',
 flexDirection: 'row' }}>
 <View style={{ width: 50, padding: 5, backgroundColor: '#000' }}>
 <View style={avatarStyle} />
 </View>
 </View>

3.2 Building Flexible Layouts with Flexbox | 67

 <View style={{ flex: 0.8 }} />
 </View>
 }

 body() {
 return <View style={{ flex: 0.5, backgroundColor: '#FFF' }}>
 <Text style={{padding: 40, fontSize: 22}}>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Fusce vestibulum tempor nisl.
 </Text>
 </View>
 }

 rightBar() {
 return <View style={{ flex: 0.1, backgroundColor: '#FFA' }}></View>
 }

 render() {
 return (
 <View style={{ flexDirection: 'row', flex: 1, backgroundColor: '#FFF' }}>
 {this.sidebar()}
 {this.body()}
 {this.rightBar()}
 </View>
);
 }
}

Flex and FlexDirection

The main render() function wraps a sidebar(), body(), and rightBar() compo‐
nent with a flexDirection: "row" style attribute. The flexDirection will dictate
whether block elements should stack vertically or horizontally. By default, a <View />
will stack vertically. The default flexDirection in React Native is column and not row
(like in CSS).

In this case, we want our outer container to flow like a row: with the sidebar, body,
and rightBar appearing next to each other. The flex value indicates the relative size
of the container. There are two commonly used conventions for flex values: 1 or 10.
In this case, the outer view has a container size of 1. sidebar() will take up 20% of
the component size with a flex value of 0.2. The body() function will return a
<View /> with a flex value of 0.5, accounting for 50% of the view. The remaining
rightBar() will fill 10%.

68 | Chapter 3: Style and Design

Other attributes
There are some other flexbox style declarations for handling alignment and what to
do with excess space in the layout. Once you have the right blocks in place, use justi
fyContent and alignItems to position the child elements. Flexbox views also work
well with pixel-based views like the avatarStyle in the preceding code.

Discussion
Flexbox layouts originated in the web design community as a mechanism for han‐
dling the challenge of an ever-changing browser window. Fortunately for web devel‐
opers, you are probably already familiar with the CSS implementation of flexbox, so
you should have little trouble adjusting to React Native’s implementation.

See Also
The React Native documentation provides a helpful guide for laying out flexbox
views.

3.3 Importing Image Vectors and Icons
Your app will start coming alive once you include icons and other design cues. Fortu‐
nately we can use libraries like react-native-vector-icons.

Problem
How do you decide the best way to display vector images in your application?

Solution
Working with images and binaries is easily done with require() statements, but vec‐
tors and icons are special. They do not render out of the box in Android or iOS.

Different solutions exist depending on whether you have a number of vectors files,
the complexity of the design, whether or not there are multiple colors in the design,
and if you need to target a number of platforms.

Convert to images
The simplest solution in some cases is simply to convert the file into a rasterized file
format, like PNG or JPG. The React Native packager is smart enough to detect these
dependencies and bundle them together. In order for the file to render correctly for
different screen densities, it’s helpful to provide alternative versions of the same file.

3.3 Importing Image Vectors and Icons | 69

http://bit.ly/2ENNIoE
http://bit.ly/2ENNIoE
http://bit.ly/2FUwKUK

In this case, I have a vector of a lightbulb, bulb.svg, which has been converted into a
number of different pixel density equivalent images:

components
└── images
 ├── bulb.svg
 ├── bulb@1x.android.png
 ├── bulb@1x.ios.png
 ├── bulb@2x.android.png
 ├── bulb@2x.ios.png
 ├── bulb@3x.android.png
 ├── bulb@3x.ios.png
 ├── bulb@4x.android.png
 └── index.js

Vector editing programs like Adobe Illustrator provide an “Export to Screens” func‐
tion, making exporting different pixel densities easy, as shown in Figure 3-2.

Figure 3-2. Export to Screens capability in Adobe Illustrator

The index.js file uses a require() statement that can infer the correct image and plat‐
form to load:

70 | Chapter 3: Style and Design

import React, { Component } from 'react';
import { Image } from 'react-native';

export const Bulb = () => <Image source={require('./bulb.png')} />

In the main application, you can now reference the image as though it were any other
React component:

import { Bulb } from './components/images'
export default class App extends Component<{}> {
 render() {
 return (
 <View style={{flex: 1, justifyContent: 'center',
 alignItems: 'center' }}>
 <Bulb />
 </View>
);
 }
}

There are a couple of solutions to vectors: converting them to SVG markup and using
a library or converting them to fonts.

Drawing an SVG

react-native-vector-icons provides a set of React components for describing an
SVG using React Native components. At the time of this writing, certain attributes
such as clip-path are partially supported. This approach requires essentially redraw‐
ing the icon in the application.

The same lightbulb can be exported as the following SVG file:

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg" id="Layer_1" data-name="Layer 1"
viewBox="0 0 86 114">
 <defs>
 <style>.cls-1{fill:#dcdfe1;}.cls-1,.cls-4,.cls-5{stroke:#555e65;
 stroke-miterlimit:10;
 stroke-width:2px;}.cls-2{fill:#fff;}.cls-3{fill:#faf7de;}
 .cls-4,.cls-5{fill:none;}
 .cls-4{opacity:0.5;}
 </style>
 </defs>
 <title>bulb</title>
 <g id="Lightbulb">
 <ellipse class="cls-1" cx="43" cy="96.61" rx="6.77" ry="5.42" />
 <ellipse class="cls-1" cx="43" cy="92.55" rx="10.16" ry="5.42" />
 <ellipse class="cls-1" cx="43" cy="88.48" rx="10.16" ry="5.42" />
 <ellipse class="cls-1" cx="43" cy="84.42" rx="10.16" ry="5.42" />
 <path class="cls-2" d="M70.08,39.06A27.09,27.09,0,1,0,23.44,58,20,20,
 0,0,1,29, 72.21v3.41c0,5.61,6.52,10.16,14,
 10.16s14-4.55,14-10.16v-3.4a19.94,19.94,0,0,1,

3.3 Importing Image Vectors and Icons | 71

 5.52-14.16A26.78,26.78,0,0,0,70.08,39.06Z" />
 <path class="cls-3" d="M44.5,85.1C38.15,85.1,33,81.45,33,77V73.57a22.24,
 22.24,0,0,0-6.45-15.62,25,25,0,0,1,
 16-42.52q.9-.06,1.82-.06a25.08,25.08,0,0,1,25,
 25.05A24.83,24.83,0,0,1,62.27,58,22,22,0,0,0,56,
 73.57V77C56,81.45,50.85,85.1,44.5,85.1Z" />
 <path class="cls-4" d="M34.2,79c0-3,3.94-5.42,8.8-5.42S51.8,76,51.8,79" />
 <path class="cls-5" d="M50.45,42.44h.15A4.62,4.62,0,0,0,46,
 47.18V52h4.45a4.77,4.77,0,0,0,4.74-4.78v0A4.76,
 4.76,0,0,0,50.45,42.44Z" />
 <path class="cls-5" d="M35.55,42.44h-.15A4.62,4.62,0,0,1,40,
 47.18V52H35.55a4.77,4.77,0,0,1-4.74-4.78v0A4.76,
 4.76,0,0,1,35.55,42.44Z" />
 <polyline class="cls-5" points="46 79 46 52 40 52 40 79" />
 <path class="cls-5" d="M70.08,39.06A27.09,27.09,0,1,0,23.44,58,20,20,
 0,0,1,29,72.21v3.41c0,5.61,6.52,10.16,14,
 10.16s14-4.55,14-10.16v-3.4a19.94,19.94,0,0,1,
 5.52-14.16A26.78,26.78,0,0,0,70.08,39.06Z" />
 </g>
</svg>

Because react-native-vector-icons supports a subset of the SVG specification, it
would need to be redrawn without the style reference:

import React, { Component } from 'react';
import Svg,{
 Ellipse,
 Path,
 Polyline,
} from 'react-native-svg';

export default function() {
 return <Svg height="130" width="100">
 <Ellipse cx="43" cy="96.61" rx="6.77" ry="5.42" fill="#dcdfe1"
 stroke="#555e65" strokeWidth="2" />
 <Ellipse cx="43" cy="92.55" rx="10.16" ry="5.42" fill="#dcdfe1"
 stroke="#555e65" strokeWidth="2"/>
 <Ellipse cx="43" cy="88.48" rx="10.16" ry="5.42" fill="#dcdfe1"
 stroke="#555e65" strokeWidth="2"/>
 <Ellipse cx="43" cy="84.42" rx="10.16" ry="5.42" fill="#dcdfe1"
 stroke="#555e65" strokeWidth="2"/>
 <Path fill="#Faf7de" d="M70.08,39.06A27.09,27.09,0,1,0,23.44,58,20,20,0,
 0,1,29,72.21v3.41c0,5.61,6.52,10.16,14,10.16s14-4.55,
 14-10.16v-3.4a19.94,19.94,0,0,1,
 5.52-14.16A26.78,26.78,0,0,0,70.08,39.06Z" />
 <Path fill="none" d="M44.5,85.1C38.15,85.1,33,81.45,33,77V73.57a22.24,22.24,
 0,0,0-6.45-15.62,25,25,0,0,1,16-42.52q.9-.06,
 1.82-.06a25.08,25.08,0,0,1,25,25.05A24.83,24.83,
 0,0,1,62.27,58,22,22,0,0,0,56,73.57V77C56,81.45,50.85,
 85.1,44.5,85.1Z" />
 <Path fill="none" d="M34.2,79c0-3,3.94-5.42,8.8-5.42S51.8,76,51.8,79" />
 <Path stroke="#555e65" strokeWidth="2" fill="none" d="M50.45,42.44h.15A4.62,
 4.62,0,0,0,46,47.18V52h4.45a4.77,4.77,

72 | Chapter 3: Style and Design

 0,0,0,4.74-4.78v0A4.76,4.76,0,0,0,
 50.45,42.44Z" />
 <Path stroke="#555e65" strokeWidth="2" fill="none" d="M35.55,42.44h-.15A4.62,
 4.62,0,0,1,40,47.18V52H35.55a4.77,4.77,0,0,
 1-4.74-4.78v0A4.76,4.76,0,0,1,35.55,42.44Z" />
 <Polyline stroke="#555e65" strokeWidth="2" fill="none"
 points="46 79 46 52 40 52 40 79" />
 <Path stroke="#555e65" strokeWidth="2" fill="none" d="M70.08,39.06A27.09,
 27.09,0,1,0,23.44,58,20,20,0,0,1,29,72.21v3.41c0,
 5.61,6.52,10.16,14,10.16s14-4.55,14-10.16v-3.4a19.94,
 19.94,0,0,1,5.52-14.16A26.78,26.78,0,0,0,70.08,39.06Z" />
 </Svg>
}

The added benefit of this approach is that every attribute can be edited and animated
using the rest of the React Native ecosystem. In some cases this kind of effort makes a
lot of sense; for example, if you want a vector image to change based on user interac‐
tion.

Converting it to a font
If you plan on using the vector in multiple colors and it doesn’t contain any color
details, consider making a custom font. IcoMoon makes it easy to turn your vector art
into a single font (Figure 3-3).

Figure 3-3. The IcoMoon website makes it easy to build a custom font from SVGs

This approach harkens to the Wyndings font developed by Microsoft decades ago and
uses the font file format to represent vector images.

3.3 Importing Image Vectors and Icons | 73

https://icomoon.io/

The react-native-vector-icons library provides a set of font wrapper functions in
addition to commonly used icon sets like FontAwesome, MaterialIcons, and Ionicons.

Install it like any other React Native package via NPM:

$> npm install react-native-vector-icons --save
$> react-native link

A folder will be created in android/app/src/main/assets/fonts for Android as shown in
Figure 3-4.

Figure 3-4. Android Studio requires a copy of the font

The linker should also add a Resources folder to your iOS project file that contains the
set of free fonts. I suggest making sure that the free fonts provided are rendering cor‐
rectly in your application before loading any custom fonts.

To add an icon set you’ve downloaded from IcoMoon, you will need two files from
the ZIP file provided by IcoMoon: selection.json and icomoon.ttf. The IcoMoon pack‐
age will compile all your vector images into different character keys of a font.

For iOS, you will then need to reference the icomoon.ttf file in the Resources folder
and include it as part of the list of Fonts provided by application in the info.plist as
shown in Figure 3-5. For Android, copy the icomoon.ttf file to the android/app/src/
main/assets/fonts folder.

74 | Chapter 3: Style and Design

http://bit.ly/2FUwKUK

Figure 3-5. Configure Xcode to reference icomoon.ttf

You can now reference the component by icon name. Following is an example of
using the icomoon.ttf file with an icon called webinar next to a FontAwesome icon
called rocket:

import FontAwesomeIcon from 'react-native-vector-icons/FontAwesome';

// Custom IcoMoon Icon
import { createIconSetFromIcoMoon } from 'react-native-vector-icons';
import icoMoonConfig from './fonts/selection.json';
const Icon = createIconSetFromIcoMoon(icoMoonConfig);

export default class App extends Component<{}> {
 render() {
 return (
 <View style={{flex: 1, justifyContent: 'center', alignItems: 'center' }}>
 <Icon name='webinar' size={30} color='#F00' />
 <FontAwesomeIcon name='rocket' size={30} color='#333' />
 </View>
);
 }
}

3.3 Importing Image Vectors and Icons | 75

Discussion
Any binary assets need to be bundled with your React Native project. iOS and
Android will both need references to those assets.

3.4 Looping Animations
In Recipe 2.2, we used the react-native-progress component to build a pie chart
that would change progress amounts based on a user tapping <TouchableHigh
light />. Indeterminate progress can be presented to the user by combining the Ani
mated library provided by React Native and the react-native-progress component.
By combining these two libraries, we can build a simple component that will loop
forever.

Problem
How do you communicate that a task is in process when you don’t know how long it
will take?

Solution
Indeterminate progress indicators help you buy time while your application finishes
loading. Let’s start by defining a constructor with a local state variable in the compo‐
nents/loading.js file:

 constructor(props) {
 super(props);
 this.state = {
 loop: new Animated.Value(0),
 };
 }

The loop variable will refer to an instance of Animated.Value that increments from 0
to 1.

componentDidMount() is a special function React will call before it renders a compo‐
nent for the first time. We will use this hook into the render loop to configure our
loop:

 componentDidMount() {
 Animated.loop(
 Animated.timing(this.state.loop, {
 toValue: 1,
 duration: 500,
 }),
).start();
 }

76 | Chapter 3: Style and Design

Finally we will set up an interpolation function so that a corresponding rotation
degree results from every value of this.state.loop between 0 and 1. We do not have
a direct reference to the animation loop because all interpolation is happening within
native components that we are configuring. This approach ensures smooth anima‐
tions across platforms.

The render() function relies on react-native-progress first presented in Recipe
2.2:

 render() {
 const interpolation = this.state.loop.interpolate({
 inputRange: [0, 1],
 outputRange: ['0deg', '360deg']
 })
 const animationStyle = {
 transform: [{ rotate: interpolation }]
 }
 return <View>
 <Animated.View style={animationStyle}>
 <Pie borderWidth={2} progress={0.2} size={100} color='#2224FF' />
 </Animated.View>
 </View>
 }

The completed <Loading /> component looks like this:

import React, { Component } from 'react';
import {
 Animated,
 View
} from 'react-native';

import Progress, { Pie } from 'react-native-progress';

export default class Loading extends Component {
 constructor(props) {
 super(props);
 this.state = {
 loop: new Animated.Value(0),
 };
 }

 componentDidMount() {
 Animated.loop(
 Animated.timing(this.state.loop, {
 toValue: 1,
 duration: 500,
 }),
).start();
 }

 render() {

3.4 Looping Animations | 77

 const interpolation = this.state.loop.interpolate({
 inputRange: [0, 1],
 outputRange: ['0deg', '360deg']
 })
 const animationStyle = {
 transform: [{ rotate: interpolation }]
 }
 return <View>
 <Animated.View style={animationStyle}>
 <Pie borderWidth={2} progress={0.2} size={100} color='#2224FF' />
 </Animated.View>
 </View>
 }
}

Discussion
In this example, you will notice that the animation is applied to an
<Animated.View /> component instead of a regular <View /> component. These
components are designed to accept values from either an interpolation or an Anima
ted.Value component. This approach avoids calling on the React.js render pipeline,
which would increase the overhead required to render a single frame of the anima‐
tion.

