

Learn You Some Erlang
for Great Good!

Foreword by Joe Armstrong

About the Author

Fred Hébert is a self-taught programmer
who used to teach Erlang. He is currently
working on a real-time bidding platform
and was named Erlang user of the year
2012. His online tutorial, Learn
You Some Erlang for Great
Good!, is widely regarded as
the best way to learn Erlang.

Fred Hébert

Erlang for
Learn You Some

Great Good!
A Beginner’s Guide

“ I L I E F LAT”

This book uses RepKover—a durable binding that won’t snap shut.

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

www.nostarch.com

SHElvE In:
ProgrammIng languagES/ErlangPrICE: $49.95 ($52.95 CDn)

• Passing messages, raising errors, and
 starting/stopping processes over many
 nodes

• Storing and retrieving data using mne-
 sia and ETS

• network programming with TCP, uDP,
 and the inet module

• The simple joys and potential pitfalls
 of writing distributed, concurrent
 applications

Packed with lighthearted illustrations and
just the right mix of offbeat and practical
example programs, Learn You Some Erlang
for Great Good! is the perfect entry point
into the sometimes-crazy, always-thrilling
world of Erlang.

Erlang is the language of choice for
programmers who want to write robust,
concurrent applications, but its strange
syntax and functional design can intimi-
date the uninitiated. luckily, there’s a new
weapon in the battle against Erlang-phobia:
Learn You Some Erlang for Great Good!

Erlang maestro Fred Hébert starts slow
and eases you into the basics: You’ll
learn about Erlang’s unorthodox syn-
tax, its data structures, its type system
(or lack thereof!), and basic functional
programming techniques. once you’ve
wrapped your head around the simple
stuff, you’ll tackle the real meat-and-
potatoes of the language: concurrency,
distributed computing, hot code loading,
and all the other dark magic that makes
Erlang such a hot topic among today’s
savvy developers.

as you dive into Erlang’s functional fan-
tasy world, you’ll learn about:

• Testing your applications with Eunit and
 Common Test

• Building and releasing your applications
 with the oTP framework

Learn You S
om

e
 Erlang for G

reat G
ood!

Hébert

Erlang to the People!

Foreword by Joe Armstrong

About the Author

Fred Hébert is a self-taught programmer
who used to teach Erlang. He is currently
working on a real-time bidding platform
and was named Erlang user of the year
2012. His online tutorial, Learn
You Some Erlang for Great
Good!, is widely regarded as
the best way to learn Erlang.

Fred Hébert

Erlang for
Learn You Some

Great Good!
A Beginner’s Guide

“ I L I E F LAT”

This book uses RepKover—a durable binding that won’t snap shut.

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

www.nostarch.com

SHElvE In:
ProgrammIng languagES/ErlangPrICE: $49.95 ($52.95 CDn)

• Passing messages, raising errors, and
 starting/stopping processes over many
 nodes

• Storing and retrieving data using mne-
 sia and ETS

• network programming with TCP, uDP,
 and the inet module

• The simple joys and potential pitfalls
 of writing distributed, concurrent
 applications

Packed with lighthearted illustrations and
just the right mix of offbeat and practical
example programs, Learn You Some Erlang
for Great Good! is the perfect entry point
into the sometimes-crazy, always-thrilling
world of Erlang.

Erlang is the language of choice for
programmers who want to write robust,
concurrent applications, but its strange
syntax and functional design can intimi-
date the uninitiated. luckily, there’s a new
weapon in the battle against Erlang-phobia:
Learn You Some Erlang for Great Good!

Erlang maestro Fred Hébert starts slow
and eases you into the basics: You’ll
learn about Erlang’s unorthodox syn-
tax, its data structures, its type system
(or lack thereof!), and basic functional
programming techniques. once you’ve
wrapped your head around the simple
stuff, you’ll tackle the real meat-and-
potatoes of the language: concurrency,
distributed computing, hot code loading,
and all the other dark magic that makes
Erlang such a hot topic among today’s
savvy developers.

as you dive into Erlang’s functional fan-
tasy world, you’ll learn about:

• Testing your applications with Eunit and
 Common Test

• Building and releasing your applications
 with the oTP framework

Learn You S
om

e
 Erlang for G

reat G
ood!

Hébert

Erlang to the People!

San Francisco

Foreword by Joe Armstrong

About the Author

Fred Hébert is a self-taught programmer
who used to teach Erlang. He is currently
working on a real-time bidding platform
and was named Erlang user of the year
2012. His online tutorial, Learn
You Some Erlang for Great
Good!, is widely regarded as
the best way to learn Erlang.

Fred Hébert

Erlang for
Learn You Some

Great Good!
A Beginner’s Guide

“ I L I E F LAT”

This book uses RepKover—a durable binding that won’t snap shut.

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

www.nostarch.com

SHElvE In:
ProgrammIng languagES/ErlangPrICE: $49.95 ($52.95 CDn)

• Passing messages, raising errors, and
 starting/stopping processes over many
 nodes

• Storing and retrieving data using mne-
 sia and ETS

• network programming with TCP, uDP,
 and the inet module

• The simple joys and potential pitfalls
 of writing distributed, concurrent
 applications

Packed with lighthearted illustrations and
just the right mix of offbeat and practical
example programs, Learn You Some Erlang
for Great Good! is the perfect entry point
into the sometimes-crazy, always-thrilling
world of Erlang.

Erlang is the language of choice for
programmers who want to write robust,
concurrent applications, but its strange
syntax and functional design can intimi-
date the uninitiated. luckily, there’s a new
weapon in the battle against Erlang-phobia:
Learn You Some Erlang for Great Good!

Erlang maestro Fred Hébert starts slow
and eases you into the basics: You’ll
learn about Erlang’s unorthodox syn-
tax, its data structures, its type system
(or lack thereof!), and basic functional
programming techniques. once you’ve
wrapped your head around the simple
stuff, you’ll tackle the real meat-and-
potatoes of the language: concurrency,
distributed computing, hot code loading,
and all the other dark magic that makes
Erlang such a hot topic among today’s
savvy developers.

as you dive into Erlang’s functional fan-
tasy world, you’ll learn about:

• Testing your applications with Eunit and
 Common Test

• Building and releasing your applications
 with the oTP framework

Learn You S
om

e
 Erlang for G

reat G
ood!

Hébert

Erlang to the People!

Learn You Some Erlang for Great Good! Copyright © 2013 by Fred Hébert.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

17 16 15 14 13   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-435-1
ISBN-13: 978-1-59327-435-1

Publisher: William Pollock
Production Editor: Alison Law
Cover Design: Sonia Brown
Developmental Editor: Keith Fancher
Technical Reviewer: Geoff Cant
Copyeditor: Marilyn Smith
Compositor: Susan Glinert Stevens
Proofreader: Greg Teague

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the Library of Congress.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor-
mation contained in it.

B r i e f C o n t e n t s

About the Author . . xvii

Foreword by Joe Armstrong . xix

Preface . xxi

Acknowledgments . xxiii

Introduction . 1

Chapter 1: Starting Out . 7

Chapter 2: Modules . 31

Chapter 3: Syntax in Functions . 43

Chapter 4: Types (or Lack Thereof) . 55

Chapter 5: Hello Recursion! . 61

Chapter 6: Higher-Order Functions . 77

Chapter 7: Errors and Exceptions . 87

Chapter 8: Functionally Solving Problems . . 105

Chapter 9: A Short Visit to Common Data Structures . 121

Chapter 10: The Hitchhiker’s Guide to Concurrency . 135

Chapter 11: More on Multiprocessing . 149

Chapter 12: Errors and Processes . 161

Chapter 13: Designing a Concurrent Application . 175

Chapter 14: An Introduction to OTP . 199

vi Brief Contents

Chapter 15: Rage Against the Finite-State Machines . 219

Chapter 16: Event Handlers . 247

Chapter 17: Who Supervises the Supervisors? . 263

Chapter 18: Building an Application . 281

Chapter 19: Building Applications the OTP Way . 303

Chapter 20: The Count of Applications . 315

Chapter 21: Release Is the Word . 335

Chapter 22: Leveling Up in the Process Quest . 353

Chapter 23: Buckets of Sockets . . 375

Chapter 24: EUnited Nations Council . 397

Chapter 25: Bears, ETS, Beets: In-Memory NoSQL for Free! . 419

Chapter 26: Distribunomicon . 441

Chapter 27: Distributed OTP Applications . 473

Chapter 28: Common Test for Uncommon Tests . 485

Chapter 29: Mnesia and the Art of Remembering . 511

Chapter 30: Type Specifications and Dialyzer . 543

Afterword . . 573

Appendix: On Erlang’s Syntax . 577

Index . . 581

C o n t e n t s i n D e t a i l

About the Author	 xvii

Foreword by Joe Armstrong	 xix

Preface	 xxi
To the Foreigner . xxi
To the Erlang Regular . xxii
To the Person Who Has Read This Online . xxii

Acknowledgments	 xxiii

Introduction	 1
So What’s Erlang? . 2
Don’t Drink Too Much Kool-Aid . . 4
What You Need to Dive In . 5
Where to Get Help . 6

1
Starting Out	 7
Using the Erlang Shell . 7

Entering Shell Commands . 8
Exiting the Shell . 8

Some Erlang Basics . 10
Numbers . . 10
Invariable Variables . 11
Atoms . 12
Boolean Algebra and Comparison Operators . 14
Tuples . . 16
Lists	 . 18
List Comprehensions . 21

Working with Binary Data . 23
Bit Syntax . 23
Bitwise Binary Operations . 26
Binary Strings . 27
Binary Comprehensions . 28

2
Modules	 31
What Are Modules? . 31
Creating Modules . 32

viii  Contents in Detail

Compiling Code . 36
Compiler Options . 37

Defining Macros . 38
More About Modules . . 40

Metadata . 40
Circular Dependencies . 41

3
Syntax in Functions	 43
Pattern Matching . . 43

Fancier Patterns . 45
Variables in a Bind . 46

Guards, Guards! . 48
What the If ?! . 49
In case ... of . 52
Which Should We Use? . 54

4
Types (or Lack Thereof)	 55
Dynamite-Strong Typing . 55
Type Conversions . 57
To Guard a Data Type . . 58
For Type Junkies . 60

5
Hello Recursion!	 61
How Recursion Works . 62

Length of a List . . 63
Length of a Tail Recursion . 64

More Recursive Functions . 66
A Duplicate Function . 66
A Reverse Function . 66
A Sublist Function . . 68
A Zip Function . 69
Quick, Sort! . . 70

More Than Lists . . 72
Thinking Recursively . 75

6
Higher-Order Functions	 77
Let’s Get Functional . 77
Anonymous Functions . 79

More Anonymous Function Power . 80
Function Scope and Closures . . 81

Maps, Filters, Folds, and More . 83
Filters . 83
Fold Everything . 84
More Abstractions . 86

Contents in Detail  ix

7
Errors and Exceptions	 87
A Compilation of Errors . 88

Compile-Time Errors . 88
No, YOUR Logic Is Wrong! . . 89
Runtime Errors . 90

Raising Exceptions . 93
Error Exceptions . . 93
Exit Exceptions . . 94
Throw Exceptions . 95

Dealing with Exceptions . . 96
Handling Different Types of Exceptions . 96
After the Catch . 99
Trying Multiple Expressions . 99
Wait, There’s More! . 100

Try a try in a Tree . 103

8
Functionally Solving Problems	 105
Reverse Polish Notation Calculator . 106

How RPN Calculators Work . 106
Creating an RPN Calculator . 107
Testing the Code . 110

Heathrow to London . 111
Solving the Problem Recursively . 112
Writing the Code . 114
Running the Program Without the Erlang Shell . 118

9
A Short Visit to Common Data Structures	 121
Records . 122

Defining Records . 122
Reading Values from Records . 123
Updating Records . 125
Sharing Records . . 126

Key/Value Stores . 127
Stores for Small Amounts of Data . 127
Larger Dictionaries: Dicts and GB Trees . 128

A Set of Sets . . 130
Directed Graphs . 131
Queues . 132
End of the Short Visit . 133

10
The Hitchhiker’s Guide to Concurrency	 135
Don’t Panic . 136
Concurrency Concepts . . 137

Scalability . 137

x  Contents in Detail

Fault Tolerance . 138
Concurrency Implementation . 140

Not Entirely Unlike Linear Scaling . 140
So Long and Thanks for All the Fish! . 142

Spawning Processes . 142
Sending Messages . 144
Receiving Messages . 145

11
More on Multiprocessing	 149
State Your State . 150
We Love Messages, But We Keep Them Secret . 152
Time Out . 153
Selective Receives . 156

The Pitfalls of Selective Receives . . 156
More Mailbox Pitfalls . 159

12
Errors and Processes	 161
Links . 162

It’s a Trap! . 164
Old Exceptions, New Concepts . 165

Monitors . 168
Naming Processes . . 170

13
Designing a Concurrent Application	 175
Understanding the Problem . 176
Defining the Protocol . 178
Lay Them Foundations . 180
An Event Module . 181

Events and Loops . 181
Adding An Interface . 184

The Event Server . 186
Handling Messages . 188
Hot Code Loving . 191
I Said, Hide Your Messages . 192

A Test Drive . 194
Adding Supervision . 195
Namespaces (or Lack Thereof) . 196

14
An Introduction to OTP	 199
The Common Process, Abstracted . 200
The Basic Server . 201

Introducing the Kitty Server . 201
Generalizing Calls . 203

Contents in Detail  xi

Generalizing the Server Loop . 204
Starter Functions . 206
Generalizing Kitty Server . 207

Specific vs. Generic . 209
Callback to the Future . 210

The init Function . . 210
The handle_call Function . . 211
The handle_cast Function . 212
The handle_info Function . 212
The terminate Function . 212
The code_change Function . 213

.BEAM Me Up, Scotty! . . 213

15
Rage Against the Finite-State Machines	 219
What Is a Finite-State Machine? . 220
Generic Finite-State Machines . . 223

The init Function . . 223
The StateName Function . 224
The handle_event Function . 225
The handle_sync_event Function . . 225
The code_change and terminate Functions . 225

A Trading System Specification . . 225
Show Me Your Moves . 226
Defining the State Diagrams and Transitions . 227

Game Trading Between Two Players . 233
The Public Interface . 233
FSM-to-FSM Functions . 235
The gen_fsm Callbacks . 236

That Was Really Something . 245
Fit for the Real World? . . 246

16
Event Handlers	 247
Handle This! *pumps shotgun* . 248
Generic Event Handlers . 249

The init and terminate Functions . 250
The handle_event Function . 250
The handle_call Function . . 251
The handle_info Function . 251
The code_change Function . 251

It’s Curling Time! . . 252
The Scoreboard . 252
Game Events . 253
Alert the Press! . . 257

xii  Contents in Detail

17
Who Supervises the Supervisors?	 263
Supervisor Concepts . 264
Using Supervisors . 266

Restart Strategies . 266
Restart Limits . 268
Child Specifications . 268

Band Practice . 271
Musicians . 271
Band Supervisor . . 274

Dynamic Supervision . 277
Using Standard Supervisors Dynamically . 277
Using a simple_one_for_one Supervisor . 279

18
Building an Application	 281
A Pool of Processes . 282

The Onion Layer Theory . 283
A Pool’s Tree . 284

Implementing the Supervisors . 286
Working on the Workers . 290
Writing a Worker . 296
Run Pool Run . 298
Cleaning the Pool . 301

19
Building Applications the OTP Way	 303
My Other Car Is a Pool . 304
The Application Resource File . 305
Converting the Pool . 307
The Application Behavior . 309
From Chaos to Application . . 310
Library Applications . 314

20
The Count of Applications	 315
From OTP Application to Real Application . 316

The Application File . 317
The Application Callback Module and Supervisor . 318
The Dispatcher . . 319
The Counter . . 329

Run App Run . 331
Included Applications . 333
Complex Terminations . 333

Contents in Detail  xiii

21
Release Is the Word	 335
Fixing the Leaky Pipes . 336

Terminating the VM . 336
Updating the Application Files . 336
Compiling the Applications . 337

Releases with systools . 338
Creating a Boot File . 339
Packaging the Release . 340

Releases with Reltool . 341
Reltool Options . 345

Reltool Recipes . 348
Released from Releases . 352

22
Leveling Up in the Process Quest	 353
The Hiccups of Appups and Relups . 354
The Ninth Circle of Erl . 356
Process Quest . 357

The regis-1.0.0 Application . 358
The processquest-1.0.0 Application . 359
The sockserv-1.0.0 Application . 360
The Release . 360

Making Process Quest Better . 363
Updating code_change Functions . . 363
Adding Appup Files . 365
Upgrading the Release . 369

Relup Review . 372

23
Buckets of Sockets	 375
IO Lists . 375
UDP and TCP: Bro-tocols . 377

UDP Sockets . 379
TCP Sockets . . 381

More Control with Inet . 384
Sockserv, Revisited . 387
Where to Go from Here? . 396

24
EUnited Nations Council	 397
EUnit—What’s an EUnit? . 398
Test Generators . . 402
Fixtures . 404

More Test Control . 406
Test Documentation . 407

Testing Regis . 408
He Who Knits EUnits . 417

xiv  Contents in Detail

25
Bears, ETS, Beets: In-Memory NoSQL for Free!	 419
Why ETS . 420
The Concepts of ETS . 421
ETS Phone Home . . 423

Creating and Deleting Tables . 423
Inserting and Looking Up Data . . 425

Meeting Your Match . 427
You Have Been Selected . 428
DETS . 433
A Little Less Conversation, a Little More Action, Please . 434

The Interface . 434
Implementation Details . 435

26
Distribunomicon	 441
This Is My Boomstick . 442
Fallacies of Distributed Computing . 445

The Network Is Reliable . 445
There Is No Latency . 446
Bandwidth Is Infinite . 446
The Network Is Secure . 447
Topology Doesn’t Change . . 448
There Is Only One Administrator . 449
Transport Cost Is Zero . . 449
The Network Is Homogeneous . 450
Fallacies in a Nutshell . . 451

Dead or Dead-Alive . . 451
My Other Cap Is a Theorem . . 453

Consistency . 453
Availability . 453
Partition Tolerance . 454
Zombie Survivors and CAP . 454

Setting Up an Erlang Cluster . . 458
Through the Desert on a Node with No Name . . 458
Connecting Nodes . 459
More Tools . 460

Cookies . 462
Remote Shells . 464
Hidden Nodes . 465
The Walls Are Made of Fire, and the Goggles Do Nothing . 466
The Calls from Beyond . . 467

The net_kernel Module . 467
The global Module . 467
The rpc Module . 469

Burying the Distribunomicon . 471

Contents in Detail  xv

27
Distributed OTP Applications	 473
Adding More to OTP . 474
Taking and Failing Over . 475
The Magic 8 Ball . 476

Building the Application . 477
Making the Application Distributed . 480

28
Common Test for Uncommon Tests	 485
What Is Common Test? . 485
Common Test Structure . 486
Creating a Simple Test Suite . 488

Running the Tests . 489
Testing with State . 491
Test Groups . 493

Defining Test Groups . 494
Test Group Properties . 495
The Meeting Room . 496

Test Suites Redux . . 500
Test Specifications . . 501

Specification File Contents . 501
Creating a Spec File . . 503
Running Tests with a Spec File . 503

Large-Scale Testing . 504
Creating a Distributed Spec File . . 506
Running Distributed Tests . . 507

Integrating EUnit Within Common Test . . 508
Is There More? . 509

29
Mnesia and the Art of Remembering	 511
What’s Mnesia? . 512
What Should the Store Store? . . 513

The Data to Store . 513
Table Structure . . 514

From Record to Table . 515
Of Mnesia Schemas and Tables . 516
Creating Tables . 519

Installing the Database . 519
Starting the Application . 522

Access and Context . . 523
Reads, Writes, and More . . 524
Implementing the First Requests . 526

A Test for Adding Services . 526
Tests for Lookups . 529
Accounts and New Needs . 532

xvi  Contents in Detail

Meet the Boss . 534
Deleting Stuff, Demonstrated . . 536
Query List Comprehensions . 539
Remember Mnesia . 541

30
Type Specifications and Dialyzer	 543
PLTs Are the Best Sandwiches . 543
Success Typing . 545
Type Inference and Discrepancies . 547
Typing About Types of Types . 550

Singleton Types . 550
Union and Built-in Types . 551
Defining Types . . 554
Types for Records . . 555

Typing Functions . 556
Typing Practice . 560
Exporting Types . 564
Typed Behaviors . 566
Polymorphic Types . 567

We Bought a Zoo . 568
Some Cautions . 570

You’re My Type . 572
That’s All, Folks . . 572

Afterword	 573
Other Erlang Applications . 574
Community Libraries . 575
Your Ideas Are Intriguing to Me and I Wish to Subscribe to Your Newsletter 576
Is That It? . 576

Appendix
On Erlang’s Syntax	 577
The Template . 577
The English Sentence . 579
And, Or, Done. . 580
In Conclusion . 580

Index	 581

Ab o u t t h e A u t h o r

Fred Hébert is a self-taught programmer with experience in frontend web
development, web services, and general backend programming in vari-
ous languages. His online tutorial, Learn You Some Erlang for Great Good!, is
widely regarded as the best way to learn Erlang. While at Erlang Solutions
Ltd., he wrote training materials and taught Erlang all around the Western
world. He currently works with Erlang on a real-time bidding platform
(AdGear) and was named Erlang User of the Year 2012.

F o r e w o r d

Learning to program is fun, or at least it should be
fun. If it’s not fun, you won’t enjoy doing it. During
my career as a programmer, I have taught myself sev-
eral different programming languages, and it hasn’t
always been fun. Whether or not learning a language
is fun depends to a large extent on how the language is
introduced.

When you start working with a new programming language, on the
surface it seems that all you are doing is learning a new language. But at
a deeper level, you are doing something much more profound—you are
learning a new way of thinking. It’s this new way of thinking that is exciting,
not the minor details of the punctuation or how the language looks com-
pared to your favorite programming language.

Functional programming is one of those areas of programming that
has acquired a reputation for being “hard” (concurrent programming even
more so), and so writing a book about Erlang that covers the ideas of func-
tional programming plus concurrent programming is a daunting prospect.

xx Foreword

Make no mistake about it: Introducing functional programming is not so
easy, and introducing concurrent programming has its difficulties. Doing
both with humor and ease requires a very particular kind of talent.

Fred Hebert has shown that he has this talent. He explains complex
ideas in a way that makes them seem simple.

One of the biggest barriers to learning Erlang is not so much that the
ideas involved are intrinsically difficult but that they are very different from
the ideas in most of the other languages that you will have encountered.
To learn Erlang, you have to temporarily unlearn what you have learned
in other programming languages. Variables in Erlang do not vary. You’re
not supposed to program defensively. Processes are really, really cheap, and
you can have thousands of them or even millions, if you feel like it. Oh, and
then there is the strange syntax. Erlang doesn’t look like Java; there are no
methods or classes and no objects. And wait a moment . . . even the equals
sign doesn’t mean “equals”—it means “match this pattern.”

Fred is completely undaunted by these issues; he treats the subject mat-
ter with a delicate dry humor and teaches complex subjects in such a way
that we forget the complexity.

This is now the fourth major text on Erlang and is a great addition
to the Erlang library. But it’s not only about Erlang. Many of the ideas in
Fred’s book are equally applicable to Haskell or OCaml or F#.

I hope that many of you will enjoy reading Fred’s book as much as I
did and that you find learning Erlang to be an agreeable and thought-
provoking process. If you type in the programs in this book and run them
as you go along, you’ll learn even more. Writing programs is much more
difficult than reading them, and the first step is just letting your fingers get
used to typing in the programs and getting rid of the small syntax errors
that inevitably occur. As you get deeper into the book, you’ll be writing
programs that are pretty tricky to write in most other languages—but hope-
fully you won’t realize this. Soon you’ll be writing distributed programs.
This is when the fun starts. . .

Thanks, Fred, for a great book.

Joe Armstrong
Stockholm, Sweden
November 6, 2012

P r e f a c e

This book initially started as a website, which is still
available at http://learnyousomeerlang.com/ (thanks to
No Starch Press’s open-mindedness regarding all
things related to publishing and technical material).
Since the first chapters were made public in 2009, Learn You Some Erlang has
grown from a three-chapter micro-tutorial with a request for proofreading
on the erlang-questions mailing list into one of the official documentation’s
suggestions for learning Erlang, a book, and a major accomplishment in my
life. I’m baffled and thankful for all it has brought me, from friends to jobs
to the title of Erlang User of the Year 2012.

To the Foreigner
When you’re looking at Erlang programmers from afar, as an outsider, they
may seem like a weird little community of people who believe in principles
that nearly nobody else needs or wants to follow. Their principles look
impractical, limited in how they can be applied. To make matters worse,
Erlang citizens may appear similar to members of a religious sect, entirely

xxii Preface

sure that they know the one true way to the heart of software. This is the
same kind of “one true way” previously preached by fanatics of languages
like those of the Lisp family, Haskellers, proud members of the formal
proof school of thought, Smalltalk programmers, stack aficionados from
the world of Forth, and so on. Same old, same old; they all offer great prom-
ises of success, and deliver in various ways, but the programs we program-
mers write are still buggy, too expensive, or unmaintainable.

With Erlang, it’s likely the promise of concurrency or parallelism
that brings you here. Maybe it’s the distributed computing aspect of the
language, or possibly its unusual approach to fault tolerance. Of course,
approaching Erlang with skepticism is a good thing. It won’t solve all your
problems—that’s your job, after all. Erlang is merely a nifty toolbox to help
you do so.

To the Erlang Regular
You already know Erlang, possibly very well. In that case, I hope this book
becomes an interesting read or a possible reference, or that a few of its
chapters help you learn more about bits of the language and its environ-
ment that you weren’t too familiar with before.

It’s also possible that you know Erlang better than I do in every respect.
In that case, I hope this book makes an adequate paperweight or space-
filler in your library.

To the Person Who Has Read This Online
Thanks for your support, and I hope you enjoy what professional editing
has brought to the original text, along with a boost into R15B+ versions of
Erlang.

Ac k n o w l e d g m e n t s

Thanks to Miran Lipovač a for coming up with the Learn You a Language
idea first, and for letting me borrow the concept for this book and its
related website.

Thanks to Jenn (my girlfriend) for the original website design, the long
yeoman’s work required to redraw most of the images of this book so they
would be suitable for print, her support, and her patience in letting me
spend so many hours working on this project.

Thanks to all the people who gave their time away to help review the
online copy of this book, find errors, and offer support (in no particular
order): Michael Richter, OJ Reeves, Dave Pawson, Robert Virding, Richard
O’Keefe, Ulf Wiger, Lukas Larsson, Dale Harvey, Richard Carlsson, Nick
Fitzgerald, Brendon Hogger, Geoff Cant, Andrew Thompson, Bartosz
Fabianowski, Richard Jones, Tuncer Ayaz, William King, Mahesh Paolini-
Subramanya, and Malcolm Matalka. There were also many other people
who provided minor reviews and spotted typos and other errors.

A second thanks to Geoff Cant, who was the official tech reviewer for
this version of the book.

Thanks to the team at No Starch Press (Keith, Alison, Leigh, Riley,
Jessica, Tyler, and Bill) for their professional work.

Finally, thanks to the countless readers of the online copy of this book:
those who bought this version, and those who read it without buying it.

I n t r o d u c t i o n

This is the beginning of Learn You Some Erlang for Great
Good! Reading this book should be one of your first
steps in learning Erlang, so let’s talk about it a bit.

I got the idea to write this book after reading Miran Lipovaca’s Learn
You a Haskell for Great Good! (LYAH) tutorial. I thought he did a great job
making the language attractive and the learning experience friendly. As I
already knew him, I asked him how he felt about me writing an Erlang ver-
sion of his book. He liked the idea, being somewhat interested in Erlang.

So I began writing this book.
Of course, there were other sources to my motiva-

tion. When I began, I found the entry to the language to
be hard (the Web had sparse documentation, and books
are expensive), and I thought the community would
benefit from a LYAH-like guide. Also, I had seen people
attributing Erlang too little—or sometimes too much—
merit based on sweeping generalizations.

ˇ

2 Introduction

This book is a way to learn Erlang for people who have a basic
knowledge of programming in imperative languages (such as C/C++, Java,
Python, Ruby, and so on) but may or may not be familiar with functional
programming languages (such as Haskell, Scala, Clojure, and OCaml, as
well as Erlang). I also wanted to write this book in an honest manner, sell-
ing Erlang for what it is, acknowledging its weaknesses and strengths.

So What’s Erlang?
Erlang is a functional programming language. If you have ever worked with
imperative languages, statements such as i++ may be normal to you, but in
functional programming, they are not allowed. In fact, changing the value
of any variable is strictly forbidden! This may sound weird at first, but if you
remember your math classes, that’s how you learned it:

y = 2
x = y + 3
x = 2 + 3
x = 5

If I added the following, you would have been very confused.

x = 5 + 1
x = x
∴  5 = 6

Functional programming recognizes this. If I say x is 5, then I can’t logi-
cally claim it is also 6! This would be dishonest. This is also why a function
should return the same result every time it’s called with the same parameter:

x = add_two_to(3) = 5
∴  x = 5

The concept of functions always returning the same result for the
same parameter is called referential transparency. It’s what lets us replace
add_two_to(3) with 5, as the result of 3+2 will always be 5. That means we can
glue dozens of functions together in order to resolve more complex prob-
lems while being sure nothing will break. Logical and clean, isn’t it? There’s
a problem though:

x = today() = 2013/10/22
 -- wait a day --
x = today() = 2013/10/23
x = x
∴  2013/10/22 = 2013/10/23

Oh no! My beautiful equations! They suddenly all turned wrong! How
come my function returns a different result every day?

Introduction 3

Obviously, there are some cases where it’s useful to break referential
transparency. Erlang has this very pragmatic approach with functional pro-
gramming: Obey its purest principles (referential transparency, avoiding
mutable data, and so on), but break away from them when real-world prob-
lems pop up.

Although Erlang is a functional programming language, there’s also a
large emphasis on concurrency and high reliability. To be able to have doz-
ens of tasks being performed at the same time, Erlang uses the actor model,
and each actor is a separate process in the virtual machine. In a nutshell, if
you were an actor in Erlang’s world, you would be a lonely person, sitting in
a dark room with no window, waiting by your mailbox to get a message.
Once you got a message, you would react to it in a specific way: You pay the
bills, you respond to birthday cards with a “thank you” letter, and you ignore
the letters you can’t understand.

Erlang’s actor model can be imagined as a
world where everyone is sitting alone in a room
and can perform a few distinct tasks. Everyone
communicates strictly by writing letters, and
that’s it. While it sounds like a boring life (and a
new age for the postal service), it means you can
ask many people to perform very specific tasks
for you, and none of them will ever do something
wrong or make mistakes that will have repercussions on the work of others.
They may not even know of the existence of people other than you (and
that’s great).

In practice, Erlang forces you to write actors (processes) that will share
no information with other bits of code unless they pass messages to each
other. Every communication is explicit, traceable, and safe.

Erlang is not just a language but also a development environment as a
whole. The code is compiled to bytecode and runs inside a virtual machine.
So Erlang, much like Java and kids with ADD, can run anywhere. Here are
just some of the components of the standard distribution:

•	 Development tools (compiler, debugger, profiler, and test frameworks,
optional type analyzer)

•	 The Open Telecom Platform (OTP) framework

•	 A web server

•	 Advanced tracing tools

•	 The Mnesia database (a key/value storage system able to replicate itself
on many servers, which supports nested transactions and lets you store
any kind of Erlang data)

The virtual machine and libraries also allow you to update the code of
a running system without interrupting any program, distribute your code
with ease on many computers, and manage errors and faults in a simple but
powerful manner.

4 Introduction

We’ll cover how to use most of these tools
and achieve safety in this book.

Speaking of safety, you should be aware of a
related general policy in Erlang: Let it crash—
not like a plane with dozens of passengers
dying, but more like a tightrope walker with a
safety net below. While you should avoid making
mistakes, you won’t need to check for every type
or error condition in most cases.

Erlang’s ability to recover from errors, orga-
nize code with actors, and scale with distribu-
tion and concurrency all sound awesome, which
brings us to the next section . . .

Don’t Drink Too Much Kool-Aid
This book has many little boxed sections named like this one (you’ll recog-
nize them when you see them). Erlang is currently gaining a lot of popu-
larity due to zealous talks, which may lead people to believe it’s more than
what it really is. The following are some reminders to help you keep your
feet on the ground if you’re one of these overenthusiastic learners.

First is the talk of Erlang’s massive scaling abilities due to its lightweight
processes. It is true that Erlang processes are very light; you can have hun-
dreds of thousands of them existing at the same time. But this doesn’t mean
you should use Erlang that way just because you can. For example, creating
a shooter game where everything including bullets is its own actor is mad-
ness. The only thing you’ll shoot with a game like that is your own foot.
There is still a small cost in sending a message from actor to actor, and if
you divide tasks too much, you will make things slower!

I’ll cover this in more depth when we’re far enough into the tutorial
to actually worry about it, but just keep in mind that randomly throwing
parallelism at a problem is not enough to make it go fast. (Don’t be sad;
occasionally, using hundreds of processes is both possible and useful!)

Erlang is also said to be able to scale in a directly proportional manner
to how many cores your computer has, but this is usually not true. It is pos-
sible, but in most cases, problems do not behave in a way that lets you just
run everything at the same time.

Something else to keep in mind is that
while Erlang does some things very well, it’s
technically still possible to get the same results
from other languages. The opposite is also
true. You should evaluate each problem that
you need to solve and choose the best tool
for that problem and its solution. Erlang is
no silver bullet and will be particularly bad at
things like image and signal processing, operating system device drivers,
and other functions. It will shine at things like large software for server use

Speed

CORES

Introduction 5

(for example, queue middleware, web servers, real-time bidding and dis-
tributed database implementations), doing some lifting coupled with other
languages, higher-level protocol implementation, and so on. Areas in the
middle will depend on you.

You should not necessarily limit yourself to server software with Erlang.
People have done unexpected and surprising things with it. One example is
IANO, a robot created by the Unict team (the Eurobot team of the University
of Catania), which uses Erlang for its artificial intelligence. IANO won the
silver medal at the 2009 Eurobot competition. Another example is Wings 3D,
an open source, cross-platform 3D modeler (but not a renderer) written in
Erlang.

What You Need to Dive In
All you need to get started is a text editor and the Erlang environment. You
can get the source code and the Windows binaries from the official Erlang
website.

For Windows systems, just download and run the binary files. Don’t for-
get to add your Erlang directory to your PATH system variable to be able to
access it from the command line.

On Debian-based Linux distributions, you should be able to install the
package with this command:

$ sudo apt-get install erlang

On Fedora (if you have yum installed), you can install Erlang by typing this:

yum install erlang

However, these repositories often hold outdated versions of the Erlang
packages. Using an outdated version could give you some different results
from those shown for the examples in this book, as well as a hit in perfor-
mance with certain applications. I therefore encourage you to compile from
source. Consult the README file within the package and Google to get all
the installation details you’ll need.

On FreeBSD, many options are available. If you’re using portmaster, you
can use this command:

$ portmaster lang/erlang

For standard ports, enter the following:

$ cd /usr/ports/lang/erlang; make install clean

Finally, if you want to use packages, enter this:

$ run pkg_add -rv erlang

6 Introduction

If you’re on a Mac OS X system, you can install Erlang with Homebrew:

$ brew install erlang

Or, if you prefer, use MacPorts:

$ port install erlang

N o t e 	 At the time of this writing, I’m using Erlang version R15B+, so for the best results,
you should use that version or a newer one. However, most of the content in this book
is also valid for versions as old as R13B.

Along with downloading and installing Erlang, you should also down-
load the complete set of files available for this book. They contain tested
copies of any program and module written within these pages, and they
might prove useful for fixing your own programs. They also can provide
a base for later chapters if you feel like skipping around. The files are all
packaged in a zip file, available at http://learnyousomeerlang.com/static/erlang/
learn-you-some-erlang.zip. Otherwise, the examples in Learn You Some Erlang
depend on no other external dependency.

Where to Get Help
If you’re using Linux, you can access the man pages for good technical
documentation. For example, Erlang has a lists module (as you’ll see in
Chapter 1). To get the documentation on lists, just type in this command:

$ erl -man lists

On Windows, the installation should include HTML documentation.
You can download it at any time from the official Erlang site, or consult one
of the alternative sites.

Good coding practices can be found at http://www.erlang.se/doc/
programming_rules.shtml when you feel you need to get your code clean. The
code in this book will attempt to follow these guidelines, too.

Now, there are times when just getting the technical details isn’t enough.
When that happens, I tend to turn to two main sources: the official Erlang
mailing list (you should follow it just to learn a bunch) and the #erlang
channel on irc.freenode.net.

1
S t a r t i n g O u t

In Erlang, you can test most of your code in an emu-
lator. It will run your scripts when they are compiled
and deployed, but it will also let you edit stuff live.

In this chapter, you’ll learn how to use the Erlang shell and be intro-
duced to some basic Erlang data types.

Using the Erlang Shell
To start the Erlang shell in a Linux or Mac OS X system, open a terminal,
and then type erl. If you’ve set up everything correctly, you should see
something like this:

$ erl
Erlang R15B (erts-5.9) [source] [64-bit] [smp:4:4] [async-threads:0] [hipe]
[kernel-poll:false]

Eshell V5.9 (abort with ^G)

Congratulations, you’re running the Erlang shell!

8 Chapter 1

If you’re a Windows user, you can run the shell by executing erl.exe at
the command prompt, but it’s recommended that you use werl.exe instead,
which can be found in your Start menu (choose All Programs4Erlang).
Werl is a Windows-only implementation of the Erlang shell that has its own
window with scroll bars and supports line-editing shortcuts (which are not
available with the standard cmd.exe shell in Windows). However, the erl.exe
shell is still required if you want to redirect standard input or output, or use
pipes.

Now we can enter code into the shell and run it in the emulator. But
first, let’s see how we can get around in it.

Entering Shell Commands
The Erlang shell has a built-in line editor based on a subset of Emacs,
a popular text editor that has been in use since the 1970s. If you know
Emacs, you should be fine. And even if you don’t know Emacs, you’ll do
fine anyway.

To begin, type some text in the Erlang shell, and then press ctrl-A
(^A). Your cursor should move to the beginning of the line. Similarly, press-
ing ctrl-E (^E) moves the cursor to the end of the line. You can also use
the left and right arrow keys to move the cursor forward and backward, and
cycle through previously written lines of code by using the up and down
arrow keys.

Let’s try something else. Type
li, and then press tab. The shell
will expand the term for you to
lists:. Press tab again, and the
shell will suggest all the functions
available in the lists module. You
may find the notation weird, but
don’t worry, you’ll become familiar
with it soon enough. (We’ll learn
more about modules in Chapter 2.)

Exiting the Shell
At this point, you’ve seen most of the basic Erlang shell functionality,
except for one very important thing: You don’t know how to exit! Luckily,
there’s a fast way to find out: type help(). into the shell and press enter.
You’ll see information about a bunch of commands, including functions to
inspect processes, manage how the shell works, and so on. We’ll use many
of these in this book, but the only one of interest right now is the following
expression:

q() -- quit - shorthand for init:stop()

So, this is one way to exit (two ways, in fact). But this won’t help if the
shell freezes!

Starting Out 9

If you were paying attention when you started the shell, you probably
saw a comment about “aborting with ^G.” So let’s press ctrl-G, and then
type h to get help.

User switch command
--> h
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s [shell] - start local shell
r [node [shell]] - start remote shell
q - quit erlang
? | h - this message
-->

If you are wearing a monocle, now would be the time to drop it. The
Erlang shell isn’t just a simple shell as with other languages. Instead, it is a
bundle of shell instances, each running different jobs. Moreover, you can
manage them like processes in an operating system. If you type k N, where
N is a job number, you will terminate that shell and all the code it was run-
ning at the time. If you want to stop the code that is running without killing
the shell, then i N is the command you need. You can also create new shell
instances by typing in s, list them with j, and connect to them with c N.

At some point, you might see an asterisk (*) next to some shell jobs:

 --> j
 1* {shell,start,[init]}

The * means that this is the last shell instance you were using. If you use
the command c, i, or k without any number following it, that command will
operate on this last shell instance.

If your shell ever freezes, a quick sequence to help is to press ctrl-G,
type i, press enter, type c, and press enter (^G i enter c enter). This will
get you to the shell manager, interrupt the current shell job, and then con-
nect back to it:

Eshell V5.9 (abort with ^G)
1> "OH NO THIS SHELL IS UNRESPONSIVE!!! *hits ctrl+G*"
User switch command
 --> i
 --> c
** exception exit: killed
1> "YESS!"

There’s one important thing to know before you start typing “real”
stuff into the shell: A sequence of expressions must be terminated with a period
followed by whitespace (a line break, a space, and so on); otherwise, it won’t be
executed. You can separate expressions with commas, but only the result of

10 Chapter 1

the last one will be shown (although the others are still executed). This is
certainly unusual syntax for most people, and it comes from the days Erlang
was implemented directly in Prolog, a logic programming language.

Now let’s get things started (for real) by learning about the basic Erlang
data types and how to write your first bits of programs in the shell.

Some Erlang Basics
Although you’ve just seen a rather advanced mechanism to handle differ-
ent jobs and shell sessions, Erlang is considered to be a relatively small and
simple language (in the way that C is simpler than C++). The language
has only a few basic built-in data types (and few syntactic elements around
them). First, we’ll take a look at numbers.

Numbers
Open the Erlang shell as described earlier, and let’s type some things:

1> 2 + 15.
17
2> 49 * 100.
4900
3> 1892 - 1472.
420
4> 5 / 2.
2.5

As you can see, Erlang doesn’t care if you enter
floating-point numbers or integers. Both types are sup-
ported when dealing with arithmetic.

Note that if you want to perform integer-to-integer
division, rather than floating-point division, you should
use div. To get the remainder (modulo) of an integer
division, use rem (remainder).

5> 5 div 2.
2
6> 5 rem 2.
1

You can use several operators in a single expression, and mathematical
operations obey the normal precedence rules:

7> (50 * 100) – 4999.
1
8> -(50 * 100 – 4999).
-1
9> -50 * (100 – 4999).
244950

Starting Out 11

If you want to express integers in other bases than base 10, just enter
the number in the form Base#Value (as long as Base is in the range of 2
through 36), like this:

10> 2#101010.
42
11> 8#0677.
447
12> 16#AE.
174

Here, we’re converting binary, octal, and hexadecimal values to base 10.
Awesome! Erlang has the power of the calculator you have on the corner of
your desk, but with a weird syntax on top of it. Absolutely exciting!

Invariable Variables
Doing arithmetic is all right, but you won’t get far without being able to
store the results somewhere. For that, you use variables. If you read the
Introduction to this book, you know that variables can’t be variable in func-
tional programming.

In Erlang, variables begin with an uppercase letter by definition. The
basic behavior of variables can be demonstrated with these six expressions:

1> One.
* 1: variable 'One' is unbound
2> One = 1.
1
3> Un = Uno = One = 1.
1
4> Two = One + One.
2
5> Two = 2.
2
6> Two = Two + 1.
** exception error: no match of right hand side value 3

The first thing these commands tell us is that you can assign a value to
a variable exactly once. Then you can “pretend” to assign a value to a vari-
able if it’s the same value the variable already has. If the value is different,
Erlang will complain. It’s a correct observation, but the explanation is a
bit more complex and depends on the = operator. The = operator (not the
variables) has the role of comparing values and complaining if they’re dif-
ferent. If they’re the same, Erlang returns the value:

7> 47 = 45 + 2.
47
8> 47 = 45 + 3.
** exception error: no match of right hand side value 48

12 Chapter 1

When you use the = operator with variables on both sides of it, with the
variable on the left side being unbound (without any value associated with
it), Erlang will automatically bind the value on the right to the variable on
the left. Both variables will then have the same value. The comparison will
consequently succeed, and the variable on the left side will keep the value
in memory.

Here’s another example:

9> two = 2.
** exception error: no match of right hand side value 2

The command fails because the word two begins with a lowercase letter.

N o t e 	 Technically, variables can also start with an underscore (_), but by convention, their
use is restricted to values you do not care about.

This behavior of the = operator is the basis of something called pattern
matching, which many functional programming languages have, although
Erlang’s way of doing things is usually regarded as more flexible and com-
plete than the alternatives. You’ll learn more about Erlang pattern match-
ing when we visit other data types in this chapter, and also see how it works
with functions in the following chapters.

Note that if you’re testing in the shell and save the wrong value
to a variable, it is possible to “erase” that variable by using the function
f(Variable).. If you wish to clear all variable names, use f().. These functions
are designed to help you when you’re testing, and they only work in the
shell. When you’re writing real programs, you won’t be able to destroy values
this way. This restriction makes sense if you think about Erlang being usable
in industrial scenarios. It’s wholly possible that a shell will be active for years
without interruption, and you can bet that a given variable will be used more
than once in that time period.

Atoms
There is a reason why variables names can’t begin with a lowercase character:
atoms. Atoms are literals, which means that they’re just constants whose only
value is their own name. In other words, what you see is what you get—don’t
expect more. The atom cat means “cat,” and that’s it. You can’t play with it.
You can’t change it. You can’t smash it to pieces. It’s cat. Deal with it.

While using single words starting with a lowercase letter is one way to
write an atom, there are also other ways:

1> atom.
atom
2> atoms_rule.
atoms_rule

Starting Out 13

3> atoms_rule@erlang.
atoms_rule@erlang
4> 'Atoms can be cheated!'.
'Atoms can be cheated!'
5> atom = 'atom'.
atom

An atom should be enclosed in single quotes (') if it does not begin with
a lowercase letter or if it contains any characters other than alphanumeric
characters, an underscore (_), or an at sign (@). Line 5 also shows that an
atom with single quotes is exactly the same as a similar atom without them.

I compared atoms to constants that have
their name as their values. You may have worked
with code that used constants before. For exam-
ple, let’s say you have values for eye colors: 1 for
blue, 2 for brown, 3 for green, and 4 for other.
You need to match the name of the constant
to some underlying value. Atoms let you forget
about the underlying values. Your eye colors can
simply be blue, brown, green, or other. These
colors can be used anywhere in any piece of code. The underlying values
will never clash, and it is impossible for such a constant to be undefined!
(We’ll see how to create constants with values associated with them in
Chapter 2.)

Therefore, an atom is mainly useful to express or qualify data coupled
with it, usually in a tuple (described in “Tuples” on page 16). Atoms are
sometimes (but not often) useful when used alone. This is why we won’t
spend more time toying with them here. You’ll see them coupled with other
types of data in later examples.

Don’t Dr ink Too Much Kool- A id

Atoms are really nice and a great way to send messages or represent constants.
However, there are pitfalls to using atoms for too many things. An atom is referred
to in an atom table, which consumes memory (4 bytes per atom in a 32-bit system
and 8 bytes per atom in a 64-bit system). The atom table is not garbage collected,
so atoms will accumulate until the system tips over, either from memory usage or
because 1,048,577 atoms were declared.

This means atoms should not be generated dynamically. If your system needs
to be reliable, and user input lets someone crash it at will by telling it to create
atoms, you’re in serious trouble.

Atoms should be seen as tools for the developer because, honestly, that’s
what they are. To reiterate: You should feel perfectly safe using atoms in your
everyday code as long as you type them in yourself. It’s only dynamic generation
of atoms that is risky.

14 Chapter 1

N o t e 	 Some atoms are reserved words and cannot be used except for what the language
designers wanted them to be: function names, operators, expressions, and so on.
These reserved words are as follows: after, and, andalso, band, begin, bnot, bor, bsl,
bsr, bxor, case, catch, cond, div, end, fun, if, let, not, of, or, orelse, query, receive,
rem, try, when, and xor.

Boolean Algebra and Comparison Operators
We would be in pretty deep trouble if we couldn’t
tell the difference between what’s small and big,
or what’s true and false. Like any other language,
Erlang has ways to let you use Boolean operations
and to compare items.

Boolean algebra is dirt simple:

1> true and false.
false
2> false or true.
true
3> true xor false.
true
4> not false.
true
5> not (true and true).
false

N o t e 	 The Boolean operators and and or will always evaluate arguments on both sides of the
operator. If you want a short-circuit operator (which will evaluate the right-side argu-
ment only if necessary), use andalso or orelse.

Testing for equality or inequality is also dirt simple, but involves slightly
different symbols from those you see in many other languages:

6> 5 =:= 5.
true
7> 1 =:= 0.
false
8> 1 =/= 0.
true
9> 5 =:= 5.0.
false
10> 5 == 5.0.
true
11> 5 /= 5.0.
false

George
Boole

Starting Out 15

There’s a good chance that your usual language uses == and != to test
for and against equality, but Erlang uses =:= and =/=. The three last expres-
sions (lines 9 through 11) also introduce a pitfall: Erlang doesn’t care about
the difference between floats and integers in arithmetic, but does distin-
guish between the two when comparing them. No worry though, because
the == and /= operators are there to help you in these cases. Thus, it is
important to consider whether or not you want exact equality. As a general
rule of thumb, you should always start by using =:= and =/=, and switch to ==
and /= only when you know you do not need exact equality. This could help
you avoid some unfortunate comparisons when the types of numbers you
expect are not what you get.

Other operators for comparisons are < (less than), > (greater than), >=
(greater than or equal to), and =< (less than or equal to). That last one is
backward (in my opinion) and is the source of many syntax errors in my
code. Keep an eye on that =<.

12> 1 < 2.
true
13> 1 < 1.
false
14> 1 >= 1.
true
15> 1 =< 1.
true

What happens when you enter something like 5 + llama or 5 =:= true?
There’s no better way to know than trying it and subsequently getting
scared by error messages!

12> 5 + llama.
** exception error: bad argument in an arithmetic expression
 in operator +/2
 called as 5 + llama

Erlang doesn’t really like you misusing some of its fundamental types.
The emulator returns an error message here, indicating it doesn’t like one
of the two arguments used around the + operator.

Erlang doesn’t always get mad at you for using the wrong types though:

13> 5 =:= true.
false

Why does it refuse different types in some operations but not others?
While Erlang doesn’t let you add two operands of different types, it will let
you compare them. This is because the creators of Erlang thought pragma-
tism beats theory and decided it would be great to be able to simply write

16 Chapter 1

things like general sorting algorithms that could order any terms. It’s there
to make your life simpler and can do so the vast majority of the time.

There is one last thing to keep in mind when doing Boolean algebra
and comparisons:

14> 0 == false.
false
15> 1 < false.
true

Chances are you’re pulling out your hair if you come from procedural
languages or most object-oriented languages. Line 14 should evaluate to
true and line 15 to false! After all, false means 0 and true is anything else!
Except in Erlang. Because I lied to you. Yes, I did that. Shame on me.

Erlang has no such things as Boolean true and false. The terms true
and false are atoms, but they are integrated well enough into the language
that you shouldn’t have a problem with them, as long as you don’t expect
false and true to mean anything but false and true.

N o t e 	 The correct ordering of each element in a comparison is the following: number <
atom < reference < fun < port < pid < tuple < list < bit string. Some of these
types won’t be familiar to you, but you will get to know them through this book. Just
remember that this is why you can compare anything with anything. To quote Joe
Armstrong, one of the creators of Erlang, “The actual order is not important—but
that a total ordering is well defined is important.”

Tuples
A tuple is a way to group together a set number of terms. In Erlang, a tuple
is written in the form {Element1, Element2, ..., ElementN}. For example, you
would give me the coordinates (x,y) if you wanted to tell me the position of
a point in a Cartesian graph. We can represent this point as a tuple of two
terms:

1> X = 10, Y = 4.
4
2> Point = {X,Y}.
{10,4}

In this case, a point will always be two terms. Instead of carrying the
variables X and Y everywhere, you need to carry only one. However, what
can you do if you receive a point and only want the x -coordinate? It’s not
hard to extract that information. Remember that when you assign values,
Erlang will never complain if they are the same. Let’s exploit that. (You may
need to clear the variables we just set with f() before typing in the following
example.)

Starting Out 17

3> Point = {4,5}.
{4,5}
4> {X,Y} = Point.
{4,5}
5> X.
4
6> {X,_} = Point.
{4,5}

From now on, we can use X to get the first value of the tuple. How did
that happen? First, X and Y had no value and were thus considered unbound
variables. When you set them in the tuple {X,Y} on the left side of the = oper-
ator, the = operator compares both values: {X,Y} versus {4,5}. Erlang is smart
enough to unpack the values from the tuple and distribute them to the
unbound variables on the left side. Then the comparison is only {4,5} = {4,5},
which obviously succeeds. That’s one of the many forms of pattern matching.

Note that line 6 uses the don’t care variable (_).
This is exactly how it’s meant to be used: to drop
the value that would usually be placed there, since
we won’t use that value. The _ variable is always
seen as unbound and acts as a wildcard for pattern
matching. Pattern matching to unpack tuples will
work only if the number of elements (the tuple’s
length) is the same.

7> {_,_} = {4,5}.
{4,5}
8> {_,_} = {4,5,6}.
** exception error: no match of right hand side value {4,5,6}

Tuples can also be useful when working with single values. For example,
suppose that we want to store the following temperature:

9> Temperature = 23.213.
23.213

Looks like a good day to go to the beach! But wait—is this temperature
in Kelvin, Celsius, or Fahrenheit? We can use a tuple to store the tempera-
ture’s units along with its value:

10> PreciseTemperature = {celsius, 23.213}.
{celsius,23.213}
11> {kelvin, T} = PreciseTemperature.
** exception error: no match of right hand side value {celsius,23.213}

This raises an exception, but that’s exactly what we want. This is,
again, pattern matching at work. The = operator compares {kelvin, T} and
{celsius, 23.213}, and even if the variable T is unbound, Erlang can see that

MR.BRACKETS

18 Chapter 1

the celsius atom is different from the kelvin atom. An exception is raised,
which stops the execution of code. So, the part of the program that expects
a temperature in Kelvin won’t be able to process temperatures sent in Celsius.
This makes it easier for the programmer to know what kind of data is being
sent, and it also works as a debugging aid.

A tuple that contains an atom with one element following it is called a
tagged tuple. Any element of a tuple can be of any type, even another tuple:

12> {point, {X,Y}}.
{point,{4,5}}

But what if we want to carry around more than one point? For that, we
have lists.

Lists
Lists are the bread and butter of many functional languages. They’re used
to solve all kinds of problems and are undoubtedly the most-used data
structure in Erlang. Lists can contain anything—numbers, atoms, tuples,
other lists—your wildest dreams in a single structure.

The basic notation of a list is [Element1, Element2, ..., ElementN], and you
can mix more than one type of data in it:

1> [1, 2, 3, {numbers,[4,5,6]}, 5.34, atom].
[1,2,3,{numbers,[4,5,6]},5.34,atom]

Simple enough, right? Let’s try another one:

2> [97, 98, 99].
"abc"

Uh-oh! This is one of the most disliked things in Erlang: strings. Strings
are lists, and the notation is exactly the same. Why do people dislike it?
Because of this:

3> [97,98,99,4,5,6].
[97,98,99,4,5,6]
4> [233].
"é"

Erlang will print lists of numbers as numbers only when at least one
of them could not also represent a letter. There is no such thing as a real
string in Erlang! This will no doubt come to haunt you in the future, and
you’ll hate the language for it. Don’t despair, because there are other ways
to write strings, as you’ll see in “Binary Strings” on page 27.

Starting Out 19

Don't Dr ink Too Much Kool- A id

This is why some programmers say that Erlang sucks at string manipulation: It
does not have a built-in string type as in most other languages. The lack is due
to Erlang’s origins as a language created and used by telecom companies. They
never (or rarely) used strings, so they were not officially added to the language
as their own data type. However, this problem is getting fixed with time. The vir-
tual machine (VM) now partially supports Unicode and is getting faster at string
manipulations all the time. There is also a way to store strings as a binary data
structure, making them really light and faster to work with. We’ll discuss this in
“Binary Strings” on page 27.

All in all, some functions are still missing from the standard library when it
comes to strings. While string processing is definitely doable in Erlang, other lan-
guages, such as Perl and Python, are better suited for tasks that need a lot of it.

To glue lists together, use the ++ operator. To remove elements from a
list, use --.

5> [1,2,3] ++ [4,5].
[1,2,3,4,5]
6> [1,2,3,4,5] -- [1,2,3].
[4,5]
7> [2,4,2] -- [2,4].
[2]
8> [2,4,2] -- [2,4,2].
[]

Both ++ and -- are right-associative. This means the elements of many -- or
++ operations will be done from right to left, as in the following examples:

9> [1,2,3] -- [1,2] -- [3].
[3]
10> [1,2,3] -- [1,2] -- [2].
[2,3]

In the first example, proceeding from right to left, we first remove [3]
from [1,2], leaving us with [1,2]. Then we remove [1,2] from [1,2,3], leaving us
with only [3]. For the last one, we first remove [2] from [1,2], giving [1]. Then
we take [1] out of [1,2,3], producing the final result [2,3].

Let’s keep going. The first element of a list is named the head, and the
rest of the list is named the tail. We will use two built-in functions (BIFs) to
get them:

11> hd([1,2,3,4]).
1
12> tl([1,2,3,4]).
[2,3,4]

20 Chapter 1

N o t e 	 BIFs are usually functions that could not be implemented in pure Erlang, and as
such are defined in C, or whichever language Erlang happens to be implemented in
(it was Prolog in the 1980s). There are still some BIFs that could be done in Erlang
but were implemented in C in order to provide more speed to common operations. One
example of this is the length(List) function, which will return the (you’ve guessed it)
length of the list passed in as the argument.

Accessing or adding the head is fast and efficient. Virtually all applica-
tions where you need to deal with lists will operate on the head first. As it’s
used so frequently, Erlang provides an easier way to separate the head from
the tail of a list, with the help of pattern matching: [Head|Tail]. For example,
here’s how you would add a new head to a list:

13> List = [2,3,4].
[2,3,4]
14> NewList = [1|List].
[1,2,3,4]

When processing lists, it’s also helpful to have a quick way to store the
tail, so you can operate on the tail later. If you remember the way tuples
work and how we used pattern matching to unpack the values of a point
({X,Y}), you’ll understand how we can get the first element (the head) sliced
off a list in a similar manner:

15> [Head|Tail] = NewList.
[1,2,3,4]
16> Head.
1
17> Tail.
[2,3,4]
18> [NewHead|NewTail] = Tail.
[2,3,4]
19> NewHead.
2

The | we used is called the cons operator (constructor). In fact, any list
can be built with only cons operators and values:

20> [1 | []].
[1]
21> [2 | [1 | []]].
[2,1]
22> [3 | [2 | [1 | []]]].
[3,2,1]

In other words, any list can be built with the following formula:
[Term1 | [Term2 | [... | [TermN]]]]. Thus, you can define lists recursively as a
head preceding a tail, which is itself a head followed by more heads. In this

Starting Out 21

sense, you could imagine a list being a bit like an earthworm; you can slice
it in half, and you’ll then have two worms.

HEAD

TAIL
HEAD

TAIL

The ways Erlang lists can be built are sometimes confusing to people
who are not used to similar constructors. To help you get familiar with the
concept, read all of these examples (hint: they’re all equivalent):

[a, b, c, d]
[a, b, c, d | []]
[a, b | [c, d]]
[a, b | [c | [d]]]
[a | [b | [c | [d]]]]
[a | [b | [c | [d | []]]]]

With this understood, you should be able to deal with list comprehen-
sions, which are discussed in the next section.

N o t e 	 Using the form [1 | 2] gives what is called an improper list. Improper lists will
work when you pattern match in the [Head|Tail] manner, but will fail when used with
standard functions of Erlang (even length()). This is because Erlang expects proper
lists. Proper lists end with an empty list as their last cell. When declaring an item
like [2], the list is automatically formed in a proper manner. As such, [1|[2]] would
work. Improper lists, although syntactically valid, are of very limited use outside of
user-defined data structures.

List Comprehensions
List comprehensions are ways to build or modify lists. They also make programs
short and easy to understand compared to other ways of manipulating lists.
They may be hard to grasp at first, but they’re worth the effort. Don’t hesitate
to try the examples in this section until you understand them!

List comprehensions are based on the mathematical idea of set notation,
so if you’ve ever taken a math class that dealt with set theory, list compre-
hensions may look familiar to you. Set notation describes how to build a
set by specifying properties its members must satisfy. For instance, here’s a
basic example: x x x∈ ={ } : 2 . This describes the set of all real numbers
that are equal to their own square. (The result of that set would be {0,1}.)
A simpler example of set notation is x x: >{ }0 . This describes the set of all
numbers greater than zero.

Like set notation, list comprehensions are about building sets from
other sets. For example, given the set 2n n L: ∈{ } , where L is the list

22 Chapter 1

[1,2,3,4], we could read this as “for all n values in [1,2,3,4], give me n*2.” The
set built from this would be [2,4,6,8]. The Erlang implementation of this
same set is as follows:

1> [2*N || N <- [1,2,3,4]].
[2,4,6,8]

Compare the mathematical notation to the Erlang one, and you’ll see
that not a lot changes: brackets ({}) become square brackets ([]), the colon
(:) becomes two pipes (||), and the operator ∈ becomes the arrow (<-). In
other words, we change symbols but keep the same logic. In the example, each value
of [1,2,3,4] is sequentially pattern matched to N. The arrow acts exactly like
the = operator, with the exception that it doesn’t throw exceptions.

You can also add constraints to a list comprehension by using operations
that return Boolean values. So if you want all the even numbers from one to
ten, you could write something like this:

2> [X || X <- [1,2,3,4,5,6,7,8,9,10], X rem 2 =:= 0].
[2,4,6,8,10]

Here, X rem 2 =:= 0 checks if a number is even.
The recipe for list comprehensions in Erlang is as follows:

NewList = [Expression || Pattern <- List, Condition1, Condition2, ... ConditionN]

The Pattern <- List part is called a generator expression.
List comprehensions are useful when you want to apply a function to

each element of a list, forcing it to respect constraints. For example, say you
own a restaurant. A customer enters, sees your menu, and asks if he could
have the prices of all the items costing between $3 and $10, with taxes (say
7 percent) counted in afterward.

3> RestaurantMenu = [{steak, 5.99}, {beer, 3.99}, {poutine, 3.50}, {kitten, 20.99}, {water, 0.00}].
[{steak,5.99},
{beer,3.99},
{poutine,3.5},
{kitten,20.99},
{water,0.0}]
4> [{Item, Price*1.07} || {Item,Price} <- RestaurantMenu, Price >= 3, Price =< 10].
[{steak,6.409300000000001},{beer,4.2693},{poutine,3.745}]

The decimals are not rounded in a readable manner, but you get the point.
Another nice thing about list comprehensions is that you can have more

than one generator expression, as in this example:

5> [X+Y || X <- [1,2], Y <- [3,4]].
[4,5,5,6]

Starting Out 23

This runs the operations 1+3, 1+4, 2+3, 2+4. So if you want to make the list
comprehension recipe more generic, you get this:

NewList = [Expression || GeneratorExp1, GeneratorExp2, ..., GeneratorExpN,
Condition1, Condition2, ... ConditionM]

Note that the generator expressions coupled with pattern matching can
also act as a filter:

6> Weather = [{toronto, rain}, {montreal, storms}, {london, fog},
6> {paris, sun}, {boston, fog}, {vancouver, snow}].
[{toronto,rain},
 {montreal,storms},
 {london,fog},
 {paris,sun},
 {boston,fog},
 {vancouver,snow}]
7> FoggyPlaces = [X || {X, fog} <- Weather].
[london,boston]

If an element of the list Weather doesn’t match the {X, fog} pattern, it’s
simply ignored in the list comprehension, whereas the = operator would
have raised an exception.

We’ll look at using one more basic data type in this chapter. It is a sur-
prising feature that makes interpreting binary data easy as pie.

Working with Binary Data
Unlike most other languages, Erlang provides
useful abstractions when dealing with binary
values with pattern matching, instead of requir-
ing the old-fashioned bit twiddling with special
operators. It makes dealing with raw binary
data fun and easy (no, really), which was neces-
sary for the telecom applications it was created
to help with. Bit manipulation has a unique syntax and idioms that may
look kind of weird at first, but if you know how bits and bytes work gener-
ally, this should make sense to you. (You may want to skip the rest of this
chapter if you’re not familiar with binary operations.)

Bit Syntax
Erlang bit syntax encloses binary data between << and >> and splits it in
readable segments; each segment is separated by a comma. A segment is a
sequence of bits of a binary (not necessarily on a byte boundary, although
this is the default behavior).

0010100

0101000

0111100

1010000

1100100

24 Chapter 1

Suppose you want to store an orange pixel of true color (24 bits). If
you’ve ever checked colors in Photoshop or in a CSS style sheet for the
Web, you know the hexadecimal notation has the format #RRGGBB. A tint of
orange is #F09A29 in that notation, which could be expanded in Erlang to the
following:

1> Color = 16#F09A29.
15768105
2> Pixel = <<Color:24>>.
<<240,154,41>>

This basically says, “Put the binary values of #F09A29 on 24 bits of space
(red on 8 bits, green on 8 bits, and blue also on 8 bits) in the variable Pixel.”
That value can then be written to a file or a socket later. This may not look
like much, but once written to a file, this value will turn into a bunch of
unreadable characters that, in the proper context, can be decoded as a
picture.

This syntax is especially nice because you can use clean, readable text
to write things that need to look messy to the naked eye in order to work.
Without good abstractions, your code would also need to be messy. Even
better: When you read the file back in, Erlang will interpret the binary value
into the nice <<240,151,41>> format again! You can jump back and forth
between representations, using only the one that’s the most useful to you
when you need it.

What’s more interesting is the ability to pattern match with binaries to
unpack content:

3> Pixels = <<213,45,132,64,76,32,76,0,0,234,32,15>>.
<<213,45,132,64,76,32,76,0,0,234,32,15>>
4> <<Pix1,Pix2,Pix3,Pix4>> = Pixels.
** exception error: no match of right hand side value <<213,45,132,64,76,32,76,0,0,234,32,15>>
5> <<Pix1:24, Pix2:24, Pix3:24, Pix4:24>> = Pixels.
<<213,45,132,64,76,32,76,0,0,234,32,15>>

On line 3, we declare what would be precisely 4 pixels of RGB colors in
binary. On line 4, we tried to unpack four values from the binary content.
It throws an exception, because we have more than 4 segments—in fact, we
have 12. So we tell Erlang that each variable on the left side will hold 24 bits
of data using Pix1:24, Pix2:24, and so on. We can then take the first pixel and
unpack it further into single color values:

6> <<R:8, G:8, B:8>> = <<Pix1:24>>.
<<213,45,132>>
7> R.
213

Starting Out 25

“Yeah, that’s dandy. But what if I only want the first color from the start?
Will I need to unpack all these values all the time?” Don’t worry—Erlang
introduces more syntactic sugar and pattern matching to help you out:

8> <<R:8, Rest/binary>> = Pixels.
<<213,45,132,64,76,32,76,0,0,234,32,15>>
9> R.
213

In this example, Rest/binary is a specific notation that lets you say that
whatever is left in the binary, whatever length it is, is put into the Rest vari-
able. So <<Pattern, Rest/binary>> is to binary pattern matching what [Head|Tail]
is to list pattern matching.

Nice, huh? This works because Erlang allows more than one way to
describe a binary segment. The following are all valid:

Value
Value:Size
Value/TypeSpecifierList
Value:Size/TypeSpecifierList

Here, Size is always in bits when no TypeSpecifierList is defined.
TypeSpecifierList represents one or more of the following, separated by
a hyphen (-):

Type
The possible values are integer, float, binary, bytes, bitstring, bits,
utf8, utf16, and utf32. When no type is specified, Erlang assumes an
integer type.

This represents the kind of binary data used. Note that bytes is
shorthand for binary, and bits is shorthand for bitstring.

Signedness
The possible values are signed and unsigned. The default is unsigned.

This only matters for matching when the type is integer.

Endianness
The possible values are big, little, and native. By default, endianness is
set to big, as it is the standard used in network protocol encodings.

Endianness only matters when the type is integer, utf16, utf32, or
float. This has to do with how the system reads binary data. For exam-
ple, the BMP image header format holds the size of its file as an integer
stored in 4 bytes. For a file that has a size of 72 bytes, a little-endian
system would represent this as <<72,0,0,0>>, and a big-endian system
would represent it as <<0,0,0,72>>. The former will be read as 72, while
the latter will be read as 1207959552, so make sure you use the correct
endianness.

There is also the option to use native, which will choose at runtime
if the CPU uses little-endianness or big-endianness natively.

26 Chapter 1

Unit
This is written as unit:Integer.

The unit is the size of each segment. The allowed range is 1 to 256.
It is set by default to 1 bit for integer, float, and bitstring types, and to
8 bits for binary. The utf8, utf16, and utf32 types do not require a unit to
be defined. The multiplication of size by unit is equal to the number of
bits the segment will take, and must be evenly divisible by 8. The unit
size is usually used to ensure byte alignment.

The default size of a data type can be changed by combining dif-
ferent parts of a binary. As an example, <<25:4/unit:8>> will encode the
number 25 as a 4-byte integer, or <<0,0,0,25>> in its graphical representa-
tion. <<25:2/unit:16>> will give the same result, and so will <<25:1/unit:32>>.
Erlang will generally accept <<25:Size/unit:Unit>> and multiply Size by
Unit to figure out how much space it should take to represent the value.
Again, the result of this should be divisible by 8.

Some examples may help you digest these definitions:

10> <<X1/unsigned>> = <<-44>>.
<<"Ô">>
11> X1.
212
12> <<X2/signed>> = <<-44>>.
<<"Ô">>
13> X2.
-44
14> <<X2/integer-signed-little>> = <<-44>>.
<<"Ô">>
15> X2.
-44
16> <<N:8/unit:1>> = <<72>>.
<<"H">>
17> N.
72
18> <<N/integer>> = <<72>>.
<<"H">>
19> <<Y:4/little-unit:8>> = <<72,0,0,0>>.
<<72,0,0,0>>
20> Y.
72

You can see that there is more than one way to read, store, and inter-
pret binary data. This is a bit confusing, but still much simpler than using
the usual tools given by most languages.

Bitwise Binary Operations
The standard binary operations (shifting bits to left and right, and binary
and, or, xor, and not) also exist in Erlang. Just use the operators bsl (bit shift
left), bsr (bit shift right), band, bor, bxor, and bnot.

Starting Out 27

2#00100 = 2#00010 bsl 1.
2#00001 = 2#00010 bsr 1.
2#10101 = 2#10001 bor 2#00101.

With this notation and bit syntax in general, parsing and pattern match-
ing binary data are a piece of cake. For example, you could parse TCP seg-
ments with code like this:

<<SourcePort:16, DestinationPort:16,AckNumber:32,
DataOffset:4, _Reserved:4, Flags:8, WindowSize:16,
CheckSum: 16, UrgentPointer:16,
Payload/binary>> = SomeBinary.

If SomeBinary does contain a TCP segment from some networking code,
it can be extracted with a similar pattern. All values are in bits (except for
the Payload, which is of arbitrary length), and well defined by a standard.
Whichever part of the segment your program needs can then be referred
to by its corresponding variable.

The same logic can then be applied to anything binary: video encod-
ing, images, other protocol implementations, and so on.

Binary Strings
There’s a whole other aspect to binary notation: binary strings. Binary strings
are bolted on top of the language in the same way strings are with lists, but
they’re much more efficient in terms of space. This is because normal lists
are similar to linked lists (one “node” per letter, and then a reference to the
next part of the list), while binary strings are more like C arrays (a tightly
packed block of memory).

Binary strings use the syntax <<"this is a binary string!">>. The down-
side of binary strings compared to lists is a loss in simplicity when it comes

Don’t Dr ink Too Much Kool- A id

Erlang can be slow compared to languages like C or C++. Unless you are
a patient person (or a prodigy), it would likely be a bad idea to do stuff like
converting videos or images with it, even though the binary syntax makes
it extremely interesting. Erlang is traditionally just not that great at heavy
number-crunching.

Take note, however, that Erlang is usually mighty fast for applications that
do not require number-crunching, such as reacting to events, message-passing
(with the help of atoms being extremely light), and so on. It can deal with events
in matters of milliseconds, and as such, is a great candidate for soft real-time
applications.

28 Chapter 1

to pattern matching and manipulation. Consequently, people tend to use
binary strings when storing text that won’t be manipulated too much or
when space efficiency is a real issue.

N o t e 	 Even though binary strings are pretty light, you should avoid using them to tag values.
It might be tempting to use string literals to say, for example, {<<"temperature">>,50},
but you should always use atoms in that case. Using atoms results in almost no over-
head when comparing different values, and such comparisons are done in constant
time regardless of length, while binaries are compared in linear time. Conversely, do
not use atoms to replace strings because they are lighter. Strings can be manipulated
(splitting, regular expressions, and so on), while atoms can only be compared and
nothing else.

Binary Comprehensions
Binary comprehensions are to bit syntax what list comprehensions are to
lists: a way to make code short and concise when dealing with binaries.
They can generally be used in the same manner as list comprehensions:

1> << <<X>> || <<X>> <= <<1,2,3,4,5>>, X rem 2 == 0>>.
<<2,4>>

The only change in syntax from regular list comprehensions is the <-,
which becomes <= for binary generators, and using binaries (<<>>) instead of
lists ([]).

Earlier in this chapter, you saw an example of using pattern matching
to grab RGB values from a binary value that represented many pixels. That
technique worked well in that example, but on larger structures, it could
become harder to read and maintain. The same exercise can be done with
a one-line binary comprehension, which is much cleaner:

2> Pixels = <<213,45,132,64,76,32,76,0,0,234,32,15>>.
<<213,45,132,64,76,32,76,0,0,234,32,15>>
3> RGB = [{R,G,B} || <<R:8,G:8,B:8>> <= Pixels].
[{213,45,132},{64,76,32},{76,0,0},{234,32,15}]

Changing <- to <= lets you use a binary as a generator. The complete
binary comprehension basically changed binary data to integers inside
tuples. Another binary comprehension syntax exists to let you do the exact
opposite:

4> << <<R:8, G:8, B:8>> || {R,G,B} <- RGB >>.
<<213,45,132,64,76,32,76,0,0,234,32,15>>

Starting Out 29

Be careful, as the elements of the resulting binary require a clearly
defined binary type if the generator returned binaries:

5> << <<Bin>> || Bin <- [<<3,7,5,4,7>>] >>.
** exception error: bad argument
6> << <<Bin/binary>> || Bin <- [<<3,7,5,4,7>>] >>.
<<3,7,5,4,7>>

By default, Erlang assumes that values you try to put into or extract
from a binary are integers (unsigned, on 8 bits). When writing <<Bin>>,
we’re in fact declaring that we want a binary containing an integer that is
stored in the variable Bin. The problem is that Bin holds another binary, and
that just doesn’t make sense to Erlang. We said we would give an integer,
and we gave a binary. By specifying that the type is binary (as on line 6),
Erlang is able to deal with the pattern because what we say Bin is and what
Bin contains now make sense.

It’s also possible to have a binary comprehension with a binary generator:

7> << <<(X+1)/integer>> || <<X>> <= <<3,7,5,4,7>> >>.
<<4,8,6,5,8>>

Note that specifying the type as integer is superfluous in this case, as
Erlang assumes integers by default.

In this book, I won’t go into much more detail on binaries and binary
comprehensions. If you’re interested in understanding more about bit syn-
tax as a whole, you can read the white paper that defines their specification,
at http://user.it.uu.se/~pergu/papers/erlang05.pdf.

2
M o d u l e s

Working with the interactive shell is a vital part of
using dynamic programming languages. It’s useful to
test all kinds of code and programs. In Chapter 1, we
used the interactive shell to play with most of Erlang’s
basic data types without ever opening a text editor or saving a file. While
you could stop reading here, go play ball outside, and call it a day, that
would make you a terrible Erlang programmer. Code needs to be saved
somewhere to be used! As you’ll learn in this chapter, that’s what modules
are for.

What Are Modules?
A module is a bunch of functions grouped
together in a single file, under a single
name. All functions in Erlang must be
defined in modules. You have already used
modules, perhaps without realizing it. The

FUNCTiONS

32 Chapter 2

BIFs mentioned in Chapter 1, such as hd and tl, actually belong to the erlang
module. All of the arithmetic, logic, and Boolean operators also are in the
erlang module.

BIFs from the erlang module differ from other functions, as they are
automatically imported when you use Erlang. Every other function defined
in a module needs to be called with the form Module:Function(Arguments), as in
this example:

1> erlang:element(2, {a,b,c}).
b
2> element(2, {a,b,c}).
b
3> lists:seq(1,4).
[1,2,3,4]
4> seq(1,4).
** exception error: undefined shell command seq/2

Here, the seq function from the lists module was not automatically
imported, while element was. The error “undefined shell command” comes
from the shell looking for a shell command like f() and not being able to
find it. Some functions from the erlang module are not imported automati-
cally, but they are not used very frequently.

Logically, you should put functions that deal with similar things inside
a single module. Common operations on lists are kept in the lists module,
while functions to do input and output (such as writing to the terminal or
in a file) are grouped in the io module or the file module. One of the only
modules you will encounter that doesn’t respect that pattern is the erlang
module, which has functions that do math, perform conversions, deal with
multiprocessing, fiddle with the VM’s settings, and so on. They have noth-
ing in common except being BIFs. You should avoid creating modules like
erlang, and instead focus on clean and logical separations.

Creating Modules
When writing a module, you can declare two kinds of things: functions and
attributes. Attributes are metadata describing the module itself, such as its
name, the functions that should be visible to the outside world, the author
of the code, and so on. This kind of metadata is useful because it gives hints
to the compiler on how it should do its job, and also because it lets people
retrieve information from compiled code without needing to consult the
source.

A large variety of module attributes is currently used in Erlang code
across the world. In fact, you can even declare your own attributes for what-
ever you please. However, some predefined attributes will appear more fre-
quently than others in your code.

Modules 33

All module attributes follow the form -Name(Attribute).. Only one of
them is necessary for your module to be compilable:

-module(Name).

This is always the first attribute (and statement)
of a file, and for good reason: It’s the name of the cur-
rent module, where Name is an atom. This is the name
you’ll use to call functions from other modules. The
calls are made with the form M:F(A), where M is the mod-
ule name, F the function, and A the arguments.

Note that the name of the module as defined in
the -module attribute and the filename must match.
For example, if the module name is unimaginative_name,
then the file should be named unimaginative_name.erl
(.erl is the standard Erlang source extension). If the
names don’t match, your module won’t compile.

It’s time to code already! Our first module will be very simple and use-
less. Open your text editor, type the following line, and then save the file as
useless.erl.

-module(useless).

This line of text is actually a valid module. Really! Of course, it’s useless
without functions. Let’s first decide which functions will be exported from
our useless module. To do this, we will use another attribute:

-export([Function1/Arity, Function2/Arity, ..., FunctionN/Arity]).

This is used to define which functions of a module can be called by the
outside world. It takes a list of functions with their respective arity. The arity
of a function is an integer representing how many arguments can be passed
to the function. This is critical information, because different functions
defined within a module can share the same name if, and only if, they have
a different arity. The functions add(X,Y) and add(X,Y,Z) would thus be consid-
ered different, and written in the form add/2 and add/3, respectively.

N o t e 	 Exported functions represent a module’s interface. It is important to define an inter-
face that reveals only the bare minimum of what is necessary to use the module’s func-
tions. This lets you fiddle with the internal details of your implementations without
breaking code that might depend on your module.

Our useless module will first export a useful function named add, which
will take two arguments. Add the following -export attribute after the mod-
ule declaration:

-export([add/2]).

BIFs mentioned in Chapter 1, such as hd and tl, actually belong to the erlang
module. All of the arithmetic, logic, and Boolean operators also are in the
erlang module.

BIFs from the erlang module differ from other functions, as they are
automatically imported when you use Erlang. Every other function defined
in a module needs to be called with the form Module:Function(Arguments), as in
this example:

1> erlang:element(2, {a,b,c}).
b
2> element(2, {a,b,c}).
b
3> lists:seq(1,4).
[1,2,3,4]
4> seq(1,4).
** exception error: undefined shell command seq/2

Here, the seq function from the lists module was not automatically
imported, while element was. The error “undefined shell command” comes
from the shell looking for a shell command like f() and not being able to
find it. Some functions from the erlang module are not imported automati-
cally, but they are not used very frequently.

Logically, you should put functions that deal with similar things inside
a single module. Common operations on lists are kept in the lists module,
while functions to do input and output (such as writing to the terminal or
in a file) are grouped in the io module or the file module. One of the only
modules you will encounter that doesn’t respect that pattern is the erlang
module, which has functions that do math, perform conversions, deal with
multiprocessing, fiddle with the VM’s settings, and so on. They have noth-
ing in common except being BIFs. You should avoid creating modules like
erlang, and instead focus on clean and logical separations.

Creating Modules
When writing a module, you can declare two kinds of things: functions and
attributes. Attributes are metadata describing the module itself, such as its
name, the functions that should be visible to the outside world, the author
of the code, and so on. This kind of metadata is useful because it gives hints
to the compiler on how it should do its job, and also because it lets people
retrieve information from compiled code without needing to consult the
source.

A large variety of module attributes is currently used in Erlang code
across the world. In fact, you can even declare your own attributes for what-
ever you please. However, some predefined attributes will appear more fre-
quently than others in your code.

34 Chapter 2

And now we can write the function:

add(A,B) ->
 A + B.

The syntax of a function follows the form Name(Args) -> Body., where Name
must be an atom, and Body can be one or more Erlang expressions sepa-
rated by commas. The function is ended with a period. Note that Erlang
doesn’t use the return keyword as many imperative languages do. A return is
useless! Instead, the last logical expression of a function to be executed will
have its value returned to the caller automatically, without you needing to
mention it.

Next, add the following function to the file. (Yes, every tutorial needs
a “Hello, world” example!) Don’t forget to add it to the -export attribute as
well (the -export attribute should then look like -export([add/2, hello/0]).).

%% Shows greetings.
%% io:format/1 is the standard function used to output text.
hello() ->
 io:format("Hello, world!~n").

The first thing to notice in this listing is the comments. In Erlang, com-
ments are single-line only and begin with a % sign. (In this case, we’ve used
%%, but this is purely a question of style.) The hello/0 function also demon-
strates how to call functions from foreign modules inside your own module.
In this case, io:format/1 is the standard function to output text, as written in
the comments.

N o t e 	 The convention in the Erlang community is to use three percent signs (%%%) for com-
ments that are general to a module (what the module is used for, licenses, and so
on) and divisions of different sections of a module (public code, private code, helper
functions, and so on). Two percent signs (%%) are used for all other comments that are
alone on their own line and at the same level of indentation as the surrounding code.
A single % is used for comments at the end of a line where there is code.

Let’s add one last function to the module, using both functions add/2
and hello/0:

greet_and_add_two(X) ->
 hello(),
 add(X,2).

Again, don’t forget to add greet_and_add_two/1 to the exported function
list. The calls to hello/0 and add/2 don’t need to have the module name pre-
pended to them, because they were declared in the module itself.

MODULE

IM
PO

RT
S

Modules 35

If you wanted to be able to call io:format/1 in
the same manner as add/2, or any other function
defined within the current module, you could
have added the following module attribute at the
beginning of the file: -import(io, [format/1]).. Then
you could have called format("Hello, World!~n").
directly. More generally, the -import attribute fol-
lows this recipe:

-import(Module, [Function1/Arity, ..., FunctionN/Arity]).

Importing a function is a handy shortcut, although most program-
mers strongly discourage the use of the -import attribute, as it can reduce
the readability of code. For example, in the case of io:format/2, there’s
another function in a different library with the same name: io_lib:format/2.
Determining which one is used requires going to the top of the file to see
from which module it was imported, if it was imported in the first place.
Consequently, including the module name is considered good practice
and will help the many Erlang users who love to use grep to find their way
across projects. Usually, the only functions you’ll see imported come from
the lists module; its functions are used with a higher frequency than those
from most other modules.

Your useless module should now look like the following:

-module(useless).
-export([add/2, hello/0, greet_and_add_two/1]).

add(A,B) ->
 A + B.

%% Shows greetings.
%% io:format/1 is the standard function used to output text.
hello() ->
 io:format("Hello, world!~n").

greet_and_add_two(X) ->
 hello(),
 add(X,2).

We are now finished with the useless module. Save your useless.erl file,
and then we can try to compile it.

And now we can write the function:

add(A,B) ->
 A + B.

The syntax of a function follows the form Name(Args) -> Body., where Name
must be an atom, and Body can be one or more Erlang expressions sepa-
rated by commas. The function is ended with a period. Note that Erlang
doesn’t use the return keyword as many imperative languages do. A return is
useless! Instead, the last logical expression of a function to be executed will
have its value returned to the caller automatically, without you needing to
mention it.

Next, add the following function to the file. (Yes, every tutorial needs
a “Hello, world” example!) Don’t forget to add it to the -export attribute as
well (the -export attribute should then look like -export([add/2, hello/0]).).

%% Shows greetings.
%% io:format/1 is the standard function used to output text.
hello() ->
 io:format("Hello, world!~n").

The first thing to notice in this listing is the comments. In Erlang, com-
ments are single-line only and begin with a % sign. (In this case, we’ve used
%%, but this is purely a question of style.) The hello/0 function also demon-
strates how to call functions from foreign modules inside your own module.
In this case, io:format/1 is the standard function to output text, as written in
the comments.

N o t e 	 The convention in the Erlang community is to use three percent signs (%%%) for com-
ments that are general to a module (what the module is used for, licenses, and so
on) and divisions of different sections of a module (public code, private code, helper
functions, and so on). Two percent signs (%%) are used for all other comments that are
alone on their own line and at the same level of indentation as the surrounding code.
A single % is used for comments at the end of a line where there is code.

Let’s add one last function to the module, using both functions add/2
and hello/0:

greet_and_add_two(X) ->
 hello(),
 add(X,2).

Again, don’t forget to add greet_and_add_two/1 to the exported function
list. The calls to hello/0 and add/2 don’t need to have the module name pre-
pended to them, because they were declared in the module itself.

MODULE

IM
PO

RT
S

36 Chapter 2

Compiling Code
Erlang code is compiled to bytecode so it can be used by the VM. You can
call the compiler from many places. The most common way is to call it from
the command line, like so:

$ erlc flags file.erl

When in the shell or in a module, you can compile it like this:

compile:file(Filename)

Another way, often used when developing code, is to compile from
the shell:

c()

It’s time to compile our useless module and try it out. But first we need
to tell the Erlang shell where to find our module. Open the Erlang shell
and type the following, filling in the full path where your file is saved.

1> cd("/path/to/where/you/saved/the-module/").
"Path Name to the directory you are in"
ok

By default, the shell will only look for files in the same directory it was
started in and the standard library. The cd/1 function is defined exclusively
for the Erlang shell, telling it to change the directory to a new one, so it’s
less annoying to browse for files.

Next, enter the following:

2> c(useless).
{ok,useless}

If you get a different message—one that looks something like
useless.erl:Line: Some Error Message—make sure the file is named correctly;
that you are in the right directory; and that you’ve made no mistakes in
your module, such as using unmatched parentheses, forgetting about full
stops (.), and so on.

After you’ve successfully compiled your code, you’ll notice that a
useless.beam file has been added next to useless.erl in your working directory.
This is the compiled module.

Modules 37

N o t e 	 The .beam filename extension stands for Bogdan/Björn’s Erlang Abstract Machine,
which is the VM itself. Other VMs for Erlang exist, but most are not used anymore.
For example, Joe’s Abstract Machine ( JAM), inspired by Prolog’s WAM and old
BEAM, attempted to compile Erlang to C, and then to native code. Benchmarks dem-
onstrated little benefit in this practice, and the concept was given up. More recently,
there has been an effort to port Erlang to the JVM, giving the Erjang language.
While the results are impressive, few developers have switched over to the Java plat-
form for their Erlang development.

Now let’s try our first functions!

3> useless:add(7,2).
9
4> useless:hello().
Hello, world!
ok
5> useless:greet_and_add_two(-3).
Hello, world!
-1
6> useless:not_a_real_function().
** exception error: undefined function useless:not_a_real_function/0

The functions work as expected: add/2 adds numbers, hello/0 outputs
Hello, world!, and greet_and_add_two/1 does both. Of course, you might be
asking why hello/0 returns the atom ok after outputting text. This is because
Erlang functions and expressions must always return something, even if
they would not need to in other languages. As such, io:format/1 returns ok
to denote a normal condition: the absence of errors.

Line 6 shows an error being thrown because the function we tried to
call doesn’t exist in our module. If you forget to export a function, this is
the kind of error message you will see when you try to call it.

Compiler Options
Erlang includes many compilation flags that can give you more control over
how a module is compiled. You can get a list of all of them in the Erlang
documentation. The following are the most common flags:

-debug_info

Erlang tools such as debuggers, code-coverage utilities, and static-
analysis utilities will use the debug information of a module to do their
work. In general, it is recommended to always turn on this option. You
are more likely to need this option than the little bits of extra space you
would save by not having it in your compiled code.

38 Chapter 2

-{outdir,Dir}

By default, the Erlang compiler will create the .beam files in the current
directory. This will let you choose where to put the compiled file.

-export_all

This flag causes the compiler to ignore the -export module attribute
and instead export all functions defined. This is mainly useful when
testing and developing new code, but should not be used in production.

-{d,Macro} or {d,Macro,Value}
This flag defines a macro to be used in the module, where Macro is an
atom. This is most frequently used when unit testing, as it ensures that a
module will have its testing functions created and exported only when
they are explicitly wanted. By default, Value is true if it’s not defined as
the third element of the tuple.

To compile our useless module with some flags, we could do one of the
following:

7> compile:file(useless, [debug_info, export_all]).
{ok,useless}
8> c(useless, [debug_info, export_all]).
{ok,useless}

You can also be sneaky and define compile flags from within a module,
with a module attribute. To get the same results as from lines 7 and 8, you
could add the following to the module:

-compile([debug_info, export_all]).

N o t e 	 Another option is to compile your Erlang module to native code. Native code com-
piling is not available for every platform and operating system, but on those that
support this feature, it can make your programs go faster (about 20 percent faster,
based on anecdotal evidence). To compile to native code, you need to use the hipe
module and call it the following way: hipe:c(Module,OptionsList). You could also use
c(Module,[native]). when in the shell to achieve similar results. Note that the .beam
file generated will no longer be portable across platforms. In general, compiling with
hipe is seen as a last resort to get performance out of CPU-intensive operations.

Defining Macros
Erlang macros are similar to C’s #define statements, and are mainly used
to define short functions and constants. They are simple expressions rep-
resented by text that will be replaced before the code is compiled for the
VM. Such macros are mainly useful to avoid having “magic values” floating

Modules 39

around your modules. For example, if you were to see code that compares
some variable to a hard-coded number 3600, you’d have no idea if it rep-
resented 1 hour (3600 seconds), 60 hours (3600 minutes), some monetary
amount, etc. However, if you encounter a value such as ?HOUR, which is an
Erlang macro, then you instantly have an idea of what you are dealing with.
Even better, if you eventually switch your representation from seconds (3600)
to, say, milliseconds (3,600,000), you need only change the macro definition
in order to update all the instances of the macro in your code.

You can define such a macro as a module attribute in the following way:

-define(MACRO, some_value).

You can then use the macro as ?MACRO inside any function defined in the
module, and it will be replaced by some_value before the code is compiled.
For the hour example above, we would define the macro as follows:

-define(HOUR, 3600). % in seconds

Defining a “function” macro is similar. Here’s a simple macro used to
subtract one number from another:

-define(sub(X,Y), X-Y).

To use this macro, simply call it in the same way that you would call any
other macro. For example, if you called ?sub(23,47), this would be replaced
with 23-47 by the compiler.

There are also a few predefined macros, such as the following:

•	 ?MODULE, which is replaced by the current module name as an atom

•	 ?FILE, which is replaced by the filename as a string

•	 ?LINE, which returns the line number of wherever the macro is placed

You can also check whether particular macros are defined in your code
and conditionally define other macros based on that result. To do this, use
the attributes -ifdef(MACRO)., -else., and -endif. as in this example:

-ifdef(DEBUGMODE).
-define(DEBUG(S), io:format("dbg: "++S)).
-else.
-define(DEBUG(S), ok).
-endif.

When used in code, the macro will look like ?DEBUG("entering some
function"), and will only output information if the module is compiled with a
DEBUGMODE macro present. Otherwise, the atom ok is declared and does noth-
ing at all.

40 Chapter 2

As another example, you could also define tests to exist only if some test
macro is first defined:

-ifdef(TEST).
my_test_function() ->
 run_some_tests().
-endif.

Then, using the compile flags mentioned previously, we can choose
whether to define DEBUGMODE or TEST as c(Module, [{d,'TEST'},{d,'DEBUGMODE'}])..

More About Modules
Before we move on to writing more powerful functions and fewer useless
snippets of code, we’ll look at a few other miscellaneous bits of information
about modules that might be useful to you in the future.

Metadata
As mentioned earlier in the chapter, module attributes are metadata describ-
ing properties of the module itself. Where can we find this metadata when
we don’t have an access to the source? Well, the compiler plays nice with
us—when compiling a module, it will pick up most module attributes and
store them (along with other information) in a module_info/0 function.

You can see the metadata of the useless module like this:

9> useless:module_info().
[{exports,[{add,2},
 {hello,0},
 {greet_and_add_two,1},
 {module_info,0},
 {module_info,1}]},
 {imports,[]},
 {attributes,[{vsn,[174839656007867314473085021121413256129]}]},
 {compile,[{options,[]},
 {version,"4.8"},
 {time,{2013,2,13,2,56,32}},
 {source,"/home/ferd/learn-you-some-erlang/useless.erl"}]}]
10> useless:module_info(attributes).
[{vsn,[174839656007867314473085021121413256129]}]

This snippet also shows an additional function, module_info/1, which will
let you grab one specific piece of information. You can see exported func-
tions, imported functions (none in this case), attributes (this is where your
custom metadata would go), and compile options and information. Had
you decided to add -author("An Erlang Champ"). to your module, it would have
ended up in the same section as vsn.

Modules 41

N o t e 	 vsn is an automatically generated unique value that differentiates each version of your
code, excluding comments. It is used in code hot-loading (upgrading an application
while it runs, without stopping it) and by some tools related to release handling. You
can also specify a vsn value yourself by adding -vsn(VersionNumber) to your module.

There are limited uses for module attributes when it comes to produc-
tion code, but they can be nice when doing little tricks to help yourself out.
For example, I’m using them in my testing script for this book to annotate
functions for which unit tests could be better. The script looks up mod-
ule attributes, finds the annotated functions, and shows a warning about
them. If you’re interested in looking at this script, you can find it at http://
learnyousomeerlang.com/static/erlang/tester.erl.

Circular Dependencies
Another point to keep in mind about module design is to avoid circular
dependencies. A module A should not call a module B that also calls module
A. Such dependencies usually end up making code maintenance difficult.

Mom

Dad

You

If circular dependencies are disgusting
in real life, maybe they should be
disgusting in your programs too

Bro
th

er
 o

f

Pare
nt

of

P
a

rent of

In fact, code that depends on too many modules—even if they’re not in
a circular dependency—can make maintenance harder. The last thing you
want is to wake up in the middle of the night only to find a maniac software
engineer trying to gouge your eyes out because of terrible code you have
written.

Well, that’s enough of the pedantic moralizing. In Chapter 3, we’ll con-
tinue our exploration of Erlang, focusing on functions.

3
S y n t a x i n F u n c t i o n s

Now that we have the ability to store and compile
our code, we can begin to write more advanced func-
tions. The functions that we have written so far are
extremely simple and a bit underwhelming. Now let’s get to more interest-
ing stuff. In this chapter, we’ll work with functions that behave differently
depending on the arguments passed to them and expressions that let us
make decisions based on different conditions.

Pattern Matching
The first function we’ll write will greet someone differently according to
gender. To achieve this in most procedural languages, you would need to
write something similar to the following pseudocode:

function greet(Gender,Name)
 if Gender == male then
 print("Hello, Mr. %s!", Name)
 else if Gender == female then
 print("Hello, Mrs. %s!", Name)
 else

44 Chapter 3

 print("Hello, %s!", Name)
 end

Erlang can save you a whole lot of
boilerplate code with pattern match-
ing, which we used in Chapter 1. That
chapter showed how we can compare
and assign variables in structures like
lists and tuples (remember patterns
like {point,{X,Y}}).

Erlang lets us use similar patterns when defining functions. An Erlang
version of the greet function looks like this:

greet(male, Name) ->
 io:format("Hello, Mr. ~s!", [Name]);
greet(female, Name) ->
 io:format("Hello, Mrs. ~s!", [Name]);
greet(_, Name) ->
 io:format("Hello, ~s!", [Name]).

When we were in the shell and a given pattern could not be matched,
Erlang would throw a fit and yell at us with an error message. When a pat-
tern fails in a function (such as greet(male, Name)), Erlang just looks for
the next part of the function with a different pattern (here, it would be
greet(female, Name)) and runs that one if it matches.

The main difference between the two versions of greet is that in Erlang,
we use pattern matching to define which parts of a function should be used
and bind the values we need at the same time. There is no need to first bind
the values and then compare them. So instead of this form:

function(Args)
 if X then
 Expression
 else if Y then
 Expression
 else
 Expression

we write this:

function(X) ->
 Expression;
function(Y) ->
 Expression;
function(_) ->
 Expression.

This allows us to get similar results, but in a much more declarative style.
Each of these function declarations is called a function clause. Function

clauses must be separated by semicolons (;) and together form a function

hey
there

Syntax in Functions 45

declaration. A function declaration counts as one larger statement, which is
why the final function clause ends with a period. It’s a strange use of tokens
to determine workflow, but you’ll get used to it. At least you’d better hope
so, because there’s no way out of it!

Fancier Patterns
Pattern matching in functions can be quite complex and powerful. As you
may remember from Chapter 1, we can pattern match on lists to get their
heads and tails. Let’s do that!

Start a new module called functions:

-module(functions).
-compile(export_all). % Replace with -export() later, for sanity's sake!

In this module, we’ll write a bunch of functions to explore many of the
available pattern-matching avenues. The first function we’ll write is head/1,
which will act exactly like erlang:hd/1: It will take a list as an argument and
return its first element. We’ll do this with the help of the cons operator (|)
and the “don’t care” variable (_):

head([H|_]) -> H.

For m at t ing w i t h io:for m at

io:format’s formatting is done with the help of tokens being replaced in a string.
The tilde (~) character is used to denote a token. Some tokens are built in, such as
~n, which will be changed to a line break. Most other tokens denote a way to for-
mat data. For example, the function call io:format("~s!~n",["Hello"]). includes the
token ~s, which accepts strings and binary strings as arguments. The final output
message would be "Hello!\n". Another widely used token is ~p, which will print an
Erlang term in the same way terms are output for you by the Erlang shell (adding
indentation and everything).

We’ll pick more uses of io:format as we go, but in the meantime, you can try
the following calls to see what they do:

io:format("~s~n",[<<"Hello">>])
io:format("~p~n",[<<"Hello">>])
io:format("~~~n")
io:format("~f~n", [4.0])
io:format("~30f~n", [4.0])

This is just a small sample of io:format’s possibilities. You can read the online
documentation to find out more.

46 Chapter 3

If you type functions:head([1,2,3,4]). in the shell (once the module is com-
piled), you can expect the value 1 to be returned. Consequently, to get the
second element of a list, you would create this function:

second([_,X|_]) -> X.

Erlang will be smart enough to look inside the list and fetch what it
needs in order for the pattern match to succeed. Try it in the shell:

1> c(functions).
{ok, functions}
2> functions:head([1,2,3,4]).
1
3> functions:second([1,2,3,4]).
2

Retrieving values with pattern matching could be done for lists as long
as you want, although it would be impractical to do it up to thousands of
values. The smarter way to accomplish this is to use recursive functions,
which are covered in Chapter 5. For now, let’s concentrate on more pattern
matching.

Variables in a Bind
The concept of free and
bound variables discussed
in Chapter 1 still holds
true for functions. Let’s
review bound and unbound
variables, using a wedding
scenario.

Here, the bridegroom
is sad because in Erlang,
variables can never change
value—no freedom! On
the other hand, unbound
variables don’t have any values attached to them (like our little bum on
the right). Binding a variable is simply attaching a value to an unbound
variable. In the case of Erlang, when you want to assign a value to a variable
that is already bound, an error occurs unless the new value is the same as the old
one. Let’s imagine our guy on the left has married one of two twins. If the
second twin comes around, he won’t differentiate them and will act nor-
mally. If a different woman comes around, he’ll complain. (You can review
“Invariable Variables” on page 11 if this concept is not clear to you.)

Variable Value Variable

Unbound Variable

Bound Variable

Syntax in Functions 47

Using pattern matching and functions, we can compare and know if two
parameters passed to a function are the same. For this, we’ll create a function
named same/2 that takes two arguments and tells if they’re identical:

same(X,X) ->
 true;
same(_,_) ->
 false.

And it’s that simple.
When you call same(a,a), the first X is seen as unbound; it automatically

takes the value a. Then when Erlang goes to the second argument, it sees
X is already bound. Erlang then compares the value to the a passed as the
second argument and checks if it matches. The pattern matching succeeds,
and the function returns true. If the two values aren’t the same, pattern
matching will fail and go to the second function clause, which doesn’t care
about its arguments (when you’re the last to choose, you can’t be picky!)
and will instead return false. Note that this function can effectively take
any kind of argument whatsoever. It works for any type of data, not just lists
or single variables.

Now let’s look at a more advanced example. The following function
prints a date, but only if it is formatted correctly.

valid_time({Date = {Y,M,D}, Time = {H,Min,S}}) ->
 io:format("The Date tuple (~p) says today is: ~p/~p/~p,~n",[Date,Y,M,D]),
 io:format("The time tuple (~p) indicates: ~p:~p:~p.~n", [Time,H,Min,S]);
valid_time(_) ->
 io:format("Stop feeding me wrong data!~n").

Note that it is possible to use the = operator in the function head, allow-
ing us to match both the content inside a tuple ({Y,M,D}) and the tuple as a
whole (Date). We can test the function like this:

4> c(functions).
{ok, functions}
5> functions:valid_time({{2013,12,12},{09,04,43}}).
The Date tuple ({2013,9,6}) says today is: 2013/9/6,
The time tuple ({9,4,43}) indicates: 9:4:43.
ok
6> functions:valid_time({{2013,09,06},{09,04}}).
Stop feeding me wrong data!
ok

There is a problem though. This function could take anything for val-
ues, even text or atoms, as long as the tuples are in the form {{A,B,C},{D,E,F}}.
This is one of the limits of pattern matching. It can either specify really
precise values, such as a known number or atom, or abstract values, such as
the head or tail of a list, a tuple of N elements, or anything (_ and unbound
variables). To solve this problem, we use guards.

48 Chapter 3

Guards, Guards!
Guards are additional clauses that can go in a
function’s head to make pattern matching more
expressive. As mentioned earlier, pattern match-
ing is somewhat limited, as it cannot express things
like a range of values or certain types of data.

One concept that cannot be represented with
pattern matching is counting: Is this 12-year-old
basketball player too short to play with the pros?
Is this distance too long to walk on your hands? Are you too old or too
young to drive a car? You couldn’t answer these questions with simple pat-
tern matching. You could represent the driving question in a very impracti-
cal way like this:

old_enough(0) -> false;
old_enough(1) -> false;
old_enough(2) -> false;
...
old_enough(14) -> false;
old_enough(15) -> false;
old_enough(_) -> true.

You can do that if you want, but you’ll be alone to work on your code
forever. If you want to eventually make friends, start a new guards module,
and then type in the following solution to the driving question:

old_enough(X) when X >= 16 -> true;
old_enough(_) -> false.

And you’re finished! As you can see, this is much shorter and cleaner
than the previous version.

A basic rule for guard expressions is that they must return true to suc-
ceed. The guard will fail if it returns false or if it raises an exception.

Suppose we now forbid people who are over 104 years old from driv-
ing. Our valid ages for drivers are from 16 years old up to 104 years old. We
need to take care of that, but how? Let’s just add a second guard clause:

right_age(X) when X >= 16, X =< 104 ->
 true;
right_age(_) ->
 false.

In guard expressions, the comma (,) acts in a similar manner to the
operator andalso, and the semicolon (;) acts a bit like orelse (described in
Chapter 1). Because right_age/1 uses the comma, both guard expressions
need to succeed for the whole guard to pass. In fact, if you have any num-
ber of guards separated by commas, they all need to succeed for the entire
guard to pass.

Syntax in Functions 49

We could also represent the function in the opposite way:

wrong_age(X) when X < 16; X > 104 ->
 true;
wrong_age(_) ->
 false.

And we get correct results from this approach, too.
Test it if you want (you should always test stuff!).

N o t e 	 I’ve compared , and ; in guards to the operators andalso and
orelse. They’re not exactly the same, though. The former pair will
catch exceptions as they happen, while the latter will not. What
this means is that if there is an error thrown in the first part of
the guard X >= N; N >= 0, the second part can still be evaluated,
and the guard might succeed. If an error was thrown in the
first part of X >= N orelse N >= 0, the second part will also be
skipped, and the whole guard will fail. However (there is always a “however”), only
andalso and orelse can be nested inside guards. This means (A orelse B) andalso C
is a valid guard, while (A; B), C is not. Given their different use, the best strategy is
often to mix them as necessary.

In addition to using comparisons and Boolean evaluation in your guards,
you can use math operations (for example, A*B/C >= 0) and functions about
data types, such as is_integer/1, is_atom/1, and so on. (We’ll talk more about
these kinds of functions in Chapter 4.)

One negative point about guards is that they will not accept user-defined
functions because of side effects. Erlang is not a purely functional program-
ming language (like Haskell) because it relies on side effects a lot. You can
do I/O, send messages between actors, or raise exceptions as you want
and when you want. There is no trivial way to determine if a function you
would use in a guard would print text or catch important errors every time
it is tested over many function clauses. So instead, Erlang just doesn’t trust
you (and it may be right not to!).

That being said, you should now know enough to understand the basic
syntax of guards and to understand them when you encounter them.

What the If ?!
An if clause acts like a guard and shares the guard syntax, but outside a
function clause’s head. In fact, if clauses are called guard patterns.

Erlang’s ifs are different from the ifs you’ll ever encounter in most
other languages. Compared to those other if clauses, Erlang’s versions are
weird creatures that might have been more accepted it they had a different
name. When entering Erlang country, you should leave all you know about
ifs at the door.

50 Chapter 3

To see how similar the if expression is to guards, enter the following
examples in a module named what_the_if.erl:

-module(what_the_if).
-export([heh_fine/0]).

heh_fine() ->
 if 1 =:= 1 ->
 works
 end,
 if 1 =:= 2; 1 =:= 1 ->
 works
 end,
 u if 1 =:= 2, 1 =:= 1 ->
 fails
 end.

Save the module and let’s try it:

1> c(what_the_if).
./what_the_if.erl:12: Warning: no clause will ever match
./what_the_if.erl:12: Warning: the guard for this clause evaluates to 'false'
{ok,what_the_if}
2> what_the_if:heh_fine().
** exception error: no true branch found when evaluating an if expression
in function what_the_if:heh_fine/0

Uh-oh! The compiler is warning us that no clause from the if at u will
ever match because its only guard evaluates to false. Remember that in
Erlang, everything must return something,
and if expressions are no exception to the
rule. As such, when Erlang can’t find a way to
have a guard succeed, it will crash; it cannot
not return something (this explains why the
VM threw a “no true branch found” error
when it got mad). We need to add a catchall
branch that will always succeed no matter
what. In most languages, this would be called
an else. In Erlang, we use true, like this:

oh_god(N) ->
 if N =:= 2 -> might_succeed;
 true -> always_does %% This is Erlang's if's 'else!'
end.

Syntax in Functions 51

And now we can test this new function (the old one will keep spitting
warnings; ignore them or take them as a reminder of what not to do):

3> c(what_the_if).
./what_the_if.erl:12: Warning: no clause will ever match
./what_the_if.erl:12: Warning: the guard for this clause evaluates to 'false'
{ok,what_the_if}
4> what_the_if:oh_god(2).
might_succeed
5> what_the_if:oh_god(3).
always_does

Here’s another function that shows how to use many guards in an if
expression:

%% Note that this one would be better as a pattern match in function heads!
%% I'm doing it this way for the sake of the example.
help_me(Animal) ->
 Talk = if Animal == cat -> "meow";
 Animal == beef -> "mooo";
 Animal == dog -> "bark";
 Animal == tree -> "bark";
 true -> "fgdadfgna"
 end,
 {Animal, "says " ++ Talk ++ "!"}.

This function also demonstrates how any expression must return
something. Talk has the result of the if expression bound to it, and is then
concatenated in a string, inside a tuple. When reading the code, it’s easy
to see how the lack of a true branch would mess things up, considering
Erlang has no such thing as a null value (such as Lisp’s nil, C’s NULL, and
Python’s None).

Let’s try it:

6> c(what_the_if).
./what_the_if.erl:12: Warning: no clause will ever match
./what_the_if.erl:12: Warning: the guard for this clause evaluates to 'false'
{ok,what_the_if}
7> what_the_if:help_me(dog).
{dog,"says bark!"}
8> what_the_if:help_me("it hurts!").
{"it hurts!","says fgdadfgna!"}

52 Chapter 3

You might be one of the many Erlang programmers wondering why true
has taken over else as an atom to control flow—after all, else is much more
familiar. Richard O’Keefe gave the following answer on the Erlang mailing
lists, which I’ll quote directly because I couldn’t have put it better:

It may be more FAMILIAR, but that doesn’t mean ‘else’ is a good
thing. I know that writing ‘; true ->’ is a very easy way to get ‘else’
in Erlang, but we have a couple of decades of psychology-of-
programming results to show that it’s a bad idea. I have started
to replace	 by

 if X > Y -> a()	 if X > Y -> a()

 ; true -> b()	 ; X =< Y -> b()

 end	 end

 if X > Y -> a()	 if X > Y -> a()

 ; X < Y -> b()	 ; X < Y -> b()

 ; true -> c()	 ; X ==Y -> c()

 end	 end

which I find mildly annoying when _writing_ the code but enor-
mously helpful when _reading_ it.1

In other words, else or true branches should be avoided altogether. The
if expressions are usually easier to read when you cover all logical ends,
rather than relying on a catchall clause.

N o t e 	 All this horror expressed by the function names in what_the_if.erl is in regard to the
if language construct when seen from the perspective of any other language’s if. In
Erlang, it turns out to be a perfectly logical construct with a confusing name.

As mentioned earlier, only a limited set of functions can be used
in guard expressions (we’ll look at more of them in Chapter 4). This is
where the real conditional powers of Erlang must be conjured. I present
to you . . . the case expression!

In case ... of
If the if expression is like a guard, a case ... of expression is like the whole
function head. You can have the complex pattern matching available for
each argument of a function, and you can have guards, too.

For this example, we’ll write the insert function for sets (a collection of
unique values) that we will represent as an unordered list. This may be the

1. http://erlang.org/pipermail/erlang-questions/2009-January/041229.html

http://erlang.org/pipermail/erlang-questions/2009-January/041229.html

Syntax in Functions 53

worst implementation possible in terms of efficiency, but what we want here
is the syntax. Enter the following code in a file named cases.erl:

insert(X,[]) ->
 [X];
insert(X,Set) ->
 case lists:member(X,Set) of
 true -> Set;
 false -> [X|Set]
 end.

If we send in an empty set (list) and a term X to be added, this code
returns a list containing only X. Otherwise, the function lists:member/2
checks whether an element is part of a list, and returns true if it is or false
if it is not. If we already have the element X in the set, we do not need to
modify the list. Otherwise, we add X as the list’s first element.

In this case, the pattern matching is really simple. However, it can get
more complex, as in this example (still in the cases module):

beach(Temperature) ->
 case Temperature of
 {celsius, N} when N >= 20, N =< 45 ->
 'favorable';
 {kelvin, N} when N >= 293, N =< 318 ->
 'scientifically favorable';
 {fahrenheit, N} when N >= 68, N =< 113 ->
 'favorable in the US';
 _ ->
 'avoid beach'
 end.

Here, the answer to “Is it the right time to go to the beach?” is given
in three different temperature systems: Celsius, Kelvin, and Fahrenheit.
Pattern matching and guards are combined in order to return an answer
satisfying all uses.

As pointed out earlier, case ... of expressions are pretty much the same
thing as a bunch of function heads with guards. In fact, we could have writ-
ten our code the following way:

beachf({celsius, N}) when N >= 20, N =< 45 ->
 'favorable';
...
beachf(_) ->
 'avoid beach'.

This raises the question of whether we should use if, case ... of, or
functions for conditional expressions.

54 Chapter 3

Which Should We Use?
Which of these three expressions—if, case ... of,
or functions—to use is rather hard to answer. The
differences between function calls and case ... of
are minimal. In fact, they are represented the same
way at a lower level, and they both effectively have
the same performance cost. One obvious difference
arises when more than one argument needs to be
evaluated. For example, function(A,B) -> ... can have
guards and values to match against A and B, but a case
expression would need to be formulated a bit, like this:

case {A,B} of
 Pattern Guards -> ...
end.

This form might seem a bit surprising. In similar situations, using
a function call might be more appropriate. On the other hand, the insert/2
function we wrote earlier is arguably cleaner the way it is, rather than hav-
ing an immediate function call to track down a simple true or false clause.

And why would you ever use if, given that case expressions and functions
are flexible enough to even encompass if through guards? The rationale
behind if is quite simple: It was added to the language as a short way to
have guards without needing to write the whole pattern-matching part
when it wasn’t needed.

Of course, all of this is mostly a matter of personal preference. There is
no good, solid answer. In fact, this topic is still debated by the Erlang com-
munity from time to time. No one is going to try to beat you up because
of the method you’ve chosen, as long as it is easy to understand. As Ward
Cunningham, inventor of the wiki, once put it, “Clean code is when you
look at a routine and it’s pretty much what you expected.”

4
T y p e s (o r L a c k T h e r e o f)

Modern functional languages are often known for
their fancy type systems, which are powerful systems
that let programmers obtain more safety and speed
while doing less. Static type systems vary a lot—from
C- and Java-like systems where annotations are provided to the compiler, to
rather complex systems that depend on advanced mathematical concepts
to guarantee the crash-free nature of a program. Other type systems are
rather crude—not static at all, but dynamic. They give no guarantees about
the safety of a piece of software, and just check everything while it runs.

This chapter introduces Erlang’s type system, the reasons behind its
use, and how that affects you, as a brand-new Erlang programmer.

Dynamite-Strong Typing
As you might have noticed when trying the examples in Chapter 1, and
then creating modules and functions in Chapters 2 and 3, we never
needed to specify the type of a variable or the type of a function. When
pattern matching, the code we wrote didn’t need to know what it would

56 Chapter 4

be matched against. The tuple {X,Y} could be matched with {atom, 123}, as
well as {"A string", <<"binary stuff!">>}, {2.0, ["strings","and",atoms]}, or really
anything at all.

When it didn’t work, an error was thrown in your face, but only once
you ran the code. This is because Erlang is dynamically typed. Every error is
caught at runtime, and the compiler won’t always yell at you when compil-
ing modules where things may result in failure, as in the 5 + llama example
in Chapter 1.

One classic friction
point between proponents
of static and dynamic typing
has to do with the safety of
the software being written.
Some programmers claim
that good static type sys-
tems will catch most errors
before you can even execute
the code. As such, statically
typed languages are typi-
cally seen as safer than their dynamic counterparts. While this might be
true in comparison with many dynamic languages, Erlang begs to differ,
and it has a track record to prove it.

The best example of Erlang’s robustness is the often-reported nine
nines (99.9999999 percent) of availability offered on the Ericsson AXD 301
ATM switches, which consist of more than a million lines of Erlang code.
Please note that this is not an indication that none of the components in
an Erlang-based system failed, but that a general switch system was available
99.9999999 percent of the time, planned outages included. This is partially
because Erlang is built on the notion that a failure in one of the components
should not affect the whole system. It accounts for errors coming from the
programmer, hardware failures, and some network failures. The language
includes features that allow distributing a program to different nodes. It
can handle unexpected errors and never stop running.

To put it simply, while most languages and type systems aim to allow
error-free programs, Erlang assumes that errors will happen and includes
features that make those errors easier to handle smoothly and without
unnecessary downtime. So Erlang’s dynamic type system is not a barrier to
the reliability and safety of programs. This sounds like a lot of prophetic
talking, but you’ll see the gritty details in later chapters.

N o t e 	 Dynamic typing was historically chosen for simple reasons. The programmers who
first implemented Erlang mostly came from dynamically typed languages, and as
such, making Erlang dynamic was a natural choice for them. Indirectly, this also
proved to be the simplest way to allow hot-reloading (updating code without stopping
it first). Doing static type checking on systems where any of its components might be
replaced at any time proves to be quite difficult compared to doing it dynamically.

Dynamic and Static
languages fighting it out

Types (or Lack Thereof) 57

Erlang is also strongly typed. A weakly typed language would do
implicit type conversions between terms. For example, if Erlang were
weakly typed, we could do the operation 6 = 5 + "1". But because of
Erlang’s strong typing, trying this operation raises an exception for
bad arguments:

1> 6 + "1".
** exception error: bad argument in an arithmetic expression
in operator +/2
called as 6 + "1"

Of course, there are times when you may want to convert one kind of
data to another type. For example, you might want to change regular strings
into binary strings to store them, or convert an integer to a floating-point
number. The Erlang standard library provides a number of functions to
do these conversions.

Type Conversions
Erlang, like many languages, changes the type of a term by casting it into
another one. This is done with the help of BIFs, as many of the conversions
could not be implemented in Erlang itself. Each of these functions takes the
form TypeA_to_TypeB, and they are implemented in the erlang module. Here
are a few of them:

1> erlang:list_to_integer("54").
54
2> erlang:integer_to_list(54).
"54"
3> erlang:list_to_integer("54.32").
** exception error: bad argument
in function list_to_integer/1
called as list_to_integer("54.32")
4> erlang:list_to_float("54.32").
54.32
5> erlang:atom_to_list(true).
"true"
6> erlang:list_to_binary("hi there").
<<"hi there">>
7> erlang:binary_to_list(<<"hi there">>).
"hi there"

We’re hitting on a language wart here: Because the scheme Type_to_Type
is used, every time a new type is added to the language, a whole lot of con-
version BIFs need to be added by the OTP team!

58 Chapter 4

Here’s the whole list already there:

atom_to_binary/2 integer_to_list/1 list_to_integer/2

atom_to_list/1 integer_to_list/2 list_to_pid/1

binary_to_atom/2 iolist_to_atom/1 list_to_tuple/1

binary_to_existing_atom/2 iolist_to_binary/1 pid_to_list/1

binary_to_list/1 list_to_atom/1 port_to_list/1

binary_to_term/1 list_to_binary/1 ref_to_list/1

binary_to_term/2 list_to_bitstring/1 term_to_binary/1

bitstring_to_list/1 list_to_existing_atom/1 term_to_binary/2

float_to_list/1 list_to_float/1 tuple_to_list/1

fun_to_list/1

That’s a lot of conversion functions. You’ll see most, if not all, of these
types in this book, although we probably won’t need all of these functions
in our code.

N o t e 	 The BIF binary_to_term/2 lets you unserialize data the same way binary_to_term/1
does. The big difference is that the second argument is an option list. If you pass
in [safe], the binary won’t be decoded if it contains unknown atoms or anonymous
functions, which could exhaust the memory of a node or represent a security risk. Use
binary_to_term/2 rather than binary_to_term/1 if you are decoding data that could be
unsafe.

To Guard a Data Type
Erlang basic data types are easy to spot: Tuples have curly brackets, lists
have square brackets, strings are enclosed in double quotation marks, and so
on. So, we’ve been able to enforce a certain data type with pattern matching.
For example, a function head/1 taking a list could accept only lists because
otherwise the matching ([H|_]) would fail.

However, we ran into a problem when pattern matching with numeric
values because we couldn’t specify ranges. So, in Chapter 3, we used guards
in functions that needed to test for certain ranges, such as temperatures,
ages, and so on. We’re hitting another roadblock now. How could we write
a guard that ensures that patterns match against data of a single specific
type, like numbers, atoms, or binaries?

There are functions dedicated to the task of guard-
ing data types. They take a single argument and return

MY NAME iS

Tuple

Types (or Lack Thereof) 59

true if the type is correct; otherwise, they return false. They are part of the
few functions allowed in guard expressions and are named the type-test BIFs.
The following are the Erlang type-test BIFs:

is_atom/1 is_function/1 is_port/1

is_binary/1 is_function/2 is_record/2

is_bitstring/1 is_integer/1 is_record/3

is_boolean/1 is_list/1 is_reference/1

is_builtin/3 is_number/1 is_tuple/1

is_float/1 is_pid/1

These functions can be used like any other guard expression, wherever
guard expressions are allowed.

You might be wondering why there is no function that just gives the
type of the term being evaluated (something akin to type_of(X) -> Type).
The answer is simple: Erlang is about programming for the right cases. You
program only for what you know will happen and what you expect, and
everything else should cause an error as soon as possible. As such, having
a single function type_of(X) would encourage people to write conditional
branches to code, a bit like this:

my_function(Exp) ->
 case type_of(Exp) of
 binary -> Expression1;
 list -> Expression2
 end.

This code is equivalent to the following:

my_function(Exp) when is_binary(Exp) -> Expression1;
my_function(Exp) when is_list(Exp) -> Expression2.

The declarative nature of the language favors the latter form, where we
do branching through function heads by specifying what we expect, rather
than handling one of many types that a function like type_of(X) might return.

N o t e 	 Type-test BIFs constitute more than half of the functions allowed in guard
expressions. The rest are also BIFs, but do not represent type tests. These include
abs(Number), bit_size(Binary), byte_size(Binary), element(N, Tuple), float(Term),
hd(List), length(List), node(), node(Pid|Ref|Port), round(Number), self(), tl(List),
trunc(Number), and tuple_size(Tuple). The functions node/1 and self/0 are related
to distributed Erlang and processes/actors.

60 Chapter 4

It may seem like Erlang data structures are relatively limited, but lists and
tuples are usually enough to build other complex structures. For example, the
basic node of a binary tree could be represented as {node, Value, Left, Right},
where Left and Right are either similar nodes or empty tuples. I could also
represent myself as follows:

{person, {name, <<"Fred T-H">>},
{qualities, ["handsome", "smart", "honest", "objective"]},
{faults, ["liar"]},
{skills, ["programming", "bass guitar", "underwater breakdancing"]}}.

This shows that by nesting tuples and lists, and filling them with data,
we can obtain complex data structures and build functions to operate
on them.

For Type Junkies
If you’re a programmer who somehow can’t live without a static type system,
I invite you to jump to Chapter 30, which covers Dialyzer.

In that chapter, I will briefly describe
tools used to do static type analysis in
Erlang, allowing you to define custom
types and get more safety that way.
The types are entirely optional, and
although useful, they are not necessary
to make good Erlang programs.

Will dance
 for

 TYPES

5
H e l l o R e c u r s i o n !

Some readers accustomed to imperative and object-
oriented programming languages might be wonder-
ing why we haven’t covered loops already. The answer
to this is a question: What is a loop? The truth is that
functional programming lan-
guages usually do not offer
looping constructs like for
and while. Instead, functional
programmers rely on a silly
concept called recursion, which
is the topic of this chapter.

no!

not yet!

reCURSEYOU KIDS!

are we

are we

are we

there

there
there

yet?

yet?

yet?

62 Chapter 5

How Recursion Works
Recall how invariable variables were explained in Chapter 1 (if you can’t,
reread “Invariable Variables” on page 11). Recursion can also be explained
with the help of mathematical concepts and functions.

A basic mathematical function such as the factorial of a value is a good
example of a function that can be expressed recursively. The factorial of a
number n is the product of the sequence 1 × 2 × 3 × ... × n, or alternatively
n × n – 1 × n – 2 × ... × 1. In mathematical notation, the factorial of a num-
ber is represented as the number followed by an exclamation point (!). To
give some examples, the factorial of 3 is 3! = 3 × 2 × 1 = 6, and the factorial
of 4 is 4! = 4 × 3 × 2 × 1 = 24. Such a function can be expressed the following
way in mathematical notation:

n
n

n n n
!

(()!)
=

=
− >






1 0

1 0

if

if

This tells us that if the value of n is 0, we return the result 1. For any
value above 0, we return n multiplied by the factorial of n – 1, which unfolds
until it reaches 1:

4! = 4 × 3!
4! = 4 × 3 × 2!
4! = 4 × 3 × 2 × 1!
4! = 4 × 3 × 2 × 1 × 1

How can such a function be translated from mathematical notation to
Erlang? The conversion is simple enough. Take a look at the parts of the
notation: n!, 1, and n((n – 1)!), and then the if expressions. What we have
here is a function name (n!), guards (the ifs), and a function body (1 and
n((n-1)!)). We’ll rename n! to fac(N) to restrict our syntax a bit, and we get the
following:

-module(recursive).
-export([fac/1]).

fac(N) when N == 0 -> 1;
fac(N) when N > 0 -> N*fac(N-1).

And this factorial function is now complete! It’s pretty similar to the
mathematical definition, really. With the help of pattern matching, we can
shorten the definition a bit:

fac(0) -> 1;
fac(N) when N > 0 -> N*fac(N-1).

Hello Recursion! 63

We looped by using a function that calls itself! And you know what?
“A function that calls itself” is one way to define recursion.

However, having a function that calls itself is not enough. If the func-
tion just calls itself forever, it will, unsurprisingly, continue forever. What
we need is a stopping condition (called a base case), which is a function
clause where we return a value rather than calling the function again. In
our case, the stopping condition is when n is equal to 0. At that point, we no
longer tell our function to call itself, and it stops its execution right there by
returning 1.

Length of a List
Let’s try a slightly more practical example. We’ll implement a function to
count how many elements a list contains. So we know from the beginning
that we will need the following:

•	 A base case

•	 A function that calls itself

•	 A list to test our function

With most recursive functions, I find it easier to write the base case
first. What’s the simplest input we’ll need to find the length of? Surely an
empty list, with a length of 0, is the simplest case. So let’s make a mental
note that [] = 0 when dealing with lengths. Then the next simplest list has
a length of 1: [_] = 1. This sounds like enough to get going with our defini-
tion. We can write this down:

len([]) -> 0;
len([_]) -> 1.

Awesome! We can calculate the length of lists, given the length is either
0 or 1. Very useful indeed! Of course, it’s useless, because it’s not yet recur-
sive, which brings us to the hardest part: extending our function so it calls
itself for lists longer than 1 or 0.

