Learn You Some
Erlang for

Great Good!

A Beginner’s Guide

Fred Hébert

Foreword by Joe Armstrong

LEARN YOU SOME ERLANG
FOR GREAT GOOD!

Learn You Some
Erlang for
Great Good!

A Beginner’s Guide

Fred Hébert

LEARN YOU SOME ERLANG FOR GREAT GOOD! Copyright © 2013 by Fred Hébert.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

Printed in USA
First printing

17161514 13 123456789

ISBN-10: 1-59327-435-1
ISBN-13: 978-1-59327-435-1

Publisher: William Pollock
Production Editor: Alison Law

Cover Design: Sonia Brown
Developmental Editor: Keith Fancher
Technical Reviewer: Geoff Cant
Copyeditor: Marilyn Smith
Compositor: Susan Glinert Stevens
Proofreader: Greg Teague

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the Library of Congress.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor-
mation contained in it.

BRIEF CONTENTS

Aboutthe Authoro xvii
Foreword by Joe Armstrong.o Xix
Preface. xxi
Acknowledgments L xxiii
Infroduchion oo 1
Chapter T: Starting Outo 7
Chapter 2: Modules 31
Chapter 3: Syntax in Functions 43
Chapter 4: Types (or Lack Thereof). 55
Chapter 5: Hello Recursion! 61
Chapter 6: Higher-Order Functions. 77
Chapter 7: Errors and Exceptions.ot 87
Chapter 8: Functionally Solving Problems 105
Chapter 9: A Short Visit to Common Data Structures 121
Chapter 10: The Hitchhiker's Guide to Concurrency. 135
Chapter 11: More on Multiprocessing o 149
Chapter 12: Errors and Processesot 161
Chapter 13: Designing a Concurrent Application. 175

Chapter 14: An Introductionto OTP 199

Chapter 15:

Rage Against the Finite-State Machines. 219

Chapter 16: EventHandlers 247
Chapter 17: Who Supervises the Supervisors2. 263
Chapter 18: Building an Application 281
Chapter 19: Building Applications the OTPWay. 303
Chapter 20: The Count of Applications. 315
Chapter 21: Release Isthe Word. 335
Chapter 22: Leveling Up in the Process Quest 353
Chapter 23: Buckets of Sockets 375
Chapter 24: EUnited Nations Council. 397
Chapter 25: Bears, ETS, Beets: In-Memory NoSQL for Free! 419
Chapter 26: Distribunomicon. 441
Chapter 27: Distributed OTP Applications. 473
Chapter 28: Common Test for Uncommon Tests. 485
Chapter 29: Mnesia and the Art of Remembering 511
Chapter 30: Type Specifications and Dialyzer. 543
Afferword . . o 573
Appendix: On Erlang’s Syntax.o 577
Index . .o 581

vi Brief Contents

CONTENTS IN DETAIL

ABOUT THE AUTHOR xvii
FOREWORD by Joe Armstrong Xix
PREFACE xxi
Tothe Foreigner. oo XXi
Tothe Erlang Regular. xxii
To the Person Who Has Read This Online. xxii
ACKNOWLEDGMENTS xxiii
INTRODUCTION 1
SoWhat's Erlang?. 2
Don’t Drink Too Much Kool-Aido 4
What You Need to Dive Inot 5
Whereto GetHelp 6
1
STARTING OUT 7
Using the Erlang Shell. 7
Entering Shell Commands. 8
Exitingthe Shell 8
Some Erlang Basics 10
Numberso 10
Invariable Variables 11
ATOMS o 12
Boolean Algebra and Comparison Operators. 14
Tuples . .o 16
I 18
List Comprehensions 21
Working with Binary Data. 23
Bit Syntax. 23
Bitwise Binary Operations 26
Binary Strings. 27
Binary Comprehensions. 28
2
MODULES 31
What Are Modules2. 31

Compiling Code
Compiler OpHons
Defining Macroso o
More About Modules
Metadata.o
Circular Dependencies.ot

3
SYNTAX IN FUNCTIONS

Pattern Matchingo o
Fancier Patterns e

4
TYPES (OR LACK THEREOF)

Dynamite-Strong Typing . . . o o oot
Type Conversions.
ToGuardaData Typeo
For Type Junkies. oo

5
HELLO RECURSION!

How Recursion Works
Length of alist o
Llength of a Tail Recursion.
More Recursive Functions
ADuplicate Function
A Reverse Function
A Sublist Function

6
HIGHER-ORDER FUNCTIONS

Let's Get Functional
Anonymous FUNCHONS . . . o oo
More Anonymous Function Power oL oL
Function Scope and Closures
Maps, Filters, Folds, and More
Filters. . .o
Fold Everything.
More Abstractions.

viii Contents in Detail

43

43
45
46
48
49
52
54

55

55
57
58
60

61

62
63
64
66
66

68
69
70
72
75

7

ERRORS AND EXCEPTIONS

A Compilation of Errors
CompileTime Errorso
No, YOUR Logic Is Wrong!
Runtime Errors

Raising Exceptions
Error Exceptions
Exit Exceptions
Throw Exceptionso

Dealing with Exceptions
Handling Different Types of Exceptions
Aftferthe Catch
Trying Multiple Expressions
Wait, There's More!l

TryatryinaTree.o

8

FUNCTIONALLY SOLVING PROBLEMS

Reverse Polish Notation Calculator.
How RPN Caleulators Work.o
Creating an RPN Calculator o
Testingthe Code.

Heathrow to london. o
Solving the Problem Recursively
Writingthe Codeo
Running the Program Without the Erlang Shell

9

A SHORT VISIT TO COMMON DATA STRUCTURES

ReCOrds . . ot
Defining Records.
Reading Values fromRecords,
Updating Recordso
Sharing Records

Key/Value Stores.o
Stores for Small Amountsof Data
Larger Dictionaries: Dictsand GB Trees

ASetof Sefs . ..o

Directed Graphs

QUEBUES. . . o

End of the Short Visit

10

THE HITCHHIKER’S GUIDE TO CONCURRENCY

Dont Panic

Concurrency Concepts oottt
Scalability ...

105

106
106
107
110
111
112
114
118

121

122
122
123
125
126
127
127
128
130
131
132
133

135

136
137
137

Contents in Detail X

Fault Tolerance 138

Concurrency Implementation 140
Not Entirely Unlike Linear Scaling 140
So long and Thanks for All the Fishl. 142
Spawning Processes 142
Sending Messages 144
Receiving Messageso 145
11
MORE ON MULTIPROCESSING 149
State Your Stateo 150
We Love Messages, But We Keep Them Secret. 152
Time Out. . . 153
Selective Receives 156
The Pitfalls of Selective Receives 156
More Mailbox Pitfalls. 159
12
ERRORS AND PROCESSES 161
Links. . o 162
IWsaTrapl . .o 164
Old Exceptions, New Conceptsottt 165
MoONItOrs . . . 168
Naming Processes 170
13
DESIGNING A CONCURRENT APPLICATION 175
Understanding the Problem 176
Defining the Protocol 178
Lay Them Foundations i 180
AnEventModule 181
Events and Loopso 181
Adding Anlnterface 184
The Event Server 186
Handling Messages. 188
Hot Code loving. oo 191
| Said, Hide Your Messages oot 192
ATestDrive. 194
Adding Supervision 195
Namespaces (or Lack Thereof). 196
14
AN INTRODUCTION TO OTP 199
The Common Process, Abstracted. 200
The Basic Server 201
Infroducing the Kitty Server. 201
Generalizing Calls 203

X Contents in Detail

Generalizing the Serverloop 204

Starter Functions 206
Generalizing Kitty Server 207
Specificvs. Generic 209
Callback to the Future. 210
The init Function 210
The handle_call Function 211
The handle_cast Function 212
The handle_info Function 212
The terminate Function. 212
The code_change Function. 213
BEAM Me Up, SCOMY! « -+ o v oo e oo 213
15
RAGE AGAINST THE FINITE-STATE MACHINES 219
What Is a Finite-State Machine®. 220
Generic Finite-State Machines 223
The init Function 223
The StateName Function 224
The handle_event Function 225
The handle_sync_event Function 225
The code_change and terminate Functions 225
A Trading System Specification 225
Show Me Your Moves 226
Defining the State Diagrams and Transitions. 227
Game Trading Between Two Players 233
The PublicInterface 233
FSM4o-FSM Functions 235
The gen_fsm Callbacks 236
That Was Really Something. 245
Fitforthe Real World2 246
16
EVENT HANDLERS 247
Handle This! *pumps shotgun* 248
Generic EventHandlers 249
The init and terminate Functions 250
The handle_event Function 250
The handle_call Function 251
The handle_info Function 251
The code_change Function. 251
It's Curling Timel 252
The Scoreboard 252
Game Events 253
Alertthe Press! 257

Contents in Detail Xi

17

WHO SUPERVISES THE SUPERVISORS? 263
Supervisor CoNCePES. . . . v v vttt 264
UsiNg SUPEIVISOIS. . . . o ottt e e e e 266
Restart Strategies.o 266
Restart Limits. 268
Child Specifications. 268
Band Practice 271
Musicians. 271
Band Supervisor 274
Dynamic Supervision 277
Using Standard Supervisors Dynamically 277
Using a simple_one_for_one Supervisor 279
18
BUILDING AN APPLICATION 281
APoolof Processes 282
The Onion Layer Theory. 283
APool'sTree i 284
Implementing the Supervisors. 286
Working onthe Workers 290
Writing a Workero 296
RunPool Run. . oo 298
Cleaningthe Pool. 301
19
BUILDING APPLICATIONS THE OTP WAY 303
My Other CarllsaPool. 304
The Application Resource File 305
Convertingthe Pool 307
The Application Behavior 309
From Chaos to Application 310
Library Applications 314
20
THE COUNT OF APPLICATIONS 315
From OTP Application to Real Application. 316
The Application File. 317
The Application Callback Module and Supervisor. 318
The Dispatcher 319
The Counter . . . oot 329
Run App Run . . 331
Included Applications. 333
Complex Terminationst 333

Xii Contents in Detail

21
RELEASE IS THE WORD

Fixing the Leaky Pipes.
Terminatingthe VM.
Updating the Application Files
Compiling the Applications

Releases with systools.
CreatingaBootFile
Packaging the Release.

Releases with Reltool
Reltool Options.

Reltool Recipes

Released from Releases.

22
LEVELING UP IN THE PROCESS QUEST

The Hiccups of Appups and Relups
The Ninth Circle of Erl
Process Quest
The regis-1.0.0 Application
The processquest-1.0.0 Application.
The sockserv-1.0.0 Application.
TheRelease
Making Process QuestBetfter.
Updating code_change Functions
Adding Appup Files
Upgrading the Release
RelupReview.

23
BUCKETS OF SOCKETS

IO Listso
UDP and TCP: Brotocols.
UDP Sockets.o
TCP Sockets
More Control with Inet

Sockserv, Revisited.
Where to Go from Here®

24
EUNITED NATIONS COUNCIL

EUnit—What'san EUnite
Test Generators
Fixtures.

TestingRegis
He Who Knits EUnits

335

336
336
336
337
338
339
340
341
345
348
352

353

354
356
357
358
359
360
360
363
363
365
369
372

375

375
377
379
381
384
387
396

397

398
402
404
406
407
408
417

Contents in Detail ~ Xiil

25

BEARS, ETS, BEETS: IN-MEMORY NOSQL FOR FREE! 419
Why ETS. 420
The Concepts of ETS. 421
ETS Phone Home o 423
Creating and Deleting Tables L. 423
Inserting and Looking Up Data o 425
Meeting Your Match. 427
You Have Been Selected. 428
DETS 433
A Little Less Conversation, a Litle More Action, Please 434
The Interface. 434
Implementation Details. 435
26
DISTRIBUNOMICON 441
This Is My Boomstick. 442
Fallacies of Distributed Computingo 445
The Network Is Reliable 445
There Is No Latency. 446
Bandwidth Is Infinite 446
The Network Is Secure. 447
Topology Doesn't Change 448
There Is Only One Administrator. 449
Transport CostIs Zero 449
The Network Is Homogeneous 450
Fallaciesina Nutshell L 451
Dead or Dead-Alive 451
My Other Cap lsaTheorem i 453
CONSISIENCY « .« o ottt 453
Availability. 453
Partition Tolerance 454
Zombie Survivorsand CAP. 454
SeftingUpan Erlang Cluster 458
Through the Desert on a Node with NoName 458
ConnectingNodes 459
More Tools. . . . oo 460
CooKiES o v ot 462
Remote Shells 464
Hidden Nodes. 465
The Walls Are Made of Fire, and the Goggles Do Nothing. 466
The Calls from Beyond 467
The net_kernel Module. 467
The global Module 467
Therpc Module 469
Burying the Distribunomicon 471

XiV Contents in Detail

27
DISTRIBUTED OTP APPLICATIONS

AddingMoreto OTP
Taking and Failing Over.
The Magic 8 Ball
Building the Application.
Making the Application Distributed

28
COMMON TEST FOR UNCOMMON TESTS

Common Test Structureo
Creating a Simple Test Suite
Runningthe Tests
Testingwith State.
Test Groups. . . v v v vt
Defining Test Groups . . . o« oo v o
Test Group Properties
The MeetingRoom
Test Suites Redux
Test Specifications
Specification File Contents
CreatingaSpecFile
Running Tests with a SpecFile
largeScale Testing.o
Creating a Distributed Spec File
Running Distributed Tests
Integrating EUnit Within Common Test

29
MNESIA AND THE ART OF REMEMBERING

What's Mnesia®
What Should the Store Store®
The Datato Store
Table Structure
FromRecordtoTable
Of Mnesia Schemasand Tables.
Creating Tables
Installing the Database.
Starting the Application L.
Access and Context
Reads, Writes, and More
Implementing the First Requests
A Test for Adding Services
Tests for Lookups.o
Accountsand New Needs

473

474
475
476
477
480

485

485
486
488
489
491
493
494
495
496
500
501
501
503
503
504
506
507
508
509

511

512
513
513
514
515
516
519
519
522
523
524
526
526
529
532

Contents in Detail XV

Meet the Boss o 534

Deleting Stuff, Demonstrated 536
Query List Comprehensions. 539
Remember Mnesiao 541
30
TYPE SPECIFICATIONS AND DIALYZER 543
PLTs Are the Best Sandwiches 543
SUCCESS TYPING o o 545
Type Inference and Discrepanciest 547
Typing About Types of Types. oo 550
Singleton Types. 550
Union and Builtin Types. 551
Defining Types . . . oo oot 554
TypesforRecords 555
Typing Functions 556
Typing Practiceo 560
Exporting Types oo 564
Typed Behaviors 566
Polymorphic Typeso 567
WeBoughtaZoo. 568
Some Cautionso 570
You're My Type . . o oo 572
That's All, Folks 572
AFTERWORD 573
Other Erlang Applications. 574
Community Libraries. 575
Your Ideas Are Intriguing fo Me and | Wish to Subscribe to Your Newslefter. 576
Is That 12 .. 576
APPENDIX
ON ERLANG’S SYNTAX 577
The Template. 577
The English Sentence 579
And, Or, DONe. . . o oo 580
In Conclusion. 580
INDEX 581

XVi Contents in Detail

ABOUT THE AUTHOR

Fred Hébert is a self-taught programmer with experience in frontend web
development, web services, and general backend programming in vari-

ous languages. His online tutorial, Learn You Some Erlang for Great Good!, is
widely regarded as the best way to learn Erlang. While at Erlang Solutions
Ltd., he wrote training materials and taught Erlang all around the Western
world. He currently works with Erlang on a real-time bidding platform
(AdGear) and was named Erlang User of the Year 2012.

FOREWORD

Learning to program is fun, or at least it should be
fun. If it’s not fun, you won’t enjoy doing it. During
my career as a programmer, I have taught myself sev-
eral different programming languages, and it hasn’t
always been fun. Whether or not learning a language
is fun depends to a large extent on how the language is
introduced.

When you start working with a new programming language, on the
surface it seems that all you are doing is learning a new language. But at
a deeper level, you are doing something much more profound—you are
learning a new way of thinking. It’s this new way of thinking that is exciting,
not the minor details of the punctuation or how the language looks com-
pared to your favorite programming language.

Functional programming is one of those areas of programming that
has acquired a reputation for being “hard” (concurrent programming even
more so), and so writing a book about Erlang that covers the ideas of func-
tional programming plus concurrent programming is a daunting prospect.

XX

Foreword

Make no mistake about it: Introducing functional programming is not so
easy, and introducing concurrent programming has its difficulties. Doing
both with humor and ease requires a very particular kind of talent.

Fred Hebert has shown that he has this talent. He explains complex
ideas in a way that makes them seem simple.

One of the biggest barriers to learning Erlang is not so much that the
ideas involved are intrinsically difficult but that they are very different from
the ideas in most of the other languages that you will have encountered.

To learn Erlang, you have to temporarily unlearn what you have learned

in other programming languages. Variables in Erlang do not vary. You're
not supposed to program defensively. Processes are really, really cheap, and
you can have thousands of them or even millions, if you feel like it. Oh, and
then there is the strange syntax. Erlang doesn’t look like Java; there are no
methods or classes and no objects. And wait a moment . . . even the equals
sign doesn’t mean “equals”—it means “match this pattern.”

Fred is completely undaunted by these issues; he treats the subject mat-
ter with a delicate dry humor and teaches complex subjects in such a way
that we forget the complexity.

This is now the fourth major text on Erlang and is a great addition
to the Erlang library. But it’s not only about Erlang. Many of the ideas in
Fred’s book are equally applicable to Haskell or OCaml or F#.

I hope that many of you will enjoy reading Fred’s book as much as I
did and that you find learning Erlang to be an agreeable and thought-
provoking process. If you type in the programs in this book and run them
as you go along, you’ll learn even more. Writing programs is much more
difficult than reading them, and the first step is just letting your fingers get
used to typing in the programs and getting rid of the small syntax errors
that inevitably occur. As you get deeper into the book, you’ll be writing
programs that are pretty tricky to write in most other languages—but hope-
fully you won’t realize this. Soon you’ll be writing distributed programs.
This is when the fun starts. . .

Thanks, Fred, for a great book.

Joe Armstrong
Stockholm, Sweden
November 6, 2012

PREFACE

This book initially started as a website, which is still
available at http://learnyousomeerlang.com/ (thanks to
No Starch Press’s open-mindedness regarding all
things related to publishing and technical material).

Since the first chapters were made public in 2009, Learn You Some Erlang has
grown from a three-chapter micro-tutorial with a request for proofreading
on the erlang-questions mailing list into one of the official documentation’s
suggestions for learning Erlang, a book, and a major accomplishment in my
life. I'm baffled and thankful for all it has brought me, from friends to jobs
to the title of Erlang User of the Year 2012.

To the Foreigner

When you’re looking at Erlang programmers from afar, as an outsider, they
may seem like a weird little community of people who believe in principles
that nearly nobody else needs or wants to follow. Their principles look
impractical, limited in how they can be applied. To make matters worse,
Erlang citizens may appear similar to members of a religious sect, entirely

XXxii

sure that they know the one true way to the heart of software. This is the
same kind of “one true way” previously preached by fanatics of languages
like those of the Lisp family, Haskellers, proud members of the formal
proof school of thought, Smalltalk programmers, stack aficionados from
the world of Forth, and so on. Same old, same old; they all offer great prom-
ises of success, and deliver in various ways, but the programs we program-
mers write are still buggy, too expensive, or unmaintainable.

With Erlang, it’s likely the promise of concurrency or parallelism
that brings you here. Maybe it’s the distributed computing aspect of the
language, or possibly its unusual approach to fault tolerance. Of course,
approaching Erlang with skepticism is a good thing. It won’t solve all your
problems—that’s your job, after all. Erlang is merely a nifty toolbox to help
you do so.

To the Erlang Regular

You already know Erlang, possibly very well. In that case, I hope this book
becomes an interesting read or a possible reference, or that a few of its
chapters help you learn more about bits of the language and its environ-
ment that you weren’t too familiar with before.

It’s also possible that you know Erlang better than I do in every respect.
In that case, I hope this book makes an adequate paperweight or space-
filler in your library.

To the Person Who Has Read This Online

Preface

Thanks for your support, and I hope you enjoy what professional editing
has brought to the original text, along with a boost into R15B+ versions of
Erlang.

ACKNOWLEDGMENTS

Thanks to Miran Lipovaca for coming up with the Learn You a Language
idea first, and for letting me borrow the concept for this book and its
related website.

Thanks to Jenn (my girlfriend) for the original website design, the long
yeoman’s work required to redraw most of the images of this book so they
would be suitable for print, her support, and her patience in letting me
spend so many hours working on this project.

Thanks to all the people who gave their time away to help review the
online copy of this book, find errors, and offer support (in no particular
order): Michael Richter, O] Reeves, Dave Pawson, Robert Virding, Richard
O’Keefe, Ulf Wiger, Lukas Larsson, Dale Harvey, Richard Carlsson, Nick
Fitzgerald, Brendon Hogger, Geoff Cant, Andrew Thompson, Bartosz
Fabianowski, Richard Jones, Tuncer Ayaz, William King, Mahesh Paolini-
Subramanya, and Malcolm Matalka. There were also many other people
who provided minor reviews and spotted typos and other errors.

A second thanks to Geoff Cant, who was the official tech reviewer for
this version of the book.

Thanks to the team at No Starch Press (Keith, Alison, Leigh, Riley,
Jessica, Tyler, and Bill) for their professional work.

Finally, thanks to the countless readers of the online copy of this book:
those who bought this version, and those who read it without buying it.

INTRODUCTION

This is the beginning of Learn You Some Erlang for Great
Good! Reading this book should be one of your first
steps in learning Erlang, so let’s talk about it a bit.

I got the idea to write this book after reading Miran Lipovaca’s Learn
You a Haskell for Great Good! (LYAH) tutorial. I thought he did a great job
making the language attractive and the learning experience friendly. As I
already knew him, I asked him how he felt about me writing an Erlang ver-
sion of his book. He liked the idea, being somewhat interested in Erlang.

So I began writing this book.

Of course, there were other sources to my motiva- m
tion. When I began, I found the entry to the language to
be hard (the Web had sparse documentation, and books (a
are expensive), and I thought the community would
benefit from a LYAH-like guide. Also, I had seen people E R LA NG
attributing Erlang too little—or sometimes too much—
merit based on sweeping generalizations.

2

This book is a way to learn Erlang for people who have a basic
knowledge of programming in imperative languages (such as C/C++, Java,
Python, Ruby, and so on) but may or may not be familiar with functional
programming languages (such as Haskell, Scala, Clojure, and OCaml, as
well as Erlang). I also wanted to write this book in an honest manner, sell-
ing Erlang for what it is, acknowledging its weaknesses and strengths.

So What's Erlang?

Infroduction

Erlang is a functional programming language. If you have ever worked with
imperative languages, statements such as i++ may be normal to you, but in
functional programming, they are not allowed. In fact, changing the value
of any variable is strictly forbidden! This may sound weird at first, but if you
remember your math classes, that’s how you learned it:

X X X <<

2
y +3
2 +3
5

If I added the following, you would have been very confused.

5+1
X
=6

v 1}

Functional programming recognizes this. If I say x is 5, then I can’t logi-
cally claim it is also 6! This would be dishonest. This is also why a function
should return the same result every time it’s called with the same parameter:

x = add_two to(3) = 5
X =5

The concept of functions always returning the same result for the
same parameter is called referential transparency. It’s what lets us replace
add_two_to(3) with 5, as the result of 3+2 will always be 5. That means we can
glue dozens of functions together in order to resolve more complex prob-
lems while being sure nothing will break. Logical and clean, isn’t it? There’s
a problem though:

X = today() = 2013/10/22
-- wait a day --
today() = 2013/10/23
= X

5. 2013/10/22 = 2013/10/23

x
I 1}

Oh no! My beautiful equations! They suddenly all turned wrong! How
come my function returns a different result every day?

Obviously, there are some cases where it’s useful to break referential
transparency. Erlang has this very pragmatic approach with functional pro-
gramming: Obey its purest principles (referential transparency, avoiding
mutable data, and so on), but break away from them when real-world prob-
lems pop up.

Although Erlang is a functional programming language, there’s also a
large emphasis on concurrency and high reliability. To be able to have doz-
ens of tasks being performed at the same time, Erlang uses the actor model,
and each actor is a separate process in the virtual machine. In a nutshell, if
you were an actor in Erlang’s world, you would be a lonely person, sitting in
a dark room with no window, waiting by your mailbox to get a message.
Once you got a message, you would react to it in a specific way: You pay the
bills, you respond to birthday cards with a “thank you” letter, and you ignore
the letters you can’t understand.

Erlang’s actor model can be imagined as a
world where everyone is sitting alone in a room
and can perform a few distinct tasks. Everyone
communicates strictly by writing letters, and
that’s it. While it sounds like a boring life (and a
new age for the postal service), it means you can
ask many people to perform very specific tasks
for you, and none of them will ever do something
wrong or make mistakes that will have repercussions on the work of others.
They may not even know of the existence of people other than you (and
that’s great).

In practice, Erlang forces you to write actors (processes) that will share
no information with other bits of code unless they pass messages to each
other. Every communication is explicit, traceable, and safe.

Erlang is not just a language but also a development environment as a
whole. The code is compiled to bytecode and runs inside a virtual machine.
So Erlang, much like Java and kids with ADD, can run anywhere. Here are
just some of the components of the standard distribution:

e Development tools (compiler, debugger, profiler, and test frameworks,
optional type analyzer)

e The Open Telecom Platform (OTP) framework
e A web server
e Advanced tracing tools

e The Mnesia database (a key/value storage system able to replicate itself
on many servers, which supports nested transactions and lets you store
any kind of Erlang data)

The virtual machine and libraries also allow you to update the code of
a running system without interrupting any program, distribute your code
with ease on many computers, and manage errors and faults in a simple but
powerful manner.

Introduction 3

4

We’ll cover how to use most of these tools
and achieve safety in this book.

Speaking of safety, you should be aware of a
related general policy in Erlang: Let it crash—
not like a plane with dozens of passengers
dying, but more like a tightrope walker with a
safety net below. While you should avoid making /

3

QO ~—

mistakes, you won’t need to check for every type

or error condition in most cases. J\ f'\
Erlang’s ability to recover from errors, orga- * 3

nize code with actors, and scale with distribu-

tion and concurrency all sound awesome, which

brings us to the next section . . .

Don’t Drink Too Much Kool-Aid

Introduction

This book has many little boxed sections named like this one (you’ll recog-
nize them when you see them). Erlang is currently gaining a lot of popu-
larity due to zealous talks, which may lead people to believe it’s more than
what it really is. The following are some reminders to help you keep your
feet on the ground if you're one of these overenthusiastic learners.

First is the talk of Erlang’s massive scaling abilities due to its lightweight
processes. It is true that Erlang processes are very light; you can have hun-
dreds of thousands of them existing at the same time. But this doesn’t mean
you should use Erlang that way just because you can. For example, creating
a shooter game where everything including bullets is its own actor is mad-
ness. The only thing you’ll shoot with a game like that is your own foot.
There is still a small cost in sending a message from actor to actor, and if
you divide tasks too much, you will make things slower!

I’ll cover this in more depth when we’re far enough into the tutorial
to actually worry about it, but just keep in mind that randomly throwing
parallelism at a problem is not enough to make it go fast. (Don’t be sad;
occasionally, using hundreds of processes is both possible and useful!)

Erlang is also said to be able to scale in a directly proportional manner
to how many cores your computer has, but this is usually not true. It is pos-
sible, but in most cases, problems do not behave in a way that lets you just
run everything at the same time.

Something else to keep in mind is that
while Erlang does some things very well, it’s
technically still possible to get the same results
from other languages. The opposite is also
true. You should evaluate each problem that
you need to solve and choose the best tool
for that problem and its solution. Erlang is
no silver bullet and will be particularly bad at
things like image and signal processing, operating system device drivers,
and other functions. It will shine at things like large software for server use

o
Speed

CORES

(for example, queue middleware, web servers, real-time bidding and dis-
tributed database implementations), doing some lifting coupled with other
languages, higher-level protocol implementation, and so on. Areas in the
middle will depend on you.

You should not necessarily limit yourself to server software with Erlang.
People have done unexpected and surprising things with it. One example is
TANO, a robot created by the Unict team (the Eurobot team of the University
of Catania), which uses Erlang for its artificial intelligence. IANO won the
silver medal at the 2009 Eurobot competition. Another example is Wings 3D,
an open source, cross-platform 3D modeler (but not a renderer) written in
Erlang.

What You Need to Dive In

All you need to get started is a text editor and the Erlang environment. You
can get the source code and the Windows binaries from the official Erlang
website.

For Windows systems, just download and run the binary files. Don’t for-
get to add your Erlang directory to your PATH system variable to be able to
access it from the command line.

On Debian-based Linux distributions, you should be able to install the
package with this command:

$ sudo apt-get install erlang

On Fedora (if you have yum installed), you can install Erlang by typing this:

yum install erlang

However, these repositories often hold outdated versions of the Erlang
packages. Using an outdated version could give you some different results
from those shown for the examples in this book, as well as a hit in perfor-
mance with certain applications. I therefore encourage you to compile from
source. Consult the README file within the package and Google to get all
the installation details you’ll need.

On FreeBSD, many options are available. If you're using portmaster, you
can use this command:

$ portmaster lang/erlang

For standard ports, enter the following:

$ cd /usr/ports/lang/erlang; make install clean

Finally, if you want to use packages, enter this:

$ run pkg_add -rv erlang

Introduction 5

6

If you're on a Mac OS X system, you can install Erlang with Homebrew:

$ brew install erlang

Or, if you prefer, use MacPorts:

$ port install erlang

At the time of this writing, I'm using Erlang version R15B+, so for the best results,
you should use that version or a newer one. However, most of the content in this book
is also valid for versions as old as R13B.

Along with downloading and installing Erlang, you should also down-
load the complete set of files available for this book. They contain tested
copies of any program and module written within these pages, and they
might prove useful for fixing your own programs. They also can provide
a base for later chapters if you feel like skipping around. The files are all
packaged in a zip file, available at http://learnyousomeerlang.com/static/evlang/
learn-you-some-erlang.zip. Otherwise, the examples in Learn You Some Erlang
depend on no other external dependency.

Where to Get Help

Infroduction

If you’re using Linux, you can access the man pages for good technical
documentation. For example, Erlang has a lists module (as you’ll see in
Chapter 1). To get the documentation on lists, just type in this command:

$ erl -man lists

On Windows, the installation should include HTML documentation.
You can download it at any time from the official Erlang site, or consult one
of the alternative sites.

Good coding practices can be found at http://www.erlang.se/doc/
programming_rules.shiml when you feel you need to get your code clean. The
code in this book will attempt to follow these guidelines, too.

Now, there are times when just getting the technical details isn’t enough.
When that happens, I tend to turn to two main sources: the official Erlang
mailing list (you should follow it just to learn a bunch) and the #erlang
channel on rc.freenode.net.

STARTING OUT

In Erlang, you can test most of your code in an emu-
lator. It will run your scripts when they are compiled
and deployed, but it will also let you edit stuff live.

In this chapter, you’ll learn how to use the Erlang shell and be intro-
duced to some basic Erlang data types.

Using the Erlang Shell

To start the Erlang shell in a Linux or Mac OS X system, open a terminal,
and then type erl. If you've set up everything correctly, you should see
something like this:

$ erl
Erlang R15B (erts-5.9) [source] [64-bit] [smp:4:4] [async-threads:0] [hipe]
[kernel-poll:false]

Eshell V5.9 (abort with ~G)

Congratulations, you're running the Erlang shell!

Chapter 1

If you're a Windows user, you can run the shell by executing erl.exe at
the command prompt, but it’s recommended that you use werl.exe instead,
which can be found in your Start menu (choose All Programs » Erlang).
Werl is a Windows-only implementation of the Erlang shell that has its own
window with scroll bars and supports line-editing shortcuts (which are not
available with the standard ¢md.exe shell in Windows). However, the erl.exe
shell is still required if you want to redirect standard input or output, or use
pipes.

Now we can enter code into the shell and run it in the emulator. But
first, let’s see how we can get around in it.

Entering Shell Commands

The Erlang shell has a built-in line editor based on a subset of Emacs,
a popular text editor that has been in use since the 1970s. If you know
Emacs, you should be fine. And even if you don’t know Emacs, you’ll do
fine anyway.

To begin, type some text in the Erlang shell, and then press CTRL-A
("A). Your cursor should move to the beginning of the line. Similarly, press-
ing CTRL-E ("E) moves the cursor to the end of the line. You can also use
the left and right arrow keys to move the cursor forward and backward, and
cycle through previously written lines of code by using the up and down
arrow keys.

Let’s try something else. Type
1i, and then press TAB. The shell
will expand the term for you to
lists:. Press TAB again, and the
shell will suggest all the functions
available in the lists module. You
may find the notation weird, but
don’t worry, you’ll become familiar
with it soon enough. (We’ll learn
more about modules in Chapter 2.)

Exiting the Shell

At this point, you've seen most of the basic Erlang shell functionality,
except for one very important thing: You don’t know how to exit! Luckily,
there’s a fast way to find out: type help(). into the shell and press ENTER.
You'll see information about a bunch of commands, including functions to
inspect processes, manage how the shell works, and so on. We’ll use many
of these in this book, but the only one of interest right now is the following
expression:

q() -- quit - shorthand for init:stop()

So, this is one way to exit (two ways, in fact). But this won’t help if the
shell freezes!

If you were paying attention when you started the shell, you probably
saw a comment about “aborting with 2G.” So let’s press CTRL-G, and then
type h to get help.

User switch command

--> h

¢ [nn] - connect to job

i [nn] - interrupt job

k [nn] - kill job

j - list all jobs

s [shell] - start local shell
r [node [shell]] - start remote shell
q - quit erlang

?

[h - this message

1
1
v

If you are wearing a monocle, now would be the time to drop it. The
Erlang shell isn’t just a simple shell as with other languages. Instead, itis a
bundle of shell instances, each running different jobs. Moreover, you can
manage them like processes in an operating system. If you type k N, where
N is a job number, you will terminate that shell and all the code it was run-
ning at the time. If you want to stop the code that is running without killing
the shell, then i Nis the command you need. You can also create new shell
instances by typing in s, list them with j, and connect to them with c N.

At some point, you might see an asterisk (*) next to some shell jobs:

--> J
1* {shell,start,[init]}

The * means that this is the last shell instance you were using. If you use
the command c, i, or k without any number following it, that command will
operate on this last shell instance.

If your shell ever freezes, a quick sequence to help is to press CTRL-G,
type i, press ENTER, type ¢, and press ENTER ("G i ENTER ¢ ENTER). This will
get you to the shell manager, interrupt the current shell job, and then con-
nect back to it:

Eshell V5.9 (abort with ~G)

1> "OH NO THIS SHELL IS UNRESPONSIVE!!! *hits ctrl+G*"
User switch command

--> i

-->cC

** exception exit: killed

1> "YESS!"

There’s one important thing to know before you start typing “real”
stuff into the shell: A sequence of expressions must be terminated with a period
Sfollowed by whitespace (a line break, a space, and so on); otherwise, it won’t be
executed. You can separate expressions with commas, but only the result of

Starting Out 9

10

the last one will be shown (although the others are still executed). This is
certainly unusual syntax for most people, and it comes from the days Erlang
was implemented directly in Prolog, a logic programming language.

Now let’s get things started (for real) by learning about the basic Erlang
data types and how to write your first bits of programs in the shell.

Some Erlang Basics

Chapter 1

Although you’ve just seen a rather advanced mechanism to handle differ-
ent jobs and shell sessions, Erlang is considered to be a relatively small and
simple language (in the way that C is simpler than C++). The language
has only a few basic built-in data types (and few syntactic elements around
them). First, we’ll take a look at numbers.

Numbers

Open the Erlang shell as described earlier, and let’s type some things:

1> 2 + 15.
17

2> 49 * 100.
4900

3> 1892 - 1472.
420

4> 5/ 2.

2.5

As you can see, Erlang doesn’t care if you enter
floating-point numbers or integers. Both types are sup-
ported when dealing with arithmetic.

Note that if you want to perform integer-to-integer
division, rather than floating-point division, you should
use div. To get the remainder (modulo) of an integer
division, use rem (remainder).

5> 5 div 2.
2
6> 5 rem 2.
1

You can use several operators in a single expression, and mathematical
operations obey the normal precedence rules:

7> (50 * 100) - 4999.

1
8> -(50 * 100 - 4999).
-1

9> -50 * (100 - 4999).
244950

If you want to express integers in other bases than base 10, just enter
the number in the form Base#Value (as long as Base is in the range of 2
through 36), like this:

10> 2#101010.
42

11> 8#0677.
447

12> 16#AE.
174

Here, we’re converting binary, octal, and hexadecimal values to base 10.
Awesome! Erlang has the power of the calculator you have on the corner of
your desk, but with a weird syntax on top of it. Absolutely exciting!

Invariable Variables

Doing arithmetic is all right, but you won’t get far without being able to
store the results somewhere. For that, you use variables. If you read the
Introduction to this book, you know that variables can’t be variable in func-
tional programming.

In Erlang, variables begin with an uppercase letter by definition. The
basic behavior of variables can be demonstrated with these six expressions:

1> One.

* 1: variable 'One' is unbound
2> One = 1.

1

3> Un = Uno = One = 1.

1

4> Two = One + One.

2

5> Two = 2.

2

6> Two = Two + 1.
** exception error: no match of right hand side value 3

The first thing these commands tell us is that you can assign a value to
a variable exactly once. Then you can “pretend” to assign a value to a vari-
able if it’s the same value the variable already has. If the value is different,
Erlang will complain. It’s a correct observation, but the explanation is a
bit more complex and depends on the = operator. The = operator (not the
variables) has the role of comparing values and complaining if they’re dif-
ferent. If they’re the same, Erlang returns the value:

7> 47 = 45 + 2.

47

8> 47 = 45 + 3.

** exception error: no match of right hand side value 48

Starting Out 1

12

Chapter 1

When you use the = operator with variables on both sides of it, with the
variable on the left side being unbound (without any value associated with
it), Erlang will automatically bind the value on the right to the variable on
the left. Both variables will then have the same value. The comparison will
consequently succeed, and the variable on the left side will keep the value
in memory.

Here’s another example:

9> two = 2.
** exception error: no match of right hand side value 2

The command fails because the word two begins with a lowercase letter.

Technically, variables can also start with an underscore (_), but by convention, their
use s restricted to values you do not care aboud.

This behavior of the = operator is the basis of something called pattern
malching, which many functional programming languages have, although
Erlang’s way of doing things is usually regarded as more flexible and com-
plete than the alternatives. You’ll learn more about Erlang pattern match-
ing when we visit other data types in this chapter, and also see how it works
with functions in the following chapters.

Note that if you're testing in the shell and save the wrong value
to a variable, it is possible to “erase” that variable by using the function
f(Variable).. If you wish to clear all variable names, use f().. These functions
are designed to help you when you're testing, and they only work in the
shell. When you're writing real programs, you won’t be able to destroy values
this way. This restriction makes sense if you think about Erlang being usable
in industrial scenarios. It’s wholly possible that a shell will be active for years
without interruption, and you can bet that a given variable will be used more
than once in that time period.

Atoms

There is a reason why variables names can’t begin with a lowercase character:
atoms. Atoms are literals, which means that they’re just constants whose only
value is their own name. In other words, what you see is what you get—don’t
expect more. The atom cat means “cat,” and that’s it. You can’t play with it.
You can’t change it. You can’t smash it to pieces. It’s cat. Deal with it.

While using single words starting with a lowercase letter is one way to
write an atom, there are also other ways:

1> atom.

atom

2> atoms_rule.
atoms_rule

3> atoms_rule@erlang.
atoms_rule@erlang

4> 'Atoms can be cheated!'.
'Atoms can be cheated!'’

5> atom = 'atom'.

atom

An atom should be enclosed in single quotes (') if it does not begin with
a lowercase letter or if it contains any characters other than alphanumeric
characters, an underscore (_), or an at sign (@). Line 5 also shows that an
atom with single quotes is exactly the same as a similar atom without them.

I compared atoms to constants that have
their name as their values. You may have worked
with code that used constants before. For exam-
ple, let’s say you have values for eye colors: 1 for
blue, 2 for brown, 3 for green, and 4 for other.
You need to match the name of the constant
to some underlying value. Atoms let you forget
about the underlying values. Your eye colors can
simply be blue, brown, green, or other. These
colors can be used anywhere in any piece of code. The underlying values
will never clash, and it is impossible for such a constant to be undefined!
(We’ll see how to create constants with values associated with them in
Chapter 2.)

Therefore, an atom is mainly useful to express or qualify data coupled
with it, usually in a tuple (described in “Tuples” on page 16). Atoms are
sometimes (but not often) useful when used alone. This is why we won’t
spend more time toying with them here. You’ll see them coupled with other
types of data in later examples.

DON’'T DRINK TOO MUCH KOOL-AID

Atoms are really nice and a great way to send messages or represent constants.
However, there are pitfalls to using atoms for too many things. An atom is referred
to in an atom table, which consumes memory (4 bytes per atom in a 32-bit system
and 8 bytes per atom in a 64-bit system). The atom table is not garbage collected,
so atoms will accumulate until the system tips over, either from memory usage or
because 1,048,577 atoms were declared.

This means atoms should not be generated dynamically. If your system needs
to be reliable, and user input lets someone crash it at will by telling it to create
atoms, you're in serious trouble.

Atoms should be seen as tools for the developer because, honestly, that’s
what they are. To reiterate: You should feel perfectly safe using atoms in your
everyday code as long as you type them in yourself. It's only dynamic generation
of atoms that is risky.

Starting Out 13

14

Chapter 1

Some atoms are reserved words and cannot be used except for what the language
designers wanted them to be: function names, operators, expressions, and so on.
These reserved words are as follows: after, and, andalso, band, begin, bnot, bor, bsl,
bsr, bxor, case, catch, cond, div, end, fun, if, let, not, of, or, orelse, query, receive,
rem, try, when, and xor.

Boolean Algebra and Comparison Operators

We would be in pretty deep trouble if we couldn’t
tell the difference between what’s small and big,
or what’s true and false. Like any other language,
Erlang has ways to let you use Boolean operations
and to compare items.

Boolean algebra is dirt simple:

1> true and false.
false

2> false or true.

true

3> true xor false.
true

4> not false.

true

5> not (true and true).
false

The Boolean operators and and or will always evaluate arguments on both sides of the
operator. If you want a short-circuit operator (which will evaluate the right-side argu-
ment only if necessary), use andalso or orelse.

Testing for equality or inequality is also dirt simple, but involves slightly
different symbols from those you see in many other languages:

6> 5 =:= 5.
true

7> 1 == 0.
false

8> 1 =/=0.
true

9> 5 =:= 5.0.
false

10> 5 == 5.0.
true

11> 5 /= 5.0.
false

There’s a good chance that your usual language uses == and != to test
for and against equality, but Erlang uses =:= and =/=. The three last expres-
sions (lines 9 through 11) also introduce a pitfall: Erlang doesn’t care about
the difference between floats and integers in arithmetic, but does distin-
guish between the two when comparing them. No worry though, because
the == and /= operators are there to help you in these cases. Thus, it is
important to consider whether or not you want exact equality. As a general
rule of thumb, you should always start by using =:= and =/=, and switch to ==
and /= only when you know you do not need exact equality. This could help
you avoid some unfortunate comparisons when the types of numbers you
expect are not what you get.

Other operators for comparisons are < (less than), > (greater than), >=
(greater than or equal to), and =< (less than or equal to). That last one is
backward (in my opinion) and is the source of many syntax errors in my
code. Keep an eye on that =<.

12> 1 < 2.
true
13> 1< 1.
false
14> 1 >= 1.
true
15> 1 =< 1.
true
What happens when you enter something like 5 + 1lama or 5 =:= true?

There’s no better way to know than trying it and subsequently getting
scared by error messages!

12> 5 + llama.
** exception error: bad argument in an arithmetic expression
in operator +/2
called as 5 + 1llama

Erlang doesn’t really like you misusing some of its fundamental types.
The emulator returns an error message here, indicating it doesn’t like one
of the two arguments used around the + operator.

Erlang doesn’t always get mad at you for using the wrong types though:

13> 5 =:= true.
false

Why does it refuse different types in some operations but not others?
While Erlang doesn’t let you add two operands of different types, it will let
you compare them. This is because the creators of Erlang thought pragma-
tism beats theory and decided it would be great to be able to simply write

Starting Out 15

16

Chapter 1

things like general sorting algorithms that could order any terms. It’s there
to make your life simpler and can do so the vast majority of the time.

There is one last thing to keep in mind when doing Boolean algebra
and comparisons:

14> 0 == false.
false
15> 1 < false.
true

Chances are you’re pulling out your hair if you come from procedural
languages or most object-oriented languages. Line 14 should evaluate to
true and line 15 to false! After all, false means 0 and true is anything else!
Exceptin Erlang. Because I lied to you. Yes, I did that. Shame on me.

Erlang has no such things as Boolean true and false. The terms true
and false are atoms, but they are integrated well enough into the language
that you shouldn’t have a problem with them, as long as you don’t expect
false and true to mean anything but false and true.

The correct ordering of each element in a comparison is the following: number <
atom < reference < fun < port < pid < tuple < list < bit string. Some of these
types won’t be familiar to you, but you will get to know them through this book. Just
remember that this is why you can compare anything with anything. To quote joe
Armstrong, one of the creators of Erlang, “The actual order is not important—>but
that a total ordering is well defined is important.”

Tuples

A tupleis a way to group together a set number of terms. In Erlang, a tuple
is written in the form {Element1, Element2, ..., ElementN}. For example, you
would give me the coordinates (x,y) if you wanted to tell me the position of
a point in a Cartesian graph. We can represent this point as a tuple of two
terms:

1> X = 10, Y = 4.
4

2> Point = {X,Y}.
{10,4}

In this case, a point will always be two terms. Instead of carrying the
variables X and Y everywhere, you need to carry only one. However, what
can you do if you receive a point and only want the x-coordinate? It’s not
hard to extract that information. Remember that when you assign values,
Erlang will never complain if they are the same. Let’s exploit that. (You may
need to clear the variables we just set with f() before typing in the following
example.)

3> Point = {4,5}.
{4,5}

4> {X,Y} = Point.
{4,5}

5> X.

4

6> {X,_} = Point.
{4,5}

From now on, we can use X to get the first value of the tuple. How did
that happen? First, X and Y had no value and were thus considered unbound
variables. When you set them in the tuple {X,Y} on the left side of the = oper-
ator, the = operator compares both values: {X,Y} versus {4,5}. Erlang is smart
enough to unpack the values from the tuple and distribute them to the
unbound variables on the left side. Then the comparison is only {4,5} = {4,5},
which obviously succeeds. That’s one of the many forms of pattern matching.

Note that line 6 uses the don’t care variable (_).
This is exactly how it’s meant to be used: to drop
the value that would usually be placed there, since
we won’t use that value. The _ variable is always
seen as unbound and acts as a wildcard for pattern
matching. Pattern matching to unpack tuples will
work only if the number of elements (the tuple’s
length) is the same. MR.BRACKETS

> {_)_} = {4:5}'

{4,5}

8> {_)_} = {4)5)6}-

** exception error: no match of right hand side value {4,5,6}

Tuples can also be useful when working with single values. For example,
suppose that we want to store the following temperature:

9> Temperature = 23.213.
23.213

Looks like a good day to go to the beach! But wait—is this temperature
in Kelvin, Celsius, or Fahrenheit? We can use a tuple to store the tempera-
ture’s units along with its value:

10> PreciseTemperature = {celsius, 23.213}.

{celsius,23.213}

11> {kelvin, T} = PreciseTemperature.

** exception error: no match of right hand side value {celsius,23.213}

This raises an exception, but that’s exactly what we want. This is,
again, pattern matching at work. The = operator compares {kelvin, T} and
{celsius, 23.213}, and even if the variable T is unbound, Erlang can see that

Starting Out 17

18

Chapter 1

the celsius atom is different from the kelvin atom. An exception is raised,
which stops the execution of code. So, the part of the program that expects
a temperature in Kelvin won’t be able to process temperatures sent in Celsius.
This makes it easier for the programmer to know what kind of data is being
sent, and it also works as a debugging aid.