You should be able to include the <Loading /> component in your application and
watch a spinning pie animation.

See Also
The React Native documentation provides an extensive guide explaining some of the
design choices. There are also plenty of examples.

See the React Native Animation Guide.

78 | Chapter 3: Style and Design

http://bit.ly/2FSTsfW

CHAPTER 4

Managing Hardware Platforms

You want the best experience for your users. With a mobile device packed with sen‐
sors, why not tap into the raw power of the machine running your code to deliver the
best possible interaction? With a little bit of work, you can take advantage of the
accelerometer, the GPS, the camera, and the hardware on the device. This chapter will
survey some of the more common use cases and lessons learned managing the under‐
lying hardware platform.

4.1 Asking for Permission to Use Device Hardware (iOS)
Whether you are snapping photos for a social media app or scanning a QR code in a
corporate lobby, the device’s camera is one of the most powerful sensors at your
disposal.

In some cases, a card or a modal screen with a button that triggers the hardware will
help someone understand why they need to provide access like the two-step wire‐
frame depicted in Figure 4-1. This permission flow is common in iOS applications,
where permission requests can be delayed until they are required by the application.

Hardware Requires Hardware

The simulator can do some hardware testing; however, especially
when dealing with camera data, there is no substitute for a real
device.

79

Figure 4-1. A wireframe depicting a two-step user flow for requesting camera
permissions

The Apple App Store will review your application and flag any permissions that have
not been explicitly declared. In some cases, such as with HealthKit, making back‐
ground web requests, or using the location information when the app is not active,
there may be some other capabilities that will also need to be enabled.

Variations Emerge Closer to the Metal

Most examples in this book assume cross-platform support. Some
components, like react-native-camera, try (successfully) to
abstract the implementation differences between Android and iOS.
In some cases, such as Apple Pay or HealthKit, this will not be pos‐
sible. You will probably end up having to write two implementa‐
tions in React Native or writing your own React Native bridge.

80 | Chapter 4: Managing Hardware Platforms

Problem
How do you design an interface that provides informed consent for users? Ideally,
you want to delay requesting permission for hardware until you absolutely need it. In
this example, we provide context ensuring that the user gives you access to her
camera.

Solution
Let’s use the react-native-camera component. Another library, react-native-
permissions, will provide us with a standard API for seeing whether we can start
using the camera. Begin by installing it from the command line:

$> npm install react-native-camera --save
$> npm install react-native-permissions --save
$> react-native link

Now add a description under “Privacy - Camera Usage Description” in the Info.plist
file in Xcode as shown in Figure 4-2.

Figure 4-2. The Info.plist lists your hardware requirements

Create your own <SimpleCamera /> component that will wrap some basic function‐
ality:

// modalCamera.js
import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 Image,
 View,
 TextInput,
 TouchableHighlight
} from 'react-native'

import Camera from 'react-native-camera';

4.1 Asking for Permission to Use Device Hardware (iOS) | 81

http://bit.ly/2C2DM7s
http://bit.ly/2nJ3ZDI
http://bit.ly/2nJ3ZDI

export default class ModalCamera extends Component {
 constructor(props) {
 super(props)
 this.state = {
 cameraType: Camera.constants.Type.back
 }
 }

 async capturePhoto() {
 const data = await this.camera.capture();
 this.props.onPhoto(data);
 }

 switchCamera = () => {
 const { Type } = Camera.constants;
 const cameraType = this.state.cameraType === Type.back ?
 Type.front : Type.back;
 this.setState({ cameraType });
 }

 takePicture = () => {
 this.capturePhoto();
 }

 render() {
 return <View style={{flex: 1, backgroundColor: 'blue' }}>
 <Camera
 ref={(cam) => { this.camera = cam; }}
 aspect={Camera.constants.Aspect.fill}
 captureTarget={Camera.constants.CaptureTarget.disk}
 captureAudio={false}
 style={styles.container}
 type={this.state.cameraType}>
 <View style={styles.buttonRow}>
 <TouchableHighlight style={styles.button}
 onPress={this.switchCamera}>
 <Text style={styles.buttonText}>Switch</Text>
 </TouchableHighlight>
 <TouchableHighlight style={styles.button}
 onPress={this.takePicture}>
 <Text style={styles.buttonText}>Snap Dish</Text>
 </TouchableHighlight>
 </View>
 </Camera>
 </View>
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,

82 | Chapter 4: Managing Hardware Platforms

 backgroundColor: "transparent",
 },
 buttonRow: {
 flexDirection: "row",
 position: 'absolute',
 bottom: 25,
 right: 0,
 left: 0,
 justifyContent: "center"
 },
 button: {
 padding: 20,
 borderWidth: 3,
 borderColor: "#FF0000",
 margin: 15
 },
 buttonText: {
 color: "#FFF",
 fontWeight: 'bold'
 },
})

The App.js file will highlight some of the potential states for the camera hardware on
the device. By using react-native-permissions, we can create a user experience
where someone is alerted only when the camera request needs to be made. This
library also claims to support the latest Android permission checks:

// App.js
import React, { Component } from 'react';
import {
 Alert,
 StyleSheet,
 TouchableHighlight,
 View,
 Text
} from 'react-native'
import SimpleCamera from './simpleCamera'
import Permissions from 'react-native-permissions'
export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = { cameraPermission: null };
 }

 componentDidMount() {
 this.determinePermission();
 }

 async determinePermission(){
 const cameraPermission = await Permissions.check('camera')
 this.setState({ cameraPermission });

4.1 Asking for Permission to Use Device Hardware (iOS) | 83

 }

 async requestCamera() {
 const cameraPermission = await Permissions.request('camera');
 this.setState({ cameraPermission });
 }

 photoTaken = ({ path }) => {
 Alert.alert(`Photo Path: ${path}`)
 }

 requestPermission = () => {
 this.requestCamera();
 }

 renderDenied() {
 return <View>
 <Text style={styles.textHeading}>Looks like you do not want
 to take any photos.</Text>
 <Text style={styles.textHeading}>
 Please enable camera functionality in your application settings
 </Text>
 </View>
 }

 renderCameraRequest() {
 return <View>
 <Text style={styles.textHeading}>
 Let Pastry Cookbook share your dishes with the world!
 </Text>
 <TouchableHighlight style={styles.button}
 onPress={this.requestPermission}>
 <Text style={styles.buttonText}>Enable Camera</Text>
 </TouchableHighlight>
 </View>
 }

 render() {
 const { cameraPermission } = this.state;
 return <View style={styles.container}>
 { cameraPermission === "undetermined" && this.renderCameraRequest() }
 { cameraPermission === "authorized" && <SimpleCamera
 onPhoto={this.photoTaken} /> }
 { cameraPermission === "denied" && this.renderDenied() }
 </View>
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,

84 | Chapter 4: Managing Hardware Platforms

 paddingTop: 30,
 backgroundColor: '#000',
 },
 buttonRow: {
 flexDirection: 'row',
 position: 'absolute',
 bottom: 25,
 right: 0,
 left: 0,
 justifyContent: 'center'
 },
 button: {
 padding: 20,
 borderWidth: 3,
 borderColor: '#FFF',
 borderRadius: 20,
 backgroundColor: '#2445A2',
 margin: 15
 },
 buttonText: {
 color: '#FFF',
 fontWeight: 'bold',
 textAlign: 'center',
 },
 textHeading: {
 color: '#44CAE5' ,
 fontSize: 24,
 padding: 20,
 fontWeight: 'bold',
 textAlign: 'center',

 }
})

You can see the different application states in Figure 4-3 and Figure 4-4. When a
screenshot is taken, an Alert presents the user with the filepath on the device. In
Recipe 4.4 we will explore the filesystem in more depth.

Using Async/Await Instead of Promise()

Working with device hardware is rarely synchronous. In other
words, the user interface will not block to wait until data from a
sensor returns correctly. The result of this asynchronicity is often
seen in a series of nested then(() => {}) statements. In order to
get around this, I’ve decided to present this example using async
and await. If you feel more comfortable with chaining then()
instead, the examples should work just the same.

4.1 Asking for Permission to Use Device Hardware (iOS) | 85

Figure 4-3. Delaying hardware device permissions provides users with a better user
experience

86 | Chapter 4: Managing Hardware Platforms

Figure 4-4. Handling a case when you don’t have permission to use the camera is criti‐
cal; with permission granted, photoTaken() presents an Alert with the file path of the
photo taken

4.1 Asking for Permission to Use Device Hardware (iOS) | 87

See Also
This example only scratches the surface of requesting permission from users. If your
application will play music in the background, enable payments, track users, or any‐
thing that can be deemed invasive, expect to spend development time informing
users.

Learn more about requesting permissions from the react-native-permissions GitHub
page and the PermissionsAndroid React Native guide.

4.2 Fetching Paginated Requests
The infinite scroll is an endless feast of content. Just as your palette is about to sur‐
render, you find yourself faced with a new batch of morsels to tempt further con‐
sumption.

Most applications rely on the networking infrastructure on the mobile device to make
asynchronous calls to a web server, oftentimes to get a list of records. This interaction
pattern is seen in most applications that present a list of choices to a user. Whether it’s
a series of photos from people you follow, or the latest restaurant choices in your area,
an ever-growing list of content keeps people engaged.

Problem
How do you present a paginated list of content that can be constantly refreshed?

Solution
Before we tackle the pagination challenge, we need a data provider that we can con‐
nect to. Building a web server falls outside the scope of this book, so we will rely on
the JSONPlaceholder, a REST API for prototyping and testing, instead of rolling our
own.

See the FlatList in Figure 4-5, which renders a paginated set of results.

This example relies on two components as shown in Figure 4-5: <ListItem /> and
the container <App />.

88 | Chapter 4: Managing Hardware Platforms

http://bit.ly/2nJ3ZDI
http://bit.ly/2nJ3ZDI
http://bit.ly/2EN3H61
https://jsonplaceholder.typicode.com

Figure 4-5. A FlatList renders a paginated result set

The <ListItem /> is just a simple function that returns JSX. The overlay effect is
achieved by relying on absolute positioning of the {title} and a backing <View />,
which is semitransparent. The React Native guides recommend always passing
height and width information for dynamic images. In this case, we’re relying on a
third-party web service called LoremPixel, and we can dictate what format we require:

//listItem.js
import React, { Component } from 'react';

import {

4.2 Fetching Paginated Requests | 89

 Image,
 StyleSheet,
 View,
 Text
} from 'react-native';

export default function ({url, title, width}) {
 return <View style={styles.card}>
 <Image resizeMode='cover'
 source={ { uri: url } }
 style={[styles.image, {width, height: 200}] } />
 <View style={[styles.overlay, { width }]} />
 <Text style={styles.text}>{title}</Text>
 </View>
}

const styles = StyleSheet.create({
 card: {
 borderBottomWidth: 5,
 borderTopWidth: 2,
 borderBottomColor: '#222',
 borderTopColor: '#CACACA',
 borderStyle: 'solid',
 height: 207,
 },

 overlay: {...StyleSheet.absoluteFillObject,
 height: 30,
 top: 170,
 position: 'absolute',
 backgroundColor: 'rgba(2,2,2,0.8)',

 },

 text: {
 fontSize: 14,
 height: 30,
 top: 170,
 color: '#FFF',
 backgroundColor: 'transparent',
 },

 image: {...StyleSheet.absoluteFillObject, }
});

This component illustrates the critical relationship between <RefreshControl /> and
<FlatList />. The fetchRecords() method asynchrously fetches JSON results and
appends them to this.state.list. fetchRecords() is called on first load, compo
nentDidMount(), when a refresh happens from a Pull to Refresh event and when the
user scrolls to the bottom of the list. appendResults() copies the retrieved list of

90 | Chapter 4: Managing Hardware Platforms

posts into a new array with the existing list after performing a small set of transfor‐
mations.

In order for iOS to make a web request, the URL must either use
SSL (begin with https) or the domain must be explicitly set as
exempt in the Info.plist file under NSExceptionDomains. This may
be required if you are running a web development server locally
without SSL.

//App.js
import React, { Component } from 'react';
import {
 StyleSheet,
 FlatList,
 Dimensions,
 RefreshControl,
 View,
 Text
} from 'react-native';

import ListItem from './listItem'

const { width } = Dimensions.get('window');
const API = 'https://jsonplaceholder.typicode.com';

export default class App extends Component<{}> {

 constructor(props) {
 super(props)
 this.state = {
 refreshing: false,
 page: 1,
 list: []
 }
 }

 resultToListItem({ id, title }) {
 const { page } = this.state;
 const url = `https://lorempixel.com/${width}/200/food/${title}/`
 return { id: `${page}-${id}`, title: `${page} - ${title}`, width, url }
 }

 appendResults(results) {
 let list = [];
 Object.keys(results).forEach((photoKey) => {
 list.push(this.resultToListItem(results[photoKey]));
 });
 this.setState((prevState) => ({
 list: prevState.list.concat(list),
 refreshing: false,

4.2 Fetching Paginated Requests | 91

 page: (prevState.page + 1)
 }));
 }

 async fetchRecords() {
 this.setState({ refreshing: true });
 const resp = await fetch(`${API}/posts?_limit=5`)
 const results = await resp.json();
 this.appendResults(results);
 }

 onRefresh = () => {
 this.setState({ list: [], page: 1});
 this.fetchRecords();
 }

 onEndReached = () => {
 this.fetchRecords()
 }

 componentDidMount() {
 this.fetchRecords()
 }

 render() {
 const refreshControl = <RefreshControl refreshing={this.state.refreshing}
 onRefresh={this.onRefresh} />
 return <View style={styles.container}>
 <View style={styles.header}>
 { this.state.refreshing ?
 <Text style={styles.headerText}>Refreshing...</Text> :
 <Text style={styles.headerText}>
 {this.state.list.length} Meals
 </Text> }
 </View>
 <FlatList
 renderItem={({item}) => <ListItem {...item} />}
 refreshControl={refreshControl}
 keyExtractor={({id}) => id}
 data={this.state.list}
 onEndReached={this.onEndReached}
 />
 </View>
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 paddingTop: 30,
 backgroundColor: '#FFF',
 },

92 | Chapter 4: Managing Hardware Platforms

 headerText: {
 color: '#144595',
 fontSize: 16,
 fontWeight: 'bold',
 textAlign: 'center',
 },

 header: {
 borderBottomWidth: 1,
 borderBottomColor: '#222',
 borderStyle: "solid",
 }
})

Discussion
Implementing this pattern requires a little bit of care. Because the user can trigger a
refresh at any point, and because the list of content is expanding, it’s best to use some
native data structures for handling the content. Furthermore, the server may return
the same content twice, making it necessary to handle duplicates. Page sizes may also
vary and so the resulting list on the client might be a mash of slightly different queries
to an API.

See Also
For lists that have a section that sticks to the top of the view, consider using the Sec
tionList. The API is very similar.

Managing records inside of a component can also lead to some confusion. For exam‐
ple, if you wanted to tap into one of these records to retrieve further information or
perform a route navigation (see Recipe 2.4), then some global state management with
Flux, Mobx, Redux, Apollo, or Relay may be worth considering.

4.3 Save Application State with Redux and Local Storage
Redux is one of the most popular state management libraries in the React ecosystem.
Unidirectional data flow architectures like Flux, Mobx, and Redux go with React like
peanut butter and strawberry jam. But what happens when a user closes your app,
taps a notification, or shifts the application from a foreground state to a background
state? How do we ensure that data persists in these cases?

There are many strategies for persisting data on mobile. Each app has access to some
file storage; however, for data, the AsyncStorage module provides a simple API for
keeping track of important information.

4.3 Save Application State with Redux and Local Storage | 93

http://bit.ly/2E8S88i
http://bit.ly/2E8S88i

This example combines one of the most popular state management libraries (Redux)
with the most commonly used persistence module in React Native: AsyncStorage.