I mentioned in Chapter 1 that lists are defined recursively as
[1 | [2| ... [n | []]]]. This means we can use the [H|T] pattern to match
against lists of one or more elements, as a list of length 1 will be defined as
[X|[]], and a list of length 2 will be defined as [X|[Y|[]]]. Note that the second
element is a list itself. This means that we need to count only the first one,
and the function can call itself on the second element. Given each value in a
list counts as a length of 1, the function can be rewritten the following way:

len([]) -> 0;
len([_|T]) -> 1 + len(T).

64 Chapter 5

And now you have your own recursive function to calculate the length
of a list. To see how len/1 behaves when it runs, let’s try it on a given list, say
[1,2,3,4]:

len([1,2,3,4]) = len([1 | [2,3,4])
 = 1 + len([2 | [3,4]])
 = 1 + 1 + len([3 | [4]])
 = 1 + 1 + 1 + len([4 | []])
 = 1 + 1 + 1 + 1 + len([])
 = 1 + 1 + 1 + 1 + 0
 = 1 + 1 + 1 + 1
 = 1 + 1 + 2
 = 1 + 3
 = 4

And we get the correct answer. Congratulations on your first useful
recursive function in Erlang!

Length of a Tail Recursion
You might have noticed that for a list of four terms, we expanded our func-
tion call to a single chain of five additions. While this does the job fine for
short lists, it can become problematic if your list has a few million values in
it. You don’t want to keep millions of numbers in memory for such a simple
calculation. It’s wasteful, and there’s a better way. Enter tail recursion.

Tail recursion is a way to
transform the preceding linear
process (it grows as much as
there are elements) to an itera-
tive one (there is not really any
growth). To make a function
call tail recursive, it needs to be
“alone,” which requires a bit of
explanation.

What made our previous calls grow is how the answer to the first part
depends on evaluating the second part. The answer to 1 + len(Rest) needs
the answer to len(Rest) to be found. The function len(Rest) itself then
needs the result of another function call to be found. The additions are
stacked until the last one is found, and only then is the final result calcu-
lated. Tail recursion aims to eliminate this stacking of operations by reduc-
ing them as they happen.

To achieve this, we will need to hold an extra temporary variable as
a parameter in our function. I’ll illustrate the concept with the help of
the factorial function, but this time defining it to be tail recursive. The

Tail
 Recursion

- Ferd,

 Age 4

Hello Recursion! 65

aforementioned temporary variable is sometimes called an accumulator, and
it acts as a place to store the results of our computations as they happen in
order to limit the growth of our calls:

tail_fac(N) -> tail_fac(N,1).

tail_fac(0,Acc) -> Acc;
tail_fac(N,Acc) when N > 0 -> tail_fac(N-1,N*Acc).

Here, we define both tail_fac/1 and tail_fac/2. This is necessary because
Erlang doesn’t allow default arguments in functions (different arity means
different function), so we do that manually. In this specific case, tail_fac/1
acts like an abstraction over the tail recursive tail_fac/2 function. The details
about the hidden accumulator of tail_fac/2 don’t interest anyone, so we would
export only tail_fac/1 from our module. When running this function, we
can expand it to the following:

tail_fac(4) = tail_fac(4,1)
tail_fac(4,1) = tail_fac(4-1, 4*1)
tail_fac(3,4) = tail_fac(3-1, 3*4)
tail_fac(2,12) = tail_fac(2-1, 2*12)
tail_fac(1,24) = tail_fac(1-1, 1*24)
tail_fac(0,24) = 24

Do you see the difference? Now we never need to hold more than two
terms in memory, so the space usage is constant. It will take as much space
to calculate the factorial of 4 as it will to calculate the factorial of 1,000,000
(that is, if we forget that 4! is a smaller number than 1,000,000! in its com-
plete representation).

With an example of tail recursive factorials under your belt, you might
be able to see how this pattern could be applied to our len/1 function. We
need to make our recursive call alone. If you like visual examples, just
imagine you’re going to put the +1 part inside the function call by adding
a parameter. So this:

len([]) -> 0;
len([_|T]) -> 1 + len(T).

becomes the following:

tail_len(L) -> tail_len(L,0).

tail_len([], Acc) -> Acc;
tail_len([_|T], Acc) -> tail_len(T,Acc+1).

And now our length function is tail recursive.

66 Chapter 5

More Recursive Functions
We’ll write a few more recursive func-
tions, just to get in the habit. After all,
since recursion is the only looping con-
struct that exists in Erlang (except list
comprehensions), it’s one of the most
important concepts to understand. It’s
also useful in every other functional
programming language you’ll try, so
take notes!

A Duplicate Function
The first function we’ll write is duplicate/2. This function takes an integer as
its first parameter and any other term as its second parameter. It then cre-
ates a list of as many copies of the term as specified by the integer.

Again, thinking of the base case first might help us get going. For
duplicate/2, asking to repeat something zero times is the most basic thing
that can be done. All we need to do is return an empty list, no matter what
the term is. Every other case needs to try to get to the base case by call-
ing the function itself. We will also forbid negative values for the integer,
because you can’t duplicate something –n times. Here are these cases:

duplicate(0,_) ->
 [];
duplicate(N,Term) when N > 0 ->
 [Term|duplicate(N-1,Term)].

Once the basic recursive function is found, it becomes easier to trans-
form it into a tail recursive one by moving the list construction into a tem-
porary variable:

tail_duplicate(N,Term) ->
 tail_duplicate(N,Term,[]).

tail_duplicate(0,_,List) ->
 List;
tail_duplicate(N,Term,List) when N > 0 ->
 tail_duplicate(N-1, Term, [Term|List]).

Success!

A Reverse Function
There’s also an interesting property that we can discover when we compare
recursive and tail recursive functions by writing a reverse/1 function, which
will reverse a list of terms. For such a function, the base case is an empty

Hello Recursion! 67

list, for which we have nothing to reverse. We can just return an empty list
when that happens. Every other possibility should try to converge to the
base case by calling itself, as with duplicate/2. Our function is going to iter-
ate through the list by pattern matching [H|T], and then putting H after the
rest of the list:

reverse([]) -> [];
reverse([H|T]) -> reverse(T)++[H].

On long lists, this will be a true nightmare. Not only will we stack up all
our append operations, but we will need to traverse the whole list for every
single append operation until the last one! For visual readers, the many
checks can be represented as follows:

reverse([1,2,3,4]) = [4]++[3]++[2]++[1]
     
 = [4,3]++[2]++[1]
         
 = [4,3,2]++[1]
             
 = [4,3,2,1]

This is where tail recursion comes to the rescue. Because we will use
an accumulator and will add a new head to it every time, our list will be
reversed automatically.

R ecursion Is L ike a W hil e Loop

Comparing tail recursion with a while loop helped me a lot when I was first learn-
ing about recursion. Our tail_duplicate/2 function has all the usual parts of a
while loop. If we were to imagine a while loop in a fictional language with Erlang-
like syntax, our function could look a bit like this:

function(N, Term) ->
 while N > 0 ->
 List = [Term|List],
 N = N-1
 end,
 List.

Note that all the elements exist in both the fictional language and in Erlang;
only their position changes. This demonstrates that a proper tail recursive function
is similar to an iterative process, like a while loop. If recursion is confusing and
you’re used to while loops, translating them directly might help. Just be careful—
once you’ve used Erlang for a while, you might end up thinking recursively
and need to translate the other way around if you ever go back to imperative
languages!

68 Chapter 5

Let’s first see the implementation:

tail_reverse(L) -> tail_reverse(L,[]).

tail_reverse([],Acc) -> Acc;
tail_reverse([H|T],Acc) -> tail_reverse(T, [H|Acc]).

If we represent this one in a similar manner as the normal version, we
get the following:

tail_reverse([1,2,3,4]) = tail_reverse([2,3,4], [1])
 = tail_reverse([3,4], [2,1])
 = tail_reverse([4], [3,2,1])
 = tail_reverse([], [4,3,2,1])
 = [4,3,2,1]

This shows that the number of elements visited to reverse our list is now
linear. Not only do we avoid growing the stack, we also do our operations
much more efficiently!

A Sublist Function
Another function we’ll implement is sublist/2, which takes a list L and
an integer N, and returns the N first elements of the list. As an example,
sublist([1,2,3,4,5,6],3) returns [1,2,3].

Again, the base case is trying to obtain zero elements from a list. But
we need to be careful, because sublist/2 is a bit different. We have a second
base case when the list passed is empty! If we do not check for empty lists,
an error will be thrown when calling recursive:sublist([1],2), when we want
[1] instead. Once this is defined, the recursive part of the function only
needs to cycle through the list, keeping elements as it goes, until it hits one
of the base cases, as follows:

sublist(_,0) -> [];
sublist([],_) -> [];
sublist([H|T],N) when N > 0 -> [H|sublist(T,N-1)].

This can then be transformed to a tail recursive form in the same man-
ner as before:

tail_sublist(L, N) -> tail_sublist(L, N, []).

tail_sublist(_, 0, SubList) -> SubList;
tail_sublist([], _, SubList) -> SubList;
tail_sublist([H|T], N, SubList) when N > 0 ->
 tail_sublist(T, N-1, [H|SubList]).

There’s a flaw in this function—a fatal flaw! We use a list as an accu-
mulator in exactly the same manner as we did to reverse our list. If you
compiled this function as is, sublist([1,2,3,4,5,6],3) would not return [1,2,3]

Hello Recursion! 69

but instead would give you [3,2,1]. The only thing we can do is take the final
result and reverse it ourselves. Just change the tail_sublist/2 call and leave
all our recursive logic intact:

tail_sublist(L, N) -> reverse(tail_sublist(L, N, [])).

The final result will be ordered correctly. It might seem like reversing
our list after a tail recursive call is a waste of time, and that’s partially right
(we still save memory doing this). On shorter lists, you might find your code
is running faster with normal recursive calls than with tail recursive calls
for this reason, but as your data sets grow, reversing the list will be compara-
tively lighter.

N o t e 	 Instead of writing your own reverse/1 function, you should use lists:reverse/1. It
has been used so much for tail recursive calls that the maintainers and developers of
Erlang decided to turn it into a BIF. Your lists can now benefit from extremely fast
reversal (thanks to functions written in C), which will make the reversal disadvan-
tage a lot less obvious. The rest of the code in this chapter will make use of our own
reversal function, but after that, you should never use it again.

A Zip Function
To push things a bit further, we’ll write a zipping function. A zipping func-
tion takes two lists of the same length as parameters and joins them as a
list of tuples, which all hold two terms. Our own zip/2 function will behave
this way:

1> recursive:zip([a,b,c],[1,2,3]).
[{a,1},{b,2},{c,3}]

Given that we want both our parameters to have the same length, the
base case will be zipping two empty lists:

zip([],[]) -> [];
zip([X|Xs],[Y|Ys]) -> [{X,Y}|zip(Xs,Ys)].

However, if we wanted a more lenient zipping function, we could decide
to have it finish whenever one of the two lists is done. In this scenario, we
have two base cases:

lenient_zip([],_) -> [];
lenient_zip(_,[]) -> [];
lenient_zip([X|Xs],[Y|Ys]) -> [{X,Y}|lenient_zip(Xs,Ys)].

Notice that no matter what our base cases are, the recursive part of the
function remains the same.

70 Chapter 5

I suggest that you try to make your own tail recursive versions of zip/2
and lenient_zip/2, just to make sure you fully understand how to make tail
recursive functions. They will be one of the central concepts of larger appli-
cations, where the main loops will be made that way.

If you want to check your answers, take a look at my implementation of
recursive.erl (http://learnyousomeerlang.com/static/erlang/recursive.erl), particu-
larly the tail_zip/2 and tail_lenient_zip/3 functions.

Quick, Sort!
Just to ensure that recursion and
tail recursion make sense to you,
we’ll push forward with a more
complex example: quicksort. Yes,
this is the canonical “Hey look, I
can write short functional code”
example.

A naive implementation of
quicksort works by taking the first
element of a list, the pivot, and then
putting all the elements smaller
than or equal to the pivot in a
new list and all those larger than
the pivot in another list. We then
take each of these lists and do the same thing on them until each list gets
smaller and smaller. This goes on until we have nothing but an empty list
to sort, which will be our base case. This implementation is said to be naive
because smarter versions of quicksort will try to pick optimal pivots to be
faster. We don’t really care about that for our example.

We will need two functions for this one: a function to partition the list
into smaller and larger parts, and another function to apply the partition

L a s t C a l l Op t imi z at ion

Tail recursion as seen here is not making the memory consumption grow, because
when the VM sees a function calling itself in a tail position (the last expression to
be evaluated in a function), it eliminates the current stack frame. This is called tail
call optimization (TCO), and it is a special case of a more general optimization
named last call optimization (LCO).

LCO is done whenever the last expression to be evaluated in a function body
is another function call. When that happens, as with TCO, the Erlang VM avoids
storing the stack frame. As such, tail recursion is also possible between multiple
functions. As an example, the chain of functions a() -> b(). b() -> c(). c() -> a().
will effectively create an infinite loop that won’t run out of memory, as LCO avoids
overflowing the stack. This principle, combined with the use of accumulators, is
what makes tail recursion useful.

Hello Recursion! 71

function on each of the new lists and to glue them together. First, we’ll
write the glue function (you can do this in recursive.erl):

quicksort([]) -> [];
quicksort([Pivot|Rest]) ->
 {Smaller, Larger} = partition(Pivot,Rest,[],[]),
 quicksort(Smaller) ++ [Pivot] ++ quicksort(Larger).

This shows the base case, a list already partitioned in larger and smaller
parts by another function, and the use of a pivot with both lists quicksorted
appended before and after it. So this should take care of assembling lists.

Next, we write the partitioning function:

partition(_,[], Smaller, Larger) -> {Smaller, Larger};
partition(Pivot, [H|T], Smaller, Larger) ->
 if H =< Pivot -> partition(Pivot, T, [H|Smaller], Larger);
 H > Pivot -> partition(Pivot, T, Smaller, [H|Larger])
 end.

And you can now run our quicksort function.
If you’ve looked for Erlang examples on the Internet, you might have

seen another implementation of quicksort—one that is simpler and easier
to read, but makes use of list comprehensions. The easy-to-replace parts are
the ones that create new lists, the partition/4 function:

lc_quicksort([]) -> [];
lc_quicksort([Pivot|Rest]) ->
 lc_quicksort([Smaller || Smaller <- Rest, Smaller =< Pivot])
 ++ [Pivot] ++
 lc_quicksort([Larger || Larger <- Rest, Larger > Pivot]).

Don’t Dr ink Too Much Kool- A id

All this conciseness is good for educational purposes, but not for performance.
Many functional programming tutorials never mention this! First of all, both imple-
mentations of quicksort shown here need to process values that are equal to the
pivot more than once. We could have decided to instead return three lists—
elements smaller, larger, and equal to the pivot—to make this more efficient.

Another problem relates to how we need to traverse all the partitioned lists
more than once when attaching them to the pivot. It is possible to reduce the over-
head a little by doing the concatenation while partitioning the lists in three parts. If
you’re curious about this, look at the last function (bestest_qsort/1) of recursive.erl
for an example.

A nice point about all of these quicksort versions is that they will work on lists
of any data type you have, even tuples of lists and whatnot. Try them, and you’ll
see that they work.

72 Chapter 5

This version is much easier to read, but in exchange, it must traverse
the list to partition it in two parts. This is a battle of clarity vs. performance,
although the real loser here is you, because a lists:sort/1 function already
exists. Use that one instead.

More Than Lists
At this point, you might think that recursion in Erlang mainly concerns
lists. While lists are a good example of a data structure that can be defined
recursively, there’s certainly more to recursion than working with lists. For
the sake of diversity, we’ll look at how to build binary trees and then read
data from them.

First, it’s important to define what a tree is. In our
case, a tree has nodes all the way down. Nodes are
tuples that contain a key, a value associated with the
key, and then two other nodes. Of these two nodes,
we need one that has a smaller key and one that has
a larger key than the node holding them. So here’s
recursion! A tree is a node containing nodes, each
of which contains nodes, which, in turn, also contain
nodes. This can’t keep going forever (we don’t have
infinite data to store), so we’ll say that our nodes can
also contain empty nodes.

To represent nodes, tuples are an appropriate data struc-
ture. For our implementation, we can then define these tuples as
{node, {Key, Value, Smaller, Larger}} (a tagged tuple!), where Smaller and
Larger can be another similar node or an empty node ({node, nil}). We
don’t need a concept more complex than that.

Let’s start building a module for our very basic tree implementation.
The first function, empty/0, returns an empty node. The empty node is the
starting point of a new tree, also called the root.

-module(tree).
-export([empty/0, insert/3, lookup/2]).

empty() -> {node, 'nil'}.

By using that function and then encapsulating all representations of
nodes the same way, we hide the implementation of the tree so people don’t
need to know how it’s built. All that information can be contained by the
module alone. If you ever decide to change the representation of a node,
you can then do it without breaking external code.

To add content to a tree, you must first understand how to recursively
navigate through it. Let’s proceed in the same way as we did for every other
recursion example: by first trying to find the base case.

Hello Recursion! 73

Given that an empty tree is an empty node, our base case is thus logi-
cally an empty node. So whenever we hit an empty node, that’s where we
can add our new key/value. The rest of the time, our code must go through
the tree to try to find an empty node in which to put content.

To find an empty node starting from the root, we must use the fact that
the presence of Smaller and Larger nodes lets us navigate by comparing the
new key we have to insert to the current node’s key. If the new key is smaller
than the current node’s key, we try to find the empty node inside Smaller; if
it’s larger, we look inside Larger. There is one last case, though: What if the
new key is equal to the current node’s key? We have two options there: let
the program fail or replace the value with the new one. We’ll take the latter
option. Put into a function, all this logic works the following way:

insert(Key, Val, {node, 'nil'}) ->
 {node, {Key, Val, {node, 'nil'}, {node, 'nil'}}};
insert(NewKey, NewVal, {node, {Key, Val, Smaller, Larger}}) when NewKey < Key ->
 {node, {Key, Val, insert(NewKey, NewVal, Smaller), Larger}};
insert(NewKey, NewVal, {node, {Key, Val, Smaller, Larger}}) when NewKey > Key ->
 {node, {Key, Val, Smaller, insert(NewKey, NewVal, Larger)}};
insert(Key, Val, {node, {Key, _, Smaller, Larger}}) ->
 {node, {Key, Val, Smaller, Larger}}.

Note here that the function returns a completely new tree. This is typi-
cal of functional languages that have only single assignment. While this can
be seen as inefficient, updating a tree or adding an element usually requires
changing only the nodes that were modified up to the change. The other
nodes can be shared between both versions of the tree, strongly reducing
the memory overhead. In the following image, the node containing “E” is
added, which requires updating all of its parents. However, the entire left
side of the tree (starting with “B”) doesn’t change and can be kept the same
across versions. This concept is more regularly known to functional pro-
grammers as using persistent data structures.

D

B

E

A C

G

F H

D

G

F

newold

74 Chapter 5

The last thing we need to do with our example tree implementation is
to create a lookup/2 function that will let us find a value from a tree by giving
its key. The logic needed is extremely similar to the logic used to add new
content to the tree: We step through the nodes, checking if the lookup key
is equal to, smaller than, or larger than the current node’s key. We have two
base cases: one when the node is empty (the key isn’t in the tree) and one
when the key is found. Because we don’t want our program to crash each
time we look for a key that doesn’t exist, we’ll return the atom undefined.
Otherwise, we’ll return {ok, Value}. If we only returned Value, and the node
contained the atom undefined, we would have no way to know if the tree did
return the correct value or failed to find it. By wrapping successful cases
in such a tuple, we make it easy to understand which is which. Here’s the
implemented function:

lookup(_, {node, 'nil'}) ->
 undefined;
lookup(Key, {node, {Key, Val, _, _}}) ->
 {ok, Val};
lookup(Key, {node, {NodeKey, _, Smaller, _}}) when Key < NodeKey ->
 lookup(Key, Smaller);
lookup(Key, {node, {_, _, _, Larger}}) ->
 lookup(Key, Larger).

And we’re finished. Let’s test it by making a little email address book.
Compile the file and start the shell:

1> T1 = tree:insert("Jim Woodland", "jim.woodland@gmail.com", tree:empty()).
{node,{"Jim Woodland","jim.woodland@gmail.com",
 {node,nil},
 {node,nil}}}
2> T2 = tree:insert("Mark Anderson", "i.am.a@hotmail.com", T1).
{node,{"Jim Woodland","jim.woodland@gmail.com",
 {node,nil},
 {node,{"Mark Anderson","i.am.a@hotmail.com",
 {node,nil},
 {node,nil}}}}}
3> Addresses = tree:insert("Anita Bath", "abath@someuni.edu",
3> tree:insert("Kevin Robert", "myfairy@yahoo.com",
3> tree:insert("Wilson Longbrow", "longwil@gmail.com", T2))).
{node,{"Jim Woodland","jim.woodland@gmail.com",
 {node,{"Anita Bath","abath@someuni.edu",
 {node,nil},
 {node,nil}}},
 {node,{"Mark Anderson","i.am.a@hotmail.com",
 {node,{"Kevin Robert","myfairy@yahoo.com",
 {node,nil},
 {node,nil}}},
 {node,{"Wilson Longbrow","longwil@gmail.com",
 {node,nil},
 {node,nil}}}}}}}

Hello Recursion! 75

And now you can look up email addresses with it:

4> tree:lookup("Anita Bath", Addresses).
{ok, "abath@someuni.edu"}
5> tree:lookup("Jacques Requin", Addresses).
undefined

That concludes our functional address book example built from a
recursive data structure other than a list! Anita Bath now . . .

N o t e 	 Our tree implementation is very naive. We do not support common operations such
as deleting nodes or rebalancing the tree to make the following lookups faster. If you’re
interested in implementing and/or exploring these, studying the implementation of
Erlang’s gb_trees module ( YourErlangInstallPath/lib/stdlib/src/gb_trees.erl) is
a good idea. This is also the module you should use when dealing with trees in your
code, rather than reinventing the wheel.

Thinking Recursively
If you’ve understood everything in this chapter, thinking recursively is
probably becoming more intuitive. A different aspect of recursive defini-
tions when compared to their imperative counterparts (usually in while or
for loops) is that instead of taking a step-by-step approach (“do this, then
that, then this, then you’re finished”), our approach is more declarative (“if
you get this input, do that; otherwise, do this”). This property is made more
obvious with the help of pattern matching in function heads.

If you still haven’t grasped how recursion works, maybe reading this
sentence will help you.

Joking aside, recursion coupled with pattern matching is sometimes
an optimal solution to the problem of writing concise algorithms that are
easy to understand. By subdividing each part of a problem into separate
functions until they can no longer be simplified, the algorithm becomes
nothing but assembling a bunch of correct answers coming from short rou-
tines (that’s a bit similar to what we did with quicksort). This kind of mental
abstraction is also possible with your everyday loops, but I believe the prac-
tice is easier with recursion. Your mileage may vary.

A nd Now L a die s a nd Ge n t l e me n, a Discussion:
T he Au t hor v s. Himse l f

Self: Okay, I think I understand recursion. I get the declarative aspect of it. I get it
has mathematical roots, like with invariable variables. I get that you find it easier
in some cases. What else?

Author: It respects a regular pattern. Find the base cases and write them down.
Then all the other cases should try to converge to these base cases to get your
answer. It makes writing functions pretty easy.

76 Chapter 5

Self: Yeah, I got that. You repeated it a bunch of times already. My loops can do
the same thing.

Author: Yes, they can. I can’t deny that.

Self: And another thing: Why bother writing all these non-tail recursive versions if
they’re not as good as tail recursive ones?

Author: Oh, it’s simply to make things easier to grasp. Moving from regular recur-
sion, which is prettier and easier to understand, to tail recursion, which is theoreti-
cally more efficient, sounded like a good way to show all of the options.

Self: Right, so they’re useless except for educational purposes. I get it.

Author: Not exactly. In practice, you’ll see little difference in the performance
between tail recursive and normal recursive calls. The areas to take care of are in
functions that are supposed to loop infinitely, like main loops. There are also types
of functions that will always generate very large stacks, be slow, and possibly
crash early if you don’t make them tail recursive. The best example of this is the
Fibonacci function, which grows exponentially if it’s not iterative or tail recursive.
You should profile your code, see what slows it down, and fix it.

Fib(4)

Fib(3) Fib(2)

Fib(2) Fib(1) Fib(1)

Fib(1)

Fib(0)

Fib(0)

1

12

3

1

1 1

0

0

Self: But loops are always iterative and make this a nonissue.

Author: Yes, but . . . but . . . my beautiful Erlang . . .

Self: Well isn’t that great? All that learning because there is no while or for in
Erlang. Thank you very much. I’m going back to programming my toaster in C!

Author: Not so fast there! Functional programming languages have other assets!
If we’ve found a few basic common points between many recursive functions
(accumulators, reversing at the end, and so on), a bunch of smart people found
many more common points and patterns. In fact, they found enough of them that
most frequent operations have been abstracted away in libraries. You’ll rarely
need to write recursive functions yourself. If you stay around, you’ll see how such
abstractions can be built. But for this, we will need more power. Let me tell you
about higher-order functions . . .

6
H i g h e r - O r d e r F u n c t i o n s

An important part of all functional programming
languages is the ability to take a function you defined
and then pass it as a parameter to another function.
This binds that function parameter to a variable,
which can be used like any other variable within the function. A function
that can accept other functions transported around this way is called a
higher-order function. As you’ll learn in this chapter, higher-order functions
are a powerful means of abstraction and one of the best tools to master in
Erlang.

Let’s Get Functional
The concept behind carrying functions around and
passing them to higher-order functions is rooted in
mathematics, mainly lambda calculus. Basically, in
pure lambda calculus, everything is a function—even
numbers, operators, and lists. Because everything is
represented as a function, functions must accept other

78 Chapter 6

functions as parameters, and must be able to operate on them with even
more functions! (If you want a good, quick introduction to lambda calcu-
lus, read the Wikipedia entry for it.)

This concept might be a bit hard to grasp, so let’s start with an example
(this is nowhere close to real lambda calculus, but it illustrates the point).

-module(hhfuns).
-compile(export_all).

one() -> 1.
two() -> 2.

add(X,Y) -> X() + Y().

Now open the Erlang shell, compile the module, and get going:

1> c(hhfuns).
{ok, hhfuns}
2> hhfuns:add(one,two).
** exception error: bad function one
in function hhfuns:add/2
3> hhfuns:add(1,2).
** exception error: bad function 1
in function hhfuns:add/2
4> hhfuns:add(fun hhfuns:one/0, fun hhfuns:two/0).
3

Confusing? Not so much, once you know how it works (isn’t that always
the case?). In line 2, the atoms one and two are passed to add/2, which then
uses both atoms as function names (X() + Y()). If function names are writ-
ten without a parameter list, then those names are interpreted as atoms,
and atoms cannot be functions, so the call fails. This is why the expression
on line 3 also fails: The values 1 and 2 cannot be called as functions, and
functions are what we need!

To handle this issue, a new notation must be added to the language
in order to pass functions from outside a module. This is the purpose of
fun Module:Function/Arity:, which tells the VM to use that specific function
and then bind it to a variable.

So what are the gains of using functions in that manner? Well, a little
example might help answer that question. We’ll add a few functions to
hhfuns that work recursively over a list to add or subtract one from each
integer of a list.

increment([]) -> [];
increment([H|T]) -> [H+1|increment(T)].

decrement([]) -> [];
decrement([H|T]) -> [H-1|decrement(T)].

Higher-Order Functions 79

Do you see how similar these functions are? They basically do the same
thing: cycle through a list, apply a function on each element (+ or -), and
then call themselves again. Almost nothing changes in that code; only the
applied function and the recursive call are different. The core of a recursive
call on a list like that is always the same. We’ll abstract all the similar parts
in a single function (map/2) that will take another function as an argument.

map(_, []) -> [];
map(F, [H|T]) -> [F(H)|map(F,T)].

incr(X) -> X + 1.
decr(X) -> X - 1.

Now let’s test this in the shell.

1> c(hhfuns).
{ok, hhfuns}
2> L = [1,2,3,4,5].
[1,2,3,4,5]
3> hhfuns:increment(L).
[2,3,4,5,6]
4> hhfuns:decrement(L).
[0,1,2,3,4]
5> hhfuns:map(fun hhfuns:incr/1, L).
[2,3,4,5,6]
6> hhfuns:map(fun hhfuns:decr/1, L).
[0,1,2,3,4]

Here, the results are the same, but we have just created a very smart
abstraction! Every time we want to apply a function to each element of a list,
we only need to call map/2 with our function as a parameter. However, it is a
bit annoying to need to put every function we want to pass as a parameter
to map/2 in a module, name it, export it, compile it, and so on. In fact, it’s
plainly unpractical. What we need are functions that can be declared on
the fly—the type of functions discussed next.

Anonymous Functions
Anonymous functions, or funs, address the problem of using functions as
parameters by letting you declare a special kind of function inline, with-
out naming that function. Anonymous functions can do pretty much
everything normal functions can do, except call themselves recursively
(how could they do that if they are anonymous?).

Anonymous functions have the following syntax:

fun(Args1) ->
 Expression1, Exp2, ..., ExpN;
 (Args2) ->
 Expression1, Exp2, ..., ExpN;

80 Chapter 6

 (Args3) ->
 Expression1, Exp2, ..., ExpN
end

Here’s an example of using an anonymous function:

7> Fn = fun() -> a end.
#Fun<erl_eval.20.67289768>
8> Fn().
a
9> hhfuns:map(fun(X) -> X + 1 end, L).
[2,3,4,5,6]
10> hhfuns:map(fun(X) -> X - 1 end, L).
[0,1,2,3,4]

And now you’re seeing one of the things that make people like func-
tional programming so much: the ability to make abstractions on a very low
level of code. Basic concepts such as looping can thus be ignored, letting
you focus on what is done, rather than how to do it.

More Anonymous Function Power
Anonymous functions are pretty dandy for such abstractions, but they have
more hidden powers. Let’s look at another example:

11> PrepareAlarm = fun(Room) ->
11> io:format("Alarm set in ~s.~n",[Room]),
11> fun() -> io:format("Alarm tripped in ~s! Call Batman!~n",[Room]) end
11> end.
#Fun<erl_eval.20.67289768>
12> AlarmReady = PrepareAlarm("bathroom").
Alarm set in bathroom.
#Fun<erl_eval.6.13229925>
13> AlarmReady().
Alarm tripped in bathroom! Call Batman!
ok

Hold the phone, Batman! What’s going on here? Well,
first of all, we declare an anonymous function assigned to
PrepareAlarm. This function has not run yet. It is executed
only when PrepareAlarm("bathroom") is called. At that point,
the call to io:format/2 is evaluated, and the “Alarm set” text
is output. The second expression (another anonymous
function) is returned to the caller and then assigned to
AlarmReady. Note that in this function, the Room variable’s
value is taken from the “parent” function (PrepareAlarm).
This is related to a concept called closures. But before we can
talk about closures, we need to address the idea of scope.

Higher-Order Functions 81

Function Scope and Closures
A function’s scope can be imagined as the place where all the variables and
their values are stored. In the function base(A) -> B = A + 1., for example,
A and B are both defined to be part of base/1’s scope. This means that any-
where inside base/1, you can refer to A and B and expect a value to be bound
to them. And when I say “anywhere,” I ain’t kidding, kid. This includes
anonymous functions, too.

base(A) ->
 B = A + 1,
 F = fun() -> A * B end,
 F().

In this example, B and A are still bound to base/1’s scope, so the function
F can still access them. This is because F inherits base/1’s scope. As with most
kinds of real-life inheritance, the parents can’t get what the children have.

base(A) ->
 B = A + 1,
 F = fun() -> C = A * B end,
 F(),
 C.

In this version of the function, B is still equal to A + 1, and F will still
execute fine. However, the variable C is only in the scope of the anonymous
function in F. When base/1 tries to access C’s value on the last line, it finds
only an unbound variable. In fact, if you tried to compile this function, the
compiler would throw a fit. Inheritance goes only one way.

It is important to note that the inherited scope follows the anonymous
function wherever it is, even when it is passed to another function. Here’s
an example:

a() ->
 Secret = "pony",
 fun() -> Secret end.

b(F) ->
 "a/0's password is "++F().

Now we can compile it.

14> c(hhfuns).
{ok, hhfuns}
15> hhfuns:b(hhfuns:a()).
"a/0's password is pony"

82 Chapter 6

Who told a/0’s password? Well, a/0 did. While the anonymous func-
tion has a/0’s scope when it’s declared in there, the function can still carry
it when executed in b/1, as explained earlier. This is very useful because it
lets us carry around parameters and content out of their original context,
where the whole context itself is no longer needed (exactly as we did with
Batman in the previous section).

You’re most likely to use anonymous functions to carry state around
when you have defined functions that take many arguments, but one of these
arguments remains the same all the time, as in the following example.

16> math:pow(5,2).
25.0
17> Base = 2.
2
18> PowerOfTwo = fun(X) -> math:pow(Base,X) end.
#Fun<erl_eval.6.13229925>
17> hhfuns:map(PowerOfTwo, [1,2,3,4]).
[2.0,4.0,8.0,16.0]

By wrapping the call to math:pow/2 inside an anonymous function with
the Base variable bound in that function’s scope, we made it possible to have
each of the calls to PowerOfTwo in hhfuns:map/2 use the integers from the list as
the exponents of our base.

A little trap you might fall into when writing anonymous functions is
when you try to redefine the scope, like this:

base() ->
 A = 1,
 (fun() -> A = 2 end)().

This will declare an anonymous function and then run it. As the anony-
mous function inherits base/0’s scope, trying to use the = operator compares
2 with the variable A (bound to 1). This is guaranteed to fail. However, we
can redefine the variable if we do that in the nested function’s head:

base() ->
 A = 1,
 (fun(A) -> A = 2 end)(2).

And this works. If you try to compile it, you’ll get a warning about shad-
owing: “Warning: variable ‘A’ shadowed in ‘fun’.” Shadowing is the term
used to describe the act of defining a new variable that has the same name
as one that was in the parent scope. This warning is there to prevent some
mistakes (usually rightly so), so you might want to consider renaming your
variables in these circumstances.

Now that we’ve covered scope, we can turn to closures. Closure is just
the idea of having a function that references some environment along with

Higher-Order Functions 83

it (the value’s part of the scope). In other words, a closure is what happens
when anonymous functions meet the concept of scope and carrying vari-
ables around.

We’ll set the anonymous function theory aside for now and explore
more common abstractions to avoid needing to write more recursive func-
tions, as I promised at the end of Chapter 5.

Maps, Filters, Folds, and More
At the beginning of this chapter, we took a brief look at how to abstract
away two similar functions to get a map/2 function:

map(_, []) -> [];
map(F, [H|T]) -> [F(H)|map(F,T)].

Such a function can be used for any
list where we want to act on each element.
However, there are many other similar
abstractions to build from commonly
occurring recursive functions.

Filters
First, we’ll look at filters. Consider the
following functions:

%% Only keep even numbers.
even(L) -> lists:reverse(even(L,[])).

even([], Acc) -> Acc;
even([H|T], Acc) when H rem 2 == 0 ->
 even(T, [H|Acc]);
even([_|T], Acc) ->
 even(T, Acc).

%% Only keep men older than 60.
old_men(L) -> lists:reverse(old_men(L,[])).

old_men([], Acc) -> Acc;
old_men([Person = {male, Age}|People], Acc) when Age > 60 ->
 old_men(People, [Person|Acc]);
old_men([_|People], Acc) ->
 old_men(People, Acc).

The first of these functions takes a list of numbers and returns only
those that are even. The second one goes through a list of people of the
form {Gender, Age} and keeps only those that are males over 60.

ERLAND

84 Chapter 6

The similarities are a bit harder to find here than in the previous exam-
ples, but we have some common points. Both functions operate on lists and
have the same objective of keeping elements that succeed some test (also
called a predicate) and then dropping the others. From this generalization,
we can extract all the useful information we need and abstract them away,
like this:

filter(Pred, L) -> lists:reverse(filter(Pred, L,[])).

filter(_, [], Acc) -> Acc;
filter(Pred, [H|T], Acc) ->
 case Pred(H) of
 true -> filter(Pred, T, [H|Acc]);
 false -> filter(Pred, T, Acc)
 end.

To use the filtering function, we now only need to pass in a predicate
outside of the function. Compile the hhfuns module and try it.

1> c(hhfuns).
{ok, hhfuns}
2> Numbers = lists:seq(1,10).
[1,2,3,4,5,6,7,8,9,10]
3> hhfuns:filter(fun(X) -> X rem 2 == 0 end, Numbers).
[2,4,6,8,10]
4> People = [{male,45},{female,67},{male,66},{female,12},{unkown,174},{male,74}].
[{male,45},{female,67},{male,66},{female,12},{unkown,174},{male,74}]
5> hhfuns:filter(fun({Gender,Age}) -> Gender == male andalso Age > 60 end, People).
[{male,66},{male,74}]

These two examples show that with the use of the filter/2 function, the
programmer needs to worry only about producing the predicate and the
list. The act of cycling through the list to throw out unwanted items is no
longer a consideration. This is one important thing about abstracting func-
tional code: Try to get rid of what’s always the same, and let the programmer
supply the parts that change.

Fold Everything
In Chapter 5, we looked at another kind of recursive list manipulation,
where we applied some operation to each element of a list successively to
reduce the elements to a single value. This is called a fold and can be used
to reduce the size of the following functions:

%% Find the maximum of a list.
max([H|T]) -> max2(T, H).

max2([], Max) -> Max;
max2([H|T], Max) when H > Max -> max2(T, H);
max2([_|T], Max) -> max2(T, Max).

Higher-Order Functions 85

%% Find the minimum of a list.
min([H|T]) -> min2(T,H).

min2([], Min) -> Min;
min2([H|T], Min) when H < Min -> min2(T,H);
min2([_|T], Min) -> min2(T, Min).

%% Find the sum of all the elements of a list.
sum(L) -> sum(L,0).

sum([], Sum) -> Sum;
sum([H|T], Sum) -> sum(T, H+Sum).

To find how the fold function should be used,
we need to determine all the common points of the
actions made by these functions, as well as what is
different. As mentioned earlier, we always have a
reduction from a list to a single value. Consequently,
our fold function should consider iterating only while
keeping a single item—no list building is needed. We
need to ignore the guards, because they exist in only
some of these functions, not all of them. The guards
will need to be included in the function that we pass
to fold. In this regard, our fold function will probably
look a lot like sum.

A subtle element of all three functions is that every function needs to
have an initial value to start counting with. In the case of sum/2, we use 0, as
we’re doing addition, and given X = X + 0, the value is neutral, so we can’t
mess up the calculation by starting there. If we were doing multiplication,
we would use 1 given X = X * 1.

The functions min/1 and max/1 can’t have a default starting value. If the
list were only negative numbers and we started at 0, the answer would be
wrong. So we need to use the first element of the list as a starting point.
Sadly, we can’t always decide the starting value this way, so we’ll leave that
decision to the programmer.

By taking all these elements, we can build the following abstraction:

fold(_, Start, []) -> Start;
fold(F, Start, [H|T]) -> fold(F, F(H,Start), T).

Let’s try it.

6> c(hhfuns).
{ok, hhfuns}
7> [H|T] = [1,7,3,5,9,0,2,3].
[1,7,3,5,9,0,2,3]
8> hhfuns:fold(fun(A,B) when A > B -> A; (_,B) -> B end, H, T).
9
9> hhfuns:fold(fun(A,B) when A < B -> A; (_,B) -> B end, H, T).
0

F
O
L
D
R

F
O
L
D
R

86 Chapter 6

10> hhfuns:fold(fun(A,B) -> A + B end, 0, lists:seq(1,6)).
21

Pretty much any function you can think of that reduces lists to one ele-
ment can be expressed as a fold.

Strangely enough, you can represent an accumulator as a single element
(or a single variable), and an accumulator can be a list. Therefore, we can
use a fold to build a list. This means folding is universal in the sense that
you can implement pretty much any other recursive function on lists with a
fold, even maps and filters, like so:

reverse(L) ->
 fold(fun(X,Acc) -> [X|Acc] end, [], L).

map2(F,L) ->
 reverse(fold(fun(X,Acc) -> [F(X)|Acc] end, [], L)).

filter2(Pred, L) ->
 F = fun(X,Acc) ->
 case Pred(X) of
 true -> [X|Acc];
 false -> Acc
 end
 end,
 reverse(fold(F, [], L)).

These all work in the same way as those written by hand before. How’s
that for powerful abstractions?

More Abstractions
Map, filters, and folds are only a few of many abstractions over lists provided
by the Erlang standard library (see lists:map/2, lists:filter/2, lists:foldl/3,
and lists:foldr/3). Other functions include all/2 and any/2, which both take
a predicate and test if all the elements return true or if at least one of them
returns true, respectively.

Also available is dropwhile/2, which will ignore elements of a list until it
finds one that fits a certain predicate. Its opposite, takewhile/2, will keep all
elements until there is one that doesn’t return true to the predicate. A com-
plementary function to these is partition/2, which will take a list and return
two lists: one that has the terms that satisfy a given predicate and one for
the others.

Other frequently used list functions include flatten/1, flatlength/1,
flatmap/2, merge/1, nth/2, nthtail/2, and split/2. You can look up all of these
functions in the documentation if you want to learn more about them.

You’ll also find other functions such as zipping functions (as shown in
Chapter 5), unzipping functions, combinations of maps and folds, and so
on. I encourage you to read the documentation on lists to see what can be
done. You’ll find yourself rarely needing to write recursive functions as long
as you use what’s already been abstracted away by smart people.

7
E r r o r s a n d E x c e p t i o n s

There’s no right place for a chapter such as this one.
So far, you’ve seen plenty of errors but not much
about the mechanisms for handling them. That’s a
bit because Erlang has two main paradigms: functional
and concurrent. The functional subset is the one I’ve
been explaining since the beginning of the book: referential transpar-
ency, recursion, higher-order functions, and so on. The concurrent subset
is the one that makes Erlang famous: actors, thousands and thousands of
concurrent processes, supervision trees,
and more.

Although Erlang includes a few ways
to handle errors in functional code, most
of the time you’ll be told to just let it crash.
The error-handling mechanisms are in
the concurrent part of the language. But
because it’s essential to understand the

88 Chapter 7

functional part before moving on to the concurrent part, this chapter cov-
ers only the functional subset of the language. If we are to manage errors,
we must first understand them.

A Compilation of Errors
There are many kinds of errors: compile-time errors, logical errors, and
runtime errors. First, let’s look at compile-time errors.

Compile-Time Errors
Compile-time errors are often syntactic mistakes. Check your function
names, the tokens in the language (such as brackets, parentheses, periods,
and commas), the arity of your functions, and so on.

Here’s a list of some of the common compile-time error messages and
potential resolutions in case you encounter them:

module.beam: Module name 'madule' does not match file name 'module'

The module name you’ve entered in the -module attribute doesn’t match
the filename.

./module.erl:2: Warning: function some_function/0 is unused

You have not exported a function, or the place where it’s used has the
wrong name or arity. It’s also possible you’ve written a function that is
no longer needed. Check your code!

./module.erl:2: function some_function/1 undefined

The function does not exist. You’ve written the wrong name or arity
either in the -export attribute or when declaring the function. This
error is also output when the given function could not be compiled,
usually because of a syntax error like forgetting to end a function with
a period.

./module.erl:5: syntax error before: 'SomeCharacterOrWord'

This happens for a variety of reasons. Common causes are unclosed
parentheses, tuples, or wrong expression termination (like closing the
last branch of a case with a comma). Other reasons include the use of
a reserved atom in your code and Unicode characters not being con-
verted correctly between different encodings (I’ve seen it happen!).

./module.erl:5: syntax error before:

This message is certainly not as descriptive as the previous one. It usually
comes up when your line termination is not correct. This is a specific
case of the previous error, so just keep an eye out.

Errors and Exceptions 89

./module.erl:5: Warning: this expression will fail with a 'badarith' exception

Erlang is all about dynamic typing, but remember that the types are
strong. In this case, the compiler is smart enough to find that one of
your arithmetic expressions will fail (say, llama + 5). It won’t find type
errors much more complex than that, though.

./module.erl:5: Warning: variable 'Var' is unused

You declared a variable and never used it. This might be a bug with
your code, so double-check what you have written. Otherwise, you
might want to switch the variable name to _, or just prefix it with an
underscore if you feel the name helps make the code readable.

./module.erl:5: Warning: a term is constructed, but never used

In one of your functions, you’re doing something such as building a list,
or declaring a tuple or an anonymous function without ever binding
it to a variable or returning it. This warning tells you that you’re doing
something useless or have made some mistake.

./module.erl:5: head mismatch

It’s possible your function has more than one head, and each of them
has a different arity. Don’t forget that different arity means different
functions, and you can’t interleave function declarations that way.
Similarly, this error is raised when you insert a function definition
between the head clauses of another function.

./module.erl:5: Warning: this clause cannot match because a previous clause at
line 4 always matches

A function defined in the module has a specific clause defined after a
catchall one. As such, the compiler can warn you that you’ll never even
need to go to the other branch.

./module.erl:9: variable 'A' unsafe in 'case' (line 5)

You’re using a variable declared within one of the branches of a
case ... of outside of it. This is considered unsafe. If you want to use
such variables, you’re better off doing MyVar = case ... of.

This covers most of the errors you’ll get at compile-time at this point.
There aren’t too many, and most of the time, the hardest part is finding
which error caused a huge cascade of errors listed against other functions.
It is better to resolve compiler errors in the order they were reported to
avoid being misled by errors that may not actually be errors at all.

No, YOUR Logic Is Wrong!
Logical errors are the hardest kind of errors to find and debug. They’re
most likely errors coming from the programmer: branches of conditional
statements such as ifs and cases that don’t consider all the cases, using a

90 Chapter 7

multiplication that should have been a division, and so on. They do not
make your programs crash, but can lead to unseen bad data or your pro-
gram working in an unintended manner.

You’re most likely on your own when it
comes to dealing with logical errors, but Erlang
has many facilities to help you, such as test
frameworks, the TypEr and Dialyzer tools, and
a debugger and tracing module. Testing your
code is likely your best defense. Sadly, there
are enough of these kinds of errors in every
programmer’s career to write a few dozen
books about them. Here, we’ll focus on those
that make your programs crash, because it
happens right there and won’t bubble up to
50 levels to search through. Note that this is
pretty much the origin of the “let it crash”
ideal I’ve mentioned previously.

Runtime Errors
Runtime errors are pretty destructive in the sense that they crash your
code. While Erlang has ways to deal with them, recognizing these errors is
always helpful. We’ll look at some common runtime errors and examples of
code that generate them.

Function Clause Errors

The most likely reasons you’ll run into a function clause error is when you
fail all guard clauses of a function or fail all pattern matches, as in this
example:

1> lists:sort([3,2,1]).
[1,2,3]
2> lists:sort(fffffff).
** exception error: no function clause matching lists:sort(fffffff) (lists.erl, line 414)

Case Clause Errors

Case clause errors occur when you’ve forgotten a specific case, sent in the
wrong kind of data, or need a catchall clause. Here’s an example:

3> case "Unexpected Value" of
3> expected_value -> ok;
3> other_expected_value -> 'also ok'
3> end.
** exception error: no case clause matching "Unexpected Value"

Come see me...

?
No!

F

Errors and Exceptions 91

If Clause Errors

If clause errors are similar to case clause errors. They arise when Erlang
cannot find a branch that evaluates to true.

4> if 2 > 4 -> ok;
4> 0 > 1 -> ok
4> end.
** exception error: no true branch found when evaluating an if expression

Making sure you consider all cases or adding the catchall true clause
might be what you need.

Bad Match Errors

Bad match errors happen whenever pattern matching fails. This most likely
means you’re trying to do impossible pattern matches (such as the follow-
ing), trying to bind a variable for the second time, or just using anything
that isn’t equal on both sides of the = operator (which is pretty much what
makes rebinding a variable fail!).

5> [X,Y] = {4,5}.
** exception error: no match of right hand side value {4,5}

Note that this error sometimes happens because the programmer
believes that a variable of the form _ MyVar is the same as _ . Variables with
an underscore are normal variables, except the compiler won’t complain
if they’re not used. It is not possible to bind them more than once.

Bad Argument Errors

Bad argument errors are similar to function clause errors, as they are about
calling functions with incorrect arguments.

6> erlang:binary_to_list("heh, already a list").
** exception error: bad argument
 in function binary_to_list/1
 called as binary_to_list("heh, already a list")

The main difference here is that this error is usually triggered by the
programmer after validating the arguments from within the function,
outside of the guard clauses. It is also the error of choice thrown by BIFs
or any other function written in C. I’ll show you how to raise such errors in
“Raising Exceptions” on page 93.

Undefined Function Errors

An undefined function error happens when you call a function that doesn’t
exist.

92 Chapter 7

7> lists:random([1,2,3]).
** exception error: undefined function lists:random/1

Make sure the function is exported from the module with the correct
arity (if you’re calling it from outside the module), and double-check that
you typed the name of the function and the name of the module correctly.

You might also get this error message when the module is not in Erlang’s
search path. By default, Erlang’s search path is set to be in the current direc-
tory. You can add paths to the list by using code:add_patha("/some/path/") or
code:add_pathz("some/path"). If this still doesn’t work, make sure you compiled
the module to begin with!

Bad Arithmetic Errors

Bad arithmetic errors occur when you try to do arithmetic that doesn’t
exist, like divisions by zero or between atoms and numbers.

8> 5 + llama.
** exception error: bad argument in an arithmetic expression
 in operator +/2
 called as 5 + llama

Bad Function Errors

The most frequent reason for bad function errors is when you use vari-
ables as functions, but the variable’s value is not a function. The following
example uses the hhfuns function from Chapter 6, with two atoms as func-
tions. This doesn’t work, and a bad function error is thrown.

9> hhfuns:add(one,two).
** exception error: bad function one
 in function hhfuns:add/2 (hhfuns.erl, line 7)

Bad Arity Errors

The bad arity error is a specific case of a bad function error. It happens
when you use higher-order functions, but you pass them more or fewer
arguments than they can handle.

10> F = fun(_) -> ok end.
#Fun<erl_eval.6.13229925>
11> F(a,b).
** exception error: interpreted function with arity 1 called with two arguments

Errors and Exceptions 93

System Limit Errors

A system limit error may be raised for many reasons, including the
following:

•	 Too many processes

•	 Atoms that are too long

•	 Too many arguments in a function

•	 Too many atoms

•	 Too many nodes connected

To get a full list and details of these errors, read the Erlang Efficiency
Guide on system limits, at http://www.erlang.org/doc/efficiency_guide/advanced
.html#2265856. Note that some of these errors are serious enough to crash
the whole VM.

Raising Exceptions
In trying to monitor code’s execution and protect
against logical errors, it’s often a good idea to provoke
runtime crashes so problems will be spotted early.

There are three kinds of exceptions in Erlang:
errors, exits, and throws. They all have different uses
(kind of), as explained in the following sections.

Error Exceptions
Calling erlang:error(Reason) will end the execution in the current process
and include a stack trace of the last functions called with their arguments
when you catch the exception. These are the kind of exceptions that pro-
voke runtime errors.

Errors are the means for a function to stop its execution when you can’t
expect the calling code to handle what just happened. If you get an if clause
error, what can you do? Change the code and recompile—that’s what you
can do (other than just displaying a pretty error message).

When Not to Use Errors

An example of when not to use errors could be our tree module from
Chapter 5. That module might not always be able to find a specific key in a
tree when doing a lookup. In this case, it makes sense to expect the users
to deal with unknown results. They could use a default value, check to
insert a new one, delete the tree, or use some other approach. This is when
it’s appropriate to return a tuple of the form {ok, Value} or an atom like
undefined, rather than raising errors.

94 Chapter 7

Custom Errors

Errors aren’t limited to the ones provided by Erlang. You can define your
own kinds of errors, as in this example:

1> erlang:error(badarith).
** exception error: bad argument in an arithmetic expression
2> erlang:error(custom_error).
** exception error: custom_error

Here, custom_error is not recognized by the Erlang shell, and it has no
custom translation, such as “bad argument in …,” but it’s usable in the same
way and can be handled by the programmer in an identical manner (as dis-
cussed in “Dealing with Exceptions” on page 96).

Exit Exceptions
Two kinds of exits exist in Erlang:

•	 Internal exits are triggered by calling the function exit/1 and making the
current process stop its execution.

•	 External exits are called with exit/2 and have to do with multiple pro-
cesses in the concurrent aspect of Erlang.

Here, we’ll focus on internal exits. We will visit the external kind in
Chapter 12.

Internal exits are similar to errors. In fact, historically speaking, they
were the same, and only exit/1 existed. Errors and exits have roughly the
same use cases. So how do you choose which one to use? Well, the choice
is not obvious. To decide when to use one or the other, you need to under-
stand the most generic principles behind Erlang processes.

MESSAGE

Processes can send each other messages. A process can also listen for
messages, or wait for them.

You can also choose which messages to listen to. You can discard some
messages, ignore others, give up listening after a certain time, and so on.

HELLO

A SAYS “HELLO”

Errors and Exceptions 95

These basic concepts let the implementers of Erlang use a special kind
of message (an exit signal) to communicate exceptions between processes.
They act a bit like a process’s last breath; they’re sent right before a process
dies, and the code it contains stops executing. Other processes that were
listening for that specific kind of message can then know about the event
and do whatever they please with it. This includes logging, restarting the
process that died, and so on.

I’M DEAD!

DAMN!

With this concept explained, the difference in using erlang:error/1 and
exit/1 is easier to understand. While both can be used in an extremely simi-
lar manner, the real difference is intent. Is what you have simply an error,
or is it a condition worthy of killing the current process? This point is made
stronger by the fact erlang:error/1 returns a stack trace and exit/1 doesn’t. If
you had a pretty large stack trace or a lot of arguments to the current func-
tion, copying the exit message to every listening process would mean copy-
ing the data. In some cases, this could become impractical.

Throw Exceptions
A throw is a class of exceptions used for cases that the programmer can be
expected to handle. Unlike exits and errors, throws don’t really carry any
“crash that process!” intent behind them but rather control flow.

To throw an exception, the syntax is as follows:

1> throw(permission_denied).
** exception throw: permission_denied

You can replace permission_denied with anything you want (including
'everything is fine', but that is not helpful, and you will lose friends).

N o t e 	 If you use throws while expecting the programmer to handle them, it’s usually a good
idea to document the throws within a module using them.

Throws can also be used for nonlocal returns when in deep recursion.
An example of this is the ssl module, which uses throw/1 as a way to push
{error, Reason} tuples back to a top-level function. That function then simply
returns that tuple to the user. This lets the implementer write code only for
the successful cases and have one function deal with the exceptions on top
of it all.

Another example of using throws can be found in the array module,
where there is a lookup function that can return a user-supplied default
value if it can’t find the element needed. When the element can’t be found,
the value default is thrown as an exception, and the top-level function
handles that and replaces it with the user-supplied default value. This keeps

96 Chapter 7

the programmer of the module from needing to pass the default value as a
parameter of every function of the lookup algorithm, again, focusing only
on the successful cases.

As a rule of thumb, try to limit the use of your throws for nonlocal
returns to a single module in order make it easier to debug your code.
This approach will also let you change the innards of your
module without requiring changes in its interface.

Dealing with Exceptions
As I’ve mentioned, throws, errors, and exits can be handled.
The way to do this is by using a try ... catch expression.

A try ... catch is a way to evaluate an expression
while letting you handle the successful case as well as the
errors encountered. Here’s the general syntax for such an
expression:

try Expression of
 SuccessfulPattern1 [Guards] ->
 Expression1;
 SuccessfulPattern2 [Guards] ->
 Expression2
catch
 TypeOfError:ExceptionPattern1 ->
 Expression3;
 TypeOfError:ExceptionPattern2 ->
 Expression4
end.

N o t e 	 In the syntax shown here, the brackets around [Guards] only denote that the guards
are optional. There is no need to put them in a list.

The Expression between try and of is said to be protected. This means that
any kind of exception happening within that call will be caught.

The patterns and expressions between the try ... of and catch behave
in exactly the same manner as a case ... of. They are not protected, and
allow pattern matching, variable bindings, and guards.

In the catch part, you can replace TypeOfError with error, throw, or exit,
for each respective exception type. If no type is provided, throw is assumed.
So let’s put this in practice.

Handling Different Types of Exceptions
We’ll start by creating a module named exceptions (we’re going for simplic-
ity here).

-module(exceptions).
-compile(export_all).

Errors and Exceptions 97

throws(F) ->
 try F() of
 _ -> ok
 catch
 Throw -> {throw, caught, Throw}
 end.

We can compile it and try it with different kinds of exceptions.

1> c(exceptions).
{ok,exceptions}
2> exceptions:throws(fun() -> throw(thrown) end).
{throw,caught,thrown}
3> exceptions:throws(fun() -> erlang:error(pang) end).
** exception error: pang
 in function exceptions:throws/1 (exceptions.erl, line 5)

As you can see, this try ... catch is receiving only throws. This is because
when no type is specified, a throw is assumed. We can add functions with
catch clauses of each type.

errors(F) ->
 try F() of
 _ -> ok
 catch
 error:Error -> {error, caught, Error}
 end.

exits(F) ->
 try F() of
 _ -> ok
 catch
 exit:Exit -> {exit, caught, Exit}
 end.

Let’s try this version.

4> c(exceptions).
{ok,exceptions}
5> exceptions:errors(fun() -> erlang:error("Die!") end).
{error,caught,"Die!"}
6> exceptions:exits(fun() -> exit(goodbye) end).
{exit,caught,goodbye}

The next example on the menu shows how to combine all types of
exceptions in a single try ... catch. We’ll first declare a function to generate
all the exceptions we need.

sword(1) -> throw(slice);
sword(2) -> erlang:error(cut_arm);
sword(3) -> exit(cut_leg);

98 Chapter 7

sword(4) -> throw(punch);
sword(5) -> exit(cross_bridge).

black_knight(Attack) when is_function(Attack, 0) ->
 try Attack() of
 _ -> "None shall pass."
 catch
 throw:slice -> "It is but a scratch.";
 error:cut_arm -> "I've had worse.";
 exit:cut_leg -> "Come on you pansy!";
 : -> "Just a flesh wound."
 end.

Here, is_function/2 is a BIF that makes sure the variable Attack is a func-
tion of arity 0. Then we add this line for good measure:

talk() -> "blah blah".

And now for something completely different.

7> c(exceptions).
{ok,exceptions}
8> exceptions:talk().
"blah blah"
9> exceptions:black_knight(fun exceptions:talk/0).
"None shall pass."
10> exceptions:black_knight(fun() -> exceptions:sword(1) end).
"It is but a scratch."
11> exceptions:black_knight(fun() -> exceptions:sword(2) end).
"I've had worse."
12> exceptions:black_knight(fun() -> exceptions:sword(3) end).
"Come on you pansy!"
13> exceptions:black_knight(fun() -> exceptions:sword(4) end).
"Just a flesh wound."
14> exceptions:black_knight(fun() -> exceptions:sword(5) end).
"Just a flesh wound."

The expression on line 9 demonstrates normal behavior for the black
knight, when normal function execution happens. Each line that follows
that one demonstrates pattern matching on
exceptions according to their class (throw, error,
or exit) and the reason associated with them
(slice, cut_arm, or cut_leg).

Lines 13 and 14 show a catchall clause for
exceptions. You need to use the _:_ pattern to
make sure to catch any exception from any
type. In practice, you should be careful when
using catchall patterns. Try to protect your
code from what you can handle but not more.
Erlang has other facilities in place to take care
of the rest.

Errors and Exceptions 99

After the Catch
You can also add a clause after a try ... catch that will always be executed,
as follows:

try Expression of
 Pattern -> Expr1
catch
 Type:Exception -> Expr2
after
 Expr3
end

This is equivalent to the finally block in many other languages. Whether
or not there are errors, the expressions inside the after part are guaranteed
to run.

However, you cannot get any return value out of the after construct.
Therefore, after is mostly used to run code with side effects. The canonical
use of this approach is when you want to make sure a file you were reading
gets closed, whether or not exceptions were raised.

Trying Multiple Expressions
We’ve covered how to handle the three classes of exceptions in Erlang with
catch blocks. However, I’ve hidden information from you: It’s actually pos-
sible to have more than one expression between the try and the of!

whoa() ->
 try
 talk(),
 _Knight = "None shall pass!",
 _Doubles = [N*2 || N <- lists:seq(1,100)],
 throw(up),
 _WillReturnThis = tequila
 of
 tequila -> "Hey, this worked!"
 catch
 Exception:Reason -> {caught, Exception, Reason}
 end.

By calling exceptions:whoa(), we’ll get the obvious {caught, throw, up}
because of throw(up). So yeah, it’s possible to have more than one expression
between try and of.

What exceptions:whoa/0 highlighted that you might not have noticed is
that when we use many expressions in this manner, we might not always
care what the return value is. So, the of part becomes a bit useless. Well,
good news—you can just give it up:

im_impressed() ->
 try
 talk(),

100 Chapter 7

 _Knight = "None shall pass!",
 _Doubles = [N*2 || N <- lists:seq(1,100)],
 throw(up),
 _WillReturnThis = tequila
 catch
 Exception:Reason -> {caught, Exception, Reason}
 end.

And now it’s a bit leaner!

Wait, There’s More!
As if the preceding constructs weren’t already enough to put Erlang on
par with most languages, it has yet another error-handling construct. This
construct is defined as the keyword catch and basically captures all types of
exceptions on top of the good results. It’s a bit of a weird one because it dis-
plays a different representation of exceptions. Here’s an example:

1> catch throw(whoa).
whoa
2> catch exit(die).
{'EXIT',die}
3> catch 1/0.
{{'EXIT',{badarith,[{erlang,'/',[1,0],[]},
 {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,576}]},
 {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,360}]},
 {shell,exprs,7,[{file,"shell.erl"},{line,668}]},
 {shell,eval_exprs,7,[{file,"shell.erl"},{line,623}]},
 {shell,eval_loop,3,[{file,"shell.erl"},{line,608}]}]}}
4> catch 2+2.
4

Prot ec t ing t he R igh t T hing

The protected part of an exception can’t be tail recursive. The VM must always
keep a reference there in case there’s an exception popping up. Because the
try ... catch construct without the of part has nothing but a protected part, call-
ing a recursive function from there might be dangerous for programs that are
supposed to run for a long time (which is Erlang’s niche). After enough iterations,
you’ll run out of memory, or your program will get slower. When you put your
recursive calls between the of and catch, they are not in a protected part, and
you will benefit from last call optimization (discussed in Chapter 5). However, this
effect is canceled if you use after in your try expression, as it needs to run after
anything else, and thus needs to keep track of where it is in the list of function calls.

Some people use try ... of ... catch rather than try ... catch by default to
avoid unexpected behaviors of that kind, except for obviously nonrecursive code
with a result they don’t care about. You’re most likely able to make your own deci-
sion on what to do!

Errors and Exceptions 101

As you can see, the throws remain the same, but exits and errors are
both represented as {'EXIT', Reason}. That’s consequent to errors being
bolted to the language after exits (the Erlang implementers kept a similar
representation for backward compatibility).

Let’s try another example.

5> catch doesnt:exist(a,4).
{'EXIT',{undef,[{doesnt,exist,[a,4],[]},
 {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,576}]},
 {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,360}]},
 {shell,exprs,7,[{file,"shell.erl"},{line,668}]},
 {shell,eval_exprs,7,[{file,"shell.erl"},{line,623}]},
 {shell,eval_loop,3,[{file,"shell.erl"},{line,608}]}]}}

The type of error is undef, which means the function you called is not
defined.

The list immediately after the type of error is a stack trace. Here’s how
to read the stack trace:

•	 The tuple on top of the stack trace represents the last function to be
called ({Module, Function, Arguments}). That’s your undefined function.

•	 The tuples after that are the functions called before the error. This
time, they’re of the form {Module, Function, Arity, Details}.

•	 The Details field is a list of tuples containing the filename and the
line within the file. In this case, the files are erl_eval.erl and shell.erl
because they’re in charge of interpreting the code you input in the
Erlang shell.

That’s all there is to it, really.

N o t e 	 Before the R15B release, Erlang didn’t have the Details part of stack traces. For two
decades, Erlang programmers found the origin of errors by using short functions and
a strong sense of deduction.

You can also manually get a stack trace by calling erlang:get_stacktrace/0
in the process that crashed.

You’ll often see catch written in the following manner (we’re still in
exceptions.erl):

catcher(X,Y) ->
 case catch X/Y of
 {'EXIT', {badarith,_}} -> "uh oh";
 N -> N
end.

102 Chapter 7

And as expected, here’s what happens when you run this:

6> c(exceptions).
{ok,exceptions}
7> exceptions:catcher(3,3).
1.0
8> exceptions:catcher(6,3).
2.0
9> exceptions:catcher(6,0).
"uh oh"

This sounds like a compact and easy way to catch exceptions, but there
are a few problems with catch. This example shows one of them:

10> X = catch 4+2.
* 1: syntax error before: 'catch'
10> X = (catch 4+2).
6

We would expect the first case to behave exactly like the second one.
Yet, it looks like Erlang can’t cope with the way we declared things. That’s
because of the operator precedence defined by the language. The catch
conflicts with =, and the only way to keep them from clashing is to wrap
catch in parentheses. That’s not exactly intuitive, given that most expres-
sions do not need to be wrapped in parentheses this way.

Another problem with catch is that you can’t see the difference between
what looks like the underlying representation of an exception and a real
exception, as in this example:

11> catch erlang:boat().
{'EXIT',{undef,[{erlang,boat,[],[]},
 {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,576}]},
 {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,360}]},
 {shell,exprs,7,[{file,"shell.erl"},{line,668}]},
 {shell,eval_exprs,7,[{file,"shell.erl"},{line,623}]},
 {shell,eval_loop,3,[{file,"shell.erl"},{line,608}]}]}}
12> catch exit({undef,[{erlang,boat,[],[]},
12> {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,576}]},
12> {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,360}]},
12> {shell,exprs,7,[{file,"shell.erl"},{line,668}]},
12> {shell,eval_exprs,7,[{file,"shell.erl"},{line,623}]},
12> {shell,eval_loop,3,[{file,"shell.erl"},{line,608}]}]}).
{'EXIT',{undef,[{erlang,boat,[],[]},
 {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,576}]},
 {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,360}]},
 {shell,exprs,7,[{file,"shell.erl"},{line,668}]},
 {shell,eval_exprs,7,[{file,"shell.erl"},{line,623}]},
 {shell,eval_loop,3,[{file,"shell.erl"},{line,608}]}]}}

Errors and Exceptions 103

Also, you can’t know the difference between an error and an actual
exit, as both results are identical. You could also have used throw/1 to gener-
ate the preceding exception. In fact, a throw/1 in a catch might also be prob-
lematic in another scenario:

one_or_two(1) -> return;
one_or_two(2) -> throw(return).

And now the killer problem:

13> c(exceptions).
{ok,exceptions}
14> catch exceptions:one_or_two(1).
return
15> catch exceptions:one_or_two(2).
return

Because we’re behind a catch, we can never know if the function threw
an exception or it returned an actual value! This might not happen a whole
lot in practice, but it’s still a wart big enough to have warranted the addition
of the try ... catch construct in the Erlang/OTP R10B release.

Try a try in a Tree
To put exceptions in practice, we’ll do a little exercise requiring us to dig
out our tree module from Chapter 5. We’re going to add a function that lets
us do a lookup in the tree to find out if a value is already present. Because
the tree is ordered by its keys, and in this case we do not care about the keys,
we’ll need to traverse the whole thing until we find the value.

The traversal of the tree will be roughly similar to what we did in
tree:lookup/2, except this time, we will always search down both the left
branch and then the right branch. To write the function, you’ll just need to
remember that a tree node is either {node, {Key, Value, NodeLeft, NodeRight}}
or {node, 'nil'} when empty. With this in mind, we can write a basic imple-
mentation without exceptions:

%% looks for a given value 'Val' in the tree
has_value(_, {node, 'nil'}) ->
 false;
has_value(Val, {node, {_, Val, _, _}}) ->
 true;
has_value(Val, {node, {_, _, Left, Right}}) ->
 case has_value(Val, Left) of
 true -> true;
 false -> has_value(Val, Right)
 end.

The problem with this implementation is that every node of the tree we
branch at must test for the result of the previous branch.

104 Chapter 7

found it!

This is a bit annoying. With the help of throws, we can make something
that will require fewer comparisons.

has_value(Val, Tree) ->
 try has_value1(Val, Tree) of
 false -> false
 catch
 true -> true
 end.

has_value1(_, {node, 'nil'}) ->
 false;
has_value1(Val, {node, {_, Val, _, _}}) ->
 throw(true);
has_value1(Val, {node, {_, _, Left, Right}}) ->
 has_value1(Val, Left),
 has_value1(Val, Right).

The execution of this code is similar to the previous version, except
that we never need to check for the return value—we don’t care about it
at all. In this version, only a throw means the value was found. When this
happens, the tree evaluation stops, and it falls back to the catch on top.
Otherwise, the execution keeps going until the last false is returned, and
that’s what the user sees.

found it!

Of course, this implementation is longer than the previous one. However,
it is possible to gain in speed and clarity by using nonlocal returns with a
throw, depending on the operations you’re doing. The current example is a
simple comparison, and there’s not much to see, but the practice still makes
sense with more complex data structures and operations.

That being said, we’re probably ready to solve real problems in sequen-
tial Erlang.

8
F u n c t i o n a l ly S o l v i n g

P r o b l e m s

So we’re ready to do something practical with all that
Erlang juice we drank. In this chapter, we’ll apply
some of the techniques covered in previous chapters
to solve some interesting problems.

The problems in this chapter were taken from Miran Lipovač a’s Learn
You a Haskell for Great Good! (No Starch Press, 2011; available from http://
learnyouahaskell.com). I decided to use the same problems so curious read-
ers can compare solutions in Erlang and Haskell as they wish. If you do so,
you might find the final results to be pretty similar for two languages with
such different syntaxes. This is because once you understand functional con-
cepts, you’ll find that they’re relatively easy to carry over to other functional
languages.

106 Chapter 8

Reverse Polish Notation Calculator
Most people have learned to write arithmetic expressions with the opera-
tors in between the numbers ((2 + 2) / 5). This is how most calculators let
you insert mathematical expressions, and it’s probably the notation you
were taught in school. This notation has the downside of needing you to
know about operator precedence. For example, multiplication and divi-
sion are more important (have a higher precedence) than addition and
subtraction.

In another notation, called prefix notation or Polish notation, the
operator comes before the operands. Under this notation, (2 + 2) / 5
becomes (/ (+ 2 2) 5). If we decide to say + and / always take two argu-
ments, then (/ (+ 2 2) 5) can simply be written as / + 2 2 5.

However, we will instead focus on Reverse Polish notation (RPN), which
is the opposite of prefix notation: the operator follows the operands. In
RPN, our example is written as 2 2 + 5 /. The expression 9 * 5 + 7 becomes
9 5 * 7 +, and 10 * 2 * (3 + 4) / 2 is translated to 10 2 * 3 4 + * 2 /. This
notation was used a whole lot in early models of calculators, as it takes little
memory to use. In fact, some people still carry around RPN calculators.
We’ll write one of these.

How RPN Calculators Work
First, let’s consider how to read RPN expressions. One way is to find the
operators one by one, and then regroup them with their operands by arity:

10 4 3 + 2 * -
10 (4 3 +) 2 * -
10 ((4 3 +) 2 *) -
(10 ((4 3 +) 2 *) -)
(10 (7 2 *) -)
(10 14 -)
-4

However, in the context of a computer or a calculator, a simpler way to
read RPN expressions is to make a stack of all the operands as we see them.
For example, in the mathematical expression 10 4 3 + 2 * -, the first oper-
and we see is 10. We add that to the stack. Then there is 4, so we also push
that on top of the stack. In third place, we have 3—let’s push that one on
the stack, too. Our stack should now look like this:

3
4
10

Functionally Solving Problems 107

The next character to parse is +. That one is a function of arity 2. In
order to use it, we will need to feed it two operands, which will be taken
from the stack:

3
4
10

7
10

+
3 +
4 3 +
7

So we take that 7 and push it back on top of the stack (yuck, we don’t
want to keep these filthy numbers floating around!). The stack is now [7,10],
and what’s left of the expression is 2 * -. We can take the 2 and push it on
top of the stack. We then see *, which needs two operands to work. Again,
we take them from the stack:

x
2 x
7 2 x
 1 4

2
7
10

14
10

And we push 14 back on top of our stack. All that remains is -, which
also needs two operands. Oh glorious luck! There are two operands left in
our stack. Use them!

14
10

10 14 - -- -4

And so we have our result. This stack-based approach is relatively
foolproof, and the low amount of parsing needed before starting to calcu-
late results explains why it was a good idea for old calculators to use this
approach.

Creating an RPN Calculator
Making our own RPN calculator in Erlang is not too hard once we’ve done
the complex stuff. It turns out the tough part is figuring out what steps need
to be done in order to get our end result, and we just did that. So let’s get
started by opening a file named calc.erl.

The first part to worry about is how we’re going to represent a
mathematical expression. To make things simple, we’ll probably input
them as a string: "10 4 3 + 2 * -". This string has whitespace, which isn’t
part of our problem-solving process, but is necessary in order to use a

108 Chapter 8

simple tokenizer. What would be usable then is a list of terms of the form
["10","4","3","+","2","*","-"] after going through the tokenizer. It turns out the
function string:tokens/2 does just that:

1> string:tokens("10 4 3 + 2 * -", " ").
["10","4","3","+","2","*","-"]

This will be a good representation for our expression.
The next part to define is the stack. How are we going to do that? You

might have noticed that Erlang’s lists act a lot like stacks. Using the cons
operator (|) in [Head|Tail] effectively produces the same behavior as pushing
Head on top of a stack (Tail, in this case). Using a list for a stack will be good
enough.

To read the expression, we just need to do the same thing as we did
when solving the problem by hand. Read each value from the expression,
and if it’s a number, put it on the stack. If it’s a function, pop all the values
it needs from the stack, and then push the result back in. To generalize, we
need to go over the whole expression as a loop only once and accumulate
the results. Sounds like the perfect job for a fold!

What we need to plan for is the function that lists:foldl/3 will apply
on every operator and operand of the expression. This function, because it
will be run in a fold, will need to take two arguments: the first one will be
the element of the expression to work with, and the second one will be the
stack.

We can start writing our code in the calc.erl file. First, we’ll write the
function responsible for all the looping and also the removal of spaces in
the expression:

-module(calc).
-export([rpn/1]).

rpn(L) when is_list(L) ->
 [Res] = lists:foldl(fun rpn/2, [], string:tokens(L, " ")),
 Res.

Next, we’ll implement rpn/2. Note that because each operator and oper-
and from the expression ends up being put on top of the stack, the solved
expression’s result will be on that stack. We need to get that last value out of
there before returning it to the user. This is why we pattern match over [Res]
and return only Res.

Now to the harder part. Our rpn/2 function will need to handle the
stack for all values passed to it. The head of the function will probably look
like rpn(Op,Stack), and its return value will look like [NewVal|Stack]. When we
get regular numbers, the operation will be as follows:

rpn(X, Stack) -> [read(X)|Stack].

Functionally Solving Problems 109

Here, read/1 is a function that converts a string to an integer or a
floating-point value. Sadly, there is no built-in function to do this in Erlang
(it just has functions that convert to only one or the other). So we’ll add the
function ourselves, like this:

read(N) ->
 case string:to_float(N) of
 {error,no_float} -> list_to_integer(N);
 {F,_} -> F
 end.

Here, string:to_float/1 does the conversion from a string such as "13.37"
to its numeric equivalent. However, if there is no way to read a floating-
point value, it returns {error,no_float}. When that happens, we need to call
list_to_integer/1 instead.

Now let’s get back to rpn/2. The numbers we encounter are all added to
the stack. However, because our pattern matches on anything (see Chapter 5
for a discussion of pattern matching), operators will also get pushed on the
stack. To avoid this, we’ll put them all in preceding clauses. The first one
we’ll try this with is the addition:

rpn("+", [N1,N2|S]) -> [N2+N1|S];
rpn(X, Stack) -> [read(X)|Stack].

You can see that whenever we encounter the "+" string, we take two
numbers from the top of the stack (N1,N2) and add them before pushing the
result back onto that stack. This is exactly the same logic we applied when
solving the problem by hand. Trying the program, we can see that it works:

1> c(calc).
{ok,calc}
2> calc:rpn("3 5 +").
8
3> calc:rpn("7 3 + 5 +").
15

The rest is trivial, as we just need to add all the other operators:

rpn("+", [N1,N2|S]) -> [N2+N1|S];
rpn("-", [N1,N2|S]) -> [N2-N1|S];
rpn("*", [N1,N2|S]) -> [N2*N1|S];
rpn("/", [N1,N2|S]) -> [N2/N1|S];
rpn("^", [N1,N2|S]) -> [math:pow(N2,N1)|S];
rpn("ln", [N|S]) -> [math:log(N)|S];
rpn("log10", [N|S]) -> [math:log10(N)|S];
rpn(X, Stack) -> [read(X)|Stack].

Note that functions that take only one argument such as logarithms
need to pop only one element from the stack. It is left as an exercise for the

110 Chapter 8

reader to add functions such as sum and prod, which return the sum of all
the elements read so far and the products of all the elements, respectively.
To help you out, they are already implemented in my version of calc.erl.

Testing the Code
To make sure this all works, we’ll write some very simple unit tests. Erlang’s
= operator can act as an assertion function. Assertions should crash when-
ever they encounter unexpected values, which is exactly what we need. Of
course, there are more advanced testing frameworks for Erlang, including
EUnit and Common Test. We’ll check them out in Chapters 25 and 28 but
for now, the basic = will do the job.

rpn_test() ->
 5 = rpn("2 3 +"),
 87 = rpn("90 3 -"),
 -4 = rpn("10 4 3 + 2 * -"),
 -2.0 = rpn("10 4 3 + 2 * - 2 /"),
 ok = try
 rpn("90 34 12 33 55 66 + * - +")
 catch
 error:{badmatch,[_|_]} -> ok
 end,
 4037 = rpn("90 34 12 33 55 66 + * - + -"),
 8.0 = rpn("2 3 ^"),
 true = math:sqrt(2) == rpn("2 0.5 ^"),
 true = math:log(2.7) == rpn("2.7 ln"),
 true = math:log10(2.7) == rpn("2.7 log10"),
 50 = rpn("10 10 10 20 sum"),
 10.0 = rpn("10 10 10 20 sum 5 /"),
 1000.0 = rpn("10 10 20 0.5 prod"),
 ok.

The test function tries all operations. If no exception is raised, the tests
are considered successful. The first four tests check that the basic arithmetic
functions work correctly. In the fifth test, the try ... catch expects a badmatch
error to be thrown because the expression can’t work:

90 34 12 33 55 66 + * - +
90 (34 (12 (33 (55 66 +) *) -) +)

At the end of rpn/1, the values -3947 and 90 are left on the stack because
there is no operator to work on the 90 that hangs there. There are two pos
sible ways to handle this problem: ignore it and take only the value on top
of the stack (which would be the last result calculated), or crash because
the arithmetic is wrong. Given that Erlang’s policy is to let it crash, that’s the
path chosen here. The part that actually crashes is the [Res] in rpn/1. That
one makes sure only one element—the result—is left in the stack.

Functionally Solving Problems 111

The few tests that are of the form true = FunctionCall1 == FunctionCall2
are there because you can’t have a function call on the left-hand side of =. It
still works as an assertion because we compare the comparison’s result to true.

I’ve also added the test cases for the sum and prod operations, so you can
test them after implementing these functions. If all tests are successful, you
should see the following:

1> c(calc).
{ok,calc}
2> calc:rpn_test().
ok
3> calc:rpn("1 2 ^ 2 2 ^ 3 2 ^ 4 2 ^ sum 2 -").
28.0

Here, 28.0 is indeed equal to sum(1² + 2² + 3² + 4²) - 2. Try as many cal-
culations as you wish.

N o t e 	 One way to improve our calculator is to make sure it raises badarith errors when it
crashes because of unknown operators or values left on the stack, rather than raising
badmatch errors. It would certainly make debugging easier for the user of the calc
module.

Heathrow to London
Our next problem is also taken from Learn You a Haskell. You’re on a plane
due to land at Heathrow Airport in the next few hours. You need to get to
London as fast as possible. Your rich uncle is dying, and you want to be the
first one there to claim dibs on his estate.

There are two roads going from Heathrow to London, and a bunch of
smaller streets linking them together. Because of speed limits and traffic,
some parts of the roads and smaller streets take longer to travel than oth-
ers. Before you land, you decide to maximize your chances by finding the
optimal path to your uncle’s house. Here’s the map you’ve found on your
laptop:

5 40 10

10

50

30 20 25

90 2 8

112 Chapter 8

Having become a huge fan of Erlang after reading online books, you
decide to solve the problem using that language. To make it easier to work
with the map, you enter the following data in a file named road.txt:

50
10
30
5
90
20
40
2
25
10
8
0

The path is laid out in the pattern A1, B1, X1, A2, B2, X2, ..., An, Bn, Xn,
where X is one of the roads joining the A side to the B side of the map. We
insert a 0 as the last X segment, because no matter what we do, we’re at our
destination already. Data can probably be organized in tuples of three ele-
ments of the form {A,B,X}.

The next thing you realize is that it’s worthless to try to solve this prob-
lem in Erlang when you don’t even know how to solve it by hand. In order to
do this, we’ll use what recursion taught us.

Solving the Problem Recursively
When writing a recursive function, the first thing to do is to find the base
case. For the problem at hand, this would be if we had only one tuple to
analyze; that is, if we only had to choose between A, B (and crossing X, which
in this case is useless because we’re at our destination):

10

15

Then the only choice is picking whether path A or path B is the short-
est. By understanding how recursion works, we know that we should try to
converge toward the base case. This means that on each step we’ll take, we’ll
want to reduce the problem to choosing between A and B for the next step.

Functionally Solving Problems 113

Let’s extend our map and start over:

10

15 0
3

5

1

Ah! It gets interesting! How can we reduce the triple {5,1,3} to a strict
choice between A and B? Let’s see how many options are possible for A. To
get to the intersection of A1 and A2 (we’ll call this point A1), we can either
take road A1 directly (5) or come from B1 (1) and then cross over X1 (3). In
this case, the first option (5) is longer than the second one (4). For option A,
the shortest path is [B, X]. So what are the options for B? We can either pro-
ceed from A1 (5) and then cross over X1 (3) or strictly take the path B1 (1).

So we now have a length 4 with the path [B, X] toward the first intersec-
tion A and a length 1 with the path [B] toward the intersection of B1 and B2.
Now we must decide how to go to the second point A (the intersection of A2
and the endpoint or X2) and the second point B (intersection of B2 and X2).
To make a decision, I suggest we do the same as before (and you don’t have
much choice but to obey, given that I’m the guy writing this book). Here we go!

We can get to the next point A by either taking the path A2 from
[B, X], which gives us a length of 14 (14 = 4 + 10), or by taking B2 then X2
from [B], which gives us a length of 16 (16 = 1 + 15 + 0). In this case, the
path [B, X, A] is better than [B, B, X].

10

15 0
3

5

1

We can also get to the next point B by either taking the path A2 from
[B, X], and then crossing over X2 for a length of 14 (14 = 4 + 10 + 0), or by
taking the road B2 from [B] for a length of 16 (16 = 1 + 15). Here, the best
path is to pick the first option: [B, X, A, X].

When this whole process is complete, we’re left with two paths: A or
B, both of length 14. Either of them is the right one. The last selection will
always have two paths of the same length, given the last X segment has a
length of 0. By solving our problem recursively, we’ve made sure to always
get the shortest path at the end. Not too bad, eh?

114 Chapter 8

Subtly enough, we’ve given ourselves the basic logical parts we need to
build a recursive function. We could implement it, but I promised we would
have very few recursive functions to write ourselves. Instead, we’ll use a fold.

N o t e 	 While I have shown folds being used and constructed with lists, folds represent a
broader concept of iterating over a data structure with an accumulator. As such,
folds can be implemented over trees, dictionaries, arrays, database tables, and so on.
It is sometimes useful when experimenting to use abstractions like maps and folds
because they make it easier to later change the data structure you use to work with
your own logic.

Writing the Code
So where were we? Ah, yes! We have the file we’re going to feed as input
ready. To do file manipulations, the file module is our best tool. It contains
a lot of functions common to many programming languages in order to deal
with files themselves (setting permissions, moving files around, renaming
files, deleting files, and so on).

The file module also contains the usual functions to read and/or write
from files, such as file:open/2 and file:close/1 to do as their names say (open
and close files!), file:read/2 to get the content of a file (either as string or a
binary), file:read_line/1 to read a single line, and file:position/3 to move the
pointer of an open file to a given position.

The module also contains a bunch of shortcut functions, such as
file:read_file/1 (opens and reads the contents as a binary), file:consult/1
(opens and parses a file as Erlang terms), file:pread/2 (changes the position
and then reads content), and file:pwrite/2 (changes the position and writes
content).

With all these choices available, it’s going to be easy to find a function
to read our road.txt file. Because we know our road is relatively small, we’ll
call file:read_file("road.txt").:

1> {ok, Binary} = file:read_file("road.txt").
{ok,<<"50\r\n10\r\n30\r\n5\r\n90\r\n20\r\n40\r\n2\r\n25\r\n10\r\n8\r\n0\r\n">>}
2> S = string:tokens(binary_to_list(Binary), "\r\n\t ").
["50","10","30","5","90","20","40","2","25","10","8","0"]

Note that in this case, we added a space (" ") and a tab ("\t") to
the valid tokens, so the file could also have been written in the form
"50 10 30 5 90 20 40 2 25 10 8 0".

Given that list, we’ll need to transform the strings into integers.

3> [list_to_integer(X) || X <- S].
[50,10,30,5,90,20,40,2,25,10,8,0]

Functionally Solving Problems 115

Let’s start a new module called road.erl and write down this logic:

-module(road).
-compile(export_all).

main() ->
 File = "road.txt",
 {ok, Bin} = file:read_file(File),
 parse_map(Bin).

parse_map(Bin) when is_binary(Bin) ->
 parse_map(binary_to_list(Bin));
parse_map(Str) when is_list(Str) ->
 [list_to_integer(X) || X <- string:tokens(Str,"\r\n\t ")].

The function main/0 is responsible for reading the content of the file
and passing it on to parse_map/1. Because we use the function file:read_file/1
to get the contents of road.txt, the result we obtain is a binary. For this rea-
son, we’ve made the function parse_map/1 match on both lists and binaries.
In the case of a binary, we just call the function again with the string being
converted to a list (our function to split the string works only on lists).

The next step in parsing the map would be to regroup the data into the
{A,B,X} form described earlier. Sadly, there’s no simple generic way to pull
elements from a list three at a time, so we’ll need to pattern match our way
in a recursive function in order to accomplish this:

group_vals([], Acc) ->
 lists:reverse(Acc);
group_vals([A,B,X|Rest], Acc) ->
 group_vals(Rest, [{A,B,X} | Acc]).

That function works in a standard tail-recursive manner; there’s nothing
too complex going on here. We’ll just need to call it by modifying parse_map/1
a bit:

parse_map(Bin) when is_binary(Bin) ->
 parse_map(binary_to_list(Bin));
parse_map(Str) when is_list(Str) ->
 Values = [list_to_integer(X) || X <- string:tokens(Str,"\r\n\t ")],
 group_vals(Values, []).

Let’s try to compile it all and see if we now have a road that makes sense.

1> c(road).
{ok,road}
2> road:main().
[{50,10,30},{5,90,20},{40,2,25},{10,8,0}]

116 Chapter 8

Ah yes, that looks right. We get the blocks we need to write our func-
tion that will then fit in a fold. For this to work, finding a good accumulator
is necessary.

To decide what to use as an accumulator, the method I find the easiest
to employ is to imagine myself in the middle of the algorithm while it runs.
For this specific problem, we’ll imagine that we’re currently trying to find
the shortest path of the second triple ({5,90,20}). To decide on which path
is the best, we need to have the result from the previous triple. Luckily, we
know how to get that, because we don’t need an accumulator, and we have
all that logic already worked out. So for A, we have the following:

The path starting at B is of length 40

[B,X] is shorter than [A]: pick that one!

The path starting at A is of length 50

5 40 10

10

50

30 20 25

90 2 8

And we take the shorter of these two paths.
For B, the choice is similar:

The path starting at B is of length 10

[B] is shorter than [A,X]: choose it :)

The path starting at A is of length 80

5 40 10

10

50

30 20 25

90 2 8

So now we know that the current best path coming from A is [B, X].
We also know it has a length of 40. For B, the path is simply [B], and the
length is 10. We can use this information to find the next best paths for A
and B by reapplying the same logic, but counting the previous ones in the
expression.

Functionally Solving Problems 117

The other data we need is the path traveled so we can show it to the
user. Given that we need two paths (one for A and one for B) and two accu-
mulated lengths, our accumulator can take the form {{DistanceA, PathA},
{DistanceB, PathB}}. That way, each iteration of the fold has access to all the
state, and we build it up to show it to the user in the end.

This gives us all the parameters our function will need: the {A,B,X} tuples
and an accumulator of the form {{DistanceA,PathA}, {DistanceB,PathB}}.

We can put this into code in order to get our accumulator as follows:

shortest_step({A,B,X}, {{DistA,PathA}, {DistB,PathB}}) ->
 OptA1 = {DistA + A, [{a,A}|PathA]},
 OptA2 = {DistB + B + X, [{x,X}, {b,B}|PathB]},
 OptB1 = {DistB + B, [{b,B}|PathB]},
 OptB2 = {DistA + A + X, [{x,X}, {a,A}|PathA]},
 {erlang:min(OptA1, OptA2), erlang:min(OptB1, OptB2)}.

Here, OptA1 gets the first option for A (going through A), and OptA2
gets the second one (going through B then X). The variables OptB1 and
OptB2 get the similar treatment for point B. Finally, we return the accumu
lator with the paths obtained.

For the paths saved in this code, I decided to use the form [{x,X}] rather
than [x] for the simple reason that it might be nice for the user to know the
length of each segment. We’re also accumulating the paths backward ({x,X}
comes before {b,B}). This is because we’re in a fold, which is tail recursive.
The whole list is reversed given how we accumulate it, so we must put the
last one traversed before the others.

Finally, we use erlang:min/2 to find the shortest path. It might sound
weird to use such a comparison function on tuples, but remember that
every Erlang term can be compared to any other! Because the length is the
first element of the tuple, we can sort them that way.

What’s left to do is to stick that function into a fold:

optimal_path(Map) ->
 {A,B} = lists:foldl(fun shortest_step/2, {{0,[]}, {0,[]}}, Map),
 {_Dist,Path} = if hd(element(2,A)) =/= {x,0} -> A;
 hd(element(2,B)) =/= {x,0} -> B
 end,
 lists:reverse(Path).

At the end of the fold, both paths should end up having the same dis-
tance, except one is going through the final {x,0} segment. The if looks
at the last visited element of both paths and returns the one that doesn’t
go through {x,0}. Picking the path with the fewest steps (compare with
length/1) would also work. Once the shortest path has been selected, it is
reversed (it was built in a tail-recursive manner; you must reverse it). You
can then display it to the world, or keep it secret and get your rich uncle’s
estate. To do that, we need to modify the main function to call optimal_path/1.
Then it can be compiled.

118 Chapter 8

main() ->
 File = "road.txt",
 {ok, Bin} = file:read_file(File),
 optimal_path(parse_map(Bin)).

And we can try it as follows:

1> c(road).
{ok,road}
2> road:main().
[{b,10},{x,30},{a,5},{x,20},{b,2},{b,8}]

Oh, look! We have the right answer. Great job!
Or, to put it in a visual way:

5 40 10

10

50

30 20 25

90 2 8

Running the Program Without the Erlang Shell
You know what would be really useful? Being able to run our program from
outside the Erlang shell. To do this, we’ll need to change our main function
again:

main([FileName]) ->
 {ok, Bin} = file:read_file(FileName),
 Map = parse_map(Bin),
 io:format("~p~n",[optimal_path(Map)]),
 erlang:halt().

The main function now has an arity of 1, needed to receive parameters
from the command line. We’ve also added the function erlang:halt/0, which
will shut down the Erlang VM after being called. We’ve wrapped the call to
optimal_path/1 into io:format/2 because that’s the only way to have the text
visible outside the Erlang shell.

With all of this, your road.erl file should now look like this (minus
comments):

-module(road).
-compile(export_all).

main([FileName]) ->
 {ok, Bin} = file:read_file(FileName),

Functionally Solving Problems 119

 Map = parse_map(Bin),
 io:format("~p~n",[optimal_path(Map)]),
 erlang:halt(0).

%% Transform a string into a readable map of triples.
parse_map(Bin) when is_binary(Bin) ->
 parse_map(binary_to_list(Bin));
parse_map(Str) when is_list(Str) ->
 Values = [list_to_integer(X) || X <- string:tokens(Str,"\r\n\t ")],
 group_vals(Values, []).

group_vals([], Acc) ->
 lists:reverse(Acc);
group_vals([A,B,X|Rest], Acc) ->
 group_vals(Rest, [{A,B,X} | Acc]).

%% Picks the best of all paths, woo!
optimal_path(Map) ->
 {A,B} = lists:foldl(fun shortest_step/2, {{0,[]}, {0,[]}}, Map),
 {_Dist,Path} = if hd(element(2,A)) =/= {x,0} -> A;
 hd(element(2,B)) =/= {x,0} -> B
 end,
 lists:reverse(Path).

%% actual problem solving
%% Change triples of the form {A,B,X}
%% where A,B,X are distances and a,b,x are possible paths
%% to the form {DistanceSum, PathList}.
shortest_step({A,B,X}, {{DistA,PathA}, {DistB,PathB}}) ->
 OptA1 = {DistA + A, [{a,A}|PathA]},
 OptA2 = {DistB + B + X, [{x,X}, {b,B}|PathB]},
 OptB1 = {DistB + B, [{b,B}|PathB]},
 OptB2 = {DistA + A + X, [{x,X}, {a,A}|PathA]},
 {erlang:min(OptA1, OptA2), erlang:min(OptB1, OptB2)}.

And we can run the code like this:

$ erlc road.erl
$ erl -noshell -run road main road.txt
[{b,10},{x,30},{a,5},{x,20},{b,2},{b,8}]

And yep, we get the right answer! That’s pretty much all you need to do
to get things to work, though you could also make yourself a bash/batch
script to wrap the line into a single executable, or you could check out the
escript command (which provides scripting support) to get similar results.

As you’ve seen with these two exercises, solving problems is much easier
when you break them into small parts that you can solve individually before
piecing everything together. It’s also important not to dive right in before you
fully understand the problem, since this will usually end up creating more
work in the long run. Finally, a few tests are always appreciated. They allow
you to make sure everything works initially and will return the same results
down the road, even if you change the particulars of the implementation.

120 Chapter 8

Using e scr ip t

The Erlang escript command provides a simple way to run Erlang programs with-
out starting the erl application directly. Basically, the command takes a module
and allows you to interpret it without needing to compile it first.

The structure of the module remains similar to what you had before, but you
need to change its head. Instead of having a -module(Name) attribute, the following
is required:

#!/usr/bin/env escript
%% -*- erlang -*-
%%! -pa 'ebin/' [Other erl Arguments]
main([StringArguments]) ->
 ...

The function main/1 will automatically be called when you start the script,
either as ./script-name.erl or escript script-name.erl (the latter makes it easier to
run on Windows). The module will run as a normal script.

If you want the benefits of escript without needing to interpret the code (which
is slower) and would prefer compiling the code, just add the -mode(compile). mod-
ule attribute somewhere in the file.

To find out more about escript, read the documentation that comes with
Erlang, which is also available online at http://erlang.org/doc/man/escript.html.

9
A S h o r t V i s i t t o C o m m o n

D a t a S t r u c t u r e s

Chances are that you now understand the functional
subset of Erlang pretty well and could read many pro-
grams without a problem. However, I bet it’s still a bit
hard to think about how to build a real, useful program,
even though Chapter 8 was about solving problems in a functional man-
ner. Well, that’s how I felt at this point in my Erlang studies—if you’re doing
better, congratulations!

So far, we’ve covered a bunch of topics, including most of the basic
data types, the shell, how to write modules and functions (with recursion),
different ways to compile, how to control the flow of the program, how to
handle exceptions, and how to abstract away some common operations.
We’ve also gone over how to store data with tuples, lists, and an incomplete
implementation of a binary search tree. What we haven’t talked about yet is
the other data structures provided to the programmer in the Erlang stan-
dard library. This chapter fills that void, with information about records,
key/value stores, sets, directed graphs, and queues.

122 Chapter 9

Records
Records are, first of all, a hack. They are more or less
an afterthought to the language and can have their
share of inconveniences. However, they’re still pretty
useful when you have a small data structure and you
want to access the attributes by name directly. Used this
way, Erlang records are a lot like structs in C.

Defining Records
Records are declared as module attributes in the following manner:

-module(records).
-compile(export_all).

-record(robot, {name,
 type=industrial,
 hobbies,
 details=[]}).

Here, we have a record representing robots with four fields: name, type,
hobbies, and details. There are also default values for type and details, which
are industrial and [], respectively.

Here’s how to create an instance of a record in the module records:

first_robot() ->
 #robot{name="Mechatron",
 type=handmade,
 details=["Moved by a small man inside"]}.

Let’s try running the code:

1> c(records).
{ok,records}
2> records:first_robot().
{robot,"Mechatron",handmade,undefined,
 ["Moved by a small man inside"]}

Whoops! Here comes the hack! Erlang records are just syntactic sugar
on top of tuples. Fortunately, there’s a way to keep the illusion going. The
Erlang shell has the command rr(Module), which lets you load record defini-
tions from Module. Try it with our records module.

3> rr(records).
[robot]
4> records:first_robot().
#robot{name = "Mechatron",type = handmade,
 hobbies = undefined,
 details = ["Moved by a small man inside"]}

A Short Visit to Common Data Structures 123

N o t e 	 The rr() function can take more than a module name. It can also take a wildcard
(like rr("*")) and a list as a second argument to specify which records to load.

Ah, there! This makes it much easier to work with records. You’ll notice
that in first_robot/0, we did not define the hobbies field, and it has no default
value in its declaration. By default, Erlang sets the value to undefined for you.

To see the behavior of the defaults we set in the robot definition, let’s
compile the following function:

car_factory(CorpName) ->
 #robot{name=CorpName, hobbies="building cars"}.

Now run it.

5> c(records).
{ok,records}
6> records:car_factory("Jokeswagen").
#robot{name = "Jokeswagen",type = industrial,
 hobbies = "building cars",details = []}

Now we have an industrial robot that likes to spend time building cars.

Reading Values from Records
Simply writing records isn’t very useful. We need a way to extract values
from them. There are basically two ways to do this: with a special dot syntax
or through pattern matching. Assuming you have the record definition for
robots loaded, we’ll take a look at the dot syntax first.

5> Crusher = #robot{name="Crusher", hobbies=["Crushing people","petting cats"]}.
#robot{name = "Crusher",type = industrial,
 hobbies = ["Crushing people","petting cats"],
 details = []}

Ot he r R ecor d F unc t ions for t he E r l a ng She l l

Along with rr(), Erlang provides a few other functions to deal with records in the shell:

•	 Use rd(Name, Definition) to define a record in a manner similar to the
-record(Name, Definition) function used in our module.

•	 Use rf() to “unload” all records.

•	 Use rf(Name) or rf([Names]) to get rid of specific definitions.

•	 Use rl() to print all record definitions currently defined in the shell in a way
that makes it easy to copy and paste them into the module. Use rl(Name) or
rl([Names]) to print only specific records.

124 Chapter 9

6> Crusher#robot.hobbies.
["Crushing people","petting cats"]

Ugh—not a pretty syntax. This is due to the nature of records as tuples.
Because they’re just a kind of compiler trick, you need to include keywords
to define which record goes with which variable; hence, the #robot part of
Crusher#robot.hobbies. It’s sad, but there’s no way out of it. Worse than that,
nested records can get pretty ugly:

7> NestedBot = #robot{details=#robot{name="erNest"}}.
#robot{name = undefined,type = industrial,
 hobbies = undefined,
 details = #robot{name = "erNest",type = industrial,
 hobbies = undefined,details = []}}
8> (NestedBot#robot.details)#robot.name.
"erNest"

And no, the parentheses are not mandatory. You could also type
NestedBot#robot.details#robot.name. For backward compatibility (with Erlang
versions before R14A) and to suit my personal preferences, I tend to use
the version with parentheses, because I think that they make the code more
readable.

The following example further demonstrates the dependence of records
on tuples.

9> #robot.type.
3

This outputs which element of the underlying tuple type is.
One redeeming feature of records is that you can use them in function

heads to pattern match and also in guards. To see how this works, declare
a new record at the top of the file, and then add the functions under the
declaration.

-record(user, {id, name, group, age}).

%% Use pattern matching to filter.
admin_panel(#user{name=Name, group=admin}) ->
 Name ++ " is allowed!";
admin_panel(#user{name=Name}) ->
 Name ++ " is not allowed".

%% Can extend user without problem.
adult_section(U = #user{}) when U#user.age >= 18 ->
 %% Show stuff that can't be written in such a text.
 allowed;
adult_section(_) ->
 %% Redirect to Sesame Street site.
 forbidden.

A Short Visit to Common Data Structures 125

The syntax to bind a variable to any field of a record is demonstrated in
the admin_panel/1 function (it’s possible to bind variables to more than one
field).

Regarding the adult_section/1 function, note that you need to do
SomeVar = #some_record{} in order to bind the whole record to a variable.

Then we do the compiling as usual.

10> c(records).
{ok,records}
11> rr(records).
[robot,user]
12> records:admin_panel(#user{id=1, name="ferd", group=admin, age=96}).
"ferd is allowed!"
13> records:admin_panel(#user{id=2, name="you", group=users, age=66}).
"you is not allowed"
14> records:adult_section(#user{id=21, name="Bill", group=users, age=72}).
allowed
15> records:adult_section(#user{id=22, name="Noah", group=users, age=13}).
forbidden

This shows that it’s not necessary to match on all parts of the tuple, or
even know how many there are when writing the function. We can match
on only the age or the group, if that’s what’s needed, and forget about all the
rest of the structure. If we were to use a normal tuple, the function definition
might need to look a bit like function({record, _, _, ICareAboutThis, _, _}) ->
Then, whenever someone decided to add an element to the tuple, someone
else (probably angry about it) would need to update all the functions where
that tuple is used.

Updating Records
The following function illustrates how to update a record (they wouldn’t be
very useful otherwise).

repairman(Rob) ->
 Details = Rob#robot.details,
 NewRob = Rob#robot{details=["Repaired by repairman"|Details]},
 {repaired, NewRob}.

Now compile it.

16> c(records).
{ok,records}
17> records:repairman(#robot{name="Ulbert", hobbies=["trying to have feelings"]}).
{repaired,#robot{name = "Ulbert",type = industrial,
 hobbies = ["trying to have feelings"],
 details = ["Repaired by repairman"]}}

126 Chapter 9

As you can see, the robot has been repaired. The syntax to update
records is a bit special here. It looks like we’re updating the record in place
(Rob#robot{Field=NewValue}), but it’s all compiler trickery to call the under
lying erlang:setelement/3 function.

Sharing Records
Because records can be useful and code duplication is annoying, Erlang
programmers frequently share records across modules with the help of
header files. Erlang header files are similar to their C counterparts. A header
file is nothing but a snippet of code that gets added to the module as if it
were written there in the first place.

Create a file named records.hrl with the following content:

%% This is a .hrl (header) file.
-record(included, {some_field,
 some_default = "yeah!",
 unimaginative_name}).

To include it in records.erl, just add the following line to the module:

-include("records.hrl").

And then add the following function to try it:

included() -> #included{some_field="Some value"}.

Now compile it as usual.

18> c(records).
{ok,records}
19> rr(records).
[included,robot,user]
20> records:included().
#included{some_field = "Some value",some_default = "yeah!",
 unimaginative_name = undefined}

Hooray! That’s about it for records. As you’ve seen, their syntax is not
pretty, and they’re not much more than a hack, but they’re relatively impor-
tant for the maintainability of your code.

W a r n i n g 	 You will often see open source software using the method shown here of having a
project-wide .hrl file for records that are shared across all modules. While I felt obli-
gated to document this use, I strongly recommend that you keep all record definitions
local, within one module. If you want some other module to look at a record’s innards,
write functions to access its fields and keep its details as private as possible. This
helps prevent name clashes, avoids problems when upgrading code, and just gener-
ally improves the readability and maintainability of your code.

A Short Visit to Common Data Structures 127

Key/Value Stores
Back in Chapter 5, we built a tree and then used it as a
key/value store for an address book. That address book
sucked. We couldn’t delete or convert it to anything use-
ful. It was a good demonstration of recursion, but not
much more.

Now is the time to introduce you to a bunch of useful data structures
and modules to store data under a certain key. I won’t define what every
function does, show entire examples, or go through all the modules, because
you can easily find that information in Erlang’s documentation. Consider
me as “someone responsible for raising awareness about key/value stores in
Erlang” (sounds like a good title—I just need one of those ribbons).

Stores for Small Amounts of Data
For storing small amounts of data, basically two types of data structures can
be used: a property list (proplist) or an ordered dictionary (orddict).

Proplists

A proplist is any list of tuples of the form [{Key,Value}]. Proplists are a weird
kind of structure because that’s the only rule that applies to them. In fact,
the rules are so relaxed that the list can also contain Boolean values, integers,
and whatever else you want. Here, we’re interested in the idea of a tuple
with a key and a value in a list.

To work with proplists, use the proplists module. It contains functions
such as proplists:delete/2, proplists:get_value/2, proplists:get_all_values/2,
proplists:lookup/2, and proplists:lookup_all/2. You can get their definitions
from Erlang’s documentation.

You’ll notice there is no function to add or update an element of the
list. This shows how loosely defined proplists are as a data structure. In
fact, a proplist is more often appropriate when you need a list of properties.
For example, we could describe a dog as the proplist [{name, buddy}, {race,
husky}, friendly], where the value friendly is equivalent to {friendly, true}.

If you want to add an element to a proplist, you must use the cons oper-
ator to insert your element manually (NewList = [NewElement|OldList]). This
works well even for updates, because the proplists module will look through
the list in order and stop as soon as it finds a matching element. You can
also use functions such as lists:keyreplace/4 to update a proplist if you need
to do it a lot, as this approach avoids making the proplist longer as time
goes on. Using two modules for one small data structure is not the cleanest
technique, but because proplists are so loosely defined, they’re often used
to deal with configuration lists.

Orddicts

If you want a more complete key/value store for small amounts of data,
the orddict module is what you need. Orddicts are proplists with a taste for

128 Chapter 9

formality. Each key can be there only once. The whole list is sorted so, on
average, lookups are faster. The items need to respect a strict {Key, Value}
structure. You’re not expected to edit orddicts as lists, as with proplists, but
to use the functional interface for all the operations you need.

Common functions for CRUD (Create, Read, Update, and Delete)
usage include orddict:store/3, orddict:find/2 (when you do not know whether
the key is in the dictionaries), orddict:fetch/2 (when you know it is there
or that it must be there), and orddict:erase/2. You can create an orddict by
using orddict:new/0 or orddict:from_list/1. Again, you can look up these func-
tions in the Erlang documentation.

W a r n i n g 	 To create and manipulate the orddict, you might be tempted to manually modify the
key/value list, but you should always use the functions provided by the orddict mod-
ule to avoid ordering errors.

Orddicts are generally a good compromise between complexity
and efficiency for up to about 75 elements (see my benchmark, keyval_
benchmark.erl, available with the rest of the code for this book). After that
amount, you should switch to different key/value stores, such as the ones
discussed next.

Larger Dictionaries: Dicts and GB Trees
Erlang provides two key/value struc-
tures to deal with larger amounts of
data: dictionaries (dicts) and general
balanced (GB) trees. Dicts have
the same interface as orddicts:
dict:store/3, dict:find/2, and
dict:fetch/2, dict:erase/2. They
also have every other function
from orddict, such as dict:map/2
and dict:fold/2 (pretty useful to work on the whole data structure!). Dicts
are thus very good choices for scaling up orddicts whenever it is needed.

GB trees, handled through the gb_trees module, have many more func-
tions that give you more direct control over how the structure is to be used.
There are basically two modes for gb_trees: the mode where you know your
structure inside and out (I call this the smart mode), and the mode where
you can’t assume much about it (I call this the naive mode). In naive mode,
the functions are gb_trees:enter/2, gb_trees:lookup/2, and gb_trees:delete_
any/2. The related smart functions are gb_trees:insert/3, gb_trees:get/2,
gb_trees:update/3, and gb_trees:delete/2. There is also gb_trees:map/2, which
is a tree-based equivalent to lists:map/2 (always a nice thing to have when
you need it).

The disadvantage of naive functions over smart ones is that because
GB trees are balanced trees, whenever you insert a new element (or delete a
bunch of elements), the tree may need to balance itself. This can take time
and memory (even in useless checks that end up changing nothing but seek

Awesome

it’s you

Don’t Dr ink Too Much Kool- A id

What about code that requires data structures with only numeric keys? For that,
most languages usually have arrays. Erlang has arrays, too. They allow you to
access elements with numeric indices and to fold over the whole structure while
possibly ignoring undefined slots. However, very few people use them.

Erlang arrays, unlike their imperative counterparts, do not have such things
as constant-time insertion or lookup. Instead, they are said to be persistent, as they
allow no destructive updates. For this reason, they’re usually slower than those in
languages that support destructive assignment. People who know and use that
type of array usually do so with a given set of algorithms and a precise style in
mind. Erlang’s arrays hardly allow that. They tend to sit in a dark corner, alone.

Erlang programmers who need to do matrix manipulations and other jobs
that require arrays tend to use concepts called ports to let other languages do
the heavy lifting, or C nodes, linked-in drivers, and native implemented functions
(NIFs). See the Erlang documentation for more details.

A Short Visit to Common Data Structures 129

to make sure the tree is still balanced). The smart functions all assume
that the key is present in the tree. This lets you skip all the safety checks and
results in faster operations.

When should you use the gb_trees module rather than dict functions?
Well, it’s not a clear decision. As the benchmark module I wrote (keyval_
benchmark.erl) shows, GB trees and dicts have somewhat similar performances
in many respects. However, the benchmark demonstrates that dicts have
the best read speeds, and the GB trees tend to be a little quicker on other
operations.

Also note that while dicts have a fold function, GB trees don’t. Instead,
they have an iterator function, which returns a bit of the tree on which you
can call gb_trees:next(Iterator) to get the following values in order. This
means that you need to write your own recursive functions on top of using
gb_trees, rather than using a generic fold. On the other hand, gb_trees lets
you have quick access to the smallest and largest elements of the structure
with gb_trees:smallest/1 and gb_trees:largest/1. This is because a GB tree
preserves the order of all elements inside of it, from the smallest to the larg-
est. A dict, on the other hand, will not provide this ordering. As such, if you
need to be able to traverse your key/value store in order, GB trees might be
a good option.

So, your application’s needs are what should govern which key/value
store you choose. You’ll need to consider factors such as how much data you
have to store and what you need to do with it. Measure, profile, and bench-
mark to make sure.

formality. Each key can be there only once. The whole list is sorted so, on
average, lookups are faster. The items need to respect a strict {Key, Value}
structure. You’re not expected to edit orddicts as lists, as with proplists, but
to use the functional interface for all the operations you need.

Common functions for CRUD (Create, Read, Update, and Delete)
usage include orddict:store/3, orddict:find/2 (when you do not know whether
the key is in the dictionaries), orddict:fetch/2 (when you know it is there
or that it must be there), and orddict:erase/2. You can create an orddict by
using orddict:new/0 or orddict:from_list/1. Again, you can look up these func-
tions in the Erlang documentation.

W a r n i n g 	 To create and manipulate the orddict, you might be tempted to manually modify the
key/value list, but you should always use the functions provided by the orddict mod-
ule to avoid ordering errors.

Orddicts are generally a good compromise between complexity
and efficiency for up to about 75 elements (see my benchmark, keyval_
benchmark.erl, available with the rest of the code for this book). After that
amount, you should switch to different key/value stores, such as the ones
discussed next.

Larger Dictionaries: Dicts and GB Trees
Erlang provides two key/value struc-
tures to deal with larger amounts of
data: dictionaries (dicts) and general
balanced (GB) trees. Dicts have
the same interface as orddicts:
dict:store/3, dict:find/2, and
dict:fetch/2, dict:erase/2. They
also have every other function
from orddict, such as dict:map/2
and dict:fold/2 (pretty useful to work on the whole data structure!). Dicts
are thus very good choices for scaling up orddicts whenever it is needed.

GB trees, handled through the gb_trees module, have many more func-
tions that give you more direct control over how the structure is to be used.
There are basically two modes for gb_trees: the mode where you know your
structure inside and out (I call this the smart mode), and the mode where
you can’t assume much about it (I call this the naive mode). In naive mode,
the functions are gb_trees:enter/2, gb_trees:lookup/2, and gb_trees:delete_
any/2. The related smart functions are gb_trees:insert/3, gb_trees:get/2,
gb_trees:update/3, and gb_trees:delete/2. There is also gb_trees:map/2, which
is a tree-based equivalent to lists:map/2 (always a nice thing to have when
you need it).

The disadvantage of naive functions over smart ones is that because
GB trees are balanced trees, whenever you insert a new element (or delete a
bunch of elements), the tree may need to balance itself. This can take time
and memory (even in useless checks that end up changing nothing but seek

Awesome

it’s you

Don’t Dr ink Too Much Kool- A id

What about code that requires data structures with only numeric keys? For that,
most languages usually have arrays. Erlang has arrays, too. They allow you to
access elements with numeric indices and to fold over the whole structure while
possibly ignoring undefined slots. However, very few people use them.

Erlang arrays, unlike their imperative counterparts, do not have such things
as constant-time insertion or lookup. Instead, they are said to be persistent, as they
allow no destructive updates. For this reason, they’re usually slower than those in
languages that support destructive assignment. People who know and use that
type of array usually do so with a given set of algorithms and a precise style in
mind. Erlang’s arrays hardly allow that. They tend to sit in a dark corner, alone.

Erlang programmers who need to do matrix manipulations and other jobs
that require arrays tend to use concepts called ports to let other languages do
the heavy lifting, or C nodes, linked-in drivers, and native implemented functions
(NIFs). See the Erlang documentation for more details.

130 Chapter 9

N o t e 	 Some special key/value stores exist to deal with resources of different sizes. Such stores
are ETS tables, Dets tables, and the Mnesia database. Their use is strongly related to
the concepts of multiple processes and distribution, so we’ll get to them in Chapter 25.
I’m mentioning them now just to pique your curiosity and as a reference for those who
are interested.

A Set of Sets
If you’ve ever studied set theory in
a mathematics class, you have an
idea about what sets can do. If you
haven’t, you might want to skip this
section.

Sets are groups of unique ele-
ments that you can compare and
operate on—find which elements
are in two groups, in none of them,
in only one or the other, and so on.
There are advanced operations that
let you define relations and operate on these relations, and much more. I’m
not going to dive into the theory here but just give you an idea of what is
available.

Erlang has four main modules to deal with sets. This seems a bit weird
at first, but it’s because the implementers agreed that there was no “best”
way to build a set. The four modules are as follows:

ordsets

ordsets module sets are implemented as sorted lists. They’re mainly
useful for small sets, and are the slowest kind of set, but they have the
simplest and most readable representation of all sets. Some of the many
standard functions for them are ordsets:new/0, ordsets:is_element/2,
ordsets:add_element/2, ordsets:del_element/2, ordsets:union/1, and
ordsets:intersection/1.

sets

sets (the module) is implemented on top of a structure similar to the
one used by dicts. The sets module implements the same interface as
ordsets, but its sets scale much better. Like dicts, they’re especially good
for read-intensive manipulations, such as checking whether some ele-
ment is part of the set.

gb_sets

gb_sets module sets are constructed above a GB tree structure similar
to the one used in the gb_trees module. gb_sets is to sets what gb_trees
is to dict: an implementation that is faster when considering opera-
tions other than reading, leaving you with more control. While gb_sets

A Short Visit to Common Data Structures 131

implements the same interface as sets and ordsets, it adds more func-
tions. As with gb_trees, we have smart versus naive functions, iterators,
and quick access to the smallest and largest values.

sofs

Sets of sets, created with the sofs module, are implemented with sorted
lists, stuck inside a tuple with some metadata. This is the module to
use if you want to have full control over relationships between sets and
families, enforce set types, and so on. These sets are what you want if
you need the mathematics concept of sets, rather than just groups of
unique elements.

It’s a bit confusing to have so many options available. Björn Gustavsson,
from the Erlang/OTP team and programmer of Wings 3D, suggests using
gb_sets in most circumstances, using ordset when you need a clear represen-
tation that you want to process with your own code, and using sets when
you need the =:= operator (see http://erlang.org/pipermail/erlang-questions/
2010-March/050333.html).

In any case, as with key/value stores, the best solution is usually to
benchmark and see which approach best suits your application.

Directed Graphs
One other data structure intimately related to mathematics is the directed
graph. Directed graphs in Erlang are implemented as two modules: digraph
and digraph_utils. The digraph module basically allows the construction and
modification of a directed graph—manipulating edges and vertices, finding
paths and cycles, and so on. The digraph_utils module allows you to navi-
gate a graph (postorder and preorder); test for cycles, arborescences, and
trees; find neighbors; and so on.

Because directed graphs are closely related to set theory, the sofs mod-
ule contains a few functions that let you convert families to directed graphs
and directed graphs to families.

Don’t Dr ink Too Much Kool- A id

While such a variety of sets can be seen as something great, some implementation
details can be downright frustrating. As an example, gb_sets, ordsets, and sofs all
use the == operator to compare values; if you have the numbers 2 and 2.0, they’ll
be seen as the same number.

However, the sets module uses the =:= operator, which means you can’t nec-
essarily switch over every implementation as you wish. There are cases where you
need one precise behavior, and at that point, you might lose the benefit of having
multiple implementations.

132 Chapter 9

Because of the way the directed graphs modules are built, they aren’t
really appropriate without a good basic knowledge of either graphs or set
theory. If you know your stuff and you are interested in learning more
about these modules, you’ll have no problem figuring them out by their
standard documentation.

Queues
The queue module implements a double-ended first in, first out (FIFO)
queue. Queues are implemented a bit as illustrated here: two lists (in this
context, stacks) that allow you to both append and prepend elements
rapidly.

Because a single list doesn’t
allow efficiently adding and remov-
ing elements from both ends at
once (it’s only fast to add and
remove the head), the idea behind
the queue module is that if you have
two lists, then you can use one to
add elements and one to remove
elements. One of the lists then
behaves as one end of the queue,
where you push values, and the
other list acts as the other end, where you pop them. When the latter is
empty, you take the former and reverse it, and it becomes the new list to
pop from. This allows an efficient queue implementation on the average
of all operations over the life of the queue.

The queue module has different functions that are separated into three
interfaces (or APIs) of varying complexity:

Original API
The original API contains the functions at the base of the queue con-
cept. These include new/0, for creating empty queues; in/2, for inserting
new elements; and out/1, for removing elements. It also has functions to
convert to lists, reverse the queue, check if a particular value is part of
the queue, and so on.

Extended API
The extended API mainly adds some introspection power and flexibil-
ity. It lets you do things such as look at the front of the queue without
removing the first element (get/1 or peek/1), remove elements without
caring about them (drop/1), and so on. These functions are not essential
to the concept of queues, but they’re still useful in general.

Stack/List Stack/List

Push Pop

A Short Visit to Common Data Structures 133

Okasaki API
The Okasaki API is a bit weird. It’s derived from Chris Okasaki’s Purely
Functional Data Structures (Cambridge University Press, 1999). The API
provides operations similar to those available in the other APIs, but
some of the function names are written backward, and the whole thing
is relatively peculiar. Unless you have a specific reason for using this
API, I wouldn’t bother with it.

You’ll generally want to use queues when you need to ensure that the
first item ordered is indeed the first one processed. So far, the examples
I’ve shown mainly used lists as accumulators that would then be reversed.
In cases where you can’t just do all the reversing at once, and elements are
frequently added, the queue module is what you want. (Well, you should test
and measure first. Always test and measure first!)

End of the Short Visit
That’s about it for our trip through the most common data structures of
Erlang. Thank you for having kept your arms inside the vehicle the whole
time. There are a few more data structures available to solve different prob-
lems. Here, I’ve covered those that you’re likely to encounter or need the
most, given the strengths of general use cases of Erlang. I encourage you
to explore the standard library and the extended one, too, to find more
information.

You might be glad to learn that this completes our trip into sequential
(functional) Erlang. I know a lot of people get into Erlang to see all the con-
currency and processes and whatnot. This is understandable, given these
are the areas where Erlang really shines. It offers supervision trees, fancy
error management, distribution, and more. I know that I’ve been very impa-
tient to write about these subjects, so I guess some readers are very impatient
to read about them.

However, it makes more sense to be comfortable with functional Erlang
before moving on to concurrent Erlang. Now we can focus on all the new
concepts. Here we go!

CONCURRENCY

10
T h e H i t c h h i k e r ’ s G u i d e

t o C o n c u r r e n c y

Far out in the uncharted backwaters of the unfashion-
able beginning of the 21st century lies a small subset
of human knowledge. Within this subset of human
knowledge is an utterly insignificant little discipline
whose Von Neumann–descended architecture is so
amazingly primitive that it is still thought that RPN
calculators are a pretty neat idea.

This discipline has—or rather had—a problem, which was this: Most of
the people studying it were unhappy for pretty much of the time when trying
to write parallel software. Many solutions were suggested for this problem,
but most of these were largely concerned with the handling of little pieces
of logic called locks and mutexes and whatnot, which is odd because on the
whole, it wasn’t the small pieces of logic that needed parallelism.

And so the problem remained. Lots of people were mean, and most of
them were miserable, even those with RPN calculators.

136 Chapter 10

Many were increasingly of the opinion that they’d all made a big mis-
take in trying to add parallelism to their programming languages, and that
no program should have ever left its initial thread.

N o t e 	 Parodying The Hitchhiker’s Guide to the Galaxy is fun. Read the book if you
haven’t already. It’s good!

Don’t Panic
Hi. Today (or whatever day you are reading this—even tomorrow), I’m
going to tell you about concurrent Erlang. Chances are you’ve read about
or dealt with concurrency before. You might also be curious about the
emergence of multicore programming. Anyway, the probabilities are high
that you’re reading this book because of all the talk about concurrency
going on these days.

A warning though: This chapter is mostly theory. If you have a headache,
a distaste for programming language history, or a desire just to program,
you might be better off skipping to the end of the chapter, or moving on to
the next one (where more practical content is shown).

In the Introduction to this book, I
explained that Erlang’s concurrency is
based on message passing and the actor
model, using the example of people com-
municating with nothing but letters. We’ll
get to more details about concurrency later
in this chapter, but first, it is important to
define the difference between concurrency
and parallelism.

In many places, both words refer to the same concept, but in the context
of Erlang, concurrency refers to having many actors running independently
but not necessarily all at the same time, while parallelism is having actors
running at exactly the same time. This is how I’ll use these terms in this
text, but don’t be surprised if other sources or people use the same terms
to mean different things. There doesn’t seem to be any consensus on these
definitions in the computer science world.

Erlang had concurrency from the beginning, even when everything
was done on a single core processor in the 1980s. Each Erlang process would
have its own slice of time to run, much like desktop applications did before
multicore systems. Parallelism was still possible back then; all you needed
to do was to have a second computer running the code and communicating
with the first one. Even then, only two actors could be run in parallel in this
setup. Nowadays, multicore systems allow for parallelism on a single com-
puter (some industrial chips have many dozens of cores), and Erlang takes
full advantage of this possibility.

The Hitchhiker’s Guide to Concurrency 137

Concurrency Concepts
Back in the day, Erlang’s development as a language was extremely quick,
with frequent feedback from engineers working on telephone switches in
Erlang itself. These interactions proved process-based concurrency and
asynchronous message passing to be a good way to model the problems the
engineers faced. Moreover, the telephony world already had a certain culture
going toward concurrency before Erlang came to be. This was inherited
from PLEX, a language created earlier at Ericsson, and AXE, a switch
developed with it. Erlang followed this tendency and attempted to improve
on previous tools available.

Erlang had a few requirements to satisfy before being considered good.
The main ones were being able to scale up and support many thousands of
users across many switches, and to achieve high reliability—to the point of
never stopping the code.

Scalability
Some properties were seen as necessary to achieve scalability. Because users
would be represented as processes that reacted only upon the occurrence
of certain events (such as receiving a call or hanging up), an ideal system
would support processes doing small computations, switching between
them very quickly as events came through. To make the system efficient, it

Don’t Dr ink Too Much Kool- A id

The distinction between concurrency and parallelism is important to make,
because many programmers hold the belief that Erlang was ready for multicore
computers years before it actually was. Erlang was adapted to true symmetric
multiprocessing (SMP) in the mid-2000s, and only got most of the implementa-
tion right with the R13B release of the language in 2009. Before that, SMP often
needed to be disabled to avoid performance losses. Then to get parallelism on
a multicore computer without SMP, you
would need to start many instances of
the VM.

An interesting fact is that because
Erlang concurrency is all about iso-
lated processes, it took no conceptual
change at the language level to bring
true parallelism to the language. All
the changes were transparently done
in the VM, away from the eyes of the
programmers.

138 Chapter 10

made sense for processes to be started and destroyed very quickly. Having
them be lightweight was mandatory to achieve this efficiency. It was also
mandatory because you didn’t want to have things like process pools (a
fixed amount of processes you split the work among). Instead, it would be
much easier to design programs that could use as many processes as they
needed.

N o t e 	 Another important aspect of scalability is to be able to bypass your hardware’s limita-
tions. There are two ways to do this: make the hardware better or add more hardware.
The first option is useful up to a certain point, after which it becomes extremely
expensive. The second option is usually cheaper and requires you to add more com-
puters to do the job. This is where distribution can be useful to have as a part of your
language.

Because telephony applications needed a lot of reliability, it was decided
that the cleanest approach was to forbid processes from sharing memory.
Shared memory could leave things in an inconsistent state after some crashes
(especially on data shared across different nodes) and had some complica-
tions. Instead, processes should communicate by sending messages where
all the data is copied. This might end up being slower but safer.

Fault Tolerance
The first writers of Erlang always kept in mind that failure is common. You
can try to prevent bugs all you want, but most of the time, some will still
creep in. And even if by some miracle your code doesn’t have any bugs,
nothing can stop the eventual hardware failure. Therefore, the idea is to
find good ways to handle errors and problems, rather than trying to pre-
vent them all.