A tuple that contains an atom with one element following it is called a
tagged tuple. Any element of a tuple can be of any type, even another tuple:

12> {point, {X,Y}}.
{point,{4,5}}

But what if we want to carry around more than one point? For that, we
have lists.

Lists

Lists are the bread and butter of many functional languages. They’re used
to solve all kinds of problems and are undoubtedly the most-used data
structure in Erlang. Lists can contain anything—numbers, atoms, tuples,
other lists—your wildest dreams in a single structure.

The basic notation of a list is [Element1, Element2, ..., ElementN], and you
can mix more than one type of data in it:

1> [1, 2, 3, {numbers,[4,5,6]}, 5.34, atom].
[1,2,3,{numbers,[4,5,6]},5.34,atom]

Simple enough, right? Let’s try another one:

2> [97) 98) 99]-

Uh-oh! This is one of the most disliked things in Erlang: strings. Strings
are lists, and the notation is exactly the same. Why do people dislike it?
Because of this:

3> [97,98,99,4,5,6].
[97,98,99,4,5,6]
4> [233].

e

Erlang will print lists of numbers as numbers only when at least one
of them could not also represent a letter. There is no such thing as a real
string in Erlang! This will no doubt come to haunt you in the future, and
you’ll hate the language for it. Don’t despair, because there are other ways
to write strings, as you'll see in “Binary Strings” on page 27.

DON'T DRINK TOO MUCH KOOL-AID

This is why some programmers say that Erlang sucks af string manipulation: It
does not have a built-in string type as in most other languages. The lack is due
to Erlang’s origins as a language created and used by telecom companies. They
never (or rarely) used strings, so they were not officially added to the language
as their own data type. However, this problem is getting fixed with time. The vir-
tual machine (VM) now partially supports Unicode and is getting faster at string
manipulations all the time. There is also a way to store strings as a binary data
structure, making them really light and faster to work with. We'll discuss this in
“Binary Strings” on page 27.

All'in all, some functions are still missing from the standard library when it
comes fo strings. While string processing is definitely doable in Erlang, other lan-
guages, such as Perl and Python, are better suited for tasks that need a lot of it.

To glue lists together, use the ++ operator. To remove elements from a
list, use --.

5> [1,2,3] ++ [4,5].
[1,2,3,4,5]

6> [1)2)3:4)5] - [1,-2’3]-
[4,5]

7> [2,4,2] -- [2,4].

[2]

8> [2’4)2] =T [2)4’2]-

(]

Both ++ and -- are right-associative. This means the elements of many -- or
++ operations will be done from right to left, as in the following examples:

9> [1)2)3] = [1)2] == [3]-
(3]

10> [1,2,3] -- [1,2] -- [2].
[2,3]

In the first example, proceeding from right to left, we first remove [3]
from [1,2], leaving us with [1,2]. Then we remove [1,2] from [1,2,3], leaving us
with only [3]. For the last one, we first remove [2] from [1,2], giving [1]. Then
we take [1] out of [1,2,3], producing the final result [2,3].

Let’s keep going. The first element of a list is named the head, and the
rest of the list is named the tail. We will use two built-in functions (BIFs) to
get them:

11> hd([1,2,3,4]).
1

12> t1([1,2,3,4]).
[2,3,4]

Starting Out 19

20

BIFs are usually functions that could not be implemented in pure Evlang, and as

Chapter 1

such are defined in C, or whichever language Erlang happens to be implemented in
(it was Prolog in the 1980s). There are still some BIFs that could be done in Erlang
but were implemented in C in order to provide more speed to common operations. One
example of this is the length(List) function, which will return the (you've guessed it)
length of the list passed in as the argument.

Accessing or adding the head is fast and efficient. Virtually all applica-
tions where you need to deal with lists will operate on the head first. As it’s
used so frequently, Erlang provides an easier way to separate the head from
the tail of a list, with the help of pattern matching: [Head|Tail]. For example,
here’s how you would add a new head to a list:

13> List = [2,3,4].
[2,3,4]

14> NewlList = [1|List].
[1,2,3,4]

When processing lists, it’s also helpful to have a quick way to store the
tail, so you can operate on the tail later. If you remember the way tuples
work and how we used pattern matching to unpack the values of a point
({X,Y}), you'll understand how we can get the first element (the head) sliced
off a list in a similar manner:

15> [Head|Tail] = NewlList.
[1,2,3,4]

16> Head.

1

17> Tail.

[2,3,4]

18> [NewHead|NewTail] = Tail.
[2,3,4]

19> NewHead.

2

The | we used is called the cons operator (constructor). In fact, any list
can be built with only cons operators and values:

20> [1 | [1].
(1]
21> [2 | [2 | [10]-

[2,1]
22> [3] [2] [a | [1100.
[3,2,1]

In other words, any list can be built with the following formula:
[Term1 | [Term2 | [... | [TexmN]]]]. Thus, you can define lists recursively as a
head preceding a tail, which is itself a head followed by more heads. In this

sense, you could imagine a list being a bit like an earthworm; you can slice
it in half, and you’ll then have two worms.

5. Sa

TAIL

The ways Erlang lists can be built are sometimes confusing to people
who are not used to similar constructors. To help you get familiar with the
concept, read all of these examples (hint: they’re all equivalent):

[aJ b) C) d]

[a, b, ¢, d | []]

[a, b | [c, d]]

la, b | [c | [d]]]

[a | [b] [c] [d]]]]

la | [b] [c][d] [111]]

With this understood, you should be able to deal with list comprehen-
sions, which are discussed in the next section.

Using the form [1 | 2] gives what is called an improper list. Improper lists will
work when you pattern match in the [Head|Tail] manner, but will fail when used with
standard functions of Evlang (even length()). This is because Erlang expects proper
lists. Proper lists end with an empty list as their last cell. When declaring an item
like [2], the list is automatically formed in a proper manner. As such, [1/[2]] would
work. Improper lists, although syntactically valid, are of very limited use outside of
user-defined data structures.

List Comprehensions

List comprehensions are ways to build or modify lists. They also make programs
short and easy to understand compared to other ways of manipulating lists.
They may be hard to grasp at first, but they’re worth the effort. Don’t hesitate
to try the examples in this section until you understand them!

List comprehensions are based on the mathematical idea of set notation,
so if you've ever taken a math class that dealt with set theory, list compre-
hensions may look familiar to you. Set notation describes how to build a
set by specifying properties its members must satisfy. For instance, here’s a
basic example: {x € R:x = xQ} . This describes the set of all real numbers
that are equal to their own square. (The result of that set would be {0,1}.)

A simpler example of set notation is {x:x >0} . This describes the set of all
numbers greater than zero.

Like set notation, list comprehensions are about building sets from
other sets. For example, given the set {2n:n € L}, where Lis the list

Starting Out 21

[1,2,3,4], we could read this as “for all n values in [1,2,3,4], give me n*2.” The
set built from this would be [2,4,6,8]. The Erlang implementation of this
same set is as follows:

1> [2*N || N <- [1,2,3,4]].
[214)6)8]

Compare the mathematical notation to the Erlang one, and you’ll see
that not a lot changes: brackets ({}) become square brackets ([]), the colon
(:) becomes two pipes (||), and the operator € becomes the arrow (<-). In
other words, we change symbols but keep the same logic. In the example, each value
of [1,2,3,4] is sequentially pattern matched to N. The arrow acts exactly like
the = operator, with the exception that it doesn’t throw exceptions.

You can also add constraints to a list comprehension by using operations
that return Boolean values. So if you want all the even numbers from one to
ten, you could write something like this:

2> [X || X <- [1,2,3,4,5,6,7,8,9,10], X rem 2 =:= 0].
[2,4,6,8,10]

Here, X rem 2 =:= 0 checks if a number is even.
The recipe for list comprehensions in Erlang is as follows:

NewList = [Expression || Pattern <- List, Conditioni, Condition2, ... ConditionN]

The Pattern <- List partis called a generator expression.

List comprehensions are useful when you want to apply a function to
each element of a list, forcing it to respect constraints. For example, say you
own a restaurant. A customer enters, sees your menu, and asks if he could
have the prices of all the items costing between $3 and $10, with taxes (say
7 percent) counted in afterward.

3> RestaurantMenu = [{steak, 5.99}, {beer, 3.99}, {poutine, 3.50}, {kitten, 20.99}, {water, 0.00}].
[{steak,5.99},

{beer,3.99},

{poutine,3.5},

{kitten,20.99},

{water,0.0}]

4> [{Item, Price*1.07} || {Item,Price} <- RestaurantMenu, Price >= 3, Price =< 10].
[{steak,6.409300000000001},{beer,4.2693},{poutine,3.745}]

The decimals are not rounded in a readable manner, but you get the point.
Another nice thing about list comprehensions is that you can have more
than one generator expression, as in this example:

55 [X+Y || X <= [1,2], Y < [3,4]].
[4,5,5,6]

22 Chapter 1

This runs the operations 143, 1+4, 243, 2+4. So if you want to make the list
comprehension recipe more generic, you get this:

NewList = [Expression || GeneratorExpi, GeneratorExp2, ..., GeneratorExpN,
Conditioni, Condition2, ... ConditionM]

Note that the generator expressions coupled with pattern matching can
also act as a filter:

6> Weather = [{toronto, rain}, {montreal, storms}, {london, fog},
6> {paris, sun}, {boston, fog}, {vancouver, snow}].
[{toronto,rain},

{montreal,storms},

{1london, fog},

{paris,sun},

{boston,fog},

{vancouver, snow}]

7> FoggyPlaces = [X || {X, fog} <- Weather].

[London,boston]

If an element of the list Weather doesn’t match the {X, fog} pattern, it’s
simply ignored in the list comprehension, whereas the = operator would
have raised an exception.

We’ll look at using one more basic data type in this chapter. It is a sur-
prising feature that makes interpreting binary data easy as pie.

Working with Binary Data

Unlike most other languages, Erlang provides
useful abstractions when dealing with binary
values with pattern matching, instead of requir-
ing the old-fashioned bit twiddling with special
operators. It makes dealing with raw binary - oo e
data fun and easy (no, really), which was neces-

sary for the telecom applications it was created

to help with. Bit manipulation has a unique syntax and idioms that may
look kind of weird at first, but if you know how bits and bytes work gener-
ally, this should make sense to you. (You may want to skip the rest of this
chapter if you're not familiar with binary operations.)

[
Qlllco

N
QI0I000 1010000

Bit Syntax

Erlang bit syntax encloses binary data between « and » and splits it in
readable segments; each segment is separated by a comma. A segment is a
sequence of bits of a binary (not necessarily on a byte boundary, although
this is the default behavior).

Starting Out 23

Suppose you want to store an orange pixel of true color (24 bits). If
you’ve ever checked colors in Photoshop or in a CSS style sheet for the
Web, you know the hexadecimal notation has the format #RRGGBB. A tint of
orange is #F09A29 in that notation, which could be expanded in Erlang to the
following:

1> Color = 16#F09A29.

15768105
2> Pixel = <<Color:24>>.
<<240,154,41>>

This basically says, “Put the binary values of #F09A29 on 24 bits of space
(red on 8 bits, green on 8 bits, and blue also on 8 bits) in the variable Pixel.”
That value can then be written to a file or a socket later. This may not look
like much, but once written to a file, this value will turn into a bunch of
unreadable characters that, in the proper context, can be decoded as a
picture.

This syntax is especially nice because you can use clean, readable text
to write things that need to look messy to the naked eye in order to work.
Without good abstractions, your code would also need to be messy. Even
better: When you read the file back in, Erlang will interpret the binary value
into the nice «240,151,41> format again! You can jump back and forth
between representations, using only the one that’s the most useful to you
when you need it.

What’s more interesting is the ability to pattern match with binaries to
unpack content:

3> Pixels =
<<213,45,132,64,76,32,76,0,0,234,32,15>>

4> <«<Pix1,Pix2,Pix3,Pix4>> = Pixels.

** exception error: no match of right hand side value <<213,45,132,64,76,32,76,0,0,234,32,15>>
5> <<Pix1:24, Pix2:24, Pix3:24, Pix4:24»> = Pixels.

<<213,45,132,64,76,32,76,0,0,234,32,15>>

<<213,45,132,64,76,32,76,0,0,234,32,155>.

2%

Chapter 1

On line 3, we declare what would be precisely 4 pixels of RGB colors in
binary. On line 4, we tried to unpack four values from the binary content.
It throws an exception, because we have more than 4 segments—in fact, we
have 12. So we tell Erlang that each variable on the left side will hold 24 bits
of data using Pix1:24, Pix2:24, and so on. We can then take the first pixel and
unpack it further into single color values:

6> <<R:8, G:8, B:8>> = <<Pix1:24»>.
<<213,45,132>>

7> R.

213

“Yeah, that’s dandy. But what if I only want the first color from the start?
Will I need to unpack all these values all the time?” Don’t worry—Erlang
introduces more syntactic sugar and pattern matching to help you out:

8> <<R:8, Rest/binary>> = Pixels.
<<213,45,132,64,76,32,76,0,0,234,32,15>>
9> R.

213

In this example, Rest/binary is a specific notation that lets you say that
whatever is left in the binary, whatever length it is, is put into the Rest vari-
able. So «Pattern, Rest/binarys> is to binary pattern matching what [Head|Tail]
is to list pattern matching.

Nice, huh? This works because Erlang allows more than one way to
describe a binary segment. The following are all valid:

Value

Value:Size
Value/TypeSpecifierlist
Value:Size/TypeSpecifierlist

Here, Size is always in bits when no TypeSpecifierList is defined.
TypeSpecifierlist represents one or more of the following, separated by
a hyphen (-):

Type
The possible values are integer, float, binary, bytes, bitstring, bits,
utf8, utf16, and utf32. When no type is specified, Erlang assumes an
integer type.
This represents the kind of binary data used. Note that bytes is
shorthand for binary, and bits is shorthand for bitstring.

Signedness
The possible values are signed and unsigned. The default is unsigned.
This only matters for matching when the type is integer.

Endianness
The possible values are big, little, and native. By default, endianness is
set to big, as it is the standard used in network protocol encodings.
Endianness only matters when the type is integer, utf16, utf32, or
float. This has to do with how the system reads binary data. For exam-
ple, the BMP image header format holds the size of its file as an integer
stored in 4 bytes. For a file that has a size of 72 bytes, a little-endian
system would represent this as «72,0,0,0>>, and a big-endian system
would represent it as «0,0,0,72>>. The former will be read as 72, while
the latter will be read as 1207959552, so make sure you use the correct
endianness.
There is also the option to use native, which will choose at runtime
if the CPU uses little-endianness or big-endianness natively.

Starting Out 25

26

Chapter 1

Unit
This is written as unit:Integer.

The unit is the size of each segment. The allowed range is 1 to 256.
It is set by default to 1 bit for integer, float, and bitstring types, and to
8 bits for binary. The utf8, utf16, and utf32 types do not require a unit to
be defined. The multiplication of size by unit is equal to the number of
bits the segment will take, and must be evenly divisible by 8. The unit
size is usually used to ensure byte alignment.

The default size of a data type can be changed by combining dif-
ferent parts of a binary. As an example, «25:4/unit:8> will encode the
number 25 as a 4-byte integer, or «0,0,0,25> in its graphical representa-
tion. «25:2/unit:16>> will give the same result, and so will «25:1/unit:32>.
Erlang will generally accept «25:Size/unit:Unit>> and multiply Size by
Unit to figure out how much space it should take to represent the value.
Again, the result of this should be divisible by 8.

Some examples may help you digest these definitions:

10> «X1/unsigned» = <<-44>>.
<«<"0">>

11> X1.

212

12> «X2/signed» = <<-445>.
<«<"0">>

13> X2.

-44

14> «X2/integer-signed-little» = <<-44>>.
<«<"0">>

15> X2.

-44

16> <«N:8/unit:1» = <«<72>.
<<"H">>

17> N.

72

18> «N/integer>> = «72>.
<<"H">>

19> «Y:4/little-unit:8>» = <«72,0,0,05>.
<<72,0,0,0>>

20> Y.

72

You can see that there is more than one way to read, store, and inter-
pret binary data. This is a bit confusing, but still much simpler than using
the usual tools given by most languages.

Bitwise Binary Operations

The standard binary operations (shifting bits to left and right, and binary
and, or, xor, and not) also exist in Erlang. Just use the operators bsl (bit shift
left), bsr (bit shift right), band, bor, bxor, and bnot.

2#00100 = 2#00010 bsl 1.
2#00001 = 2#00010 bsr 1.
2#10101 = 2#10001 bor 2#00101.

With this notation and bit syntax in general, parsing and pattern match-
ing binary data are a piece of cake. For example, you could parse TCP seg-
ments with code like this:

<<SourcePort:16, DestinationPort:16,AckNumber:32,
DataOffset:4, Reserved:4, Flags:8, WindowSize:16,
CheckSum: 16, UrgentPointer:16,
Payload/binary>> = SomeBinary.

If SomeBinary does contain a TCP segment from some networking code,
it can be extracted with a similar pattern. All values are in bits (except for
the Payload, which is of arbitrary length), and well defined by a standard.
Whichever part of the segment your program needs can then be referred
to by its corresponding variable.

The same logic can then be applied to anything binary: video encod-
ing, images, other protocol implementations, and so on.

DON’'T DRINK TOO MUCH KOOL-AID

Erlang can be slow compared to languages like C or C++. Unless you are
a patient person (or a prodigy), it would likely be a bad idea to do stuff like
converting videos or images with it, even though the binary syntax makes

it extremely interesting. Erlang is traditionally just not that great at heavy
number-crunching.

Take note, however, that Erlang is usually mighty fast for applications that
do not require number-crunching, such as reacting to events, message-passing
(with the help of atoms being extremely light), and so on. It can deal with events
in matters of milliseconds, and as such, is a great candidate for soft real-time
applications.

Binary Strings

There’s a whole other aspect to binary notation: binary strings. Binary strings
are bolted on top of the language in the same way strings are with lists, but
they’re much more efficient in terms of space. This is because normal lists
are similar to linked lists (one “node” per letter, and then a reference to the
next part of the list), while binary strings are more like C arrays (a tightly
packed block of memory).

Binary strings use the syntax «"this is a binary string!">>. The down-
side of binary strings compared to lists is a loss in simplicity when it comes

Starting Out 27

28

Chapter 1

to pattern matching and manipulation. Consequently, people tend to use
binary strings when storing text that won’t be manipulated too much or
when space efficiency is a real issue.

Even though binary strings are pretty light, you should avoid using them to tag values.
It might be tempting to use string literals to say, for example, {<<"temperature"s>,50},
but you should always use atoms in that case. Using atoms resulls in almost no over-
head when comparing different values, and such comparisons are done in constant
tume regardless of length, while binaries are compared in linear time. Conversely, do
not use atoms to replace strings because they are lighter. Strings can be manipulated
(splitting, regular expressions, and so on), while atoms can only be compared and
nothing else.

Binary Comprehensions

Binary comprehensions are to bit syntax what list comprehensions are to
lists: a way to make code short and concise when dealing with binaries.
They can generally be used in the same manner as list comprehensions:

1> < «X» || «X> <= «1,2,3,4,55, X rem 2 == 05.
<<2,4>>

The only change in syntax from regular list comprehensions is the «<-,
which becomes <= for binary generators, and using binaries («>>) instead of
lists ([]).

Earlier in this chapter, you saw an example of using pattern matching
to grab RGB values from a binary value that represented many pixels. That
technique worked well in that example, but on larger structures, it could
become harder to read and maintain. The same exercise can be done with
a one-line binary comprehension, which is much cleaner:

2> Pixels = <<213,45,132,64,76,32,76,0,0,234,32,155>.
<<213,45,132,64,76,32,76,0,0,234,32,15>>

3> RGB = [{R,G,B} || <<R:8,G:8,B:8>> <= Pixels].
[{213,45,132},{64,76,32},{76,0,0},{234,32,15}]

Changing <- to <= lets you use a binary as a generator. The complete
binary comprehension basically changed binary data to integers inside
tuples. Another binary comprehension syntax exists to let you do the exact
opposite:

4> <« <«R:8, G:8, B:8» || {R,G,B} <- RGB >.
<<213,45,132,64,76,32,76,0,0,234,32,15>>

Be careful, as the elements of the resulting binary require a clearly
defined binary type if the generator returned binaries:

5> << <«Bin»> || Bin <- [<«3,7,5,4,7>5] ».

** exception error: bad argument

6> <« <«Bin/binary»» || Bin <- [«3,7,5,4,7>>] ».
<<3,7,5,4,7>>

By default, Erlang assumes that values you try to put into or extract
from a binary are integers (unsigned, on 8 bits). When writing «Bin>»,
we’re in fact declaring that we want a binary containing an integer that is
stored in the variable Bin. The problem is that Bin holds another binary, and
that just doesn’t make sense to Erlang. We said we would give an integer,
and we gave a binary. By specifying that the type is binary (as on line 6),
Erlang is able to deal with the pattern because what we say Bin is and what
Bin contains now make sense.

It’s also possible to have a binary comprehension with a binary generator:

7> <« «(X+1)/integers> || «X>> <= <3,7,5,4,7>> >.
<<4,8,6,5,8>>

Note that specifying the type as integer is superfluous in this case, as
Erlang assumes integers by default.

In this book, I won’t go into much more detail on binaries and binary
comprehensions. If you're interested in understanding more about bit syn-
tax as a whole, you can read the white paper that defines their specification,
at hitp://user.it.uu.se/~pergu/papers/erlang05.pdf.

Starting Out 29

MODULES

Working with the interactive shell is a vital part of

using dynamic programming languages. It’s useful to
test all kinds of code and programs. In Chapter 1, we
used the interactive shell to play with most of Erlang’s

basic data types without ever opening a text editor or saving a file. While
you could stop reading here, go play ball outside, and call it a day, that
would make you a terrible Erlang programmer. Code needs to be saved
somewhere to be used! As you’ll learn in this chapter, that’s what modules
are for.

What Are Modules?

A moduleis a bunch of functions grouped
together in a single file, under a single
name. All functions in Erlang must be
defined in modules. You have already used
modules, perhaps without realizing it. The

32

BIFs mentioned in Chapter 1, such as hd and t1, actually belong to the erlang
module. All of the arithmetic, logic, and Boolean operators also are in the
erlang module.

BIFs from the erlang module differ from other functions, as they are
automatically imported when you use Erlang. Every other function defined
in a module needs to be called with the form Module:Function(Arguments), as in
this example:

1> erlang:element(2, {a,b,c}).

b

2> element(2, {a,b,c}).

b

3> lists:seq(1,4).

[1,2,3,4]

4> seq(1,4).

** exception error: undefined shell command seq/2

Here, the seq function from the lists module was not automatically
imported, while element was. The error “undefined shell command” comes
from the shell looking for a shell command like () and not being able to
find it. Some functions from the erlang module are not imported automati-
cally, but they are not used very frequently.

Logically, you should put functions that deal with similar things inside
a single module. Common operations on lists are kept in the lists module,
while functions to do input and output (such as writing to the terminal or
in a file) are grouped in the io module or the file module. One of the only
modules you will encounter that doesn’t respect that pattern is the erlang
module, which has functions that do math, perform conversions, deal with
multiprocessing, fiddle with the VM’s settings, and so on. They have noth-
ing in common except being BIFs. You should avoid creating modules like
erlang, and instead focus on clean and logical separations.

Creating Modules

Chapter 2

When writing a module, you can declare two kinds of things: functions and
attributes. Attributes are metadata describing the module itself, such as its
name, the functions that should be visible to the outside world, the author
of the code, and so on. This kind of metadata is useful because it gives hints
to the compiler on how it should do its job, and also because it lets people
retrieve information from compiled code without needing to consult the
source.

A large variety of module attributes is currently used in Erlang code
across the world. In fact, you can even declare your own attributes for what-
ever you please. However, some predefined attributes will appear more fre-
quently than others in your code.

All module attributes follow the form -Name(Attribute).. Only one of
them is necessary for your module to be compilable:

-module(Name) .

This is always the first attribute (and statement)
of a file, and for good reason: It’s the name of the cur-
rent module, where Name is an atom. This is the name
you’ll use to call functions from other modules. The
calls are made with the form M:F(4), where M is the mod-
ule name, F the function, and A the arguments.

Note that the name of the module as defined in
the -module attribute and the filename must match.
For example, if the module name is unimaginative_name,
then the file should be named unimaginative_name.erl
(.erlis the standard Erlang source extension). If the
names don’t match, your module won’t compile.

It’s time to code already! Our first module will be very simple and use-
less. Open your text editor, type the following line, and then save the file as
useless.erl.

-module(useless).

This line of text is actually a valid module. Really! Of course, it’s useless
without functions. Let’s first decide which functions will be exported from
our useless module. To do this, we will use another attribute:

-export([Function1/Arity, Function2/Arity, ..., FunctionN/Arity]).

This is used to define which functions of a module can be called by the
outside world. It takes a list of functions with their respective arity. The arity
of a function is an integer representing how many arguments can be passed
to the function. This is critical information, because different functions
defined within a module can share the same name if, and only if, they have
a different arity. The functions add(X,Y) and add(X,Y,Z) would thus be consid-
ered different, and written in the form add/2 and add/3, respectively.

Exported functions represent a module’s interface. It is important to define an inter-
Jace that reveals only the bare minimum of what is necessary to use the module’s func-
tions. This lets you fiddle with the internal details of your implementations without
breaking code that might depend on your module.

Our useless module will first export a useful function named add, which
will take two arguments. Add the following -export attribute after the mod-
ule declaration:

-export([add/2]).

Modules 33

34

Chapter 2

And now we can write the function:

add(A,B) ->
A + B.

The syntax of a function follows the form Name(Args) -> Body., where Name
must be an atom, and Body can be one or more Erlang expressions sepa-
rated by commas. The function is ended with a period. Note that Erlang
doesn’t use the return keyword as many imperative languages do. A return is
useless! Instead, the last logical expression of a function to be executed will
have its value returned to the caller automatically, without you needing to
mention it.

Next, add the following function to the file. (Yes, every tutorial needs
a “Hello, world” example!) Don’t forget to add it to the -export attribute as
well (the -export attribute should then look like -export([add/2, hello/0]).).

%% Shows greetings.
%% io:format/1 is the standard function used to output text.
hello() ->

io:format("Hello, world!~n").

The first thing to notice in this listing is the comments. In Erlang, com-
ments are single-line only and begin with a % sign. (In this case, we’ve used
%%, but this is purely a question of style.) The hello/o function also demon-
strates how to call functions from foreign modules inside your own module.
In this case, io:format/1 is the standard function to output text, as written in
the comments.

The convention in the Erlang community is to use three percent signs (%%%) for com-
ments that are general to a module (what the module is used for, licenses, and so

on) and divisions of different sections of a module (public code, private code, helper
Sfunctions, and so on). Two percent signs (%%) are used for all other comments that are
alone on their own line and at the same level of indentation as the surrounding code.
A single% is used for comments at the end of a line where there is code.

Let’s add one last function to the module, using both functions add/2
and hello/0:

greet_and_add_two(X) ->
hello(),
add(X,2).

Again, don’t forget to add greet_and_add_two/1 to the exported function
list. The calls to hello/0 and add/2 don’t need to have the module name pre-
pended to them, because they were declared in the module itself.

If you wanted to be able to call io:format/1 in
the same manner as add/2, or any other function
defined within the current module, you could
have added the following module attribute at the
beginning of the file: -import(io, [format/i]).. Then
you could have called format("Hello, World!~n").
directly. More generally, the -import attribute fol-
lows this recipe:

-import(Module, [Functioni/Arity, ..., FunctionN/Arity]).

Importing a function is a handy shortcut, although most program-
mers strongly discourage the use of the -import attribute, as it can reduce
the readability of code. For example, in the case of io:format/2, there’s
another function in a different library with the same name: io_lib:format/2.
Determining which one is used requires going to the top of the file to see
from which module it was imported, if it was imported in the first place.
Consequently, including the module name is considered good practice
and will help the many Erlang users who love to use grep to find their way
across projects. Usually, the only functions you’ll see imported come from
the lists module; its functions are used with a higher frequency than those
from most other modules.

Your useless module should now look like the following:

-module(useless).
-export([add/2, hello/0, greet and_add_two/1]).

add(A,B) ->
A + B.

%% Shows greetings.
%% io:format/1 is the standard function used to output text.
hello() ->

io:format("Hello, world!~n").

greet_and_add_two(X) ->
hello(),
add(X,2).

We are now finished with the useless module. Save your useless.erl file,
and then we can try to compile it.

Modules 35

36

Compiling Code

Chapter 2

Erlang code is compiled to bytecode so it can be used by the VM. You can
call the compiler from many places. The most common way is to call it from
the command line, like so:

$ erlc flags file.erl

When in the shell or in a module, you can compile it like this:

compile:file(Filename)

Another way, often used when developing code, is to compile from
the shell:

c()

It’s time to compile our useless module and try it out. But first we need
to tell the Erlang shell where to find our module. Open the Erlang shell
and type the following, filling in the full path where your file is saved.

1> cd("/path/to/where/you/saved/the-module/").
"Path Name to the directory you are in"
ok

By default, the shell will only look for files in the same directory it was
started in and the standard library. The cd/1 function is defined exclusively
for the Erlang shell, telling it to change the directory to a new one, so it’s
less annoying to browse for files.

Next, enter the following:

2> c(useless).
{ok,useless}

If you get a different message—one that looks something like
useless.erl:Line: Some Error Message—make sure the file is named correctly;
that you are in the right directory; and that you've made no mistakes in
your module, such as using unmatched parentheses, forgetting about full
stops (.), and so on.

After you've successfully compiled your code, you'll notice that a
useless.beam file has been added next to useless.erl in your working directory.
This is the compiled module.

The beam filename extension stands for Bogdan/Bjorn’s Erlang Abstract Machine,
which is the VM itself. Other VMs for Evlang exist, but most are not used anymore.
For example, Joe’s Abstract Machine (JAM), inspired by Prolog’s WAM and old
BEAM, attempted to compile Evlang to C, and then to native code. Benchmarks dem-
onstrated little benefit in this practice, and the concept was given up. More recently,
there has been an effort to port Erlang to the [VM, giving the Erjang language.
While the results are impressive, few developers have switched over to the Java plat-
Sform for their Erlang development.

Now let’s try our first functions!

3> useless:add(7,2).

9

4> useless:hello().

Hello, world!

ok

5> useless:greet_and_add_two(-3).

Hello, world!

-1

6> useless:not_a_real_function().

** exception error: undefined function useless:not a real function/0

The functions work as expected: add/2 adds numbers, hello/0 outputs
Hello, world!, and greet_and_add_two/1 does both. Of course, you might be
asking why hello/0 returns the atom ok after outputting text. This is because
Erlang functions and expressions must always return something, even if
they would not need to in other languages. As such, io:format/1 returns ok
to denote a normal condition: the absence of errors.

Line 6 shows an error being thrown because the function we tried to
call doesn’t exist in our module. If you forget to export a function, this is
the kind of error message you will see when you try to call it.

Compiler Options

Erlang includes many compilation flags that can give you more control over
how a module is compiled. You can get a list of all of them in the Erlang
documentation. The following are the most common flags:

-debug_info
Erlang tools such as debuggers, code-coverage utilities, and static-
analysis utilities will use the debug information of a module to do their
work. In general, it is recommended to always turn on this option. You
are more likely to need this option than the little bits of extra space you
would save by not having it in your compiled code.

Modules 37

38

-{outdir,Dir}
By default, the Erlang compiler will create the .beam files in the current
directory. This will let you choose where to put the compiled file.

-export_all
This flag causes the compiler to ignore the -export module attribute
and instead export all functions defined. This is mainly useful when
testing and developing new code, but should not be used in production.

-{d,Macro} or {d,Macro,Value}
This flag defines a macro to be used in the module, where Macro is an
atom. This is most frequently used when unit testing, as it ensures that a
module will have its testing functions created and exported only when
they are explicitly wanted. By default, Value is true if it’s not defined as
the third element of the tuple.

To compile our useless module with some flags, we could do one of the
following:

7> compile:file(useless, [debug_info, export_all]).
{ok,useless}

8> c(useless, [debug_info, export_all]).
{ok,useless}

You can also be sneaky and define compile flags from within a module,
with a module attribute. To get the same results as from lines 7 and 8, you
could add the following to the module:

-compile([debug_info, export_all]).

Another option is to compile your Erlang module to native code. Native code com-
piling is not available for every platform and operating system, but on those that
support this feature, it can make your programs go faster (about 20 percent faster,
based on anecdotal evidence). To compile to native code, you need to use the hipe
module and call it the following way: hipe:c(Module,OptionsList). You could also use
c(Module,[native]). when in the shell to achieve similar results. Note that the beam
file generated will no longer be portable across platforms. In general, compiling with
hipe is seen as a last resort to get performance out of CPU-intensive operations.

Defining Macros

Chapter 2

Erlang macros are similar to C’s #define statements, and are mainly used

to define short functions and constants. They are simple expressions rep-
resented by text that will be replaced before the code is compiled for the
VM. Such macros are mainly useful to avoid having “magic values” floating

around your modules. For example, if you were to see code that compares
some variable to a hard-coded number 3600, you’d have no idea if it rep-
resented 1 hour (3600 seconds), 60 hours (3600 minutes), some monetary
amount, etc. However, if you encounter a value such as ?HOUR, which is an
Erlang macro, then you instantly have an idea of what you are dealing with.
Even better, if you eventually switch your representation from seconds (3600)
to, say, milliseconds (3,600,000), you need only change the macro definition
in order to update all the instances of the macro in your code.

You can define such a macro as a module attribute in the following way:

-define(MACRO, some_value).

You can then use the macro as ?MACRO inside any function defined in the
module, and it will be replaced by some_value before the code is compiled.
For the hour example above, we would define the macro as follows:

-define(HOUR, 3600). % in seconds

Defining a “function” macro is similar. Here’s a simple macro used to
subtract one number from another:

-define(sub(X,Y), X-Y).

To use this macro, simply call it in the same way that you would call any
other macro. For example, if you called ?sub(23,47), this would be replaced
with 23-47 by the compiler.

There are also a few predefined macros, such as the following:

e ?MODULE, which is replaced by the current module name as an atom
e ?FILE, which is replaced by the filename as a string

e ?LINE, which returns the line number of wherever the macro is placed

You can also check whether particular macros are defined in your code
and conditionally define other macros based on that result. To do this, use
the attributes -ifdef(MACRO)., -else., and -endif. as in this example:

-ifdef(DEBUGMODE).

-define(DEBUG(S), io:format("dbg: "++S)).
-else.

-define(DEBUG(S), ok).

-endif.

When used in code, the macro will look like ?DEBUG("entering some
function"), and will only output information if the module is compiled with a
DEBUGMODE macro present. Otherwise, the atom ok is declared and does noth-
ing at all.

Modules 39

40

As another example, you could also define tests to exist only if some test
macro is first defined:

-ifdef(TEST).
my_test_function() -»>

run_some_tests().
-endif.

Then, using the compile flags mentioned previously, we can choose
whether to define DEBUGMODE or TEST as c(Module, [{d,'TEST'},{d,'DEBUGMODE'}])..

More About Modules

Chapter 2

Before we move on to writing more powerful functions and fewer useless
snippets of code, we’ll look at a few other miscellaneous bits of information
about modules that might be useful to you in the future.

Metadata

As mentioned earlier in the chapter, module attributes are metadata describ-
ing properties of the module itself. Where can we find this metadata when
we don’t have an access to the source? Well, the compiler plays nice with
us—when compiling a module, it will pick up most module attributes and
store them (along with other information) in a module_info/0 function.

You can see the metadata of the useless module like this:

9> useless:module_info().
[{exports,[{add,2},

{hello,0},

{greet_and_add_two,1},

{module_info,0},

{module_info,1}]1},
{imports,[]},
{attributes, [{vsn,[174839656007867314473085021121413256129]}]},
{compile, [{options,[]},
{version,"4.8"},
{time,{2013,2,13,2,56,32}},
{source,"/home/ferd/learn-you-some-erlang/useless.erl"}]}]
10> useless:module_info(attributes).
[{vsn,[174839656007867314473085021121413256129]}]

This snippet also shows an additional function, module_info/1, which will
let you grab one specific piece of information. You can see exported func-
tions, imported functions (none in this case), attributes (this is where your
custom metadata would go), and compile options and information. Had
you decided to add -author("An Erlang Champ"). to your module, it would have
ended up in the same section as vsn.

vsn is an automatically generated unique value that differentiates each version of your
code, excluding comments. It is used in code hot-loading (upgrading an application
while it runs, without stopping it) and by some tools related to release handling. You
can also specify a vsn value yourself by adding -vsn(VersionNumber) to your module.

There are limited uses for module attributes when it comes to produc-
tion code, but they can be nice when doing little tricks to help yourself out.
For example, I'm using them in my testing script for this book to annotate
functions for which unit tests could be better. The script looks up mod-
ule attributes, finds the annotated functions, and shows a warning about
them. If you're interested in looking at this script, you can find it at Attp://
learnyousomeerlang.com/static/erlang/tester.erl.

Gircular Dependencies

Another point to keep in mind about module design is to avoid circular
dependencies. A module A should not call a module B that also calls module
A. Such dependencies usually end up making code maintenance difficult.

If circular dependencies are disgusting
in real life, maybe they should be

disgusting in your programs oo

In fact, code that depends on too many modules—even if they’re not in
a circular dependency—can make maintenance harder. The last thing you
want is to wake up in the middle of the night only to find a maniac software
engineer trying to gouge your eyes out because of terrible code you have
written.

Well, that’s enough of the pedantic moralizing. In Chapter 3, we’ll con-
tinue our exploration of Erlang, focusing on functions.

Modules 41

SYNTAX IN FUNCTIONS

Now that we have the ability to store and compile
our code, we can begin to write more advanced func-
tions. The functions that we have written so far are

extremely simple and a bit underwhelming. Now let’s get to more interest-
ing stuff. In this chapter, we’ll work with functions that behave differently
depending on the arguments passed to them and expressions that let us
make decisions based on different conditions.

Pattern Matching

The first function we’ll write will greet someone differently according to
gender. To achieve this in most procedural languages, you would need to
write something similar to the following pseudocode:

function greet(Gender,Name)
if Gender == male then
print("Hello, Mr. %s!", Name)
else if Gender == female then
print("Hello, Mrs. %s!", Name)
else

44

Chapter 3

print("Hello, %s!", Name)
end

Erlang can save you a whole lot of
boilerplate code with pattern match-
ing, which we used in Chapter 1. That ,t;g;*e
chapter showed how we can compare ~
and assign variables in structures like
lists and tuples (remember patterns
like {point,{X,Y}}).

Erlang lets us use similar patterns when defining functions. An Erlang
version of the greet function looks like this:

greet(male, Name) ->

io:format("Hello, Mr. ~s!", [Name]);
greet(female, Name) ->

io:format("Hello, Mrs. ~s!", [Name]);
greet(_, Name) ->

io:format("Hello, ~s!", [Name]).

When we were in the shell and a given pattern could not be matched,
Erlang would throw a fit and yell at us with an error message. When a pat-
tern fails in a function (such as greet(male, Name)), Erlang just looks for
the next part of the function with a different pattern (here, it would be
greet(female, Name)) and runs that one if it matches.

The main difference between the two versions of greet is that in Erlang,
we use pattern matching to define which parts of a function should be used
and bind the values we need at the same time. There is no need to first bind
the values and then compare them. So instead of this form:

function(Args)
if X then
Expression
else if Y then
Expression
else
Expression

we write this:

function(X) -»>
Expression;
function(Y) -»>
Expression;
function(_) -»
Expression.

This allows us to get similar results, but in a much more declarative style.
Each of these function declarations is called a function clause. Function
clauses must be separated by semicolons (;) and together form a function

declaration. A function declaration counts as one larger statement, which is
why the final function clause ends with a period. It’s a strange use of tokens
to determine workflow, but you’ll get used to it. At least you’d better hope
so, because there’s no way out of it!

FORMATTING WITH 10:FORMAT

io:format’s formatting is done with the help of tokens being replaced in a string.
The tilde (~) character is used to denote a token. Some tokens are built in, such as
~n, which will be changed to a line break. Most other tokens denote a way to for-
mat data. For example, the function call io:format("~s!~n",["Hello"]). includes the
token ~s, which accepts strings and binary strings as arguments. The final output
message would be "Hello!\n". Another widely used token is ~p, which will print an
Erlang term in the same way terms are output for you by the Erlang shell (adding
indentation and everything).

We'll pick more uses of io:format as we go, but in the meantime, you can try
the following calls to see what they do:

io:format("~s~n",[<<"Hello">>])
io:format("~p~n",[<<"Hello">>])
io:format("~~~n")
io:format("~f~n", [4.0])
io:format("~30f~n", [4.0])

This is just a small sample of io:format’s possibilities. You can read the online
documentation to find out more.

Fancier Patterns

Pattern matching in functions can be quite complex and powerful. As you
may remember from Chapter 1, we can pattern match on lists to get their
heads and tails. Let’s do that!

Start a new module called functions:

-module(functions).
-compile(export_all). % Replace with -export() later, for sanity's sake!

In this module, we’ll write a bunch of functions to explore many of the
available pattern-matching avenues. The first function we’ll write is head/1,
which will act exactly like erlang:hd/1: It will take a list as an argument and
return its first element. We’ll do this with the help of the cons operator (|)
and the “don’t care” variable (_):

head([H|_]) -> H.

Syntax in Functions 45

46

Chapter 3

If you type functions:head([1,2,3,4]). in the shell (once the module is com-
piled), you can expect the value 1 to be returned. Consequently, to get the
second element of a list, you would create this function:

second([_,X|_]) -> X.

Erlang will be smart enough to look inside the list and fetch what it
needs in order for the pattern match to succeed. Try it in the shell:

1> c(functions).

{ok, functions}

2> functions:head([1,2,3,4]).
1

3> functions:second([1,2,3,4]).
2

Retrieving values with pattern matching could be done for lists as long
as you want, although it would be impractical to do it up to thousands of
values. The smarter way to accomplish this is to use recursive functions,
which are covered in Chapter 5. For now, let’s concentrate on more pattern
matching.

Variables in a Bind

The concept of free and
bound variables discussed
in Chapter 1 still holds Unbound Variable
true for functions. Let’s 2 \I
review bound and unbound
variables, using a wedding a [@
scenario. NC

Here, the bridegroom
is sad because in Erlang,
variables can never change
value—no freedom! On
the other hand, unbound
variables don’t have any values attached to them (like our little bum on
the right). Binding a variable is simply attaching a value to an unbound
variable. In the case of Erlang, when you want to assign a value to a variable
that is already bound, an error occurs unless the new value is the same as the old
one. Let’s imagine our guy on the left has married one of two twins. If the
second twin comes around, he won’t differentiate them and will act nor-
mally. If a different woman comes around, he’ll complain. (You can review
“Invariable Variables” on page 11 if this concept is not clear to you.)

Bound Variable

Variable Value

Variable

Using pattern matching and functions, we can compare and know if two
parameters passed to a function are the same. For this, we’ll create a function
named same/2 that takes two arguments and tells if they’re identical:

same(X,X) ->
true;

same(_,) ->
false.

And it’s that simple.

When you call same(a,a), the first X is seen as unbound; it automatically
takes the value a. Then when Erlang goes to the second argument, it sees
X is already bound. Erlang then compares the value to the a passed as the
second argument and checks if it matches. The pattern matching succeeds,
and the function returns true. If the two values aren’t the same, pattern
matching will fail and go to the second function clause, which doesn’t care
about its arguments (when you'’re the last to choose, you can’t be picky!)
and will instead return false. Note that this function can effectively take
any kind of argument whatsoever. It works for any type of data, not just lists
or single variables.

Now let’s look at a more advanced example. The following function
prints a date, but only if it is formatted correctly.

valid time({Date = {Y,M,D}, Time = {H,Min,S}}) ->
io:format("The Date tuple (~p) says today is: ~p/~p/~p,~n",[Date,Y,M,D]),
io:format("The time tuple (~p) indicates: ~p:~p:~p.~n", [Time,H,Min,S]);
valid time() ->
io:format("Stop feeding me wrong datal~n").

Note that it is possible to use the = operator in the function head, allow-
ing us to match both the content inside a tuple ({Y,M,D}) and the tuple as a
whole (Date). We can test the function like this:

4> c(functions).

{ok, functions}

5> functions:valid_time({{2013,12,12},{09,04,43}}).

The Date tuple ({2013,9,6}) says today is: 2013/9/6,
The time tuple ({9,4,43}) indicates: 9:4:43.

ok

6> functions:valid_time({{2013,09,06},{09,04}}).

Stop feeding me wrong data!

ok

There is a problem though. This function could take anything for val-
ues, even text or atoms, as long as the tuples are in the form {{A,B,C},{D,E,F}}.
This is one of the limits of pattern matching. It can either specify really
precise values, such as a known number or atom, or abstract values, such as
the head or tail of a list, a tuple of N elements, or anything (_ and unbound
variables). To solve this problem, we use guards.

Syntax in Functions 47

18

Guards, Guards!

Chapter 3

Guards are additional clauses that can go in a
function’s head to make pattern matching more
expressive. As mentioned earlier, pattern match-
ing is somewhat limited, as it cannot express things
like a range of values or certain types of data.

One concept that cannot be represented with
pattern matching is counting: Is this 12-year-old
basketball player too short to play with the pros?
Is this distance too long to walk on your hands? Are you too old or too
young to drive a car? You couldn’t answer these questions with simple pat-
tern matching. You could represent the driving question in a very impracti-
cal way like this:

old_enough(0) -> false;
old enough(1) -> false;
old_enough(2) -> false;

old_enough(14) -> false;
old_enough(15) -> false;
old_enough(_) -> true.

You can do that if you want, but you’ll be alone to work on your code
forever. If you want to eventually make friends, start a new guards module,
and then type in the following solution to the driving question:

old_enough(X) when X >= 16 -> true;
old_enough(_) -> false.

And you're finished! As you can see, this is much shorter and cleaner
than the previous version.

A basic rule for guard expressions is that they must return true to suc-
ceed. The guard will fail if it returns false or if it raises an exception.

Suppose we now forbid people who are over 104 years old from driv-
ing. Our valid ages for drivers are from 16 years old up to 104 years old. We
need to take care of that, but how? Let’s just add a second guard clause:

right_age(X) when X >= 16, X =< 104 ->
true;

right_age() ->
false.

In guard expressions, the comma (,) acts in a similar manner to the
operator andalso, and the semicolon (;) acts a bit like orelse (described in
Chapter 1). Because right_age/1 uses the comma, both guard expressions
need to succeed for the whole guard to pass. In fact, if you have any num-
ber of guards separated by commas, they all need to succeed for the entire
guard to pass.

We could also represent the function in the opposite way:

wrong_age(X) when X < 16; X > 104 ->
true;

wrong_age(_) ->
false.

And we get correct results from this approach, too.
Test it if you want (you should always test stuff!). (e

I've compared , and ; in guards to the operators andalso and
orelse. Theyre not exactly the same, though. The former pair will
catch exceptions as they happen, while the latter will not. What
this means is that if there is an error thrown in the first part of
the guard X >= N; N >= 0, the second part can still be evaluated,
and the guard might succeed. If an error was thrown in the
Jirst part of X >= N orelse N >= 0, the second part will also be
skipped, and the whole guard will fail. However (there is always a “however”), only
andalso and orelse can be nested inside guards. This means (A orelse B) andalso C
is a valid guard, while (A; B), C is not. Given their different use, the best strategy is
often to mix them as necessary.

In addition to using comparisons and Boolean evaluation in your guards,
you can use math operations (for example, A*8/C >= 0) and functions about
data types, such as is_integer/1, is_atom/1, and so on. (We’ll talk more about
these kinds of functions in Chapter 4.)

One negative point about guards is that they will not accept user-defined
functions because of side effects. Erlang is not a purely functional program-
ming language (like Haskell) because it relies on side effects a lot. You can
do I/0O, send messages between actors, or raise exceptions as you want
and when you want. There is no trivial way to determine if a function you
would use in a guard would print text or catch important errors every time
it is tested over many function clauses. So instead, Erlang just doesn’t trust
you (and it may be right not to!).

That being said, you should now know enough to understand the basic
syntax of guards and to understand them when you encounter them.

What the If?!

An if clause acts like a guard and shares the guard syntax, but outside a
function clause’s head. In fact, if clauses are called guard patterns.