Problem
You are already using Redux and have decided to adopt it for your mobile applica‐
tion. You noticed that users like to have data cached locally even after they have
closed the application.

Solution
The redux-persist library is an excellent starting point in resolving this issue. This
NPM mobile was conceived with support from AsyncStorage. As your Redux archi‐
tecture grows, some of the most recent design changes in version 5.x of redux-
persist will come in handy. This example relies on the project started in Recipe 2.5,
but any Redux application should work.

In our case, we begin by installing redux-persist:

$> npm i redux-persist --save

By adjusting the src/appContainer.js and the reduxStore.js files from Recipe 2.5, our
appication will automatically store the username and application state in asynchro‐
nous storage.

reduxStore.js used to rely on the combineReducers() method. This has been replaced
with persistCombineReducers(), which includes a config parameter. storage will
automatically resolve to AsyncStorage with React Native:

// reduxStore.js
import * as reducers from './src/reducers';
import { createStore, applyMiddleware, combineReducers, compose} from 'redux';
import { persistCombineReducers } from 'redux-persist';
import storage from 'redux-persist/es/storage';
import logger from 'redux-logger';
const config = {
 key: 'root',
 storage,
};
export default createStore(
 combineReducers(reducers),
 persistCombineReducers(config, reducers),
 applyMiddleware(logger)
);

redux-persist includes a <PersistGate /> component, which is intended to limit
rendering of your application until the application state has been completely
hydrated:

94 | Chapter 4: Managing Hardware Platforms

// src/appContainer.js
import React, { Component } from 'react';
import AppContainer from './src/appContainer';
import { Provider } from 'react-redux';
import store from './reduxStore';

// newly-added references to redux-persist:
import { persistStore } from 'redux-persist';
import { PersistGate } from 'redux-persist/es/integration/react';
const persistor = persistStore(store);

export default class App extends Component<{}> {

 render() {
 return <Provider store={store}>
 <PersistGate persistor={persistor}>
 <AppContainer />
 </PersistGate>
 </Provider>
 }
}

When the app is terminated and restarted, any state changes should be maintained in
AsyncStorage. redux-persist is an excellent example of how the Redux design phi‐
losophy enables plugging in libraries by extending the core Redux architecture based
on your application’s use case.

See Also
As your app grows, you will undoubtedly want to selectively persist portions of your
application. redux-persist provides mechanisms for handling state changes, white‐
listing, and blacklisting of reducers and parameters. Consult the documentation for
more information. Another excellent library is redux-offline, which depends on
redux-persist and provides additional hooks for handling poor network connectiv‐
ity scenarios.

4.4 Using the Filesystem
There are a lot of common use cases for working with an application’s filesystem:
dealing with binary files, downloading assets from the web, or like in Recipe 4.1,
because you want to manage photos inside your app.

We’re going to extend the project started in Recipe 4.1 by adding listing, viewing, and
deleting functionality to the same application with the react-native-fs package.

4.4 Using the Filesystem | 95

http://bit.ly/2nPdsst
http://bit.ly/2nPdsst
http://bit.ly/2Ealnrl

Problem
How do you tackle some of the common challenges when dealing with the filesystem,
such as how to write, delete, list, and view files?

Solution
Our solution involves refactoring App.js from Recipe 4.1 into a <CameraContainer />
component. Our updated App.js file can toggle between a camera view (cameraCon‐
tainer.js) and a list view (listContainer.js). Figure 4-6 demonstrates the addition of a
button group for toggling pages in the App.js file.

Figure 4-6. The App.js now includes a bottom toggle for page switching; CameraCon‐
tainer and ListContainer are loaded interchangeably

Begin by installing the react-native-fs package:

$> npm install react-native-fs --save
$> react-native link react-native-fs

96 | Chapter 4: Managing Hardware Platforms

http://bit.ly/2E9SMqg

Let’s move the existing App.js file to a new cameraContainer.js file:

// cameraContainer.js
import React, { Component } from 'react';
import {
 Alert,
 StyleSheet,
 TouchableHighlight,
 View,
 Text
} from 'react-native';

import SimpleCamera from './simpleCamera';
import Permissions from 'react-native-permissions';

export default class CameraContainer extends Component<{}> {

 constructor(props) {
 super(props);
 this.state = { cameraPermission: null };
 }

 componentDidMount() {
 this.determinePermission();
 }

 async determinePermission(){
 const cameraPermission = await Permissions.check('camera')
 this.setState({ cameraPermission });
 }

 async requestCamera() {
 const cameraPermission = await Permissions.request('camera');
 this.setState({ cameraPermission });
 }

 photoTaken = ({ path }) => {
 Alert.alert(`Photo Path: ${path}`)
 }

 requestPermission = () => {
 this.requestCamera();
 }

 renderDenied() {
 return <View>
 <Text style={styles.textHeading}>Looks like you do not want to
 take any photos.</Text>
 <Text style={styles.textHeading}>
 Please enable camera functionality in your application settings
 </Text>
 </View>
 }

4.4 Using the Filesystem | 97

 renderCameraRequest() {
 return <View>
 <Text style={styles.textHeading}>
 Let Pastry Cookbook share your dishes with the world!
 </Text>
 <TouchableHighlight style={styles.button} onPress={this.requestPermission}>
 <Text style={styles.buttonText}>Enable Camera</Text>
 </TouchableHighlight>
 </View>
 }

 render() {
 const { cameraPermission } = this.state;
 return <View style={styles.container}>
 { cameraPermission === "undetermined" && this.renderCameraRequest() }
 { cameraPermission === "authorized" && <SimpleCamera
 onPhoto={this.photoTaken} /> }
 { cameraPermission === "denied" && this.renderDenied() }
 </View>
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 paddingTop: 30,
 backgroundColor: '#000',
 },
 buttonRow: {
 flexDirection: 'row',
 position: 'absolute',
 bottom: 25,
 right: 0,
 left: 0,
 justifyContent: 'center'
 },
 button: {
 padding: 20,
 borderWidth: 3,
 borderColor: '#FFF',
 borderRadius: 20,
 backgroundColor: '#2445A2',
 margin: 15
 },
 buttonText: {
 color: '#FFF',
 fontWeight: 'bold',
 textAlign: 'center',
 },
 textHeading: {

98 | Chapter 4: Managing Hardware Platforms

 color: '#44CAE5',
 fontSize: 24,
 padding: 20,
 fontWeight: 'bold',
 textAlign: 'center',

 }
});

App.js will now set the page state between the list and camera states:

// App.js
import React, { Component } from 'react';
import {
 StyleSheet,
 TouchableHighlight,
 View,
 Text
} from 'react-native';
import CameraContainer from './cameraContainer';
import ListContainer from './listContainer';
export default class App extends Component<{}> {
 constructor(props) {
 super(props);
 this.state = {
 page: "list"
 }
 }

 render() {
 const { page } = this.state;
 return <View style={styles.container}>
 { page === "list" && <ListContainer style={styles.page} /> }
 { page === "camera" && <CameraContainer style={styles.page} /> }
 <View style={styles.buttonGroup}>
 <TouchableHighlight
 onPress={ () => { this.setState({ page: 'list' }) } }
 style={[styles.button, (page === "list" &&
 styles.activeButton)]} >
 <Text style={[styles.buttonText, (page === "list" &&
 styles.activeButtonText)]}>
 List
 </Text>
 </TouchableHighlight>
 <TouchableHighlight
 onPress={ () => { this.setState({ page: 'camera' }) } }
 style={[styles.button, (page === "camera" && styles.activeButton)]} >
 <Text style={[styles.buttonText,
 (page === "camera" && styles.activeButtonText)]}>
 Camera
 </Text>
 </TouchableHighlight>
 </View>

4.4 Using the Filesystem | 99

 </View>
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 paddingTop: 30,
 backgroundColor: '#FFF',
 },
 page: {
 flex: 1,
 },
 buttonGroup: {
 flexDirection: 'row',
 },
 activeButton: {
 backgroundColor: '#343678',
 },
 activeButtonText: {
 color: '#FFF'
 },
 button: {
 borderWidth: 1,
 borderColor: '#242668',
 flex: 1,
 height: 50,
 justifyContent: 'center',
 },
 buttonText: {
 fontWeight: 'bold',
 textAlign: 'center',
 color: '#242668',
 }
});

The new <ListContainer /> component will begin by scanning the documents
directory and populating a local this.state variable on componentDidMount():

// listContainer.js
import React, { Component } from 'react';
import {
 FlatList,
 StyleSheet,
 Image,
 TouchableHighlight,
 View,
 Text
} from 'react-native';

import {
 unlink,
 readDir,

100 | Chapter 4: Managing Hardware Platforms

 DocumentDirectoryPath
} from 'react-native-fs';

export default class ListContainer extends Component<{}> {

 constructor(props) {
 super(props);
 this.state = { photos: [] }
 }

 componentDidMount() {
 this.refreshPhotoList();
 }

 async deletePhoto(path){
 await unlink(path)
 this.refreshPhotoList();
 }

 async refreshPhotoList() {
 const allFiles = await readDir(DocumentDirectoryPath);
 const photos = allFiles.filter((file) =>
 { return file.path.split('.')[1] === "jpg" })
 this.setState({ photos });
 }

 renderRow(file) {
 return <View style={styles.row}>
 <Image style={{width: 100, height: 100}} resizeMode='cover'
 source={{ uri: file.path }} />
 <Text numberOfLines={2}
 style={styles.rowText} >{file.name}</Text>
 <TouchableHighlight style={styles.deleteButton}
 onPress={() => this.deletePhoto(file.path)}>
 <Text style={styles.deleteButtonText} >Delete</Text>
 </TouchableHighlight>
 </View>
 }

 render() {
 return <View style={styles.container}>
 <Text style={styles.titleText}>My Dishes</Text>
 <FlatList
 keyExtractor={ ({ name }) => name }
 data={this.state.photos}
 renderItem={ ({ item }) => this.renderRow(item) }
 />
 </View>
 }
};

const styles = StyleSheet.create({

4.4 Using the Filesystem | 101

 container: {
 flex: 1,
 paddingTop: 30,
 backgroundColor: '#FFF',
 },
 row: {
 flexDirection: 'row',
 margin: 5,
 },
 rowText: {
 fontSize: 12,
 flex: 1,
 paddingLeft: 10,
 paddingTop: 40
 },
 titleText: {
 fontSize: 16,
 textAlign: 'center',
 fontWeight: 'bold',
 height: 20,
 },
 deleteButton: {
 backgroundColor: '#A22',
 justifyContent: 'center',
 margin: 20,
 width: 80,
 borderRadius: 5,
 },
 deleteButtonText: {
 color: '#FFF',
 textAlign: 'center',
 justifyContent: 'center',
 }
});

We render the photos using a <FlatList /> component (discussed further in Recipe
4.2). Notice that refreshPhotoList is called asynchronously: all calls to the filesys‐
tem are blocking calls and therefore do not happen synchronously. By relying on
React’s this.state variable, we can trigger a render on setState(), whenever it hap‐
pens next. DocumentDirectoryPath is a global variable that react-native-fs
resolves based on the platform and the application. Any absolute path manipulations
(such as reading a directory with readDir) will require using this constant.

See Also
This example only scratches the surface of what’s possible. Use react-native-fs in
combination with react-native-zip-archive to ZIP files before sending them.
react-native-fs can also provide large data storage with redux-persist on the
Android platform thanks to projects like redux-persist-filesystem-storage.

102 | Chapter 4: Managing Hardware Platforms

http://bit.ly/2C3c8Hp
http://bit.ly/2Em78Df

CHAPTER 5

Lift Off! Sharing Your App

If you are just beginning to deploy native applications, plan for unexpected delays!
For example, the deployment process with the Apple App Store requires several
administrative hurdles that fall outside the scope of this cookbook, but are worth
keeping in mind. Expect to deploy several iterations of your app before it’s ready for
primetime.

Navigating each platform marketplace means acquainting yourself with new termi‐
nology and user interface particularities. The sections that follow include some tools
and lessons learned for making this process as smooth as possible. I will also walk you
through the testing model with the Apple App Store and then finish the chapter with
some tips for dealing with platform-specific code that might surface as you deal with
cross-platform delivery.

5.1 Automate Publishing Your App
You find yourself clicking through the Apple and Google stores over and over again
to get through to beta or production. These user interfaces are error prone and mean
that you can’t keep your store description in lock step with your app.

Problem
How can we keep as much of our App Store configuration versioned like any other
source code if we want to send our build to a continuous integration service like bit‐
rise? The answer is scripting our deployments. My personal favorite is fastlane.

Solution
fastlane is a powerful tool for simplifying the deployment of your application to the
Google Play Store and the Apple App Store. At its core, fastlane is a collection of little

103

https://www.bitrise.io/
https://www.bitrise.io/
https://fastlane.tools/

tools that each do one thing well. They are written in Ruby, so you will need to have a
recent version installed.

fastlane is a rubygem. This is akin to a package in NPM. Installing Ruby will be
slightly different depending on your operating system. The Ruby Language download
page includes instructions for all major operating systems. If you are a software
developer using macOS, you will likely already be using Homebrew to install open
source software easily.

Installing Ruby with Homebrew is as simple as:

$> brew install ruby
$> sudo gem install fastlane

The sudo command is required to install rubygems globally. You will be prompted to
provide your system password to complete the installation. You should now be able
to navigate to your project folder and type fastlane on the command line.

Setting up fastlane
fastlane recommends having a separate fastlane/ folder for both iOS and Android.
Because React Native applications have a project root folder, I recommend centraliz‐
ing all your fastlane configuration in a fastlane/ folder at the root of your project.

Semantic versioning (also called semver) is the widely practiced
decision to use two points and three ordinals to denote the
<major>.<minor>.<patch> version of an artifact. By default,
Android Studio and Xcode will not set up this versioning structure
for your application. Change it if you want fastlane to be able to
automatically increment your build numbers.

If you decide to put a fastlane/ folder inside the android/ and ios/ folders, respectively,
you can follow the steps in the command-line wizard:

$> cd ios/ # or android
$> fastlane
Could not find fastlane in current directory. Make sure to have your fastlane
configuration files inside a folder called "fastlane". Would you like to set
fastlane up? (y/n)

From there fastlane will detect what sort of project it is and create a Fastfile. The
Fastfile will define different lanes: different deployment-related tasks, such as run‐
ning a test suite, deploying to private beta, or publishing to a public audience.

Almost all the metadata fields (such as contact information, company name, demo
account details, etc.) will be the same across platforms. Reduce copy/paste errors by
storing these details in the appropriate file structure. For one project, my fastlane/

104 | Chapter 5: Lift Off! Sharing Your App

https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
https://brew.sh/
http://semver.org/

files are set up to handle the beta deployment on Android and iOS by simply running
fastlane android beta or fastlane ios beta from the project root folder.

Here’s a sample fastlane/ folder structure that includes an en-CA localization:

├── Appfile
├── Deliverfile
├── Fastfile
├── Matchfile
├── README.md
├── metadata
│ ├── android
│ │ └── en-US
│ │ ├── full_description.txt
│ │ ├── images
│ │ │ └── icon.png
│ │ ├── short_description.txt
│ │ ├── title.txt
│ │ └── video.txt
│ ├── copyright.txt
│ ├── en-CA
│ │ ├── description.txt
│ │ ├── keywords.txt
│ │ ├── marketing_url.txt
│ │ ├── name.txt
│ │ ├── privacy_url.txt
│ │ ├── promotional_text.txt
│ │ ├── release_notes.txt
│ │ ├── subtitle.txt
│ │ └── support_url.txt
│ ├── primary_category.txt
│ ├── primary_first_sub_category.txt
│ ├── primary_second_sub_category.txt
│ ├── review_information
│ │ ├── demo_password.txt
│ │ ├── demo_user.txt
│ │ ├── email_address.txt
│ │ ├── first_name.txt
│ │ ├── last_name.txt
│ │ ├── notes.txt
│ │ └── phone_number.txt
│ ├── secondary_category.txt
│ ├── secondary_first_sub_category.txt
│ ├── secondary_second_sub_category.txt
│ └── trade_representative_contact_information
│ ├── address_line1.txt
│ ├── city_name.txt
│ ├── country.txt
│ ├── is_displayed_on_app_store.txt
│ ├── postal_code.txt
│ ├── state.txt

5.1 Automate Publishing Your App | 105

│ └── trade_name.txt
└── report.xml

Fastfile

fastlane looks for a Fastfile that describes the different commands available. When
you type fastlane ios beta, you are calling the iOS platform and the beta lane.