It turns out that taking the design approach of multiple processes with
message passing was a good idea, because error handling could be grafted
onto it relatively easily. Take lightweight processes (made for quick restarts
and shutdowns) as an example. Some studies proved that the main sources
of downtime in large-scale software systems are intermittent or transient
bugs (see http://dslab.epfl.ch/pubs/crashonly/). Also, there’s a principle that
says that errors that corrupt data should cause the faulty part of the sys-
tem to die as fast as possible in order to avoid propagating errors and bad
data to the rest of the system.

Another concept here is that a system can terminate in many different
ways, two of which are clean shutdowns and crashes (terminating with an
unexpected error).

Here, the worst case is obviously the crash. A safe solution would be to
make sure all crashes are the same as clean shutdowns. This can be done
through practices such as shared-nothing (all memory is separated for sub-
parts of the system) and single assignment (which can further isolate a pro-
cess’s memory), avoiding locks (if certain data was locked during a crash, it
would keep other processes from accessing the data or leave it in an incon-
sistent state), and other safeguards, which were all part of Erlang’s design.

The Hitchhiker’s Guide to Concurrency 139

The ideal solution in Erlang is thus to kill processes as fast as possible
to avoid data corruption and transient bugs. Lightweight processes are a
key element in this. Further error-handling mechanisms are also part of the
language to allow processes to monitor other processes (which are described
in Chapter 12), in order to know when processes die and to decide what to
do about it.

Assuming that restarting processes quickly is enough to deal with crashes,
the next problem is handling hardware failures. How do you make sure your
program keeps running when someone kicks the computer it’s running on?
Although a fancy defense mechanism consisting of laser detection and stra-
tegically placed cacti could do the job for a while, it would not last forever.
The solution is simply to have your program running on more than one
computer at once—something that’s necessary for scaling anyway. This is
another advantage of independent processes with no communication
channel outside message passing. You can have them working the same way
whether they’re local or on a different computer, making fault tolerance
through distribution nearly transparent to the programmer.

Being distributed has direct
consequences on how processes can
communicate with each other. One
of the biggest hurdles of distribu-
tion is that you can’t assume that
because a node (a remote com-
puter) was there when you made a
function call, it will still be there for
the whole transmission of the call,
or that it will even execute the call
correctly. Someone tripping over a
cable or unplugging the machine
would leave your application hang-
ing. Or maybe it would make it
crash. Who knows?

Well, it turns out the choice of asynchronous message passing was
a good design pick there, too. Under the processes-with-asynchronous-
messages model, messages are sent from one process to a second one and
stored in a mailbox inside the receiving process until they are taken out
to be read. It’s important to mention that messages are sent without even
checking if the receiving process exists, because it would not be useful to
do so. As implied in the previous paragraph, it’s impossible to know if a
process will crash between the time a message is sent and received. And if
the message is received, it’s impossible to know whether the message will be
acted upon or if the receiving process will die before that. Asynchronous
messages allow safe remote function calls because there is no assumption
about what will happen; the programmer is the one to know. If you need to
have a confirmation of delivery, you must send a second message as a reply
to the original process. This message will have the same safe semantics, and
so will any program or library you build on this principle.

140 Chapter 10

Concurrency Implementation
So now you know why it was decided that lightweight processes with asyn-
chronous message passing were the approach to take for Erlang. But how
could Erlang’s implementers make this work?

First of all, the operating system can’t be trusted to handle the pro-
cesses. Operating systems have many different ways to handle processes,
and their performance varies a lot. Most, if not all, of them are too slow or
heavy for what is needed by standard Erlang applications. By handling pro-
cesses in the VM, the Erlang implementers kept control of optimization and
reliability. Nowadays, Erlang’s processes take about 300 words of memory
each and can be created in a matter of microseconds—not something cur-
rently doable on major operating systems.

To handle all these potential pro-
cesses your programs could create, the
VM starts one thread per core that acts
as a scheduler. Each of these schedulers
has a run queue, or a list of Erlang pro-
cesses on which to spend a slice of time.
When one of the schedulers has too
many tasks in its run queue, some tasks
are migrated to another queue. This
means that each Erlang VM takes care
of doing all the load balancing, and
the programmer doesn’t need to worry
about it. The VM also does some other
optimizations, such as limiting the rate at which messages can be sent to
overloaded processes in order to regulate and distribute the load.

All the hard stuff is in there, managed for you. That is what makes it
easy to go parallel with Erlang. Going parallel means your program should
go twice as fast if you add a second core, four times faster if there are four
cores, and so on, right? It depends. Such a phenomenon is named linear
scaling in relation to speed gain versus the number of cores or processors (see
the graph in the next section). In real life, there is no such thing as a free
lunch (well, maybe at funerals, but someone, somewhere, still has to pay).

Not Entirely Unlike Linear Scaling
The difficulty of obtaining linear scaling is not due to the language itself,
but rather to the nature of the problems to solve. Problems that scale very
well are often said to be embarrassingly parallel. If you look up “embarrass-
ingly parallel problems” on the Internet, you’re likely to find examples such
as ray-tracing (a method to create 3D images), brute-forcing searches in
cryptography, and weather prediction.

From time to time, messages pop up in IRC channels, forums, and
mailing lists asking if Erlang could be used to solve that kind of problem,
or if it could be used to program on a graphical processing unit (GPU).

RUN
QUEUE

Scheduler

Migration
Magic

The Hitchhiker’s Guide to Concurrency 141

The answer is almost always no. The reason is relatively simple: All these
problems usually involve numerical algorithms with a lot of data crunching.
Erlang is not very good at this.

Erlang’s embarrassingly parallel problems are present at a higher level.
Usually, they have to do with concepts such as chat servers, phone switches,
web servers, message queues, web crawlers, or any other application where
the work done can be represented as independent logical entities (actors,
anyone?). This kind of problem can be solved efficiently with close-to-linear
scaling.

Many problems will never show such scaling properties. In fact, you
need only one centralized sequence of operations to lose it all. Your parallel
program goes only as fast as its slowest sequential part. An example of that phe-
nomenon is observable any time you go to a mall. Hundreds of people can
be shopping at once, rarely interfering with each other. Then once it’s time
to pay, queues form as soon as there are fewer cashiers than there are cus-
tomers ready to leave. It would be possible to add cashiers until one exists
for each customer, but then you would need a door for each customer,
because the shoppers couldn’t get inside or outside the mall all at once.

To put this another way, even though customers could pick each of
their items in parallel and take as much time to shop whether they’re
alone or one of a thousand in the store, they would still need to wait to
pay. Therefore, their shopping experience could never be shorter than
the time it takes them to wait in the queue and pay.

A generalization of this principle is called Amdahl’s law. It indicates how
much of a speedup you can expect your system to have when you add paral-
lelism to it, and in what proportion:

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Sp
ee

du
p

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Number of Processors

Amdahl’s Law

Parallel Portion
 95%
 90%
 75%
 50%

(Adapted from an image created by Daniel; used under a Creative Commons license.
Original can be found at http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg.)

142 Chapter 10

According to Amdahl’s law, code that is 50 percent parallel can never
get faster than twice what it was before, and code that is 95 percent parallel
can theoretically be expected to be about 20 times faster if you add enough
processors. What’s interesting to see on this graph is how getting rid of the
last few sequential parts of a program allows a relatively huge theoretical
speedup compared to removing as much sequential code in a program that
is not very parallel to begin with.

Don’t Dr ink Too Much Kool- A id

Parallelism is not the answer to every problem. In some cases, going parallel will even
slow down your application. This can happen when your program is 100 percent
sequential but still uses multiple processes.

One of the best examples of this is the ring benchmark. A ring benchmark is
a test where many thousands of processes will pass a piece of data to one after
the other in a circular manner. Think of it as a game of telephone. In this bench-
mark, only one process at a time does something useful, but the Erlang VM still
spends time distributing the load across cores and giving every process its share
of time.

This plays against many common hardware optimizations and makes the VM
spend time doing useless stuff.

This load distribution often makes purely sequential applications run much
slower on many cores than on a single one. If this kind of algorithm is central to
your system, disabling SMP ($ erl -smp disable) might be a good idea. However,
in other cases, sequential algorithms that aren’t central to the execution of the
whole program will usually be drowned by other events. In these cases, disabling
SMP shouldn’t have a big impact.

So Long and Thanks for All the Fish!
Of course, this chapter would not be complete if it didn’t show the three
primitives required for concurrency in Erlang: spawning new processes,
sending messages, and receiving messages. In practice, more mechanisms
are required for making really reliable applications; but for now, these
three will suffice.

Spawning Processes
I’ve skirted around the issue a lot but have yet to explain what a process
really is. It’s actually nothing but a function. A process runs a function,
and once it’s finished, it disappears. Technically, a process also has some
hidden state (such as a mailbox for messages), but functions are our focus
for now.

The Hitchhiker’s Guide to Concurrency 143

To start a new process, Erlang provides the function spawn/1, which takes
a single function and runs it:

1> F = fun() -> 2 + 2 end.
#Fun<erl_eval.20.67289768>
2> spawn(F).
<0.44.0>

The result of spawn/1 (<0.44.0>) is called a process identifier, often just writ-
ten as pid (the form I’ll use), Pid, or PID by the Erlang community. The pid
is an arbitrary value representing any process that exists (or might have
existed) at some point in the VM’s life. It is used as an address to communi-
cate with the process.

You’ll notice that we can’t see the result of function F. We get only its
pid. That’s because processes do not return anything.

How can we see the result of F then? Well, there are two ways. The easi-
est one is to just output whatever we get:

3> spawn(fun() -> io:format("~p~n",[2 + 2]) end).
4
<0.46.0>

This isn’t practical for a real program, but it is useful for seeing how
Erlang dispatches processes. Fortunately, using io:format/2 is enough to let
us experiment. We’ll quickly start 10 processes and pause each of them
for a while with the help of the function timer:sleep/1, which takes an inte-
ger value N and waits for N milliseconds before resuming. After the delay,
the value present in the process is output:

4> G = fun(X) -> timer:sleep(10), io:format("~p~n", [X]) end.
#Fun<erl_eval.6.13229925>
5> [spawn(fun() -> G(X) end) || X <- lists:seq(1,10)].
[<0.273.0>,<0.274.0>,<0.275.0>,<0.276.0>,<0.277.0>,
 <0.278.0>,<0.279.0>,<0.280.0>,<0.281.0>,<0.282.0>]
2
1
4
3
5
8
7
6
10
9

The order doesn’t make sense. Welcome to parallelism! Because the
processes are running at the same time, the ordering of events isn’t guar-
anteed anymore. That’s because the Erlang VM uses many tricks to decide

144 Chapter 10

which process to run, making sure each gets a good share of time. Many
Erlang services are implemented as processes, including the shell you’re
typing in. Your processes must be balanced with those the system itself
needs, and this might be the cause of the weird ordering.

Sy mme t r ic Mult iproce ssing a nd You

The results are similar whether or not SMP is enabled. To prove this, you can just
test it by starting the Erlang VM with $ erl -smp disable.

To see if your Erlang VM runs with or without SMP support, start a new
VM without any options and look for the first line output. If you can spot the text
[smp:2:2], it means you’re running with SMP enabled, and that you have two run
queues running on two cores. If you don’t see it, that means you’re running with
SMP disabled.

The [smp:2:2] means that two cores are available, with two schedulers (each
having a run queue). In earlier versions of Erlang, you could have multiple schedul-
ers, but with only one shared run queue for all of them. Since R13B, there is one
run queue per scheduler, which allows for better parallelism.

To prove the shell itself is implemented as a regular process, let’s use
the BIF self/0, which returns the pid of the current process:

6> self().
<0.41.0>
7> exit(self()).
** exception exit: <0.41.0>
8> self().
<0.285.0>

And the pid changes because the process has been restarted.
The next concern is how to send messages around, because no one

wants to be stuck with outputting the resulting values of processes all the
time, and then entering them by hand in other processes (at least, I know
I don’t).

Sending Messages
The next primitive required to do message passing is the operator !, also
known as the bang symbol. On the left-hand side, it takes a pid; on the right-
hand side, it takes any Erlang term. The term is then sent to the process
represented by the pid, which can access it. Here’s an example:

9> self() ! hello.
hello

The Hitchhiker’s Guide to Concurrency 145

The message has been put in the process’s mailbox, but it hasn’t been
read yet. The second hello shown here is the return value of the send func-
tion. This means it is possible to send the same message to many processes
by doing this:

10> self() ! self() ! double.
double

This is equivalent to self() ! (self() ! double).
Something to note about a process’s mailbox is that the messages are

kept in the order they are received. Every time a message is read, it is taken
out of the mailbox. Again, this
is a bit similar to the analogy of
people writing letters.

To see the contents of the
current mailbox, you can use
the flush() command while
in the shell:

11> flush().
Shell got hello
Shell got double
Shell got double
ok

The flush/0 function is just a shortcut that outputs received messages.
This means we still can’t bind the result of a process to a variable, but at
least we know how to send it from a process to another one and check if it
has been received.

Receiving Messages
Sending messages that no one will read is as useful as writing emo poetry
(in other words, not very useful). This is why we need the receive expres-
sion. Rather than playing too long in the shell, we’ll write a short program
about dolphins to demonstrate how receiving messages works. Here’s our
new program:

-module(dolphins).
-compile(export_all).

dolphin1() ->
 receive
 do_a_flip ->
 io:format("How about no?~n");
 fish ->
 io:format("So long and thanks for all the fish!~n");
 _ ->
 io:format("Heh, we're smarter than you humans.~n")
 end.

<0.42.0> Message Mailbox <0.48.0>

Hello!

146 Chapter 10

As you can see, receive is syntactically similar to case ... of. In fact,
the patterns work exactly the same way, except they bind variables coming
from messages rather than the expression between case and of. The receive
expressions can also have guards. Here’s their general syntax:

receive
 Pattern1 when Guard1 -> Expr1;
 Pattern2 when Guard2 -> Expr2;
 Pattern3 -> Expr3
end

Knowing this, we can now compile the module, run it, and start com-
municating with dolphins:

11> c(dolphins).
{ok,dolphins}
12> Dolphin = spawn(dolphins, dolphin1, []).
<0.40.0>
13> Dolphin ! "oh, hello dolphin!".
Heh, we're smarter than you humans.
"oh, hello dolphin!"
14> Dolphin ! fish
fish

Here, we introduce a new way of spawning with spawn/3. Rather than
taking a single function, spawn/3 takes the module, function, and its argu-
ments as its own arguments. Once the function is running, the following
events take place:

1.	 The function hits the receive expression. Given that the process’s mail-
box is empty, our dolphin waits until it gets a message.

2.	 The message "oh, hello dolphin!" is received. The function tries to pattern
match against do_a_flip. This fails, and so the pattern fish is tried, and
this also fails. Finally, the message meets the catchall clause (_) and
matches.

3.	 The process outputs the message “Heh, we’re smarter than you humans.”

Note that if the first message we sent works, the second provokes no
reaction whatsoever from the process <0.40.0>. This is due to the fact that
once our function output Heh, we're smarter than you humans., it terminated,
and so did the process. We’ll need to restart the dolphin:

8> f(Dolphin).
ok
9> Dolphin = spawn(dolphins, dolphin1, []).
<0.53.0>
10> Dolphin ! fish.
So long and thanks for all the fish!
fish

The Hitchhiker’s Guide to Concurrency 147

And this time, the fish message works.
Wouldn’t it be useful to be able to receive a reply from the dolphin

rather than needing to use io:format/2? Of course it would! (Why am I even
asking?)

I mentioned earlier in this chapter that the only way to know if a pro-
cess has received a message is to send a reply. Our dolphin process will
need to know who to reply to. This works in the same way as it does with
the postal service. If we want someone to answer our letter, we need to add
our address. In Erlang terms, this is done by packaging a process’s pid in
a tuple, given that messages are otherwise anonymous. The end result is a
message that looks a bit like {Pid, Message}. Let’s create a new dolphin func-
tion that will accept such messages:

dolphin2() ->
 receive
 {From, do_a_flip} ->
 From ! "How about no?";
 {From, fish} ->
 From ! "So long and thanks for all the fish!";
 _ ->
 io:format("Heh, we're smarter than you humans.~n")
 end.

As you can see, rather than accepting do_a_flip and fish for messages,
we now require a variable From. That’s where the pid will go.

11> c(dolphins).
{ok,dolphins}
12> Dolphin2 = spawn(dolphins, dolphin2, []).
<0.65.0>
13> Dolphin2 ! {self(), do_a_flip}.
{<0.32.0>,do_a_flip}
14> flush().
Shell got "How about no?"
ok

It seems to work pretty well. We can receive replies to messages we sent
(we need to add an address to each message, a bit like an e-mail’s Reply To
field), but we still need to start a new process for each call. Recursion is the
way to solve this problem. We just need the function to call itself so it never
ends and always expects more messages. Here’s a dolphin3/0 function that
puts this in practice:

dolphin3() ->
 receive
 {From, do_a_flip} ->
 From ! "How about no?",
 dolphin3();

148 Chapter 10

 {From, fish} ->
 From ! "So long and thanks for all the fish!";
 _ ->
 io:format("Heh, we're smarter than you humans.~n"),
 dolphin3()
 end.

Here, the catchall clause and the do_a_flip clause both loop with the help
of dolphin3/0. Note that the function will not blow the stack because it is tail
recursive. As long as only these messages are sent, the dolphin process will
loop indefinitely. However, if we send the fish message, the process will stop:

15> Dolphin3 = spawn(dolphins, dolphin3, []).
<0.75.0>
16> Dolphin3 ! Dolphin3 ! {self(), do_a_flip}.
{<0.32.0>,do_a_flip}
17> flush().
Shell got "How about no?"
Shell got "How about no?"
ok
18> Dolphin3 ! {self(), unknown_message}.
Heh, we're smarter than you humans.
{<0.32.0>,unknown_message}
19> Dolphin3 ! Dolphin3 ! {self(), fish}.
{<0.32.0>,fish}
20> flush().
Shell got "So long and thanks for all the fish!"
ok

And that’s it for dolphins.erl.
As you see, it does respect our
expected behavior of replying
once for every message and con-
tinuing execution afterwards,
except for the fish call. The dol-
phin got fed up with our crazy
human antics and left us for good.

There you have it. This
is the core of all of Erlang’s
concurrency. We’ve covered
processes and basic message
passing. There are more con-
cepts to understand in order to
make truly useful and reliable
programs. We’ll look at some of
these in the following chapters.

How ‘bout No.

 Do a

Backflip!

11
M o r e o n M u l t i p r o c e s s i n g

The examples shown in Chapter 10 were suitable for
demonstrative purposes, but they won’t take you very
far in your own projects. It’s not that the examples
were bad; it’s just that there’s no huge advantage to
processes and actors if they’re just functions with mes-
sages. To reap the benefits, we need to be able to hold
state in a process.

In this chapter, we will apply the concurrency con-
cepts and primitives to practical examples that are
able to hold state.

150 Chapter 11

State Your State
Let’s first create a function in a new kitchen.erl module
that will let a process act like a refrigerator. The process
will allow two operations: storing food in the fridge and
taking food from the fridge. It should only be possible
to take food that has been stored beforehand, and only
as many times as it was stored. The following function
can act as the base for our process:

-module(kitchen).
-compile(export_all).

fridge1() ->
 receive
 {From, {store, _Food}} ->
 From ! {self(), ok},
 fridge1();
 {From, {take, _Food}} ->
 %% uh....
 From ! {self(), not_found},
 fridge1();
 terminate ->
 ok
 end.

Something’s wrong here. When we ask to store the food, the process
should reply with ok, but there is nothing actually storing the food; fridge1()
is called, and then the function starts from scratch, without state. Also,
when we call the process to take food from the fridge, there is no state to
take it from, and so the only reply is not_found. In order to store and take
food items, we’ll need to add state to the function.

With the help of recursion, the state of a process can be held entirely in
the parameters of the function. In the case of our fridge process, one pos-
sibility would be to store all the food as a list, and then look in that list when
someone needs to eat something:

fridge2(FoodList) ->
 receive
 {From, {store, Food}} ->
 From ! {self(), ok},
 fridge2([Food|FoodList]);
 {From, {take, Food}} ->
 case lists:member(Food, FoodList) of
 true ->
 From ! {self(), {ok, Food}},
 fridge2(lists:delete(Food, FoodList));

More on Multiprocessing 151

 false ->
 From ! {self(), not_found},
 fridge2(FoodList)
 end;
 terminate ->
 ok
 end.

Notice that fridge2/1 takes one argument, FoodList. You can see that when
we send a message that matches {From, {store, Food}}, the function will add
Food to FoodList before recursing. Once that recursive call is made, it will then
be possible to retrieve the same item. In fact, we’ve implemented that here.

The function uses lists:member/2 to check whether Food is part of FoodList.
Depending on the result, the item is sent back to the calling process (and
removed from FoodList) or not_found is sent:

1> c(kitchen).
{ok,kitchen}
2> Pid = spawn(kitchen, fridge2, [[baking_soda]]).
<0.51.0>
3> Pid ! {self(), {store, milk}}.
{<0.33.0>,{store,milk}}
4> flush().
Shell got {<0.51.0>,ok}
ok

Storing items in the fridge seems to work. Now let’s try to store some-
thing else and then take it from the fridge:

5> Pid ! {self(), {store, bacon}}.
{<0.33.0>,{store,bacon}}
6> Pid ! {self(), {take, bacon}}.
{<0.33.0>,{take,bacon}}
7> Pid ! {self(), {take, turkey}}.
{<0.33.0>,{take,turkey}}
8> flush().
Shell got {<0.51.0>,ok}
Shell got {<0.51.0>,{ok,bacon}}
Shell got {<0.51.0>,not_found}
ok

As expected, we can take bacon from the fridge because we have put it
in there first (along with the milk and baking soda), but the fridge pro-
cess has no turkey to find when we request some. This is why we get the
last {<0.51.0>,not_found} message. More interestingly, because of the way
mailboxes work, it is guaranteed that even if a thousand people suddenly
reached for the last piece of turkey in the fridge at the same time, only one
of them could get it.

152 Chapter 11

We Love Messages, But We Keep Them Secret
Something annoying with the previous example is that the programmer
who’s going to use the fridge must know about the protocol that has been
invented for that process. That’s a useless burden. A good way to solve this is
to abstract messages away with the help of functions dealing with receiving
and sending them:

store(Pid, Food) ->
 Pid ! {self(), {store, Food}},
 receive
 {Pid, Msg} -> Msg
 end.

take(Pid, Food) ->
 Pid ! {self(), {take, Food}},
 receive
 {Pid, Msg} -> Msg
 end.

Now the interaction with the process is much cleaner:

9> c(kitchen).
{ok,kitchen}
10> f().
ok
11> Pid = spawn(kitchen, fridge2, [[baking_soda]]).
<0.73.0>
12> kitchen:store(Pid, water).
ok
13> kitchen:take(Pid, water).
{ok,water}
14> kitchen:take(Pid, juice).
not_found

We don’t need to care about how the messages work anymore. If you
want to send self() or a precise atom like take or store, you just need a pid
and to know which functions to call. This hides all of the dirty work and
makes it easier to build on the fridge process.

Now let’s hide that whole part about needing to spawn a process. We
dealt with hiding messages, but then we still expect the user to handle the
creation of the process. Let’s add the following start/1 function:

start(FoodList) ->
 spawn(?MODULE, fridge2, [FoodList]).

Here, ?MODULE is a macro that returns the current module’s name. At first
glance, it might not seem like there are any advantages to writing such a
function, but there are. The essential advantage is consistency with the calls
to take/2 and store/2—everything about the fridge process is now handled

More on Multiprocessing 153

by the kitchen module. If we wanted to add logging when the fridge process
is started or start a second process (say a freezer), that would be really easy
to do inside our start/1 function. However, if the spawning is left for the
user to do through spawn/3, then every place that starts a fridge now needs
to add the new calls. That’s prone to errors, and errors suck.

 STRING’S
PROTOCOL

 USER-TO-STRING

ABSTRACTION LAYER

Let’s see this function put to use:

15> f().
ok
16> c(kitchen).
{ok,kitchen}
17> Pid = kitchen:start([rhubarb, dog, hotdog]).
<0.84.0>
18> kitchen:take(Pid, dog).
{ok,dog}
19> kitchen:take(Pid, dog).
not_found

Yay! The dog has gotten out of the fridge, and our abstraction is
complete!

Time Out
Let’s try a test with the help of the command pid(A,B,C), which lets us
change the three integers A, B and C into a pid. Here, we’ll deliberately
feed kitchen:take/2 a fake pid:

20> kitchen:take(pid(0,250,0), dog).

Whoops. The shell is frozen. This happened because of how take/2 was
implemented. To understand what goes on, let’s first revisit what happens in
the normal case:

1.	 A message to store food is sent from you (the shell) to the fridge process.

2.	 Your process switches to receive mode and waits for a new message.

3.	 The fridge stores the item and sends ok to your process.

4.	 Your process receives it and moves on with its life.

154 Chapter 11

And here’s what happens when the shell freezes:

1.	 A message to store food is sent from you (the shell) to an
unknown process.

2.	 Your process switches to receive mode and waits for a new
message.

3.	 The unknown process either doesn’t exist or doesn’t expect
such a message and does nothing with it.

4.	 Your shell process is stuck in receive mode.

That’s annoying, especially because there is no error handling possible
here. Nothing illegal happened; the program is just waiting—forever, which
is a deadlock. In general, anything dealing with asynchronous operations
(how message passing is done in Erlang) needs a way to give up after a cer-
tain period of time if it gets no sign of receiving data. A web browser does
this when a page or image takes too long to load, and you do it when some-
one takes too long to answer the phone or is late for a meeting. Erlang cer-
tainly has an appropriate mechanism for handling timeouts, and it’s part of
the receive construct:

receive
 Match -> Expression1
after Delay ->
 Expression2
end.

The part between receive and after is exactly the same as what you’ve
seen so far. The after part will be triggered if the Delay (in milliseconds)
has passed without receiving a message that matches the Match pattern.
When this happens, Expression2 is executed.

We’ll write two new interface functions, store2/2 and take2/2, which will
act exactly like store/2 and take/2, except that they will stop waiting after
three seconds:

store2(Pid, Food) ->
 Pid ! {self(), {store, Food}},
 receive
 {Pid, Msg} -> Msg
 after 3000 ->
 timeout
 end.

take2(Pid, Food) ->
 Pid ! {self(), {take, Food}},
 receive
 {Pid, Msg} -> Msg
 after 3000 ->
 timeout
 end.

More on Multiprocessing 155

When it takes too long, we return timeout. This doesn’t tell us how to
deal with the fact that something took too long, and the message might
come back later to haunt us in unexpected ways, but at least we won’t be
deadlocked if the other process is dead. Something called a monitor will
help us make this type of code more robust, as you’ll see in Chapter 12; but
for now, you can just unfreeze the shell by pressing ctrl-G and try the new
interface functions:

User switch command
--> i
--> s
--> c
Eshell V5.7.5 (abort with ^G)
1> c(kitchen).
{ok,kitchen}
2> kitchen:take2(pid(0,250,0), dog).
timeout

And now it works.

N o t e 	 I said that after takes only milliseconds as a value, but it is actually possible to use
the atom infinity. While this is not useful in many cases (you might as well just
remove the after clause altogether), it is sometimes used when the programmer can
submit the wait time to a function where receiving a result is expected. That way, if
the programmer really wants to wait forever, he can.

Timers have uses other than just giving up after too long. One such
use is in the implementation of the timer:sleep/1 function, which we used in
Chapter 10. Here’s how it is implemented (let’s put it in a new multiproc.erl
module):

sleep(T) ->
 receive
 after T -> ok
 end.

In this specific case, no message will ever be matched in the receive part
of the construct because there is no pattern. Instead, the after part of the
construct will be called once the delay T has passed.

Another special case is when the timeout is at 0:

flush() ->
 receive
 _ -> flush()
 after 0 ->
 ok
 end.

156 Chapter 11

When that happens, the Erlang VM will try to find a message that fits
one of the available patterns. In the preceding case, anything matches. As
long as there are messages, the flush/0 function will recursively call itself
until the mailbox is empty. After that, the after 0 -> ok part of the code is
executed, and the function returns.

Selective Receives
Erlang’s “flushing” concept makes it possible to implement a selective receive,
which can give a priority to the messages you receive by nesting calls:

important() ->
 receive
 {Priority, Message} when Priority > 10 ->
 [Message | important()]
 after 0 ->
 normal()
 end.

normal() ->
 receive
 {_, Message} ->
 [Message | normal()]
 after 0 ->
 []
 end.

This function will build a list of all messages, placing those with a prior-
ity above 10 first:

1> c(multiproc).
{ok,multiproc}
2> self() ! {15, high}, self() ! {7, low}, self() ! {1, low}, self() ! {17, high}.
{17,high}
3> multiproc:important().
[high,high,low,low]

Because we used the after 0 bit, every message will be obtained until
no messages remain, but the process will try to grab all those with a priority
above 10 before even considering the other messages, which are accumu-
lated in the normal/0 call. This practice is called a selective receive. If it looks
interesting, be aware that it is sometimes unsafe due to the way it’s handled
by Erlang.

The Pitfalls of Selective Receives
When messages are sent to a process, they’re stored in the mailbox until
the process reads them and they match a pattern there, even if the process
that originally sent them has died since then. The messages are stored in

More on Multiprocessing 157

the order they were received. This means every time you enter a receive to
match a message, the mailbox is scanned, beginning with the first (and old-
est) message received.

That oldest message is then tried against every pattern of the receive
until one of them matches. When it does, the message is removed from
the mailbox, and the code for the process executes normally until the next
receive. When this next receive is executed, the VM will look for the oldest
message currently in the mailbox (the one after the one you removed), and
so on.

PROCESS

receive

receive

. . .

MSG 1
MSG 2
MSG 3
 . . .
MSG N

MSG 2
MSG 3
 . . .
MSG N

MAILBOX

recurse

recurse

match!

When there is no way to match a given message, it is put in a save queue,
and the next message is tried. If the second message matches, the first mes-
sage is put back on top of the mailbox to be retried later.

these didn’t match
this one did

PROCESSMAILBOX
SAVE
 QUEUE

receive

receive. . .

. . .

MSG 1
MSG 2

MSG 3
MSG 4
MSG 5
. . .
MSG N

MSG 1
MSG 2
MSG 4
MSG 5
. . .
MSG N

158 Chapter 11

This lets you care only about the messages that are useful. Ignoring
some messages to handle them later in the manner described is the essence
of selective receives. While they’re useful, the problem with selective receives
is that if your process has a lot of messages you never care about, reading
useful messages will actually take longer and longer (and the processes will
grow in size, too).

In the last illustration of matching messages, imagine we want the
367th message, but the first 366 messages are junk ignored by our code. To
get the 367th message, the process needs to try to match those 366 junk
messages. Once it has done that, and the messages have all been put in the
queue, the 367th message is taken out, and the first 366 are put back on top
of the mailbox. The next useful message could be burrowed much deeper
and take even longer to be found.

This kind of receive is a frequent cause of performance problems in
Erlang. If your application is running slowly and you know there are a lot
of messages going around, this could be the cause. If such selective receives
are effectively causing a massive slowdown in your code, the first thing to do
is to ask yourself why you are getting messages you do not want. Are the mes-
sages sent to the right processes? Are the patterns correct? Are the messages
formatted incorrectly? Are you using one process where there should be
many? Answering one or many of these questions could solve your problem.

Con v e rs at ion a l Op t imi z at ions

Since R14A, a new optimization has been added to Erlang’s compiler. It simpli-
fies selective receives in very specific cases of back-and-forth communications
between processes. An example of such a function is optimized/1 in multiproc.erl.

To make this optimization work, a reference must be created (either by using
make_ref() or by starting a monitor, as described in Chapter 12) in a function and
then sent in a message. In the same function, a selective receive is then made. If
no message can match unless it contains the same reference, the compiler auto-
matically makes sure the VM will skip messages received before the creation of
that reference.

Note that you shouldn’t try to coerce your code to fit such optimizations. The
Erlang developers only look for patterns that are frequently used and then make
them faster. If you write idiomatic code, optimizations should come to you, not the
other way around.

More on Multiprocessing 159

More Mailbox Pitfalls
Because of the risks of having useless messages polluting a process’s mail-
box, Erlang programmers sometimes take a defensive measure against such
events. A standard defense might look like this:

receive
 Pattern1 -> Expression1;
 Pattern2 -> Expression2;
 Pattern3 -> Expression3;
 ...
 PatternN -> ExpressionN;
 Unexpected ->
 io:format("unexpected message ~p~n", [Unexpected])
end.

This makes sure that any message will match at least one clause. The
Unexpected variable will match anything, take the unexpected message out
of the mailbox, and show a warning. Depending on your application, you
might want to store the message in some kind of logging facility where you
will be able to find information about it later on. If the messages are going
to the wrong process, it would be a shame to lose them for good and have a
hard time finding out why that other process doesn’t receive what it should,
given that’s pretty much guaranteed to be a bug.

In cases where you do need to work with a priority in your messages and
can’t use such a catchall clause, a smarter way to handle them is to implement
a min-heap (see https://secure.wikimedia.org/wikipedia/en/wiki/Min-heap) or
use the gb_trees module (discussed in Chapter 9) and dump every received
message in it (make sure to put the priority number first in the key so it gets
used for sorting the messages). Then you can just search for the smallest or
largest element in the data structure according to your needs.

In most cases, this technique should let you receive messages with a
priority more efficiently than selective receives. However, it could slow you
down if most messages you receive have the highest priority possible. As
usual, the trick is to profile and measure before optimizing.

Now that we’ve covered how to hold state in processes, the next step is
to do efficient error handling with multiple processes, which is the topic of
Chapter 12.

12
E r r o r s a n d P r o c e s s e s

In most languages, exceptions are managed from
within the execution flow of the program, the way
we’ve done it with try ... catch in previous examples.
The problem with this very common approach is that
your regular code needs to handle outstanding errors
on every level, or you just delegate the burden of making things safe to the
layer above it until you end up having the eternal top-level try ... catch,
which catches everything but doesn’t know anything about it. It’s more
complex than that in the real world, but that’s generally what it looks like.
Erlang supports this model too, as you’ve already seen.

However, Erlang also supports a different level of exception handling
that allows you to move the handling of exceptions outside the normal flow
of execution of the program, into a different, concurrent process. This usu-
ally leads to very clean code, where only the “happy case” is considered.
In this chapter, we discuss the basic tools that make this possible: links,
monitors, and named processes. We’ll also cover some general practices
that make the use of these tools more efficient.

162 Chapter 12

Links
A link is a specific kind of relationship that can be created between two pro-
cesses. When that relationship is set up and one of the processes dies from
an unexpected throw, error, or exit (see Chapter 7), the other linked pro-
cess also dies, binding their separate life cycles into a single, related one.

This is a useful concept from the perspective of failing as soon as pos-
sible to stop errors. If the process that has an error crashes, but those that
depend on it continue to run, then all these depending processes must deal
with a dependency disappearing. Letting them die and then restarting the
whole group is usually an acceptable alternative. Links let us do exactly this.

To set a link between two processes, Erlang has the primitive function
link/1, which takes a pid as an argument. When called, the function will
create a link between the current process and the one identified by the pid.
To get rid of a link, use unlink/1.

When one of the linked processes crashes, a special kind of message is
sent, with information relative to what happened. No such message is sent if
the process dies of natural causes (read: is done running its functions).

Let’s look at how this new function works, as part of the linkmon.erl file.

myproc() ->
 timer:sleep(5000),
 exit(reason).

If you try the following calls (and wait 5 seconds between each spawn
command), you should see the shell crashing for reason only when a link
has been set between the two processes:

1> c(linkmon).
{ok,linkmon}
2> spawn(fun linkmon:myproc/0).
<0.52.0>
3> link(spawn(fun linkmon:myproc/0)).
true
** exception error: reason

Here’s a picture of how it works:

LINK

{EXIT; B, Reason}

“ Poof ”

Errors and Processes 163

However, this {'EXIT', B, Reason} message cannot be caught with a
try ... catch as usual. Other mechanisms need to be used to do this, as
discussed in “It’s a Trap” on page 164.

N o t e 	 If you wanted to kill another process from the shell, you could use the function
exit/2, which makes use of these mechanisms to kill processes. It is called this way:
exit(Pid, Reason). Try it if you wish.

Links are used to establish larger groups of processes that should all
die together. Here’s an example:

chain(0) ->
 receive
 _ -> ok
 after 2000 ->
 exit("chain dies here")
 end;
chain(N) ->
 Pid = spawn(fun() -> chain(N-1) end),
 link(Pid),
 receive
 _ -> ok
 end.

This function will take an integer N, start N processes that are linked
together. To pass the N-1 argument to the next “chain” process (which calls
spawn/1), the example wraps the call inside an anonymous function so it
doesn’t need arguments anymore. Calling spawn(?MODULE, chain, [N-1]) would
have done a similar job.

Here, we’ll have many processes linked together, dying as each of their
successors exits.

4> c(linkmon).
{ok,linkmon}
5> link(spawn(linkmon, chain, [3])).
true
** exception error: "chain dies here"

And as you can see, the shell does receive the death signal from some
other process. Here’s a drawn representation of the spawned processes and
links going down:

[shell] == [3] == [2] == [1] == [0]
[shell] == [3] == [2] == [1] == *dead*
[shell] == [3] == [2] == *dead*
[shell] == [3] == *dead*
[shell] == *dead*
dead, error message shown
[shell] <-- restarted

164 Chapter 12

After the process running linkmon:chain(0) dies, the error is propagated
down the chain of links until the shell process itself dies because of it. The
crash could have happened in any of the linked processes. Because links are
bidirectional, you need only one of them to die for the others to follow suit.

N o t e 	 Links cannot be stacked. If you call link/1 fifteen times for the same two processes,
only one link will still exist between those processes, and a single call to unlink/1 will
be enough to tear it down.

Note that link(spawn(Function)) or
link(spawn(M,F,A)) happen in more than one
step. In some cases, it is possible for a process
to die before the link has been set up and then
provoke unexpected behavior. For this reason,
the function spawn_link/1-3 has been added
to the language. It takes the same arguments
as spawn/1-3, creates a process, and links it as if
link/1 had been there, except it’s all done as
an atomic operation (the operations are com-
bined as a single one, which can either fail or
succeed, but nothing else). This is generally
considered safer, and you save a set of paren-
theses, too.

It’s a Trap!
Error propagation across processes is done through a process similar to
message passing, but with a special type of message called signals. Exit sig-
nals are “secret” messages that automatically act on processes, killing them.

I have mentioned many times that in order to be reliable, an applica-
tion needs to be able to both kill and restart a process quickly. Right now,
links can serve to do the killing part. What’s missing is the restarting. To
restart a process, we first need a way to know that it died. This can be done
by adding a layer on top of links (the delicious frosting on the cake) with a
concept called system processes.

System processes are basically normal processes, except they
can convert exit signals to regular messages. This is done by calling
process_flag(trap_exit, true) in a running process. Nothing speaks as much
as an example. Let’s just redo the chain example with a system process at
the beginning.

1> process_flag(trap_exit, true).
true
2> spawn_link(fun() -> linkmon:chain(3) end).
<0.49.0>
3> receive X -> X end.
{'EXIT',<0.49.0>,"chain dies here"}

Errors and Processes 165

Ah! Now things get interesting. To get back to our drawings, what
happens is now more like this:

[shell] == [3] == [2] == [1] == [0]
[shell] == [3] == [2] == [1] == *dead*
[shell] == [3] == [2] == *dead*
[shell] == [3] == *dead*
[shell] <-- {'EXIT,Pid,"chain dies here"} -- *dead*
[shell] <-- still alive!

And this is the mechanism that allows for a quick restart of processes.
By writing programs using system processes, it’s easy to create a process
whose only role is to check if something dies and then restart it whenever
it fails. We’ll cover more of this in Chapter 13, when we really apply these
techniques.

Old Exceptions, New Concepts
Let’s return to the exception functions introduced in Chapter 7 and
see how they behave around processes that trap exits. First, we’ll set the
bases to experiment without a system process. We’ll look at the results of
uncaught throws, errors, and exits in neighboring processes.

Exceptions and Traps

There’s a load of reasons why processes ususally die. Let’s look at a few of
them and what the reasons look like when exits are trapped.

Exception source: spawn_link(fun() -> ok end)

Untrapped result: Nothing

Trapped result: {'EXIT', <0.61.0>, normal}

The process exited normally, without a problem. Note that this looks a
bit like the result of catch exit(normal), except a pid is added to the tuple
to identify which process failed.

Exception source: spawn_link(fun() -> exit(reason) end)

Untrapped result: ** exception exit: reason

Trapped result: {'EXIT', <0.55.0>, reason}

The process has terminated for a custom reason. If there is no trapped
exit, the process crashes. While trapping exits, you get a message.

Exception source: spawn_link(fun() -> exit(normal) end)

Untrapped result: Nothing

Trapped result: {'EXIT', <0.58.0>, normal}

This successfully emulates a process terminating normally. In some cases,
you might want to kill a process as part of the normal flow of a program,
without anything exceptional going on. This is the way to do it.

166 Chapter 12

Exception source: spawn_link(fun() -> 1/0 end)

Untrapped result:
Error in process <0.44.0> with exit value: {badarith, [{erlang, '/', [1,0]}]}

Trapped result: {'EXIT', <0.52.0>, {badarith, [{erlang, '/', [1,0]}]}}

The error ({badarith, Reason}) is never caught by a try ... catch block
and bubbles up into an 'EXIT'. At this point, it behaves exactly the same
as exit(reason) does, but with a stack trace giving more details about
what happened.

Exception source: spawn_link(fun() -> erlang:error(reason) end)

Untrapped result:
Error in process <0.47.0> with exit value: {reason, [{erlang, apply, 2}]}

Trapped result: {'EXIT', <0.74.0>, {reason, [{erlang, apply, 2}]}}

This is pretty much the same as with 1/0. That’s normal—erlang:error/1
is meant to allow you to do just that.

Exception source: spawn_link(fun() -> throw(rocks) end)

Untrapped result:
Error in process <0.51.0> with exit value: {{nocatch, rocks},

[{erlang, apply, 2}]}

Trapped result: {'EXIT', <0.79.0>, {{nocatch, rocks}, [{erlang, apply, 2}]}}

Because the throw is never caught by a try ... catch, it bubbles up into
an error, which in turn bubbles up into an EXIT. Without trapping exits,
the process fails. While trapping exits, it deals with the error just fine.

And that’s about it for usual exceptions. Things are normal, and every-
thing goes fine. Exceptional stuff happens, and processes die and different
signals are sent around.

exit/2 Changes Everything

Then there’s exit/2. This one is the Erlang process equivalent of a gun. It
allows a process to kill another one from a distance, safely. The following
are some of the possible calls.

Exception source: exit(self(), normal)

Untrapped result: ** exception exit: normal

Trapped result: {'EXIT', <0.31.0>, normal}

When not trapping exits, exit(self(), normal) acts the same as exit(normal).
Otherwise, you receive a message with the same format you would have
received by listening to links from foreign processes dying.

Errors and Processes 167

Exception source: exit(spawn_link(fun() -> timer:sleep(50000) end), normal)

Untrapped result: Nothing

Trapped Result: Nothing

This basically is a call to exit(Pid, normal). This command doesn’t do
anything useful, because a process cannot be remotely killed with the
reason normal as an argument.

Exception source: exit(spawn_link(fun() -> timer:sleep(50000) end), reason)

Untrapped result: ** exception exit: reason

Trapped result: {'EXIT', <0.52.0>, reason}

This is the foreign process terminating for reason itself. It looks the
same as if the foreign process called exit(reason) on itself.

Exception source: exit(spawn_link(fun() -> timer:sleep(50000) end), kill)

Untrapped result: ** exception exit: killed

Trapped result: {'EXIT', <0.58.0>, killed}

Surprisingly, the message gets changed from the dying process to
the spawner. The spawner now receives killed instead of kill. That’s
because kill is a special exit signal, as explained in the next section.

Exception source: exit(self(), kill)

Untrapped result: ** exception exit: killed

Trapped result: ** exception exit: killed

Oops, look at that. It seems like this one is actually impossible to trap.
The following exception doesn’t make it easier.

Exception source: spawn_link(fun() -> exit(kill) end)

Untrapped result: ** exception exit: killed

Trapped result: {'EXIT', <0.67.0>, kill}

Now that’s getting confusing. When another process kills itself with
exit(kill), and we don’t trap exits, our own process dies with the reason
killed. However, when we trap exits, things don’t happen that way.

Killing Me (Not So) Softly

While you can trap most exit reasons, there
are situations where you might want to bru-
tally murder a process. Maybe one of your
processes is trapping exits but is also stuck in
an infinite loop, never reading any message.
The kill reason acts as a special signal that

168 Chapter 12

can’t be trapped. This ensures any process you terminate with it will really
be dead. Usually, kill is a bit of a last resort to apply when everything else
has failed.

As the kill reason can never be trapped, it needs to be changed to
killed when other processes receive the message. If it weren’t changed,
every other process linked to it would in turn die for the same kill reason,
and would in turn kill its neighbors, and so on. A death cascade would ensue.

This also explains why exit(kill) looks like killed when received from
another linked process (the signal is modified so it doesn’t cascade), but
still looks like kill when trapped locally.

If you find this all confusing, don’t worry. Many programmers feel the
same way. Exit signals are a bit of a strange beast. Luckily, there aren’t other
special cases than the ones described here. Once you understand these, you
can understand most of Erlang’s concurrent error management without a
problem.

Monitors
Maybe murdering processes isn’t what you want. Maybe
you don’t feel like taking the world down with you once
you’re gone. Maybe you’re more of a stalker. In that
case, monitors might be what you want, given that they
don’t kill processes. Monitors are a special type of link,
with two differences:

•	 They are unidirectional.

•	 You can have many of them between two processes
(they stack and they have an identity).

Monitors are useful when a process wants to know
what’s going on with a second process, but neither of
them is really vital to each other. They’re also useful for
stacking references that are individually identifiable.
This might seem useless at first, but it’s great for writ-
ing libraries that need to know what’s going on with
other processes. Why aren’t links appropriate for this? Because links do not
stack, a library setting up a link and then removing it afterward might be
playing with important links unrelated to it. Monitors (and stacking) allow
library programmers to separate their use of monitoring from other, unre-
lated ones. Since each monitor has a unique identity, it is possible to choose
which one to listen to or to manipulate.

Links are more of an organizational construct than monitors are. When
you design the architecture of your application, you determine which pro-
cess will do which jobs, and what will depend on what. Some processes will
supervise others, some couldn’t live without a twin process, and so on. This
structure is usually something fixed and known in advance. Links are use-
ful in this case, but should not necessarily be used outside it.

Errors and Processes 169

But what happens if you have two or three different libraries that you call
and they all need to know whether a process is alive? If you were to use links
for this, you would quickly hit a problem whenever you needed to unlink a
process. Links aren’t stackable, so the moment you unlink one, you unlink
them all and mess up all the assumptions made by the other libraries. So
you need stackable links, and monitors are your solution, since they can be
removed individually. Plus, being unidirectional is handy in libraries because
other processes shouldn’t need to be aware of those libraries.

So what does a monitor look like? To see, let’s set one up. The function
is erlang:monitor/2, where the first argument is always the atom process and
the second one is the pid.

1> erlang:monitor(process, spawn(fun() -> timer:sleep(500) end)).
#Ref<0.0.0.77>
2> flush().
Shell got {'DOWN',#Ref<0.0.0.77>,process,<0.63.0>,normal}
ok

Every time a process you monitor goes down, you will receive such a
message, in the form {'DOWN', MonitorReference, process, Pid, Reason}. The ref-
erence is there to allow you to demonitor the process. Remember that moni-
tors are stackable, so it’s possible to take more than one down. References
allow you to track each of them in a unique manner. Also note that as with
links, there is an atomic function to spawn a process while monitoring it:
spawn_monitor/1-3.

3> {Pid, Ref} = spawn_monitor(fun() -> receive _ -> exit(boom) end end).
{<0.73.0>,#Ref<0.0.0.100>}
4> erlang:demonitor(Ref).
true
5> Pid ! die.
die
6> flush().
ok

In this case, we demonitored the other process before it crashed, so we
had no trace of it dying. The function demonitor/2 also exists and gives a lit-
tle more information. The second parameter can be a list of options. Only
two exist: info and flush.

7> f().
ok
8> {Pid, Ref} = spawn_monitor(fun() -> receive _ -> exit(boom) end end).
{<0.35.0>,#Ref<0.0.0.35>}
9> Pid ! die.
die
10> erlang:demonitor(Ref, [flush, info]).
false
11> flush().
ok

170 Chapter 12

The info option tells you if a monitor existed when you tried to remove
it. This is why line 10 returned false. Using flush as an option removes the
DOWN message from the mailbox if it existed, resulting in flush() finding
nothing in the current process’s mailbox.

Naming Processes
With links and monitors covered, there is another problem still left to be
solved: What do we do when we detect that a process we rely on has died?
Let’s use the following functions of the linkmon.erl module:

start_critic() ->
 spawn(?MODULE, critic, []).

judge(Pid, Band, Album) ->
 Pid ! {self(), {Band, Album}},
 receive
 {Pid, Criticism} -> Criticism
 after 2000 ->
 timeout
 end.

critic() ->
 receive
 {From, {"Rage Against the Turing Machine", "Unit Testify"}} ->
 From ! {self(), "They are great!"};
 {From, {"System of a Downtime", "Memoize"}} ->
 From ! {self(), "They're not Johnny Crash but they're good."};
 {From, {"Johnny Crash", "The Token Ring of Fire"}} ->
 From ! {self(), "Simply incredible."};
 {From, {_Band, _Album}} ->
 From ! {self(), "They are terrible!"}
 end,
 critic().

Now we’ll just pretend we’re going around stores, shopping for music.
There are a few albums that sound interesting, but we’re never quite sure.
We decide to call our friend, the critic.

1> c(linkmon).
{ok,linkmon}
2> Critic = linkmon:start_critic().
<0.47.0>
3> linkmon:judge(Critic, "Genesis", "The Lambda Lies Down on Broadway").
"They are terrible!"

Because of a solar storm (I’m trying to find something realistic here),
the connection is dropped.

Errors and Processes 171

4> exit(Critic, solar_storm).
true
5> linkmon:judge(Critic, "Genesis", "A trick of the Tail Recursion").
timeout

This is annoying. We can no longer get criticism for the albums. To
keep the critic alive, we’ll write a basic “supervisor” process whose only role
is to restart the critic when it goes down.

start_critic2() ->
 spawn(?MODULE, restarter, []).

restarter() ->
 process_flag(trap_exit, true),
 Pid = spawn_link(?MODULE, critic, []),
 receive
 {'EXIT', Pid, normal} -> % not a crash
 ok;
 {'EXIT', Pid, shutdown} -> % manual termination, not a crash
 ok;
 {'EXIT', Pid, _} ->
 restarter()
 end.

Here, the restarter will be its own process. It will in turn start the critic’s
process, and if it ever dies of an abnormal cause, restarter/0 will loop and
create a new critic. Note that we added a clause for {'EXIT', Pid, shutdown} as
a way to manually kill the critic if we ever need to.

The problem with our approach is that there is no way to find the pid of
the critic, and thus we can’t call him to get his opinion. One of the solutions
Erlang provides is to give names to processes. The act of giving a name to
a process allows you to replace the unpredictable pid with an atom. This
atom can then be used exactly as a pid when sending messages.

To give a process a name, use the function erlang:register(Name,Pid). If
the process dies, it will automatically lose its name. Alternatively, you can
use unregister/1 to do it manually. You can get a list of all registered processes
with registered/0, or a more detailed one with the shell command regs(). We
can rewrite the restarter/0 function as follows:

restarter() ->
 process_flag(trap_exit, true),
 Pid = spawn_link(?MODULE, critic, []),
 register(critic, Pid),
 receive
 {'EXIT', Pid, normal} -> % not a crash
 ok;
 {'EXIT', Pid, shutdown} -> % manual termination, not a crash
 ok;

172 Chapter 12

 {'EXIT', Pid, _} ->
 restarter()
 end.

As you can see, register/2 will always give our critic the name critic, no
matter what the pid is. Then we need to remove the need to pass in a pid
from the abstraction functions. Let’s try this:

judge2(Band, Album) ->
 critic ! {self(), {Band, Album}},
 Pid = whereis(critic),
 receive
 {Pid, Criticism} -> Criticism
 after 2000 ->
 timeout
 end.

Here, the line Pid = whereis(critic) is used to find the critic’s pid in order
to pattern match against it in the receive expression. We want to match with
this pid because it makes sure we will match on the right message. (There
could be 500 of them in the mailbox as we speak!) This can be the source
of a problem though. This code assumes that the critic’s pid will remain the
same between the first two lines of the function. However, it is completely
plausible the following will happen:

 1. critic ! Message
 2. critic receives
 3. critic replies
 4. critic dies
 5. whereis fails
 6. critic is restarted
 7. code crashes

This is also a possibility:

 1. critic ! Message
 2. critic receives
 3. critic replies
 4. critic dies
 5. critic is restarted
 6. whereis picks up
 wrong pid
 7. message never matches

Things could go wrong in a different process and make another pro-
cess have problems if we don’t do things correctly. In this case, the value
of the critic atom can be seen from multiple processes. This is known as
shared state. The problem here is that the value of critic can be accessed

Errors and Processes 173

and modified by different processes at virtually the same time, resulting in
inconsistent information and software errors. The common term for such
things is a race condition.

Race conditions are particularly dangerous because they depend on the
timing of events. In pretty much every concurrent and parallel language
out there, this timing depends on unpredictable factors, such as how busy
the processor is, where the processes go, and what data is being processed
by your program.

Don’t Dr ink Too Much Kool- A id

You might have heard that Erlang is usually free of race conditions or deadlocks and
makes parallel code safe. This is true in many circumstances, but only because
message passing through a mailbox forces some ordering of events and because
the language seriously restricts how much shared state you can have. Generally,
you should never assume your code is entirely free of race conditions.

Named processes are only one example of the multiple ways in which par-
allel code can go wrong.

Other examples include when accessing files on the computer (to modify them)
and when updating the same database records from many different processes.

Luckily for us, it’s relatively easy to fix the sample code if we don’t
assume the named process remains the same. Instead, we’ll use references
(created with make_ref()) as unique values to identify messages and make
sure we receive the correct messages from the right process. We’ll need to
rewrite the critic/0 function into critic2/0 and judge/3 into judge2/2.

judge2(Band, Album) ->
 Ref = make_ref(),
 critic ! {self(), Ref, {Band, Album}},
 receive
 {Ref, Criticism} -> Criticism
 after 2000 ->
 timeout
 end.

critic2() ->
 receive
 {From, Ref, {"Rage Against the Turing Machine", "Unit Testify"}} ->
 From ! {Ref, "They are great!"};
 {From, Ref, {"System of a Downtime", "Memoize"}} ->
 From ! {Ref, "They're not Johnny Crash but they're good."};
 {From, Ref, {"Johnny Crash", "The Token Ring of Fire"}} ->
 From ! {Ref, "Simply incredible."};
 {From, Ref, {_Band, _Album}} ->
 From ! {Ref, "They are terrible!"}
 end,
 critic2().

174 Chapter 12

And then change restarter/0 to fit by making it spawn critic2/0 rather
than critic/0.

Now the other functions should keep working fine, and the users won’t
see a difference. Well, they will because we renamed functions and changed
the number of parameters, but they won’t know what implementation details
were changed and why it was important. All they will see is that their code
got simpler and they no longer need to send a pid around function calls.
Here’s an example:

6> c(linkmon).
{ok,linkmon}
7> linkmon:start_critic2().
<0.55.0>
8> linkmon:judge2("The Doors", "Light my Firewall").
"They are terrible!"
9> exit(whereis(critic), kill).
true
10> linkmon:judge2("Rage Against the Turing Machine", "Unit Testify").
"They are great!"

And now, even though we killed the critic, a new one instantly came
back to solve our problems. That’s the usefulness of named processes. Had
we tried to call linkmon:judge/2 without a registered process, a bad argument
error would have been thrown by the ! operator inside the function, mak-
ing sure that processes that depend on named ones can’t run without them.

In Chapter 13, we’ll put concurrent programming with Erlang into
practice by writing a real application.

N a me W h at’s Wor t h N a ming

Remember that atoms can be used in a limited (though high) number. You should
never create dynamic atoms. This means naming processes should be reserved for
important services unique to an instance of the VM and processes that should be
there for the whole time your application runs.

If you need named processes but they are transient or none of them can be
unique to the VM, it may mean they need to be represented as a group instead.
Linking and restarting them together if they crash might be the sane option, rather
than trying to use dynamic names.

13
D e s i g n i n g a C o n c u r r e n t

App l i c a t i o n

All is fine and dandy. You understand the concepts.
But then again, all we’ve had since the beginning
of the book were toy examples: calculators, trees,
Heathrow to London, and so on. It’s time for some-
thing more fun and educational. In this chapter,
we’ll write a small application in concurrent Erlang. The application will
be small and line-based, but still useful and moderately extensible.

I’m a somewhat disorganized person. I’m lost with homework, things
to do around the apartment, this book, work, meetings, appointments,
and so on. I end up having a dozen lists everywhere, listing tasks I still
forget to do. I hope that you also sometimes need reminders of what to do
(but you don’t have a mind that wanders as much as mine does), because
we’re going to write one of those event reminder applications that prompt
you to do stuff and remind you about appointments.

176 Chapter 13

Understanding the Problem
The first step is to know what the hell we’re doing. “A
reminder app,” you say. “Of course,” I say. But there’s
more. How do we plan on interacting with the soft-
ware? What do we want it to do for us? How do we rep-
resent the program with processes? How do we know
what messages to send?

As the quote goes, “Walking on water and developing software from a
specification are easy if both are frozen” (Edward V. Berard). So let’s set up
a spec and stick to it.

Our little piece of software will allow us to do the following:

•	 Add an event. Events contain a deadline (the time to warn), an event
name, and a description.

•	 Show a warning when the time for our event has come.

•	 Cancel an event by name.

•	 Interact with the software via the command line, although it could be
extended to allow other means (such as a GUI, web page access, instant
messaging software, or e-mail).

This application will not have persistent disk storage. It’s not needed
to demonstrate the architectural concepts we’ll cover in this chapter. But
I will show you where it could be inserted if you wanted to add it for a real
application, and also point to a few helpful functions. Given we have no per-
sistent storage, we must be able to update the code while it is running.

Here’s the structure of the program we’ll build, where the client, event
server, x, y, and z are all processes:

CLIENT EVENT
SERVER

x Y z

The event server has these tasks:

•	 Accept subscriptions from clients

•	 Forward notifications from event processes to each of the subscribers

•	 Accept messages to add events (and start the x, y, and z processes
needed)

•	 Accept messages to cancel an event and subsequently kill the event
processes

The event server can be terminated by a client, and it can have its code
reloaded via the shell.

Designing a Concurrent Application 177

The client has these tasks:

•	 Subscribe to the event server and receive notifications as messages

•	 Ask the server to add an event with all its details

•	 Ask the server to cancel an event

•	 Monitor the server (to know if it goes down)

•	 Shut down the event server if needed

It should be easy to design a bunch of clients all subscribing to the
event server. Each of these could potentially be a gateway to the different
interaction points (GUI, web page, instant messaging software, email, and
so on).

The x, y, and z processes represent a notification waiting to fire (they’re
basically just timers linked to the event server). They have the following tasks:

•	 Send a message to the event server when the time is up

•	 Receive a cancellation message and die

Note that all clients (instant messaging, mail, and others that are not
implemented in this example) are notified about all events, and a cancella-
tion is not something to warn the clients about. Here, the software is writ-
ten for you and me, and it’s assumed only one user will run it.

Here’s a more complex graph with all the possible messages:

 EVENT
SERVER

CLIENT

x

subscribe
add

cancel
shutdown
(monitor)

(monitor)
event is done

cancel

(spawns)

time is up!Y Z

This represents every process we’ll have. By drawing all the arrows there
and saying they’re messages, we’ve written a high-level protocol, or at least
its skeleton.

In a real-world application, using one process per event to be reminded
of would likely be overkill and hard to scale. However, since you are going to
be the sole user of the application, this is good enough. A different approach
could be using functions such as timer:send_after/2-3 to avoid spawning too
many processes.

178 Chapter 13

Defining the Protocol
Now that we know what each component needs to do and what it should
communicate, it’s a good idea to make a list of all messages that will be sent
and specify what they will look like. Let’s start with the communication
between the client and the event server:

 EVENT
SERVERCLIENT

Note: - the client monitors the server
 - the server monitors the client

ok

Here, we’re using two monitors because there is no obvious dependency
between the client and the server. Of course, the client doesn’t work with-
out the server, but the server can live without a client. A link could have
done the job right here, but because we want our system to be extensible
with many clients, we can’t assume other clients will all want to crash when
the server dies. Nor can we assume the client can really be turned into a
system process and trap exits in case the server dies.

Now to the next message set:

 EVENT
SERVER

CLIENT

This adds an event to the event server. A confirmation is sent back
under the form of the ok atom, unless something goes wrong (maybe the
TimeOut is in the wrong format). The inverse operation, removing events,
can be done as follows:

 EVENT
SERVER

CLIENT

{cancel, Name }

ok

Designing a Concurrent Application 179

The event server can then later send a notification when the event is due:

 EVENT
SERVER

CLIENT {done, Name, Description}

Then we need only the two following special cases for when we want to
shut the server down or when it crashes:

 EVENT
SERVER

CLIENT

shutdown

{’D
O

W
N’ Ref, process, Pid, s

hu
td

ow
n} Long

Message

No direct confirmation is sent when the server dies because the moni-
tor will already warn us of that. That’s pretty much all that will happen
between the client and the event server.

Now we need to deal with the messages between the event server and
the event processes themselves. Something to note here before we start is
that it would be very useful to have the event server linked to the events.
This is because we want all events to die if the server does; they make no
sense without it.

When the event server starts the events, it gives each of them a special
identifier (the event’s name). Once one of these event’s time has come, it
needs to send a message saying so:

 EVENT
SERVER

x {done, Id}

180 Chapter 13

On the other hand, the event needs to watch for cancel calls from the
event server:

 EVENT
SERVER

x

cancel

ok

One last message will be needed for our protocol—the one that lets us
upgrade the server:

 EVENT
SERVER

code_changeERLANG

 SHELL

No reply is necessary. When we actually program this feature, you’ll see
this makes sense.

Having both the protocol defined and the general idea of how our
process hierarchy will look in place, we can actually start working on the
project.

Lay Them Foundations
To begin, we should lay down a standard Erlang directory structure, which
looks like this:

ebin/
include/
priv/
src/

These directories store files as follows:

•	 The ebin/ directory is where files will go once they are compiled.

•	 The include/ directory is used to store .hrl files that are to be included
by other applications (the private .hrl files are usually kept inside the
src/ directory).

•	 The priv/ directory is used for executables that might need to interact
with Erlang, such as specific drivers and whatnot. We won’t actually use
that directory for this project.

•	 The src/ directory is where all .erl files stay.

Designing a Concurrent Application 181

In standard Erlang projects,
this directory structure can vary
a little. A conf/ directory can be
added for specific configuration
files, doc/ for documentation,
and lib/ or deps/ for third-party
libraries required for your appli-
cation to run. Erlang products
on the market often use different directory names, but the four in our
structure usually stay the same, given that they’re part of the standard OTP
practices.

An Event Module
We’ll start with the event module because it’s the one with the fewest depen-
dencies. We should be able to run it without needing to implement the
event server or client functions.

Navigate to the src/ directory and start an event.erl module, which will
implement the x, y, and z events for the application.

Before we begin writing any code, I have to mention that the proto-
col is incomplete. It helps represent what data will be sent from process to
process, but not the intricacies: how the addressing works, whether we use
references or names, and so on. Most messages will be wrapped in the form
{Pid, Ref, Message}, where Pid is the sender and Ref is a unique message iden-
tifier to help determine which reply came from which sender. If we were to
send many messages before looking for replies, we would not know which
reply went with which message without a reference.

Events and Loops
The core of the processes that will run event.erl’s code will be the function
loop/1, which, if you remember the protocol, will look a bit like the following
skeleton:

loop(State) ->
 receive
 {Server, Ref, cancel} ->
 ...
 after Delay ->
 ...
 end.

This shows the timeout we need to support to announce an event has
come to term and the way a server can call for the cancellation of an event.
You’ll notice a State variable in the loop. The State variable will need to con-
tain data such as the timeout value (in seconds) and the name of the event
(in order to send the message {done, Id}). It will also need to know the event
server’s pid in order to send it notifications.

On the other hand, the event needs to watch for cancel calls from the
event server:

 EVENT
SERVER

x

cancel

ok

One last message will be needed for our protocol—the one that lets us
upgrade the server:

 EVENT
SERVER

code_changeERLANG

 SHELL

No reply is necessary. When we actually program this feature, you’ll see
this makes sense.

Having both the protocol defined and the general idea of how our
process hierarchy will look in place, we can actually start working on the
project.

Lay Them Foundations
To begin, we should lay down a standard Erlang directory structure, which
looks like this:

ebin/
include/
priv/
src/

These directories store files as follows:

•	 The ebin/ directory is where files will go once they are compiled.

•	 The include/ directory is used to store .hrl files that are to be included
by other applications (the private .hrl files are usually kept inside the
src/ directory).

•	 The priv/ directory is used for executables that might need to interact
with Erlang, such as specific drivers and whatnot. We won’t actually use
that directory for this project.

•	 The src/ directory is where all .erl files stay.

182 Chapter 13

This is all stuff that’s fit to be held in the loop’s state. So let’s declare a
state record at the top of the file:

-module(event).
-compile(export_all).
-record(state, {server,
 name="",
 to_go=0}).

Note that -compile(export_all). is used to avoid needing to modify lists
of exported functions all the time. Once the development of the module is
done, replacing it with a real sequence of -export([...]). is recommended.

With this state defined, it should be possible to refine the loop a
bit more:

loop(S = #state{server=Server}) ->
 receive
 {Server, Ref, cancel} ->
 Server ! {Ref, ok}
 after S#state.to_go*1000 ->
 Server ! {done, S#state.name}
 end.

Here, the multiplication by a thousand is to change the to_go value
from seconds to milliseconds. You could alternatively call timer:seconds/1,
which converts seconds to milliseconds, to get the same result.

Don’t Dr ink Too Much Kool- A id

Language wart ahead! We need to bind the variable Server in the function head
because it’s used in pattern matching in the receive section. Remember that records
are hacks! The expression S#state.server is secretly expanded to element(2, S),
which isn’t a valid pattern to match.

This still works fine for S#state.to_go after the after part, because that one can
be an expression left to be evaluated later.

Now let’s test the loop:

6> c(event).
{ok,event}
7> rr(event, state).
[state]
8> spawn(event, loop, [#state{server=self(), name="test", to_go=5}]).
<0.60.0>
9> flush().
ok

Designing a Concurrent Application 183

10> flush().
Shell got {done,"test"}
ok
11> Pid = spawn(event, loop, [#state{server=self(), name="test", to_go=500}]).
<0.64.0>
12> ReplyRef = make_ref().
#Ref<0.0.0.210>
13> Pid ! {self(), ReplyRef, cancel}.
{<0.50.0>,#Ref<0.0.0.210>,cancel}
14> flush().
Shell got {#Ref<0.0.0.210>,ok}
ok

First, we import the record from the event module with rr(Mod). Then
we spawn the event loop with the shell as the server (self()). This event
should fire after 5 seconds. The ninth expression was run after 3 sec-
onds, and the tenth one after 6 seconds. You can see we did receive the
{done, "test"} message on the second try.

Right after that, we try the cancel feature (with an ample 500 seconds
to type it). We created the reference, sent the message, and got a reply with
the same reference, so we know the ok we received was coming from this
process and not any other on the system.

The cancel message is wrapped with a reference, but the done message
is not, simply because we don’t expect it to come from anywhere specific
(anyplace will do; we won’t match on the receive), nor should we want to
reply to it.

Let’s try another test. What about an event happening next year?

15> spawn(event, loop, [#state{server=self(), name="test", to_go=365*24*60*60}]).
<0.69.0>
16>
=ERROR REPORT==== DD-MM-YYYY::HH:mm:SS ===
Error in process <0.69.0> with exit value: {timeout_value,[{event,loop,1}]}

Ouch. It seems like we hit an implementation limit. It turns out Erlang’s
timeout value is limited to about 50 days in milliseconds. It might not be
significant, but I’m showing this error for three reasons:

•	 It bit me in the ass when writing the module and testing it, halfway
through the chapter.

•	 Erlang is certainly not perfect for every task. What we’re seeing here
is the consequences of using timers in ways not intended by the
implementers.

•	 It’s not really a problem. We can work around it.

The fix we’ll apply for this problem is to write a function that splits the
timeout value into many parts if turns out to be too long. This will require
some support from the loop/1 function, too. So the way to split the time is to

184 Chapter 13

divide it in equal parts of 49 days (because the limit is about 50), and then
put the remainder with all these equal parts. The sum of the list of seconds
should now be the original time:

%% Because Erlang is limited to about 49 days (49*24*60*60*1000) in
%% milliseconds, the following function is used.
normalize(N) ->
 Limit = 49*24*60*60,
 [N rem Limit | lists:duplicate(N div Limit, Limit)].

The function lists:duplicate/2 will take a given expression as a second
argument and reproduce it as many times as the value of the first argu-
ment ([a,a,a] = lists:duplicate(3, a)). If we were to send normalize/1 the value
98*24*60*60+4, it would return [4,4233600,4233600].

The loop/1 function should now look like this to accommodate the new
format:

%% Loop uses a list for times in order to go around the ~49 days limit
%% on timeouts.
loop(S = #state{server=Server, to_go=[T|Next]}) ->
 receive
 {Server, Ref, cancel} ->
 Server ! {Ref, ok}
 after T*1000 ->
 if Next =:= [] ->
 Server ! {done, S#state.name};
 Next =/= [] ->
 loop(S#state{to_go=Next})
 end
 end.

This takes the first element of the to_go list and waits for its whole dura-
tion. When this is done, the next element of the timeout list is verified. If
it’s empty, the timeout is over and the server is notified. Otherwise, the loop
keeps going with the rest of the list until it’s finished.

You can test the revised loop. It should work as normal, but now sup-
port years and years of timeout.

Adding An Interface
It would be very annoying to need to manually call something like
event:normalize(N) every time an event process is started, especially since
our work-around shouldn’t be of concern to programmers using our code.
The standard way to do this is to instead have an init function handle all
initialization of data required for the loop function to work well. While
we’re at it, we’ll add the standard start and start_link functions.

start(EventName, Delay) ->
 spawn(?MODULE, init, [self(), EventName, Delay]).

Designing a Concurrent Application 185

start_link(EventName, Delay) ->
 spawn_link(?MODULE, init, [self(), EventName, Delay]).

%%% event's innards
init(Server, EventName, Delay) ->
 loop(#state{server=Server,
 name=EventName,
 to_go=normalize(Delay)}).

The interface is now much cleaner. Before testing, though, it would be
nice to have the only message we can send, cancel, also have its own inter-
face function.

cancel(Pid) ->
 %% Monitor in case the process is already dead.
 Ref = erlang:monitor(process, Pid),
 Pid ! {self(), Ref, cancel},
 receive
 {Ref, ok} ->
 erlang:demonitor(Ref, [flush]),
 ok;
 {'DOWN', Ref, process, Pid, _Reason} ->
 ok
 end.

Oh, a new trick! Here, we’re using a monitor to see if the process is
there. If the process is already dead, we avoid useless waiting time and
return ok as specified in the protocol. If the process replies with the refer-
ence, then we know it will soon die, so we remove the reference to avoid
receiving them when we no longer care about them. Note that we also sup-
ply the flush option, which will purge the DOWN message if it was sent before
we had the time to demonitor.

Let’s test these functions:

17> c(event).
{ok,event}
18> f().
ok
19> event:start("Event", 0).
<0.103.0>
20> flush().
Shell got {done,"Event"}
ok
21> Pid = event:start("Event", 500).
<0.106.0>
22> event:cancel(Pid).
ok

And it works!
The last thing annoying with the event module is that we need to input

the time left in seconds. It would be much better if we could use a standard

186 Chapter 13

format such as Erlang’s datetime ({{Year, Month, Day}, {Hour, Minute, Second}}).
Just add the following function, which will calculate the difference between
the current time on your computer and the delay you inserted.

time_to_go(TimeOut={{_,_,_}, {_,_,_}}) ->
 Now = calendar:local_time(),
 ToGo = calendar:datetime_to_gregorian_seconds(TimeOut) -
 calendar:datetime_to_gregorian_seconds(Now),
 Secs = if ToGo > 0 -> ToGo;
 ToGo =< 0 -> 0
 end,
 normalize(Secs).

Oh yeah, the calendar module has pretty funky function names. This
calculates the number of seconds between now and when the event is sup-
posed to fire. If the event is in the past, we instead return 0 so it will notify
the server as soon as it can. Now fix the init function to call this function
instead of normalize/1. You can also rename Delay variables to say DateTime if
you want the names to be more descriptive.

init(Server, EventName, DateTime) ->
 loop(#state{server=Server,
 name=EventName,
 to_go=time_to_go(DateTime)}).

Now that the event module is finished, we can take a break. Start a new
event, go drink a pint (half liter) of milk/beer, and come back just in time
to see the event message coming in.

The Event Server
Let’s deal with the event server. According to the protocol, its skeleton
should look a bit like this:

-module(evserv).
-compile(export_all).

loop(State) ->
 receive
 {Pid, MsgRef, {subscribe, Client}} ->
 ...
 {Pid, MsgRef, {add, Name, Description, TimeOut}} ->
 ...
 {Pid, MsgRef, {cancel, Name}} ->
 ...
 {done, Name} ->
 ...
 shutdown ->
 ...

Designing a Concurrent Application 187

 {'DOWN', Ref, process, _Pid, _Reason} ->
 ...
 code_change ->
 ...
 Unknown ->
 io:format("Unknown message: ~p~n",[Unknown]),
 loop(State)
 end.

You’ll notice calls that require replies are wrapped with the same
{Pid, Ref, Message} format as earlier.

The server will need to keep two things in its state: a list of subscribing
clients and a list of all the event processes it spawned.

The protocol says that when an event is done, the event server should
receive {done, Name}, but send {done, Name, Description}. The idea here is to
have as little traffic as necessary and have the event processes care only about
what is strictly required. So here is the list of clients and list of events:

-record(state, {events, %% list of #event{} records
 clients}). %% list of Pids

-record(event, {name="",
 description="",
 pid,
 timeout={{1970,1,1},{0,0,0}}}).

And the loop now has the record definition in its head:

loop(S = #state{}) ->
 receive
 ...
 end.

It would be nice if both events and clients were orddicts. We’re unlikely
to have many hundreds of them at once. As you’ll recall from Chapter 9,
orddicts fit that need very well. We’ll write an init function to handle this.

init() ->
 %% Loading events from a static file could be done here.
 %% You would need to pass an argument to init telling where the
 %% resource to find the events is. Then load it from here.
 %% Another option is to just pass the events straight to the server
 %% through this function.
 loop(#state{events=orddict:new(),
 clients=orddict:new()}).

With the skeleton and initialization complete, we’ll implement each
message one by one.

188 Chapter 13

Handling Messages
The first message is the one about subscriptions. We want to keep a list
of all subscribers because when an event is done, we need to notify them.
Also, our protocol mentions that we should monitor them. It makes sense
because we don’t want to hold onto crashed clients and send useless mes-
sages for no reason. The code should look like this:

{Pid, MsgRef, {subscribe, Client}} ->
 Ref = erlang:monitor(process, Client),
 NewClients = orddict:store(Ref, Client, S#state.clients),
 Pid ! {MsgRef, ok},
 loop(S#state{clients=NewClients});

This section of loop/1 starts a monitor and stores the
client information in the orddict under the key Ref. The
reason for this is simple: The only other time we’ll need
to fetch the client ID will be if we receive a monitor’s
EXIT message, which will contain the reference (which
will let us get rid of the orddict’s entry).

The next message we care about is the one where
we add events. Now, it is possible to return an error status.
The only validation we’ll do is to check the timestamps we accept. While it’s
easy to subscribe to the {{Year,Month,Day}, {Hour,Minute,seconds}} layout, we need
to make sure we don’t do things like accept events on February 29 when we’re
not in a leap year, or on any other date that doesn’t exist. Moreover, we don’t
want to accept impossible date values such as “5 hours, minus 1 minute and
75 seconds.” A single function can take care of validating all of that.

The first building block we’ll use is the function calendar:valid_date/1.
As its name says, this function checks if the date is valid. Sadly, the weird-
ness of the calendar module doesn’t stop at funky names; there is actually no
function to confirm that {H,M,S} has valid values. We’ll need to implement
that one, too, following the funky naming scheme.

valid_datetime({Date,Time}) ->
 try
 calendar:valid_date(Date) andalso valid_time(Time)
 catch
 error:function_clause -> %% not in {{D,M,Y},{H,Min,S}} format
 false
 end;
valid_datetime(_) ->
 false.

valid_time({H,M,S}) -> valid_time(H,M,S).
valid_time(H,M,S) when H >= 0, H < 24,
 M >= 0, M < 60,
 S >= 0, S < 60 -> true;
valid_time(_,_,_) -> false.

Designing a Concurrent Application 189

The valid_datetime/1 function can now be used in the part where we try
to add the message.

{Pid, MsgRef, {add, Name, Description, TimeOut}} ->
 case valid_datetime(TimeOut) of
 true ->
 EventPid = event:start_link(Name, TimeOut),
 NewEvents = orddict:store(Name,
 #event{name=Name,
 description=Description,
 pid=EventPid,
 timeout=TimeOut},
 S#state.events),
 Pid ! {MsgRef, ok},
 loop(S#state{events=NewEvents});
 false ->
 Pid ! {MsgRef, {error, bad_timeout}},
 loop(S)
 end;

If the time is valid, we spawn a new event process, and then store its
data in the event server’s state before sending a confirmation to the caller.
If the timeout is wrong, we notify the client, rather than having the error
pass silently or crashing the server. Additional checks could be added for
name clashes or other restrictions. (Just remember to update the protocol
documentation!)

The next message defined in our protocol is the one where we cancel
an event. Canceling an event never fails on the client side, so the code is
simpler there. Just check whether the event is in the process’s state record.
If it is, use the event:cancel/1 function we defined to kill it and send ok. If it’s
not found, tell the user everything went okay anyway—the event is not run-
ning, and that’s what the user wanted.

{Pid, MsgRef, {cancel, Name}} ->
 Events = case orddict:find(Name, S#state.events) of
 {ok, E} ->
 event:cancel(E#event.pid),
 orddict:erase(Name, S#state.events);
 error ->
 S#state.events
 end,
 Pid ! {MsgRef, ok},
 loop(S#state{events=Events});

So now all voluntary interaction coming from the client to the event
server is covered. Let’s deal with the stuff that’s going between the server
and the events themselves. There are two messages to handle: canceling

190 Chapter 13

the events (which is done) and the events timing out. That message is
simply {done, Name}:

{done, Name} ->
 case orddict:find(Name, S#state.events) of
 {ok, E} ->
 send_to_clients({done, E#event.name, E#event.description},
 S#state.clients),
 NewEvents = orddict:erase(Name, S#state.events),
 loop(S#state{events=NewEvents});
 error ->
 %% This may happen if we cancel an event and
 %% it fires at the same time.
 loop(S)
 end;

The function send_to_clients/2 does as its name says and is defined as
follows:

send_to_clients(Msg, ClientDict) ->
 orddict:map(fun(_Ref, Pid) -> Pid ! Msg end, ClientDict).

That should be it for most of the loop code. What’s left is the handling
of different status messages: clients going down, shutdown, code upgrades,
and so on. Here they come:

shutdown ->
 exit(shutdown);
{'DOWN', Ref, process, _Pid, _Reason} ->
 loop(S#state{clients=orddict:erase(Ref, S#state.clients)});
code_change ->
 ?MODULE:loop(S);
Unknown ->
 io:format("Unknown message: ~p~n",[Unknown]),
 loop(S)

The first case (shutdown) is pretty explicit. You get the kill message; let
the process die. If you wanted to save state to disk, that could be a possible
place to do it. If you wanted safer save/exit semantics, this could be imple-
mented on every add, cancel, or done message. Loading events from disk
could then be done in the init function, spawning them as they come.

The 'DOWN' message’s actions are also simple enough. It means a client
died, so we remove it from the client list in the state.

Unknown messages will just be shown with io:format/2 for debugging
purposes, although a real production application would likely use a dedi-
cated logging module. Otherwise, all that useful information would be
wasted in output that no one ever looks for in production.

Next comes the code change message. This one is interesting enough to
have its own section.

Designing a Concurrent Application 191

Hot Code Loving
In order to do hot code loading, Erlang has the code server. The code server
is basically a VM process in charge of an ETS table (an in-memory database
table, native to the VM, discussed later in Chapter 25). The code server
can hold two versions of a single module in memory, and both versions can
run at once. A new version of a module is loaded automatically when com-
piling it with c(Module), loading with l(Module), or loading it with one of the
many functions of the code module, which you can read about in the Erlang
documentation.

An important concept to understand is that Erlang has both local
and external calls. Local calls are those function calls you can make with
functions that might not be exported. They have the format Name(Args). An
external call can be done only with exported functions and has the form
Module:Function(Args). The precise name for an external call is fully qualified call.

When there are two versions of a module loaded in the VM, all local
calls are done through the currently running version in a process. However,
fully qualified calls are always done on the newest version of the code avail-
able in the code server. Then, if local calls are made from within the fully
qualified one, they are in the new version of the code.

loop(S) ->

loop(S) ->

myFun(),

?MODULE:myFun(),

if Cond ->

->not Cond

end.

loop(S);

old new

‘new’ becomes the default

?MODULE :loop(S)

...

Given that every process/actor in Erlang needs to do a recursive call in
order to change state, it is possible to load entirely new versions of an actor
by having an external recursive call.

N o t e 	 If you load a third version of a module while a process still runs with the first one,
that process will be killed by the VM, which assumes it was an orphan process without
a supervisor or a way to upgrade itself. If no one runs the oldest version, it is simply
dropped and the newest ones are kept instead.

192 Chapter 13

There are ways to bind your code to a system module that will send
messages whenever a new version of a module is loaded. By doing this,
you can trigger a module reload only when receiving such a message, and
always do it with a code upgrade function, say MyModule:Upgrade(CurrentState),
which will then be able to transform the state data structure according to
the new version’s specification. This “subscription” handling is done auto-
matically by the OTP framework, which we’ll start studying in Chapter 14.
For the reminder application, we won’t use the code server and will instead
use a custom code_change message from the shell, doing very basic reload-
ing. That’s pretty much all you need to know to do hot code loading.
Nevertheless, here’s a more generic example:

-module(hotload).
-export([server/1, upgrade/1]).

server(State) ->
 receive
 update ->
 NewState = ?MODULE:upgrade(State),
 ?MODULE:server(NewState); %% Loop in the new version of the module.
 SomeMessage ->
 %% Do something here.
 server(State) %% Stay in the same version no matter what.
 end.

upgrade(OldState) ->
%% Transform and return the state here.

As you can see, our ?MODULE:loop(S) fits this pattern.

I Said, Hide Your Messages
Hide messages! If you expect people to build on your code and processes,
you must hide the messages in interface functions. Here’s what we used for
the evserv module:

start() ->
 register(?MODULE, Pid=spawn(?MODULE, init, [])),
 Pid.

start_link() ->
 register(?MODULE, Pid=spawn_link(?MODULE, init, [])),
 Pid.

terminate() ->
 ?MODULE ! shutdown.

We registered the server module because, for now, we should have only
one running at a time. If you were to expand the reminder application to
support many users, it would be a decent idea to instead register the names

Designing a Concurrent Application 193

with the global module, and it would be even better to use the gproc library.
For the sake of this example app, what we have here will be enough.

N o t e 	 The gproc library is a process dictionary for Erlang, which provides a number of useful
features beyond what the built-in dictionary has, such as he use of any term as an alias,
multiple names for a process, waiting for registration of other processes, atomic name
giveaway, and counters. It’s available from http://github.com/uwiger/gproc.

The first message we wrote is the next we should abstract away: how to
subscribe. The little protocol or specification we wrote earlier called for a
monitor, so this one is added there. At any point, if the reference returned
by the subscribe message is in a DOWN message, the client will know the server
has gone down.

subscribe(Pid) ->
 Ref = erlang:monitor(process, whereis(?MODULE)),
 ?MODULE ! {self(), Ref, {subscribe, Pid}},
 receive
 {Ref, ok} ->
 {ok, Ref};
 {'DOWN', Ref, process, _Pid, Reason} ->
 {error, Reason}
 after 5000 ->
 {error, timeout}
 end.

The next message to abstract away is the event adding:

add_event(Name, Description, TimeOut) ->
 Ref = make_ref(),
 ?MODULE ! {self(), Ref, {add, Name, Description, TimeOut}},
 receive
 {Ref, Msg} -> Msg
 after 5000 ->
 {error, timeout}
 end.

Note that we forward the {error, bad_timeout} message that could be
received to the client. We could have also decided to crash the client by rais-
ing erlang:error(bad_timeout). Whether crashing the client or forwarding the
error message is the thing to do is still debated in the community. Here’s
the alternative crashing function:

add_event2(Name, Description, TimeOut) ->
 Ref = make_ref(),
 ?MODULE ! {self(), Ref, {add, Name, Description, TimeOut}},
 receive
 {Ref, {error, Reason}} -> erlang:error(Reason);
 {Ref, Msg} -> Msg
 after 5000 ->

194 Chapter 13

 {error, timeout}
 end.

Then there’s event cancellation, which just takes a name:

cancel(Name) ->
 Ref = make_ref(),
 ?MODULE ! {self(), Ref, {cancel, Name}},
 receive
 {Ref, ok} -> ok
 after 5000 ->
 {error, timeout}
 end.

Last of all is a small nicety provided for the client—a function used
to accumulate all messages during a given period of time. If messages are
found, they’re all taken, and the function returns as soon as possible.

listen(Delay) ->
 receive
 M = {done, _Name, _Description} ->
 [M | listen(0)]
 after Delay*1000 ->
 []
 end.

This is mostly useful when working with applications where the client
polls for updates, whereas applications that are always listening can use a
push-based mechanism, and thus would not need such a function.

A Test Drive
You should now be able to compile the application and give it a test run.
To make things a bit simpler, we’ll write a specific Erlang makefile to
build the project. Open a file named Emakefile and put it in the project’s
base directory. The file contains Erlang terms and gives the Erlang com-
piler the recipe to cook wonderful and crispy .beam files.

{'src/*', [debug_info,
 {i, "src"},
 {i, "include"},
 {outdir, "ebin"}]}.

This tells the compiler to add debug_info to the files (this is rarely an
option you want to give up), to look for header files in the src/ and include/
directories to help compile modules in src/, and to output them in ebin/.

Go to your command line and run erl -make from the project’s base
directory, and the files should all be compiled and put inside the ebin/
directory for you. Start the Erlang shell by enterng erl -pa ebin/. The

Designing a Concurrent Application 195

-pa directory option tells the Erlang VM to
add that path to the places it can look for
modules.

Another option is to start the shell as
usual and call make:all([load]). This will look
for a file named Emakefile in the current
directory, recompile it (if it changed), and
load the new files.

You should now be able to track thou-
sands of events. Try it out.

1> evserv:start().
<0.34.0>
2> evserv:subscribe(self()).
{ok,#Ref<0.0.0.31>}
3> evserv:add_event("Hey there", "test", FutureDateTime).
ok
4> evserv:listen(5).
[]
5> evserv:cancel("Hey there").
ok
6> evserv:add_event("Hey there2", "test", NextMinuteDateTime).
ok
7> evserv:listen(2000).
[{done,"Hey there2","test"}]

This works nicely. Writing any client should now be simple enough,
given the few basic interface functions we have created.

Adding Supervision
In order to make our example a more stable application, we should write
a “restarter,” as we did in Chapter 12. Open a file named sup.erl where our
supervisor will be:

-module(sup).
-export([start/2, start_link/2, init/1, loop/1]).

start(Mod,Args) ->
 spawn(?MODULE, init, [{Mod, Args}]).

start_link(Mod,Args) ->
 spawn_link(?MODULE, init, [{Mod, Args}]).

init({Mod,Args}) ->
 process_flag(trap_exit, true),
 loop({Mod,start_link,Args}).

loop({M,F,A}) ->
 Pid = apply(M,F,A),
 receive

 {error, timeout}
 end.

Then there’s event cancellation, which just takes a name:

cancel(Name) ->
 Ref = make_ref(),
 ?MODULE ! {self(), Ref, {cancel, Name}},
 receive
 {Ref, ok} -> ok
 after 5000 ->
 {error, timeout}
 end.

Last of all is a small nicety provided for the client—a function used
to accumulate all messages during a given period of time. If messages are
found, they’re all taken, and the function returns as soon as possible.

listen(Delay) ->
 receive
 M = {done, _Name, _Description} ->
 [M | listen(0)]
 after Delay*1000 ->
 []
 end.

This is mostly useful when working with applications where the client
polls for updates, whereas applications that are always listening can use a
push-based mechanism, and thus would not need such a function.

A Test Drive
You should now be able to compile the application and give it a test run.
To make things a bit simpler, we’ll write a specific Erlang makefile to
build the project. Open a file named Emakefile and put it in the project’s
base directory. The file contains Erlang terms and gives the Erlang com-
piler the recipe to cook wonderful and crispy .beam files.

{'src/*', [debug_info,
 {i, "src"},
 {i, "include"},
 {outdir, "ebin"}]}.

This tells the compiler to add debug_info to the files (this is rarely an
option you want to give up), to look for header files in the src/ and include/
directories to help compile modules in src/, and to output them in ebin/.

Go to your command line and run erl -make from the project’s base
directory, and the files should all be compiled and put inside the ebin/
directory for you. Start the Erlang shell by enterng erl -pa ebin/. The

196 Chapter 13

 {'EXIT', _From, shutdown} ->
 exit(shutdown); % will kill the child too
 {'EXIT', Pid, Reason} ->
 io:format("Process ~p exited for reason ~p~n",[Pid,Reason]),
 loop({M,F,A})
 end.

This is somewhat similar to the restarter from Chapter 12, although
this one is a tad more generic. It can take any module, as long as it has a
start_link function. It will restart the process it watches indefinitely, unless
the supervisor itself is terminated with a shutdown exit signal. Here it is
in use:

1> c(evserv), c(sup).
{ok,sup}
2> SupPid = sup:start(evserv, []).
<0.43.0>
3> whereis(evserv).
<0.44.0>
4> exit(whereis(evserv), die).
true
Process <0.44.0> exited for reason die
5> exit(whereis(evserv), die).
Process <0.48.0> exited for reason die
true
6> exit(SupPid, shutdown).
true
7> whereis(evserv).
undefined

As you can see, killing the supervisor will also kill its child.

N o t e 	 We’ll explore much more advanced and flexible supervisors in Chapter 18. Those are
the ones people are thinking of when they mention supervision trees. The supervisor
demonstrated here is only the most basic form that exists and is not exactly fit for pro-
duction environments compared to the real thing.

Namespaces (or Lack Thereof)
Because Erlang has a flat module struc-
ture (there is no hierarchy), some applica-
tions may have naming conflicts among
their modules. One example of this is the
frequently used user module that almost
every project attempts to define at least
once. This clashes with the user module
shipped with Erlang. You can test for any
clashes with the function code:clash/0.

Designing a Concurrent Application 197

Because of the potential for conflicts, the common pattern is to pre-
fix every module name with the name of your project. In this case, our
reminder application’s modules should be renamed to reminder_evserv,
reminder_sup, and reminder_event.

Some programmers then decide to add a module, named after the
application itself, which wraps common calls that programmers could
make when using their own application. Examples of calls could be func-
tions such as starting the application with a supervisor, subscribing to the
server, and adding and canceling events. It’s important to be aware of other
namespaces, too, such as registered names that must not clash, database
tables, and so on.

That’s pretty much it for a very basic concurrent Erlang application.
This one showed we could have a bunch of concurrent processes without
thinking too hard about it: supervisors, clients, servers, processes used as
timers (and we could have thousands of them), and so on. There’s no need
to synchronize them, no locks, and no real main loop. Message passing has
made it simple to compartmentalize our application into a few modules
with separated concerns and tasks.

The basic calls inside evserv.erl could now be used to construct clients
that could interact with the event server from somewhere outside the
Erlang VM and make the program truly useful.

Before doing that, though, I suggest you read up on the OTP frame-
work. The next few chapters will cover some of its building blocks, which
allow for much more robust and elegant applications. A huge part of Erlang’s
power comes from using the OTP framework. It’s a carefully crafted and
well-engineered tool that any self-respecting Erlang programmer must know.

14
A n I n t r o d u c t i o n t o OT P

In this chapter, we’ll get started with Erlang’s OTP
framework. OTP stands for Open Telecom Platform,
though these days it’s more about software that has
the properties of telecom applications than telecom
itself. If half of Erlang’s greatness comes from its concurrency and dis-
tribution, and the other half comes from its error handling capabilities,
then the OTP framework provides the third half.

During the previous chapters we’ve seen a few examples of common
practices of how to write concurrent applications with the language’s built-
in facilities: links, monitors, servers, timeouts, trapping exits, and so on.
There were a few “gotchas” involved in concurrent programming: Things
must be done in a certain order, race conditions need to be avoided, and
a process could die at any time. We also covered hot code loading, naming
processes, adding supervisors, and other techniques.

200 Chapter 14

Doing all of this manually is time
consuming and error prone. There are
corner cases to be forgotten about and
pits to fall in to. The OTP framework
takes care of this by grouping these essen-
tial practices into a set of libraries that
have been carefully engineered and battle
hardened over the years. Every Erlang
programmer should use them.

The OTP framework is also a set of
modules and standards designed to help
you build applications. Given that most
Erlang programmers end up using OTP,
most Erlang applications you’ll encoun-
ter in the wild will tend to follow these
standards.

The Common Process, Abstracted
One of the things we’ve done many times in the previous process examples
is divide everything in accordance to very specific tasks. In most processes,
we had a function in charge of spawning the new process, a function in
charge of giving the process its initial values, a main loop, and so on. These
parts, as it turns out, are usually present in all concurrent programs you’ll
write, no matter what the process might be used for.

spawn init loop exit

calls

The engineers and computer scientists behind the OTP framework
spotted these patterns and included them in a bunch of common libraries.

The OTP libraries are built with code that is equivalent to most of
the abstractions we used (like using references to tag messages), with the
advantages of being used for years in the field and built with far more cau-
tion than we used in our implementations. They contain functions to safely
spawn and initialize processes, send messages to them in a fault-tolerant
manner, and perform many other tasks. But you should rarely need to use
these libraries yourself. The abstractions they contain are so basic and uni-
versal that a lot more interesting things, called behaviors, were built on top
of them.

An Introduction to OTP 201

ERLANG

BASIC ABSTRACTION
LIBRARIES

BEHAVIOURS

gen, sys, proc_lib

gen_*, supervisors

In this and the following chapters, we’ll look at a few of the common
uses of processes, and how they can be abstracted and then made generic.
Then for each of these, we’ll explore the corresponding implementation
with the OTP framework’s behaviors.

The Basic Server
The common pattern we’ll explore in this chapter is one we’ve already
used. For the event server we wrote in Chapter 13, we used a client/server
model. The event server receives calls from the client, acts on them, and
then replies to the client if the protocol says to do so.

Introducing the Kitty Server
For this chapter, we’ll use a very simple server, allowing us to focus on its
essential properties. Here’s the kitty_server:

%%%%% Naive version
-module(kitty_server).
-export([start_link/0, order_cat/4, return_cat/2, close_shop/1]).

-record(cat, {name, color=green, description}).

%%% Client API
start_link() -> spawn_link(fun init/0).

%% Synchronous call
order_cat(Pid, Name, Color, Description) ->
 Ref = erlang:monitor(process, Pid),
 Pid ! {self(), Ref, {order, Name, Color, Description}},
 receive

202 Chapter 14

 {Ref, Cat} ->
 erlang:demonitor(Ref, [flush]),
 Cat;
 {'DOWN', Ref, process, Pid, Reason} ->
 erlang:error(Reason)
 after 5000 ->
 erlang:error(timeout)
 end.

%% This call is asynchronous.
return_cat(Pid, Cat = #cat{}) ->
 Pid ! {return, Cat},
 ok.

%% Synchronous call
close_shop(Pid) ->
 Ref = erlang:monitor(process, Pid),
 Pid ! {self(), Ref, terminate},
 receive
 {Ref, ok} ->
 erlang:demonitor(Ref, [flush]),
 ok;
 {'DOWN', Ref, process, Pid, Reason} ->
 erlang:error(Reason)
 after 5000 ->
 erlang:error(timeout)
 end.

%%% Server functions
init() -> loop([]).

loop(Cats) ->
 receive
 {Pid, Ref, {order, Name, Color, Description}} ->
 if Cats =:= [] ->
 Pid ! {Ref, make_cat(Name, Color, Description)},
 loop(Cats);
 Cats =/= [] -> % got to empty the stock
 Pid ! {Ref, hd(Cats)},
 loop(tl(Cats))
 end;
 {return, Cat = #cat{}} ->
 loop([Cat|Cats]);
 {Pid, Ref, terminate} ->
 Pid ! {Ref, ok},
 terminate(Cats);
 Unknown ->
 %% Do some logging here too.
 io:format("Unknown message: ~p~n", [Unknown]),
 loop(Cats)
 end.

An Introduction to OTP 203

%%% Private functions
make_cat(Name, Col, Desc) ->
 #cat{name=Name, color=Col, description=Desc}.

terminate(Cats) ->
 [io:format("~p was set free.~n",[C#cat.name]) || C <- Cats],
 ok.

So this is a kitty server/store. The behavior is extremely simple: You
describe a cat, and you get that cat. If someone returns a cat, it’s added to a
list, and then automatically sent as the next order instead of what the client
actually asked for (we’re in this kitty store for the money, not smiles).

1> c(kitty_server).
{ok,kitty_server}
2> rr(kitty_server).
[cat]
3> Pid = kitty_server:start_link().
<0.57.0>
4> Cat1 = kitty_server:order_cat(Pid, carl, brown, "loves to burn bridges").
#cat{name = carl,color = brown,
description = "loves to burn bridges"}
5> kitty_server:return_cat(Pid, Cat1).
ok
6> kitty_server:order_cat(Pid, jimmy, orange, "cuddly").
#cat{name = carl,color = brown,
description = "loves to burn bridges"}
7> kitty_server:order_cat(Pid, jimmy, orange, "cuddly").
#cat{name = jimmy,color = orange,description = "cuddly"}
8> kitty_server:return_cat(Pid, Cat1).
ok
9> kitty_server:close_shop(Pid).
carl was set free.
ok
10> kitty_server:close_shop(Pid).
** exception error: no such process or port
in function kitty_server:close_shop/1

Looking back at the source code for the module, we can see patterns
we’ve previously applied. The sections where we set monitors up and down,
apply timers, receive data, use a main loop, handle the init function, and so
on should be familiar. It should be possible to abstract away these things we
end up repeating all the time. Let’s start with the client API.

Generalizing Calls
The first thing to notice in the source code is that both synchronous calls
are extremely similar. These are the calls that would likely go in abstraction
libraries, as mentioned earlier. For now, we’ll just abstract these away as a
single function in a new module that will hold all the generic parts of the
kitty server.

204 Chapter 14

-module(my_server).
-compile(export_all).

call(Pid, Msg) ->
 Ref = erlang:monitor(process, Pid),
 Pid ! {self(), Ref, Msg},
 receive
 {Ref, Reply} ->
 erlang:demonitor(Ref, [flush]),
 Reply;
 {'DOWN', Ref, process, Pid, Reason} ->
 erlang:error(Reason)
 after 5000 ->
 erlang:error(timeout)
 end.

This takes a message and a pid, sticks them into the function, and then
forwards the message for you in a safe manner.

From now on, we can just substitute the message sending we do with a
call to this function. So if we were to rewrite a new kitty server to be paired
with the abstracted my_server, it could begin like this:

-module(kitty_server2).
-export([start_link/0, order_cat/4, return_cat/2, close_shop/1]).

-record(cat, {name, color=green, description}).

%%% Client API
start_link() -> spawn_link(fun init/0).

%% Synchronous call
order_cat(Pid, Name, Color, Description) ->
 my_server:call(Pid, {order, Name, Color, Description}).

%% This call is asynchronous.
return_cat(Pid, Cat = #cat{}) ->
 Pid ! {return, Cat},
 ok.

%% Synchronous call
close_shop(Pid) ->
 my_server:call(Pid, terminate).

Generalizing the Server Loop
The next big generic chunk of code we have is not as obvious as the call/2
function. Note that every process we’ve written so far has a loop where all
the messages are pattern matched. This part is a bit touchy, but here we

An Introduction to OTP 205

need to separate the pattern matching from the loop itself. One quick way
to do it would be to add this:

loop(Module, State) ->
 receive
 Message -> Module:handle(Message, State)
 end.

And then the specific module would look like this:

handle(Message1, State) -> NewState1;
handle(Message2, State) -> NewState2;
...
handle(MessageN, State) -> NewStateN.

This is better, but there are ways to make it even cleaner.
If you paid attention when reading or entering the kitty_server module

(and I hope you did!), you will have noticed we have a specific way to call
synchronously and another way to call asynchronously. It would be pretty
helpful if our generic server implementation could provide a clear way to
know which kind of call is which.

To accomplish this, we will need to match different kinds of messages
in my_server:loop/2. This means we’ll need to change the call/2 function a
bit so synchronous calls are made obvious. We’ll do this by adding the atom
sync to the message on the function’s second line, as follows:

call(Pid, Msg) ->
 Ref = erlang:monitor(process, Pid),
 Pid ! {sync, self(), Ref, Msg},
 receive
 {Ref, Reply} ->
 erlang:demonitor(Ref, [flush]),
 Reply;
 {'DOWN', Ref, process, Pid, Reason} ->
 erlang:error(Reason)
 after 5000 ->
 erlang:error(timeout)
 end.

We can now provide a new function for asynchronous calls. The func-
tion cast/2 will handle this.

cast(Pid, Msg) ->
 Pid ! {async, Msg},
 ok.

206 Chapter 14

Now the loop looks like this:

loop(Module, State) ->
 receive
 {async, Msg} ->
 loop(Module, Module:handle_cast(Msg, State));
 {sync, Pid, Ref, Msg} ->
 loop(Module, Module:handle_call(Msg, Pid, Ref, State))
 end.

And then you could also add specific slots
to handle messages that don’t fit the sync/async
concept (maybe they were sent by accident) or to
have your debug functions and other stuff like
hot code reloading in there.

One disappointing thing about our loop is
that the abstraction is leaking. The programmers who will use my_server will
still need to know about references when sending synchronous messages
and replying to them. That makes the abstraction useless. To use it, you still
need to understand all the boring details. Here’s a quick fix:

loop(Module, State) ->
 receive
 {async, Msg} ->
 loop(Module, Module:handle_cast(Msg, State));
 {sync, Pid, Ref, Msg} ->
 loop(Module, Module:handle_call(Msg, {Pid, Ref}, State))
 end.

With both the variables Pid and Ref placed in a tuple, they can be passed
as a single argument to the other function as a variable with a name like From.
Then the user doesn’t need to know anything about the variable’s innards.
Instead, we’ll provide a function to send replies that should understand
what From contains:

reply({Pid, Ref}, Reply) ->
 Pid ! {Ref, Reply}.

Starter Functions
What is left to do is specify the starter functions (start, start_link, and init)
that pass around the module names and whatnot. Once they’re added, the
module should look like this:

-module(my_server).
-export([start/2, start_link/2, call/2, cast/2, reply/2]).

%%% Public API
start(Module, InitialState) ->
 spawn(fun() -> init(Module, InitialState) end).

An Introduction to OTP 207

start_link(Module, InitialState) ->
 spawn_link(fun() -> init(Module, InitialState) end).

call(Pid, Msg) ->
 Ref = erlang:monitor(process, Pid),
 Pid ! {sync, self(), Ref, Msg},
 receive
 {Ref, Reply} ->
 erlang:demonitor(Ref, [flush]),
 Reply;
 {'DOWN', Ref, process, Pid, Reason} ->
 erlang:error(Reason)
 after 5000 ->
 erlang:error(timeout)
 end.

cast(Pid, Msg) ->
 Pid ! {async, Msg},
 ok.

reply({Pid, Ref}, Reply) ->
 Pid ! {Ref, Reply}.

%%% Private stuff
init(Module, InitialState) ->
 loop(Module, Module:init(InitialState)).

loop(Module, State) ->
 receive
 {async, Msg} ->
 loop(Module, Module:handle_cast(Msg, State));
 {sync, Pid, Ref, Msg} ->
 loop(Module, Module:handle_call(Msg, {Pid, Ref}, State))
 end.

Generalizing Kitty Server
Next, we need to re-implement the kitty server, now kitty_server2, as a call-
back module that will respect the interface we defined for my_server. We’ll
keep the same interface as the previous implementation, except all the calls
are now redirected to go through my_server.

-module(kitty_server2).

-export([start_link/0, order_cat/4, return_cat/2, close_shop/1]).
-export([init/1, handle_call/3, handle_cast/2]).

-record(cat, {name, color=green, description}).

%%% Client API
start_link() -> my_server:start_link(?MODULE, []).

208 Chapter 14

%% Synchronous call
order_cat(Pid, Name, Color, Description) ->
 my_server:call(Pid, {order, Name, Color, Description}).

%% This call is asynchronous.
return_cat(Pid, Cat = #cat{}) ->
 my_server:cast(Pid, {return, Cat}).

%% Synchronous call
close_shop(Pid) ->
 my_server:call(Pid, terminate).

Note that we added a second -export() at the top of the module. These
are the functions my_server will need to call to make everything work:

%%% Server functions
init([]) -> []. %% no treatment of info here!

handle_call({order, Name, Color, Description}, From, Cats) ->
 if Cats =:= [] ->
 my_server:reply(From, make_cat(Name, Color, Description)),
 Cats;
 Cats =/= [] ->
 my_server:reply(From, hd(Cats)),
 tl(Cats)
 end;

handle_call(terminate, From, Cats) ->
 my_server:reply(From, ok),
 terminate(Cats).

handle_cast({return, Cat = #cat{}}, Cats) ->
 [Cat|Cats].

And then we need to reinsert the private functions:

%%% Private functions
make_cat(Name, Col, Desc) ->
 #cat{name=Name, color=Col, description=Desc}.

terminate(Cats) ->
 [io:format("~p was set free.~n",[C#cat.name]) || C <- Cats],
 exit(normal).

Just make sure to replace the ok we had before with exit(normal) in
terminate/1; otherwise, the server will keep running.

You should be able to compile and test the code, and run it in exactly
the same manner as the previous version. The code is quite similar, but let’s
see what has changed.

An Introduction to OTP 209

Specific vs. Generic
Our kitty server example demonstrates the core of OTP (conceptually
speaking). This is what OTP really is all about: taking all the generic com-
ponents, extracting them in libraries, making sure they work well, and then
reusing that code when possible. Then all that’s left to do is focus on the spe-
cific stuff—things that will always change from application to application.

Obviously, you don’t benefit much by doing things that way with only
the kitty server. It looks a bit like abstraction for abstraction’s sake. If the
application you needed to ship to a customer were nothing but the kitty
server, then the first version might be fine. However, for larger applications,
it might be worth the effort to separate generic parts of your code from the
specific sections.

Imagine that we have some Erlang software running on a server. Our
software has a few kitty servers running, a veterinary process (you send your
broken kitties, and it returns them fixed), a kitty beauty salon, a server for
pet food, and so on. Most of these can be implemented with a client/server
pattern. As time passes, your complex system becomes full of different serv-
ers running around.

Adding servers adds complexity in terms of code, and also in terms of
testing, maintenance, and understanding. Each implementation might be
different, programmed in different styles by various people, and so on.
However, if all these servers share the same common my_server abstraction,
you substantially reduce that complexity. You understand the basic concept
of the module instantly (“Oh, it’s a server!”), and there’s a single generic
implementation of it to test and document. The rest of the effort can be put
into each specific implementation of the server.

This means you reduce a lot of time
tracking and solving bugs (just do it in
one place for all servers). It also means
that you reduce the number of bugs you
introduce. If you were to rewrite the
my_server:call/3 or the process’s main
loop all the time, not only would it be
more time-consuming, but chances of
forgetting one step or another would sky-
rocket, and so would bugs. Fewer bugs
mean fewer calls during the night to go
fix something, which is definitely good
for all of us (I bet you don’t appreciate
going to the office on days off to fix
bugs either).

Another interesting outcome of separating the generic from the spe-
cific is that we instantly made it much easier to test our individual modules.
If you wanted to unit test the old kitty server implementation, you would
need to spawn one process per test, give it the right state, send your mes-
sages, and hope for the reply you expected. On the other hand, our second
kitty server requires us to run the function calls over only the handle_call/3

210 Chapter 14

and handle_cast/2 functions, and see what they output as a new state. There
is no need to set up servers. Just pass the state in as a function parameter.
Note that this also means the generic aspect of the server is much easier to
test, given you can just implement very simple functions that do nothing
other than let you focus on the behavior you want to observe.

A less obvious advantage of using common abstractions in this way
is that if everyone uses the exact same backend for their processes, when
someone optimizes that single backend to make it a little faster, every pro-
cess using it out there will run a little faster, too. For this principle to work
in practice, it’s usually necessary to have a whole lot of people using the
same abstractions and putting effort in them. Luckily for the Erlang com-
munity, that’s what happens with the OTP framework.

In our kitty server modules, there are a bunch of things we haven’t
yet addressed: named processes, configuring the timeouts, adding debug
information, what to do with unexpected messages, how to tie in hot code
loading, handling specific errors, abstracting away the need to write most
replies, handling most ways to shut down a server, making sure the server
plays nice with supervisors, and more. Going over all of this is superflu-
ous for this text, but it would be necessary in real products that need to be
shipped. Again, you might see why doing all of this by yourself is a bit of
a risky task. Luckily for you (and the people who will support your appli-
cations), the Erlang/OTP team managed to handle all of that with the
gen_server behavior. gen_server is a bit like my_server on steroids, except it
has years and years of testing and production use behind it.

Callback to the Future
Similar to the interface we started designing in this chapter, the OTP
gen_server asks us to provide functions to deal with initialization and ter-
mination of processes, the handling of synchronous and asynchronous
requests done through message passing, and a few other tasks.

The init Function
The first callback is an init/1 function. It is
similar to the one we used with my_server in
that it is used to initialize the server’s state
and do all of these one-time tasks that the
server will depend on. The function can
return {ok, State}, {ok, State, TimeOut},
{ok, State, hibernate}, {stop, Reason},
or ignore.

The normal {ok, State} return value
doesn’t really need explaining other than
that State will be passed directly to the
main loop of the process as the state to keep later on. The TimeOut variable is
meant to be added to the tuple whenever you need a deadline before which
you expect the server to receive a message. If no message is received before

An Introduction to OTP 211

the deadline, a special one (the atom timeout) is sent to the server, which
should be handled with handle_info/2 (described later in this chapter). This
option is seldom used in production code, because you can’t always know
which messages you will receive, and any of them will be enough to reset
the timer. It is usually better to use a function such as erlang:start_timer/3
and handle things manually for better control.

On the other hand, if you do expect the process to take a long time
before getting a reply and are worried about memory, you can add the
hibernate atom to the tuple. Hibernation basically reduces the size of the
process’s state until it gets a message, at the cost of some processing power.
If you are in doubt about using hibernation, you probably don’t need it.

Returning {stop, Reason} should be done when something went wrong
during the initialization.

A Close r Look at Hibe r n at ion

There’s a more technical definition of process hibernation, if you’re interested.
When the BIF erlang:hibernate(M,F,A) is called, the call stack for the currently
running process is discarded (the function never returns). The garbage collection
then kicks in, and what’s left is one continuous heap that is shrunken to the size of
the data in the process. This basically compacts all the data so the process takes
less space.

Once the process receives a message, the function M:F with A as arguments is
called, and the execution resumes.

N o t e 	 While init/1 is running, execution is blocked in the process that spawned the
server. This is because it is waiting for a “ready” message sent automatically by
the gen_server module to make sure everything went fine.

The handle_call Function
The function handle_call/3 is used to work with synchronous messages. It
takes three arguments: Request, From, and State. It’s pretty similar to how we
programmed our own handle_call/3 in my_server. The biggest difference is
how you reply to messages. In our own abstraction of a server, it was necessary
to use my_server:reply/2 to talk back to the process. In the case of gen_server,
eight different return values are possible, taking the form of tuples:

{reply,Reply,NewState}
{reply,Reply,NewState,TimeOut}
{reply,Reply,NewState,hibernate}
{noreply,NewState}
{noreply,NewState,TimeOut}
{noreply,NewState,hibernate}
{stop,Reason,Reply,NewState}
{stop,Reason,NewState}

212 Chapter 14

For all of these values, TimeOut and hibernate work the same way as for
init/1. Whatever is in Reply will be sent back to whoever called the server in
the first place.

Notice that there are three possible noreply options. When you use
noreply, the generic part of the server will assume you’re taking care of
sending the reply back yourself. This can be done with gen_server:reply/2,
which can be used in the same way as my_server:reply/2.

Most of the time, you’ll need only the reply tuples. However, there are
a few valid reasons to use noreply, such as when you want another process
to send the reply for you, or when you want to send an acknowledgment
(“Hey! I received the message!”) but still process it afterward (without
replying this time). If this is what you choose to do, it is absolutely neces-
sary to use gen_server:reply/2; otherwise, the call will time out and cause a
crash.

The handle_cast Function
The handle_cast/2 callback works a lot like the one in my_server. It takes the
parameters Message and State and is used to handle asynchronous calls. You
do whatever you want in there, in a manner quite similar to what’s doable
with handle_call/3. On the other hand, only tuples without replies are valid
return values:

{noreply,NewState}
{noreply,NewState,TimeOut}
{noreply,NewState,hibernate}
{stop,Reason,NewState}

The handle_info Function
Earlier, I mentioned that our own server didn’t really deal with messages
that do not fit our interface. Well, handle_info/2 is the solution. It’s very
similar to handle_cast/2, and in fact, returns the same tuples. The differ-
ence is that this callback is there only for messages that were sent directly
with the ! operator and special ones like init/1’s timeout, monitors’ notifi-
cations, and EXIT signals.

The terminate Function
The callback terminate/2 is called whenever one of the three handle_something
functions returns a tuple of the form {stop, Reason, NewState} or {stop, Reason,
Reply, NewState}. It takes two parameters, Reason and State, corresponding to
the same values from the stop tuples.

The terminate/2 function will also be called when its parent (the process
that spawned it) dies, if and only if the gen_server is trapping exits.

An Introduction to OTP 213

N o t e 	 If any reason other than normal, shutdown, or {shutdown, Term} is used when
terminate/2 is called, the OTP framework will see this as a failure and start log-
ging the process’s state, reason for failures, last messages received, and so on.
This makes debugging easier, which might save your life quite a few times.

This function is pretty much the direct opposite of init/1, so whatever
was done in there should have its opposite in terminate/2. It’s your server’s
janitor—the function in charge of locking the door after making sure
everyone is gone. Of course, the function is helped by the VM itself, which
should usually delete all ETS tables (see Chapter 25), close all sockets (see
Chapter 23), and handle other tasks for you. Note that the return value of
this function doesn’t really matter, because the code stops executing after it
has been called.

The code_change Function
The function code_change/3 lets you upgrade code. It takes the form
code_change(PreviousVersion, State, Extra). Here, the variable PreviousVersion
is either the version term itself (see Chapter 2 if you forgot what this is)
in the case of an upgrade or {down, Version} in the case of a downgrade
( just reloading older code). The State variable holds all of the current
server state so you can convert it.

Imagine for a moment that we used an orddict to store all of our data.
However, as time passes, the orddict becomes too slow, and we decide to
replace it with a regular dict. In order to avoid the process crashing on the
next function call, the conversion from one data structure to the other can
be done in there, safely. All we need to do is return the new state with
{ok, NewState}. We’ll make use of this feature in Chapter 22, when we see
relups as well as the Extra variable. We won’t worry about these things
for now.

So now we have all the callbacks defined. Don’t worry if you’re a little
lost. The OTP framework is a bit circular sometimes; to understand part A
of the framework, you need to understand part B, but then part B requires
that you understand part A. The best way to get over that confusion is to
actually implement a gen_server.

.BEAM Me Up, Scotty!
Now we’ll build kitty_gen_server. It will be
similar to kitty_server2, with only mini-
mal API changes. First start a new mod-
ule with the following lines in it:

-module(kitty_gen_server).
-behavior(gen_server).

214 Chapter 14

N o t e 	 Both behavior and behaviour are accepted by the Erlang compiler.

And try to compile it. You should get something like this:

1> c(kitty_gen_server).
./kitty_gen_server.erl:2: Warning: undefined callback function code_change/3
(behavior 'gen_server')
./kitty_gen_server.erl:2: Warning: undefined callback function handle_call/3
(behavior 'gen_server')
./kitty_gen_server.erl:2: Warning: undefined callback function handle_cast/2
(behavior 'gen_server')
./kitty_gen_server.erl:2: Warning: undefined callback function handle_info/2
(behavior 'gen_server')
./kitty_gen_server.erl:2: Warning: undefined callback function init/1
(behavior 'gen_server')
./kitty_gen_server.erl:2: Warning: undefined callback function terminate/2
(behavior 'gen_server')
{ok,kitty_gen_server}

The compilation worked, but there are warnings about missing call-
backs. This is because of the gen_server behavior. A behavior is basically a way
for a module to specify functions it expects another module to have. The
behavior is the contract sealing the deal between the well-behaved generic
part of the code and the specific, error-prone part of the code (yours).

De f ining Be h av iors

Defining your own behaviors is really simple. You just need to export a function
called behavior_info/1, implemented as follows:

-module(my_behavior).
-export([behavior_info/1]).

%% init/1, some_fun/0 and other/3 are now expected callbacks.
behavior_info(callbacks) -> [{init,1}, {some_fun, 0}, {other, 3}];
behavior_info(_) -> undefined.

And that’s about it for behaviors. You can just use -behavior(my_behavior). in a
module, implementing behaviors to get compiler warnings if you forgot a function.

The first function we had for our kitty server was start_link/0. This one
can be changed to the following:

start_link() -> gen_server:start_link(?MODULE, [], []).

The first parameter is the callback module, the second one is a term
to pass to init/1, and the third one is about debugging options for run-
ning servers. You could add a fourth parameter in the first position:
{local, Name}, which is the name to register the server with. Note that

An Introduction to OTP 215

while the previous version of the function simply returned a pid, this
one instead returns {ok, Pid}.

The next functions are now as follows:

%% Synchronous call
order_cat(Pid, Name, Color, Description) ->
 gen_server:call(Pid, {order, Name, Color, Description}).

%% This call is asynchronous.
return_cat(Pid, Cat = #cat{}) ->
 gen_server:cast(Pid, {return, Cat}).

%% Synchronous call
close_shop(Pid) ->
 gen_server:call(Pid, terminate).

All of these calls are equivalent to those we had in my_server. Note that a
third parameter can be passed to gen_server:call to give a timeout, in milli
seconds. If you don’t give a timeout to the function (or the atom infinity),
the default is set to 5 seconds. If no reply is received before the time is
up, the call crashes. This is an entirely arbitrary value, and many Erlang
regulars will tell you that it should be changed to default to infinity. In my
own experience, I often wanted replies to come in faster than 5 seconds,
and having this timer force crashes has generally helped me diagnose more
important problems.

Now we’ll be able to add the gen_server callbacks. Table 14-1 shows the
relationship we have between calls and callbacks.

Table 14-1: Relationship Between Calls and Callbacks

gen_server YourModule

start/3-4 init/1

start_link/3-4 init/1

call/2-3 handle_call/3

cast/2 handle_cast/2

And then we have the other callbacks, which are more about special
cases: handle_info/2, terminate/2, and code_change/3.

Let’s begin by changing those we already have to fit the model: init/1,
handle_call/3, and handle_cast/2.

%%% Server functions
init([]) -> {ok, []}. %% no treatment of info here!

handle_call({order, Name, Color, Description}, _From, Cats) ->
 if Cats =:= [] ->
 {reply, make_cat(Name, Color, Description), Cats};
 Cats =/= [] ->
 {reply, hd(Cats), tl(Cats)}
 end;

216 Chapter 14

handle_call(terminate, _From, Cats) ->
 {stop, normal, ok, Cats}.

handle_cast({return, Cat = #cat{}}, Cats) ->
 {noreply, [Cat|Cats]}.

Again, very little has changed here. In fact, the code is now shorter,
thanks to smarter abstractions.

Now we get to the new callbacks. The first one is handle_info/2. Given
this is a toy module and we have no logging system predefined, just output-
ting the unexpected messages will be enough.

handle_info(Msg, Cats) ->
 io:format("Unexpected message: ~p~n",[Msg]),
 {noreply, Cats}.

As a general rule of thumb, always log unexpected messages in
handle_cast/2 and handle_info/2. You might also want to log them in
handle_call/3, but generally speaking, not replying to calls (coupled with
the default 5 seconds timeout) is enough to achieve the same result.

The next one is the terminate/2 callback. It will be very similar to the
terminate/1 private function we used earlier.

terminate(normal, Cats) ->
 [io:format("~p was set free.~n",[C#cat.name]) || C <- Cats],
 ok.

And here’s the last callback, code_change/3:

code_change(_OldVsn, State, _Extra) ->
 %% No change planned. The function is there for the behavior,
 %% but will not be used.
 {ok, State}.

Just remember to keep in the make_cat/3 private function:

%%% Private functions
make_cat(Name, Col, Desc) ->
 #cat{name=Name, color=Col, description=Desc}.

And we can now try the brand-new code:

1> c(kitty_gen_server).
{ok,kitty_gen_server}
2> rr(kitty_gen_server).
[cat]
3> {ok, Pid} = kitty_gen_server:start_link().
{ok,<0.253.0>}

An Introduction to OTP 217

4> Pid ! <<"Test handle_info">>.
Unexpected message: <<"Test handle_info">>
<<"Test handle_info">>
5> Cat = kitty_gen_server:order_cat(Pid, "Cat Stevens",
5> white, "not actually a cat").
#cat{name = "Cat Stevens",color = white,
 description = "not actually a cat"}
6> kitty_gen_server:return_cat(Pid, Cat).
ok
7> kitty_gen_server:order_cat(Pid, "Kitten Mittens",
7> black, "look at them little paws!").
#cat{name = "Cat Stevens",color = white,
 description = "not actually a cat"}

Because we returned the Cat cat to the server, it’s given back to us
before we can order anything new. If we try again, we should get what
we want:

8> kitty_gen_server:order_cat(Pid, "Kitten Mittens",
8> black, "look at them little paws!").
#cat{name = "Kitten Mittens",color = black,
 description = "look at them little paws!"}
9> kitty_gen_server:return_cat(Pid, Cat).
ok
10> kitty_gen_server:close_shop(Pid).
"Cat Stevens" was set free.
ok

Hot damn, it works!
So what can we say about this generic adventure?

Probably the same generic stuff as before: Separating
the generic from the specific is a great idea on every
point. Maintenance is simpler. Complexity is reduced.
The code is safer, easier to test, and less prone to bugs.
And if there are bugs, they are easier to fix.

Generic servers are only one of the many available abstractions, but
they’re certainly one of the most used ones. We’ll explore more of these
abstractions and behaviors in the next chapters.

15
R a g e A g a i n s t t h e

F i n i t e - S t a t e M a c h i n e s

Finite-state machines are a central part of numerous
implementations of important protocols in the indus-
trial world. They allow programmers to represent
complex procedures and sequences of events in a way
that can be understood with ease.

Although the most mathematically inclined readers might know finite-
state machines under stricter mathematical definitions, the finite-state
machines used in Erlang are more inspired by them than a direct imple-
mentation. A typical Erlang finite-state machine can be implemented as a
process running a given set of functions (their states) and receiving messages
(events) that force a state transition.

They were used so frequently in the telecom world that the OTP engi-
neers ended up writing a behavior for them: gen_fsm.

This chapter introduces the concept of finite-state machines as used
in the Erlang world and its OTP counterpart. We’ll experiment with them
by designing a fully asynchronous, message-based protocol for a client-to-
client trading system that could be added to a video game.

220 Chapter 15

What Is a Finite-State Machine?
A finite-state machine (FSM) is not really a machine, but it does have a
finite number of states. I’ve always found FSMs easier to understand with
graphs and diagrams. For example, the following is a simplistic diagram for
a (very dumb) dog as a state machine:

waits

gets petted

sees squirrels
gets petted

sits

barks
wag tail

Here, the dog has three states: sitting, barking, or wagging his tail.
Different events or inputs may force the dog to change his state. If a dog is
calmly sitting and sees a squirrel, he will start barking and won’t stop until
you pet him again. However, if the dog is sitting and you pet him, we have
no idea what might happen. In the Erlang world, the dog could crash (and
eventually be restarted by his supervisor). In the real world, restarting your
dog would be pretty unusual (and a little freaky), though that would mean
the dog could come back after being run over by a car, so it’s not all bad.

Here’s a cat’s state diagram for comparison:

 doesn’t give a
crap about you

any event
EVER!

This cat has a single state, and no event can ever change it.
Implementing the cat state machine in Erlang is a fun and simple task:

-module(cat_fsm).
-export([start/0, event/2]).

start() ->
 spawn(fun() -> dont_give_crap() end).

event(Pid, Event) ->
 Ref = make_ref(), % won't care for monitors here
 Pid ! {self(), Ref, Event},
 receive
 {Ref, Msg} -> {ok, Msg}

Rage Against the Finite-State Machines 221

 after 5000 ->
 {error, timeout}
 end.

dont_give_crap() ->
 receive
 {Pid, Ref, _Msg} -> Pid ! {Ref, meh};
 _ -> ok
 end,
 io:format("Switching to 'dont_give_crap' state~n"),
 dont_give_crap().