Erlang’s ifs are different from the ifs you’ll ever encounter in most
other languages. Compared to those other if clauses, Erlang’s versions are
weird creatures that might have been more accepted it they had a different
name. When entering Erlang country, you should leave all you know about
ifs at the door.

Syntax in Functions 49

50

Chapter 3

To see how similar the if expression is to guards, enter the following

examples in a module named what_the_if.erl:

-module(what_the if).
-export([heh_fine/0]).

heh_fine() -»

if1=:=1->
works

end,

if 1 =:=2;1=:=1->
works

end,

QOif 1 =:=2, 1 =:=1 ->

fails

end.

Save the module and let’s try it:

1> c(what_the_if).

./what_the_if.erl:12: Warning: no clause will ever match
./what_the_if.erl:12: Warning: the guard for this clause evaluates to 'false’

{ok,what_the_if}
2> what_the_if:heh_fine().

** exception error: no true branch found when evaluating an if expression

in function what_the_if:heh_fine/0

Uh-oh! The compiler is warning us that no clause from the if at @ will
ever match because its only guard evaluates to false. Remember that in

Erlang, everything must return something,
and if expressions are no exception to the
rule. As such, when Erlang can’t find a way to
have a guard succeed, it will crash; it cannot
not return something (this explains why the
VM threw a “no true branch found” error
when it got mad). We need to add a catchall
branch that will always succeed no matter
what. In most languages, this would be called
an else. In Erlang, we use true, like this:

e

oh_god(N) ->
if N =:= 2 -> might_succeed;

true -> always_does %% This is Erlang's if's 'else!’

end.

And now we can test this new function (the old one will keep spitting
warnings; ignore them or take them as a reminder of what not to do):

3> c(what_the_if).

./what_the_if.erl:12: Warning: no clause will ever match
./what_the_if.erl:12: Warning: the guard for this clause evaluates to 'false’
{ok,what_the_if}

4> what_the_if:oh_god(2).

might_succeed

5> what_the_if:oh_god(3).

always_does

Here’s another function that shows how to use many guards in an if
expression:

%% Note that this one would be better as a pattern match in function heads!
%% I'm doing it this way for the sake of the example.
help_me(Animal) ->
Talk = if Animal == cat -> "meow";
Animal == beef -> "mooo";
Animal == dog -> "bark";
Animal == tree -> "bark";
true -> "fgdadfgna"
end,
{Animal, "says " ++ Talk ++ "!"}.

This function also demonstrates how any expression must return
something. Talk has the result of the if expression bound to it, and is then
concatenated in a string, inside a tuple. When reading the code, it’s easy
to see how the lack of a true branch would mess things up, considering
Erlang has no such thing as a null value (such as Lisp’s nil, C’s NULL, and
Python’s None).

Let’s try it:

6> c(what_the_if).

./what_the_if.erl:12: Warning: no clause will ever match
./what_the_if.erl:12: Warning: the guard for this clause evaluates to 'false’
{ok,what_the_if}

7> what_the_if:help_me(dog).

{dog, "says bark!"}

8> what_the_if:help_me("it hurts!").

{"it hurts!","says fgdadfgna!"}

Syntax in Functions 51

52

You might be one of the many Erlang programmers wondering why true
has taken over else as an atom to control flow—after all, else is much more
familiar. Richard O’Keefe gave the following answer on the Erlang mailing
lists, which I'll quote directly because I couldn’t have put it better:

It may be more FAMILIAR, but that doesn’t mean ‘else’ is a good
thing. I know that writing ‘; true ->’ is a very easy way to get ‘else’
in Erlang, but we have a couple of decades of psychology-of-
programming results to show that it’s a bad idea. I have started

to replace by
if X>VY - a() if X>Y - al)
; true -> b() 5 X =<Y - b()
end end
if X>VY - a() if X>VY - a()
;5 X <Y > b() 5 X <Y > b()
; true > () 5 X ==Y > c()
end end

which I find mildly annoying when _writing_ the code but enor-
mously helpful when _reading_it."

In other words, else or true branches should be avoided altogether. The
if expressions are usually easier to read when you cover all logical ends,
rather than relying on a catchall clause.

All this horror expressed by the function names in what_the_if.erl is in regard to the
if language construct when seen from the perspective of any other language’s if. In
Erlang, it turns out to be a perfectly logical construct with a confusing name.

As mentioned earlier, only a limited set of functions can be used
in guard expressions (we’ll look at more of them in Chapter 4). This is
where the real conditional powers of Erlang must be conjured. I present
to you. .. the case expression!

In case ... of

Chapter 3

If the if expression is like a guard, a case ... of expression is like the whole
function head. You can have the complex pattern matching available for
each argument of a function, and you can have guards, too.

For this example, we’ll write the insert function for sets (a collection of
unique values) that we will represent as an unordered list. This may be the

1. hitp://erlang.org/pipermail/erlang-questions/2009-January/041229. himl

http://erlang.org/pipermail/erlang-questions/2009-January/041229.html

worst implementation possible in terms of efficiency, but what we want here
is the syntax. Enter the following code in a file named cases.erl:

insert(X,[]) ->
[X1;
insert(X,Set) -»
case lists:member(X,Set) of
true -> Set;
false -> [X]|Set]
end.

If we send in an empty set (list) and a term X to be added, this code
returns a list containing only X. Otherwise, the function lists:member/2
checks whether an element is part of a list, and returns true if it is or false
if it is not. If we already have the element X in the set, we do not need to
modify the list. Otherwise, we add X as the list’s first element.

In this case, the pattern matching is really simple. However, it can get
more complex, as in this example (still in the cases module):

beach(Temperature) ->
case Temperature of
{celsius, N} when N >= 20, N =< 45 ->
'favorable';
{kelvin, N} when N >= 293, N =< 318 ->
'scientifically favorable';
{fahrenheit, N} when N >= 68, N =< 113 ->
'favorable in the US';
->
'avoid beach'
end.

Here, the answer to “Is it the right time to go to the beach?” is given
in three different temperature systems: Celsius, Kelvin, and Fahrenheit.
Pattern matching and guards are combined in order to return an answer
satisfying all uses.

As pointed out earlier, case ... of expressions are pretty much the same
thing as a bunch of function heads with guards. In fact, we could have writ-
ten our code the following way:

beachf({celsius, N}) when N >= 20, N =< 45 ->
'favorable';

beachf() ->
'avoid beach'.

This raises the question of whether we should use if, case ... of, or
functions for conditional expressions.

Syntax in Functions 53

54

Which Should We Use?

Chapter 3

Which of these three expressions—if, case ... of,
or functions—to use is rather hard to answer. The
differences between function calls and case ... of

are minimal. In fact, they are represented the same
way at a lower level, and they both effectively have

the same performance cost. One obvious difference
arises when more than one argument needs to be
evaluated. For example, function(A,B) -> ... can have
guards and values to match against A and B, but a case
expression would need to be formulated a bit, like this:

case {A,B} of
Pattern Guards -> ...
end.

This form might seem a bit surprising. In similar situations, using
a function call might be more appropriate. On the other hand, the insert/2
function we wrote earlier is arguably cleaner the way it is, rather than hav-
ing an immediate function call to track down a simple true or false clause.

And why would you ever use if, given that case expressions and functions
are flexible enough to even encompass if through guards? The rationale
behind if is quite simple: It was added to the language as a short way to
have guards without needing to write the whole pattern-matching part
when it wasn’t needed.

Of course, all of this is mostly a matter of personal preference. There is
no good, solid answer. In fact, this topic is still debated by the Erlang com-
munity from time to time. No one is going to try to beat you up because
of the method you’ve chosen, as long as it is easy to understand. As Ward
Cunningham, inventor of the wiki, once putit, “Clean code is when you
look at a routine and it’s pretty much what you expected.”

TYPES (OR LACK THEREOF)

Modern functional languages are often known for
their fancy type systems, which are powerful systems
that let programmers obtain more safety and speed
while doing less. Static type systems vary a lot—from

C- and Java-like systems where annotations are provided to the compiler, to
rather complex systems that depend on advanced mathematical concepts
to guarantee the crash-free nature of a program. Other type systems are
rather crude—not static at all, but dynamic. They give no guarantees about
the safety of a piece of software, and just check everything while it runs.

This chapter introduces Erlang’s type system, the reasons behind its
use, and how that affects you, as a brand-new Erlang programmer.

Dynamite-Strong Typing

As you might have noticed when trying the examples in Chapter 1, and
then creating modules and functions in Chapters 2 and 3, we never

needed to specify the type of a variable or the type of a function. When
pattern matching, the code we wrote didn’t need to know what it would

56

Chapter 4

be matched against. The tuple {X,Y} could be matched with {atom, 123}, as
well as {"A string", <«"binary stuffl">»}, {2.0, ["strings","and",atoms]}, or really
anything at all.

When it didn’t work, an error was thrown in your face, but only once
you ran the code. This is because Erlang is dynamically typed. Every error is
caught at runtime, and the compiler won’t always yell at you when compil-
ing modules where things may result in failure, as in the 5 + 1lama example
in Chapter 1.

One classic friction
point between proponents
of static and dynamic typing
has to do with the safety of
the software being written.
Some programmers claim
that good static type sys-
tems will catch most errors
before you can even execute
the code. As such, statically
typed languages are typi-
cally seen as safer than their dynamic counterparts. While this might be
true in comparison with many dynamic languages, Erlang begs to differ,
and it has a track record to prove it.

The best example of Erlang’s robustness is the often-reported nine
nines (99.9999999 percent) of availability offered on the Ericsson AXD 301
ATM switches, which consist of more than a million lines of Erlang code.
Please note that this is not an indication that none of the components in
an Erlang-based system failed, but that a general switch system was available
99.9999999 percent of the time, planned outages included. This is partially
because Erlang is built on the notion that a failure in one of the components
should not affect the whole system. It accounts for errors coming from the
programmer, hardware failures, and some network failures. The language
includes features that allow distributing a program to different nodes. It
can handle unexpected errors and never stop running.

To put it simply, while most languages and type systems aim to allow
error-free programs, Erlang assumes that errors will happen and includes
features that make those errors easier to handle smoothly and without
unnecessary downtime. So Erlang’s dynamic type system is not a barrier to
the reliability and safety of programs. This sounds like a lot of prophetic
talking, but you'll see the gritty details in later chapters.

Dynamic and Static
languages fighting it out

Dynamic typing was historically chosen for simple reasons. The programmers who
first implemented Erlang mostly came from dynamically typed languages, and as
such, making Erlang dynamic was a natural choice for them. Indirectly, this also
proved to be the simplest way to allow hot-reloading (updating code without stopping
it first). Doing static type checking on systems where any of its components might be
replaced at any time proves to be quite difficult compared to doing it dynamically.

Erlang is also strongly typed. A weakly typed language would do
implicit type conversions between terms. For example, if Erlang were
weakly typed, we could do the operation 6 = 5 + "1". But because of
Erlang’s strong typing, trying this operation raises an exception for
bad arguments:

1> 6 + "1

** exception error: bad argument in an arithmetic expression
in operator +/2

called as 6 + "1"

Of course, there are times when you may want to convert one kind of
data to another type. For example, you might want to change regular strings
into binary strings to store them, or convert an integer to a floating-point
number. The Erlang standard library provides a number of functions to
do these conversions.

Type Conversions

Erlang, like many languages, changes the type of a term by casting it into
another one. This is done with the help of BIFs, as many of the conversions
could not be implemented in Erlang itself. Each of these functions takes the
form TypeA_to_TypeB, and they are implemented in the erlang module. Here
are a few of them:

1> erlang:list_to_integer("54").

54

2> erlang:integer_to_list(54).

"oa"

3> erlang:list_to_integer("54.32").
** exception error: bad argument

in function 1list_to_integer/1
called as list to_integer("54.32")
4> erlang:list_to_float("54.32").
54.32

5> erlang:atom_to_list(true).

"true"

6> erlang:list_to_binary("hi there").
<<"hi there">>

7> erlang:binary_to_list(«"hi there"»s).
"hi there"

We’re hitting on a language wart here: Because the scheme Type_to_Type
is used, every time a new type is added to the language, a whole lot of con-
version BIFs need to be added by the OTP team!

Types (or Lack Thereof) 57

58

Here’s the whole list already there:

atom_to_binary/2 integer_to_list/1 list_to_integer/2
atom to list/1 integer to_list/2 list to pid/1
binary_to_atom/2 iolist_to_atom/1 list_to_tuple/1
binary_to_existing_atom/2 iolist to_binary/i pid to list/1
binary_to_list/1i list_to_atom/1 port_to_list/1
binary to term/1 list to binary/1i ref to list/1
binary_to_term/2 list_to_bitstring/1 term_to_binary/1
bitstring to list/1 list to _existing_atom/1 term_to_binary/2
float_to_list/1 list_to_float/1 tuple_to_list/1

fun_to list/1

That’s a lot of conversion functions. You’ll see most, if not all, of these
types in this book, although we probably won’t need all of these functions
in our code.

The BIF binary_to_term/2 lets you unserialize data the same way binary_to_term/1
does. The big difference is that the second argument is an option list. If you pass

in [safe], the binary won’t be decoded if it contains unknown atoms or anonymous
Sfunctions, which could exhaust the memory of a node or represent a security risk. Use
binary_to_term/2 rather than binary_to_term/1 if you are decoding data that could be
unsafe.

To Guard a Data Type

Chapter 4

Erlang basic data types are easy to spot: Tuples have curly brackets, lists
have square brackets, strings are enclosed in double quotation marks, and so
on. So, we've been able to enforce a certain data type with pattern matching.
For example, a function head/1 taking a list could accept only lists because
otherwise the matching ([H|_]) would fail.

However, we ran into a problem when pattern matching with numeric
values because we couldn’t specify ranges. So, in Chapter 3, we used guards
in functions that needed to test for certain ranges, such as temperatures,
ages, and so on. We’re hitting another roadblock now. How could we write
a guard that ensures that patterns match against data of a single specific
type, like numbers, atoms, or binaries?

There are functions dedicated to the task of guard-
ing data types. They take a single argument and return

true if the type is correct; otherwise, they return false. They are part of the
few functions allowed in guard expressions and are named the type-test BIFs.
The following are the Erlang type-test BIFs:

is_atom/1 is_function/1 is_port/1
is_binary/1i is function/2 is_record/2
is_bitstring/1 is_integer/1 is_record/3
is_boolean/1 is list/1 is _reference/1
is_builtin/3 is_number/1 is_tuple/1

is float/1 is pid/1

These functions can be used like any other guard expression, wherever
guard expressions are allowed.

You might be wondering why there is no function that just gives the
type of the term being evaluated (something akin to type_of(X) -> Type).
The answer is simple: Erlang is about programming for the right cases. You
program only for what you know will happen and what you expect, and
everything else should cause an error as soon as possible. As such, having
a single function type_of(X) would encourage people to write conditional
branches to code, a bit like this:

my function(Exp) ->
case type_of(Exp) of
binary -> Expressioni;
list -> Expression2
end.

This code is equivalent to the following:

my function(Exp) when is_binary(Exp) -> Expressioni;
my_function(Exp) when is_list(Exp) -> Expression2.

The declarative nature of the language favors the latter form, where we
do branching through function heads by specifying what we expect, rather
than handling one of many types that a function like type_of(X) might return.

Type-test BIFs constitute more than half of the functions allowed in guard
expressions. The rest are also BIFs, but do not represent type tests. These include
abs(Number), bit_size(Binary), byte size(Binary), element(N, Tuple), float(Term),
hd(List), length(List), node(), node(Pid[Ref|Port), round(Numbezr), self(), t1(List),
trunc(Number), and tuple_size(Tuple). The functions node/1 and self/0 are related
to distributed Erlang and processes/actors.

Types (or Lack Thereof 59

60

It may seem like Erlang data structures are relatively limited, but lists and
tuples are usually enough to build other complex structures. For example, the
basic node of a binary tree could be represented as {node, Value, Left, Right},
where Left and Right are either similar nodes or empty tuples. I could also
represent myself as follows:

{person, {name, <<"Fred T-H">>},

{qualities, ["handsome", "smart", "honest", "objective"]},

{faults, ["liar"l]},

{skills, ["programming", "bass guitar", "underwater breakdancing"]}}.

This shows that by nesting tuples and lists, and filling them with data,
we can obtain complex data structures and build functions to operate
on them.

For Type Junkies

Chapter 4

If you’re a programmer who somehow can’t live without a static type system,
I'invite you to jump to Chapter 30, which covers Dialyzer.

In that chapter, I will briefly describe
tools used to do static type analysis in
Erlang, allowing you to define custom
types and get more safety that way.

The types are entirely optional, and
although useful, they are not necessary
to make good Erlang programs.

HELLO RECURSION!

Some readers accustomed to imperative and object-
oriented programming languages might be wonder-
ing why we haven’t covered loops already. The answer
to this is a question: What is a loop? The truth is that

functional programming lan-
guages usually do not offer |
looping constructs like for

and while. Instead, functional
programmers rely on a silly

concept called recursion, which

is the topic of this chapter.

?
B .. thereuet’

/| ?
. .
D we H’lera u{e?’)

©
\mgurasr_‘fou ¢

62

How Recursion Works

Chapter 5

Recall how invariable variables were explained in Chapter 1 (if you can’t,
reread “Invariable Variables” on page 11). Recursion can also be explained
with the help of mathematical concepts and functions.

A basic mathematical function such as the factorial of a value is a good
example of a function that can be expressed recursively. The factorial of a
number 7 is the product of the sequence 1 x 2 x 3 x ... x n, or alternatively
nxn—1xn-2x..x 1. In mathematical notation, the factorial of a num-
ber is represented as the number followed by an exclamation point (!). To
give some examples, the factorial of 3is 3! =3 x 2 x 1 = 6, and the factorial
of 4is 4! =4 x 3 x 2 x 1 = 24. Such a function can be expressed the following
way in mathematical notation:

. ifn=0
(=1 ifn>0

This tells us that if the value of nis 0, we return the result 1. For any
value above 0, we return » multiplied by the factorial of n— 1, which unfolds
until it reaches 1:

4! =4 x 3!

41 =4 x 3 x 2!
41=4x3x2x1!
41=4x3x2x1x1

How can such a function be translated from mathematical notation to
Erlang? The conversion is simple enough. Take a look at the parts of the
notation: n!, 1, and n((n - 1)!), and then the if expressions. What we have
here is a function name (n!), guards (the ifs), and a function body (1 and
n((n-1)!)). We’ll rename n! to fac(N) to restrict our syntax a bit, and we get the
following:

-module(recursive).
-export([fac/1]).

fac(N) when N == 0 -> 1;
fac(N) when N > 0 -> N*fac(N-1).

And this factorial function is now complete! It’s pretty similar to the
mathematical definition, really. With the help of pattern matching, we can
shorten the definition a bit:

fac(0) -> 1;
fac(N) when N > 0 -> N*fac(N-1).

We looped by using a function that calls itself! And you know what?
“A function that calls itself” is one way to define recursion.

However, having a function that calls itself is not enough. If the func-
tion just calls itself forever, it will, unsurprisingly, continue forever. What
we need is a stopping condition (called a base case), which is a function
clause where we return a value rather than calling the function again. In
our case, the stopping condition is when n is equal to 0. At that point, we no
longer tell our function to call itself, and it stops its execution right there by
returning 1.

Length of a List

Let’s try a slightly more practical example. We’ll implement a function to
count how many elements a list contains. So we know from the beginning
that we will need the following:

e A base case
e A function that calls itself

e Alist to test our function

With most recursive functions, I find it easier to write the base case
first. What’s the simplest input we’ll need to find the length of? Surely an
empty list, with a length of 0, is the simplest case. So let’s make a mental
note that [] = 0 when dealing with lengths. Then the next simplest list has
alength of 1: [_] = 1. This sounds like enough to get going with our defini-
tion. We can write this down:

len([]) -> 0;
len([_]) -> 1.

Awesome! We can calculate the length of lists, given the length is either
0 or 1. Very useful indeed! Of course, it’s useless, because it’s not yet recur-
sive, which brings us to the hardest part: extending our function so it calls
itself for lists longer than 1 or 0.

I mentioned in Chapter 1 that lists are defined recursively as
[| [2] ... [n] [111]. This means we can use the [H|T] pattern to match
against lists of one or more elements, as a list of length 1 will be defined as
[X|[1], and a list of length 2 will be defined as [X|[Y|[]]]. Note that the second
element is a list itself. This means that we need to count only the first one,
and the function can call itself on the second element. Given each value in a
list counts as a length of 1, the function can be rewritten the following way:

len([]) -> 0;
len([_|T]) -> 1 + len(T).

Hello Recursion! 63

64

Chapter 5

And now you have your own recursive function to calculate the length
of a list. To see how len/1 behaves when it runs, let’s try it on a given list, say
[1) 213)4] :

18”([1,2,3,4]) = 1en(
+

| [2,3,4])
n([2 | [3,4]])

+ len([3 | [4]])
+ 1+ len([4 | []])
+1+ 1+ len([])
+1+1+0
+1+1
+

[1
le
1
1
1
1
1
1+2
3

I
PR RPRRRRRRR
+ + + + + + +

And we get the correct answer. Congratulations on your first useful
recursive function in Erlang!

Length of a Tail Recursion

You might have noticed that for a list of four terms, we expanded our func-
tion call to a single chain of five additions. While this does the job fine for
short lists, it can become problematic if your list has a few million values in
it. You don’t want to keep millions of numbers in memory for such a simple
calculation. It’s wasteful, and there’s a better way. Enter tail recursion.

Tail recursion is a way to
transform the preceding linear

process (it grows as much as
Tai

there are elements) to an itera- Recurson
tive one (there is not really any _gerd
growth). To make a function Age

call tail recursive, it needs to be
“alone,” which requires a bit of
explanation.

What made our previous calls grow is how the answer to the first part
depends on evaluating the second part. The answer to 1 + len(Rest) needs
the answer to len(Rest) to be found. The function len(Rest) itself then
needs the result of another function call to be found. The additions are
stacked until the last one is found, and only then is the final result calcu-
lated. Tail recursion aims to eliminate this stacking of operations by reduc-
ing them as they happen.

To achieve this, we will need to hold an extra temporary variable as
a parameter in our function. I'll illustrate the concept with the help of
the factorial function, but this time defining it to be tail recursive. The

aforementioned temporary variable is sometimes called an accumulator, and
it acts as a place to store the results of our computations as they happen in
order to limit the growth of our calls:

tail fac(N) -> tail fac(N,1).

tail fac(0,Acc) -> Acc;
tail fac(N,Acc) when N > 0 -> tail fac(N-1,N*Acc).

Here, we define both tail_fac/1 and tail_fac/2. This is necessary because
Erlang doesn’t allow default arguments in functions (different arity means
different function), so we do that manually. In this specific case, tail _fac/1
acts like an abstraction over the tail recursive tail fac/2 function. The details
about the hidden accumulator of tail_fac/2 don’t interest anyone, so we would
export only tail fac/1 from our module. When running this function, we
can expand it to the following:

tail fac(4) tail fac(4,1)

tail fac(4,1) = tail fac(4-1, 4*1)
tail fac(3,4) = tail fac(3-1, 3*4)
tail fac(2,12) = tail_fac(2-1, 2*12)
tail fac(1,24) = tail fac(1-1, 1*24)
tail fac(0,24) = 24

Do you see the difference? Now we never need to hold more than two
terms in memory, so the space usage is constant. It will take as much space
to calculate the factorial of 4 as it will to calculate the factorial of 1,000,000
(that is, if we forget that 4! is a smaller number than 1,000,000! in its com-
plete representation).

With an example of tail recursive factorials under your belt, you might
be able to see how this pattern could be applied to our len/1 function. We
need to make our recursive call alone. If you like visual examples, just
imagine you’re going to put the +1 part inside the function call by adding
a parameter. So this:

len([]) -> 05
len([_|T]) -> 1 + len(T).

becomes the following:

tail len(L) -> tail len(L,0).

tail len([], Acc) -> Acc;
tail len([_|T], Acc) -> tail len(T,Acc+1).

And now our length function is tail recursive.

Hello Recursion! 65

66

More Recursive Functions

Chapter 5

We’ll write a few more recursive func-
tions, just to get in the habit. After all,
since recursion is the only looping con-
struct that exists in Erlang (except list
comprehensions), it’s one of the most
important concepts to understand. It’s
also useful in every other functional
programming language you’ll try, so
take notes!

A Duplicate Function

The first function we’ll write is duplicate/2. This function takes an integer as
its first parameter and any other term as its second parameter. It then cre-
ates a list of as many copies of the term as specified by the integer.

Again, thinking of the base case first might help us get going. For
duplicate/2, asking to repeat something zero times is the most basic thing
that can be done. All we need to do is return an empty list, no matter what
the term is. Every other case needs to try to get to the base case by call-
ing the function itself. We will also forbid negative values for the integer,
because you can’t duplicate something —n times. Here are these cases:

duplicate(o,_) -»
(5

duplicate(N,Term) when N > 0 ->
[Term|duplicate(N-1,Term)].

Once the basic recursive function is found, it becomes easier to trans-
form it into a tail recursive one by moving the list construction into a tem-
porary variable:

tail duplicate(N,Term) ->
tail duplicate(N,Term,[]).

tail duplicate(o, ,List) ->
List;
tail duplicate(N,Term,List) when N > 0 ->
tail duplicate(N-1, Term, [Term|List]).

Success!

A Reverse Function

There’s also an interesting property that we can discover when we compare
recursive and tail recursive functions by writing a reverse/1 function, which
will reverse a list of terms. For such a function, the base case is an empty

RECURSION IS LIKE A WHILE LOOP

Comparing tail recursion with a while loop helped me a lot when | was first learn-
ing about recursion. Our tail_duplicate/2 function has all the usual parts of a
while loop. If we were to imagine a while loop in a fictional language with Erlang-
like syntax, our function could look a bit like this:

function(N, Term) ->
while N > 0 ->
List = [Term|List],
N = N-1
end,
List.

Note that all the elements exist in both the fictional language and in Erlang;
only their position changes. This demonstrates that a proper tail recursive function
is similar o an iterative process, like a while loop. If recursion is confusing and
you're used to while loops, translating them directly might help. Just be careful—
once you've used Erlang for a while, you might end up thinking recursively
and need to translate the other way around if you ever go back to imperative
languages!

list, for which we have nothing to reverse. We can just return an empty list
when that happens. Every other possibility should try to converge to the
base case by calling itself, as with duplicate/2. Our function is going to iter-
ate through the list by pattern matching [H|T], and then putting H after the
rest of the list:

reverse([]) -> [];
reverse([H|T]) -> reverse(T)++[H].

On long lists, this will be a true nightmare. Not only will we stack up all
our append operations, but we will need to traverse the whole list for every
single append operation until the last one! For visual readers, the many
checks can be represented as follows:

reverse([1,2,3,4]) = [4]++[3]++[2]++[1]
1«
[4,3]++[2]++[1]
T1 !
[4,3,2]++[1]
P11 e

= [4,3,2,1]

This is where tail recursion comes to the rescue. Because we will use
an accumulator and will add a new head to it every time, our list will be
reversed automatically.

Hello Recursion! 67

68

Chapter 5

Let’s first see the implementation:

tail reverse(L) -> tail reverse(L,[]).

tail reverse([],Acc) -> Acc;
tail reverse([H|T],Acc) -> tail reverse(T, [H|Acc]).

If we represent this one in a similar manner as the normal version, we
get the following:

tail reverse([1,2,3,4]) = tail reverse([2,3,4], [1])
tail_reverse([3,4], [2,1])
tail reverse([4], [3,2,1])
tail_reverse([], [4,3,2,1])
[4,3,2,1]

This shows that the number of elements visited to reverse our list is now
linear. Not only do we avoid growing the stack, we also do our operations
much more efficiently!

A Sublist Function

Another function we’ll implement is sublist/2, which takes a list L and
an integer N, and returns the N first elements of the list. As an example,
sublist([1,2,3,4,5,6],3) returns [1,2,3].

Again, the base case is trying to obtain zero elements from a list. But
we need to be careful, because sublist/2 is a bit different. We have a second
base case when the list passed is empty! If we do not check for empty lists,
an error will be thrown when calling recursive:sublist([1],2), when we want
[1] instead. Once this is defined, the recursive part of the function only
needs to cycle through the list, keeping elements as it goes, until it hits one
of the base cases, as follows:

sublist(_,0) -> [1;
sublist([],) -> [1;
sublist([H|T],N) when N > 0 -> [H|sublist(T,N-1)].

This can then be transformed to a tail recursive form in the same man-
ner as before:

tail sublist(L, N) -> tail sublist(L, N, []).

tail sublist(_, 0, SublList) -> SubList;

tail sublist([], _, SubList) -> SubList;

tail sublist([H|T], N, SubList) when N > 0 ->
tail sublist(T, N-1, [H|SubList]).

There’s a flaw in this function—a fatal flaw! We use a list as an accu-
mulator in exactly the same manner as we did to reverse our list. If you
compiled this function as is, sublist([1,2,3,4,5,6],3) would not return [1,2,3]

but instead would give you [3,2,1]. The only thing we can do is take the final
result and reverse it ourselves. Just change the tail_sublist/2 call and leave
all our recursive logic intact:

tail sublist(L, N) -> reverse(tail sublist(L, N, [])).

The final result will be ordered correctly. It might seem like reversing
our list after a tail recursive call is a waste of time, and that’s partially right
(we still save memory doing this). On shorter lists, you might find your code
is running faster with normal recursive calls than with tail recursive calls
for this reason, but as your data sets grow, reversing the list will be compara-
tively lighter.

Instead of writing your own reverse/1 function, you should use lists:reverse/1. It
has been used so much for tail recursive calls that the maintainers and developers of
Erlang decided to turn it into a BIF. Your lists can now benefit from extremely fast
reversal (thanks to functions written in C), which will make the reversal disadvan-
tage a lot less obvious. The rest of the code in this chapter will make use of our own
reversal function, but after that, you should never use it again.

A Zip Function

To push things a bit further, we’ll write a zipping function. A zipping func-
tion takes two lists of the same length as parameters and joins them as a
list of tuples, which all hold two terms. Our own zip/2 function will behave
this way:

1> recursive:zip([a,b,c],[1,2,3]).

[{a,1},1{b,2},{c,3}]

Given that we want both our parameters to have the same length, the
base case will be zipping two empty lists:

zip([1,[1) -> [1;
zip([X|Xs],[Y[Ys]) -> [{X,Y}|zip(Xs,Ys)].

However, if we wanted a more lenient zipping function, we could decide
to have it finish whenever one of the two lists is done. In this scenario, we
have two base cases:

lenient _zip([1,) -> [1;
lenient_zip(_,[1) -> [1;
lenient_zip([X|Xs],[Y|Ys]) -> [{X,Y}|lenient_zip(Xs,Ys)].

Notice that no matter what our base cases are, the recursive part of the
function remains the same.

Hello Recursion! 69

70

Chapter 5

LAST CALL OPTIMIZATION

Tail recursion as seen here is not making the memory consumption grow, because
when the VM sees a function calling itself in a tail position (the last expression to
be evaluated in a function), it eliminates the current stack frame. This is called tail
call optimization (TCO), and it is a special case of a more general optimization
named last call optimization (LCO).

LCO is done whenever the last expression to be evaluated in a function body
is another function call. When that happens, as with TCO, the Erlang VM avoids
storing the stack frame. As such, tail recursion is also possible between multiple
functions. As an example, the chain of functions a() -> b(). b() -> c(). () -> a().
will effectively create an infinite loop that won't run out of memory, as LCO avoids
overflowing the stack. This principle, combined with the use of accumulators, is
what makes tail recursion useful.

I suggest that you try to make your own tail recursive versions of zip/2
and lenient_zip/2, just to make sure you fully understand how to make tail
recursive functions. They will be one of the central concepts of larger appli-
cations, where the main loops will be made that way.

If you want to check your answers, take a look at my implementation of
recursive.erl (hitp://learnyousomeerlang.com/static/erlang/recursive.erl), particu-
larly the tail_zip/2 and tail_lenient_zip/3 functions.

Quick, Sort!

Just to ensure that recursion and

tail recursion make sense to you, /_r J C] J’\){ \1 28&3 d SQ‘
we’ll push forward with a more
complex example: quicksort. Yes, g
this is the canonical “Hey look, I
can write short functional code” ml_t 5 -ol
example.

A naive implementation of 1 Lt S jq
quicksort works by taking the first 1 Lt g Q) '\1[8 ﬂ

element of a list, the pivot, and then

putting all the elements smaller 133 L(5 6 '\]l "9
than or equal to the pivot in a
new list and all those larger than D < < D
the pivot in another list. We then
take each of these lists and do the same thing on them until each list gets
smaller and smaller. This goes on until we have nothing but an empty list
to sort, which will be our base case. This implementation is said to be naive
because smarter versions of quicksort will try to pick optimal pivots to be
faster. We don’t really care about that for our example.

We will need two functions for this one: a function to partition the list
into smaller and larger parts, and another function to apply the partition

function on each of the new lists and to glue them together. First, we’ll
write the glue function (you can do this in recursive.erl):

quicksort([]) -> [I;

quicksort([Pivot|Rest]) ->
{Smaller, Larger} = partition(Pivot,Rest,[],[]),
quicksort(Smaller) ++ [Pivot] ++ quicksort(Larger).

This shows the base case, a list already partitioned in larger and smaller
parts by another function, and the use of a pivot with both lists quicksorted
appended before and after it. So this should take care of assembling lists.

Next, we write the partitioning function:

partition(_,[], Smaller, Larger) -> {Smaller, Larger};
partition(Pivot, [H|T], Smaller, Larger) -»>
if H =< Pivot -»> partition(Pivot, T, [H|Smaller], Larger);
H > Pivot -> partition(Pivot, T, Smaller, [H|Larger])
end.

And you can now run our quicksort function.

If you've looked for Erlang examples on the Internet, you might have
seen another implementation of quicksort—one that is simpler and easier
to read, but makes use of list comprehensions. The easy-to-replace parts are
the ones that create new lists, the partition/4 function:

1c_quicksort([]) -> [1;

lc_quicksort([Pivot|Rest]) ->
lc_quicksort([Smaller || Smaller <- Rest, Smaller =< Pivot])
++ [Pivot] ++
lc_quicksort([Larger || Larger <- Rest, Larger > Pivot]).

DON’'T DRINK TOO MUCH KOOL-AID

Al this conciseness is good for educational purposes, but not for performance.
Many functional programming tutorials never mention this! First of all, both imple-
mentations of quicksort shown here need to process values that are equal to the
pivot more than once. We could have decided to instead return three lists—
elements smaller, larger, and equal to the pivot—to make this more efficient.

Another problem relates to how we need to traverse all the partitioned lists
more than once when attaching them to the pivot. It is possible to reduce the over-
head a little by doing the concatenation while partitioning the lists in three parts. If
you're curious about this, look at the last function (bestest_gsort/1) of recursive.erl
for an example.

A nice point about all of these quicksort versions is that they will work on lists
of any data type you have, even tuples of lists and whatnot. Try them, and you'll
see that they work.

Hello Recursion! 71

72

This version is much easier to read, but in exchange, it must traverse
the list to partition it in two parts. This is a battle of clarity vs. performance,
although the real loser here is you, because a lists:sort/1 function already
exists. Use that one instead.

More Than Lists

Chapter 5

At this point, you might think that recursion in Erlang mainly concerns
lists. While lists are a good example of a data structure that can be defined
recursively, there’s certainly more to recursion than working with lists. For
the sake of diversity, we’ll look at how to build binary trees and then read
data from them.

First, it’s important to define what a tree is. In our
case, a tree has nodes all the way down. Nodes are
tuples that contain a key, a value associated with the
key, and then two other nodes. Of these two nodes,
we need one that has a smaller key and one that has
a larger key than the node holding them. So here’s
recursion! A tree is a node containing nodes, each
of which contains nodes, which, in turn, also contain
nodes. This can’t keep going forever (we don’t have
infinite data to store), so we’ll say that our nodes can
also contain empty nodes.

To represent nodes, tuples are an appropriate data struc-
ture. For our implementation, we can then define these tuples as
{node, {Key, Value, Smaller, Larger}} (a tagged tuple!), where Smaller and
Larger can be another similar node or an empty node ({node, nil}). We
don’t need a concept more complex than that.

Let’s start building a module for our very basic tree implementation.
The first function, empty/0, returns an empty node. The empty node is the
starting point of a new tree, also called the root.

-module(tree).
-export([empty/0, insert/3, lookup/2]).

empty() -> {node, 'nil'}.

By using that function and then encapsulating all representations of
nodes the same way, we hide the implementation of the tree so people don’t
need to know how it’s built. All that information can be contained by the
module alone. If you ever decide to change the representation of a node,
you can then do it without breaking external code.

To add content to a tree, you must first understand how to recursively
navigate through it. Let’s proceed in the same way as we did for every other
recursion example: by first trying to find the base case.

Given that an empty tree is an empty node, our base case is thus logi-
cally an empty node. So whenever we hit an empty node, that’s where we
can add our new key/value. The rest of the time, our code must go through
the tree to try to find an empty node in which to put content.

To find an empty node starting from the root, we must use the fact that
the presence of Smaller and Larger nodes lets us navigate by comparing the
new key we have to insert to the current node’s key. If the new key is smaller
than the current node’s key, we try to find the empty node inside Smaller; if
it’s larger, we look inside Larger. There is one last case, though: What if the
new key is equal to the current node’s key? We have two options there: let
the program fail or replace the value with the new one. We’ll take the latter
option. Put into a function, all this logic works the following way:

insert(Key, Val, {node, 'nil'}) ->
{node, {Key, Val, {node, 'nil'}, {node, 'nil'}}};

insert(NewKey, NewVal, {node, {Key, Val, Smaller, Larger}}) when NewKey < Key ->
{node, {Key, Val, insert(NewKey, NewVal, Smaller), Larger}};

insert(NewKey, NewVal, {node, {Key, Val, Smaller, Larger}}) when NewKey > Key ->
{node, {Key, Val, Smaller, insert(NewKey, NewVal, Larger)}};

insert(Key, Val, {node, {Key, _, Smaller, Larger}}) ->
{node, {Key, Val, Smaller, Larger}}.

Note here that the function returns a completely new tree. This is typi-
cal of functional languages that have only single assignment. While this can
be seen as inefficient, updating a tree or adding an element usually requires
changing only the nodes that were modified up to the change. The other
nodes can be shared between both versions of the tree, strongly reducing
the memory overhead. In the following image, the node containing “E” is
added, which requires updating all of its parents. However, the entire left
side of the tree (starting with “B”) doesn’t change and can be kept the same
across versions. This concept is more regularly known to functional pro-
grammers as using persistent data structures.

old Nnew

Hello Recursion! 73

The last thing we need to do with our example tree implementation is
to create a lookup/2 function that will let us find a value from a tree by giving
its key. The logic needed is extremely similar to the logic used to add new
content to the tree: We step through the nodes, checking if the lookup key
is equal to, smaller than, or larger than the current node’s key. We have two
base cases: one when the node is empty (the key isn’t in the tree) and one
when the key is found. Because we don’t want our program to crash each
time we look for a key that doesn’t exist, we’ll return the atom undefined.
Otherwise, we’ll return {ok, Value}. If we only returned Value, and the node
contained the atom undefined, we would have no way to know if the tree did
return the correct value or failed to find it. By wrapping successful cases
in such a tuple, we make it easy to understand which is which. Here’s the
implemented function:

lookup(_, {node, 'nil'}) ->
undefined;
lookup(Key, {node, {Key, Vval, , }}) ->
{ok, Val};
lookup(Key, {node, {NodeKey, _, Smaller, _}}) when Key < NodeKey ->
lookup(Key, Smaller);
lookup(Key, {node, {_, _, _, Larger}}) ->
lookup(Key, Larger).

And we’re finished. Let’s test it by making a little email address book.
Compile the file and start the shell:

1> T1 = tree:insert("Jim Woodland", "jim.woodland@gmail.com", tree:empty()).
{node,{"Jim Woodland","jim.woodland@gmail.com",
{node,nil},
{node,nil}}}
2> T2 = tree:insert("Mark Anderson"”, "i.am.a@hotmail.com", T1).
{node,{"Jim Woodland","jim.woodland@gmail.com",
{node,nil},
{node, {"Mark Anderson","i.am.a@hotmail.com",
{node,nil},
{node,nil}}}}}
3> Addresses = tree:insert("Anita Bath", "abath@someuni.edu",
3> tree:insert("Kevin Robert", "myfairy@yahoo.com",
3> tree:insert("Wilson Longbrow", "longwil@gmail.com", T2))).
{node,{"Jim Woodland","jim.woodland@gmail.com",
{node,{"Anita Bath","abath@someuni.edu",
{node,nil},
{node,nil}}},
{node, {"Mark Anderson","i.am.a@hotmail.com",
{node, {"Kevin Robert","myfairy@yahoo.com",
{node,nil},

{node,nil}}},
{node,{"Wilson Longbrow","longwil@gmail.com",
{node,nil},

{node,nil}}}}}}}

74 Chapter 5

And now you can look up email addresses with it:

4> tree:lookup("Anita Bath", Addresses).
{ok, "abath@someuni.edu"}

5> tree:lookup("Jacques Requin”, Addresses).
undefined

That concludes our functional address book example built from a
recursive data structure other than a list! Anita Bath now . . .

OQur tree implementation is very naive. We do not support common operations such
as deleting nodes or rebalancing the tree to make the following lookups faster. If you’re
interested in implementing and/or exploring these, studying the implementation of
Erlang’s gb_trees module (YourErlangInstallPath/lib/stdlib/src/gb_trees.erl) is
a good idea. This is also the module you should use when dealing with trees in your
code, rather than reinventing the wheel.

Thinking Recursively

If you’ve understood everything in this chapter, thinking recursively is
probably becoming more intuitive. A different aspect of recursive defini-
tions when compared to their imperative counterparts (usually in while or
for loops) is that instead of taking a step-by-step approach (“do this, then
that, then this, then you're finished”), our approach is more declarative (“if
you get this input, do that; otherwise, do this”). This property is made more
obvious with the help of pattern matching in function heads.

If you still haven’t grasped how recursion works, maybe reading this
sentence will help you.

Joking aside, recursion coupled with pattern matching is sometimes
an optimal solution to the problem of writing concise algorithms that are
easy to understand. By subdividing each part of a problem into separate
functions until they can no longer be simplified, the algorithm becomes
nothing but assembling a bunch of correct answers coming from short rou-
tines (that’s a bit similar to what we did with quicksort). This kind of mental
abstraction is also possible with your everyday loops, but I believe the prac-
tice is easier with recursion. Your mileage may vary.

e w

AND NOW LADIES AND GENTLEMEN, ADISCUSSION:
THEAUTHOR VS, HIMSELF

Self: Okay, | think | understand recursion. | get the declarative aspect of it. | get it
has mathematical roots, like with invariable variables. | get that you find it easier
in some cases. What else?

Author: It respects a regular pattern. Find the base cases and write them down.
Then all the other cases should try to converge to these base cases to get your
answer. It makes writing functions pretty easy.

Hello Recursion! 75

76

Chapter 5

Self: Yeah, | got that. You repeated it a bunch of times already. My loops can do
the same thing.

Author: Yes, they can. | can't deny that.

Self: And another thing: Why bother writing all these non-tail recursive versions if
they're not as good as tail recursive ones?

Author: Oh, it's simply to make things easier to grasp. Moving from regular recur-
sion, which is prettier and easier to understand, to tail recursion, which is theoreti-
cally more efficient, sounded like a good way to show all of the options.

Self: Right, so they're useless except for educational purposes. | get it.

Author: Not exactly. In practice, you'll see little difference in the performance
between tail recursive and normal recursive calls. The areas to take care of are in
functions that are supposed to loop infinitely, like main loops. There are also types
of functions that will always generate very large stacks, be slow, and possibly
crash early if you don’t make them tail recursive. The best example of this is the
Fibonacci function, which grows exponentially if it's not iterative or tail recursive.
You should profile your code, see what slows it down, and fix it.

3
Fib(4)

2 e N I

Fib(3) Fib(2)

| ~ N AN

Fib(2) Fib() Fib() Fib(D)
PN | | |
Fib() Fib(@) | I %

| |
I @

Self: But loops are always iterative and make this a nonissue.
Author: Yes, but . . . but . . . my beautiful Erlang . . .

Self: Well isn’t that greate All that learning because there is no while or for in
Erlang. Thank you very much. I'm going back to programming my toaster in C!

Author: Not so fast there! Functional programming languages have other assets!
If we've found a few basic common points between many recursive functions
(accumulators, reversing at the end, and so on), a bunch of smart people found
many more common points and patterns. In fact, they found enough of them that
most frequent operations have been abstracted away in libraries. You'll rarely
need to write recursive functions yourself. If you stay around, you'll see how such
abstractions can be built. But for this, we will need more power. Let me tell you
about higher-order functions . . .

HIGHER-ORDER FUNCTIONS

An important part of all functional programming
languages is the ability to take a function you defined
and then pass it as a parameter to another function.
This binds that function parameter to a variable,

which can be used like any other variable within the function. A function
that can accept other functions transported around this way is called a
higher-order function. As you’ll learn in this chapter, higher-order functions
are a powerful means of abstraction and one of the best tools to master in
Erlang.

Let’s Get Functional

The concept behind carrying functions around and
passing them to higher-order functions is rooted in
mathematics, mainly lambda calculus. Basically, in
pure lambda calculus, everything is a function—even
numbers, operators, and lists. Because everything is
represented as a function, functions must accept other

78

Chapter 6

functions as parameters, and must be able to operate on them with even
more functions! (If you want a good, quick introduction to lambda calcu-
lus, read the Wikipedia entry for it.)

This concept might be a bit hard to grasp, so let’s start with an example
(this is nowhere close to real lambda calculus, but it illustrates the point).

-module(hhfuns).
-compile(export_all).

one() -> 1.
two() -> 2.

add(X,Y) -> X() + Y().

Now open the Erlang shell, compile the module, and get going:

1> c(hhfuns).

{ok, hhfuns}

2> hhfuns:add(one,two).

** exception error: bad function one

in function hhfuns:add/2

3> hhfuns:add(1,2).

** exception error: bad function 1

in function hhfuns:add/2

4> hhfuns:add(fun hhfuns:one/0, fun hhfuns:two/0).
3

Confusing? Not so much, once you know how it works (isn’t that always
the case?). In line 2, the atoms one and two are passed to add/2, which then
uses both atoms as function names (X() + Y()). If function names are writ-
ten without a parameter list, then those names are interpreted as atoms,
and atoms cannot be functions, so the call fails. This is why the expression
on line 3 also fails: The values 1 and 2 cannot be called as functions, and
functions are what we need!

To handle this issue, a new notation must be added to the language
in order to pass functions from outside a module. This is the purpose of
fun Module:Function/Arity:, which tells the VM to use that specific function
and then bind it to a variable.

So what are the gains of using functions in that manner? Well, a little
example might help answer that question. We’ll add a few functions to
hhfuns that work recursively over a list to add or subtract one from each
integer of a list.

increment([]) -> [];
increment([H|T]) -> [H+1|increment(T)].

decrement([]) -> [];
decrement([H|T]) -> [H-1|decrement(T)].

Do you see how similar these functions are? They basically do the same
thing: cycle through a list, apply a function on each element (+ or -), and
then call themselves again. Almost nothing changes in that code; only the
applied function and the recursive call are different. The core of a recursive
call on a list like that is always the same. We’ll abstract all the similar parts
in a single function (map/2) that will take another function as an argument.

map(_, [1) -> [1;
map(F, [H|T]) -> [F(H)[map(F,T)].

incr(X) -> X + 1.
decr(X) -> X - 1.

Now let’s test this in the shell.

1> c(hhfuns).

{ok, hhfuns}

2> L= [1)213;4)5]-

[1,2,3,4,5]

3> hhfuns:increment(L).

[2,3,4,5,6]

4> hhfuns:decrement(L).

[0,1,2,3,4]

5> hhfuns:map(fun hhfuns:incr/1, L).
[2,3,4,5,6]

6> hhfuns:map(fun hhfuns:decr/1, L).
[0,1,2,3,4]

Here, the results are the same, but we have just created a very smart
abstraction! Every time we want to apply a function to each element of a list,
we only need to call map/2 with our function as a parameter. However, it is a
bit annoying to need to put every function we want to pass as a parameter
to map/2 in a module, name it, export it, compile it, and so on. In fact, it’s
plainly unpractical. What we need are functions that can be declared on
the fly—the type of functions discussed next.