Integration with a team chat service like Slack can keep everyone informed if a build
fails. Consider that fastlane may also be run by a special server designed to do a
deployment after code has been merged by a code-hosting platform like GitHub or
BitBucket.

This project is called RNScratchpad and the Fastfile is stored in RNScratchpad/
fastlane/Fastfile:

platform :ios do
 before_all do
 ENV["GYM_PROJECT"] = "ios/RNScratchpad.xcodeproj"
 end

 desc "Submit a beta to Apple TestFlight"
 lane :beta do
 match
 ensure_git_status_clean
 increment_build_number(xcodeproj: "ios/RNScratchpad.xcodeproj")
 gym(scheme: "RNScratchpad", export_xcargs: "-allowProvisioningUpdates")
 testflight
 end

 after_all do |lane|
 # This block is called, only if the executed lane was successful
 send_message_to_slack(
 "Successfully deployed new update",
 "ios",
 true
)
 end

 error do |lane, exception|
 send_message_to_slack(
 exception.message,
 "ios",
 false
)
 end
end

106 | Chapter 5: Lift Off! Sharing Your App

The :beta lane relies on a collection of functions that are part of the fastlane family.
match, ensure_git_status_clean, increment_build_number, gym, and testflight
are individual commands that run one after another. In some cases they have their
own configuration files.

match relies on a Matchfile. match is a critical piece of tooling for managing iOS pro‐
visioning profiles and certificates. If you have multiple team members involved in
deploying your application, I recommend following the match setup guide.

You can run each of the commands individually. For example, you can build your
Xcode project with gym by running:

$> cd fastlane/
$> fastlane gym

ensure_git_status_clean will protect you from making the common mistake of
deploying code that has not yet been committed to source control. incre

ment_build_number will increase the build number automatically in the Info.plist,
saving you from the manual step of increasing the number before being able to send
your application to Apple. gym will trigger xcodebuild and compile your project.
Using gym with a properly defined scheme will ensure that React Native is built for
production. Because you are writing a JavaScript bundle, React Native needs to store
a jsbundle file as part of the compilation process. This only happens in production.

Further down in the file, send_message_to_slack() is defined. Notice that the xcode
proj: symbol key is provided as a hint to fastlane. The slack_url would of course be
specific to your team:

def send_message_to_slack(message, platform, success)
 if platform == 'android'
 build_number = get_version_code('android/app')
 version_name = get_version_name('android/app')
 elsif platform == 'ios'
 version = get_version_number(xcodeproj: 'ios/RNScratchpad.xcodeproj')
 build_number = get_build_number(xcodeproj: 'ios/RNScratchpad.xcodeproj')
 end
 slack(
 slack_url: "https://hooks.slack.com/services/TEAM_VAR/KEY/SERVICE",
 message: message,
 attachment_properties: {
 fields: [{
 title: 'Version',
 value: version_name,
 short: true
 },
 {
 title: 'Build Number',
 value: build_number,
 short: true

5.1 Automate Publishing Your App | 107

http://bit.ly/2sdXPjD

 }]
 },
 success: success
)
end

Defining store metadata
Each file provides one bit of text. For example, trade_representative_contact_informa‐
tion/city_name.txt simply includes:

Boston

Discussion
The first time you deploy your app in each store, you will have to go through an
extensive registration process. This includes paying an annual fee, providing legal
information, and categorizing your application. Unfortunately, the tools provided are
the same whether you are going through them the first time or subsequent times.

See Also
Be patient with yourself when setting up tools like fastlane. They provide a lot of doc‐
umentation as you move forward, but you should expect to run the build process
dozens of times until it works perfectly for your environment and project require‐
ments.

I recommend looking at the Getting Started guides. Once you’ve attempted to deliver
your project to the Play Store or the App Store, slowly add more and more tools to
your fastlane configuration. Look at the fastlane examples project configurations. The
Mattermost mobile application also has a Fastfile configuration that is specific to
React Native and worth reviewing.

5.2 Sharing Your iOS App with Beta Testers
Your pile of React components is shaping up to do something you and your users are
excited about. While you could ask everyone to install React Native and download
the source code to compile for themselves, why not use some of the tools Apple has
provided to share your app with the world?

Problem
How does my team test my app? You will probably have a group of friends, collea‐
gues, or investors that want to kick the tires on your new application before it’s
launched to the broader public. If you want to appear on the Apple App Store, you

108 | Chapter 5: Lift Off! Sharing Your App

https://docs.fastlane.tools/
https://github.com/fastlane/examples
http://bit.ly/2GXaRoX

will need to be acquainted with the different kinds of testers available to you in Test‐
Flight, Apple’s beta testing toolkit for iOS.

Solution
iTunes Connect divides application testers into two categories: Internal Testers and
External Testers. Internal Testers must have an iTunes Connect account, meaning that
they:

1. Must be invited to join iTunes Connect
2. Must accept the invitation

If you plan on testing your app on Android, each of your testers
will need a Google account (@gmail.com or G Suite) to be
included.

Once they are members of your iTunes Connect account, they can then be designated
as Internal Testers for your app. They will then be sent another email where they will
be invited to download TestFlight—an app-downloading service for beta software.

This multistep process is not simple, but it means that your app can be used without
undergoing an Apple review process. External Testers, which can number in the
thousands, can receive early builds only after they have undergone an Apple review
step. This often requires having demo credentials and making sure that all Apple
review guidelines are followed. Expect delays if you are using special app features like
HealthKit or tracking location in the background. If your app allows users to share
their own content, make sure you have support for flagging inappropriate content in
place before the submission process. I would recommend getting any project manag‐
ers or leadership roles set up as iTunes Connect users early on in the project so that
they can see progress on their own personal devices.

Discussion
iTunes Connect is Apple’s response to two questions: “How do I test my app with beta
testers?” and “How do I put my app on the App Store (and make money)?” There are
a few steps to getting onto iTunes Connect: you (or your organization) need to regis‐
ter as Apple Developers. There is a yearly fee, and in the case of organizations, a D-U-
N-S number (a widely used indexing number for entities) is also required. Once you
are an Apple Developer, you should be able to visit https://developer.apple.com. If your
application relies on additional features, such as push notification or the iAd plat‐
form, some further configuration will be required. Make sure you have an iCloud

5.2 Sharing Your iOS App with Beta Testers | 109

http://bit.ly/2nIwLo1
http://bit.ly/2nIwLo1
https://developer.apple.com

account under the Membership section of the platform. Once you have an Apple
Developer account, you should be able to log in with this account in Xcode and also
have access to iTunes Connect.

See Also
Apple describes the membership details in a fair amount of detail. My experience is
that this whole process needs to be done a few times before it begins to click.

5.3 Configuring Application Settings
React Native enables easy cross-platform and cross-device development. You will
already have at least a development environment and a production environment for
your application. If you support tablet and phone, Android and iOS, and a develop‐
ment and production environment, then you have eight possible configurations for
your application.

There are a number of tools for assisting in the complexities of multidevice (iOS/
Android) and multienvironment (production/development) software. In Recipe 1.3, I
touched on one of the mechanisms at your disposal, a platform suffix in a compo‐
nent. Another useful library is Platform, which makes handling platform-specific
code easier to manage. The __DEV__ global constant can be used to determine
whether we’re in a development or production environment. Lastly, the react-
native-device-info package is an excellent one-stop shop for learning everything
about a device. Let’s go through when you might use which tools.

Problem
What are some common challenges facing cross-platform development?

Spacing between views or sizing of typography may be different across platforms. You
may find that iOS devices are rendering padding and margin properties inconsis‐
tently. You may also decide that you want to render a different sidebar depending on
whether the app is running on a tablet or a phone. Finally, your configuration of log‐
ging and/or hostnames for servers may be dependent on the environment. For exam‐
ple, you may want the app to connect to http://localhost:8000 when in develop‐
ment and https://myapp.com/api when in production.

Solution
Let’s unpack these issues one by one. Start by distinguishing whether you are working
with Android or iOS. Next, we will tackle production and development environ‐
ments. Then we can further tailor our user experience by adjusting how components
render on a tablet or a phone.

110 | Chapter 5: Lift Off! Sharing Your App

https://apple.co/2BJKvrb

There are platform-specific styles
In Recipe 3.1 we looked at how you can build a global stylesheet for your application.
At the top of the file, you can reference the Platform library that comes with react-
native:

// updated styles.js
import { Platform, Dimensions } from 'react-native';
const { width, height } = Dimensions.get('window');

While defining your styles, you can now seamlessly tweak the user interface on a per-
platform basis. Assume we’ve defined a default amount of spacing; now we can use
these values to tailor our components:

const IOS_SPACING = 15;
const ANDROID_SPACING = 20;

// GLOBAL STYLES
export const globalStyles = {
 textHeader: {...fontSizes.H1,
 color: '#2A547A',
 paddingTop: 20,
 fontWeight: 'bold',
 },
 button: {
 backgroundColor: '#2A547A',
 minWidth: 40,
 ...Platform.select({
 android: { paddingTop: ANDROID_SPACING },
 ios: { paddingTop: IOS_SPACING }
 }),
 },
};

The resulting globalStyles.button will have slightly different padding for iOS and
Android.

Android and iOS use different components
Sometimes a component used on iOS and Android needs to be completely different.
For example, Material Design introduced the concept of a Floating Action Button
(FAB), like the pink plus-sign button shown in Figure 5-1.

5.3 Configuring Application Settings | 111

Figure 5-1. The Floating Action Button

This interaction is completely different than in the Apple User Experience Guidelines.

We can implement the same functionality with a completely different component
design by using folders and platform suffixes:

components
├── actionButton
 ├── index.android.js
 └── index.ios.js

The <ActionButton /> is called in the main App.js file:

112 | Chapter 5: Lift Off! Sharing Your App

https://apple.co/2FUs80M

import React, { Component } from 'react';
import {
 StyleSheet,
 View,
 ScrollView,
 Text
} from 'react-native';

import ActionButton from './components/actionButton';

export default class App extends Component<{}> {

 constructor(props) {
 super(props);
 this.state = { times: 0 }
 }

 render() {
 return <View style={styles.container}>
 <View style={styles.header}></View>
 <ScrollView style={styles.scroll}>
 <Text style={styles.text} >Called: {this.state.times} Time(s)</Text>
 </ScrollView>
 <ActionButton onPress={ () => {
 this.setState((prevState) => {
 return { times: prevState.times + 1 };
 });
 } } />
 </View>
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 10,
 },
 text: {
 fontSize: 34
 }
 header: {
 backgroundColor: '#CACACA',
 height: 75
 },
 scroll: {
 height: 200,
 }
});

Each platform renders the <ActionButton /> differently:

// components/actionButton/index.ios.js
import React, { Component } from 'react';
import {

5.3 Configuring Application Settings | 113

 StyleSheet,
 TouchableNativeFeedback,
 View,
 Text
} from 'react-native';

export default function ({ onPress }) {
 return <TouchableNativeFeedback onPress={onPress}>
 <View style={styles.button}>
 <Text style={styles.text}> Action! </Text>
 </View>
 </TouchableNativeFeedback>
}

const styles = StyleSheet.create({
 button: {
 borderColor: '#2A547A',
 borderWidth: 1,
 borderRadius: 5,
 },
 text: {
 textAlign: 'center',
 padding: 10,
 color: '#2A547A',
 }
});

The Android version of the <ActionBar /> uses Android-specific styles, like eleva
tion, to create the raised button effect:

// components/actionButton/index.android.js
import React, { Component } from 'react';
import {
 StyleSheet,
 TouchableHighlight,
 Text
} from 'react-native';

export default function ({ onPress }) {
 return <TouchableHighlight style={styles.button} onPress={onPress}>
 <Text style={styles.text}>+</Text>
 </TouchableHighlight>
}

const styles = StyleSheet.create({
 button: {
 position: 'absolute',
 bottom: 50,
 right: 50,
 backgroundColor: '#ED5281',
 width: 60,
 height: 60,
 justifyContent: 'center',

114 | Chapter 5: Lift Off! Sharing Your App

 borderRadius: 30,
 elevation: 10,
 },
 text: {
 textAlign: 'center',
 color: '#FFF',
 fontSize: 30,
 }

});

Each platform will render based on a look that is more in line with the platform user
experience guidelines (Figure 5-2).

Figure 5-2. Try to follow the user interface guidelines for each platform—here, the same
action button is rendered entirely differently on iOS and Android

5.3 Configuring Application Settings | 115

You are logging Redux events in development only

In Recipe 4.3, we used the redux-logger to display state changes in our application to
the React Native developer console. The redux-logger will start logging all these
events in your web browser’s developer console like in Figure 5-3.

Figure 5-3. Output from redux-logger in the React Native debugger

116 | Chapter 5: Lift Off! Sharing Your App

Accessing these state changes on a device in production would be far beyond the
scope of redux-logger. The __DEV__ will return true in development and false in
any other case. Let’s turn it off in production. Update reduxStore.js like so:

import * as reducers from './src/reducers';
import { createStore, applyMiddleware, combineReducers, compose} from 'redux';
import { persistCombineReducers } from 'redux-persist';
import storage from 'redux-persist/es/storage';
import logger from 'redux-logger';
const config = {
 key: 'root',
 storage,
};
export default createStore(
 persistCombineReducers(config, reducers),
 __DEV__ ? {} : applyMiddleware(logger)
);

Determine whether the app is running on a tablet or a phone
In some cases you will want to render different application components based on
whether the device is a tablet or a phone. Begin by installing react-native-device-
info:

$> npm i --save react-native-device-info
$> react-native link

Here is an example of how you might use DeviceInfo.isTablet() to render the cor‐
rect sidebar component:

import React, { Component } from 'react';
import {
 Text,
 View,
 Platform
} from 'react-native';

import DeviceInfo from 'react-native-device-info';

export default class App extends Component {
 narrowSidebar() {
 return <View style={{width: 40, backgroundColor: '#333',
 flexDirection: 'column' }}>
 <View style={{height: 40, backgroundColor: '#666',
 flexDirection: 'row' }}></View>
 <View style={{flex: 0.7 }}></View>
 <View style={{flex: 0.1, backgroundColor: '#000' }}></View>
 </View>
 }

5.3 Configuring Application Settings | 117

 wideSidebar() {
 return <View style={{ flex: 0.2, backgroundColor: '#333' }}>
 <View style={{ flex: 0.2, backgroundColor: '#666',
 flexDirection: 'row' }}>
 <View style={{ width: 50, padding: 5, backgroundColor: '#000' }}>
 <View style={{ width: 40, height: 40, borderRadius: 40,
 justifyContent: "center",
 backgroundColor: "#EA0" }}>
 </View>
 </View>
 </View>
 <View style={{ flex: 0.8 }}></View>
 </View>
 }

 render() {
 return (
 <View style={{ flexDirection: 'row', flex: 1, backgroundColor: '#FFF' }}>
 {DeviceInfo.isTablet() ? this.wideSidebar() : this.narrowSidebar() }
 <View style={{ flex: 0.5, backgroundColor: '#FFF' }}>
 <Text>{DeviceInfo.isTablet() ? "Tablet" : "Phone"}</Text>
 </View>
 <View style={{ flex: 0.1, backgroundColor: '#FFA' }}></View>
 </View>
);
 }
}

See Also
Another change you may wish to monitor is the device orientation. Fortunately every
<View /> component includes an onLayout property. Learn more in a blog post by
Matthew Sessions.