We can try the module to see that the cat really never gives a crap:

1> c(cat_fsm).
{ok,cat_fsm}
2> Cat = cat_fsm:start().
<0.67.0>
3> cat_fsm:event(Cat, pet).
Switching to 'dont_give_crap' state
{ok,meh}
4> cat_fsm:event(Cat, love).
Switching to 'dont_give_crap' state
{ok,meh}
5> cat_fsm:event(Cat, cherish).
Switching to 'dont_give_crap' state
{ok,meh}

The same can be done for the dog FSM, except more states are
available:

-module(dog_fsm).
-export([start/0, squirrel/1, pet/1]).

start() -> spawn(fun() -> bark() end).

squirrel(Pid) -> Pid ! squirrel.

pet(Pid) -> Pid ! pet.

bark() ->
 io:format("Dog says: BARK! BARK!~n"),
 receive
 pet ->
 wag_tail();
 _ ->
 io:format("Dog is confused~n"),
 bark()
 after 2000 ->
 bark()
 end.

wag_tail() ->
 io:format("Dog wags its tail~n"),

222 Chapter 15

 receive
 pet ->
 sit();
 _ ->
 io:format("Dog is confused~n"),
 wag_tail()
 after 30000 ->
 bark()
 end.

sit() ->
 io:format("Dog is sitting. Gooooood boy!~n"),
 receive
 squirrel ->
 bark();
 _ ->
 io:format("Dog is confused~n"),
 sit()
 end.

It should be relatively simple to match each of the states and transitions
to those shown in the dog’s state diagram. Here’s the FSM in use:

6> c(dog_fsm).
{ok,dog_fsm}
7> Pid = dog_fsm:start().
Dog says: BARK! BARK!
<0.46.0>
Dog says: BARK! BARK!
Dog says: BARK! BARK!
Dog says: BARK! BARK!
8> dog_fsm:pet(Pid).
pet
Dog wags its tail
9> dog_fsm:pet(Pid).
Dog is sitting. Gooooood boy!
pet
10> dog_fsm:pet(Pid).
Dog is confused
pet
Dog is sitting. Gooooood boy!
11> dog_fsm:squirrel(Pid).
Dog says: BARK! BARK!
squirrel
Dog says: BARK! BARK!
12> dog_fsm:pet(Pid).
Dog wags its tail
pet

u 13> %% wait 30 seconds
Dog says: BARK! BARK!
Dog says: BARK! BARK!
Dog says: BARK! BARK!

Rage Against the Finite-State Machines 223

13> dog_fsm:pet(Pid).
Dog wags its tail
pet
14> dog_fsm:pet(Pid).
Dog is sitting. Gooooood boy!
pet

You can follow along with the schema if you want (I usually do, since
it helps me to make sure that nothing is wrong). Note that at u, the com-
mand entered is strictly a comment intended for the reader, although the
Erlang shell deals with it fine.

That’s really the core of FSMs implemented as Erlang processes. There
are things that could have been done differently. We could have passed
state in the arguments of the state functions in a way similar to what we do
with a server’s main loop. We could also have added init and terminate func-
tions, handled code updates, and so on.

A difference between the dog and cat FSMs is that the cat’s events are
synchronous and the dog’s events are asynchronous. In a real FSM, both could
be used in a mixed manner, but I went for the simplest representation out
of pure, untapped laziness.

There is also another event form the examples do not show: global
events that can happen in any state. One example of such an event could be
when the dog gets a sniff of food. Once the “smell food” event is triggered,
no matter which state the dog is in, he will go looking for the source of food.

We won’t spend too much time implementing all of this in our “written-
on-a-napkin” FSM. Instead, we’ll move directly to the gen_fsm behavior.

Generic Finite-State Machines
The gen_fsm behavior is somewhat similar to gen_server in that it is a special-
ized version of that behavior. The biggest difference is that rather than
handling calls and casts, we’re handling synchronous and asynchronous events.
Similar to our dog and cat examples, each state is represented by a function.
Here, we’ll go through the callbacks our modules need to implement in
order to work.

The init Function
The init function for FSMs is the same init/1 as used for generic servers,
except the return values accepted are {ok, StateName, Data}, {ok, StateName,
Data, Timeout}, {ok, StateName, Data, hibernate}, and {stop, Reason}. The stop
tuple works in the same manner as for gen_server, and both hibernate and
Timeout keep the same semantics.

What’s new here is the StateName variable. StateName is an atom and repre-
sents the next callback function to be called. For our dog, this would be the
bark state.

224 Chapter 15

The StateName Function
The functions StateName/2 and StateName/3 are placeholder names, and you
decide what they will be. Let’s suppose the init/1 function returns the tuple
{ok, sitting, dog}. This means the FSM will be in the sitting state. This is
not the same kind of state as we have seen with gen_server, but more like the
sit, bark, and wag_tail states of our dog FSM. These states dictate a context
in which you handle a given event.

As an example, consider someone call-
ing you on your phone. If you’re in the
state “sleeping on a Saturday morning,”
your reaction might be to yell at the phone.
If your state is “waiting for a job interview,”
chances are you’ll pick up the phone and
answer politely. On the other hand, if
you’re in the state “dead,” then I am sur-
prised you can even read this text at all.

In our FSM, the init/1 function
said we should be in the sitting state.
Whenever the gen_fsm process receives
an event, either the function sitting/2 or
sitting/3 will be called. The sitting/2 func-
tion is called for asynchronous events, and
sitting/3 is called for synchronous events.

The arguments for sitting/2 (or generally StateName/2) are Event, the
actual message sent as an event, and StateData, the data that was carried
over the calls. The sitting/2 function can then return the tuples {next_state,
NextStateName, NewStateData}, {next_state, NextStateName, NewStateData, Timeout},
{next_state, NextStateName, hibernate}, and {stop, Reason, NewStateData}.

The arguments for sitting/3 are similar, except there is a From variable
in between Event and StateData. The From variable is used in exactly the same
way as it is for gen_server, including gen_fsm:reply/2. The StateName/3 functions
can return the following tuples:

{reply, Reply, NextStateName, NewStateData}
{reply, Reply, NextStateName, NewStateData, Timeout}
{reply, Reply, NextStateName, NewStateData, hibernate}

{next_state, NextStateName, NewStateData}
{next_state, NextStateName, NewStateData, Timeout}
{next_state, NextStateName, NewStateData, hibernate}

{stop, Reason, Reply, NewStateData}
{stop, Reason, NewStateData}

Note that there’s no limit on how many of these functions you can have,
as long as they are exported. The atoms returned as NextStateName in the
tuples will determine whether or not the function will be called.

i’m a
 dog!

Rage Against the Finite-State Machines 225

The handle_event Function
Earlier, I mentioned global events, which trigger a specific reaction no mat-
ter what state we’re in (the dog smelling food will drop whatever he is doing
and look for food). For these events that should be treated the same way
in every state, the handle_event/3 callback is what you want. The function
takes arguments similar to StateName/2, with the exception that it accepts a
StateName variable in between them (handle_event(Event, StateName, Data)), tell-
ing you what the state was when the event was received. It returns the same
values as StateName/2.

The handle_sync_event Function
The handle_sync_event/4 callback is to StateName/3 what handle_event/2 is to
StateName/2. It handles synchronous global events, takes the same param-
eters, and returns the same kind of tuples as StateName/3.

Now might be a good time to explain how we know whether an event
is global or if it’s meant to be sent to a specific state. To determine this, we
can look at the function used to send an event to the FSM. Asynchronous
events aimed at any StateName/2 function are sent with gen_fsm:send_event/2,
and synchronous events to be picked up by StateName/3 are sent with
gen_fsm:sync_send_event/2-3 (the optional third argument is the timeout).

The two equivalent functions for global events are gen_fsm:send_all_
state_event/2 and gen_fsm:sync_send_all_state_event/2-3 (quite a long name).

The code_change and terminate Functions
The code_change function works exactly the same as it does for gen_server,
except that it takes an extra state parameter when called, such as
code_change(OldVersion, StateName, Data, Extra), and returns a tuple of the
form {ok, NextStateName, NewStateData}.

Similarly, terminate acts a bit like what we have for generic servers.
terminate(Reason, StateName, Data) should do the opposite of init/1.

A Trading System Specification
It’s time to put all of this information about FSMs into practice. Many Erlang
tutorials about FSMs use examples containing telephone switches and the
like. It’s my guess that most programmers will rarely need to deal with tele-
phone switches for state machines. Here, we’ll look at an example that is
more fitting for many developers. We’ll design and implement an item trad-
ing system for a fictional video game.

The design I have picked is somewhat challenging. Rather than using a
central broker through which players route items and confirmations (which,
frankly, would be easier), we’re going to implement a server where both
players speak to each other directly (which has the advantage of being
easily distributable).

226 Chapter 15

Show Me Your Moves
To begin, we should define the actions that can be taken by our players
when trading. The first is asking for a trade to be set up. The other user
should also be able to accept that trade. We won’t give the players the right
to deny a trade, though, because we want to keep things simple. It would be
easy to add that feature later.

Once the trade is set up, our users should be able to negotiate with each
other. This means they should be able to make offers and also to retract
those offers. When both players are satisfied with the offer, they can declare
themselves as ready to finalize the trade. The data should then be saved
somewhere on both sides. At any point in time, the players should be able
to cancel the whole trade. Some pleb could be offering only items deemed
unworthy to the other party (who might be very busy), and so it should be
possible to backhand that player with a well-deserved cancellation.

In short, the following actions should be possible:

•	 Ask for a trade.

•	 Accept a trade.

•	 Offer items.

•	 Retract an offer.

•	 Declare self as ready.

•	 Brutally cancel the trade.

When each of these actions is taken, the other player’s FSM should be
made aware of it. This makes sense, because when you’re playing the game
and Jim tells his FSM to send an item to you, your FSM must be made aware
of it. This means both players can talk to their own FSM, which will talk to
the other’s FSM. This gives us something a bit like this:

you Your FSM Jim’s FSM JIM

The first thing to notice when we have two identical processes commu-
nicating with each other is that we need to avoid synchronous calls as much
as possible. If Jim’s FSM sends a message to your FSM and then waits for its
reply, while at the same time, your FSM sends a message over to Jim’s FSM
and waits for its own specific reply, both end up waiting for the other with-
out ever replying. This effectively freezes both FSMs. We have a deadlock.

One solution is to wait for a timeout and then move on, but then there
will be leftover messages in both processes’ mailboxes, and the protocol will
be messed up. This certainly is a can of worms, and so we want to avoid it.

Rage Against the Finite-State Machines 227

The simplest way to handle this is to go fully asynchronous. Note that
Jim might still make a synchronous call to his own FSM; there’s no risk
here because the FSM won’t need to call Jim, and so no deadlock can occur
between them.

When two of these FSMs communicate together, the whole exchange
might look a bit like this:

ask Jim negotiate?

ok ok

ready

trade

ready

offer or
cancel

offer or
 cancel

you Your FSM Jim’s FSM Jim

Both FSMs are in an idle state. When you ask Jim to trade, Jim needs
to accept before things move on. Then both you and Jim can offer items or
withdraw them. When both players declare themselves ready, the trade can
take place. This is a simplified version of all that can happen. We’ll consider
all possible cases as we implement the trading system.

Defining the State Diagrams and Transitions
Here comes the tough part: defining the state dia-
grams and how state transitions happen. Usually,
a good bit of thinking goes into this, because you
need to consider all the small things that could
go wrong (and some things might go wrong even
after you’ve reviewed the definitions many times).
Here’s the one I decided to implement:

idle

idle_wait

negotiate

wait

ready

stop

228 Chapter 15

At first, both FSMs start in the idle state. At this point, one thing we can
do is ask some other player to negotiate with us:

you
negotiate
with Jim

idle_wait

ask negotiate
Jim’s FSMidle

We go into idle_wait mode in order to wait for an eventual reply after
our FSM forwarded the request. Once the other FSM sends the reply, ours
can switch to negotiate:

negotiate

Jim’s FSM
accepted

idle_wait

The other player should also be in the negotiate state after this.
Obviously, if we can invite the other player, the other player can invite us.
If all goes well, the diagram should end up looking like this:

you

negotiate

Jim’s FSM
idle

idle_wait

negotiate

 with you

accept
accepted

So this is pretty much the opposite of the two previous state diagrams
bundled into one. Note that we expect the player to accept the offer in
this case.

What happens if, by pure chance, we ask the other player to trade with
us at the same time he asks us to trade?

Rage Against the Finite-State Machines 229

 negotiate
with Jim

ask
 negotiateyou idle idle

idle_wait idle_wait

negotiate negotiate

 negotiate
with you

In this case, both clients ask their own FSM to negotiate with the other
one. As soon as the ask negotiate messages are sent, both FSMs switch to
idle_wait state. Then they will be able to process the negotiation question.
Reviewing the previous state diagrams, we see that this combination of events
is the only time we’ll receive ask negotiate messages while in the idle_wait
state. Consequently, we know that getting these messages in idle_wait means
that we hit the race condition and can assume both users want to talk to
each other. We can move both of them to the negotiate state.

So now we’re negotiating. Good for us! According to the actions listed
earlier, we must support users offering items and then retracting the offer:

you negotiate

negotiate

offer
retract

offer
retract

Jim’s FSM

All this does is forward our client’s message to the other FSM. Both
FSMs will need to hold a list of items offered by either player, so they can
update that list when receiving such messages. We stay in the negotiate state
after this; maybe the other player wants to offer items:

negotiate

negotiate Jim’s FSM
offer

retract

Here, our FSM basically acts in a similar manner by remaining in the
negotiate state. This is normal.

230 Chapter 15

Once we get tired of offering things and think we’re generous enough,
we need to say we’re ready to officialize the trade. Because we must synchro-
nize both players, we’ll need to use an intermediary state, as we did for idle
and idle_wait:

you ready
negotiate

are you ready?
Jim’s FSM

wait

Here, as soon as our player is ready, our FSM asks Jim’s FSM if he is
ready. Pending its reply, our own FSM falls into its wait state. The reply we’ll
get will depend on Jim’s FSM state. If it’s in wait state, it will tell us that it’s
ready. Otherwise, it will tell us that it’s not ready yet. That’s precisely what
our FSM automatically replies to Jim if he asks us if we are ready when in
negotiate state:

negotiate

negotiate Jim’s FSMnot yet

Our FSM will remain in negotiate mode until our player says he is ready.
Let’s assume he did and we’re now in the wait state. However, Jim’s not there
yet. This means that when we declared ourselves as ready, we’ll have asked
Jim if he was also ready and his FSM will have replied “not yet”:

wait

wait

Jim’s FSM
not yet

He is not ready, but we are. We can’t do much but keep waiting. While
waiting for Jim (who is still negotiating, by the way), it is possible that he
will try to send us more items or maybe cancel his previous offers:

Rage Against the Finite-State Machines 231

wait

negotiate

Jim’s FSM
offer

retract

Of course, we want to avoid Jim removing all of his items and then
clicking “I’m ready,” screwing us over in the process. As soon as he changes
the items offered, we go back into the negotiate state so we can either mod-
ify our own offer or examine the current one and decide we’re ready. Rinse
and repeat.

At some point, Jim will be ready to finalize the trade, too. When this
happens, his FSM will ask ours if we are ready:

Jim’s FSMready!
wait

wait

Then our FSM replies that we indeed are ready. We stay in the wait state
and refuse to move to the ready state though. Why is this? Because there’s
a potential race condition! Imagine that the following sequence of events
takes place, without doing this necessary step:

negotiate negotiate

negotiate

wait
wait

ready

you
ready are you

ready?

are you

ready?

not yet

offer offer

ready

Because of the way messages are received, we could possibly process the
item offer only after we declared ourselves ready and also after Jim declared
himself as ready. This means that as soon as we read the offer message, we
switch back to the negotiate state. During that time, Jim will have told us he

232 Chapter 15

is ready. If he were to change states right there and move on to ready (as in
the preceding illustration), he would be caught waiting indefinitely, while
we wouldn’t know what the hell to do. This could also happen the other way
around!

One way to solve this is by adding a layer of indirection (thanks to
David Wheeler). This is why we stay in wait mode and send “ready!” (as
shown in our previous state diagram).

N o t e 	 David Wheeler, a computer scientist (http://en.wikipedia.org/wiki/David_
Wheeler_(computer_scientist)), is often quoted as saying, “All problems in com-
puter science can be solved by another level of indirection . . . except for the problem of
too many layers of indirection.”

Here’s how we deal with that “ready!” message, assuming we were already
in the ready state because we told our FSM we were ready beforehand:

wait

ready

Jim’s FSM

ready!

ready!

ack

When we receive “ready!” from the other FSM, we send “ready!” back
again. This is to make sure that we won’t have the double race condition
mentioned earlier. This will create a superfluous “ready!” message in one of
the two FSMs, but we’ll just have to ignore it in this case. We then send an
“ack” message (and Jim’s FSM will do the same) before moving to the ready
state. The “ack” message exists due to some implementation details about
synchronizing clients, which we’ll look at later in the chapter. Whew—we
finally managed to synchronize both players.

So now there’s the ready state. This one is a bit special. Both players are
ready and have basically given the FSMs all the control they need. This lets
us implement a bastardized version of a two-phase commit to make sure things
go right when making the trade official:

readyready ack

ask commit

ok

do commit

ok

STOP
STOP

saves...
...saves

Rage Against the Finite-State Machines 233

Our version (as described above) will be rather simplistic. Writing a truly
correct two-phase commit would require a lot more code than what is nec-
essary for us to understand FSMs. (For more information about two-phase
commits, see http://en.wikipedia.org/wiki/Two_phase_commit.)

Finally, we need to allow the trade to be canceled at any time. This
means that somehow—no matter what state we’re in—we’ll need to listen to
the “cancel” message from either side and quit the transaction. It should also
be common courtesy to let the other side know we’re going before leaving.

At this point, we’ve covered a whole lot of information. Don’t worry if it
takes a while to fully grasp the concepts. A bunch of people looked over my
protocol to see if it was right, and even then, we all missed a few race condi-
tions, which I caught a few days later when reviewing the code. It’s normal
to need to read the code more than once, especially if you are not used to
asynchronous protocols. If this is the case, I fully encourage you to try to
design your own protocol. Then ask yourself these questions:

•	 What happens if two people do the same actions very fast?

•	 What if they chain two other events quickly?

•	 What do I do with messages I don’t handle when changing states?

You’ll see that the complexity grows quickly. You might find a solution
similar to mine, or possibly a better one (let me know if this is the case!).
No matter the outcome, it’s a very interesting problem to work on, and our
FSMs are still relatively simple.

Once you’ve digested all of this (or before, if you’re a rebel reader), you
can move on to the next section, where we implement the gaming system.
For now, you can take a nice coffee break if you feel like doing so.

Game Trading Between Two Players
Now we’ll implement our trading system protocol with OTP’s gen_fsm. The
first step is to create the interface.

The Public Interface
There will be three callers for our module: the player, the gen_fsm behavior,
and the other player’s FSM. We will need to export only the player func-
tion and gen_fsm functions, though. This is because the other FSM will also
run within the trade_fsm module and can access them from the inside.

234 Chapter 15

-module(trade_fsm).
-behavior(gen_fsm).

%% public API
-export([start/1, start_link/1, trade/2, accept_trade/1,
 make_offer/2, retract_offer/2, ready/1, cancel/1]).
%% gen_fsm callbacks
-export([init/1, handle_event/3, handle_sync_event/4, handle_info/3,
 terminate/3, code_change/4,
 % custom state names
 idle/2, idle/3, idle_wait/2, idle_wait/3, negotiate/2,
 negotiate/3, wait/2, ready/2, ready/3]).

So that’s our API. You can see we’ll have some functions that will be
both synchronous and asynchronous (idle/2 and idle/3, for example). This
is mostly because we want our client to call us synchronously in some cases,
but the other FSM can do it asynchronously. Having the client synchronous
simplifies our logic a whole lot by limiting the number of contradicting
messages that can be sent one after the other. We’ll get to that part when we
add the gen_fsm callbacks later. Let’s first implement the actual public API
according to the preceding protocol definition.

%%% PUBLIC API
start(Name) ->
 gen_fsm:start(?MODULE, [Name], []).

start_link(Name) ->
 gen_fsm:start_link(?MODULE, [Name], []).

%% Ask for a begin session. Returns when/if the other accepts.
trade(OwnPid, OtherPid) ->
 gen_fsm:sync_send_event(OwnPid, {negotiate, OtherPid}, 30000).

%% Accept someone's trade offer.
accept_trade(OwnPid) ->
 gen_fsm:sync_send_event(OwnPid, accept_negotiate).

%% Send an item on the table to be traded.
make_offer(OwnPid, Item) ->
 gen_fsm:send_event(OwnPid, {make_offer, Item}).

%% Cancel trade offer.
retract_offer(OwnPid, Item) ->
 gen_fsm:send_event(OwnPid, {retract_offer, Item}).

%% Mention that you're ready for a trade. When the other
%% player also declares they're ready, the trade is done.
ready(OwnPid) ->
 gen_fsm:sync_send_event(OwnPid, ready, infinity).

Rage Against the Finite-State Machines 235

%% Cancel the transaction.
cancel(OwnPid) ->
 gen_fsm:sync_send_all_state_event(OwnPid, cancel).

This is rather standard, and we’ve already covered these gen_fsm func-
tions (except start/3-4 and start_link/3-4, which I believe you can figure
out) in this chapter.

FSM-to-FSM Functions
Next, we’ll implement the FSM-to-FSM functions. The first ones have to do
with trade setups, when we want to invite the other user to join us in a trade.

%% Ask the other FSM's Pid for a trade session.
ask_negotiate(OtherPid, OwnPid) ->
 gen_fsm:send_event(OtherPid, {ask_negotiate, OwnPid}).

%% Forward the client message accepting the transaction.
accept_negotiate(OtherPid, OwnPid) ->
 gen_fsm:send_event(OtherPid, {accept_negotiate, OwnPid}).

The first function asks the other pid if it wants to trade, and the second
one is used to reply (asynchronously, of course).

We can then write the functions to offer and cancel offers. According
to our protocol, this is how these functions should look:

%% Forward a client's offer.
do_offer(OtherPid, Item) ->
 gen_fsm:send_event(OtherPid, {do_offer, Item}).

%% Forward a client's offer cancellation.
undo_offer(OtherPid, Item) ->
 gen_fsm:send_event(OtherPid, {undo_offer, Item}).

The next calls relate to being ready for trade or not. Again, given our
protocol, we have three messages in total. The first is are_you_ready, which
can have the two messages not_yet or 'ready!' as replies.

%% Ask the other side if he's ready to trade.
are_you_ready(OtherPid) ->
 gen_fsm:send_event(OtherPid, are_you_ready).

%% Reply that the side is not ready to trade,
%% i.e. is not in 'wait' state.
not_yet(OtherPid) ->
 gen_fsm:send_event(OtherPid, not_yet).

%% Tells the other fsm that the user is currently waiting
%% for the ready state. State should transition to 'ready'.
am_ready(OtherPid) ->
 gen_fsm:send_event(OtherPid, 'ready!').

236 Chapter 15

The other functions are those that are to be used by both FSMs when
doing the commit in the ready state. Their precise usage will be described
in more detail later in the chapter, but their names and the sequence/state
diagram shown earlier should give you an idea of their purpose, and you
can still transcribe them to your own version of trade_fsm.

%% Acknowledge that the fsm is in a ready state.
ack_trans(OtherPid) ->
 gen_fsm:send_event(OtherPid, ack).

%% Ask if ready to commit.
ask_commit(OtherPid) ->
 gen_fsm:sync_send_event(OtherPid, ask_commit).

%% Begin the synchronous commit.
do_commit(OtherPid) ->
 gen_fsm:sync_send_event(OtherPid, do_commit).

Oh, and there’s also the courtesy function allowing us to warn the
other FSM we canceled the trade:

notify_cancel(OtherPid) ->
 gen_fsm:send_all_state_event(OtherPid, cancel).

The gen_fsm Callbacks
We can now move to the really interesting part: the gen_fsm callbacks. The
first callback is init/1. In our case, we’ll want each FSM to hold a name for
the user it represents (that way, our output will be nicer) in the data it keeps
passing on to itself as the last argument of each callback. What else do we
want to hold in memory? In our case, we want the other player’s ( Jim’s) FSM
pid, the items we offer, and the items the other player’s FSM offers. We’ll
also add the reference of a monitor (so we know to abort if the other dies)
and a from field, used to do delayed replies.

-record(state, {name="",
 other,
 ownitems=[],
 otheritems=[],
 monitor,
 from}).

In the case of init/1, we’ll only care about our name for now. Note that
we’ll begin in the idle state.

init(Name) ->
 {ok, idle, #state{name=Name}}.

Rage Against the Finite-State Machines 237

The next callbacks to consider are the states themselves. So far, we have
covered the state transitions and calls that can be made, but we’ll need a way
to make sure everything goes all right. We’ll write a few utility functions
first.

%% Send players a notice. This could be messages to their clients
%% but for our purposes, outputting to the shell is enough.
notice(#state{name=N}, Str, Args) ->
 io:format("~s: "++Str++"~n", [N|Args]).

%% Allows to log unexpected messages.
unexpected(Msg, State) ->
 io:format("~p received unknown event ~p while in state ~p~n",
 [self(), Msg, State]).

And we can start with the idle state. For the sake of convention, we’ll
cover the asynchronous version first. This part of the idle state callbacks
shouldn’t need to care about anything but the other player asking for a trade.
This is because our own player, if you look at the API functions, will use a
synchronous call and will therefore need a different callback, with three
arguments.

idle({ask_negotiate, OtherPid}, S=#state{}) ->
 Ref = monitor(process, OtherPid),
 notice(S, "~p asked for a trade negotiation", [OtherPid]),
 {next_state, idle_wait, S#state{other=OtherPid, monitor=Ref}};
idle(Event, Data) ->
 unexpected(Event, idle),
 {next_state, idle, Data}.

A monitor is set up to allow us to handle the
other dying, and its reference is stored in the FSM’s
data along with the other’s pid, before moving to the
idle_wait state. Note that we will report all unexpected
events and ignore them by staying in the state we were
already in. We can have a few out-of-band messages here and there that
could be the result of race conditions. It’s usually safe to ignore them, but
we can’t easily get rid of them. It’s just better not to crash the whole FSM on
receipt of these unknown but somewhat expected messages.

When our own client asks the FSM to contact another player for a trade,
it will send a synchronous event. The idle/3 callback will be needed.

idle({negotiate, OtherPid}, From, S=#state{}) ->
 ask_negotiate(OtherPid, self()),
 notice(S, "asking user ~p for a trade", [OtherPid]),
 Ref = monitor(process, OtherPid),
 {next_state, idle_wait, S#state{other=OtherPid, monitor=Ref, from=From}};
idle(Event, _From, Data) ->
 unexpected(Event, idle),
 {next_state, idle, Data}.

238 Chapter 15

We proceed in a way similar to the asynchronous version, except we
need to actually ask the other side whether it wants to negotiate with us.
You’ll notice that we do not reply to the client yet. This is because we have
nothing interesting to say, and we want the client locked and waiting for the
trade to be accepted before doing anything. The reply will be sent only if
the other side accepts once we’re in idle_wait.

When we’re there, we need to deal with the other player agreeing to
negotiate following our invitation or asking to negotiate at the same time
we did (a race condition, as described in the protocol).

idle_wait({ask_negotiate, OtherPid}, S=#state{other=OtherPid}) ->
 gen_fsm:reply(S#state.from, ok),
 notice(S, "starting negotiation", []),
 {next_state, negotiate, S};
%% The other side has accepted our offer. Move to negotiate state.
idle_wait({accept_negotiate, OtherPid}, S=#state{other=OtherPid}) ->
 gen_fsm:reply(S#state.from, ok),
 notice(S, "starting negotiation", []),
 {next_state, negotiate, S};
idle_wait(Event, Data) ->
 unexpected(Event, idle_wait),
 {next_state, idle_wait, Data}.

This gives us two transitions to the negotiate state, but remember that
we must use gen_fsm:reply/2 to reply to our client to say it’s okay to start offer-
ing items. There’s also the case of our FSM’s client accepting the trade sug-
gested by the other party.

idle_wait(accept_negotiate, _From, S=#state{other=OtherPid}) ->
 accept_negotiate(OtherPid, self()),
 notice(S, "accepting negotiation", []),
 {reply, ok, negotiate, S};
idle_wait(Event, _From, Data) ->
 unexpected(Event, idle_wait),
 {next_state, idle_wait, Data}.

Again, this one moves on to the negotiate state. Here, we must handle
asynchronous queries to add and remove items coming both from the client
and the other FSM. However, we have not yet decided how to store items.
Let’s say we’re somewhat lazy and assume users won’t trade that many items,
so simple lists will do it for now. However, we might need to change that
later, so it would be a good idea to wrap item operations in their own func-
tions. Add the following functions at the bottom of the file with notice/3 and
unexpected/2:

%% Adds an item to an item list.
add(Item, Items) ->
 [Item | Items].

Rage Against the Finite-State Machines 239

%% Removes an item from an item list.
remove(Item, Items) ->
 Items -- [Item].

These functions are simple, but they have the role of isolating the actions
(adding and removing items) from their implementation (using lists). We
could easily move to proplists, dicts, or any other data structure without dis-
rupting the rest of the code.

Using both of these functions, we can implement offering and remov-
ing items:

negotiate({make_offer, Item}, S=#state{ownitems=OwnItems}) ->
 do_offer(S#state.other, Item),
 notice(S, "offering ~p", [Item]),
 {next_state, negotiate, S#state{ownitems=add(Item, OwnItems)}};
%% Own side retracting an item offer.
negotiate({retract_offer, Item}, S=#state{ownitems=OwnItems}) ->
 undo_offer(S#state.other, Item),
 notice(S, "cancelling offer on ~p", [Item]),
 {next_state, negotiate, S#state{ownitems=remove(Item, OwnItems)}};
%% Other side offering an item.
negotiate({do_offer, Item}, S=#state{otheritems=OtherItems}) ->
 notice(S, "other player offering ~p", [Item]),
 {next_state, negotiate, S#state{otheritems=add(Item, OtherItems)}};
%% Other side retracting an item offer.
negotiate({undo_offer, Item}, S=#state{otheritems=OtherItems}) ->
 notice(S, "Other player cancelling offer on ~p", [Item]),
 {next_state, negotiate, S#state{otheritems=remove(Item, OtherItems)}};

This is an ugly aspect of using asynchronous messages on both sides.
One set of messages has the form “make” and “retract,” while the other has
“do” and “undo.” This is entirely arbitrary and only used to differentiate
between player-to-FSM communications and FSM-to-FSM communications.
Note that in those messages coming from our own player, we need to tell
the other side about the changes we’re making.

Another responsibility is to handle the are_you_ready message in the pro-
tocol. This is the last asynchronous event to handle in the negotiate state.

negotiate(are_you_ready, S=#state{other=OtherPid}) ->
 io:format("Other user ready to trade.~n"),
 notice(S,
 "Other user ready to transfer goods:~n"
 "You get ~p, The other side gets ~p",
 [S#state.otheritems, S#state.ownitems]),
 not_yet(OtherPid),
 {next_state, negotiate, S};
negotiate(Event, Data) ->
 unexpected(Event, negotiate),
 {next_state, negotiate, Data}.

240 Chapter 15

As described in the protocol, whenever we’re not in the wait state and
receive this message, we must reply with not_yet. We’re also outputting trade
details to the user so a decision can be made.

When such a decision is made and the user is ready, the ready event will
be sent. This one should be synchronous because we don’t want the user to
keep modifying his offer by adding items while claiming he is ready.

negotiate(ready, From, S = #state{other=OtherPid}) ->
 are_you_ready(OtherPid),
 notice(S, "asking if ready, waiting", []),
 {next_state, wait, S#state{from=From}};
negotiate(Event, _From, S) ->
 unexpected(Event, negotiate),
 {next_state, negotiate, S}.

At this point, a transition to the wait state should be made. Note that
just waiting for the other player is not interesting. We save the From variable so
we can use it with gen_fsm:reply/2 when we have something to tell the client.

The wait state is a funny beast. New items might be offered and retracted
because the other player might not be ready. So it makes sense to automati-
cally roll back to the negotiate state. It would suck to have great items offered
to us, only for the other player to remove them and declare himself ready,
stealing our loot. Going back to negotiation is a good decision.

wait({do_offer, Item}, S=#state{otheritems=OtherItems}) ->
 gen_fsm:reply(S#state.from, offer_changed),
 notice(S, "other side offering ~p", [Item]),
 {next_state, negotiate, S#state{otheritems=add(Item, OtherItems)}};
wait({undo_offer, Item}, S=#state{otheritems=OtherItems}) ->
 gen_fsm:reply(S#state.from, offer_changed),
 notice(S, "Other side cancelling offer of ~p", [Item]),
 {next_state, negotiate, S#state{otheritems=remove(Item, OtherItems)}};

Now that’s something meaningful, and we reply to the player with the
coordinates we stored in S#state.from.

The next messages we need to worry about
are those related to synchronizing both FSMs so
they can move to the ready state and confirm the
trade. For this set, we should really focus on the
protocol defined earlier.

The three messages we could have are
are_you_ready (because the other player just
declared himself ready), not_yet (because we
asked the other player if he was ready and he
was not), and 'ready!' (because we asked the
other player if he was ready and he was).

We’ll start with are_you_ready. Remember that in the protocol we said
that a race condition could be hidden there. The only thing we can do is
send the 'ready!' message with am_ready/1 and deal with the rest later.

Rage Against the Finite-State Machines 241

wait(are_you_ready, S=#state{}) ->
 am_ready(S#state.other),
 notice(S, "asked if ready, and I am. Waiting for same reply", []),
 {next_state, wait, S};

We’ll be stuck waiting again, so it’s not worth replying to our client yet.
Similarly, we won’t reply to the client when the other side sends a not_yet
reply to our invitation.

wait(not_yet, S = #state{}) ->
 notice(S, "Other not ready yet", []),
 {next_state, wait, S};

On the other hand, if the other player is ready, we send an extra 'ready!'
message to the other FSM, reply to our own player, and then move to the
ready state.

wait('ready!', S=#state{}) ->
 am_ready(S#state.other),
 ack_trans(S#state.other),
 gen_fsm:reply(S#state.from, ok),
 notice(S, "other side is ready. Moving to ready state", []),
 {next_state, ready, S};
%% Don't care about these!
wait(Event, Data) ->
 unexpected(Event, wait),
 {next_state, wait, Data}.

You might have noticed that we’ve used ack_trans/1. In fact, both FSMs
should use it. Why is this? To understand, we need to start looking at what
goes on in the ready state.

When in the ready state, both players’
actions become useless (except canceling). We
won’t care about new item offers. This gives us
some liberty. Basically, both FSMs can talk to
each other freely without worrying about the
rest of the world. This lets us implement our
bastardization of a two-phase commit. To begin
this commit without either player acting, we’ll
need an event to trigger an action from the
FSMs. The ack event from ack_trans/1 is used for
that. As soon as we’re in the ready state, the mes-
sage is treated and acted upon, and the trans
action can begin.

Two-phase commits require synchronous communications, though.
This means we can’t have both FSMs starting the transaction at once,

242 Chapter 15

because they will end up deadlocked. The secret is to find a way to decide
that one FSM should initiate the commit, while the other will sit and wait
for orders from the first one.

It turns out that the engineers and computer scientists who designed
Erlang were pretty smart (well, we knew that already). The pids of any
processes can be compared to each other and sorted. This can be done no
matter when the process was spawned, whether it’s still alive or not, or if it
comes from another VM (we’ll see more about this when we get into distrib-
uted Erlang in Chapter 26).

Knowing that two pids can be compared and one will be greater than
the other, we can write a function priority/2 that will take two pids and tell
a process whether it has been elected.

priority(OwnPid, OtherPid) when OwnPid > OtherPid -> true;
priority(OwnPid, OtherPid) when OwnPid < OtherPid -> false.

And by calling this function, we can have one process starting the com-
mit and the other following orders.

Here’s what this gives us when included in the ready state, after receiving
the ack message:

ready(ack, S=#state{}) ->
 case priority(self(), S#state.other) of
 true ->
 try
 notice(S, "asking for commit", []),
 ready_commit = ask_commit(S#state.other),
 notice(S, "ordering commit", []),
 ok = do_commit(S#state.other),
 notice(S, "committing...", []),
 commit(S),
 {stop, normal, S}
 catch Class:Reason ->
 %% Abort! Either ready_commit or do_commit failed.
 notice(S, "commit failed", []),
 {stop, {Class, Reason}, S}
 end;
 false ->
 {next_state, ready, S}
 end;
ready(Event, Data) ->
 unexpected(Event, ready),
 {next_state, ready, Data}.

This big try ... catch expression is the leading FSM deciding how the
commit works. Both ask_commit/1 and do_commit/1 are synchronous. This lets
the leading FSM call them freely. You can see that the other FSM just waits.
It will then receive the orders from the leading process. The first message
should be ask_commit. This is just to make sure both FSMs are still there—
nothing bad happened, and they’re both dedicated to completing the task.

Rage Against the Finite-State Machines 243

ready(ask_commit, _From, S) ->
 notice(S, "replying to ask_commit", []),
 {reply, ready_commit, ready, S};

Once this is received, the leading process will ask to confirm the trans-
action with do_commit. That’s when we must commit our data.

ready(do_commit, _From, S) ->
 notice(S, "committing...", []),
 commit(S),
 {stop, normal, ok, S};
ready(Event, _From, Data) ->
 unexpected(Event, ready),
 {next_state, ready, Data}.

And once it’s done, we leave. The leading FSM will receive ok as a reply
and will know to commit on its own end afterward. This explains why we
need the big try ... catch: If the replying FSM dies or its player cancels the
transaction, the synchronous calls will crash after a timeout. The commit
should be aborted in this case.

Just so you know, the commit function is defined as follows:

commit(S = #state{}) ->
 io:format("Transaction completed for ~s. "
 "Items sent are:~n~p,~n received are:~n~p.~n"
 "This operation should have some atomic save "
 "in a database.~n",
 [S#state.name, S#state.ownitems, S#state.otheritems]).

Pretty underwhelming, eh? It’s generally not possible to do a true safe
commit with only two participants; a third party is usually required to judge
if both players did everything right. A true commit function should con-
tact that third party on behalf of both players, and then do the safe write
to a database for them or roll back the whole exchange. We won’t go into
such details here, and the current commit/1 function will be enough for this
example.

We’re not finished yet. We have not yet covered two types of events: a player
canceling the trade and the other player’s FSM crashing. The former can
be dealt with by using the callbacks handle_event/3 and handle_sync_event/4.
Whenever the other user cancels, we’ll receive an asynchronous notification.

%% The other player has sent this cancel event.
%% Stop whatever we're doing and shut down!
handle_event(cancel, _StateName, S=#state{}) ->
 notice(S, "received cancel event", []),
 {stop, other_cancelled, S};
handle_event(Event, StateName, Data) ->
 unexpected(Event, StateName),
 {next_state, StateName, Data}.

244 Chapter 15

And we must not forget to tell the other player before we quit, like this:

%% This cancel event comes from the client. We must warn the other
%% player that we have a quitter!
handle_sync_event(cancel, _From, _StateName, S = #state{}) ->
 notify_cancel(S#state.other),
 notice(S, "cancelling trade, sending cancel event", []),
 {stop, cancelled, ok, S};
%% Note: DO NOT reply to unexpected calls. Let the call-maker crash!
handle_sync_event(Event, _From, StateName, Data) ->
 unexpected(Event, StateName),
 {next_state, StateName, Data}.

The last event to take care of is when the other FSM goes down. For
tunately, we set a monitor back in the idle state. We can match on this and
react accordingly:

handle_info({'DOWN', Ref, process, Pid, Reason}, _, S=#state{other=Pid, monitor=Ref}) ->
 notice(S, "Other side dead", []),
 {stop, {other_down, Reason}, S};
handle_info(Info, StateName, Data) ->
 unexpected(Info, StateName),
 {next_state, StateName, Data}.

Note that even if the cancel or 'DOWN' events happen while we’re in the
commit, everything should be safe, and the players will still have their own
items. No exploit allowing people to steal others’ items hides in there.

N o t e 	 We used io:format/2 for most of our messages to let the FSMs communicate with their
own clients. In a real-world application, you might want something more flexible.
One approach is to let the client send in a pid, which will receive the notices sent to it.
That process could be linked to a GUI or any other system to make the player aware of
the events. The io:format/2 solution was chosen for its simplicity, allowing us to focus
on the FSM and the asynchronous protocols.

There are only two callbacks left to cover: code_change/4 and terminate/3.
For now, we don’t need to do anything with code_change/4. We just export
it so the next version of the FSM can call it when it will be reloaded. Our
terminate function is also really short because we didn’t handle real resources
in this example.

code_change(_OldVsn, StateName, Data, _Extra) ->
 {ok, StateName, Data}.

%% Transaction completed.
terminate(normal, ready, S=#state{}) ->
 notice(S, "FSM leaving.", []);
 terminate(_Reason, _StateName, _StateData) ->
 ok.

Rage Against the Finite-State Machines 245

Whew, we’re finally finished.
We can now try our trading system. Well, trying it is a bit annoying

because we need two processes to communicate with each other. To solve
this, I’ve written the tests in the file trade_calls.erl (available from http://
learnyousomeerlang.com/static/erlang/trade_calls.erl), which can run three dif-
ferent scenarios:

•	 main_ab/0 will run a standard trade and output everything.

•	 main_cd/0 will cancel the transaction halfway through.

•	 main_ef/0 is very similar to main_ab/0, except it contains a different race
condition.

If you try these, the first and third tests should succeed, while the sec-
ond one should fail (with a load of error messages, but that’s how it goes).

That Was Really Something
If you’ve found this chapter a bit harder than the
others, I must admit that I’ve just gone crazy and
decided to make something difficult out of the
generic FSM behavior. If you feel confused, con-
sider these questions:

•	 Can you understand how different events are
handled depending on the state your process
is in?

•	 Do you understand how you can transition
from one state to the other?

•	 Do you know when to use send_event/2 and sync_send_event/2-3 as
opposed to send_all_state_event/2 and sync_send_all_state_event/3?

If you answered yes to these questions, you understand what gen_fsm is
about.

The rest of it—the asynchronous protocols, delaying replies and car-
rying the From variable, giving a priority to processes for synchronous calls,
bastardized two-phase commits, and so on—are not essential to understand.
They’re mostly there to show what can be done and to highlight the dif-
ficulty of writing truly concurrent software, even in a language like Erlang.
Erlang doesn’t excuse you from planning or thinking, and Erlang won’t
solve your problems for you. It will only give you tools.

That being said, if you understood everything about these points, you
can be proud of yourself (especially if you had never written concurrent
software before). You are now starting to really think concurrently.

Am I a
Snake?

246 Chapter 15

Fit for the Real World?
A real game would have a lot of stuff going on that could make trading even
more complex. Items could be worn by the characters and damaged by ene-
mies while they’re being traded. Maybe items could be moved in and out of
the inventory while being exchanged. Are the players on the same server? If
not, how do you synchronize commits to different databases?

Our trade system is sane when detached from the reality of any game.
Before trying to fit it in a game (if you dare), make sure everything goes
right. Test it, test it, and test it again. You’ll likely find that testing concur-
rent and parallel code is a complete pain. You’ll lose hair, friends, and a
piece of your sanity. Even after this, you’ll need to keep in mind that your
system is always as strong as its weakest link, and thus potentially very frag-
ile nonetheless.

W a r n i n g 	 While the model for this trade system seems sound, subtle concurrency bugs and race
conditions can often rear their ugly heads a long time after they were written, and
even if they have been running for years. While my code is generally bulletproof (yeah,
right), you sometimes must face swords and knives. Beware the dormant bugs.

Fortunately, we can put all of this madness behind us. We’ll next see
how OTP allows you to handle various events, such as alarms and logs, with
the help of the gen_event behavior.

16
E v e n t H a n d l e r s

Back in Chapter 13, when we built the reminder
application, I mentioned that we could notify clients,
whether by instant messaging, email, or some other
method. In Chapter 15, our trading system used
io:format/2 to notify people of what was going on.
You can probably see the common link between these cases: They’re all
about letting people (or some process or application) know about an
event that happened at some point in time. In one case, we output only
the results; in the other, we took the pid of subscribers before sending
them a message.

248 Chapter 16

This chapter covers the OTP event handlers, one of the many strategies
to handle notifications. After reviewing the handlers, we will put this knowl-
edge in practice by implementing a notification system for sports events.

Handle This! *pumps shotgun*
The output approach we have used for notifications is minimalist and can-
not be extended with ease. The one with subscribers is certainly valid. In
fact, it’s pretty useful when each of the subscribers has a long-running
operation to do after receiving an event. In simpler cases, where you do
not necessarily want a standby process waiting for events for each of the
callbacks, a third approach can be taken.

This third approach simply takes a process that accepts functions and
lets them run on any incoming event. This process is usually called an event
manager, and it might end up looking a bit like this:

f (EVENT)

Y (EVENT)
g (EVENT)

event
YOUR

SERVER

EVENT
MANAGER

Taking this approach has a few advantages:

•	 If your server has many subscribers, it can keep going because it needs
to forward events only once—to the manager.

•	 If there is a lot of data to be transferred, the data transfer happens only
once, and all callbacks operate on that same instance of the data.

•	 You don’t need to spawn processes for short-lived tasks.

And, of course, there are some downsides, too:

•	 If all functions need to run for a long time, they’re going to block each
other. This can be prevented by actually having the function forward
the event to a process, basically using the event manager as an event
forwarder (similar to what we did for the reminder app in Chapter 13).

•	 A function that loops indefinitely can prevent any new event from being
handled until something crashes.

Event Handlers 249

The way to resolve these issues is actually a bit underwhelming. Basically,
you need to turn the event manager approach into the subscriber one.
Luckily, the event manager approach is flexible enough to make this change
relatively easy, and you’ll see how in this chapter.

I usually start by writing a basic version of the OTP behavior in pure
Erlang beforehand, but in this case, we’ll just go straight to the point. Here
comes gen_event.

Generic Event Handlers
The gen_event behavior differs quite a bit from the gen_server and gen_fsm
behaviors in that you are never really starting a process. The part about
“accepting a callback” is the reason for this.

The gen_event behavior basically runs the process that accepts and calls
functions, and you only need to provide a module with these functions.
This means that you have nothing to do with event manipulation except to
place your callback functions in a format that pleases the event manager.
All managing is done for free; you provide only what’s specific to your appli-
cation. This is not really surprising, given that OTP is all about separating
the generic from the specific.

This separation, however, means that the standard spawn/initialize/
loop/terminate pattern will be applied only to event handlers. Recall that
event handlers are a bunch of functions running in the manager. This
means the currently presented model:

spawn init loop exit

calls

switches to something more like this for the programmer:

spawn event
manager

init
handler

attach
handler

loop exit
handlers

calls
(to handlers)

250 Chapter 16

Each event handler can hold its own state, which is carried around by
the manager. Each event handler can then take this form:

init

handle events
handle special messages

terminate

Now let’s look at the event handlers’ callbacks.

The init and terminate Functions
The init and terminate functions are similar to what we’ve seen in the pre-
vious behaviors with servers and FSMs. The init/1 function takes a list of
arguments and returns {ok, State}. Whatever happens in init/1 should have
its counterpart in terminate/2.

The handle_event Function
The handle_event(Event, State) function is more or less the core of gen_event’s
callback modules. Like gen_server’s handle_cast/2, handle_event/2 works asyn-
chronously. However, it differs in what it can return:

•	 {ok, NewState}

•	 {ok, NewState, hibernate}, which puts the event manager itself into hiber-
nation until the next event

•	 remove_handler

•	 {swap_handler, Args1, NewState, NewHandler, Args2}

The tuple {ok, NewState} works in a way similar to what we’ve seen with
gen_server:handle_cast/2. It simply updates its own state and doesn’t reply
to anyone. In the case of {ok, NewState,
hibernate}, the whole event manager will
be put in hibernation. Remember that
event handlers run in the same process as
their manager.

Then remove_handler drops the han-
dler from the manager. This can be use-
ful whenever your event handler knows
it’s finished and it has nothing else to do.

Event Handlers 251

Finally, there’s {swap_handler, Args1, NewState, NewHandler, Args2}. This
one is not used too frequently. It removes the current event handler and
replaces that handler with a new one. Returning such a tuple will result
in the manager first calling CurrentHandler:terminate(Args1, NewState) and
removing the current handler, and then adding a new one by calling
NewHandler:init(Args2, ResultFromTerminate). This can be useful in the cases
where you know some specific event happened and you’re better off giving
control to a new handler. Generally, this is one of those things that you’ll
simply know when you need it and apply it then.

All incoming events can come from gen_event:notify/2, which is asyn-
chronous, like gen_server:cast/2. There is also gen_event:sync_notify/2, which
is synchronous. This is a bit funny to say, because handle_event/2 remains
asynchronous. The idea here is that the function call returns only after all
the event handlers have seen and treated the new message. Until then, the
event manager will keep blocking the calling process by not replying.

The handle_call Function
The handle_call function is similar to a gen_server’s handle_call callback,
except that it can return {ok, Reply, NewState}, {ok, Reply, NewState, hibernate},
{remove_handler, Reply}, or {swap_handler, Reply, Args1, NewState, Handler2,
Args2}. The gen_event:call/3-4 function is used to make the call.

This raises a question: How does this work when we have something
like 15 different event handlers? Do we expect 15 replies, or just 1 that
contains them all? Well, in fact, we’ll be forced to choose only one handler
to reply to us. We’ll get into the details of how this is done when we attach
handlers to our event manager in “Game Events” on page 253, but if you’re
impatient, you can refer to the gen_event:add_handler/3 function’s documen-
tation to try to figure it out.

The handle_info Function
The handle_info/2 callback is pretty much the same as handle_event (it has the
same return values and such), with the exception that it treats only out-of-
band messages, such as exit signals and messages sent directly to the event
manager with the ! operator. It has use cases similar to those of handle_info
in gen_server and gen_fsm.

The code_change Function
The code_change function works in the same manner as it does for gen_server,
except it’s for each individual event handler. It takes the arguments OldVsn,
State, and Extra, which are, in order, the version number, the current han-
dler’s state, and data we can ignore for now. All it needs to do is return
{ok, NewState}.

252 Chapter 16252 Chapter 16

It’s Curling Time!
Now it’s time to see what we can do with gen_event. For this example, we’ll
make a set of event handlers to track game updates of one of the most
entertaining sports in the world: curling.

For those who have never seen or played curling (which is a shame!),
the rules are relatively simple. Two teams try to send a curling stone (a thick
stone disc weighing between 38 and 44 pounds (17 and 20 kilograms) with
a handle attached to the top) sliding on the ice to the middle of the red circle:

The teams do this with 16 stones, and the team with the stone closest to
the center wins a point at the end of the round (called an end). If the team
has the two closest stones, it earns two points; if it has the three closest
stones, it’s worth three points, and so on. There are 10 ends, and the team
with the most points at the completion of the 10 ends wins the game.

There are more rules, making the game more fascinating, but this is
a book on Erlang, not extremely fascinating winter sports. If you want to
learn more about curling, I suggest you head over to the Wikipedia article
on the topic.

For this entirely real-world-relevant scenario, we’ll be working for the
next winter Olympic Games. The city where everything happens has just
finished building the arena where the matches will take place, and they’re
working on getting the scoreboard ready. It turns out that we need to pro-
gram a system that will let some official enter game events—such as when a
stone has been thrown, when a round ends, and when a game is over—and
then route these events to the scoreboard, to a stats system, to news report-
ers’ feeds, and so on.

Being as clever as we are, we know this is a chapter on gen_event and
deduce we will likely use it to accomplish our task. We won’t implement all
the rules in this example, but feel free to do so after you’ve built the sample
app—I promise not to be mad.

The Scoreboard
We’ll start with the scoreboard. Because they’re installing it right now, we’ll
make use of a fake module that would usually let us interact with it, but for
this example, it will use only standard output to show what’s going on. This

Event Handlers 253

is called a mock, and it’s there to help us develop code about parts of the
system that do not exist yet. This is where the following curling_scoreboard_
hw.erl file comes in.

-module(curling_scoreboard_hw).
-export([add_point/1, next_round/0, set_teams/2, reset_board/0]).

%% This is a 'dumb' module that's only there to replace what a real hardware
%% controller would likely do. The real hardware controller would likely hold
%% some state and make sure everything works right, but this one doesn't mind.

%% Shows the teams on the scoreboard.
set_teams(TeamA, TeamB) ->
 io:format("Scoreboard: Team ~s vs. Team ~s~n", [TeamA, TeamB]).

next_round() ->
 io:format("Scoreboard: round over~n").

add_point(Team) ->
 io:format("Scoreboard: increased score of team ~s by 1~n", [Team]).

reset_board() ->
 io:format("Scoreboard: All teams are undefined and all scores are 0~n").

So this is all the functionality the scoreboard has. Scoreboards usually
have a timer and other awesome features, but it seems like the Olympics
Committee didn’t feel like having us implementing trivialities for a tutorial.

Game Events
This hardware interface lets us have a bit of design time to ourselves. We
know that there are a few events to handle for now: adding teams, going
to the next round, and setting the number of points. We will use only the
reset_board functionality when starting a new game and won’t need it as part
of our protocol. The events we need might take the following form in our
protocol:

•	 {set_teams, TeamA, TeamB}, where this is translated to a single call to
curling_scoreboard_hw:set_teams(TeamA, TeamB)

•	 {add_points, Team, N}, where this is translated to N calls to
curling_scoreboard_hw:add_point(Team)

•	 next_round, which gets translated to a single call to the function with the
same name

We can start our implementation with this basic event handler skeleton:

-module(gen_event_callback).
-behavior(gen_event).

254 Chapter 16

-export([init/1, handle_event/2, handle_call/2, handle_info/2, code_change/3,
terminate/2]).

init([]) -> {ok, []}.

handle_event(_, State) -> {ok, State}.

handle_call(_, State) -> {ok, ok, State}.

handle_info(_, State) -> {ok, State}.

code_change(_OldVsn, State, _Extra) -> {ok, State}.

terminate(_Reason, _State) -> ok.

This is a skeleton that we can use for every gen_event callback module
out there. For now, the scoreboard event handler itself won’t need to do any-
thing special except forward the calls to the hardware module. We expect
the events to come from gen_event:notify/2, so the handling of the protocol
should be done in handle_event/2. The file curling_scoreboard.erl contains the
changes to the skeleton, as follows:

-module(curling_scoreboard).
-behavior(gen_event).

-export([init/1, handle_event/2, handle_call/2, handle_info/2, code_change/3,
terminate/2]).

init([]) ->
 {ok, []}.

handle_event({set_teams, TeamA, TeamB}, State) ->
 curling_scoreboard_hw:set_teams(TeamA, TeamB),
 {ok, State};
handle_event({add_points, Team, N}, State) ->
 [curling_scoreboard_hw:add_point(Team) || _ <- lists:seq(1,N)],
 {ok, State};
handle_event(next_round, State) ->
 curling_scoreboard_hw:next_round(),
 {ok, State};
handle_event(_, State) ->
 {ok, State}.

handle_call(_, State) ->
 {ok, ok, State}.

handle_info(_, State) ->
 {ok, State}.

Event Handlers 255

You can see the updates done to the handle_event/2 function. Now let’s
try it:

1> c(curling_scoreboard_hw).
{ok,curling_scoreboard_hw}
2> c(curling_scoreboard).
{ok,curling_scoreboard}
3> {ok, Pid} = gen_event:start_link().
{ok,<0.43.0>}
4> gen_event:add_handler(Pid, curling_scoreboard, []).
ok
5> gen_event:notify(Pid, {set_teams, "Pirates", "Scotsmen"}).
Scoreboard: Team Pirates vs. Team Scotsmen
ok
6> gen_event:notify(Pid, {add_points, "Pirates", 3}).
ok
Scoreboard: increased score of team Pirates by 1
Scoreboard: increased score of team Pirates by 1
Scoreboard: increased score of team Pirates by 1
7> gen_event:notify(Pid, next_round).
Scoreboard: round over
ok
8> gen_event:delete_handler(Pid, curling_scoreboard, turn_off).
ok
9> gen_event:notify(Pid, next_round).
ok

A few things are going on here. The first is that we’re starting gen_event
as a stand-alone process. We then attach our event handler to it dynamically
with gen_event:add_handler/3. This can be done as many times as you want.
However, as mentioned in the handle_call discussion earlier, this might
cause problems when you want to work with a particular event handler.

If you want to call, add, or delete a specific handler when there’s more
than one instance of it, you’ll need to find a way to uniquely identify it.
My favorite way of doing this (which works great if you don’t have anything
more specific in mind) is to just use make_ref() as a unique value. To give
this value to the handler, you add it by calling add_handler/3 as gen_event:add_
handler(Pid, {Module, Ref}, Args). From this point on, you can use {Module, Ref}
to talk to that specific handler, and the problem is solved.

Next, we send messages to the event handler,
which successfully calls the hardware module. We then
remove the handler. Here, turn_off is an argument to
the terminate/2 function, which our implementation
currently doesn’t care about. The handler is gone, but
we can still send events to the event manager. Hooray.

One awkward aspect of the preceding code snippet is that we’re forced
to call the gen_event module directly and show everyone what our protocol

256 Chapter 16

looks like. A better option would be to provide an abstraction module on top
of it that just wraps up all the calls we need. This will look a lot nicer to
everyone using our code and will, again, let us change the implementation
if (when) we need to do so. It will also let us specify which handlers are nec-
essary to include for a standard curling game.

-module(curling).
-export([start_link/2, set_teams/3, add_points/3, next_round/1]).

start_link(TeamA, TeamB) ->
 {ok, Pid} = gen_event:start_link(),
 %% The scoreboard will always be there.
 gen_event:add_handler(Pid, curling_scoreboard, []),
 set_teams(Pid, TeamA, TeamB),
 {ok, Pid}.

set_teams(Pid, TeamA, TeamB) ->
 gen_event:notify(Pid, {set_teams, TeamA, TeamB}).

add_points(Pid, Team, N) ->
 gen_event:notify(Pid, {add_points, Team, N}).

next_round(Pid) ->
 gen_event:notify(Pid, next_round).

And now we can run it.

1> c(curling).
{ok,curling}
2> {ok, Pid} = curling:start_link("Pirates", "Scotsmen").
Scoreboard: Team Pirates vs. Team Scotsmen
{ok,<0.78.0>}
3> curling:add_points(Pid, "Scotsmen", 2).
Scoreboard: increased score of team Scotsmen by 1
Scoreboard: increased score of team Scotsmen by 1
ok
4> curling:next_round(Pid).
Scoreboard: round over
ok

This doesn’t look like much of an advantage, but it’s really about mak-
ing the code nicer to use (and it reduces the possibilities of writing the mes-
sages incorrectly).

This being done, the code should now be usable by officials. Olympics
do require us to do a little bit more, say, satisfying the press.

Event Handlers 257

Alert the Press!
We want international reporters to be able to get live
data from the official in charge of updating our sys-
tem. Because this is an example program, we won’t
go through the steps of setting up a socket and writ-
ing a protocol for the updates, but we’ll set up the
system to do it by putting an intermediary process in
charge of it.

Basically, whenever a news organization feels
like getting into the game feed, the organization will
register its own handler that just forwards the data
the organization needs. We’ll effectively turn our
gen_event server into a kind of message hub, just rout-
ing messages to whoever needs them.

First, we’ll update the curling.erl module with the new interface. Because
we want things to be easy to use, we’ll add only two functions: join_feed/2
and leave_feed/2. Joining the feed should be doable just by inputting the cor-
rect pid for the event manager and the pid to forward all the events to. This
should return a unique value that can then be used to unsubscribe from
the feed with leave_feed/2.

%% Subscribes the pid ToPid to the event feed.
%% The specific event handler for the newsfeed is
%% returned in case someone wants to leave.
join_feed(Pid, ToPid) ->
 HandlerId = {curling_feed, make_ref()},
 gen_event:add_handler(Pid, HandlerId, [ToPid]),
 HandlerId.

leave_feed(Pid, HandlerId) ->
 gen_event:delete_handler(Pid, HandlerId, leave_feed).

Note that we’re using the technique described earlier for multiple han-
dlers ({curling_feed, make_ref()}). You can see that this function expects a
gen_event callback module named curling_feed. If we used only the name of
the module as a HandlerId, things would have still worked fine, except that
we would have no control over which handler to delete when we’re finished
with one instance of it. The event manager would just pick one of the han-
dlers in an undefined manner. Using a reference makes sure that some guy
from the Head-Smashed-In Buffalo Jump (Alberta, Canada) press leaving the
place won’t disconnect a journalist from The Economist (no idea why that
magazine would do a report on curling, but you never know). Anyway, here
is the implementation for the curling_feed module:

-module(curling_feed).
-behavior(gen_event).

258 Chapter 16

-export([init/1, handle_event/2, handle_call/2, handle_info/2, code_change/3,
terminate/2]).

init([Pid]) -> {ok, Pid}.

handle_event(Event, Pid) ->
 Pid ! {curling_feed, Event},
 {ok, Pid}.

handle_call(_, State) -> {ok, ok, State}.

handle_info(_, State) -> {ok, State}.

code_change(_OldVsn, State, _Extra) -> {ok, State}.

terminate(_Reason, _State) -> ok.

The only interesting thing here is still the handle_event/2 function, which
blindly forwards all events to the subscribing pid.

Now let’s use the new modules.

1> c(curling), c(curling_feed).
{ok,curling_feed}
2> {ok, Pid} = curling:start_link("Saskatchewan Roughriders",
2> "Ottawa Roughriders").
Scoreboard: Team Saskatchewan Roughriders vs. Team Ottawa Roughriders
{ok,<0.165.0>}
3> HandlerId = curling:join_feed(Pid, self()).
{curling_feed,#Ref<0.0.0.909>}
4> curling:add_points(Pid, "Saskatchewan Roughriders", 2).
Scoreboard: increased score of team Saskatchewan Roughriders by 1
ok
Scoreboard: increased score of team Saskatchewan Roughriders by 1
5> flush().
Shell got {curling_feed,{add_points,"Saskatchewan Roughriders",2}}
ok
6> curling:leave_feed(Pid, HandlerId).
ok
7> curling:next_round(Pid).
Scoreboard: round over
ok
8> flush().
ok

Here, we added ourselves to the feed, got the updates, and then left and
stopped receiving them. You can actually try to add many subscribers many
times, and it will work fine.

This introduces a problem though. What if one of the curling feed
subscribers crashes? Do we just keep the handler going on there? Ideally,

Event Handlers 259

we wouldn’t need to do that, and in fact, we don’t have to. All that needs
to be done is to change the call from gen_event:add_handler/3 to gen_event:add_
sup_handler/3. If we crash, the handler is gone. Then on the opposite end, if
the gen_event manager crashes, the message {gen_event_EXIT, Handler, Reason}
is sent back to us so we can handle it. Easy enough, right? Think again.

Don’t Dr ink Too Much Kool- A id

At some time in your childhood, you probably went to your aunt or grandmother’s
place for a party or some other event. While there, you would have several adults
watching over you in addition to your parents. If you misbehaved, you would get
scolded by your mom, dad, aunt, grandmother, and so on, and then everyone
would keep harassing you long after you clearly knew you had done something
wrong. Well, gen_event:add_sup_handler/3 is a bit like that—seriously.

Whenever you use gen_event:add_sup_handler/3, a link is
set up between your process and the event manager so both
of them are supervised and the handler knows if its parent
process fails. In the section on monitors in Chapter 12, I men-
tioned that monitors are great for writing libraries that need
to know what’s going on with other processes because, unlike
links, monitors can be stacked. Well, gen_event predates the
appearance of monitors in Erlang, and a strong commitment
to backward-compatibility introduced this pretty bad wart.
Basically, because you could have the same process acting
as the parent of many event handlers, the library doesn’t
ever unlink the processes (except when it terminates for
good) just in case. Monitors would actually solve the prob-
lem, but they aren’t being used there.

This mean that everything goes okay when your own process crashes—the super-
vised handler is terminated (with the call to YourModule:terminate({stop, Reason}, State)).
Everything goes okay when your handler itself crashes (but not the event manager)—
you will receive {gen_event_EXIT, HandlerId, Reason}. When the event manager is
shut down though, either of the following will happen:

•	 You will receive the {gen_event_EXIT, HandlerId, Reason} message, and then
crash because you’re not trapping exits.

•	 You will receive the {gen_event_EXIT, HandlerId, Reason} message, and then a
standard 'EXIT' message that is either superfluous or confusing.

That’s quite a wart, but at least you know about it. You can try to switch your
event handler to a supervised one if you feel like it. It will be safer, even if it risks
being more annoying in some cases. Safety first.

260 Chapter 16

We’re not finished yet! What happens if some members of the media are
not there on time? We need to be able to tell them from the feed what the
current state of the game is. For this, we’ll write an additional event handler
named curling_accumulator. Again, before writing it entirely, we might want to
add it to the curling module with the few calls we want, as follows:

-module(curling).
-export([start_link/2, set_teams/3, add_points/3, next_round/1]).
-export([join_feed/2, leave_feed/2]).
-export([game_info/1]).

start_link(TeamA, TeamB) ->
 {ok, Pid} = gen_event:start_link(),
 %% The scoreboard will always be there.
 gen_event:add_handler(Pid, curling_scoreboard, []),
 %% Start the stats accumulator.
 gen_event:add_handler(Pid, curling_accumulator, []),
 set_teams(Pid, TeamA, TeamB),
 {ok, Pid}.

...

%% Returns the current game state.
game_info(Pid) ->
 gen_event:call(Pid, curling_accumulator, game_data).

Notice that the game_info/1 function here uses only curling_accumulator
as a handler ID. In the cases where you have many versions of the same
handler, the hint about using make_ref() (or any other means) to ensure you
write to the correct handler still holds. Also note that the curling_accumulator
handler starts automatically along with the scoreboard.

 Now let’s put together the module itself. It should be able to hold state
for the curling game. So far, we have teams, score, and rounds to track. This
information can all be held in a state record and changed on each event
received. Then we will only need to reply to the game_data call, as follows:

-module(curling_accumulator).
-behavior(gen_event).

-export([init/1, handle_event/2, handle_call/2, handle_info/2, code_change/3,
terminate/2]).

-record(state, {teams=orddict:new(), round=0}).

init([]) -> {ok, #state{}}.

handle_event({set_teams, TeamA, TeamB}, S=#state{teams=T}) ->
 Teams = orddict:store(TeamA, 0, orddict:store(TeamB, 0, T)),
 {ok, S#state{teams=Teams}};
handle_event({add_points, Team, N}, S=#state{teams=T}) ->
 Teams = orddict:update_counter(Team, N, T),
 {ok, S#state{teams=Teams}};

Event Handlers 261

handle_event(next_round, S=#state{}) ->
 {ok, S#state{round = S#state.round+1}};
handle_event(_Event, State=#state{}) ->
 {ok, State}.

handle_call(game_data, S=#state{teams=T, round=R}) ->
 {ok, {orddict:to_list(T), {round, R}}, S};
handle_call(_, State) ->
 {ok, ok, State}.

handle_info(_, State) -> {ok, State}.

code_change(_OldVsn, State, _Extra) -> {ok, State}.

terminate(_Reason, _State) -> ok.

So, we basically just update the state until someone asks for game
details, at which point, we’ll be sending them back. We did this in a very
basic way. Perhaps a smarter way to organize the code would have been to
simply keep a list of all the events to ever happen in the game so we could
send them all back each time a new process subscribed to the feed. That’s
not necessary for our purposes here, however, so let’s focus on using our
new code. Give it a try:

1> c(curling), c(curling_accumulator).
{ok,curling_accumulator}
2> {ok, Pid} = curling:start_link("Pigeons", "Eagles").
Scoreboard: Team Pigeons vs. Team Eagles
{ok,<0.242.0>}
3> curling:add_points(Pid, "Pigeons", 2).
Scoreboard: increased score of team Pigeons by 1
ok
Scoreboard: increased score of team Pigeons by 1
4> curling:next_round(Pid).
Scoreboard: round over
ok
5> curling:add_points(Pid, "Eagles", 3).
Scoreboard: increased score of team Eagles by 1
ok
Scoreboard: increased score of team Eagles by 1
Scoreboard: increased score of team Eagles by 1
6> curling:next_round(Pid).
Scoreboard: round over
ok
7> curling:game_info(Pid).
{[{"Eagles",3},{"Pigeons",2}],{round,2}}

Enthralling! Surely the Olympic Committee will love our code. We can
pat ourselves on the back, cash in a fat check, and go play video games all
night.

We haven’t covered all that can be done with gen_event as a module. In
fact, we haven’t discussed the most common use of event handlers: logging

262 Chapter 16

and system alarms. I decided against showing them because pretty much
any other source on Erlang out there uses gen_event strictly for those pur-
poses. If you’re interested in learning more about these uses, check out the
error_logger module of the standard library first.

Even though we have not covered the most common uses of gen_event,
we’ve explored all the concepts necessary to understand them, to build our
own, and to integrate them into our applications. More important, we’ve
finally covered the three main OTP behaviors used in active code develop-
ment. We still have a few behaviors left to visit—those that act as a bunch
of glue between all of our worker processes, such as the supervisor, which is
what Chapter 17 is all about.

17
W h o S u p e r v i s e s t h e

S u p e r v i s o r s ?

Supervisors are one of the most useful parts of OTP.
We’ve encountered basic supervisors in Chapters 12
and 13, where they offered a way to keep our software
going in case of errors by just restarting the faulty
processes. This chapter introduces OTP’s take on
supervisors, which is much better than ours.

In our earlier examples, our supervisors would start a worker process,
link to it, and trap exit signals with process_flag(trap_exit,true) to know when
the process died and restart it. This is fine when we want restarts, but it’s
also pretty dumb. Imagine that you’re using the remote control to turn on
the TV. If it doesn’t work the first time, you might try again once or twice,
just in case you didn’t press the right button or the signal went wrong. But
our supervisor would keep trying to turn on that TV forever, even if it
turned out that the remote had no batteries or didn’t belong to that TV.
That’s a pretty dumb supervisor.

264 Chapter 17

Something else that was dumb about our
supervisors was that they could watch only one
worker at a time. Although it’s sometimes use-
ful to have one supervisor for a single worker, in
large applications, this would mean you could
have only a chain of supervisors, not a tree. How
would you supervise a task where you need two
or three workers at once? With our implementa-
tion, it just couldn’t be done.

The OTP supervisors, fortunately, provide
the flexibility to handle such cases (and more).
As you’ll see in this chapter, they let you define
how many times a worker should be restarted in a given period before giv-
ing up. They let you have more than one worker per supervisor, and even
let you pick from a few patterns to determine how they should depend on
each other in case of a failure.

Supervisor Concepts
Supervisors are one of the simplest behaviors to use and understand, but
one of the hardest behaviors to write a good design with. There are various
strategies related to supervisors and application design, but before getting
to the hard stuff, we need to cover some basic concepts.

One of the terms I’ve used previously in this book without much of a
definition is worker. Workers are defined a bit in opposition of supervisors.
If supervisors are supposed to be processes that do nothing but make sure
their children are restarted when they die, workers are processes that are in
charge of doing actual work and that may die while doing so. They are usu-
ally not trusted to be safe.

Supervisors can supervise workers and other supervisors. Workers should
never be used in any position except under a supervisor:

Supervisor

 Worker

Who Supervises the Supervisors? 265

Why should every process be supervised? Well, the idea is simple: If
you’re spawning unsupervised processes, how can you be sure they are gone?
If you can’t measure something, it doesn’t exist. If a process resides in the
void away from all your supervision trees, how do you know whether it actu-
ally exists? How did it get there? Will it happen again?

If it does happen, you’ll find yourself leaking memory very slowly—so
slowly your VM might suddenly die because the VM no longer has memory,
and so slowly you might not be able to easily track the problem until it hap-
pens again and again. Of course, you might say, “If I take care and know
what I’m doing, things will be fine.” Maybe they will be fine, but maybe they
won’t. In a production system, you don’t want to be taking chances. And
in the case of Erlang, it’s why you have garbage collection to begin with.
Keeping things supervised is pretty useful.

Supervision is also useful because it allows you to terminate applica-
tions in good order. You’ll write Erlang software that is not meant to run
forever, but you’ll still want it to terminate cleanly. How do you know every-
thing is ready to be shut down? With supervisors, it’s easy. Whenever you
want to terminate an application, you have the top supervisor of the VM
shut down (this is done for you with functions like init:stop/1). Then that
supervisor asks each of its children to terminate. If some of the children are
supervisors, they do the same:

Supervisor

Worker

‘E
X

IT
’

‘E
X

IT
’

‘EXIT
’

This gives you a well-ordered VM shutdown, which is very hard to achieve
without having all of your processes being part of the tree. Of course, there
are times when your process will be stuck for some reason and won’t termi-
nate correctly. When that happens, supervisors have a way to brutally kill
the process.

266 Chapter 17

So, we have workers, supervisors, supervision trees, ways to specify
dependencies, ways to tell supervisors when to give up on trying or waiting
for their children, and so on. This is not all that supervisors can do; but for
now, we have enough information to start looking at how to use them.

Using Supervisors
This has been a very violent chapter so far: Parents spend their time bind-
ing their children to trees, forcing them to work before brutally killing
them. But we wouldn’t be real sadists without actually implementing it all.

When I said supervisors were simple to use, I wasn’t kidding. There is
a single callback function to provide: init/1. The catch is that its return is
quite complex. Here’s an example return from a supervisor:

{ok, {{one_for_all, 5, 60},
 [{fake_id,
 {fake_mod, start_link, [SomeArg]},
 permanent,
 5000,
 worker,
 [fake_mod]},
 {other_id,
 {event_manager_mod, start_link, []},
 transient,
 infinity,
 worker,
 dynamic}]}}.

Say what? A general definition might be a bit simpler to work with:

{ok, {{RestartStrategy, MaxRestart, MaxTime},[ChildSpec]}}.

Let’s take a look at each of these pieces.

Restart Strategies
The RestartStrategy part of the definition can be one_for_one, one_for_all,
rest_for_one, or simple_one_for_one.

one_for_one

one_for_one is an intuitive restart strategy. It basically means that if your
supervisor supervises many workers and one of them fails, only that one
should be restarted. You should use one_for_one whenever the processes
being supervised are independent and not really related to each other, or
when the process can restart and lose its state without impacting its siblings.

Who Supervises the Supervisors? 267

Old
New

1 13 32

one_for_all

one_for_all has little to do with musketeers. It’s to be used whenever all your
processes under a single supervisor heavily depend on each other to be able
to work normally. Let’s say you have decided to add a supervisor on top of
the trading system we implemented in Chapter 15. If a trader crashed, it
wouldn’t make sense to restart only that one of the two traders, because the
traders’ states would be out of sync. Restarting both of them at once would
be a saner choice, and one_for_all is the strategy for that.

Old
New

1 3 1 2 3

rest_for_one

rest_for_one is a more specific kind of strategy. Whenever you need to start
processes that depend on each other in a chain (A starts B, which starts C,
which starts D, and so on), you can use rest_for_one. It’s also useful in the
case of services where you have similar dependencies (X works alone, but Y
depends on X and Z depends on both). Basically, with a rest_for_one restart-
ing strategy, if a process dies, all the processes that were started after it
(depend on it) are restarted, but not the other way around.

Old
New

1 1 13 2 3

268 Chapter 17

simple_one_for_one

Despite its name, the simple_one_for_one restart strategy isn’t all that simple.
This type of supervisor takes only one kind of child, and it’s used when you
want to dynamically add children to the supervisor, rather than having them
started statically.

To say it a bit differently, a simple_one_for_one supervisor just sits around,
and it knows it can produce one kind of child only. Whenever you want a
new child, you ask for it and you get it. This could theoretically be done
with the standard one_for_one supervisor, but there are practical advantages
to using the simple version, as you’ll see when we look at dynamic super
vision later in the chapter.

N o t e 	 One of the big differences between one_for_one and simple_one_for_one is that
one_for_one holds a list of all the children it has started (and had started, if you
don’t clear it after manipulating it manually), ordered by their starting order, while
simple_one_for_one holds a single definition for all its children and works using a
dictionary to hold its data. Basically, when a process crashes, the simple_one_for_one
supervisor will be much faster if you have a large number of children.

Restart Limits
The last part of the RestartStrategy tuple contains the variables MaxRestart
and MaxTime. The idea is that if more than the MaxRestart limit happens
within MaxTime (in seconds), the supervisor just gives up on your code,
shuts it down, and then kills itself, never to return. And that is based on
restarts for all children of the supervisor, not any one of them individually.
Fortunately, that supervisor’s supervisor might still have hope in its children
and start them all over again.

Child Specifications
And now for the ChildSpec part of the return value. ChildSpec stands for child
specification. Earlier we had the following two child specifications:

[{fake_id,
 {fake_mod, start_link, [SomeArg]},
 permanent,
 5000,
 worker,
 [fake_mod]},
 {other_id,
 {event_manager_mod, start_link, []},
 transient,
 infinity,
 worker,
 dynamic}]

Who Supervises the Supervisors? 269

The child specification can be described in a more abstract form,
as follows:

{ChildId, StartFunc, Restart, Shutdown, Type, Modules}.

And now we can look at how each part works.

ChildId

ChildId is just a name used by the supervisor internally. You will rarely need
to use it yourself, although it might happen to be useful for debugging pur-
poses, and sometimes when you decide to actually get a list of all the children
of a supervisor. Any term can be used for this identifier, but I suggest mak-
ing it something readable, just in case you do need it for debugging.

StartFunc

StartFunc is a tuple that specifies how to start the supervisor. It’s the standard
{M,F,A} format we’ve used a few times already. Note that it is very important
that the starting function here is OTP-compliant and links to its caller when
executed. (Hint: Use gen_*:start_link() wrapped in your own module, all
the time.)

Restart

Restart tells the supervisor how to react when that particular child dies.
This can take one of three values:

•	 permanent

•	 temporary

•	 transient

A permanent process should always be restarted, no matter what. The
supervisors we implemented in our previous applications used this strategy
only. This is usually used by vital, long-living processes (or services) run-
ning on your node.

On the other hand, a temporary process is a process that should never
be restarted. These processes are for short-lived workers that are expected to
fail and have few bits of code that depend on them. You usually still want
to supervise them to know where they are, and to be able to shut them down
cleanly via the supervisor.

Transient processes are a bit of an in-between breed. They’re meant
to run until they terminate normally, and then they won’t be restarted.
However, if they die of abnormal causes (the exit reason is anything but
normal, shutdown, or {shutdown, Reason}), they will be restarted. This restart
option is often used for workers that need to succeed at their task, but it
won’t be used after they do so.

270 Chapter 17

You can have children of all three kinds mixed under a single supervi-
sor. This might affect the restart strategy. A one_for_all restart won’t be trig-
gered by a temporary process dying, but that temporary process might be
restarted under the same supervisor if a permanent process dies first!

Shutdown

Earlier in the chapter, I mentioned being able to shut down entire applica-
tions with the help of supervisors. Here’s how it’s done: When the top-level
supervisor is asked to terminate, it calls exit(ChildPid, shutdown) on each
of the pids. If the child is a worker and trapping exits, it will call its own
terminate function; otherwise, it’s just going to die. When a supervisor gets the
shutdown signal, it will forward that signal to its own children in the same way.

The Shutdown value of a child specification is thus used to give a dead-
line for the termination. On certain workers, you know you might need to
do things like properly close files, notify a service that you’re leaving, and
so on. In these cases, you might want to use a certain cutoff time, either
in milliseconds or set as infinity if you are really patient. If the time passes
and nothing happens, the process is then brutally killed with exit(Pid, kill).
If you don’t care about the child and it can die without any consequences
without any timeout needed, the atom brutal_kill is also an acceptable value.
brutal_kill will make it so the child is killed with exit(Pid, kill), which is
untrappable and instantaneous.

Choosing a good Shutdown value is sometimes complex or tricky. If you
have a chain of supervisors with Shutdown values like 5 → 2 → 5 → 5, the two
last ones will likely end up brutally killed, because the second one had a
shorter cutoff time. The proper value is entirely application-dependent, and
few general tips can be given on the subject.

N o t e 	 Before Erlang R14B03, simple_one_for_one children did not respect this rule with
the Shutdown time. In the case of simple_one_for_one, the supervisor would just exit,
and it would be left to each of the workers to terminate on its own after its supervisor
was gone.

Type

Type lets the supervisor know whether the child is a supervisor (it implements
either the supervisor or supervisor_bridge behavior) or a worker (any other
OTP process). This will be important when upgrading applications with
more advanced OTP features, but you do not really need to care about it at
the moment—just tell the truth and everything should be fine. You have to
trust your supervisors!

Modules

Modules is a list of one element: the name of the callback module used by
the child behavior. The exception is when you have callback modules whose
identity you do not know beforehand (such as event handlers in an event

Who Supervises the Supervisors? 271

manager). In this case, the value of Modules should be dynamic so that the
whole OTP system knows who to contact when using more advanced fea-
tures, such as releases.

Hooray, we now have covered the basic knowledge required to start
supervised processes. You can take a break and digest it all, or move for-
ward to see how supervisors work in practice.

Band Practice
Some practice is in order. And speaking of practice, the perfect example in
this case is a band practice! (Well, not that perfect, but bear with me for a
while.)

Let’s say we’re managing a band named *RSYNC, made up of a handful
of musically inclined programmers: a drummer, a singer, a bass player, and
a keytar player (in memory of all the forgotten 1980s glory). Despite a few
retro hit cover songs, such as “Thread Safety Dance” and “Saturday Night
Coder,” the band has a hard time getting a venue. Annoyed with the whole
situation, I storm into your office with yet another sugar rush-induced idea
of simulating a band in Erlang. You’re tired because you live in the same
apartment as the drummer (who is the weakest link in this band to be hon-
est, but they stick with him because they don’t know any other drummers),
so you accept.

Musicians
The first thing we can do is write the individual band members. For our use
case, the musicians module will implement a gen_server. Each musician will
take an instrument and a skill level as a parameter (so we can say the drum-
mer sucks, while the others are all right). Once a musician has spawned,
it will start playing. We’ll also have an option to stop musicians, if needed.
This gives us the following module and interface:

-module(musicians).
-behavior(gen_server).

-export([start_link/2, stop/1]).
-export([init/1, handle_call/3, handle_cast/2,
 handle_info/2, code_change/3, terminate/2]).

272 Chapter 17

-record(state, {name="", role, skill=good}).
-define(DELAY, 750).

start_link(Role, Skill) ->
 gen_server:start_link({local, Role}, ?MODULE, [Role, Skill], []).

stop(Role) -> gen_server:call(Role, stop).

We’ve defined a ?DELAY macro that we’ll use as the standard time span
between each time a musician will show himself as playing. As the record
definition shows, we’ll also need to give each of the musicians a name, as
follows:

init([Role, Skill]) ->
 %% To know when the parent shuts down.
 process_flag(trap_exit, true),
 %% Sets a seed for random number generation for the life of the process.
 %% Uses the current time to do it. Unique value guaranteed by now().
 random:seed(now()),
 TimeToPlay = random:uniform(3000),
 Name = pick_name(),
 StrRole = atom_to_list(Role),
 io:format("Musician ~s, playing the ~s entered the room~n",
 [Name, StrRole]),
 {ok, #state{name=Name, role=StrRole, skill=Skill}, TimeToPlay}.

Two things go on in the init/1 function. First, we start trapping exits.
As you’ll recall from the description of the terminate/2 function for generic
servers in Chapter 14, we need to do this if we want terminate/2 to be called
when the server’s parent shuts down its children. The rest of the init/1
function sets a random seed (so that each process gets different random
numbers) and then creates a random name for itself. The following are the
functions to create the names:

%% Yes, the names are based off the magic school bus characters'
%% 10 names!
pick_name() ->
 %% The seed must be set for the random functions. Use within the
 %% process that started with init/1.
 lists:nth(random:uniform(10), firstnames())
 ++ " " ++
 lists:nth(random:uniform(10), lastnames()).

firstnames() ->
 ["Valerie", "Arnold", "Carlos", "Dorothy", "Keesha",
 "Phoebe", "Ralphie", "Tim", "Wanda", "Janet"].

lastnames() ->
 ["Frizzle", "Perlstein", "Ramon", "Ann", "Franklin",
 "Terese", "Tennelli", "Jamal", "Li", "Perlstein"].

Who Supervises the Supervisors? 273

Now we can move on to the implementation. This one is going to be
pretty trivial for handle_call and handle_cast.

handle_call(stop, _From, S=#state{}) ->
 {stop, normal, ok, S};
handle_call(_Message, _From, S) ->
 {noreply, S, ?DELAY}.

handle_cast(_Message, S) ->
 {noreply, S, ?DELAY}.

The only call we have is to stop the musician server, which we agree to
do pretty quickly. If we receive an unexpected message, we do not reply to
it, and the caller will crash. This is not our problem. We set the timeout in
the {noreply, S, ?DELAY} tuples, for one simple reason that we’ll see right now.

handle_info(timeout, S = #state{name=N, skill=good}) ->
 io:format("~s produced sound!~n",[N]),
 {noreply, S, ?DELAY};
handle_info(timeout, S = #state{name=N, skill=bad}) ->
 case random:uniform(5) of
 1 ->
 io:format("~s played a false note. Uh oh~n",[N]),
 {stop, bad_note, S};
 _ ->
 io:format("~s produced sound!~n",[N]),
 {noreply, S, ?DELAY}
 end;
handle_info(_Message, S) ->
 {noreply, S, ?DELAY}.

Each time the server times out, our musicians are going to play a note.
If they’re good, everything will be completely fine. If they’re bad, they will
have one chance out of five to miss and play a bad note, which will make
them crash. Again, we set the ?DELAY timeout at the end of each nontermi-
nating call.

Then we add an empty code_change/3 callback, as required by the
gen_server behavior.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

And we can set the terminate function, as follows:

terminate(normal, S) ->
 io:format("~s left the room (~s)~n",[S#state.name, S#state.role]);
terminate(bad_note, S) ->
 io:format("~s sucks! kicked that member out of the band! (~s)~n",
 [S#state.name, S#state.role]);
terminate(shutdown, S) ->
 io:format("The manager is mad and fired the whole band! "

274 Chapter 17

 "~s just got back to playing in the subway~n",
 [S#state.name]);
terminate(_Reason, S) ->
 io:format("~s has been kicked out (~s)~n", [S#state.name, S#state.role]).

We have many different messages here. If we terminate with a normal
reason, it means we’ve called the stop/1 function, and so we display the
musician left on his own free will. In the case of a bad_note message,
the musician will crash, and we’ll say that it’s because the manager
(the supervisor we’ll soon add) kicked him out of the band.

Then we have the shutdown message, which will
come from the supervisor. Whenever that happens,
it means the supervisor decided to kill all of its chil-
dren, or in our case, fire all of the musicians. We
then add a generic error message for the rest.

Here’s a simple use case of a musician:

1> c(musicians).
{ok,musicians}
2> musicians:start_link(bass, bad).
Musician Ralphie Franklin, playing the bass entered the room
{ok,<0.615.0>}
Ralphie Franklin produced sound!
Ralphie Franklin produced sound!
Ralphie Franklin played a false note. Uh oh
Ralphie Franklin sucks! kicked that member out of the band! (bass)
3>
=ERROR REPORT==== 6-June-2013::03:22:14 ===
** Generic server bass terminating
** Last message in was timeout
** When Server state == {state,"Ralphie Franklin","bass",bad}
** Reason for termination ==
** bad_note
** exception error: bad_note

So we have Ralphie playing and crashing after a bad note. If you try the
same with a good musician, you’ll need to call our musicians:stop(Instrument)
function in order to stop all the playing.

Band Supervisor
We can now work with the band supervisor. We’ll have three grades of
supervisors: a lenient one, an angry one, and a total jerk. The lenient super-
visor, while still a very pissy person, will fire a single member of the band
at a time (one_for_one)—the one who fails—until he gets fed up, fires them
all, and gives up on bands. The angry supervisor, on the other hand, will
fire some of the musicians (rest_for_one) on each mistake and wait a shorter
amount of time before firing them all and giving up. The jerk supervisor
will fire the whole band each time someone makes a mistake, and give up if
the band members fail even less often.

Who Supervises the Supervisors? 275

-module(band_supervisor).
-behavior(supervisor).

-export([start_link/1]).
-export([init/1]).

start_link(Type) ->
 supervisor:start_link({local,?MODULE}, ?MODULE, Type).

%% The band supervisor will allow its band members to make a few
%% mistakes before shutting down all operations, based on what
%% mood he's in. A lenient supervisor will tolerate more mistakes
%% than an angry supervisor, who'll tolerate more than a
%% complete jerk supervisor.
init(lenient) ->
 init({one_for_one, 3, 60});
init(angry) ->
 init({rest_for_one, 2, 60});
init(jerk) ->
 init({one_for_all, 1, 60});

The init definition doesn’t finish here, but this lets us set the tone for
each kind of supervisor we want. The lenient one will restart only one
musician and will fail on the fourth failure in 60 seconds. The angry one
will accept only two failures, and the jerk supervisor will have very strict
standards!

Now let’s finish the function and actually implement the band starting
functions and whatnot.

init({RestartStrategy, MaxRestart, MaxTime}) ->
 {ok, {{RestartStrategy, MaxRestart, MaxTime},
 [{singer,
 {musicians, start_link, [singer, good]},
 permanent, 1000, worker, [musicians]},
 {bass,
 {musicians, start_link, [bass, good]},
 temporary, 1000, worker, [musicians]},
 {drum,
 {musicians, start_link, [drum, bad]},
 transient, 1000, worker, [musicians]},
 {keytar,
 {musicians, start_link, [keytar, good]},
 transient, 1000, worker, [musicians]}
]}}.

So we’ll have three good musicians: the singer, bass player, and keytar
player. The drummer is terrible (which makes you pretty mad). The musi-
cians have different Restart values (permanent, transient, or temporary). The
singer is permanent, so the band could never work without a singer, even if
the current one left by choice. The bass player is temporary, because the

276 Chapter 17

band could still play fine without a bass player (frankly, who gives a crap
about bass players?). Other musicians are transient, and so they can leave
on their own, but they might still need to be replaced in case of errors.

That gives us a functional band_supervisor module, which we can now try.

3> c(band_supervisor).
{ok,band_supervisor}
4> band_supervisor:start_link(lenient).
Musician Carlos Terese, playing the singer entered the room
Musician Janet Terese, playing the bass entered the room
Musician Keesha Ramon, playing the drum entered the room
Musician Janet Ramon, playing the keytar entered the room
{ok,<0.623.0>}
Carlos Terese produced sound!
Janet Terese produced sound!
Keesha Ramon produced sound!
Janet Ramon produced sound!
Carlos Terese produced sound!
Keesha Ramon played a false note. Uh oh
Keesha Ramon sucks! kicked that member out of the band! (drum)
... <snip> ...
Musician Arnold Tennelli, playing the drum entered the room
Arnold Tennelli produced sound!
Carlos Terese produced sound!
Janet Terese produced sound!
Janet Ramon produced sound!
Arnold Tennelli played a false note. Uh oh
Arnold Tennelli sucks! kicked that member out of the band! (drum)
... <snip> ...
Musician Carlos Frizzle, playing the drum entered the room
... <snip for a few more firings> ...
Janet Jamal played a false note. Uh oh
Janet Jamal sucks! kicked that member out of the band! (drum)
The manager is mad and fired the whole band!
 Janet Ramon just got back to playing in the subway
The manager is mad and fired the whole band!
 Janet Terese just got back to playing in the subway
The manager is mad and fired the whole band!
 Carlos Terese just got back to playing in the subway
** exception error: shutdown

Magic! We can see that at first only the drummer is fired, and then
after a while, everyone else gets kicked out, too. And off to the subway
(tubes for the UK readers) they go!

You can try the code with other kinds of supervisors, and it will end
the same. The only difference will be the restart strategy. Here’s the angry
supervisor at work:

5> band_supervisor:start_link(angry).
Musician Dorothy Frizzle, playing the singer entered the room
Musician Arnold Li, playing the bass entered the room
Musician Ralphie Perlstein, playing the drum entered the room
Musician Carlos Perlstein, playing the keytar entered the room

Who Supervises the Supervisors? 277

... <snip> ...
Ralphie Perlstein sucks! kicked that member out of the band! (drum)
... <snip> ...
The manager is mad and fired the whole band!
 Carlos Perlstein just got back to playing in the subway

With the angry supervisor, both the drummer and the keytar player get
fired when the drummer makes a mistake. This is nothing compared to the
jerk’s behavior:

6> band_supervisor:start_link(jerk).
Musician Dorothy Franklin, playing the singer entered the room
Musician Wanda Tennelli, playing the bass entered the room
Musician Tim Perlstein, playing the drum entered the room
Musician Dorothy Frizzle, playing the keytar entered the room
... <snip> ...
Tim Perlstein played a false note. Uh oh
Tim Perlstein sucks! kicked that member out of the band! (drum)
The manager is mad and fired the whole band! Dorothy Franklin just got back to
playing in the subway
The manager is mad and fired the whole band! Wanda Tennelli just got back to
playing in the subway
The manager is mad and fired the whole band! Dorothy Frizzle just got back to
playing in the subway

And that’s about it for static restart strategies.

Dynamic Supervision
So far, the kind of supervision we’ve covered has been static. We specified
all the children we would have directly in the source code, and let every-
thing run after that. This is how most of your supervisors might be set
up in real-world applications, usually for the supervision of architectural
components.

On the other hand, you may have supervisors who supervise undeter-
mined workers. They’re usually there on a per-demand basis. Think of a
web server that spawns a process per connection it receives. In this case,
you would want dynamic supervisors to look over all the different processes
you’ll have.

Using Standard Supervisors Dynamically
Every time a worker is added to a supervisor using the one_for_one, rest_for_one,
or one_for_all strategy, the child specification is added to a list in the super-
visor, along with a pid and some other information. The child specification
can then be used to restart the child and perform other tasks. Because
things work that way, the following interface exists:

start_child(SupervisorNameOrPid, ChildSpec)

Adds a child specification to the list and starts the child with it.

278 Chapter 17

terminate_child(SupervisorNameOrPid, ChildId)

Terminates or brutal_kills the child. The child specification is left in
the supervisor.

restart_child(SupervisorNameOrPid, ChildId)

Uses the child specification to get things rolling.

delete_child(SupervisorNameOrPid, ChildId)

Gets rid of the ChildSpec of the specified child.

check_childspecs([ChildSpec])

Makes sure a child specification is valid. You can use this to try the
specification before using start_child/2.

count_children(SupervisorNameOrPid)

Counts all the children under the supervisor and gives you a little com-
parative list of who is active, how many specs there are, how many are
supervisors, and how many are workers.

which_children(SupervisorNameOrPid)

Gives you a list of all the children under the supervisor.

Let’s see how this works with musicians, with the output removed (you
need to be quick to outrace the failing drummer!).

1> band_supervisor:start_link(lenient).
{ok,0.709.0>}
2> supervisor:which_children(band_supervisor).
[{keytar,<0.713.0>,worker,[musicians]},
 {drum,<0.715.0>,worker,[musicians]},
 {bass,<0.711.0>,worker,[musicians]},
 {singer,<0.710.0>,worker,[musicians]}]
3> supervisor:terminate_child(band_supervisor, drum).
ok
4> supervisor:terminate_child(band_supervisor, singer).
ok
5> supervisor:restart_child(band_supervisor, singer).
{ok,<0.730.0>}
6> supervisor:count_children(band_supervisor).
[{specs,4},{active,3},{supervisors,0},{workers,4}]
7> supervisor:delete_child(band_supervisor, drum).
ok
8> supervisor:restart_child(band_supervisor, drum).
{error,not_found}
9> supervisor:count_children(band_supervisor).
[{specs,3},{active,3},{supervisors,0},{workers,3}]

And you can see how this could work well for anything dynamic that
you need to manage (start, terminate, and so on) and when few children
are involved. Because the internal representation is a list, this won’t work
well when you need quick access to many children.

In those cases, what you want is simple_one_for_one.

Who Supervises the Supervisors? 279

Using a simple_one_for_one Supervisor
With a supervisor that uses the
simple_one_for_one strategy, all the
children are held in a dictionary,
which makes looking them up faster.
There is also a single child specifica-
tion for all children under the super-
visor. This will save you memory and
time—you will never need to delete
a child yourself or store any child
specifications.

For the most part, writing a simple_one_for_one supervisor is similar to
writing any other type of supervisor, except for one thing: The argument
list in the {M,F,A} tuple is not the whole thing, but will be appended to
what you call it with when you do supervisor:start_child(Sup, Args). That’s
right—supervisor:start_child/2 changes meaning. So instead of doing
supervisor:start_child(Sup, Spec), which would call erlang:apply(M,F,A), we now
have supervisor:start_child(Sup, Args), which calls erlang:apply(M,F,Args++A).

We could use this strategy with our band_supervisor just by adding the
following clause somewhere in it:

init(jamband) ->
 {ok, {{simple_one_for_one, 3, 60},
 [{jam_musician,
 {musicians, start_link, []},
 temporary, 1000, worker, [musicians]}
]}};

We’ve made all the musicians temporary in this case, and the supervisor
is quite lenient:

1> supervisor:start_child(band_supervisor, [djembe, good]).
Musician Janet Tennelli, playing the djembe entered the room
{ok,<0.690.0>}
2> supervisor:start_child(band_supervisor, [djembe, good]).
{error,{already_started,<0.690.0>}}

Whoops! This happens because we register the djembe player as djembe as
part of the start call to our gen_server. If we didn’t name the child processes
or used a different name for each, it wouldn’t cause a problem. Here’s one
with the name drum instead:

3> supervisor:start_child(band_supervisor, [drum, good]).
Musician Arnold Ramon, playing the drum entered the room
{ok,<0.696.0>}
3> supervisor:start_child(band_supervisor, [guitar, good]).
Musician Wanda Perlstein, playing the guitar entered the room
{ok,<0.698.0>}

280 Chapter 17

4> supervisor:terminate_child(band_supervisor, djembe).
ok

That seems right.

Don’t Dr ink Too Much Kool- A id

Before Erlang version R14B03, it wasn’t possible to terminate children with the
function supervisor:terminate_child(SupRef, Pid). The function would instead return
{error,simple_one_for_one} and fail to terminate children. Instead, the following
would have been the best way to terminate a child with a simple_one_for_one
supervisor:

5> musicians:stop(drum).
Arnold Ramon left the room (drum)
ok

Backward-compatible code should take this kind of behavior into account.

As a general (though sometimes wrong) recommendation, use standard
supervisors dynamically only when you know with certainty that you will
have few children to supervise and/or they won’t need to be manipulated
frequently or with any high speed requirement. For other kinds of dynamic
supervision, use simple_one_for_one where possible.

That’s about it for the supervision strategies and child specifications.
Right now, you might be having doubts and thinking. “How the hell am I
going to get a working application out of that?” If that’s the case, you’ll be
happy to get to Chapter 18, which actually builds a simple application with
a short supervision tree to demonstrate how it could be done in the real
world.

18
B u i l d i n g a n App l i c a t i o n

We’ve now covered how to use generic servers, FSMs,
event handlers, and supervisors. However, we haven’t
gotten to how to put them all together to build com-
plete applications and tools.

An Erlang application is a group of related code and processes. An
OTP application specifically uses OTP behaviors for its processes, and then
wraps them in a very specific structure that tells the VM how to set every-
thing up and then tear it down. In this chapter, we’re going to build an
application with OTP components, although it won’t be a full OTP applica-
tion because we won’t do the “wrapping up” just yet. The details of complete
OTP applications are a bit complex and warrant their own chapter (the next
one). This chapter is about using OTP components to implement an appli-
cation, in our case, a process pool. The idea behind such a process pool is
to manage and limit resources running in a system in a generic manner.

282 Chapter 18

A Pool of Processes
A pool allows us to limit how many processes run at once. A pool can also
queue up jobs when the running workers’ limit is hit. The jobs can then be
run as soon as resources are freed up, or they can simply block by telling
the user they can’t do anything else.

We might want to use process pools for several purposes, such as the
following:

•	 Limit a server to at most N concurrent connections.

•	 Limit how many files can be opened by an application.

•	 Give different priorities to different subsystems of a release by allowing
more resources for some and fewer for others. For example, you might
want to allow more processes for client requests than processes in charge
of generating reports for management.

•	 Allow an application under occasional heavy loads coming in bursts to
remain more stable during its entire life by queuing the tasks.

The process pool application we’ll build in this chapter will need to
implement a few functions to handle the following:

•	 Start and stop the application.

•	 Start and stop a particular process pool (all the pools sit within the pro-
cess pool application).

•	 Run a task in the pool and tell you it can’t be started if the pool is full.

queue

pool

dead

worker

temporary
supervision
doesn’t mind

dead children

Building an Application 283

•	 Run a task in the pool if there is room; otherwise, keep the calling pro-
cess waiting while the task is in the queue. Free the caller once the task
can be run.

•	 Run a task asynchronously in the pool, as soon as possible. If no place is
available, queue it up and run it whenever.

These needs will help drive our program design. Also keep in mind
that we can now use supervisors, and, of course, we want to. However,
though supervisors give us new powers in terms of robustness, they also
impose a certain limit on flexibility. We’ll explore that trade-off next.

The Onion Layer Theory
To help ourselves design an application with supervisors, it helps to have an
idea of what needs supervision and how it needs to be supervised. As you’ll
recall from Chapter 17, we have different supervision strategies with differ-
ent settings, which will fit for different kinds of code with different kinds of
errors. A rainbow of mistakes can be made!

One thing newcomers and even
experienced Erlang programmers have
trouble dealing with is how to cope
with the loss of state. Supervisors kill
processes; state is lost; woe is me. To
help with this, we will identify different
kinds of states:

•	 A static state that can easily be
fetched from a configuration file,
another process, or the supervisor
restarting the application.

•	 A dynamic state that is composed of data you can recompute. This
includes state that you needed to transform from its initial form to get
where it is right now.

•	 A dynamic state that you cannot recompute. This might include user
input, live data, sequences of external events, and so on.

Static data is somewhat easy to deal with; most of the time, you can get
it straight from the supervisor. The same is true for the dynamic but recom-
putable data. In this case, you might want to grab it and compute it within
the init/1 function (or anywhere else in your code, really). The most prob-
lematic kind of state is the dynamic data you can’t recompute and that you
just hope not to lose. In some cases, you’ll be pushing that data to a data-
base, although that won’t always be a good option.

The idea of an onion-layered system is to allow all of these different
states to be protected correctly by isolating different kinds of code from
each other. In other words, it’s process segregation. The static state can be
handled by supervisors, as it is generally known as soon as the system starts
up. Each time a child dies, the supervisor restarts it and can inject it with

OTP:
Onion
Theory
Platform

284 Chapter 18

some form of static state, which is always available. Because most supervisor
definitions are rather static by nature, each layer of supervision you add acts
as a shield protecting your application against their failure and the loss of
their state.

The dynamic state that can be recomputed has a whole lot of available
solutions. For example, you can build it from the static data sent by the
supervisors, or you could go fetch it back from some other process, data-
base, text file, the current environment, or whatever. It should be relatively
easy to get the data back on each restart. The fact that you have supervisors
that do a restarting job can be enough to help you keep that state alive.

The dynamic non-recomputable kind of state needs a more thoughtful
solution. The real nature of an onion-layered approach takes shape here.
The idea is that the most important data (or the data that is most annoying
to lose) must be the most protected type. The place where you are actually
not allowed to fail is called the error kernel of your application.

The error kernel is likely the
place you’ll want to use try ... catch
expressions more than anywhere
else, since handling exceptional
cases is vital there. This is the
area that you want to be error-
free. Careful testing must be done
around the error kernel, especially
in cases where there is no way to
go back. You don’t want to lose a
customer’s order halfway through
processing it, do you?

Some operations are going to be considered safer than others. Because
of this, we want to keep vital data in the safest core possible and keep
everything somewhat dangerous outside it. In specific terms, this means
that all related operations should be part of the same supervision trees, and
the unrelated ones should be kept in different trees. Within the same tree,
operations that are more failure-prone can be placed deeper in the tree, and
the processes that cannot afford to crash are closer to the root of the tree.

These principles result in systems where all related pieces of software
are part of the same trees, with the riskiest operations low in the tree,
decreasing the risk of the core processes dying until the system can’t cope
with the errors properly anymore. We’ll see an example of this when design-
ing our actual process pool’s supervision tree.

A Pool’s Tree
So how should we organize these process pools? There are two schools of
thought here. One tells people to design bottom-up (write all individual
components, and put them together as required), and another one tells
us to write things top-down (design as if all the parts were there, and
then build them). Both approaches are equally valid depending on the

Building an Application 285

circumstances and your personal style. For the sake of making things
understandable, we’re going to do things top-down here.

So what should our tree look like? Well, our requirements include
being able to start the pool application as a whole, having many pools, and
having many workers that can be queued for each pool. This already sug-
gests a few possible design constraints.

We will need one gen_server per pool. The server’s job will be to main-
tain the counter of how many workers are in the pool. For convenience, the
same server should also hold the queue of tasks. Who should be in charge
of overlooking each of the workers, though? The server itself?

Doing it with the server is interesting. After all, the server needs to
track the processes to count them, and supervising them itself is a nifty way
to do this. Moreover, neither the server nor the processes can crash without
losing the state of all the others (otherwise, the server can’t track the tasks
after it has restarted). It has a few disadvantages, too: The server has many
responsibilities, can be seen as more fragile, and duplicates the functional-
ity of existing, better-tested modules.

A good way to make sure all workers are properly accounted for would
be to use a supervisor just for them:

ppool_sup

ppool_serv worker_sup

pool

worker worker ...

other
pools

In this example, there is a single supervisor for all of the pools. Each
pool is a set of a pool server and a supervisor for workers. The pool server
knows of the existence of its worker supervisor and asks it to add items. Given
that adding children is a very dynamic thing with unknown limits so far,
we’ll use a simple_one_for_one supervisor.

N o t e 	 The name ppool was chosen because the Erlang standard library already has a pool
module. Plus it’s a terrible pool-related pun.

The advantage of this approach is that because the worker_sup supervisor
will need to track only OTP workers of a single type, each pool is guaran-
teed to be about a well-defined kind of worker, with simple management
and restart strategies that are easy to define. This is one example of an
error kernel being better defined. If we’re using a pool of sockets for web
connections and another pool of servers in charge of log files, we are mak-
ing sure that incorrect code or messy permissions in the log file section

286 Chapter 18

of our application won’t be drowning out the processes in charge of the
sockets. If the log files’ pool crashes too much, they will be shut down and
their supervisor will stop. Oh wait—their supervisor stopping is a serious
problem!

Because all pools are under the same supervisor, a given pool or server
restarting too many times in a short time span can take all the other pools
down. A solution might be to add one level of supervision. This will also
make it much simpler to handle more than one pool at a time, so let’s say
the following will be our application architecture:

ppool_sup

ppool_serv worker_sup

pool

worker worker ...

other
pools

ppool_supersup

And that makes a bit more sense. From the onion-layer perspective,
all pools are independent, the workers are independent from each other
and the ppool_serv server is going to be isolated from all the workers. That’s
good enough for the architecture. Everything we need seems to be there.
We can start working on the implementation—again, using a top-to-bottom
approach.

Implementing the Supervisors
We can start with the top-level supervisor, ppool_supersup. All this one needs
to do is start the supervisor of a pool when required. We’ll give it a few func-
tions: start_link/0, which starts the whole application; stop/0, which stops it;
start_pool/3, which creates a specific pool; and stop_pool/1, which does the
opposite. We also can’t forget init/1, which is the only callback required by
the supervisor behavior.

-module(ppool_supersup).
-behavior(supervisor).
-export([start_link/0, stop/0, start_pool/3, stop_pool/1]).
-export([init/1]).

Building an Application 287

start_link() ->
 supervisor:start_link({local, ppool}, ?MODULE, []).

Here, we gave the top-level process pool supervisor the name ppool (this
explains the use of {local, Name}, an OTP convention about registering gen_*
processes on a node; another one exists for distributed registration). This
is because we know we will have only one ppool per Erlang node, and we can
give it a name without worrying about clashes. Fortunately, the same name
can then be used to stop the whole set of pools, like this:

%% Technically, a supervisor cannot be killed in an easy way.
%% Let's do it brutally!
stop() ->
 case whereis(ppool) of
 P when is_pid(P) ->
 exit(P, kill);
 _ -> ok
 end.

As the comments in the code explain, we cannot terminate a supervisor
gracefully. The OTP framework provides a well-defined shutdown proce-
dure for all supervisors, but we can’t use it from where we are right now.
We’ll address how to do that in Chapter 19; but for now, brutally killing the
supervisor is the best we can do.

What is the top-level supervisor exactly? Well, its only task is to hold
pools in memory and supervise them. In this case, it will be a childless
supervisor.

init([]) ->
 MaxRestart = 6,
 MaxTime = 3600,
 {ok, {{one_for_one, MaxRestart, MaxTime}, []}}.

We can now focus on starting each individual pool’s supervisor and
attaching them to ppool. Given our initial requirements, we can determine
that we’ll need two parameters: the number of workers the pool will accept
and the {M,F,A} tuple that the worker supervisor will need to start each worker.
We’ll also add a name for good measure. We then pass this ChildSpec to the
process pool’s supervisor as we start it.

start_pool(Name, Limit, MFA) ->
 ChildSpec = {Name,
 {ppool_sup, start_link, [Name, Limit, MFA]},
 permanent, 10500, supervisor, [ppool_sup]},
 supervisor:start_child(ppool, ChildSpec).

You can see each pool supervisor is asked to be permanent and has
the arguments needed (notice how we’re changing programmer-submitted
data into static data this way). The name of the pool is both passed to the

288 Chapter 18

supervisor and used as an identifier in the child specification. There’s also a
maximum shutdown time of 10500. There is no easy way to pick this value—
just make sure it’s large enough that all the children will have time to stop,
if they need any. Play with the value according to your needs, and test and
adapt to your application. If you’re really not sure what value to use, you can
try the infinity option.

To stop the pool, we need to ask the ppool super supervisor (the
supersup!) to kill its matching child.

stop_pool(Name) ->
 supervisor:terminate_child(ppool, Name),
 supervisor:delete_child(ppool, Name).

This is possible because we gave the pool’s name as the child specifica-
tion identifier. Great! We can now focus on each pool’s direct supervisor!
Each ppool_sup will be in charge of the pool server and the worker supervisor:

ppool_sup

ppool_serv worker_sup

Can you see the funny thing here? The ppool_serv process should be able
to contact the worker_sup process. If they’re both started by the same super-
visor at the same time, we won’t have any way to let ppool_serv know about
worker_sup, unless we were to do some trickery with supervisor:which_children/1
(which would be sensitive to timing and somewhat risky), or unless we give
a name to both the ppool_serv process (so that users can call it) and the
supervisor. However, we don’t want to give names to the supervisors for sev-
eral reasons:

•	 The users don’t need to call them directly.

•	 We would need to dynamically generate atoms, and that makes me
nervous.

•	 There is a better way.

The solution is to get the pool server to dynamically attach the worker
supervisor to its ppool_sup. Don’t worry if this sounds vague—you’ll get it
soon. For now, we only start the server.

-module(ppool_sup).
-export([start_link/3, init/1]).
-behavior(supervisor).

start_link(Name, Limit, MFA) ->
 supervisor:start_link(?MODULE, {Name, Limit, MFA}).

Building an Application 289

init({Name, Limit, MFA}) ->
 MaxRestart = 1,
 MaxTime = 3600,
 {ok, {{one_for_all, MaxRestart, MaxTime},
 [{serv,
 {ppool_serv, start_link, [Name, Limit, self(), MFA]},
 permanent,
 5000, % Shutdown time
 worker,
 [ppool_serv]}]}}.

And that’s about it. Note that the Name is passed to the server, along with
self(), the supervisor’s own pid. This will let the server call for the spawning
of the worker supervisor; the MFA variable will be used in that call to let the
simple_one_for_one supervisor know which kind of workers to run.

We’ll get to how the server handles everything in the next section.
For now, we’ll finish creating all of the application’s supervisors by writing
ppool_worker_sup, which is in charge of all the workers.

-module(ppool_worker_sup).
-export([start_link/1, init/1]).
-behavior(supervisor).

start_link(MFA = {_,_,_}) ->
 supervisor:start_link(?MODULE, MFA).

init({M,F,A}) ->
 MaxRestart = 5,
 MaxTime = 3600,
 {ok, {{simple_one_for_one, MaxRestart, MaxTime},
 [{ppool_worker,
 {M,F,A},
 temporary, 5000, worker, [M]}]}}.

This is simple stuff. We
picked a simple_one_for_one
supervisor because workers
could be added in very high
numbers with a requirement
for speed, plus we want to
restrict their type. All the
workers are temporary, and
because we use an {M,F,A}
tuple to start the worker, we
can use any kind of OTP
behavior there.

Here lies

<0.58.0>

“We all are

temporary”

Here lies

<0.59.0>

“Not me, I’m

permanent”

290 Chapter 18

The reason to make the workers temporary is twofold. First, we cannot
know for sure whether they need to be restarted in case of failure, or what
kind of restart strategy would be required for them. Second, the pool might
be useful only if the worker’s creator can have access to the worker’s pid,
depending on the use case. For this to work in any safe and simple man-
ner, we can’t just restart workers as we please without tracking their creator
and sending it a notification. This would make things quite complex just to
grab a pid. Of course, you are free to write your own ppool_worker_sup that
doesn’t return pids but restarts them. There’s nothing inherently wrong in
that design.

Working on the Workers
The pool server is the most complex part of the application, where all the
clever business logic happens. Here’s a reminder of the operations we must
support:

•	 Running a task in the pool and indicating that it can’t be started if the
pool is full

•	 Running a task in the pool if there’s room; otherwise, keeping the call-
ing process waiting while the task is in the queue, until it can be run

•	 Running a task asynchronously in the pool, as soon as possible; if no
place is available, queuing it up and running it whenever

The first operation will be done by a function named run/2, the second
by sync_queue/2, and the last one by async_queue/2.

-module(ppool_serv).
-behavior(gen_server).
-export([start/4, start_link/4, run/2, sync_queue/2, async_queue/2, stop/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 code_change/3, terminate/2]).

start(Name, Limit, Sup, MFA) when is_atom(Name), is_integer(Limit) ->
 gen_server:start({local, Name}, ?MODULE, {Limit, MFA, Sup}, []).

start_link(Name, Limit, Sup, MFA) when is_atom(Name), is_integer(Limit) ->
 gen_server:start_link({local, Name}, ?MODULE, {Limit, MFA, Sup}, []).

run(Name, Args) ->
 gen_server:call(Name, {run, Args}).

sync_queue(Name, Args) ->
 gen_server:call(Name, {sync, Args}, infinity).

async_queue(Name, Args) ->
 gen_server:cast(Name, {async, Args}).

Building an Application 291

stop(Name) ->
 gen_server:call(Name, stop).

For start/4 and start_link/4, Args will be the additional arguments passed
to the A part of the {M,F,A} tuple sent to the supervisor. Note that for the syn-
chronous queue, we’ve set the waiting time to infinity.

As mentioned earlier, we must start the supervisor from within the server.
If you’re adding the code as we go, you might want to include an empty
gen_server template (or use the completed file available online) to follow
along, because we’ll do things on a per-feature basis, rather than from top
to bottom.

The first thing we do is handle the creation of the supervisor. As
discussed in “Dynamic Supervision” on page 277, we do not need a
simple_one_for_one for cases where only a few children will be added, so
supervisor:start_child/2 ought to do it. We’ll first define the child specifica-
tion of the worker supervisor.

%% The friendly supervisor is started dynamically!
-define(SPEC(MFA),
 {worker_sup,
 {ppool_worker_sup, start_link, [MFA]},
 permanent,
 10000,
 supervisor,
 [ppool_worker_sup]}).

We can then define the inner state of the server. We know we will need
to track a few pieces of data: the number of processes that can be running,
the pid of the supervisor, and a queue for all the jobs. To know when a
worker’s finished running and to fetch one from the queue to start it, we
will need to track each worker from the server. The sane way to do this is
with monitors, so we’ll also add a refs field to our state record to keep all
the monitor references in memory.

-record(state, {limit=0,
 sup,
 refs,
 queue=queue:new()}).

With this ready, we can start implementing the init function. The natu-
ral thing to try is this:

init({Limit, MFA, Sup}) ->
 {ok, Pid} = supervisor:start_child(Sup, ?SPEC(MFA)),
 {ok, #state{limit=Limit, refs=gb_sets:empty()}}.

292 Chapter 18

However, this code is wrong. With gen_* behaviors, the process that
spawns the behavior waits until the init/1 function returns before resuming
its processing. This means that by calling supervisor:start_child/2 in there,
we create the following deadlock:

spawn

start_child

(waits)

(waits)

init/1

.

ppool_sup

ppool_serv

Both processes will keep waiting for each other until there is a crash.
The cleanest way to get around this is to create a special message that the
server will send to itself and later handle in handle_info/2 as soon as the init
function has returned (and the pool supervisor has become free):

init({Limit, MFA, Sup}) ->
 %% We need to find the Pid of the worker supervisor from here,
 %% but alas, this would be calling the supervisor while it waits for us!
 self() ! {start_worker_supervisor, Sup, MFA},
 {ok, #state{limit=Limit, refs=gb_sets:empty()}}.

This one is cleaner. We can then head out to the handle_info/2 function
and add the following clauses:

handle_info({start_worker_supervisor, Sup, MFA}, S = #state{}) ->
 {ok, Pid} = supervisor:start_child(Sup, ?SPEC(MFA)),
 {noreply, S#state{sup=Pid}};
handle_info(Msg, State) ->
 io:format("Unknown msg: ~p~n", [Msg]),
 {noreply, State}.

The first clause is the interesting one here. We find the message we sent
ourselves (which will necessarily be the first one received), ask the pool
supervisor to add the worker supervisor, track this pid, and voilà! Our tree
is now fully initialized. You can try compiling everything to make sure no
mistake has been made so far. Unfortunately, we still can’t test the applica-
tion because too much stuff is missing.

Building an Application 293

N o t e 	 Don’t worry if you do not like the idea of building the whole application before run-
ning it. Things are being done this way to show a cleaner reasoning of the whole
thing. While I did have the general design in mind (the same one I illustrated ear-
lier), I started writing this pool application in a little test-driven manner, with a few
tests here and there and a bunch of refactoring to get everything to a functional state.
Few Erlang programmers (much like programmers of most other languages) will be
able to produce production-ready code on their first try, and the author is not as clever
as the examples might make him seem.

Now that we’ve solved this bit, we’ll take care of the run/2 function. This
one is a synchronous call with the message of the form {run, Args} and works
as follows:

handle_call({run, Args}, _From, S = #state{limit=N, sup=Sup, refs=R}) when N > 0 ->
 {ok, Pid} = supervisor:start_child(Sup, Args),
 Ref = erlang:monitor(process, Pid),
 {reply, {ok,Pid}, S#state{limit=N-1, refs=gb_sets:add(Ref,R)}};
handle_call({run, _Args}, _From, S=#state{limit=N}) when N =< 0 ->
 {reply, noalloc, S};

We have a long function head, but we can see most of the management
taking place there. Whenever there are places left in the pool (the origi-
nal limit N being decided by the programmer adding the pool in the first
place), we accept to start the worker. We then set up a monitor to know
when it’s done, store all of this in our state, decrement the counter, and off
we go. In the case no space is available, we simply reply with noalloc.

The calls to sync_queue/2 will give a very similar implementation:

handle_call({sync, Args}, _From, S = #state{limit=N, sup=Sup, refs=R}) when N > 0 ->
 {ok, Pid} = supervisor:start_child(Sup, Args),
 Ref = erlang:monitor(process, Pid),
 {reply, {ok,Pid}, S#state{limit=N-1, refs=gb_sets:add(Ref,R)}};
handle_call({sync, Args}, From, S = #state{queue=Q}) ->
 {noreply, S#state{queue=queue:in({From, Args}, Q)}};

If there is space for more workers, then the first clause will do exactly
the same thing as we did for run/2. The difference comes in the case where
no workers can run. Rather than replying with noalloc as we did with run/2,
this one doesn’t reply to the caller, keeps the From information, and queues
it for a later time when there is space for the worker to be run. We’ll see
how we dequeue workers and handle them soon enough, but for now, we’ll
finish the handle_call/3 callback with the following clauses:

handle_call(stop, _From, State) ->
 {stop, normal, ok, State};
handle_call(_Msg, _From, State) ->
 {noreply, State}.

294 Chapter 18

These handle the unknown cases and the stop/1 call. We can now focus
on getting async_queue/2 working. Because async_queue/2 basically does not
care when the worker is run and expects absolutely no reply, we’ll make it a
cast rather than a call. You’ll find the logic of it very similar to the two pre-
vious options.

handle_cast({async, Args}, S=#state{limit=N, sup=Sup, refs=R}) when N > 0 ->
 {ok, Pid} = supervisor:start_child(Sup, Args),
 Ref = erlang:monitor(process, Pid),
 {noreply, S#state{limit=N-1, refs=gb_sets:add(Ref,R)}};
handle_cast({async, Args}, S=#state{limit=N, queue=Q}) when N =< 0 ->
 {noreply, S#state{queue=queue:in(Args,Q)}};
%% Not going to explain the one below!
handle_cast(_Msg, State) ->
 {noreply, State}.

Again, the only big difference apart from not replying is that when
there is no place left for a worker, it is queued. This time though, we have
no From information and just send the worker to the queue without it. The
limit doesn’t change in this case.

When do we know it’s time to dequeue something? Well, we have moni-
tors set all over the place, and we’re storing their references in a gb_sets.
Whenever a worker goes down, we’re notified of it. Let’s work from there.

handle_info({'DOWN', Ref, process, _Pid, _}, S = #state{limit=L, sup=Sup, refs=Refs}) ->
 io:format("received down msg~n"),
 case gb_sets:is_element(Ref, Refs) of
 true ->
 handle_down_worker(Ref, S);
 false -> %% not our responsibility
 {noreply, S}
 end;
handle_info({start_worker_supervisor, Sup, MFA}, S = #state{}) ->
 ...
handle_info(Msg, State) ->
 ...

In this snippet, we make sure the 'DOWN' message we get comes from a
worker. If it doesn’t come from one (which would be surprising), we just
ignore it. However, if the message really is what we want, we call a function
named handle_down_worker/2:

handle_down_worker(Ref, S = #state{limit=L, sup=Sup, refs=Refs}) ->
 case queue:out(S#state.queue) of
 {{value, {From, Args}}, Q} ->
 {ok, Pid} = supervisor:start_child(Sup, Args),
 NewRef = erlang:monitor(process, Pid),
 NewRefs = gb_sets:insert(NewRef, gb_sets:delete(Ref,Refs)),
 gen_server:reply(From, {ok, Pid}),
 {noreply, S#state{refs=NewRefs, queue=Q}};

Building an Application 295

 {{value, Args}, Q} ->
 {ok, Pid} = supervisor:start_child(Sup, Args),
 NewRef = erlang:monitor(process, Pid),
 NewRefs = gb_sets:insert(NewRef, gb_sets:delete(Ref,Refs)),
 {noreply, S#state{refs=NewRefs, queue=Q}};
 {empty, _} ->
 {noreply, S#state{limit=L+1, refs=gb_sets:delete(Ref,Refs)}}
 end.

This is quite a complex function. Because our worker is dead, we can
look in the queue for the next one to run. We do this by popping one ele-
ment out of the queue and looking at the result. If there is at least one
element in the queue, it will be of the form {{value, Item}, NewQueue}. If the
queue is empty, it returns {empty, SameQueue}. Furthermore, we know that
when we have the value {From, Args}, it means this came from sync_queue/2;
otherwise, it came from async_queue/2.

Both cases where the queue has tasks in it will behave roughly the same:
A new worker is attached to the worker supervisor, and the reference of the
old worker’s monitor is removed and replaced with the new worker’s monitor
reference. The only different aspect is that in the case of the synchronous
call, we send a manual reply, and in the other case, we can remain silent.
In the case the queue was empty, we need to do nothing but increment the
worker limit by one.

The last thing to do is add the standard OTP callbacks:

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

terminate(_Reason, _State) ->
 ok.

That’s it—our pool is ready to be used! It is a very unfriendly pool,
though. All the functions we need to use are scattered throughout the code.
Some are in ppool_supersup; some are in ppool_serv. Also, the module names
are long for no reason. To make things nicer, add the following API module
(just abstracting the calls away) to the application’s directory:

%%% API module for the pool
-module(ppool).
-export([start_link/0, stop/0, start_pool/3,
 run/2, sync_queue/2, async_queue/2, stop_pool/1]).

start_link() ->
 ppool_supersup:start_link().

stop() ->
 ppool_supersup:stop().

296 Chapter 18

start_pool(Name, Limit, {M,F,A}) ->
 ppool_supersup:start_pool(Name, Limit, {M,F,A}).

stop_pool(Name) ->
 ppool_supersup:stop_pool(Name).

run(Name, Args) ->
 ppool_serv:run(Name, Args).

async_queue(Name, Args) ->
 ppool_serv:async_queue(Name, Args).

sync_queue(Name, Args) ->
 ppool_serv:sync_queue(Name, Args).

And now we’re finished with our pool for real!

Writing a Worker
Look at me go—I’m lying all the time! The pool isn’t really ready to be used.
We don’t have a worker at the moment. I forgot. This is a shame because
we all know that in the chapter about writing a concurrent application
(Chapter 13), we built a nice task reminder. It apparently isn’t enough for
me, so for this example, we’ll write a nagger.

It will basically be a worker for each task, and the worker will keep nag-
ging us by sending repeated messages until a given deadline.

Pool L imi t s

You’ll have noticed that our process pool doesn’t limit the number of items that can
be stored in the queue. In some cases, a real server application will need to put
a ceiling on how many things can be queued to avoid crashing when too much
memory is used, although the problem can be circumvented if you use run/2 and
sync_queue/2 only with a fixed number of callers (if all content producers are stuck
waiting for free space in the pool, they stop producing so much content in the first
place).

Adding a limit to the queue size is left as an exercise to the reader, but fear
not because it is relatively simple to do. You will need to pass a new parameter to
all functions up to the server, which will then check the limit before any queuing.

Additionally, to control the load of your system, you sometimes want to
impose limits closer to their source by using synchronous calls. Synchronous calls
allow you to block incoming queries when the system is getting swamped by
producers faster than consumers. This approach generally helps keep it more
responsive than a free-for-all load.

Building an Application 297

The nagger will be able to take the following elements:

•	 A time delay for which to nag

•	 An address (pid) to say where the messages should be sent

•	 A nagging message to be sent in the process mailbox, including the
nagger’s own pid to be able to call

•	 A stop function to say the task is done and that the nagger can stop
nagging

Here we go:

%% demo module, a nagger for tasks,
%% because the previous one wasn't good enough
-module(ppool_nagger).
-behavior(gen_server).
-export([start_link/4, stop/1]).
-export([init/1, handle_call/3, handle_cast/2,
 handle_info/2, code_change/3, terminate/2]).

start_link(Task, Delay, Max, SendTo) ->
 gen_server:start_link(?MODULE, {Task, Delay, Max, SendTo} , []).

stop(Pid) ->
 gen_server:call(Pid, stop).