Anonymous Functions

Anonymous functions, or funs, address the problem of using functions as
parameters by letting you declare a special kind of function inline, with-
out naming that function. Anonymous functions can do pretty much
everything normal functions can do, except call themselves recursively
(how could they do that if they are anonymous?).

Anonymous functions have the following syntax:

fun(Args1) ->
Expressioni, Exp2, ..., ExpN;

(Args2) ->
Expressioni, Exp2, ..., ExpN;

Higher-Order Functions 79

80

Chapter 6

(Args3) ->
Expressioni, Exp2, ..., ExpN
end

Here’s an example of using an anonymous function:

7> Fn = fun() -> a end.
#Fun<erl_eval.20.67289768>

8> Fn().

a

9> hhfuns:map(fun(X) -> X + 1 end, L).
[2,3,4,5,6]

10> hhfuns:map(fun(X) -> X - 1 end, L).
[0,1,2,3,4]

And now you're seeing one of the things that make people like func-
tional programming so much: the ability to make abstractions on a very low
level of code. Basic concepts such as looping can thus be ignored, letting
you focus on what is done, rather than how to do it.

More Anonymous Function Power

Anonymous functions are pretty dandy for such abstractions, but they have
more hidden powers. Let’s look at another example:

11> PrepareAlarm = fun(Room) ->

11> io:format("Alarm set in ~s.~n",[Room]),
11> fun() -> io:format("Alarm tripped in ~s! Call Batman!~n",[Room]) end
11> end.

#Fun<erl eval.20.67289768>

12> AlarmReady = PrepareAlarm("bathroom").
Alarm set in bathroom.

#Fun<erl eval.6.13229925>

13> AlarmReady().

Alarm tripped in bathroom! Call Batman!
ok

Hold the phone, Batman! What’s going on here? Well,
first of all, we declare an anonymous function assigned to
PrepareAlarm. This function has not run yet. It is executed
only when PrepareAlarm("bathroom") is called. At that point,
the call to io:format/2 is evaluated, and the “Alarm set” text
is output. The second expression (another anonymous
function) is returned to the caller and then assigned to
AlarmReady. Note that in this function, the Room variable’s
value is taken from the “parent” function (PrepareAlarm).
This is related to a concept called closures. But before we can
talk about closures, we need to address the idea of scope.

Function Scope and Closures

A function’s scope can be imagined as the place where all the variables and
their values are stored. In the function base(A) -> B = A + 1., for example,

A and B are both defined to be part of base/1’s scope. This means that any-
where inside base/1, you can refer to A and B and expect a value to be bound
to them. And when I say “anywhere,” I ain’t kidding, kid. This includes
anonymous functions, too.

base(A) ->
B=A+1,
F = fun() -> A * B end,
F().

In this example, B and A are still bound to base/1’s scope, so the function
F can still access them. This is because F inherits base/1’s scope. As with most
kinds of real-life inheritance, the parents can’t get what the children have.

base(A) ->
B=A+1,
F=fun() -> C=A *B end,
FO»
C.

In this version of the function, B is still equal to A + 1, and F will still
execute fine. However, the variable C is only in the scope of the anonymous
function in F. When base/1 tries to access C’s value on the last line, it finds
only an unbound variable. In fact, if you tried to compile this function, the
compiler would throw a fit. Inheritance goes only one way.

It is important to note that the inherited scope follows the anonymous
function wherever it is, even when it is passed to another function. Here’s
an example:

a() ->
Secret = "pony",
fun() -> Secret end.

b(F) ->
"a/0's password is "++F().

Now we can compile it.

14> c(hhfuns).

{ok, hhfuns}

15> hhfuns:b(hhfuns:a()).
"a/0's password is pony"

Higher-Order Functions 81

82

Chapter 6

Who told a/0’s password? Well, a/0 did. While the anonymous func-
tion has a/0’s scope when it’s declared in there, the function can still carry
it when executed in b/1, as explained earlier. This is very useful because it
lets us carry around parameters and content out of their original context,
where the whole context itself is no longer needed (exactly as we did with
Batman in the previous section).

You're most likely to use anonymous functions to carry state around
when you have defined functions that take many arguments, but one of these
arguments remains the same all the time, as in the following example.

16> math:pow(5,2).

25.0

17> Base = 2.

2

18> PowerO0fTwo = fun(X) -> math:pow(Base,X) end.
#Fun<erl_eval.6.13229925>

17> hhfuns:map(Power0fTwo, [1,2,3,4]).
[2.0,4.0,8.0,16.0]

By wrapping the call to math:pow/2 inside an anonymous function with
the Base variable bound in that function’s scope, we made it possible to have
each of the calls to Power0fTwo in hhfuns:map/2 use the integers from the list as
the exponents of our base.

A little trap you might fall into when writing anonymous functions is
when you try to redefine the scope, like this:

base() ->
A=,
(fun() -> A =2 end)().

This will declare an anonymous function and then run it. As the anony-
mous function inherits base/0’s scope, trying to use the = operator compares
2 with the variable A (bound to 1). This is guaranteed to fail. However, we
can redefine the variable if we do that in the nested function’s head:

base() -»>
A=,
(fun(A) -> A = 2 end)(2).

And this works. If you try to compile it, you'll get a warning about shad-
owing: “Warning: variable ‘A’ shadowed in ‘fun’.” Shadowingis the term
used to describe the act of defining a new variable that has the same name
as one that was in the parent scope. This warning is there to prevent some
mistakes (usually rightly so), so you might want to consider renaming your
variables in these circumstances.

Now that we’ve covered scope, we can turn to closures. Closure is just
the idea of having a function that references some environment along with

it (the value’s part of the scope). In other words, a closure is what happens
when anonymous functions meet the concept of scope and carrying vari-
ables around.

We’ll set the anonymous function theory aside for now and explore
more common abstractions to avoid needing to write more recursive func-
tions, as I promised at the end of Chapter 5.

Maps, Filters, Folds, and More

At the beginning of this chapter, we took a brief look at how to abstract
away two similar functions to get a map/2 function:

map(_, [1) -> [1;
map(F, [H|T]) -> [F(H)[map(F,T)].

Such a function can be used for any
list where we want to act on each element.
However, there are many other similar
abstractions to build from commonly
occurring recursive functions.

Filters

First, we’ll look at filters. Consider the
following functions:

%% Only keep even numbers.
even(L) -> lists:reverse(even(L,[])).

even([], Acc) -> Acc;

even([H|T], Acc) when H rem 2 == 0 ->
even(T, [H|Acc]);

even([_|T], Acc) ->
even(T, Acc).

%% Only keep men older than 60.
old men(L) -> lists:reverse(old men(L,[])).

old men([], Acc) -> Acc;

old men([Person = {male, Age}|People], Acc) when Age > 60 ->
old_men(People, [Person|Acc]);

old men([_|People], Acc) ->
old men(People, Acc).

The first of these functions takes a list of numbers and returns only
those that are even. The second one goes through a list of people of the
form {Gender, Age} and keeps only those that are males over 60.

Higher-Order Functions 83

The similarities are a bit harder to find here than in the previous exam-
ples, but we have some common points. Both functions operate on lists and
have the same objective of keeping elements that succeed some test (also
called a predicate) and then dropping the others. From this generalization,
we can extract all the useful information we need and abstract them away,
like this:

filter(Pred, L) -> lists:reverse(filter(Pred, L,[])).

filter(_, [], Acc) -> Acc;
filter(Pred, [H|T], Acc) -»>
case Pred(H) of
true -> filter(Pred, T, [H|Acc]);
false -> filter(Pred, T, Acc)
end.

To use the filtering function, we now only need to pass in a predicate
outside of the function. Compile the hhfuns module and try it.

1> c(hhfuns).

{ok, hhfuns}

2> Numbers = lists:seq(1,10).

[1,2,3,4,5,6,7,8,9,10]

3> hhfuns:filter(fun(X) -> X rem 2 == 0 end, Numbers).

[2,4,6,8,10]

4> People = [{male,45},{female,67},{male,66},{female,12},{unkown,174},{male,74}].
[{male,45},{female,67},{male,66},{female,12},{unkown,174},{male,74}]

5> hhfuns:filter(fun({Gender,Age}) -> Gender == male andalso Age > 60 end, People).
[{male,66},{male,74}]

These two examples show that with the use of the filter/2 function, the
programmer needs to worry only about producing the predicate and the
list. The act of cycling through the list to throw out unwanted items is no
longer a consideration. This is one important thing about abstracting func-
tional code: Try to get rid of what’s always the same, and let the programmer
supply the parts that change.

Fold Everything

In Chapter 5, we looked at another kind of recursive list manipulation,
where we applied some operation to each element of a list successively to
reduce the elements to a single value. This is called a fold and can be used
to reduce the size of the following functions:

%% Find the maximum of a list.
max([H|T]) -> max2(T, H).

max2([], Max) -> Max;

max2([H|T], Max) when H > Max -> max2(T, H);
max2([_|T], Max) -> max2(T, Max).

84 Chapter 6

%% Find the minimum of a list.
min([H|T]) -> min2(T,H).

min2([], Min) -> Min;
min2([H|T], Min) when H < Min -> min2(T,H);
min2([_|T], Min) -> min2(T, Min).

%% Find the sum of all the elements of a list.
sum(L) -> sum(L,0).

sum([], Sum) -> Sum;
sum([H|T], Sum) -> sum(T, H+Sum).

To find how the fold function should be used,
we need to determine all the common points of the
actions made by these functions, as well as what is
different. As mentioned earlier, we always have a
reduction from a list to a single value. Consequently,
our fold function should consider iterating only while
keeping a single item—no list building is needed. We
need to ignore the guards, because they exist in only
some of these functions, not all of them. The guards
will need to be included in the function that we pass
to fold. In this regard, our fold function will probably
look a lot like sum.

A subtle element of all three functions is that every function needs to
have an initial value to start counting with. In the case of sum/2, we use 0, as
we’re doing addition, and given X = X + 0, the value is neutral, so we can’t
mess up the calculation by starting there. If we were doing multiplication,
we would use 1 given X = X * 1.

The functions min/1 and max/1 can’t have a default starting value. If the
list were only negative numbers and we started at 0, the answer would be
wrong. So we need to use the first element of the list as a starting point.
Sadly, we can’t always decide the starting value this way, so we’ll leave that
decision to the programmer.

By taking all these elements, we can build the following abstraction:

fold(_, Start, []) -> Start;
fold(F, Start, [H|T]) -> fold(F, F(H,Start), T).

Let’s try it.

6> c(hhfuns).

{ok, hhfuns}

> [HIT] = [1)7)3)5)910;213]'

[1,7,3,5,9,0,2,3]

8> hhfuns:fold(fun(A,B) when A > B -> A; (_,B) -> B end, H, T).
9

9> hhfuns:fold(fun(A,B) when A < B -> A; (_,B) -> B end, H, T).
0

Higher-Order Functions 85

86

Chapter 6

10> hhfuns:fold(fun(A,B) -> A + B end, 0, lists:seq(1,6)).
21

Pretty much any function you can think of that reduces lists to one ele-
ment can be expressed as a fold.

Strangely enough, you can represent an accumulator as a single element
(or a single variable), and an accumulator can be a list. Therefore, we can
use a fold to build a list. This means folding is universal in the sense that
you can implement pretty much any other recursive function on lists with a
fold, even maps and filters, like so:

reverse(L) ->
fold(fun(X,Acc) -> [X|Acc] end, [], L).

map2(F,L) ->
reverse(fold(fun(X,Acc) -> [F(X)|Acc] end, [], L)).

filter2(Pred, L) ->
F = fun(X,Acc) ->
case Pred(X) of
true -> [X|Accl;
false -> Acc
end
end,
reverse(fold(F, [], L)).

These all work in the same way as those written by hand before. How’s
that for powerful abstractions?

More Abstractions

Map, filters, and folds are only a few of many abstractions over lists provided
by the Erlang standard library (see lists:map/2, lists:filter/2, lists:foldl/3,
and lists:foldr/3). Other functions include all/2 and any/2, which both take
a predicate and test if all the elements return true or if at least one of them
returns true, respectively.

Also available is dropwhile/2, which will ignore elements of a list until it
finds one that fits a certain predicate. Its opposite, takewhile/2, will keep all
elements until there is one that doesn’t return true to the predicate. A com-
plementary function to these is partition/2, which will take a list and return
two lists: one that has the terms that satisfy a given predicate and one for
the others.

Other frequently used list functions include flatten/1, flatlength/a,
flatmap/2, merge/1, nth/2, nthtail/2, and split/2. You can look up all of these
functions in the documentation if you want to learn more about them.

You'll also find other functions such as zipping functions (as shown in
Chapter 5), unzipping functions, combinations of maps and folds, and so
on. I encourage you to read the documentation on lists to see what can be
done. You'll find yourself rarely needing to write recursive functions as long
as you use what'’s already been abstracted away by smart people.

ERRORS AND EXCEPTIONS

There’s no right place for a chapter such as this one.
So far, you've seen plenty of errors but not much
about the mechanisms for handling them. That’s a
bit because Erlang has two main paradigms: functional
and concurrent. The functional subset is the one I've

been explaining since the beginning of the book: referential transpar-
ency, recursion, higher-order functions, and so on. The concurrent subset
is the one that makes Erlang famous: actors, thousands and thousands of
concurrent processes, supervision trees,
and more.

Although Erlang includes a few ways
to handle errors in functional code, most
of the time you’ll be told to just let it crash.
The error-handling mechanisms are in
the concurrent part of the language. But
because it’s essential to understand the

88

functional part before moving on to the concurrent part, this chapter cov-
ers only the functional subset of the language. If we are to manage errors,
we must first understand them.

A Compilation of Errors

Chapter 7

There are many kinds of errors: compile-time errors, logical errors, and
runtime errors. First, let’s look at compile-time errors.

Compile-Time Errors

Compile-time errors are often syntactic mistakes. Check your function
names, the tokens in the language (such as brackets, parentheses, periods,
and commas), the arity of your functions, and so on.

Here’s a list of some of the common compile-time error messages and
potential resolutions in case you encounter them:

module.beam: Module name 'madule’ does not match file name 'module’
The module name you’ve entered in the -module attribute doesn’t match
the filename.

./module.erl:2: Warning: function some_function/0 is unused
You have not exported a function, or the place where it’s used has the
wrong name or arity. It’s also possible you've written a function that is
no longer needed. Check your code!

./module.erl:2: function some_function/1 undefined
The function does not exist. You’ve written the wrong name or arity
either in the -export attribute or when declaring the function. This
error is also output when the given function could not be compiled,
usually because of a syntax error like forgetting to end a function with
a period.

./module.erl:5: syntax error before: 'SomeCharacterOrWord'
This happens for a variety of reasons. Common causes are unclosed
parentheses, tuples, or wrong expression termination (like closing the
last branch of a case with a comma). Other reasons include the use of
a reserved atom in your code and Unicode characters not being con-
verted correctly between different encodings (I've seen it happen!).

./module.erl:5: syntax error before:
This message is certainly not as descriptive as the previous one. It usually
comes up when your line termination is not correct. This is a specific
case of the previous error, so just keep an eye out.

./module.erl:5: Warning: this expression will fail with a 'badarith' exception
Erlang is all about dynamic typing, but remember that the types are
strong. In this case, the compiler is smart enough to find that one of
your arithmetic expressions will fail (say, 11ama + 5). It won’t find type
errors much more complex than that, though.

./module.erl:5: Warning: variable 'Var' is unused
You declared a variable and never used it. This might be a bug with
your code, so double-check what you have written. Otherwise, you
might want to switch the variable name to _, or just prefix it with an
underscore if you feel the name helps make the code readable.

./module.erl:5: Warning: a term is constructed, but never used
In one of your functions, you're doing something such as building a list,
or declaring a tuple or an anonymous function without ever binding
it to a variable or returning it. This warning tells you that you're doing
something useless or have made some mistake.

./module.erl:5: head mismatch
It’s possible your function has more than one head, and each of them
has a different arity. Don’t forget that different arity means different
functions, and you can’t interleave function declarations that way.
Similarly, this error is raised when you insert a function definition
between the head clauses of another function.

./module.erl:5: Warning: this clause cannot match because a previous clause at
line 4 always matches
A function defined in the module has a specific clause defined after a
catchall one. As such, the compiler can warn you that you’ll never even
need to go to the other branch.

./module.erl:9: variable 'A' unsafe in 'case' (line 5)
You're using a variable declared within one of the branches of a
case ... of outside ofit. This is considered unsafe. If you want to use
such variables, you're better off doing Myvar = case ... of.

This covers most of the errors you’ll get at compile-time at this point.
There aren’t too many, and most of the time, the hardest part is finding
which error caused a huge cascade of errors listed against other functions.
It is better to resolve compiler errors in the order they were reported to
avoid being misled by errors that may not actually be errors at all.

No, YOUR Logic Is Wrong!

Logical errors are the hardest kind of errors to find and debug. They’re
most likely errors coming from the programmer: branches of conditional
statements such as ifs and cases that don’t consider all the cases, using a

Errors and Exceptions 89

multiplication that should have been a division, and so on. They do not
make your programs crash, but can lead to unseen bad data or your pro-
gram working in an unintended manner.
You’re most likely on your own when it
comes to dealing with logical errors, but Erlang
has many facilities to help you, such as test
frameworks, the TypEr and Dialyzer tools, and
a debugger and tracing module. Testing your
code is likely your best defense. Sadly, there
are enough of these kinds of errors in every
programmer’s career to write a few dozen
books about them. Here, we’ll focus on those
that make your programs crash, because it
happens right there and won’t bubble up to
50 levels to search through. Note that this is
pretty much the origin of the “let it crash”
ideal I've mentioned previously.

Runtime Errors

Runtime errors are pretty destructive in the sense that they crash your
code. While Erlang has ways to deal with them, recognizing these errors is
always helpful. We’ll look at some common runtime errors and examples of
code that generate them.

Function Clause Errors

The most likely reasons you’ll run into a function clause error is when you
fail all guard clauses of a function or fail all pattern matches, as in this
example:

1> lists:sort([3,2,1]).
[1,2,3]
2> lists:sort(fffffff).

** exception error: no function clause matching lists:sort(fffffff) (lists.erl, line 414)

90

Chapter 7

Case Clause Errors

Case clause errors occur when you’ve forgotten a specific case, sent in the
wrong kind of data, or need a catchall clause. Here’s an example:

3> case "Unexpected Value" of

3> expected_value -> ok;

3> other_expected_value -> 'also ok’

3> end.

** exception error: no case clause matching "Unexpected Value"

If Clause Errors

If clause errors are similar to case clause errors. They arise when Erlang
cannot find a branch that evaluates to true.

4> if 2 5> 4 -> ok;

4> 0> 1 -> ok

4> end.

** exception error: no true branch found when evaluating an if expression

Making sure you consider all cases or adding the catchall true clause
might be what you need.

Bad Match Errors

Bad match errors happen whenever pattern matching fails. This most likely
means you're trying to do impossible pattern matches (such as the follow-
ing), trying to bind a variable for the second time, or just using anything
that isn’t equal on both sides of the = operator (which is pretty much what
makes rebinding a variable fail!).

5> [X,Y] = {4,5}.
** exception error: no match of right hand side value {4,5}

Note that this error sometimes happens because the programmer
believes that a variable of the form _MyVar is the same as _. Variables with
an underscore are normal variables, except the compiler won’t complain
if they’re not used. It is not possible to bind them more than once.

Bad Argument Errors

Bad argument errors are similar to function clause errors, as they are about
calling functions with incorrect arguments.

6> erlang:binary _to_list("heh, already a list").
** exception error: bad argument
in function binary_to_list/1
called as binary to list("heh, already a list")

The main difference here is that this error is usually triggered by the
programmer after validating the arguments from within the function,
outside of the guard clauses. It is also the error of choice thrown by BIFs
or any other function written in C. I’ll show you how to raise such errors in
“Raising Exceptions” on page 93.

Undefined Function Errors

An undefined function error happens when you call a function that doesn’t
exist.

Errors and Exceptions 91

92

Chapter 7

7> lists:random([1,2,3]).
** exception error: undefined function lists:random/1

Make sure the function is exported from the module with the correct
arity (if you're calling it from outside the module), and double-check that
you typed the name of the function and the name of the module correctly.

You might also get this error message when the module is not in Erlang’s
search path. By default, Erlang’s search path is set to be in the current direc-
tory. You can add paths to the list by using code:add_patha("/some/path/") or
code:add_pathz("some/path"). If this still doesn’t work, make sure you compiled
the module to begin with!

Bad Arithmetic Errors

Bad arithmetic errors occur when you try to do arithmetic that doesn’t
exist, like divisions by zero or between atoms and numbers.

8> 5 + llama.
** exception error: bad argument in an arithmetic expression
in operator +/2
called as 5 + llama

Bad Function Errors

The most frequent reason for bad function errors is when you use vari-
ables as functions, but the variable’s value is not a function. The following
example uses the hhfuns function from Chapter 6, with two atoms as func-
tions. This doesn’t work, and a bad function error is thrown.

9> hhfuns:add(one,two).
** exception error: bad function one
in function hhfuns:add/2 (hhfuns.erl, line 7)

Bad Arity Errors

The bad arity error is a specific case of a bad function error. It happens
when you use higher-order functions, but you pass them more or fewer
arguments than they can handle.

10> F = fun(_) -> ok end.

#Fun<erl_eval.6.13229925>

11> F(a,b).

** exception error: interpreted function with arity 1 called with two arguments

System Limit Errors

A system limit error may be raised for many reasons, including the
following:

e Too many processes

e Atoms that are too long

e Too many arguments in a function
e Too many atoms

e Too many nodes connected

To get a full list and details of these errors, read the Erlang Efficiency
Guide on system limits, at ittp://www.erlang.org/doc/efficiency_guide/advanced
himl#2265856. Note that some of these errors are serious enough to crash
the whole VM.

Raising Exceptions

In trying to monitor code’s execution and protect
against logical errors, it’s often a good idea to provoke
runtime crashes so problems will be spotted early.
There are three kinds of exceptions in Erlang:
errors, exits, and throws. They all have different uses
(kind of), as explained in the following sections.

Error Exceptions

Calling erlang:error(Reason) will end the execution in the current process
and include a stack trace of the last functions called with their arguments
when you catch the exception. These are the kind of exceptions that pro-
voke runtime errors.

Errors are the means for a function to stop its execution when you can’t
expect the calling code to handle what just happened. If you get an if clause
error, what can you do? Change the code and recompile—that’s what you
can do (other than just displaying a pretty error message).

When Not to Use Errors

An example of when not to use errors could be our tree module from
Chapter 5. That module might not always be able to find a specific key in a
tree when doing a lookup. In this case, it makes sense to expect the users
to deal with unknown results. They could use a default value, check to
insert a new one, delete the tree, or use some other approach. This is when
it’s appropriate to return a tuple of the form {ok, Value} or an atom like
undefined, rather than raising errors.

Errors and Exceptions 93

Custom Errors

Errors aren’t limited to the ones provided by Erlang. You can define your
own kinds of errors, as in this example:

1> erlang:error(badarith).

** exception error: bad argument in an arithmetic expression
2> erlang:error(custom_error).

** exception error: custom_error

Here, custom_error is not recognized by the Erlang shell, and it has no
custom translation, such as “bad argument in ...,” but it’s usable in the same
way and can be handled by the programmer in an identical manner (as dis-
cussed in “Dealing with Exceptions” on page 96).

Exit Exceptions

Two kinds of exits exist in Erlang:

e Internal exils are triggered by calling the function exit/1 and making the
current process stop its execution.

e External exits are called with exit/2 and have to do with multiple pro-
cesses in the concurrent aspect of Erlang.

Here, we’ll focus on internal exits. We will visit the external kind in
Chapter 12.

Internal exits are similar to errors. In fact, historically speaking, they
were the same, and only exit/1 existed. Errors and exits have roughly the
same use cases. So how do you choose which one to use? Well, the choice
is not obvious. To decide when to use one or the other, you need to under-
stand the most generic principles behind Erlang processes.

&=

Processes can send each other messages. A process can also listen for
messages, or wait for them.

You can also choose which messages to listen to. You can discard some
messages, ignore others, give up listening after a certain time, and so on.

HELLO

AT (B
@

94 Chapter 7

These basic concepts let the implementers of Erlang use a special kind
of message (an exit signal) to communicate exceptions between processes.
They act a bit like a process’s last breath; they’re sent right before a process
dies, and the code it contains stops executing. Other processes that were
listening for that specific kind of message can then know about the event
and do whatever they please with it. This includes logging, restarting the
process that died, and so on.

/ DAMM!
Yor iveams
= ’

With this concept explained, the difference in using erlang:error/1 and
exit/1 is easier to understand. While both can be used in an extremely simi-
lar manner, the real difference is intent. Is what you have simply an error,
or is it a condition worthy of killing the current process? This point is made
stronger by the fact erlang:error/1 returns a stack trace and exit/1 doesn’t. If
you had a pretty large stack trace or a lot of arguments to the current func-
tion, copying the exit message to every listening process would mean copy-
ing the data. In some cases, this could become impractical.

Throw Exceptions

A throw is a class of exceptions used for cases that the programmer can be
expected to handle. Unlike exits and errors, throws don’t really carry any
“crash that process!” intent behind them but rather control flow.

To throw an exception, the syntax is as follows:

1> throw(permission_denied).
** exception throw: permission_denied

You can replace permission_denied with anything you want (including
‘everything is fine', but that is not helpful, and you will lose friends).

If you use throws while expecting the programmer to handle them, it’s usually a good
idea to document the throws within a module using them.

Throws can also be used for nonlocal returns when in deep recursion.
An example of this is the ss1 module, which uses throw/1 as a way to push
{error, Reason} tuples back to a top-level function. That function then simply
returns that tuple to the user. This lets the implementer write code only for
the successful cases and have one function deal with the exceptions on top
of it all.

Another example of using throws can be found in the array module,
where there is a lookup function that can return a user-supplied default
value if it can’t find the element needed. When the element can’t be found,
the value default is thrown as an exception, and the top-level function
handles that and replaces it with the user-supplied default value. This keeps

Errors and Exceptions 95

the programmer of the module from needing to pass the default value as a
parameter of every function of the lookup algorithm, again, focusing only
on the successful cases.

As a rule of thumb, try to limit the use of your throws for nonlocal
returns to a single module in order make it easier to debug your code.
This approach will also let you change the innards of your
module without requiring changes in its interface.

Dealing with Exceptions

As I've mentioned, throws, errors, and exits can be handled. O
The way to do this is by using a try ... catch expression. \fs
A try ... catchis a way to evaluate an expression

while letting you handle the successful case as well as the
errors encountered. Here’s the general syntax for such an
expression:

try Expression of
SuccessfulPattern1 [Guards] ->

Expressioni;
SuccessfulPattern2 [Guards] ->
Expression2
catch
TypeOfError:ExceptionPattern1 ->
Expressions;
TypeOfError:ExceptionPattern2 ->
Expression4
end.

In the syntax shown here, the brackets around [Guards] only denote that the guards
are optional. There is no need to put them in a list.

The Expression between try and of is said to be protected. This means that
any kind of exception happening within that call will be caught.

The patterns and expressions between the try ... of and catch behave
in exactly the same manner as a case ... of. They are not protected, and
allow pattern matching, variable bindings, and guards.

In the catch part, you can replace TypeOftrror with error, throw, or exit,
for each respective exception type. If no type is provided, throw is assumed.
So let’s put this in practice.

Handling Different Types of Exceptions

We’ll start by creating a module named exceptions (we’re going for simplic-
ity here).

-module(exceptions).
-compile(export_all).

96 Chapter 7

throws(F) ->
try F() of
_ -> ok
catch
Throw -> {throw, caught, Throw}
end.

We can compile it and try it with different kinds of exceptions.

1> c(exceptions).
{ok,exceptions}
2> exceptions:throws(fun() -> throw(thrown) end).
{throw, caught, thrown}
3> exceptions:throws(fun() -> erlang:error(pang) end).
** exception error: pang
in function exceptions:throws/1 (exceptions.erl, line 5)

Asyou can see, this try ... catch is receiving only throws. This is because
when no type is specified, a throw is assumed. We can add functions with
catch clauses of each type.

errors(F) ->
try F() of
_ -> ok
catch
error:Error -> {error, caught, Error}
end.

exits(F) ->
try F() of
_ > ok
catch
exit:Exit -> {exit, caught, Exit}
end.

Let’s try this version.

4> c(exceptions).

{ok,exceptions}

5> exceptions:errors(fun() -> erlang:error("Die!") end).
{error,caught,"Die! "}

6> exceptions:exits(fun() -> exit(goodbye) end).

{exit, caught,goodbye}

The next example on the menu shows how to combine all types of
exceptions in a single try ... catch. We’ll first declare a function to generate
all the exceptions we need.

sword(1) -> throw(slice);
sword(2) -> erlang:error(cut_arm);
sword(3) -> exit(cut_leg);

Errors and Exceptions 97

98

Chapter 7

sword(4) -> throw(punch);
sword(5) -> exit(cross_bridge).

black_knight(Attack) when is_function(Attack, 0) ->
try Attack() of
_ -> "None shall pass."
catch
throw:slice -> "It is but a scratch.";
error:cut_arm -> "I've had worse.";
exit:cut_leg -> "Come on you pansy!";
_-> "Just a flesh wound."
end.

Here, is_function/2 is a BIF that makes sure the variable Attack is a func-
tion of arity 0. Then we add this line for good measure:

talk() -> "blah blah".

And now for something completely different.

7> c(exceptions).

{ok,exceptions}

8> exceptions:talk().

"blah blah"

9> exceptions:black_knight(fun exceptions:talk/0).

"None shall pass.”

10> exceptions:black_knight(fun() -> exceptions:sword(1) end).
"It is but a scratch."

11> exceptions:black_knight(fun()
"I've had worse."

12> exceptions:black_knight(fun()
"Come on you pansy!"

13> exceptions:black_knight(fun() -> exceptions:sword(4) end).
"Just a flesh wound."

14> exceptions:black_knight(fun() -> exceptions:sword(5) end).
"Just a flesh wound."

> exceptions:sword(2) end).

> exceptions:sword(3) end).

The expression on line 9 demonstrates normal behavior for the black
knight, when normal function execution happens. Each line that follows
that one demonstrates pattern matching on
exceptions according to their class (throw, error,
or exit) and the reason associated with them
(slice, cut_arm, or cut_leg).

Lines 13 and 14 show a catchall clause for
exceptions. You need to use the _:_ pattern to
make sure to catch any exception from any
type. In practice, you should be careful when
using catchall patterns. Try to protect your
code from what you can handle but not more.
Erlang has other facilities in place to take care
of the rest.

After the Catch

You can also add a clause after a try ... catch that will always be executed,
as follows:

try Expression of
Pattern -> Expri
catch
Type:Exception -> Expr2
after
Expr3
end

This is equivalent to the finally block in many other languages. Whether
or not there are errors, the expressions inside the after part are guaranteed
to run.

However, you cannot get any return value out of the after construct.
Therefore, after is mostly used to run code with side effects. The canonical
use of this approach is when you want to make sure a file you were reading
gets closed, whether or not exceptions were raised.

Trying Multiple Expressions

We’ve covered how to handle the three classes of exceptions in Erlang with
catch blocks. However, I've hidden information from you: It’s actually pos-
sible to have more than one expression between the try and the of!

whoa() -»>
try
talk(),
_Knight = "None shall pass!",
_Doubles = [N*2 || N <- lists:seq(1,100)],

throw(up),

_WillReturnThis = tequila
of

tequila -> "Hey, this worked!"
catch

Exception:Reason -> {caught, Exception, Reason}
end.

By calling exceptions:whoa(), we’ll get the obvious {caught, throw, up}
because of throw(up). So yeah, it’s possible to have more than one expression
between try and of.

What exceptions:whoa/o highlighted that you might not have noticed is
that when we use many expressions in this manner, we might not always
care what the return value is. So, the of part becomes a bit useless. Well,
good news—you can just give it up:

im_impressed() -»
try
talk(),

Errors and Exceptions 99

100

Chapter 7

_Knight = "None shall pass!",
_Doubles = [N*2 || N <- lists:seq(1,100)],

throw(up),

_WillReturnThis = tequila
catch

Exception:Reason -> {caught, Exception, Reason}
end.

And now it’s a bit leaner!

PROTECTING THE RIGHT THING

The protected part of an exception can't be tail recursive. The VM must always
keep a reference there in case there’s an exception popping up. Because the
try ... catch construct without the of part has nothing but a protected part, call-
ing a recursive function from there might be dangerous for programs that are
supposed fo run for a long time (which is Erlang’s niche). After enough iterations,
you'll run out of memory, or your program will get slower. When you put your
recursive calls between the of and catch, they are not in a protected part, and
you will benefit from last call optimization (discussed in Chapter 5). However, this
effect is canceled if you use after in your try expression, as it needs to run after
anything else, and thus needs to keep track of where it is in the list of function calls.
Some people use try ... of ... catch rather than try ... catch by default to
avoid unexpected behaviors of that kind, except for obviously nonrecursive code
with a result they don’t care about. You're most likely able to make your own deci-
sion on what to dol

Wait, There’s More!

As if the preceding constructs weren’t already enough to put Erlang on
par with most languages, it has yet another error-handling construct. This
construct is defined as the keyword catch and basically captures all types of
exceptions on top of the good results. It’s a bit of a weird one because it dis-
plays a different representation of exceptions. Here’s an example:

1> catch throw(whoa).

whoa

2> catch exit(die).

{"EXIT',die}

3> catch 1/0.

{{'EXIT',{badarith,[{erlang,'/",[1,0],[1},
{erl eval,do_apply,6,[{file,"er]l eval.erl"},{line,576}]},
{erl eval,expr,5,[{file,"er]l eval.erl"},{1line,360}]},
{shell,exprs,7,[{file,"shell.erl"},{1line,668}]},
{shell,eval exprs,7,[{file,"shell.erl"},{1line,623}]},
{shell,eval loop,3,[{file,"shell.erl"},{line,608}]1}1}}

4> catch 2+2.

4

As you can see, the throws remain the same, but exits and errors are
both represented as {'EXIT', Reason}. That’s consequent to errors being
bolted to the language after exits (the Erlang implementers kept a similar
representation for backward compatibility).

Let’s try another example.

5> catch doesnt:exist(a,4).

{"EXIT',{undef, [{doesnt,exist,[a,4],[]},
{erl_eval,do_apply,6,[{file,"er]l_eval.erl"},{line,576}]},
{erl_eval,expr,5,[{file,"erl eval.erl"},{line,360}]},
{shell,exprs,7,[{file,"shell.erl"},{1ine,668}]},
{shell,eval exprs,7,[{file,"shell.erl"},{1line,623}]},
{shell,eval loop,3,[{file,"shell.erl"},{line,608}]1}]1}}

The type of error is undef, which means the function you called is not
defined.

The list immediately after the type of error is a stack trace. Here’s how
to read the stack trace:

e The tuple on top of the stack trace represents the last function to be
called ({Module, Function, Arguments}). That’s your undefined function.

e The tuples after that are the functions called before the error. This
time, they’re of the form {Module, Function, Arity, Details}.

e The Details field is a list of tuples containing the filename and the
line within the file. In this case, the files are erl eval.erl and shell.erl
because they’re in charge of interpreting the code you input in the
Erlang shell.

That’s all there is to it, really.

Before the R15B release, Evlang didn’t have the Details part of stack traces. For two
decades, Erlang programmers found the origin of errors by using short functions and
a strong sense of deduction.

You can also manually get a stack trace by calling erlang:get_stacktrace/o
in the process that crashed.

You’ll often see catch written in the following manner (we’re still in
exceptions.erl):

catcher(X,Y) ->
case catch X/Y of
{"EXIT', {badarith, }} -> "uh oh";
N ->N
end.

Errors and Exceptions 101

102

Chapter 7

And as expected, here’s what happens when you run this:

6> c(exceptions).
{ok,exceptions}

7> exceptions:catcher(3,3).
1.0

8> exceptions:catcher(6,3).
2.0

9> exceptions:catcher(6,0).
"uh oh"

This sounds like a compact and easy way to catch exceptions, but there
are a few problems with catch. This example shows one of them:

10> X = catch 4+2.

* 1: syntax error before: 'catch'
10> X = (catch 4+2).

6

We would expect the first case to behave exactly like the second one.
Yet, it looks like Erlang can’t cope with the way we declared things. That’s
because of the operator precedence defined by the language. The catch
conflicts with =, and the only way to keep them from clashing is to wrap
catch in parentheses. That’s not exactly intuitive, given that most expres-
sions do not need to be wrapped in parentheses this way.

Another problem with catch is that you can’t see the difference between
what looks like the underlying representation of an exception and a real
exception, as in this example:

11> catch erlang:boat().

{"EXIT',{undef,[{erlang,boat,[],[]},
{erl eval,do_apply,6,[{file,"er]l eval.erl"},{line,576}]},
{erl eval,expr,5,[{file,"er]l eval.erl"},{1line,360}]},
{shell,exprs,7,[{file,"shell.erl"},{1line,668}]},
{shell,eval _exprs,7,[{file,"shell.erl"},{line,623}]},
{shell,eval loop,3,[{file,"shell.erl"},{line,608}]1}]1}}

12> catch exit({undef,[{erlang,boat,[],[]},

12> {erl_eval,do_apply,6,[{file,"er]l_eval.erl"},{1line,576}]},
12> {erl_eval,expr,5,[{file,"erl_eval.erl"},{1ine,360}]},

12> {shell,exprs,7,[{file,"shell.erl"},{1ine,668}]},

12> {shell,eval_exprs,7,[{file,"shell.erl"},{1ine,623}]},

12> {shell,eval_loop,3,[{file,"shell.er1l"},{1ine,608}]}]1}).

{"EXIT',{undef,[{erlang,boat,[],[]},
{erl eval,do_apply,6,[{file,"er]l eval.erl"},{line,576}]},
{erl eval,expr,5,[{file,"er]l eval.erl"},{1line,360}]},
{shell,exprs,7,[{file,"shell.erl"},{1ine,668}]},
{shell,eval exprs,7,[{file,"shell.erl"},{1line,623}]},
{shell,eval loop,3,[{file,"shell.erl"},{line,608}]}]1}}

Also, you can’t know the difference between an error and an actual
exit, as both results are identical. You could also have used throw/1 to gener-
ate the preceding exception. In fact, a throw/1 in a catch might also be prob-
lematic in another scenario:

one_or_two(1) -> return;
one_or_two(2) -> throw(return).

And now the killer problem:

13> c(exceptions).

{ok,exceptions}

14> catch exceptions:one_or_two(1).
return

15> catch exceptions:one_or_two(2).
return

Because we’re behind a catch, we can never know if the function threw
an exception or it returned an actual value! This might not happen a whole
lot in practice, but it’s still a wart big enough to have warranted the addition
of the try ... catch constructin the Erlang/OTP R10B release.

Try a try in a Tree

To put exceptions in practice, we’ll do a little exercise requiring us to dig
out our tree module from Chapter 5. We're going to add a function that lets
us do a lookup in the tree to find out if a value is already present. Because
the tree is ordered by its keys, and in this case we do not care about the keys,
we’ll need to traverse the whole thing until we find the value.

The traversal of the tree will be roughly similar to what we did in
tree:lookup/2, except this time, we will always search down both the left
branch and then the right branch. To write the function, you’ll just need to
remember that a tree node is either {node, {Key, Value, Nodeleft, NodeRight}}
or {node, 'nil'} when empty. With this in mind, we can write a basic imple-
mentation without exceptions:

%% looks for a given value 'Val' in the tree
has_value(_, {node, 'nil'}) ->
false;
has_value(Val, {node, {_, Val, _, _}}) ->
true;
has_value(Val, {node, { , _, Left, Right}}) ->
case has_value(Val, Left) of
true -> true;
false -> has_value(Val, Right)
end.

The problem with this implementation is that every node of the tree we
branch at must test for the result of the previous branch.

Errors and Exceptions 103

104

Chapter 7

o
Qg/& >\

found oY

This is a bit annoying. With the help of throws, we can make something
that will require fewer comparisons.

has_value(Val, Tree) ->
try has_value1(Val, Tree) of
false -> false
catch
true -> true
end.

has_value1(_, {node, 'nil'}) -»
false;

has_valuei(Val, {node, { , Val, _, }}) ->
throw(true);

has_valuei(Val, {node, {_, _, Left, Right}}) ->
has_value1(Val, Left),
has_value1(Val, Right).

The execution of this code is similar to the previous version, except
that we never need to check for the return value—we don’t care about it
at all. In this version, only a throw means the value was found. When this
happens, the tree evaluation stops, and it falls back to the catch on top.
Otherwise, the execution keeps going until the last false is returned, and
that’s what the user sees.

o
G/A%\/& >\

found oY

Of course, this implementation is longer than the previous one. However,
itis possible to gain in speed and clarity by using nonlocal returns with a
throw, depending on the operations you're doing. The current example is a
simple comparison, and there’s not much to see, but the practice still makes
sense with more complex data structures and operations.

That being said, we’re probably ready to solve real problems in sequen-
tial Erlang.

FUNCTIONALLY SOLVING
PROBLEMS

So we’re ready to do something practical with all that
Erlang juice we drank. In this chapter, we’ll apply
some of the techniques covered in previous chapters
to solve some interesting problems.

The problems in this chapter were taken from Miran Lipovaca’s Learn
You a Haskell for Great Good! (No Starch Press, 2011; available from http://
learnyouahaskell.com). 1 decided to use the same problems so curious read-
ers can compare solutions in Erlang and Haskell as they wish. If you do so,
you might find the final results to be pretty similar for two languages with
such different syntaxes. This is because once you understand functional con-
cepts, you'll find that they’re relatively easy to carry over to other functional
languages.

106

Reverse Polish Notation Calculator

Chapter 8

Most people have learned to write arithmetic expressions with the opera-
tors in between the numbers (2 + 2) / 5). This is how most calculators let
you insert mathematical expressions, and it’s probably the notation you
were taught in school. This notation has the downside of needing you to
know about operator precedence. For example, multiplication and divi-
sion are more important (have a higher precedence) than addition and
subtraction.

In another notation, called prefix notation or Polish notation, the
operator comes before the operands. Under this notation, (2 + 2) / 5
becomes (/ (+ 2 2) 5). If we decide to say + and / always take two argu-
ments, then (/ (+ 2 2) 5) can simply be written as / + 2 2 5.

However, we will instead focus on Reverse Polish notation (RPN), which
is the opposite of prefix notation: the operator follows the operands. In
RPN, our example is written as 2 2 + 5 /. The expression 9 * 5 + 7 becomes
95%* 7 +,and10 * 2 * (3 + 4) / 2 istranslated to 10 2 * 3 4 + * 2 /. This
notation was used a whole lot in early models of calculators, as it takes little
memory to use. In fact, some people still carry around RPN calculators.
We’ll write one of these.

How RPN Calculators Work

First, let’s consider how to read RPN expressions. One way is to find the
operators one by one, and then regroup them with their operands by arity:

1043 +2% -

10 (43 +) 2% -

10 ((43+) 2%) -
(10 ((43+) 2 %) -)
(10 (7 2 *) -)

(10 14 -)

-4

However, in the context of a computer or a calculator, a simpler way to
read RPN expressions is to make a stack of all the operands as we see them.
For example, in the mathematical expression 10 4 3 + 2 * -, the first oper-
and we see is 10. We add that to the stack. Then there is 4, so we also push
that on top of the stack. In third place, we have 3—let’s push that one on
the stack, too. Our stack should now look like this:

The next character to parse is +. That one is a function of arity 2. In
order to use it, we will need to feed it two operands, which will be taken
from the stack:

+
3+
43+

>

So we take that 7 and push it back on top of the stack (yuck, we don’t
want to keep these filthy numbers floating around!). The stack is now [7,10],
and what’s left of the expression is 2 * -. We can take the 2 and push it on
top of the stack. We then see *, which needs two operands to work. Again,
we take them from the stack:

Y
2 %
7 2w
| 4

And we push 14 back on top of our stack. All that remains is -, which
also needs two operands. Oh glorious luck! There are two operands left in

our stack. Use them!
=

And so we have our result. This stack-based approach is relatively
foolproof, and the low amount of parsing needed before starting to calcu-
late results explains why it was a good idea for old calculators to use this
approach.

5

Greating an RPN Calculator

Making our own RPN calculator in Erlang is not too hard once we’ve done
the complex stuff. It turns out the tough part is figuring out what steps need
to be done in order to get our end result, and we just did that. So let’s get
started by opening a file named calc.erl.

The first part to worry about is how we’re going to represent a
mathematical expression. To make things simple, we’ll probably input
them as a string: "10 4 3 + 2 * -". This string has whitespace, which isn’t
part of our problem-solving process, but is necessary in order to use a

Functionally Solving Problems 107

108

Chapter 8

simple tokenizer. What would be usable then is a list of terms of the form
["10","4","3","+","2","*","-"] after going through the tokenizer. It turns out the
function string:tokens/2 does just that:

1> string:tokens("10 4 3 + 2 * -", " "),
[Illoll)ll4ll’ll3ll,ll+ll’ll2II,ll*"’ll_ll]

This will be a good representation for our expression.

The next part to define is the stack. How are we going to do that? You
might have noticed that Erlang’s lists act a lot like stacks. Using the cons
operator (|) in [Head|Tail] effectively produces the same behavior as pushing
Head on top of a stack (Tail, in this case). Using a list for a stack will be good
enough.

To read the expression, we just need to do the same thing as we did
when solving the problem by hand. Read each value from the expression,
and if it’s a number, put it on the stack. If it’s a function, pop all the values
it needs from the stack, and then push the result back in. To generalize, we
need to go over the whole expression as a loop only once and accumulate
the results. Sounds like the perfect job for a fold!

What we need to plan for is the function that lists:foldl/3 will apply
on every operator and operand of the expression. This function, because it
will be run in a fold, will need to take two arguments: the first one will be
the element of the expression to work with, and the second one will be the
stack.

We can start writing our code in the calc.erl file. First, we’ll write the
function responsible for all the looping and also the removal of spaces in
the expression:

-module(calc).
-export([rpn/1]).

rpn(L) when is_list(L) ->
[Res] = lists:foldl(fun rpn/2, [], string:tokens(L, " ")),
Res.

Next, we’ll implement rpn/2. Note that because each operator and oper-
and from the expression ends up being put on top of the stack, the solved
expression’s result will be on that stack. We need to get that last value out of
there before returning it to the user. This is why we pattern match over [Res]
and return only Res.

Now to the harder part. Our rpn/2 function will need to handle the
stack for all values passed to it. The head of the function will probably look
like rpn(0p,Stack), and its return value will look like [NewVal|Stack]. When we
get regular numbers, the operation will be as follows:

rpn(X, Stack) -> [read(X)|Stack].

Here, read/1 is a function that converts a string to an integer or a
floating-point value. Sadly, there is no built-in function to do this in Erlang
(it just has functions that convert to only one or the other). So we’ll add the
function ourselves, like this:

read(N) ->
case string:to float(N) of
{error,no_float} -> list to_integer(N);
{F)_} -> F
end.

Here, string:to_float/1 does the conversion from a string such as "13.37"
to its numeric equivalent. However, if there is no way to read a floating-
point value, it returns {error,no_float}. When that happens, we need to call
list_to_integer/1 instead.

Now let’s get back to rpn/2. The numbers we encounter are all added to
the stack. However, because our pattern matches on anything (see Chapter 5
for a discussion of pattern matching), operators will also get pushed on the
stack. To avoid this, we’ll put them all in preceding clauses. The first one
we’ll try this with is the addition:

rpn("+", [N1,N2|S]) -> [N2+N1|S];
rpn(X, Stack) -> [read(X)|Stack].

You can see that whenever we encounter the "+ string, we take two
numbers from the top of the stack (N1,N2) and add them before pushing the
result back onto that stack. This is exactly the same logic we applied when
solving the problem by hand. Trying the program, we can see that it works:

1> c(calc).

{ok,calc}

2> calc:rpn("3 5 +").