118 | Chapter 5: Lift Off! Sharing Your App

http://bit.ly/2nICcDy
http://bit.ly/2nICcDy

CHAPTER 6

Making Your App Maintainable

As soon as there is more than one software developer working on a project, maintain‐
ing consistency across your code base will become a serious consideration. The
majority of the examples in this cookbook were stripped to the essentials: no Prop‐
Types, no test cases, no type hints. The strategies for ensuring your code is well fac‐
tored, easily maintained, and correct are varied, and I hope the approaches discussed
here save you from dreadful runtime errors, system bugs, and hermetic coding styles.

6.1 Protect Your Components with PropTypes
Many software developers find that their components written for one purpose are
being reused elsewhere for different purposes. For example, you might have designed
an information card or a special button for a login form and are now repurposing the
same component in an account profile screen.

When a component goes from being used in one context to a completely different
one, strange things can happen. Bugs can start appearing from unexpected variations
in the properties passed down to these components.

Problem
You are trying to establish a contract for your component. For everything to function
correctly, your component must throw an error unless it receives the correct props
from its parent. Other solutions exist, such as TypeScript or Reason. But design by
contract or defensive programming is a well-established programming pattern for
reducing bugs. In a language like JavaScript, we need all the help we can get.

119

Solution
We are going to refactor the Pastry Picker component first developed in Recipe 2.3
into a few smaller components so that we can explore how prop-types can protect us
from programmer error.

Begin by adding the prop-types package to your project:

$>npm -i prop-types --save

PropTypes are a React convention and have more to do with React
than React Native. However, they still are useful in raising errors
during development instead of in front of our users.

I have refactored the <PastryPicker /> component to rely on two smaller compo‐
nents, a <PastryButton /> that enables switching recipes and an <IngredientBar />
for rendering the actual bar chart:

// pastryPicker.js
import React, { Component } from 'react';
import {
 StyleSheet,
 View,
} from 'react-native';

import IngredientBar from './ingredientBar'
import PastryButton from './pastryButton'

const PASTRIES = {
 croissant: { label: "Croissants", flour: 0.7, butter: 0.5,
 sugar: 0.2, eggs: 0 },
 cookie: { label: "Cookies", flour: 0.5, butter: 0.4,
 sugar: 0.5, eggs: 0.2},
 pancake: { label: "Pancakes", flour: 0.7, butter: 0.5,
 sugar: 0.3, eggs: 0.3 },
 doughnut: { label: "Dougnuts", flour: 0.5, butter: 0.2,
 sugar: 0.8, eggs: 0.1 },
}

export default class PastryPicker extends Component {
 constructor(props) {
 super(props);
 this.state = {
 selectedPastry: 'croissant'
 }
 }

 setPastry = (selectedPastry) => {
 this.setState({ selectedPastry });

120 | Chapter 6: Making Your App Maintainable

 }

 render() {
 const { flour, butter, sugar, eggs } = PASTRIES[this.state.selectedPastry];
 return <View style={styles.pastryPicker}>
 <View style={styles.buttons}>
 {
 Object.keys(PASTRIES).map((key) => <PastryButton key={key}
 isActive={this.state.selectedPastry === key}
 onPress={() => { this.setPastry(key) } }
 label={PASTRIES[key].label} />)
 }
 </View>
 <View style={styles.ingredientContainer}>
 <IngredientBar backgroundColor="#F2D8A6" flex={flour} label="Flour" />
 <IngredientBar backgroundColor="#FFC049" flex={butter} label="Butter" />
 <IngredientBar backgroundColor="#CACACA" flex={sugar} label="Sugar" />
 <IngredientBar backgroundColor="#FFDE59" flex={eggs} label="Eggs" />
 </View>
 </View>
 }
}

const styles = StyleSheet.create({
 pastryPicker: {
 flex: 1,
 flexDirection: 'column',
 margin: 20,
 },
 ingredientContainer: {
 flex: 1,
 flexDirection: 'row',
 },
 ingredientColumn: {
 flexDirection: 'column',
 flex: 1,
 justifyContent: 'flex-end',
 },
 buttons: {
 flexDirection: 'column',
 flexWrap: "wrap",
 paddingRight: 20,
 paddingLeft: 20,
 flex: 0.3,
 },
});

The <PastryButton /> now declares propTypes before export:

import React, { Component } from 'react';
import {
 StyleSheet,

6.1 Protect Your Components with PropTypes | 121

 Text,
 TouchableHighlight,
 View,
} from 'react-native';

import PropTypes from 'prop-types'

class PastryButton extends Component {

 render() {
 const { isActive, onPress, label} = this.props
 return <View style={styles.buttonContainer}>
 <TouchableHighlight onPress={onPress} style={[styles.button, {
 backgroundColor: isActive ? "#CD7734" : "#54250B" }]}
 underlayColor={"#CD7734"}>
 <Text style={styles.buttonText} >{label}</Text>
 </TouchableHighlight>
 </View>
 }

}

PastryButton.propTypes = {
 isActive: PropTypes.bool,
 label: PropTypes.string.isRequired,
 onPress: PropTypes.func.isRequired,
}

PastryButton.defaultProps = {
 isActive: false
};

export default PastryButton;

const styles = StyleSheet.create({
 button: {
 padding: 10,
 minWidth: 140,
 justifyContent: 'center',
 backgroundColor: "#5A8282",
 borderRadius: 10,
 },
 buttonContainer: {
 margin: 10,
 },
 buttonText: {
 fontSize: 18,
 color: "#FFF",
 },
});

122 | Chapter 6: Making Your App Maintainable

Notice how propTypes can be either optional or required. A default value can also be
supplied as part of defaultProps:

// ingredientBar.js
import React, { Component } from 'react';
import {
 Animated,
 StyleSheet,
 Text,
 TouchableHighlight,
 View,
} from 'react-native';

import PropTypes from 'prop-types';

class IngredientBar extends Component {

 render() {
 const { backgroundColor, flex, label } = this.props;
 return <View style={styles.ingredientColumn}>
 <View style={styles.bar} />
 <View style={{ backgroundColor, flex }} />
 <View style={styles.label}><Text>{label}</Text></View>
 </View>
 }

}

IngredientBar.propTypes = {
 backgroundColor: PropTypes.string.isRequired,
 label: PropTypes.string.isRequired,
 flex: PropTypes.number.isRequired,
}

export default IngredientBar;

const styles = StyleSheet.create({
 ingredientColumn: {
 flexDirection: 'column',
 flex: 1,
 justifyContent: 'flex-end',
 },
 bar: {
 alignSelf: 'flex-start',
 flexGrow: 0,
 },
 label: {
 flex: 0.2,
 },
});

6.1 Protect Your Components with PropTypes | 123

With a few extra lines of code, we can sleep well knowing that our <PastryButton />
and <IngredientBar /> will raise warnings unless they receive the props they expect.

Discussion
When React was first unveiled, PropTypes were part of the package: a simple, declara‐
tive way of enforcing which arguments needed to be given to a React component. As
React evolved in the public, the prop-types package became a separate NPM package
and other solutions to the same problem emerged.

See Also
PropTypes can get far more sophisticated when dealing with a deeply nested data
structure (like from a GraphQL API). The React.js guide for PropTypes covers many
of the examples you may face when implementing your own PropTypes.

6.2 Check Runtime Errors with Flow
The PropTypes package provides a great safety harness for building and delivering
React components, but we can do so much better.

Writing a propTypes declaration forces you to think about the boundary of your
component: how will it be used? What are acceptable inputs and when should I raise
a warning? Unfortunately some of these cases are hard to identify given the dynamic
nature of JavaScript’s runtime environment.

Problem
Can we catch more bugs during the compilation step and avoid more unhappy users?
Writing PropTypes is a bit of extra work, but we can already see how it might pay off.
If we are already invested in trying to improve the type checking and contract
between our components and the broader application, are there better tools at our
disposal? How can we ensure that every single function, class, and variable is type
safe?

Flow provides a simple-to-use development tool. It takes minutes to set up and will
improve your overall development experience in no time.

Solution
Before we install Flow, we should understand the specific challenge it tackles: ensur‐
ing that input is of the correct type. Flow does this by tracing through your code
paths and veryfing that every class, function, and variable assignment is the correct
type. Flow is not focused on coding standards or style. You will also notice that by
default, Flow will only look at files that begin with // @flow.

124 | Chapter 6: Making Your App Maintainable

http://bit.ly/2nQuRkt
https://flow.org

When Flow is correctly installed, the following code will trigger an error:

// @flow
// test.js
const butterQuantity = "6 cups"
const doubleButter = butterQuantity * 2

The Flow server returns with:

Error: test.js:4
 4: const doubleButter = butterQuantity * 2
 ^^^^^^^^^^^^^^ string. The operand of an arithmetic
 operation must be a number.

Flow won’t stop me from doubling my butterQuantity, but it will stop me from mul‐
tiplying a string with a number.

Run Flow from the command line by typing yarn run flow before committing code
and pushing it to your source code repository. This way, team members will be sure
that everything is being run as expected. Flow can save you from embarrassing pro‐
gramming mistakes or spending time in code reviews discussing issues that Flow can
catch. You can also set up Flow in a development environment like Nuclide, Sublime
Text, or Visual Studio Code.

Flow’s documentation assumes you are using Yarn for your pack‐
age management needs. In general I prefer Yarn and have chosen to
use it instead of NPM. See Recipe 1.1 for more information about
Yarn and NPM.

Setting up Flow
Start by adding Flow and initializing a .flowconfig file in your project folder:

$> yarn add --dev flow-bin
$> yarn run flow init

In order to make a code comparison possible, I decided to refactor the react-
native-pastry-picker project to use Flow instead of PropTypes, like in Recipe 6.1.
Flow and PropTypes try to protect you from the same family of coding errors. This
way you can see how each one addresses the challenge through syntax.

Before adjusting App.js, ingredientBar.js, and pastryButton.js, I had to make some
additional project configuration changes. Because react-native-pastry-picker is
an NPM package that does not have a locked react-native dependency, Flow will
mistakenly raise an error for react-native when running yarn run flow:

6.2 Check Runtime Errors with Flow | 125

Error: ingredientBar.js:9
 9: } from 'react-native';
 ^^^^^^^^^^^^^^ react-native. Required module not found

Error: pastryButton.js:8
 8: } from 'react-native';
 ^^^^^^^^^^^^^^ react-native. Required module not found

Error: pastryPicker.js:6
 6: } from 'react-native';
 ^^^^^^^^^^^^^^ react-native. Required module not found

By adding flow-typed under [libs] in the .flowconfig configuration file, and relax‐
ing the react-native dependency, I can remove these errors:

.flowconfig
[ignore]

[include]

[libs]
flow-typed

[lints]

[options]

[strict]

Now create a folder called /flow-typed/ and include a new file, /flow-typed/react-
native.js:

declare module 'react-native' {
 declare module.exports: any;
}

This declaration will configure Flow to check the /flow-typed folder for any missing
modules before throwing an exception.

The ingredientBar.js file can now be updated with Flow type hints. Notice that the
type Props declaration provides type checking for the entire component. PropTypes
are no longer required:

// @flow
import React, { Component } from 'react';
import {
 Animated,
 StyleSheet,
 Text,
 TouchableHighlight,
 View,
} from 'react-native';

126 | Chapter 6: Making Your App Maintainable

type Props = {
 backgroundColor: string,
 label: string,
 flex: number
}

export default class IngredientBar extends Component<Props>{

 render() {
 const { backgroundColor, flex, label } = this.props;
 return <View style={styles.ingredientColumn}>
 <View style={styles.bar} />
 <View style={{ backgroundColor, flex }} />
 <View style={styles.label}><Text>{label}</Text></View>
 </View>
 }

}

const styles = StyleSheet.create({
 ingredientColumn: {
 flexDirection: 'column',
 flex: 1,
 justifyContent: 'flex-end',
 },
 bar: {
 alignSelf: 'flex-start',
 flexGrow: 0,
 },
 label: {
 flex: 0.2,
 },
});

The <PastryButton /> component supports an optional isActive type, which Flow
represents with isActive?: bool. The ? indicates that this is a default attribute.
Functions also have a specific signature, which includes the number of arguments,
their expected type, and whether they should return a value. For example, onPress:
(key: string) => void indicates that the onPress callback will accept one argu‐
ment (a string) and not return anything (void):

// @flow
import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 TouchableHighlight,
 View,
} from 'react-native';

type Props = {

6.2 Check Runtime Errors with Flow | 127

 isActive?: bool,
 label: string,
 onPress: (key: string) => void
}

export default class PastryButton extends Component<Props>{

 static defaultProps = {
 isActive: false
 }

 render() {
 const { isActive, onPress, label} = this.props
 return <View style={styles.buttonContainer}>
 <TouchableHighlight onPress={onPress} style={[styles.button, {
 backgroundColor: isActive ? "#CD7734" : "#54250B" }]}
 underlayColor={"#CD7734"}>
 <Text style={styles.buttonText} >{label}</Text>
 </TouchableHighlight>
 </View>
 }

}

const styles = StyleSheet.create({
 button: {
 padding: 10,
 minWidth: 140,
 justifyContent: 'center',
 backgroundColor: "#5A8282",
 borderRadius: 10,
 },
 buttonContainer: {
 margin: 10,
 },
 buttonText: {
 fontSize: 18,
 color: "#FFF",
 },
});

While <PastryPicker /> does not have any incoming Props, it does maintain the
local state for which pastry is selected. Flow provides similar type checking for
State. The PastryPicker component accepts State as a second argument in the decla‐
ration Component<{}, State>. This State key indicates that the component will be
maintaining a this.state variable. Flow can now protect us from inadvertently
manipulating other local state variables that were not defined in the type State:

// @flow
import React, { Component } from 'react';
import {

128 | Chapter 6: Making Your App Maintainable

 StyleSheet,
 View,
} from 'react-native';

import IngredientBar from './ingredientBar'
import PastryButton from './pastryButton'

const PASTRIES = {
 croissant: { label: 'Croissants', flour: 0.7, butter: 0.5,
 sugar: 0.2, eggs: 0 },
 cookie: { label: 'Cookies', flour: 0.5, butter: 0.4,
 sugar: 0.5, eggs: 0.2},
 pancake: { label: 'Pancakes', flour: 0.7, butter: 0.5,
 sugar: 0.3, eggs: 0.3 },
 doughnut: { label: 'Dougnuts', flour: 0.5, butter: 0.2,
 sugar: 0.8, eggs: 0.1 },
}

type State = {
 selectedPastry: string
}

export default class PastryPicker extends Component<{}, State> {
 state: State

 constructor(props: {}) {
 super(props);
 this.state = {
 selectedPastry: 'croissant'
 }
 }

 setPastry = (selectedPastry: string) => {
 this.setState({ selectedPastry });
 }

 render() {
 const { flour, butter, sugar, eggs } = PASTRIES[this.state.selectedPastry];
 return <View style={styles.pastryPicker}>
 <View style={styles.buttons}>
 {
 Object.keys(PASTRIES).map((key) => <PastryButton key={key}
 isActive={this.state.selectedPastry === key}
 onPress={() => { this.setPastry(key) } }
 label={PASTRIES[key].label} />)
 }
 </View>
 <View style={styles.ingredientContainer}>
 <IngredientBar backgroundColor='#F2D8A6' flex={flour} label='Flour' />
 <IngredientBar backgroundColor='#FFC049' flex={butter}
 label='Butter' />
 <IngredientBar backgroundColor='#CACACA' flex={sugar} label='Sugar' />

6.2 Check Runtime Errors with Flow | 129

 <IngredientBar backgroundColor='#FFDE59' flex={eggs} label='Eggs' />
 </View>
 </View>
 }
}

const styles = StyleSheet.create({
 pastryPicker: {
 flex: 1,
 flexDirection: 'column',
 margin: 20,
 },
 ingredientContainer: {
 flex: 1,
 flexDirection: 'row',
 },
 ingredientColumn: {
 flexDirection: 'column',
 flex: 1,
 justifyContent: 'flex-end',
 },
 buttons: {
 flexDirection: 'column',
 flexWrap: 'wrap',
 paddingRight: 20,
 paddingLeft: 20,
 flex: 0.3,
 },
});

Try changing this.setPastry(key) to return anything except a string and Flow will
raise an error.