Yes, we’re going to be using yet another gen_server. You’ll find out that
people use them all the time—sometimes even when not appropriate! It’s
important to remember that our pool can accept any OTP-compliant pro-
cess, not just a gen_server.

init({Task, Delay, Max, SendTo}) ->
 {ok, {Task, Delay, Max, SendTo}, Delay}.

This just takes the basic data and forwards it:

•	 Task is the thing to send as a message.

•	 Delay is the time spent in between each sending.

•	 Max is the number of times it’s going to be sent.

•	 SendTo is a pid or a name where the message will go.

Note that Delay is passed as a third element of the tuple, which means
the timeout will be sent to handle_info/2 after Delay milliseconds.

Given our API, most of the server is rather straightforward.

%%% OTP Callbacks
handle_call(stop, _From, State) ->
 {stop, normal, ok, State};

298 Chapter 18

handle_call(_Msg, _From, State) ->
 {noreply, State}.

handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(timeout, {Task, Delay, Max, SendTo}) ->
 SendTo ! {self(), Task},
 if Max =:= infinity ->
 {noreply, {Task, Delay, Max, SendTo}, Delay};
 Max =< 1 ->
 {stop, normal, {Task, Delay, 0, SendTo}};
 Max > 1 ->
 {noreply, {Task, Delay, Max-1, SendTo}, Delay}
 end.
%% We cannot use handle_info below: if that ever happens,
%% we cancel the timeouts (Delay) and basically zombify
%% the entire process. It's better to crash in this case.
%% handle_info(_Msg, State) ->
%% {noreply, State}.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

terminate(_Reason, _State) -> ok.

The only somewhat complex part here lies in the handle_info/2 function.
As seen back in Chapter 14’s introduction to gen_server, every time a time-
out is hit (in this case, after Delay milliseconds), the timeout message is sent
to the process. Based on this, we check how many nags were sent to know if
we should send more or just quit.

With this worker complete, we can actually try this process pool!

Run Pool Run
We can now play with the pool. Compile all the files and start the pool top-
level supervisor itself:

$ erlc *.erl
$ erl
... <snip> ...
1> ppool:start_link().
{ok,<0.33.0>}

From this point, we can try a bunch of different features of the nagger
as a pool:

2> ppool:start_pool(nagger, 2, {ppool_nagger, start_link, []}).
{ok,<0.35.0>}

Building an Application 299

3> ppool:run(nagger, ["finish the chapter!", 10000, 10, self()]).
{ok,<0.39.0>}
4> ppool:run(nagger, ["Watch a good movie", 10000, 10, self()]).
{ok,<0.41.0>}
5> flush().
Shell got {<0.39.0>,"finish the chapter!"}
Shell got {<0.39.0>,"finish the chapter!"}
ok
6> ppool:run(nagger, ["clean up a bit", 10000, 10, self()]).
noalloc
7> flush().
Shell got {<0.41.0>,"Watch a good movie"}
Shell got {<0.39.0>,"finish the chapter!"}
Shell got {<0.41.0>,"Watch a good movie"}
Shell got {<0.39.0>,"finish the chapter!"}
Shell got {<0.41.0>,"Watch a good movie"}
... <snip> ...

Everything seems to work rather well for the synchronous nonqueued
runs. The pool is started, tasks are added, and messages are sent to the
right destination. When we try to run more tasks than allowed, allocation
is denied to us. No time for cleaning up, sorry! The others still run fine
though.

N o t e 	 The ppool is started with start_link/0. If at any time you make an error in the shell,
you take down the whole pool and need to start over again. This issue will be
addressed in Chapter 19.

Now let’s try the queuing facilities (asynchronous):

8> ppool:async_queue(nagger, ["Pay the bills", 30000, 1, self()]).
ok
9> ppool:async_queue(nagger, ["Take a shower", 30000, 1, self()]).
ok
10> ppool:async_queue(nagger, ["Plant a tree", 30000, 1, self()]).
ok

u ... <wait a bit> ...
received down msg
received down msg
11> flush().
Shell got {<0.70.0>,"Pay the bills"}
Shell got {<0.72.0>,"Take a shower"}

v ... <wait some more> ...
received down msg
12> flush().
Shell got {<0.74.0>,"Plant a tree"}
ok

Great! So the queuing works. The log here doesn’t show everything in
a very clear manner (although you should wait at u and v for best effect).

300 Chapter 18

What happens is that the two first naggers run as soon as possible. Then the
worker limit is hit, and we need to queue the third one (planting a tree).
When the nags for paying the bills are finished, the tree nagger is sched-
uled and sends the message a bit later.

The synchronous one will behave differently:

13> ppool:sync_queue(nagger, ["Pet a dog", 20000, 1, self()]).
{ok,<0.108.0>}
14> ppool:sync_queue(nagger, ["Make some noise", 20000, 1, self()]).
{ok,<0.110.0>}
15> ppool:sync_queue(nagger, ["Chase a tornado", 20000, 1, self()]).
received down msg
{ok,<0.112.0>}
received down msg
16> flush().
Shell got {<0.108.0>,"Pet a dog"}
Shell got {<0.110.0>,"Make some noise"}
ok
received down msg
17> flush().
Shell got {<0.112.0>,"Chase a tornado"}
ok

Again, the log isn’t as clear as if you tried it yourself (which is recom-
mended). The basic sequence of events is that two workers are added to the
pool. They aren’t finished running, and when we try to add a third one,
the shell gets locked up until ppool_serv (under the process name nagger)
receives a worker’s down message (received down msg). After this, our call to
sync_queue/2 can return and give us the pid of our brand-new worker.

We can now get rid of the pool as a whole:

18> ppool:stop_pool(nagger).
ok
19> ppool:stop().
** exception exit: killed

All pools will be terminated if you decide to just call ppool:stop(), but
you’ll receive a bunch of error messages. This is because we brutally kill the
ppool_supersup process, rather than taking it down correctly, which in turns
crashes all child pools. In Chapter 19, I will cover how to terminate the pool
cleanly.

Building an Application 301

Cleaning the Pool
In this chapter, we managed to write a pro-
cess pool to do some resource allocation in
a somewhat simple manner. Everything can
be handled in parallel, can be limited, and
can be called from other processes. Pieces
of your application that crash can, with the
help of supervisors, be replaced transpar-
ently without breaking the entirety of it.
Once the pool application was ready, we
even rewrote a surprisingly large part of our
reminder app with very little code.

Failure isolation for a single computer has been taken into account, and
concurrency is handled. We now have enough architectural blocks to write
some pretty solid server-side software, even though we still haven’t really
covered good ways to run them from the shell.

Chapter 19 will show how to package the ppool application into a
real OTP application, ready to be shipped and used by other products.
Although we haven’t explored all the advanced features of OTP, you’re now
on a level where you should be able to understand most intermediate to
somewhat advanced discussions on OTP and Erlang (the nondistributed
part, at least). That’s pretty good!

19
B u i l d i n g App l i c a t i o n s

t h e OT P W a y

After seeing our whole application’s supervision tree
start at once with a simple function call, you might
wonder why we would want to package it in any way.
What could be simpler than a single function call?

The concepts behind supervision trees are
a bit complex already, and I could see myself
just starting all of these trees and subtrees
manually with a script when the system is first
set up. Then after that, I would be free to go
outside and try to find clouds that look like
animals for the rest of the afternoon.

This is entirely true, yes. This is an accept-
able way to do things (especially the part about
clouds, because these days, everything is about

304 Chapter 19

cloud computing). However, like most abstractions made by programmers
and engineers, OTP applications are the result of many ad hoc systems
being generalized and made clean.

If you were to make an array of scripts and commands to start your
supervision trees, and other developers you work with had their own, you
would quickly run into massive issues. Then someone would ask something
like, “Wouldn’t it be nice if everyone used the same kind of system to start
everything? And wouldn’t it even be nicer if they all had the same kind of
application structure?”

OTP applications attempt to solve this type of problem by providing
the following:

•	 A directory structure

•	 A way to handle configurations

•	 A way to create environment variables and configurations

•	 Ways to start and stop applications while respecting dependencies

•	 A lot of safe control in detecting conflicts and handling live upgrades
without shutting your applications down

So unless you don’t want these aspects (nor the niceties they give, like
consistent structures and tools), this chapter should be of some interest to
you, as it introduces all the necessary concepts to get a good understanding
of OTP applications.

My Other Car Is a Pool
Merely using OTP components isn’t enough to guarantee we’re creating an
OTP application, much like putting pieces of humans together won’t guaran-
tee you get a human being instead of some kind of Frankenstein’s monster.
We’re going to reuse the ppool application we wrote in Chapter 18 and turn
it into a proper OTP application.

The first step in doing so is to copy all the ppool-related files into a neat
directory structure:

ebin/
include/
priv/
src/
 - ppool.erl
 - ppool_sup.erl
 - ppool_supersup.erl
 - ppool_worker_sup.erl
 - ppool_serv.erl
 - ppool_nagger.erl
test/
 - ppool_tests.erl

Building Applications the OTP Way 305

Most directories will remain empty for now. As explained in Chapter 13,
the ebin/ directory will hold compiled files; the include/ directory will con-
tain public Erlang header (.hrl) files; priv/ will hold executables, other pro-
grams, and various specific files needed for the application to work; and src/
will hold the Erlang source files you will need (as well as private .hrl files).

You’ll note that we added a
test/ directory, which holds the test
file ppool_tests.erl that I wrote for
Chapter 18, if you downloaded the
related code. Tests are somewhat com-
mon, but you don’t necessarily want
them distributed as part of your appli-
cation. You just need the tests when
developing your code and justifying
yourself to your manager (“Tests pass.
I don’t understand why the app killed people.”). Other directories end up
being added as required, depending on the case. One example is the doc/
directory, created whenever you have EDoc documentation (which is a way
to annotate Erlang code to generate documentation) to add to your appli-
cation. For more information on EDoc, see http://www.erlang.org/doc/apps/
edoc/chapter.html.

The four basic directories to have are ebin/, include/, priv/, and src/.
These are common to pretty much every OTP application, although only
ebin/ and priv/ will be exported when real OTP systems are deployed.

The Application Resource File
Where do we go from here? Well, the first thing to do is add an application
file. This file will tell the Erlang VM what the application is, where it begins,
and where it ends. This file lives in the ebin/ directory, along with all the
compiled modules.

This file is usually named yourapp.app (in our case ppool.app) and con-
tains a bunch of Erlang terms defining the application in a way that the VM
can understand. (The VM is pretty bad at guessing stuff!)

N o t e 	 Some people prefer to keep the application file outside ebin/ and instead have a file
named myapp.app.src as part of src/. Whatever build system they use then copies
this file over to ebin/ or even generates an app file in order to keep everything clean.

The basic structure of the application file is simply as follows:

{application, ApplicationName, Properties}.

ApplicationName is an atom, and Properties is a list of {Key, Value} tuples
describing the application. They’re used by OTP to figure out what your
application does. They’re all optional, but they can be useful to debug run-
ning systems and make sure different applications interact in an orderly

306 Chapter 19

manner. They’re also necessary for some tools. We’ll look at a subset of
them for now, and introduce the others as we need them.

{description, "Some description of your application"}

This gives the system a short description of the application. The field
defaults to an empty string. Although this field is optional, I suggest
always defining a description, if only because it makes things easier
to read.

{vsn, "1.2.3"}

This is the version of your application. This string can take any for-
mat you want. It’s usually a good idea to stick to a scheme of the form
Major.Minor.Patch, or something similar. When you start using tools to
help with upgrades and downgrades, this string is used to identify your
application’s version.

{modules, ModuleList}

This contains a list of all the modules that your application introduces
to the system. A module always belongs to at most one application and
cannot be present in two applications’ app files at once. This list lets the
system and tools look at dependencies of your application, making sure
everything is where it needs to be and that you have no conflicts with
other applications already loaded in the system. If you’re using a stan-
dard OTP structure and are using an Erlang build tool like rebar, this
is handled for you.

N o t e 	 Rebar is an Erlang build tool used by the community in general. It understands the
principles behind OTP applications and can act the way Emakefiles do. It can also
fetch dependencies from git and mercurial repositories as needed.

{registered, AtomList}

This contains a list of all the names registered by the application. It
lets OTP know if there will be name clashes when you try to bundle a
bunch of applications together, but is entirely based on trusting the
developers to give good data. We all know this isn’t always the case, so
blind faith shouldn’t be used in this case, and some testing is always
recommended.

{env, [{Key, Val}]}

This is a list of key/values that can be used as a configuration for your
application. They can be obtained at runtime by calling application:get_
env(Key) or application:get_env(AppName, Key). The former will try to find
the value in the application file of whatever application you are in at the
moment of the call. The latter allows you to specify a particular appli-
cation. These values can be overwritten as required (either at boot
time or by using application:set_env(Application, Key, Value)). Because

Building Applications the OTP Way 307

it’s possible to overwrite these values, the env part of the application
resource file is usually used for default values. This helps make the
application usable with minimal user configuration.

All in all, this is a pretty useful place to store configuration data
rather than having a bunch of configuration files to read in some arbi-
trary format, without really knowing where to store them and whatnot.
People often tend to roll their own system to handle it anyway, since not
everyone is a fan of using Erlang syntax in their configuration files.

{maxT, Milliseconds}

This is the maximum time that the application can run, after which
it will be shut down. This is a rarely used item. Milliseconds defaults to
infinity, so you often don’t need to bother with this one at all.

{applications, AtomList}

This is a list of applications on which yours depends. The application
system of Erlang will make sure they were loaded and/or started before
allowing yours to do so. All applications depend at least on kernel and
stdlib, but if your application were to depend on ppool being started,
then you should add ppool to the list. It is important to add your depen-
dencies, given OTP has mechanisms to know whether an application
can be loaded or started based on this list. Not adding them is doing a
disservice to yourself.

N o t e 	 Yes, the standard library and the VM’s kernel are applications themselves, which
means that Erlang is a language used to build OTP, but whose runtime environment
depends on OTP to work. It’s circular. This gives you some idea of why the language
is officially named Erlang/OTP.

{mod, {CallbackMod, Args}}

This defines a callback module for the application, using the applica-
tion behavior (described shortly). This tells OTP that when starting
your application, it should call CallbackMod:start(normal, Args). It will also
call CallbackMod:stop(Args) when stopping it. People will tend to name
CallbackMod after their application.

And this covers most of what we need for now (and for most applica-
tions you’ll ever write).

Converting the Pool
Now let’s put this into practice! We’ll turn the ppool set of processes from
Chapter 18 into a basic OTP application. The first step for this is to redis-
tribute everything under the correct directory structure:

ebin/
include/

308 Chapter 19

priv/
src/
 - ppool.erl
 - ppool_serv.erl
 - ppool_sup.erl
 - ppool_supersup.erl
 - ppool_worker_sup.erl
test/
 - ppool_tests.erl
 - ppool_nagger.erl

You’ll notice we moved the ppool_nagger.erl to the test directory. This
is for a good reason: It is not much more than a demo case and will have
nothing to do with our application, but is still necessary for the tests. We
can actually try it later on once the app has been packaged to make sure
everything still works, but for the moment, it’s kind of useless.

We’ll add an Emakefile (appropriately named Emakefile, placed in the
app’s base directory) to help us compile and run things later on.

{"src/*", [debug_info, {i,"include/"}, {outdir, "ebin/"}]}.
{"test/*", [debug_info, {i,"include/"}, {outdir, "ebin/"}]}.

This just tells the compiler to include debug_info for all files in src/ and
test/, go look in the include/ directory (if it’s ever needed), and then shove
the files up its ebin/ directory.

Speaking of which, let’s add the app file in the ebin/ directory.

{application, ppool,
 [{vsn, "1.0.0"},
 {modules, [ppool, ppool_serv, ppool_sup, ppool_supersup, ppool_worker_sup]},
 {registered, [ppool]},
 {mod, {ppool, []}}
]}.

This one contains only fields we find necessary; env, maxT, and applications
are not used.

We now need to change how the callback module (ppool) works. How
do we do that exactly?

First, let’s see the application behavior.

N o t e 	 Even though all applications depend on the kernel and the stdlib applications, I
haven’t included them. ppool will still work because starting the Erlang VM starts
these applications automatically. You might feel like adding them for the sake of
explicitness, but there’s no need for it right now.

Building Applications the OTP Way 309

The Application Behavior
Remember that behaviors are always
about splitting generic code away from
specific code. They denote the idea
that your specific code gives up its own
execution flow and inserts itself as a
bunch of callbacks to be used by the
generic code. To put it simply, behav-
iors handle the boring parts while
you connect the dots. In the case of
applications, this generic part is quite
complex and not nearly as simple as
other behaviors.

Whenever the VM first starts up, a process called the application controller
is started (with the name application_controller). It starts all other applica-
tions and sits on top of most of them. In fact, you could say the application
controller acts a bit like a supervisor for all applications. We’ll cover the
available supervision strategies in the next section.

T he E xce p t ion T h at Conf ir ms t he Rul e

The application controller technically doesn’t sit over all the applications. One
exception is the kernel application, which itself starts a process named user. The
user process acts as a group leader to the application controller, and the kernel
application thus needs some special treatment. We don’t need to care about this,
but I felt like it should be included for the sake of precision.

In Erlang, the I/O system depends on a concept called a group leader. The
group leader represents standard input and output and is inherited by all processes.
There is a hidden I/O protocol (http://erlang.org/doc/apps/stdlib/io_protocol.
html) that the group leader and any process-calling I/O functions use to communi-
cate. The group leader then takes the responsibility of forwarding these messages
to whatever I/O channels there are, weaving some magic that doesn’t concern us
within the confines of this text.

When someone decides to start an application, the application
controller (often referred to as AC in OTP parlance) starts an application
master. The application master is two processes taking charge of each indi-
vidual application. They set up the application and act like a middleman
between your application’s top supervisor and the application controller.
OTP is a bureaucracy, and we have many layers of middle management!
I won’t get into the details of what happens in there, as most Erlang devel-
opers never actually need to care about this, and very little documenta-
tion exists (the code is the documentation). Just know that the application

310 Chapter 19

master acts a bit like the app’s nanny (well, a pretty insane nanny). It looks
over its children and grandchildren, and when things go awry, it goes ber-
serk and terminates its whole family tree. Brutally killing children is a com-
mon topic among Erlangers.

An Erlang VM with a bunch of applications might look a bit like this:

application master application master application master

supervisor supervisor supervisor

application controller

...

Up to now, we’ve been looking at the generic part of the behavior, but
what about the specific stuff? After all, this is all we actually have to pro-
gram. Well, the application callback module requires very few functions to
be functional: start/2 and stop/1.

The start/2 function takes the form YourMod:start(Type, Args). For now,
the Type will always be normal (the other possibilities accepted have to do
with distributed applications, which we’ll cover in Chapter 27). Args is what
is coming from your app file (in the {mod, {YourMod, Args}} tuple). The func-
tion initializes everything for your app and needs to return only the pid
of the application’s top-level supervisor in one of the two following forms:
{ok, Pid} or {ok, Pid, SomeState}. If you don’t return SomeState, it simply
defaults to [].

The stop/1 function takes the state returned by start/2 as an argument.
It runs after the application is finished running and does only the necessary
cleanup.

That’s it—a huge generic part and a tiny specific one. Be thankful for
that, because you wouldn’t want to write the generic part yourself too often.
( Just look at the source if you feel like it!) There are a few more functions
that you can optionally use to have more control over the application, but
we don’t need them for now. This means we can move forward with our
ppool application!

From Chaos to Application
We have the app file and a general idea of how applications work. Two simple
callbacks are needed. Open ppool.erl and locate these lines:

-export([start_link/0, stop/0, start_pool/3,
 run/2, sync_queue/2, async_queue/2, stop_pool/1]).

Building Applications the OTP Way 311

start_link() ->
 ppool_supersup:start_link().

stop() ->
 ppool_supersup:stop().

Change this code to the following instead:

-behavior(application).
-export([start/2, stop/1, start_pool/3,
 run/2, sync_queue/2, async_queue/2, stop_pool/1]).

start(normal, _Args) ->
 ppool_supersup:start_link().

stop(_State) ->
 ok.

We can then make sure the tests are still valid. Open the old
ppool_tests.erl file and replace the single call to ppool:start_link/0 with
application:start(ppool), as follows:

find_unique_name() ->
 application:start(ppool),
 Name = list_to_atom(lists:flatten(io_lib:format("~p",[now()]))),
 ?assertEqual(undefined, whereis(Name)),
 Name.

You should also take the time to remove stop/0 from ppool_supersup (and
remove the export), because the OTP application tools will take care of
that for us.

We can finally recompile the code and run all the tests to make sure
everything still works (we’ll cover how that eunit thing works in Chapter 24).

$ erl -make
Recompile: src/ppool_worker_sup
Recompile: src/ppool_supersup
... <snip> ...
$ erl -pa ebin/
... <snip> ...
1> make:all([load]).
Recompile: src/ppool_worker_sup
Recompile: src/ppool_supersup
Recompile: src/ppool_sup
Recompile: src/ppool_serv
Recompile: src/ppool
Recompile: test/ppool_tests
Recompile: test/ppool_nagger
up_to_date
2> eunit:test(ppool_tests).
 All 14 tests passed.
ok

312 Chapter 19

The tests take a while to run due to timer:sleep(X) being used to syn-
chronize everything in a few places, but you should find that they work, as
shown here. Good news: Our app is healthy!

We can now study the wonders of OTP applications by using our new
awesome callbacks:

3> application:start(ppool).
ok
4> ppool:start_pool(nag, 2, {ppool_nagger, start_link, []}).
{ok,<0.142.0>}
5> ppool:run(nag, [make_ref(), 500, 10, self()]).
{ok,<0.146.0>}
6> ppool:run(nag, [make_ref(), 500, 10, self()]).
{ok,<0.148.0>}
7> ppool:run(nag, [make_ref(), 500, 10, self()]).
noalloc
9> flush().
Shell got {<0.146.0>,#Ref<0.0.0.625>}
Shell got {<0.148.0>,#Ref<0.0.0.632>}
... <snip> ...
received down msg
received down msg

The magic command here is application:start(ppool). This tells
the application controller to launch our ppool application. It starts the
ppool_supersup supervisor, and from that point on, everything can be used
as normal. We can see all the applications currently running by calling
application:which_applications():

10> application:which_applications().
[{ppool,[],"1.0.0"},
 {stdlib,"ERTS CXC 138 10","1.17.4"},
 {kernel,"ERTS CXC 138 10","2.14.4"}]

What a surprise—ppool is running (the [] means we have put no descrip-
tion in the .app file). As mentioned earlier, we can see that all applications
depend on kernel and stdlib, which are both running. We can close the
pool as follows:

11> application:stop(ppool).

=INFO REPORT==== DD-MM-YYYY::23:14:50 ===
 application: ppool
 exited: stopped
 type: temporary
ok

And it is finished. You should notice that we now get a clean shutdown with
a little informative report rather than the messy ** exception exit: killed
from Chapter 18.

Building Applications the OTP Way 313

N o t e 	 You’ll sometimes see people do something like MyApp:start(...) instead of
application:start(MyApp). While this works for testing purposes, it loses a lot
of the advantages of actually having an application. It’s no longer part of the
VM’s supervision tree, cannot access its environment variables, will not check
dependencies before being started, and so on. Try to stick to application:start/1
if possible.

But wait! What’s that thing about our app being temporary? We write
Erlang and OTP stuff because it’s supposed to run forever, not just for a
while! How dare the VM say this? The secret is that we can give different
arguments to application:start/1. Depending on the arguments, the VM will
react differently to termination of one of its applications. In some cases,
the VM will be a loving beast ready to die for its children. In other cases, it’s
rather a cold, heartless, and pragmatic machine willing to tolerate many of
its children dying for the survival of its species.

Application started with application:start(AppName, temporary)
If it ends normally, nothing special happens, and the application
has stopped.

If it ends abnormally, the error is reported, and the application ter-
minates without restarting.

Application started with application:start(AppName, transient)
If it ends normally, nothing special happens, and the application
has stopped.

If it ends abnormally, the error is reported, all the other applica-
tions are stopped, and the VM shuts down.

Application started with application:start(AppName, permanent)
If it ends normally, all other applications are terminated, and the VM
shuts down.

If it ends abnormally, the same thing happens: All applications are
terminated, and the VM shuts down.

You can see something new in the supervision strategies when it comes
to applications. No longer will the VM try to save you. At this point, some-
thing has gone very, very wrong to cause it to travel up the whole super
vision tree of one of its vital applications—enough to crash it. When this
does happen, the VM has lost all hope in your program. Given the defini-
tion of insanity is to keep doing the same thing while expecting different
outcomes each time, the VM prefers to die sanely and just give up. Of
course, the real reason has to do with something being broken that needs
to be fixed, but you catch my drift. Note that all applications can be ter-
minated by calling application:stop(AppName) without affecting others, as if a
crash had occurred.

314 Chapter 19

Library Applications
What happens when we want to wrap flat modules in an application but
we have no process to start and thus no need for an application callback
module?

After pulling our hair and crying in rage for a few minutes, the only
other thing left to do is to remove the tuple {mod, {Module, Args}} from the
application file. That’s it. This is called a library application. The Erlang
stdlib (standard library) application is an example of one of these.

If you have the source package of Erlang, you can go to otp_src_<release>/
lib/stdlib/src/stdlib.app.src and see the following:

{application, stdlib,
 [{description, "ERTS CXC 138 10"},
 {vsn, "%VSN%"},
 {modules, [array,
 ...
 gen_event,
 gen_fsm,
 gen_server,
 io,
 ...
 lists,
 ...
 zip]},
 {registered,[timer_server,rsh_starter,take_over_monitor,pool_master,
 dets]},
 {applications, [kernel]},
 {env, []}]}.

You can see it’s a pretty standard application file, but without the call-
back module. Again, it’s a library application.

How about we go deeper with applications and try building more
complex ones?

20
T h e C o u n t o f App l i c a t i o n s

Our ppool app has become a valid OTP application,
and we now understand what this means. But wouldn’t
it be nice to build an application that actually uses
our process pool to do something useful? To push our
knowledge of applications a bit further, we will write a second application.
This one will depend on ppool but will be able to benefit from some more
automation than our “nagger” from Chapter 19.

This application, which we will name erlcount,
will have a somewhat simple objective: recursively
look into some directory, find all Erlang files (end-
ing in .erl), and then run a regular expression over
the result to count all instances of a given string
within the modules. The results are then accumu-
lated to give the final result, which will be output to
the screen.

316 Chapter 20

From OTP Application to Real Application
The erlcount application will be relatively simple, relying heavily on our
process pool to do the work. It will have a structure as follows:

erlcount_sup ppool

erlcount_dispatch erlcount_counter

In this diagram, ppool represents the whole application but only means
to show that erlcount_counter will be the worker for the process pool. It will
open files, run the regular expression, and return the count. The process/
module erlcount_sup will be our supervisor. erlcount_dispatch will be a single
server in charge of browsing the directories, asking ppool to schedule work-
ers, and compiling the results. We’ll also add an erlcount_lib module, taking
charge of hosting all the functions to read directories, compile data, and so
on, leaving the other modules with the responsibility of coordinating these
calls. Last will be an erlcount module, with the single purpose of being the
application callback module.

The first step is to create the required directory structure. You can also
add a few file stubs if you feel like doing so.

ebin/
 - erlcount.app
include/
priv/
src/
 - erlcount.erl
 - erlcount_counter.erl
 - erlcount_dispatch.erl
 - erlcount_lib.erl
 - erlcount_sup.erl
test/
Emakefile

This has nothing too different from the structure we used in
Chapter 19, and you can even copy our old Emakefile.

We can probably start writing most parts of the application pretty
quickly. The .app file, counter, library, and supervisor should be relatively
simple. On the other hand, the dispatch module will need to accomplish
some complex tasks if we want the application to be useful.

The Count of Applications 317

The Application File
Let’s start with the app file, which looks like this:

{application, erlcount,
 [{vsn, "1.0.0"},
 {modules, [erlcount, erlcount_sup, erlcount_lib,
 erlcount_dispatch, erlcount_counter]},
 {applications, [ppool]},
 {registered, [erlcount]},
 {mod, {erlcount, []}},
 {env,
 [{directory, "."},
 {regex, ["if\\s.+->", "case\\s.+\\sof"]},
 {max_files, 10}]}
]}.

This app file is a bit more complex than the ppool one. We can still
recognize some of the fields as being the same: this app will also be in
version 1.0.0, and the modules are listed. The next part is something we
didn’t have for ppool: an application dependency. As explained earlier, the
applications tuple gives a list of all the applications that should be started
before erlcount. If you try to start it without that, you’ll get an error message.

We then need to count the registered processes with {registered, [erlcount]}.
Technically, none of our modules started as part of the erlcount app will need
a name. Everything we do can be anonymous. However, because we know
ppool registers the ppool_serv to the name we give it, and because we know we
will use a process pool, we’re going to call it erlcount and note it here. If all
applications that use ppool do the same, we should be able to detect conflicts
in the future. The mod tuple is similar to the one we used earlier. In it, we
define the application behavior callback module.

The last new thing in here is the env tuple. This entire tuple gives us a
key/value store for application-specific configuration variables. These vari-
ables will be accessible from all the processes running within the application,
stored in memory for your convenience. They can basically be used as a
substitute configuration file for your app.

In this case, we define three variables:

•	 directory tells the app where to look for .erl files. Assuming we run the
app in an Erlang virtual machine started in the learn-you-some-erlang
root (if you downloaded the package of files for this book), "." will refer
to that directory.

•	 max_files tells us how many file descriptors should be opened at once.
We don’t want to open 10,000 files at once if we end up having that many,
so this variable will match the maximum number of workers in ppool.

•	 regex, the most complex variable, will contain a list of all regular expres-
sions we want to run over each of the files to count the results.

318 Chapter 20

We won’t get into the syntax of Perl Compatible
Regular Expressions (PCRE) here (if you’re inter-
ested, the re module’s documentation contains full
details), but we will look at what we’re doing for our
application. In this case, the first regular expression
says, “Look for a string that contains if followed by
any single whitespace character (\s, with a second
backslash for escaping purposes) and finishes with
->. Moreover, there can be anything in between the if
and the -> (.+).” The second regular expression says,
“Look for a string that contains case followed by any
single whitespace character (\s), and finishes with of preceded by a single
whitespace character. Between the case and the of, there can be anything
(.+).” To make things simple, we’ll try to count how many times we use
case ... of versus how many times we use if ... end in our libraries.

Don’t Dr ink Too Much Kool- A id

Using regular expressions is not an optimal choice to analyze Erlang code. The
problem is there are a lot of cases that will make your results inaccurate, including
strings in the text and comments that match the patterns you’re looking for but are
technically not code.

To get more accurate results, you would need to look at the parsed and
expanded version of your modules directly in Erlang. While more complex, this
would make sure that you handle things like macros, exclude comments, and just
generally do it the right way. You can look into erl_syntax or xref if this is some-
thing you wish to explore.

The Application Callback Module and Supervisor
With the app file out of the way, we can start writing the application call-
back module.

-module(erlcount).
-behavior(application).
-export([start/2, stop/1]).

start(normal, _Args) ->
 erlcount_sup:start_link().

stop(_State) ->
 ok.

The Count of Applications 319

It’s not complex—basically it just starts the supervisor. And now let’s set
up the supervisor itself:

-module(erlcount_sup).
-behavior(supervisor).
-export([start_link/0, init/1]).

start_link() ->
 supervisor:start_link(?MODULE, []).

init([]) ->
 MaxRestart = 5,
 MaxTime = 100,
 {ok, {{one_for_one, MaxRestart, MaxTime},
 [{dispatch,
 {erlcount_dispatch, start_link, []},
 transient,
 60000,
 worker,
 [erlcount_dispatch]}]}}.

This is a standard supervisor, which will be in charge of only
erlcount_dispatch, as it was shown in the previous little schema. The
MaxRestart, MaxTime, and 60 seconds value for shutdown were chosen pretty
randomly, but in real cases, you would want to study the needs you have.
Because this is a demo application, it didn’t seem that important. The
author reserves the right to laziness.

The Dispatcher
The next process and module in the chain is the dispatcher. The dispatcher
will have a few complex requirements to fulfill for it to be useful:

•	 When we search the directories to find files ending in .erl, we should
go through the whole list of directories only once, even when we apply
multiple regular expressions.

•	 We should be able to start scheduling files for result counting as soon
as we find there is one that matches our criteria. We should not need to
wait for a complete list to do so.

•	 We need to hold a counter per regular expression so we can compare
the results in the end.

•	 It is possible that we will start getting results from the erlcount_counter
workers before we’re finished looking for .erl files.

•	 It is possible that many erlcount_counters will be running at once.

•	 It is likely we will keep getting results after we have finished looking
up files in the directories (especially if we have many files or complex
regular expressions).

320 Chapter 20

The two big points we must consider right now are how we’re going to
go through a directory recursively while still being able to get results from
there in order to schedule them, and then accept results back while that
goes on, without getting confused.

Returning Results through CPS

At a first glance, the easiest way to gain
the ability to return results while in the
middle of recursion would be to use
a process to do it. However, it’s a bit
annoying to change our previous struc-
ture just to be able to add another pro-
cess to the supervision tree, and then
to get the processes working together.
There is, in fact, a simpler way to do
things: Use a style of programming
called continuation-passing style (CPS).

The basic idea behind CPS is to take one function that’s usually deeply
recursive and break down every step. We return each step (which would
usually be the accumulator), and then call a function that will allow us
to keep going after that. In our case, our function will have two possible
return values:

{continue, Name, NextFun}
done

Whenever we receive the first one, we can schedule FileName into ppool
and then call NextFun to keep looking for more files. We can implement this
function in erlcount_lib, like this:

-module(erlcount_lib).
-export([find_erl/1]).
-include_lib("kernel/include/file.hrl").

%% Finds all files ending in .erl.
find_erl(Directory) ->
 find_erl(Directory, queue:new()).

Ah, something new here! What a surprise; my heart is racing and my
blood is pumping. The include file up there is something given to us by
the file module. It contains a record (#file_info{}) with a bunch of fields
explaining details about the file, including its type, size, permissions, and
so on.

Our design includes a queue. Why is that? Well, it is entirely possible
that a directory contains more than one file. So when we hit a directory and
it contains something like 15 files, we want to handle the first one (and if it’s
a directory, open it, look inside, and so on), and then handle the 14 others

The Count of Applications 321

later. In order to do this, we will just store their names in memory until we
have the time to process them. We use a queue for that, but a stack or any
other data structure would still be fine, given we don’t really care about the
order in which we read files. The point is that this queue acts a bit like a
to-do list for files in our algorithm.

Let’s start by reading the first file passed from the first call:

%%% Private
%% Dispatches based on file type.
find_erl(Name, Queue) ->
 {ok, F = #file_info{}} = file:read_file_info(Name),
 case F#file_info.type of
 directory -> handle_directory(Name, Queue);
 regular -> handle_regular_file(Name, Queue);
 _Other -> dequeue_and_run(Queue)
 end.

This function tells us a few things. One is that we want to deal with only
regular files and directories. In each case, we will write a function to handle
these specific occurrences (handle_directory/2 and handle_regular_file/2). For
other files, we will dequeue anything we had prepared before with the help of
dequeue_and_run/2. For now, we first start dealing with directories, as follows:

%% Opens directories and enqueues files in there.
handle_directory(Dir, Queue) ->
 case file:list_dir(Dir) of
 {ok, []} ->
 dequeue_and_run(Queue);
 {ok, Files} ->
 dequeue_and_run(enqueue_many(Dir, Files, Queue))
 end.

So if there are no files, we keep searching with dequeue_and_run/1. If
there are many files, we enqueue them before searching further. The
function dequeue_and_run will take the queue of filenames and get one
element out of it. The filename it fetches from there will be used by calling
find_erl(Name, Queue), and we just keep going as if we were just getting started.

%% Pops an item from the queue and runs it.
dequeue_and_run(Queue) ->
 case queue:out(Queue) of
 {empty, _} -> done;
 {{value, File}, NewQueue} -> find_erl(File, NewQueue)
 end.

Note that if the queue is empty ({empty, _}), the function considers itself
done (a keyword chosen for our CPS function); otherwise, we keep going
over again.

322 Chapter 20

The other function we need to consider is enqueue_many/3. This one is
designed to enqueue all the files found in a given directory. It works as
follows:

%% Adds a bunch of items to the queue.
enqueue_many(Path, Files, Queue) ->
 F = fun(File, Q) -> queue:in(filename:join(Path,File), Q) end,
 lists:foldl(F, Queue, Files).

Basically, we use the function filename:join/2 to merge the directory’s
path to each filename (so that we get a complete path). We then add this
new full path to a file to the queue. We use a fold to repeat the same proce-
dure with all the files in a given directory. The new queue we get out of it
is then used to run find_erl/2 again, but this time with all the new files we
found added to the to-do list.

We digressed a bit. Where were we? Oh yes, we were handling directo-
ries, and now we’re finished with them. We then need to check for regular
files and whether they end in .erl.

%% Checks if the file finishes in .erl.
handle_regular_file(Name, Queue) ->
 case filename:extension(Name) of
 ".erl" ->
 {continue, Name, fun() -> dequeue_and_run(Queue) end};
 _NonErl ->
 dequeue_and_run(Queue)
 end.

You can see that if the name matches (according to filename:extension/1),
we return our continuation. The continuation gives the Name to the caller,
and then wraps the operation dequeue_and_run/1 with the queue of files left
to visit into an anonymous function. That way, the user can call that anony-
mous function and keep going as if we were still in the recursive call, while
still getting results in the meantime. In the case where the filename doesn’t
end in .erl, the user has no interest in us returning yet, and we keep going
by dequeuing more files. That’s it.

Hooray, the CPS thing is complete. We can now focus on the other issue.

Dispatching and Receiving

How are we going to design the dispatcher so that it can both dispatch and
receive at once? My suggestion, which you will no doubt accept because I’m
the one writing the text, is to use an FSM.

The Count of Applications 323

The FSM will have two states. The first one will be the “dispatching”
state. It’s the one used whenever we’re waiting for our find_erl CPS function
to hit the done entry. While we’re in there, we will never think about being
finished with the counting. That will happen in only the second and final
state, “listening,” but we will still receive notices from ppool all the time:

dispatching listening

get files

dispatching

results from ppool

This will thus require us to have the following:

•	 A dispatching state with an asynchronous event for when we get new
files to dispatch

•	 A dispatching state with an asynchronous event for when we are fin-
ished getting new files

•	 A listening state with an asynchronous event for when we are finished
getting new files

•	 A global event to be sent by the ppool workers when they are finished
running their regular expression

We’ll slowly start building our gen_fsm:

-module(erlcount_dispatch).
-behavior(gen_fsm).
-export([start_link/0, complete/4]).
-export([init/1, dispatching/2, listening/2, handle_event/3,
 handle_sync_event/4, handle_info/3, terminate/3, code_change/4]).

-define(POOL, erlcount).

Our API will have two functions: one for the supervisor (start_link/0)
and one for the ppool callers (complete/4, which we’ll get to soon). The other
functions are the standard gen_fsm callbacks, including our listening/2 and
dispatching/2 asynchronous state handlers. We also defined a ?POOL macro,
used to give our ppool server the name erlcount.

324 Chapter 20

What should the gen_fsm’s data look like, though? Because we’re going
asynchronous and we will always call ppool:run_async/2 instead of anything
else, we will have no real way of knowing if we’re ever done scheduling files.
Basically, we could have a timeline like this:

Dispatcher ppool workers

dispatches many

completes some

? ...

One way to solve the problem could be to use a timeout, but this is always
annoying. Is the timeout too long or too short? Has something crashed? This
much uncertainty is probably as much fun as a toothbrush made of lemon.
Instead, we could use a concept where each worker is given some kind of
identity, which we can track and associate with a reply, a bit like a secret
password to enter the private club of “workers who succeeded.” This con-
cept will let us match one-on-one whatever message we get and let us know
when we are absolutely finished. We now know what our state data might
look like:

-record(data, {regex=[], refs=[]}).

The first list will be tuples of the form {RegularExpression,
NumberOfOccurrences}, and the second will be a list of some kind of refer-
ences to the messages. Anything will do, as long as it’s unique. We can
then add the two following API functions:

%%% PUBLIC API
start_link() ->
 gen_fsm:start_link(?MODULE, [], []).

complete(Pid, Regex, Ref, Count) ->
 gen_fsm:send_all_state_event(Pid, {complete, Regex, Ref, Count}).

The Count of Applications 325

And here is our secret complete/4 function. Unsurprisingly, the workers
will need to send back only three pieces of data: what regular expression
they were running, what their associated score was, and then the reference
mentioned earlier. Awesome—now we can get into the real interesting stuff!

init([]) ->
 {ok, Re} = application:get_env(regex),
 {ok, Dir} = application:get_env(directory),
 {ok, MaxFiles} = application:get_env(max_files),
 ppool:start_pool(?POOL, MaxFiles, {erlcount_counter, start_link, []}),
 case lists:all(fun valid_regex/1, Re) of
 true ->
 self() ! {start, Dir},
 {ok, dispatching, #data{regex=[{R,0} || R <- Re]}};
 false ->
 {stop, invalid_regex}
 end.

The init function first loads all the information we need to run from
the application file. Once that’s done, we plan on starting the process pool
with erlcount_counter as a callback module. The last step before actually
starting to dispatch workers is to make sure all regular expressions are
valid. The reason for this is simple: If we do not check it right now, then
we will need to add an error-handling call somewhere else instead. This is
likely going to be in the erlcount_counter worker. If it happens there, we now
need to define what we do to handle workers crashing when regular expres-
sions are invalid. It’s just simpler to handle when starting the app and crash
early. Here’s the valid_regex/1 function:

valid_regex(Re) ->
 try re:run("", Re) of
 _ -> true
 catch
 error:badarg -> false
 end.

We try to run the regular expression on only an empty string. This will
take no time and let the re module try to run things. So the regular expres-
sions are valid, and we start the app by sending ourselves {start, Directory}
and with a state defined by [{R,0} || R <- Re]. This will basically change a
list of the form [a,b,c] to the form [{a,0},{b,0},{c,0}], the idea being to add a
counter set to 0 to each of the regular expressions.

The first message we need to handle is {start, Dir} in handle_info/2.
Remember that because Erlang’s behaviors are pretty much all based on
messages, we need to take the step of sending ourselves messages if we
want to trigger a function call and do things our way. This is annoying but
manageable.

326 Chapter 20

handle_info({start, Dir}, State, Data) ->
 gen_fsm:send_event(self(), erlcount_lib:find_erl(Dir)),
 {next_state, State, Data}.

We send ourselves the result of erlcount_lib:find_erl(Dir). It will be
received in the dispatching callback, given that’s the value of State as it was
set by the init function of the FSM. This snippet solves our problem, but also
illustrates the general pattern we’ll have during the whole FSM. Because
our find_erl/1 function is written in CPS, we can just send ourselves an asyn-
chronous event and deal with it in each of the correct callback states. It is
likely that the first result of our continuation will be {continue, File, Fun}.
We will also be in the “dispatching” state, because that’s what we put as the
initial state in the init function:

dispatching({continue, File, Continuation}, Data = #data{regex=Re, refs=Refs}) ->
 F = fun({Regex, _Count}, NewRefs) ->
 Ref = make_ref(),
 ppool:async_queue(?POOL, [self(), Ref, File, Regex]),
 [Ref|NewRefs]
 end,
 NewRefs = lists:foldl(F, Refs, Re),
 gen_fsm:send_event(self(), Continuation()),
 {next_state, dispatching, Data#data{refs = NewRefs}};

That’s a bit ugly. For each of the regular expressions, we create a unique
reference, schedule a ppool worker that knows this reference, and then
store this reference (to know if a worker has finished). Doing this in a foldl
makes it easier to accumulate all the new references. Once that dispatching
is complete, we call the continuation again to get more results, and then
wait for the next message with the new references as our state.

What’s the next kind of message we can get? We have two choices
here: Either none of the workers have given us our results back (even
though they have not been implemented yet) or we get the done message
because all files have been looked up. Let’s go with the second type to
finish implementing the dispatching/2 function:

dispatching(done, Data) ->
 %% This is a special case. We cannot assume that all messages have NOT
 %% been received by the time we hit 'done'. As such, we directly move to
 %% listening/2 without waiting for an external event.
 listening(done, Data).

The Count of Applications 327

The comment is pretty explicit about what is going on. When we sched-
ule jobs, we can receive results while in dispatching/2 or while in listening/2.
This can take the following form:

add workers

add workers

results

results

(dispatch state)

all results are in

(listening state)

FSM Workers

In this case, the listening state can just wait for results and declare
everything is in. But remember that this is Erlang Land (Erland), and we
work in parallel and asynchronously! This scenario is as probable:

add workers

add workers

results

results

(dispatch state)

all results are in

(listening state)

?

FSM Workers

328 Chapter 20

Ouch. Our application would then be hanging forever, waiting for mes-
sages. This is why we need to manually call listening/2. We will force it to do
some kind of result detection to make sure everything has been received,
just in case we already have all the results. Here’s what this looks like:

listening(done, #data{regex=Re, refs=[]}) -> % all received!
 [io:format("Regex ~s has ~p results~n", [R,C]) || {R, C} <- Re],
 {stop, normal, done};
listening(done, Data) -> % entries still missing
 {next_state, listening, Data}.

If no refs are left, then everything was received and we can output the
results. Otherwise, we can keep listening to messages. Take another look at
complete/4 and our events diagram:

dispatching listening

get files

dispatching

results from ppool

The result messages are global because they can be received in either
dispatching or listening states. Here’s the implementation:

handle_event({complete, Regex, Ref, Count}, State, Data = #data{regex=Re, refs=Refs}) ->
 {Regex, OldCount} = lists:keyfind(Regex, 1, Re),
 NewRe = lists:keyreplace(Regex, 1, Re, {Regex, OldCount+Count}),
 NewData = Data#data{regex=NewRe, refs=Refs--[Ref]},
 case State of
 dispatching ->
 {next_state, dispatching, NewData};
 listening ->
 listening(done, NewData)
 end.

The first thing this does is find the regular expression that just
completed in the Re list, which also contains the count for all of them.
We extract that value (OldCount) and update it with the new count
(OldCount+Count) with the help of lists:keyreplace/4. We update our Data
record with the new scores while removing the Ref of the worker, and
then send ourselves to the next state.

The Count of Applications 329

In normal FSMs, we would just have done {next_state, State, NewData},
but here, because of the problem with knowing when we’re finished, we
must manually call listening/2 again. This may be a pain, but alas, it’s a nec-
essary step.

And that’s it for the dispatcher. We just add in the rest of the filler
behavior functions, as follows:

handle_sync_event(Event, _From, State, Data) ->
 io:format("Unexpected event: ~p~n", [Event]),
 {next_state, State, Data}.

terminate(_Reason, _State, _Data) ->
 ok.

code_change(_OldVsn, State, Data, _Extra) ->
 {ok, State, Data}.

Next, we’ll move on to the counter. You might want to take a little break
before then. Hard-core readers can go bench-press their own weight a few
times to relax themselves and then come back for more.

The Counter
The counter is simpler than the dispatcher. While we still need a behavior
to do things (in this case, a gen_server), it will be quite minimalist. We need
it to do only three things:

•	 Open a file

•	 Run a regular expression on it and count the instances

•	 Return the result

For the first task, we have plenty of functions in file to help us. For the
third task, we defined erlcount_dispatch:complete/4 to handle it. For the sec-
ond, we can use the re module with run/2-3, but it doesn’t quite do what we
need, as you can see here:

1> re:run(<<"brutally kill your children (in Erlang)">>, "a").
{match,[{4,1}]}
2> re:run(<<"brutally kill your children (in Erlang)">>, "a",
2> [global]).
{match,[[{4,1}],[{35,1}]]}
3> re:run(<<"brutally kill your children (in Erlang)">>, "a",
3> [global, {capture, all, list}]).
{match,[["a"],["a"]]}
4> re:run(<<"brutally kill your children (in Erlang)">>, "child",
4> [global, {capture, all, list}]).
{match,[["child"]]}

330 Chapter 20

While the function does take the arguments we need (re:run(String,
Pattern, Options)), it doesn’t give us the correct count. Let’s add the follow-
ing function to erlcount_lib so we can start writing the counter:

regex_count(Re, Str) ->
 case re:run(Str, Re, [global]) of
 nomatch -> 0;
 {match, List} -> length(List)
 end.

This one basically just counts the results and returns that value. Don’t
forget to add it to the export attribute.

Now let’s continue by defining the worker, as follows:

-module(erlcount_counter).
-behavior(gen_server).
-export([start_link/4]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-record(state, {dispatcher, ref, file, re}).

start_link(DispatcherPid, Ref, FileName, Regex) ->
 gen_server:start_link(?MODULE, [DispatcherPid, Ref, FileName, Regex], []).

init([DispatcherPid, Ref, FileName, Regex]) ->
 self() ! start,
 {ok, #state{dispatcher=DispatcherPid,
 ref = Ref,
 file = FileName,
 re = Regex}}.

handle_call(_Msg, _From, State) ->
 {noreply, State}.

handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(start, S = #state{re=Re, ref=Ref}) ->
 {ok, Bin} = file:read_file(S#state.file),
 Count = erlcount_lib:regex_count(Re, Bin),
 erlcount_dispatch:complete(S#state.dispatcher, Re, Ref, Count),
 {stop, normal, S}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

The Count of Applications 331

The two interesting sections here are the init/1 callback, where we
order ourselves to start, and then a single handle_info/2 clause, where we
open the file (file:read_file(Name)) and get back a binary, which we pass to
our new regex_count/2 function, and then send it back with complete/4. We
then stop the worker. The rest is just standard OTP callback stuff.

We can now compile and run the whole thing!

$ erl -make
Recompile: src/erlcount_sup
Recompile: src/erlcount_lib
Recompile: src/erlcount_dispatch
Recompile: src/erlcount_counter
Recompile: src/erlcount
Recompile: test/erlcount_tests

Hell, yes. Pop the champagne because we have no whine!

Run App Run
There are many ways to get our app running. Make sure you’re in a directory
where you somehow have these two directories next to each other:

erlcount-1.0
ppool-1.0

Now start Erlang the following way:

$ erl -env ERL_LIBS "."

ERL_LIBS is a special variable defined in your environment that lets you
specify where Erlang can find OTP applications. The VM is then able to
automatically look there to find the ebin/ directories for you. The erl exe-
cutable can also take an argument of the form -env NameOfVar Value to over-
ride this setting quickly, so that’s what we used here. The ERL_LIBS variable is
pretty useful, especially when installing libraries, so try to remember it!

With the VM we started, we can test that the modules are all there:

1> application:load(ppool).
ok

This function will try to load all the application modules in memory if
they can be found. If you don’t call it, the loading will be done automati-
cally when starting the application, but this provides an easy way to test our
paths. We can start the apps:

2> application:start(ppool), application:start(erlcount).
ok

332 Chapter 20

Regex if\s.+-> has 20 results
Regex case\s.+\sof has 26 results

Your results may vary depending on what you have in your directories.
Note that depending how many files you have, this can take a while.

What if we want different variables to be set for our applications,
though? Do we need to change the application file all the time? No, we
don’t! Erlang also supports that. So let’s say we wanted to see how many
times the developers of Erlang are angry in their
source files?

The erl executable supports a special set of
arguments of the form -AppName Key1 Val1 Key2
Val2 ... KeyN ValN. In this case, we could then run
the following regular expression over the Erlang
source code from the R15B01 distribution with
two regular expressions, as follows:

$ erl -env ERL_LIBS "." -erlcount directory '"/home/ferd/otp_src_R15B01/lib/"' regex '["shit","damn"]'
... <snip> ...
1> application:start(ppool), application:start(erlcount).
ok
Regex shit has 3 results
Regex damn has 1 results
2> q().
ok

Note that in this case, all expressions given as arguments are wrapped
in single quotation marks ('). That’s because I want them to be taken liter-
ally by my Unix shell. Different shells might have different rules.

We could also try our search with more general expressions, allowing
values to start with capital letters and more file descriptors:

$ erl -env ERL_LIBS "." -erlcount directory '"/home/ferd/otp_src_R15B01/lib/"'
 regex '["[Ss]hit","[Dd]amn"]' max_files 50
... <snip> ...
1> application:start(ppool), application:start(erlcount).
ok
Regex [Ss]hit has 13 results
Regex [Dd]amn has 6 results
2> q().
ok

Oh, OTP programmers, what makes you so angry (“working with
Erlang” not being an acceptable answer)?

This one might take even longer to run due to the more complex checks
required over the hundreds of files there. This all works pretty well, but
there are a few annoying things here. Why are we always manually starting
both applications? Isn’t there a better way?

The Count of Applications 333

Included Applications
Included applications are one way to get
things working. The basic idea of an included
application is that you define an application
(in this case ppool) as an application that is
part of another one (erlcount here). To do
this, a bunch of changes need to be made to
both applications.

The gist of this approach is that you modify your application file a bit,
and then you need to add something called start phases to them, and respect
a given protocol described at length in the Erlang documentation.

It is more and more recommended not to use included applications for
a simple reason: They seriously limit code reuse. We’ve spent a lot of time
working on ppool’s architecture to make it so anyone can use it, get their own
pool, and be free to do whatever they want with it. If we were to push it into
an included application, then it can no longer be included in any other appli-
cation on this VM. Also, if erlcount dies, then ppool will be taken down with it,
ruining the work of any third-party application that wanted to use ppool.

For these reasons, included applications are usually excluded from
many Erlang programmers’ toolbox, although some still love them. As we
will discuss in the following chapter, releases can basically help us do the
same (and much more) in a more generic manner.

But before we get to that, we have a one more application topic left
to discuss.

Complex Terminations
In some cases, we need more steps to be
taken before terminating our application.
The stop/1 function from the application
callback module might not be enough,
especially since it is called after the appli-
cation has already terminated. What
do we do if we need to clean up things
before the application is actually gone?

The trick is simple: Just add a func-
tion prep_stop(State) to your application
callback module. State will be the state
returned by your start/2 function, and
whatever prep_stop/1 returns will be
passed to stop/1. The function prep_stop/1
thus technically inserts itself between start/2 and stop/1, and is executed
while your application is still alive, but just before it shuts down. For your
own code, you will know when you need to use this kind of callback. We
don’t require it for our application right now.

Now that we have basic applications working, we’re going to start
thinking about packaging our applications into releases.

NO
INCLUDED

APPS
CLUB

21
R e l e a s e I s t h e W o r d

How far have we really gotten? All this work, all these
concepts, and we haven’t shipped a single Erlang exe-
cutable yet! You might agree with me that getting an
Erlang system up and running requires a lot of effort,
especially compared to many languages where you
call the compiler and off you go.

Of course this is entirely right. We can compile files, run applications,
check for some dependencies, handle crashes, and so on, but it’s not very
useful without a functioning Erlang system you can easily deploy or ship
with the code we wrote. What use is having a great pizza when it can only be
delivered cold? (People who enjoy cold pizza might feel excluded here. I
am sorry.)

The OTP team didn’t leave us on our own when it
comes to making sure real systems come to life. OTP
releases are part of a system made to help package
applications with the minimal resources and depen-
dencies. In this chapter, we’ll look at the two major
ways to handle releases, Systools and Reltool.

336 Chapter 21

Fixing the Leaky Pipes
For our first release, we will reuse our ppool and
erlcount applications from the previous chapters.
However, before we do so, we’ll need to change a few
things here and there.

If you’re following along with the book and writ-
ing your own code, you might want to copy both of our
apps into a new directory called release/, which I will
assume you have done for the rest of the chapter.

Terminating the VM
The first thing that’s really bothersome about erlcount is that once it’s
finished running, the VM stays up, doing nothing. We might want most
applications to stay running forever, but that’s not the case here. Keeping it
running makes sense during development, because we might want to play
with a few things in the shell and need to manually start applications, but
this should no longer be necessary.

For this reason, we’ll add a command that will shut down the Erlang
VM in an orderly manner. The best place to do this is within erlcount_
dispatch.erl’s own terminate function, given it’s called after we obtain the
results. The perfect function to tear everything down is init:stop/0. This
function is quite complex, but will take care of terminating our applications
in order. It will get rid of file descriptors, sockets, and so on for us. The new
stop function should now look like this:

terminate(_Reason, _State, _Data) ->
 init:stop().

And that’s it for the code itself. However, we still have a bit more work
to do.

Updating the Application Files
When we defined our app files in the preceding chapters, we did so while
using the absolute minimal amount of information necessary to get them
running. A few more fields are required for releases so that Erlang isn’t
completely mad at us.

First, the Erlang tools to build releases require us to be a little more
precise in our application descriptions. You see, although tools for releases
don’t understand documentation, they still have this intuitive fear of code
where the developers were too impolite to at least leave an idea of what the
application does. For this reason, we’ll need to add a description tuple to
both our ppool.app and erlcount.app files.

For ppool, add the following:

{description, "Run and enqueue different concurrent tasks"}

Release Is the Word 337

For erlcount, add this:

{description, "Run regular expressions on Erlang source files"}

Now we’ll be able to get a better idea of what’s going on when we inspect
our different systems.

The most attentive readers will also remember I’ve mentioned at
some point that all applications depend on stdlib and kernel. However,
our two app files do not mention these. Let’s add both applications to
each of our app files. Add the following tuple to the ppool app file:

{applications, [stdlib, kernel]}

Also add the two applications to the existing erlcount app file,
giving us:

{applications, [stdlib, kernel, ppool]}.

Don’t Dr ink Too Much Kool- A id

While adding the stdlib and kernel applications to the list in the app file might
have virtually no impact when we start releases manually (and even when we
generate them with systools, which we’ll explore soon), it is absolutely vital
to do so.

People who generate releases with Reltool (the other tool we’ll cover in this
chapter) will definitely need these applications in order for their release to run
well, and even to be able to shut down the VM in a respectable manner. I’m not
kidding—it’s really necessary. I forgot to do it when writing this chapter, and lost
a night of work trying to find what was wrong, only to discover that it was just me
not doing things right in the first place.

It could be argued that, ideally, the release systems of Erlang could implicitly
add these applications, given pretty much all of them (except very special cases)
will depend on them. Alas, they don’t.

Compiling the Applications
We have a termination in place and have updated the app files. The last
step before we start working with releases is to compile all your applications.

Successively run your Emakefile files (with erl -make) in each directory
containing one. Otherwise, Erlang’s tools won’t do it for you, and you’ll end
up with a release without code to run. Ouch.

338 Chapter 21

Releases with systools
The systools application is the simplest one to use to build Erlang releases.
It’s the Easy-Bake Oven of Erlang releases. To get your delicious releases
out of the systools oven, you first need a basic recipe and list of ingredients.
Here’s a list of the ingredients of a successful minimal Erlang release for
our erlcount application (erlcount 1.0.0):

•	 An Erlang Run-Time System (ERTS) of your choice

•	 A standard library

•	 A kernel library

•	 The ppool application, which should not fail

•	 The erlcount application

Did I mention that I’m a terrible cook? I’m not sure I can even make
pancakes, but at least I know how to build an OTP release. The ingredient
list for an OTP release with systools looks like this file, named erlcount-1.0.rel
and placed at the top level of the release/ directory:

{release,
 {"erlcount", "1.0.0"},
 {erts, "5.9.1"},
 [{kernel, "2.15.1"},
 {stdlib, "1.18.1"},
 {ppool, "1.0.0", permanent},
 {erlcount, "1.0.0", transient}]}.

This has the same content as the textual list of ingredients for the
recipe, although we can specify how we want the applications to be started
(temporary, transient, or permanent). We can also specify versions so we can
mix and match different libraries from different Erlang versions depending
on our needs. To get all the version numbers in there, we can just make the
following sequence of calls:

$ erl
Erlang R15B01 (erts-5.9.1) [source] [64-bit] [smp:4:4] [async-threads:0]
[hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with ^G)
1> application:which_applications().
[{stdlib,"ERTS CXC 138 10","1.18.1"},
 {kernel,"ERTS CXC 138 10","2.15.1"}]

For this example, I was running R15B01. You can see the ERTS version
in there right after the release number (the version is 5.9.1). Then by call-
ing application:which_applications() on a running system, I can see the two
versions I need from kernel (2.15.1) and stdlib (1.18.1). The numbers will
vary from Erlang version to version. However, being explicit about the ver-
sions you need is helpful because it means that if you have many different

Release Is the Word 339

Erlang installations on a system, you can still use
an older version of stdlib that won’t badly influ-
ence whatever you’re doing.

You’ll also note that I chose to name the
release as erlcount and make it version 1.0.0. This
is unrelated to the ppool and erlcount applications,
which are both also running version 1.0.0, as speci-
fied in their app file.

So now we have all our applications compiled,
our list of ingredients, and the wonderful concept
of a metaphorical Easy-Bake Oven. What we need
is the actual recipe.

A recipe will tell you a few things: in what order to add ingredients,
how to mix them, how to cook them, and so on. The part about the order
used to add them is covered by our list of dependencies in each app file.
The systools application will be clever enough to look at the app files and
figure out what needs to run before what. But we do need to handle relay-
ing the other instructions.

Creating a Boot File
Erlang’s VM can start itself with a basic configuration taken from some-
thing called a boot file. In fact, when you start your own erl executable from
the shell, it implicitly calls the ERTS with a default boot file. That boot file
will give basic instructions such as “load the standard library,” “load the ker-
nel application,” “run a given function,” and so on. That boot file is a binary
file created from a boot script (http://www.erlang.org/doc/man/script.html),
which contains tuples that will represent these instructions. We’ll write such
a boot script now.

First we start with the following:

{script, {Name, Vsn},
 [
 {progress, loading},
 {preLoaded, [Mod1, Mod2, ...]},
 {path, [Dir1,"$ROOT/Dir",...]}.
 {primLoad, [Mod1, Mod2, ...]},
 ...

I’m just kidding. No one really takes the time to do that, and we won’t
either. The boot script is something easy to generate from the .rel file. Just
start an Erlang VM from the release/ directory and call the following line:

$ erl -env ERL_LIBS .
... <snip> ...
1> systools:make_script("erlcount-1.0", [local]).
ok

340 Chapter 21

Now if you look in your directory, you will have a bunch of new files,
including erlcount-1.0.script and erlcount-1.0.boot. Here, the local option
means that we want the release to be able to run from anywhere, and
not just the current installation. The systools application has many more
options (see http://www.erlang.org/doc/man/systools.html), but because systools
isn’t as powerful as Reltool (which we’ll discuss in the next section), we
won’t look into them with too much depth.

At this point, we have the boot script, but not enough to distribute our
code yet.

Packaging the Release
Go back to your Erlang shell and run the following command:

2> systools:make_tar("erlcount-1.0", [{erts, "/usr/local/lib/erlang/"}]).
ok

Or, on Windows 7, run this:

2> systools:make_tar("erlcount-1.0",
2> [{erts, "C:/Program Files (x86)/erl5.9.1"}]).
ok

Here, systools will look for your release files and the ERTS (because
of the erts option). If you omit the erts option, the release won’t be self-
executable and will depend on Erlang already being installed on a system.

Running this function call creates an archive file named erlcount-1.0.tar.gz.
Unarchive the files inside the archive, and you should see a directory like this:

erts-5.9.1/
lib/
releases/

The erts-5.9.1/ directory will contain the ERTS. The lib/ directory holds
all the applications we need, and the releases/ directory has the boot files
and other files related to releases.

Move into the directory where you extracted these files. From there, we
can build a command-line call for erl. First, we specify where to find the
erl executable and the boot file (without the .boot extension). In Linux, this
gives us the following:

$./erts-5.9.1/bin/erl -boot releases/1.0.0/start

The command is the same on Windows 7, using Windows PowerShell.
You can optionally use absolute paths if you want the command to work

from anywhere on your computer. Don’t run it right now, though. It’s going
to be useless because there is no source file to analyze in the current direc-
tory. If you use absolute paths, you can go to the directory you want to ana-
lyze and call the file from there.

Release Is the Word 341

Don’t Dr ink Too Much Kool- A id

There is no guarantee that a release will work on any system ever. If you’re using
pure Erlang code without native compiling with HiPE (a native compiler for Erlang
code, which gives somewhat faster code, especially for CPU-bound applications),
then that code will be portable. The issue is that the ERTS you ship with it might
itself not work. You will need to either create many binary packages for many dif-
ferent platforms for large-scale distribution or just ship the BEAM files without the
associated ERTS and ask people to run them with an Erlang system they have on
their own computer.

The erlcount application’s implementation would use the current
directory as its default point to start searching. It is, however, possible
to configure which directory to scan by overriding the application’s env
variables. Let’s add -erlcount directory "'<path to the directory>'" to the
command. Then because we want this to not look like Erlang, let’s add
the -noshell argument. This gives me something like this on my own
computer:

$./erts-5.9.1/bin/erl -boot releases/1.0.0/start -erlcount directory
'"/home/ferd/code/otp_src_R14B03/"' -noshell
Regex if\s.+-> has 3846 results
Regex case\s.+\sof has 55894 results

I was running erlcount on old Erlang and OTP releases. You can try it
on more recent ones. Using absolute file paths, I get something like this
long command:

$ /home/ferd/code/learn-you-some-erlang/release/rel/erts-5.9.1/bin/erl -boot
/home/ferd/code/learn-you-some-erlang/release/rel/releases/1.0.0/start -noshell

Wherever I run it from, that’s the directory that’s going to be
scanned. Wrap this up in a shell script or a batch file, and you should
be good to go.

Releases with Reltool
There are a bunch of aspects of systools that are annoying. We have very
little control over how things are done. Manually specifying the path to
the boot file and whatnot is kind of painful. Moreover, the files are a bit
large. The whole release takes more than 20MB on disk, and it would be a
lot worse if we were to package more applications. It is possible to do better
with Reltool, as we get a lot more power, although the trade-off is increased
complexity.

342 Chapter 21

Reltool works from a configuration file that looks like this:

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/release/"]},
 {rel, "erlcount", "1.0.0",
 [kernel,
 stdlib,
 {ppool, permanent},
 {erlcount, transient}
 % {LibraryApp, load} is also an option for stuff that never starts.
]},
 {boot_rel, "erlcount"},
 {relocatable, true},
 {profile, standalone},
 {app, ppool, [{vsn, "1.0.0"},
 {app_file, all},
 {debug_info, keep}]},
 {app, erlcount, [{vsn, "1.0.0"},
 {incl_cond, include},
 {app_file, strip},
 {debug_info, strip}]}
]}.

Behold the user-friendliness of Erlang! To be quite honest, there’s no
easy way to introduce Reltool. You need a bunch of these options at once or
nothing will work. It might sound confusing, but there’s logic behind it.

First of all, Reltool will take different levels of information. The first level
will contain release-wide information. The second level will be application-
specific, before allowing fine-grained control at a module-specific level.

Release

Applications

Modules

 environment, applications of the
releases, properties of the releases

What to include, compression,
 debug info, app files, etc.

What to include, debug info

For each of these levels, different options will be available. Rather than
taking the encyclopedic approach with all the options possible, we’ll visit a
few essential options and then a few possible configurations.

The first option is one that helps us get rid of the somewhat annoying
need to be sitting in a given directory or to set the correct -env arguments

Release Is the Word 343

to the VM. The option is lib_dirs, and it takes a list of directories where
applications reside. So instead of adding -env ERL_LIBS list:of:directories,
you put in {lib_dirs, [ListOfDirectories]} and get the same result.

Another vital option for the Reltool configuration files is rel. This tuple is
very similar to the .rel file we wrote for systools. In the demo file, we have this:

{rel, "erlcount", "1.0.0",
 [kernel,
 stdlib,
 {ppool, permanent},
 {erlcount, transient}
]},

This is what we need to define which apps must be started correctly.
After that tuple, we want to add a tuple of this form:

{boot_rel, "erlcount"}

This will tell Reltool that whenever someone runs the erl binary included
in the release, we want the apps from the erlcount release to be started.
With just these three options—lib_dirs, rel, and boot_rel—we can get a
valid release.

To do so, we’ll put these tuples into a format Reltool can parse:

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/release/"]},
 {rel, "erlcount", "1.0.0",
 [kernel,
 stdlib,
 {ppool, permanent},
 {erlcount, transient}
]},
 {boot_rel, "erlcount"}
]}.

We just wrap them into a {sys, [Options]} tuple. I saved this in a file
named erlcount-1.0.config in the release/ directory. You can put it anywhere
you want (except /dev/null, even though it has exceptional write speeds!).

Then we’ll need to open an Erlang shell:

1> {ok, Conf} = file:consult("erlcount-1.0.config").
{ok,[{sys,[{lib_dirs,["/home/ferd/code/learn-you-some-erlang/release/"]},
 {rel,"erlcount","1.0.0",
 [kernel,stdlib,{ppool,permanent},{erlcount,transient}]},
 {boot_rel,"erlcount"}]}]}
2> {ok, Spec} = reltool:get_target_spec(Conf).
{ok,[{create_dir,"releases",
... <snip> ...
3> reltool:eval_target_spec(Spec, code:root_dir(), "rel").
ok

344 Chapter 21

The first step here is to read the configuration and bind it to the Conf
variable. Then we send that into reltool:get_target_spec(Conf). The function
will take a while to run and return way too much information for us to pro-
ceed. We don’t care, so we just save the result in Spec.

The third command takes the specification and tells Reltool, “I want
you to take my release specification, using whatever path where my Erlang
installations are, and shove it into the rel directory.” That’s it. Look in the
rel directory, and you should find a bunch of subdirectories there.

For now, we don’t care and can just call this:

$./bin/erl -noshell
Regex if\s.+-> has 0 results
Regex case\s.+\sof has 0 results

Ah, this is a bit simpler to run. You can put these files pretty much any-
where, as long as they keep the same file tree, and run them from wherever
you want.

Have you noticed something dif-
ferent? I hope you have. We didn’t
need to specify any version numbers.
Reltool is a bit more clever than
systools there. If you do not specify a
version, it will automatically look for
the newest one possible in the paths
you have (either in the directory
returned by code:root_dir() or what
you put in the lib_dirs tuple).

But what if I’m not hip and cool and trendy and all about the latest
apps, but rather a retro lover? I’m still wearing my disco pants, and I want
to use older ERTS versions and older library versions (I’ve never stayed
more alive than I was in 1977!).

Thankfully, Reltool can handle releases that need to work with older
versions of Erlang. Respecting your elders is an important concept for
Erlang tools.

If you have older versions of Erlang installed, you can add an
{erts, [{vsn, Version}]} entry to the configuration file:

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/release/"]},
 {erts, [{vsn, "5.8.3"}]},
 {rel, "erlcount", "1.0.0",
 [kernel,
 stdlib,
 {ppool, permanent},
 {erlcount, transient}
]},
 {boot_rel, "erlcount"}
]}.

Release Is the Word 345

Now you want to clear out the rel/ directory to get rid of the newer
release. Then you run the rather ugly sequence of calls again:

4> f(),
4> {ok, Conf} = file:consult("erlcount-1.0.config"),
4> {ok, Spec} = reltool:get_target_spec(Conf),
4> reltool:eval_target_spec(Spec, code:root_dir(), "rel").
ok

A quick reminder here: f() is used to unbind the variables in the shell.
Now if I go to the rel directory and call $./bin/erl, I get the following

output:

Erlang R14B02 (erts-5.8.3) [source] ...

Eshell V5.8.3 (abort with ^G)
1> Regex if\s.+-> has 0 results
Regex case\s.+\sof has 0 results

Awesome! This runs on version 5.8.3, even though I have newer ones
available (Ah, ha, ha, ha, stayin’ alive . . .). For the preceding snippet to
work for you, you must have Erlang R14B02 installed beforehand.

N o t e 	 If you look at the rel/ directory, you’ll see things are kind of similar to what they were
with systools. One difference will be in the lib/ directory, which will now contain a
bunch of directories and .ez files. The directories in lib/ will contain the include/
files required when you want to do development using the libraries from the release,
and the priv/ directories when there are files that need to be kept there, such as C
drivers or specific files required by running applications. The .ez files, on the other
hand, are just zipped BEAM files. The Erlang VM will unpack them for you come
runtime; this setup is just to make things lighter.

But wait, what about the other modules?
Ah, now we move away from the release-wide settings and enter the

realm of settings that have to do with applications. There are still a lot of
release-wide options to see, but we’re on such a roll that we can’t be asked
to stop right now. We’ll revisit them in the next section.

For applications, we can specify versions by adding more tuples:

{app, AppName, [{vsn, Version}]}

Put in one per app that needs it.

Reltool Options
Now we have many more options for everything. We can specify if we want
the release to include debug information or strip it away, whether to try
to make more compact app files or keep the existing ones, which stuff to
include or exclude, how strict to be when it comes to including applications

346 Chapter 21

and modules on which your own applications might depend, and so on.
Moreover, these options can usually be defined both release-wide and
application-wide, so you can specify defaults and then values to override.

Here, we’ll take a quick look at the Reltool options. If you find these
complex, just skip to the next section, where you’ll find a few Reltool cook-
book recipes to follow.

Release-Only Options

The following are Reltool release-only options.

{lib_dirs, [ListOfDirs]}

This lets you specify which directories to search for libraries.

{excl_lib, otp_root}

Added in R15B02, this option lets you specify OTP applications as part
of your release, without including whatever comes from the standard
Erlang/OTP path in the final release. This lets you create releases
that are essentially libraries bootable from an existing virtual machine
installed in a given system. When using this option, you must start
the virtual machine as $ erl -boot_var RELTOOL_EXT_LIB path/to/release
directory/lib -boot path/to/boot/file. This will allow the release to use
the current Erlang/OTP install, but with your own libraries for your
custom release.

{app, AppName, [AppOptions]}

This lets you specify application-wide options, which are usually more
specific than the release-wide options.

{boot_rel, ReleaseName}

This lets you specify the default release to boot with the erl executable.
This means you won’t need to specify the boot file when calling erl.

{rel, Name, Vsn, [Apps]}

This lets you specify the applications to be included in the release.

{relocatable, true | false}

It is possible to run the release from everywhere or from a hard-coded
path in your system. By default, this option is set to true, and I tend to
leave it that way unless there is a good reason to do otherwise. You’ll
know when you need it.

{profile, development | embedded | standalone}

This option serves as a way to specify default *_filters (described in the
next list) based on your type of release. By default, development is used.
That one will include more files from each app and ERTS blindly. The
standalone profile will be more restrictive, and the embedded profile even
more so, dropping more default ERTS applications and binaries.

Release Is the Word 347

Release-wide and Application-wide Options

The following are Reltool release-wide and application-wide options, Note
that for all of these, setting the option on the level of an application will
simply override the value you gave at a system level.

{incl_sys_filters, [RegularExpressions]} and
{excl_sys_filters, [RegularExpressions]}

These check whether a file matches the include filters without matching
the exclude filters before including it. You might drop or include specific
files this way.

{incl_app_filters, [RegularExpressions]} and
{excl_app_filters, [RegularExpressions]}

These are similar to incl_sys_filters and excl_sys_filters, but for
application-specific files.

{incl_archive_filters, [RegularExpressions]} and
{excl_archive_filters, [RegularExpressions]}

These specify which top-level directories must be included or excluded
in .ez archive files (more on this in the next section). Files not included in
the archive may still be included in the release, but just not compressed.

{incl_cond, include | exclude | derived}

This decides how to include applications not necessarily specified in the
rel tuple. Picking include means that Reltool will include pretty much
everything it can find. Picking derived means that Reltool will include
only applications that it detects can be used by any of the applications in
your rel tuple. This is the default value. Picking exclude means that you
will include no apps at all by default. You usually set this on a release
level when you want minimal includes, and then override it on an
application-by-application basis for the stuff you feel like adding.

{mod_cond, all | app | ebin | derived | none}

This controls the module inclusion policy. Picking none means no mod-
ules will be kept (which isn’t very useful). The derived option means
that Reltool will try to figure out which modules are used by other mod-
ules that are already included and add them. Setting the option to app
means that Reltool keeps all the modules mentioned in the app file and
those that were derived. Setting it to ebin keeps those in the ebin/ direc-
tory and the derived ones. Using the option all, which is the default, is
a mix of using ebin and app.

{app_file, keep | strip | all}

This option handles how the app files are going to be managed for you
when you include an application. Picking keep guarantees that the app
file used in the release is the same one you wrote for your application.
That’s the default option. If you choose strip, Reltool will try to generate
a new app file that removes the modules you don’t want in there (those

348 Chapter 21

that were excluded by filters and other options). Choosing all keeps the
original file, but also adds specifically included modules. The nice thing
with all is that it can generate app files for you if none are available.

Module-Specific Options

The following are Reltool module-specific options.

{incl_cond, include | exclude | derived}

This lets you override the mod_cond option defined at the release level
and application level.

All-levels Options

The following options work on all levels. The lower the level, the more pre-
cedence it takes.

{debug_info, keep | strip}

Assuming your files were compiled with debug_info on (which I suggest),
this option lets you decide whether to keep that information or drop
it. The debug_info is useful when you want to decompile files or debug
them, but will take some space.

That’s Dense

Oh yes, we’ve covered a lot of information about Reltool options. I didn’t
include all the possible options, but it’s still a decent reference. If you want
the whole thing, check out the official documentation at http://www.erlang
.org/doc/man/reltool.html.

Reltool Recipes
Now we’ll consider a few general tips and tricks on how to write your .rel
files in order to obtain specific results, such as small-sized releases or
releases that contain enough libraries to allow development work.

Development Versions
Getting a release packed with libraries useful for development of specific
projects should be relatively easy, and often the defaults are good enough.
Just stick to getting the basic items we’ve covered so far, and you should be
in good shape.

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/release/"]},
 {rel, "erlcount", "1.0.0", [kernel, stdlib, ppool, erlcount]},
 {boot_rel, "erlcount"}
]}.

Reltool will take care of importing enough libraries for the new release
to be fine. In some cases, you might want to have everything from a regular

Release Is the Word 349

VM as created by the OTP team, plus some of your own libraries. You might
be distributing an entire VM for a team, with some libraries included. In
that case, what you want to do is something more like this:

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/release/"]},
 {rel, "start_clean", "1.0.0", [kernel, stdlib]},
 {incl_cond, include},
 {debug_info, keep}
]}.

By setting incl_cond to include, all applications found in the current
ERTS installation and the lib_dirs will be part of your release.

N o t e 	 When no boot_rel is specified, you need to have a release named start_clean for
Reltool to be happy. That one will be picked by default when you start the associated
erl executable.

If we want to exclude a specific application—let’s say megaco because I
never looked into it—we can instead get a file, like this:

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/release/"]},
 {rel, "start_clean", "1.0.0", [kernel, stdlib]},
 {incl_cond, include},
 {debug_info, keep},
 {app, megaco, [{incl_cond, exclude}]}
]}.

M
O

D
U

L
E

S The Erlang
Process

to Releases

APPS

fire

snap!

RELEASE

350 Chapter 21

Here, we can specify one or more applications (each having its own app
tuple), and each of them overrides the incl_cond setting put at the release
level. So, in this case, we will include everything except megaco.

Importing or Exporting Only Part of a Library

In our release, one annoying thing that happened was that apps like
ppool and others also kept their test files in the release, even though they
didn’t need them. You can see them by going into rel/lib/ and unzipping
ppool-1.0.0.ez (you might need to change the extension first).

The easiest way to get rid of these files is to specify exclusion filters,
such as the following:

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/release/"]},
 {rel, "start_clean", "1.0.0", [kernel, stdlib, ppool, erlcount]},
 {excl_app_filters, ["_tests.beam$"]}
]}.

When you want to import only specific files of an application, things get
a bit more complex. Here’s an example of importing only erlcount_lib for its
functionality, but nothing else from erlcount:

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/release/"]},
 {rel, "start_clean", "1.0.0", [kernel, stdlib]},
 {incl_cond, derived}, % Exclude would also work, but not include.
 {app, erlcount, [{incl_app_filters, ["^ebin/erlcount_lib.beam$"]},
 {incl_cond, include}]}
]}.

In this case, we switched from {incl_cond, include} to the more restric-
tive incl_conds. This is because if you go large and rake everything in, then
the only way to include a single library is to exclude all the others with an
excl_app_filters. However, when our selection is more restrictive (in this case,
we’re derived and wouldn’t include erlcount because it’s not part of the rel
tuple), we can specifically tell the release to include the erlcount app with
only files that match the regular expression having to do with erlcount_lib.
This prompts the question as to how to make the smallest release possible,
right?

Smaller Apps for Programmers with Big Hearts

Release size reduction is where Reltool becomes a good bit more complex,
with a rather verbose configuration file:

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/release/"]},
 {erts, [{mod_cond, derived},
 {app_file, strip}]},

Release Is the Word 351

 {rel, "erlcount", "1.0.0", [kernel, stdlib, ppool, erlcount]},
 {boot_rel, "erlcount"},
 {relocatable, true},
 {profile, embedded},
 {app_file, strip},
 {debug_info, strip},
 {incl_cond, exclude},
 {excl_app_filters, ["_tests.beam$"]},
 {app, stdlib, [{mod_cond, derived}, {incl_cond, include}]},
 {app, kernel, [{incl_cond, include}]},
 {app, ppool, [{vsn, "1.0.0"}, {incl_cond, include}]},
 {app, erlcount, [{vsn, "1.0.0"}, {incl_cond, include}]}
]}.

A lot more stuff is going on here. We can see that in the case of erts, we
ask for Reltool to keep only what’s necessary. Setting mod_cond to derived and
app_file to strip will ask Reltool to check and keep only what’s used for
something else. That’s why {app_file, strip} is also used on the release level.

The profile is set to embedded. If you looked at the
.ez archives in the previous cases, they contained the
source files, test directories, and so on. When switch-
ing over to embedded, only include files, binaries, and
the priv/ directories are kept. We’re also removing
debug_info from all files, even if they were compiled
with it. This means we’re going to lose some debug-
ging ability, but it will reduce the size of files.

We’re still stripping away test files, and setting things so that no appli-
cation is included until explicitly told to be ({incl_cond, exclude}). Then
we override this setting in each app we do want to include. If something is
missing, Reltool will warn you, so you can try to move things around and
play with settings until you get the results you want. It might involve having
some application settings with {mod_cond, derived}, as we did with the stdlib,
so that the minimal files of some applications are what is kept.

What’s the difference in the end? Some of our more general releases
would weigh in at more than 35MB. The one described here is reduced to
less than 20MB. We’re shaving off a good part of it, although it’s still fairly
large. That’s because of ERTS, which itself takes around 18.5MB. If you
want to, you can dig deeper and really micromanage how ERTS is built to
get something smaller. You can alternatively pick and delete some binary
files in the ERTS that you know won’t be used by your application: execut-
ables for scripts, remote running of Erlang, binaries from test frameworks,
and different running commands (such as Erlang with or without SMP).

The lightest release will be the one that assumes that other users have
Erlang installed already. When you pick this option, you need to add the
rel/ directory’s content as part of your ERL_LIBS environment variable and call
the boot file yourself (a bit like with systools), but it will work. Programmers
might want to wrap this up in scripts to get things going.

352 Chapter 21

N o t e 	 These days, Erlang programmers seem to really love the idea of having all these
releases handled for them by a tool called rebar, which will act as a wrapper over
Emakefile files and Reltool. There is no loss in understanding how Reltool works.
The rebar tool uses configuration files that are nearly the same, and the gap between
the two tools isn’t that big.

Released from Releases
Well, that’s it for the two major ways to handle releases. It’s a complex topic,
but a standard way to handle distributions. Applications might be enough
for many readers, and there’s nothing wrong with sticking to them for a
good while. However, now and then, releases might be useful if you want
your operations guy to like you a bit better, given you know (or at least have
some idea about) how to deploy Erlang applications when necessary.

Of course, what could make your operations guy happier than no
downtime? The next challenge will be to do software upgrades while a
release is running.

Joehn
Armstravolta

OliBjarne
Dacker-John

22
L e v e l i n g Up i n t h e

P r o c e s s Q u e s t

Code hot-loading is simple in Erlang. You recompile,
make a fully qualified function call, and then enjoy.
However, doing it the right (and safe) way is much
more difficult.

A plethora of things can go wrong in practice.
In this chapter, we’ll explore the problems that hot code loading can

bring and some principles that prove helpful to solve them. Then we’ll go
through a practical demonstration of how to take an existing OTP release,
upgrade it, and reload the new version of it while it runs with the help of OTP
mechanisms, through appups and relups (application and release upgrades).

N o t e 	 This chapter does not include all of the code used in the examples. Before
you start this chapter, you might want to get the required code from http://
learnyousomeerlang.com/static/erlang/processquest.zip. If you’ve down-
loaded the whole code package from the Learn You Some Erlang website, you
already have everything you need.

354 Chapter 22

The Hiccups of Appups and Relups
One very simple challenge makes code reloading problematic. To under-
stand it, let’s use our amazing Erlang-programming brain and imagine a
gen_server process. This process has a handle_cast/2 function that accepts
one kind of argument. You update it to one that takes a different kind of
argument, compile it, and push it in production. All is fine and dandy,
but because you have an application that you don’t want to shut down, you
decide to load it on the production VM to make it run.

Then a bunch of error reports start pouring in.

UPDATE
FAILED
UPDATE

-RIP- You

It turns out that your different handle_cast functions are incompatible.
So when they were called a second time, no clause matched. The customer
is pissed off and so is your boss. Then the operations guy is also angry
because he needs to get on location and roll back the code, extinguish
fires, and so on. If you’re lucky, you’re that operations guy. You’re staying
late and ruining the janitor’s night (he likes to hum along with his music
and dance a little as he works, but he is ashamed to do that in your pres-
ence). You come home late, your spouse/friends/World of Warcraft raid
party/children are mad at you. They yell, scream, slam the door, and
you’re left alone. You had promised that nothing could go wrong—no
downtime. You’re using Erlang after all, right? But it didn’t happen like
that. You’re alone, curled up in a ball in the corner of the kitchen, eating
frozen Hot Pockets.

Of course, things aren’t always that bad, but the point stands. Doing
live code upgrades on a production system can be very dangerous if you’re
changing the interface your modules give to the world, changing internal
data structures, changing function names, modifying records (remember
that they’re tuples!), and so on. These all have the potential to cause a
crash.

When we were first playing with code reloading in Chapter 13, we had a
process with some kind of hidden message to handle doing a fully qualified
call. If you recall, a process could have looked like this:

loop(N) ->
 receive
 some_standard_message -> N+1;

Leveling Up in the Process Quest 355

 other_message -> N-1;
 {get_count, Pid} ->
 Pid ! N,
 loop(N);
 update -> ?MODULE:loop(N);
 end.

However, this way of doing things wouldn’t fix our problems if we were
to change the arguments to loop/1. We would need to extend it a bit, like this:

loop(N) ->
 receive
 some_standard_message -> N+1;
 other_message -> N-1;
 {get_count, Pid} ->
 Pid ! N,
 loop(N);
 update -> ?MODULE:code_change(N);
 end.

And then code_change/1 could take care of calling a new version of the
loop. But this kind of trick wouldn’t work with generic loops. Consider this
example:

loop(Mod, State) ->
 receive
 {call, From, Msg} ->
 {reply, Reply, NewState} = Mod:handle_call(Msg, State),
 From ! Reply,
 loop(Mod, NewState);
 update ->
 {ok, NewState} = Mod:code_change(State),
 loop(Mod, NewState)
 end.

Do you see the problem? If we want to update Mod and load a new ver-
sion, there is no way to do it safely with that implementation. The call
Mod:handle_call(Msg, State) is already fully qualified, and it’s possible that a
message of the form {call, From, Msg} could be received in between the time
we reload the code and handle the update message. In that case, we would
update the module in an uncontrolled manner. Then we would crash.

The secret to getting it right is buried within the entrails of OTP.
We must freeze the sands of time! To do so, we require more secret mes-
sages: messages to put a process on hold, messages to change the code,
and then messages to resume the actions we had before. Deep inside OTP
behaviors is hidden a special protocol to take care of all that kind of man-
agement. This is handled through the sys module and the release_handler
module, which is part of the System Architecture Support Libraries (SASL)
application. They take care of everything.

356 Chapter 22

The trick is that you can call sys:suspend(PidOrName) to suspend OTP
processes (you can find all of the processes by using the supervision
trees and looking at the children each supervisor has). Then you use
sys:change_code(PidOrName, Mod, OldVsn, Extra) to force the process to update
itself. Finally, you call sys:resume(PidOrName) to make things go again.

It wouldn’t be very practical for us to call these functions manually
by writing ad hoc scripts all the time. Instead, we can look at how relups
are done.

The Ninth Circle of Erl

IMPERATIVE PROGRAMMING
POINTERS OOP

BASIC

ERLANG

OTP BASICS

RUNNING
APPLICATIONS

CENTER
 OF
 ERL,
 HARD
 PROBLEMS

TOOLS ANDSUPPORT

VESTIBULE HANDLING SYNTAX

RECORDS ARE TUPLES

SHARING NOTHING

ASYNCHRONOUSLYTHINKING

OTP BEHAVIORS
- gen_server

- gen_fsm
- gen_event- superv isor

APPLICATIONS
OTP

PARSE TRANSFORMS
COMMON TEST

RELEASES

RELUPS

DISTRIBUTED
WORLD

NETSPLITS

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

Leveling Up in the Process Quest 357

The act of taking a running release, making a second version of it, and
updating it while it runs is perilous. What seems like a simple assembly of
appups (files containing instructions on how to update individual appli-
cations) and relups (files containing instructions to update an entire
release) quickly turns into a struggle through APIs and undocumented
assumptions.

We’re getting into one of the most complex parts of OTP, a part that
is difficult to comprehend and get right, on top of being time-consuming.
In fact, if you can avoid the whole procedure (which will be called relup
from now on) and do simple rolling upgrades by restarting VMs and
booting new applications, I recommend you do so. Relups should be one
of these “do or die” tools—something you use when you have few other
choices.

There are a bunch of steps to execute when dealing with release
upgrades, each of which can be more complex than the preceding one:

1.	 Write OTP applications.

2.	 Turn a bunch of them into a release.

3.	 Create new versions of one or more of the OTP applications.

4.	 Create an appup file that explains what to change to make the transi-
tion between the old and the new application work.

5.	 Create a new release with the new applications.

6.	 Generate an appup file from these releases.

7.	 Install the new app in a running Erlang shell.

We’ve only covered how to do the first three steps so far. To demon-
strate how to work with an application that is more adapted to long-running
upgrades than the previous ones (eh, who cares about running regular
expressions without restarting?), we’ll introduce a superb video game.

Process Quest
Progress Quest (http://progressquest.com/) is a revolutionary role-playing
game (RPG). I would call it the OTP of RPGs, in fact. If you’ve ever played
an RPG before, you’ll notice that many steps are similar: run around, kill
enemies, gain experience, get money, level up, get skills, complete quests—
rinse and repeat forever. Power players will have shortcuts such as macros or
even bots to go around and do their bidding for them.

358 Chapter 22

Progress Quest took all of these generic steps and turned them into one
streamlined game where you can sit back and enjoy your character doing all
the work:

With the permission of the creator of this fantastic game, Eric Fredricksen,
I’ve made a very minimal Erlang clone of it called Process Quest. Process
Quest is similar in principle to Progress Quest, but rather than being a
single-player application, it’s a server able to hold many raw socket connec-
tions (usable through telnet) to let someone use a terminal and temporarily
play the game.

The game is made up of the regis, processquest, and sockserv applications.

The regis-1.0.0 Application
The regis application is a process registry. It has an interface somewhat
similar to the regular Erlang process registry, but it can accept any term
at all and is meant to be dynamic. It might make things slower because all
the calls will be serialized when they enter the server, but it will be better
than using the regular process registry, which is not made for this kind of
dynamic work. If this book could automatically update itself with external
libraries (it’s too much work), I would have used gproc instead.

Leveling Up in the Process Quest 359

The application has three modules: regis.erl, regis_server.erl, and
regis_sup.erl. The first one is a wrapper around the other two (and an appli-
cation callback module). regis_server is the main registration gen_server,
and regis_sup is the application’s supervisor.

The processquest-1.0.0 Application
The processquest application is the core of the release. It includes all the
game logic—enemies, market, killing fields, and statistics. The player itself
is a gen_fsm that sends messages to itself in order to keep going all the time.
It contains the following modules:

pq_enemy.erl

This module randomly picks an enemy to fight, of the form {<<"Name">>,
[{drop, {<<"DropName">>, Value}}, {experience, ExpPoints}]}. This lets the
player fight an enemy.

pq_market.erl

This implements a market that allows players to find items of a given
value and a given strength. All items returned are of the form
{<<"Name">>, Modifier, Strength, Value}. There are functions to fetch
weapons, armors, shields, and helmets.

pq_stats.erl

This is a small attribute generator for your character.

pq_events.erl

This is a wrapper around a gen_event event manager. This acts as a
generic hub to which subscribers connect themselves with their own
handlers to receive events from each player. It also takes care of wait-
ing a given delay for the player’s actions to avoid the game being
instantaneous.

pq_player.erl

This is the central module. It is a gen_fsm that goes through the state
loop of killing, then going to the market, then killing again, and so on.
It uses all of the preceding modules to function.

pq_sup.erl

This is a supervisor that sits above a pair of pq_event and pq_player pro-
cesses. They both need to be together in order to work; otherwise, the
player process is useless and isolated or the event manager will never
get any events.

360 Chapter 22

pq_supersup.erl

This is the top-level supervisor of the application. It sits over a bunch of
pq_sup processes. This lets you spawn as many players as you like.

processquest.erl

This is a wrapper and application callback module. It gives the basic
interface to a player. You start one, and then subscribe to events.

The sockserv-1.0.0 Application
The sockserv application is a customized raw socket server, made to work
only with the processquest app. It will spawn gen_servers, each in charge of a
TCP socket that will push strings to some client. Again, you may use telnet
to work with it. (Telnet was technically not made for raw socket connections
and is its own protocol, but most modern clients accept it without any prob-
lems.) Here are sockserv’s modules:

sockserv_trans.erl

This translates messages received from the player’s
event manager into printable strings.

sockserv_pq_events.erl

This is a simple event handler that takes whatever
events come from a player and casts them to the
socket gen_server.

sockserv_serv.erl

This is a gen_server in charge of accepting a connection, communicat-
ing with a client, and forwarding information to it.

sockserv_sup.erl

This supervises a bunch of socket servers.

sockserv.erl

This is an application callback module for the app as a whole.

The Release
I’ve set everything up in a directory called processquest with the following
structure:

apps/
 - processquest-1.0.0
 - ebin/
 - src/
 - ...
 - regis-1.0.0
 - ...

Leveling Up in the Process Quest 361

 - sockserv-1.0.0
 - ...
rel/
 (will hold releases)
processquest-1.0.0.config

Based on that, we can build a release.

Following Chapter 21’s instructions for releases, we start by calling
erl -make for all applications. Once this is done, start an Erlang shell from
the processquest directory and enter the following:

1> {ok, Conf} = file:consult("processquest-1.0.0.config"),
1> {ok, Spec} = reltool:get_target_spec(Conf),
1> reltool:eval_target_spec(Spec, code:root_dir(), "rel").
ok

We should have a functional release. Let’s try it. Start any version of the
VM by entering ./rel/bin/erl -sockserv port 8888 (or any other port number
you want; the default is 8082). This will show a lot of logs about processes
being started (that’s one of the functions of SASL), and then a regular
Erlang shell. Start a telnet session on your localhost using whatever client
you want:

$ telnet localhost 8888
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
What's your character's name?
hakvroot

Mor e R e l e a se Conf igur at ion

If you look into processquest-1.0.0.config, you will see that applications such as
Crypto and SASL are included. Crypto is necessary to have good initialization
of pseudo-random number generators, and SASL is mandatory to be able to do
appups on a system. If you forget to include SASL in your release, it will be impos-
sible to upgrade the system.

A new filter has appeared in the configuration file: {excl_archive_filters, [".*"]}.
This filter makes sure that no .ez file is generated; only regular files and directories
are created. This is necessary because the tools we’re going to use cannot look
into .ez files to find the items they need.

You will also see that there are no instructions asking to strip the debug_info.
Without debug_info, doing an appup will fail for some reason. It’s always useful to
have debug_info anyway.

362 Chapter 22

Stats for your character:
 Charisma: 7
 Constitution: 12
 Dexterity: 9
 Intelligence: 8
 Strength: 5
 Wisdom: 16

Do you agree to these? y/n

That’s a bit too much wisdom and charisma for me. So, I type n and
hit enter:

n
Stats for your character:
 Charisma: 6
 Constitution: 12
 Dexterity: 12
 Intelligence: 4
 Strength: 6
 Wisdom: 10

Do you agree to these? y/n

Yes, that’s ugly, dumb, and weak—exactly what I’m looking for in a hero
based on me.

y
Executing a Wildcat...
Obtained Pelt.
Executing a Pig...
Obtained Bacon.
Executing a Wildcat...
Obtained Pelt.
Executing a Robot...
Obtained Chunks of Metal.
...
Executing a Ant...
Obtained Ant Egg.
Heading to the marketplace to sell loot...
Selling Ant Egg
Got 1 bucks.
Selling Chunks of Metal
Got 1 bucks.
...
Negotiating purchase of better equipment...
Bought a plastic knife
Heading to the killing fields...
Executing a Pig...
Obtained Bacon.
Executing a Ant...

Leveling Up in the Process Quest 363

That’s enough for me. I type quit and then press enter to close the
connection:

quit
Connection closed by foreign host.

If you want, you can leave it open, see yourself level up, gain stats, and
so on. The game basically works, and you can try it with many clients. It
should keep going without a problem.

Awesome, right? Well, we can do better.

Making Process Quest Better
There are a few issues with the current ver-
sions of the applications of Process Quest.
First, we have very little variety in terms of
enemies to beat. Second, we have text that
looks a bit weird (what is it with “Executing
a Ant...”?). A third issue is that the game
is a bit too simple; let’s add a mode for
quests! Another one is that the value of
items you sell at the market is directly
bound to your level in Progress Quest,
while Process Quest doesn’t do anything like that. Finally—and you can’t
see this unless you read the code and try to close the client on your own
end—a client closing its connection will leave the player process alive on
the server. Uh-oh, memory leaks!

We’ll need to fix these problems!

N o t e 	 I started by making a new copy of both applications that need fixes. I then had
processquest-1.1.0 and sockserv-1.0.1 on top of the others. (I use the version
scheme of MajorVersion.Enhancements.BugFixes.) In the copies, I implemented
all the changes I needed. I won’t go through all of them here, because we’re here to
upgrade an app, not to walk through all the details and intricacies of this specific
app. In case you do want to know all the little intricacies, I commented the code so
you can find the information you need to understand it.

Updating code_change Functions
In processquest-1.1.0, changes were made to pq_enemy.erl, pq_events.erl, and
pq_player.erl. I also added a file named pq_quest.erl, which implements quests
based on how many enemies were killed by a player. Of these files, only
pq_player.erl had incompatible changes that required a time suspension.
This record:

-record(state, {name, stats, exp=0, lvlexp=1000, lvl=1,
 equip=[], money=0, loot=[], bought=[], time=0}).

364 Chapter 22

was changed to this one:

-record(state, {name, stats, exp=0, lvlexp=1000, lvl=1,
 equip=[], money=0, loot=[], bought=[],
 time=0, quest}).

where the quest field will hold a value given by pq_quest:fetch/0.
Because of that change, we’ll need to modify the code_change/4 func-

tion in version 1.1.0. In fact, we’ll need to modify it twice: once in the case
of an upgrade (moving from 1.0.0 to 1.1.0) and another in the case of a
downgrade (1.1.0 to 1.0.0). Fortunately, OTP will pass different arguments
in each case. When we upgrade, we get a version number for the module.
We don’t exactly care for that one at this point, and we’ll likely just ignore
it. When we downgrade, we get {down, Version}. This lets us easily match on
each operation:

code_change({down, _}, StateName, State, _Extra) ->
 ...;
code_change(_OldVsn, StateName, State, _Extra) ->
 ...

But hold on a second! We can’t just blindly take the state as we usually
do. We need to upgrade it. The problem is we can’t do something like this:

code_change(_OldVsn, StateName, S = #state{}, _Extra) ->
 ...

We have two options. The first is to declare a new state record that
will have a new form and a new name. We would end up having something
like this:

-record(state, {...}).
-record(new_state, {...}).

And then we would need to change the record in each of the function
clauses of the module. That’s annoying and not worth the risk. It will be
simpler to expand the record to its underlying tuple form (remember the
discussion of records in Chapter 9), as follows:

code_change({down, _},
 StateName,
 #state{name=N, stats=S, exp=E, lvlexp=LE, lvl=L, equip=Eq,
 money=M, loot=Lo, bought=B, time=T},
 _Extra) ->
 Old = {state, N, S, E, LE, L, Eq, M, Lo, B, T},
 {ok, StateName, Old};
code_change(_OldVsn,
 StateName,
 {state, Name, Stats, Exp, LvlExp, Lvl, Equip, Money, Loot,
 Bought, Time},

Leveling Up in the Process Quest 365

 _Extra) ->
 State = #state{
 name=Name, stats=Stats, exp=Exp, lvlexp=LvlExp,
 lvl=Lvl, equip=Equip, money=Money, loot=Loot,
 bought=Bought, time=Time, quest=pq_quest:fetch()
 },
 {ok, StateName, State}.

And there’s our code_change/4 function! All it does is convert between
both tuple forms. For new versions, we also take care of adding a new
quest—it would be boring to add quests but have all our existing players
unable to use them.

You’ll notice that we still ignore the _Extra variable. This one is passed
from the appup file (described next), and you’ll be the one to pick its value.
For now, we don’t care because we can upgrade and downgrade to and
from only one release. In some more complex cases, you might want to
pass release-specific information in there.

For the sockserv-1.0.1 application, only sockserv_serv.erl required changes.
Fortunately, they didn’t need a restart, and only added a new message to
match on.

The two versions of the two applications have been fixed. That’s not
enough to go on our merry way, though. We need to find a way to let OTP
know what kinds of changes require different kinds of actions.

Adding Appup Files
Appup files are lists of Erlang commands that need to be done to upgrade a
given application. They contain lists of tuples and atoms telling what to do
and in what case. The general format for them is as follows:

{NewVersion,
 [{VersionUpgradingFrom, [Instructions]}]
 [{VersionDownGradingTo, [Instructions]}]}.

They ask for lists of versions because it’s possible to upgrade and down-
grade to many different versions. In our case, for processquest-1.1.0, this
would be the following:

{"1.1.0",
 [{"1.0.0", [Instructions]}],
 [{"1.0.0", [Instructions]}]}.

The instructions contain both high-level and low-level commands. We
usually need to care about only high-level ones, though:

{add_module, Mod}

The module Mod is loaded for the first time.

{load_module, Mod}

The module Mod is already loaded in the VM and has been modified.

366 Chapter 22

{delete_module, Mod}

The module Mod is removed from the VM.

{update, Mod, {advanced, Extra}}

This will suspend all processes running Mod, call the code_change func-
tion of your module with Extra as the last argument, and then resume
all processes running Mod. Extra can be used to pass in arbitrary data to
the code_change function, in case it’s required for upgrades.

{update, Mod, supervisor}

Calling this lets you redefine the init function of a supervisor to influ-
ence its restart strategy (one_for_one, rest_for_one, and so on) or change
child specifications (this will not affect existing processes).

{apply, {M, F, A}}

This will call apply(M,F,A).

Module dependencies
You can use {load_module, Mod, [ModDependencies]} or {update, Mod,
{advanced, Extra}, [ModDeps]} to make sure that a command happens
only after some other modules were handled beforehand. This is espe-
cially useful if Mod and its dependencies are not part of the same applica-
tion. There is sadly no way to give similar dependencies to delete_module
instructions.

Note that when generating relups, we won’t need any special instruc-
tions to remove or add applications. The function that generates relup files
(files to upgrade releases) will take care of detecting this for us.

Using these instructions, we can write the two following appup files for
our applications. The file must be named NameOfYourApp.appup and be put
in the app’s ebin/ directory.

Here’s processquest-1.1.0’s appup file:

{"1.1.0",
 [{"1.0.0", [{add_module, pq_quest},
 {load_module, pq_enemy},
 {load_module, pq_events},
 {update, pq_player, {advanced, []}, [pq_quest, pq_events]}]}],
 [{"1.0.0", [{update, pq_player, {advanced, []}},
 {delete_module, pq_quest},
 {load_module, pq_enemy},
 {load_module, pq_events}]}]}.

You can see that we need to add the new module, load the two ones that
require no suspension, and then update pq_player in a safe manner. When
we downgrade the code, we do the same thing, but in reverse. The funny
thing is that in one case, {load_module, Mod} will load a new version, and in
the other, it will load the old version. It all depends on the context between
an upgrade and a downgrade.

Leveling Up in the Process Quest 367

Because sockserv-1.0.1 had only one module to change and it required
no suspension, its appup file is brief, as follows:

{"1.0.1",
 [{"1.0.0", [{load_module, sockserv_serv}]}],
 [{"1.0.0", [{load_module, sockserv_serv}]}]}.

The next step is to build a new release using the new modules. Here’s
the file processquest-1.1.0.config :

{sys, [
 {lib_dirs, ["/home/ferd/code/learn-you-some-erlang/processquest/apps"]},
 {erts, [{mod_cond, derived},
 {app_file, strip}]},
 {rel, "processquest", "1.1.0",
 [kernel, stdlib, sasl, crypto, regis, processquest, sockserv]},
 {boot_rel, "processquest"},
 {relocatable, true},
 {profile, embedded},
 {app_file, strip},
 {incl_cond, exclude},
 {excl_app_filters, ["_tests.beam"]},
 {excl_archive_filters, [".*"]},
 {app, stdlib, [{mod_cond, derived}, {incl_cond, include}]},
 {app, kernel, [{incl_cond, include}]},
 {app, sasl, [{incl_cond, include}]},
 {app, crypto, [{incl_cond, include}]},
 {app, regis, [{vsn, "1.0.0"}, {incl_cond, include}]},
 {app, sockserv, [{vsn, "1.0.1"}, {incl_cond, include}]},
 {app, processquest, [{vsn, "1.1.0"}, {incl_cond, include}]}
]}.

It’s just a copy/paste of the old one with a few versions changed. First,
compile both new applications with erl -make (the new versions are in the
zip file mentioned earlier). Then we can generate a new release. First, com-
pile the two new applications, and then enter the following:

$ erl -env ERL_LIBS apps/
1> {ok, Conf} = file:consult("processquest-1.1.0.config"),
1> {ok, Spec} = reltool:get_target_spec(Conf),
1> reltool:eval_target_spec(Spec, code:root_dir(), "rel").
ok

But wait, there’s more manual work required!

1.	 Copy rel/releases/1.1.0/processquest.rel as rel/releases/1.1.0/
processquest-1.1.0.rel.

2.	 Copy rel/releases/1.1.0/processquest.boot as rel/releases/1.1.0/
processquest-1.1.0.boot.

3.	 Copy rel/releases/1.1.0/processquest.boot as rel/releases/1.1.0/start.boot.

4.	 Copy rel/releases/1.0.0/processquest.rel as rel/releases/1.0.0/processquest-1.0.0.rel.

368 Chapter 22

5.	 Copy rel/releases/1.0.0/processquest.boot as rel/releases/1.0.0/
processquest-1.0.0.boot.

6.	 Copy rel/releases/1.0.0/processquest.boot as rel/releases/1.0.0/start.boot.

Don’t Dr ink Too Much Kool- A id

Why didn’t we just use systools to build our release? Well, systools has its share
of issues. First, it will generate appup files that sometimes have weird versions
in them and won’t work perfectly. It will also assume a directory structure that is
barely documented, but somewhat close to what Reltool uses. The biggest issue,
though, is that it will use your default Erlang installation as the root directory,
which might create all kinds of permission issues and whatnot when the time
comes to unpack stuff.

There’s just no easy way to build the release with either tool, and it will
require a lot of manual work. We thus make a chain of commands that uses both
modules in a rather complex manner, because it ends up being a bit less work.

Now we can generate the relup file. To do this, start an Erlang shell and
call the following:

erl -env ERL_LIBS apps/ -pa apps/processquest-1.0.0/ebin/ -pa apps/sockserv-1.0.0/ebin/
1> systools:make_relup("./rel/releases/1.1.0/processquest-1.1.0",
1> ["rel/releases/1.0.0/processquest-1.0.0"],
1> ["rel/releases/1.0.0/processquest-1.0.0"]).
ok

Because the ERL_LIBS environment variable will look for only the newest
versions of applications, we also need to add the -pa Path_to_older_applications
in there so that the systools relup generator will be able to find everything.
Once this is done, move the relup file to rel/releases/1.1.0/. That directory
will be looked into when updating the code in order to find the right stuff.
One problem we’ll have, though, is that the release handler module will
depend on a bunch of files it assumes to be present, but won’t necessarily
be there.

Leveling Up in the Process Quest 369

Upgrading the Release
Sweet—we have a relup file. There’s still stuff to do before being able to use
it though. The next step is to generate a tar file for the whole new version of
the release:

2> systools:make_tar("rel/releases/1.1.0/processquest-1.1.0").
ok

The file will be in rel/releases/1.1.0/. We now need to manually move it to
rel/releases, and rename it to add the version number when doing so. More
hard-coded junk! Here’s our way out of this:

$ mv rel/releases/1.1.0/processquest-1.1.0.tar.gz rel/releases/

The next step is a step you want to do at any time before you start the real
production application. This step needs to be done before you start the appli-
cation, as it will allow you to roll back to the initial version after a relup. If
you do not do this, you will be able to downgrade production applications
only to releases newer than the first one, but not the first one!

Open a shell and run this:

1> release_handler:create_RELEASES(
1> "rel",
1> "rel/releases",
1> "rel/releases/1.0.0/processquest-1.0.0.rel",
1> [{kernel,"2.14.4", "rel/lib"}, {stdlib,"1.17.4","rel/lib"},
1> {crypto,"2.0.3","rel/lib"},{regis,"1.0.0", "rel/lib"},
1> {processquest,"1.0.0","rel/lib"},{sockserv,"1.0.0", "rel/lib"},
1> {sasl,"2.1.9.4", "rel/lib"}]
1>).

The general format of the function is as follows:

release_handler:create_RELEASES(RootDir, ReleasesDir, Relfile, [{AppName, Vsn, LibDir}])

This will create a file named RELEASES inside the rel/releases directory
(or any other ReleasesDir), which will contain basic information on your
releases when relup is looking for files and modules to reload.

We can now start running the old version of the code. If you start
rel/bin/erl, it will start the 1.1.0 release by default. That’s because we built
the new release before starting the VM. For this demonstration, we’ll need
to start the release with this command:

$./rel/bin/erl -boot rel/releases/1.0.0/processquest

370 Chapter 22

You should see everything starting up. Start a telnet client to connect to
your socket server so you can see the live upgrade taking place.

Whenever you feel ready for an upgrade, go to the Erlang shell currently
running Process Quest and call the following function:

1> release_handler:unpack_release("processquest-1.1.0").
{ok,"1.1.0"}
2> release_handler:which_releases().
[{"processquest","1.1.0",
 ["kernel-2.14.4","stdlib-1.17.4","crypto-2.0.3",
 "regis-1.0.0","processquest-1.1.0","sockserv-1.0.1",
 "sasl-2.1.9.4"],
 unpacked},
 {"processquest","1.0.0",
 ["kernel-2.14.4","stdlib-1.17.4","crypto-2.0.3",
 "regis-1.0.0","processquest-1.0.0","sockserv-1.0.0",
 "sasl-2.1.9.4"],
 permanent}]

The second prompt here tells you that the release is ready to be
upgraded, but not installed or made permanent yet. To install it, enter
the following:

3> release_handler:install_release("1.1.0").
{ok,"1.0.0",[]}
4> release_handler:which_releases().
[{"processquest","1.1.0",
 ["kernel-2.14.4","stdlib-1.17.4","crypto-2.0.3",
 "regis-1.0.0","processquest-1.1.0","sockserv-1.0.1",
 "sasl-2.1.9.4"],
 current},
 {"processquest","1.0.0",
 ["kernel-2.14.4","stdlib-1.17.4","crypto-2.0.3",
 "regis-1.0.0","processquest-1.0.0","sockserv-1.0.0",
 "sasl-2.1.9.4"],
 permanent}]

Now release 1.1.0 should be running, but it’s still not there forever. Still,
you could keep your application running that way. Call the following func-
tion to make things permanent:

5> release_handler:make_permanent("1.1.0").
ok.

Ah, damn—a bunch of our processes are dying now (error output
removed from the preceding sample). But if you look at our telnet client,
it did seem to upgrade fine. The issue is that all the gen_servers that were
waiting for connections in sockserv could not listen to messages because

Leveling Up in the Process Quest 371

accepting a TCP connection is a blocking operation. Thus, the servers
couldn’t upgrade when new versions of the code were loaded and were
killed by the VM. Here’s how we can confirm this:

6> supervisor:which_children(sockserv_sup).
[{undefined,<0.51.0>,worker,[sockserv_serv]}]
7> [sockserv_sup:start_socket() || _ <- lists:seq(1,20)].
[{ok,<0.99.0>},
 {ok,<0.100.0>},
 ... <snip> ...
 {ok,<0.117.0>},
 {ok,<0.118.0>}]
8> supervisor:which_children(sockserv_sup).
[{undefined,<0.112.0>,worker,[sockserv_serv]},
 {undefined,<0.113.0>,worker,[sockserv_serv]},
 ... <snip> ...
 {undefined,<0.109.0>,worker,[sockserv_serv]},
 {undefined,<0.110.0>,worker,[sockserv_serv]},
 {undefined,<0.111.0>,worker,[sockserv_serv]}]

The first command shows that all children that were waiting for con-
nections have already died. The processes left will be those with an active
session going on. This shows the importance of keeping code responsive.
Had our processes been able to receive messages and act on them, things
would have been fine.

In the two last commands, we just start more workers to fix the prob-
lem. While this works, it requires manual action from the person running
the upgrade. In any case, this is far from optimal.

A better way to solve the problem would be to change the way our appli-
cation works in order to have a monitor process watching how many chil-
dren sockserv_sup has. When the number of children falls under a given
threshold, the monitor starts more of them.

Another strategy would be to change
the code so accepting connections is done
by blocking on intervals of a few seconds
at a time, and keep retrying after pauses
where messages can be received. This would
give the gen_servers the time to upgrade
themselves as required, assuming you would
wait the right delay between the installa-
tion of a release and making it permanent.
Implementing either or both of these solu-
tions is left as an exercise to the reader
(because I am somewhat lazy).

These kinds of crashes are why you want to test your code before doing
these updates on a live system. If you want to really test your planned
relups, you should be ready to test both for upgrades and downgrades,
and restarting the node in case of failure, just to make sure.

Heaven

372 Chapter 22

In any case, we’ve solved the problem for now. Let’s check how the
upgrade procedure went:

9> release_handler:which_releases().
[{"processquest","1.1.0",
 ["kernel-2.14.4","stdlib-1.17.4","crypto-2.0.3",
 "regis-1.0.0","processquest-1.1.0","sockserv-1.0.1",
 "sasl-2.1.9.4"],
 permanent},
 {"processquest","1.0.0",
 ["kernel-2.14.4","stdlib-1.17.4","crypto-2.0.3",
 "regis-1.0.0","processquest-1.0.0","sockserv-1.0.0",
 "sasl-2.1.9.4"],
 old}]

That’s worth a fist pump. You can try downgrading an installation by
doing release_handler:install(OldVersion).. This should work fine, although
it could risk killing more processes that never updated themselves.

Relup Review
In summary, here’s a list of all the actions that must be taken to have func-
tional relups:

1.	 Write OTP applications for your first software iteration.

2.	 Compile them.

3.	 Build a release (1.0.0) using Reltool. It must have debug info and no
.ez archive.

4.	 Make sure you create the RELEASES file at some point before
starting your production application. You can do it with
release_handler:create_RELEASES(RootDir, ReleasesDir, Relfile,

[{AppName, Vsn, LibDir}]).

5.	 Run the release!

6.	 Find bugs in it.

Don’t Dr ink Too Much Kool- A id

If rolling back always fails when trying to roll back to the first version of the
release using the techniques shown in this chapter, you probably forgot to
create the RELEASES file. You can tell this is the case if you see an empty list in
{YourRelease,Version,[],Status} when calling release_handler:which_releases().
This is a list of where to find modules to load and reload, and it is first built when
booting the VM and reading the RELEASES file, or when unpacking a new release.

Leveling Up in the Process Quest 373

7.	 Fix bugs in new versions of applications.

8.	 Write appup files for each of the applications.

9.	 Compile the new applications.

10.	 Build a new release (1.1.0 in our case). It must have debug info and no
.ez archive.

11.	 Copy rel/releases/NewVsn/RelName.rel as rel/releases/NewVsn/RelName-
NewVsn.rel.

12.	 Copy rel/releases/NewVsn/RelName.boot as rel/releases/NewVsn/RelName-
NewVsn.boot.

13.	 Copy rel/releases/NewVsn/RelName.boot as rel/releases/NewVsn/start.boot.

14.	 Copy rel/releases/OldVsn/RelName.rel as rel/releases/OldVsn/RelName-
OldVsn.rel.

15.	 Copy rel/releases/OldVsn/RelName.boot as rel/releases/OldVsn/RelName-
OldVsn.boot.

16.	 Copy rel/releases/OldVsn/RelName.boot as rel/releases/OldVsn/start.boot.

17.	 Generate a relup file with systools:make_relup("rel/releases/Vsn/RelName-Vsn",
["rel/releases/OldVsn/RelName-OldVsn"], ["rel/releases/DownVsn/RelName-DownVsn"]).

18.	 Move the relup file to rel/releases/Vsn.

19.	 Generate a tar file of the new release with systools:make_tar("rel/releases/
Vsn/RelName-Vsn").

20.	 Move the tar file to rel/releases/.

21.	 Have some shell opened that still runs the first version of the release.

22.	 Call release_handler:unpack_release("NameOfRel-Vsn").

23.	 Call release_handler:install_release(Vsn).

24.	 Call release_handler:make_permanent(Vsn).

25.	 Make sure things went fine. If not, roll back by installing an older version.

You might want to write a few scripts to
automate this.

Again, relups are a very messy part of
OTP—a part that is hard to grasp. You will
likely find yourself finding plenty of new errors,
which are all more impossible to understand
than the previous ones. Some assumptions are
made about how you’re going to run things,
and choosing different tools when creating
releases will change how things should be
done. You might even be tempted to write your
own update code using the sys module’s functions! Or maybe you’ll want
to use tools like rebar that automate some of the painful steps. In any case,
this chapter and its examples have been written to the best knowledge of
the author, a person who sometimes enjoys writing about himself in third
person.

RELUPS

You!

THE

 AUTHOR

374 Chapter 22

If it is possible to upgrade your application in ways that do not require
relups, I recommend doing so. It is said that divisions of Ericsson that do
use relups spend as much time testing them as they do testing their applica-
tions themselves. Relups are a tool to be used when working with products
that can imperatively never be shut down. You will know when you will need
them, mostly because you’ll be ready to go through the hassle of using them
(got to love that circular logic!). When the need arises, relups are entirely
useful.

How about we move on to some of the friendlier features of Erlang
now? Chapter 23 explores socket programming with Erlang.

23
B u c k e t s o f S o c k e t s

So far, we’ve had some fun dealing with Erlang itself,
but we’ve barely communicated with the outside
world. And even when we did, it was only by reading
the occasional text file. Though relationships with
yourself might be fun, it’s time to get out of our lair
and start talking to the rest of the world. One way to
do this is by using sockets.

This chapter covers three components
of using sockets: IO lists, UDP sockets, and
TCP sockets.

IO Lists
As you’ve learned, for text, we can use
either strings (lists of integers) or binaries
(binary data structures that hold data).

E
L

L
O

!

HELLO

376 Chapter 23

Sending things over the wire such as “Hello World” can be done as a string
("Hello World") or as a binary (<<"Hello World">>)—similar notation, similar
results.

The difference lies in how you can assemble things.
A string is a bit like a linked list of integers. For each character, you

need to store the character itself plus a link to the rest of the list. Moreover,
if you want to add elements to a list—either in the middle or at the end—
you must traverse the whole list up to the point you’re modifying, and then
add your elements. This isn’t the case when you prepend, however:

A = [a]
B = [b|A] = [b,a]
C = [c|B] = [c,b,a]

In the case of prepending, whatever is held in A, B, or C never needs
to be rewritten. The representation of C can be seen as [c,b,a], [c|B], or
[c,|[b|[a]]] (among others). In the last case, you can see that the shape of A is
the same at the end of the list as when it was declared, and it works similarly
for B. Here’s how it looks with appending:

A = [a]
B = A ++ [b] = [a] ++ [b] = [a|[b]]
C = B ++ [c] = [a|[b]] ++ [c] = [a|[b|[c]]]

Do you see all that rewriting? When we create B, we need to rewrite A.
When we write C, we must rewrite B (including the [a|...] part it contains). If
we were to add D in a similar manner, we would need to rewrite C. Over long
strings, this becomes way too inefficient, and it creates a lot of garbage left
to be cleaned up by the Erlang VM.

With binaries, things are not quite as bad:

A = <<"a">>
B = <<A/binary, "b">> = <<"ab">>
C = <<B/binary, "c">> = <<"abc">>

In this case, binaries know their own length, and data can be joined in
constant time. That’s good—much better than lists. They’re also more com-
pact. For these reasons, we’ll try to stick to binaries when using text in the
future.

There are a few downsides, however. Binaries were meant to handle
things in certain ways, and there is still a cost to modifying binaries, split-
ting them, and so on. Moreover, sometimes we’ll work with code that uses
strings, binaries, and individual characters interchangeably. Constantly con-
verting between types would be a hassle.

Buckets of Sockets 377

In these cases, IO lists are our savior. IO lists are a weird type of data
structure. They are lists of bytes (integers from 0 to 255), binaries, or other
IO lists. This means that functions that accept IO lists can accept items such
as [$H, $e, [$l, <<"lo">>, " "], [[["W","o"], <<"rl">>]] | [<<"d">>]]. When this hap-
pens, the Erlang VM will just flatten the list as it needs to in order to obtain
the sequence of characters Hello World.

What are the functions that accept such IO lists? Most of the functions
that have to do with outputting data will accept them, and any function
from the io module, file module, TCP and UDP sockets will be able to han-
dle them. Some library functions, such as several from the unicode module
and all of the functions from the re (for regular expressions) module, will
also handle them, as will many others.

Just to see, try the previous Hello World IO list in the shell with
io:format("~s~n", [IoList]). It should work without a problem.

All in all, IO lists are a pretty clever way of building strings to avoid the
problems of immutable data structures when it comes to dynamically build-
ing content to be output.

UDP and TCP: Bro-tocols
The first kind of socket that we can use in Erlang is based on the User
Datagram Protocol (UDP). UDP is a protocol built on top of the IP layer
that provides a few helpful abstractions, such as port numbers.

UDP is a connectionless protocol. The data
that is received from the UDP port is broken
into small untagged parts without a session
(datagrams), and there is no guarantee that
the fragments you received were sent in the
same order as you got them. In fact, there is
no guarantee that if someone sends a packet,
you’ll receive it at all. For these reasons, people
tend to use UDP in the following situations:

•	 When the packets are small

•	 When packets can sometimes be lost with little consequences

•	 When there aren’t too many complex exchanges taking place

•	 When low latency is absolutely necessary

This is in opposition to connection-based protocols like the Transmission
Control Protocol (TCP), where the protocol takes care of handling lost
packets, reordering them, maintaining isolated sessions between multiple
senders and receivers, and so on. TCP allows reliable exchange of informa-
tion, but can be slower and heavier to set up. UDP will be fast but less reli-
able. Choose carefully depending on what you need.

378 Chapter 23

Using UDP in Erlang is relatively simple. We set up a socket over a given
port, and that socket can both send and receive data:

ports

packets
a

cb

HOST
 A

Other
 Hosts

This is a bit like having a bunch of mailboxes for your house (each
mailbox being a port) and receiving tiny slips of paper in each of them
with small messages. They can have any content, from “I like how you look
in these pants” to “The slip is coming from inside the house!” When some
messages are too large for a slip of paper, many of them are dropped in the
mailbox. It’s your job to reassemble them in a way that makes sense, then
drive up to some house, and drop slips as a reply. If the messages are purely
informative (“Hey there, your door is unlocked”) or very tiny (“What are
you wearing? —Ron”), it should be fine, and you could use one mailbox for
all of the queries. If they are complex, though, you might want to use one
port per session, right? Ugh, no! Use TCP!

In the case of TCP, the protocol is said to be stateful, connection-
based. Before being able to send messages, you must do a handshake.
This means that someone is delivering messages to a mailbox (similar to
what we have in the UDP analogy), and sending a message saying some-
thing like, “Hey dude, this is IP 94.25.12.37 calling. Wanna chat?” And
you reply something like, “Sure. Tag your messages with number N, and
then add an increasing number to them.” From that point on, when you
or IP 92.25.12.37 want to communicate with each other, it will be possible
to order slips of paper, ask for missing ones, reply to them, and communi-
cate in a meaningful manner. That way, you can use a single mailbox (or
port) and keep all your communications working properly. That’s the neat
thing about TCP. It adds some overhead, but makes sure that everything is
ordered and properly delivered.

If you’re not a fan of these analogies, do not despair—we’ll cut
to the chase by seeing how to use TCP and UDP sockets with Erlang
right now.

Buckets of Sockets 379

UDP Sockets
There are only a few basic operations with UDP: setting up a socket, send-
ing messages, receiving messages, and closing a connection. The possibili-
ties are a bit like this:

Open Socket

close socket

send
receive

The first operation, no matter what, is to open a socket. This is done by
calling gen_udp:open/1-2. The form {ok, Socket} = gen_udp:open(PortNumber) is
the simplest.

The port number will be any integer between 1 and 65535.
From 0 to 1023, the ports are known as well-known ports. Most of the

time, your operating system will make it impossible to listen to a well-known
port unless you have administrative rights.

Ports from 1024 through 49151 are registered ports. They usually
require no permissions and are free to use, although some of them are
registered to well-known services (see http://www.iana.org/assignments/
service-names-port-numbers/service-names-port-numbers.xml).

The rest of the ports are known as dynamic or private. They’re frequently
used for ephemeral ports, which are ports randomly assigned for a single ses-
sion by the caller connecting to a given service.

For our tests, we’ll take port numbers that are somewhat safe, such
as 8789, which are unlikely to be taken by other applications.

But before that, what about gen_udp:open/2? The second argument
can be a list of options, specifying what type of data we want to receive
(list or binary) and how we want to receive it: as messages ({active, true})
or as results of a function call ({active, false}). There are more options,
such as whether the socket should be set with IPv4 (inet4) or IPv6 (inet6),
whether the UDP socket can be used to broadcast information ({broadcast,
true | false}), the size of buffers, and so on. For now, we’ll stick with
the simple stuff, and then you can look into the other socket options on
your own.