8

3> calc:rpn("7 3 + 5 +").
15

The rest is trivial, as we just need to add all the other operators:

rpn("+", [N1,N2|S]) -> [N2+N1|S]

rpn("-", [N1,N2|S]) -> [N2-N1|S]

rpn("*", [N1,N2|S]) -> [N2*N1|S];

rpn("/", [N1,N2|S]) -> [N2/N1|S];

rpn("~", [N1,N2|S]) -> [math:pow(N2,N1)|S];
rpn("1n", [N|S]) -> [math:log(N)|S];
rpn("log10”, [N|S]) -> [math:log10(N)|S];
rpn(X, Stack) -> [read(X)|Stack].

b
)

Note that functions that take only one argument such as logarithms
need to pop only one element from the stack. Itis left as an exercise for the

Functionally Solving Problems 109

110

Chapter 8

reader to add functions such as sum and prod, which return the sum of all
the elements read so far and the products of all the elements, respectively.
To help you out, they are already implemented in my version of calc.erl.

Testing the Code

To make sure this all works, we’ll write some very simple unit tests. Erlang’s
= operator can act as an assertion function. Assertions should crash when-
ever they encounter unexpected values, which is exactly what we need. Of
course, there are more advanced testing frameworks for Erlang, including
EUnit and Common Test. We’ll check them out in Chapters 25 and 28 but
for now, the basic = will do the job.

rpn_test() ->
5 = 1pn("2 3 +"),
87 = rpn("90 3 -"),
-4 = 1pn("10 4 3 + 2 * -"),
-2.0 =1pn("10 43 +2 * -2 /"),

ok = try

rpn("90 34 12 33 55 66 + * - +")
catch

error:{badmatch,[|]} -> ok
end,

4037 = rpn("90 34 12 33 55 66 + * - + -"),
8.0 = rpn("2 3 "),

true = math:sqrt(2) == rpn("2 0.5 *"),
true = math:log(2.7) == rpn("2.7 1n"),
true = math:log10(2.7) == rpn("2.7 log10"),
50 = rpn("10 10 10 20 sum"),

10.0 = rpn("10 10 10 20 sum 5 /"),

1000.0 = rpn("10 10 20 0.5 prod"),

ok.

The test function tries all operations. If no exception is raised, the tests
are considered successful. The first four tests check that the basic arithmetic
functions work correctly. In the fifth test, the try ... catch expects a badmatch
error to be thrown because the expression can’t work:

90 34 12 33 55 66 + * - +
90 (34 (12 (33 (55 66 +) *) -) +)

At the end of rpn/1, the values -3947 and 90 are left on the stack because
there is no operator to work on the 90 that hangs there. There are two pos-
sible ways to handle this problem: ignore it and take only the value on top
of the stack (which would be the last result calculated), or crash because
the arithmetic is wrong. Given that Erlang’s policy is to let it crash, that’s the
path chosen here. The part that actually crashes is the [Res] in rpn/1. That
one makes sure only one element—the result—is left in the stack.

The few tests that are of the form true = FunctionCalli == FunctionCall2
are there because you can’t have a function call on the left-hand side of =. It
still works as an assertion because we compare the comparison’s result to true.

I've also added the test cases for the sum and prod operations, so you can
test them after implementing these functions. If all tests are successful, you
should see the following:

1> c(calc).

{ok,calc}

2> calc:xpn_test().

ok

3> calczrpn(1 2~ 22 ~32 " 42" sum2 -").
28.0

Here, 28.0 is indeed equal to sum(1? + 22 + 32 + 42) - 2. Try as many cal-
culations as you wish.

One way to improve our calculator is to make sure it raises badarith errors when it
crashes because of unknown operators or values left on the stack, rather than raising
badmatch errors. It would certainly make debugging easier for the user of the calc
module.

Heathrow to London

Our next problem is also taken from Learn You a Haskell. You're on a plane
due to land at Heathrow Airport in the next few hours. You need to get to
London as fast as possible. Your rich uncle is dying, and you want to be the
first one there to claim dibs on his estate.

There are two roads going from Heathrow to London, and a bunch of
smaller streets linking them together. Because of speed limits and traffic,
some parts of the roads and smaller streets take longer to travel than oth-
ers. Before you land, you decide to maximize your chances by finding the
optimal path to your uncle’s house. Here’s the map you’ve found on your

laptop:
n SO S 40O (@)
¢ Vo @
S O
¢ 90 MR
B= 2
Functionally Solving Problems m

Having become a huge fan of Erlang after reading online books, you
decide to solve the problem using that language. To make it easier to work
with the map, you enter the following data in a file named road.txt:

50
10
30
5
90
20
40
2
25
10
8
0

The path is laid out in the pattern A1, B1, X1, A2, B2, X2, ..., An, Bn, Xn,
where X is one of the roads joining the A side to the B side of the map. We
insert a 0 as the last X segment, because no matter what we do, we’re at our
destination already. Data can probably be organized in tuples of three ele-
ments of the form {A,B,X}.

The next thing you realize is that it’s worthless to try to solve this prob-
lem in Erlang when you don’t even know how to solve it by hand. In order to
do this, we’ll use what recursion taught us.

Solving the Problem Recursively

When writing a recursive function, the first thing to do is to find the base
case. For the problem at hand, this would be if we had only one tuple to
analyze; that is, if we only had to choose between A, B (and crossing X, which
in this case is useless because we’re at our destination):

B /\/—\/
Then the only choice is picking whether path A or path B is the short-
est. By understanding how recursion works, we know that we should try to

converge toward the base case. This means that on each step we’ll take, we’ll
want to reduce the problem to choosing between A and B for the next step.

112 Chapter 8

Let’s extend our map and start over:

A -

(@) %
;E\ &

Ah! It gets interesting! How can we reduce the triple {5,1,3} to a strict
choice between A and B? Let’s see how many options are possible for A. To
get to the intersection of A1 and A2 (we’ll call this point A1), we can either
take road A1 directly (5) or come from B1 (1) and then cross over X1 (3). In
this case, the first option (5) is longer than the second one (4). For option A,
the shortest path is [B, X]. So what are the options for B? We can either pro-
ceed from A1 (5) and then cross over X1 (3) or strictly take the path B1 (1).

So we now have a length 4 with the path [B, X] toward the first intersec-
tion A and a length 1 with the path [B] toward the intersection of B1 and B2.
Now we must decide how to go to the second point A (the intersection of A2
and the endpoint or X2) and the second point B (intersection of B2 and X2).
To make a decision, I suggest we do the same as before (and you don’t have
much choice but to obey, given that I'm the guy writing this book). Here we go!

We can get to the next point A by either taking the path A2 from
[B, X], which gives us a length of 14 (14 = 4 + 10), or by taking B2 then X2
from [B], which gives us a length of 16 (16 = 1 + 15 + 0). In this case, the
path [B, X, A] is better than [B, B, X].

A_s .
D

]

We can also get to the next point B by either taking the path A2 from
[B, X], and then crossing over X2 for a length of 14 (14 = 4 + 10 + 0), or by
taking the road B2 from [B] for a length of 16 (16 = 1 + 15). Here, the best
path is to pick the first option: [B, X, A, X].

When this whole process is complete, we’re left with two paths: A or
B, both of length 14. Either of them is the right one. The last selection will
always have two paths of the same length, given the last X segment has a
length of 0. By solving our problem recursively, we’ve made sure to always
get the shortest path at the end. Not too bad, eh?

Functionally Solving Problems 113

114

Chapter 8

Subtly enough, we’ve given ourselves the basic logical parts we need to
build a recursive function. We could implement it, but I promised we would
have very few recursive functions to write ourselves. Instead, we’ll use a fold.

While I have shown folds being used and constructed with lists, folds represent a
broader concept of iterating over a data structure with an accumulator. As such,
Jfolds can be implemented over trees, dictionaries, arrays, database tables, and so on.
1t us sometimes useful when experimenting to use abstractions like maps and folds
because they make it easier to later change the data structure you use to work with
your own logic.

Writing the Code

So where were we? Ah, yes! We have the file we're going to feed as input
ready. To do file manipulations, the file module is our best tool. It contains
a lot of functions common to many programming languages in order to deal
with files themselves (setting permissions, moving files around, renaming
files, deleting files, and so on).

The file module also contains the usual functions to read and/or write
from files, such as file:open/2 and file:close/1 to do as their names say (open
and close files!), file:read/2 to get the content of a file (either as string or a
binary), file:read_line/1 to read a single line, and file:position/3 to move the
pointer of an open file to a given position.

The module also contains a bunch of shortcut functions, such as
file:read_file/1 (opens and reads the contents as a binary), file:consult/1
(opens and parses a file as Erlang terms), file:pread/2 (changes the position
and then reads content), and file:pwrite/2 (changes the position and writes
content).

With all these choices available, it’s going to be easy to find a function
to read our road.ixt file. Because we know our road is relatively small, we’ll
call file:read file("road.txt").:

1> {ok, Binary} = file:read file("road.txt").

{0k, <<"50\r\n10\1\n30\r\n5\1\n90\r\n20\r\n40\1\n2\r\n25\1\n10\r\n8\r\nO\1\n">>}
2> S = string:tokens(binary_to_list(Binary), "\r\n\t ").
["50","10","30","5","90","20","40","2","25","10","8","0"]

Note that in this case, we added a space (" ") and a tab ("\t") to
the valid tokens, so the file could also have been written in the form
"50 10 30 5 90 20 40 2 25 10 8 0".

Given that list, we’ll need to transform the strings into integers.

3> [list_to_integer(X) || X <- S].
[50,10,30,5,90,20,40,2,25,10,8,0]

Let’s start a new module called road.erl and write down this logic:

-module(road).
-compile(export_all).

main() ->
File = "road.txt",
{ok, Bin} = file:read file(File),
parse_map(Bin).

parse_map(Bin) when is_binary(Bin) ->
parse_map(binary to list(Bin));

parse_map(Str) when is list(Str) ->
[1list_to_integer(X) || X <- string:tokens(Str,"\r\n\t ")].

The function main/0 is responsible for reading the content of the file
and passing it on to parse_map/1. Because we use the function file:read_file/1
to get the contents of road.ixt, the result we obtain is a binary. For this rea-
son, we've made the function parse_map/1 match on both lists and binaries.
In the case of a binary, we just call the function again with the string being
converted to a list (our function to split the string works only on lists).

The next step in parsing the map would be to regroup the data into the
{A,B,X} form described earlier. Sadly, there’s no simple generic way to pull
elements from a list three at a time, so we’ll need to pattern match our way
in a recursive function in order to accomplish this:

group_vals([], Acc) ->
lists:reverse(Acc);

group_vals([A,B,X|Rest], Acc) ->
group vals(Rest, [{A,B,X} | Acc]).

That function works in a standard tail-recursive manner; there’s nothing
too complex going on here. We’ll just need to call it by modifying parse_map/1
a bit:

parse_map(Bin) when is_binary(Bin) ->
parse_map(binary_to list(Bin));

parse_map(Str) when is list(Str) -»>
Values = [list to_integer(X) || X <- string:tokens(Str,"\r\n\t ")],
group vals(Values, []).

Let’s try to compile it all and see if we now have a road that makes sense.

1> c(road).

{ok,road}

2> road:main().
[{50,10,30},{5,90,20},{40,2,25},{10,8,0}]

Functionally Solving Problems 115

Ah yes, that looks right. We get the blocks we need to write our func-
tion that will then fit in a fold. For this to work, finding a good accumulator
is necessary.

To decide what to use as an accumulator, the method I find the easiest
to employ is to imagine myself in the middle of the algorithm while it runs.
For this specific problem, we’ll imagine that we’re currently trying to find
the shortest path of the second triple ({5,90,20}). To decide on which path
is the best, we need to have the result from the previous triple. Luckily, we
know how to get that, because we don’t need an accumulator, and we have
all that logic already worked out. So for A, we have the following:

Pa\h starting atAis of length 50O
he

R SOl S 40 (@]
soll ¥ 20" 2 ¢
S 90 >Vl 8

_’r
gt Bis of length 4O

‘(

X

The path % \
CB.XJ is shorter than CAJ: pick that one!
— T 7 TOOTTEr hen RE pick !hat one!

And we take the shorter of these two paths.
For B, the choice is similar:

|, starting &4 Als of length 80

S

{he pot

. O
Jr\mﬁ at Bis of length |
The path s
PG
CB] is ShOV k-lv H)an CA,XJ: ChOOSe I‘ :)
-

So now we know that the current best path coming from A is [B, X].
We also know it has a length of 40. For B, the path is simply [B], and the
length is 10. We can use this information to find the next best paths for A

and B by reapplying the same logic, but counting the previous ones in the
expression.

116 Chapter 8

The other data we need is the path traveled so we can show it to the
user. Given that we need two paths (one for A and one for B) and two accu-
mulated lengths, our accumulator can take the form {{DistanceA, PathA},
{DistanceB, PathB}}. That way, each iteration of the fold has access to all the
state, and we build it up to show it to the user in the end.

This gives us all the parameters our function will need: the {A,B,X} tuples
and an accumulator of the form {{DistanceA,PathA}, {DistanceB,PathB}}.

We can put this into code in order to get our accumulator as follows:

shortest_step({A,B,X}, {{DistA,PathA}, {DistB,PathB}}) ->
OptA1 = {DistA + A, [{a,A}|PathA]},
OptA2 = {DistB + B + X, [{x,X}, {b,B}|PathB]},
OptB1 = {DistB + B, [{b,B}|PathB]},
OptB2 = {DistA + A + X, [{x,X}, {a,A}|PathA]},
{erlang:min(OptA1, OptA2), erlang:min(OptB1, OptB2)}.

Here, OptA1 gets the first option for A (going through A), and OptA2
gets the second one (going through B then X). The variables OptB1 and
OptB2 get the similar treatment for point B. Finally, we return the accumu-
lator with the paths obtained.

For the paths saved in this code, I decided to use the form [{x,X}] rather
than [x] for the simple reason that it might be nice for the user to know the
length of each segment. We’re also accumulating the paths backward ({x,X}
comes before {b,B}). This is because we're in a fold, which is tail recursive.
The whole list is reversed given how we accumulate it, so we must put the
last one traversed before the others.

Finally, we use erlang:min/2 to find the shortest path. It might sound
weird to use such a comparison function on tuples, but remember that
every Erlang term can be compared to any other! Because the length is the
first element of the tuple, we can sort them that way.

What's left to do is to stick that function into a fold:

optimal_path(Map) -»>
{A,B} = lists:foldl(fun shortest step/2, {{o,[]}, {0,[1}}, Map),
{ Dist,Path} = if hd(element(2,A)) =/= {x,0} -> A;
hd(element(2,B)) =/= {x,0} -> B
end,
lists:reverse(Path).

At the end of the fold, both paths should end up having the same dis-
tance, except one is going through the final {x,0} segment. The if looks
at the last visited element of both paths and returns the one that doesn’t
go through {x,0}. Picking the path with the fewest steps (compare with
length/1) would also work. Once the shortest path has been selected, it is
reversed (it was built in a tail-recursive manner; you must reverse it). You
can then display it to the world, or keep it secret and get your rich uncle’s
estate. To do that, we need to modify the main function to call optimal_path/1.
Then it can be compiled.

Functionally Solving Problems 17

118

Chapter 8

main() ->
File = "road.txt",
{ok, Bin} = file:read file(File),
optimal path(parse_map(Bin)).

And we can try it as follows:

1> c(road).

{ok,road}

2> road:main().
[{b,10},{x,30},{a,5},{x,20},{b,2},{b,8}]

Oh, look! We have the right answer. Great job!
Or, to put it in a visual way:

n SO S 40

Running the Program Without the Erlang Shell

You know what would be really useful? Being able to run our program from
outside the Erlang shell. To do this, we’ll need to change our main function
again:

main([FileName]) ->
{ok, Bin} = file:read file(FileName),
Map = parse map(Bin),
io:format("~p~n",[optimal_path(Map)]),
erlang:halt().

The main function now has an arity of 1, needed to receive parameters
from the command line. We’ve also added the function erlang:halt/o, which
will shut down the Erlang VM after being called. We’ve wrapped the call to
optimal_path/1 into io:format/2 because that’s the only way to have the text
visible outside the Erlang shell.

With all of this, your road.erl file should now look like this (minus
comments):

-module(road).
-compile(export_all).

main([FileName]) ->
{ok, Bin} = file:read file(FileName),

Map = parse_map(Bin),
io:format("~p~n",[optimal_path(Map)]),
erlang:halt(0).

%% Transform a string into a readable map of triples.

parse_map(Bin) when is_binary(Bin) ->
parse_map(binary_to list(Bin));

parse_map(Str) when is list(Str) -»>
Values = [list to_integer(X) || X <- string:tokens(Str,"\r\n\t ")],
group_vals(Values, []).

group_vals([], Acc) ->
lists:reverse(Acc);

group_vals([A,B,X|Rest], Acc) ->
group vals(Rest, [{A,B,X} | Acc]).

%% Picks the best of all paths, woo!
optimal_path(Map) -»>
{A,B} = lists:foldl(fun shortest step/2, {{0,[1}, {0,[1}}, Map),
{ Dist,Path} = if hd(element(2,A)) =/= {x,0} -> A;
hd(element(2,B)) =/= {x,0} -> B
end,
lists:reverse(Path).

%% actual problem solving
%% Change triples of the form {A,B,X}
%% where A,B,X are distances and a,b,x are possible paths
%% to the form {DistanceSum, PathList}.
shortest_step({A,B,X}, {{DistA,PathA}, {DistB,PathB}}) ->
OptA1 = {DistA + A, [{a,A}|PathA]},
OptA2 = {DistB + B + X, [{x,X}, {b,B}|PathB]},
OptB1 = {DistB + B, [{b,B}|PathB]},
OptB2 = {DistA + A + X, [{x,X}, {a,A}|PathA]l},
{erlang:min(OptA1, OptA2), erlang:min(OptB1, OptB2)}.

And we can run the code like this:

$ erlc road.erl
$ erl -noshell -run road main road.txt

[{b,10},{x,30},{a,5},{x,20},{b,2},{b,8}]

And yep, we get the right answer! That’s pretty much all you need to do
to get things to work, though you could also make yourself a bash/batch
script to wrap the line into a single executable, or you could check out the
escript command (which provides scripting support) to get similar results.

Asyou've seen with these two exercises, solving problems is much easier
when you break them into small parts that you can solve individually before
piecing everything together. It’s also important not to dive right in before you
fully understand the problem, since this will usually end up creating more
work in the long run. Finally, a few tests are always appreciated. They allow
you to make sure everything works initially and will return the same results
down the road, even if you change the particulars of the implementation.

Functionally Solving Problems 119

120

Chapter 8

USING ESCRIPT

The Erlang escript command provides a simple way to run Erlang programs with-
out starting the erl application directly. Basically, the command takes a module
and allows you to interpret it without needing to compile it first.

The structure of the module remains similar to what you had before, but you
need fo change its head. Instead of having a -module(Name) attribute, the following
is required:

#!/usr/bin/env escript

%% -*- erlang -*-

%%! -pa 'ebin/' [Other erl Arguments]
main([StringArguments]) ->

The function main/1 will automatically be called when you start the script,
either as ./script-name.erl or escript script-name.erl (the latter makes it easier to
run on Windows). The module will run as a normal script.

If you want the benefits of escript without needing to interpret the code (which
is slower) and would prefer compiling the code, just add the -mode(compile). mod-
ule attribute somewhere in the file.

To find out more about escript, read the documentation that comes with
Erlang, which is also available online at http://erlang.org/doc/man/escript.html.

A SHORT VISITTO COMMON
DATA STRUCTURES

Chances are that you now understand the functional
subset of Erlang pretty well and could read many pro-
grams without a problem. However, I bet it’s still a bit
hard to think about how to build a real, useful program,

even though Chapter 8 was about solving problems in a functional man-
ner. Well, that’s how I felt at this point in my Erlang studies—if you're doing
better, congratulations!

So far, we’ve covered a bunch of topics, including most of the basic
data types, the shell, how to write modules and functions (with recursion),
different ways to compile, how to control the flow of the program, how to
handle exceptions, and how to abstract away some common operations.
We’ve also gone over how to store data with tuples, lists, and an incomplete
implementation of a binary search tree. What we haven’t talked about yet is
the other data structures provided to the programmer in the Erlang stan-
dard library. This chapter fills that void, with information about records,
key/value stores, sets, directed graphs, and queues.

122

Records

Chapter @

Records are, first of all, a hack. They are more or less
an afterthought to the language and can have their
share of inconveniences. However, they’re still pretty
useful when you have a small data structure and you
want to access the attributes by name directly. Used this
way, Erlang records are a lot like structs in C.

Defining Records

Records are declared as module attributes in the following manner:

-module(records).
-compile(export_all).

-record(robot, {name,
type=industrial,
hobbies,
details=[]}).

Here, we have a record representing robots with four fields: name, type,
hobbies, and details. There are also default values for type and details, which
are industrial and [], respectively.

Here’s how to create an instance of a record in the module records:

first _robot() -»>
#robot{name="Mechatron",
type=handmade,
details=["Moved by a small man inside"]}.

Let’s try running the code:

1> c(records).

{ok,records}

2> records:first_robot().

{robot, "Mechatron",handmade,undefined,
["Moved by a small man inside"]}

Whoops! Here comes the hack! Erlang records are just syntactic sugar
on top of tuples. Fortunately, there’s a way to keep the illusion going. The
Erlang shell has the command rr(Module), which lets you load record defini-
tions from Module. Try it with our records module.

3> rr(records).

[robot]

4> records:first_robot().

#robot{name = "Mechatron",type = handmade,
hobbies = undefined,
details = ["Moved by a small man inside"]}

The rr() function can take more than a module name. It can also take a wildcard
(like rr("*")) and a list as a second argument to specify which records to load.

Ah, there! This makes it much easier to work with records. You’ll notice
thatin first_robot/0, we did not define the hobbies field, and it has no default
value in its declaration. By default, Erlang sets the value to undefined for you.

To see the behavior of the defaults we set in the robot definition, let’s
compile the following function:

car_factory(CorpName) ->
#robot{name=CorpName, hobbies="building cars"}.

Now run it.

5> c(records).

{ok,records}

6> records:car_factory("Jokeswagen").

#robot{name = "Jokeswagen",type = industrial,
hobbies = "building cars",details = []}

Now we have an industrial robot that likes to spend time building cars.

OTHER RECORD FUNCTIONS FOR THE ERLANG SHELL
Along with rx(), Erlang provides a few other functions to deal with records in the shell:
e Use rd(Name, Definition) to define a record in a manner similar to the

-record(Name, Definition) function used in our module.
e Use rf() to “unload” all records.
e Use rf(Name) or rf([Names]) to get rid of specific definitions.

e Use r1() to print all record definitions currently defined in the shell in a way
that makes it easy to copy and paste them into the module. Use r1(Name) or
r1([Names]) to print only specific records.

Reading Valves from Records

Simply writing records isn’t very useful. We need a way to extract values
from them. There are basically two ways to do this: with a special dot syntax
or through pattern matching. Assuming you have the record definition for
robots loaded, we’ll take a look at the dot syntax first.

5> Crusher = #robot{name="Crusher", hobbies=["Crushing people","petting cats"]}.
#robot{name = "Crusher",type = industrial,

hobbies = ["Crushing people","petting cats"],
details = []}

A Short Visit to Common Data Structures 123

124

Chapter 9

6> Crusher#robot.hobbies.

["Crushing people","petting cats"]

Ugh—not a pretty syntax. This is due to the nature of records as tuples.
Because they’re just a kind of compiler trick, you need to include keywords
to define which record goes with which variable; hence, the #robot part of
Crusher#robot.hobbies. It’s sad, but there’s no way out of it. Worse than that,
nested records can get pretty ugly:

7> NestedBot = #robot{details=#robot{name="erNest"}}.
#robot{name = undefined,type = industrial,
hobbies = undefined,
details = #robot{name = "erNest",type = industrial,
hobbies = undefined,details = []}}
8> (NestedBot#robot.details)#robot.name.
"erNest"

And no, the parentheses are not mandatory. You could also type
NestedBot#robot.details#robot.name. For backward compatibility (with Erlang
versions before R14A) and to suit my personal preferences, I tend to use
the version with parentheses, because I think that they make the code more
readable.

The following example further demonstrates the dependence of records
on tuples.

9> #robot.type.
3

This outputs which element of the underlying tuple type is.

One redeeming feature of records is that you can use them in function
heads to pattern match and also in guards. To see how this works, declare
a new record at the top of the file, and then add the functions under the
declaration.

-record(user, {id, name, group, age}).

%% Use pattern matching to filter.
admin_panel (#user{name=Name, group=admin}) ->
Name ++ " is allowed!";
admin_panel(#user{name=Name}) ->
Name ++ " is not allowed".

%% Can extend user without problem.
adult_section(U = #user{}) when Uttuser.age >= 18 ->
%% Show stuff that can't be written in such a text.
allowed;
adult_section(_) ->
%% Redirect to Sesame Street site.
forbidden.

The syntax to bind a variable to any field of a record is demonstrated in
the admin_panel/1 function (it’s possible to bind variables to more than one
field).

Regarding the adult_section/1 function, note that you need to do
SomeVar = #some_record{} in order to bind the whole record to a variable.

Then we do the compiling as usual.

10> c(records).

{ok,records}

11> rr(records).

[robot,user]

12> records:admin_panel(#user{id=1, name="ferd", group=admin, age=96}).
"ferd is allowed!"

13> records:admin_panel(#user{id=2, name="you", group=users, age=66}).
"you is not allowed"

14> records:adult_section(#user{id=21, name="Bill", group=users, age=72}).
allowed

15> records:adult_section(#user{id=22, name="Noah", group=users, age=13}).
forbidden

This shows that it’s not necessary to match on all parts of the tuple, or
even know how many there are when writing the function. We can match
on only the age or the group, if that’s what’s needed, and forget about all the
rest of the structure. If we were to use a normal tuple, the function definition
might need to look a bit like function({record, _, _, ICareAboutThis, _, _}) ->
Then, whenever someone decided to add an element to the tuple, someone
else (probably angry about it) would need to update all the functions where
that tuple is used.

Updating Records

The following function illustrates how to update a record (they wouldn’t be
very useful otherwise).

repairman(Rob) ->
Details = Rob#robot.details,
NewRob = Rob#robot{details=["Repaired by repairman"|Details]},
{repaired, NewRob}.

Now compile it.

16> c(records).
{ok,records}
17> records:repairman(#robot{name="Ulbert", hobbies=["trying to have feelings"]}).
{repaired,#robot{name = "Ulbert",type = industrial,
hobbies = ["trying to have feelings"],
details = ["Repaired by repairman"]}}

A Short Visit to Common Data Structures 125

126

Chapter 9

As you can see, the robot has been repaired. The syntax to update
records is a bit special here. It looks like we’re updating the record in place
(Robi#trobot{Field=NewValue}), but it’s all compiler trickery to call the under-
lying erlang:setelement/3 function.

Sharing Records

Because records can be useful and code duplication is annoying, Erlang
programmers frequently share records across modules with the help of
header files. Erlang header files are similar to their C counterparts. A header
file is nothing but a snippet of code that gets added to the module as if it
were written there in the first place.

Create a file named records.hrl with the following content:

%% This is a .hrl (header) file.

-record(included, {some_field,
some_default = "yeah!",
unimaginative_name}).

To include it in records.erl, just add the following line to the module:

-include("records.hrl").

And then add the following function to try it:

included() -> #included{some_field="Some value"}.

Now compile it as usual.

18> c(records).

{ok,records}

19> rr(records).

[included,robot,user]

20> records:included().

#included{some_field = "Some value",some_default = "yeah!",
unimaginative_name = undefined}

Hooray! That’s about it for records. As you've seen, their syntax is not
pretty, and they’re not much more than a hack, but they’re relatively impor-
tant for the maintainability of your code.

You will often see open source software using the method shown here of having a
project-wide .hrl file for records that are shared across all modules. While I felt obli-
gated to document this use, I strongly recommend that you keep all record definitions
local, within one module. If you want some other module to look at a record’s innards,
write functions to access its fields and keep its details as private as possible. This
helps prevent name clashes, avoids problems when upgrading code, and just gener-
ally improves the readability and maintainability of your code.

Key/Value Stores

Back in Chapter 5, we built a tree and then used itas a x
key/value store for an address book. That address book M
sucked. We couldn’t delete or convert it to anything use-

ful. It was a good demonstration of recursion, but not

much more.

Now is the time to introduce you to a bunch of useful data structures
and modules to store data under a certain key. I won’t define what every
function does, show entire examples, or go through all the modules, because
you can easily find that information in Erlang’s documentation. Consider

me as “someone responsible for raising awareness about key/value stores in
Erlang” (sounds like a good title—I just need one of those ribbons).

Stores for Small Amounts of Data

For storing small amounts of data, basically two types of data structures can
be used: a property list (proplist) or an ordered dictionary (orddict).

Proplists

A proplist is any list of tuples of the form [{Key,Value}]. Proplists are a weird
kind of structure because that’s the only rule that applies to them. In fact,
the rules are so relaxed that the list can also contain Boolean values, integers,
and whatever else you want. Here, we're interested in the idea of a tuple
with a key and a value in a list.

To work with proplists, use the proplists module. It contains functions
such as proplists:delete/2, proplists:get value/2, proplists:get all values/2,
proplists:lookup/2, and proplists:lookup_all/2. You can get their definitions
from Erlang’s documentation.

You'll notice there is no function to add or update an element of the
list. This shows how loosely defined proplists are as a data structure. In
fact, a proplist is more often appropriate when you need a list of properties.
For example, we could describe a dog as the proplist [{name, buddy}, {race,
husky}, friendly], where the value friendly is equivalent to {friendly, true}.

If you want to add an element to a proplist, you must use the cons oper-
ator to insert your element manually (NewList = [NewElement|0OldList]). This
works well even for updates, because the proplists module will look through
the list in order and stop as soon as it finds a matching element. You can
also use functions such as lists:keyreplace/4 to update a proplist if you need
to do it a lot, as this approach avoids making the proplist longer as time
goes on. Using two modules for one small data structure is not the cleanest
technique, but because proplists are so loosely defined, they’re often used
to deal with configuration lists.

Orddicts

If you want a more complete key/value store for small amounts of data,
the orddict module is what you need. Orddicts are proplists with a taste for

A Short Visit to Common Data Structures 127

128

Chapter @

formality. Each key can be there only once. The whole list is sorted so, on
average, lookups are faster. The items need to respect a strict {Key, Value}
structure. You're not expected to edit orddicts as lists, as with proplists, but
to use the functional interface for all the operations you need.

Common functions for CRUD (Create, Read, Update, and Delete)
usage include orddict:store/3, orddict:find/2 (when you do not know whether
the key is in the dictionaries), orddict:fetch/2 (when you know it is there
or that it must be there), and orddict:erase/2. You can create an orddict by
using orddict:new/0 or orddict:from_list/1. Again, you can look up these func-
tions in the Erlang documentation.

To create and manipulate the orddict, you might be tempted to manually modify the
key/value list, but you should always use the functions provided by the orddict mod-
ule to avoid ordering errors.

Orddicts are generally a good compromise between complexity
and efficiency for up to about 75 elements (see my benchmark, keyval_
benchmark.erl, available with the rest of the code for this book). After that
amount, you should switch to different key/value stores, such as the ones
discussed next.

Larger Dictionaries: Dicts and GB Trees

Erlang provides two key/value struc-
tures to deal with larger amounts of
data: dictionaries (dicts) and general
balanced (GB) trees. Dicts have
the same interface as orddicts:
dict:store/3, dict:find/2, and
dict:fetch/2, dict:erase/2. They
also have every other function
from orddict, such as dict:map/2
and dict:fold/2 (pretty useful to work on the whole data structure!). Dicts
are thus very good choices for scaling up orddicts whenever it is needed.
GB trees, handled through the gb_trees module, have many more func-
tions that give you more direct control over how the structure is to be used.
There are basically two modes for gb_trees: the mode where you know your
structure inside and out (I call this the smart mode), and the mode where
you can’t assume much about it (I call this the naive mode). In naive mode,
the functions are gb_trees:enter/2, gb_trees:lookup/2, and gb_trees:delete_
any/2. The related smart functions are gb_trees:insert/3, gb_trees:get/2,
gb_trees:update/3, and gb_trees:delete/2. There is also gb_trees:map/2, which
is a tree-based equivalent to lists:map/2 (always a nice thing to have when
you need it).
The disadvantage of naive functions over smart ones is that because
GB trees are balanced trees, whenever you insert a new element (or delete a
bunch of elements), the tree may need to balance itself. This can take time
and memory (even in useless checks that end up changing nothing but seek

to make sure the tree is still balanced). The smart functions all assume
that the key is present in the tree. This lets you skip all the safety checks and
results in faster operations.

DON’'T DRINK TOO MUCH KOOL-AID

What about code that requires data structures with only numeric keys@ For that,
most languages usually have arrays. Erlang has arrays, too. They allow you to
access elements with numeric indices and to fold over the whole structure while
possibly ignoring undefined slots. However, very few people use them.

Erlang arrays, unlike their imperative counterparts, do not have such things
as constant-time insertion or lookup. Instead, they are said to be persistent, as they
allow no destructive updates. For this reason, they’re usually slower than those in
languages that support destructive assignment. People who know and use that
type of array usually do so with a given set of algorithms and a precise style in
mind. Erlang’s arrays hardly allow that. They tend to sit in a dark corner, alone.

Erlang programmers who need to do matrix manipulations and other jobs
that require arrays tend to use concepts called ports to let other languages do
the heavy lifting, or C nodes, linked-in drivers, and native implemented functions
(NIFs). See the Erlang documentation for more details.

When should you use the gb_trees module rather than dict functions?
Well, it’s not a clear decision. As the benchmark module I wrote (keyval_
benchmark.erl) shows, GB trees and dicts have somewhat similar performances
in many respects. However, the benchmark demonstrates that dicts have
the best read speeds, and the GB trees tend to be a little quicker on other
operations.

Also note that while dicts have a fold function, GB trees don’t. Instead,
they have an iterator function, which returns a bit of the tree on which you
can call gb_trees:next(Iterator) to get the following values in order. This
means that you need to write your own recursive functions on top of using
gb_trees, rather than using a generic fold. On the other hand, gb_trees lets
you have quick access to the smallest and largest elements of the structure
with gb_trees:smallest/1 and gb_trees:largest/1. This is because a GB tree
preserves the order of all elements inside of it, from the smallest to the larg-
est. A dict, on the other hand, will not provide this ordering. As such, if you
need to be able to traverse your key/value store in order, GB trees might be
a good option.

So, your application’s needs are what should govern which key/value
store you choose. You’ll need to consider factors such as how much data you
have to store and what you need to do with it. Measure, profile, and bench-
mark to make sure.

A Short Visit to Common Data Structures 129

130

Some special key/value stores exist to deal with resowrces of different sizes. Such stores

are E'TS tables, Dets tables, and the Mnesia database. Their use is strongly related to

the concepts of multiple processes and distribution, so we’ll get to them in Chapter 25.
I’'m mentioning them now just to pique your curiosily and as a reference for those who
are interested.

A Set of Sets

Chapter 9

If you've ever studied set theory in
a mathematics class, you have an
idea about what sets can do. If you
haven’t, you might want to skip this
section.
Sets are groups of unique ele-
ments that you can compare and
operate on—find which elements
are in two groups, in none of them,
in only one or the other, and so on.
There are advanced operations that
let you define relations and operate on these relations, and much more. I'm
not going to dive into the theory here but just give you an idea of what is
available.
Erlang has four main modules to deal with sets. This seems a bit weird
at first, but it’s because the implementers agreed that there was no “best”
way to build a set. The four modules are as follows:

ordsets
ordsets module sets are implemented as sorted lists. They’re mainly
useful for small sets, and are the slowest kind of set, but they have the
simplest and most readable representation of all sets. Some of the many
standard functions for them are ordsets:new/0, ordsets:is_element/2,
ordsets:add_element/2, ordsets:del_element/2, ordsets:union/1, and
ordsets:intersection/1.

sets
sets (the module) is implemented on top of a structure similar to the
one used by dicts. The sets module implements the same interface as
ordsets, but its sets scale much better. Like dicts, they’re especially good
for read-intensive manipulations, such as checking whether some ele-
ment is part of the set.

gb_sets
gb_sets module sets are constructed above a GB tree structure similar
to the one used in the gb_trees module. gb_sets is to sets what gb_trees
is to dict: an implementation that is faster when considering opera-
tions other than reading, leaving you with more control. While gb_sets

implements the same interface as sets and ordsets, it adds more func-
tions. As with gb_trees, we have smart versus naive functions, iterators,
and quick access to the smallest and largest values.

sofs
Sets of sets, created with the sofs module, are implemented with sorted
lists, stuck inside a tuple with some metadata. This is the module to
use if you want to have full control over relationships between sets and
families, enforce set types, and so on. These sets are what you want if
you need the mathematics concept of sets, rather than just groups of
unique elements.

It’s a bit confusing to have so many options available. Bjérn Gustavsson,
from the Erlang/OTP team and programmer of Wings 3D, suggests using
gb_sets in most circumstances, using ordset when you need a clear represen-
tation that you want to process with your own code, and using sets when
you need the =:= operator (see http://erlang.org/pipermail/erlang-questions/
2010-March/050333.html).

In any case, as with key/value stores, the best solution is usually to
benchmark and see which approach best suits your application.

DON’'T DRINK TOO MUCH KOOL-AID

While such a variety of sets can be seen as something great, some implementation
details can be downright frustrating. As an example, gb_sets, ordsets, and sofs all
use the == operator to compare values; if you have the numbers 2 and 2.0, they’ll
be seen as the same number.

However, the sets module uses the =:= operator, which means you can't nec-
essarily switch over every implementation as you wish. There are cases where you
need one precise behavior, and at that point, you might lose the benefit of having
multiple implementations.

Directed Graphs

One other data structure intimately related to mathematics is the directed
graph. Directed graphs in Erlang are implemented as two modules: digraph
and digraph_utils. The digraph module basically allows the construction and
modification of a directed graph—manipulating edges and vertices, finding
paths and cycles, and so on. The digraph_utils module allows you to navi-
gate a graph (postorder and preorder); test for cycles, arborescences, and
trees; find neighbors; and so on.

Because directed graphs are closely related to set theory, the sofs mod-
ule contains a few functions that let you convert families to directed graphs
and directed graphs to families.

A Short Visit to Common Data Structures 131

132

Quevues

Chapter @

Because of the way the directed graphs modules are built, they aren’t
really appropriate without a good basic knowledge of either graphs or set
theory. If you know your stuff and you are interested in learning more
about these modules, you’ll have no problem figuring them out by their
standard documentation.

The queue module implements a double-ended first in, first out (FIFO)
queue. Queues are implemented a bit as illustrated here: two lists (in this
context, stacks) that allow you to both append and prepend elements
rapidly.

Because a single list doesn’t
allow efficiently adding and remov- Pt P
ing elements from both ends at \ Push i opP

v

>
once (it’s only fast to add and -~
remove the head), the idea behind |

the queue module is that if you have T —

two lists, then you can use one to [e ——
add elements and one to remove |)

elements. One of the lists then
behaves as one end of the queue,
where you push values, and the
other list acts as the other end, where you pop them. When the latter is
empty, you take the former and reverse it, and it becomes the new list to
pop from. This allows an efficient queue implementation on the average
of all operations over the life of the queue.

The queue module has different functions that are separated into three
interfaces (or APIs) of varying complexity:

Original API
The original API contains the functions at the base of the queue con-
cept. These include new/0, for creating empty queues; in/2, for inserting
new elements; and out/1, for removing elements. It also has functions to
convert to lists, reverse the queue, check if a particular value is part of
the queue, and so on.

Stack/List Stack /List

Extended API
The extended API mainly adds some introspection power and flexibil-
ity. It lets you do things such as look at the front of the queue without
removing the first element (get/1 or peek/1), remove elements without
caring about them (drop/1), and so on. These functions are not essential
to the concept of queues, but they’re still useful in general.

Okasaki API
The Okasaki API is a bit weird. It’s derived from Chris Okasaki’s Purely
Functional Data Structures (Cambridge University Press, 1999). The API
provides operations similar to those available in the other APIs, but
some of the function names are written backward, and the whole thing

is relatively peculiar. Unless you have a specific reason for using this
API, I wouldn’t bother with it.

You’ll generally want to use queues when you need to ensure that the
first item ordered is indeed the first one processed. So far, the examples
I’'ve shown mainly used lists as accumulators that would then be reversed.
In cases where you can’t just do all the reversing at once, and elements are
frequently added, the queue module is what you want. (Well, you should test
and measure first. Always test and measure first!)

End of the Short Visit

That’s about it for our trip through the most common data structures of
Erlang. Thank you for having kept your arms inside the vehicle the whole
time. There are a few more data structures available to solve different prob-
lems. Here, I've covered those that you're likely to encounter or need the
most, given the strengths of general use cases of Erlang. I encourage you

to explore the standard library and the extended one, too, to find more
information.

You might be glad to learn that this completes our trip into sequential
(functional) Erlang. I know a lot of people get into Erlang to see all the con-
currency and processes and whatnot. This is understandable, given these
are the areas where Erlang really shines. It offers supervision trees, fancy
error management, distribution, and more. I know that I've been very impa-
tient to write about these subjects, so I guess some readers are very impatient
to read about them.

However, it makes more sense to be comfortable with functional Erlang
before moving on to concurrent Erlang. Now we can focus on all the new
concepts. Here we go!

A Short Visit to Common Data Structures 133

THE HITCHHIKER’S GUIDE
TO CONCURRENCY

Far out in the uncharted backwaters of the unfashion-
able beginning of the 21st century lies a small subset
of human knowledge. Within this subset of human
knowledge is an utterly insignificant little discipline
whose Von Neumann—descended architecture is so
amazingly primitive that it is still thought that RPN

calculators are a pretty neat idea.

This discipline has—or rather had—a problem, which was this: Most of
the people studying it were unhappy for pretty much of the time when trying
to write parallel software. Many solutions were suggested for this problem,
but most of these were largely concerned with the handling of little pieces
of logic called locks and mutexes and whatnot, which is odd because on the
whole, it wasn’t the small pieces of logic that needed parallelism.

And so the problem remained. Lots of people were mean, and most of
them were miserable, even those with RPN calculators.

136

Many were increasingly of the opinion that they’d all made a big mis-
take in trying to add parallelism to their programming languages, and that
no program should have ever left its initial thread.

Parodying The Hitchhiker’s Guide to the Galaxy is fun. Read the book if you
haven'’t already. It’s good!

Don’t Panic

Chapter 10

Hi. Today (or whatever day you are reading this—even tomorrow), I'm
going to tell you about concurrent Erlang. Chances are you’ve read about
or dealt with concurrency before. You might also be curious about the
emergence of multicore programming. Anyway, the probabilities are high
that you're reading this book because of all the talk about concurrency
going on these days.

A warning though: This chapter is mostly theory. If you have a headache,
a distaste for programming language history, or a desire just to program,
you might be better off skipping to the end of the chapter, or moving on to
the next one (where more practical content is shown).

In the Introduction to this book, I
explained that Erlang’s concurrency is
based on message passing and the actor
model, using the example of people com-
municating with nothing but letters. We’ll
get to more details about concurrency later
in this chapter, but first, it is important to
define the difference between concurrency
and parallelism.

In many places, both words refer to the same concept, but in the context
of Erlang, concurrency refers to having many actors running independently
but not necessarily all at the same time, while parallelism is having actors
running at exactly the same time. This is how I'll use these terms in this
text, but don’t be surprised if other sources or people use the same terms
to mean different things. There doesn’t seem to be any consensus on these
definitions in the computer science world.

Erlang had concurrency from the beginning, even when everything
was done on a single core processor in the 1980s. Each Erlang process would
have its own slice of time to run, much like desktop applications did before
multicore systems. Parallelism was still possible back then; all you needed
to do was to have a second computer running the code and communicating
with the first one. Even then, only two actors could be run in parallel in this
setup. Nowadays, multicore systems allow for parallelism on a single com-
puter (some industrial chips have many dozens of cores), and Erlang takes
full advantage of this possibility.

DON’'T DRINK TOO MUCH KOOL-AID

The distinction between concurrency and parallelism is important to make,
because many programmers hold the belief that Erlang was ready for multicore
computers years before it actually was. Erlang was adapted to true symmetric
multiprocessing (SMP) in the mid-2000s, and only got most of the implementa-
tion right with the R13B release of the language in 2009. Before that, SMP often
needed to be disabled to avoid performance losses. Then to get parallelism on
a multicore computer without SMP, you
would need to start many instances of
the VM.

An inferesting fact is that because
Erlang concurrency is all about iso-
lated processes, it took no conceptual
change at the language level to bring
true parallelism to the language. All
the changes were transparently done
in the VM, away from the eyes of the

programmers.

Concurrency Concepts

Back in the day, Erlang’s development as a language was extremely quick,
with frequent feedback from engineers working on telephone switches in
Erlang itself. These interactions proved process-based concurrency and
asynchronous message passing to be a good way to model the problems the
engineers faced. Moreover, the telephony world already had a certain culture
going toward concurrency before Erlang came to be. This was inherited
from PLEX, a language created earlier at Ericsson, and AXE, a switch
developed with it. Erlang followed this tendency and attempted to improve
on previous tools available.

Erlang had a few requirements to satisfy before being considered good.
The main ones were being able to scale up and support many thousands of
users across many switches, and to achieve high reliability—to the point of
never stopping the code.

Scalability

Some properties were seen as necessary to achieve scalability. Because users
would be represented as processes that reacted only upon the occurrence
of certain events (such as receiving a call or hanging up), an ideal system
would support processes doing small computations, switching between
them very quickly as events came through. To make the system efficient, it

The Hitchhiker's Guide to Concurrency 137

138

Chapter 10

made sense for processes to be started and destroyed very quickly. Having
them be lightweight was mandatory to achieve this efficiency. It was also
mandatory because you didn’t want to have things like process pools (a
fixed amount of processes you split the work among). Instead, it would be
much easier to design programs that could use as many processes as they
needed.

Another important aspect of scalability is to be able to bypass your hardware’s limita-
tions. There are two ways to do this: make the hardware better or add more hardware.
The first option is useful up to a certain point, after which it becomes extremely
expensive. The second option is usually cheaper and requires you to add more com-
puters to do the job. This is where distribution can be useful to have as a part of your
language.

Because telephony applications needed a lot of reliability, it was decided
that the cleanest approach was to forbid processes from sharing memory.
Shared memory could leave things in an inconsistent state after some crashes
(especially on data shared across different nodes) and had some complica-
tions. Instead, processes should communicate by sending messages where
all the data is copied. This might end up being slower but safer.

Fault Tolerance

The first writers of Erlang always kept in mind that failure is common. You
can try to prevent bugs all you want, but most of the time, some will still
creep in. And even if by some miracle your code doesn’t have any bugs,
nothing can stop the eventual hardware failure. Therefore, the idea is to
find good ways to handle errors and problems, rather than trying to pre-
vent them all.

It turns out that taking the design approach of multiple processes with
message passing was a good idea, because error handling could be grafted
onto it relatively easily. Take lightweight processes (made for quick restarts
and shutdowns) as an example. Some studies proved that the main sources
of downtime in large-scale software systems are intermittent or transient
bugs (see http://dslab.epfl.ch/pubs/crashonly/). Also, there’s a principle that
says that errors that corrupt data should cause the faulty part of the sys-
tem to die as fast as possible in order to avoid propagating errors and bad
data to the rest of the system.

Another concept here is that a system can terminate in many different
ways, two of which are clean shutdowns and crashes (terminating with an
unexpected error).

Here, the worst case is obviously the crash. A safe solution would be to
make sure all crashes are the same as clean shutdowns. This can be done
through practices such as shared-nothing (all memory is separated for sub-
parts of the system) and single assignment (which can further isolate a pro-
cess’s memory), avoiding locks (if certain data was locked during a crash, it
would keep other processes from accessing the data or leave it in an incon-
sistent state), and other safeguards, which were all part of Erlang’s design.

The ideal solution in Erlang is thus to kill processes as fast as possible
to avoid data corruption and transient bugs. Lightweight processes are a
key element in this. Further error-handling mechanisms are also part of the
language to allow processes to monitor other processes (which are described
in Chapter 12), in order to know when processes die and to decide what to
do about it.