See Also
Flow grew out of the React ecosystem as a powerful approach to type safety. Take a
look at the Flow Getting Started guide to learn more about what it can do for your
unique project requirements. Some folks prefer using TypeScript, a language that pro‐
vides a superset of features on top of ES6+, like interfaces, generics, enums, etc. With
all these additional code hints, development environments like Visual Studio Code
are able to provide autocomplete and deeper type-checking features. If you are start‐
ing a large project, read the TypeScript 5 minute guide and determine if it’s right for
your team.

6.3 Automate Your Component Tests
Unit tests are one of the first things I look for in an open source library. Did the
developers take the time to define how the individual code modules were supposed to

130 | Chapter 6: Making Your App Maintainable

https://flow.org/en/docs/getting-started/
http://bit.ly/2ENPeqQ

function? Unit tests provide clues into how a package is designed and intended to be
used downstream. Unit tests are very simple functions that pick apart your project
and ensure that the input into a function or class results in the desired output. They
can never exhaust every possible case, but they improve quality in the following ways:

1. Developers have to write a second consumer of their code: the unit test.
2. Code tends to be better factored and the Single Responsibility Principle emerges

automatically.
3. Unit tests provide a kind of documented intent for how the code should behave.

When the documentation fails you, look at the unit tests.

Code quality and maintainability are improved when you combine Flow, ESLint, and
a battery of unit tests with Jest. Each tool protects you from a specific kind of devel‐
opment challenge.

Problem
How do we set up component tests in React Native? Unit testing ES6+ in general can
be done with a number of libraries (like Mocha), but Jest is the preferred testing
framework for React.js. Let’s start writing some component tests with Jest for the
react-native-pastry-picker project.

Solution
This configuration enables Flow to coexist with Jest. In the following section, we will
finish off the example with ESLint for code linting. By combining these technologies,
we will have a comprehensive suite of code-quality tooling. Until now, the react-
native-pastry-picker library did not have an explicit dependency on react or
react-native. Because Jest will be running this code in a test harness, we now
require these additional development dependencies.

I will perform two kinds of unit tests. Snapshot tests, where Jest generates a data struc‐
ture representation of the React component in a given state. The Enzyme test exten‐
sion will allow us to inspect the internal state of our subcomponents.

Begin by installing React and React Native (in the case of a package), then Jest and
finally Enzyme and the Enzyme adapter:

$> npm install --save-dev react react-native
$> npm install --save-dev jest
$> npm install --save-dev enzyme enzyme-adapter-react-16 react-dom

6.3 Automate Your Component Tests | 131

http://bit.ly/2nIxcyF
http://bit.ly/2C18TR7

As you can imagine, there is a lot of churn around React, React
Native, Enzyme, Jest, and Flow. This mix of open source projects
has had breaking changes in the past and may in the future. At the
time of this writing, the following snippets show a successful set of
configuration options. If you find yourself getting stuck, try look‐
ing at the GitHub issues for the relevant projects.

The package.json:

{
 "name": "react-native-pastry-picker",
 "version": "1.0.5",
 "description": "Pastry Picker",
 "repository": "https://github.com/jlebensold/react-native-pastry-picker",
 "main": "index.js",
 "scripts": {
 "test": "jest"
 },
 "keywords": [
 "react-native"
],
 "author": "Jon Lebensold",
 "license": "MIT",
 "devDependencies": {
 "enzyme": "^3.2.0",
 "enzyme-adapter-react-16": "^1.1.0",
 "flow-bin": "^0.59.0",
 "jest": "^21.2.1",
 "jest-cli": "^21.2.1",
 "react": "^16.0.0",
 "react-dom": "^16.1.1",
 "react-native": "^0.50.3",
 "react-test-renderer": "^16.1.1"
 },
 "dependencies": {},
 "jest": {
 "preset": "react-native"
 }
}

The .flowconfig:

[ignore]

; We fork some components by platform
.*/*[.]android.js

; Ignore templates for 'react-native init'
.*/local-cli/templates/.*

; Ignore the website subdir
<PROJECT_ROOT>/website/.*

132 | Chapter 6: Making Your App Maintainable

; Ignore the Dangerfile
<PROJECT_ROOT>/danger/dangerfile.js

; Ignore "BUCK" generated dirs
<PROJECT_ROOT>/\.buckd/

; Ignore unexpected extra "@providesModule"
.*/node_modules/.*/node_modules/fbjs/.*

; Ignore duplicate module providers
; For RN Apps installed via npm, "Libraries" folder is inside
; "node_modules/react-native" but in the source repo it is in the root
.*/Libraries/react-native/React.js

; Ignore polyfills
.*/Libraries/polyfills/.*

.*/node_modules/react-native/Libraries/react-native/
 react-native-implementation.js

[include]

[libs]
node_modules/react-native/Libraries/react-native/react-native-interface.js
flow-typed/

[options]
emoji=true
module.system=haste
munge_underscores=true
suppress_type=$FlowIssue
suppress_type=$FlowFixMe
suppress_type=$FixMe
unsafe.enable_getters_and_setters=true

[version]
^0.59.0

In order for Jest to succesfully parse JSX, I also include a .babelrc configuration file in
the project root:

{
 "presets": ["react-native"]
}

In Recipe 6.2, we created a special /flow-typed/react-native.js file for Flow to use in its
dependency checking. Jest will need a similar file in order to avoid any irrelevant
errors:

// flow-typed/jest.js
declare module 'jest' {
 declare module.exports: any;

6.3 Automate Your Component Tests | 133

}
declare var expect: any;
declare var test: any;

Flow should continue to run as expected with yarn run flow. Now let’s create our
first Snapshot test. The convention is to include tests in a __tests__/ folder.

Start with a snapshot of the <PastryPicker /> component:

// __tests__/pastryPicker.test.js
// @flow
import React from 'react';
import renderer from 'react-test-renderer';

import PastryPicker from '../pastryPicker';

test('renders correctly', () => {
 const tree = renderer.create(
 <PastryPicker />
).toJSON();
 expect(tree).toMatchSnapshot();
});

Now run yarn run jest:

yarn run jest __tests__/pastryPicker.test.js
yarn run v1.1.0
$ "./react-native-pastry-picker/node_modules/.bin/jest"
"__tests__/pastryPicker.test.js"
 PASS __tests__/pastryPicker.test.js
 ✓ renders correctly (136ms)

 › 1 snapshot written.
Snapshot Summary
 › 1 snapshot written in 1 test suite.

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 1 added, 1 total
Time: 0.471s, estimated 1s

Jest will write a snapshot of the resulting React component to __tests__/__snap‐
shots__/pastryPicker.test.js.snap. Now any further changes to the component will
cause the snapshot comparison and the test will fail. This approach ensures any JSX
changes result in the necessary side effects. You can refresh the snapshot by running
yarn run test -- -u.

This approach to testing is analagous to integration testing: you are testing the overall
structure, but don’t have deep instrumentation for your component.

134 | Chapter 6: Making Your App Maintainable

The <PastryButton /> will render a different version of the backgroundColor prop‐
erty depending on whether the button isActive. The render() method for <Pastry
Button /> looks like this:

render() {
 const { isActive, onPress, label} = this.props;
 return <View style={styles.buttonContainer}>
 <TouchableHighlight onPress={onPress} style={[styles.button, {
 backgroundColor: isActive ? '#CD7734' : '#54250B' }]}
 underlayColor='#CD7734'>
 <Text style={styles.buttonText} >{label}</Text>
 </TouchableHighlight>
 </View>
}

Instead of simply comparing the snapshot in its totality, let’s see if we can inspect this
one state change with the help of Enzyme:

// @flow
import React from 'react';
import PastryButton from '../pastryButton';
import renderer from 'react-test-renderer';
import Enzyme, { shallow } from 'enzyme';
import Adapter from 'enzyme-adapter-react-16';
Enzyme.configure({adapter: new Adapter()});

test('renders isActive', () => {
 const tree = renderer.create(
 <PastryButton onPress={ (t) => {} } label='Croissant' isActive={true} />
).toJSON();
 expect(tree).toMatchSnapshot();
});

test('when isActive = false, then background = #5A8282', () => {
 const button = shallow(
 <PastryButton onPress={ (t) => {} } label='MyLabel' isActive={false} />);
 expect(button.find('TouchableHighlight').props().style[0].backgroundColor)
 .toEqual('#5A8282');
});

The button.find('TouchableHighlight').props().style[0].backgroundColor

DOM traversal is similar to browser-based testing with CSS selectors: it can work for
testing critical code paths, but it can also be brittle if this is your only means of testing
business logic.

Both of these approaches should convince you that it’s best to keep as little business
logic or application code in your React components as possible. Let your React com‐
ponent focus on rendering and not much more. In this way, the rest of your applica‐
tion can be tested as though it was just plain old ES6+.

6.3 Automate Your Component Tests | 135

Discussion
The test-driven development programming movement made every career software
developer aware of the importance of writing tests. The saying goes that bugs crop up
in untested code. Martin Fowler provides some excellent advice about how much to
test:

I would say you are doing enough testing if the following is true:
1. You rarely get bugs that escape into production, and
2. You are rarely hesitant to change some code for fear it will cause production bugs.
Can you test too much? Sure you can. You are testing too much if you can remove tests
while still having enough. But this is a difficult thing to sense. One sign you are testing
too much is if your tests are slowing you down.

—Martin Fowler, Test Coverage
(17 April 2012)

See Also
Testing is a broad subject and this primer only scratches the surface. From here, you
may find it helpful to mock some of the native components or any other asynchro‐
nous actions that your application may take. The Jest React Native Tutorial covers a
handful of use cases worth considering.

You may also want to dig into Jest’s code coverage reports. Of course, all of these
commands could also be run using a continuous integration service like Jenkins, Cir‐
cleCI, or Codeship every time a developer pushes code to your source code reposi‐
tory. You are on your way to deploying new versions of your app with greater and
greater confidence that old bugs won’t reappear in new builds.

6.4 Maintain Coding Standards with ESLint
Consistent code is criticial to ensuring that a software developer can feel at home in
any part of the code base. Honey and maple syrup are both capable of sweetening a
dish, but mixing them together will probably lead to loss of the unique flavors
achieved with either sweetener. The same is true with code: mixing tabs and spaces,
camelCase, and snake_case in the same code base leaves the software developer’s
palette wanting.

Problem
How do you make sure that your project feels like it was written by one author? A
good ESLint rule set will protect every member of the team from each other and
yourself.

136 | Chapter 6: Making Your App Maintainable

https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/TestCoverage.html
http://bit.ly/2sdVllD

Solution
Begin by adding ESLint to your project. Airbnb has published an excellent JavaScript
style guide. It has gone above and beyond and provided a set of linting tools that can
easily be incorporated into any React Native project.

Start by installing ESLint:

$> npm install --save-dev eslint
$> ./node_modules/.bin/eslint --init

You will then be prompted to select how to configure ESLint. For my project, I chose:

• How would you like to configure ESLint? Use a popular style guide
• Which style guide do you want to follow? Airbnb
• Do you use React? (y/N) y
• What format do you want your config file to be in? JSON

ESlint works best when you can give it a handful of folders to run
against. I recommend putting your React Native project code in a
folder like src/. You can then simplify your ESLint script. For the
react-native-pastry-picker project, I have moved all the com‐
ponents into src/.

Because my project includes a collection of flow types from Recipe 6.2, some addi‐
tional configuration is required. Fortunately, the eslint-plugin-flowtype package
makes the integration between ESLint and Flow seamless:

npm install babel-eslint --save-dev
npm install eslint-plugin-flowtype --save-dev

babel-eslint is a special ESLint parser that will properly account for the Flow type
hints in your project. eslint-plugin-flowtype includes a collection of additional
ESLint rules. Layer on additional ESLint rules that account for Flow’s extended type
hints by updating the .eslintrc.json file:

{
 "parser": "babel-eslint",
 "extends": "airbnb",
 "plugins": [
 "flowtype"
],
 "rules": {
 "flowtype/boolean-style": [
 2,
 "boolean"
],

6.4 Maintain Coding Standards with ESLint | 137

http://bit.ly/2EKaEF3
http://bit.ly/2EKaEF3
http://bit.ly/2EsowWI

 "flowtype/define-flow-type": 1,
 "flowtype/delimiter-dangle": [
 2,
 "never"
],
 "flowtype/generic-spacing": [
 2,
 "never"
],
 "flowtype/no-primitive-constructor-types": 2,
 "flowtype/no-types-missing-file-annotation": 2,
 "flowtype/no-weak-types": 2,
 "flowtype/object-type-delimiter": [
 2,
 "comma"
],
 "flowtype/require-parameter-type": 2,
 "flowtype/require-return-type": [
 2,
 "always",
 {
 "annotateUndefined": "never"
 }
],
 "flowtype/require-valid-file-annotation": 2,
 "flowtype/semi": [
 2,
 "always"
],
 "flowtype/space-after-type-colon": [
 2,
 "always"
],
 "flowtype/space-before-generic-bracket": [
 2,
 "never"
],
 "flowtype/space-before-type-colon": [
 2,
 "never"
],
 "flowtype/type-id-match": [
 2,
 "^([A-Z][a-z0-9]+)+Type$"
],
 "flowtype/union-intersection-spacing": [
 2,
 "always"
],
 "flowtype/use-flow-type": 1,
 "flowtype/valid-syntax": 1
 },

138 | Chapter 6: Making Your App Maintainable

 "settings": {
 "flowtype": {
 "onlyFilesWithFlowAnnotation": false
 }
 }
}

By running node_modules/eslint/bin/eslint.js, you should start to see all the inconsis‐
tencies in your source code:

/Users/jon/Projects/react-native-pastry-picker/src/ingredientBar.js
 4:3 err. 'Animated' is defined but ... no-unused-vars
 7:3 err. 'TouchableHighlight' is de... no-unused-vars
 12:1 err. Type identifier 'Props' do... flowtype/type-id-match
 18:16 err. Component should be written... react/prefer-stateless-function
 19:9 err. Missing return type annotation flowtype/require-return-type
 21:13 err. JSX not allowed in files with... react/jsx-filename-extension
 21:26 err. 'styles' was used before it was... no-use-before-define
 22:20 err. 'styles' was used before it was... no-use-before-define
 24:20 err. 'styles' was used before it was... no-use-before-define
 25:13 err. Expected indentation of 4 space... react/jsx-indent

/Users/jon/Projects/react-native-pastry-picker/src/pastryButton.js
 10:1 err. Type identifier 'Props' does... flowtype/type-id-match
 21:9 err. Missing return type annotation flowtype/require-return-type
 23:13 err. JSX not allowed in files with... react/jsx-filename-extension
 23:26 err. 'styles' was used before it was... no-use-before-define
 26:17 err. 'styles' was used before it was... no-use-before-define
 29:22 err. 'styles' was used before it was... no-use-before-define
 31:13 err. Expected indentation of 4 space... react/jsx-indent

/Users/jon/Projects/react-native-pastry-picker/src/pastryPicker.js
 26:1 err. Type identifier 'State' does... flowtype/type-id-match
 31:3 err. state should be placed after... react/sort-comp
 44:9 err. Missing return type annotation flowtype/require-return-type
 48:13 err. JSX not allowed in files with... react/jsx-filename-extension
 48:26 err. 'styles' was used before it was... no-use-before-define
 49:20 err. 'styles' was used before it was... no-use-before-define
 51:39 err. Missing "key" parameter type... flowtype/require-parameter-type
 51:39 err. Missing return type annotation flowtype/require-return-type
 59:20 err. 'styles' was used before it was... no-use-before-define
 65:13 err. Expected indentation of 4 space... react/jsx-indent

✖ 27 problems (27 errors, 0 warnings)
 3 errors, 0 warnings potentially fixable with the `--fix` option.

In just three components, ESLint was able to detect 27 errors! Some of these are style
choices that I don’t agree with—for example, I don’t have a problem including JSX in
a file ending in .js. Let’s disable that rule in our .eslintrc.json file:

...
"env": {
 "jest": true

6.4 Maintain Coding Standards with ESLint | 139

},
"rules": {
 "react/jsx-filename-extension": [
 0
],
 "import/no-extraneous-dependencies": [
 "error", { "devDependencies": true }
],
...