Now let’s open a UDP socket. First start a given Erlang shell:

1> {ok, Socket} = gen_udp:open(8789, [binary, {active,true}]).
{ok,#Port<0.676>}
2> gen_udp:open(8789, [binary, {active,true}]).
{error,eaddrinuse}

380 Chapter 23

In the first command, we open the socket, order it to return binary
data, and tell it we want it to be active. You can see a new data structure
being returned: #Port<0.676>. This is the representation of the socket we
have just opened. Sockets can be used a lot like pids. You can even set
up links to them so that failure is propagated to the sockets in case of
a crash!

The second function call tries to open the same socket over again,
which is impossible. That’s why {error, eaddrinuse} is returned. Fortunately,
the first socket is still open.

Next, we’ll start a second Erlang shell. In this one, we’ll open a second
UDP socket, with a different port number:

1> {ok, Socket} = gen_udp:open(8790).
{ok,#Port<0.587>}
2> gen_udp:send(Socket, {127,0,0,1}, 8789, "hey there!").
ok

Ah, a new function! In the second call, gen_udp:send/4 is used to send
messages (what a wonderfully descriptive name). The arguments are,
in order: gen_udp:send(OwnSocket, RemoteAddress, RemotePort, Message). The
RemoteAddress can be either a string or an atom containing a domain name
("example.org"), a 4-tuple describing an IPv4 address, or an 8-tuple describ-
ing an IPv6 address. Next we specify the receiver’s port number (the mail-
box in which we are going to drop our slip of paper), and then the message,
which can be a string, a binary, or an IO list.

Did the message ever get sent? Go back to your first shell and try to
flush the data:

3> flush().
Shell got {udp,#Port<0.676>,{127,0,0,1},8790,<<"hey there!">>}
ok

Fantastic. The process that opened the socket will receive messages of
the form {udp, Socket, FromIp, FromPort, Message}. Using these fields, we’ll
be able to know where a message is from, what socket it went through, and
what the contents are.

We’ve covered opening sockets, sending data, and receiving data in an
active mode. What about passive mode? For this, we need to close the socket
from the first shell and open a new one:

4> gen_udp:close(Socket).
ok
5> f(Socket).
ok
6> {ok, Socket} = gen_udp:open(8789, [binary, {active,false}]).
{ok,#Port<0.683>}

Buckets of Sockets 381

Here, we close the socket, unbind the Socket variable, and then bind it
as we open a socket again, in passive mode this time. Before sending a mes-
sage back, try the following:

7> gen_udp:recv(Socket, 0).

And your shell should be stuck. The function here is recv/2. This is
the function used to poll a passive socket for messages. The 0 here is the
length of the message we want. The funny thing is that the length is com-
pletely ignored with gen_udp. (gen_tcp has a similar function, but in that
case, it does have an impact.) Anyway, if we never send a message to the
socket, recv/2 will never return. Go back to the second shell, and send a
new message:

3> gen_udp:send(Socket, {127,0,0,1}, 8789, "hey there!").
ok

The first shell should have printed {ok,{{127,0,0,1},8790,<<"hey there!">>}} as
the return value. What if you don’t want to wait forever? Just add a timeout
value:

8> gen_udp:recv(Socket, 0, 2000).
{error,timeout}

And that’s most of it for UDP. No, really!

TCP Sockets
While TCP sockets share a large part of their interface with UDP sockets,
there are some vital differences in how they work. The biggest one is that
clients and servers are two entirely different things. A client will behave
with the following operations:

connect

close socket

send
receive

382 Chapter 23

While a server will follow this scheme:

accept

close socket

send
receive

listen close

Weird looking, huh? The client acts a bit like gen_udp does. You connect
to a port, send and receive, and then stop. When serving, however, we have
one new mode there: listening. That’s because of how TCP works to set up
sessions.

First of all, we open a new shell and start something called a listen socket
with gen_tcp:listen(Port, Options):

1> {ok, ListenSocket} = gen_tcp:listen(8091, [{active,true}, binary]).
{ok,#Port<0.661>}

The listen socket is simply in charge of waiting for connection requests.
You can see that we used options similar to those we used with gen_udp.
That’s because most options are going to be similar for all IP sockets. The
TCP ones do have a few more specific options, such as a connection backlog
({backlog, N}), keepalive sockets ({keepalive, true | false}), and packet fram-
ing ({packet, N}, where N is the length, in bytes, of each packet’s header to be
stripped and parsed for you), to name a few.

Once the listen socket is open, any process (and more than one) can
take the listen socket and fall into an “accepting” state, locked up until
some client asks to talk with it:

2> {ok, AcceptSocket} = gen_tcp:accept(ListenSocket, 2000).
** exception error: no match of right hand side value {error,timeout}
3> {ok, AcceptSocket} = gen_tcp:accept(ListenSocket).
** exception error: no match of right hand side value {error,closed}

Damn. We timed out and then crashed. The listen socket got closed
when the shell process it was associated with disappeared. Let’s start over
again, this time without the 2 seconds (2000 milliseconds) timeout:

4> f().
ok
5> {ok, ListenSocket} = gen_tcp:listen(8091, [{active, true}, binary]).
{ok,#Port<0.728>}
6> {ok, AcceptSocket} = gen_tcp:accept(ListenSocket).

Buckets of Sockets 383

And then the process is locked. Great! Let’s open a second shell:

1> {ok, Socket} = gen_tcp:connect({127,0,0,1}, 8091, [binary, {active,true}]).
{ok,#Port<0.596>}

This one takes the same options as usual, and you can add a Timeout
argument in the last position if you don’t want to wait forever. Your first shell
should have returned with {ok, SocketNumber}. From this point on, the accept
socket and the client socket can communicate on a one-on-one basis, simi-
lar to using gen_udp. Take the second shell and send messages to the first one:

3> gen_tcp:send(Socket, "Hey there first shell!").
ok

And from the first shell, enter this:

7> flush().
Shell got {tcp,#Port<0.729>,<<"Hey there first shell!">>}
ok

Both sockets can send messages in the same way, and can then be
closed with gen_tcp:close(Socket). Note that closing an accept socket will
close that socket alone, and closing a listen socket will close all of the
related accept sockets.

That’s it for most of TCP sockets in Erlang! But is it really?
Ah yes, of course, there is more that can be done. If you’ve experimented

with sockets a bit on your own, you might have noticed that there is some
kind of ownership to sockets. By this, I mean that UDP sockets, TCP client
sockets, and TCP accept sockets can all have messages sent through them
from any process in existence, but messages received can be read only by
the process that started the socket:

Socket

Owner
 Process

 can
listen

can
 send

P1

P2

P3

That’s not very practical, is it? It means that we must always keep the
owner process alive to relay messages, even if it has nothing to do with our
needs. Wouldn’t it be neat to be able to do something like the following?

 1. Process A starts a socket
 2. Process A sends a request

384 Chapter 23

 3. Process A spawns process B
 with a socket
 4a. Gives ownership of the 4b. Process B handles the response
 socket to Process B
 5a. Process A sends a request 5b. Process B Keeps handling
 the response
 6a. Process A spawns process C 6b. ...
 with a socket
 ...

Here, Process A would be in charge of running a bunch of requests, but
each new process would take charge of waiting for the response, processing
it, and whatnot. Because of this, it would be clever for Process A to delegate
a new process to run the task. The tricky part here is giving away the owner-
ship of the socket.

Here’s the trick: Both gen_tcp and gen_udp contain a function called
controlling_process(Socket, Pid). This function must be called by the current
socket owner. Then the process tells Erlang, “You know what? Just let this
Pid guy take over my socket. I give up.” From now on, the pid in the func-
tion is the one that can read and receive messages from the socket. That’s it.

More Control with Inet
So now we have covered how to open sockets, send messages through them,
change ownership, and so on. We also know how to listen to messages both
in passive and active mode. Back in the UDP example, when we wanted to
switch from active to passive mode, we restarted the socket, flushed vari-
ables, and went on. This is rather impractical, especially when we desire
to make this switch while using TCP, because we would need to break an
active session.

Fortunately, there’s an Erlang module named inet that takes care of
handling all operations that can be common to both gen_tcp and gen_udp
sockets. For our problem at hand—changing between active and passive
modes—there’s a function named inet:setopts(Socket, Options). The option
list can contain any terms used at the setup of a socket.

w a r n i n g 	 Be careful! There is a module named inet and a module named inets. inet is the
module we want here. inets is an OTP application that contains a bunch of pre
written services and servers (including FTP, TFTP, HTTP, and so on). An easy
way to differentiate them is that inets is about services built on top of inet, or if you
prefer, inet + s(ervices).

Start a shell to be a TCP server:

1> {ok, Listen} = gen_tcp:listen(8088, [{active,false}]).
{ok,#Port<0.597>}
2> {ok, Accept} = gen_tcp:accept(Listen).

Buckets of Sockets 385

And in a second shell, enter the following:

1> {ok, Socket} = gen_tcp:connect({127,0,0,1}, 8088, []).
{ok,#Port<0.596>}
2> gen_tcp:send(Socket, "hey there").
ok

Then back at the first shell, the socket should have been accepted. We
flush to see if we got anything:

3> flush().
ok

Of course not; we’re in passive mode. Let’s fix this:

4> inet:setopts(Accept, [{active, true}]).
ok
5> flush().
Shell got {tcp,#Port<0.598>,"hey there"}
ok

Yes! With full control over active and passive sockets, the power is ours.
But how do we pick between active and passive modes?

In general, if you’re expecting a message right
away, passive mode will be much faster. Erlang won’t
need to toy with your process’s mailbox to handle
things, and you won’t need to scan said mailbox, fetch
messages, and so on. Using recv will be more effi-
cient, especially if the size of the data to be received
is unknown. However, recv changes your process from
something event-driven to active polling. If you need
to play middleman between a socket and some other
Erlang code, this might make things a bit complex
between blocking and handling incoming messages.

In that case, switching to active mode will be a good idea. If packets
are sent as messages, you just need to wait in a receive (or a gen_server’s
handle_info function) and play with them, just as with any other messages.
The downside of this, apart from speed, has to do with rate limiting.

The idea is that if all data coming from the outside world is blindly
accepted by Erlang and then converted to messages, it is somewhat easy for
someone outside the VM to flood it and kill it. Passive mode has the advan-
tage of restricting how and when messages can be put into the Erlang VM,
and delegating the task of blocking, queuing, and discarding messages to
the lower-level implementations.

So what if we need active mode for the semantics, but passive mode
for the safety? We could try to quickly switch between passive and active
mode with inet:setopts/2, but that would be rather risky for race conditions.
Instead, there’s a mode called active once, with the option {active, once}.
Let’s try it to see how it works.

386 Chapter 23

Keep the shell with the server from earlier and enter this:

6> inet:setopts(Accept, [{active, once}]).
ok

Now go to the client shell and run two more send/2 calls:

3> gen_tcp:send(Socket, "one").
ok
4> gen_tcp:send(Socket, "two").
ok

Then go back to the server shell and add the following:

7> flush().
Shell got {tcp,#Port<0.598>,"one"}
ok
8> flush().
ok
9> inet:setopts(Accept, [{active, once}]).
ok
10> flush().
Shell got {tcp,#Port<0.598>,"two"}
ok

See? Until we ask for {active, once} a second time, the packet containing
"two" hasn’t been converted to a message, which means the socket was back
to passive mode. So the active once mode allows us to do that back-and-
forth switch between active and passive modes in a safe way. This offers nice
semantics plus safety.

There are other nice functions that are part of inet: stuff to read statis-
tics, get current host information, inspect sockets, and so on. The documen-
tation to the inet module contains more details about what can be done.

Well, that’s most of what you need to know about sockets. Now let’s put
all this knowledge into practice.

N o t e 	 Out in the wilderness of the Internet, there are libraries available to handle a truck-
load of protocols: HTTP, ZeroMQ, raw Unix sockets, and more. The standard
Erlang distribution, however, comes with two main options: TCP and UDP sockets.
It also comes with some HTTP servers and parsing code, but that’s not the most effi-
cient approach around.

Buckets of Sockets 387

Sockserv, Revisited
I won’t be introducing that much new code in this example. Instead,
we’ll look back at the sockserv server from Process Quest, introduced in
Chapter 22, which is a perfectly viable server. We’ll look at how to deal with
serving TCP connections within an OTP supervision tree, in a gen_server.

A naive implementation of a TCP server might look a bit like this:

-module(naive_tcp).
-compile(export_all).

start_server(Port) ->
 Pid = spawn_link(fun() ->
 {ok, Listen} = gen_tcp:listen(Port, [binary, {active, false}]),
 spawn(fun() -> acceptor(Listen) end),
 timer:sleep(infinity)
 end),
 {ok, Pid}.

acceptor(ListenSocket) ->
 {ok, Socket} = gen_tcp:accept(ListenSocket),
 spawn(fun() -> acceptor(ListenSocket) end),
 handle(Socket).

%% Echoing back whatever was obtained.
handle(Socket) ->
 inet:setopts(Socket, [{active, once}]),
 receive
 {tcp, Socket, <<"quit", _/binary>>} ->
 gen_tcp:close(Socket);
 {tcp, Socket, Msg} ->
 gen_tcp:send(Socket, Msg),
 handle(Socket)
 end.

To understand how this works, a little graphical representation might
be helpful:

Process 3
same as 2

spawns

spawns

opensProcess 1

Process 2

accepts request

handles messages

listen socket

388 Chapter 23

The start_server function opens a listen socket, spawns an acceptor,
and then just idles forever. The idling is necessary because the listen socket
is bound to the process that opened it, so that one needs to remain alive
as long as we want to handle connections. Each acceptor process waits for
a connection to accept. Once one connection comes in, the acceptor pro-
cess starts a new, similar process and shares the listen socket with it. Then
it can move on and do some processing while the new guy is working. Each
handler will repeat all messages it gets until one of them starts with "quit"—
then the connection is closed.

N o t e 	 The pattern <<"quit", _/binary>> means that we first want to match on a binary
string containing the characters q, u, i, and t, plus some binary data we don’t care
about (_).

Start the server in an Erlang shell by calling naive_tcp:start_server(8091).
Then open a telnet client (remember that telnet clients are technically not
for raw TCP, but act as good clients to test servers without needing to write
one) to localhost, and you can see the following taking place:

$ telnet localhost 8091
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
hey there
hey there
that's what I asked
that's what I asked
stop repeating >:(
stop repeating >:(
quit doing that!
Connection closed by foreign host.

Hooray. Now it’s time to start a new company called Poople Inc. and
launch a few social networks with our server. However, as the name of the
module mentions, this is a naive implementation. The code is simple, and it
wasn’t conceived with parallelism in mind. If all the requests come one by
one, then the naive server works fine. But what happens if we have a queue
of 15 people wanting to connect to the server at once?

Then only one query at a time can be replied to, and this involves each
process first waiting for the connection, setting it up, and then spawning a
new acceptor. The fifteenth request in the queue will have needed to wait
for 14 other connections to have been set up to even get the chance of ask-
ing for a right to communicate with our server. If you’re working with pro-
duction servers, it might be closer to 500 to 1000 queries per second! That’s
impractical.

Buckets of Sockets 389

What we need to do is change the sequential workflow we have:

listen

accept accept accept ...

to something more parallel:

listen

accept

accept

accept

accept

accept

By having many acceptors already on standby, we’ll be cutting down on
a lot of delays to answer new queries.

Now, rather than going through another demo implementation, we’ll
study sockserv-1.0.1 from Chapter 22. It will be nicer to explore something
based on real OTP components and real-world practice. In fact, the general
pattern of sockserv is the same one used in servers like cowboy (although
cowboy is no doubt more reliable than sockserv) and etorrent’s torrent client
and server.

To build Process Quest’s sockserv, we’ll go top-down. The scheme we’ll
need is a supervisor with many workers. If we look at the parallel drawing
above, the supervisor should hold the listen socket and share it with all
workers, which will be in charge of accepting things.

How do we write a supervisor that can share things across all work-
ers? There is no way to do it with regular supervision; all children are
entirely independent, no matter whether you use one_for_one, one_for_all, or
rest_for_one supervision. A natural reflex might be to turn to some global
state—a registered process that just holds the listen socket and hands it over
to the handlers. You must fight this reflex and be clever. Use the force (and
the ability to refer back to Chapter 17, which covers supervisors). You have
2 minutes to think of a solution (the 2-minute limit is based on the honor
system; time it yourself).

390 Chapter 23

The secret is in using a simple_one_for_one supervisor. Because
simple_one_for_one supervisors share the child specification with all of their
children, all we need to do is shove the listen socket in there for all the chil-
dren to access it!

Here’s the supervisor in all its glory:

%%% The supervisor in charge of all the socket acceptors.
-module(sockserv_sup).
-behavior(supervisor).

-export([start_link/0, start_socket/0]).
-export([init/1]).

start_link() ->
 supervisor:start_link({local, ?MODULE}, ?MODULE, []).

init([]) ->
 {ok, Port} = application:get_env(port),
 %% Set the socket into {active_once} mode.
 %% See sockserv_serv comments for more details.
 {ok, ListenSocket} = gen_tcp:listen(Port, [{active,once}, {packet,line}]),
 spawn_link(fun empty_listeners/0),
 {ok, {{simple_one_for_one, 60, 3600},
 [{socket,
 {sockserv_serv, start_link, [ListenSocket]}, %Pass the socket!
 temporary, 1000, worker, [sockserv_serv]}
]}}.

start_socket() ->
 supervisor:start_child(?MODULE, []).

%% Start with 20 listeners so that many multiple connections can
%% be started at once, without serialization. In best circumstances,
%% a process would keep the count active at all times to insure nothing
%% bad happens over time when processes get killed too much.
empty_listeners() ->
 [start_socket() || _ <- lists:seq(1,20)],
 ok.

What is going on in there? The standard start_link/0 and init/1 functions
are there. You can see sockserv getting the simple_one_for_one restart strategy,
and the child specification having ListenSocket passed around. Every child
started with start_socket/0 will have it as an argument by default. Magic!

Just having that won’t be enough, though. We want the application to
be able to serve queries as soon as possible. That’s why we added that call
to spawn_link(fun empty_listeners/0). The empty_listeners/0 function will start
20 handlers to be locked and waiting for incoming connections. We’ve put
it inside a spawn_link/1 call for a simple reason: The supervisor process is in
its init/1 phase and cannot answer any messages. If we were to call ourselves
from within the init function, the process would deadlock and never finish
running. An external process is needed just for this reason.

Buckets of Sockets 391

N o t e 	 In the preceding snippet, notice that we pass the option {packet, line} to gen_tcp.
This option will make it so all received packets will be broken into separate lines and
queued up based on that (the line ends will still be part of the received strings). This
will help make sure we avoid some common errors with telnet clients in our case.

So yeah, that was the whole tricky part. We can now focus on writing
the workers themselves.

If you recall the Process Quest sessions from Chapter 22, interacting
with the game followed these steps:

1.	 The user connects to the server.

2.	 The server asks for the character’s name.

3.	 The user sends in a character name.

4.	 The server suggests stats.

5a.	 The user refuses; go back to point 4.

5b.	 The user accepts; go to point 6.

6.	 The game sends events to the player, until . . .

7.	 The user sends quit to the server or the socket is forced to close.

This means we will have two kinds of input to our server processes:
input coming from the Process Quest application and input coming from
the user. Data coming from the user will be doing so from a socket and so
will be handled in our gen_server’s handle_info/2 function. Data coming from
Process Quest can be sent in a way we control, and so a cast handled by
handle_cast will make sense there.

First, we must start the server module:

-module(sockserv_serv).
-behavior(gen_server).

-record(state, {name, % player's name
 next, % next step, used when initializing
 socket}). % the current socket

-export([start_link/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 code_change/3, terminate/2]).

Here we have a pretty standard gen_server callback module. The only
special thing is the state containing the character’s name, the socket, and a
field called next. The next part is a bit of a catchall field to store temporary
information related to the state of the server. A gen_fsm could also have been
used here without too much trouble.

For the actual server startup, we use the following:

-define(TIME, 800).
-define(EXP, 50).

392 Chapter 23

start_link(Socket) ->
 gen_server:start_link(?MODULE, Socket, []).

init(Socket) ->
 %% Properly seeding the process.
 <<A:32, B:32, C:32>> = crypto:rand_bytes(12),
 random:seed({A,B,C}),
 %% Because accepting a connection is a blocking function call,
 %% we can not do it in here. Forward to the server loop!
 gen_server:cast(self(), accept),
 {ok, #state{socket=Socket}}.

%% We never need you, handle_call!
handle_call(_E, _From, State) ->
 {noreply, State}.

The two macros defined here (?TIME and ?EXP) are special parameters that
make it possible to set the baseline delay between actions (800 milliseconds)
and the amount of experience required to reach the second level (50, doubled
after each level).

You’ll notice that the start_link/1 function takes a socket. That’s the lis-
ten socket passed in from sockserv_sup.

The bit about the random seed is for making sure a process is properly
seeded to later generate character statistics. Otherwise, some default value
will be used across many processes, and we don’t want that. The reason
we’re initializing in the init/1 function rather than in whatever library that
uses random numbers is that seeds are stored at a process level (damn it—
mutable state!), and we wouldn’t want to set a new seed on each library call.

The important bit here is that we’re casting a message to ourselves. This
is because gen_tcp:accept/1-2 is a blocking operation, combined with the fact
that all OTP init functions are synchronous. If we wait 30 seconds to accept
a connection, the supervisor starting the process will also be locked 30 sec-
onds. So we cast a message to ourselves, and then add the listen socket to
the state’s socket field.

Don’t Dr ink Too Much Kool- A id

If you read code from other people, you will often see programmers calling
random:seed/1 with the result of now(). now() is a nice function because it returns
monotonic time (always increasing; never twice the same). However, it’s a
bad seed value for the random algorithm used in Erlang. For this reason, it’s
better to use crypto:rand_bytes(12) to generate 12 crypto-safe random bytes
(use crypto:strong_rand_bytes(12) if you want even more safety). By doing
<<A:32, B:32, C:32>>, we’re casting the 12 bytes to three integers to be passed in.

Buckets of Sockets 393

Enough fooling around. Now we need to accept that connection:

handle_cast(accept, S = #state{socket=ListenSocket}) ->
 {ok, AcceptSocket} = gen_tcp:accept(ListenSocket),
 %% Remember that thou art dust, and to dust thou shalt return.
 %% We want to always keep a given number of children in this app.
 sockserv_sup:start_socket(), % A new acceptor is born, praise the lord.
 send(AcceptSocket, "What's your character's name?", []),
 {noreply, S#state{socket=AcceptSocket, next=name}};

We accept the connection, start a replacement acceptor (so that we
always have about 20 acceptors ready to handle new connections), and then
store the accept socket as a replacement to ListenSocket and note that the
next message we receive through a socket is about a name with the next field.

But before moving on, we send a question to the client through the send
function, defined as follows:

send(Socket, Str, Args) ->
 ok = gen_tcp:send(Socket, io_lib:format(Str++"~n", Args)),
 ok = inet:setopts(Socket, [{active, once}]),
 ok.

Trickery! Because we expect to pretty much always need to reply after
receiving a message, we do the active once routine within that function,
and also add line breaks in there. This is just laziness locked in a func-
tion. It isn’t necessarily optimal design, given it means that we need to
always reply to any message received by the user if we don’t want to ever
lock them out (by being in {active, false} after dropping a message) and
that the rate-limiting nature of {active, once} is now regulated by how fast
we send data, rather than how fast we can digest it. As I said, it’s laziness
locked in a function.

We’ve completed steps 1 and 2, and now we need to wait for user input
coming from the socket:

handle_info({tcp, _Socket, Str}, S = #state{next=name}) ->
 Name = line(Str),
 gen_server:cast(self(), roll_stats),
 {noreply, S#state{name=Name, next=stats}};

We have no idea what’s going to be in the Str string, but that’s all right,
because the next field of the state lets us know whatever we receive is a name.
Because we are expecting users to use telnet for the demo application, all
bits of text we’re going to receive will contain line ends. The line/1 function,
defined as follows, strips them away:

%% Let's get rid of the white space and ignore whatever's after.
%% Makes it simpler to deal with telnet.
line(Str) ->
 hd(string:tokens(Str, "\r\n ")).

394 Chapter 23

Once we’ve received that name, we store it and then cast a message to
ourselves (roll_stats) to generate stats for the player, the next step in line.

N o t e 	 If you look in the file, you’ll see that instead of matching on entire messages, I’ve used a
shorter ?SOCK(Var) macro. The macro is defined as -define(SOCK(Msg), {tcp, _Port, Msg})
and is just a quick way for someone as lazy as I am to match on strings with slightly
less typing.

The stats rolling comes back into a handle_cast clause:

handle_cast(roll_stats, S = #state{socket=Socket}) ->
 Roll = pq_stats:initial_roll(),
 send(Socket,
 "Stats for your character:~n"
 " Charisma: ~B~n"
 " Constitution: ~B~n"
 " Dexterity: ~B~n"
 " Intelligence: ~B~n"
 " Strength: ~B~n"
 " Wisdom: ~B~n~n"
 "Do you agree to these? y/n~n",
 [Points || {_Name, Points} <- lists:sort(Roll)]),
 {noreply, S#state{next={stats, Roll}}};

The pq_stats module contains functions to roll
stats, and the whole clause is being used only to out-
put the stats there. The ~B format parameters mean
we want an integer to be printed out. The next part
of the state is a bit overloaded here. Because we ask
the users whether they agree or not, we will need to
wait for them to respond, and either drop the stats
and generate new ones or pass them to the Process
Quest character we’ll no doubt start very soon.

Let’s listen to the user input, this time in the handle_info function:

handle_info({tcp, Socket, Str}, S = #state{socket=Socket, next={stats, _}}) ->
 case line(Str) of
 "y" ->
 gen_server:cast(self(), stats_accepted);
 "n" ->
 gen_server:cast(self(), roll_stats);
 _ -> % Ask again because we didn't get what we wanted.
 send(Socket, "Answer with y (yes) or n (no)", [])
 end,
 {noreply, S};

It would have been tempting to start the character in this direct func-
tion clause, but I decided against it. handle_info is to handle user input, and
handle_cast is for Process Quest things. Separation of concerns! If the user

Buckets of Sockets 395

denies the stats, we just call roll_stats again. This is nothing new. When the
user accepts, we can start the Process Quest character and begin waiting for
events from there:

%% The player has accepted the stats! Start the game!
handle_cast(stats_accepted, S = #state{name=Name, next={stats, Stats}}) ->
 processquest:start_player(Name, [{stats,Stats},{time,?TIME},
 {lvlexp, ?EXP}]),
 processquest:subscribe(Name, sockserv_pq_events, self()),
 {noreply, S#state{next=playing}};

These are regular calls defined for the game. You start a player and sub-
scribe to the events with the sockserv_pq_events event handler. The next state
is playing, which means that all messages received are more than likely to be
from the game:

%% Events coming in from process quest.
%% We know this because all these events' tuples start with the
%% name of the player as part of the internal protocol defined for us.
handle_cast(Event, S = #state{name=N, socket=Sock}) when element(1, Event) =:= N ->
 [case E of
 {wait, Time} -> timer:sleep(Time);
 IoList -> send(Sock, IoList, [])
 end || E <- sockserv_trans:to_str(Event)], % Translate to a string.
 {noreply, S}.

Here, sockserv_trans:to_str(Event) converts some game event to lists of
IO lists or {wait, Time} tuples that represent delays to wait between parts of
events (we print “executing a . . .” messages a bit before showing what the
item dropped by the enemy is).

In our list of steps to follow, we’ve covered all except one: quitting
when users tell us they want to. Put the following clause as the top one in
handle_info:

handle_info({tcp, _Socket, "quit"++_}, S) ->
 processquest:stop_player(S#state.name),
 gen_tcp:close(S#state.socket),
 {stop, normal, S};

Stop the character, close the socket, and terminate the process.
Other reasons to quit include the TCP socket being closed by the client:

handle_info({tcp_closed, _Socket, _}, S) ->
 {stop, normal, S};
handle_info({tcp_error, _Socket, _}, S) ->
 {stop, normal, S};
handle_info(E, S) ->
 io:format("unexpected: ~p~n", [E]),
 {noreply, S}.

396 Chapter 23

You could also check for similar special cases when calling gen_tcp:send/3
(it wouldn’t return ok) or inet:setopts/2, although by virtue of being active
most of the time, we’ll get the message shown here anyway, although pos-
sibly later.

We also added an extra clause to handle unknown messages. If the user
types in something we don’t expect, we don’t want to crash.

Only the terminate/2 and code_change/3 functions are left to write:

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

terminate(normal, _State) ->
 ok;
terminate(_Reason, _State) ->
 io:format("terminate reason: ~p~n", [_Reason]).

If you followed through this whole example, you can try compiling this
file and substituting it for the corresponding BEAM file in the release we
had and see if it runs correctly. It should, if you copied things right (and if
I did, too).

Where to Go from Here?
Your next assignment, should you choose to accept it, is to add a few more
commands of your choice to the client. Why not add things like “pause”
that will queue up actions for a while and then output them all once you
resume the server? Or if you’re badass enough, try noting the levels and
stats you have so far in the sockserv_serv module and adding commands to
fetch them from the client side. I’ve always hated exercises left to the reader,
but sometimes it’s just too tempting to drop one here and there, so enjoy!

Reading the source of existing server implementations and program-
ming some yourself are also good exercises. Rare are the languages where
doing things like writing a basic web server is an exercise for amateurs,
but Erlang is one of them. Practice a bit, and it will become second nature.
Erlang communicating with the outside world is just one of the many steps
we’ve taken toward writing useful software. Chapter 24 will give us some
tools to make sure that useful software remains useful over time, with the
intervention of unit tests.

24
EU n i t e d N a t i o n s C o u n c i l

The software we’ve written has gotten progressively
bigger and somewhat more complex. When that hap-
pens, it becomes rather tedious to start an Erlang
shell, type things in, look at results, and make sure
things work after code has been changed. As time passes, it becomes
simpler for everyone to run tests that are prepared and ready in advance,
rather than following lists of stuff to check by hand all the time. It’s also
possible that you’re a fan of test-driven development and so will find tests
useful.

When we created an RPN cal-
culator in Chapter 8, we wrote a few
tests manually. They were simply a
set of pattern matches of the form
Result = Expression that would crash if
something went wrong and succeed

398 Chapter 24

otherwise. That works for simple bits of code you write for yourself, but when
you get to more serious tests, you will definitely want something better, like
a framework.

For unit tests, we’ll tend to stick with EUnit. For integration tests, EUnit
and Common Test can both do the job. In fact, Common Test can do every-
thing from unit tests up to system tests, and even testing of external soft-
ware not written in Erlang. For now, we’ll go with EUnit, given how simple
it is and the good results it yields. We’ll look into using Common Test in
Chapter 28.

EUnit—What’s an EUnit?
EUnit, in its simplest form, is just a way to automate running functions that
end in _test() in a module by assuming they are unit tests. If you dig out
that RPN calculator we wrote in Chapter 8, you’ll find the following code:

rpn_test() ->
 5 = rpn("2 3 +"),
 87 = rpn("90 3 -"),
 -4 = rpn("10 4 3 + 2 * -"),
 -2.0 = rpn("10 4 3 + 2 * - 2 /"),
 ok = try
 rpn("90 34 12 33 55 66 + * - +")
 catch
 error:{badmatch,[_|_]} -> ok
 end,
 4037 = rpn("90 34 12 33 55 66 + * - + -"),
 8.0 = rpn("2 3 ^"),
 true = math:sqrt(2) == rpn("2 0.5 ^"),
 true = math:log(2.7) == rpn("2.7 ln"),
 true = math:log10(2.7) == rpn("2.7 log10"),
 50 = rpn("10 10 10 20 sum"),
 10.0 = rpn("10 10 10 20 sum 5 /"),
 1000.0 = rpn("10 10 20 0.5 prod"),
 ok.

This is the test function we wrote to make sure the calculator worked.
Find the old module and try this:

1> c(calc).
{ok,calc}
2> eunit:test(calc).
 Test passed.
ok

Calling eunit:test(Module) was all we needed! Yay, we now know EUnit!
Pop the champagne and let’s head to a different chapter!

Obviously, a testing framework that does this little wouldn’t be very
useful, and in technical programmer jargon, it might be described as “not
very good.”

EUnited Nations Council 399

EUnit does more than automatically export and run functions ending
in _test(). For one, you can move the tests to a different module so that your
code and its tests are not mixed together. This means you can’t test private
functions anymore, but also that if you develop all your tests against the
module’s interface (the exported functions), you won’t need to rewrite tests
when you refactor your code.

Let’s try separating tests and code with two simple modules:

-module(ops).
-export([add/2]).

add(A,B) -> A + B.

-module(ops_tests).
-include_lib("eunit/include/eunit.hrl").

add_test() ->
 4 = ops:add(2,2).

So we have ops and ops_tests, where the second includes tests related to
the first. Here’s something EUnit can do:

3> c(ops).
{ok,ops}
4> c(ops_tests).
{ok,ops_tests}
5> eunit:test(ops).
 Test passed.
ok

Calling eunit:test(Mod) automatically looks for Mod_tests and runs the
tests within that module.

Let’s change the test a bit (make it 3 = ops:add(2,2)) to see what failures
look like:

6> c(ops_tests).
{ok,ops_tests}
7> eunit:test(ops).
ops_tests: add_test (module 'ops_tests')...*failed*
::error:{badmatch,4}
 in function ops_tests:add_test/0

===
 Failed: 1. Skipped: 0. Passed: 0.
error

We can see which test failed (ops_tests: add_test...) and why it failed
(::error:{badmatch,4}). We also get a full report on how many tests passed
or failed.

400 Chapter 24

The output is pretty bad though—at least
as bad as regular Erlang crashes. It doesn’t have
a clear explanation (4 didn’t match with what,
exactly?), for example. We’re left helpless by a
test framework that runs tests but doesn’t tell you
much about them.

For this reason, EUnit introduces a few macros to help us. Each of them
will give us cleaner reporting (including line numbers) and clearer seman-
tics. These macros are the difference between knowing that something goes
wrong and knowing why something goes wrong:

?assert(Expression) and ?assertNot(Expression)
These will test for Boolean values. If any value other than true makes it
into ?assert, an error will be shown. The same is true for ?assertNot, but
for negative values. These macros are somewhat equivalent to true = X
and false = Y.

?assertEqual(A, B)

This does a strict comparison (equivalent to =:=) between two expres-
sions, A and B. If they are different, a failure will occur. This is roughly
equivalent to true = X =:= Y. The macro ?assertNotEqual is available to do
the opposite of ?assertEqual.

?assertMatch(Pattern, Expression)

This allows you to match in a form similar to Pattern = Expression, with-
out variables ever binding. This means that you could do something
like ?assertMatch({X,X}, some_function()) and assert that you receive a
tuple with two elements being identical. Moreover, you could later run
?assertMatch(X,Y), and X would not be bound.

Actually, rather than behaving like Pattern = Expression, this
macro’s semantics are closer to (fun (Pattern) -> true; (_) ->
erlang:error(nomatch) end)(Expression). Variables in the pattern’s head
never get bound across multiple assertions. The macro ?assertNotMatch
was added to EUnit in R14B04.

?assertError(Pattern, Expression)

This tells EUnit that Expression should result in an error. As an example,
?assertError(badarith, 1/0) would be a successful test.

?assertThrow(Pattern, Expression)

This is the same as ?assertError, but with throw(Pattern) instead of
erlang:error(Pattern).

?assertExit(Pattern, Expression)

This is the same as ?assertError, but with exit(Pattern) (and not exit/2)
instead of erlang:error(Pattern).

TRUE
Lie

EUnited Nations Council 401

?assertException(Class, Pattern, Expression)

This is a general form of the three previous macros. As an exam-
ple, ?assertException(error, Pattern, Expression) is the same as
?assertError(Pattern, Expression). Starting with R14B04, there is
also the macro ?assertNotException/3 available for tests.

Using these macros, we could write better tests in our module, as follows:

-module(ops_tests).
-include_lib("eunit/include/eunit.hrl").

add_test() ->
 4 = ops:add(2,2).

new_add_test() ->
 ?assertEqual(4, ops:add(2,2)),
 ?assertEqual(3, ops:add(1,2)),
 ?assert(is_number(ops:add(1,2))),
 ?assertEqual(3, ops:add(1,1)),
 ?assertError(badarith, 1/0).

Let’s try running them:

8> c(ops_tests).
./ops_tests.erl:12: Warning: this expression will fail with a 'badarith' exception
{ok,ops_tests}
9> eunit:test(ops).
ops_tests: new_add_test...*failed*
::error:{assertEqual_failed,[{module,ops_tests},
 {line,11},
 {expression,"ops : add (1 , 1)"},
 {expected,3},
 {value,2}]}
 in function ops_tests:'-new_add_test/0-fun-3-'/1
 in call from ops_tests:new_add_test/0

===
 Failed: 1. Skipped: 0. Passed: 1.
error

See how much nicer the error reporting is? We know that the
?assertEqual on line 11 of ops_tests failed. When we called ops:add(1,1), we
thought we would receive 3 as a value, but we instead got 2. Of course you
must read these values as Erlang terms, but at least they’re there.

What’s annoying with this, however, is that even though we had five
assertions and only one failed, the whole test was still considered a failure.
It would be nicer to know that some assertion failed without behaving as if
all the others after it failed, too. Our test is equivalent to taking an exam,

402 Chapter 24

and as soon as you make a mistake, you fail and get thrown out of school.
Then your dog dies, and you just have a horrible day.

Because of this common need for flexibility, EUnit supports something
called test generators.

Test Generators
Test generators are pretty much shorthand for assertions wrapped in func-
tions that can be run later, in clever manners. Instead of having functions
ending with _test() with macros that are of the form ?assertSomething, we
use functions that end in _test_() and macros of the form ?_assertSomething.
Those are very small changes, but they make tests much more powerful.

The following two tests would be equivalent:

function_test() -> ?assert(A == B).
function_test_() -> ?_assert(A == B).

Here, function_test_() is called a test generator function, while ?_assert(A == B)
is called a test generator. It’s called that because, secretly, the underlying
implementation of ?_assert(A == B) is fun() -> ?assert(A,B) end; that is to say,
it’s a function that generates a test.

The advantage of test generators, compared to regular assertions, is
that they are funs. This means that they can be manipulated without being
executed. We could, in fact, have test sets of the following form:

my_test_() ->
 [?_assert(A),
 [?_assert(B),
 ?_assert(C),
 [?_assert(D)]],
 [[?_assert(E)]]].

Test sets can be deeply nested lists of test generators. We could have
functions that return tests! Let’s add the following to ops_tests:

add_test_() ->
 [test_them_types(),
 test_them_values(),
 ?_assertError(badarith, 1/0)].

test_them_types() ->
 ?_assert(is_number(ops:add(1,2))).

test_them_values() ->
 [?_assertEqual(4, ops:add(2,2)),
 ?_assertEqual(3, ops:add(1,2)),
 ?_assertEqual(3, ops:add(1,1))].

EUnited Nations Council 403

Because only add_test_() ends in _test_(), the two functions test_them_types()
and test_them_values() will not be seen as tests. In fact, they will be called by
add_test_() to generate tests:

1> c(ops_tests).
./ops_tests.erl:12: Warning: this expression will fail with a 'badarith' exception
./ops_tests.erl:17: Warning: this expression will fail with a 'badarith' exception
{ok,ops_tests}
2> eunit:test(ops).
ops_tests:25: test_them_values...*failed*
[...]
ops_tests: new_add_test...*failed*
[...]

===
 Failed: 2. Skipped: 0. Passed: 5.
error

So we still get the expected failures, and now you see that we jumped
from two tests to seven—the magic of test generators.

What if we want to test only some parts of the suite—maybe just
add_test_/0? Well, EUnit has a few tricks up its sleeve.

3> eunit:test({generator, fun ops_tests:add_test_/0}).
ops_tests:25: test_them_values...*failed*
::error:{assertEqual_failed,[{module,ops_tests},
 {line,25},
 {expression,"ops : add (1 , 1)"},
 {expected,3},
 {value,2}]}
 in function ops_tests:'-test_them_values/0-fun-4-'/1

===
 Failed: 1. Skipped: 0. Passed: 4.
error

Note that this works only with test generator functions. What we have
here as {generator, Fun} is what EUnit parlance calls a test representation.

EUnit provides the following test representations:

•	 {module, Mod} runs all tests in Mod.

•	 {dir, Path} runs all the tests for the modules found in Path.

•	 {file, Path} runs all the tests found in a single compiled module.

•	 {generator, Fun} runs a single generator function as a test, as seen in the
preceding example.

•	 {application, AppName} runs all the tests for all the modules mentioned in
AppName’s .app file.

These different test representations can make it easy to run test suites
for entire applications or even releases.

404 Chapter 24

Fixtures
It would still be pretty hard to test entire applications just by using assertions
and test generators. This is why fixtures were added. Fixtures, while not being
a catchall solution to getting your tests up and running to the application
level, allow you to build a certain scaffolding around tests.

The scaffolding in question is a general struc-
ture that allows you to define setup and teardown
functions for each of the tests. These functions
will allow you to build the state and environment
required for each of the tests to be useful. Moreover,
the scaffolding will let you specify how to run the
tests (do you want to run them locally, in separate
processes, or some other way?).

Several types of fixtures are available, with variations to them. The first
type is simply called the setup fixture. A setup fixture takes one of the fol-
lowing forms:

{setup, Setup, Instantiator}
{setup, Setup, Cleanup, Instantiator}
{setup, Where, Setup, Instantiator}
{setup, Where, Setup, Cleanup, Instantiator}

Argh! It appears we need a bit of EUnit vocabulary in order to under-
stand how fixtures work.

Setup
A function that does not take any arguments. Each of the tests will be
passed the value returned by the setup function, which will be called
once per instantiator.

Cleanup
A function that takes the result of a setup function as an argument and
takes care of cleaning up whatever is needed. If an OTP terminate does
the opposite of init, cleanup functions are the opposite of setup func-
tions for EUnit. For each setup function call, the cleanup function will
be called.

Instantiator
A function that takes the result of a setup function and returns a test
set (remember that test sets may be deeply nested lists of ?_Macro asser-
tions). You can also return a list of instantiators, and the setup and
cleanup function will be called for each one.

Where
A function that specifies how to run the tests, as in local, spawn,
{spawn, node()}.

EUnited Nations Council 405

All right, so what does this look like in practice? Well, let’s imagine
some test to make sure that a fictive process registry correctly handles try-
ing to register the same process twice, with different names:

double_register_test_() ->
 {setup,
 fun start/0, % setup function
 fun stop/1, % cleanup function
 fun two_names_one_pid/1}. % instantiator

start() ->
 {ok, Pid} = registry:start_link(),
 Pid.

stop(Pid) ->
 registry:stop(Pid).

two_names_one_pid(Pid) ->
 ok = registry:register(Pid, quite_a_unique_name, self()),
 Res = registry:register(Pid, my_other_name_is_more_creative, self()),
 [?_assertEqual({error, already_named}, Res)].

This fixture first starts the registry server within the start/0 function.
Then the instantiator two_names_one_pid(ResultFromSetup) is called. In that test,
the only thing we do is try to register the current process twice.

That’s where the instantiator does its work. The result of the second
registration is stored in the variable Res. The function will then return a
test set containing a single test (?_assertEqual({error, already_named}, Res)).
That test set will be run by EUnit. Then the cleanup function stop/1 will be
called. Using the pid returned by the setup function, stop/1 will be able to
shut down the registry that we started beforehand.

What’s even better is that this whole fixture itself can be put inside a
test set:

some_test_() ->
 [{setup, fun start/0, fun stop/1, fun some_instantiator1/1},
 {setup, fun start/0, fun stop/1, fun some_instantiator2/1},
 ...
 {setup, fun start/0, fun stop/1, fun some_instantiatorN/1}].

And this will work!
What’s annoying here is the need to always repeat that setup and tear-

down functions, especially when they’re always the same. That’s where the
second type of fixture, the foreach fixture, enters the stage.

The foreach fixture is quite similar to the setup fixture, with the differ-
ence that it takes lists of instantiators.

{foreach, Where, Setup, Cleanup, [Instantiator]}
{foreach, Setup, Cleanup, [Instantiator]}

406 Chapter 24

{foreach, Where, Setup, [Instantiator]}
{foreach, Setup, [Instantiator]}

Here’s the some_test_/0 function written with a foreach fixture:

some_test2_() ->
 {foreach
 fun start/0,
 fun stop/1,
 [fun some_instantiator1/1,
 fun some_instantiator2/1,
 ...
 fun some_instantiatorN/1]}.

That’s better. The foreach fixture will then take each of the instantiators
and run the setup and teardown function for them.

Now we have covered how to use a fixture for one instantiator and a
fixture for many instantiators (each getting their setup and teardown func-
tion calls). What if we want to have one setup function call and one tear-
down function call for many instantiators?

In other words, what if we have many instantiators, but want to set some
state only once? There’s no easy way for this, but here’s a little trick that
might do it:

some_tricky_test_() ->
 {setup,
 fun start/0,
 fun stop/1,
 fun (SetupData) ->
 [some_instantiator1(SetupData),
 some_instantiator2(SetupData),
 ...
 some_instantiatorN(SetupData)]
 end}.

By using the fact that test sets can be deeply nested lists, we wrap a
bunch of instantiators with an anonymous function behaving like an instan-
tiator for them.

More Test Control
Tests can also have some finer-grained control as to how they should be
running when you use fixtures. Four options are available:

{spawn, TestSet}

This runs tests in a separate process than the main test process. The
test process will wait for all of the spawned tests to finish.

EUnited Nations Council 407

{timeout, Seconds, TestSet}

The tests will run for Seconds num-
ber of seconds. If they take longer
than Seconds to finish, they will be
terminated without further ado.

{inorder, TestSet}

This tells EUnit to run the tests
within the test set strictly in the
order they are returned.

{inparallel, Tests}

Where possible, the tests will be
run in parallel.

As an example, the some_tricky_test_/0 test generator could be rewritten
as follows:

some_tricky_test2_() ->
 {setup,
 fun start/0,
 fun stop/1,
 fun(SetupData) ->
 {inparallel,
 [some_instantiator1(SetupData),
 some_instantiator2(SetupData),
 ...
 some_instantiatorN(SetupData)]}
 end}.

Test Documentation
That’s really most of it for fixtures, but there’s one more nice trick to show
you. You can add descriptions of tests in a neat way. Check this out:

double_register_test_() ->
 {"Verifies that the registry doesn't allow a single process to "
 "be registered under two names. We assume that each pid has the "
 "exclusive right to only one name",
 {setup,
 fun start/0,
 fun stop/1,
 fun two_names_one_pid/1}}.

Nice, huh? You can wrap a fixture by doing {Comment, Fixture} in order
to get readable tests. Let’s put this in practice.

408 Chapter 24

Testing Regis
Because seeing fake tests isn’t the most entertaining thing to do, and
because pretending to test software that doesn’t exist is even worse, we’ll
instead study the tests I have written for the regis-1.0.0 process registry, the
one used by Process Quest.

The development of regis was done in a test-driven manner. Hopefully
you don’t hate test-driven development (TDD), but even if you do, it shouldn’t
be too bad because we’ll look at the test suite after the fact. By doing this,
we cut through the few trial-and-error sequences and backpedaling that I
might have experienced when writing it the first time, and I’ll look like I’m
really competent, thanks to the magic of text editing.

The regis application is made of three
processes: a supervisor, a main server, and an
application callback module. Knowing that the
supervisor will check only the server, and that
the application callback module will do noth-
ing except behave as an interface for the two
other modules, we can safely write a test suite
focusing on the server itself, without any exter-
nal dependencies.

Being a good TDD fan, I began by writing a
list of all the features I wanted to cover:

•	 Implement an interface similar to the Erlang default process registry.

•	 The server will have a registered name so that it can be contacted with-
out tracking its pid.

•	 A process can be registered through our service and can then be con-
tacted by its name.

•	 A list of all registered processes can be obtained.

•	 A name that is not registered by any process should return the atom
undefined (much like the regular Erlang registry) in order to crash calls
using it.

•	 A process cannot have two names.

•	 Two processes cannot share the same name.

•	 A process that was registered can be registered again if it was unregis-
tered between calls.

•	 Unregistering a process never causes a process crash.

•	 A registered process’s exit will unregister its name.

That’s a respectable list. Doing the elements one by one and add-
ing cases as I went, I transformed each of the specifications into a test.

EUnited Nations Council 409

The final file obtained was regis_server_tests. I wrote things using a basic
structure a bit like this:

-module(regis_server_tests).
-include_lib("eunit/include/eunit.hrl").

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% TESTS DESCRIPTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%
%%% SETUP FUNCTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%
%%% ACTUAL TESTS %%%
%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%
%%% HELPER FUNCTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%%

Yes, this does look weird when the module is empty, but as you fill it up,
it makes more and more sense.

After adding a first test—that it should be possible to start a server and
access it by name—the file looked like this:

-module(regis_server_tests).
-include_lib("eunit/include/eunit.hrl").

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% TESTS DESCRIPTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%
start_stop_test_() ->
 {"The server can be started, stopped and has a registered name",
 {setup,
 fun start/0,
 fun stop/1,
 fun is_registered/1}}.

%%%%%%%%%%%%%%%%%%%%%%%
%%% SETUP FUNCTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%
start() ->
 {ok, Pid} = regis_server:start_link(),
 Pid.

stop(_) ->
 regis_server:stop().

410 Chapter 24

%%%%%%%%%%%%%%%%%%%%
%%% ACTUAL TESTS %%%
%%%%%%%%%%%%%%%%%%%%
is_registered(Pid) ->
 [?_assert(erlang:is_process_alive(Pid)),
 ?_assertEqual(Pid, whereis(regis_server))].

%%%%%%%%%%%%%%%%%%%%%%%%
%%% HELPER FUNCTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%%

See the organization now? It’s already so much better. The top part of
the file contains only fixtures and top-level descriptions of features. The
second part contains setup and cleanup functions that we might need. The
last part contains the instantiators returning test sets.

In this case, the instantiator is is_registered(Pid), which will make sure
the server can be started and stopped. We’ll actually revisit it in a short while.

In the final file for the tests, if you’ve downloaded it with the rest of the
code in this book, the first two sections would look more like this:

-module(regis_server_tests).
-include_lib("eunit/include/eunit.hrl").

-define(setup(F), {setup, fun start/0, fun stop/1, F}).

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% TESTS DESCRIPTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

start_stop_test_() ->
 {"The server can be started, stopped and has a registered name",
 ?setup(fun is_registered/1)}.

register_test_() ->
 [{"A process can be registered and contacted",
 ?setup(fun register_contact/1)},
 {"A list of registered processes can be obtained",
 ?setup(fun registered_list/1)},
 {"An undefined name should return 'undefined' to crash calls",
 ?setup(fun noregister/1)},
 {"A process cannot have two names",
 ?setup(fun two_names_one_pid/1)},
 {"Two processes cannot share the same name",
 ?setup(fun two_pids_one_name/1)}].

unregister_test_() ->
 [{"A process that was registered can be registered again iff it was "
 "unregistered between both calls",
 ?setup(fun re_un_register/1)},
 {"Unregistering never crashes",
 ?setup(fun unregister_nocrash/1)},
 {"A crash unregisters a process",
 ?setup(fun crash_unregisters/1)}].

EUnited Nations Council 411

%%%%%%%%%%%%%%%%%%%%%%%
%%% SETUP FUNCTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%
start() ->
 {ok, Pid} = regis_server:start_link(),
 Pid.

stop(_) ->
 regis_server:stop().

%%%%%%%%%%%%%%%%%%%%%%%%
%%% HELPER FUNCTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%%
%% nothing here yet

Nice, isn’t it? Note that as I was writing the suite, I ended up seeing that
I never needed any other setup and teardown functions than start/0 and
stop/1. For this reason, I added the ?setup(Instantiator) macro, which makes
things look a bit better than if all the fixtures were fully expanded.

It’s now pretty obvious that I turned each point of the feature list into
a bunch of tests. You’ll note that I divided all tests depending on whether
they had to do with starting and stopping the server (start_stop_test_/0),
registering processes (register_test_/0), and unregistering processes
(unregister_test_/0).

By reading the test generators’ definitions, we can know what the mod-
ule is supposed to be doing. The tests become documentation (although
they should not replace proper documentation).

We’ll study the tests a bit and see why things were done in a certain way.
Here’s the first test in the list, start_stop_test_/0, with the simple require-
ment that the server can be registered:

start_stop_test_() ->
 {"The server can be started, stopped and has a registered name",
 ?setup(fun is_registered/1)}.

The implementation of the test itself is put in the is_registered/1 func-
tion, which hasn’t changed:

%%%%%%%%%%%%%%%%%%%%
%%% ACTUAL TESTS %%%
%%%%%%%%%%%%%%%%%%%%
is_registered(Pid) ->
 [?_assert(erlang:is_process_alive(Pid)),
 ?_assertEqual(Pid, whereis(regis_server))].

This is the same instantiator as earlier. There’s nothing really special
about the test, although the function erlang:is_process_alive(Pid) might be
new to you. As its name says, the function checks whether a process is cur-
rently running. I’ve put that test in there for the simple reason that it might
be possible that the server crashes as soon as we start it, or that it’s never

412 Chapter 24

started in the first place. This would give
confusing test results if we assumed the
registration failed due to some code error,
when the server wasn’t started in the first
place. We don’t want that.

The second test is related to being able
to register a process:

{"A process can be registered and contacted",
 ?setup(fun register_contact/1)}

Here’s what the test looks like:

register_contact(_) ->
 Pid = spawn_link(fun() -> callback(regcontact) end),
 timer:sleep(15),
 Ref = make_ref(),
 WherePid = regis_server:whereis(regcontact),
 regis_server:whereis(regcontact) ! {self(), Ref, hi},
 Rec = receive
 {Ref, hi} -> true
 after 2000 -> false
 end,
 [?_assertEqual(Pid, WherePid),
 ?_assert(Rec)].

Granted, this isn’t the most elegant test around. The timers are the biggest
eyesore, and they could be avoided by using some sort of synchronous process
initialization (either a behavior or functions such as proc_lib:start_link and its
related synchronization functions, which are described in the proc_lib mod-
ule’s documentation). The test spawns a process that will do nothing but
register itself and reply to some message we send it. This is all done in the
callback/1 helper function, which is defined as follows:

%%%%%%%%%%%%%%%%%%%%%%%%
%%% HELPER FUNCTIONS %%%
%%%%%%%%%%%%%%%%%%%%%%%%
callback(Name) ->
 ok = regis_server:register(Name, self()),
 receive
 {From, Ref, Msg} -> From ! {Ref, Msg}
 end.

So the function has the module register itself, receives a message, and
sends a response back. Once the process is started, the register_contact/1
instantiator waits 15 milliseconds ( just a tiny delay to make sure the other
process registers itself), and then tries to use the whereis function from
regis_server to retrieve a pid and send a message to the process. If the regis
server is functioning correctly, a message will be returned, and the pids will
match in the tests at the bottom of the function.

84

EUnited Nations Council 413

Don’t Dr ink Too Much Kool- A id

By reading the second test, you have seen the little timer work we’ve needed to
do. Because of the concurrent and time-sensitive nature of Erlang programs, tests
will frequently be filled with tiny timers like this that have the sole role of trying to
synchronize bits of code.

The problem then becomes to try to define what should be considered a good
timer, with a delay that is long enough. With a system running many tests, or even
a computer under a heavy load, will the timers still be waiting for long enough?

Erlang programmers who write tests sometimes must be clever in order to
minimize how much synchronization they need to get things to work. There is no
easy solution.

The next tests are introduced as follows:

{"A list of registered processes can be obtained",
 ?setup(fun registered_list/1)}

So when a bunch of processes have been registered, it should be pos-
sible to get a list of all the names. This is a functionality similar to Erlang’s
registered() function call:

registered_list(_) ->
 L1 = regis_server:get_names(),
 Pids = [spawn(fun() -> callback(N) end) || N <- lists:seq(1,15)],
 timer:sleep(200),
 L2 = regis_server:get_names(),
 [exit(Pid, kill) || Pid <- Pids],
 [?_assertEqual([], L1),
 ?_assertEqual(lists:sort(lists:seq(1,15)), lists:sort(L2))].

First, we make sure that the first list of registered processes is empty
(?_assertEqual(L1, [])) so that we have something that works even when no
process has ever tried to register itself. Then 15 processes are created, all
of which will try to register themselves with a number (1 through 15). We
make the test sleep a bit to make sure all processes have the time to register
themselves, and then call regis_server:get_names(). The names should
include all integers between 1 and 15, inclusively. Then a slight cleanup is
done by eliminating all the registered processes—we don’t want to be leak-
ing them, after all.

You’ll notice the tendency of the tests to store
state in variables (L1 and L2) before using them in
test sets. The reason for this is that the test set that
is returned is executed well after the test initiator
(the whole active bit of code) has been running. If
you were to try to put function calls that depend on

1 2

3

9

6

414 Chapter 24

other processes and time-sensitive events in the ?_assert* macros, you would
get everything out of sync, and things would generally be awful for you and
the people using your software.

The next test is simple:

{"An undefined name should return 'undefined' to crash calls",
 ?setup(fun noregister/1)}
...
noregister(_) ->
 [?_assertError(badarg, regis_server:whereis(make_ref()) ! hi),
 ?_assertEqual(undefined, regis_server:whereis(make_ref()))].

As you can see, this tests for two things: we return undefined and the
specification’s assumption that using undefined does indeed crash attempted
calls. Here, there is no need to use temporary variables to store the state;
both tests can be executed at any time during the life of the regis server,
given we never change its state.

Let’s keep going:

{"A process cannot have two names",
 ?setup(fun two_names_one_pid/1)},
...
two_names_one_pid(_) ->
 ok = regis_server:register(make_ref(), self()),
 Res = regis_server:register(make_ref(), self()),
 [?_assertEqual({error, already_named}, Res)].

This is pretty much the same test we used in a demo earlier in the chap-
ter. In this one, we’re just looking to see whether we get the right output
and that the test process can’t register itself twice with different names.

The next test is the opposite of two_names_one_pid:

{"Two processes cannot share the same name",
 ?setup(fun two_pids_one_name/1)}].
...
two_pids_one_name(_) ->
 Pid = spawn(fun() -> callback(myname) end),
 timer:sleep(15),
 Res = regis_server:register(myname, self()),
 exit(Pid, kill),
 [?_assertEqual({error, name_taken}, Res)].

Here, because we need two processes and the results of only one of
them, the trick is to spawn one process (the one whose results we do not
need), and then do the critical part ourselves.

You can see that timers are used to make sure that the other pro-
cess tries registering a name first (within the callback/1 function), and
that the test process itself waits to take its turn, expecting an error tuple
({error, name_taken}) as a result.

EUnited Nations Council 415

Using Unique Va lue s

You might have noticed that the preceding tests tend to use make_ref() a lot. When
possible, it is useful to use functions that generate unique values, as make_ref() does.
If at some point in the future someone wants to run tests in parallel or to run them
under a single regis server that never stops, then it will be possible to do so with-
out needing to modify the tests.

If we were to use hardcoded names like a, b, and c in all the tests, sooner
or later, name conflicts could happen if we were to try to run many test suites at
once. Not all tests in the regis_server_tests suite follow this advice, mostly for
demonstration purposes.

This covers all the features for the tests related to the registration of
processes. Only those related to unregistering processes remain:

unregister_test_() ->
[{"A process that was registered can be registered again iff it was "
 "unregistered between both calls",
 ?setup(fun re_un_register/1)},
 {"Unregistering never crashes",
 ?setup(fun unregister_nocrash/1)},
 {"A crash unregisters a process",
 ?setup(fun crash_unregisters/1)}].

Let’s see how they are to be implemented. The first one is kind of simple:

re_un_register(_) ->
 Ref = make_ref(),
 L = [regis_server:register(Ref, self()),
 regis_server:register(make_ref(), self()),
 regis_server:unregister(Ref),
 regis_server:register(make_ref(), self())],
 [?_assertEqual([ok, {error, already_named}, ok, ok], L)].

This way of serializing all the calls in a list is a nifty trick I like to
do when I need to test the results of all the events. By putting them
in a list, I can then compare the sequence of actions to the expected
[ok, {error, already_named}, ok, ok] to see how things went. Note that there
is nothing specifying that Erlang should evaluate the list in order, but this
trick has pretty much always worked for me.

The following test—the one about never crashing—goes like this:

unregister_nocrash(_) ->
 ?_assertEqual(ok, regis_server:unregister(make_ref())).

416 Chapter 24

Whoa, slow down here, buddy! That’s it? Yes it is. The re_un_register
function already handles testing the “unregistration” of processes. For
unregister_nocrash, we really only want to know if it will work to try to remove
a process that’s not there.

Then comes the last test, and one of the most important ones for any
test registry you’ll ever have: A named process that crashes will have the
name unregistered. This has serious implications, because if you don’t
remove names, you’ll end up having an ever-growing registry server with
an ever-shrinking name selection.

crash_unregisters(_) ->
 Ref = make_ref(),
 Pid = spawn(fun() -> callback(Ref) end),
 timer:sleep(150),
 Pid = regis_server:whereis(Ref),
 exit(Pid, kill),
 timer:sleep(95),
 regis_server:register(Ref, self()),
 S = regis_server:whereis(Ref),
 Self = self(),
 ?_assertEqual(Self, S).

This one reads sequentially:

1.	 Register a process.

2.	 Make sure the process is registered.

3.	 Kill that process.

4.	 Steal the process’s identity (the true spy way).

5.	 Check whether we do hold the name ourselves.

In all honesty, the test could have been written in a simpler manner:

crash_unregisters(_) ->
 Ref = make_ref(),
 Pid = spawn(fun() -> callback(Ref) end),
 timer:sleep(150),
 Pid = regis_server:whereis(Ref),
 exit(Pid, kill),
 ?_assertEqual(undefined, regis_server:whereis(Ref)).

That whole part about stealing the identity of the dead process was
nothing but a petty thief’s fantasy.

That’s it! If you’ve done things right, you should be able to compile the
code and run the test suite:

$ erl -make
Recompile: src/regis_sup
... <snip> ...
$ erl -pa ebin/

EUnited Nations Council 417

1> eunit:test(regis_server).
 All 13 tests passed.
ok
2> eunit:test(regis_server, [verbose]).
======================== EUnit ========================
module 'regis_server'
 module 'regis_server_tests'
 The server can be started, stopped and has a registered name
 regis_server_tests:49: is_registered...ok
 regis_server_tests:50: is_registered...ok
 [done in 0.006 s]
... <snip> ...
 [done in 0.520 s]
===
 All 13 tests passed.
ok

Oh yeah, see how adding the verbose option will add test descriptions
and runtime information to the reports? That’s neat.

He Who Knits EUnits
We’ve now covered how to use most of EUnit’s features
to run test suites. More important, you’ve seen a few
techniques related to writing tests for concurrent
processes, using patterns that make sense in the real
world.

You should know one last trick. When you feel like testing processes
such as gen_server and gen_fsm, you might want to inspect their internal state.
Here’s a nice way to do this, courtesy of the sys module:

3> regis_server:start_link().
{ok,<0.160.0>}
4> regis_server:register(shell, self()).
ok
5> sys:get_status(whereis(regis_server)).
{status,<0.160.0>,
 {module,gen_server},
 [[{'$ancestors',[<0.31.0>]},
 {'$initial_call',{regis_server,init,1}}],
 running,<0.31.0>,[],
 [{header,"Status for generic server regis_server"},
 {data,[{"Status",running},
 {"Parent",<0.31.0>},
 {"Logged events",[]}]},
 {data,[{"State",
 {state,{1,{<0.31.0>,{shell,#Ref<0.0.0.333>},nil,nil}},
 {1,{shell,{<0.31.0>,#Ref<0.0.0.333>},nil,nil}}}}]}]]}

Neat, huh? Everything that has to do with the server’s innards is given
to you, and you can now inspect everything you need, all the time!

418 Chapter 24

If you feel like getting more comfortable with testing servers and
whatnot, I recommend reading the tests written for Process Quest’s player
module at http://learnyousomeerlang.com/static/erlang/processquest/apps/
processquest-1.1.0/test/pq_player_tests.erl. They test the gen_server using a
different technique, where all individual calls to handle_call, handle_cast,
and handle_info are tried independently. It was still developed in a test-
driven manner, but the needs of that approach forced things to be done
differently.

You’ll see the true value of tests in Chapter 25, when we rewrite the
process registry to use ETS, an in-memory database available for all Erlang
processes.

25
B e a r s , ETS , B e e t s :

I n - M e m o r y N o S Q L f o r F r e e !

Something we’ve been doing time and time again has
been implementing some kind of storage device as
a process. We’ve made fridges to store things, built
regis to register processes, seen key/value stores, and
so on. If we were programmers doing object-oriented design, we would
have a bunch of singletons floating around, special storage classes, and
whatnot. In fact, wrapping data structures like dicts and GB trees in pro-
cesses is a bit like that.

This chapter introduces ETS,
an in-memory database that pro-
vides an alternative data storage
approach.

420 Chapter 25

Why ETS
Holding data structures in a process is actually fine for a lot of cases, such
as when you need that data to do some task within the process, as internal
state, and so on. This will be the majority of our use cases. There is one case
where it may not be the best choice: when the process holds a data structure
for the sake of sharing it with other processes and little more.

One of the applications we’ve written is guilty of that. Can you guess
which one? Of course you can. I mentioned it at the end of the previous
chapter. regis (part of the Process Quest game we developed in Chapter 22)
needs to be rewritten. That is not because it doesn’t work or can’t do its job
well, but because it acts as a gateway to share data with potentially a lot of
other processes.

regis is the central application to do messaging in Process Quest (and
anything else that would use it), and pretty much every message going to a
named process must go through it. This means that even though we took
great care to make our applications very concurrent with independent
actors and made sure our supervision structure could be scaled up, all
of our operations will depend on a central regis process that will need to
answer messages one by one:

regis

client 1 client 3

client 2

client 4

client 5

client 6

If we have a lot of message-passing going on, regis risks getting busier
and busier. If the demand is high enough, our whole system will become
sequential and slow. That’s pretty bad.

N o t e 	 We have no direct proof that regis is a bottleneck within Process Quest. In fact,
Process Quest does very little messaging compared to many other applications in the
wild. If we were using regis for something that required a lot more messaging and
lookups, then the problems would be more apparent.

Bears, ETS, Beets: In-Memory NoSQL for Free! 421

To get around this problem, we could either split regis into subprocesses
to make lookups faster (sharding the data) or find a way to store the data in
some database that will allow for parallel and concurrent access of the data.
While the first way would be very interesting to explore, we’ll take an easier
path by doing the latter.

Erlang has Erlang Term Storage (ETS) tables, which are an efficient
in-memory database included with the Erlang VM. This database sits in a
part of the VM where destructive updates are allowed and where garbage
collection dares not approach, in a part of memory not shared by processes.
ETS tables are generally fast, and they provide a pretty easy way for Erlang
programmers to optimize some of their code when parts of it get too slow.

ETS tables allow limited concurrency in reads and writes (much better
than none at all for a process’s mailbox) in a way that could let us optimize
away a lot of the pain, but that could also add problems. This is because
their use throws away most of the concepts that make Erlang safe for con-
currency in the first place.

Don’t Dr ink Too Much Kool- A id

While ETS tables are a nice way to optimize applications, they should be used
with some care. By default, the VM is limited to 1,400 ETS tables. While it is pos-
sible to change that number (by using erl -env ERL_MAX_ETS_TABLES Number), this
default low level is a good sign that you should try to avoid having one table per
process in general.

But before we rewrite regis to use ETS, we should try to understand a
bit of ETS’s principles.

The Concepts of ETS
ETS tables are implemented as BIFs in the ets module. ETS was designed to
provide a way to store large amounts of data in Erlang with constant access
time (functional data structures tend to flirt with logarithmic access time),
and to have such storage look as if it were implemented as processes in
order to keep their use simple and idiomatic.

N o t e 	 Having tables look like processes doesn’t mean that you can spawn them or link to
them. It means that they can respect semantics of nothing shared, wrapping calls
behind functional interfaces, having them handle any native data type for Erlang,
and making it possible to give them names (in a separate registry). Also, while you
can’t link to tables, they do have a similar mechanism available, as mentioned near
the end of this section.

All ETS tables natively store Erlang tuples, and only tuples. The tuples
can contain whatever you want, and one of the tuple elements will act as

422 Chapter 25

a primary key that you use to sort things. For example, having tuples of
people of the form {Name, Age, PhoneNumber, Email} will let you have a table
that looks like this:

{Name, Age, PhoneNumber, Email},
{Name, Age, PhoneNumber, Email},
{Name, Age, PhoneNumber, Email},
{Name, Age, PhoneNumber, Email},
{Name, Age, PhoneNumber, Email},
...

So if we want to have the table’s index be the email addresses, we can
do this by telling ETS to set the key position to 4 (as described in “Creating
and Deleting Tables” on page 423). Once you’ve decided on a key, you can
choose different ways to store data in tables:

set

A set table will tell you that each key value must be unique. There can
be no duplicate email in the preceding database example. Sets are
great when you need to use a standard key/value store with constant
time access.

ordered_set

There can still be only one key instance per table, but ordered_set adds
a few other interesting properties. The first is that elements in an
ordered_set table will be ordered (who would have thought?). The first
element of the table is the smallest one, and the last element is the larg-
est one. If you traverse a table iteratively ( jumping to the next element
over and over again), the values should be increasing, which is not
necessarily true of set tables. Using ordered_set tables is great when you
frequently need to operate on ranges (for example, “I want entries 12
to 50”). They do, however, have the downside of being slower in their
access time (O(log N), where N is the number of objects stored).

bag

A bag table can have multiple entries with the same key, as long as the
tuples themselves are different. This means that the table can contain
{key, some, values} and {key, other, values} without any problems, which
would be impossible with set tables (they have the same key). However,
you couldn’t have {key, some, values} twice in the table, as those entries
would be entirely identical.

duplicate_bag

The tables of this type work like bag tables, except that they allow entirely
identical tuples to be held multiple times within the same table.

Bears, ETS, Beets: In-Memory NoSQL for Free! 423

N o t e 	 The ordered_set tables will see the values 1 and 1.0 as identical for all operations.
Other tables will see them as different. Although it’s nice to be able to use both inte-
gers and floating-point numbers together, it is somewhat rare that a given function
can return both. You will generally avoid a lot of problems if your programs restrict
their return values to one or the other.

Another general concept related to ETS tables involves table ownership.
When a process calls a function that starts a new ETS table, that process is
the owner of the table.

By default, only the owner of the table can write to it, but everyone can
read from it. This is known as the protected level of permissions. You can
also choose to set the permissions to public, where everyone can read and
write, or private, where only the owner can read or write.

The concept of table ownership goes a bit further. The ETS table is inti-
mately linked to the process. If the process dies, the table disappears (and
so does all of its content). However, the table can be given away, similar to
sockets and their controlling processes, or an heir can be determined so
that if the owner process dies, the table is automatically given away to the
heir process.

ETS Phone Home
Now that we’ve covered some ETS
concepts, we’re ready to move on to
the basics of handling tables. ETS
functions allow you to create and
destroy tables, as well as insert and
look up data.

Creating and Deleting Tables
To start an ETS table, call the function ets:new/2. This function takes the
argument Name (as an atom) and then a list of options. In return, you get
a unique identifier necessary to use the table, comparable to a pid for
processes.

The options can be any of the following:

Type = set | ordered_set | bag | duplicate_bag

This sets the type of table you want to have, as described earlier. The
default value is set.

Access = private | protected | public

This sets permissions on the table, as described earlier. The default
option is protected.

424 Chapter 25

named_table

Funnily enough, if you call ets:new(some_name, []), you’ll be starting a
protected set table without a name. For the name to be used as a way
to contact a table (and to be made unique), the option named_table must
be passed to the function. Otherwise, the name of the table will be
purely for documentation purposes and will appear in functions such
as ets:i(), which prints information about all ETS tables in the system.

{keypos, Position}

As you may (and should) recall, ETS tables work by storing tuples. The
Position parameter holds an integer from 1 to N, telling which of each
tuple’s elements should act as the primary key of the database table.
The default key position is set to 1. This means you must be careful if
you’re using records, as each record’s first element will always be the
record’s name (remember what they look like in their tuple form). If
you want to use any field as the key, use {keypos, #RecordName.FieldName},
as it will return the position of FieldName within the record’s tuple
representation.

{heir, Pid, Data} | {heir, none}

ETS tables have a process that acts as their parent. If the process
dies, the table disappears. If the data attached to a table is some-
thing you might want to keep alive, then defining an heir can be
useful. If the process attached to a table dies, the heir receives a
message saying {'ETS-TRANSFER', TableId, FromPid, Data}, where Data is
the element passed when the option was first defined. The table is
automatically inherited by the heir. By default, no heir is defined.
It is possible to define or change an heir at a later time by calling
ets:setopts(Table, {heir, Pid, Data}) or ets:setopts(Table, {heir, none}). If
you simply want to give the table away, call ets:give_away(Tab, Pid, Data).

{read_concurrency, true | false}

This is an option to optimize the table for read concurrency. Setting
this option to true means that reads become way cheaper to do, but
switching to writes becomes a lot more expensive. Basically, this option
should be enabled when you do a lot of reading and little writing, and
need an extra kick of performance. If you do some reading and some
writing, and they are interleaved, using this option might even hurt
performance.

{write_concurrency, true | false}

Usually, writing to a table will lock the whole thing and no one else can
access it, either for reading or writing, until the writing is done. Setting
this option to true lets both reads and writes be done concurrently,
without affecting the ACID properties of ETS. Doing this, however,
will reduce the performance of sequential writes by a single process
and also the capacity of concurrent reads. You can combine this option
with read_concurrency when both writes and reads come in large bursts.

Bears, ETS, Beets: In-Memory NoSQL for Free! 425

N o t e 	 ACID stands for atomicity, consistency, isolation, and durability. ACID
properties are those defined for a reliable database transaction system. See
http://en.wikipedia.org/wiki/ACID for more information.

compressed

Using this option will allow the data in the table to be compressed for
most fields, but not the primary key. This comes at the cost of perfor-
mance when inspecting entire elements of the table.

Then, the opposite of table creation is table destruction. For that one,
all that’s needed is to call ets:delete(Table), where Table is either a table ID
or the name of a named table. If you want to delete a single entry from the
table, a very similar function call is required: ets:delete(Table, Key).

Inserting and Looking Up Data
Two other functions are required for basic table handling: ets:insert(Table,
ObjectOrObjects) and ets:lookup(Table, Key). In the case of insert/2, ObjectOrObjects
can be either a single tuple or a list of tuples to insert.

1> ets:new(ingredients, [set, named_table]).
ingredients
2> ets:insert(ingredients, {bacon, great}).
true
3> ets:lookup(ingredients, bacon).
[{bacon,great}]
4> ets:insert(ingredients, [{bacon, awesome}, {cabbage, alright}]).
true
5> ets:lookup(ingredients, bacon).
[{bacon,awesome}]
6> ets:lookup(ingredients, cabbage).
[{cabbage,alright}]
7> ets:delete(ingredients, cabbage).
true
8> ets:lookup(ingredients, cabbage).
[]

You’ll notice that the lookup function returns a list. It will do that for
all types of tables, even though set-based tables will always return one item
at most. It just means that you should be able to use the lookup function
in a generic way, even when you use bag or duplicate_bag tables (which may
return many values for a single key).

Another thing that takes place in the preceding snippet is that insert-
ing the same key twice overwrites it. This will always happen in set and
ordered_set tables, but not in bag or duplicate_bag tables. If you want to avoid
this, the function ets:insert_new/2 might be what you need, as it will insert
elements only if they are not already in the table.

http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)

426 Chapter 25

N o t e 	 The tuples do not need to all be the same size in an ETS table, though that is consid-
ered the best practice. It is, however, necessary that the tuple is at least of the same size
(or greater) than whatever the key position is.

There’s another lookup function available if you need to fetch only part
of a tuple: ets:lookup_element(TableID, Key, PositionToReturn). It will return the
element that matched (or a list of them if there is more than one in a bag or
duplicate_bag table). If the element isn’t there, the function errors out, with
badarg as a reason.

Let’s try our previous example again with a bag table:

9> TabId = ets:new(ingredients, [bag]).
16401
10> ets:insert(TabId, {bacon, delicious}).
true
11> ets:insert(TabId, {bacon, fat}).
true
12> ets:insert(TabId, {bacon, fat}).
true
13> ets:lookup(TabId, bacon).
[{bacon,delicious},{bacon,fat}]

As this is a bag table, {bacon, fat} is there only once, even though
we inserted twice, but you can see that we can still have more than one
bacon entry. The other thing to look at here is that without passing in the
named_table option, we must use TabId to use the table.

N o t e 	 If at any point while copying these examples your shell crashes, the tables are going to
disappear, as their parent process (the shell) has disappeared.

The last basic operations we can make use of will be about traversing
table entries one by one, ordered_set tables are the best fit for this task:

14> ets:new(ingredients, [ordered_set, named_table]).
ingredients
15> ets:insert(ingredients,
15> [{ketchup, "not much"}, {mustard, "a lot"},
15> {cheese, "yes", "goat"}, {patty, "moose"},
15> {onions, "a lot", "caramelized"}]).
true
16> Res1 = ets:first(ingredients).
cheese
17> Res2 = ets:next(ingredients, Res1).
ketchup
18> Res3 = ets:next(ingredients, Res2).
mustard
19> ets:last(ingredients).
patty
20> ets:prev(ingredients, ets:last(ingredients)).
onions

Bears, ETS, Beets: In-Memory NoSQL for Free! 427

As you can see, elements are now in sorting order, and they can be
accessed one after the other, both forward and backward.

Oh yeah, we need to see what happens in boundary conditions:

21> ets:next(ingredients, ets:last(ingredients)).
'$end_of_table'
22> ets:prev(ingredients, ets:first(ingredients)).
'$end_of_table'

When you see atoms starting with a $, you should know that they’re
some special value (chosen by convention by the OTP team) telling you
about something. Whenever you’re trying to iterate outside the table, you’ll
see these $end_of_table atoms. Other than cases like this, you should avoid
using atoms starting with $ in order to prevent confusion or possible clashes
with OTP’s own atoms.

We’ve now covered how to use ETS as a basic key/value store. Next,
we’ll look at some more advanced uses.

Meeting Your Match
What if you want to do more than just match on keys when doing lookups?
When you think about it, the best way to select things would be with pattern
matching, right? The ideal scenario would be to somehow store a pattern to
match on within a variable (or as a data structure), pass that to some ETS
function, and let said function do its thing.

This is called higher-order pattern matching, and
sadly, it is not available in Erlang. In fact, very
few languages have it. Instead, Erlang has a kind
of sublanguage that Erlang programmers have
agreed to use to describe pattern matching as a
bunch of regular data structures.

This notation is based on tuples to fit nicely
with ETS. It simply lets you specify variables
(regular and “don’t care” variables), that can be
mixed with the tuples to do pattern matching.
Variables are written as '$0', '$1', '$2', and so on (the number has no impor-
tance except in how you’ll get the results) for regular variables. The “don’t
care” variable can be written as '_'. All these atoms ('_', '$0', '$1', and so
on) can be used to represent the pattern for a table entry when placed in a
tuple like so:

{items, '$3', '$1', '_', '$3'}

This is roughly equivalent to saying {items, C, A, _, C} with regular pat-
tern matching. As such, you can guess that the first element needs to be the
atom items, the second and fifth slots of the tuple need to be identical, and
so on.

428 Chapter 25

To make use of this notation in a more practical setting, two functions
are available: match/2 and match_object/2. (match/3 and match_object/3 are avail-
able as well, but their use is outside the scope of this chapter—readers are
encouraged to check the docs for details.)

The match/2 function returns the variables of the pattern, and the
match_object/2 function returns the whole entry that matched the pattern:

1> ets:new(table, [named_table, bag]).
table
2> ets:insert(table, [{items, a, b, c, d}, {items, a, b, c, a},
2> {cat, brown, soft, loveable, selfish},
2> {friends, [jenn,jeff,etc]}, {items, 1, 2, 3, 1}]).
true
3> ets:match(table, {items, '$1', '$2', '_', '$1'}).
[[a,b],[1,2]]
4> ets:match(table, {items, '$114', '$212', '_', '$6'}).
[[d,a,b],[a,a,b],[1,1,2]]
5> ets:match_object(table, {items, '$1', '$2', '_', '$1'}).
[{items,a,b,c,a},{items,1,2,3,1}]
6> ets:delete(table).
true

The nice thing about match/2 as a function is that it returns only what is
strictly necessary. This is useful because, as mentioned earlier, ETS tables
follow the nothing-shared ideals. If you have very large records, copying
only the necessary fields might be a good thing to do.

 Anyway, you’ll also notice that while the numbers in variables have
no explicit meaning, their order is important. In the final list of values
returned, the value bound to $114 will always come after the values bound
to $6 by the pattern. If nothing matches, empty lists are returned.

It is also possible that you might want to delete entries based on such a
pattern match. In these cases, the function ets:match_delete(Table, Pattern) is
what you want.

This is all fine and lets us do pattern matching of any literal value,
albeit in a funny-looking way. It would be pretty neat if it were possible to
have things like comparisons and ranges, explicit ways to format the output
(maybe lists aren’t what we want), and so on. Oh wait, you can!

You Have Been Selected
Erlang provides an approach that gives us some-
thing more equivalent to true function heads–
level pattern matching, including very simple
guards. If you’ve ever used a SQL database, you
might have seen ways to do queries where you
compare elements that are greater than, equal
to, or smaller than other elements. This is the
kind of good stuff we want here.

claw game

choose

Bears, ETS, Beets: In-Memory NoSQL for Free! 429

The people behind Erlang thus took the syntax for matches and aug-
mented it in crazy ways until it was powerful enough. Sadly, they also made
it unreadable. Here’s what it can look like:

[{{'$1','$2',<<1>>,'$3','$4'},
 [{'andalso',{'>','$4',150},{'<','$4',500}},
 {'orelse',{'==','$2',meat},{'==','$2',dairy}}],
 ['$1']},
 {{'$1','$2',<<1>>,'$3','$4'},
 [{'<','$3',4.0},{is_float,'$3'}],
 ['$1']}]

This is pretty ugly—not the data structure you would want your children
to look like. Believe it or not, we’ll learn how to write these things called
match specifications, but not in the preceding form—no, that would be a bit
too hard for no reason. But we’ll still learn how to read them, though!

Here’s what match specifications look like from a higher-level view:

[{InitialPattern1, Guards1, ReturnedValue1},
 {InitialPattern2, Guards2, ReturnedValue2}].

And from a yet higher view, we see this:

[Clause1,
 Clause2]

These things represent, roughly, the pattern in a function head, then
the guards, and then the body of a function. The format is still limited to
'$N' variables for the initial pattern, just as it was for match functions. The
new sections are the guard patterns, which allow us to do something quite
similar to regular guards. If we look at the guard [{'<','$3',4.0},{is_float,'$3'}],
we can see that it is quite similar to ... when Var < 4.0, is_float(Var) -> ... as
a guard.

The next guard, more complex this time, is as follows:

[{'andalso',{'>','$4',150},{'<','$4',500}},
 {'orelse',{'==','$2',meat},{'==','$2',dairy}}]

Translating it gives us a guard that looks like ... when Var4 > 150
andalso Var4 < 500, Var2 == meat orelse Var2 == dairy -> Got it?

Each operator or guard function works with a prefix syntax, mean-
ing that we use the order {FunctionOrOperator, Arg1, ..., ArgN}. So is_list(X)
becomes {is_list, '$1'}, X andalso Y becomes {'andalso', X, Y}, and so on.
Reserved keywords such as andalso and orelse, and operators like ==, need
to be turned into atoms so the Erlang parser won’t choke on them.

The last section of the pattern is what you want to return. Just put
the variables you need in there. If you want to return the full input of

430 Chapter 25

the match specification, use the variable '$_' to do so. A full specifica-
tion of match specifications can be found in the Erlang documentation
at http://www.erlang.org/doc/apps/erts/match_spec.html.

As I said earlier, we won’t learn how to write patterns that way, since
there’s a nicer way to do it. ETS comes with what is called a parse transform.
A parse transform is an underdocumented (and officially not supported
by the OTP team for whatever problems you encounter) way of accessing
the Erlang parse tree halfway through the compiling phase. They let ballsy
Erlang programmers transform the code in a module to a new alternative
form. A parse transform can be pretty much anything and change existing
Erlang code to almost anything else, as long as it doesn’t change the lan-
guage’s syntax or tokens.

The parse transform coming with ETS must be enabled manually for
each module that needs it. The way to do it in a module is as follows:

-module(SomeModule).
-include_lib("stdlib/include/ms_transform.hrl").
...
some_function() ->
 ets:fun2ms(fun(X) when X > 4 -> X end).

The line -include_lib("stdlib/include/ms_transform.hrl"). contains some
special code that will override the meaning of ets:fun2ms(SomeLiteralFun)
whenever it’s being used in a module. Rather than being a higher-order
function, the parse transform will analyze what is in the fun (the pattern,
the guards, and the return value), remove the function call to ets:fun2ms/1,
and replace it all with an actual match specification. Weird, huh? The best
thing is that because this happens at compile time, there is no overhead to
using this way of doing things.

We can try it in the shell, without the include file this time:

1> ets:fun2ms(fun(X) -> X end).
[{'$1',[],['$1']}]
2> ets:fun2ms(fun({X,Y}) -> X+Y end).
[{{'$1','$2'},[],[{'+','$1','$2'}]}]
3> ets:fun2ms(fun({X,Y}) when X < Y -> X+Y end).
[{{'$1','$2'},[{'<','$1','$2'}],[{'+','$1','$2'}]}]
4> ets:fun2ms(fun({X,Y}) when X < Y, X rem 2 == 0 -> X+Y end).
[{{'$1','$2'},
 [{'<','$1','$2'},{'==',{'rem','$1',2},0}],
 [{'+','$1','$2'}]}]
5> ets:fun2ms(fun({X,Y}) when X < Y, X rem 2 == 0; Y == 0 -> X end).
[{{'$1','$2'},
 [{'<','$1','$2'},{'==',{'rem','$1',2},0}],
 ['$1']},
 {{'$1','$2'},[{'==','$2',0}],['$1']}]

All of these are written so easily now! And, of course, the funs are much
simpler to read.

Bears, ETS, Beets: In-Memory NoSQL for Free! 431

How about that complex example from the beginning of the section?
Here’s what it would be like as a fun:

6> ets:fun2ms(fun({Food, Type, <<1>>, Price, Calories})
6> when Calories > 150 andalso Calories < 500,
6> Type == meat orelse Type == dairy;
6> Price < 4.00, is_float(Price) ->
6> Food end).
[{{'$1','$2',<<1>>,'$3','$4'},
 [{'andalso',{'>','$4',150},{'<','$4',500}},
 {'orelse',{'==','$2',meat},{'==','$2',dairy}}],
 ['$1']},
 {{'$1','$2',<<1>>,'$3','$4'},
 [{'<','$3',4.0},{is_float,'$3'}],
 ['$1']}]

The match specification doesn’t entirely make sense at first glance, but
at least it’s much simpler to figure out what it means when the variables
actually have names rather than numbers.

One thing to be careful about is that not all funs are valid match
specifications:

7> ets:fun2ms(fun(X) -> my_own_function(X) end).
Error: fun containing the local function call 'my_own_function/1' (called in body)
 cannot be translated into match_spec
{error,transform_error}
8> ets:fun2ms(fun(X,Y) -> ok end).
Error: ets:fun2ms requires fun with single variable or tuple parameter
{error,transform_error}
9> ets:fun2ms(fun([X,Y]) -> ok end).
Error: ets:fun2ms requires fun with single variable or tuple parameter
{error,transform_error}
10> ets:fun2ms(fun({<<X/binary>>}) -> ok end).
Error: fun head contains bit syntax matching of variable 'X', which cannot be
 translated into match_spec
{error,transform_error}

The function head needs to match on a single variable or a tuple, no
nonguard functions can be called as part of the return value, and assigning
values from within binaries is not allowed. Try some stuff in the shell to see
what you can do.

To make match specifications useful, it would make sense to use them.
This can be done with these functions:

•	 ets:select/2 to fetch results

•	 ets:select_reverse/2 to get results in reverse in ordered_set tables (for
other types, it’s the same as select/2)

•	 ets:select_count/2 to know how many results match the specification

•	 ets:select_delete(Table, MatchSpec) to delete records matching a match
specification

432 Chapter 25

Let’s try it. We’ll define a record for our tables, and then populate them
with various goods:

11> rd(food, {name, calories, price, group}).
food
12> ets:new(food, [ordered_set, {keypos,#food.name}, named_table]).
food
13> ets:insert(food, [#food{name=salmon, calories=88, price=4.00, group=meat},
13> #food{name=cereals, calories=178, price=2.79, group=bread},
13> #food{name=milk, calories=150, price=3.23, group=dairy},
13> #food{name=cake, calories=650, price=7.21, group=delicious},
13> #food{name=bacon, calories=800, price=6.32, group=meat},
13> #food{name=sandwich, calories=550, price=5.78, group=whatever}]).
true

We can then try to select food items under a given number of calories:

14> ets:select(food, ets:fun2ms(fun(N = #food{calories=C}) when C < 600 -> N end)).
[#food{name = cereals,calories = 178,price = 2.79,group = bread},
 #food{name = milk,calories = 150,price = 3.23,group = dairy},
 #food{name = salmon,calories = 88,price = 4.0,group = meat},
 #food{name = sandwich,calories = 550,price = 5.78,group = whatever}]
15> ets:select_reverse(food, ets:fun2ms(fun(N = #food{calories=C}) when C < 600 -> N end)).
[#food{name = sandwich,calories = 550,price = 5.78,group = whatever},
 #food{name = salmon,calories = 88,price = 4.0,group = meat},
 #food{name = milk,calories = 150,price = 3.23,group = dairy},
 #food{name = cereals,calories = 178,price = 2.79,group = bread}]

Don’t Dr ink Too Much Kool- A id

A function like ets:fun2ms sounds totally awesome, right? But you need to be care-
ful with it! A problem with it is that if ets:fun2ms can handle dynamic funs when in
the shell (you can pass funs around, and it will just eat them up), this isn’t possible
in compiled modules. This is due to the fact that Erlang has two kinds of funs: shell
funs and module funs.

Module funs are compiled down to some compact format understood by the
VM. They’re opaque and cannot be inspected to see how they are on the inside.

On the other hand, shell funs are abstract terms not yet evaluated. They’re
made in a way that allows the shell to call the evaluator on them. The function
fun2ms will thus have two versions of itself: one for when you’re getting compiled
code and one for when you’re in the shell.

This is fine, except that the funs aren’t interchangeable with different types of
funs. This means that you can’t take a compiled fun and try to call ets:fun2ms on it
while in the shell, and you can’t take a dynamic fun and send it over to a compiled
bit of code that’s calling fun2ms in there. Too bad!

Bears, ETS, Beets: In-Memory NoSQL for Free! 433

Or maybe what we want is just delicious food:

16> ets:select(food, ets:fun2ms(fun(N = #food{group=delicious}) -> N end)).
[#food{name = cake,calories = 650,price = 7.21,group = delicious}]

Deleting has a little special twist to it. You need to return true in the
pattern instead of any kind of value:

17> ets:select_delete(food, ets:fun2ms(fun(#food{price=P}) when P > 5 -> true end)).
3
18> ets:select_reverse(food, ets:fun2ms(fun(N = #food{calories=C}) when C < 600 -> N end)).
[#food{name = salmon,calories = 88,price = 4.0,group = meat},
 #food{name = milk,calories = 150,price = 3.23,group = dairy},
 #food{name = cereals,calories = 178,price = 2.79,group = bread}]

As the last selection shows, items over $5.00 were removed from the table.
ETS has a lot more functions, such as ways to convert the table to lists

or files (ets:tab2list/1, ets:tab2file/1, ets:file2tab/1) and get information
about all tables (ets:i/0, ets:info(Table)). Head over to the official documen-
tation to learn more about these functions.

There’s also a module called tv (Table Viewer) that can be used to visu-
ally manage the ETS tables on a given Erlang VM. Just call tv:start(), and a
window will be opened, showing your tables.

DETS
DETS is a disk-based version of ETS, with a few key differences:

•	 There are no longer ordered_set tables.

•	 There is a disk-size limit of 2GB for DETS files.

•	 Operations such as prev/1 and next/1 are not nearly as safe or fast.

•	 Starting and stopping tables has changed a bit. A new database table is
created by calling dets:open_file/2, and is closed by calling dets:close/1.
The table can later be reopened by calling dets:open_file/1.

Otherwise, the API is nearly the same, and it is thus possible to have a
simple way to handle writing and looking for data inside files.

Don’t Dr ink Too Much Kool- A id

DETS risks being slow, as it is a disk-only database. You might feel like coupling
ETS and DETS tables into a somewhat efficient database that stores both in RAM
and on disk.

If you feel like doing so, it might be a good idea to look into Mnesia (covered
in Chapter 29) as a database, which does exactly the same thing, while adding
support for sharding, transactions, and distribution.

434 Chapter 25

A Little Less Conversation, a Little More Action, Please
Following this rather long section title (and long previous sections), we’ll
turn to the practical problem that brought us here in the first place: updat-
ing regis so that it uses ETS and gets rid of a few potential bottlenecks.

Before we get started, we need to think about how we’re going to handle
operations, and what is safe and unsafe. Things that should be safe are
those that modify nothing and are limited to one query (not three or four
over time). They can be done by anyone at any time. Everything else that
has to do with writing to a table, updating records, deleting them, or read-
ing in a way that requires consistency over many requests is to be considered
unsafe.

Because ETS has no transactions what-
soever, all unsafe operations should be
performed by the process that owns the
table. The safe ones should be allowed to
be public—done outside the owner process.
We’ll keep this in mind as we update regis.

The first step will be to make a copy of
regis-1.0.0 as regis-1.1.0 (you can get a copy
of regis-1.1.0 at http://learnyousomeerlang.com/
static/erlang/regis-1.1.0.zip). I’m bumping up
the second number and not the third one
here because our changes shouldn’t break the
existing interface and are technically not bug
fixes, so we’re going to consider this version to
be only a feature upgrade.

The Interface
In that new directory, we’ll need to operate only on regis_server.erl at first.
We’ll keep the interface intact so all the rest, in terms of structure, should
not need to change too much.

%%% The core of the app: the server in charge of tracking processes.
-module(regis_server).
-behavior(gen_server).
-include_lib("stdlib/include/ms_transform.hrl").

-export([start_link/0, stop/0, register/2, unregister/1, whereis/1,
 get_names/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 code_change/3, terminate/2]).

%%%%%%%%%%%%%%%%%
%%% INTERFACE %%%
%%%%%%%%%%%%%%%%%
start_link() ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

Bears, ETS, Beets: In-Memory NoSQL for Free! 435

stop() ->
 gen_server:call(?MODULE, stop).

%% Give a name to a process.
register(Name, Pid) when is_pid(Pid) ->
 gen_server:call(?MODULE, {register, Name, Pid}).

%% Remove the name from a process.
unregister(Name) ->
 gen_server:call(?MODULE, {unregister, Name}).

%% Find the pid associated with a process.
whereis(Name) -> ok.

%% Find all the names currently registered.
get_names() -> ok.

For the public interface, only whereis/1 and get_names/0 will change and
be rewritten. That’s because, as mentioned earlier, they are single-read safe
operations. The rest will require to be serialized in the process owning
the table.

That’s it for the API so far. Let’s head for the inside of the module.

Implementation Details
We’re going to use an ETS table to store stuff, so it makes sense to put that
table into the init function. Moreover, because our whereis/1 and get_names/0
functions will give public access to the table (for speed reasons), naming
the table will be necessary for it to be accessible to the outside world. By
naming the table, much like what happens when we name processes, we can
hardcode the name in the functions, so we won’t need to pass around an ID.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% GEN_SERVER CALLBACKS %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
init([]) ->
 ?MODULE = ets:new(regis, [set, named_table, protected]),
 {ok, ?MODULE}.

The next function will be handle_call/3, handling the message
{register, Name, Pid} as defined in register/2.

handle_call({register, Name, Pid}, _From, Tid) ->
 %% Neither the name or the pid can already be in the table
 %% so we match for both of them in a table-long scan using this.
 MatchSpec = ets:fun2ms(fun({N,P,_Ref}) when N==Name; P==Pid -> {N,P} end),
 case ets:select(Tid, MatchSpec) of
 [] -> % free to insert
 Ref = erlang:monitor(process, Pid),
 ets:insert(Tid, {Name, Pid, Ref}),
 {reply, ok, Tid};

436 Chapter 25

 [{Name,_}|_] -> % maybe more than one result, but name matches
 {reply, {error, name_taken}, Tid};
 [{_,Pid}|_] -> % maybe more than one result, but Pid matches
 {reply, {error, already_named}, Tid}
 end;

This is by far the most complex function in the module. There are
three basic rules to respect:

•	 A process cannot be registered twice.

•	 A name cannot be taken twice.

•	 A process can be registered if it doesn’t break the first two rules.

This is what the preceding code does. The match specification derived
from fun({N,P,_Ref}) when N==Name; P==Pid -> {N,P} end will look through the
whole table for entries that match either the name or the pid that we’re
trying to register. If there’s a match, we return both the name and pid that
were found. This may be weird, but it makes sense to want both when we
look at the patterns for the case ... of after that.

The first pattern means nothing was found, and so insertions are good.
We monitor the process we have registered (to unregister it in case of fail-
ure), and then add the entry to the table. In case the name we are trying to
register was already in the table, the pattern [{Name,_}|_] will take care of it.
If it was the pid that matched, then the pattern [{_,Pid}|_] will take care of
it. That’s why both values are returned: It’s simpler to match on the whole
tuple later on, not caring whether it was Pid or Name that matched in the
match specifications.

Why is the pattern of the form [Tuple|_] rather than just [Tuple]? The
explanation is simple enough: If we’re traversing the table looking for
either pids or names that are similar, it is possible the list returned will be
[{NameYouWant, SomePid},{SomeName,PidYouWant}]. If that happens, then a pattern
match of the form [Tuple] will crash the process in charge of the table and
ruin your day.

Oh yeah, don’t forget to add the -include_lib("stdlib/include/
ms_transform.hrl"). in the module; otherwise, fun2ms will die with a weird
error message:

** {badarg,{ets,fun2ms,
 [function,called,with,real,'fun',should,be,transformed,with,
 parse_transform,'or',called,with,a,'fun',generated,in,the,
 shell]}}

That’s what happens when you forget the include file. Consider yourself
warned. Look before crossing the streets, don’t cross the streams, and don’t
forget your include files.

Bears, ETS, Beets: In-Memory NoSQL for Free! 437

The next bit handles when we ask to manually unregister a process:

handle_call({unregister, Name}, _From, Tid) ->
 case ets:lookup(Tid, Name) of
 [{Name,_Pid,Ref}] ->
 erlang:demonitor(Ref, [flush]),
 ets:delete(Tid, Name),
 {reply, ok, Tid};
 [] ->
 {reply, ok, Tid}
 end;

This is similar to what’s in the old version of the code. The idea is
simple: Find the monitor reference (with a lookup on the name), cancel
the monitor, and then delete the entry and keep going. If the entry is not
there, we pretend we deleted it anyway, and everyone will be happy. Oh,
how dishonest we are.

The next bit is about stopping the server:

handle_call(stop, _From, Tid) ->
 %% For the sake of being synchronous and because emptying ETS
 %% tables might take a bit longer than dropping data structures
 %% held in memory, dropping the table here will be safer for
 %% tricky race conditions, especially in tests where we start/stop
 %% servers a lot. In regular code, this doesn't matter.
 ets:delete(Tid),
 {stop, normal, ok, Tid};
handle_call(_Event, _From, State) ->
 {noreply, State}.

As the comments in the code say, we could have been fine just ignoring
the table and letting it be garbage-collected. However, because the test suite
we wrote in Chapter 24 starts and stops the server all the time, delays can be
a bit dangerous.

This is what the timeline of the process looks like with the old one:

shell

stop

start

server

[dead]

[start new server]

438 Chapter 25

And here’s what sometimes happens with the new one:

shell

stop

start

server

[table is removed]
[dead/start new server]

~conflict!~

By using this scheme, we’re making it a lot more unlikely for errors to
happen by doing more work in the synchronous part of the code:

shell

stop

start

server

[table is removed]
[dead]

[start new server]

If you don’t plan on running the test suite very often, you can just
ignore the whole thing. I’ve decided to show it to avoid nasty surprises,
although in a non-test system, this kind of edge case should rarely occur.

Here are the other OTP callbacks:

handle_cast(_Event, State) ->
 {noreply, State}.

handle_info({'DOWN', Ref, process, _Pid, _Reason}, Tid) ->
 ets:match_delete(Tid, {'_', '_', Ref}),
 {noreply, Tid};
handle_info(_Event, State) ->
 {noreply, State}.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

terminate(_Reason, _State) ->
 ok.

We don’t care about any of them, except receiving a DOWN message,
meaning one of the processes we were monitoring died. When that hap-
pens, we delete the entry based on the reference we have in the message,
and then move on.

Bears, ETS, Beets: In-Memory NoSQL for Free! 439

You’ll notice that code_change/3 could actually work as a transition
between the old regis_server and the new regis_server. Implementing this
function is left as an exercise for the reader. I hate books that give exercises
for the reader without solutions, so here’s at least a little pointer so I’m not
just being a jerk like all the other writers out there: You need to take either
of the two GB trees from the older version, and use gb_trees:map/2 or the
gb_trees iterators to populate a new table before moving on. The downgrade
function can be written by doing the opposite.

All that’s left to do is fix the two public functions we have left unimple-
mented. Of course, we could write a %% TODO comment, call it a day, and go
drink until we forget we’re programmers, but that would be a bit irrespon-
sible. Let’s fix stuff:

%% Find the pid associated with a process.
whereis(Name) ->
 case ets:lookup(?MODULE, Name) of
 [{Name, Pid, _Ref}] -> Pid;
 [] -> undefined
 end.

This one looks for a name, and returns the pid or undefined depending
on whether the entry has been found or not. Note that we use regis (?MODULE)
as the table name here—that’s why we made it protected and named in the
first place.

Here’s the next one:

%% Find all the names currently registered.
get_names() ->
 MatchSpec = ets:fun2ms(fun({Name, _, _}) -> Name end),
 ets:select(?MODULE, MatchSpec).

We use fun2ms again to match on the name and keep only that. Selecting
from the table will return a list and do what we need.

That’s it! You can run the test suite in test/ to make things go:

$ erl -make
... <snip> ...
Recompile: src/regis_server
$ erl -pa ebin
... <snip> ...
1> eunit:test(regis_server).
 All 13 tests passed.
ok

Hell, yes—I think we can consider ourselves pretty good at ETSing now.
You know what would be really nice to do next? We could actually explore

the distributed aspects of Erlang. Maybe we can bend our minds in a few
more twisted ways before being finished with the Erlang beast. Let’s see.

26
D i s t r i b u n o m i c o n

Oh, hi! Please have a seat. I was expecting you.
When you first heard of Erlang, there were two or

three attributes that likely attracted you. Erlang is a
functional language, it has great semantics for concur-
rency, and it supports distribution. We’ve covered the
first two attributes, and spent time exploring a dozen
more you possibly didn’t expect. Now we’re at the last
big thing: distribution.

We’ve waited quite a while before getting here because it’s not exactly
useful to get distributed if we can’t make things work locally to begin with.
We’re finally up to the task and have come a long way to get where we are.

Like almost every other feature of Erlang, the distributed layer of the
language was first added in order to provide fault tolerance. Software run-
ning on a single machine is always at risk of having that single machine dying

442 Chapter 26

and taking your application offline. Software
running on many machines makes it easier to
handle hardware failure if, and only if, the appli-
cation was built correctly. There is no benefit
regarding fault tolerance if your application
runs on many servers but cannot deal with one
of them being taken down.

Distributed programming is like being left
alone in the dark, with monsters everywhere. It’s
scary, and you don’t know what to do or what’s
coming at you. Bad news: Distributed Erlang is
still leaving you alone in the dark to fight the
scary monsters. It won’t do any of that kind of
hard work for you. Good news: Instead of being alone with nothing but
pocket change and a poor sense of aim (making it harder to kill the mon-
sters), Erlang gives you a flashlight, a machete, and a pretty kick-ass mus-
tache to feel more confident (this also applies to female readers).

That’s not especially due to how Erlang is written, but more or less due
to the nature of distributed software. Erlang provides the few basic build-
ing blocks of distribution: ways to have many nodes (VMs) communicating
with each other, serializing and deserializing data in communications,
extending the concepts of multiple processes to many nodes, ways to moni-
tor network failures, and so on. However, it will not provide solutions to
software-specific problems such as “what happens when stuff crashes.”

This is the standard “tools, not solutions” approach you’ve seen before
in OTP. You rarely get full-blown software and applications, but you do get
many components you can use to build systems. You’ll have tools that tell
you when parts of the system go up or down and tools to do a bunch of stuff
over the network, but hardly any silver bullet that takes care of fixing things
for you.

Let’s see what kind of flexing we can do with these tools.

This Is My Boomstick
To tackle all these monsters in the dark, we’ve been granted a very useful
thing: pretty complete network transparency.

An instance of an Erlang VM that is up and running, ready to connect
to other VMs, is called a node. Whereas some languages or communities will
consider a server to be a node, in Erlang, each VM is a node. You can have
50 nodes running on a single computer, or 50 nodes running on 50 com-
puters. It doesn’t really matter.

Distribunomicon 443

When you start a node, you give it a name, and it will connect to an
application called Erlang Port Mapper Daemon (EPMD), which will run on
each of the computers that are part of your Erlang cluster. EPMD will act
as a name server that lets nodes register themselves, contact other nodes by
name rather than port numbers, and warn you about any name clashes.

From this point on, a node can decide to set up a connection to another
node. When it does so, both nodes automatically start monitoring each
other, and they can tell if the connection is dropped or a node disappears.
More importantly, when a new node joins another node that is already part
of a group of nodes connected together, the new node automatically con-
nects to the entire group.

To illustrate how Erlang nodes set up their connections, let’s take the
idea of a group of survivors during a zombie outbreak. The survivors are
Zoey, Bill, Rick, and Daryl. Zoey and Bill know each other and communi-
cate on the same frequency on walkie-talkies. Rick and Daryl are each on
their own, as shown here:

Bill Zoey

Rick Daryl

Now let’s say Rick and Daryl meet on their way to a survivor camp. They
share their walkie-talkie frequency and can now stay up to date with each
other before splitting ways again, like this:

Bill Zoey

Rick Daryl

444 Chapter 26

At some point, Rick meets Bill. Both are pretty happy about that, and so
they decide to share frequencies. At this point, the connections spread, and
the final graph looks like this:

Bill Zoey

Rick Daryl

That means that any survivor can contact any other directly. This is use-
ful because in the event of the death of any survivor, no one is left isolated.
Erlang nodes are set up in this way: Everyone connects to everyone.

Don’t Dr ink Too Much Kool- A id

Connecting nodes in this manner, while nice for some fault-tolerance reasons, has
a pretty bad drawback with regard to how much you can scale. It will be hard to
have hundreds and hundreds of nodes part of your Erlang cluster, simply because
of how many connections are required and how much chatter is involved. In fact,
you will require one ephemeral port per node. While some large-scale projects
have managed to do this, you may find it easier to just split groups of nodes into
smaller clusters.

If you were planning on using Erlang to do that kind of heavy setup, please
read on in this chapter to see why things are that way and what might be done to
work around the problem, if possible.

Once the nodes are connected, they remain fully independent. They
keep their own process registry and ETS tables (with their own names for
tables), and the modules they load are independent from each other. A con-
nected node that crashes won’t bring down the other nodes in the cluster.

Connected nodes can then start exchanging messages. The distribution
model of Erlang was designed so that local processes can contact remote
processes and send them regular messages. How is this possible if nothing
is shared and all the process registries are unique? As we’ll see when we
get into the specifics of distribution in “Connecting Nodes” on page 459,
there is a way to access registered processes on a particular node. From that
point on, a first message can be sent.

Erlang messages are serialized and unserialized automatically for you
in a transparent manner. All data structures, including pids, will work the

Distribunomicon 445

same remotely and locally. This means that we can send pids over the net-
work, and then the other side can communicate with them by sending
messages. Even better, links and monitors can be set up across the network
if you can access the pids!

So if Erlang is doing so much to make everything that transparent, why
am I saying it’s only giving us a machete, a flashlight, and a mustache?

Fallacies of Distributed Computing
Much like a machete is meant to kill only a given type of monster, Erlang’s
tools are meant to handle only some kinds of distributed computing. To
understand the tools Erlang gives us, it will be useful to first have an idea of
what kind of landscape exists in the distributed world, and which assump-
tions Erlang makes in order to provide fault tolerance.

Some very smart guys took their time in the past few decades to cat-
egorize the kind of stuff that goes wrong with distributed computing. They
came up with eight major assumptions people make (some of which Erlang’s
designers made for various reasons) that end up biting them in the ass later.

N o t e 	 The fallacies of distributed computing were introduced in “Fallacies of Distributed
Computing Explained,” by Arnon Rotem-Gal-Oz, available online at http://www
.rgoarchitects.com/Files/fallacies.pdf.

The Network Is Reliable
The first fallacy of distributed computing is assuming that the application
can be distributed over the network. That’s kind of weird to say, but there
will be plenty of times where the network will go down for annoying reasons:
power failures, broken hardware, someone tripping over a cord, vortex to
other dimensions engulfing mission-critical components, headcrabs infesta-
tion, copper theft, and so on.

One of the biggest errors you can make is to think you can always reach
remote nodes and talk to them. This is somewhat possible to handle by add-
ing more hardware and gaining redundancy, so that if hardware fails, the
application can still be reached somewhere else. The other thing to do is
to be ready to suffer a loss of messages and requests, and also be ready for
things to become unresponsive. This is especially true when you depend on
some kind of third-party service that’s no longer there, while your own soft-
ware stack keeps working well.

Erlang doesn’t have any special measures to deal with network reliabil-
ity, as usually the decisions made will be application specific. After all, who
else but you can know how important a specific component will be? Still,
you’re not totally alone, as a distributed Erlang node will be able to detect
other nodes getting disconnected (or becoming unresponsive). There are
specific functions to monitor nodes, and links and monitors will also be
triggered upon a disconnection.

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf

446 Chapter 26

The best thing Erlang has in this case is its asynchronous communication
mode. By sending messages asynchronously and forcing developers to send
a reply back when things work well, Erlang pushes for all message-passing
activities to intuitively handle failure. If the process you’re talking to is on a
node that disappears due to some network failure, you handle it as naturally
as any local crash. This is one of the many reasons why Erlang is said to scale
well (scaling not only in performance but also in design).

Don’t Dr ink Too Much Kool- A id

Linking and monitoring across nodes can be dangerous. In the case of a network
failure, all remote links and monitors are triggered at once. This might then gener-
ate thousands and thousands of signals and messages to various processes, which
puts a heavy and unexpected load on the system.

Preparing for an unreliable network also means preparing for sudden failures
and making sure your system doesn’t get crippled by part of the system suddenly
disappearing.

There Is No Latency
One of the double-edged aspects of seemingly good distribution systems
is that they often end up hiding the fact that the function calls you are
making are remote. While you expect some function calls to be really fast,
that will not be the case when they are made over the network. It’s the dif-
ference between ordering a pizza from within the pizzeria and getting one
delivered from another city to your house. While there will always be a basic
wait time, it’s possible that your pizza will be delivered cold because delivery
took too long.

Forgetting that network communications make things slower even for
really small messages can be a costly error if you always expect really fast
results. Erlang’s model treats us well there. Because of the way we set up our
local applications with isolated processes, asynchronous messages, and time-
outs, and we’re always thinking about the possibility of processes failing,
there is little adaptation required to go distributed. The timeouts, links,
monitors, and asynchronous patterns remain the same, and still are as reli-
able. Erlang doesn’t implicitly assume there is no latency, and in fact, always
expects it by design.

You, however, might make that assumption in your design and expect
replies faster than realistically possible. Just keep an eye open.

Bandwidth Is Infinite
Although network transfers are getting faster and faster all the time, and
generally speaking, each byte transferred over the network is cheaper as
time goes by, it is risky to assume that sending copious amounts of data is
simple and easy.

Distribunomicon 447

Because of how we build applications locally, we generally won’t have
too many problems with that in Erlang. Remember that one good trick is
to send messages about what is happening, rather than moving new states
around (“player X found item Y,” rather than sending player X’s entire
inventory over and over again).

If, for some reason, you need to send large messages, be extremely care-
ful. The way Erlang distribution and communication work over many nodes
is especially sensitive to large messages. If two nodes are connected, all of
their communications will tend to happen over a single TCP connection.
Because we generally want to maintain message ordering between two pro-
cesses (even across the network), messages will be sent sequentially over the
connection. That means that if you have one very large message, you might
be blocking the channel for all the other messages.

Worse than that, Erlang knows whether nodes are alive by sending
heartbeats. Heartbeats are small messages sent at a regular interval between
two nodes, basically saying, “I’m still alive. Keep on keepin’ on!” They’re
like our zombie survivors routinely pinging each other with messages. “Bill,
are you there?” And if Bill never replies, you might assume he is dead (or
out of batteries), and he won’t get your future communications. Heartbeats
are sent over the same channel as regular messages.

The problem is that a large message can hold back heartbeats. Too
many large messages keeping heartbeats at bay for too long will eventually
result in either of the nodes assuming the other is unresponsive and closing
its connection to it. That’s bad.

The good Erlang design lesson to keep in mind to prevent such problems
is to keep your messages small. Everything will be better that way.

The Network Is Secure
When you get distributed, it’s often very dangerous to believe that every-
thing is safe—that you can trust the messages you receive. It can be simple
things like someone fabricating messages and sending them to you, some-
one intercepting packets and modifying them (or looking at sensitive data),
or in the worst case, someone being able to take over your application or
the system on which it runs.

In the case of distributed Erlang, this is sadly an assumption that was
made. Here is what Erlang’s security model looks like:

* This box intentionally left blank *

448 Chapter 26

Yep. This is because Erlang distribution was initially meant for fault
tolerance and redundancy of components. In the old days of the language,
back when it was used for telephone switches and other telecommunication
applications, Erlang would often be deployed on hardware running in the
weirdest places—very remote locations with odd conditions (engineers
sometimes needed to attach servers to the wall to avoid wet ground or install
custom heating systems in the woods in order for the hardware to run at
optimal temperatures). In these cases, you had failover hardware in the
same physical location as the main hardware. This is often where distrib-
uted Erlang would run, and it explains why Erlang designers assumed a safe
network to operate with.

Sadly, this means that modern Erlang applications can rarely be clustered
automatically across different data centers. In fact, it isn’t recommended
to do so. Most of the time, you will want your system to be based on many
smaller, walled-off clusters of Erlang nodes, usually located in single loca-
tions. Anything more complex will need to be left to the developers using
one of the following methods:

•	 Switching to SSL

•	 Implementing their own high-level communication layer

•	 Tunneling over secure channels

•	 Reimplementing the communication protocol between nodes

Using SSL is explained in the Secure Socket Layer User’s Guide
(Chapter 3, “Using SSL for Erlang Distribution,” at http://www.erlang.org/
doc/apps/ssl/ssl_distribution.html). Pointers on how to implement your own
carrier protocol for the Erlang distribution are provided in the ERTS User’s
Guide (Chapter 3, “How to implement an alternative carrier for the Erlang
distribution” at http://www.erlang.org/doc/apps/erts/alt_dist.html), which also
contains details on the distribution protocol (Chapter 9, “Distribution
Protocol,” at http://www.erlang.org/doc/apps/erts/erl_dist_protocol.html).

Even in these cases, you must be careful, because someone gaining
access to one of the distributed nodes then has access to all of them, and
can run any command those nodes can.

Topology Doesn’t Change
When first designing a distributed application made to run on many servers,
it is possible that you will have a given number of servers in mind, and per-
haps a given list of hostnames. Maybe you will design things with specific IP
addresses in mind. This can be a mistake. Hardware dies, operations peo-
ple move servers around, new machines are added, and some are removed.
The topology of your network will constantly change. If your application
works with any of these topological details hardcoded, then it won’t easily
handle these kinds of changes in the network.

Distribunomicon 449

In the case of Erlang, there is no explicit assumption made in that
way. However, it is very easy to let it creep inside your application. Erlang
nodes all have a name and a hostname, and they can constantly be changing.
With Erlang processes, you not only need to think about how the process is
named, but also about where it is now located in a cluster. If you hardcode
both the names and hostnames, you might be in trouble at the next failure.
Don’t worry too much though. As discussed in “The Calls from Beyond”
on page 467, we can use a few interesting libraries that let us forget about
node names and topology in general, while still being able to locate specific
processes.

There Is Only One Administrator
This fallacy is something a distribution layer of a language or library can’t
prepare you for, no matter what. The idea of this fallacy is that you do
not always have only one main operator for your software and its servers,
although it might be designed as if there were only one. If you decide to
run many nodes on a single computer, then you might never need to think
about this fallacy. However, if you run stuff across different locations, or a
third party depends on your code, then you must take care.

Things to pay attention to include giving others tools to diagnose
problems on your system. Erlang is somewhat easy to debug when you can
manipulate a VM manually—you can even reload code on the fly if you
need to, after all. Someone who cannot access your terminal and sit in front
of the node will need different facilities to operate though.

Another aspect of this fallacy is that things like restarting servers, mov-
ing instances between data centers, and upgrading parts of your software
stack are not necessarily controlled by a single person or team. In very large
software projects, it is likely that many teams, or even many different soft-
ware companies, take charge of different parts of a greater system.

If you’re writing protocols for your software stack, being able to handle
many versions of that protocol might be necessary, depending on how fast
or slow your users and partners are to upgrade their code. The protocol
might contain information about its versioning from the beginning, or be
able to change halfway through a transaction, depending on your needs.
I’m sure you can think of more examples of things that can go wrong.

Transport Cost Is Zero
The transport cost is zero fallacy is a two-sided assumption. The first one
relates to the cost of transporting data in terms of time, and the second one
is related to the cost of transporting data in terms of money.

The first case assumes that doing things like serializing data is nearly
free, very fast, and doesn’t play a big role. In reality, larger data structures
take longer to be serialized than small ones, and then they need to be
unserialized on the other end of the wire. This will be true no matter
what you carry across the network, although small messages help reduce
the noticeability of this effect.

450 Chapter 26

The second aspect of assuming transport cost is zero has to do with how
much it costs to carry data around. In modern server stacks, memory (both
in RAM and on disk) is often cheap compared to the cost of bandwidth,
which you need to pay for continuously, unless you own the whole network
where things run. Optimizing for fewer requests with smaller messages will
be rewarding in this case and many others, too.

For Erlang, due to its initial use cases, no special care has been taken
to do things like compress messages going cross-node (although the func-
tions for it already exist). Instead, the original designers chose to let people
implement their own communication layer if they required it. The responsi-
bility is thus on the programmer to make sure small messages are sent and
other measures are taken to minimize the costs of transporting data.

The Network Is Homogeneous
The last assumption is thinking that all components of a networked applica-
tion will speak the same language or will use the same formats to operate
together.

For our zombie survivors, this can be a question of not assuming that
all survivors will always speak English (or good English) when they lay their
plans, or that a word will have the same meaning to different people.

In terms of programming, this is usually about not relying on closed
standards but using open ones instead, or being ready to switch from one
protocol to another one at any point in time. When it comes to Erlang, the
distribution protocol is entirely public, but all Erlang nodes assume that
people communicating with them speak the same language. Foreigners try-
ing to integrate themselves into an Erlang cluster either must learn to speak
Erlang’s protocol or Erlang applications need some kind of translation layer
for XML, JSON, or whatever.

Learning to speak Erlang’s protocol is rela-
tively simple. If you respect the protocol, you can
pretend to be another Erlang node, even if you’re
not writing Erlang. If it quacks like a duck and
walks like a duck, then it must be a duck. That’s
the principle behind C nodes. C nodes (or nodes
in languages other than C) are programs that
implement Erlang’s protocol and then pretend
they are Erlang nodes in a cluster, allowing you
to distribute work without too much effort. More
details are available at http://www.erlang.org/doc/
tutorial/cnode.html.

Another solution for data exchange is to use BERT or BERT-RPC (doc-
umented at http://bert-rpc.org/). This is an exchange format like XML or
JSON, but specified as something similar to the Erlang external term format
(documented at http://www.erlang.org/doc/apps/erts/erl_ext_dist.html).

Distribunomicon 451

Fallacies in a Nutshell
We’ve looked at a bunch of assumptions involved in distributed computing
fallacies. In short, you always need to be careful and consider the following
points:

•	 You shouldn’t assume the network is reliable. Erlang doesn’t have any
special measures for that, except detecting that something went wrong
for you (although that’s not too bad as a feature).

•	 The network might be slow from time to time. Erlang provides asyn-
chronous mechanisms and knows about it, but you need to be careful
that your application is also aware of this possibility.

•	 Bandwidth isn’t infinite. Small, descriptive messages help respect this.

•	 The network isn’t secure, and Erlang doesn’t have anything to offer by
default for this.

•	 The topology of the network can change. No explicit assumption is
made by Erlang, but you might make some assumptions about where
things are and how they’re named.

•	 You (or your organization) rarely fully control the structure of things.
Parts of your system may be outdated, use different versions, or be
restarted or down when you don’t expect that to happen.

•	 Transporting data has costs. Again, small, short messages help.

•	 The network is heterogeneous. Not everything is the same, and data
exchange should rely on well-documented formats.

Dead or Dead-Alive
The fallacies of distributed computing partially explain why we’re fighting
monsters in the dark. Although we have some useful tools, there are still a
lot of issues and things left for us to do. We need to be careful about design
decisions (small messages, reducing communication, and so on) regarding
these fallacies. The most problematic issue has to do with nodes dying or
the network being unreliable. This issue is especially nasty because there
is no good way to know whether something is dead or alive (without being
able to contact it).

Let’s get back to Bill, Zoey, Rick, and Daryl, our four zombie apocalypse
survivors. They all met at a safe house, spent a few days resting there, eating
whatever canned food they could find. After a while, they needed to move
out and split across town to find more resources. They’ve set a rendezvous
point in a small camp on the limits of the town they’re in. During the expe-
dition, they keep contact by talking with the walkie-talkies. They announce
what they found, such as other survivors.

452 Chapter 26

Now suppose that at some point between the safe house and the ren-
dezvous point, Rick tries to contact his comrades. He manages to call Bill
and Zoey, but Daryl isn’t reachable. Bill and Zoey can’t contact him either.
The problem is that there is absolutely no way to know if Daryl has been
devoured by zombies, if his battery is dead, if he is asleep, or if he is just
underground. The group must decide whether to keep waiting for him,
keep calling for a while, or assume he is dead and move forward.

The same dilemma exists with nodes in a distributed system. When a
node becomes unresponsive, is it gone because of a hardware failure? Did
the application crash? Is there congestion on the network? Is the network
down? In some cases, the application is not running anymore, and you can
simply ignore that node and continue what you’re doing. In other cases, the
application is still running on the isolated node; from that node’s perspec-
tive, everything else is dead.

Erlang made the default decisions of considering unreachable nodes as
dead nodes and reachable nodes as alive. This is a pessimistic approach that
makes sense if you want to quickly react to catastrophic failures. It assumes
that the network is generally less likely to fail than the hardware or the soft-
ware in the system, which makes sense considering how Erlang was used
originally. An optimistic approach (which assumes nodes are still alive)
could delay crash-related measures because it assumes that the network is
more likely to fail than hardware or software, and thus have the cluster wait
longer for the reintegration of disconnected nodes.

This raises a question: In a pessimistic system, what happens when the
node we thought was dead suddenly returns, and it turns out it never died?
We’re caught by surprise by a living dead node, which had a life of its own,
isolated from the cluster in every way—data, connections, and so on. Some
very annoying things can happen.

Let’s imagine for a moment that you have a system with two nodes in two
different data centers. In that system, users have money in their account,
with the full amount held on each node. Each transaction then synchro-
nizes the data with all the other nodes. When all the nodes are fine, users
can keep spending money until their account is empty.

The software is chugging along fine, but at some point, one of the nodes
gets disconnected from the other. There is no way to know if the other side
is alive or dead. For all we care, both nodes could still be receiving requests
from the public, but without being able to communicate with each other.

There are two general strategies that can be taken: stop all transactions
or don’t. The risk of picking the first one is that your product becomes
unavailable and you’re losing money. The risk of the second one is that a
user with $1,000 in his account now has two servers that can accept $1,000
of transactions, for a total of $2,000! Whatever we do, we risk losing money
if we don’t do things right.

Isn’t there a way to avoid the issue entirely by keeping the application
available during netsplits, without losing data in between servers?

Distribunomicon 453

My Other Cap Is a Theorem
A quick answer to the previous question is
no. There is sadly no way to keep an appli-
cation alive and correct at the same time
during a netsplit.

This idea is known as the CAP theorem.
The CAP theorem first states that there
are three core attributes to all distributed
systems: consistency, availability, and
partition tolerance.

Consistency
In the previous example, consistency would be having the ability to have the
entire system, whether there are 2 or 1,000 nodes that can answer queries,
see exactly the same amount of money in the account at a given time. This
is something usually done by adding transactions (where all nodes must
agree to making a change to a database as a single unit before doing so) or
some other equivalent mechanism.

By definition, the idea of consistency is that all operations look as if
they were completed as a single, indivisible block, even across many nodes.
This is not in terms of time, but in terms of not having two different opera-
tions on the same piece of data modifying them in ways that give multiple
values reported by system during these operations. It should be possible to
modify a piece of data and not need to worry about others ruining your day
by fiddling with it at the same time you are.

Availability
The idea behind availability is that if you ask the system for some piece
of data, you’re able to get a response. If you don’t get an answer back, the
system isn’t available to you. Note that a response that says, “Sorry, I can’t
figure out results because I’m dead,” isn’t really a response, but only a sad
excuse for one. There is no more useful information in this response than in
no response at all (although academics are somewhat divided on the issue).

N o t e 	 An important consideration in the CAP theorem is that availability is a concern
only to nodes that are not dead. A dead node cannot send responses because it
can’t receive queries in the first place. This isn’t the same as a node that can’t
send a reply because a thing it depends on is no longer there. If the node can’t take
requests, change data, or return erroneous results, it isn’t technically a threat to
the balance of the system in terms of correctness. The rest of the cluster just needs to
handle more of the load until the dead node comes back up and can be synchronized.