Assuming that restarting processes quickly is enough to deal with crashes,
the next problem is handling hardware failures. How do you make sure your
program keeps running when someone kicks the computer it’s running on?
Although a fancy defense mechanism consisting of laser detection and stra-
tegically placed cacti could do the job for a while, it would not last forever.
The solution is simply to have your program running on more than one
computer at once—something that’s necessary for scaling anyway. This is
another advantage of independent processes with no communication
channel outside message passing. You can have them working the same way
whether they’re local or on a different computer, making fault tolerance
through distribution nearly transparent to the programmer.

Being distributed has direct
consequences on how processes can
communicate with each other. One
of the biggest hurdles of distribu-
tion is that you can’t assume that
because a node (a remote com-
puter) was there when you made a
function call, it will still be there for
the whole transmission of the call,
or that it will even execute the call
correctly. Someone tripping over a
cable or unplugging the machine
would leave your application hang-
ing. Or maybe it would make it
crash. Who knows?

Well, it turns out the choice of asynchronous message passing was
a good design pick there, too. Under the processes-with-asynchronous-
messages model, messages are sent from one process to a second one and
stored in a mailbox inside the receiving process until they are taken out
to be read. It’s important to mention that messages are sent without even
checking if the receiving process exists, because it would not be useful to
do so. As implied in the previous paragraph, it’s impossible to know if a
process will crash between the time a message is sent and received. And if
the message is received, it’s impossible to know whether the message will be
acted upon or if the receiving process will die before that. Asynchronous
messages allow safe remote function calls because there is no assumption
about what will happen; the programmer is the one to know. If you need to
have a confirmation of delivery, you must send a second message as a reply
to the original process. This message will have the same safe semantics, and
so will any program or library you build on this principle.

The Hitchhiker's Guide to Concurrency 139

140

Concurrency Implementation

So now you know why it was decided that lightweight processes with asyn-
chronous message passing were the approach to take for Erlang. But how
could Erlang’s implementers make this work?

First of all, the operating system can’t be trusted to handle the pro-
cesses. Operating systems have many different ways to handle processes,
and their performance varies a lot. Most, if not all, of them are too slow or
heavy for what is needed by standard Erlang applications. By handling pro-
cesses in the VM, the Erlang implementers kept control of optimization and
reliability. Nowadays, Erlang’s processes take about 300 words of memory
each and can be created in a matter of microseconds—not something cur-
rently doable on major operating systems.

To handle all these potential pro-
cesses your programs could create, the
VM starts one thread per core that acts
as a scheduler. Each of these schedulers
has a run queue, or a list of Erlang pro-
cesses on which to spend a slice of time.
When one of the schedulers has too
many tasks in its run queue, some tasks
are migrated to another queue. This
means that each Erlang VM takes care
of doing all the load balancing, and
the programmer doesn’t need to worry
about it. The VM also does some other
optimizations, such as limiting the rate at which messages can be sent to
overloaded processes in order to regulate and distribute the load.

All the hard stuff is in there, managed for you. That is what makes it
easy to go parallel with Erlang. Going parallel means your program should
go twice as fast if you add a second core, four times faster if there are four
cores, and so on, right? It depends. Such a phenomenon is named linear
scaling in relation to speed gain versus the number of cores or processors (see
the graph in the next section). In real life, there is no such thing as a free
lunch (well, maybe at funerals, but someone, somewhere, still has to pay).

Not Entirely Unlike Linear Scaling

Chapter 10

The difficulty of obtaining linear scaling is not due to the language itself,
but rather to the nature of the problems to solve. Problems that scale very
well are often said to be embarrassingly parallel. If you look up “embarrass-
ingly parallel problems” on the Internet, you're likely to find examples such
as ray-tracing (a method to create 3D images), brute-forcing searches in
cryptography, and weather prediction.

From time to time, messages pop up in IRC channels, forums, and
mailing lists asking if Erlang could be used to solve that kind of problem,
or if it could be used to program on a graphical processing unit (GPU).

The answer is almost always no. The reason is relatively simple: All these
problems usually involve numerical algorithms with a lot of data crunching.
Erlang is not very good at this.

Erlang’s embarrassingly parallel problems are present at a higher level.
Usually, they have to do with concepts such as chat servers, phone switches,
web servers, message queues, web crawlers, or any other application where
the work done can be represented as independent logical entities (actors,
anyone?). This kind of problem can be solved efficiently with close-to-linear
scaling.

Many problems will never show such scaling properties. In fact, you
need only one centralized sequence of operations to lose it all. Your parallel
program goes only as fast as its slowest sequential part. An example of that phe-
nomenon is observable any time you go to a mall. Hundreds of people can
be shopping at once, rarely interfering with each other. Then once it’s time
to pay, queues form as soon as there are fewer cashiers than there are cus-
tomers ready to leave. It would be possible to add cashiers until one exists
for each customer, but then you would need a door for each customer,
because the shoppers couldn’t get inside or outside the mall all at once.

To put this another way, even though customers could pick each of
their items in parallel and take as much time to shop whether they’re
alone or one of a thousand in the store, they would still need to wait to
pay. Therefore, their shopping experience could never be shorter than
the time it takes them to wait in the queue and pay.

A generalization of this principle is called Amdahl’s law. It indicates how
much of a speedup you can expect your system to have when you add paral-
lelism to it, and in what proportion:

Amdahl’s Law
20.00 —
L1
18.00
Parallel Portion
16.00 95%
— 90%
14.00 — 75%
— 50%
12.00
a /
=)
2 10.00 .
Q
& —
8.00 /
6.00 //
/]
4.00 / —
//
2.00 1
0.00
- e 2R 5 8 3 8 2 38 K% 3
Number of Processors

(Adapted from an image created by Daniel; used under a Creative Commons license.
Original can be found at http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg.)

The Hitchhiker's Guide to Concurrency 141

142

According to Amdahl’s law, code that is 50 percent parallel can never
get faster than twice what it was before, and code that is 95 percent parallel
can theoretically be expected to be about 20 times faster if you add enough
processors. What’s interesting to see on this graph is how getting rid of the
last few sequential parts of a program allows a relatively huge theoretical
speedup compared to removing as much sequential code in a program that
is not very parallel to begin with.

()

DON'T DRINK TOO MUCH KOOL-AID

Parallelism is not the answer to every problem. In some cases, going parallel will even
slow down your application. This can happen when your program is 100 percent
sequential but still uses multiple processes.

One of the best examples of this is the ring benchmark. A ring benchmark is
a test where many thousands of processes will pass a piece of data to one after
the other in a circular manner. Think of it as a game of telephone. In this bench-
mark, only one process at a time does something useful, but the Erlang VM still
spends time distributing the load across cores and giving every process its share
of time.

This plays against many common hardware optimizations and makes the VM
spend time doing useless stuff.

This load distribution often makes purely sequential applications run much
slower on many cores than on a single one. If this kind of algorithm is central to
your system, disabling SMP ($ erl -smp disable) might be a good idea. However,
in other cases, sequential algorithms that aren’t central to the execution of the
whole program will usually be drowned by other events. In these cases, disabling
SMP shouldn't have a big impact.

So Long and Thanks for All the Fish!

Chapter 10

Of course, this chapter would not be complete if it didn’t show the three
primitives required for concurrency in Erlang: spawning new processes,
sending messages, and receiving messages. In practice, more mechanisms
are required for making really reliable applications; but for now, these
three will suffice.

Spawning Processes

I've skirted around the issue a lot but have yet to explain what a process
really is. It’s actually nothing but a function. A process runs a function,
and once it’s finished, it disappears. Technically, a process also has some
hidden state (such as a mailbox for messages), but functions are our focus
for now.

To start a new process, Erlang provides the function spawn/1, which takes
a single function and runs it:

1> F = fun() -> 2 + 2 end.
#Fun<erl_eval.20.67289768>
2> spawn(F).

<0.44.0>

The result of spawn/1 (<0.44.0>) is called a process identifier, often just writ-
ten as pid (the form I'll use), Pid, or PID by the Erlang community. The pid
is an arbitrary value representing any process that exists (or might have
existed) at some point in the VM’s life. It is used as an address to communi-
cate with the process.

You'll notice that we can’t see the result of function F. We get only its
pid. That’s because processes do not return anything.

How can we see the result of F then? Well, there are two ways. The easi-
est one is to just output whatever we get:

3> spawn(fun() -> io:format("~p~n",[2 + 2]) end).
4
<0.46.0>

This isn’t practical for a real program, but it is useful for seeing how
Erlang dispatches processes. Fortunately, using io:format/2 is enough to let
us experiment. We’ll quickly start 10 processes and pause each of them
for a while with the help of the function timer:sleep/1, which takes an inte-
ger value N and waits for N milliseconds before resuming. After the delay,
the value present in the process is output:

4> G = fun(X) -> timer:sleep(10), io:format("~p~n", [X]) end.
#Fun<erl_eval.6.13229925>

5> [spawn(fun() -> G(X) end) || X <- lists:seq(1,10)].
[<0.273.0>,<0.274.0>,<0.275.05,<0.276.0>,<0.277.0>,
<0.278.05,<0.279.0>,<0.280.05,<0.281.0>,<0.282.0>]

AN OUT WA RN

O =
o

The order doesn’t make sense. Welcome to parallelism! Because the
processes are running at the same time, the ordering of events isn’t guar-
anteed anymore. That’s because the Erlang VM uses many tricks to decide

The Hitchhiker's Guide to Concurrency 143

which process to run, making sure each gets a good share of time. Many
Erlang services are implemented as processes, including the shell you're
typing in. Your processes must be balanced with those the system itself
needs, and this might be the cause of the weird ordering.

e A
SYMMETRIC MULTIPROCESSING AND YOU

The results are similar whether or not SMP is enabled. To prove this, you can just
test it by starting the Erlang VM with $ erl -smp disable.

To see if your Erlang VM runs with or without SMP support, start a new
VM without any options and look for the first line output. If you can spot the text
[smp:2:2], it means you're running with SMP enabled, and that you have two run
queues running on two cores. If you don't see it, that means you're running with
SMP disabled.

The [smp:2:2] means that two cores are available, with two schedulers (each
having a run queue). In earlier versions of Erlang, you could have multiple schedul-
ers, but with only one shared run queue for all of them. Since R13B, there is one
run queue per scheduler, which allows for better parallelism.

To prove the shell itself is implemented as a regular process, let’s use
the BIF self/o, which returns the pid of the current process:

6> self().

<0.41.0>

7> exit(self()).

** exception exit: <0.41.0>
8> self().

<0.285.0>

And the pid changes because the process has been restarted.

The next concern is how to send messages around, because no one
wants to be stuck with outputting the resulting values of processes all the
time, and then entering them by hand in other processes (at least, I know
I don’t).

Sending Messages

The next primitive required to do message passing is the operator !, also
known as the bang symbol. On the left-hand side, it takes a pid; on the right-
hand side, it takes any Erlang term. The term is then sent to the process
represented by the pid, which can access it. Here’s an example:

9> self() ! hello.
hello

144 Chapier 10

The message has been put in the process’s mailbox, but it hasn’t been
read yet. The second hello shown here is the return value of the send func-
tion. This means it is possible to send the same message to many processes
by doing this:

10> self() ! self() ! double.
double

This is equivalent to self() ! (self() ! double).

Something to note about a process’s mailbox is that the messages are
kept in the order they are received. Every time a message is read, it is taken
out of the mailbox. Again, this
is a bit similar to the analogy of
people writing letters.

To see the contents of the
current mailbox, you can use
the flush() command while
in the shell:

11> flush().
Shell got hello
Shell got double
Shell got double
ok

The flush/o function is just a shortcut that outputs received messages.
This means we still can’t bind the result of a process to a variable, but at
least we know how to send it from a process to another one and check if it
has been received.

Receiving Messages

Sending messages that no one will read is as useful as writing emo poetry
(in other words, not very useful). This is why we need the receive expres-
sion. Rather than playing too long in the shell, we’ll write a short program
about dolphins to demonstrate how receiving messages works. Here’s our
new program:

-module(dolphins).
-compile(export_all).

dolphini() -»
receive
do_a_flip ->
io:format("How about no?~n");
fish ->
io:format("So long and thanks for all the fish!~n");
->
io:format("Heh, we're smarter than you humans.~n")
end.

The Hitchhiker's Guide to Concurrency 145

146

Chapter 10

As you can see, receive is syntactically similar to case ... of. In fact,
the patterns work exactly the same way, except they bind variables coming
from messages rather than the expression between case and of. The receive
expressions can also have guards. Here’s their general syntax:

receive
Pattern1i when Guardl -> Expri;
Pattern2 when Guard2 -> Expr2;
Pattern3 -> Expr3

end

Knowing this, we can now compile the module, run it, and start com-
municating with dolphins:

11> c(dolphins).

{ok,dolphins}

12> Dolphin = spawn(dolphins, dolphini, []).
<0.40.0>

13> Dolphin ! "oh, hello dolphin!".

Heh, we're smarter than you humans.

"oh, hello dolphin!"

14> Dolphin ! fish

fish

Here, we introduce a new way of spawning with spawn/3. Rather than
taking a single function, spawn/3 takes the module, function, and its argu-
ments as its own arguments. Once the function is running, the following
events take place:

1. The function hits the receive expression. Given that the process’s mail-
box is empty, our dolphin waits until it gets a message.

2. The message "oh, hello dolphin!" is received. The function tries to pattern
match against do_a_flip. This fails, and so the pattern fish is tried, and
this also fails. Finally, the message meets the catchall clause (_) and
matches.

3. The process outputs the message “Heh, we’re smarter than you humans.”

Note that if the first message we sent works, the second provokes no
reaction whatsoever from the process <0.40.0>. This is due to the fact that
once our function output Heh, we're smarter than you humans., it terminated,
and so did the process. We’ll need to restart the dolphin:

8> f(Dolphin).

ok

9> Dolphin = spawn(dolphins, dolphini, []).
<0.53.0>

10> Dolphin ! fish.

So long and thanks for all the fish!

fish

And this time, the fish message works.

Wouldn’t it be useful to be able to receive a reply from the dolphin
rather than needing to use io:format/2? Of course it would! (Why am I even
asking?)

I mentioned earlier in this chapter that the only way to know if a pro-
cess has received a message is to send a reply. Our dolphin process will
need to know who to reply to. This works in the same way as it does with
the postal service. If we want someone to answer our letter, we need to add
our address. In Erlang terms, this is done by packaging a process’s pid in
a tuple, given that messages are otherwise anonymous. The end resultis a
message that looks a bit like {Pid, Message}. Let’s create a new dolphin func-
tion that will accept such messages:

dolphin2() -»
receive
{From, do_a flip} -»
From ! "How about no?";
{From, fish} ->
From ! "So long and thanks for all the fish!";
->
io:format("Heh, we're smarter than you humans.~n")
end.

As you can see, rather than accepting do_a_flip and fish for messages,
we now require a variable From. That’s where the pid will go.

11> c(dolphins).

{ok,dolphins}

12> Dolphin2 = spawn(dolphins, dolphin2, []).
<0.65.0>

13> Dolphin2 ! {self(), do_a_flip}.
{<0.32.05,do_a_flip}

14> flush().

Shell got "How about no?"

ok

It seems to work pretty well. We can receive replies to messages we sent
(we need to add an address to each message, a bit like an e-mail’s Reply To
field), but we still need to start a new process for each call. Recursion is the
way to solve this problem. We just need the function to call itself so it never
ends and always expects more messages. Here’s a dolphin3/o function that
puts this in practice:

dolphin3() ->
receive
{From, do_a flip} -»
From ! "How about no?",
dolphin3();

The Hitchhiker's Guide to Concurrency 147

148

Chapter 10

{From, fish} -»>
From ! "So long and thanks for all the fish!";
>
io:format("Heh, we're smarter than you humans.~n"),
dolphin3()
end.

Here, the catchall clause and the do_a_flip clause both loop with the help
of dolphin3/0. Note that the function will not blow the stack because it is tail
recursive. As long as only these messages are sent, the dolphin process will
loop indefinitely. However, if we send the fish message, the process will stop:

15> Dolphin3 = spawn(dolphins, dolphin3, []).
<0.75.0>

16> Dolphin3 ! Dolphin3 ! {self(), do_a_flip}.
{<0.32.0>,do_a_flip}

17> flush().

Shell got "How about no?"

Shell got "How about no?"

ok

18> Dolphin3 ! {self(), unknown_message}.
Heh, we're smarter than you humans.
{<0.32.0>,unknown_message}

19> Dolphin3 ! Dolphin3 ! {self(), fish}.
{<0.32.0>,fish}

20> flush().

Shell got "So long and thanks for all the fish!"
ok

And that’s it for dolphins.erl.
As you see, it does respect our

How ‘bout No.

expected behavior of replying o :\J\\P"
once for every message and con- o
tinuing execution afterwards, /

except for the fish call. The dol-
phin got fed up with our crazy
human antics and left us for good.
There you have it. This
is the core of all of Erlang’s
concurrency. We've covered
processes and basic message
passing. There are more con-
cepts to understand in order to
make truly useful and reliable
programs. We’ll look at some of
these in the following chapters.

MORE ON MULTIPROCESSING

The examples shown in Chapter 10 were suitable for
demonstrative purposes, but they won’t take you very
far in your own projects. It’s not that the examples
were bad; it’s just that there’s no huge advantage to
processes and actors if they’re just functions with mes-
sages. To reap the benefits, we need to be able to hold
state in a process.

In this chapter, we will apply the concurrency con-
cepts and primitives to practical examples that are
able to hold state.

State Your State

Let’s first create a function in a new kitchen.erl module ‘/
that will let a process act like a refrigerator. The process }
will allow two operations: storing food in the fridge and

taking food from the fridge. It should only be possible

to take food that has been stored beforehand, and only

as many times as it was stored. The following function

can act as the base for our process:

-module(kitchen).
-compile(export_all).

fridge1() ->
receive
{From, {store, Food}} ->
From ! {self(), ok},
fridge1();
{From, {take, Food}} ->
%% uh....
From ! {self(), not_found},
fridge1();
terminate ->
ok
end.

Something’s wrong here. When we ask to store the food, the process
should reply with ok, but there is nothing actually storing the food; fridgei()
is called, and then the function starts from scratch, without state. Also,
when we call the process to take food from the fridge, there is no state to
take it from, and so the only reply is not_found. In order to store and take
food items, we’ll need to add state to the function.

With the help of recursion, the state of a process can be held entirely in
the parameters of the function. In the case of our fridge process, one pos-
sibility would be to store all the food as a list, and then look in that list when
someone needs to eat something:

fridge2(FoodList) -»>
receive
{From, {store, Food}} ->
From ! {self(), ok},
fridge2([Food|FoodlList]);
{From, {take, Food}} ->
case lists:member(Food, FoodlList) of
true ->
From ! {self(), {ok, Food}},
fridge2(lists:delete(Food, FoodList));

150 Chapter 11

false ->
From ! {self(), not_found},
fridge2(FoodlList)
end;
terminate ->
ok
end.

Notice that fridge2/1 takes one argument, FoodList. You can see that when
we send a message that matches {From, {store, Food}}, the function will add
Food to FoodList before recursing. Once that recursive call is made, it will then
be possible to retrieve the same item. In fact, we’ve implemented that here.

The function uses lists:member/2 to check whether Food is part of FoodList.
Depending on the result, the item is sent back to the calling process (and
removed from FoodlList) or not_found is sent:

1> c(kitchen).

{ok, kitchen}

2> Pid = spawn(kitchen, fridge2, [[baking_soda]]).
<0.51.0>

3> Pid ! {self(), {store, milk}}.
{<0.33.0>,{store,milk}}

4> flush().

Shell got {<0.51.0>,0k}

ok

Storing items in the fridge seems to work. Now let’s try to store some-
thing else and then take it from the fridge:

5> Pid ! {self(), {store, bacon}}.
{<0.33.0>,{store,bacon}}

6> Pid ! {self(), {take, bacon}}.
{<0.33.0>,{take,bacon}}

7> Pid ! {self(), {take, turkey}}.
{<0.33.0>,{take, turkey}}

8> flush().

Shell got {<0.51.0>,0k}

Shell got {<0.51.0>,{ok,bacon}}
Shell got {<0.51.0>,not_found}
ok

As expected, we can take bacon from the fridge because we have put it
in there first (along with the milk and baking soda), but the fridge pro-
cess has no turkey to find when we request some. This is why we get the
last {<0.51.0>,not_found} message. More interestingly, because of the way
mailboxes work, it is guaranteed that even if a thousand people suddenly
reached for the last piece of turkey in the fridge at the same time, only one
of them could get it.

More on Multiprocessing 151

152

We Love Messages, But We Keep Them Secret

Chapter 11

Something annoying with the previous example is that the programmer
who’s going to use the fridge must know about the protocol that has been
invented for that process. That’s a useless burden. A good way to solve this is
to abstract messages away with the help of functions dealing with receiving
and sending them:

store(Pid, Food) -»>
Pid ! {self(), {store, Food}},
receive
{Pid, Msg} -> Msg
end.

take(Pid, Food) ->
Pid ! {self(), {take, Food}},
receive
{Pid, Msg} -> Msg
end.

Now the interaction with the process is much cleaner:

9> c(kitchen).

{ok, kitchen}

10> f().

ok

11> Pid = spawn(kitchen, fridge2, [[baking_soda]]).
<0.73.0>

12> kitchen:store(Pid, water).
ok

13> kitchen:take(Pid, water).
{ok,water}

14> kitchen:take(Pid, juice).
not_found

We don’t need to care about how the messages work anymore. If you
want to send self() or a precise atom like take or store, you just need a pid
and to know which functions to call. This hides all of the dirty work and
makes it easier to build on the fridge process.

Now let’s hide that whole part about needing to spawn a process. We
dealt with hiding messages, but then we still expect the user to handle the
creation of the process. Let’s add the following start/1 function:

start(FoodList) -»>
spawn(?MODULE, fridge2, [FoodlList]).

Here, ?MODULE is a macro that returns the current module’s name. At first
glance, it might not seem like there are any advantages to writing such a
function, but there are. The essential advantage is consistency with the calls
to take/2 and store/2—everything about the fridge process is now handled

by the kitchen module. If we wanted to add logging when the fridge process
is started or start a second process (say a freezer), that would be really easy
to do inside our start/1 function. However, if the spawning is left for the
user to do through spawn/3, then every place that starts a fridge now needs
to add the new calls. That’s prone to errors, and errors suck.

&)

=

STRING'S
PROTOCOL

s
—_ —
~
= -

,\ USER-TO-STRNG _—' =

ABSTRACTION LAYER

Let’s see this function put to use:

15> ().

ok

16> c(kitchen).

{ok, kitchen}

17> Pid = kitchen:start([rhubarb, dog, hotdog]).
<0.84.0>

18> kitchen:take(Pid, dog).

{ok,dog}

19> kitchen:take(Pid, dog).

not_found

Yay! The dog has gotten out of the fridge, and our abstraction is
complete!

Time Out

Let’s try a test with the help of the command pid(A,B,C), which lets us
change the three integers A, B and C into a pid. Here, we’ll deliberately
feed kitchen:take/2 a fake pid:

20> kitchen:take(pid(0,250,0), dog).

Whoops. The shell is frozen. This happened because of how take/2 was
implemented. To understand what goes on, let’s first revisit what happens in
the normal case:

A message to store food is sent from you (the shell) to the fridge process.
Your process switches to receive mode and waits for a new message.

The fridge stores the item and sends ok to your process.

0 o=

Your process receives it and moves on with its life.

More on Multiprocessing 153

154

Chapter 11

And here’s what happens when the shell freezes:

1. A message to store food is sent from you (the shell) to an
unknown process.

2. Your process switches to receive mode and waits for a new
message.

3. The unknown process either doesn’t exist or doesn’t expect
such a message and does nothing with it.

4. Your shell process is stuck in receive mode.

That’s annoying, especially because there is no error handling possible
here. Nothing illegal happened; the program is just waiting—forever, which
is a deadlock. In general, anything dealing with asynchronous operations
(how message passing is done in Erlang) needs a way to give up after a cer-
tain period of time if it gets no sign of receiving data. A web browser does
this when a page or image takes too long to load, and you do it when some-
one takes too long to answer the phone or is late for a meeting. Erlang cer-
tainly has an appropriate mechanism for handling timeouts, and it’s part of
the receive construct:

receive
Match -> Expressioni
after Delay ->
Expression2
end.

The part between receive and after is exactly the same as what you've
seen so far. The after part will be triggered if the Delay (in milliseconds)
has passed without receiving a message that matches the Match pattern.
When this happens, Expression2 is executed.

We’ll write two new interface functions, store2/2 and take2/2, which will
act exactly like store/2 and take/2, except that they will stop waiting after
three seconds:

store2(Pid, Food) -»
Pid ! {self(), {store, Food}},
receive
{Pid, Msg} -> Msg
after 3000 ->
timeout
end.

take2(Pid, Food) ->
Pid ! {self(), {take, Food}},
receive
{Pid, Msg} -> Msg
after 3000 ->
timeout
end.

When it takes too long, we return timeout. This doesn’t tell us how to
deal with the fact that something took too long, and the message might
come back later to haunt us in unexpected ways, but at least we won’t be
deadlocked if the other process is dead. Something called a monitor will
help us make this type of code more robust, as you’ll see in Chapter 12; but
for now, you can just unfreeze the shell by pressing CTRL-G and try the new
interface functions:

User switch command

--> i

-->'s

--> ¢

Eshell V5.7.5 (abort with ~G)

1> c(kitchen).

{ok, kitchen}

2> kitchen:take2(pid(0,250,0), dog).
timeout

And now it works.

1 said that after takes only milliseconds as a value, but it is actually possible to use
the atom infinity. While this is not useful in many cases (you might as well just
remove the after clause altogether), it is sometimes used when the programmer can
submit the wait time to a function where recerving a resull is expected. That way, if
the programmer really wants to wait forever, he can.

Timers have uses other than just giving up after too long. One such
use is in the implementation of the timer:sleep/1 function, which we used in
Chapter 10. Here’s how it is implemented (let’s put it in a new multiproc.erl
module):

sleep(T) ->
receive
after T -> ok
end.

In this specific case, no message will ever be matched in the receive part
of the construct because there is no pattern. Instead, the after part of the
construct will be called once the delay T has passed.

Another special case is when the timeout is at 0:

flush() -»
receive
_ -> flush()
after 0 ->
ok
end.

More on Multiprocessing 155

156

When that happens, the Erlang VM will try to find a message that fits
one of the available patterns. In the preceding case, anything matches. As
long as there are messages, the flush/o function will recursively call itself
until the mailbox is empty. After that, the after 0 -> ok part of the code is
executed, and the function returns.

Selective Receives

Chapter 11

Erlang’s “flushing” concept makes it possible to implement a selective receive,
which can give a priority to the messages you receive by nesting calls:

important() ->
receive
{Priority, Message} when Priority > 10 -»
[Message | important()]
after 0 ->
normal()
end.

normal() ->
receive
{_, Message} ->
[Message | normal()]
after 0 -»>

(]

end.

This function will build a list of all messages, placing those with a prior-
ity above 10 first:

1> c(multiproc).

{ok,multiproc}

2> self() ! {15, high}, self() ! {7, low}, self() ! {1, low}, self() ! {17, high}.
{17,high}

3> multiproc:important().

[high,high,low,low]

Because we used the after o bit, every message will be obtained until
no messages remain, but the process will try to grab all those with a priority
above 10 before even considering the other messages, which are accumu-
lated in the normal/o call. This practice is called a selective receive. 1f it looks
interesting, be aware that it is sometimes unsafe due to the way it’s handled
by Erlang.

The Pitfalls of Selective Receives

When messages are sent to a process, they're stored in the mailbox until
the process reads them and they match a pattern there, even if the process
that originally sent them has died since then. The messages are stored in

the order they were received. This means every time you enter a receive to
match a message, the mailbox is scanned, beginning with the first (and old-
est) message received.

That oldest message is then tried against every pattern of the receive
until one of them matches. When it does, the message is removed from
the mailbox, and the code for the process executes normally until the next
receive. When this next receive is executed, the VM will look for the oldest
message currently in the mailbox (the one after the one you removed), and
so on.

match!

MAILBOX PROCESS

receive

) recurse

\'4
MSG 2
MSG 3
MSG b
)/ recurse

When there is no way to match a given message, it is put in a save queue,
and the next message is tried. If the second message matches, the first mes-
sage is put back on top of the mailbox to be retried later.

these didn't match
this one did

PROCESS

More on Multiprocessing 157

MAILBOX

158

Chapter 11

This lets you care only about the messages that are useful. Ignoring
some messages to handle them later in the manner described is the essence
of selective receives. While they’re useful, the problem with selective receives
is that if your process has a lot of messages you never care about, reading
useful messages will actually take longer and longer (and the processes will
grow in size, too).

In the last illustration of matching messages, imagine we want the
367th message, but the first 366 messages are junk ignored by our code. To
get the 367th message, the process needs to try to match those 366 junk
messages. Once it has done that, and the messages have all been put in the
queue, the 367th message is taken out, and the first 366 are put back on top
of the mailbox. The next useful message could be burrowed much deeper
and take even longer to be found.

This kind of receive is a frequent cause of performance problems in
Erlang. If your application is running slowly and you know there are a lot
of messages going around, this could be the cause. If such selective receives
are effectively causing a massive slowdown in your code, the first thing to do
is to ask yourself why you are getting messages you do not want. Are the mes-
sages sent to the right processes? Are the patterns correct? Are the messages
formatted incorrectly? Are you using one process where there should be
many? Answering one or many of these questions could solve your problem.

CONVERSATIONAL OPTIMIZATIONS

Since R14A, a new optimization has been added to Erlang’s compiler. It simpli-
fies selective receives in very specific cases of back-and-forth communications
between processes. An example of such a function is optimized/1 in multiproc.erl.

To make this optimization work, a reference must be created [either by using
make_ref() or by starting a monitor, as described in Chapter 12) in a function and
then sent in a message. In the same function, a selective receive is then made. If
no message can match unless it contains the same reference, the compiler auto-
matically makes sure the VM will skip messages received before the creation of
that reference.

Note that you shouldn't try to coerce your code to fit such optimizations. The
Erlang developers only look for patterns that are frequently used and then make
them faster. If you write idiomatic code, optimizations should come to you, not the
other way around.

More Mailbox Pitfalls

Because of the risks of having useless messages polluting a process’s mail-
box, Erlang programmers sometimes take a defensive measure against such
events. A standard defense might look like this:

receive
Patterni -> Expressioni;
Pattern2 -> Expression2;
Pattern3 -> Expressions;

PatternN -> ExpressionN;
Unexpected ->
io:format("unexpected message ~p~n", [Unexpected])
end.

This makes sure that any message will match at least one clause. The
Unexpected variable will match anything, take the unexpected message out
of the mailbox, and show a warning. Depending on your application, you
might want to store the message in some kind of logging facility where you
will be able to find information about it later on. If the messages are going
to the wrong process, it would be a shame to lose them for good and have a
hard time finding out why that other process doesn’t receive what it should,
given that’s pretty much guaranteed to be a bug.

In cases where you do need to work with a priority in your messages and
can’t use such a catchall clause, a smarter way to handle them is to implement
a min-heap (see hitps://secure.wikimedia.org/wikipedia/en/wiki/Min-heap) or
use the gb_trees module (discussed in Chapter 9) and dump every received
message in it (make sure to put the priority number first in the key so it gets
used for sorting the messages). Then you can just search for the smallest or
largest element in the data structure according to your needs.

In most cases, this technique should let you receive messages with a
priority more efficiently than selective receives. However, it could slow you
down if most messages you receive have the highest priority possible. As
usual, the trick is to profile and measure before optimizing.

Now that we’ve covered how to hold state in processes, the next step is
to do efficient error handling with multiple processes, which is the topic of
Chapter 12.

More on Multiprocessing 159

ERRORS AND PROCESSES

In most languages, exceptions are managed from
within the execution flow of the program, the way
we’ve done it with try ... catch in previous examples.
The problem with this very common approach is that
your regular code needs to handle outstanding errors

on every level, or you just delegate the burden of making things safe to the
layer above it until you end up having the eternal top-level try ... catch,
which catches everything but doesn’t know anything about it. It’s more
complex than that in the real world, but that’s generally what it looks like.
Erlang supports this model too, as you've already seen.

However, Erlang also supports a different level of exception handling
that allows you to move the handling of exceptions outside the normal flow
of execution of the program, into a different, concurrent process. This usu-
ally leads to very clean code, where only the “happy case” is considered.

In this chapter, we discuss the basic tools that make this possible: links,
monitors, and named processes. We’ll also cover some general practices
that make the use of these tools more efficient.

Links

Chapter 12

A link is a specific kind of relationship that can be created between two pro-
cesses. When that relationship is set up and one of the processes dies from
an unexpected throw, error, or exit (see Chapter 7), the other linked pro-
cess also dies, binding their separate life cycles into a single, related one.

This is a useful concept from the perspective of failing as soon as pos-
sible to stop errors. If the process that has an error crashes, but those that
depend on it continue to run, then all these depending processes must deal
with a dependency disappearing. Letting them die and then restarting the
whole group is usually an acceptable alternative. Links let us do exactly this.

To set a link between two processes, Erlang has the primitive function
link/1, which takes a pid as an argument. When called, the function will
create a link between the current process and the one identified by the pid.
To get rid of a link, use unlink/1.

When one of the linked processes crashes, a special kind of message is
sent, with information relative to what happened. No such message is sent if
the process dies of natural causes (read: is done running its functions).

Let’s look at how this new function works, as part of the linkmon.erlfile.

myproc() ->
timer:sleep(5000),
exit(reason).

If you try the following calls (and wait 5 seconds between each spawn
command), you should see the shell crashing for reason only when a link
has been set between the two processes:

1> c(linkmon).

{ok,1linkmon}

2> spawn(fun linkmon:myproc/0).
<0.52.0>

3> link(spawn(fun linkmon:myproc/0)).
true

** exception error: reason

Here’s a picture of how it works:

LNk

‘ 3

r
~
@ <\/ {EXIT: B.Reason} 7 —// ; ~

However, this {'EXIT', B, Reason} message cannot be caught with a
try ... catch as usual. Other mechanisms need to be used to do this, as
discussed in “It’s a Trap” on page 164.

If you wanted to kill another process from the shell, you could use the function
exit/2, which makes use of these mechanisms to kill processes. It is called this way:
exit(Pid, Reason). Try it if you wish.

Links are used to establish larger groups of processes that should all
die together. Here’s an example:

chain(0) ->
receive
_ -> ok
after 2000 ->
exit("chain dies here")

end;
chain(N) ->
Pid = spawn(fun() -> chain(N-1) end),
link(Pid),
receive
_ > ok
end.

This function will take an integer N, start N processes that are linked
together. To pass the N-1 argument to the next “chain” process (which calls
spawn/1), the example wraps the call inside an anonymous function so it
doesn’t need arguments anymore. Calling spawn(?MODULE, chain, [N-1]) would
have done a similar job.

Here, we’ll have many processes linked together, dying as each of their
SuCCessors exits.

4> c(linkmon).

{ok,1inkmon}

5> link(spawn(linkmon, chain, [3])).
true

** exception error: “"chain dies here"

And as you can see, the shell does receive the death signal from some
other process. Here’s a drawn representation of the spawned processes and
links going down:

[shell] == [3] == [2] == [1] == [0]
[shell] == [3] == [2] == [1] == *dead*
[shell] == [3] == [2] == *dead*

[shell] == [3] == *dead*
[shell] == *dead*

dead, error message shown
[shell] <-- restarted

Errors and Processes 163

164

Chapter 12

After the process running linkmon:chain(0) dies, the error is propagated
down the chain of links until the shell process itself dies because of it. The
crash could have happened in any of the linked processes. Because links are
bidirectional, you need only one of them to die for the others to follow suit.

Links cannot be stacked. If you call 1ink/1 fifteen times for the same two processes,
only one link will still exist between those processes, and a single call to unlink/1 will
be enough to tear it down.

Note that link(spawn(Function)) or
link(spawn(M,F,A)) happen in more than one
step. In some cases, it is possible for a process
to die before the link has been set up and then
provoke unexpected behavior. For this reason,
the function spawn_link/1-3 has been added
to the language. It takes the same arguments
as spawn/1-3, creates a process, and links it as if
link/1 had been there, except it’s all done as
an atomic operation (the operations are com-
bined as a single one, which can either fail or
succeed, but nothing else). This is generally
considered safer, and you save a set of paren-
theses, too.

It’s a Trap!

Error propagation across processes is done through a process similar to
message passing, but with a special type of message called signals. Exit sig-
nals are “secret” messages that automatically act on processes, killing them.

I have mentioned many times that in order to be reliable, an applica-
tion needs to be able to both Kkill and restart a process quickly. Right now,
links can serve to do the killing part. What’s missing is the restarting. To
restart a process, we first need a way to know that it died. This can be done
by adding a layer on top of links (the delicious frosting on the cake) with a
concept called system processes.

System processes are basically normal processes, except they
can convert exit signals to regular messages. This is done by calling
process_flag(trap_exit, true) in a running process. Nothing speaks as much
as an example. Let’s just redo the chain example with a system process at
the beginning.

1> process_flag(trap_exit, true).

true

2> spawn_link(fun() -> linkmon:chain(3) end).
<0.49.0>

3> receive X -> X end.
{"EXIT',<0.49.0>,"chain dies here"}

Ah! Now things get interesting. To get back to our drawings, what
happens is now more like this:

[shell] == [3] == [2] == [1] == [0]
[shell] == [3] == [2] == [1] == *dead*
[shell] == [3] == [2] == *dead*
[shell] == [3] == *dead*

[shell] <-- {'EXIT,Pid,"chain dies here"} -- *dead*
[shell] <-- still alive!

And this is the mechanism that allows for a quick restart of processes.
By writing programs using system processes, it’s easy to create a process
whose only role is to check if something dies and then restart it whenever
it fails. We’ll cover more of this in Chapter 13, when we really apply these
techniques.

Old Exceptions, New Concepts

Let’s return to the exception functions introduced in Chapter 7 and

see how they behave around processes that trap exits. First, we’ll set the
bases to experiment without a system process. We’ll look at the results of
uncaught throws, errors, and exits in neighboring processes.

Exceptions and Traps

There’s a load of reasons why processes ususally die. Let’s look at a few of
them and what the reasons look like when exits are trapped.

Exception source: spawn_link(fun() -> ok end)

Untrapped result: Nothing
Trapped result: {'EXIT', <0.61.05>, normal}

The process exited normally, without a problem. Note that this looks a

bit like the result of catch exit(normal), except a pid is added to the tuple

to identify which process failed.
Exception source: spawn_link(fun() -> exit(reason) end)

Untrapped result: ** exception exit: reason
Trapped result: {'EXIT', <0.55.05, reason}

The process has terminated for a custom reason. If there is no trapped
exit, the process crashes. While trapping exits, you get a message.

Exception source: spawn_link(fun() -> exit(normal) end)

Untrapped result: Nothing
Trapped result: {'EXIT', <0.58.05, normal}

This successfully emulates a process terminating normally. In some cases,

you might want to kill a process as part of the normal flow of a program,
without anything exceptional going on. This is the way to do it.

Errors and Processes

166

Chapter 12

Exception source: spawn_link(fun() -> 1/0 end)

Untrapped result:
Error in process <0.44.0> with exit value: {badarith, [{erlang, '/', [1,0]}]}

Trapped result: {'EXIT', <0.52.05>, {badarith, [{erlang, '/', [1,0]}]}}

The error ({badarith, Reason}) is never caught by a try ... catch block
and bubbles up into an 'EXIT'. At this point, it behaves exactly the same
as exit(reason) does, but with a stack trace giving more details about
what happened.

Exception source: spawn_link(fun() -> erlang:error(reason) end)

Untrapped result:
Error in process <0.47.0> with exit value: {reason, [{erlang, apply, 2}]}

Trapped result: {'EXIT', <0.74.0>, {reason, [{erlang, apply, 2}]}}

This is pretty much the same as with 1/0. That’s normal—erlang:error/1
is meant to allow you to do just that.

Exception source: spawn_link(fun() -> throw(rocks) end)

Untrapped result:
Error in process <0.51.0> with exit value: {{nocatch, rocks},
[{erlang, apply, 2}]}

Trapped result: {'EXIT', <0.79.05>, {{nocatch, rocks}, [{erlang, apply, 2}]}}

Because the throw is never caught by a try ... catch, it bubbles up into
an error, which in turn bubbles up into an EXIT. Without trapping exits,
the process fails. While trapping exits, it deals with the error just fine.

And that’s about it for usual exceptions. Things are normal, and every-

thing goes fine. Exceptional stuff happens, and processes die and different
signals are sent around.

exit/2 Changes Everything

Then there’s exit/2. This one is the Erlang process equivalent of a gun. It
allows a process to kill another one from a distance, safely. The following
are some of the possible calls.

Exception source: exit(self(), normal)

Untrapped result: ** exception exit: normal
Trapped result: {'EXIT', <0.31.05, normal}

When not trapping exits, exit(self(), normal) acts the same as exit(normal).
Otherwise, you receive a message with the same format you would have
received by listening to links from foreign processes dying.

Exception source: exit(spawn_link(fun() -> timer:sleep(50000) end), normal)
Untrapped result: Nothing
Trapped Result: Nothing

This basically is a call to exit(Pid, normal). This command doesn’t do
anything useful, because a process cannot be remotely killed with the
reason normal as an argument.

Exception source: exit(spawn_link(fun() -> timer:sleep(50000) end), reason)
Untrapped result: ** exception exit: reason
Trapped result: {'EXIT', <0.52.05, reason}

This is the foreign process terminating for reason itself. It looks the
same as if the foreign process called exit(reason) on itself.

Exception source: exit(spawn_link(fun() -> timer:sleep(50000) end), kill)
Untrapped result: ** exception exit: killed
Trapped result: {'EXIT', <0.58.0>, killed}

Surprisingly, the message gets changed from the dying process to
the spawner. The spawner now receives killed instead of kill. That’s
because kill is a special exit signal, as explained in the next section.

Exception source: exit(self(), kill)
Untrapped result: ** exception exit: killed
Trapped result: ** exception exit: killed

Oops, look at that. It seems like this one is actually impossible to trap.
The following exception doesn’t make it easier.

Exception source: spawn_link(fun() -> exit(kill) end)
Untrapped result: ** exception exit: killed
Trapped result: {'EXIT', <0.67.0>, kill}

Now that’s getting confusing. When another process Kkills itself with
exit(kill), and we don’t trap exits, our own process dies with the reason
killed. However, when we trap exits, things don’t happen that way.

Killing Me (Not So) Softly

While you can trap most exit reasons, there
are situations where you might want to bru-
tally murder a process. Maybe one of your
processes is trapping exits but is also stuck in
an infinite loop, never reading any message.
The kill reason acts as a special signal that

Errors and Processes 167

168

can’t be trapped. This ensures any process you terminate with it will really
be dead. Usually, kill is a bit of a last resort to apply when everything else
has failed.

As the kill reason can never be trapped, it needs to be changed to
killed when other processes receive the message. If it weren’t changed,
every other process linked to it would in turn die for the same kill reason,
and would in turn kill its neighbors, and so on. A death cascade would ensue.

This also explains why exit(kill) looks like killed when received from
another linked process (the signal is modified so it doesn’t cascade), but
still looks like kill when trapped locally.

If you find this all confusing, don’t worry. Many programmers feel the
same way. Exit signals are a bit of a strange beast. Luckily, there aren’t other
special cases than the ones described here. Once you understand these, you
can understand most of Erlang’s concurrent error management without a
problem.

Monitors

Chapter 12

Maybe murdering processes isn’t what you want. Maybe
you don’t feel like taking the world down with you once
you're gone. Maybe you're more of a stalker. In that
case, monitors might be what you want, given that they
don’t kill processes. Monitors are a special type of link,
with two differences:

e They are unidirectional.

e You can have many of them between two processes
(they stack and they have an identity).

Monitors are useful when a process wants to know
what’s going on with a second process, but neither of
them is really vital to each other. They’re also useful for
stacking references that are individually identifiable.
This might seem useless at first, but it’s great for writ-
ing libraries that need to know what’s going on with
other processes. Why aren’t links appropriate for this? Because links do not
stack, a library setting up a link and then removing it afterward might be
playing with important links unrelated to it. Monitors (and stacking) allow
library programmers to separate their use of monitoring from other, unre-
lated ones. Since each monitor has a unique identity, it is possible to choose
which one to listen to or to manipulate.

Links are more of an organizational construct than monitors are. When
you design the architecture of your application, you determine which pro-
cess will do which jobs, and what will depend on what. Some processes will
supervise others, some couldn’t live without a twin process, and so on. This
structure is usually something fixed and known in advance. Links are use-
ful in this case, but should not necessarily be used outside it.

But what happens if you have two or three different libraries that you call
and they all need to know whether a process is alive? If you were to use links
for this, you would quickly hit a problem whenever you needed to unlink a
process. Links aren’t stackable, so the moment you unlink one, you unlink
them all and mess up all the assumptions made by the other libraries. So
you need stackable links, and monitors are your solution, since they can be
removed individually. Plus, being unidirectional is handy in libraries because
other processes shouldn’t need to be aware of those libraries.

So what does a monitor look like? To see, let’s set one up. The function
is erlang:monitor/2, where the first argument is always the atom process and
the second one is the pid.

1> erlang:monitor(process, spawn(fun() -> timer:sleep(500) end)).
#Ref<0.0.0.77>

2> flush().

Shell got {'DOWN',#Ref<0.0.0.77>,process,<0.63.0>,normal}

ok

Every time a process you monitor goes down, you will receive such a
message, in the form {'DOWN', MonitorReference, process, Pid, Reason}. The ref-
erence is there to allow you to demonitor the process. Remember that moni-
tors are stackable, so it’s possible to take more than one down. References
allow you to track each of them in a unique manner. Also note that as with
links, there is an atomic function to spawn a process while monitoring it:
spawn_monitor/1-3.

3> {Pid, Ref} = spawn_monitor(fun() -> receive
{<0.73.0>,#Ref<0.0.0.100>}
4> erlang:demonitor(Ref).

-> exit(boom) end end).

true

5> Pid ! die.
die

6> flush().
ok

In this case, we demonitored the other process before it crashed, so we
had no trace of it dying. The function demonitor/2 also exists and gives a lit-
tle more information. The second parameter can be a list of options. Only
two exist: info and flush.

7> £().

ok

8> {Pid, Ref} = spawn_monitor(fun() -> receive
{<0.35.0>,#Ref<0.0.0.35>}

-> exit(boom) end end).

9> Pid ! die.

die

10> erlang:demonitor(Ref, [flush, info]).
false

11> flush().

ok

Errors and Processes 169

170

The info option tells you if a monitor existed when you tried to remove
it. This is why line 10 returned false. Using flush as an option removes the
DOWN message from the mailbox if it existed, resulting in flush() finding
nothing in the current process’s mailbox.

Naming Processes

Chapter 12

With links and monitors covered, there is another problem still left to be
solved: What do we do when we detect that a process we rely on has died?
Let’s use the following functions of the linkmon.erl module:

start_critic() ->
spawn(?MODULE, critic, []).

judge(Pid, Band, Album) ->
Pid ! {self(), {Band, Album}},
receive
{Pid, Criticism} -> Criticism
after 2000 ->
timeout
end.

critic() -»
receive
{From, {"Rage Against the Turing Machine", "Unit Testify"}} ->
From ! {self(), "They are great!"};
{From, {"System of a Downtime", "Memoize"}} ->
From ! {self(), "They're not Johnny Crash but they're good."};
{From, {"Johnny Crash", "The Token Ring of Fire"}} -»
From ! {self(), "Simply incredible."};
{From, { Band, _Album}} ->
From ! {self(), "They are terrible!"}
end,
critic().

Now we’ll just pretend we’re going around stores, shopping for music.
There are a few albums that sound interesting, but we’re never quite sure.
We decide to call our friend, the critic.

1> c¢(linkmon).

{ok,1linkmon}

2> Critic = linkmon:start_critic().
<0.47.0>

3> linkmon:judge(Critic, "Genesis", "The Lambda Lies Down on Broadway").
"They are terrible!"

Because of a solar storm (I'm trying to find something realistic here),
the connection is dropped.