By setting react/jsx-filename-extension to [0], ESLint will now ignore this
rule. I also want to run eslint on my test suite, which relies on a few global func‐
tions. To ignore them, add "jest": true as part of your environment. Because the
react-native-pastry-picker is an external package, certain dependencies, like
react and react-native, are devDependencies. Relaxing the import/no-

extraneous-dependencies rule is required because it will be imported into other
React Native applications with their own dependencies on react and react-native.

By rerunning the linter, my error set has dropped to 24 errors.

The following three components, after ESLint and Flow checking, now all follow a
consistent style. Note that the implementation has not changed at all—ESLint detec‐
ted that the <IngredientBar /> component could be refactored into a pure function:

// src/ingredientBar.js
// @flow
import React, { type Element } from 'react';
import {
 StyleSheet,
 Text,
 View,
} from 'react-native';

type PropType = {
 backgroundColor: string,
 label: string,
 flex: number
};

const styles = StyleSheet.create({
 ingredientColumn: {
 flexDirection: 'column',
 flex: 1,
 justifyContent: 'flex-end',
 },
 bar: {
 alignSelf: 'flex-start',
 flexGrow: 0,
 },
 label: {

140 | Chapter 6: Making Your App Maintainable

 flex: 0.2,
 },
});

export default function IngredientBar({ backgroundColor, flex, label }:
PropType):
 Element<View> {
 return (
 <View style={styles.ingredientColumn}>
 <View style={styles.bar} />
 <View style={{ backgroundColor, flex }} />
 <View style={styles.label}><Text>{label}</Text></View>
 </View>
);
}

The render() method now has a Flow return type:

// src/pastryButton.js
// @flow
import React, { Component, type Element } from 'react';
import {
 StyleSheet,
 Text,
 TouchableHighlight,
 View,
} from 'react-native';

type PropType = {
 isActive?: boolean,
 label: string,
 onPress: (key: string) => void
};

const styles = StyleSheet.create({
 button: {
 padding: 10,
 minWidth: 140,
 justifyContent: 'center',
 backgroundColor: '#5A8282',
 borderRadius: 10,
 },
 buttonContainer: {
 margin: 10,
 },
 buttonText: {
 fontSize: 18,
 color: '#FFF',
 },
});

export default class PastryButton extends Component<PropType> {
 static defaultProps = {

6.4 Maintain Coding Standards with ESLint | 141

 isActive: false,
 }

 props: PropType

 render(): Element<View> {
 const { isActive, onPress, label } = this.props;
 return (
 <View style={styles.buttonContainer}>
 <TouchableHighlight
 onPress={onPress}
 style={[styles.button, { backgroundColor: isActive ?
 '#CD7734' : '#54250B' }]}
 underlayColor="#CD7734"
 >
 <Text style={styles.buttonText} >{label}</Text>
 </TouchableHighlight>
 </View>);
 }
}

ESLint’s --fix flag reformatted the PASTRIES constant:

// @flow
import React, { Component, type Element } from 'react';
import {
 StyleSheet,
 View,
} from 'react-native';

import IngredientBar from './ingredientBar';
import PastryButton from './pastryButton';

const PASTRIES = {
 croissant: {
 label: 'Croissants', flour: 0.7, butter: 0.5, sugar: 0.2, eggs: 0,
 },
 cookie: {
 label: 'Cookies', flour: 0.5, butter: 0.4, sugar: 0.5, eggs: 0.2,
 },
 pancake: {
 label: 'Pancakes', flour: 0.7, butter: 0.5, sugar: 0.3, eggs: 0.3,
 },
 doughnut: {
 label: 'Dougnuts', flour: 0.5, butter: 0.2, sugar: 0.8, eggs: 0.1,
 },
};

const styles = StyleSheet.create({
 pastryPicker: {
 flex: 1,
 flexDirection: 'column',
 margin: 20,

142 | Chapter 6: Making Your App Maintainable

 },
 ingredientContainer: {
 flex: 1,
 flexDirection: 'row',
 },
 ingredientColumn: {
 flexDirection: 'column',
 flex: 1,
 justifyContent: 'flex-end',
 },
 buttons: {
 flexDirection: 'column',
 flexWrap: 'wrap',
 paddingRight: 20,
 paddingLeft: 20,
 flex: 0.3,
 },
});

type StateType = {
 selectedPastry: string
};

export default class PastryPicker extends Component<{}, StateType> {
 constructor(props: {}) {
 super(props);
 this.state = {
 selectedPastry: 'croissant',
 };
 }

 state: StateType

 setPastry = (selectedPastry: string) => {
 this.setState({ selectedPastry });
 }

 renderButtons(): Array<View> {
 return Object.keys(PASTRIES).map((key: string): Element<View> =>
 (<PastryButton
 key={key}
 isActive={this.state.selectedPastry === key}
 onPress={() => { this.setPastry(key); }}
 label={PASTRIES[key].label}
 />));
 }

 render(): Element<View> {
 const {
 flour, butter, sugar, eggs,
 } = PASTRIES[this.state.selectedPastry];

6.4 Maintain Coding Standards with ESLint | 143

 return (
 <View style={styles.pastryPicker}>
 <View style={styles.buttons}>
 {this.renderButtons()}
 </View>
 <View style={styles.ingredientContainer}>
 <IngredientBar backgroundColor='#F2D8A6' flex={flour} label='Flour' />
 <IngredientBar backgroundColor='#FFC049' flex={butter}
 label='Butter' />
 <IngredientBar backgroundColor='#CACACA' flex={sugar} label='Sugar' />
 <IngredientBar backgroundColor='#FFDE59' flex={eggs} label='Eggs' />
 </View>
 </View>
);
 }
}

You can also try to fix some common errors by running ESLint
with the --fix flag. Make sure you have committed your source
code before it runs so you can verify the changes and make sure
that there are no functional differences.

Discussion
With Flow and Jest, you have tools that ensure program correctness, but neither will
address style and consistency. ESLint is a powerful tool for ensuring that:

• Variables that have been declared are used
• Spacing rules are respected
• Naming conventions are followed
• Debugging statements like console.log or debugger are removed
• Semicolons are added (or not)
• Variables are not assigned inside of if() statements

Explore all rules ESLint can enforce in its documentation.

See Also
This example only scratches the surface of what ESLint can do to improve the main‐
tainability and code quality of your project. Consider integrating ESLint into your
development environment by using the ESLint integrations guide.

144 | Chapter 6: Making Your App Maintainable

http://bit.ly/2GUHhRd
http://bit.ly/2nQHsEn

6.5 Write Your App with Reason
Reason is a type-safe language built on top of the incredible OCaml compiler. Using
BuckleScript, we can transform OCaml code into JavaScript. There is a small, but
incredibly productive community of React Native developers writing apps with Rea‐
son.

The Reason website also provides excellent guides and documentation to get you
started.

Problem
You have JavaScript fatigue, but you want to build apps with React Native. Tired of
dealing with versioning challenges, you want to work with a simpler language that
can be compiled and analyzed for its correctness before it becomes JavaScript run‐
ning on the client. Enter Reason.

Solution
In order to see how the same concepts look with a different implementation, let’s
rewrite the react-native-pastry-picker as a Reason application. The Reason ver‐
sion of the pastry picker has about 15% less code if you factor in the unit tests and
flow types.

The PastryPicker component in Figure 6-1 maintains the same functionality, but now
benefits from the syntax features in Reason.

Start by adding BuckleScript, ReasonReact, and BuckleScript React Native bindings:

$> yarn add bs-platform reason-react bs-react-native

Now add a BuckleScript configuration file (bsconfig.json) to your project root:

{
 "name": "my-reason",
 "sources": [
 {
 "dir": "src",
 "subdirs": true
 },
],
 "refmt": 3,
 "reason": {
 "react-jsx": 2
 },
 "package-specs": [
 {
 "module": "commonjs",
 "in-source": true
 }

6.5 Write Your App with Reason | 145

http://bit.ly/2E4Qqsu
https://reasonml.github.io/

],
 "bs-dependencies": [
 "bs-react-native",
 "reason-react",
],
 "generate-merlin": true,
 "bsc-flags": ["-bs-super-errors"],
 "suffix": ".bs.js"
}

Figure 6-1. The react-native-pastry-picker application

146 | Chapter 6: Making Your App Maintainable

We are also going to need a process that will watch for changes to our Reason files.
The watcher will take these .re files and convert them into .bs.js variants that can be
consumed as regular JavaScript by larger React Native applications.

Add bsb -make-world -w to the scripts in your package.json. It might look like this:

"scripts": {
 "start": "node node_modules/react-native/local-cli/cli.js start",
 "test": "jest",
 "watch": "bsb -make-world -w"
},

The bsconfig.json file described tells the BuckleScript compiler to look in the src/
folder for Reason files.

Let’s write a Hello World Reason React Native component in src/hello.re:

open ReactNative;

let component = ReasonReact.statelessComponent("Hello");

let styles =
 StyleSheet.create(
 Style.(
 {
 "text": style([fontSize(18.), color("#00F")])
 }
)
);

let make = (~name, _children) => {
 ...component,
 render: (_self) => <Text style=styles##text >(
 ReasonReact.stringToElement({j|Hello, $name |j})
)</Text>
};

let default = ReasonReact.wrapReasonForJs(
 ~component,
 (jsProps) => make(~name=jsProps##name, [||])
);

Start the BuckleScript watcher:

$> yarn run watch

If you manage your source code using version control like Git,
adding an ignore rule for *.bs.js files in your .gitignore file will avoid
unnecessary distribution copies of your Reason components.

6.5 Write Your App with Reason | 147

You should notice that any compile errors will appear in the watch window as you
type out the component. When the component is successfully compiled, an src/
hello.bs.js file will be generated automatically that will look something like this:

// Generated by BUCKLESCRIPT VERSION 2.0.0, PLEASE EDIT WITH CARE
'use strict';

var TextRe = require("bs-react-native/src/components/textRe.js");
var StyleRe = require("bs-react-native/src/styleRe.js");
var ReasonReact = require("reason-react/src/ReasonReact.js");
var StyleSheetRe = require("bs-react-native/src/styleSheetRe.js");

var component = ReasonReact.statelessComponent("Hello");

var styles = StyleSheetRe.create({
 text: StyleRe.style(/* :: */[
 StyleRe.fontSize(18),
 /* :: */[
 StyleRe.color("#00F"),
 /* [] */0
]
])
 });

 function make(name, _) {
 var newrecord = component.slice();
 newrecord[/* render */9] = (function () {
 return ReasonReact.element(/* None */0, /* None */0, TextRe.Text[/* make
 /0](/ None */0, /* None */0, /* None */0, /* None */0, /* None */0,
 /* None
 /0, / None */0, /* None */0, /* None */0, /* Some */[styles.text],
 /* None
 /0, / None */0, /* None */0, /* None */0, /* None */0, /* None */0,
 /* None
 /0, / array */["Hello, " + (String(name) + " ")]));
 });
 return newrecord;
}

var $$default = ReasonReact.wrapReasonForJs(component, (function (jsProps) {
 return make(jsProps.name, /* array */[]);
 }));

exports.component = component;
exports.styles = styles;
exports.make = make;
exports.$$default = $$default;
exports.default = $$default;
exports.__esModule= true;
/* component Not a pure module */

148 | Chapter 6: Making Your App Maintainable

Now include the component in your root App.js file as if it were any other .js file:

// App.js
import React, { Component } from 'react';
import {
 StyleSheet,
 View,
} from 'react-native'

import Hello from "./src/hello.bs"

export default class App extends Component<{}> {

 render() {
 return <View style={styles.container}>
 <Hello name="World" />
 </View>
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 paddingTop: 30,
 backgroundColor: "#FFF",
 }
});

In Figure 6-2, you can see a rendering of a “Hello World” application with React
Native and Reason.

Figure 6-2. Hello World with Reason and React Native

With all the tooling in place we can now implement <PastryPicker />, <Ingredient
Bar />, and <PastryButton />.

6.5 Write Your App with Reason | 149

The src/ingredientBar.re file illustrates simple parameter passing as props. Notice how
even the stylesheet is type safe! For example, flexDirection() accepts an enum value
instead of a string:

open ReactNative;

let component = ReasonReact.statelessComponent("IngredientBar");

let styles =
 StyleSheet.create(
 Style.(
 {
 "ingredientColumn":
 style([
 flexDirection(`column),
 flex(1.),
 justifyContent(`flexEnd)
]),
 "bar":
 style([
 alignSelf(`flexStart),
 flexGrow(0.)
]),
 "label":
 style([
 flex(0.2)
])
 }
)
);

let make = (~label, ~barColor, ~flexValue, _children) => {
 ...component,
 render: (_self) =>
 Style.(
 <View style=styles##ingredientColumn >
 <View style=styles##bar />
 <View style=(style([backgroundColor(barColor), flex(flexValue)])) />
 <View style=styles##label>
 <Text>(ReasonReact.stringToElement(label))</Text>
 </View>
 </View>
)
};

let default = ReasonReact.wrapReasonForJs(
 ~component,
 (jsProps) => make(~label=jsProps##label,
 ~flexValue=jsProps##flexValue, ~barColor=jsProps##barColor, [||])

The src/pastryButton.re file illustrates how return values from if/else conditions can
be performed in the context of rendering a stylesheet:

150 | Chapter 6: Making Your App Maintainable

open ReactNative;

let component = ReasonReact.statelessComponent("PastryButton");

let styles =
 StyleSheet.create(
 Style.(
 {
 "container":
 style([
 margin(10.),
]),
 "button":
 style([
 padding(10.),
 minWidth(140.),
 justifyContent(`center),
 backgroundColor("#5A8282"),
 borderRadius(10.)
]),
 "text": style([fontSize(18.), color("#FFF")])
 }
)
);

let make = (~label, ~isActive, ~onPress, _children) => {
 ...component,
 render: (_self) =>
 Style.(
 <View style=styles##container >
 <TouchableHighlight onPress
 style=(concat([styles##button, style([
 backgroundColor(
 if (isActive) {
 "#CD7734"
 } else {
 "#54250B"
 })
])])
)>
 <Text style=styles##text >(ReasonReact.stringToElement(label))</Text>
 </TouchableHighlight>
 </View>
)
};

let default = ReasonReact.wrapReasonForJs(
 ~component,
 (jsProps) => make(~label=jsProps##label, ~onPress=jsProps##onPress,
 ~isActive=jsProps##isActive, [||])
);

6.5 Write Your App with Reason | 151

The most featureful Reason component in this example is the actual src/pastry‐
Picker.re file. I take full advantage of Reason’s type system to build a list of type pas
try. Like Recipe 2.5, we perform an action of Click(pastry). This triggers a reducer
on the component to perform a local state change:

open ReactNative;

type pastry = {
 label: string,
 flour: float,
 sugar: float,
 butter: float,
 eggs: float,
 isActive: bool
};

type action =
 | Click(pastry);

let pastryList = [
{ label: {j|Croissants|j}, flour: 0.7, butter: 0.5,
 sugar: 0.2, eggs: 0.0, isActive: true },
{ label: {j|Cookies|j}, flour: 0.5, butter: 0.4,
 sugar: 0.5, eggs: 0.2, isActive: false },
{ label: {j|Pancakes|j}, flour: 0.7, butter: 0.5,
 sugar: 0.3, eggs: 0.3, isActive: false },
{ label: {j|Dougnuts|j}, flour: 0.5, butter: 0.2,
 sugar: 0.8, eggs: 0., isActive: false }
];

type state = {
 pastries: list(pastry)
};

let styles =
 StyleSheet.create(
 Style.(
 {
 "pastryPicker":
 style([
 flexDirection(`column),
 flex(1.),
 margin(20.)
]),
 "ingredientContainer":
 style([
 flexDirection(`row),
 flex(1.),
]),
 "ingredientColumn":
 style([
 flexDirection(`column),

152 | Chapter 6: Making Your App Maintainable

 flex(1.),
 justifyContent(`flexEnd)
]),
 "buttons":
 style([
 flexDirection(`column),
 flexWrap(`wrap),
 paddingRight(20.),
 paddingLeft(20.),
 flex(0.3)
])
 }
)
);

let component = ReasonReact.reducerComponent("pastryPicker");

let make = (_children) => {
 ...component,
 initialState: () => { pastries: pastryList },
 reducer: (action, { pastries }) =>
 switch action {
 | Click(clickedPastry) => ReasonReact.Update({
 pastries:
 pastries
 |> List.map((item) => { ...item,
 isActive: (clickedPastry.label == item.label) })
 });
 },
 render: ({ state, reduce }) => {
 let active = state.pastries
 |> List.find((item) => item.isActive);
 <View style=styles##pastryPicker >
 <View style=styles##buttons >
 (
 state.pastries
 |> List.map((item) => <PastryButton isActive=item.isActive
 onPress=(reduce((_event) => Click(item)))
 key=item.label
 label=item.label />)
 |> Array.of_list
 |> ReasonReact.arrayToElement
)
 </View>
 <View style=styles##ingredientContainer>
 <IngredientBar barColor="#F2D8A6" flexValue=(active.flour)
 label="Flour" />
 <IngredientBar barColor="#FFC049" flexValue=(active.butter)
 label="Butter" />
 <IngredientBar barColor="#CACACA" flexValue=(active.sugar)
 label="Sugar" />
 <IngredientBar barColor="#FFDE59" flexValue=(active.eggs)

6.5 Write Your App with Reason | 153

 label="Eggs" />
 </View>
 </View>
 }
};

let default = ReasonReact.wrapReasonForJs(
 ~component,
 (jsProps) => make([||])
);

Now import the PastryPicker with import PastryPicker from "./src/pastry

Picker.bs" and update your App.js render() method:

render() {
 return <View style={styles.container}>
 <PastryPicker />
 </View>
}

Reason would definitely be considered bleeding edge, but remember that you are
working with the OCaml compiler, a battle-tested library that has been in develop‐
ment for over two decades. There are some trade-offs to using Reason: the documen‐
tation and examples are still changing rapidly and there is a limited set of bindings
and open source packages to draw on. However, Reason is a simpler programming
environment compared to using Flow, Babel, ESLint, etc.