454 Chapter 26

Partition Tolerance
Partition tolerance is the tricky part of the CAP theorem. It usually means
that the system can keep on working (and contain useful information) even
when parts of it can no longer communicate with each other. The whole
point of partition tolerance is that the system can work with messages pos-
sibly being lost between components. The definition is a bit abstract and
open-ended, and we’ll see why.

The CAP theorem basically specifies that in any distributed system, you
can have only two of the CAP attributes: consistency + availability (CA),
consistency + partition tolerance (CP), or availability + partition tolerance
(AP). There is no possible way to have all of them. This is both bad and
good news. The bad news is that it’s impossible to have both consistency
and availability while the network is partitioned. The good news is that this
is a theorem. If customers ask you to provide all three of them, you will have
the advantage of being able to tell them it is literally impossible to do so,
and won’t need to lose too much time (outside of explaining to them what
the hell the CAP theorem is).

Of the three possibilities, one that we can usually dismiss is the idea of
CA. The only time you would really want this is if you dare to say the net-
work will never fail, or that if it does, it does as an atomic unit (if one thing
fails, everything fails at once).

Until someone invents a network and hardware that never fail, or has
some way to make all parts of a system fail at once if one of them does, fail-
ure must be an option. Only two combinations of the CAP theorem remain:
AP or CP. A system torn apart by a netsplit can either remain available or
consistent, but not both.

N o t e 	 Some systems will choose to have neither A nor C. In some cases of high performance,
criteria such as throughput (how many queries you can answer) or latency (how fast
you can answer queries) will bend things in a way such that the CAP theorem isn’t
about two attributes (CA, CP, or AP), but also about two or fewer attributes. Also
note that some system can be fully consistent when there is no netsplit but relax consis-
tency requirements when netsplits happen.

Zombie Survivors and CAP
Time passed for our group of survivors, and they fended off groups of undead
for a good while. Bullets pierced brains, baseball bats shattered skulls, and
infected people were left behind. Bill, Zoey, Rick, and Daryl’s batteries
eventually ran out, and they were unable to communicate. As luck would
have it, they all found two survivor colonies populated with computer

Distribunomicon 455

scientists and engineers enamored with zombie survival. The colony survi-
vors were familiar with the concepts of distributed programming, as well as
communicating using light signals and mirrors with homemade protocols.

Bill and Zoey found the Chainsaw colony, and Rick and Daryl found
the Crossbow camp. Given that our survivors were the newest arrivals in
their respective colonies, they were often delegated to go out in the wild,
hunt for food, and kill zombies coming too close to the perimeters, while
the rest of the people debated the merits of Vim versus Emacs (the only war
that couldn’t die after a complete zombie apocalypse).

On their hundredth day there, our four survivors were sent to meet
halfway across the camps to trade goods for each colony. Before the survi-
vors left for their meeting, the Chainsaw and Crossbow colonies agreed on a
rendezvous point. If the destination or meeting time were to change while
they were on their journey, Rick and Daryl could send a message to the
Crossbow colony, or Zoey and Bill could send a message to the Chainsaw
colony. Then each colony would communicate the information to the
other colony, which would forward the changes to the other survivors, as
shown here:

light signal

Rick & Daryl

Bill & Zoey

All four survivors left early on a Sunday morning for a long trip on foot,
due to meet on Friday morning before dawn. Everything went fine (except
the occasional skirmishes with dead people who had been alive for quite a
while at this point).

456 Chapter 26

Unfortunately, on Wednesday, due to heavy rain and increased zombie
activity, Bill and Zoey were separated, lost, and delayed. The new situation
looked a bit like this:

light signal

Rick & Daryl

 Zoey

 Bill

To make matters worse, after the rain, the usually clear sky between
the two colonies got foggy, and it became impossible for the Chainsaw com-
puter scientists to communicate with the Crossbow people. Bill and Zoey
communicated their problems to their colony and asked to set a new meet-
ing time. This would have been all right without the fog, but now they have
the equivalent of a netsplit.

If both camps work under the CP approach, they will just keep Zoey
and Bill from setting a new meeting time. The CP approach is usually all
about stopping modifications to the data so it remains consistent, and all
survivors can still ask their respective camps for the data from time to time.
They will just be denied the right to change it. This ensures that there is no
way for some survivors to mess up the planned meeting time; any other sur-
vivors cut off from any contact could still meet at that time.

If both camps pick AP instead of CP, then survivors could be allowed to
change meeting dates. Each side of the partition would have its own version
of the meeting data. So if Bill called for a new meeting for Friday night,
the general state becomes as follows:

Chainsaw: Friday night
Crossbow: Friday before dawn

As long as the split lasts, Bill and Zoey will get their information from
Chainsaw only, and Rick and Daryl from Crossbow only. This lets some of
the survivors reorganize themselves if needed.

Distribunomicon 457

The interesting problem here is how to handle the different versions
of the data when the split is resolved (and the fog goes away). The CP
approach to this is pretty straightforward: The data didn’t change, so there
is nothing to do. The AP approach has more flexibility but also more prob-
lems to resolve. Usually, different strategies are employed:

•	 Use the last write wins approach, which is a conflict resolution method
that keeps the last update that was made. This one can be tricky because
in distributed settings, timestamps can be off, or things can happen at
exactly the same time.

•	 A winner can be picked randomly.

•	 Use more sophisticated time-based methods to help reduce conflicts,
such as last write wins, but with logical clocks. Logical clocks do not
work with absolute time values, but with incrementing values every time
someone modifies a file. If you want to know more about this approach,
read up on Lamport clocks or vector clocks.

•	 The onus of picking what to do with the conflict can be pushed back to
the application (or in our case, to the survivors). The receiving end will
just need to choose which of the conflicting entries is the right one. This
is a bit like what happens when you have merge conflicts with source
control tools like Subversion, Mercurial, or Git.

Which one is better? The way I’ve described things may have led you
to believe that we have the choice to be either fully AP or fully CP, like an
on/off switch. In the real world, we can have various options, such as a quo-
rum system, which changes this yes/no question into a dial we can turn to
choose how much consistency we want.

A quorum system works by a few simple rules. You have N nodes in the
system and require M of them to agree to modify the data to make it pos-
sible. A system with a relatively low consistency requirement could ask for
only 15 percent of the nodes to be available to make a change. This means
that in cases of splits, even small fragments of the network are still able to
modify the data. A higher consistency rating, set to maybe 75 percent of the
nodes, would mean that a larger part of the system needs to be present in
order to make changes. In this situation, if a few of the nodes are isolated,
they won’t have the right to change the data. However, the major part of the
system that’s still interconnected can work fine.

By making the M value of required nodes equal to N (the total number
of nodes), you can have a fully consistent system. By giving M the value 1,
you have a fully AP system, with no consistency guarantees.

Moreover, you could play with these values on a per-query basis. Queries
having to do with things of little importance (someone just logged on!) can
have lower consistency requirements, while things having to do with inven-
tory and money could require more consistency. Mix this in with different
conflict resolution methods for each case, and you can build surprisingly
flexible systems.

458 Chapter 26

Combined with all the different conflict resolution solutions available, a
lot of options become available to distributed systems, but their implemen-
tation remains very complex. We won’t use them in detail, but I think it’s
important to know what’s available out there and to be aware of the differ-
ent options.

Now that we’ve looked at the issues involved with distributed computing
with Erlang, let’s turn to the specifics of setting up a basic distributed system.

Setting Up an Erlang Cluster
Except for handling the fallacies of distributed computing, the hardest part
of distributed Erlang is managing to set up things right. Connecting nodes
across different hosts is a special kind of pain. To avoid this, we’ll usually
try things out using many nodes on a single computer, which tends to make
things easier.

Through the Desert on a Node with No Name
As mentioned earlier, Erlang gives names to each of the nodes to be able to
locate and contact them. The names are of the form Name@Host, where the
host is based on available DNS entries, either over the network or in your
computer’s host files (/etc/hosts on Mac OS X, Linux, and other Unix-like
systems, and C:\Windows\system32\drivers\etc\hosts for most Windows installa-
tions). All names need to be unique to avoid conflicts. If you try to start a
node with the same name as another one on the same hostname, you’ll get
a pretty terrible crash message.

Before starting any nodes, we need to talk a bit about their names. There
are two types of names:

•	 Long names are based on fully qualified domain names (aaa.bbb.ccc).
Many DNS resolvers consider domain names to be fully qualified if they
contain a period (.).

•	 Short names are based on hostnames without a period. They are resolved
by going through your host file or through any possible DNS entry.

It is generally easier to set up a bunch of Erlang nodes on a single com-
puter using short names rather than long names.

Also note that nodes with short names cannot communicate with nodes
that have long names, and the opposite is also true.

To use short names, start the Erlang VM with erl -sname short_name@domain.
To use long names start the VM with erl -name long_name@some.domain. You
can also start nodes with only the names: erl -sname short_name or erl -name
long_name. Erlang will automatically attribute a hostname based on your
operating system’s configuration. Another option is to start a node and
specify a direct IP address, such as erl -name name@127.0.0.1.

Distribunomicon 459

N o t e 	 Windows users should still use werl instead of erl. However, in order to start a dis-
tributed node and give it a name, the node should be started from the command line
instead of by clicking some shortcut or executable.

Connecting Nodes
Let’s start two nodes:

$ erl -sname ketchup
... <snip> ...
(ketchup@ferdmbp)1>

$ erl -sname fries
... <snip> ...
(fries@ferdmbp)1>

To connect fries with ketchup (and make a delicious cluster), go to the
first shell and enter the following function:

(ketchup@ferdmbp)1> net_kernel:connect(fries@ferdmbp).
true

The net_kernel:connect(NodeName) function sets up a connection with
another Erlang node. (Some tutorials use net_adm:ping(Node), but I think
net_kernel:connect/1 sounds more serious and lends me credence!) If you see
true as the result from the function call, congratulations, you’re in distrib-
uted Erlang mode now. If you see false, you’re in for a world of hurt trying
to get your network to play nice. For a very quick fix, edit your host files to
accept whatever host you want to use. Then try again.

You can see your own node name by calling the BIF node() and see who
you’re connecting to by calling the BIF nodes():

(ketchup@ferdmbp)2> node().
ketchup@ferdmbp
(ketchup@ferdmbp)3> nodes().
[fries@ferdmbp]

To get the nodes to communicate with each other, we’ll try a simple
trick. Register each shell’s process as shell locally:

(ketchup@ferdmbp)4> register(shell, self()).
true

(fries@ferdmbp)1> register(shell, self()).
true

460 Chapter 26

Now you’ll be able to call the process by name by sending a message to
{Name, Node}. Let’s try this on both shells:

(ketchup@ferdmbp)5> {shell, fries@ferdmbp} ! {hello, from, self()}.
{hello,from,<0.52.0>}

(fries@ferdmbp)2> receive {hello, from, OtherShell} -> OtherShell ! <<"hey there!">> end.
<<"hey there!">>

So that message was apparently received, and we can send something
else to the other shell:

(ketchup@ferdmbp)6> flush().
Shell got <<"hey there!">>
ok

As you can see, we can transparently send tuples, atoms, pids, and bina-
ries without a problem. Any other Erlang data structure is fine, too.

And that’s it. You know how to work with distributed Erlang!

More Tools
Several other BIFs might be useful for working with distributed Erlang. The
erlang:monitor_node(NodeName, Bool) function lets the process that calls it with
true as a value for Bool receive a message of the format {nodedown, NodeName} if
the node dies.

N o t e 	 Unless you’re writing a special library that relies on checking the life of other nodes,
you will rarely need to use erlang:monitor_node/2. This is because functions like
link/1 and monitor/2 still work across nodes. However, it may be interesting to use
erlang:monitor_node/2 when you have a lot of monitors or links across many nodes.
If you used the usual link/1 and monitor/2 functions in that case, a node dying could
mean that thousands of monitors would fire at once, instead of only one event for the
node monitor, which can then relay information locally.

Suppose we set up the following from the fries node:

(fries@ferdmbp)3> process_flag(trap_exit, true).
false
(fries@ferdmbp)4> link(OtherShell).
true
(fries@ferdmbp)5> erlang:monitor(process, OtherShell).
#Ref<0.0.0.132>

Distribunomicon 461

Then we kill the ketchup node. In this case, the fries shell process should
receive an 'EXIT' and monitor message:

(fries@ferdmbp)6> flush().
Shell got {'DOWN',#Ref<0.0.0.132>,process,<6349.52.0>,noconnection}
Shell got {'EXIT',<6349.52.0>,noconnection}
ok

And that’s the kind of stuff you’ll see.

N o t e 	 Instead of killing a node to disconnect it, you may also want to try the BIF
erlang:disconnect_node(Node) to get rid of the node without shutting it down.

But hey, wait a minute! Why does the pid look like that? Are we seeing
things right?

(fries@ferdmbp)7> OtherShell.
<6349.52.0>

What? Shouldn’t this be <0.52.0>? Nope. See, that way of displaying a
pid is just some kind of visual representation of what a process identifier is
really like. The first number represents the node (where 0 means the pro-
cess is coming from the current node), the second one is a counter, and the
third is a second counter for when you have so many processes created that
the first counter is not enough. The true underlying representation of a pid
is more like this:

(fries@ferdmbp)8> term_to_binary(OtherShell).
<<131,103,100,0,15,107,101,116,99,104,117,112,64,102,101,
 114,100,109,98,112,0,0,0,52,0,0,0,0,3>>

The binary sequence <<107,101,116,99,104,117,112,64,102,101,114,100,109,98,
112>> is in fact a Latin-1 (or ASCII) representation of <<"ketchup@ferdmbp">>,
the name of the node where the process is located. Then we have the two
counters: <<0,0,0,52>> and <<0,0,0,0>>. The last value (3) is some token value to
differentiate whether the pid comes from an old node, a dead one, and so
on. That’s why pids can be used transparently anywhere.

N o t e 	 If you’re unsure which node a pid is coming from, you don’t need to convert it to a
binary to read the node name. Just call node(Pid), and the node where it’s running
will be returned as an atom.

462 Chapter 26

Other interesting BIFs to use are spawn/2, spawn/4, spawn_link/2, and
spawn_link/4. They work like the other spawn BIFs, except these let you spawn
functions on remote nodes. Try this from the ketchup node:

(ketchup@ferdmbp)6> spawn(fries@ferdmbp,
(ketchup@ferdmbp)6> fun() -> io:format("I'm on ~p~n", [node()]) end).
I'm on fries@ferdmbp
<6448.50.0>

This is essentially a remote procedure call. We can choose to run arbi-
trary code on other nodes, without giving ourselves more trouble than that!
Interestingly, the function is running on the other node, but we receive the
output locally. That’s right—even output can be transparently redirected
across the network. This is possible thanks to the idea of group leaders.
Group leaders are inherited in the same way whether they’re local or remote
and will forward IO operations to their parents until they hit the correct
output driver, in the original shell that called them.

Those are all the tools you need in Erlang to be able to write distributed
code. You have just received your machete, flashlight, and mustache. You’re
at a level that would take a long while to achieve with other languages with-
out such a distribution layer. Now is the time to kill monsters. Or maybe
first, we need to talk about the cookie monster.

Cookies
Earlier in the chapter, I illustrated how
Erlang node connections are set up as
meshes. If someone connects to a node,
it gets connected to all the other nodes.
However, you may want to run different
Erlang node clusters on the same piece
of hardware. In this case, you do not
want to accidentally connect two Erlang
node clusters together. To help with
this, the designers of Erlang added a
little token value called a cookie.

Many references, such as the official Erlang documentation, put cook-
ies under the topic of security. But that has to be seen as a joke, because
there’s no way anyone seriously considers cookies to be safe things.

The cookie is a little unique value that must be shared between nodes
to allow them to connect with each other. Cookies are closer to the idea
of usernames than passwords, and I’m pretty sure no one would consider
having a username (and nothing else) as a security feature. Cookies make
much more sense as a mechanism used to divide clusters of nodes than as
an authentication mechanism.

Distribunomicon 463

To give a cookie to a node, just start it by adding a -setcookie Cookie
argument to the command line. Let’s try this with two new nodes:

$ erl -sname salad -setcookie 'myvoiceismypassword'
... <snip> ...
(salad@ferdmbp)1>

$ erl -sname mustard -setcookie 'opensesame'
... <snip> ...
(mustard@ferdmbp)1>

Now both nodes have different cookies, and they shouldn’t be able to
communicate:

(salad@ferdmbp)1> net_kernel:connect(mustard@ferdmbp).
false

This one has been denied, but we don’t see many explanations as to
why. Let’s take a look at the mustard node:

=ERROR REPORT==== 10-Dec-2013::13:39:27 ===
** Connection attempt from disallowed node salad@ferdmbp **

Good. Now what if we did really want salad and mustard to be together?
There’s a BIF called erlang:set_cookie/2 to do what we need. If you call
erlang:set_cookie(OtherNode, Cookie), you will use that cookie only when con-
necting to that other node. If you instead use erlang:set_cookie(node(), Cookie),
you’ll be changing the node’s current cookie for all future connections. To
see the changes, use erlang:get_cookie():

(salad@ferdmbp)2> erlang:get_cookie().
myvoiceismypassword
(salad@ferdmbp)3> erlang:set_cookie(mustard@ferdmbp, opensesame).
true
(salad@ferdmbp)4> erlang:get_cookie().
myvoiceismypassword
(salad@ferdmbp)5> net_kernel:connect(mustard@ferdmbp).
true
(salad@ferdmbp)6> erlang:set_cookie(node(), now_it_changes).
true
(salad@ferdmbp)7> erlang:get_cookie().
now_it_changes

There is one last cookie mechanism to see. If you tried the earlier
examples in this chapter, go look in your home directory. You should see a
file named .erlang.cookie in there. If you read that file, you’ll see a random

464 Chapter 26

string that looks a bit like PMIYERCHJZNZGSRJPVRK. Whenever you start a distrib-
uted node without a specific command to give it a cookie, Erlang will create
one and put it in .erlang.cookie. Then every time you start a node again with-
out specifying its cookie, the VM will look into your home directory and use
whatever is in that file.

Remote Shells
One of the first things we’ve learned in Erlang was how to interrupt run-
ning code by using ctrl-G (^G). In there, we saw a menu for distributed
shells:

(salad@ferdmbp)1>
User switch command
--> h
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s [shell] - start local shell
r [node [shell]] - start remote shell
q - quit erlang
? | h - this message

The r [node [shell]] option is the one we’re looking for to work with our
remote shells. We can start a job on the mustard node as follows:

--> r mustard@ferdmbp
--> j
 1 {shell,start,[init]}
 2* {mustard@ferdmbp,shell,start,[]}
--> c
Eshell V5.9.1 (abort with ^G)
(mustard@ferdmbp)1> node().
mustard@ferdmbp

And there you have it. You can now use the remote shell the same way
you would use a local one. There are a few differences with older versions
of Erlang, where features like autocompletion are not available. This way of
doing things is still very useful whenever you need to change things on a
node running with the -noshell option. If the -noshell node has a name,
then you can connect to it to do DevOps-related things like reloading
modules, debugging some code, and so on.

By using ctrl-G again, you can go back to your original node. Be care-
ful when you stop your session though. If you call q() or init:stop(), you’ll be
terminating the remote node!

Distribunomicon 465

Hidden Nodes
Erlang nodes can be connected by calling net_kernel:connect/1, but you need
to be aware that pretty much any interaction between nodes will get them to
set up a connection. Calling spawn/2 or sending a message to a foreign pid
will automatically set up connections.

This might be rather annoying
if you have a decent cluster and you
want to communicate with a single
node to change a few things there.
You wouldn’t want your admin node
to suddenly be integrated into the
cluster, making other nodes believe
that they have a new coworker to send
tasks to. To connect to a remote node
without automatically connecting to
all the other nodes it is connected
to, you could call the rarely used
erlang:send(Dest, Message, [noconnect])
function, which sends a message with-
out creating a connection, but this is
rather error prone.

Instead, you want to set up a node with the -hidden flag.
Let’s say you’re still running the mustard and salad nodes. We’ll start a

third node, olives, which will connect only to mustard (make sure the cookies
are the same!):

$ erl -sname olives -hidden
... <snip> ...
(olives@ferdmbp)1> net_kernel:connect(mustard@ferdmbp).
true
(olives@ferdmbp)2> nodes().
[]
(olives@ferdmbp)3> nodes(hidden).
[mustard@ferdmbp]

Aha! The node didn’t connect to ketchup, and at first sight, it didn’t
appear to connect with mustard either. However, calling nodes(hidden) shows
that we do have a connection there! Let’s see what the mustard node sees:

(mustard@ferdmbp)1> nodes().
[salad@ferdmbp]
(mustard@ferdmbp)2> nodes(hidden).
[olives@ferdmbp]
(mustard@ferdmbp)3> nodes(connected).
[salad@ferdmbp,olives@ferdmbp]

Mustard
Mustard

466 Chapter 26

This is a similar view, but now we add the nodes(connected) BIF that
shows all connections, regardless of their type. The ketchup node will
never see any connection to olives, unless especially told to connect
there.

One other interesting use of nodes/1 is calling nodes(known), which will
show all nodes that the current node ever connected to.

With remote shells, cookies, and hidden nodes, managing a distributed
Erlang system becomes simpler.

The Walls Are Made of Fire, and the Goggles Do Nothing

If you need to go through a firewall with distributed Erlang (and do not
want to tunnel), you will likely want to open a few ports here and there
for Erlang communication. In this case, you should open port 4369,
the default port for EPMD (the Erlang Port Mapper Daemon applica-
tion introduced earlier in the chapter). It’s a good idea to use this port,
because it has been officially registered for EPMD by Ericsson. This
means that any standards-compliant operating system you use will have
that port free, ready for EPMD.

Then you will want to open a range of ports for connections between
nodes. The problem is that Erlang just assigns random port numbers to
inter-node connections. There are, however, two hidden application vari-
ables that let you specify a range within which ports can be assigned. The
two values are inet_dist_listen_min and inet_dist_listen_max from the kernel
application.

You could, as an example, start Erlang as erl -name left_4_distribudead
-kernel inet_dist_listen_min 9100 -kernel inet_dist_listen_max 9115 in order to
set a range of 15 ports to be used for Erlang nodes. Alternatively, you could
specify these ports with a configuration file named ports.config that looks a
bit like this:

[{kernel,[
 {inet_dist_listen_min, 9100},
 {inet_dist_listen_max, 9115}
]}].

And then starting the Erlang node as erl -name the_army_of_darknodes
-config ports. The variables will be set in the same way. Note that these
ports are listen ports, so you need to keep only one per node per machine.
If you are running two VMs on a given server or computer, you’ll need two
listen ports.

Distribunomicon 467

The Calls from Beyond
On top of all the BIFs and options we’ve covered so far, there are a few mod-
ules that can be used to help developers work with distribution.

The net_kernel Module
net_kernel is the module we used to connect and disconnect nodes earlier.

It has some other fancy functionality, such as being able to transform a
nondistributed node into a distributed one:

$ erl
... <snip> ...
1> net_kernel:start([romero, shortnames]).
{ok,<0.43.0>}
(romero@ferdmbp)2>

You can use either shortnames or longnames to define whether you want
to have the equivalent of -sname or -name. Moreover, if you know a node
is going to be sending large messages and thus might need a long heart-
beat time between nodes, a third argument can be passed to the list:
net_kernel:start([Name, Type, HeartbeatInMilliseconds]). By default, the heart-
beat delay (also called tick time) is set to 15 seconds, or 15,000 milliseconds.

Two other functions of the module are net_kernel:set_net_ticktime(S),
which lets you change the tick time of the node to avoid disconnections,
and net_kernel:stop(), which switches a node from being distributed back to
being a normal node:

(romero@ferdmbp)2> net_kernel:set_net_ticktime(5).
change_initiated
(romero@ferdmbp)3> net_kernel:stop().
ok
4>

The global Module
The next useful module for distribution is global. The global module is an
alternative process registry. It automatically spreads its data to all connected
nodes, replicates data there, handles node failures, and supports different
conflict-resolution strategies when nodes get back online.

You register a name by calling global:register_name(Name, Pid), and
unregister with global:unregister_name(Name). In case you want to do a name
transfer without ever having it point to nothing, you can call global:re_
register_name(Name, Pid). You can find a pid with global:whereis_name(Name),
and send a message to a process by calling global:send(Name, Message). There

468 Chapter 26

is everything you need. What’s especially nice is that the names you use to
register the processes can be any terms at all.

A naming conflict will happen when two nodes suddenly connect and
both have two different processes sharing the same name. In these cases,
global will kill one of them randomly by default. There are ways to over-
ride that behavior. Whenever you register or reregister a name, pass a third
argument to the function:

5> Resolve = fun(_Name,Pid1,Pid2) ->
5> case process_info(Pid1, message_queue_len) > process_info(Pid2, message_queue_len) of
5> true -> Pid1;
5> false -> Pid2
5> end
5> end.
#Fun<erl_eval.18.59269574>
6> global:register_name({zombie, 12}, self(), Resolve).
yes

The Resolve function will pick the process with the most messages in its
mailbox as the one to keep (it’s the one the function returns the pid of).
You could alternatively contact both processes and ask for who has the most
subscribers, or keep only the first one to reply, to name a few strategies you
could implement. If the Resolve function crashes or returns something other
than the pids, the process name is unregistered. For your convenience, the
global module already defines three functions:

1.	 fun global:random_exit_name/3 kills a process randomly. This is the
default option.

2.	 fun global:random_notify_name/3 randomly picks one of the two processes
as the one to survive, and it will send {global_name_conflict, Name} to the
process that lost.

3.	 fun global:notify_all_name/3 unregisters both pids and sends the message
{global_name_conflict, Name, OtherPid} to both processes. It lets them
resolve the issue themselves so they reregister again.

The global module has one downside in that it is often said to be rather
slow to detect name conflicts and nodes going down. It’s also better for a
somewhat small number of registrations that tend not to change too much
over time. Other than these limitations, global is a fine module, and it’s
even supported by behaviors. Just change all the gen_Something:start_link(...)
calls that use local names ({local, Name}) to instead use {global, Name}, and
then all calls and casts (and their equivalents) to use {global, Name} instead
of just Name. When you do this, things will be distributed.

N o t e 	 Erlang versions from R15B01 and newer allow the usage other registries than local
and global. Supply the name as {via, RegistryModule, Name} to use whatever com-
patible process registry you want for your processes.

Distribunomicon 469

The rpc Module
The next module on the list is rpc (for
remote procedure call). It contains
functions that let you execute com-
mands on remote nodes, as well as a
few functions that facilitate parallel
operations. To test these out, let’s
begin by starting two different nodes
and connecting them together, as
demonstrated earlier in the chapter.
Name the nodes cthulu and lovecraft.

The most basic rpc operation is rpc:call/4-5. It allows you to run a given
operation on a remote node and get the results locally:

(cthulu@ferdmbp)1> rpc:call(lovecraft@ferdmbp, lists, sort, [[a,e,f,t,h,s,a]]).
[a,a,e,f,h,s,t]
(cthulu@ferdmbp)2> rpc:call(lovecraft@ferdmbp, timer, sleep, [10000], 500).
{badrpc,timeout}

As seen in this Call of the Cthulu node, the function with four argu-
ments takes the form rpc:call(Node, Module, Function, Args). Adding a fifth
argument gives a timeout. The rpc call will return whatever was returned by
the function it ran, or {badrpc, Reason} in case of a failure.

If you’ve studied some distributed or parallel computing concepts before,
you might have heard of promises or futures. Promises and futures are a bit
like remote procedure calls, except that they are asynchronous. The rpc
module lets us have this:

(cthulu@ferdmbp)3> Key = rpc:async_call(lovecraft@ferdmbp, erlang, node, []).
<0.45.0>
(cthulu@ferdmbp)4> rpc:yield(Key).
lovecraft@ferdmbp

By combining the result of the function rpc:async_call/4 with the func-
tion rpc:yield(Res), we can have asynchronous remote procedure calls and
fetch the results later. This is especially useful when you know the remote
procedure call you will make will take a while to return. Under these cir-
cumstances, you send it off, get busy doing other stuff in the meantime
(making other calls, fetching records from a database, drinking tea, and so
on), and then wait for the results when there’s absolutely nothing else left to
do. Of course, you can run such calls on your own node if you need to:

(cthulu@ferdmbp)5> MinTime = rpc:async_call(node(), timer, sleep, [30000]).
<0.48.0>
(cthulu@ferdmbp)6> lists:sort([a,c,b]).
[a,b,c]

470 Chapter 26

(cthulu@ferdmbp)7> rpc:yield(MinTime).
... <long wait> ...
ok

If by any chance you want to use the yield/1 function with a time-
out value, call rpc:nb_yield(Key, Timeout) instead. To poll for results, use
rpc:nb_yield(Key) (which is equivalent to rpc:nb_yield(Key,0)):

(cthulu@ferdmbp)8> Key2 = rpc:async_call(node(), timer, sleep, [30000]).
<0.52.0>
(cthulu@ferdmbp)9> rpc:nb_yield(Key2).
timeout
(cthulu@ferdmbp)10> rpc:nb_yield(Key2).
timeout
(cthulu@ferdmbp)11> rpc:nb_yield(Key2).
timeout
(cthulu@ferdmbp)12> rpc:nb_yield(Key2, 1000).
timeout
(cthulu@ferdmbp)13> rpc:nb_yield(Key2, 100000).
... <long wait> ...
{value,ok}

If you don’t care about the result, you can use rpc:cast(Node, Mod, Fun, Args)
to send a command to another node and forget about it.

But what if what we want is to call more than one node at a time? Let’s
add three nodes to our little cluster: minion1, minion2, and minion3. Those are
cthulu’s minions. When we want to ask them questions, we need to send
three different calls, and when we want to give orders, we must cast three
times. That’s pretty bad, and it doesn’t scale with very large armies.

The trick is to use two rpc functions for calls and casts, respectively
rpc:multicall(Nodes, Mod, Fun, Args) (with an optional Timeout argument) and
rpc:eval_everywhere(Nodes, Mod, Fun, Args):

(cthulu@ferdmbp)14> nodes().
[lovecraft@ferdmbp, minion1@ferdmbp, minion2@ferdmbp, minion3@ferdmbp]
(cthulu@ferdmbp)15> rpc:multicall(nodes(), erlang, is_alive, []).
{[true,true,true,true],[]}

This tells us that all four nodes are alive (and none were unavailable
for an answer). The left side of the tuple is alive, the right side isn’t. Yeah,
erlang:is_alive() just returns whether the node it runs on is alive or not,
which might look a bit weird. Yet again, remember that in a distributed
setting, alive means “can be reached,” not “is running.” Then let’s say
cthulu isn’t really appreciative of its minions and decides to kill them, or
rather, talk them into killing themselves. This is an order, and so it’s cast.

Distribunomicon 471

For this reason, we use eval_everywhere/4 with a call to init:stop() on the
minion nodes:

(cthulu@ferdmbp)16> rpc:eval_everywhere([minion1@ferdmbp, minion2@ferdmbp,
minion3@ferdmbp], init, stop, []).
abcast
(cthulu@ferdmbp)17> rpc:multicall([lovecraft@ferdmbp, minion1@ferdmbp,
minion2@ferdmbp, minion3@ferdmbp], erlang, is_alive, []).
{[true],[minion1@ferdmbp, minion2@ferdmbp, minion3@ferdmbp]}

When we ask again for who is alive, only one node remains: the lovecraft
node. The minions were obedient creatures.

The rpc module has a few more interesting functions, but the core
uses were covered here. If you want to know more, I suggest that you comb
through the documentation for the module.

Burying the Distribunomicon
That’s it for most of the basics on distributed Erlang. There are a lot of
things to think about and a lot of attributes to keep in mind. Whenever
you need to develop a distributed application, ask yourself which of the
distributed computing fallacies you could potentially run into (if any). If
a customer asks you to build a system that handles netsplits while staying
consistent and available, you know that you need to either calmly explain
the CAP theorem or run away (possibly by jumping through a window, for
a maximal effect).

Generally, applications where a thousand isolated nodes can do their
job without communicating or depending on each other will provide the
best scalability. The more inter-node dependencies created, the harder it
becomes to scale the system, no matter what kind of distribution layer you
have. This is just like zombies (no, really!). Zombies are terrifying because
of how many there are and how difficult it can be to kill them as a group.
Even though individual zombies can be very slow and far from menacing, a
horde can do considerable damage, even if it loses many of its zombie mem-
bers. Groups of human survivors can do great things by combining their
intelligence and communicating together, but each loss they suffer is more
taxing on the group and its ability to survive.

That being said, you have the tools required to get going. Chapter 27
introduces distributed OTP applications. This kind of application provides
a takeover and failover mechanism for hardware failures, but not general
distribution. It’s a lot more like respawning your dead zombie than any-
thing else.

27
D i s t r i b u t e d OT P App l i c a t i o n s

Although Erlang leaves us with a lot of work to do to
build a distributed system, it still provides a few solu-
tions. One of these is the concept of distributed OTP
applications. Distributed OTP applications, or just
distributed applications in the context of OTP, allow us
to define takeover and failover mechanisms. In this
chapter, we’ll cover what that means and how it works,
and write a little app to demonstrate these concepts.

474 Chapter 27

Adding More to OTP
In Chapter 19, we briefly discussed the structure of an application as some-
thing using a central application controller dispatching to application mas-
ters, each monitoring a top-level supervisor for an application, like this:

application master application master application master

supervisor supervisor supervisor

application controller

...

In standard OTP applications, the application can be loaded, started,
stopped, or unloaded. In distributed applications, we change how things
work. Now the application controller shares its work with the distributed
application controller, another process sitting next to it (usually called dist_ac),
as shown here:

application
controller

dist_ac

application
master

application
master

application
master

supervisor supervisor supervisor

Depending on the application file, the ownership of the application will
change. A dist_ac will be started on all nodes, and all dist_ac processes will
communicate with each other. What they talk about is not too relevant,
except for one thing. With standard applications, the four application statuses
are being loaded, started, stopped, and unloaded. Distributed applications
split the idea of a started application into started and running. The differ-
ence between the two is that you could define an application to be global
within a cluster. An application of this kind can run on only one node at a
time, while regular OTP applications don’t care about what’s happening on
other nodes. As such, a distributed application will be started on all nodes
of a cluster, but running on only one.

Distributed OTP Applications 475

What does this mean for the nodes where the application is started
without being run? The only thing they do is wait for the node of the run-
ning application to die. This means that when the node that runs the app
dies, another node starts running it instead. This approach can avoid inter-
ruption of services by moving around different subsystems.

Taking and Failing Over
There are two important concepts handled by distributed applications:
failover and takeover.

A failover is the idea of restarting an application somewhere other than
where it stopped running. This is a particularly valid strategy when you have
redundant hardware. You run something on a main computer or server, and
if it fails, you move it to a backup one. In larger-scale deployments, you might
instead have 50 servers running your software (all at maybe 60 to 70 percent
load), and expect the running ones to absorb the load of the failing ones.
The concept of failing over is mostly important in the former case, and some-
what less interesting in the latter one.

The second important concept of distributed OTP applications is the
takeover. Taking over is the act of a dead node coming back from the dead,
being known to be more important than the backup nodes (maybe it has
better hardware), and deciding to run the application again. This is usu-
ally done by gracefully terminating the backup application and starting the
main one instead.

N o t e 	 In terms of distributed programming fallacies, distributed OTP applications assume
that when there is a failure, it is likely due to a hardware failure, and not a netsplit.
If you deem netsplits more likely than other hardware failures, you must be aware of
the possibility that the application is running both as a backup and main one, and
that funny things could happen when the network issue is resolved. Maybe distributed
OTP applications aren’t the right mechanism for you in these cases.

Let’s imagine that we have a system with three nodes, where only the
first one is running a given application:

A B C

app

The nodes B and C are declared to be backup nodes in case A dies,
which we pretend just happened:

B C

476 Chapter 27

For a brief moment, nothing is running. After a while, B realizes this
and decides to take over the application:

B C

app

That’s a failover. Then, if B dies, the application gets restarted on C:

C

app

Another failover, and all is well.
Now suppose that A comes back up. C is running the app happily, but A

is the node we defined to be the main one. This is when a takeover occurs.
The app is willingly shut down on C and restarted on A:

A C

app

And so on for all other failures.
One obvious issue is how terminating applications all the time like this

is likely to result in losing important state. Sadly, that’s your problem. You’ll
need to think of places where to put and share all that vital state before
things break down. The OTP mechanism for distributed applications makes
no special case for that.

With these concepts in mind, let’s move on to making things work in
practice.

The Magic 8 Ball
A Magic 8 Ball is a simple toy that you shake to get divine and helpful
answers. You ask questions like “Will my favorite sports team win the game
tonight?” and the ball you shake replies something like “Without a doubt.”
You can then safely bet your house’s value on the final score. Other ques-
tions like “Should I make careful investments for the future?” could return
“That is unlikely” or “I’m not sure.” The Magic 8 Ball has been vital in the
Western world’s political decision making in the past few decades, and it is
only natural that we use it as an example for fault tolerance.

Distributed OTP Applications 477

Our implementation won’t make use of real-life switching mechanisms
for automatically finding servers, such as round-robin DNS servers or load
balancers. Instead, we’ll stay within pure Erlang and have three nodes
(denoted as A, B, and C) in a distributed OTP application. The A node will
represent the main node running the Magic 8 Ball server, and the B and C
nodes will be the backup nodes:

A

BC

Whenever A fails, the Magic 8 Ball application should be restarted on
either B or C, and both nodes will still be able to use it transparently.

Building the Application
Before setting up things for distributed OTP applications, we’ll build the
application itself. It’s going to be mind-bogglingly naive in its design:

supervisor

server

In total, we’ll have three modules: the supervisor, the server, and the
application callback module to start things.

The Supervisor Module

The supervisor will be rather trivial. We’ll call it m8ball_sup (as in Magic
8 Ball Supervisor), and we’ll put it in the src/ directory of a standard OTP
application:

-module(m8ball_sup).
-behaviour(supervisor).
-export([start_link/0, init/1]).

start_link() ->
 supervisor:start_link({global,?MODULE}, ?MODULE, []).

init([]) ->
 {ok, {{one_for_one, 1, 10},
 [{m8ball,
 {m8ball_server, start_link, []},
 permanent,
 5000,

478 Chapter 27

 worker,
 [m8ball_server]
 }]}}.

This is a supervisor that will start a single server (m8ball_server), a per-
manent worker process. It’s allowed one failure every 10 seconds.

The Server Module

The Magic 8 Ball server will be a bit more complex. We’ll build it as a
gen_server with the following interface:

-module(m8ball_server).
-behaviour(gen_server).
-export([start_link/0, stop/0, ask/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 code_change/3, terminate/2]).

%%%%%%%%%%%%%%%%%
%%% INTERFACE %%%
%%%%%%%%%%%%%%%%%
start_link() ->
 gen_server:start_link({global, ?MODULE}, ?MODULE, [], []).

stop() ->
 gen_server:call({global, ?MODULE}, stop).

ask(_Question) -> % The question doesn't matter!
 gen_server:call({global, ?MODULE}, question).

Notice how the server is started using {global, ?MODULE} as a name and
how it’s accessed with the same tuple for each call. That’s the global module
we saw in Chapter 26, applied to behaviors.

Next come the callbacks, the real implementation. The Magic 8 Ball
should randomly pick one of many possible replies from some configura-
tion file. We want a configuration file because it should be easy to add or
remove answers as we wish.

First, if we want to do things randomly, we’ll need to set up some ran-
domness as part of our init function:

%%%%%%%%%%%%%%%%%
%%% CALLBACKS %%%
%%%%%%%%%%%%%%%%%
init([]) ->
 <<A:32, B:32, C:32>> = crypto:rand_bytes(12),
 random:seed(A,B,C),
 {ok, []}.

We used this pattern before in Chapter 23. Here, we’re using 12 random
bytes to set up the initial random seed to be used with the random:uniform/1
function.

Distributed OTP Applications 479

The next step is to read the answers from the configuration file and
pick one. As discussed in Chapter 19, the easiest way to set up some configu-
ration is through the app file (in the env tuple). Here’s how we’re going to
do this:

handle_call(question, _From, State) ->
 {ok, Answers} = application:get_env(m8ball, answers),
 Answer = element(random:uniform(tuple_size(Answers)), Answers),
 {reply, Answer, State};
handle_call(stop, _From, State) ->
 {stop, normal, ok, State};
handle_call(_Call, _From, State) ->
 {noreply, State}.

The first clause shows what we want to do. We expect to have a tuple
with all the possible answers within the answers value of the env tuple. Why
a tuple? Simply because accessing elements of a tuple is a constant time
operation, while obtaining them from a list is linear (and thus takes longer
on larger lists). We then send back the answer.

N o t e 	 The server reads the answers with application:get_env(m8ball, answers) on each
question asked. If you were to set new answers with a call like application:set_
env(m8ball, answers, {"yes","no","maybe"}), the three answers would instantly be the
possible choices for future calls. Reading them once at startup should be somewhat
more efficient in the long run, but it will mean that the only way to update the pos-
sible answers is to restart the application or add a special call to do it.

You should have noticed by now that we don’t actually care about the
question asked; it’s not even passed to the server. Because we’re returning
random answers, it is entirely useless to copy the question from process
to process. We’re just saving work by ignoring it entirely. We still leave the
answer there because it will make the final interface feel more natural. We
could also trick our Magic 8 Ball into always returning the same answer for
the same question if we felt like it, but we won’t bother with that for this
example.

The rest of the module is pretty much the same as usual for a generic
gen_server doing nothing:

handle_cast(_Cast, State) ->
 {noreply, State}.

handle_info(_Info, State) ->
 {noreply, State}.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

terminate(_Reason, _State) ->
 ok.

480 Chapter 27

Now we can get to the more serious stuff, namely the application file
and the callback module. We’ll begin with the latter, m8ball.erl:

-module(m8ball).
-behaviour(application).
-export([start/2, stop/1]).
-export([ask/1]).

%%%%%%%%%%%%%%%%%
%%% CALLBACKS %%%
%%%%%%%%%%%%%%%%%
start(normal, []) ->
 m8ball_sup:start_link().

stop(_State) ->
 ok.

%%%%%%%%%%%%%%%%%
%%% INTERFACE %%%
%%%%%%%%%%%%%%%%%
ask(Question) ->
 m8ball_server:ask(Question).

That was easy. Here’s the associated app file, m8ball.app:

{application, m8ball,
 [{vsn, "1.0.0"},
 {description, "Answer vital questions"},
 {modules, [m8ball, m8ball_sup, m8ball_server]},
 {applications, [stdlib, kernel, crypto]},
 {registered, [m8ball, m8ball_sup, m8ball_server]},
 {mod, {m8ball, []}},
 {env, [
 {answers, {<<"Yes">>, <<"No">>, <<"Doubtful">>,
 <<"I don't like your tone">>, <<"Of course">>,
 <<"Of course not">>, <<"*backs away slowly and runs away*">>}}
]}
]}.

We depend on stdlib and kernel, like all OTP applications, and also on
crypto for our random seeds in the server. Notice how the answers are all
in a tuple that matches the tuples required in the server. In this case, the
answers are all binaries, but the string format doesn’t really matter—a list
would work as well.

Making the Application Distributed
So far, everything has been like building a perfectly normal OTP applica-
tion. We have very few changes to make to our files to turn the normal

Distributed OTP Applications 481

application into a distributed OTP application. In fact, we have only one
function clause to add, back in the m8ball.erl module:

%%%%%%%%%%%%%%%%%
%%% CALLBACKS %%%
%%%%%%%%%%%%%%%%%

start(normal, []) ->
 m8ball_sup:start_link();
start({takeover, _OtherNode}, []) ->
 m8ball_sup:start_link().

The {takeover, OtherNode} argument is passed to start/2 when a more
important node takes over a backup node. In the case of the Magic 8 Ball
app, it doesn’t really change anything, and we can just start the supervisor
all the same.

Recompile your code, and it’s pretty much ready.
But hold on, how do we define which nodes are the main ones and

which ones are backups? The answer is in configuration files. Because we
want a system with three nodes (a@yourhost, b@yourhost, and c@yourhost), we’ll
need three configuration files (name them a.config, b.config, and c.config,
and then put them all in config/ inside the application directory):

[{kernel,
 [{distributed, [{m8ball,
 5000,
 [a@ferdmbp, {b@ferdmbp, c@ferdmbp}]}]},
 {sync_nodes_mandatory, [b@ferdmbp, c@ferdmbp]},
 {sync_nodes_timeout, 30000}
]}].

[{kernel,
 [{distributed, [{m8ball,
 5000,
 [a@ferdmbp, {b@ferdmbp, c@ferdmbp}]}]},
 {sync_nodes_mandatory, [a@ferdmbp, c@ferdmbp]},
 {sync_nodes_timeout, 30000}
]}].

[{kernel,
 [{distributed, [{m8ball,
 5000,
 [a@ferdmbp, {b@ferdmbp, c@ferdmbp}]}]},
 {sync_nodes_mandatory, [a@ferdmbp, b@ferdmbp]},
 {sync_nodes_timeout, 30000}
]}].

482 Chapter 27

The general structure is always the same:

[{kernel,
 [{distributed, [{AppName,
 TimeOutBeforeRestart,
 NodeList}]},
 {sync_nodes_mandatory, NecessaryNodes},
 {sync_nodes_optional, OptionalNodes},
 {sync_nodes_timeout, MaxTime}
]}].

The NodeList value can usually take a form like [A, B, C, D] for A to be
the main one, B as the first backup, C as the next one, and D as the last.
Another syntax is possible, giving a list of like [A, {B, C}, D], so A is still the
main node, B and C are equal secondary backups, and then comes the rest.

The sync_nodes_mandatory tuple will
work in conjunction with sync_nodes_
timeout. When you start a distributed
VM with values set for this, the VM will
stay locked up until all the mandatory
nodes are also up and locked. Then
they will be synchronized and things
will start going. If it takes more than
MaxTime to get all the nodes up, then
they will all crash before starting.

There are a lot more options available, and I recommend looking into
the kernel application documentation (http://www.erlang.org/doc/man/
kernel_app.html) if you want to know more about them.

Let’s try running the m8ball application. If you’re not sure 30 seconds is
enough to boot all three VMs, you can increase sync_nodes_timeout as you see
fit. Then start three VMs:

$ erl -sname a -config config/a -pa ebin/

$ erl -sname b -config config/b -pa ebin/

$ erl -sname c -config config/c -pa ebin/

As you start the third VM, the other VMs should all unlock at once. Go
into each of the three VMs, and turn by turn, start both crypto and m8ball
with application:start(AppName).

Now you should be able to call the Magic 8 Ball from any of the con-
nected nodes:

(a@ferdmbp)3> m8ball:ask("If I crash, will I have a second life?").
<<"I don't like your tone">>

I don’t

think so

Distributed OTP Applications 483

(a@ferdmbp)4> m8ball:ask("If I crash, will I have a second life, please?").
<<"Of Course">>

(c@ferdmbp)3> m8ball:ask("Am I ever gonna be good at Erlang?").
<<"Doubtful">>

How motivational. To see how things are with our applications,
call application:which_applications() on all nodes. Only node a should be
running it:

(b@ferdmbp)3> application:which_applications().
[{crypto,"CRYPTO version 2","2.1"},
 {stdlib,"ERTS CXC 138 10","1.18.1"},
 {kernel,"ERTS CXC 138 10","2.15.1"}]

(a@ferdmbp)5> application:which_applications().
[{m8ball,"Answer vital questions","1.0.0"},
 {crypto,"CRYPTO version 2","2.1"},
 {stdlib,"ERTS CXC 138 10","1.18.1"},
 {kernel,"ERTS CXC 138 10","2.15.1"}]

The c node should show the same thing as the b node in this case. Now
if you kill the a node (just ungracefully close the window that holds the
Erlang shell), the application should no longer be running there. Let’s see
where it is instead:

(c@ferdmbp)4> application:which_applications().
[{crypto,"CRYPTO version 2","2.1"},
 {stdlib,"ERTS CXC 138 10","1.18.1"},
 {kernel,"ERTS CXC 138 10","2.15.1"}]
(c@ferdmbp)5> m8ball:ask("where are you?!").
<<"I don't like your tone">>

That’s expected, as b is higher in the priorities. After 5 seconds (we set
the timeout to 5000 milliseconds), b should be showing the application as
running:

(b@ferdmbp)4> application:which_applications().
[{m8ball,"Answer vital questions","1.0.0"},
 {crypto,"CRYPTO version 2","2.1"},
 {stdlib,"ERTS CXC 138 10","1.18.1"},
 {kernel,"ERTS CXC 138 10","2.15.1"}]

It still runs fine. Now kill b in the same barbaric manner that you used
to get rid of a, and c should be running the application after 5 seconds:

(c@ferdmbp)6> application:which_applications().
[{m8ball,"Answer vital questions","1.0.0"},

484 Chapter 27

 {crypto,"CRYPTO version 2","2.1"},
 {stdlib,"ERTS CXC 138 10","1.18.1"},
 {kernel,"ERTS CXC 138 10","2.15.1"}]

If you restart node a with the same command we used before, it will
hang. The configuration file specifies we need b back for a to work. If you
can’t expect nodes to all be up that way, you will need to make either b or
c optional. So if we start both a and b, the application should automatically
come back, right?

(a@ferdmbp)4> application:which_applications().
[{crypto,"CRYPTO version 2","2.1"},
 {stdlib,"ERTS CXC 138 10","1.18.1"},
 {kernel,"ERTS CXC 138 10","2.15.1"}]
(a@ferdmbp)5> m8ball:ask("is the app gonna move here?").
<<"Of course not">>

Aw, shucks. The thing is, for the mechanism to work, the application
needs to be started as part of the boot procedure of the node. You could, for
instance, start node a that way for things to work:

$ erl -sname a -config config/a -pa ebin -eval 'application:start(crypto), application:start(m8ball)'
... <snip> ...
(a@ferdmbp)1> application:which_applications().
[{m8ball,"Answer vital questions","1.0.0"},
 {crypto,"CRYPTO version 2","2.1"},
 {stdlib,"ERTS CXC 138 10","1.18.1"},
 {kernel,"ERTS CXC 138 10","2.15.1"}]

Here’s how it looks from node c’s side:

=INFO REPORT==== 8-Jan-2013::19:24:27 ===
 application: m8ball
 exited: stopped
 type: temporary

That’s because the -eval option is evaluated as part of the boot proce-
dure of the VM. Obviously, a cleaner way to do it would be to use releases to
set things up right, but the example would be pretty cumbersome if it had
to combine everything we have seen before.

Just remember that, in general, distributed OTP applications work best
when working with releases that ensure that all the relevant parts of the sys-
tem are in place.

As I mentioned earlier, in the case of many applications (the Magic 8
Ball included), it’s sometimes simpler to just have many instances running
at once and synchronizing data, rather than forcing an application to run
in only a single place. It’s also simpler to scale the system once that design
has been picked. If you need some failover/takeover mechanism, distrib-
uted OTP applications might be just what you need.

28
C o m m o n T e s t f o r
U n c o m m o n T e s t s

Back in Chapter 24, we explored how to use EUnit to
do unit and module testing, and even some concur-
rent testing. At that point, EUnit started to show its
limits. Complex setups and longer tests that needed
to interact with each other became problematic. Plus, EUnit does not
provide any help for handling distributed Erlang and all of its power.
Fortunately, another test framework exists, and it’s more appropriate
for the heavy lifting we now want to do.

What Is Common Test?
As programmers, we enjoy treating our programs as black boxes. Many of
us would define the core principle behind a good abstraction as being able
to replace whatever we’ve written with an anonymous black box. You put
something in the box; you get something out of it. You don’t care how it
works on the inside, as long as you get what you want.

486 Chapter 28

In the testing world, this has an impor-
tant connection to how we like to test systems.
When we were working with EUnit, we used the
approach of treating a module as a black box,
where we tested only the exported functions and
none of the ones inside, which are not exported.
I’ve also given examples of testing items as a white
box, as in the case of the Process Quest player
module’s tests, where we could look at the innards
of the module to make its testing simpler. This was necessary because the
interaction of all the moving parts inside the box made testing it from the
outside very complex.

That was for modules and functions. What if we zoom out a bit? Let’s
fiddle with our scope in order to see the broader picture. What if we want
to test a library? What if it’s an application? Even broader, what if it’s a com-
plete system? Then we need a tool that is more adept at doing something
called system testing.

EUnit is a pretty good tool for white box testing at a module level. It’s a
decent tool to test libraries and OTP applications. It’s possible to use it for
system testing and black box testing, but it’s not optimal.

Common Test is pretty damn good at system testing. It’s decent for test-
ing libraries and OTP applications, and it’s possible, but not optimal, to use
it to test individual modules. So the smaller the size of what you test, the
more appropriate (and flexible and fun) EUnit will be. The larger your test
is, the more appropriate (and flexible and, uh, somewhat fun) Common
Test will be.

You might have heard of Common Test before and tried to understand
it from the documentation provided with Erlang/OTP. Then you likely gave
up soon after. Don’t worry. The problem is that Common Test is very power-
ful and has an accordingly long user guide. At the time of this writing, most
of its documentation appears to be coming from internal documentation
from the days when it was used only within the walls of Ericsson. In fact,
its documentation is more of a reference manual for people who already
understand it than a tutorial.

In order to properly learn Common Test, we’ll start from the simplest
parts of it and slowly grow our way to system tests. But before we get started,
let’s take a brief look at how Common Test is organized.

Common Test Structure
Because Common Test is appropriate for system testing, it will assume
two things:

•	 We will need data to instantiate our stuff.

•	 We will need a place to store all that “side effect-y” stuff we do because
we’re messy people.

Common Test for Uncommon Tests 487

Because of these assumptions, Common Test will usually be organized
as follows:

Test Root (1)

Test Object Directory (2)

Test Suite (3)

Test Case (4)

The test case is the simplest part. It’s a bit of code that either fails or
succeeds. If the case crashes, the test is unsuccessful (how surprising).
Otherwise, the test case is considered successful.

In Common Test, test cases are single functions. All these functions live
in a test suite (3), which is a module that takes care of regrouping related
test cases together. Each test suite will then live in a directory—the test object
directory (2). The test root (1) is a directory that contains many test object
directories, but due to the nature of OTP applications often being devel-
oped individually, many Erlang programmers tend to omit that layer.

Let’s go back to our two assumptions: we need to instantiate stuff, and
then mess up stuff. Each test suite is a module that ends with _SUITE. If we
were to test the Magic 8 Ball application from Chapter 27, we might call
the suite m8ball_SUITE. Each suite is allowed to have a data directory, usually
named <Module>_SUITE_data/. In the case of the Magic 8 Ball app, the
data directory would have been m8ball_SUITE_data/. That directory con-
tains anything you want that may be useful to the tests.

What about the side effects? Well, because we might run tests many
times, Common Test develops its structure a bit more:

Whenever you run the tests, Common Test will find some place to log
stuff (usually the current directory, but we’ll cover how to configure that in
“Test Specifications” on page 501). For this purpose, it will create a unique
directory where you can store your data. That directory (priv dir in the
structure diagram), along with the data directory, will be passed as part of

Test Root (1)

Test Object Directory (2)

Test Suite (3)

Test Case (4)
Running tests priv dir

HTML files

Log directory

488 Chapter 28

some initial state to each of your tests. You’re then free to write whatever you
want in that private directory, and then inspect it later, without running the
risk of overwriting something important or the results of former test runs.

Enough with this architectural material; we’re ready to write our first
test suite.

Creating a Simple Test Suite
We’ll begin with a simple test suite with two test cases. Create a directory
named ct/ (or whatever you like—this is a free country, after all). That
directory will be our test root. Inside it, make a directory named demo/ for
the simpler tests we’ll use as examples. This will be our test object directory.

Inside the test object directory, we’ll begin with a module named basic_
SUITE.erl, to see the most basic stuff doable in Common Test. You can omit
creating the basic_SUITE_data/ directory—we won’t need it for this run,
and Common Test won’t complain.

Here’s what the module looks like:

-module(basic_SUITE).
-include_lib("common_test/include/ct.hrl").
-export([all/0]).
-export([test1/1, test2/1]).

all() -> [test1, test2].

test1(_Config) ->
 1 = 1.

test2(_Config) ->
 A = 0,
 1/A.

Let’s study it step by step. First, we need to include the file "common_test/
include/ct.hrl". That file contains a few useful macros, and even though
basic_SUITE doesn’t use them, it’s usually a good habit to include that file.

Then we have the function
all/0. That function returns a list
of test cases. It’s basically what tells
Common Test, “Hey, I want to run
these test cases!” EUnit would do
it based on the name (*_test() or
*_test_()). Common Test does it with
an explicit function call.

What about these _Config vari-
ables? They’re unused for now,
but for your own personal knowl-
edge, they contain the initial state
your test cases will require. That

no
t
po

rn

DATA

Common Test for Uncommon Tests 489

state is literally a proplist, and it initially contains two values: data_dir and
priv_dir—the directory we have for our static data and the one where we
can mess around.

Running the Tests
We can run the tests either from the command line or from an Erlang shell.
From the command line, call ct_run -suite Name_SUITE.

N o t e 	 In Erlang/OTP versions before R15 (released around December 2011), the default
command was run_test instead of ct_run (although some systems had both already).
The change was made to help minimize the risk of name clashes with other applica-
tions by moving to a slightly less generic name.

By running this command, we get the following:

$ ct_run -suite basic_SUITE
... <snip> ...
Common Test: Running make in test directories...
Recompile: basic_SUITE
... <snip> ...
Testing ct.demo.basic_SUITE: Starting test, 2 test cases

- -
basic_SUITE:test2 failed on line 13
Reason: badarith
- -

Testing ct.demo.basic_SUITE: *** FAILED *** test case 2 of 2
Testing ct.demo.basic_SUITE: TEST COMPLETE, 1 ok, 1 failed of 2 test cases

Updating /Users/ferd/code/self/learn-you-some-erlang/ct/demo/index.html... done
Updating /Users/ferd/code/self/learn-you-some-erlang/ct/demo/all_runs.html... done

And we find that one of our two test cases fails. We also see that we
apparently inherited a bunch of HTML files. Before looking into what this
is about, let’s see how to run the tests from the Erlang shell:

$ erl
... <snip> ...
1> ct:run_test([{suite, basic_SUITE}]).
... <snip> ...
Testing ct.demo.basic_SUITE: Starting test, 2 test cases

- -
basic_SUITE:test2 failed on line 13
Reason: badarith
- -
... <snip> ...
Updating /Users/ferd/code/self/learn-you-some-erlang/ct/demo/index.html... done
Updating /Users/ferd/code/self/learn-you-some-erlang/ct/demo/all_runs.html... done
ok

490 Chapter 28

I’ve removed a bit of the output, but the shell gives exactly the same
result as the command-line version.

Let’s see what’s going on with these HTML files:

$ ls
all_runs.html
basic_SUITE.beam
basic_SUITE.erl
ct_default.css
ct_run.NodeName.YYYY-MM-DD_20.01.25/
ct_run.NodeName.YYYY-MM-DD_20.05.17/
index.html
variables-NodeName

Oh what the hell did Common Test do to our beautiful directory? It is a
shameful thing to look at. We have two directories there. Feel free to explore
them if you feel adventurous, but cowards like me will prefer to instead look
at either the all_runs.html or the index.html file. The former links to indexes
of all iterations of the tests you ran, and the latter links to the newest runs
only. Pick one, and then click around in a browser (or press around if you
don’t believe in a mouse as an input device) until you find the test suite with
its two tests:

You see that test2 failed. If you click the underlined line number, you’ll
see a raw copy of the module. If you click the test2 link, you’ll see a detailed
log of what happened:

=== source code for basic_SUITE:test2/1
=== Test case started with:
basic_SUITE:test2(ConfigOpts)
=== Current directory is "Somewhere on my computer"
=== Started at 2013-01-20 20:05:17
[Test Related Output]
=== Ended at 2013-01-20 20:05:17
=== location [{basic_SUITE,test2,13},
 {test_server,ts_tc,1635},
 {test_server,run_test_case_eval1,1182},
 {test_server,run_test_case_eval,1123}]
=== reason = bad argument in an arithmetic expression
 in function basic_SUITE:test2/1 (basic_SUITE.erl, line 13)
 in call from test_server:ts_tc/3 (test_server.erl, line 1635)
 in call from test_server:run_test_case_eval1/6 (test_server.erl, line 1182)
 in call from test_server:run_test_case_eval/9 (test_server.erl, line 1123)

Common Test for Uncommon Tests 491

The log lets you know precisely what failed, and it is much more detailed
than what we got in the Erlang shell. So, if you’re a shell user, you’ll find
Common Test extremely painful to use. If you’re a person more prone to
using GUIs, then it will be more fun for you.

But enough wandering around pretty HTML files, let’s see how to test
with some more state.

N o t e 	 If you ever feel like traveling back in time without the help of a time machine, down-
load a version of Erlang prior to R15B and use Common Test with it. You’ll be aston-
ished to see that your browser and the logs’ style brings you back to the late 1990s.

Testing with State
As explained in Chapter 24, EUnit has these things called fixtures, where we
give a test case some special instantiation (setup) and teardown code to be
called before and after the case, respectively.

Common Test follows that concept. However, instead of having EUnit-
style fixtures, it relies on two functions:

•	 The setup function, init_per_testcase/2

•	 The teardown function, end_per_testcase/2

To see how they are used, create a new test suite called state_SUITE (still
under the demo/ directory), and add the following code:

-module(state_SUITE).
-include_lib("common_test/include/ct.hrl").

-export([all/0, init_per_testcase/2, end_per_testcase/2]).
-export([ets_tests/1]).

all() -> [ets_tests].

init_per_testcase(ets_tests, Config) ->
 TabId = ets:new(account, [ordered_set, public]),
 ets:insert(TabId, {andy, 2131}),
 ets:insert(TabId, {david, 12}),
 ets:insert(TabId, {steve, 12943752}),
 [{table,TabId} | Config].

end_per_testcase(ets_tests, Config) ->
 ets:delete(?config(table, Config)).

ets_tests(Config) ->
 TabId = ?config(table, Config),
 [{david, 12}] = ets:lookup(TabId, david),
 steve = ets:last(TabId),
 true = ets:insert(TabId, {zachary, 99}),
 zachary = ets:last(TabId).

492 Chapter 28

This is a little normal ETS test checking a few ordered_set concepts.
What’s interesting about it is the two new functions: init_per_testcase/2 and
end_per_testcase/2. Both functions need to be exported in order to be called.
If they are exported, the functions will be called for all test cases in a mod-
ule. You can separate them based on the arguments. The first one is the
name of the test case (as an atom), and the second one is the Config proplist
that you can modify.

N o t e 	 To read from Config, rather than using proplists:get_value/2, the Common Test
include file has a ?config(Key, List) macro that returns the value matching the given
key. The macro is a wrapper around proplists:get_value/2 and is documented as
such, so you know you can deal with Config as a proplist without worrying about it
ever breaking.

As an example, if we had tests a, b, and c and wanted a setup and tear-
down function for only the first two tests, our init function might look
like this:

init_per_testcase(a, Config) ->
 [{some_key, 124} | Config];
init_per_testcase(b, Config) ->
 [{other_key, duck} | Config];
init_per_testcase(_, Config) ->
 %% Ignore for all other cases.
 Config.

And we would handle the end_per_testcase/2 function similarly.
Looking back at state_SUITE, you can see the test case, but what’s inter-

esting is how we instantiate the ETS table. We don’t specify an heir, and yet
the tests run without a problem after the init function is finished.

As discussed in Chapter 25, ETS tables are usually owned by the process
that started them. In this case, we leave the table as it is. If you run the tests,
you’ll see the suite succeeds.

What we can infer from this is that the init_per_testcase and
end_per_testcase functions run in the same process as the test case itself.
You can thus safely do things like set links or start tables within these func-
tions without worrying about having your things breaking the way they
would if they were running in different processes. What about errors in the
test case? Fortunately, crashing in your test case won’t stop Common Test
from cleaning up and calling the end_per_testcase function, with the excep-
tion of kill exit signals.

So far, our work with Common Test is at least equal to, if not more
than, what we can do with EUnit, at least in terms of flexibility. Although
we don’t get all the nice assertion macros, we have fancier reports, similar
fixtures, and that private directory where we can write stuff from scratch.
What more do we want?

Common Test for Uncommon Tests 493

N o t e 	 If you end up feeling like outputting information to help you debug or just show prog-
ress in your tests, you’ll quickly find out that io:format/1-2 prints only to the HTML
logs, not to the Erlang shell. If you want to do both (with free timestamps included),
use the function ct:pal/1-2. It works like io:format/1-2, but prints to both the shell
and logs.

Test Groups
Right now, our test structure within a suite might look like this:

init
test
end

init
test
end

What if we have many test cases with similar needs in terms of some init
functions, but some different parts in them? Well, the easy way to do it is to
copy/paste and modify, but this will be a real pain to maintain. Moreover,
what if we want to run many tests in parallel or in random order instead
of one after the other? There’s no easy way to do that based on what we’ve
seen so far. This is pretty much the same kind of problem that could limit
our use of EUnit.

To solve these issues, we have test groups. Common Test test groups allow
us to regroup some tests hierarchically. Even more, they can regroup some
groups within other groups, as shown here:

init
test
end

init
test
end

Group

group init

group end

In this hierarchy, a group has its own initialization and termination
functions, wrapping many tests or other groups. This allows us to define
some common environment to a bunch of related tests, or even groups of
other tests. For example, if half of your tests need to connect to a database
with a given configuration, and the other half with another configuration,
setting this configuration with different groups would be the most efficient
way to do it.

494 Chapter 28

Defining Test Groups
For this approach to work, we need test groups. First, we add a groups() func-
tion to declare all of the groups:

groups() -> ListOfGroups.

Here’s what ListOfGroups should be:

[{GroupName, GroupProperties, GroupMembers}]

And in more detail, here’s what this could look like:

[{test_case_street_gang,
 [],
 [simple_case, more_complex_case]}].

That’s a tiny test case street gang. Here’s a more complex one:

[{test_case_street_gang,
 [shuffle, sequence],
 [simple_case, more_complex_case,
 emotionally_complex_case,
 {group, name_of_another_test_group}]}].

This one specifies two properties: shuffle and sequence. We’ll look at
what they mean soon.

The example also shows a group including another group. This assumes
that the groups() function might be a bit like this:

groups() ->
 [{test_case_street_gang,
 [shuffle, sequence],
 [simple_case, more_complex_case, emotionally_complex_case,
 {group, name_of_another_test_group}]},
 {name_of_another_test_group,
 [],
 [case1, case2, case3]}].

You can also define the group inline within another group:

[{test_case_street_gang,
 [shuffle, sequence],
 [simple_case, more_complex_case,
 emotionally_complex_case,
 {name_of_another_test_group,
 [],
 [case1, case2, case3]}
]}].

Common Test for Uncommon Tests 495

That’s getting a bit complex, right? Read the examples carefully, and it
should get simpler with time. Keep in mind that nested groups are not man-
datory, and you can avoid them if you find them confusing.

But wait, how do you use such groups? By putting them in the all/0
function:

all() -> [some_case, {group, test_case_street_gang}, other_case].

This way, Common Test will be able to know whether it needs to run a
single test case or a group of them.

Test Group Properties
The preceding examples used some test group properties, including
shuffle, sequence, and an empty list. The following group properties are
available:

empty list / no option

The test cases in the group are run one after the other. If a test fails,
the others after it in the list are run.

shuffle

This runs the test in a random order. The random seed (the initializa-
tion value) used for the sequence will be printed in the HTML logs, in
the form {A,B,C}. If a particular sequence of tests fails and you want to
reproduce it, use that seed in the HTML logs and change the shuffle
option to be {shuffle, {A,B,C}}. That way, you can reproduce random
runs in their precise order if you ever need to do so.

parallel

The tests are run in different processes. Be careful, because if you for-
get to export the init_per_group and end_per_group functions, Common
Test will silently ignore this option.

sequence

Using this option doesn’t necessarily mean that the tests are run in
order, but rather that if a test fails in the group’s list, then all the other
subsequent tests are skipped. This option can be combined with shuffle
if you want any random test failing to stop the ones that follow.

{repeat, Times}

This repeats the group Times times. You could run the whole test
case sequence in parallel nine times by using the group properties
[parallel, {repeat, 9}]. Times can also have the value forever, although
“forever” is a bit of a lie, as it can’t defeat concepts such as hardware
failure or heat death of the universe (ahem).

496 Chapter 28

{repeat_until_any_fail, N}

This runs all the tests until one of them fails or they have been run N
times. N can also be forever.

{repeat_until_all_fail, N}

This works the same as the preceding option, but the tests may run
until all cases fail.

{repeat_until_any_succeed, N}

This is also the same as the preceding options, except the tests may run
until at least one case succeeds.

{repeat_until_all_succeed, N}

I think you can guess what
this one does, but just in case:
It’s the same as the preceding
options, except that the test
cases may run until they all
succeed.

Honestly, that’s quite a bit
of content for test groups, and
I feel an example would be
appropriate here.

The Meeting Room
To use test groups, we’ll create a meeting room-booking module:

-module(meeting).
-export([rent_projector/1, use_chairs/1, book_room/1,
 get_all_bookings/0, start/0, stop/0]).
-record(bookings, {projector, room, chairs}).

start() ->
 Pid = spawn(fun() -> loop(#bookings{}) end),
 register(?MODULE, Pid).

stop() -> ?MODULE ! stop.

rent_projector(Group) -> ?MODULE ! {projector, Group}.

book_room(Group) -> ?MODULE ! {room, Group}.

use_chairs(Group) -> ?MODULE ! {chairs, Group}.

These basic functions will call a central registry process. They will
allow us to book the room, rent a projector, and put dibs on chairs. For the
sake of the exercise, we’re in a large organization with one hell of a corpo-
rate structure. Because of this, three different people are responsible for

EVERY DAY I’M
SHUFFLING
(test cases)

Common Test for Uncommon Tests 497

the projector, the room, and the chairs, but there is one central registry.
Because of this structure, you can’t book all items at once, but must do it
by sending three different messages.

To know who booked what, we can send a message to the registry in
order to get all the values:

get_all_bookings() ->
 Ref = make_ref(),
 ?MODULE ! {self(), Ref, get_bookings},
 receive
 {Ref, Reply} ->
 Reply
 end.

The registry itself looks like this:

loop(B = #bookings{}) ->
 receive
 stop -> ok;
 {From, Ref, get_bookings} ->
 From ! {Ref, [{room, B#bookings.room},
 {chairs, B#bookings.chairs},
 {projector, B#bookings.projector}]},
 loop(B);
 {room, Group} -> loop(B#bookings{room=Group});
 {chairs, Group} -> loop(B#bookings{chairs=Group});
 {projector, Group} -> loop(B#bookings{projector=Group})
 end.

And that’s it.
To book everything for a successful meeting, we would need to succes-

sively call the functions:

1> c(meeting).
{ok,meeting}
2> meeting:start().
true
3> meeting:book_room(erlang_group).
{room,erlang_group}
4> meeting:rent_projector(erlang_group).
{projector,erlang_group}
5> meeting:use_chairs(erlang_group).
{chairs,erlang_group}
6> meeting:get_all_bookings().
[{room,erlang_group},
 {chairs,erlang_group},
 {projector,erlang_group}]

This doesn’t seem right, though. You possibly have this lingering feel-
ing that things could go wrong. In many cases, if we make the three calls
fast enough, we should obtain everything we want without a problem. If two

498 Chapter 28

people do it at once and there are short pauses between the calls, it seems
possible that two (or more) groups might try to rent the same equipment at
the same time.

Oh no! Suddenly, the programmers might end up having the projec-
tor, while the board of directors has the room, and the human resources
department managed to rent all of the chairs. All resources are tied up, but
no one can do anything useful!

We won’t worry about fixing that problem. Instead, we’ll work on trying
to demonstrate that it’s present with a Common Test suite.

The suite, named meeting_SUITE.erl, will be based on the simple idea
of trying to provoke a race condition that will mess up the registration. We’ll
have three test cases, each representing a group. Carla will represent women,
Mark will represent men, and a dog will represent a group of animals that
somehow decided it wanted to hold a meeting with human-made tools:

-module(meeting_SUITE).
-include_lib("common_test/include/ct.hrl").
 ...
carla(_Config) ->
 meeting:book_room(women),
 timer:sleep(10),
 meeting:rent_projector(women),
 timer:sleep(10),
 meeting:use_chairs(women).

mark(_Config) ->
 meeting:rent_projector(men),
 timer:sleep(10),
 meeting:use_chairs(men),
 timer:sleep(10),
 meeting:book_room(men).

dog(_Config) ->
 meeting:rent_projector(animals),
 timer:sleep(10),
 meeting:use_chairs(animals),
 timer:sleep(10),
 meeting:book_room(animals).

We don’t care whether these tests actually test something. They are just
there to use the meeting module (which we’ll put in place for the tests soon)
and try to generate wrong reservations.

To find out if we have a race condition between all of these tests, we’ll
use the meeting:get_all_bookings() function in a fourth and final test:

all_same_owner(_Config) ->
 [{_, Owner}, {_, Owner}, {_, Owner}] = meeting:get_all_bookings().

This one does pattern matching on the owners of all different objects
that can be booked, trying to see whether they are actually booked by the
same owner. This is a desirable thing if we are looking for efficient meetings.

DOGS
UNITED

Common Test for Uncommon Tests 499

How do we move from having four test cases
in a file to something that works? We’ll need to
make clever use of test groups. First, because
we want a race condition, we know we’ll need
to have a bunch of tests running in parallel.
Second, given we have a requirement to see the
problem from the race condition, we’ll need
to either run all_same_owner many times during
the whole debacle or only after it, to look with
despair at the aftermath.

I chose the latter:

all() -> [{group, clients}, all_same_owner].

groups() -> [{clients, [parallel, {repeat, 10}], [carla, mark, dog]}].

This creates a clients group of tests, with the individual tests being
carla, mark, and dog. They’re going to run in parallel, 10 times each.

You see that we include the group in the all/0 function, and then put
all_same_owner. That’s because, by default, Common Test will run the tests
and groups in all/0 in the order they were declared.

But wait! We forgot to start and stop the meeting process itself. To do
that, we’ll need to have a way to keep a process alive for all tests, regardless
of whether it’s in the clients group. The solution is to nest things one level
deeper, in another group:

all() -> [{group, session}].

groups() -> [{session, [], [{group, clients}, all_same_owner]},
 {clients, [parallel, {repeat, 10}], [carla, mark, dog]}].

init_per_group(session, Config) ->
 meeting:start(),
 Config;
init_per_group(_, Config) ->
 Config.

end_per_group(session, _Config) ->
 meeting:stop();
end_per_group(_, _Config) ->
 ok.

We use the init_per_group and end_per_group functions to specify that the
session group (which now runs {group, clients} and all_same_owner) will work
with an active meeting. Don’t forget to export the two setup and teardown
functions; otherwise, nothing will run in parallel.

people do it at once and there are short pauses between the calls, it seems
possible that two (or more) groups might try to rent the same equipment at
the same time.

Oh no! Suddenly, the programmers might end up having the projec-
tor, while the board of directors has the room, and the human resources
department managed to rent all of the chairs. All resources are tied up, but
no one can do anything useful!

We won’t worry about fixing that problem. Instead, we’ll work on trying
to demonstrate that it’s present with a Common Test suite.

The suite, named meeting_SUITE.erl, will be based on the simple idea
of trying to provoke a race condition that will mess up the registration. We’ll
have three test cases, each representing a group. Carla will represent women,
Mark will represent men, and a dog will represent a group of animals that
somehow decided it wanted to hold a meeting with human-made tools:

-module(meeting_SUITE).
-include_lib("common_test/include/ct.hrl").
 ...
carla(_Config) ->
 meeting:book_room(women),
 timer:sleep(10),
 meeting:rent_projector(women),
 timer:sleep(10),
 meeting:use_chairs(women).

mark(_Config) ->
 meeting:rent_projector(men),
 timer:sleep(10),
 meeting:use_chairs(men),
 timer:sleep(10),
 meeting:book_room(men).

dog(_Config) ->
 meeting:rent_projector(animals),
 timer:sleep(10),
 meeting:use_chairs(animals),
 timer:sleep(10),
 meeting:book_room(animals).

We don’t care whether these tests actually test something. They are just
there to use the meeting module (which we’ll put in place for the tests soon)
and try to generate wrong reservations.

To find out if we have a race condition between all of these tests, we’ll
use the meeting:get_all_bookings() function in a fourth and final test:

all_same_owner(_Config) ->
 [{_, Owner}, {_, Owner}, {_, Owner}] = meeting:get_all_bookings().

This one does pattern matching on the owners of all different objects
that can be booked, trying to see whether they are actually booked by the
same owner. This is a desirable thing if we are looking for efficient meetings.

DOGS
UNITED

500 Chapter 28

All right, let’s run the tests and see what we get:

1> ct_run:run_test([{suite, meeting_SUITE}]).
... <snip> ...
Common Test: Running make in test directories...
... <snip> ...
TEST INFO: 1 test(s), 1 suite(s)
Testing ct.meeting.meeting_SUITE: Starting test (with repeated test cases)
- -
meeting_SUITE:all_same_owner failed on line 50
Reason: {badmatch,[{room,men},{chairs,women},{projector,women}]}
- -
Testing ct.meeting.meeting_SUITE: *** FAILED *** test case 31
Testing ct.meeting.meeting_SUITE: TEST COMPLETE, 30 ok, 1 failed of 31 test cases
... <snip> ...
ok

Good! We have a badmatch with three tuples with different items owned by
different people. Moreover, the output tells us it’s the all_same_owner test that
failed. I think that’s a pretty good sign that all_same_owner crashed as planned.

If you look at the HTML log, you’ll be able to see all the runs with the
exact test that failed and for what reason. Click the test name, and you’ll get
the right test run.

N o t e 	 An important thing to know about test groups is that while the init functions of test
cases run in the same process as the test case, the init functions of groups run in
processes distinct from the tests. This means that whenever you initialize actors that
get linked to the process that spawned them, you must make sure to first unlink them.
In the case of ETS tables, you need to define an heir to make sure it doesn’t disappear.
This applies to all other items that are attached to a process, such as sockets and file
descriptors.

Test Suites Redux
Can we use our test suites in a way that is better than nesting groups and
manipulating how we run things in terms of hierarchy? Not really, but even
so, we’ll add another level with the test suite itself:

init
test
end

init
test
end

Group

group init

group end

Suite

Suite init

Suite end

Common Test for Uncommon Tests 501

We have two additional functions: init_per_suite(Config) and
end_per_suite(Config). These, like all the other init and end functions,
aim to give more control over initialization of data and processes.

The init_per_suite/1 and end_per_suite/1 functions will run only once,
respectively, before and after all of the groups or test cases. They will be
useful when dealing with general state and dependencies that will be
required for all tests. This can include manually starting applications you
depend on, for example.

Test Specifications
There’s something you might have found pretty annoying if you looked at
your test directory after running tests: a ton of files scattered around the
directory for your logs—CSS files, HTML logs, directories, test run histo-
ries, and so on. It would be pretty neat to have a nice way to store these files
in a single directory.

Another issue is that so far we’ve run tests from a test suite. We have not
seen a good way to do it with many test suites at once, or even ways to run
only one or two cases or groups from a suite (or from many suites).

Of course, if I’m bringing up these issues, it’s because I have a solution
for them. There are ways to handle them from both the command line and
the Erlang shell, and you can find them in the documentation for ct_run
(http://www.erlang.org/doc/man/ct_run.html). However, instead of going into
ways to manually specify everything for each time you run the tests, we’ll
employ test specifications.

Test specifications are special files that let you
detail everything about how you want to have the
tests run, and they work with the Erlang shell and
the command line. The test specification can be
put in a file with any extension you want (although I
personally fancy .spec files).

Specification File Contents
The spec files will contain Erlang tuples, much like a consult file (a file con-
taining Erlang terms, which can be parsed by using file:consult/1). Here are
some of the items a spec file can contain:

{include, IncludeDirectories}

When Common Test automatically compiles suites, this option lets you
specify where it should look for include files in order to make sure they
are there. The IncludeDirectories value must be a string (list) or a list of
strings (list of lists).

{logdir, LoggingDirectory}

When logging, all logs should be moved to the LoggingDirectory, a string.
Note that the directory must exist before the tests are run; otherwise,
Common Test will complain.

DO EVERYTHING

502 Chapter 28

{suites, Directory, Suites}

This finds the given suites in Directory. Suites can be an atom (some_SUITE),
a list of atoms, or the atom all to run all the suites in a directory.

{skip_suites, Directory, Suites, Comment}

This subtracts a list of suites from those previously declared and skips
them. The Comment argument is a string explaining why you decided
to skip them. This comment will be put in the final HTML logs. The
tables will show, in yellow, “SKIPPED: Reason,” where Reason is whatever
Comment contained.

{groups, Directory, Suite, Groups}

This is an option to pick only a few groups from a given suite. The
Groups variable can be a single atom (the group name) or all for all
groups. The value can also be more complex, letting you override the
group definitions inside groups() within the test case by picking a value
like {GroupName, [parallel]}, which will override GroupName’s options for
parallel, without needing to recompile tests.

{groups, Directory, Suite, Groups, {cases,Cases}}

This option is similar to the previous one, but it lets you specify some
test cases to include in the tests with Cases, which can be a single case
name (an atom), a list of names, or the atom all.

{skip_groups, Directory, Suite, Groups, Comment}

This command was added in R15B and documented in R15B01. It
allows you to skip test groups, much like the skip_suites for suites.

{skip_groups, Directory, Suite, Groups, {cases,Cases}, Comment}

This is similar to the previous option, but with specific test cases to skip
on top of it. It also has been available only since R15B.

{cases, Directory, Suite, Cases}

This runs specific test cases from a given suite. Cases can be an atom, a
list of atoms, or all.

{skip_cases, Directory, Suite, Cases, Comment}

This is similar to skip_suites, except you choose specific test cases to
avoid with this one.

{alias, Alias, Directory}

Because it gets very annoying to write all these directory names (espe-
cially if they’re full names), Common Test lets you replace them with
aliases (atoms). This is pretty useful way to be concise.

Common Test for Uncommon Tests 503

Creating a Spec File
Let’s try a simple example. First, add a ct/logs/ directory, on the same level as
ct/demo/. Unsurprisingly, that’s where our Common Test logs will be moved.

Here’s a possible test specification for all our tests so far, saved under
the imaginative name spec.spec:

{alias, demo, "./demo/"}.
{alias, meeting, "./meeting/"}.
{logdir, "./logs/"}.

{suites, meeting, all}.
{suites, demo, all}.
{skip_cases, demo, basic_SUITE, test2, "This test fails on purpose"}.

This spec file declares two aliases: demo and meeting, which point to
the two test directories we have. We put the logs inside ct/logs/, our newest
directory. Then we ask to run all suites in the meeting directory, which, coin-
cidentally, is the meeting_SUITE suite.

Next on the list are the two suites inside the demo directory. We ask to
skip test2 from the basic_SUITE suite, given it contains a division by zero that
we know will fail.

Running Tests with a Spec File
To run the tests, you can use ct_run -spec spec.spec (or run_test for versions
of Erlang before R15) from the command line, or you can use the function
ct:run_test([{spec, "spec.spec"}]). from the Erlang shell:

Common Test: Running make in test directories...
... <snip> ...
TEST INFO: 2 test(s), 3 suite(s)

Testing ct.meeting: Starting test (with repeated test cases)

- -
meeting_SUITE:all_same_owner failed on line 51
Reason: {badmatch,[{room,men},{chairs,women},{projector,women}]}
- -

Testing ct.meeting: *** FAILED *** test case 31
Testing ct.meeting: TEST COMPLETE, 30 ok, 1 failed of 31 test cases

Testing ct.demo: Starting test, 3 test cases
Testing ct.demo: TEST COMPLETE, 2 ok, 0 failed, 1 skipped of 3 test cases

Updating /Users/ferd/code/self/learn-you-some-erlang/ct/logs/index.html... done
Updating /Users/ferd/code/self/learn-you-some-erlang/ct/logs/all_runs.html... done

If you take the time to look at the logs, you’ll see two directories
for the different test runs. One of them will have a failure—that’s the

504 Chapter 28

meeting that failed as expected. The other one will have one success and
one skipped case, of the form 1 (1/0). Generally, the format is TotalSkipped
(IntentionallySkipped/SkippedDueToError). In this case, the skip happened
from the spec file, so it goes on the left. If it happened because one of the
many init functions failed, then it would be on the right.

Common Test is starting to look like a pretty decent testing framework,
but it would be nice to be able to use our distributed programming knowl-
edge and apply it.

Large-Scale Testing
Common Test supports having distributed
tests. Before going hog wild and writing a
bunch of code, let’s see what’s offered. Well,
there isn’t that much. The gist of it is that
Common Test lets you start tests on many
different nodes, but also has ways to dynami-
cally start these nodes and have them watch
each other.

As such, the distributed features of
Common Test are really useful when you
have large test suites that should be run in
parallel on many nodes. This is often worth
the effort to save time or because the code will run in production environ-
ments that are on different computers—automated tests that reflect this are
desired.

When tests go distributed, Common Test requires the presence of a
central node (the CT master) in charge of all the other nodes. Everything
will be directed from there, from starting nodes, ordering tests to be run,
gathering logs, and so on.

The first step to get things going that way is to expand our test specifi-
cations so they become distributed. We’re going to add a couple new tuples:
{node, NodeAlias, NodeName} and {init, NodeAlias, Options}.

{node, NodeAlias, NodeName} is much like {alias, AliasAtom, Directory}
for test suites, groups, and cases, except it’s used for node names. Both
NodeAlias and NodeName need to be atoms. This tuple is especially useful when
NodeName needs to be a long node name, since it would be quite annoying to
have it duplicated in its entire form dozens of times over a given spec file.

{init, NodeAlias, Options} is a more complex tuple. This is the option
that lets you start nodes. NodeAlias can be a single node alias or a list of
many of them. The Options are those available to the ct_slave module.

Here are a few of the options available:

{username, UserName} and {password, Password}
Using the host part of the node given by NodeAlias, Common Test will
try to connect to the given host over SSH (on port 22) using the user-
name and password, and run from there.

YOU MUST

BE THIS

TALL TO

TEST

Common Test for Uncommon Tests 505

{startup_functions, [{M,F,A}]}

This option defines a list of functions to be called as soon as the other
node has booted.

{erl_flags, String}

This sets standard flags that you would want to pass to the erl appli-
cation when you start it. For example, if you wanted to start a node
with erl -env ERL_LIBS ../ -config conf_file, the option would be
{erl_flags, "-env ERL_LIBS ../ -config config_file"}.

{monitor_master, true | false}

If the CT master stops running and this option is set to true, the slave
node will also be taken down. I recommend using this option if you’re
spawning the remote nodes; otherwise, they will keep running in
the background if the master dies. Moreover, if you run tests again,
Common Test will be able to connect to these nodes, and there will be
some state attached to them.

{boot_timeout, Seconds}, {init_timeout, Seconds}, and {startup_timeout, Seconds}
These three options let you wait for different parts of the starting of a
remote node. The boot timeout is about how long it takes before the
node becomes pingable, with a default value of 3 seconds. The init
timeout is an internal timer where the new remote node calls back the
CT master to say that it’s up. By default, it lasts 1 second. Finally, the
startup timeout tells Common Test how long to wait for the functions
you defined earlier as part of the startup_functions tuple.

{kill_if_fail, true | false}

This option will react to one of the three preceding timeouts. If any of
them are triggered, Common Test will abort the connection, skip tests,
and so on, but not necessarily kill the node, unless the option is set to
true. Fortunately, that’s the default value.

N o t e 	 All these options are provided by the ct_slave module. It is possible to define your own
module to start slave nodes, as long as it respects the right interface.

So, we have a lot of options for remote nodes, which contributes to
giving Common Test its distributed power. You’re able to boot nodes with
about as much control as what you would get doing it by hand in the shell.
Still, there are more options for distributed tests, although they’re not for
booting nodes:

{include, Nodes, IncludeDirs}
{logdir, Nodes, LogDir}
{suites, Nodes, DirectoryOrAlias, Suites}
{groups, Nodes, DirectoryOrAlias, Suite, Groups}
{groups, Nodes, DirectoryOrAlias, Suite, GroupSpec, {cases,Cases}}
{cases, Nodes, DirectoryOrAlias, Suite, Cases}

506 Chapter 28

{skip_suites, Nodes, DirectoryOrAlias, Suites, Comment}
{skip_cases, Nodes, DirectoryOrAlias, Suite, Cases, Comment}

These are similar to the options we’ve already seen, except that they
can optionally take a node argument to add more detail. That way, you can
decide to run some suites on a given node, others on different nodes, and
so on. This could be useful when doing system testing with different nodes
running different environments or parts of the system (such as databases or
external applications).

Creating a Distributed Spec File
As a simple way to see how distributed testing works, let’s turn the previous
spec.spec file into a distributed one. Copy it as dist.spec, and then change it to
look like this:

{node, a, 'a@ferdmbp.local'}.
{node, b, 'b@ferdmbp.local'}.

{init, [a,b], [{node_start, [{monitor_master, true}]}]}.

{alias, demo, "./demo/"}.
{alias, meeting, "./meeting/"}.

{logdir, [all_nodes, master], "./logs/"}.

{suites, [b], meeting, all}.
{suites, [a], demo, all}.
{skip_cases, [a], demo, basic_SUITE, test2, "This test fails on purpose"}.

In this version, we define two slave nodes, a and b, that need to be
started for the tests. They do nothing special but make sure to die if the
master dies. The aliases for directories remain the same as they were.

The logdir values are interesting. We did not declare a node alias as
all_nodes or master, but yet, here they are. The all_nodes alias stands for all
non-master nodes for Common Test; master stands for the master node
itself. To truly include all nodes, [all_nodes, master] is required. (There’s no
clear explanation as to why these names were picked.)

The reason we used these logdir
values is that Common Test will gener-
ate logs (and directories) for each of
the slave nodes, and it will also gener-
ate a master set of logs, referring to the
slave ones. We don’t want any of these
in directories other than logs/. Note
that the logs for the slave nodes will
be stored on each of the slave nodes

boring
drawings this

self-
referential
drawings

Common Test for Uncommon Tests 507

individually. In that case, unless all nodes share the same filesystem, the
HTML links in the master’s logs won’t work, and you’ll need to access each
of the nodes to get their respective logs.

Last of all are the suites and skip_cases entries. They’re pretty much the
same as the previous ones, but adapted for each node. This way, you can
skip some entries only on given nodes (which you know might be missing
libraries or dependencies), or maybe more intensive ones where the hard-
ware isn’t up to the task.

Running Distributed Tests
To run distributed tests, we must start a distributed node with -name and use
ct_master to run the suites (there is no way to run such tests using ct_run.):

$ erl -name ct
Erlang R15B (erts-5.9) [source] [64-bit] [smp:4:4] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9 (abort with ^G)
(ct@ferdmbp.local)1> ct_master:run("dist.spec").
=== Master Logdir ===
/Users/ferd/code/self/learn-you-some-erlang/ct/logs
=== Master Logger process started ===
<0.46.0>
Node 'a@ferdmbp.local' started successfully with callback ct_slave
Node 'b@ferdmbp.local' started successfully with callback ct_slave
=== Cookie ===
'PMIYERCHJZNZGSRJPVRK'
=== Starting Tests ===
Tests starting on: ['b@ferdmbp.local','a@ferdmbp.local']
=== Test Info ===
Starting test(s) on 'b@ferdmbp.local'...
=== Test Info ===
Starting test(s) on 'a@ferdmbp.local'...
=== Test Info ===
Test(s) on node 'a@ferdmbp.local' finished.
=== Test Info ===
Test(s) on node 'b@ferdmbp.local' finished.
=== TEST RESULTS ===
a@ferdmbp.local_________________________finished_ok
b@ferdmbp.local_________________________finished_ok

=== Info ===
Updating log files
Updating /Users/ferd/code/self/learn-you-some-erlang/ct/logs/index.html... done
Updating /Users/ferd/code/self/learn-you-some-erlang/ct/logs/all_runs.html... done
Logs in /Users/ferd/code/self/learn-you-some-erlang/ct/logs refreshed!
=== Info ===
Refreshing logs in "/Users/ferd/code/self/learn-you-some-erlang/ct/logs"... ok
[{"dist.spec",ok}]

508 Chapter 28

Note that Common Test will show all results as ok whether or not the
tests actually succeeded. That is because ct_master shows only if it could
contact all the nodes. The results themselves are actually stored on each
individual node.

Also note that Common Test shows that it started nodes, and with what
cookies it did so. If you try running tests again without first terminating the
master, the following warnings are shown instead:

WARNING: Node 'a@ferdmbp.local' is alive but has node_start option
WARNING: Node 'b@ferdmbp.local' is alive but has node_start option

That’s all right. It only means that Common Test is able to connect to
remote nodes, but found no use for calling our init tuple from the test
specification, given the nodes are already alive. There is no need for
Common Test to actually start any remote nodes it will run tests on, but
I usually find it useful to do so.

That’s really the gist of distributed
spec files. Of course, you can get into
more complex cases, where you set
up more complicated clusters and write
amazing distributed tests. But as the
tests become more complex, you can
have less confidence in their ability to
successfully demonstrate the proper-
ties of your software, simply because
the tests themselves might contain
more errors as they become more
convoluted.

Integrating EUnit Within Common Test
Because sometimes EUnit is the best tool for the job, and sometimes
Common Test is, it might be desirable for you to include one into the other.

While it’s difficult to include Common Test suites within EUnit ones, the
opposite is quite easy. The trick is that when you call eunit:test(SomeModule),
the function can return either ok when things work or error in case of any
failure.

This means that to integrate EUnit tests into a Common Test suite, all
you need to do is have a function a bit like this:

run_eunit(_Config) ->
 ok = eunit:test(TestsToRun).

And all your EUnit tests that can be found by the TestsToRun description
will be run. If there’s a failure, it will appear in your Common Test logs, and
you’ll be able to read the output to see what went wrong. It’s that simple.

CTEUnit

SYSTEM

TESTS

Common Test for Uncommon Tests 509

Is There More?
You bet there’s more. Common Test is a very complex beast. There are
ways to add configuration files for some variables; add hooks that run at
many points during the test executions; use callbacks on events during the
suites; and use modules to test over SSH (ct_ssh), telnet (ct_telnet), SNMP
(ct_snmp), and FTP (ct_ftp).

This chapter only scratched the surface, but it is enough to get
you started if you want to explore Common Test in more depth. A more
complete document is the Common Test User’s Guide, which comes with
Erlang/OTP (http://www.erlang.org/doc/apps/common_test/users_guide.html).
As I mentioned at the beginning of this chapter, the guide is hard to read
on its own, but understanding the material covered in this chapter will help
you figure out the documentation, without a doubt.

29
M n e s i a a n d t h e A r t o f

R e m e m b e r i n g

You’re the closest friend of a man with many friends.
He has known some of those friends for a very long
time, as have you. These friends come from all around
the world, ranging from Sicily to New York. They pay
their respects, and care about you and your friend,
and you both care about them back.

In exceptional circumstances, they ask for favors because you’re people
of power and trust. They’re your good friends, so you oblige. However,
friendship has a cost. Each favor realized is duly noted, and at some point
in the future, you may ask for a service in return.

You always keep your promises—you’re a pillar of reliability. That’s why
they call your friend boss, and they call you consigliere. You’re helping to lead
one of the most respected Mafia families.

However, it becomes a pain to remember all your friendships, and as
your areas of influence grow across the world, it is increasingly harder to
keep track of what friends owe to you and what you owe to friends.

512 Chapter 29

Because you’re a helpful
counselor, you decide to upgrade
the traditional system from notes
secretly kept in various places to
something using Erlang.

At first, you figure using ETS
and DETS tables will be perfect.
However, when you’re out on an
overseas trip away from the boss,
it becomes somewhat difficult to
keep things synchronized.

You could write a complex layer on top of your ETS and DETS tables to
keep everything in check. You could do that, but being human, you know
that you might make mistakes and write buggy software. Such mistakes are
to be avoided when friendship is so important, so you look online to find
how to make sure your system works correctly.

This is when you start reading this chapter, which explains Mnesia, an
Erlang distributed database built to solve such problems.

What’s Mnesia?
Mnesia is a layer built on top of ETS and DETS to add a lot of functional-
ity to those two databases, which were introduced in Chapter 25. It mostly
contains features that many developers might end up creating on their own
if they wanted to use ETS and DETS intensively. Mnesia allows you to write
to both ETS and DETS automatically, to have both DETS’s persistence and
ETS’s performance, and to be able to replicate the database to many differ-
ent Erlang nodes automatically.

Another useful feature provided by Mnesia is transactions. Basically,
transactions let you perform multiple operations on one or more tables as
if the process doing them were the only one to have access to the tables—
something ETS doesn’t allow. This proves vital when you need to have con-
current operations that mix read and writes as part of a single unit. One
example would be reading in the database to see if a username is taken,
and then creating the user if that name is available. Without transactions,
looking inside the table for the value and then registering it counts as two
distinct operations that can be messing with each other. Given the right
timing, more than one process might believe it has the right to create the
unique user, which will lead to a lot of confusion. Transactions solve this
problem by allowing many operations to act as a single unit.

Mnesia is pretty much the only full-featured database available that
will natively store and return any Erlang term out of the box (at the time
of this writing). The downside is that it will inherit all the limitations of
DETS tables in some modes, such as not being able to store more than 2GB
of data for a single table on disk (but this can be bypassed with a feature
called fragmentation, described at http://www.erlang.org/doc/apps/mnesia/
Mnesia_chap5.html#id75194).

Mnesia and the Art of Remembering 513

If we consider the CAP theorem (discussed in Chapter 26), Mnesia sits
on the CP side, rather than the AP side. This means that it won’t do even-
tual consistency and will react rather badly to netsplits in some cases, but it
will give you strong consistency guarantees if you expect the network to be
reliable (and you sometimes shouldn’t).

Mnesia is not meant to replace your standard SQL database, nor is it
meant to handle terabytes of data across a large number of data centers, as
often claimed by the giants of the NoSQL world. Mnesia is made for smaller
amounts of data, on a limited number of nodes. While it is possible to use it
on a ton of nodes, most people find that their practical limits center around
10 or so. You will want to use Mnesia when you know it will run on a fixed
number of nodes, have an idea of how much data it will require, and know
that you will primarily need to access your data from Erlang in ways ETS
and DETS would allow in usual circumstances.

Just how close to Erlang is it? Mnesia is centered on the idea of using a
record to define a table’s structure. Each table can store a bunch of similar
records, and anything that goes in a record can be stored in an Mnesia
table, including atoms, pids, references, and so on.

What Should the Store Store?
The first step in using Mnesia is to figure out the
information you’ll need and the table structure
you’ll use for storing that information.

The Data to Store
For our Mafia friend-tracking application (which I
decided to name mafiapp), the information we might
want to store includes the following:

•	 The friend’s name, to know who we’re talking to when we ask for a ser-
vice or provide one.

•	 The friend’s contact information, to know how to reach that friend.
This might take various forms, such as an email address, a cell phone
number, or even notes regarding where that person likes to hang out.

•	 Additional information, such as when the person was born, occupation,
hobbies, special traits, and so on.

•	 A unique expertise—our friend’s forte. This field stands on its own
because it’s something we want to know explicitly. If someone’s exper-
tise is in cooking, and we’re in dire need of a caterer, we know who to
call. If we are in trouble and need to disappear for a while, we may look
for friends who are pilots, camouflage experts, or excellent magicians.

514 Chapter 29

Then we need to think about the services being exchanged. What will
we want to know about them? Here are a few items:

•	 Who gave the service. Maybe it’s you, the consigliere. Maybe it’s the
padrino. Maybe it’s a friend of a friend, on your behalf. Maybe it’s some-
one who then becomes your friend. We need to know.

•	 Who received the service.

•	 When the service was given. It’s generally useful to be able to refresh
someone’s memory, especially when asking for a favor payback.

•	 Details regarding the services. It’s much nicer (and more intimidating)
to remember every tiny detail of the services we gave, as well as the date.

Table Structure
As I mentioned in the previous section, Mnesia is based on records and
tables (ETS and DETS). To be exact, you can define an Erlang record and
tell Mnesia to turn its definition into a table.

For example, suppose we’re working on a recipe app, and we decided to
have our record take this form:

-record(recipe, {name, ingredients=[], instructions=[]}).

We can then tell Mnesia to create a recipe table, which would store any
number of #recipe{} records as table rows. We could have a recipe for pizza
noted as follows:

#recipe{name=pizza,
 ingredients=[sauce,tomatoes,meat,dough],
 instructions=["order by phone"]}

And a recipe for soup might look like this:

#recipe{name=soup,
 ingredients=["who knows"],
 instructions=["open unlabeled can, hope for the best"]}

We could insert both of these in the recipe table, as is. We could then
fetch the same records from the table and use them in the same way as any
other records.

The primary key—the unique field by which it is the fastest to look up
things in a table—would be the recipe name. That’s because name is the
first item in the record definition for #recipe{}. You’ll also notice that in
the pizza recipe, we use atoms as ingredients, and in the soup recipe, we
use a string. As opposed to SQL tables, Mnesia tables have no built-in type
constraints, as long as you respect the structure of the table itself (all entries
in an Mnesia table must be the same kind of record, or tuples of the same
size with the same first element).

Mnesia and the Art of Remembering 515

So, how should we represent our friends and services information for
our mafia application? Maybe as one table doing everything?

-record(friends, {name,
 contact=[],
 info=[],
 expertise,
 service=[]}). % {To, From, Date, Description} for services?

But this isn’t the best choice possible. Nesting the data for services
within friend-related data means that adding or modifying service-related
information will require us to change friends at the same time. This might
be annoying, especially since services imply at least two people. For each
service, we would need to fetch the records for two friends and update them,
even if there is no friend-specific information that needs to be modified.

A more flexible model is to use one table for each kind of data we need
to store:

-record(mafiapp_friends, {name,
 contact=[],
 info=[],
 expertise}).
-record(mafiapp_services, {from,
 to,
 date,
 description}).

Having two tables should give us all the flexibility we need to search for
information and modify it, with little overhead.

Don’t Dr ink Too Much Kool- A id

You’ll notice that I prefixed both the friends and services records with mafiapp_.
While records are defined locally within our module, Mnesia tables are global to
all the nodes that will be part of its cluster. This implies a high potential for name
clashes if you’re not careful. Therefore, it is a good idea to manually namespace
your tables.

From Record to Table
Now that we know what we want to store, the next logical step is to decide
how we’re going to store it. Remember that Mnesia is built using ETS and
DETS tables. This gives us two means of storage: on disk or in memory. We
need to pick a strategy!

516 Chapter 29

Here are the options:

ram_copies

This option makes it so all data is stored exclusively in ETS, so in mem-
ory only. Memory should be limited to a theoretical 4GB (and practi-
cally around 3GB) for VMs compiled on 32 bits, but this limit is pushed
further away on 64-bit (and half-word) VMs, assuming there is more
than 4GB of memory available.

disc_only_copies

This option means that the data is stored only in DETS, on disk only,
and the storage is limited to DETS’s 2GB limit.

disc_copies

This option means that the data is stored both in ETS and on disk,
so both in memory and on the hard disk. disc_copies tables are not
restricted by DETS limits, as Mnesia uses a complex system of transac-
tion logs and checkpoints that allow creating a disk-based backup of the
table in memory.

For our current application, we will go with with disc_copies. The rela-
tionships we built with our friends need to be long-lasting, so it makes sense
to be able to store things persistently. It would be quite annoying to wake
up after a power failure, only to find out you’ve lost all the friendships you
worked so hard to make. “Why just not use disc_only_copies?” you might ask.
Well, having copies in memory is usually nice when we want to do more
somewhat complex queries and searches, given they can be done without
needing to access the disk, which is often the slowest part of any computer
memory access, especially if it’s a hard disk.

There’s another hurdle on our path to filling the database with our pre-
cious data. Because of how ETS and DETS work, we need to define a table
type. The types available bear the same definition as their ETS and DETS
counterparts. The options are set, bag, and ordered_set, although ordered_set
is not supported for disc_only_copies tables. (Tables of type duplicate_bag are
not available for any of the storage types.) If you don’t remember what these
types do, look them up in Chapter 25.

The good news is that we’re pretty much finished deciding how we’re
going to store things. The bad news is that there are still more things to
understand about Mnesia before truly getting started.

Of Mnesia Schemas and Tables
Although Mnesia can work fine on isolated nodes, it does support distribu-
tion and replication to many nodes. To know how to store tables on disk,
how to load them, and which other nodes they should be synchronized
with, Mnesia needs to have a schema that holds all that information.

By default, Mnesia creates a schema directly in memory when it’s
started. It works fine for tables that need to live in RAM only, but when
your schema needs to survive across many VM restarts, on all the nodes
that are part of the Mnesia cluster, things get a bit more complex.

Mnesia and the Art of Remembering 517

Mnesia depends on the schema, but
Mnesia should also create the schema.
This sets up a weird situation where the
schema needs to be created by Mnesia
without running Mnesia first! Fortunately,
it’s rather simple to deal with this in prac-
tice. We just need to call the function
mnesia:create_schema(ListOfNodes) before start-
ing Mnesia. It will create a bunch of files on each node, storing all the table
information required. You don’t need to be connected to the other nodes
when calling the function, but the nodes need to be running; the function
will set up the connections and get everything working for you.

By default, the schema will be created in the current working directory,
wherever the Erlang node is running. To change this, the Mnesia application
has a dir variable that can be set to pick where the schema will be stored. You
can start your node as erl -name SomeName -mnesia dir where/to/store/the/db, or
set it dynamically with application:set_env(mnesia, dir, "where/to/store/the/db").

N o t e 	 A schema may fail to be created because one already exists, Mnesia is running on one
of the nodes the schema should be on, you can’t write to the directory Mnesia wants to
write to, or another common file-handling problem occurred.

Once the schema has been created, we can start Mnesia and begin cre-
ating tables. The function mnesia:create_table/2 is what we need to use for
this task. It takes two arguments: the table name and a list of options. The
following are some of the options available:

{attributes, List}

This is a list of all the items in a table. By default, it takes the
form [key, value], meaning you would need a record of the form
-record(TableName, {key,val}). to work. Pretty much everyone cheats a
little and uses a special construct (a compiler-supported macro) that
extracts the element names from a record. The construct looks like
a function call. To do it with our friends record, we would pass it as
{attributes, record_info(fields, mafiapp_friends)}.

{disc_copies, NodeList}, {disc_only_copies, NodeList}, and {ram_copies, NodeList}
This is where you specify how to store the tables, as explained in the
previous section. Note that you can have many of these options present
at once. As an example, you could define a table to be stored on disk and
RAM on your master node, only in RAM on all of the slaves, and only on
disk on a dedicated backup node by using all three of the options.

{index, ListOfIntegers}

Mnesia tables let you have indexes on top of the basic ETS and DETS
functionality. This is useful in cases where you are planning to build
searches on record fields other than the primary key. As an example,
our friends table will need an index for the expertise field. We can declare
such an index as {index, [#mafiapp_friends.expertise]}. In general—and

518 Chapter 29

this is true for many, many databases—you want to build indexes only
on fields where the data is not too similar across all records. On a
table with hundreds of thousands of entries, if your index at best splits
your table in two groups to sort through, indexing will take a lot of
resources (RAM and processor time) for very little benefit. An index
that would split the same table in N groups of 10 or fewer elements, as
an example, would be more useful for the resources it uses. Note that
you do not need to put an index on the first field of the record (the sec-
ond element of the tuple), as this is done for you by default.

{record_name, Atom}

This is useful if you want to have a table that has a different name than
the one your record uses. However, using this option forces you to use
different functions to operate on the table than those commonly used.
I don’t recommend using this option, unless you really know you need it.

{type, Type}

Type can be set, ordered_set, or bag, which are the same as the types used
by ETS and described in Chapter 25.

{local_content, true | false}

By default, all Mnesia tables have this option set to false. You should
leave it that way if you want the tables and their data replicated on
all nodes that are part of the schema (and those specified in the
disc_copies, disc_only_copies, and ram_copies options). Setting this
option to true will create all the tables on all the nodes, but the con-
tent will be the local content only; nothing will be shared. In this case,
Mnesia becomes an engine to initialize similar empty tables on many
nodes.

Here’s the sequence of events that can happen when setting up your
Mnesia schema and tables:

•	 Starting Mnesia for the first time creates a schema in memory, which is
good for ram_copies. Other kinds of tables won’t work with it.

•	 If you create a schema manually before starting Mnesia (or after stop-
ping it), you will be able to create tables that sit on disk.

•	 Start Mnesia, and you can then start creating tables. Tables can’t be
created while Mnesia is not running.

N o t e 	 There is another way to do things. Whenever you have an Mnesia node running
and tables created that you would want to port to disk, the function mnesia:change_
table_copy_type(Table, Node, NewType) can be called to move a table to disk. More
particularly, if you forgot to create the schema on disk, by calling mnesia:change_
table_copy_type(schema, node(), disc_copies), you’ll be taking your RAM schema
and turning it into a disk schema.

Now it’s time to get started with our application and see Mnesia in action.

Mnesia and the Art of Remembering 519

Creating Tables
We’ll handle creating the application and its tables with some weak TDD-
style programming, using Common Test. Now you might dislike the idea of
TDD, but stay with me, we’ll do it in a relaxed manner, just as a way to guide
our design more than anything else. None of that “run tests to make sure
they fail” business (although you can feel free to do it that way). That we
have tests in the end will just be a nice side effect, not an objective in itself.
We’ll mostly care about defining the interface of how mafiapp should behave
and look, without doing it all from the Erlang shell. The tests won’t even be
distributed, but this example will still be a decent opportunity to get some
practical use out of Common Test while learning Mnesia at the same time.

For this example, create a directory named mafiapp-1.0.0 following the
standard OTP structure:

ebin/
logs/
src/
test/

Installing the Database
We’ll start by figuring out how we want to install the database. Because
there is a need for a schema and initializing tables the first time around,
we’ll set up all the tests with an installation function that will ideally install
things in Common Test’s priv_dir directory. Let’s begin with a basic test suite,
mafiapp_SUITE, stored under the test/ directory:

-module(mafiapp_SUITE).
-include_lib("common_test/include/ct.hrl").
-export([init_per_suite/1, end_per_suite/1,
 all/0]).
all() -> [].

init_per_suite(Config) ->
 Priv = ?config(priv_dir, Config),
 application:set_env(mnesia, dir, Priv),
 mafiapp:install([node()]),
 application:start(mnesia),
 application:start(mafiapp),
 Config.

end_per_suite(_Config) ->
 application:stop(mnesia),
 ok.

This test suite doesn’t have any tests yet, but it gives us our first specifi-
cation of how things should be done. We first pick where to put the Mnesia
schema and database files by setting the dir variable to the value of priv_dir.
This will put each instance of the schema and database in a private directory

520 Chapter 29

generated with Common Test, guaranteeing that we will not have problems
and clashes from earlier test runs.

We named the installation function install and gave it a list of nodes on
which to install the records. Using this type of list is generally a better way to
do things than hardcoding the information within the install function, as it
is more flexible. Once this is done, Mnesia and mafiapp should be started.

We can now get into src/mafiapp.erl and start figuring out how the install
function should work. First, we’ll need to take the record definitions we had
earlier and bring them back in:

-module(mafiapp).
-export([install/1]).

-record(mafiapp_friends, {name,
 contact=[],
 info=[],
 expertise}).
-record(mafiapp_services, {from,
 to,
 date,
 description}).

This looks good enough. Here’s the install/1 function:

install(Nodes) ->
 ok = mnesia:create_schema(Nodes),
 application:start(mnesia),
 mnesia:create_table(mafiapp_friends,
 [{attributes, record_info(fields, mafiapp_friends)},
 {index, [#mafiapp_friends.expertise]},
 {disc_copies, Nodes}]),
 mnesia:create_table(mafiapp_services,
 [{attributes, record_info(fields, mafiapp_services)},
 {index, [#mafiapp_services.to]},
 {disc_copies, Nodes},
 {type, bag}]),
 application:stop(mnesia).

First, we create the schema on the nodes specified in the Nodes list.
Then we start Mnesia, which is a necessary step in order to create tables.
We create the two tables, named after the records #mafiapp_friends{} and
#mafiapp_services{}. There’s an index on the expertise field because we do
expect to search friends by expertise.

You’ll also see that the services table is of type bag. This is because it’s
possible to have multiple services with the same senders and receivers. Using
a set table, we could deal with only unique senders, but
bag tables handle this fine. Then there’s an index on the
to field of the table. That’s because we expect to look up
services either by who received them or who gave them,
and indexes allow us to make any field faster to search.

Mnesia and the Art of Remembering 521

The last thing to note is that the code stops Mnesia after creating the
tables. This is just to match the behavior I decided I wanted in the test.
What was in the test is how I expect to use the code, so I better make the
code fit that idea. There is nothing wrong with just leaving Mnesia running
after the installation, though.

Now, if we had successful test cases in our Common Test suite, the ini-
tialization phase would succeed with this install function. However, trying
it with many nodes would bring failure messages to our Erlang shells. Do
you have any idea why? Here’s what it would look like:

Node A Node B
------ ------
create_schema -----------> create_schema
start Mnesia
creating table ----------> ???
creating table ----------> ???
stop Mnesia

For the tables to be created on all nodes, Mnesia needs to run on
all nodes. For the schema to be created, Mnesia must not be running on
any nodes. Ideally, we could start Mnesia and stop it remotely. The good
news is we can. Remember the rpc module introduced in Chapter 26? We
have the function rpc:multicall(Nodes, Module, Function, Args) to do it for us.
Let’s change the install/1 function definition to this one:

install(Nodes) ->
 ok = mnesia:create_schema(Nodes),
 rpc:multicall(Nodes, application, start, [mnesia]),
 mnesia:create_table(mafiapp_friends,
 [{attributes, record_info(fields, mafiapp_friends)},
 {index, [#mafiapp_friends.expertise]},
 {disc_copies, Nodes}]),
 mnesia:create_table(mafiapp_services,
 [{attributes, record_info(fields, mafiapp_services)},
 {index, [#mafiapp_services.to]},
 {disc_copies, Nodes},
 {type, bag}]),
 rpc:multicall(Nodes, application, stop, [mnesia]).

Using rpc allows us to do the Mnesia action on all nodes. The scheme
now looks like this:

Node A Node B
------ ------
create_schema -----------> create_schema
start Mnesia ------------> start Mnesia
creating table ----------> replicating table
creating table ----------> replicating table
stop Mnesia -------------> stop Mnesia

Good, very good.

522 Chapter 29

Starting the Application
The next part of the init_per_suite/1 function we need to take care of is
starting mafiapp. Actually, we don’t need to do this, because our entire appli-
cation depends on Mnesia. Starting Mnesia starts our application. However,
there can be a noticeable delay between the time Mnesia starts and the time
it finishes loading all tables from disk, especially if they’re large. In such
circumstances, a function such as mafiapp’s start/2 might be the perfect
place to do that kind of waiting, even if we need no process at all for normal
operations.

We’ll make mafiapp.erl implement the application behavior
(-behavior(application).) and add the two following callbacks in the file
(remember to export them):

start(normal, []) ->
 mnesia:wait_for_tables([mafiapp_friends,
 mafiapp_services], 5000),
 mafiapp_sup:start_link().

stop(_) -> ok.

The secret is the mnesia:wait_for_tables(TableList, TimeOut) function. This
function will wait for at most 5 seconds (an arbitrary number; replace it
with what you think fits your data) or until the tables are available.

This doesn’t tell us much regarding how the supervisor should behave,
because mafiapp_sup doesn’t have much to do at all:

-module(mafiapp_sup).
-behaviour(supervisor).
-export([start_link/1]).
-export([init/1]).

start_link(Tables) ->
 supervisor:start_link(?MODULE, Tables).

%% This does absolutely nothing, only there to
%% allow waiting for tables.
init(Tables) ->
 {ok, {{one_for_one, 1, 1}, []}}.

The supervisor does nothing, but because the starting of OTP applica-
tions is synchronous, it’s actually one of the best places to put such synchro-
nization points.

Last, add the following mafiapp.app file in the ebin/ directory to make
sure the application can be started:

{application, mafiapp,
 [{description, "Help the boss keep track of his friends"},
 {vsn, "1.0.0"},
 {modules, [mafiapp, mafiapp_sup]},
 {applications, [stdlib, kernel, mnesia]}]}.

Mnesia and the Art of Remembering 523

We’re now ready to write actual tests and implement our application.
Or are we?

Access and Context
Before getting to the implementation of our app, let’s take a look at how to
use Mnesia to work with tables.

All modifications, or even reads, to a database table must be done in
an activity access context. These contexts represent different types of transac-
tions, or ways to run queries. Here are the options:

transaction

A Mnesia transaction allows you to run a series of database operations
as a single functional block. The whole block will run on all nodes or
none of them; it succeeds entirely or fails entirely. When the transac-
tion returns, we’re guaranteed that the tables were left in a consistent
state, and that different transactions didn’t interfere with each other,
even if they tried to manipulate the same data.

This type of activity context is partially asynchronous. It will be
synchronous for operations on the local node, but it will wait only for
the confirmation from other nodes that they will commit the transac-
tion, not that they have done it. With Mnesia, if the transaction worked
locally and everyone else agreed to do it, it should work everywhere
else. If it doesn’t, possibly due to failures in the network or hardware,
the transaction will be reverted at a later point in time. The protocol
tolerates this for some efficiency reasons, but might give you confirma-
tion that a transaction succeeded when it will be rolled back later.

sync_transaction

This activity context is pretty much the same as transaction, but it is
synchronous. If the guarantees of transaction aren’t enough for you
because you don’t like the idea of a transaction telling you it succeeded
when it may have failed due to weird errors, especially if you want to do
things that have side effects (like notifying external services, spawning
processes, and so on) related to the transaction’s success, sync_transaction
is what you want. Synchronous transactions will wait for the final con-
firmation for all other nodes before returning, making sure everything
went fine 100 percent of the way.

An interesting use case is that if you’re doing a lot of transactions—
enough to overload other nodes—switching to a synchronous mode
should force things to go at a slower pace with less backlog accumula-
tion, pushing the problem of overload up a level in your application.

async_dirty

The async_dirty activity context basically bypasses all the transaction
protocols and locking activities (although it will wait for active trans-
actions to finish before proceeding). It will, however, keep on doing

524 Chapter 29

everything that includes logging, replication, and so on. An async_dirty
activity context will try to perform all actions locally, and then return,
leaving other nodes’ replication to take place asynchronously.

sync_dirty

This activity context is to async_dirty what sync_transaction is to
transaction. It will wait for the confirmation that things went fine
on remote nodes, but will still stay out of all locking or transaction
contexts. Dirty contexts are generally faster than transactions, but
absolutely riskier by design. Handle these with care.

ets

The ets activity context is basically a way to bypass everything Mnesia
does and perform a series of raw operations on the underlying ETS
tables, if there are any. No replication will be done. The ets activity
context isn’t something you usually need to use. It’s yet another case of
“you’ll know when you need it; if in doubt, don’t use it.”

These are all the contexts within which common Mnesia operations can
be run. These operations themselves are wrapped in a fun and executed by
calling mnesia:activity(Context, Fun). The fun can contain any Erlang func-
tion call, but be aware that it is possible for a transaction to be executed
many times in case of failures or interruption by other transactions.

This means that if a transaction that reads a value from a table also
sends a message before writing something back, it is entirely possible for the
message to be sent dozens of times. As such, no side effects of the kind should be
included in the transaction.

Reads, Writes, and More
I’ve referred to the table-modifying functions a lot, and it is now time to
define them. Most of them are unsurprisingly similar to what ETS and
DETS offer.

write

By calling mnesia:write(Record),
where the name of the record is
the name of the table, we’re able
to insert Record in the table. If the
table is of type set or ordered_set,
and the primary key (the second
field of the record, not its name,
under a tuple form), the element
will be replaced. For bag tables,
the whole record will need to be
similar.

Mnesia and the Art of Remembering 525

If the write operation is successful, write/1 will return ok. Otherwise,
it throws an exception that will abort the transaction. Throwing such
an exception shouldn’t be something that occurs frequently. It should
mostly happen when Mnesia is not running, the table cannot be found,
or the record is invalid.

delete

This function is called as mnesia:delete(TableName, Key). The record(s)
that share this key will be removed from the table. It either returns ok
or throws an exception, with semantics similar to mnesia:write/1.

read

Called as mnesia:read({TableName, Key}), this function will return a list of
records with their primary key matching Key. Much like ets:lookup/2, it
will always return a list, even with tables of type set that can never have
more than one result that matches the key. If no record matches, an
empty list is returned. Similar to delete and write operations, in case of
a failure, an exception is thrown.

match_object

This function is similar to ETS’s match_object function. It uses patterns
such as those described in Chapter 25 to return entire records from
the database table. For example, a quick way to look for friends with a
given expertise is to use mnesia:match_object(#mafiapp_friends{_ = '_',
expertise = given}). It will return a list of all matching entries in the
table. Once again, failures end up in exceptions being thrown.

select

This is similar to the ETS select function. It works using match speci-
fications or ets:fun2ms as a way to do queries. (If you don’t remem-
ber how this works, see “You Have Been Selected” on page 428 to
brush up on your matching skills.) The function can be called as
mnesia:select(TableName, MatchSpec), and it will return a list of all items
that fit the match specification. And again, in case of failure, an excep-
tion will be thrown.

Many other operations are available for Mnesia tables. However, those
explained so far constitute a solid base for us to move forward. If you’re inter-
ested in other operations, you can head to the Mnesia reference manual to
find functions such as first, last, next, and prev for individual iterations, and
foldl and foldr for folds over entire tables. You might also be interested in
functions to manipulate tables themselves, such as transform_table (which
is especially useful to add or remove fields in a record or a table) and
add_table_index.

That makes for a lot of functions. To see how to use them realistically,
we’ll drive the tests forward a bit.

526 Chapter 29

Implementing the First Requests
Now we’ll add some test cases for adding data to our mafia application and
for using it to look up friends and services.

A Test for Adding Services
To implement the requests, we’ll first write a somewhat simple test demon-
strating the behavior we want from our application. The test will be about
adding services, but will contain implicit tests for more functionality.

We begin with the standard initialization stuff we need to add in most
Common Test suites.

...
-export([init_per_suite/1, end_per_suite/1,
 init_per_testcase/2, end_per_testcase/2,
 all/0]).
-export([add_service/1]).

all() -> [add_service].
...

init_per_testcase(add_service, Config) ->
 Config.

end_per_testcase(_, _Config) ->
 ok.

Now for the test itself:

%% Services can go both ways: from a friend to the boss, or
%% from the boss to a friend! A boss friend is required!
add_service(_Config) ->
 {error, unknown_friend} = mafiapp:add_service("from name",
 "to name",
 {1946,5,23},
 "a fake service"),
 ok = mafiapp:add_friend("Don Corleone", [], [boss], boss),
 ok = mafiapp:add_friend("Alan Parsons",
 [{twitter,"@ArtScienceSound"}],
 [{born, {1948,12,20}},
 musician, 'audio engineer',
 producer, "has projects"],
 mixing),
 ok = mafiapp:add_service("Alan Parsons", "Don Corleone",
 {1973,3,1}, "Helped release a Pink Floyd album").

Because we’re adding a service, we should include both of the friends
who will be part of the exchange. We’ll use the function mafiapp:add_
friend(Name, Contact, Info, Expertise) for that. Once the friends are added,
we can actually add the service.

Mnesia and the Art of Remembering 527

N o t e 	 If you’ve ever read other Mnesia tutorials, you’ll find that some people are very eager to use
records directly in the functions (say mafiapp:add_friend(#mafiapp_friend{name=...})).
This is something that I try to avoid, as records are often better kept private. Changes
in implementation might break the underlying record representation. This is not a
problem in itself, but whenever you’ll be changing the record definition, you’ll need
to recompile and, if possible, atomically update all modules that use that record so
that they can keep working in a running application. Simply wrapping things in
functions gives a somewhat cleaner interface that won’t require any module using
your database or application to include records through .hrl files, which is frankly
annoying.

You’ll notice that the test we just defined doesn’t actually look for ser-
vices. This is because we’ll search for them when looking up users. For now,
we can try to implement the functionality required for the test using Mnesia
transactions. The first function we’ll add to mafiapp.erl will be used to add a
user to the database:

add_friend(Name, Contact, Info, Expertise) ->
 F = fun() ->
 mnesia:write(#mafiapp_friends{name=Name,
 contact=Contact,
 info=Info,
 expertise=Expertise})
 end,
 mnesia:activity(transaction, F).

We’re defining a single function that writes the record #mafiapp_friends{}.
This is a somewhat simple transaction. add_services/4 should be a little more
complex:

add_service(From, To, Date, Description) ->
 F = fun() ->
 case mnesia:read({mafiapp_friends, From}) =:= [] orelse
 mnesia:read({mafiapp_friends, To}) =:= [] of
 true ->
 {error, unknown_friend};
 false ->
 mnesia:write(#mafiapp_services{from=From,
 to=To,
 date=Date,
 description=Description})
 end
 end,
 mnesia:activity(transaction,F).

In the transaction, we first do one or two reads to see if the friends
we’re trying to add are already in the database. If either friend is not there,
the tuple {error, unknown_friend} is returned, as per the test specification.

528 Chapter 29

If both members of the transaction are found, we’ll write the service to the
database instead.

N o t e 	 Validating the input is left to your discretion. Doing so requires only writing custom
Erlang code like anything else you would program with the language. If it is possible,
doing as much validation as possible outside the transaction context is a good idea.
Code in the transaction might run many times and compete for database resources.

Based on this, we should be able to run the first test batch. To do so,
we’ll use the following test specification, mafiapp.spec (placed at the root of
the project):

{alias, root, "./test/"}.
{logdir, "./logs/"}.
{suites, root, all}.

And we need the following Emakefile (also at the root):

{["src/*", "test/*"],
 [{i,"include"}, {outdir, "ebin"}]}.

Then we can run the tests:

$ erl -make
Recompile: src/mafiapp_sup
Recompile: src/mafiapp
$ ct_run -pa ebin/ -spec mafiapp.spec
... <snip> ...
Common Test: Running make in test directories...
Recompile: mafiapp_SUITE
... <snip> ...
Testing learn-you-some-erlang.mafiapp: Starting test, 1 test cases
... <snip> ...
Testing learn-you-some-erlang.mafiapp: TEST COMPLETE, 1 ok, 0 failed of 1 test
cases
... <snip> ...

All right, it passes. That’s good. Let’s move on to the next tests.