4> exit(Critic, solar_storm).

true

5> linkmon:judge(Critic, "Genesis", "A trick of the Tail Recursion").
timeout

This is annoying. We can no longer get criticism for the albums. To
keep the critic alive, we’ll write a basic “supervisor” process whose only role
is to restart the critic when it goes down.

start_critic2() -»>
spawn(?MODULE, restarter, []).

restarter() -»
process_flag(trap_exit, true),
Pid = spawn_link(?MODULE, critic, []),
receive
{"EXIT', Pid, normal} -> % not a crash
ok;
{"EXIT', Pid, shutdown} -> % manual termination, not a crash
ok;
{"EXIT', Pid, } ->
restarter()
end.

Here, the restarter will be its own process. It will in turn start the critic’s
process, and if it ever dies of an abnormal cause, restarter/o will loop and
create a new critic. Note that we added a clause for {'"EXIT', Pid, shutdown} as
a way to manually kill the critic if we ever need to.

The problem with our approach is that there is no way to find the pid of
the critic, and thus we can’t call him to get his opinion. One of the solutions
Erlang provides is to give names to processes. The act of giving a name to
a process allows you to replace the unpredictable pid with an atom. This
atom can then be used exactly as a pid when sending messages.

To give a process a name, use the function erlang:register(Name,Pid). If
the process dies, it will automatically lose its name. Alternatively, you can
use unregister/1 to do it manually. You can get a list of all registered processes
with registered/o0, or a more detailed one with the shell command regs(). We
can rewrite the restarter/o function as follows:

restarter() ->
process_flag(trap_exit, true),
Pid = spawn_link(?MODULE, critic, []),
register(critic, Pid),

receive
{'EXIT', Pid, normal} -> % not a crash
ok;
{"EXIT', Pid, shutdown} -> % manual termination, not a crash
ok;

Errors and Processes 171

{'EXIT', Pid, } ->
restarter()
end.

As you can see, register/2 will always give our critic the name critic, no
matter what the pid is. Then we need to remove the need to pass in a pid
from the abstraction functions. Let’s try this:

judge2(Band, Album) ->
critic ! {self(), {Band, Album}},
Pid = whereis(critic),
receive
{Pid, Criticism} -> Criticism
after 2000 ->
timeout
end.

Here, the line Pid = whereis(critic) is used to find the critic’s pid in order
to pattern match against it in the receive expression. We want to match with
this pid because it makes sure we will match on the right message. (There
could be 500 of them in the mailbox as we speak!) This can be the source
of a problem though. This code assumes that the critic’s pid will remain the
same between the first two lines of the function. However, it is completely
plausible the following will happen:

1. critic ! Message

2. critic receives
. critic replies
4. critic dies

w

5. whereis fails
6. critic is restarted
7. code crashes

This is also a possibility:

1. critic ! Message

critic receives

. critic replies
critic dies

. critic is restarted

vi s W

6. whereis picks up
wrong pid
7. message never matches

Things could go wrong in a different process and make another pro-
cess have problems if we don’t do things correctly. In this case, the value
of the critic atom can be seen from multiple processes. This is known as
shared state. The problem here is that the value of critic can be accessed

172 Chapter 12

and modified by different processes at virtually the same time, resulting in
inconsistent information and software errors. The common term for such
things is a race condition.

Race conditions are particularly dangerous because they depend on the
timing of events. In pretty much every concurrent and parallel language
out there, this timing depends on unpredictable factors, such as how busy
the processor is, where the processes go, and what data is being processed
by your program.

()

DON'T DRINK TOO MUCH KOOL-AID

You might have heard that Erlang is usually free of race conditions or deadlocks and
makes parallel code safe. This is true in many circumstances, but only because
message passing through a mailbox forces some ordering of events and because
the language seriously restricts how much shared state you can have. Generally,
you should never assume your code is entirely free of race conditions.

Named processes are only one example of the multiple ways in which par-
allel code can go wrong.

Other examples include when accessing files on the computer (to modify them)
and when updating the same database records from many different processes.

Luckily for us, it’s relatively easy to fix the sample code if we don’t
assume the named process remains the same. Instead, we’ll use references
(created with make_ref()) as unique values to identify messages and make
sure we receive the correct messages from the right process. We’ll need to
rewrite the critic/o function into critic2/0 and judge/3 into judge2/2.

judge2(Band, Album) ->
Ref = make_ref(),
critic ! {self(), Ref, {Band, Album}},
receive
{Ref, Criticism} -> Criticism
after 2000 ->
timeout
end.

critic2() -»
receive
{From, Ref, {"Rage Against the Turing Machine", "Unit Testify"}} -»>
From ! {Ref, "They are great!"};
{From, Ref, {"System of a Downtime", "Memoize"}} ->
From ! {Ref, "They're not Johnny Crash but they're good."};
{From, Ref, {"Johnny Crash", "The Token Ring of Fire"}} ->
From ! {Ref, "Simply incredible."};
{From, Ref, { Band, _Album}} ->
From ! {Ref, "They are terrible!"}
end,
critic2().

Errors and Processes 173

174

Chapter 12

And then change restarter/o to fit by making it spawn critic2/0 rather
than critic/o.

Now the other functions should keep working fine, and the users won’t
see a difference. Well, they will because we renamed functions and changed
the number of parameters, but they won’t know what implementation details
were changed and why it was important. All they will see is that their code
got simpler and they no longer need to send a pid around function calls.
Here’s an example:

6> c(1inkmon).

{ok,1linkmon}

7> linkmon:start_critic2().

<0.55.0>

8> linkmon:judge2("The Doors", "Light my Firewall").

"They are terrible!"

9> exit(whereis(critic), kill).

true

10> linkmon:judge2("Rage Against the Turing Machine", "Unit Testify").
"They are great!"

And now, even though we Kkilled the critic, a new one instantly came
back to solve our problems. That’s the usefulness of named processes. Had
we tried to call linkmon:judge/2 without a registered process, a bad argument
error would have been thrown by the ! operator inside the function, mak-
ing sure that processes that depend on named ones can’t run without them.

In Chapter 13, we’ll put concurrent programming with Erlang into
practice by writing a real application.

NAME WHAT’S WORTH NAMING

Remember that atoms can be used in a limited (though high) number. You should
never create dynamic atoms. This means naming processes should be reserved for
important services unique to an instance of the VM and processes that should be
there for the whole time your application runs.

If you need named processes but they are transient or none of them can be
unique to the VM, it may mean they need to be represented as a group instead.
Linking and restarting them together if they crash might be the sane option, rather
than trying to use dynamic names.

DESIGNING A CONCURRENT
APPLICATION

All is fine and dandy. You understand the concepts.
But then again, all we’ve had since the beginning
of the book were toy examples: calculators, trees,
Heathrow to LLondon, and so on. It’s time for some-
thing more fun and educational. In this chapter,

we’ll write a small application in concurrent Erlang. The application will
be small and line-based, but still useful and moderately extensible.

I'm a somewhat disorganized person. I'm lost with homework, things
to do around the apartment, this book, work, meetings, appointments,
and so on. I end up having a dozen lists everywhere, listing tasks I still
forget to do. I hope that you also sometimes need reminders of what to do
(but you don’t have a mind that wanders as much as mine does), because
we’re going to write one of those event reminder applications that prompt
you to do stuff and remind you about appointments.

176

Understanding the Problem

Chapter 13

The first step is to know what the hell we're doing. “A
reminder app,” you say. “Of course,” I say. But there’s
more. How do we plan on interacting with the soft-
ware? What do we want it to do for us? How do we rep-
resent the program with processes? How do we know
what messages to send?

As the quote goes, “Walking on water and developing software from a
specification are easy if both are frozen” (Edward V. Berard). So let’s set up
a spec and stick to it.

Our little piece of software will allow us to do the following:

e Add an event. Events contain a deadline (the time to warn), an event
name, and a description.

e Show a warning when the time for our event has come.
e (Cancel an event by name.

e Interact with the software via the command line, although it could be
extended to allow other means (such as a GUI, web page access, instant
messaging software, or e-mail).

This application will not have persistent disk storage. It’s not needed
to demonstrate the architectural concepts we’ll cover in this chapter. But
I will show you where it could be inserted if you wanted to add it for a real
application, and also point to a few helpful functions. Given we have no per-
sistent storage, we must be able to update the code while it is running.
Here’s the structure of the program we’ll build, where the client, event
server, X, y, and z are all processes:

—>

®» @

The event server has these tasks:

e Accept subscriptions from clients
e Forward notifications from event processes to each of the subscribers

e Accept messages to add events (and start the x, y, and z processes
needed)

e Accept messages to cancel an event and subsequently kill the event
processes

The event server can be terminated by a client, and it can have its code
reloaded via the shell.

The client has these tasks:

e Subscribe to the event server and receive notifications as messages
e Ask the server to add an event with all its details

e Ask the server to cancel an event

e Monitor the server (to know if it goes down)

e Shut down the event server if needed

It should be easy to design a bunch of clients all subscribing to the
event server. Each of these could potentially be a gateway to the different
interaction points (GUI, web page, instant messaging software, email, and
SO on).

The x, y, and z processes represent a notification waiting to fire (they’re
basically just timers linked to the event server). They have the following tasks:

e Send a message to the event server when the time is up

e Receive a cancellation message and die

Note that all clients (instant messaging, mail, and others that are not
implemented in this example) are notified about all events, and a cancella-
tion is not something to warn the clients about. Here, the software is writ-
ten for you and me, and it’s assumed only one user will run it.

Here’s a more complex graph with all the possible messages:

— subscribe

— add \

_— cancel

— shu}h
“~" (monitor)

This represents every process we’ll have. By drawing all the arrows there
and saying they’re messages, we’ve written a high-level protocol, or at least
its skeleton.

In a real-world application, using one process per event to be reminded
of would likely be overkill and hard to scale. However, since you are going to
be the sole user of the application, this is good enough. A different approach
could be using functions such as timer:send_after/2-3 to avoid spawning too
many processes.

Designing a Concurrent Application 177

178

Defining the Protocol

Now that we know what each component needs to do and what it should
communicate, it’s a good idea to make a list of all messages that will be sent
and specify what they will look like. Let’s start with the communication
between the client and the event server:

{subscribe, Self3
>

W

Note: = the client monitors the server
= the server monitors the client

Here, we're using two monitors because there is no obvious dependency
between the client and the server. Of course, the client doesn’t work with-
out the server, but the server can live without a client. A link could have
done the job right here, but because we want our system to be extensible
with many clients, we can’t assume other clients will all want to crash when
the server dies. Nor can we assume the client can really be turned into a
system process and trap exits in case the server dies.

Now to the next message set:

(add, Wome: Descripje,
lr)-'eo“l

ok / Cerror, 23050"‘)

This adds an event to the event server. A confirmation is sent back
under the form of the ok atom, unless something goes wrong (maybe the
TimeOut is in the wrong format). The inverse operation, removing events,
can be done as follows:

{cancel, Na,,
e 2

<\Ok/

Chapter 13

The event server can then later send a notification when the event is due:

‘ {done, Name, Description} ‘
é_/\—_\

Then we need only the two following special cases for when we want to
shut the server down or when it crashes:

No direct confirmation is sent when the server dies because the moni-
tor will already warn us of that. That’s pretty much all that will happen
between the client and the event server.

Now we need to deal with the messages between the event server and
the event processes themselves. Something to note here before we start is
that it would be very useful to have the event server linked to the events.
This is because we want all events to die if the server does; they make no
sense without it.

When the event server starts the events, it gives each of them a special
identifier (the event’s name). Once one of these event’s time has come, it
needs to send a message saying so:

¢ {done. 43} ,®

Designing a Concurrent Application 179

180

On the other hand, the event needs to watch for cancel calls from the
event server:

Cancef

/\)@
W

One last message will be needed for our protocol—the one that lets us
upgrade the server:

ERLANG code_change
SHELL >

No reply is necessary. When we actually program this feature, you’'ll see
this makes sense.

Having both the protocol defined and the general idea of how our
process hierarchy will look in place, we can actually start working on the
project.

Lay Them Foundations

To begin, we should lay down a standard Erlang directory structure, which
looks like this:

ebin/
include/
priv/
src/

These directories store files as follows:

e The ebin/ directory is where files will go once they are compiled.

e The include/ directory is used to store .Arl files that are to be included
by other applications (the private .Arl files are usually kept inside the
src/ directory).

e The priv/ directory is used for executables that might need to interact
with Erlang, such as specific drivers and whatnot. We won’t actually use
that directory for this project.

e The sr¢/ directory is where all .erl files stay.

Chapter 13

In standard Erlang projects,
this directory structure can vary
alittle. A conf/ directory can be
added for specific configuration
files, doc/ for documentation,
and lib/ or deps/ for third-party
libraries required for your appli-
cation to run. Erlang products
on the market often use different directory names, but the four in our
structure usually stay the same, given that they’re part of the standard OTP
practices.

An Event Module

We’ll start with the event module because it’s the one with the fewest depen-
dencies. We should be able to run it without needing to implement the
event server or client functions.

Navigate to the sr¢/ directory and start an event.erl module, which will
implement the x, y, and z events for the application.

Before we begin writing any code, I have to mention that the proto-
col is incomplete. It helps represent what data will be sent from process to
process, but not the intricacies: how the addressing works, whether we use
references or names, and so on. Most messages will be wrapped in the form
{Pid, Ref, Message}, where Pid is the sender and Ref is a unique message iden-
tifier to help determine which reply came from which sender. If we were to
send many messages before looking for replies, we would not know which
reply went with which message without a reference.

Events and Loops

The core of the processes that will run event.erl’s code will be the function
loop/1, which, if you remember the protocol, will look a bit like the following
skeleton:

loop(State) -»>
receive
{Server, Ref, cancel} -»
after Delay ->

end.

This shows the timeout we need to support to announce an event has
come to term and the way a server can call for the cancellation of an event.
You'll notice a State variable in the loop. The State variable will need to con-
tain data such as the timeout value (in seconds) and the name of the event
(in order to send the message {done, Id}).Itwill also need to know the event
server’s pid in order to send it notifications.

Designing a Concurrent Application 181

This is all stuff that’s fit to be held in the loop’s state. So let’s declare a
state record at the top of the file:

-module(event).
-compile(export_all).
-record(state, {server,

name="",
to_go=0}).

Note that -compile(export_all). is used to avoid needing to modify lists
of exported functions all the time. Once the development of the module is
done, replacing it with a real sequence of -export([...]). is recommended.

With this state defined, it should be possible to refine the loop a
bit more:

loop(S = #state{server=Server}) -»>
receive
{Server, Ref, cancel} ->
Server ! {Ref, ok}
after S#state.to_go*1000 ->
Server ! {done, Sttstate.name}
end.

Here, the multiplication by a thousand is to change the to_go value
from seconds to milliseconds. You could alternatively call timer:seconds/1,
which converts seconds to milliseconds, to get the same result.

P
DON’'T DRINK TOO MUCH KOOL-AID
Language wart ahead! We need to bind the variable Server in the function head
because it's used in pattern matching in the receive section. Remember that records
are hacks! The expression S#state.server is secretly expanded to element(2,),
which isn't a valid pattern to match.
This still works fine for S#state.to_go after the after part, because that one can

be an expression left to be evaluated later.

\

Now let’s test the loop:

6> c(event).

{ok,event}

7> rr(event, state).

[state]

8> spawn(event, loop, [#state{server=self(), name="test", to_go=5}]).
<0.60.0>

9> flush().

ok

182 Chapter 13

10> flush().

Shell got {done,"test"}

ok

11> Pid = spawn(event, loop, [#state{server=self(), name="test", to_go=500}]).
<0.64.0>

12> ReplyRef = make_ref().
#Ref<0.0.0.210>

13> Pid ! {self(), ReplyRef, cancel}.
{<0.50.0>,#Ref<0.0.0.210>,cancel}
14> flush().

Shell got {#Ref<0.0.0.210>,0k}

ok

First, we import the record from the event module with rr(Mod). Then
we spawn the event loop with the shell as the server (self()). This event
should fire after 5 seconds. The ninth expression was run after 3 sec-
onds, and the tenth one after 6 seconds. You can see we did receive the
{done, "test"} message on the second try.

Right after that, we try the cancel feature (with an ample 500 seconds
to type it). We created the reference, sent the message, and got a reply with
the same reference, so we know the ok we received was coming from this
process and not any other on the system.

The cancel message is wrapped with a reference, but the done message
is not, simply because we don’t expect it to come from anywhere specific
(anyplace will do; we won’t match on the receive), nor should we want to
reply to it.

Let’s try another test. What about an event happening next year?

15> spawn(event, loop, [#state{server=self(), name="test", to_go=365*24*60*60}]).
<0.69.0>

16>

=ERROR REPORT==== DD-MM-YYYY::HH:mm:SS ===

Error in process <0.69.0> with exit value: {timeout_value,[{event,loop,1}]}

Ouch. It seems like we hit an implementation limit. It turns out Erlang’s
timeout value is limited to about 50 days in milliseconds. It might not be
significant, but I'm showing this error for three reasons:

e It bit me in the ass when writing the module and testing it, halfway
through the chapter.

e Erlang is certainly not perfect for every task. What we’re seeing here
is the consequences of using timers in ways not intended by the
implementers.

e It’s not really a problem. We can work around it.

The fix we’ll apply for this problem is to write a function that splits the
timeout value into many parts if turns out to be too long. This will require
some support from the loop/1 function, too. So the way to split the time is to

Designing a Concurrent Application 183

184

Chapter 13

divide it in equal parts of 49 days (because the limit is about 50), and then
put the remainder with all these equal parts. The sum of the list of seconds
should now be the original time:

%% Because Erlang is limited to about 49 days (49*24*60*60*1000) in
%% milliseconds, the following function is used.
normalize(N) -»>

Limit = 49*24*60*60,

[N rem Limit | lists:duplicate(N div Limit, Limit)].

The function lists:duplicate/2 will take a given expression as a second
argument and reproduce it as many times as the value of the first argu-
ment ([a,a,a] = lists:duplicate(3, a)). If we were to send normalize/1 the value
98*24*60*60+4, it would return [4,4233600,4233600].

The loop/1 function should now look like this to accommodate the new
format:

%% Loop uses a list for times in order to go around the ~49 days limit
%% on timeouts.
loop(S = #state{server=Server, to_go=[T|Next]}) ->
receive
{Server, Ref, cancel} -»>
Server ! {Ref, ok}
after T*1000 ->
if Next =:= [] ->
Server ! {done, Sttstate.name};
Next =/= [] ->
loop(Sttstate{to_go=Next})
end
end.

This takes the first element of the to_go list and waits for its whole dura-
tion. When this is done, the next element of the timeout list is verified. If
it’s empty, the timeout is over and the server is notified. Otherwise, the loop
keeps going with the rest of the list until it’s finished.

You can test the revised loop. It should work as normal, but now sup-
port years and years of timeout.

Adding An Interface

It would be very annoying to need to manually call something like
event:normalize(N) every time an event process is started, especially since
our work-around shouldn’t be of concern to programmers using our code.
The standard way to do this is to instead have an init function handle all
initialization of data required for the loop function to work well. While
we're at it, we’ll add the standard start and start_link functions.

start(EventName, Delay) ->
spawn(?MODULE, init, [self(), EventName, Delay]).

start_link(EventName, Delay) ->
spawn_link(?MODULE, init, [self(), EventName, Delay]).

%%% event's innards
init(Server, EventName, Delay) ->
loop (#state{server=Server,
name=EventName,
to_go=normalize(Delay)}).

The interface is now much cleaner. Before testing, though, it would be
nice to have the only message we can send, cancel, also have its own inter-
face function.

cancel(Pid) ->
%% Monitor in case the process is already dead.
Ref = erlang:monitor(process, Pid),
Pid ! {self(), Ref, cancel},

receive
{Ref, ok} ->
erlang:demonitor(Ref, [flush]),
ok;
{'DOWN', Ref, process, Pid, _Reason} ->
ok
end.

Oh, a new trick! Here, we’re using a monitor to see if the process is
there. If the process is already dead, we avoid useless waiting time and
return ok as specified in the protocol. If the process replies with the refer-
ence, then we know it will soon die, so we remove the reference to avoid
receiving them when we no longer care about them. Note that we also sup-
ply the flush option, which will purge the DOWN message if it was sent before
we had the time to demonitor.

Let’s test these functions:

17> c(event).

{ok,event}

18> f().

ok

19> event:start("Event", 0).
<0.103.0>

20> flush().

Shell got {done,"Event"}
ok

21> Pid = event:start("Event", 500).
<0.106.0>

22> event:cancel(Pid).

ok

And it works!
The last thing annoying with the event module is that we need to input
the time left in seconds. It would be much better if we could use a standard

Designing a Concurrent Application 185

186

format such as Erlang’s datetime ({{Year, Month, Day}, {Hour, Minute, Second}}).
Just add the following function, which will calculate the difference between
the current time on your computer and the delay you inserted.

time_to_go(TimeOut={{_, , }, {_, ,_}}) ->
Now = calendar:local_time(),
ToGo = calendar:datetime_to_gregorian_seconds(TimeOut) -
calendar:datetime_to_gregorian_seconds(Now),
Secs = if ToGo > 0 -> ToGo;
ToGo =< 0 -> 0
end,

normalize(Secs).

Oh yeah, the calendar module has pretty funky function names. This
calculates the number of seconds between now and when the event is sup-
posed to fire. If the event is in the past, we instead return 0 so it will notify
the server as soon as it can. Now fix the init function to call this function
instead of normalize/1. You can also rename Delay variables to say DateTime if
you want the names to be more descriptive.

init(Server, EventName, DateTime) ->
loop(#state{server=Server,
name=EventName,
to_go=time_to_go(DateTime)}).

Now that the event module is finished, we can take a break. Start a new
event, go drink a pint (half liter) of milk/beer, and come back just in time
to see the event message coming in.

The Event Server

Chapter 13

Let’s deal with the event server. According to the protocol, its skeleton
should look a bit like this:

-module(evserv).
-compile(export_all).

loop(State) -»>
receive
{Pid, MsgRef, {subscribe, Client}} ->
{Pid, MsgRef, {add, Name, Description, TimeOut}} ->
{Pid, MsgRef, {cancel, Name}} ->

{done, Name} ->

shutdown ->

{'DOWN', Ref, process, Pid, Reason} ->
code_change ->

Unknown ->
io:format("Unknown message: ~p~n",[Unknown]),
loop(State)
end.

You'll notice calls that require replies are wrapped with the same
{Pid, Ref, Message} format as earlier.

The server will need to keep two things in its state: a list of subscribing
clients and a list of all the event processes it spawned.

The protocol says that when an event is done, the event server should
receive {done, Name}, but send {done, Name, Description}. The idea here is to
have as little traffic as necessary and have the event processes care only about
what is strictly required. So here is the list of clients and list of events:

-record(state, {events, %% list of #event{} records
clients}). %% list of Pids
-record(event, {name="",
description="",
pid,
timeout={{1970,1,1},{0,0,0}}}).

And the loop now has the record definition in its head:

loop(S = #state{}) -»>
receive

end.

It would be nice if both events and clients were orddicts. We’re unlikely
to have many hundreds of them at once. As you'll recall from Chapter 9,
orddicts fit that need very well. We’ll write an init function to handle this.

init() -»
%% Loading events from a static file could be done here.
%% You would need to pass an argument to init telling where the
%% resource to find the events is. Then load it from here.
%% Another option is to just pass the events straight to the server
%% through this function.
loop (#state{events=orddict:new(),
clients=orddict:new()}).

With the skeleton and initialization complete, we’ll implement each
message one by one.

Designing a Concurrent Application 187

188

Chapter 13

Handling Messages

The first message is the one about subscriptions. We want to keep a list
of all subscribers because when an event is done, we need to notify them.
Also, our protocol mentions that we should monitor them. It makes sense
because we don’t want to hold onto crashed clients and send useless mes-
sages for no reason. The code should look like this:

{Pid, MsgRef, {subscribe, Client}} -»
Ref = erlang:monitor(process, Client),
NewClients = orddict:store(Ref, Client, Stistate.clients),
Pid ! {MsgRef, ok},
loop(Sttstate{clients=NewClients});

This section of loop/1 starts a monitor and stores the
client information in the orddict under the key Ref. The
reason for this is simple: The only other time we’ll need
to fetch the client ID will be if we receive a monitor’s
EXIT message, which will contain the reference (which
will let us get rid of the orddict’s entry).)

The next message we care about is the one where
we add events. Now, it is possible to return an error status.
The only validation we’ll do is to check the timestamps we accept. While it’s
easy to subscribe to the {{Year,Month,Day}, {Hour,Minute,seconds}} layout, we need
to make sure we don’t do things like accept events on February 29 when we’re
not in a leap year, or on any other date that doesn’t exist. Moreover, we don’t
want to accept impossible date values such as “5 hours, minus 1 minute and
75 seconds.” A single function can take care of validating all of that.

The first building block we’ll use is the function calendar:valid_date/1.
As its name says, this function checks if the date is valid. Sadly, the weird-
ness of the calendar module doesn’t stop at funky names; there is actually no
function to confirm that {H,M,S} has valid values. We’ll need to implement
that one, too, following the funky naming scheme.

valid datetime({Date,Time}) ->
try
calendar:valid_date(Date) andalso valid_time(Time)
catch
error:function_clause -> %% not in {{D,M,Y},{H,Min,S}} format
false
end;
valid datetime() ->
false.

valid_time({H,M,S}) -> valid_time(H,M,S).
valid time(H,M,S) when H >= 0, H < 24,

M >= 0, M < 60,

S>=0, S <60 ->true;
valid_time(_, ,) -> false.

The valid_datetime/1 function can now be used in the part where we try
to add the message.

{Pid, MsgRef, {add, Name, Description, TimeOut}} ->
case valid datetime(TimeOut) of
true ->
EventPid = event:start link(Name, TimeOut),
NewEvents = orddict:store(Name,

#tevent{name=Name,
description=Description,
pid=EventPid,
timeout=TimeOut},

Sttstate.events),

Pid ! {MsgRef, ok},
loop(Sttstate{events=NewEvents});

false ->
Pid ! {MsgRef, {error, bad_timeout}},
loop(S)
end;

If the time is valid, we spawn a new event process, and then store its
data in the event server’s state before sending a confirmation to the caller.
If the timeout is wrong, we notify the client, rather than having the error
pass silently or crashing the server. Additional checks could be added for
name clashes or other restrictions. (Just remember to update the protocol
documentation!)

The next message defined in our protocol is the one where we cancel
an event. Canceling an event never fails on the client side, so the code is
simpler there. Just check whether the event is in the process’s state record.
If it is, use the event:cancel/1 function we defined to kill it and send ok. If it’s
not found, tell the user everything went okay anyway—the event is not run-
ning, and that’s what the user wanted.

{Pid, MsgRef, {cancel, Name}} ->
Events = case orddict:find(Name, S#state.events) of
{ok, E} ->
event:cancel(E#tevent.pid),
orddict:erase(Name, S#state.events);
error ->
S#state.events
end,
Pid ! {MsgRef, ok},
loop(Sttstate{events=Events});

So now all voluntary interaction coming from the client to the event
server is covered. Let’s deal with the stuff that’s going between the server
and the events themselves. There are two messages to handle: canceling

Designing a Concurrent Application 189

the events (which is done) and the events timing out. That message is
simply {done, Name}:

{done, Name} ->
case orddict:find(Name, S#state.events) of
{ok, E} ->
send_to_clients({done, E#event.name, E#event.description},
S#state.clients),
NewEvents = orddict:erase(Name, S#state.events),
loop(St#state{events=NewEvents});
error ->
%% This may happen if we cancel an event and
%% it fires at the same time.
loop(S)
end;

The function send_to_clients/2 does as its name says and is defined as
follows:

send_to_clients(Msg, ClientDict) ->
orddict:map(fun(_Ref, Pid) -> Pid ! Msg end, ClientDict).

That should be it for most of the loop code. What'’s left is the handling
of different status messages: clients going down, shutdown, code upgrades,
and so on. Here they come:

shutdown ->
exit(shutdown);
{'DOWN", Ref, process, Pid, Reason} ->
loop(S#state{clients=orddict:erase(Ref, S#state.clients)});
code_change ->
?MODULE : 1oop(S);
Unknown ->
io:format("Unknown message: ~p~n",[Unknown]),
loop(S)

The first case (shutdown) is pretty explicit. You get the kill message; let
the process die. If you wanted to save state to disk, that could be a possible
place to do it. If you wanted safer save/exit semantics, this could be imple-
mented on every add, cancel, or done message. Loading events from disk
could then be done in the init function, spawning them as they come.

The 'DOWN' message’s actions are also simple enough. It means a client
died, so we remove it from the client list in the state.

Unknown messages will just be shown with io:format/2 for debugging
purposes, although a real production application would likely use a dedi-
cated logging module. Otherwise, all that useful information would be
wasted in output that no one ever looks for in production.

Next comes the code change message. This one is interesting enough to
have its own section.

190 Chapter 13

Hot Code Loving

In order to do hot code loading, Erlang has the code server. The code server
is basically a VM process in charge of an ETS table (an in-memory database
table, native to the VM, discussed later in Chapter 25). The code server
can hold two versions of a single module in memory, and both versions can
run at once. A new version of a module is loaded automatically when com-
piling it with c(Module), loading with 1(Module), or loading it with one of the
many functions of the code module, which you can read about in the Erlang
documentation.

An important concept to understand is that Erlang has both local
and external calls. Local calls are those function calls you can make with
functions that might not be exported. They have the format Name(Azrgs). An
external call can be done only with exported functions and has the form
Module:Function(Args). The precise name for an external call is fully qualified call.

When there are two versions of a module loaded in the VM, all local
calls are done through the currently running version in a process. However,
fully qualified calls are always done on the newest version of the code avail-
able in the code server. Then, if local calls are made from within the fully
qualified one, they are in the new version of the code.

—_—

loop(S) =>
myFun(),
PMODULE:myF un().
if Cond -> loop(S):
not Cond -> PMODULE :loop(S) U

loop(S) =>

end.

soe

‘new’ becomes the default

Given that every process/actor in Erlang needs to do a recursive call in
order to change state, it is possible to load entirely new versions of an actor
by having an external recursive call.

If you load a third version of a module while a process still runs with the first one,
that process will be killed by the VM, which assumes it was an orphan process without
a supervisor or a way to upgrade itself. If no one runs the oldest version, it is simply
dropped and the newest ones are kept instead.

Designing a Concurrent Application 191

192

Chapter 13

There are ways to bind your code to a system module that will send
messages whenever a new version of a module is loaded. By doing this,
you can trigger a module reload only when receiving such a message, and
always do it with a code upgrade function, say MyModule:Upgrade(CurrentState),
which will then be able to transform the state data structure according to
the new version’s specification. This “subscription” handling is done auto-
matically by the OTP framework, which we’ll start studying in Chapter 14.
For the reminder application, we won’t use the code server and will instead
use a custom code_change message from the shell, doing very basic reload-
ing. That’s pretty much all you need to know to do hot code loading.
Nevertheless, here’s a more generic example:

-module(hotload).
-export([server/1, upgrade/1]).

server(State) ->
receive
update ->
NewState = ?MODULE:upgrade(State),
?MODULE : server (NewState); %% Loop in the new version of the module.
SomeMessage ->
%% Do something here.
server(State) %% Stay in the same version no matter what.
end.

upgrade(0ldState) ->
%% Transform and return the state here.

As you can see, our ?MODULE:1oop(S) fits this pattern.

I Said, Hide Your Messages

Hide messages! If you expect people to build on your code and processes,
you must hide the messages in interface functions. Here’s what we used for
the evserv module:

start() ->
register(?MODULE, Pid=spawn(?MODULE, init, [])),
Pid.

start_link() -»
register(?MODULE, Pid=spawn_link(?MODULE, init, [])),
Pid.

terminate() -»>
?MODULE ! shutdown.

We registered the server module because, for now, we should have only
one running at a time. If you were to expand the reminder application to
support many users, it would be a decent idea to instead register the names

with the global module, and it would be even better to use the gproc library.
For the sake of this example app, what we have here will be enough.

The gproc library is a process dictionary for Exlang, which provides a number of useful
Jeatures beyond what the built-in dictionary has, such as he use of any term as an alias,
multiple names for a process, waiting for registration of other processes, atomic name

giveaway, and counters. 1’s available from http://github.com/uwiger/gproc.

The first message we wrote is the next we should abstract away: how to
subscribe. The little protocol or specification we wrote earlier called for a
monitor, so this one is added there. At any point, if the reference returned
by the subscribe message is in a DOWN message, the client will know the server
has gone down.

subscribe(Pid) ->
Ref = erlang:monitor(process, whereis(?MODULE)),
?MODULE ! {self(), Ref, {subscribe, Pid}},
receive
{Ref, ok} ->
{ok, Ref};
{'DOWN', Ref, process, Pid, Reason} ->
{error, Reason}
after 5000 ->
{error, timeout}
end.

The next message to abstract away is the event adding:

add_event(Name, Description, TimeOut) ->
Ref = make_ref(),
?MODULE ! {self(), Ref, {add, Name, Description, TimeOut}},
receive
{Ref, Msg} -> Msg
after 5000 ->
{error, timeout}
end.

Note that we forward the {error, bad_timeout} message that could be
received to the client. We could have also decided to crash the client by rais-
ing erlang:error(bad_timeout). Whether crashing the client or forwarding the
error message is the thing to do is still debated in the community. Here’s
the alternative crashing function:

add_event2(Name, Description, TimeOut) ->
Ref = make_ref(),
?MODULE ! {self(), Ref, {add, Name, Description, TimeOut}},
receive
{Ref, {error, Reason}} -> erlang:error(Reason);
{Ref, Msg} -> Msg
after 5000 ->

Designing a Concurrent Application 193

{error, timeout}
end.

Then there’s event cancellation, which just takes a name:

cancel(Name) ->
Ref = make_ref(),
?MODULE ! {self(), Ref, {cancel, Name}},
receive
{Ref, ok} -> ok
after 5000 ->
{error, timeout}
end.

Last of all is a small nicety provided for the client—a function used
to accumulate all messages during a given period of time. If messages are
found, they’re all taken, and the function returns as soon as possible.

listen(Delay) ->
receive
M = {done, Name, Description} -»>
[M | listen(0)]
after Delay*1000 ->

(]

end.

This is mostly useful when working with applications where the client
polls for updates, whereas applications that are always listening can use a
push-based mechanism, and thus would not need such a function.

A Test Drive

You should now be able to compile the application and give it a test run.
To make things a bit simpler, we’ll write a specific Erlang makefile to
build the project. Open a file named Emakefile and put it in the project’s
base directory. The file contains Erlang terms and gives the Erlang com-
piler the recipe to cook wonderful and crispy .beam files.

{'src/*', [debug_info,
{i, "src"},
{i, "include"},
{outdir, "ebin"}]}.

This tells the compiler to add debug_info to the files (this is rarely an
option you want to give up), to look for header files in the sr¢/ and include/
directories to help compile modules in sre¢/, and to output them in ebin/.

Go to your command line and run erl -make from the project’s base
directory, and the files should all be compiled and put inside the ebin/
directory for you. Start the Erlang shell by enterng erl -pa ebin/. The

194 Chapter 13

-pa directory option tells the Erlang VM to
add that path to the places it can look for
modules.

Another option is to start the shell as
usual and call make:all([load]). This will look
for a file named Emakefile in the current
directory, recompile it (if it changed), and
load the new files.

You should now be able to track thou-
sands of events. Try it out.

1> evserv:start().

<0.34.0>

2> evserv:subscribe(self()).

{ok,#Ref<0.0.0.31>}

3> evserv:add_event("Hey there", "test", FutureDateTime).
ok

4> evserv:listen(5).

[]

5> evserv:cancel("Hey there").

ok

6> evserv:add_event("Hey there2", "test", NextMinuteDateTime).
ok

7> evserv:listen(2000).

[{done, "Hey there2","test"}]

This works nicely. Writing any client should now be simple enough,
given the few basic interface functions we have created.

Adding Supervision

In order to make our example a more stable application, we should write
a “restarter,” as we did in Chapter 12. Open a file named sup.erl where our
supervisor will be:

-module(sup).
-export([start/2, start link/2, init/1, loop/1]).

start(Mod,Args) ->
spawn(?MODULE, init, [{Mod, Args}]).

start_link(Mod,Args) ->
spawn_link(?MODULE, init, [{Mod, Args}]).

init({Mod,Args}) ->
process_flag(trap_exit, true),
loop({Mod,start_link,Args}).

loop({M,F,A}) ->

Pid = apply(M,F,A),
receive

Designing a Concurrent Application 195

196

{"EXIT', _From, shutdown} ->
exit(shutdown); % will kill the child too
{'EXIT', Pid, Reason} ->
io:format("Process ~p exited for reason ~p~n",[Pid,Reason]),
Loop({M,F,A})
end.

This is somewhat similar to the restarter from Chapter 12, although
this one is a tad more generic. It can take any module, as long as it has a
start_link function. It will restart the process it watches indefinitely, unless
the supervisor itself is terminated with a shutdown exit signal. Here it is
in use:

1> c(evserv), c(sup).

{ok,sup}

2> SupPid = sup:start(evserv, []).
<0.43.0>

3> whereis(evserv).

<0.44.0>

4> exit(whereis(evserv), die).

true

Process <0.44.0> exited for reason die
5> exit(whereis(evserv), die).

Process <0.48.0> exited for reason die
true

6> exit(SupPid, shutdown).

true

7> whereis(evserv).

undefined

As you can see, killing the supervisor will also kill its child.

We'll explore much more advanced and flexible supervisors in Chapter 18. Those are
the ones people are thinking of when they mention supervision trees. The supervisor
demonstrated here is only the most basic form that exists and is not exactly fit for pro-
duction environments compared to the real thing.

Namespaces (or Lack Thereof)

Chapter 13

Because Erlang has a flat module struc-
ture (there is no hierarchy), some applica-
tions may have naming conflicts among
their modules. One example of this is the
frequently used user module that almost
every project attempts to define at least
once. This clashes with the user module
shipped with Erlang. You can test for any
clashes with the function code:clash/o.

Because of the potential for conflicts, the common pattern is to pre-
fix every module name with the name of your project. In this case, our
reminder application’s modules should be renamed to reminder_evserv,
reminder_sup, and reminder_event.

Some programmers then decide to add a module, named after the
application itself, which wraps common calls that programmers could
make when using their own application. Examples of calls could be func-
tions such as starting the application with a supervisor, subscribing to the
server, and adding and canceling events. It’s important to be aware of other
namespaces, too, such as registered names that must not clash, database
tables, and so on.

That’s pretty much it for a very basic concurrent Erlang application.
This one showed we could have a bunch of concurrent processes without
thinking too hard about it: supervisors, clients, servers, processes used as
timers (and we could have thousands of them), and so on. There’s no need
to synchronize them, no locks, and no real main loop. Message passing has
made it simple to compartmentalize our application into a few modules
with separated concerns and tasks.

The basic calls inside evserv.erl could now be used to construct clients
that could interact with the event server from somewhere outside the
Erlang VM and make the program truly useful.

Before doing that, though, I suggest you read up on the OTP frame-
work. The next few chapters will cover some of its building blocks, which
allow for much more robust and elegant applications. A huge part of Erlang’s
power comes from using the OTP framework. It’s a carefully crafted and
well-engineered tool that any self-respecting Erlang programmer must know.

Designing a Concurrent Application 197

AN INTRODUCTION TO OTP

In this chapter, we’ll get started with Erlang’s OTP
framework. OTP stands for Open Telecom Platform,
though these days it’s more about software that has
the properties of telecom applications than telecom

itself. If half of Erlang’s greatness comes from its concurrency and dis-
tribution, and the other half comes from its error handling capabilities,
then the OTP framework provides the third half.

During the previous chapters we’ve seen a few examples of common
practices of how to write concurrent applications with the language’s built-
in facilities: links, monitors, servers, timeouts, trapping exits, and so on.
There were a few “gotchas” involved in concurrent programming: Things
must be done in a certain order, race conditions need to be avoided, and
a process could die at any time. We also covered hot code loading, naming
processes, adding supervisors, and other techniques.

200

Doing all of this manually is time
consuming and error prone. There are
corner cases to be forgotten about and
pits to fall in to. The OTP framework
takes care of this by grouping these essen-
tial practices into a set of libraries that
have been carefully engineered and battle
hardened over the years. Every Erlang
programmer should use them.

The OTP framework is also a set of
modules and standards designed to help
you build applications. Given that most
Erlang programmers end up using OTP,
most Erlang applications you’ll encoun-
ter in the wild will tend to follow these
standards.

The Common Process, Abstracted

Chapter 14

One of the things we’ve done many times in the previous process examples
is divide everything in accordance to very specific tasks. In most processes,
we had a function in charge of spawning the new process, a function in
charge of giving the process its initial values, a main loop, and so on. These
parts, as it turns out, are usually present in all concurrent programs you’ll
write, no matter what the process might be used for.

A

A
! 1
[
] '

calls

The engineers and computer scientists behind the OTP framework
spotted these patterns and included them in a bunch of common libraries.
The OTP libraries are built with code that is equivalent to most of

the abstractions we used (like using references to tag messages), with the
advantages of being used for years in the field and built with far more cau-
tion than we used in our implementations. They contain functions to safely
spawn and initialize processes, send messages to them in a fault-tolerant
manner, and perform many other tasks. But you should rarely need to use
these libraries yourself. The abstractions they contain are so basic and uni-
versal that a lot more interesting things, called behaviors, were built on top
of them.

BASIC ABSTRACTION
LIBRARIES

gen, sys, proc—_lib

BEHAVIOURS

. 50
gen—"* superv®

In this and the following chapters, we’ll look at a few of the common
uses of processes, and how they can be abstracted and then made generic.
Then for each of these, we’ll explore the corresponding implementation
with the OTP framework’s behaviors.

The Basic Server

The common pattern we’ll explore in this chapter is one we’ve already
used. For the event server we wrote in Chapter 13, we used a client/server
model. The event server receives calls from the client, acts on them, and
then replies to the client if the protocol says to do so.

Introducing the Kitty Server

For this chapter, we’ll use a very simple server, allowing us to focus on its
essential properties. Here’s the kitty_server:

%kkh% Naive version
-module(kitty server).
-export([start_link/0, order cat/4, return_cat/2, close shop/1]).

-record(cat, {name, color=green, description}).

%%% Client API
start_link() -> spawn_link(fun init/0).

%% Synchronous call

order cat(Pid, Name, Color, Description) ->
Ref = erlang:monitor(process, Pid),
Pid ! {self(), Ref, {order, Name, Color, Description}},
receive

An Introduction to OTP 201

{Ref, Cat} ->
erlang:demonitor(Ref, [flush]),
Cat;
{'DOWN', Ref, process, Pid, Reason} ->
erlang:error(Reason)
after 5000 ->
erlang:error(timeout)
end.

%% This call is asynchronous.
return_cat(Pid, Cat = #cat{}) ->
Pid ! {return, Cat},
ok.

%% Synchronous call

close_shop(Pid) ->
Ref = erlang:monitor(process, Pid),
Pid ! {self(), Ref, terminate},

receive
{Ref, ok} ->
erlang:demonitor(Ref, [flush]),
ok;

{'DOWN', Ref, process, Pid, Reason} ->
erlang:error(Reason)
after 5000 ->
erlang:error(timeout)
end.

%%% Server functions
init() -> loop([]).

loop(Cats) ->
receive
{Pid, Ref, {order, Name, Color, Description}} ->
if Cats =:= [] ->
Pid ! {Ref, make cat(Name, Color, Description)},
loop(Cats);
Cats =/= [] -> % got to empty the stock
Pid ! {Ref, hd(Cats)},
loop(tl(Cats))
end;
{return, Cat = #cat{}} -»
loop([Cat|Cats]);
{Pid, Ref, terminate} ->
Pid ! {Ref, ok},
terminate(Cats);
Unknown ->
%% Do some logging here too.
io:format("Unknown message: ~p~n", [Unknown]),
loop(Cats)
end.

202 Chapter 14

%%% Private functions
make_cat(Name, Col, Desc) ->
#cat{name=Name, color=Col, description=Desc}.

terminate(Cats) ->
[io:format("~p was set free.~n",[C#cat.name]) || C <- Cats],
ok.

So this is a kitty server/store. The behavior is extremely simple: You
describe a cat, and you get that cat. If someone returns a cat, it’s added to a
list, and then automatically sent as the next order instead of what the client
actually asked for (we’re in this kitty store for the money, not smiles).

1> c(kitty_server).

{ok,kitty server}

2> rr(kitty_server).

[cat]

3> Pid = kitty_server:start_link().

<0.57.0>

4> Catl = kitty_server:order_cat(Pid, carl, brown, "loves to burn bridges").
#cat{name = carl,color = brown,

description = "loves to burn bridges"}

5> kitty_server:return_cat(Pid, Cati).

ok

6> kitty_server:order_cat(Pid, jimmy, orange, "cuddly").
#cat{name = carl,color = brown,

description = "loves to burn bridges"}

7> kitty_server:order_cat(Pid, jimmy, orange, "cuddly").
#cat{name = jimmy,color = orange,description = "cuddly"}
8> kitty_server:return_cat(Pid, Cat1).

ok

9> kitty_server:close_shop(Pid).

carl was set free.

ok

10> kitty_server:close_shop(Pid).

** exception error: no such process or port

in function kitty_server:close_shop/1

Looking back at the source code for the module, we can see patterns
we’ve previously applied. The sections where we set monitors up and down,
apply timers, receive data, use a main loop, handle the init function, and so
on should be familiar. It should be possible to abstract away these things we
end up repeating all the time. Let’s start with the client API.

Generalizing Calls

The first thing to notice in the source code is that both synchronous calls
are extremely similar. These are the calls that would likely go in abstraction
libraries, as mentioned earlier. For now, we’ll just abstract these away as a
single function in a new module that will hold all the generic parts of the
kitty server.

An Introduction to OTP 203

204

Chapter 14

-module(my_server).
-compile(export_all).

call(Pid, Msg) ->
Ref = erlang:monitor(process, Pid),
Pid ! {self(), Ref, Msg},
receive
{Ref, Reply} ->
erlang:demonitor(Ref, [flush]),
Reply;
{'DOWN', Ref, process, Pid, Reason} ->
erlang:error(Reason)
after 5000 ->
erlang:error(timeout)
end.

This takes a message and a pid, sticks them into the function, and then
forwards the message for you in a safe manner.

From now on, we can just substitute the message sending we do with a
call to this function. So if we were to rewrite a new Kkitty server to be paired
with the abstracted my_server, it could begin like this:

-module(kitty server2).
-export([start_link/0, order cat/4, return_cat/2, close shop/1]).

-record(cat, {name, color=green, description}).

%%% Client API
start_link() -> spawn_link(fun init/0).

%% Synchronous call
order cat(Pid, Name, Color, Description) ->
my_server:call(Pid, {order, Name, Color, Description}).

%% This call is asynchronous.
return_cat(Pid, Cat = #cat{}) ->
Pid ! {return, Cat},
ok.

%% Synchronous call
close_shop(Pid) ->
my_server:call(Pid, terminate).

Generalizing the Server Loop

The next big generic chunk of code we have is not as obvious as the call/2
function. Note that every process we’ve written so far has a loop where all
the messages are pattern matched. This part is a bit touchy, but here we

need to separate the pattern matching from the loop itself. One quick way
to do it would be to add this:

loop(Module, State) ->
receive
Message -> Module:handle(Message, State)
end.

And then the specific module would look like this:

handle(Messagel, State) -> NewStatel;
handle(Message2, State) -> NewState2;

handle(MessageN, State) -> NewStateN.

This is better, but there are ways to make it even cleaner.

If you paid attention when reading or entering the kitty_server module
(and I hope you did!), you will have noticed we have a specific way to call
synchronously and another way to call asynchronously. It would be pretty
helpful if our generic server implementation could provide a clear way to
know which kind of call is which.

To accomplish this, we will need to match different kinds of messages
in my_server:loop/2. This means we’ll need to change the call/2 function a
bit so synchronous calls are made obvious. We’ll do this by adding the atom
sync to the message on the function’s second line, as follows:

call(pid, Msg) -»
Ref = erlang:monitor(process, Pid),
Pid ! {sync, self(), Ref, Msg},
receive
{Ref, Reply} ->
erlang:demonitor(Ref, [flush]),
Reply;
{'DOWN', Ref, process, Pid, Reason} ->
erlang:error(Reason)
after 5000 ->
erlang:error(timeout)
end.