The language itself also has fewer syntactic pecularities when compared to JavaScript.
If you are already using functional languages in your development team or are inter‐
ested in building a small, high-performance application team, Reason is worth
considering.

Discussion
Let’s face it: JavaScript provides you with a lot of opportunities to make programming
mistakes that will only crop up after your app has been shipped to the various store‐
fronts. While Flow, ESLint, TypeScript, and a battery of unit tests will protect you
from a large number of these bugs, why not ditch JavaScript entirely for a language
designed around type safety?

Reason is a statically typed, functional programming language. When you write your
components with Reason, the supercharged OCaml parser will catch programming
errors before you have a chance to switch to your development simulator. Reason’s
syntax will be familiar to any modern JavaScript developer. If you have experience
with languages like Lisp, Elixir, Haskell, F#, or Elm, you will feel right at home.

Code is written in Reason, then parsed by the OCaml interpreter and transpiled to
JavaScript with BuckleScript, a library that produces performant, safe, and human-
readable JavaScript. With ReasonReact, you can experience the same productive envi‐

154 | Chapter 6: Making Your App Maintainable

http://bit.ly/2C3FS7g

ronment provided by JavaScript. Since this is happening on a native runtime, you still
need some special React Native bindings, which are provided by the BuckleScript
React Native bindings:

A type system doesn’t magically eliminate bugs; it points out the unhandled conditions
and asks you to cover them.

—Reason documentation

Reason’s language can also simplify your state management architecture. The uni-
directional Flux pattern for state management pattern is built-in.

See Also
As I was writing this book, I found myself supported by the helpful folks in the Rea‐
sonML Discord Channel. Language architect Cheng Lou and Jared Forsyth are both
worth following as you dip into the Reason community.

6.5 Write Your App with Reason | 155

http://bit.ly/2GUJb4f
http://bit.ly/2GUJb4f
https://discord.gg/reasonml
https://discord.gg/reasonml
https://medium.com/@chenglou
https://jaredforsyth.com/

Index

Symbols
--fix flag (ESLint), 144

A
acknowledgments, ix
ActionCreators, 51
Airbnb, 137
Android Studio, 4
Animated library, 76
animations, looping, 76
Apollo library, 14, 47
Apple review process, 109
applications

beta testing, 108
configuration settings, 110-118
debugging, 14-17
deployment process, 103-118
hardware management, 79-102
JavaScript tools for, 1-17
maintainability of, 119-155
React Native ecosystem for, 19-62
structuring, 8-14
style and design considerations, 63-78

async/await, 85
AsyncStorage, 47, 93

B
Babel, 4-7, 154
beta testing, 108
bidirectional dependencies, 47
bitrise, 103
BuckleScript, 145

C
cameras, requesting permission to use, 79-88
catastrophic failure, dealing with, 14-17
CircleCI, 136
class inheritance, 4, 64
code base consistency

automated testing, 130-136
checking runtime errors, 124-130
coding standards, 136-144
prop-types package, 119-124
type safety, 145-155

Codeship, 136
command-line tool, 3
comments and questions, viii
components

automated testing, 130-136
checking runtime errors, 124-130
cross-platform, 13
file organization, 12
higher order components, 47
implementing custom, 19-22
importing, 23-30
iOS vs. Android, 111
libraries available, 66
mocking, 136
phones vs. tablets, 117
protecting with PropTypes, 119-124
sharing and reusing, 30-37

contact information, viii
containers, 13
continuous integration, 103, 136
create-react-native-app, 7
cross-platform development, 13, 110
custom components

157

implementing, 19-22
sharing, 30-37

D
D-U-N-S numbers, 109
data structures, transforming, 4
debugging, tools for, 14-17 (see also code base

consistency)
decorators, 7
defensive programming, 119
dependencies

adding, 35
bidirectional, 47
checking, 133
managing, 36

deployment
automating, 103-108
beta testing, 108
planning for, 103

design by contract, 119 (see also style and
design)

development dependencies, 35
development environments

Android Studio, 4
automated testing, 130-136
cross-platform, 110
ESLint, 131, 136-144, 154
Expo, 1, 8
Flow, 124-131, 144, 154
iOS, 108
Java Development Kit (JDK), 4
Node and Watchman, 2
Node Package Manager (NPM), 3, 36
prop-types package, 119-124
Reason, 145-155
setting up, 1-4
Xcode, 4

devices
accommodating various sizes, 66-69, 110
requesting hardware permissions, 79-88

Dimensions library, 65
directory structures, 7
Ducks, 14

E
Enzyme, 131
errata, ix
ESLint, 131, 136-144, 154
eslint-plugin-flowtype package, 137

Expo, 1, 8

F
fastlane, 103-108
files, organizing, 7-14
filesystems, using device, 95-102
--fix flag (ESLint), 144
flexbox, 66-69
flexDirection, 68
Floating Action Button (FAB), 111
Flow, 124-131, 144, 154
fonts, custom, 73

G
global colors and styles, 20, 64
global state management

handling, 14
Redux library, 47-62
routing between login screens, 37-47

Google's Material Design, 66
GraphQL libraries, 14

H
hardware management

fetching paginated requests, 88-93
requesting permission, 79-88
saving application state, 93-95
using the filesystem, 95-102

higher order components, 47
higher order functions, 7
Homebrew, 104

I
IcoMoon, 73
icons, 69-76
image vectors, 69-76
indeterminate progress indicators, 76
informed consent, 81
inheritance, 4, 64
inline styles, overriding, 65
integration testing, 134
interpolation function, 77
iOS

Apple review process, 109
beta testing, 108
development environment, 4
requesting hardware permissions, 79-88

iTunes Connect, 109

158 | Index

J
Java Development Kit (JDK), 4
JavaScript ES6, 4-7, 131
JavaScript fatigue, vi, 145
JavaScript tools

Babel, 4-7
development environment setup, 1-4
file organizers, 7-14
JavaScript style guide, 137
version control, 14-17

Jenkins, 136
Jest, 131, 144
Jest React Native Tutorial, 136
JSONPlaceholder, 88
JSX preprocessor, 5

L
layouts, building flexible, 66-69, 110
libART.a library, 23
libraries

linking, 23
naming, 35
sharing, 35

linting tools, 137
login screens, routing between, 37-47
LoremPixel, 89

M
Mac OS, 4
Mattermost mobile application, 108
multidevice development, 110

N
NativeBase, 66
navigation

navigator components, 37
nested route structure, 38
React Navigation Redux Integration guide,

47
routing between login screens, 37-47
screens, 13

Node Package Manager (NPM), 3, 36
Node Version Manager (NVM), 2
Node.js, installing and verifying, 2
node_modules folder, 3

O
OCaml, 145, 154

online resources, vii

P
paginated requests, fetching, 88-93
passwords, setting, 47-62
permission, requesting, 79
photos, managing, 95-102
pixel-based views, 69
Platform library, 111
platform-specific styles, 111
presentational components, 12, 58
programming environments (see development

environments)
progress bars

adding, 23-30
animating, 29
indeterminate indicators, 76

project files, organizing, 7-14
prop-types package, 119-124
Pull to Refresh events, 90
pure functions, 55

Q
questions and comments, viii

R
React Native

application style and design, 63-78
benefits of, v
components and libraries, 19-62
deployment process, 103-118
hardware management, 79-102
JavaScript tools, 1-17
maintainable applications, 119-155
online resources, vii

React Native Debugging Guide, 15
React Native Getting Started guide, vii, 4
React Native’s command-line tool, 3
React Navigation community project, 37
React Navigation library, 13
React Navigation Redux Integration guide, 47
react-devtools, 17
react-native init, 7
react-native link, 23
react-native package, 3
react-native start, 36
react-native-camera, 37, 80
react-native-cli, 3

Index | 159

react-native-elements library, 19, 66
react-native-fs package, 95
react-native-material-kit, 66
react-native-permissions, 81
react-native-progress, 23, 76
react-native-vector-icons, 69
react-native-zip-archive, 102
react-navigation, 37
react-redux, 48
React.js guide for PropTypes, 124
ReactART library, 23
Reactotron, 17
Reason, 119, 145-155
ReasonML Discord Channel, 155
red screen of death, 15
reducers, 52
Redux library

global state management using, 47-62
React Navigation and, 47
redux-devtools-extension for, 17
saving application state with, 93
state management using, 14

redux-logger, 48, 116
redux-persist library, 94
redux-persist-filesystem-storage, 102
redux-saga, 62
redux-thunk, 62
Relay, 14
repetition, reducing, 19-22
resources, vii
routing, between login screens, 37-47
Ruby, installing, 104
runtime errors, 124-130

S
screen sizes, accommodating various, 66-69,

110
screens, 13
SectionList, 93
semantic versioning, 104
Single Responsibility Principle, 131
Slack, 106
Snapshot tests, 131
state management

application state, 93

global, 14
Redux library, 47-62
routing between login screens, 37-47

store metadata, 108
style and design

animation, 76-78
image vectors and icons, 69-76
layouts, 66-69
platform-specific styles, 111
stylesheets, 63-66

stylesheets, composing, 63-66
SVG (Scalable Vector Graphics), 71
syntax transformers, 4

T
team chat services, 106
test-driven development, 136
TestFlight, 108
Tile component, 55
TileMap component, 55
type safety, 124, 145-155
TypeScript, 119, 130, 154
typographical conventions, vii

U
unit tests, 130-136
utilities, 14

V
vector editing programs, 70
version control, 15, 104
version managers, 2
views, building complex, 66-69

W
Watchman, 2

X
Xcode, 4, 23

Y
Yarn, 3, 36, 125

160 | Index

About the Author
Jonathan Lebensold spent his childhood playing with ribbon cables and Lego blocks.
His first experience teaching others was when he was 12 years old—providing tech
support to people over IRC. Later, Jonathan spent several years tapping away at a ter‐
minal, working on large information systems for Fortune 500s, nonprofits, and start‐
ups. His passion for programming blossomed when he first discovered software
design patterns, test-driven development, and functional programming. Cofounding
Paradem, a software consultancy, has enabled him to facilitate software and product
design workshops around the world, most recently in Europe and East Africa. He
spends his days taking ideas to production and helping teams architect scalable,
maintainable solutions with Ruby, React, and React Native. You can find Jonathan on
Twitter, or in his kitchen perfecting his apple pie crust.

Colophon
The animal on the cover of React Native Cookbook is a northern goshawk (Accipiter
gentilis), a bird of prey that is widespread throughout Eurasia and North America. It
has been a popular bird in the sport of falconry for centuries, both for its speed and
tendency to follow prey into thick vegetation. The name “goshawk” is derived from
the Anglo-Saxon word for “goose hawk,” though it is more often used to hunt rabbits,
waterfowl, partridges, and pheasants. (These animals are also part of its natural diet.)

Goshawks are medium-large members of the hawk family but have proportionately
large beaks and talons that provide an advantage over other raptors when hunting.
Their wings are short and broad, and their tail long, both of which give them great
maneuverability within their forest habitat. There are variations in color in different
geographic areas, but generally, adult goshawks have orange or red eyes, blue- or
brown-gray backs and wings, with a pattern of pale grey and dark bars on their bel‐
lies. Juveniles have brown plumage and yellow eyes.

Females of the species are much larger than males. Mating pairs will often use the
same nest for multiple years, or at least stay in the same vicinity. It is common for the
male to construct the nest, with the female supervising nearby, though she may help
reinforce an older nest. These structures can be 31–47 inches long and 20–28 inches
wide. Goshawks are territorial birds who will defend their hunting range and nesting
site against other birds of prey, as well as goshawks of the opposite sex.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://twitter.com/jonlebensold
https://twitter.com/jonlebensold
http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	A Word on JavaScript Today
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. The React Native Toolchain
	1.1 Setting Up Your Development Environment
	Problem

	1.2 Writing ES6 with Babel
	Problem
	Solution
	See Also

	1.3 Organizing Project Files
	Problem
	Solution
	Discussion

	1.4 Dealing with Catastrophic Failure
	Problem
	Solution
	Discussion

	Chapter 2. Living in the React Native Ecosystem
	2.1 Stop Repeating Yourself: Implement Custom Components
	Problem
	Solution

	2.2 Adding an Open Source Progress Bar
	Problem
	Solution
	Discussion
	See Also

	2.3 Sharing Custom Components
	Problem
	Solution
	Discussion
	See Also

	2.4 Routing Between Login Screens
	Problem
	Solution
	Discussion
	See Also

	2.5 Using Redux for Global State Management in Redux
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Style and Design
	3.1 Composing Stylesheets
	Problem
	Solution
	See Also

	3.2 Building Flexible Layouts with Flexbox
	Problem
	Solution
	Discussion
	See Also

	3.3 Importing Image Vectors and Icons
	Problem
	Solution
	Discussion

	3.4 Looping Animations
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Managing Hardware Platforms
	4.1 Asking for Permission to Use Device Hardware (iOS)
	Problem
	Solution
	See Also

	4.2 Fetching Paginated Requests
	Problem
	Solution
	Discussion
	See Also

	4.3 Save Application State with Redux and Local Storage
	Problem
	Solution
	See Also

	4.4 Using the Filesystem
	Problem
	Solution
	See Also

	Chapter 5. Lift Off! Sharing Your App
	5.1 Automate Publishing Your App
	Problem
	Solution
	Discussion
	See Also

	5.2 Sharing Your iOS App with Beta Testers
	Problem
	Solution
	Discussion
	See Also

	5.3 Configuring Application Settings
	Problem
	Solution
	See Also

	Chapter 6. Making Your App Maintainable
	6.1 Protect Your Components with PropTypes
	Problem
	Solution
	Discussion
	See Also

	6.2 Check Runtime Errors with Flow
	Problem
	Solution
	See Also

	6.3 Automate Your Component Tests
	Problem
	Solution
	Discussion
	See Also

	6.4 Maintain Coding Standards with ESLint
	Problem
	Solution
	Discussion
	See Also

	6.5 Write Your App with Reason
	Problem
	Solution
	Discussion
	See Also

	Index
	About the Author