N o t e 	 When running the Common Test suite, you might get errors saying that some directories
are not found. The solution is to use ct_run -pa ebin/ or erl -name ct -pa `pwd /̀ebin
(or full paths). While starting the Erlang shell makes the current working directory the
node’s current working directory, calling ct:run_test/1 changes the current working
directory to a new one. This breaks relative paths such as ./ebin/. Using absolute
paths solves the problem.

Mnesia and the Art of Remembering 529

Tests for Lookups
The add_service/1 test lets us add both friends and services. The next tests
should focus on making it possible to look up information. For the sake of
simplicity, we’ll add the boss to all possible future test cases:

init_per_testcase(add_service, Config) ->
 Config;
init_per_testcase(_, Config) ->
 ok = mafiapp:add_friend("Don Corleone", [], [boss], boss),
 Config.

The use case we’ll want to emphasize is looking up friends by their
name. While we could very well search through services only, in practice, we
might want to look up people by name more than actions. Very rarely will
the boss ask, “Who delivered that guitar to whom, again?” No, he will more
likely ask, “Who is it that delivered the guitar to our friend Pete Cityshend?”
and try to look up this friend’s history through his name to find details
about the service. For this case, the next test is friend_by_name/1:

-export([add_service/1, friend_by_name/1]).

all() -> [add_service, friend_by_name].
...
friend_by_name(_Config) ->
 ok = mafiapp:add_friend("Pete Cityshend",
 [{phone, "418-542-3000"},
 {email, "quadrophonia@example.org"},
 {other, "yell real loud"}],
 [{born, {1945,5,19}},
 musician, popular],
 music),
 {"Pete Cityshend",
 _Contact, _Info, music,
 _Services} = mafiapp:friend_by_name("Pete Cityshend"),
 undefined = mafiapp:friend_by_name(make_ref()).

This test verifies that we can insert a friend and look him up, as well
as what should be returned when we don’t know any friend by that name.
We’ll have a tuple structure returning all kinds of details, including ser-
vices, which we do not care about for now. We mostly want to find people,
although duplicating the information would make the test stricter.

We can implement mafiapp:friend_by_name/1 by using a single Mnesia
read. Our record definition for #mafiapp_friends{} put the friend name as
the primary key of the table (the first one defined in the record). By using
mnesia:read({Table, Key}), we can get things going easily, with minimal wrap-
ping to make it fit the test:

friend_by_name(Name) ->
 F = fun() ->

530 Chapter 29

 case mnesia:read({mafiapp_friends, Name}) of
 [#mafiapp_friends{contact=C, info=I, expertise=E}] ->
 {Name,C,I,E,find_services(Name)};
 [] ->
 undefined
 end
 end,
 mnesia:activity(transaction, F).

This function alone should be enough to get the tests to pass, as long
as you remember to export it. We do not care about find_services(Name) for
now, so we’ll just stub it out:

%%% PRIVATE FUNCTIONS
find_services(_Name) -> undefined.

That being done, the new test should also pass:

$ erl -make
... <snip> ...
$ ct_run -pa ebin/ -spec mafiapp.spec
... <snip> ...
Testing learn-you-some-erlang.wiptests: TEST COMPLETE, 2 ok, 0 failed of 2
test cases
... <snip> ...

It would be nice to put a bit more details into the services area of the
request. Here’s the test to do that:

-export([add_service/1, friend_by_name/1, friend_with_services/1]).

all() -> [add_service, friend_by_name, friend_with_services].
...
friend_with_services(_Config) ->
 ok = mafiapp:add_friend("Someone", [{other, "at the fruit stand"}],
 [weird, mysterious], shadiness),
 ok = mafiapp:add_service("Don Corleone", "Someone",
 {1949,2,14}, "Increased business"),
 ok = mafiapp:add_service("Someone", "Don Corleone",
 {1949,12,25}, "Gave a Christmas gift"),
 %% We don't care about the order. The test was made to fit
 %% whatever the functions returned.
 {"Someone",
 _Contact, _Info, shadiness,
 [{to, "Don Corleone", {1949,12,25}, "Gave a Christmas gift"},
 {from, "Don Corleone", {1949,2,14}, "Increased business"}]} =
 mafiapp:friend_by_name("Someone").

In this test, Don Corleone helped a shady person with a fruit stand to
grow his business. Said shady person at the fruit stand later gave a Christmas
gift to the boss, who never forgot about it.

Mnesia and the Art of Remembering 531

You can see that we still use friend_by_name/1 to search entries. Although
the test is overly generic and not too complete, we can probably figure
out what we want to do. Fortunately, the total absence of maintainability
requirements kind of makes it okay to do something this incomplete.

The find_service/1 implementation will need to be a bit more complex
than the previous one. While friend_by_name/1 could work just by querying
the primary key, the friend’s name in services is only the primary key when
searching in the from field. We still need to deal with the to field. There
are many ways to handle this one, such as using match_object many times or
reading the entire table and filtering data manually. I chose to use match
specifications and the ets:fun2ms/1 parse transform:

-include_lib("stdlib/include/ms_transform.hrl").
...
find_services(Name) ->
 Match = ets:fun2ms(
 fun(#mafiapp_services{from=From, to=To, date=D, description=Desc})
 when From =:= Name ->
 {to, To, D, Desc};
 (#mafiapp_services{from=From, to=To, date=D, description=Desc})
 when To =:= Name ->
 {from, From, D, Desc}
 end
),
 mnesia:select(mafiapp_services, Match).

This match specification has two clauses: whenever From matches Name, we
return a {to, ToName, Date, Description} tuple. Whenever Name matches To instead,
the function returns a tuple of the form {from, FromName, Date, Description},
allowing us to have a single operation that includes both services given and
received.

Note that find_services/1 does not run in any transaction. That’s
because the function is called only within friend_by_name/1, which runs in
a transaction already. Mnesia can run nested transactions, but it’s useless
to do so in this case.

N o t e 	 When writing larger applications that use Mnesia, it can be interesting to separate
the operations on the data stored in Mnesia from the part of the code that actually
runs the operations (using mnesia:activity/2). That way, you can specify multiple
operations independently, and have calling code decide whether to run them as syn-
chronous or asynchronous transactions, or use any other context.

Running the tests again should reveal that all three of them work.
The last use case is in regard to searching for friends through their

expertise. The following test case illustrates how we might find our friend
the red panda when we need a climbing expert for some task:

-export([add_service/1, friend_by_name/1, friend_with_services/1,
 friend_by_expertise/1]).

532 Chapter 29

all() -> [add_service, friend_by_name, friend_with_services,
 friend_by_expertise].
...
friend_by_expertise(_Config) ->
 ok = mafiapp:add_friend("A Red Panda",
 [{location, "in a zoo"}],
 [animal,cute],
 climbing),
 [{"A Red Panda",
 _Contact, _Info, climbing,
 _Services}] = mafiapp:friend_by_expertise(climbing),
 [] = mafiapp:friend_by_expertise(make_ref()).

To implement this, we’ll need to read something other than the pri-
mary key. We could use match specifications, but we’ve already done that.
Plus, we need to match on only one field. The mnesia:match_object/1 function
is well adapted for this:

friend_by_expertise(Expertise) ->
 Pattern = #mafiapp_friends{_ = '_',
 expertise = Expertise},
 F = fun() ->
 Res = mnesia:match_object(Pattern),
 [{Name,C,I,Expertise,find_services(Name)} ||
 #mafiapp_friends{name=Name,
 contact=C,
 info=I} <- Res]
 end,
 mnesia:activity(transaction, F).

In this case, we first declare the pattern. We need to use _ = '_' to
declare all undefined values as a match-all specification ('_'). Otherwise,
the match_object/1 function will look only for entries where everything
but the expertise is the atom undefined.

Once the result is obtained, we format the record into a tuple, in order to
respect the test. Again, compiling and running the tests will reveal that this
implementation works. Hooray, we implemented the whole specification!

Accounts and New Needs
No software project is ever really finished. Users using the system bring
new needs to light or break it in unexpected ways. The boss, even before
using our brand-new software, decided that he wants a feature that lets him
quickly go through all of our friends and see who we owe things to, and
who owes us things.

Here’s the test for that one:

...
init_per_testcase(accounts, Config) ->
 ok = mafiapp:add_friend("Consigliere", [], [you], consigliere),
 Config;

Mnesia and the Art of Remembering 533

...
accounts(_Config) ->
 ok = mafiapp:add_friend("Gill Bates", [{email, "ceo@macrohard.com"}],
 [clever,rich], computers),
 ok = mafiapp:add_service("Consigliere", "Gill Bates",
 {1985,11,20}, "Bought 15 copies of software"),
 ok = mafiapp:add_service("Gill Bates", "Consigliere",
 {1986,8,17}, "Made computer faster"),
 ok = mafiapp:add_friend("Pierre Gauthier", [{other, "city arena"}],
 [{job, "sports team GM"}], sports),
 ok = mafiapp:add_service("Pierre Gauthier", "Consigliere", {2009,6,30},
 "Took on a huge, bad contract"),
 ok = mafiapp:add_friend("Wayne Gretzky", [{other, "Canada"}],
 [{born, {1961,1,26}}, "hockey legend"],
 hockey),
 ok = mafiapp:add_service("Consigliere", "Wayne Gretzky", {1964,1,26},
 "Gave first pair of ice skates"),
 %% Wayne Gretzky owes us something so the debt is negative.
 %% Gill Bates' services and debts are equal.
 %% Gauthier is owed a service.
 [{-1,"Wayne Gretzky"},
 {0,"Gill Bates"},
 {1,"Pierre Gauthier"}] = mafiapp:debts("Consigliere"),
 [{1, "Consigliere"}] = mafiapp:debts("Wayne Gretzky").

We’re adding three test friends: Gill Bates, Pierre Gauthier, and hockey
Hall of Famer Wayne Gretzky. There is an exchange of services going on
with each of them and you, the consigliere. (We didn’t pick the boss for
this test because he is being used by other tests, and it would mess with the
results!)

The mafiapp:debts(Name) function looks for a name, and counts all the
services where the name is involved. When someone owes us something,
the value is negative. When we’re even, it’s 0. When we owe something to
someone, the value is 1. We can thus say that the debt/1 function returns the
number of services owed to different people.

The implementation of this function is going to be a bit more complex:

-export([install/1, add_friend/4, add_service/4, friend_by_name/1,
 friend_by_expertise/1, debts/1]).
...
debts(Name) ->
 Match = ets:fun2ms(
 fun(#mafiapp_services{from=From, to=To}) when From =:= Name ->
 {To,-1};
 (#mafiapp_services{from=From, to=To}) when To =:= Name ->
 {From,1}
 end),
 F = fun() -> mnesia:select(mafiapp_services, Match) end,
 Dict = lists:foldl(fun({Person,N}, Dict) ->
 dict:update(Person, fun(X) -> X + N end, N, Dict)
 end,

534 Chapter 29

 dict:new(),
 mnesia:activity(transaction, F)),
 lists:sort([{V,K} || {K,V} <- dict:to_list(Dict)]).

Whenever Mnesia queries become more complex, match specifications
are usually going to be part of your solution. They let you run basic Erlang
functions, which make them invaluable when it comes to specific result
generation. In this function, the match specification is used to find that
whenever the service given comes from Name, its value is -1 (we gave a ser-
vice; they owe us one). When Name matches To, the value returned will be 1
(we received a service; we owe one). In both cases, the value is coupled to a
tuple containing the name.

Including the name is necessary for the second step of the computa-
tion, where we’ll try to count all the services given for each person and give
a unique cumulative value. Again, there are many ways to obtain this value.
I picked one that required me to stay as little time as possible within a trans-
action, to allow as much as possible of my code to be separated from the
database, which allows more transactions to be done in general. This is use-
less for mafiapp, but in high-performance cases, it can reduce the contention
for resources in major ways.

The solution I picked is to take all the
values, put them in a dictionary, and use the
function dict:update(Key, Operation, Dict) to
increment or decrement the value based on
whether a move is for us or from us. By put-
ting this into a fold over the results given by
Mnesia, we get a list of all the values required.

The final step is to flip the values around
(from {Key, Debt} to {Debt, Key}) and sort based
on this, which will give the results desired.

Meet the Boss
Our software product should at least be tried once in production. We’ll do
this by setting up the node the boss will use, and then the consigliere’s node.

$ erl -name corleone -pa ebin/

$ erl -name genco -pa ebin/

Once both nodes are started, you can connect them and install the app:

(corleone@ferdmbp.local)1> net_kernel:connect('genco@ferdmbp.local').
true
(corleone@ferdmbp.local)2> mafiapp:install([node()|nodes()]).
{[ok,ok],[]}
(corleone@ferdmbp.local)3>

Mnesia and the Art of Remembering 535

=INFO REPORT==== 8-Apr-2013::20:02:26 ===
 application: mnesia
 exited: stopped
 type: temporary

You can then start running Mnesia and mafiapp on both nodes by calling
application:start(mnesia), application:start(mafiapp). Once it’s running, you
can see if everything is working as it should by calling mnesia:system_info(),
which will display status information about your whole setup:

(genco@ferdmbp.local)2> mnesia:system_info().
===> System info in version "4.7", debug level = none <===
opt_disc. Directory "/Users/ferd/.../Mnesia.genco@ferdmbp.local" is used.
use fallback at restart = false
running db nodes = ['corleone@ferdmbp.local','genco@ferdmbp.local']
stopped db nodes = []
master node tables = []
remote = []
ram_copies = []
disc_copies = [mafiapp_friends,mafiapp_services,schema]
disc_only_copies = []
[{'corleone@...',disc_copies},{'genco@...',disc_copies}] = [schema,
mafiapp_friends,
mafiapp_services]
5 transactions committed, 0 aborted, 0 restarted, 2 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote
0 transactions waits for other nodes: []
yes

You can see that both nodes are in the running database nodes,
and that both tables and the schema are written to disk and in RAM
(disc_copies). We can start writing and reading data from the database.
Of course, adding Don Corleone to the database is a good starting step:

(corleone@ferdmbp.local)4> ok = mafiapp:add_friend("Don Corleone", [], [boss], boss).
ok
(corleone@ferdmbp.local)5> mafiapp:add_friend(
(corleone@ferdmbp.local)5> "Albert Einstein",
(corleone@ferdmbp.local)5> [{city, "Princeton, New Jersey, USA"}],
(corleone@ferdmbp.local)5> [physicist, savant,
(corleone@ferdmbp.local)5> [{awards, [{1921, "Nobel Prize"}]}]],
(corleone@ferdmbp.local)5> physicist).
ok

All right, we added friends from the corleone node. Let’s try adding a
service from the genco node:

(genco@ferdmbp.local)3> mafiapp:add_service("Don Corleone",
(genco@ferdmbp.local)3> "Albert Einstein",
(genco@ferdmbp.local)3> {1905, '?', '?'},
(genco@ferdmbp.local)3> "Added the square to E = MC").
ok

536 Chapter 29

(genco@ferdmbp.local)4> mafiapp:debts("Albert Einstein").
[{1,"Don Corleone"}]

And all these changes can also be reflected back to the corleone node:

(corleone@ferdmbp.local)6> mafiapp:friend_by_expertise(physicist).
[{"Albert Einstein",
 [{city,"Princeton, New Jersey, USA"}],
 [physicist,savant,[{awards,[{1921,"Nobel Prize"}]}]],
 physicist,
 [{from,"Don Corleone",
 {1905,'?','?'},
 "Added the square to E = MC"}]}]

Now, if you shut down one of the nodes and start it again, things should
still be fine:

(corleone@ferdmbp.local)7> init:stop().
ok

$ erl -name corleone -pa ebin
... <snip> ...
(corleone@ferdmbp.local)1> net_kernel:connect('genco@ferdmbp.local').
true
(corleone@ferdmbp.local)2>
application:start(mnesia), application:start(mafiapp).
ok
(corleone@ferdmbp.local)3> mafiapp:friend_by_expertise(physicist).
[{"Albert Einstein",
... <snip> ...
 "Added the square to E = MC"}]}]

Isn’t it nice? We’ve now used Mnesia successfully!

N o t e 	 If you end up working on a system where tables start to get messy, or if you’re just curi-
ous about looking at entire tables, call the function tv:start(). It will start a graphical
table viewer that lets you interact with tables visually, rather than through code.

Deleting Stuff, Demonstrated
Wait—did we just entirely skip over deleting records from a database? Oh
no! Let’s add a table and use it to see how to get rid of stuff.

We’ll create a little feature for you and the boss that lets you store per-
sonal enemies, for personal reasons:

-record(mafiapp_enemies, {name,
 info=[]}).

Mnesia and the Art of Remembering 537

Because this is personal information, we’ll need to use slightly different
table settings, with local_content set as an option when installing the table.
This will let the table be private to each node, so that no one can read any-
one else’s personal enemies accidentally (although rpc would make it trivial
to circumvent).

Here’s the new install function, preceded by mafiapp’s start/2 function,
changed for the new table:

start(normal, []) ->
 mafiapp_sup:start_link([mafiapp_friends,
 mafiapp_services,
 mafiapp_enemies]).
...
install(Nodes) ->
 ok = mnesia:create_schema(Nodes),
 application:start(mnesia),
 mnesia:create_table(mafiapp_friends,
 [{attributes, record_info(fields, mafiapp_friends)},
 {index, [#mafiapp_friends.expertise]},
 {disc_copies, Nodes}]),
 mnesia:create_table(mafiapp_services,
 [{attributes, record_info(fields, mafiapp_services)},
 {index, [#mafiapp_services.to]},
 {disc_copies, Nodes},
 {type, bag}]),
 mnesia:create_table(mafiapp_enemies,
 [{attributes, record_info(fields, mafiapp_enemies)},
 {disc_copies, Nodes},
 {local_content, true}]),
 application:stop(mnesia).

The start/2 function now sends mafiapp_enemies through the supervisor
to keep things alive there. The install/1 function will be useful for tests and
fresh installations, but if you’re doing things in production, you can call
mnesia:create_table/2 in production to add tables. Depending on the load on
your system and how many nodes you have, you might want to have a few
practice runs in staging first, though.

Now, we can write a simple test to work with our database and see how
it goes, still in mafiapp_SUITE:

...
-export([add_service/1, friend_by_name/1, friend_by_expertise/1,
 friend_with_services/1, accounts/1, enemies/1]).

all() -> [add_service, friend_by_name, friend_by_expertise,
 friend_with_services, accounts, enemies].
...
enemies(_Config) ->
 undefined = mafiapp:find_enemy("Edward"),
 ok = mafiapp:add_enemy("Edward", [{bio, "Vampire"},
 {comment, "He sucks (blood)"}]),

538 Chapter 29

 {"Edward", [{bio, "Vampire"},
 {comment, "He sucks (blood)"}]} =
 mafiapp:find_enemy("Edward"),
 ok = mafiapp:enemy_killed("Edward"),
 undefined = mafiapp:find_enemy("Edward").

This is going to be similar to previous runs for add_enemy/2 and
find_enemy/1. All we’ll need to do is a basic insertion for the former, and
an mnesia:read/1 based on the primary key for the latter:

add_enemy(Name, Info) ->
 F = fun() -> mnesia:write(#mafiapp_enemies{name=Name, info=Info}) end,
 mnesia:activity(transaction, F).

find_enemy(Name) ->
 F = fun() -> mnesia:read({mafiapp_enemies, Name}) end,
 case mnesia:activity(transaction, F) of
 [] -> undefined;
 [#mafiapp_enemies{name=N, info=I}] -> {N,I}
 end.

The enemy_killed/1 function is the one that’s a bit different:

enemy_killed(Name) ->
 F = fun() -> mnesia:delete({mafiapp_enemies, Name}) end,
 mnesia:activity(transaction, F).

And that’s pretty much it for basic deletions. You can export the func-
tions and run the test suite, and all the tests should still pass.

When trying the tests on two nodes (after deleting the previous schemas,
or possibly just calling the create_table function), we should be able to see
that data between tables isn’t shared:

$ erl -name corleone -pa ebin

$ erl -name genco -pa ebin

With the nodes started, reinstall the database:

(corleone@ferdmbp.local)1> net_kernel:connect('genco@ferdmbp.local').
true
(corleone@ferdmbp.local)2> mafiapp:install([node()|nodes()]).
=INFO REPORT==== 8-Apr-2013::21:21:47 ===
... <snip> ...
{[ok,ok],[]}

Mnesia and the Art of Remembering 539

Start the apps and get going:

(genco@ferdmbp.local)1> application:start(mnesia), application:start(mafiapp).
ok

(corleone@ferdmbp.local)3> application:start(mnesia), application:start(mafiapp).
ok
(corleone@ferdmbp.local)4> mafiapp:add_enemy("Some Guy", "Disrespected his family").
ok
(corleone@ferdmbp.local)5> mafiapp:find_enemy("Some Guy").
{"Some Guy","Disrespected his family"}

(genco@ferdmbp.local)2> mafiapp:find_enemy("Some Guy").
undefined

And you can see that no data is shared. Deleting the entry is also as simple:

(corleone@ferdmbp.local)6> mafiapp:enemy_killed("Some Guy").
ok
(corleone@ferdmbp.local)7> mafiapp:find_enemy("Some Guy").
undefined

Finally!

Query List Comprehensions
If you’ve followed this chapter (or worse, skipped right to this part!), think-
ing to yourself, “Damn, I don’t like the way Mnesia looks,” you might like
this section. If you liked how Mnesia looked, you might also like this sec-
tion. And if you like list comprehensions, you’ll definitely like this section.

Query list comprehensions (QLCs) are basically a compiler trick using parse
transforms that let you use list comprehensions for any data structure that
can be searched and iterated through. They’re implemented for Mnesia,
DETS, and ETS, but can also be implemented for things like gb_trees.

Once you add -include_lib("stdlib/include/qlc.hrl"). to your module, you
can start using list comprehensions with something called a query handle as
a generator. The query handle allows any iterable data structure to work
with QLCs. In the case of Mnesia, you can use mnesia:table(TableName) as a list
comprehension generator, and from that point on, you can use list compre-
hensions to query any database table by wrapping them in a call to qlc:q(...).

This will return a modified query handle, with more details than the
one returned by the table. This newest one can subsequently be modified
some more by using functions like qlc:sort/1-2, and can be evaluated by using
qlc:eval/1 or qlc:fold/1.

Let’s experiment with this approach. We’ll rewrite a few of the mafiapp
functions. You can make a copy of mafiapp-1.0.0 and call it mafiapp-1.0.1
(don’t forget to bump the version in the .app file).

540 Chapter 29

First, we’ll rework friend_by_expertise. This function is currently imple-
mented using mnesia:match_object/1. Here’s a version using a QLC:

friend_by_expertise(Expertise) ->
 F = fun() ->
 qlc:eval(qlc:q(
 [{Name,C,I,E,find_services(Name)} ||
 #mafiapp_friends{name=Name,
 contact=C,
 info=I,
 expertise=E} <- mnesia:table(mafiapp_friends),
 E =:= Expertise]))
 end,
 mnesia:activity(transaction, F).

You can see that except for the part where we call qlc:eval/1 and qlc:q/1,
this is a normal list comprehension. You have the final expression in
{Name,C,I,E,find_services(Name)}, the generator in #mafiapp{...} <- mnesia:table(...),
and finally, a condition with E =:= Expertise. Searching through database
tables is now a bit more natural, Erlang-wise.

Now let’s try a slightly more complex example. We’ll take a look at the
debts/1 function. It was implemented using a match specification and then
a fold over to a dictionary. Here’s how that might look using a QLC:

debts(Name) ->
 F = fun() ->
 QH = qlc:q(
 [if Name =:= To -> {From,1};
 Name =:= From -> {To,-1}
 end || #mafiapp_services{from=From, to=To} <-
 mnesia:table(mafiapp_services),
 Name =:= To orelse Name =:= From]),
 qlc:fold(fun({Person,N}, Dict) ->
 dict:update(Person, fun(X) -> X + N end, N, Dict)
 end,
 dict:new(),
 QH)
 end,
 lists:sort([{V,K} || {K,V} <- dict:to_list(mnesia:activity(transaction, F))]).

The match specification is no longer necessary. The list comprehension
(saved to the QH query handle) does that part. The fold has been moved into
the transaction, and it is used as a way to evaluate the query handle. The
resulting dictionary is the same as the one that was formerly returned by
lists:foldl/3. The last part, sorting, is handled outside the transaction by
taking whatever dictionary mnesia:activity/1 returned and converting it to
a list.

And there you go. If you write these functions in your mafiapp-1.0.1
application and run the test suite, all six tests should still pass.

Mnesia and the Art of Remembering 541

Remember Mnesia
That’s it for Mnesia. It’s quite a complex data-
base, and we’ve covered only a moderate portion
of everything it can do. Pushing further ahead
will require you to read the Erlang manuals and
dive into the code. Programmers who have true
production experience with Mnesia in large, scal-
able systems that have been running for years are
rather rare. You can find a few of them on mail-
ing lists, sometimes answering a few questions,
but they’re generally busy people.

Otherwise, Mnesia is always a very nice tool for smaller applications
where you find picking a storage layer to be very annoying, or even larger
ones where you will have a known number of nodes. Being able to store and
replicate Erlang terms directly is a very neat thing—something other lan-
guages tried to write for years using object-relational mapping.

Interestingly enough, if you put your mind to it, you could likely write
QLC selectors for SQL databases or any other kind of storage that allows
iteration.

Mnesia and its toolchain have all the potential to be very useful in some
of your future applications. For now though, we’ll move on to additional
tools to help you develop Erlang systems with Dialyzer.

30
T y p e Sp e c i f i c a t i o n s

a n d D i a ly z e r

This chapter focuses on Dialyzer, which is a very effec-
tive tool when it comes to analyzing Erlang code. It’s
used to find all kinds of discrepancies, such as code
that will never be executed, but its main use is to
detect type errors in your Erlang code base. We’ll look at why Dialyzer
was created, the guiding principles behind it, and its capabilities to find
type-related errors. Of course, we’ll also work through a few examples of
Dialyzer in use.

PLTs Are the Best Sandwiches
Our first step is to create Dialyzer’s persistent
lookup table (PLT), which is a compilation of
all the details Dialyzer can identify about the
applications and modules that are part of your
standard Erlang distribution, as well as code
outside OTP.

544 Chapter 30

It takes quite a while to compile everything, especially if you’re work-
ing on a platform that does not provide native compilation through HiPE
(namely Windows) or on older versions of Erlang. Fortunately, things tend
to get faster with time, and the newest releases of Erlang (R15B02 onward)
have parallel PLT building to make it even faster.

Enter the following command into a terminal, and let it run as long as
it needs (in my case, that tends to be under 10 minutes):

$ dialyzer --build_plt --apps erts kernel stdlib crypto mnesia sasl common_test eunit
Compiling some key modules to native code... done in 1m19.99s
Creating PLT /Users/ferd/.dialyzer_plt ...
eunit_test.erl:302: Call to missing or unexported function eunit_test:nonexisting_function/0
Unknown functions:
compile:file/2
compile:forms/2
... <snip> ...
xref:stop/1
Unknown types:
compile:option/0
done in 6m39.15s
done (warnings were emitted)

This command builds the PLT by specifying which OTP applications we
want to include in it. You can ignore the warnings if you want, as Dialyzer
can deal with unknown functions when looking for type errors (this has
to do with how its type inference algorithm works, as discussed in the next
section). Some Windows users will see an error message saying “The HOME
environment variable needs to be set so that Dialyzer knows where to find
the default PLT.” This is because Windows doesn’t always come with the HOME
environment variable set, and Dialyzer doesn’t know where to dump the PLT.
Set the variable to wherever you want Dialyzer to place its files.

If you want, you can include applications like ssl or reltool by adding
them to the sequence that follows --apps, or if your PLT is already built, by
calling the following:

$ dialyzer --add_to_plt --apps ssl reltool

If you want to add your own applications or modules to the PLT, you
can do so by using -r Directories, which will look for all .erl or .beam files (as
long as they are compiled with debug_info).

Moreover, Dialyzer lets you have many PLTs by specifying them with
the --plt Name option in any of the commands you use, and pick a spe-
cific PLT. Alternatively, if you built many disjoint PLTs, where none of the
included modules are shared between PLTs, you can “merge” them by using
--plts Name1 Name2 ... NameN. This is especially useful when you want to have
different PLTs in your system for different projects or Erlang versions.

While the PLT is still building, let’s get acquainted with Dialyzer’s
mechanism for finding type errors.

Type Specifications and Dialyzer 545

Success Typing
As with most other dynamic programming languages, Erlang programs are
always at risk of suffering from type errors. A programmer passes in some
arguments to a function he shouldn’t have, and maybe he forgot to test things
properly. The program gets deployed, and everything seems to be going
okay. Then at four in the morning, your company’s operations guy’s cell
phone starts ringing because your piece of software is repeatedly crashing—
enough that the supervisors can’t cope with the sheer weight of your mistakes.

The next morning, you get to the office, and you
find your computer has been reformatted, your car
is keyed, and your commit rights have been revoked,
all by the operations guy who has had enough of you
accidentally controlling his work schedule.

That entire debacle could have been prevented
by a compiler that has a static type analyzer to verify
programs before they run.

While Erlang doesn’t crave a type system as
much as other dynamic languages, thanks to its
reactive approach to runtime errors, it is definitely
nice to benefit from the additional safety provided
by early type-related error discovery.

Usually, languages with static type systems are designed that way. The
semantics of the languages is heavily influenced by what their type systems
allow and don’t allow. For example, consider this function:

foo(X) when is_integer(X) -> X + 1.
foo(X) -> list_to_atom(X).

Most type systems are unable to properly represent the types of this
function. They can see that it can take an integer or a list and return an
integer or an atom, but they won’t track the dependency between the input
type of the function and its output type (conditional types and intersection
types are able to, but they can be verbose). This means that writing such
functions, which is entirely normal in Erlang, can result in some uncer-
tainty for the type analyzer when these functions are used later in the code.

Generally speaking, analyzers will want to actually prove that there will
be no type errors at runtime, as in mathematically prove. This means that in
a few circumstances, the type checker will disallow certain practically valid
operations for the sake of removing uncertainty that could lead to crashes.

Implementing such a type system would likely mean forcing Erlang to
change its semantics.

The problem is that by the time Dialyzer came around, Erlang was
already well in use for very large projects. For any tool like Dialyzer to be
accepted, it needed to respect Erlang’s philosophies. If Erlang allows pure
nonsense in its types that can be solved only at runtime, so be it. The type

546 Chapter 30

checker doesn’t have a right to complain. No programmer likes a tool that
tells him his program cannot run when it has been doing so in production
for a few months already!

The other option is to have a type system that will not prove the absence
of errors, but will do a best effort at detecting whatever it can. You can make
such detection really good, but it will never be perfect—it’s a trade-off.

Dialyzer’s type system designers made the decision not to prove
that a program is error-free when it comes to types, but only to find as
many errors as possible without ever contradicting what happens in the
real world. As the “Practical Type Inference Based on Success Typings”
paper (http://www.it.uu.se/research/group/hipe/papers/succ_types.pdf) behind
Dialyzer explains, a type checker for a language like Erlang should work
without type declarations being there (although it accepts hints), should
be simple and readable, should adapt to the language (and not the other
way around), and complain only about type errors that would guarantee
a crash.

Our main goal is to make uncover [sic] the implicit type
information in Erlang code and make it explicitly available in
programs. Because of the sizes of typical Erlang applications,
the type inference should be completely automatic and faithfully
respect the operational semantics of the language. Moreover, it
should impose no code rewrites of any kind. The reason for this
is simple. Rewriting, often safety critical, applications consisting
of hundreds of thousand lines of code just to satisfy a type infer-
encer is not an option which will enjoy much success. However,
large software applications have to be maintained, and often not
by their original authors. By automatically revealing the type
information that is already present, we provide automatic docu-
mentation that can evolve together with the program and will
not rot. We also think that it is important to achieve a balance
between precision and readability. Last but not least, the inferred
typings should never be wrong.

Dialyzer begins each analysis optimistically, assuming that all functions
are good. It will see them as always succeeding, accepting anything, and
possibly returning anything. No matter how an unknown function is used,
it’s a good way to use it. This is why warnings about unknown functions are
not a big deal when generating PLTs. It’s all good anyway; Dialyzer is a natu-
ral optimist when it comes to type inference.

As the analysis goes, Dialyzer gets to know your functions better and
better. As it does so, it can analyze the code and see some interesting things.

Suppose that one of your functions has a + operator between both of its
arguments and that it returns the value of the addition. Dialyzer no longer
assumes that the function takes anything and returns anything, but will
now expect the arguments to be numbers (either integers or floating-point
values), and the returned values will similarly be numbers. This function
will have a basic type associated with it saying that it accepts two numbers
and returns a number.

Type Specifications and Dialyzer 547

Now let’s say one of your functions calls the one described previously
with an atom and a number. Dialyzer will think about the code and say,
“Wait a minute, you can’t use an atom and a number with the + operator!”
It will then freak out because where the function could return a number
before, it cannot return anything given how you use it.

In more general circumstances, though, you might find that Dialyzer
keeps silent about many things that you know will sometimes cause an error.
For example, consider the following snippet of code:

main() ->
 X = case fetch() of
 1 -> some_atom;
 2 -> 3.14
 end,
 convert(X).

convert(X) when is_atom(X) -> {atom, X}.

This bit of code assumes the existence of a fetch/0 function that returns
either 1 or 2. Based on this, we either return an atom or a floating-point
number.

From our point of view, it appears that at some point in time, the call
to convert/1 will fail. We would likely expect a type error there whenever
fetch() returns 2, which sends a floating-point value to convert/1. Dialyzer
doesn’t think so. Remember that Dialyzer is optimistic. It has figurative
faith in your code, and because there is the possibility that the function
call to convert/1 succeeds at some point, Dialyzer will keep silent. No type
error is reported in this case.

Type Inference and Discrepancies
For a practical example of the principles described in the previous section,
let’s try Dialyzer on a few modules: discrep1.erl, discrep2.erl, and discrep3.erl.
Here’s discrep1.erl:

-module(discrep1).
-export([run/0]).

run() -> some_op(5, you).

some_op(A, B) -> A + B.

The error in this example is kind of obvious. You can’t add 5 to the
you atom. We can try Dialyzer on that piece of code, assuming the PLT has
been created:

$ dialyzer discrep1.erl
 Checking whether the PLT /home/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis...

548 Chapter 30

discrep1.erl:4: Function run/0 has no local return
discrep1.erl:4: The call discrep1:some_op(5,'you') will never return
since it differs in the 2nd argument from the success typing arguments:
(number(),number())
discrep1.erl:6: Function some_op/2 has no local return
discrep1.erl:6: The call erlang:'+'(A::5,B::'you') will never return
since it differs in the 2nd argument from the success typing arguments:
(number(),number())
 done in 0m0.62s
done (warnings were emitted)

Oh bloody fun—Dialyzer found stuff. What the hell does it mean?
The first one is an error you will see a lot when using Dialyzer. “Function

Name/Arity has no local return” is the standard Dialyzer warning emitted
whenever a function provably doesn’t return anything (other than perhaps
raising an exception) because one of the functions it calls happens to trip
Dialyzer’s type-error detector or raises an exception itself. When this hap-
pens, the set of possible types of values the function could return is empty;
it doesn’t actually return. This error propagates to the function that called
it, giving us the “no local return” error.

The second error is somewhat more understandable. It says that calling
some_op(5, 'you') breaks what Dialyzer detected would be the types required
to make the function work, which are two numbers (number() and number()).
Granted the notation is a bit foreign, but we’ll explore it in more detail
soon enough.

The third error is yet again a “no local return.” The first one was because
some_op/2 would fail; this one is because the + call will fail. This is what the
fourth and last error is about. The plus operator (actually the function
erlang:'+'/2) can’t add the number 5 to the atom you.

What about discrep2.erl? Here’s what it looks like:

-module(discrep2).
-export([run/0]).

run() ->
 Tup = money(5, you),
 some_op(count(Tup), account(Tup)).

money(Num, Name) -> {give, Num, Name}.
count({give, Num, _}) -> Num.
account({give, _, X}) -> X.

some_op(A, B) -> A + B.

If you run Dialyzer on that file again, you’ll get similar errors to those
found in discrep1.erl:

$ dialyzer discrep2.erl
 Checking whether the PLT /home/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis...
discrep2.erl:4: Function run/0 has no local return

Type Specifications and Dialyzer 549

discrep2.erl:6: The call discrep2:some_op(5,'you') will never return
since it differs in the 2nd argument from the success typing arguments:
(number(),number())
discrep2.erl:12: Function some_op/2 has no local return
discrep2.erl:12: The call erlang:'+'(A::5,B::'you') will never return
since it differs in the 2nd argument from the success typing arguments:
(number(),number())
 done in 0m0.69s
done (warnings were emitted)

During its analysis, Dialyzer can see the types right through the count/1
and account/1 functions. It infers the types of each of the elements of the
tuple, and then figures out the values they pass. It can then find the errors
again, without any problems.

Let’s push it a bit further, with discrep3.erl:

-module(discrep3).
-export([run/0]).

run() ->
 Tup = money(5, you),
 some_op(item(count, Tup), item(account, Tup)).

money(Num, Name) -> {give, Num, Name}.

item(count, {give, X, _}) -> X;
item(account, {give, _, X}) -> X.

some_op(A, B) -> A + B.

This version introduces a new level of indirection. Instead of having a
function clearly defined for the count and the account values, this one works
with atoms and switches to different function clauses. If we run Dialyzer on
it, we get this:

$ dialyzer discrep3.erl
 Checking whether the PLT /home/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis... done in 0m0.70s
done (passed successfully)

Uh-oh—somehow the new
change to the file made things com-
plex enough that Dialyzer got lost
in our type definitions. The error is
still there though. We’ll get back to
understanding why Dialyzer doesn’t
find the errors in this file and how
to fix it in “Typing Functions” on
page 556, but for now, there are a
few more ways to run Dialyzer that
we need to explore.

Internet Bank Date

$

dollars

for

Pay to the
order of:

550 Chapter 30

If we wanted to run Dialyzer over, say, our Process Quest release, we
could do it as follows:

$ cd processquest/apps
$ ls
processquest-1.0.0 processquest-1.1.0 regis-1.0.0
regis-1.1.0 sockserv-1.0.0 sockserv-1.0.1

So, we have a bunch of libraries. Dialyzer wouldn’t like it if we had
many modules with the same names, so we’ll need to specify directories
manually:

$ dialyzer -r processquest-1.1.0/src regis-1.1.0/src sockserv-1.0.1/src
 Checking whether the PLT /home/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis...
dialyzer: Analysis failed with error:
No .beam files to analyze (no --src specified?)

Oh, right—by default, Dialyzer will look for .beam files. We need to add
the --src flag to tell Dialyzer to use .erl files for its analysis:

$ dialyzer -r processquest-1.1.0/src regis-1.1.0/src sockserv-1.0.1/src --src
 Checking whether the PLT /home/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis... done in 0m2.32s
done (passed successfully)

Notice that we added the src directory to all requests. We could have
done the same search without it, but then Dialyzer would have complained
about a bunch of errors related to EUnit tests, based on how some of the
assertion macros work with regard to the code analysis—we do not really
care about these. Plus, if you sometimes test for failures and make your soft-
ware crash on purpose inside of tests, Dialyzer will pick up on that, and you
might not want it to.

Typing About Types of Types
As seen with discrep3.erl, Dialyzer will sometimes not be able to infer all the
types in the way we intended. That’s because Dialyzer cannot read our minds.
To help Dialyzer in its task (and mostly help ourselves), we can declare types
and annotate functions in order to both document them and help formal-
ize the implicit expectations about types we put in our code.

Singleton Types
Erlang types can be as simple as, say, the number 42, noted 42 as a type
(nothing different from usual), or specific atoms, such as cat or molecule.
Those are called singleton types, as they refer to a value itself. Table 30-1 lists
the singleton types.

Type Specifications and Dialyzer 551

Table 30-1: Erlang Singleton Types

Type Description

'some atom' Any atom can be its own singleton type
42 A given integer
[] An empty list
{} An empty tuple
<<>> An empty binary

You can see that it could be annoying to program Erlang using only
these types. There is no way to express things such as ages, much less “all
the integers” for our programs, by using singleton types. And then, even if
we had a way to specify many types at once, it would be irritating to express
things such as “any integer” without writing them all by hand, which isn’t
possible anyway. Because of this, Erlang has union types and built-in types.

Union and Built-in Types
Union types allow you to describe more complex ideas, such as a type that
has two atoms in it. Built-in types are predefined types, which are not neces-
sarily possible to build by hand.

Union types and built-in types generally share a similar syntax, and
they’re noted with the form TypeName(). For example, the type for all pos-
sible integers would be noted as integer(). The reason parentheses are used
is that they let us differentiate between, say the type atom() for all atoms,
and atom for the specific atom atom. Moreover, to make code clearer, many
Erlang programmers choose to quote all atoms in type declarations, giving
us 'atom' instead of atom. This makes it explicit that 'atom' was meant to be a
singleton type, rather than a built-in type where the programmer forgot the
parentheses.

Table 30-2 lists the built-in types provided with the language. Note that
they do not all have the same syntax as union types do. Some of them, like
binaries and tuples, have a special syntax to make them friendlier to use.

Given the built-in types listed in
the table, it becomes a bit easier to
imagine how we would define types for
our Erlang programs. Some of it is still
missing though. Maybe things are too
vague or not appropriate for our needs.
Remember one of the discrepN modules’
errors mentioning the type number()?
That type is neither a singleton type
nor a built-in type. It would be a union
type, which means we could define it
ourselves.

552 Chapter 30

Table 30-2: Erlang Built-in Types

Type Description

any() Any Erlang term at all.
none() A special type that means that no term or type

is valid. Usually, when Dialyzer boils down the
possible return values of a function to none(), it
means the function should crash. It is synony-
mous with “this stuff won’t work.”

pid() A process identifier.
port() A port is the underlying representation of file

descriptors (which we rarely see unless we dig
deep inside the innards of Erlang libraries),
sockets, or generally things that allow Erlang
to communicate with the outside world, such as
the erlang:open_port/2 function. In the Erlang
shell, they look like #Port<0.638>.

reference() Unique values returned by make_ref() or
erlang:monitor/2.

atom() Atoms in general.
binary() A blob of binary data.
<<_:Integer>> A binary of a known size, where Integer is

the size.
<<_:_*Integer>> A binary that has a given unit size, but of

unspecified length.
<<_:Integer, _:_*OtherInteger>> A mix of both previous forms to specify that a

binary can have a minimum length.
integer() Any integer.
N..M A range of integers. For example, if you

wanted to represent a number of months in a
year, you could define the range 1..12. Note
that Dialyzer reserves the right to expand this
range into a bigger one.

non_neg_integer() Integers that are greater or equal to 0.
pos_integer() Integers greater than 0.
neg_integer() Integers up to –1.
float() Any floating-point number.
fun() Any kind of function.
fun((...) -> Type) An anonymous function of any arity

that returns a given type. A given func-
tion that returns lists could be noted as
fun((...) -> list()).

fun(() -> Type) An anonymous function with no arguments,
returning a term of a given type.

fun((Type1, Type2, ..., TypeN) -> Type) An anonymous function taking a given number
of arguments of a known type. For example,
a function that handles an integer and a
floating-point value could be declared as
fun((integer(), float()) -> any()).

Type Specifications and Dialyzer 553

Table 30-2: Erlang Built-in Types

Type Description

[Type()] A list containing a given type. A list of integers
could be defined as [integer()]. Alternatively, it
can be written as list(Type()). Lists can some-
times be improper (like [1, 2 | a]). As such,
Dialyzer has types declared for improper lists
with improper_list(TypeList, TypeEnd). The
improper list [1, 2 | a] could be typed as
improper_list(integer(), atom()), for example.
Then, to make matters more complex, it is
possible that you will not be sure whether or
not the list will be proper. In such circum-
stances, the type
maybe_improper_list(TypeList, TypeEnd) can be
used.

[Type(), ...] A special case of [Type()] that mentions that
the list cannot be empty.

tuple() Any tuple.
{Type1, Type2, ..., TypeN} A tuple of a known size, with known types. For

example, a binary tree node could be defined as
{'node', any(), any(), any(), any()}, correspond-
ing to {'node', LeftTree, RightTree, Key, Value}.

The notation to represent the union of types is the pipe (|). Basically,
this lets us say that a given type TypeName is represented as the union of
Type1 | Type2 | ... | TypeN. As such, the number() type, which includes inte-
gers and floating-point values, could be represented as integer() | float().
A Boolean value could be defined as 'true' | 'false'. It is also possible to
define types where only one other type is used. Although it looks like a
union type, it is actually an alias.

In fact, many such aliases and type unions are predefined for you.
Table 30-3 lists some of them.

Table 30-3: Predefined Union Types and Aliases

Type Definition

term() Equivalent to any(). It was added because other tools used
term() before. Alternatively, the _ variable can be used as
an alias of both term() and any().

boolean() Defined as 'true' | 'false'.
byte() Defined as 0..255. It’s any valid byte in existence.
char() Defined as 0..16#10ffff, but it isn’t clear whether this type

refers to specific standards for characters. It’s extremely
general in its approach to avoid conflicts.

number() integer() | float()

maybe_improper_list() A quick alias for maybe_improper_list(any(), any()) for
improper lists in general.

(continued)

(continued)

554 Chapter 30

Table 30-3: Predefined Union Types and Aliases

Type Definition

maybe_improper_list(T) An alias for maybe_improper_list(T, any()), where T is any
given type.

string() Defined as [char()], a list of characters. There is also
nonempty_string(), defined as [char(), ...]. Sadly, there is
so far no string type for binary strings only, but that’s more
because they’re blobs of data that are to be interpreted in
whatever type you choose.

iolist() Defined as maybe_improper_list(char() | binary() | iolist(),
binary() | []). You can see that the iolist is itself defined
in terms of iolists. Dialyzer does support recursive types,
starting with R13B04. Before then, types like iolists could be
defined only through some arduous gymnastics.

module() A type that stands for module names, and is currently an
alias of atom().

timeout() non_neg_integer() | 'infinity', to represent the values
accepted by the after part of a receive expression.

node() An Erlang’s node name, which is an atom.
no_return() An alias of none() intended to be used in the return type of

functions. It is particularly meant to annotate functions that
loop (hopefully) forever, and thus never return.

Defining Types
Well, that makes a few types already. Table 30-2 mentions a type for a tree
written as {'node', any(), any(), any(), any()}. Now let’s see how we could
declare it in a module. The syntax for type declaration in a module is as
follows:

-type TypeName() :: TypeDefinition.

As such, our tree could be defined like this:

-type tree() :: {'node', tree(), tree(), any(), any()}.

Alternatively, we could define it with a special syntax that allows us to
use variable names as type comments, like this:

-type tree() :: {'node', Left::tree(), Right::tree(), Key::any(), Value::any()}.

But that definition doesn’t work, because it doesn’t allow for a tree
to be empty. A better tree definition can be built by thinking recursively,
much as we did with our tree.erl module back in Chapter 5. In that module,
an empty tree is defined as {node, 'nil'}. Whenever we hit such a node in a
recursive function, we stop. A regular node (that is not empty) is noted as

(continued)

Type Specifications and Dialyzer 555

{node, Key, Val, Left, Right}. Translating this into a type gives us a tree node
of the following form:

-type tree() :: {'node', 'nil'}
 | {'node', Key::any(), Val::any(), Left::tree(), Right::tree()}.

That way, we have a tree that is either an empty node or a node with
contents. Note that we could have used 'nil' instead of {'node', 'nil'}, and
Dialyzer would have been fine with it. I just wanted to respect the way we
had written our tree module.

There’s another piece of Erlang code we might want to give types to,
but that we haven’t covered yet.

Types for Records
What about records? They have a somewhat convenient syntax to declare
types. To see it, let’s imagine a #user{} record. We want to store the user’s
name, some specific notes (to use our tree() type), the user’s age, a list of
friends, and a short biography.

-record(user, {name="" :: string(),
 notes :: tree(),
 age :: non_neg_integer(),
 friends=[] :: [#user{}],
 bio :: string() | binary()}).

The general record syntax for type declarations is Field :: Type, and
if there’s a default value to be given, it becomes Field = Default :: Type. In
the #user{} record, we can see that the name needs to be a string, the notes
must be a tree, and the age can be any integer from 0 to infinity (who knows
how old people can get?).

An interesting field is friends. The [#user{}] type means that the user
records can hold a list of zero or more other user records. It also tells us
that a record can be used as a type by writing it as #RecordName{}. The last
part tells us that the biography can be either a string or a binary.

Furthermore, to give a more uniform style to type declarations and
definitions, people tend to add an alias such as -type Type() :: #Record{}.. We
could also change the friends definition to use the user() type, ending up as
follows:

-record(user, {name = "" :: string(),
 notes :: tree(),
 age :: non_neg_integer(),
 friends=[] :: [user()],
 bio :: string() | binary()}).

-type user() :: #user{}.

556 Chapter 30

Here, we defined types for all fields of the record, but some of
them have no default value. If we were to create a user record instance as
#user{age=5}, there would be no type error. All record field definitions have
an implicit 'undefined' union added to them if no default value is provided
for them. With earlier versions, the declaration would have caused type
errors.

Typing Functions
While we could be defining types all day and night, filling files and files
with them, and then printing the files, framing them, and feeling strongly
accomplished, they won’t be used automatically by Dialyzer’s type inference
engine. Dialyzer doesn’t work from the types you declare to narrow down
what is possible or impossible to execute.

Why the hell would we declare these types then? For documentation?
Partially. There is an additional step to making Dialyzer understand the
types we’ve declared. We need to pepper type signature declarations over
all the functions we want augmented, bridging our type declarations with
the functions inside modules.

So far, we have looked at things like “here is
the syntax for this and that,” but now it’s time to
get practical. A simple example of things needing
to be typed could be card games. There are four
suits: spades, clubs, hearts, and diamonds. Cards
can then be numbered from 1 to 10 (where the ace
is 1), and then be a Jack, Queen, or King.

Without Dialyzer, we would probably represent cards as {Suit, CardValue}
so that we could have the ace of spades as {spades, 1}. Now, instead of just
having this up in the air, we can define types to represent this:

-type suit() :: spades | clubs | hearts | diamonds.
-type value() :: 1..10 | j | q | k.
-type card() :: {suit(), value()}.

The suit() type is simply the union of the four atoms that can represent
suits. The values can be any card from one to ten (1..10), or j, q, or k for the
face cards. The card() type joins them together as a tuple.

These three types can now be used to represent cards in regular func-
tions and give us some interesting guarantees. Take the following cards.erl
module for example:

-module(cards).
-export([kind/1, main/0]).

-type suit() :: spades | clubs | hearts | diamonds.
-type value() :: 1..10 | j | q | k.
-type card() :: {suit(), value()}.

Type Specifications and Dialyzer 557

kind({_, A}) when A >= 1, A =< 10 -> number;
kind(_) -> face.

main() ->
 number = kind({spades, 7}),
 face = kind({hearts, k}),
 number = kind({rubies, 4}),
 face = kind({clubs, q}).

The kind/1 function should return whether a card is a face card or a
number card. You will notice that the suit is never checked. In the main/0
function, you can see that the third call is made with the rubies suit, some-
thing we obviously didn’t intend in our types, and likely not in the kind/1
function:

$ erl
... <snip> ...
1> c(cards).
{ok,cards}
2> cards:main().
face

Everything works fine. That shouldn’t be the case. Even running Dialyzer
does not show any problems. Now let’s add the following type signature to
the kind/1 function:

-spec kind(card()) -> 'face' | 'number'.
kind({_, A}) when A >= 1, A =< 10 -> number;
kind(_) -> face.

Then something more interesting will happen. But before we run
Dialyzer, let’s see how that works.

Type signatures are of the form -spec FunctionName(ArgumentTypes) ->
ReturnTypes.. In the preceding specification, we say that the kind/1 function
accepts cards as arguments, according to the card() type we created. It also
says the function returns either the atom face or number.

Running Dialyzer on the module yields the following:

$ dialyzer cards.erl
 Checking whether the PLT /home/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis...
cards.erl:12: Function main/0 has no local return
cards.erl:15: The call cards:kind({'rubies',4}) breaks the contract (card()) -> 'face' | 'number'
 done in 0m0.80s
done (warnings were emitted)

Oh bloody fun. Calling kind/1 with a “card” that has the rubies suit isn’t
valid according to our specifications.

558 Chapter 30

In this case, Dialyzer respects the
type signature we gave, and when it ana-
lyzes the main/0 function, it figures out
that there is a bad use of kind/1 in there.
This prompts the warning from line 15
(number = kind({rubies, 4}),). Dialyzer from
there on assumes that the type signature is
reliable, and that if the code is to be used
according to that signature, it would logically
not be valid. This breach in the contract
propagates to the main/0 function, but there
isn’t much that can be said at that level as to
why it fails—just that it does.

N o t e 	 Dialyzer complained about this only once a type specification was defined. Before a
type signature was added, Dialyzer couldn’t assume that you planned to use kind/1
only with card() arguments. With the signature in place, it can work with that as its
own type definition.

Here’s a more interesting function to type, in convert.erl:

-module(convert).
-export([main/0]).

main() ->
 [_,_] = convert({a,b}),
 {_,_} = convert([a,b]),
 [_,_] = convert([a,b]),
 {_,_} = convert({a,b}).

convert(Tup) when is_tuple(Tup) -> tuple_to_list(Tup);
convert(L = [_|_]) -> list_to_tuple(L).

When reading the code, it is obvious that the two last calls to convert/1
will fail. The function accepts a list and returns a tuple, or it accepts a
tuple and returns a list. The two last calls to the function don’t respect
that, expecting a tuple from a tuple, and a list from a list. If we run
Dialyzer on the code, though, it will find nothing.

That’s because Dialyzer infers a type signature similar to the following:

-spec convert(list() | tuple()) -> list() | tuple().

Or to put it in words, the function accepts lists and tuples, and returns
lists and tuples. This is true—sadly, a bit too true. The function isn’t as per-
missive as the type signature would imply. This is one of the places where
Dialyzer sits back and tries not to say too much without being 100 percent
sure of the problems.

Type Specifications and Dialyzer 559

To help Dialyzer a bit, we can send in a fancier type declaration:

-spec convert(tuple()) -> list();
 (list()) -> tuple().
convert(Tup) when is_tuple(Tup) -> tuple_to_list(Tup);
convert(L = [_|_]) -> list_to_tuple(L).

Rather than putting tuple() and list() types together into a single
union, this syntax allows us to declare type signatures with alternative
clauses. If we call convert/1 with a tuple, we expect a list, and the opposite
in the other case.

With this more specific information, Dialyzer can now give more inter-
esting results:

$ dialyzer convert.erl
 Checking whether the PLT /home/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis...
convert.erl:4: Function main/0 has no local return
convert.erl:7: The pattern [_, _] can never match the type tuple()
 done in 0m0.90s
done (warnings were emitted)

Ah, this time it finds the error. Success! We can now use Dialyzer to tell
us what we knew. Of course, putting it that way sounds useless, but when
you type your functions correctly and make a tiny mistake that you forget to
check, Dialyzer will have your back, which is definitely better than an error-
logging system waking you up at night (or having your car keyed by your
operations guy).

N o t e 	 Some people prefer the following syntax for a multiple-clause type signature:

-spec convert(tuple()) -> list()
 ; (list()) -> tuple().

This is the same as the syntax we used but puts the semicolon on another line
because it might be more readable. There is no widely accepted standard at the time of this
writing.

By using type definitions and specifications in this way, we’re able to
let Dialyzer find errors with our earlier discrep modules. Let’s see how
discrep4.erl does it:

-module(discrep4).
-export([run/0]).
-type cents() :: integer().
-type account() :: atom().
-type transaction() :: {'give', cents(), account()}.

560 Chapter 30

run() ->
 Tup = money(5, you),
 some_op(item(count,Tup), item(account,Tup)).

-spec money(cents(), account()) -> transaction().
money(Num, Name) -> {give, Num, Name}.

-spec item('count', transaction()) -> cents();
 ('account', transaction()) -> account().
item(count, {give, X, _}) -> X;
item(account, {give, _, X}) -> X.

some_op(A,B) -> A + B.

The especially useful definition here is about how item/2 is typed using
two alternative clauses. This will help Dialyzer to track the return values in
relation to the input values and find type errors.

Typing Practice
Now we’ll look at a queue module for FIFO operations. You should know
what queues are, given Erlang’s mailboxes are queues. The first element
added will be the first one to be popped (unless we do selective receives).
The module works like this:

Stack/List Stack/List

Push Pop

To simulate a queue, we use two lists as stacks. One list stores the new
elements, and one list lets us remove them from the queue. We always add
to the same list and remove from the second one. When the list we remove
from is empty, we reverse the list we add items to, and it becomes the new
list to remove from. This generally guarantees better average performance
than using a single list to do both tasks.

Here’s our FIFO module, with a few type signatures added to check it
with Dialyzer:

-module(fifo_types).
-export([new/0, push/2, pop/1, empty/1]).
-export([test/0]).

Type Specifications and Dialyzer 561

-spec new() -> {fifo, [], []}.
new() -> {fifo, [], []}.

-spec push({fifo, In::list(), Out::list()}, term()) -> {fifo, list(), list()}.
push({fifo, In, Out}, X) -> {fifo, [X|In], Out}.

-spec pop({fifo, In::list(), Out::list()}) -> {term(), {fifo, list(), list()}}.
pop({fifo, [], []}) -> erlang:error('empty fifo');
pop({fifo, In, []}) -> pop({fifo, [], lists:reverse(In)});
pop({fifo, In, [H|T]}) -> {H, {fifo, In, T}}.

-spec empty({fifo, [], []}) -> true;
 ({fifo, list(), list()}) -> false.
empty({fifo, [], []}) -> true;
empty({fifo, _, _}) -> false.

test() ->
 N = new(),
 {2, N2} = pop(push(push(new(), 2), 5)),
 {5, N3} = pop(N2),
 N = N3,
 true = empty(N3),
 false = empty(N2),
 pop({fifo, [a|b], [e]}).

This defines a queue as a tuple of the form {fifo, list(), list()}. You’ll
notice we didn’t define a fifo() type, mostly to make it easy to create differ-
ent clauses for empty queues and filled queues. The empty(...) type specifica-
tion reflects that.

Much Ad o Ab ou t none()

You will notice that in the function pop/1, we do not specify the none() type, even
though one of the function clauses calls erlang:error/1.

The type none() means a given function will not return. If the function might
either fail or return a value, it is useless to type it as returning both a value and
none(). The none() type is always assumed to be there, and as such, the union
Type() | none() is the same as Type() alone.

none() is warranted whenever you’re writing a function that always fails when
called, such as if you were implementing erlang:error/1 yourself.

All of our type specifications appear to make sense. Just to make sure,
let’s run Dialyzer and check the results:

$ dialyzer fifo_types.erl
 Checking whether the PLT /home/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis...

562 Chapter 30

fifo_types.erl:16: Overloaded contract has overlapping domains; such contracts are currently
unsupported and are simply ignored
fifo_types.erl:21: Function test/0 has no local return
fifo_types.erl:28: The call
 fifo_types:pop({'fifo',nonempty_improper_list('a','b'),['e',...]})
 breaks the contract
 ({'fifo',In::[any()],Out::[any()]}) -> {term(),{'fifo',[any()],[any()]}}
 done in 0m0.96s
done (warnings were emitted)

So, we have a bunch of errors, and curses, they are not so easy to read.
The second one, “Function test/0 has no local return,” is at least some-
thing we know how to handle. If we just skip to the next one, it should
disappear.

For now, let’s focus on the first error—the one about contracts with
overlapping domains. If we go into fifo_types, on line 16, we see this:

-spec empty({fifo, [], []}) -> true;
 ({fifo, list(), list()}) -> false.
empty({fifo, [], []}) -> true;
empty({fifo, _, _}) -> false.

So what are said overlapping domains? We need to refer to the math-
ematical concepts of domain and image (also range). To put it simply, the
domain is the set of all possible input values to a function, and the image
is the set of all possible output values of a function. “Overlapping domains”
refers to two sets of input that overlap.

an invalid domain leads to
an invalid image!

http://example.org/404

To find the source of the problem, we need to look at list(). list() is
pretty much the same as [any()], and both of these types also include empty
lists. And there’s your overlapping domain. When list() is specified as a
type, it overlaps with []. To fix this, we need to replace the type signature
as follows:

-spec empty({fifo, [], []}) -> true;
 ({fifo, nonempty_list(), nonempty_list()}) -> false.

Type Specifications and Dialyzer 563

Alternatively, we could use this form:

-spec empty({fifo, [], []}) -> true;
 ({fifo, [any(), ...], [any(), ...]}) -> false.

Then running Dialyzer again will get rid of the warning.
Let’s move on to the next error (which I broke into multiple lines):

fifo_types.erl:28:
The call fifo_types:pop({'fifo',nonempty_improper_list('a','b'),['e',...]})
breaks the contract
({'fifo',In::[any()],Out::[any()]}) -> {term(),{'fifo',[any()],[any()]}}

Translated into human, this means that on line 28, there’s a call to pop/1
that has inferred types breaking the one specified in the file:

pop({fifo, [a|b], [e]}).

That’s the call. Now, the error message says that it identified an improper
list (that happens to not be empty), which is entirely right—[a|e] is an
improper list. It also mentions that it breaks a contract. We need to match
the type definition that is broken between the following, coming from the
error message:

{'fifo',nonempty_improper_list('a','b'),['e',...]}
{'fifo',In::[any()],Out::[any()]}
{term(),{'fifo',[any()],[any()]}}

The issue can be explained in one of three ways:

•	 The type signatures are right, the call is right, and the problem is the
return value expected.

•	 The type signatures are right, the call is wrong, and the problem is the
input value given.

•	 The call is right, but the type signatures are wrong.

We can eliminate the first one immediately. We’re not actually doing
anything with the return value. This leaves the second and third options.
The decision boils down to whether or not we want improper lists to be
used with our queues. This is a judgment call to be made by the writer of
the library, and I can say without a doubt that I didn’t intend improper
lists to be used with this code. In fact, programmers very rarely want

564 Chapter 30

improper lists. The winner is number 2: The call is wrong. To solve the
problem, drop the call or fix it:

test() ->
 N = new(),
 {2, N2} = pop(push(push(new(), 2), 5)),
 ...
 pop({fifo, [a, b], [e]}).

And run Dialyzer again:

$ dialyzer fifo_types.erl
 Checking whether the PLT /home/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis... done in 0m0.90s
done (passed successfully)

That makes more sense.

Exporting Types
Things have gone very well. We have types, we have signatures, and we have
additional safety and verifications. So what would happen if we wanted to
use our queue in another module? What about any other module we fre-
quently use, such as dict, gb_trees, or ETS tables? How can we use Dialyzer
to find type errors related to them?

We can use types coming from other modules. Doing so usually requires
rummaging through documentation to find them. For example, the ets
module’s documentation (http://www.erlang.org/doc/man/ets.html) has the
following entries under “DATA TYPES”:

continuation()

Opaque continuation used by select/1 and select/3.

match_spec() = [{match_pattern(), [term()], [term()]}]

A match specification, see above.

match_pattern() = atom() | tuple()

tab() = atom() | tid()

tid()

A table identifier, as returned by new/2.

Those are the data types exported by ets. If we had a type specifica-
tion that accepted ETS tables and a key, and returned a matching entry, we
could define it like this:

-spec match(ets:tab(), Key::any()) -> Entry::any().

And that’s about it.

Type Specifications and Dialyzer 565

Exporting our own types works pretty much the same as with func-
tions. All we need to do is add a module attribute of the form -export_
type([TypeName/Arity]).. For example, we could have exported the card() type
from our cards module by adding the following line:

-module(cards).
-export([kind/1, main/0]).

-type suit() :: spades | clubs | hearts | diamonds.
-type value() :: 1..10 | j | q | k.
-type card() :: {suit(), value()}.

-export_type([card/0]).
...

And from then on, if the module
is visible to Dialyzer (either by add-
ing it to the PLT or analyzing it at
the same time as any other module),
we can reference it from any other
bit of code as cards:card() in type
specifications.

Doing this will have one down-
side, though: Using a type like this
doesn’t forbid anyone using the card
module from ripping the types apart and toying with them. Anyone could
be writing pieces of code that match on the cards, a bit like {Suit, _} =
This isn’t always a good idea, because it prevents us from being able to
change the implementation of the cards module in the future. We would
especially like to enforce this in modules that represent data structures,
such as dict and fifo_types (if it exported types).

Dialyzer allows you to export types in a way that tells your users, “You
know what? I’m fine with you using my types, but don’t you dare look inside
them!” It’s a question of replacing a declaration like this:

-type fifo() :: {fifo, list(), list()}.

with this:

-opaque fifo() :: {fifo, list(), list()}.

Then you can still export it as -export_type([fifo/0]).
Declaring a type as -opaque means that only the module that defined

the type has the right to look at how it’s made and make modifications to it.
This forbids other modules from pattern matching on the values other than
the whole thing, guaranteeing (if they use Dialyzer) that they will never be
bitten by a sudden change of implementation.

Some things are better
left unseen

566 Chapter 30

Typed Behaviors
Back in Chapter 14, we explored how to declare behaviors using the
behavior_info/1 function. The module exporting this function would give its
name to the behavior, and a second module could implement callbacks by
adding -behavior(ModName). as a module attribute.

The behavior definition of the gen_server module, for example, is as
follows:

behavior_info(callbacks) ->
 [{init, 1}, {handle_call, 3}, {handle_cast, 2}, {handle_info, 2},
 {terminate, 2}, {code_change, 3}];
behavior_info(_Other) ->
 undefined.

The problem here is that there is no way for Dialyzer to check type defi-
nitions for that. In fact, there is no way for the behavior module to specify
which kinds of types it expects the callback modules to implement, and
thus there’s no way for Dialyzer to do something about it.

Starting with R15B, the Erlang/OTP compiler was upgraded so that it
now handles a new module attribute, named -callback. The -callback mod-
ule attribute has a similar syntax to spec. When you specify function types
with it, the behavior_info/1 function will be declared automatically, and the

Don’t Dr ink Too Much Kool- A id

Sometimes the implementation of opaque data types is either not strong enough to
do what it should or is actually problematic (that is, buggy).

Dialyzer does not take the specification of a function into account until it has
first inferred the success typing for the function.

This means that when your type looks rather generic without any -type infor-
mation taken into account, Dialyzer might get confused by some opaque types.
For example, when analyzing an opaque version of the card() data type, Dialyzer
might see it as {atom(), any()} after inference. Modules using card() correctly might
see Dialyzer complaining because they’re breaking a type contract, even if they
aren’t. This is because the card() type itself doesn’t contain enough information for
Dialyzer to connect the dots and realize what’s really going on.

Usually, if you see errors when using an opaque data type, tagging your
tuple helps. Moving from a type of the form -opaque card() :: {suit(), value()}. to
-opaque card() :: {card, suit(), value()}. might get Dialyzer to work fine with the
opaque type.

The Dialyzer implementers are currently trying to make the implementation
of opaque data types better and strengthen their inference. They are also try-
ing to make user-provided specs more important and to trust them better during
Dialyzer’s analysis, but this is still a work in progress.

Type Specifications and Dialyzer 567

specifications are added to the module metadata in a way that lets Dialyzer
do its work. For example, here’s the declaration of the gen_server starting
with R15B:

-callback init(Args :: term()) ->
 {ok, State :: term()} | {ok, State :: term(), timeout() | hibernate} |
 {stop, Reason :: term()} | ignore.
-callback handle_call(Request :: term(), From :: {pid(), Tag :: term()},
 State :: term()) ->
 {reply, Reply :: term(), NewState :: term()} |
 {reply, Reply :: term(), NewState :: term(), timeout() | hibernate} |
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), Reply :: term(), NewState :: term()} |
 {stop, Reason :: term(), NewState :: term()}.
-callback handle_cast(Request :: term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.
-callback handle_info(Info :: timeout() | term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.
-callback terminate(Reason :: (normal | shutdown | {shutdown, term()} | term()),
 State :: term()) ->
 term().
-callback code_change(OldVsn :: (term() | {down, term()}), State :: term(),
 Extra :: term()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

And none of your code should break from the behavior changing
things. Do realize, however, that a module cannot use both the -callback
form and the behavior_info/1 function at once—only one or the other. This
means if you want to create custom behaviors, there is a rift between what
can be used in versions of Erlang prior to R15 and what can be used in later
versions.

The upside is that newer modules will have Dialyzer able to do some
analysis to check for errors on the types of whatever is returned.

N o t e 	 During version R15B exclusively, Dialyzer would check types of callbacks only when
the callback module included -behaviour, not when it included -behavior. This is a
bug that was later resolved.

Polymorphic Types
Oh boy, what a section title. If you’ve never heard of polymorphic types (alter-
natively called parameterized types), this might sound a bit scary. It’s fortu-
nately not as complex as the name would lead you to believe.

The need for polymorphic types comes from the fact that when we’re
typing different data structures, we might find ourselves wanting to be

568 Chapter 30

more specific about what they can store. For example, we may want our
queue from earlier in the chapter to sometimes handle anything, some-
times handle only playing cards, or sometimes handle only integers. In the
latter two cases, the issue is that we might want Dialyzer to be able to com-
plain that we’re trying to put floating-point numbers in our integer queue,
or tarot cards in our playing cards queue.

This is impossible to enforce by strictly using
types the way we have been so far.

A polymorphic type is a type that can be “config-
ured” with other types. Luckily for us, we already know
the syntax to use it. Earlier, I said we could define a list
of integers as [integer()] or list(integer())—these are
polymorphic types. A polymorphic type accepts a type
as an argument.

To make our queue accept only integers or cards, we could have defined
its type as follows:

-type queue(Type) :: {fifo, list(Type), list(Type)}.
-export_type([queue/1]).

When another module wishes to make use of the fifo/1 type, it needs to
parameterize that type. So a new deck of cards in the cards module could
have had the following signature:

-spec new() -> fifo:queue(card()).

And Dialyzer would try to analyze the module to make sure that it sub-
mits and expects only cards from the queue it handles.

We Bought a Zoo
As a demonstration of the use of polymorphic type, let’s say that we decided
to buy a zoo to congratulate ourselves for being nearly finished with Learn
You Some Erlang. In our zoo, we have two animals: a red panda and a squid
(yes, it is a rather modest zoo, although that shouldn’t keep us from setting
the entry fee sky-high).

We’ve decided to automate the feeding of our animals, because we’re
programmers, and programmers like to automate stuff, often out of laziness.
After doing a bit of research, we’ve found that red pandas can eat bamboo,
some birds, eggs, and berries. We’ve also found that squids can fight with
sperm whales, so we decided to feed them just that with our zoo.erl module:

-module(zoo).
-export([main/0]).

feeder(red_panda) ->
 fun() ->
 element(random:uniform(4), {bamboo, birds, eggs, berries})
 end;

Type Specifications and Dialyzer 569

feeder(squid) ->
 fun() -> sperm_whale end.

feed_red_panda(Generator) ->
 Food = Generator(),
 io:format("feeding ~p to the red panda~n", [Food]),
 Food.

feed_squid(Generator) ->
 Food = Generator(),
 io:format("throwing ~p in the squid's aquarium~n", [Food]),
 Food.

main() ->
 %% Random seeding
 <<A:32, B:32, C:32>> = crypto:rand_bytes(12),
 random:seed(A, B, C),
 %% The zoo buys a feeder for both the red panda and squid.
 FeederRP = feeder(red_panda),
 FeederSquid = feeder(squid),
 %% Time to feed them!
 %% This should not be right!
 feed_squid(FeederRP),
 feed_red_panda(FeederSquid).

This code makes use of feeder/1, which takes an animal name and
returns a feeder (a function that returns food items). Feeding the red
panda should be done with a red panda feeder, and feeding the squid
should be done with a squid feeder. With function definitions such as
feed_red_panda/1 and feed_squid/1, there is no way to be alerted by the wrong
use of a feeder. Even with runtime checks, it’s impossible to do. As soon as
we serve food, it’s too late:

1> zoo:main().
throwing bamboo in the squid's aquarium
feeding sperm_whale to the red panda
sperm_whale

Oh no, our animals are not meant to eat that way! Maybe types can
help. The following type specifications could be devised, using the power
of polymorphic types:

-type red_panda() :: bamboo | birds | eggs | berries.
-type squid() :: sperm_whale.
-type food(A) :: fun(() -> A).

-spec feeder(red_panda) -> food(red_panda());
 (squid) -> food(squid()).
-spec feed_red_panda(food(red_panda())) -> red_panda().
-spec feed_squid(food(squid())) -> squid().

570 Chapter 30

The food(A) type is the one of interest here. A is a free type, to be decided
later. We then qualify the food type in feeder/1’s type specification by
declaring food(red_panda()) and food(squid()). The food type is then seen as
fun(() -> red_panda()) and fun(() -> squid()), instead of some abstract func-
tion returning something unknown. If we add these specs to the file, and
then run Dialyzer on it, the following happens:

$ dialyzer zoo.erl
 Checking whether the PLT /Users/ferd/.dialyzer_plt is up-to-date... yes
 Proceeding with analysis...
zoo.erl:18: Function feed_red_panda/1 will never be called
zoo.erl:23: The contract zoo:feed_squid(food(squid())) -> squid() cannot be right because
 the inferred return for feed_squid(FeederRP::fun(() -> 'bamboo' | 'berries' | 'birds' |
'eggs'))
 on line 44 is 'bamboo' | 'berries' | 'birds' | 'eggs'
zoo.erl:29: Function main/0 has no local return
 done in 0m0.68s
done (warnings were emitted)

And the error is right. Hooray for polymorphic types!

Some Cautions
Although our example is pretty useful, minor changes in the code can have
unexpected consequences in what Dialyzer is able to find. For example, sup-
pose the main/0 function had the following code:

main() ->
 %% Random seeding
 <<A:32, B:32, C:32>> = crypto:rand_bytes(12),
 random:seed(A, B, C),
 %% The zoo buys a feeder for both the red panda and squid.
 FeederRP = feeder(red_panda),
 FeederSquid = feeder(squid),
 %% Time to feed them!
 feed_squid(FeederSquid),
 feed_red_panda(FeederRP),
 %% This should not be right!
 feed_squid(FeederRP),
 feed_red_panda(FeederSquid).

Things would not be the same. Before the functions are called with the
wrong kind of feeder, they’re first called with the right kind. As of R15B01,
Dialyzer would not find an error with this code. The observed behavior
is that as soon as a call to a given function succeeds within the function’s
body, Dialyzer will ignore later errors within the same unit of code.

Type Specifications and Dialyzer 571

Even if this is a bit sad for many static typing fans, we have been
thoroughly warned. The following quote comes from the “Practical Type
Inference Based on Success Typings” paper referenced earlier in the
chapter:

. . . A success typing is a type signature that over-approximates
the set of types for which the function can evaluate to a value.
The domain of the signature includes all possible values that the
function could accept as parameters, and its range includes all
possible return values for this domain. . . .

. . . However weak this might seem to aficionados of static
typing, success typings have the property that they capture the
fact that if the function is used in a way not allowed by its success
typing (e.g., by applying the function with parameters p ̄ ∉ ᾱ  ) this
application will definitely fail. This is precisely the property that
a defect detection tool which never “cries wolf” needs. Also, suc-
cess typings can be used for automatic program documentation
because they will never fail to capture some possible—no matter
how unintended—use of a function.

Again, keeping in mind that Dialyzer is optimistic in its approach is
vital to working efficiently with it.

Who cares about food poisoning when
supervisors have your back?

572 Chapter 30

You’re My Type
Dialyzer will often prove to be a true friend when programming in Erlang,
although the frequent nagging might tempt you to just drop it. One thing
to remember is that Dialyzer is practically never wrong, and you will likely
make mistakes now and then. You might feel like some errors mean noth-
ing, but contrary to many type systems, Dialyzer speaks out only when it
knows it’s right, and bugs in its code base are rare. Dialyzer might frustrate
you and force you to be humble, but it is very unlikely to be the source of
bad, unclean code.

That’s All, Folks
So hey, that’s about it for Learn You Some Erlang for Great Good! Thanks for
reading it. There’s not much more to say, but if you feel like getting a list of
more topics to explore and some general words from me, you can read the
book’s afterword.

A f t e r w o r d

I see you chose to read the afterword after all. Good
for you. Before I point you to a bunch of interesting
topics that you might want to explore if you’ve decided
Erlang is a development language that you want to
learn more about, I would like a moment to talk about
writing Learn You Some Erlang. It has been one hell of a ride. It took me
three years of hard labor while studying and working full time, and juggling
everyday life needs (if I had children, they would have died of neglect a
while ago).

This book’s site, coupled with some luck and some more work, allowed
me to get jobs as an Erlang trainer, a course material writer, and a developer.
It allowed me to travel around the world and meet a load of interesting
people. It drained a lot of energy, and cost me a decent chunk of money
and time, but it paid me back tenfold in most ways imaginable.

574 Afterword

Then this book became reality, with more work needed. Even though I
thanked these people in the thanks section of the book, I want to stress my
appreciation of the Erlang community in general. They helped me learn
stuff, reviewed pages and pages of material for free, fixed my typos, and
helped me get better at writing English and writing in general. I also want
to thank the whole team at No Starch Press, who put in even more time,
bringing professional editing to Learn You Some Erlang. Finally, thanks again
to Jenn (my girlfriend), who took the time to re-trace all my drawings so
they would be suitable for print.

Other Erlang Applications
There are only so many topics I could cover without going over the top. This
book is already large enough as it is. It has taken years to complete, and I’m
tired and glad it’s over (what am I gonna do with all that free time?), but
there are still plenty of other topics I would have loved to include. Here’s a
quick list of applications you can look up in the documentation that ships
with Erlang:

Tracing BIFs and DBG
The Erlang VM is traceable inside and out. Got a bug or some stack
trace you can’t make sense of? Turn on a few trace flags, and the VM
opens up to you. DBG, an application that comes with Erlang, takes
these BIFs and builds an app on top of them. Messages, function calls,
function returns, garbage collections, process spawning and dying, and
so on are all traceable and observable. DBG also tends to work much
better than any debugger for a concurrent language like Erlang. What’s
the best part about it? It’s traceable within Erlang, so you can make
Erlang programs that trace themselves! If you look into these functions
and find them a bit hard to digest, you might be okay staying with the
sys module’s tracing functions. They work only on OTP behaviorized
processes, but they’re often good enough to get going.

Profiling
Erlang comes with a bunch of different profiling tools to analyze your
programs and find all kinds of bottlenecks. The fprof and eprof tools
can be used for time profiling, cprof for function calls, lcnt for locks,
percept for concurrency, and cover for code coverage. Most of them are
built using the tracing BIFs of the language, funnily enough.

More introspection
Unix top-like tools exist for Erlang, such as etop, part of the observer
application. You can also use the Erlang debugger, but I recommend
DBG instead of that one. The observer application also allows you to
explore entire supervision trees for your nodes.

Afterword 575

Documentation
EDoc is a tool that lets you turn your Erlang modules into HTML docu-
mentation. It supports annotations and ways to declare specific pages
that allow you to build small websites to document your code. It’s simi-
lar to Javadoc for Java users.

GUIs
The wx application is the new standard for multiplatform GUI writing
with Erlang. I’m terrible at GUI stuff, so it’s probably better for every-
one that I didn’t cover this app.

Erlang libraries
Plenty of nice libraries come by default with Erlang: cryptography tools,
web servers, web clients, all kinds of protocol implementations, and
so on. You can get a general list of them at http://www.erlang.org/doc/
applications.html.

Community Libraries
There are a ton of libraries coming from the Erlang community. I didn’t
cover them because they tend to change, and I didn’t want to favor one over
the other. Here’s a quick list (links don’t carry over very well in a book, so
you can get the actual links at http://learnyousomeerlang.com/conclusion):

•	 Rebar and Sinan if you want to build systems

•	 Redbug for a friendlier approach to tracing

•	 Gproc for a very powerful and flexible process registry

•	 Mochiweb, Cowboy, and Yaws if you need web servers

•	 riak_core for a very powerful distribution library for Erlang

•	 lhttpc as a web client

•	 PropEr, QuickCheck, and Triq for kick-ass, property-based testing tools
(you need to try one of them)

•	 Entop for a top-like tool

•	 A billion JSON libraries (mochijson2, jsx, ejson, and more)

•	 UX for Unicode handling and common Unicode-related algorithms
pending their addition to the language (planned for R16B)

•	 Seresye and eXAT for some artificial intelligence (AI) tools

•	 Database client libraries

•	 Lager as a robust logging system that binds itself to Erlang’s error logger

•	 Poolboy for some generic message-based pools

Many more libraries are out there. Community libraries could easily fill
their own book.

576 Afterword

Your Ideas Are Intriguing to Me and
I Wish to Subscribe to Your Newsletter

I have a blog at http://ferd.ca where I discuss all kinds of stuff (or at least I want
to) but inevitably come back to Erlang topics, due to using it all the time.

Is That It?
No, there’s still an appendix and the index!

O n E r l a n g ’ s S y n t a x

Many newcomers to Erlang manage to understand the
syntax and program around it without ever getting
comfortable with it. I’ve read and heard many com-
plaints regarding the syntax and the “ant turd tokens”
(a subjectively funny way to refer to ,, ;, and .), how
annoying it is, and so on.

Erlang draws its syntax from Prolog. While this gives a reason for the
current state of things, it doesn’t magically make people like the syntax. I
don’t expect anyone to respond to this by saying, “Oh, it’s Prolog, I get it.
Makes complete sense!” As such, I’ll suggest three ways to read Erlang code
to possibly make it easier to understand.

The Template
The template way is my personal favorite. To understand it, you must
first get rid of the concept of lines of code and think in expressions. An
expression is any bit of Erlang code that returns something. In the shell, the

578 Appendix

period (.) ends an expression. After writing 2 + 2, you must add a period
(and then press enter) to run the expression and return a value.

In modules, the period ends forms. Forms are module attributes and
function declarations. Forms are not expressions, as they don’t return any-
thing. This is why they’re terminated in a different manner than everything
else. Given forms are not expressions, it could be argued that the shell’s use
of . to terminate expression is what is not standard here. Consequently, I
suggest not caring about the shell for this method of reading Erlang.

The first rule is that the comma (,) separates expressions:

C = A+B, D = A+C

This is easy enough. However, it should be noted that if ... end,
case ... of ... end, begin ... end, fun() -> ... end, and try ... of ... catch ... end
are all expressions. As an example, it is possible to run this:

Var = if X > 0 -> valid;
 X =< 0 -> invalid
 end

And you’ll get a single value out of the if ... end. This explains why we
will sometimes see such language constructs followed by a comma. It just
means there is another expression to evaluate after it.

The second rule is that the semicolon (;) has two roles. The first one is
separating different function clauses:

fac(0) -> 1;
fac(N) -> N * fac(N-1).

The second one is separating different branches of expressions like
if ... end, case ... of ... end, and others:

if X < 0 -> negative;
 X > 0 -> positive;
 X == 0 -> zero
end

It’s probably the most confusing role because the last branch of the
expression doesn’t need to have the semicolon following it. This is because
the ; separates branches; it doesn’t terminate them. Think in expressions,
not lines. Some people find it easier to illustrate the role of a separator by
writing the preceding expression in the following way, which is arguably
more readable:

if X < 0 -> negative
 ; X > 0 -> positive
 ; X == 0 -> zero
end

On Erlang’s Syntax 579

This makes the role of separator more explicit. It goes in between
branches and clauses, not after them.

Now, because the semicolon is used to separate expression branches
and function clauses, it becomes possible to have an expression such as a
case construct followed by , when followed by another expression, a ; when
in the last position of a function clause, or a . when at the last position of a
function.

The line-based logic for terminating lines such as in C or Java must go
out the window. Instead, see your code as a generic template you fill (hence
the name the template way):

head1(Args) [Guard] ->
 Expression1, Expression2, ..., ExpressionN;
head2(Args) [Guard] ->
 Expression1, Expression2, ..., ExpressionN;
headN(Args) [Guard] ->
 Expression1, Expression2, ..., ExpressionN.

The rules make sense, but you need to get into a different reading
mode. That’s where the heavy lifting needs to be done—moving from lines
and blocks toward a predefined template. If you think about it, things like
for (int i = 0; i >= x; i++) { ... } (or even for (...);) have a weird syntax when
compared to most other constructs in languages supporting them. We’re
just so used to seeing these constructs that we don’t mind them anymore.

The English Sentence
The English sentence approach is about comparing Erlang code to English.
Although this manner is not the one I prefer, I do realize that people have
different ways to make sense of logical concepts, and this is one approach
I’ve heard being praised many times.

Imagine you’re writing a list of things. Well, no. Don’t imagine it, read it.

I will need a few items on my trip:
 if it's sunny, sunscreen, water, a hat;
 if it's rainy, an umbrella, a raincoat;
 if it's windy, a kite, a shirt.

An Erlang translation can remain a bit similar:

trip_items(sunny) ->
 sunscreen, water, hat;
trip_items(rainy) ->
 umbrella, raincoat;
trip_items(windy) ->
 kite, shirt.

Here, just replace the items by expressions, and you have it. Expressions
such as if ... end can be seen as nested lists.

580 Appendix

And, Or, Done.
Another variant of the English sentence approach has been suggested to me
on #erlang, and I think it’s the most elegant one. The user simply reads the
ant turd tokens as follows:

•	 , as and

•	 ; as or

•	 . as being done

A function declaration can then be read as a series of nested logical
statements and affirmations.

In Conclusion
Some people will just never like ant turd tokens or being unable to swap
lines of code without changing the token at the end of the line. I guess
there’s not much to be done when it comes to style and preferences, but I
still hope this appendix was useful. After all, the syntax is only intimidat-
ing; it’s far from difficult.

I n d e x

Symbols and Numbers
* (multiplication), 10
! (bang), 144–145. See also message

passing
{} (empty tuple). See tuples
= (match operator)

binding/pattern matching, 12
for comparison, 11

== (equal to), 14–15
=:= (exactly equal to), 14–15
=/= (exactly not equal to), 14–15
=< (less than or equal to), 15
/ (floating-point division), 10
/= (not equal to), 14–15
> (greater than), 15
>= (greater than or equal to), 15
< (less than), 15
<= (binary generator), 28
<- (list generator), 22
<<>> (empty binary). See binaries
<<"">> (empty binary string).

See strings
- (subtraction), 10
-- (list subtraction), 19
+ (addition), 10
++ (list concatenation), 19
'$1', '$2', ..., '$_'. See match

specifications
'$end_of_table', 427. See also ETS
"" (empty string). See strings
? (question mark). See macros
?MODULE, 152
[] (empty list). See lists
_ (don’t care variable), 17

| (cons operator), 20–21
|| (list comprehension operator), 22

A
abstraction module,

API/Interface module, 295–296
example with gen_event

behavior, 256
accumulator, 64–65
ACID, 424–425
actor model, 3
addition (+), 10
administrator (there is

only one), 449
alias (type alias), 553
alive (node), 452
Amdahl’s law, 141–142
analyzing Erlang code, 318. See also

Dialyzer
andalso operator, 14, 48–49
and operator, 14
angry programmers, 332
anonymous functions (funs), 78–82
.app file

description, 305–306
examples

with missing fields, 308, 317
with proper fields, 336,

480, 522
registered field details, 317

applications (OTP)
behavior, 304, 309
callback module example, 311
complex terminations, 333
configuration, 306–307

582 Index

applications (OTP), continued
currently running, 312
dependencies, 307, 317, 337
distributed, 473

example, 480
finding versions, 338–339
included applications, 333
library applications

(process-free), 314
loading, 331
named processes, 468
overriding, 317, 332, 341, 361,

481–482
restart strategy (temporary,

transient, permanent), 313
with reltool, 343

statuses, 474
start, 310, 311–312, 313
stop, 312, 333

application controller, 309, 474
application master, 309–310
appups

definition, 357
file definition, 365–366
file example, 366–367

arithmetic operations, 10
arity, 33
arrays, 129
assertion macros, 400–401.

See also EUnit
asynchronous message passing, 139,

445–446
atoms, 12–13
atom table, 13
availability, 453–454. See also CAP

theorem

B

backward compatibility notice
recursive types, 553–554
simple_one_for_one child restart

strategy, 270
stack traces, 101
supervisor:terminate_child

function, 280
typed behaviors, 566, 567

bad argument error, 91
bad arithmetic error, 92
bad arity error, 92
bad function error, 92
band operator, 26–27
band supervisor, 271, 274
bandwidth, 446–447
bang (!), 144–145. See also message

passing
BEAM (virtual machine), 37
.beam files, 36. See also

compiling code
behavior. See also applications

(OTP); gen_event behavior;
gen_fsm behavior; gen_server
behavior; supervisor (OTP)

defining behaviors, 214
principles, 200–201
typed behaviors, 566–567

Berard, Edward V., 176
BERT and BERT-RPC, 450
BIFs. See built-in functions
binaries

bit packing, 24
bit syntax, 23–24
compared to atoms, 28
pattern matching, 24–26
strings, 27–28
TCP segment example, 27
type specifiers, size, endianness,

25–26
binary comprehension, 28–29
binary generator (<=), 28
binary tree, 72–75, 103–104
binding, 46, 91
bnot operator, 26
Boolean, 14
-boot shell argument, 340–341
boot file, 339, 340–341, 369
boot script, 339–340
bor operator, 26–27
bottlenecks. See sequential

bottlenecks
bsl operator, 26–27
bsr operator, 26–27

Index 583

built-in functions (BIFs), 20. See also
erlang module

in guards, 59
tracing, 574
type-test, 59

bxor operator, 26–27

C
calculator example, 107
Candea, George, 138
CAP theorem, 453–454

zombie survivors example, 454
case clause (error), 91
case ... end expression, 52–53
catch keyword, 100–103
circular dependencies, 41
client/server, 201, 204–207
cluster (of Erlang nodes), 458, 461
C Nodes, reference, 450
code_change functions, 363–365.

See also specific behaviors
code clashes, 196–197
code path, 194–195, 331
code purge, 191
code server, 191
comments, 34
Common Test

all() function, 488
basic suite example, 488
configuration parameter, 392,

488–489
data_dir value, 489
directories (not found error), 528
directory structure, 487
distributed, 504

logs, 506–507
running tests, 507–508
slave nodes, 505
test specifications, 505–506

fixtures (equivalent of), 491–492
groups, 493–496
instantiation, 491–492, 500
logs, test reports, 489–490, 501
Mnesia example, 519, 528–529
priv_dir value, 487
running tests, 489, 503–504
skipping tests, 502
SSH, 504

suites, 500–501
test control, 495–496
test specifications, 501–502,

503–504
compiler flags, 37–38
compile-time errors, 88–89
compiling code

Emakefiles, 194–195, 308
with erlc (executable), c()

(function), and compile
(module), 36

export_all option, 182
with hipe, 38

complex data structures, 60
concurrency. See also processes

implementation, 140
vs. parallelism, 136
read and write with ETS, 424

-config shell argument, 482, 484
configuration

-AppName shell argument, 332
-config shell argument, 482, 484
OTP applications, 306–307

(see also .app file)
overriding, 317, 332, 341, 361,

481–482
cons operator (|), 20–21
consistency, 453. See also CAP

theorem
continuation-passing style (CPS),

320–322
cookies, 462–464
cowboy server, 389
crashing. See let it crash
CT master, 507–508
ct_run executable, 489, 503–504
ct:run function, 489, 503–504
ct_slave function, 504–505
Cunningham, Ward, 54
curling, 252

D
data structures

arrays, 129
binary tree, 72–75, 103–104
benchmark of key/value data

structures, 128
complex, 60

584 Index

data structures, continued
dictionaries, 128–129
directed graphs, 131–132
general balanced, 128–129
IO lists, 375–377
ordered dictionaries, 127–128
priority queue, 159
property lists, 127
queues, 132–133, 293–295
sets, 130–131

ETS tables, 422
stacks, 108, 560–561

databases
on disk (DETS), 433
full-featured (see Mnesia)
in-memory (see ETS)
table viewer, 536

datagrams, 377
dead (node), 452
deadlock

FSM event deprivation
(hanging), 327–328

message collision
(asynchronous), 229

message collision
(synchronous), 226

messaging a dead process,
153–154

shared state, 173
supervisors and children

spawning, 390
debug_info compiler option, 37–38
demonitor, 169–170
dependencies

applications, 307, 317, 337
modules, 41
sibling processes, 288–291

DETS, 433
Dialyzer, 543

error messages, 548, 558,
562–563

exporting types, 564–565
foreign types, 565
function specifications, 557, 559
is never wrong, 572
none() type, 561
opaque types, 565–566

persistent lookup table (PLT),
543–544

polymorphic types, 567–570
recursive types, 554
running, 547, 550
singleton types, 550–551
typed behaviors (-callback

attributes), 566–567
type definition, 551, 553,

554–557
type inference, 547, 548–549, 558
union and built-in types,

551–554
dict module, 128–129
directed graphs, 131–132
directory structure

basic Erlang application,
180–181

multiple OTP applications, 331
OTP applications, 304–305,

307–308
releases (process quest example),

360–361
systools release, 340

disconnecting nodes, 461
disconnect_node(Node) function, 461
distributed application

controller, 474
distributed applications, 473
distributed Erlang

carrier protocol, 448
connecting nodes, 459, 465–466
cross-node communication,

459–460
heartbeats, 467
hidden nodes, 465–466
node names (long, short), 458
port range (configuration), 446
principles, 442–445
security model, 447–448
over SSL, 448
starting/stopping

programatically, 467
div operator, 10
domains

function types, 562
node names, 458
socket communication, 380

Index 585

downloads
code for the book, 6
code for Process Quest, 353

'DOWN' messages, 169. See also
monitors

dynamic types, vs. static types, 56

E
eaddrinuse error, 379–380
EDoc, 305, 575
Emakefile, 194–195, 308
embarrassingly parallel, 140–141
-env shell argument, 331
EPMD (Erlang Port Mapper

Daemon), 443
Ericsson

AXD 301, 56
PLEX/AXE, 137

.erlang.cookie file. See cookies
erlang module

disconnect_node(Node), 461
exit(Pid), 94–95, 97–98
exit(Pid, Reason), 94–95, 163
get_cookie(), 463
is_alive(), 470
is_process_alive(Pid), 411
monitor_node(Node, Bool), 460
node(), 459
node(PidPortOrRef), 461
nodes(), 459
nodes(Flag), 465
registered(), 171
register(Name, Pid), 171
send(Dest, Msg, Opts), 465
set_cookie(Node, Cookie), 463
spawn/1-3, spawn_link/1-3, 142–143,

146, 164
spawn/2-4, spawn_link/2-4, 462
unregister(Name), 171
whereis/1, 172

Erlang Port Mapper Daemon
(EPMD), 443

Erlang Run Time System (ERTS),
338, 351

Erlang shell. See shell
Erlang Term Storage. See ETS
erlc, 36. See also compiling code

erlcount
file counter, 330
OTP application example, 316

ERL_LIBS, 331, 351, 368
ERL_MAX_ETS_TABLES, 421
erl_syntax module, 318
erroneous entry. See rhubarb
error kernel, 284
errors, 88–104

compile time, 88–89
let it crash, 4
logical, 89–90
runtime, 90–93

ERTS (Erlang Run Time System),
338, 351

ETS (Erlang Term Storage), 419
compression, 425
controlling process, heir, 424
iteration, 426–427
lookup and insertion, 425–426
matching, 427–428
primary key, 422
selecting, 428–433
table access, 423
table options, 423–425
table types, 422–423

EUnit
examples, 409
execution control, 406–407
fixtures, 404–406
generators, 402
test description, 407
test representation, 403
test sets, 402
time-sensitive tests, 413–414
running tests, 398–399, 401
verbose output, 417

event manager. See gen_event
behavior

eventual consistency, 457
exceptions

dealing with, 96–103
raising, 93–96

exercises left to the reader
fixing sockserv for relups, 371
ppool pool limits, 296
regis code_change

implementation, 439

586 Index

exercises left to the reader,
continued

RPN calculator extension, 111
sockserv enhancements, 396

exit/1-2, 94–95, 97–98, 163
exit exceptions, internal, 94–95
exit(Pid), 94–95, 97–98
exit(Pid, Reason), 94–95, 163
exit signal ('EXIT')

definition, 94–95
exit/2 function, 163
kill vs. killed (exit reasons),

167–168
trapped errors and exit/1,

165–166
trapped errors and exit/2,

166–168
trapping exits, 164–165

export_all, 38, 182
expressions, 578
external term format, 450
.ez files, 345

F
failover and takeover, 475–476

boot procedure, 484
configuration, 481–482
examples, 483–484

client operations, 381
close socket, 383
connect, 383
connection-based

protocol, 377
connection closed by

client, 395
keepalive, 382
listen to connections, 382
server, parallel, 389–390
server-mode operations, 382
simple (sequential), 387–388
TCP, accept connection,

382–383
fallacies of distributed

computing, 445
short list, 451

false Boolean value, 14
fault tolerance, 138–139
file:consult/1 function, 501

file handling
consult files, 501
directories, 320–322
filenames and extensions, 322
metadata, 320–321
reading, 114, 330–331
writing, 114

filters
higher-order functions, 83–84
list comprehension, 23

finite-state machine, 220–223.
See also gen_fsm behavior

firewall (ports required), 466
floating-point division (/), 10
flush command

implementation, 155–156
monitor messages, 169–170
shell command, 145

folds
advanced example, 116–117
concept, 114
example with lists and dicts, 534
higher-order functions, 84–85

food poisoning, 571
forms, 32, 578
Fox, Armando, 138
Fredricksen, Eric, 358
functional data structures, 73
functions. See also built-in functions;

higher-order functions
calls, 32

fully qualified, 191
local, 34

clauses, 44–45
errors, 91

declaring, 32, 34
exporting, 33
importing, 35

funs (anonymous functions), 78–82

G
gb_sets module, 130–131, 294
gb_trees module, 128–129
gen_event behavior

callback module example, 254
code_change callback, 251
concepts, 248–250
handle_call callback example, 261

Index 587

handle_event callback, 250
handle_info callback, 251
init callback, 250
named event handlers, 255
remove/swap/add handlers

(externally), 255
remove/swap handler (from

callback), 250–251
request/response

(handle_call), 251
supervised event handler,

258–259
synchronous event handling, 251

gen_event_EXIT message. See gen_event
behavior: supervised event
handler

gen_fsm behavior
callback module example,

234–245
code_change callback, 225
custom state callback, 224
handle_event callback (global

asynchronous event), 225
handle_sync_event callback (global

synchronous event), 225
init callback, 223
request/response example, 240
state, 223
terminate callback, 225
trading system specification

example, 225
gen_server behavior

asynchronous initialization,
291–292, 325–326

call and callbacks, 215
callback module, 213–217
code_change callback, 213
handle_call callback

(synchronous call),
211–212

handle_cast callback, 212
handle_info callback, 212
init callback, 210–211
terminate, 212–213
timeout, 210, 215, 298
unexpected messages, 216

get_cookie() function, 463
gproc library, 193

group leaders
cross-node message

forwarding, 462
I/O protocol, 309

guard patterns. See if ... end
expression

guards, 48. See also if ... end
expression; case ... end
expression

andalso and orelse, vs. , and ;,
48–49

functions allowed in guards,
49, 59

GUI, 575
Gustavsson, Björn, 131

H
handling errors. See try ... catch ...

end expression; supervisors
handshake (TCP), 378
hardware errors, 139
header files, 126
heartbeats, 467
help

coding practices, 6
documentation, 6
shell help, 8

hibernation, of processes, 211
higher-order functions

concepts, 77–80
examples, 81–86
folds, universal, 86

higher-order pattern matching. See
match specifications

hipe module, 38, 341
Hitchhiker’s Guide to the Galaxy,

135–136
homogenous networks, 450
hot code loading

mechanisms, 191–192
pitfalls, 353–355

I
if ... end expression

else, as catchall, 50–52
error, 91
syntax and style, 49–52
vs. case ... end, 54

588 Index

image, of a function, 562
imported functions, 35
improper lists, 21
included applications, 333
inet module

active once, 384–386
vs. inets application, 384
socket options, 385

inet:setopts function, 385
installing Erlang, 5–6
integers. See numbers
IO lists, 375–377
is_alive() function, 470
is_process_alive(Pid) function, 411

J
jobs management, 9, 155, 464

K
kernel (OTP application

configuration), 482
key/value storage, 127–130,

306, 419
killing a process

exit/2 function, 163
kill signal, 167

L
lambda calculus, 78
last call optimization

(elimination), 70
last write wins, 457
latency, 446
leak, processes or memory, 265,

363, 413
Learn You A Haskell for Great Good!

(Miran Lipovač a), 1, 105
let it crash, 4

crash-only software, 138
mechanisms for handling errors,

87–88
libraries

community, 575
path, 331

linear scaling, 4, 140–142
links

cross-node, 446, 460–461
definition, 162–164

to establish dependencies, 179
unlinking, 162, 164

Lipovač a, Miran, 1, 105
list comprehensions

for database queries, 539–540
filters, 23
generator expressions, 22
set theory origins, 21
syntax, 22–23

list generator (<-), 22
lists

basic operations, 19–20
improper, 21
modification costs, 367
operations, 53, 86, 328
order of evaluation, 415
pattern matching, 20
recursive definition, 20–21
strings, 18–19
syntax, 18, 20–21

load balancing, processes by
the VM, 140

logical clocks (lamport, vector
clocks), 457

logic errors, 89–90
loops, 61

M

macros
calling, 39
defining, 38–39
predefined, 39

mafiapp (Mnesia example), 513–514
Magic 8 Ball example, 476–484
mailbox

mechanisms, 151
rationale, 139
reading messages, 145 (see also

receive expression)
make module. See compiling code:

Emakefiles
make_ref() function

request/response, 173
unique values, 415

map (higher-order function), 79, 83
match. See pattern matching

Index 589

match operator (=)
binding/pattern matching, 12
for comparison, 11

match specifications
ets:fun2ms function/parse

transform, 430–432
fun2ms examples (Mnesia), 531,

533–534
structure, 427, 429–430

membership test, 53, 103–104
memory leak, 265, 363, 413
message passing

asynchronous messages, 139,
445–446

hiding messages, 152–153
metaphor, 3
receiving messages (see receive

expression)
request/response, 147–148
sending messages, 144–145

Mnesia, 512
activity access context, 523–524
CAP approach, 513
changing types of tables and

schemas, 518
database location, 517
distributed setup example,

519–521
indexes, 517–518
local content (not replicated), 537
operations, 524–525
primary key, 514–515
query examples, 526
schema, 516–517
system information, 535
tables

creating, 517–518
fragmentation, 512
limits of, 516
replicating with local

content, 518
structure of, 514
types, 516, 518
waiting for, 522

transactions, 531
mnesia:activity/2 function, 523–524
mnesia:create_schema function,

516–517

?MODULE macro, 152
modules

attributes
-compile, 38
custom, 40–41
-export, 33
-export_type, 565
-ifdef, -else, -endif, and

-ifndef, 39–40
-vsn, version, 41

concurrent versions, 191
definition, 31–33
interface

-export attribute, 33
hiding messages, 152–153
filename, 33
metadata (Module:module_

info/0-1 functions), 40
monitor_node(Node, Bool)

function, 460
monitors

demonitor, 169–170
nodes, 460
of processes,

cross-node, 446, 460–461
defined in comparison to

links, 168–169, 178
stacking, 168

monotonic time, 392
ms_transform.hrl include file. See

match specifications:
ets:fun2ms function/parse
transform

multicore. See SMP
multiplication (*), 10

N
nagger, 296
named processes

alternative registry (gproc), 193
conflict resolution (global), 468
distributed, 359–360
dynamic names, 174
global registry, 467–468
OTP processes, 468
rationale, explanation, 170–174

named tables (ETS), 424
-name shell argument, 458–459

590 Index

net_kernel module, 467
netsplits

definition, 452
zombie survivors example,

454–456
network topology, 448–449
network reliability, 445–446
node() function, 459
node(PidPortOrRef) function, 461
nodes, 458
nodes(Flag) function, 465
node synchronization (OTP

applications), 481–482
nonlocal returns, 103–104
not operator, 14
now() function, 392
number crunching, 27
numbers

arithmetic, operators for, 10
bases, 11
floating-point, 10
integers, 10
in RPN, 109

O
Okasaki, Chris, Purely Functional

Data Structures, 133
O’Keefe, Richard, 52
one_for_all child restart strategy, 267
one_for_one child restart strategy,

266–267
vs. simple_one_for_one, 268

onion-layered system, 283–284
Open Telecom Platform (OTP),

199–200, 209–210. See
also individual behaviors;
application (OTP)

operators
arithmetic, 10
bitwise, 26–27
Boolean, 14
comparison, 14–16
message passing, 144–145

orddicts module, 127–128
ordsets module, 130–131
orelse operator, 14, 48–49

or operator, 14
output, printing with io:format/2-3,

45, 394

P
packages, applications

(.ez files), 345
packaging (releases), 340
packets, TCP/IP and UDP, 377
parametrized types. See Dialyzer:

polymorphic types
parse transform, 430
partition tolerance, 454. See also

CAP theorem
-pa shell argument, 194–195
pattern matching

binary tree example, 73–74
case ... end, 53
exceptions, 96–98
in functions, 43–44
greeting example, 44
lists, 20
lists in functions, 45–46
match operator (=), 12
records, 124
tuples, 17–18
variable bindings, 46–47

persistent data structures, 73
persistent lookup table (PLT),

543–544
pid (process identifier)

definition, 143
global ordering, 242
internal representation, 461
pid/3 shell command, 153
self() function, 144

PLT (persistent lookup table),
543–544

polymorphic types, 567–570
port. See also UDP

controlling process, 383–384
definitions, 379
inet module, 384

portability, 341
postfix notation (RPN), 106
ppool application, 282–283, 325–326

Index 591

predicate, 84
prefix notation, 106
primary key, 422, 424, 514, 529
printing with io:format/2-3, 45, 394
priority queue, 159
private tables, 423
process dependencies, 288–291
processes

as actors, 3
memory space, 140
rationale, 136, 137–138
storing state, 150–151
usage in parallelism, 4

process_flag (trap_exit) function,
164–165

process identifier. See pid
process leak, 265, 363, 413
process loop (storing state),

150–151
Process Quest, 358–360

files to download, 353
gameplay, 361–363
socket server (sockserv_serv), 391

process skeleton, 200
proc_lib module, 412
profiling, 574
Progress Quest (RPG), 357–358
proplists module, 127
protected expression, 96, 100
protected tables, 423
protocol design

and event management, 253–254
finite-state machines, 225
between processes, 178–180
questions to ask about, 233

public tables, 423
Purely Functional Data Structures

(Chris Okasaki), 133

Q
query handle, 539
query list comprehensions (QLC),

539–540
queues, 132–133, 293–295
quorum, 457

R
race conditions

behavior termination calls vs.
clean–up, 437–438

message collision (asynchro-
nous), 229, 231–232

provoking (with Common Test),
498–500

shared state, 172–173
solving by picking a master,

241–242
supervisor and children, 292

random
bytes, 392
pick from a list or tuple, 479
seeding, 392

range, 32. See also image
rebar, 306, 352
receive expression

after clause, 154
catchall, 146
defensive, 159
priority, 156
selective, 156–158
syntax, 145–146

record_info(Record) function, 517
records

code_change incompatibilities,
363–365

declaration in a module, 122
field position in, 124
hiding (in Mnesia), 527
nested, 124
pattern matching warts, 182
reading values, 123–124
sharing definitions, 126
in the shell, 122–123
syntax, 122–126
updating, 125–126

recursion
base case, stopping condition, 63
duplicate example, 66
list length example, 63
list zipping example, 69–70
mathematical definition

(factorial), 62

592 Index

recursion, continued
reverse example, 66–68
sorting example, 70–71
sublist example, 68–69
tail recursion, 64–65
thinking recursively, 75–76
tree example, 72–75
while vs. tail recursion, 67

reduce. See folds
referential transparency, 2–3
registered() function, 171
register(Name, Pid) function, 171
registers. See named processes
regular expressions, 318, 325,

329–330
releases

OTP release, 336
packaging, 369
profiles, 346, 351
starting, with a boot file,

340–341, 344–345
RELEASES file, 369, 372. See also

reltool; systools
release updates (relups), 357

essential applications and
configuration, 361

generating relup files, 368
manual work involved, 367–368
RELEASES file, 372
reltool vs. systools, 368
rolling back, 372
step-by-step list, 372–373
upgrading, 370
upgrading sockets, 370–371

(see also sys module)
reltool

app file handling, 347–348
boot_rel option, 343, 346, 349
building a release, 343–344
configuration file example,

341, 343
directory structure (output), 345
ERTS version, 344
filters, 347
lib_dir option (library

directories), 343

options, 342
application-wide, 347
module-specific, 348
release-wide, 346

recipes, 348–351
relocatable, self-contained

release, 346
removing .ez files, 361
specifying application

version, 345
target spec, 343–344

reminder (concurrent application
example), 176

rem operator, 10
remote procedure calls (RPC), 469.

See also rpc module
remote shell, 464
REPL. See shell
request/response

gen_server behavior, 211–212
make_ref(), 158
monitor example, 185
optimization, 158

reserved words, 14
rest_for_one child restart

strategy, 267
Reverse Polish notation (RPN), 106
role-playing game (RPG). See

Process Quest
root directory (ROOT_DIR variable), 344
Rotem-Gal-Oz, Arnon, 445
RPC (remote procedure calls), 469.

See also rpc module
rpc module

asynchronous call, 469–470
cast, 470
Mnesia example, 521
multicall, 470
multicast (eval_everywhere

function), 470
synchronous call, 469

RPN (Reverse Polish notation), 106
running code

escript, 120
outside of the shell, 118–119
self-executable code, 344

(see also releases)

Index 593

run queue, 140
run_test executable, 489, 503–504
runtime errors, 90–93

S
SASL, 355, 361
saving state after crash, 283
scalability, 137–138
scheduler, 140
schema, 516–518
security, 447–448
selective receive, 156–158
self() function, 144
send(Dest, Msg, Opts) function, 465
sequential bottlenecks

optimizing, 420
parallelism definition, 141–142

serialization, 58
set_cookie(Node, Cookie)

function, 463
sets, 130–131, 422
shadowing, 82
sharding, 421
shared-nothing practice, 138
shell, 7–8

arguments and flags
-AppName, 332
-boot, 340–341
-boot_var, 346
-config, 482, 484
-env, 331
escaping, 332
evaluating at boot time, 484
-make, 194, 331
-man, 6
-name, 458–459
-noshell, 344
-pa, 194–195
-smp, 142, 144
-sname, 458–459

commands
autoimported functions, 32
c(), 36, 191
cd(), 36
exiting the shell, 8
f/0-1, 12
flush(), 145

l(), 191
for navigating, 8
pid/3, 153
records, 122–123
regs(), 171

jobs management, 9, 155, 464
short-circuit operators, 14, 48–49
syntax, 9–10

shutdown
init:stop function, 336
orderly shutdown, 265
OTP termination reason, 212
VM shutdown, 313

through releases, 336
sibling dependencies, 288–291
signal, 95, 163–165
simple_one_for_one child restart

strategy, 268, 280
single assignment, 2, 11
sleeping, 143, 155
SMP (symmetric multiprocessing),

137, 142, 144
-sname shell argument, 458–459
sofs module, 130–131
spawn/1-3, spawn_link/1-3 functions,

142–143, 146, 164
spawn/2-4, spawn_link/2-4

functions, 462
spawning processes

remotely, 461
safely with proc_lib module, 412
spawn/1, spawn_link/1 functions,

142–143, 164
spawn/2, spawn_link/2

functions, 462
spawn/3, spawn_link/3 functions,

146, 164
spawn/4, spawn_link/4

functions, 462
.spec file, 501–502, 503–504
specific vs. generic code,

separating, 209
stack, 108, 560–561
stack traces, 101
start_link crash, shell error, 299
static types, vs. dynamic types, 56

594 Index

strings
as binaries, 27–28
as lists, 18–19
to a number, 109

strong types, vs. weak types, 57
subtraction (-), 10
success typing, 545–547
supervision tree, 283–284, 285–286
supervisor (OTP), 264–265. See

also individual child restart
strategies

asynchronous initialization, 392
child specifications, 268–271
definition, 266
dynamic supervision, 277

operations on children, 278
with simple_one_for_one child

restart strategy, 279
init/1 callback, 266
killing/terminating

supervisors, 297
restart, 269
restart limit, max time, 268
shutdown time, 270, 288
worker handling supervisor

termination, 272–274
worker/supervisor

distinction, 270
supervisors

basic, 196–197
very basic, 171, 173

symmetric multiprocessing (SMP),
137, 142, 144

syntax
arithmetic precedence rules, 10
control flow (see individual control

flow expressions)
functions, 44–45
tokens, 578
type specifications, 557, 559
ugly, 577, 579–580

sys module
code updates, 356
OTP worker status, 417

system limits
atom table, 13
DETS table size, 433

ETS max tables, 421
general limits, 93
timer size, 183

system processes, 164
systools

boot file, 339–340
options, 340
packaging release, 340
systools.rel file, 338

T
takeover, and failover, 475–476

boot procedure, 484
configuration, 481–482
examples, 483–484

client operations, 381
close socket, 383
connect, 383
connection-based

protocol, 377
connection closed by

client, 395
keepalive, 382
listen to connections, 382
server, parallel, 389–390
server mode operations, 382
simple (sequential), 387–388
TCP, accept connection,

382–383
TDD, 408
terminations, complex, 333
tests

ad hoc, 110
black box and white box,

485–486
Common Test (see Common Test)
EUnit (see EUnit)
integrating EUnit and

Common Test, 508
synchronization, 413–414
system processes testing, 417–418
system testing, 485

throws
nonlocal returns, 103–104
type of exception, 95–96

time conversions, 182
time handling, 186, 188–189

Index 595

timeout, 154, 210, 215, 298
time travel, 491
tokenizing, 108, 114
top-level supervisor, 310
tracing, 574
tracking workers (termination), 324
transaction, 512
transport cost, 449–450
trap_exit option, in process_flag

function, 164–165
true Boolean value, 14
try ... catch ... end expression

after (finally), 99
catch-all clause, 98
example, 99–100
handling exceptions, 96–98
protected expressions, 96, 100
syntax, 96

tuples
pattern matching, 17–18
storing tuples, 421–422
syntax, 16
tagged tuples, 17–18

two-phase commit, 232–233,
241–243

type alias, 553
type inference. See success typing
types. See also Dialyzer

comparisons, sorting order
of types, 16

conversion (casting), 57–58
detection, 59
dynamic vs. static, 56
strong vs. weak, 57

type signature. See Dialyzer:
function specifications

U
UDP

close socket, 380
connectionless protocol, 377
IPv4 and IPv6, 379–380
open socket, 379–380
recv (receive), 381
send, 380
socket, 378
socket operations, 379

undefined error, 91–92
unique values, 415
University of Catania, Unict team

and IANO robot, 5
unlink, 162, 164
unregister, 171
unregister(Name) function, 171
user switch command. See jobs

management

V
variables

don’t care (_), 17
scope with closures, 81–82
single assignment, 11
syntax, 11–12

version scheme, 363

W
waiting. See sleeping
weak types, vs. strong types, 57
Wheeler, David, 232
whereis/1 function, 172
worker, 270
wx application, 575

X
xref module, 318

Z
zoo example, 568

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/global

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

EFF is a member-supported organization. Join Now! www.eff.org/support

Learn You Some Erlang for Great Good! is set in New Baskerville, TheSansMono
Condensed, Futura, and Dogma.

This book was printed and bound at Edwards Brothers Malloy in Ann
Arbor, Michigan. The paper is 60# Williamsburg Smooth, which is certified
by the Sustainable Forestry Initiative (SFI). The book uses a RepKover bind-
ing, which allows it to lie flat when open.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

Learn You a Haskell
for Great Good!
A Beginner’s Guide
by miran lipovač   a
april 2011, 400 pp., $44.95
isbn 978-1-59327-283-8

Eloquent JavaScript
A Modern Introduction to
Programming	
by marijn haverbeke

january 2011, 224 pp., $29.95
isbn 978-1-59327-282-1

Python for Kids
A Playful Introduction to
Programming
by jason r. briggs

december 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

The Book of CSS3
A Developer’s Guide to the
Future of Web Design
by peter gasston

may 2011, 304 pp., $34.95
isbn 978-1-59327-286-9

Land of Lisp
Learn to Program in Lisp,
One Game at a Time!
by conrad barski, m.d.
october 2010, 504 pp., $49.95
isbn 978-1-59327-281-4

Think Like a Programmer
An Introduction to Creative
Problem Solving
by v. anton spraul

august 2012, 256 pp., $34.95
isbn 978-1-59327-424-5

More no-nonsense books from No Starch Press

Updates
Visit http://nostarch.com/erlang/ for updates, errata, and other
information.

	About the Author
	Foreword
	Preface
	To the Foreigner
	To the Erlang Regular
	To the Person Who Has Read This Online

	Acknowledgments
	Introduction
	So What’s Erlang?
	Don’t Drink Too Much Kool-Aid
	What You Need to Dive In
	Where to Get Help

	1: Starting Out
	Using the Erlang Shell
	Entering Shell Commands
	Exiting the Shell

	Some Erlang Basics
	Numbers
	Invariable Variables
	Atoms
	Boolean Algebra and Comparison Operators
	Tuples
	Lists
	List Comprehensions

	Working with Binary Data
	Bit Syntax
	Bitwise Binary Operations
	Binary Strings
	Binary Comprehensions

	2: Modules
	What Are Modules?
	Creating Modules
	Compiling Code
	Compiler Options

	Defining Macros
	More About Modules
	Metadata
	Circular Dependencies

	3: Syntax in Functions
	Pattern Matching
	Fancier Patterns
	Variables in a Bind

	Guards, Guards!
	What the If ?!
	In case ... of
	Which Should We Use?

	4: Types (or Lack Thereof)
	Dynamite-Strong Typing
	Type Conversions
	To Guard a Data Type
	For Type Junkies

	5: Hello Recursion!
	How Recursion Works
	Length of a List
	Length of a Tail Recursion

	More Recursive Functions
	A Duplicate Function
	A Reverse Function
	A Sublist Function
	A Zip Function
	Quick, Sort!

	More Than Lists
	Thinking Recursively

	6: Higher-Order Functions
	Let’s Get Functional
	Anonymous Functions
	More Anonymous Function Power
	Function Scope and Closures

	Maps, Filters, Folds, and More
	Filters
	Fold Everything
	More Abstractions

	7: Errors and Exceptions
	A Compilation of Errors
	Compile-Time Errors
	No, YOUR Logic Is Wrong!
	Runtime Errors

	Raising Exceptions
	Error Exceptions
	Exit Exceptions
	Throw Exceptions

	Dealing with Exceptions
	Handling Different Types of Exceptions
	After the Catch
	Trying Multiple Expressions
	Wait, There’s More!

	Try a try in a Tree

	8: Functionally Solving Problems
	Reverse Polish Notation Calculator
	How RPN Calculators Work
	Creating an RPN Calculator
	Testing the Code

	Heathrow to London
	Solving the Problem Recursively
	Writing the Code
	Running the Program Without the Erlang Shell

	9: A Short Visit to Common
Data Structures
	Records
	Defining Records
	Reading Values from Records
	Updating Records
	Sharing Records

	Key/Value Stores
	Stores for Small Amounts of Data
	Larger Dictionaries: Dicts and GB Trees

	A Set of Sets
	Directed Graphs
	Queues
	End of the Short Visit

	10: The Hitchhiker’s Guide to Concurrency
	Don’t Panic
	Concurrency Concepts
	Scalability
	Fault Tolerance
	Concurrency Implementation

	Not Entirely Unlike Linear Scaling
	So Long and Thanks for All the Fish!
	Spawning Processes
	Sending Messages
	Receiving Messages

	11: More on Multiprocessing
	State Your State
	We Love Messages, But We Keep Them Secret
	Time Out
	Selective Receives
	The Pitfalls of Selective Receives
	More Mailbox Pitfalls

	12: Errors and Processes
	Links
	It’s a Trap!
	Old Exceptions, New Concepts

	Monitors
	Naming Processes

	13: Designing a Concurrent Application
	Understanding the Problem
	Defining the Protocol
	Lay Them Foundations
	An Event Module
	Events and Loops
	Adding An Interface

	The Event Server
	Handling Messages
	Hot Code Loving
	I Said, Hide Your Messages

	A Test Drive
	Adding Supervision
	Namespaces (or Lack Thereof)

	14: An Introduction to OTP
	The Common Process, Abstracted
	The Basic Server
	Introducing the Kitty Server
	Generalizing Calls
	Generalizing the Server Loop
	Starter Functions
	Generalizing Kitty Server

	Specific vs. Generic
	Callback to the Future
	The init Function
	The handle_call Function
	The handle_cast Function
	The handle_info Function
	The terminate Function
	The code_change Function

	.BEAM Me Up, Scotty!

	15: Rage Against the
Finite-State Machines
	What Is a Finite-State Machine?
	Generic Finite-State Machines
	The init Function
	The StateName Function
	The handle_event Function
	The handle_sync_event Function
	The code_change and terminate Functions

	A Trading System Specification
	Show Me Your Moves
	Defining the State Diagrams and Transitions

	Game Trading Between Two Players
	The Public Interface
	FSM-to-FSM Functions
	The gen_fsm Callbacks

	That Was Really Something
	Fit for the Real World?

	16: Event Handlers
	Handle This! *pumps shotgun*
	Generic Event Handlers
	The init and terminate Functions
	The handle_event Function
	The handle_call Function
	The handle_info Function
	The code_change Function

	It’s Curling Time!
	The Scoreboard
	Game Events
	Alert the Press!

	17: Who Supervises the Supervisors?
	Supervisor Concepts
	Using Supervisors
	Restart Strategies
	Restart Limits
	Child Specifications

	Band Practice
	Musicians
	Band Supervisor

	Dynamic Supervision
	Using Standard Supervisors Dynamically
	Using a simple_one_for_one Supervisor

	18: Building an Application
	A Pool of Processes
	The Onion Layer Theory
	A Pool’s Tree

	Implementing the Supervisors
	Working on the Workers
	Writing a Worker
	Run Pool Run
	Cleaning the Pool

	19:
Building Applications
the OTP Way
	My Other Car Is a Pool
	The Application Resource File
	Converting the Pool
	The Application Behavior
	From Chaos to Application
	Library Applications

	20: The Count of Applications
	From OTP Application to Real Application
	The Application File
	The Application Callback Module and Supervisor
	The Dispatcher
	The Counter

	Run App Run
	Included Applications
	Complex Terminations

	21: Release Is the Word
	Fixing the Leaky Pipes
	Terminating the VM
	Updating the Application Files
	Compiling the Applications

	Releases with systools
	Creating a Boot File
	Packaging the Release

	Releases with Reltool
	Reltool Options

	Reltool Recipes
	Released from Releases

	22: Leveling Up in the Process Quest
	The Hiccups of Appups and Relups
	The Ninth Circle of Erl
	Process Quest
	The regis-1.0.0 Application
	The processquest-1.0.0 Application
	The sockserv-1.0.0 Application
	The Release

	Making Process Quest Better
	Updating code_change Functions
	Adding Appup Files
	Upgrading the Release

	Relup Review

	23: Buckets of Sockets
	IO Lists
	UDP and TCP: Bro-tocols
	UDP Sockets
	TCP Sockets

	More Control with Inet
	Sockserv, Revisited
	Where to Go from Here?

	24: EUnited Nations Council
	EUnit—What’s an EUnit?
	Test Generators
	Fixtures
	More Test Control
	Test Documentation

	Testing Regis
	He Who Knits EUnits

	25: Bears, ETS, Beets:
In-Memory NoSQL for Free!
	Why ETS
	The Concepts of ETS
	ETS Phone Home
	Creating and Deleting Tables
	Inserting and Looking Up Data

	Meeting Your Match
	You Have Been Selected
	DETS
	A Little Less Conversation, a Little More Action, Please
	The Interface
	Implementation Details

	26: Distribunomicon
	This Is My Boomstick
	Fallacies of Distributed Computing
	The Network Is Reliable
	There Is No Latency
	Bandwidth Is Infinite
	The Network Is Secure
	Topology Doesn’t Change
	There Is Only One Administrator
	Transport Cost Is Zero
	The Network Is Homogeneous
	Fallacies in a Nutshell

	Dead or Dead-Alive
	My Other Cap Is a Theorem
	Consistency
	Availability
	Partition Tolerance
	Zombie Survivors and CAP

	Setting Up an Erlang Cluster
	Through the Desert on a Node with No Name
	Connecting Nodes
	More Tools

	Cookies
	Remote Shells
	Hidden Nodes
	The Walls Are Made of Fire, and the Goggles Do Nothing
	The Calls from Beyond
	The net_kernel Module
	The global Module
	The rpc Module

	Burying the Distribunomicon

	27: Distributed OTP Applications
	Adding More to OTP
	Taking and Failing Over
	The Magic 8 Ball
	Building the Application
	Making the Application Distributed

	28: Common Test for Uncommon Tests
	What Is Common Test?
	Common Test Structure
	Creating a Simple Test Suite
	Running the Tests

	Testing with State
	Test Groups
	Defining Test Groups
	Test Group Properties
	The Meeting Room

	Test Suites Redux
	Test Specifications
	Specification File Contents
	Creating a Spec File
	Running Tests with a Spec File

	Large-Scale Testing
	Creating a Distributed Spec File
	Running Distributed Tests

	Integrating EUnit Within Common Test
	Is There More?

	29: Mnesia and the Art of Remembering
	What’s Mnesia?
	What Should the Store Store?
	The Data to Store
	Table Structure

	From Record to Table
	Of Mnesia Schemas and Tables
	Creating Tables
	Installing the Database
	Starting the Application

	Access and Context
	Reads, Writes, and More
	Implementing the First Requests
	A Test for Adding Services
	Tests for Lookups
	Accounts and New Needs

	Meet the Boss
	Deleting Stuff, Demonstrated
	Query List Comprehensions
	Remember Mnesia

	30: Type Specifications and Dialyzer
	PLTs Are the Best Sandwiches
	Success Typing
	Type Inference and Discrepancies
	Typing About Types of Types
	Singleton Types
	Union and Built-in Types
	Defining Types
	Types for Records

	Typing Functions
	Typing Practice
	Exporting Types
	Typed Behaviors
	Polymorphic Types
	We Bought a Zoo
	Some Cautions

	You’re My Type
	That’s All, Folks

	Afterword
	Other Erlang Applications
	Community Libraries
	Your Ideas Are Intriguing to Me and
I Wish to Subscribe to Your Newsletter
	Is That It?

	Appendix: On Erlang’s Syntax
	The Template
	The English Sentence
	And, Or, Done.
	In Conclusion

	Index