We can now provide a new function for asynchronous calls. The func-
tion cast/2 will handle this.

cast(Pid, Msg) ->
Pid ! {async, Msg},
ok.

An Introduction to OTP 205

206

Chapter 14

Now the loop looks like this:

loop(Module, State) ->
receive
{async, Msg} ->
loop(Module, Module:handle_cast(Msg, State));
{sync, Pid, Ref, Msg} ->
loop(Module, Module:handle call(Msg, Pid, Ref, State))
end.

And then you could also add specific slots
to handle messages that don’t fit the sync/async
concept (maybe they were sent by accident) or to
have your debug functions and other stuff like
hot code reloading in there.

One disappointing thing about our loop is
that the abstraction is leaking. The programmers who will use my_server will
still need to know about references when sending synchronous messages
and replying to them. That makes the abstraction useless. To use it, you still
need to understand all the boring details. Here’s a quick fix:

loop(Module, State) -»
receive
{async, Msg} ->
loop(Module, Module:handle cast(Msg, State));
{sync, Pid, Ref, Msg} ->
loop(Module, Module:handle call(Msg, {Pid, Ref}, State))
end.

With both the variables Pid and Ref placed in a tuple, they can be passed
as a single argument to the other function as a variable with a name like From.
Then the user doesn’t need to know anything about the variable’s innards.
Instead, we’ll provide a function to send replies that should understand
what From contains:

reply({Pid, Ref}, Reply) ->
Pid ! {Ref, Reply}.

Starter Functions

What is left to do is specify the starter functions (start, start_link, and init)
that pass around the module names and whatnot. Once they’re added, the
module should look like this:

-module(my_server).
-export([start/2, start link/2, call/2, cast/2, reply/2]).

%%% Public API
start(Module, InitialState) ->
spawn(fun() -> init(Module, InitialState) end).

start_link(Module, InitialState) ->
spawn_link(fun() -> init(Module, InitialState) end).

call(Pid, Msg) -»
Ref = erlang:monitor(process, Pid),
Pid ! {sync, self(), Ref, Msg},
receive
{Ref, Reply} ->
erlang:demonitor(Ref, [flush]),
Reply;
{'DOWN"', Ref, process, Pid, Reason} ->
erlang:error(Reason)
after 5000 ->
erlang:error(timeout)
end.

cast(Pid, Msg) -»
Pid ! {async, Msg},
ok.

reply({Pid, Ref}, Reply) ->
Pid ! {Ref, Reply}.

%%% Private stuff
init(Module, InitialState) ->
loop(Module, Module:init(InitialState)).

loop(Module, State) -»>
receive
{async, Msg} ->
loop(Module, Module:handle cast(Msg, State));
{sync, Pid, Ref, Msg} ->
loop(Module, Module:handle call(Msg, {Pid, Ref}, State))
end.

Generalizing Kitty Server

Next, we need to re-implement the kitty server, now kitty_server2, as a call-
back module that will respect the interface we defined for my_server. We’ll
keep the same interface as the previous implementation, except all the calls
are now redirected to go through my_server.

-module(kitty server2).

-export([start_link/0, order cat/4, return_cat/2, close shop/1]).
-export([init/1, handle_call/3, handle cast/2]).

-record(cat, {name, color=green, description}).

%%% Client API
start_link() -> my_server:start link(?MODULE, []).

An Introduction to OTP 207

208

Chapter 14

%% Synchronous call
order_cat(Pid, Name, Color, Description) ->
my_server:call(Pid, {order, Name, Color, Description}).

%% This call is asynchronous.
return_cat(Pid, Cat = #cat{}) ->
my server:cast(Pid, {return, Cat}).

%% Synchronous call
close_shop(Pid) ->
my_server:call(Pid, terminate).

Note that we added a second -export() at the top of the module. These
are the functions my_server will need to call to make everything work:

%%% Server functions
init([]) -> []. %% no treatment of info here!

handle_call({order, Name, Color, Description}, From, Cats) ->
if Cats =:= [] ->
my_server:reply(From, make_cat(Name, Color, Description)),

Cats;

Cats =/=[] -»>
my_server:reply(From, hd(Cats)),
t1(Cats)

end;

handle call(terminate, From, Cats) -»>
my_server:reply(From, ok),
terminate(Cats).

handle_cast({return, Cat = #cat{}}, Cats) ->
[Cat|Cats].

And then we need to reinsert the private functions:

%%% Private functions
make_cat(Name, Col, Desc) ->
#cat{name=Name, color=Col, description=Desc}.

terminate(Cats) ->
[io:format("~p was set free.~n",[C#cat.name]) || C <- Cats],
exit(normal).

Just make sure to replace the ok we had before with exit(normal) in
terminate/1; otherwise, the server will keep running.

You should be able to compile and test the code, and run it in exactly
the same manner as the previous version. The code is quite similar, but let’s
see what has changed.

Specific vs. Generic

Our kitty server example demonstrates the core of OTP (conceptually
speaking). This is what OTP really is all about: taking all the generic com-
ponents, extracting them in libraries, making sure they work well, and then
reusing that code when possible. Then all that’s left to do is focus on the spe-
cific stuff—things that will always change from application to application.

Obviously, you don’t benefit much by doing things that way with only
the kitty server. It looks a bit like abstraction for abstraction’s sake. If the
application you needed to ship to a customer were nothing but the kitty
server, then the first version might be fine. However, for larger applications,
it might be worth the effort to separate generic parts of your code from the
specific sections.

Imagine that we have some Erlang software running on a server. Our
software has a few kitty servers running, a veterinary process (you send your
broken Kkitties, and it returns them fixed), a kitty beauty salon, a server for
pet food, and so on. Most of these can be implemented with a client/server
pattern. As time passes, your complex system becomes full of different serv-
ers running around.

Adding servers adds complexity in terms of code, and also in terms of
testing, maintenance, and understanding. Each implementation might be
different, programmed in different styles by various people, and so on.
However, if all these servers share the same common my_server abstraction,
you substantially reduce that complexity. You understand the basic concept
of the module instantly (“Oh, it’s a server!”), and there’s a single generic
implementation of it to test and document. The rest of the effort can be put
into each specific implementation of the server.

This means you reduce a lot of time
tracking and solving bugs (just do it in
one place for all servers). It also means
that you reduce the number of bugs you
introduce. If you were to rewrite the
my_server:call/3 or the process’s main
loop all the time, not only would it be
more time-consuming, but chances of
forgetting one step or another would sky-
rocket, and so would bugs. Fewer bugs
mean fewer calls during the night to go
fix something, which is definitely good
for all of us (I bet you don’t appreciate
going to the office on days off to fix
bugs either).

Another interesting outcome of separating the generic from the spe-
cific is that we instantly made it much easier to test our individual modules.
If you wanted to unit test the old kitty server implementation, you would
need to spawn one process per test, give it the right state, send your mes-
sages, and hope for the reply you expected. On the other hand, our second
kitty server requires us to run the function calls over only the handle_call/3

An Introduction to OTP 209

210

and handle_cast/2 functions, and see what they output as a new state. There
is no need to set up servers. Just pass the state in as a function parameter.
Note that this also means the generic aspect of the server is much easier to
test, given you can just implement very simple functions that do nothing
other than let you focus on the behavior you want to observe.

A less obvious advantage of using common abstractions in this way
is that if everyone uses the exact same backend for their processes, when
someone optimizes that single backend to make it a little faster, every pro-
cess using it out there will run a little faster, too. For this principle to work
in practice, it’s usually necessary to have a whole lot of people using the
same abstractions and putting effort in them. Luckily for the Erlang com-
munity, that’s what happens with the OTP framework.

In our Kkitty server modules, there are a bunch of things we haven’t
yet addressed: named processes, configuring the timeouts, adding debug
information, what to do with unexpected messages, how to tie in hot code
loading, handling specific errors, abstracting away the need to write most
replies, handling most ways to shut down a server, making sure the server
plays nice with supervisors, and more. Going over all of this is superflu-
ous for this text, but it would be necessary in real products that need to be
shipped. Again, you might see why doing all of this by yourself is a bit of
a risky task. Luckily for you (and the people who will support your appli-
cations), the Erlang/OTP team managed to handle all of that with the
gen_server behavior. gen_server is a bit like my_server on steroids, except it
has years and years of testing and production use behind it.

Callback to the Future

Chapter 14

Similar to the interface we started designing in this chapter, the OTP
gen_server asks us to provide functions to deal with initialization and ter-
mination of processes, the handling of synchronous and asynchronous
requests done through message passing, and a few other tasks.

The init Function

The first callback is an init/1 function. It is
similar to the one we used with my_server in
that it is used to initialize the server’s state
and do all of these one-time tasks that the
server will depend on. The function can
return {ok, State}, {ok, State, TimeOut},

{ok, State, hibernate}, {stop, Reason},

or ignore.

The normal {ok, State} return value
doesn’t really need explaining other than
that State will be passed directly to the
main loop of the process as the state to keep later on. The TimeOut variable is
meant to be added to the tuple whenever you need a deadline before which
you expect the server to receive a message. If no message is received before

the deadline, a special one (the atom timeout) is sent to the server, which
should be handled with handle_info/2 (described later in this chapter). This
option is seldom used in production code, because you can’t always know
which messages you will receive, and any of them will be enough to reset
the timer. It is usually better to use a function such as erlang:start_timer/3
and handle things manually for better control.

On the other hand, if you do expect the process to take a long time
before getting a reply and are worried about memory, you can add the
hibernate atom to the tuple. Hibernation basically reduces the size of the
process’s state until it gets a message, at the cost of some processing power.
If you are in doubt about using hibernation, you probably don’t need it.

Returning {stop, Reason} should be done when something went wrong
during the initialization.

A CLOSER LOOK AT HIBERNATION

There’s a more technical definition of process hibernation, if you're interested.
When the BIF erlang:hibernate(M,F,A) is called, the call stack for the currently
running process is discarded (the function never returns). The garbage collection
then kicks in, and what's left is one continuous heap that is shrunken to the size of
the data in the process. This basically compacts all the data so the process takes
less space.

Once the process receives a message, the function M:F with A as arguments is
called, and the execution resumes.

While init/1 is running, execution is blocked in the process that spawned the
server. This is because it is waiting for a “ready” message sent automatically by
the gen_server module to make sure everything went fine.

The handle_call Function

The function handle_call/3 is used to work with synchronous messages. It
takes three arguments: Request, From, and State. It’s pretty similar to how we
programmed our own handle_call/3 in my_server. The biggest difference is
how you reply to messages. In our own abstraction of a server, it was necessary
to use my_server:reply/2 to talk back to the process. In the case of gen_server,
eight different return values are possible, taking the form of tuples:

{reply,Reply,NewState}
{reply,Reply,NewState, TimeOut}
{reply,Reply,NewState,hibernate}
{noreply,NewState}
{noreply,NewState, TimeOut}
{noreply,NewState,hibernate}
{stop,Reason,Reply,NewState}
{stop,Reason,NewState}

An Introduction to OTP 21

212

Chapter 14

For all of these values, TimeOut and hibernate work the same way as for
init/1. Whatever is in Reply will be sent back to whoever called the server in
the first place.

Notice that there are three possible noreply options. When you use
noreply, the generic part of the server will assume you’re taking care of
sending the reply back yourself. This can be done with gen_server:reply/2,
which can be used in the same way as my_server:reply/2.

Most of the time, you'll need only the reply tuples. However, there are
a few valid reasons to use noreply, such as when you want another process
to send the reply for you, or when you want to send an acknowledgment
(“Hey! I received the message!”) but still process it afterward (without
replying this time). If this is what you choose to do, it is absolutely neces-
sary to use gen_server:reply/2; otherwise, the call will time out and cause a
crash.

The handle cast Function

The handle_cast/2 callback works a lot like the one in my_server. It takes the
parameters Message and State and is used to handle asynchronous calls. You
do whatever you want in there, in a manner quite similar to what’s doable
with handle_call/3. On the other hand, only tuples without replies are valid
return values:

{noreply,NewState}
{noreply,NewState, TimeOut}
{noreply,NewState,hibernate}
{stop,Reason,NewState}

The handle info Function

Earlier, I mentioned that our own server didn’t really deal with messages
that do not fit our interface. Well, handle_info/2 is the solution. It’s very
similar to handle_cast/2, and in fact, returns the same tuples. The differ-
ence is that this callback is there only for messages that were sent directly
with the ! operator and special ones like init/1’s timeout, monitors’ notifi-
cations, and EXIT signals.

The terminate Function

The callback terminate/2 is called whenever one of the three handle_something
functions returns a tuple of the form {stop, Reason, NewState} or {stop, Reason,
Reply, NewState}. It takes two parameters, Reason and State, corresponding to
the same values from the stop tuples.

The terminate/2 function will also be called when its parent (the process
that spawned it) dies, if and only if the gen_server is trapping exits.

If any reason other than normal, shutdown, or {shutdown, Term} is used when
terminate/2 is called, the OTP framework will see this as a failure and start log-
ging the process’s state, reason for failures, last messages received, and so on.
This makes debugging easier, which might save your life quite a few times.

This function is pretty much the direct opposite of init/1, so whatever
was done in there should have its opposite in terminate/2. It’s your server’s
janitor—the function in charge of locking the door after making sure
everyone is gone. Of course, the function is helped by the VM itself, which
should usually delete all ETS tables (see Chapter 25), close all sockets (see
Chapter 23), and handle other tasks for you. Note that the return value of
this function doesn’t really matter, because the code stops executing after it
has been called.

The code_change Function

The function code_change/3 lets you upgrade code. It takes the form
code_change(PreviousVersion, State, Extra). Here, the variable PreviousVersion
is either the version term itself (see Chapter 2 if you forgot what this is)
in the case of an upgrade or {down, Version} in the case of a downgrade
(just reloading older code). The State variable holds all of the current
server state so you can convert it.

Imagine for a moment that we used an orddict to store all of our data.
However, as time passes, the orddict becomes too slow, and we decide to
replace it with a regular dict. In order to avoid the process crashing on the
next function call, the conversion from one data structure to the other can
be done in there, safely. All we need to do is return the new state with
{ok, NewState}. We’ll make use of this feature in Chapter 22, when we see
relups as well as the Extra variable. We won’t worry about these things
for now.

So now we have all the callbacks defined. Don’t worry if you're a little
lost. The OTP framework is a bit circular sometimes; to understand part A
of the framework, you need to understand part B, but then part B requires
that you understand part A. The best way to get over that confusion is to
actually implement a gen_server.

.BEAM Me Up, Scotty!

Now we’ll build kitty gen_server. It will be
similar to kitty_server2, with only mini-
mal API changes. First start a new mod-
ule with the following lines in it:

-module(kitty gen_server).
-behavior(gen_server). \

An Introduction to OTP 213

214

Both behavior and behaviour are accepted by the Erlang compiler.

Chapter 14

And try to compile it. You should get something like this:

1> c(kitty_gen_server).

./kitty_gen_server.erl:2: Warning: undefined callback function code_change/3
(behavior 'gen_server')

./kitty_gen server.erl:2: Warning: undefined callback function handle call/3
(behavior 'gen server')

./kitty_gen_server.erl:2: Warning: undefined callback function handle_cast/2
(behavior 'gen_server')

./kitty_gen server.erl:2: Warning: undefined callback function handle_info/2
(behavior 'gen server')

./kitty_gen_server.erl:2: Warning: undefined callback function init/1
(behavior 'gen_server')

./kitty_gen_server.erl:2: Warning: undefined callback function terminate/2
(behavior 'gen server')

{ok,kitty gen_server}

The compilation worked, but there are warnings about missing call-
backs. This is because of the gen_server behavior. A behavioris basically a way
for a module to specify functions it expects another module to have. The
behavior is the contract sealing the deal between the well-behaved generic
part of the code and the specific, error-prone part of the code (yours).

e w

DEFINING BEHAVIORS

Defining your own behaviors is really simple. You just need to export a function
called behavior_info/1, implemented as follows:

-module(my_behavior).
-export([behavior_info/1]).

%% init/1, some_fun/0 and other/3 are now expected callbacks.
behavior_info(callbacks) -> [{init,1}, {some_fun, 0}, {other, 3}];
behavior_info(_) -> undefined.

And that's about it for behaviors. You can just use -behavior(my_behavior). in a
module, implementing behaviors to get compiler warnings if you forgot a function.

The first function we had for our Kkitty server was start_link/0. This one
can be changed to the following:

start_link() -> gen_server:start link(?MODULE, [], []).

The first parameter is the callback module, the second one is a term
to pass to init/1, and the third one is about debugging options for run-
ning servers. You could add a fourth parameter in the first position:
{local, Name}, which is the name to register the server with. Note that

while the previous version of the function simply returned a pid, this
one instead returns {ok, Pid}.
The next functions are now as follows:

%% Synchronous call
order_cat(Pid, Name, Color, Description) ->
gen_server:call(Pid, {order, Name, Color, Description}).

%% This call is asynchronous.
return_cat(Pid, Cat = #cat{}) ->
gen_server:cast(Pid, {return, Cat}).

%% Synchronous call
close_shop(Pid) ->
gen_server:call(Pid, terminate).

All of these calls are equivalent to those we had in my_server. Note that a
third parameter can be passed to gen_server:call to give a timeout, in milli-

seconds. If you don’t give a timeout to the function (or the atom infinity)
the default is set to 5 seconds. If no reply is received before the time is

s

up, the call crashes. This is an entirely arbitrary value, and many Erlang
regulars will tell you that it should be changed to default to infinity. In my

own experience, I often wanted replies to come in faster than 5 seconds,

and having this timer force crashes has generally helped me diagnose more

important problems.

Now we’ll be able to add the gen_server callbacks. Table 14-1 shows the

relationship we have between calls and callbacks.

Table 14-1: Relationship Between Calls and Callbacks

gen_server YourModule
start/3-4 init/1
start_link/3-4 init/1
call/2-3 handle_call/3
cast/2 handle_cast/2

And then we have the other callbacks, which are more about special
cases: handle_info/2, terminate/2, and code_change/3.

Let’s begin by changing those we already have to fit the model: init/1
handle_call/3, and handle_cast/2.

>

%%% Server functions
init([]) -> {ok, [1}. %% no treatment of info here!

handle_call({order, Name, Color, Description}, _From, Cats) ->
if Cats =:= [] -»>
{reply, make_cat(Name, Color, Description), Cats};
Cats =/= [] ->
{reply, hd(Cats), tl(Cats)}
end;

An Introduction to OTP

215

handle_call(terminate, _From, Cats) -»>
{stop, normal, ok, Cats}.

handle_cast({return, Cat = #cat{}}, Cats) ->
{noreply, [Cat|Cats]}.

Again, very little has changed here. In fact, the code is now shorter,
thanks to smarter abstractions.

Now we get to the new callbacks. The first one is handle_info/2. Given
this is a toy module and we have no logging system predefined, just output-
ting the unexpected messages will be enough.

handle_info(Msg, Cats) -»>
io:format("Unexpected message: ~p~n",[Msg]),
{noreply, Cats}.

As a general rule of thumb, always log unexpected messages in
handle_cast/2 and handle_info/2. You might also want to log them in
handle_call/3, but generally speaking, not replying to calls (coupled with
the default 5 seconds timeout) is enough to achieve the same result.

The next one is the terminate/2 callback. It will be very similar to the
terminate/1 private function we used earlier.

terminate(normal, Cats) -»>
[io:format("~p was set free.~n",[C#cat.name]) || C <- Cats],
ok.

And here’s the last callback, code_change/3:

code_change(_0ldVsn, State, _Extra) -»>
%% No change planned. The function is there for the behavior,
%% but will not be used.
{ok, State}.

Just remember to keep in the make_cat/3 private function:

%%% Private functions
make_cat(Name, Col, Desc) -»>
#cat{name=Name, color=Col, description=Desc}.

And we can now try the brand-new code:

1> c(kitty_gen_server).

{ok,kitty gen_server}

2> rr(kitty_gen_server).

[cat]

3> {ok, Pid} = kitty_gen_server:start_link().
{ok,<0.253.0>}

216 Chapter 14

4> Pid ! «"Test handle_info"».

Unexpected message: <<"Test handle_info">>

<<"Test handle_info">>

5> Cat = kitty_gen_server:order_cat(Pid, "Cat Stevens",

5> white, "not actually a cat").

#cat{name = "Cat Stevens",color = white,
description = "not actually a cat"}

6> kitty_gen_server:return_cat(Pid, Cat).

ok

7> kitty_gen_server:order_cat(Pid, "Kitten Mittens",

7> black, "look at them little paws!").

#cat{name = "Cat Stevens",color = white,
description = "not actually a cat"}

Because we returned the Cat cat to the server, it’s given back to us
before we can order anything new. If we try again, we should get what
we want:

8> kitty_gen_server:order_cat(Pid, "Kitten Mittens",

8> black, "look at them little paws!").

#cat{name = "Kitten Mittens",color = black,
description = "look at them little paws!"}

9> kitty_gen_server:return_cat(Pid, Cat).

ok

10> kitty_gen_server:close_shop(Pid).

"Cat Stevens" was set free.

ok

Hot damn, it works!
So what can we say about this generic adventure?
Probably the same generic stuff as before: Separating
the generic from the specific is a great idea on every
point. Maintenance is simpler. Complexity is reduced.
The code is safer, easier to test, and less prone to bugs.
And if there are bugs, they are easier to fix.
Generic servers are only one of the many available abstractions, but
they’re certainly one of the most used ones. We’ll explore more of these
abstractions and behaviors in the next chapters.

An Introduction to OTP 217

RAGE AGAINST THE
FINITE-STATE MACHINES

Finite-state machines are a central part of numerous
implementations of important protocols in the indus-
trial world. They allow programmers to represent
complex procedures and sequences of events in a way
that can be understood with ease.

Although the most mathematically inclined readers might know finite-
state machines under stricter mathematical definitions, the finite-state
machines used in Erlang are more inspired by them than a direct imple-
mentation. A typical Erlang finite-state machine can be implemented as a
process running a given set of functions (their states) and receiving messages
(events) that force a state transition.

They were used so frequently in the telecom world that the OTP engi-
neers ended up writing a behavior for them: gen_fsm.

This chapter introduces the concept of finite-state machines as used
in the Erlang world and its OTP counterpart. We’ll experiment with them
by designing a fully asynchronous, message-based protocol for a client-to-
client trading system that could be added to a video game.

220

What Is a Finite-State Machine?

A finite-state machine (FSM) is not really a machine, but it does have a
finite number of states. I've always found FSMs easier to understand with
graphs and diagrams. For example, the following is a simplistic diagram for
a (very dumb) dog as a state machine:

\/ waits
—gels peHed —7 @
i

sees }sqwrrels gebs petted

GDe—_

Here, the dog has three states: sitting, barking, or wagging his tail.
Different events or inputs may force the dog to change his state. If a dog is
calmly sitting and sees a squirrel, he will start barking and won’t stop until
you pet him again. However, if the dog is sitting and you pet him, we have
no idea what might happen. In the Erlang world, the dog could crash (and
eventually be restarted by his supervisor). In the real world, restarting your
dog would be pretty unusual (and a little freaky), though that would mean
the dog could come back after being run over by a car, so it’s not all bad.

Here’s a cat’s state diagram for comparison:

ﬁ

any event

EVER!

doesn’t give a
crap about you

This cat has a single state, and no event can ever change it.
Implementing the cat state machine in Erlang is a fun and simple task:

-module(cat_fsm).
-export([start/o, event/2]).

start() ->
spawn(fun() -> dont_give crap() end).

event(Pid, Event) ->
Ref = make ref(), % won't care for monitors here
Pid ! {self(), Ref, Event},
receive

{Ref, Msg} -> {ok, Msg}

Chapter 15

after 5000 ->
{error, timeout}
end.

dont_give crap() ->
receive
{Pid, Ref, Msg} -> Pid ! {Ref, meh};
_ > ok
end,
io:format("Switching to 'dont_give crap' state~n"),
dont_give crap().

We can try the module to see that the cat really never gives a crap:

1> c(cat_fsm).

{ok,cat_fsm}

2> Cat = cat_fsm:start().

<0.67.0>

3> cat_fsm:event(Cat, pet).
Switching to 'dont_give crap' state
{ok,meh}

4> cat_fsm:event(Cat, love).
Switching to 'dont_give crap' state
{ok,meh}

5> cat_fsm:event(Cat, cherish).
Switching to 'dont_give crap' state
{ok,meh}

The same can be done for the dog FSM, except more states are
available:

-module(dog_fsm).
-export([start/o, squirrel/i, pet/1]).

start() -> spawn(fun() -> bark() end).
squirrel(Pid) -> Pid ! squirrel.
pet(Pid) -> Pid ! pet.

bark() ->
io:format("Dog says: BARK! BARK!~n"),
receive
pet ->
wag_tail();
->
io:format("Dog is confused~n"),
bark()
after 2000 ->
bark()
end.

wag_tail() ->
io:format("Dog wags its tail~n"),

Rage Against the Finite-State Machines 21

222

Chapter 15

receive
pet ->
sit();
>
io:format("Dog is confused~n"),
wag_tail()
after 30000 ->
bark()
end.

sit() -»
io:format("Dog is sitting. Gooooood boy!~n"),
receive
squirrel ->
bark();
_
io:format("Dog is confused~n"),
sit()
end.

It should be relatively simple to match each of the states and transitions
to those shown in the dog’s state diagram. Here’s the FSM in use:

6> c(dog_fsm).
{ok,dog_fsm}
7> Pid = dog_fsm:start().
Dog says: BARK! BARK!
<0.46.0>
Dog says: BARK! BARK!
Dog says: BARK! BARK!
Dog says: BARK! BARK!
8> dog_fsm:pet(Pid).
pet
Dog wags its tail
9> dog_fsm:pet(Pid).
Dog is sitting. Gooooood boy!
pet
10> dog_fsm:pet(Pid).
Dog is confused
pet
Dog is sitting. Gooooood boy!
11> dog_fsm:squirrel(Pid).
Dog says: BARK! BARK!
squirrel
Dog says: BARK! BARK!
12> dog_fsm:pet(Pid).
Dog wags its tail
pet
O 13> %% wait 30 seconds
Dog says: BARK! BARK!
Dog says: BARK! BARK!
Dog says: BARK! BARK!

13> dog_fsm:pet(Pid).

Dog wags its tail

pet

14> dog_fsm:pet(Pid).

Dog is sitting. Gooooood boy!
pet

You can follow along with the schema if you want (I usually do, since
it helps me to make sure that nothing is wrong). Note that at @, the com-
mand entered is strictly a comment intended for the reader, although the
Erlang shell deals with it fine.

That’s really the core of FSMs implemented as Erlang processes. There
are things that could have been done differently. We could have passed
state in the arguments of the state functions in a way similar to what we do
with a server’s main loop. We could also have added init and terminate func-
tions, handled code updates, and so on.

A difference between the dog and cat FSMs is that the cat’s events are
synchronous and the dog’s events are asynchronous. In a real FSM, both could
be used in a mixed manner, but I went for the simplest representation out
of pure, untapped laziness.

There is also another event form the examples do not show: global
events that can happen in any state. One example of such an event could be
when the dog gets a sniff of food. Once the “smell food” event is triggered,
no matter which state the dog is in, he will go looking for the source of food.

We won’t spend too much time implementing all of this in our “written-
on-a-napkin” FSM. Instead, we’ll move directly to the gen_fsm behavior.

Generic Finite-State Machines

The gen_fsm behavior is somewhat similar to gen_server in that it is a special-
ized version of that behavior. The biggest difference is that rather than
handling calls and casts, we’re handling synchronous and asynchronous events.
Similar to our dog and cat examples, each state is represented by a function.
Here, we’ll go through the callbacks our modules need to implement in
order to work.

The init Function

The init function for FSMs is the same init/1 as used for generic servers,
except the return values accepted are {ok, StateName, Data}, {ok, StateName,
Data, Timeout}, {ok, StateName, Data, hibernate}, and {stop, Reason}. The stop
tuple works in the same manner as for gen_server, and both hibernate and
Timeout keep the same semantics.

What’s new here is the StateName variable. StateName is an atom and repre-
sents the next callback function to be called. For our dog, this would be the
bark state.

Rage Against the Finite-State Machines 223

224

Chapter 15

The StateName Function

The functions StateName/2 and StateName/3 are placeholder names, and you
decide what they will be. Let’s suppose the init/1 function returns the tuple
{ok, sitting, dog}. This means the FSM will be in the sitting state. This is
not the same kind of state as we have seen with gen_server, but more like the
sit, bark, and wag_tail states of our dog FSM. These states dictate a context
in which you handle a given event.

As an example, consider someone call-
ing you on your phone. If you’re in the
state “sleeping on a Saturday morning,”
your reaction might be to yell at the phone.
If your state is “waiting for a job interview,”
chances are you’ll pick up the phone and
answer politely. On the other hand, if
you're in the state “dead,” then I am sur-
prised you can even read this text at all.

In our FSM, the init/1 function
said we should be in the sitting state.
Whenever the gen_fsm process receives
an event, either the function sitting/2 or
sitting/3 will be called. The sitting/2 func-
tion is called for asynchronous events, and
sitting/3 is called for synchronous events.

The arguments for sitting/2 (or generally StateName/2) are Event, the
actual message sent as an event, and StateData, the data that was carried
over the calls. The sitting/2 function can then return the tuples {next_state,
NextStateName, NewStateData}, {next state, NextStateName, NewStateData, Timeout},
{next_state, NextStateName, hibernate}, and {stop, Reason, NewStateData}.

The arguments for sitting/3 are similar, except there is a From variable
in between Event and StateData. The From variable is used in exactly the same
way as it is for gen_server, including gen_fsm:reply/2. The StateName/3 functions
can return the following tuples:

{reply, Reply, NextStateName, NewStateData}
{reply, Reply, NextStateName, NewStateData, Timeout}
{reply, Reply, NextStateName, NewStateData, hibernate}

{next_state, NextStateName, NewStateData}
{next_state, NextStateName, NewStateData, Timeout}
{next_state, NextStateName, NewStateData, hibernate}

{stop, Reason, Reply, NewStateData}
{stop, Reason, NewStateData}

Note that there’s no limit on how many of these functions you can have,
as long as they are exported. The atoms returned as NextStateName in the
tuples will determine whether or not the function will be called.

The handle_event Function

Earlier, I mentioned global events, which trigger a specific reaction no mat-
ter what state we're in (the dog smelling food will drop whatever he is doing
and look for food). For these events that should be treated the same way
in every state, the handle_event/3 callback is what you want. The function
takes arguments similar to StateName/2, with the exception that it accepts a
StateName variable in between them (handle_event(Event, StateName, Data)), tell-
ing you what the state was when the event was received. It returns the same
values as StateName/2.

The handle_sync_event Function

The handle_sync_event/4 callback is to StateName/3 what handle_event/2 is to
StateName/2. It handles synchronous global events, takes the same param-
eters, and returns the same kind of tuples as StateName/3.

Now might be a good time to explain how we know whether an event
is global or if it’s meant to be sent to a specific state. To determine this, we
can look at the function used to send an event to the FSM. Asynchronous
events aimed at any StateName/2 function are sent with gen_fsm:send_event/2,
and synchronous events to be picked up by StateName/3 are sent with
gen_fsm:sync_send_event/2-3 (the optional third argument is the timeout).

The two equivalent functions for global events are gen_fsm:send_all_
state_event/2 and gen_fsm:sync_send_all_state_event/2-3 (quite a long name).

The code_change and terminate Functions

The code_change function works exactly the same as it does for gen_server,
except that it takes an extra state parameter when called, such as
code_change(0ldVersion, StateName, Data, Extra), and returns a tuple of the
form {ok, NextStateName, NewStateData}.

Similarly, terminate acts a bit like what we have for generic servers.
terminate(Reason, StateName, Data) should do the opposite of init/1.

A Trading System Specification

It’s time to put all of this information about FSMs into practice. Many Erlang
tutorials about FSMs use examples containing telephone switches and the
like. It’s my guess that most programmers will rarely need to deal with tele-
phone switches for state machines. Here, we’ll look at an example that is
more fitting for many developers. We’ll design and implement an item trad-
ing system for a fictional video game.

The design I have picked is somewhat challenging. Rather than using a
central broker through which players route items and confirmations (which,
frankly, would be easier), we’re going to implement a server where both
players speak to each other directly (which has the advantage of being
easily distributable).

Rage Against the Finite-State Machines 225

226

Chapter 15

Show Me Your Moves

To begin, we should define the actions that can be taken by our players
when trading. The first is asking for a trade to be set up. The other user
should also be able to accept that trade. We won’t give the players the right
to deny a trade, though, because we want to keep things simple. It would be
easy to add that feature later.

Once the trade is set up, our users should be able to negotiate with each
other. This means they should be able to make offers and also to retract
those offers. When both players are satisfied with the offer, they can declare
themselves as ready to finalize the trade. The data should then be saved
somewhere on both sides. At any point in time, the players should be able
to cancel the whole trade. Some pleb could be offering only items deemed
unworthy to the other party (who might be very busy), and so it should be
possible to backhand that player with a well-deserved cancellation.

In short, the following actions should be possible:

e Ask for a trade.

e Accept a trade.

e Offer items.

e Retract an offer.

e Declare self as ready.

e DBrutally cancel the trade.

When each of these actions is taken, the other player’s FSM should be
made aware of it. This makes sense, because when you’re playing the game
and Jim tells his FSM to send an item to you, your FSM must be made aware
of it. This means both players can talk to their own FSM, which will talk to
the other’s FSM. This gives us something a bit like this:

@9 — G M) «—s @iz Fsr) -~ Q)

The first thing to notice when we have two identical processes commu-
nicating with each other is that we need to avoid synchronous calls as much
as possible. If Jim’s FSM sends a message to your FSM and then waits for its
reply, while at the same time, your FSM sends a message over to Jim’s FSM
and waits for its own specific reply, both end up waiting for the other with-
out ever replying. This effectively freezes both FSMs. We have a deadlock.

One solution is to wait for a timeout and then move on, but then there
will be leftover messages in both processes’ mailboxes, and the protocol will
be messed up. This certainly is a can of worms, and so we want to avoid it.

The simplest way to handle this is to go fully asynchronous. Note that
Jim might still make a synchronous call to his own FSM; there’s no risk
here because the FSM won’t need to call Jim, and so no deadlock can occur
between them.

When two of these FSMs communicate together, the whole exchange
might look a bit like this:

@ Your FSM

ask Jm | negotiate?

ok ok
«— |
offer\c:»*) offer or
cancel S cancel
readq
¢ ready

Yrade

Both FSMs are in an idle state. When you ask Jim to trade, Jim needs
to accept before things move on. Then both you and Jim can offer items or
withdraw them. When both players declare themselves ready, the trade can
take place. This is a simplified version of all that can happen. We’ll consider
all possible cases as we implement the trading system.

Defining the State Diagrams and Transitions

Here comes the tough part: defining the state dia-
grams and how state transitions happen. Usually,
a good bit of thinking goes into this, because you
need to consider all the small things that could
go wrong (and some things might go wrong even
after you've reviewed the definitions many times).
Here’s the one I decided to implement:

Ul

0l

("]

-

(o}
)

Rage Against the Finite-State Machines 227

At first, both FSMs start in the idle state. At this point, one thing we can
do is ask some other player to negotiate with us:

ne ohoJe ask negotiate
@) 7 Gl 5 (50 e)

We go into idle_wait mode in order to wait for an eventual reply after
our FSM forwarded the request. Once the other FSM sends the reply, ours
can switch to negotiate:

accepted
e D

The other player should also be in the negotiate state after this.
Obviously, if we can invite the other player, the other player can invite us.
If all goes well, the diagram should end up looking like this:

nego’nakJ.

wn”’) Hou

ac(‘_ephac{
c.cep*

So this is pretty much the opposite of the two previous state diagrams
bundled into one. Note that we expect the player to accept the offer in
this case.

What happens if, by pure chance, we ask the other player to trade with
us at the same time he asks us to trade?

228 Chapter 15

ask
¢/ negotiate

~

negotiate
wi*h Jim &

In this case, both clients ask their own FSM to negotiate with the other
one. As soon as the ask negotiate messages are sent, both FSMs switch to
idle_wait state. Then they will be able to process the negotiation question.
Reviewing the previous state diagrams, we see that this combination of events
is the only time we’ll receive ask negotiate messages while in the idle_wait
state. Consequently, we know that getting these messages in idle_wait means
that we hit the race condition and can assume both users want to talk to
each other. We can move both of them to the negotiate state.

So now we’re negotiating. Good for us! According to the actions listed
earlier, we must support users offering items and then retracting the offer:

retract relract

All this does is forward our client’s message to the other FSM. Both
FSMs will need to hold a list of items offered by either player, so they can
update that list when receiving such messages. We stay in the negotiate state
after this; maybe the other player wants to offer items:

(regotiate

Here, our FSM basically acts in a similar manner by remaining in the
negotiate state. This is normal.

Rage Against the Finite-State Machines 229

Once we get tired of offering things and think we’re generous enough,
we need to say we're ready to officialize the trade. Because we must synchro-
nize both players, we’ll need to use an intermediary state, as we did for idle
and idle_wait:

ready are You ready?
E—— _—
(Coat

Here, as soon as our player is ready, our FSM asks Jim’s FSM if he is
ready. Pending its reply, our own FSM falls into its wait state. The reply we’ll
get will depend on Jim’s FSM state. If it’s in wait state, it will tell us that it’s
ready. Otherwise, it will tell us that it’s not ready yet. That’s precisely what
our FSM automatically replies to Jim if he asks us if we are ready when in
negotiate state:

are You readq?

Cegotate)” o _Lomiz7sH)
(Gegoliate)

Our FSM will remain in negotiate mode until our player says he is ready.
Let’s assume he did and we’re now in the wait state. However, Jim’s not there
yet. This means that when we declared ourselves as ready, we’ll have asked
Jim if he was also ready and his FSM will have replied “not yet”:

@ not ye}
(wait)

He is not ready, but we are. We can’t do much but keep waiting. While
waiting for Jim (who is still negotiating, by the way), it is possible that he
will try to send us more items or maybe cancel his previous offers:

230 Chapter 15

ff
reir:;

Of course, we want to avoid Jim removing all of his items and then
clicking “I'm ready,” screwing us over in the process. As soon as he changes
the items offered, we go back into the negotiate state so we can either mod-
ify our own offer or examine the current one and decide we’re ready. Rinse
and repeat.

At some point, Jim will be ready to finalize the trade, too. When this
happens, his FSM will ask ours if we are ready:

are You readq?

(08t DT ppsy i 7SH)

Then our FSM replies that we indeed are ready. We stay in the wait state
and refuse to move to the ready state though. Why is this? Because there’s
a potential race condition! Imagine that the following sequence of events
takes place, without doing this necessary step:

Because of the way messages are received, we could possibly process the
item offer only afterwe declared ourselves ready and also after Jim declared
himself as ready. This means that as soon as we read the offer message, we
switch back to the negotiate state. During that time, Jim will have told us he

Rage Against the Finite-State Machines 231

232

Chapter 15

is ready. If he were to change states right there and move on to ready (as in
the preceding illustration), he would be caught waiting indefinitely, while
we wouldn’t know what the hell to do. This could also happen the other way
around!

One way to solve this is by adding a layer of indirection (thanks to
David Wheeler). This is why we stay in wait mode and send “ready!” (as
shown in our previous state diagram).

David Wheeler, a computer scientist (http://en.wikipedia.org/wiki/David_
Wheeler_(computer_scientist)), is often quoted as saying, “All problems in com-
puter science can be solved by another level of indirection . . . except for the problem of
too many layers of indirection.”

Here’s how we deal with that “ready!” message, assuming we were already
in the ready state because we told our FSM we were ready beforehand:

ready!

(wait)—reads!_TTm's FSH)
ack

|
|
(ready) !
1

When we receive “ready!” from the other FSM, we send “ready!” back
again. This is to make sure that we won’t have the double race condition
mentioned earlier. This will create a superfluous “ready!” message in one of
the two FSMs, but we’ll just have to ignore it in this case. We then send an
“ack” message (and Jim’s FSM will do the same) before moving to the ready
state. The “ack” message exists due to some implementation details about
synchronizing clients, which we’ll look at later in the chapter. Whew—we
finally managed to synchronize both players.

So now there’s the ready state. This one is a bit special. Both players are
ready and have basically given the FSMs all the control they need. This lets
us implement a bastardized version of a two-phase commit to make sure things
go right when making the trade official:

ask commit N
ok
do commit
—
o" L.sQves
saves... | ©
STOP STOP

Our version (as described above) will be rather simplistic. Writing a truly
correct two-phase commit would require a lot more code than what is nec-
essary for us to understand FSMs. (For more information about two-phase
commits, see http://en.wikipedia.org/wiki/Two_phase_commit.)

Finally, we need to allow the trade to be canceled at any time. This
means that somehow—no matter what state we’re in—we’ll need to listen to
the “cancel” message from either side and quit the transaction. It should also
be common courtesy to let the other side know we’re going before leaving.

At this point, we’ve covered a whole lot of information. Don’t worry if it
takes a while to fully grasp the concepts. A bunch of people looked over my
protocol to see if it was right, and even then, we all missed a few race condi-
tions, which I caught a few days later when reviewing the code. It’s normal
to need to read the code more than once, especially if you are not used to
asynchronous protocols. If this is the case, I fully encourage you to try to
design your own protocol. Then ask yourself these questions:

e What happens if two people do the same actions very fast?
e Whatif they chain two other events quickly?
e What do I do with messages I don’t handle when changing states?

You'll see that the complexity grows quickly. You might find a solution
similar to mine, or possibly a better one (let me know if this is the case!).
No matter the outcome, it’s a very interesting problem to work on, and our
FSMs are still relatively simple.

Once you've digested all of this (or before, if you're a rebel reader), you
can move on to the next section, where we implement the gaming system.
For now, you can take a nice coffee break if you feel like doing so.

Game Trading Between Two Players

Now we’ll implement our trading system protocol with OTP’s gen_fsm. The
first step is to create the interface.

The Public Interface

There will be three callers for our module: the player, the gen_fsm behavior,
and the other player’s FSM. We will need to export only the player func-
tion and gen_fsm functions, though. This is because the other FSM will also
run within the trade fsm module and can access them from the inside.

Rage Against the Finite-State Machines 233

234

Chapter 15

-module(trade_fsm).
-behavior(gen_fsm).

%% public API

-export([start/1, start link/1, trade/2, accept_trade/1,
make_offer/2, retract_offer/2, ready/1, cancel/1]).

%% gen_fsm callbacks

-export([init/1, handle event/3, handle sync_event/4, handle_info/3,
terminate/3, code_change/4,
% custom state names
idle/2, idle/3, idle_wait/2, idle wait/3, negotiate/2,
negotiate/3, wait/2, ready/2, ready/3]).

So that’s our API. You can see we’ll have some functions that will be
both synchronous and asynchronous (idle/2 and idle/3, for example). This
is mostly because we want our client to call us synchronously in some cases,
but the other FSM can do it asynchronously. Having the client synchronous
simplifies our logic a whole lot by limiting the number of contradicting
messages that can be sent one after the other. We’ll get to that part when we
add the gen_fsm callbacks later. Let’s first implement the actual public API
according to the preceding protocol definition.

%%% PUBLIC API
start(Name) ->
gen_fsm:start(?MODULE, [Name], []).

start_link(Name) ->
gen fsm:start link(?MODULE, [Name], []).

%% Ask for a begin session. Returns when/if the other accepts.
trade(OwnPid, OtherPid) -»>
gen_fsm:sync_send_event(OwnPid, {negotiate, OtherPid}, 30000).

%% Accept someone's trade offer.
accept_trade(OwnPid) ->
gen_fsm:sync_send_event(OwnPid, accept_negotiate).

%% Send an item on the table to be traded.
make_offer(OwnPid, Item) ->
gen_fsm:send_event(OwnPid, {make_ offer, Item}).

%% Cancel trade offer.
retract_offer(OwnPid, Item) ->
gen_fsm:send_event(OwnPid, {retract offer, Item}).

%% Mention that you're ready for a trade. When the other
%% player also declares they're ready, the trade is done.
ready(OwnPid) ->

gen_fsm:sync_send_event(OwnPid, ready, infinity).

%% Cancel the transaction.
cancel(OwnPid) ->
gen_fsm:sync_send_all_state_event(OwnPid, cancel).

This is rather standard, and we’ve already covered these gen_fsm func-
tions (except start/3-4 and start_link/3-4, which I believe you can figure
out) in this chapter.

FSM-to-FSM Functions

Next, we’ll implement the FSM-to-FSM functions. The first ones have to do
with trade setups, when we want to invite the other user to join us in a trade.

%% Ask the other FSM's Pid for a trade session.
ask_negotiate(OtherPid, OwnPid) ->
gen_fsm:send_event(OtherPid, {ask negotiate, OwnPid}).

%% Forward the client message accepting the transaction.
accept_negotiate(OtherPid, OwnPid) ->
gen_fsm:send_event(OtherPid, {accept negotiate, OwnPid}).

The first function asks the other pid if it wants to trade, and the second
one is used to reply (asynchronously, of course).

We can then write the functions to offer and cancel offers. According
to our protocol, this is how these functions should look:

%% Forward a client's offer.
do_offer(OtherPid, Item) -»>
gen_fsm:send_event(OtherPid, {do_offer, Item}).

%% Forward a client's offer cancellation.
undo_offer(OtherPid, Item) ->
gen_fsm:send_event(OtherPid, {undo_offer, Item}).

The next calls relate to being ready for trade or not. Again, given our
protocol, we have three messages in total. The first is are_you_ready, which
can have the two messages not_yet or 'ready!" as replies.

%% Ask the other side if he's ready to trade.
are_you_ready(OtherPid) ->
gen_fsm:send_event(OtherPid, are_you_ready).

%% Reply that the side is not ready to trade,

%% i.e. is not in 'wait' state.

not_yet(OtherPid) -»>
gen_fsm:send_event(OtherPid, not_yet).

%% Tells the other fsm that the user is currently waiting
%% for the ready state. State should transition to 'ready’.
am_ready(OtherPid) ->

gen_fsm:send_event(OtherPid, 'ready!').

Rage Against the Finite-State Machines 235

236

Chapter 15

The other functions are those that are to be used by both FSMs when
doing the commit in the ready state. Their precise usage will be described
in more detail later in the chapter, but their names and the sequence/state
diagram shown earlier should give you an idea of their purpose, and you
can still transcribe them to your own version of trade_fsm.

%% Acknowledge that the fsm is in a ready state.
ack_trans(OtherPid) ->
gen_fsm:send_event(OtherPid, ack).

%% Ask if ready to commit.
ask_commit(OtherPid) ->
gen_fsm:sync_send_event(OtherPid, ask commit).

%% Begin the synchronous commit.
do_commit(Otherpid) -»
gen_fsm:sync_send_event(OtherPid, do_commit).

Oh, and there’s also the courtesy function allowing us to warn the
other FSM we canceled the trade:

notify cancel(OtherPid) -»>
gen_fsm:send_all state_event(OtherPid, cancel).

The gen_fsm Callbacks

We can now move to the really interesting part: the gen_fsm callbacks. The
first callback is init/1. In our case, we’ll want each FSM to hold a name for
the user it represents (that way, our output will be nicer) in the data it keeps
passing on to itself as the last argument of each callback. What else do we
want to hold in memory? In our case, we want the other player’s (Jim’s) FSM
pid, the items we offer, and the items the other player’s FSM offers. We’ll
also add the reference of a monitor (so we know to abort if the other dies)
and a from field, used to do delayed replies.

-record(state, {name="",
other,
ownitems=[],
otheritems=[],
monitor,
from}).

In the case of init/1, we’ll only care about our name for now. Note that
we’ll begin in the idle state.

init(Name) ->
{ok, idle, #state{name=Name}}.

The next callbacks to consider are the states themselves. So far, we have
covered the state transitions and calls that can be made, but we’ll need a way
to make sure everything goes all right. We’ll write a few utility functions
first.

%% Send players a notice. This could be messages to their clients
%% but for our purposes, outputting to the shell is enough.
notice(#state{name=N}, Str, Args) ->

io:format("~s: "++Str++"~n", [N|Args]).

%% Allows to log unexpected messages.
unexpected(Msg, State) ->
io:format("~p received unknown event ~p while in state ~p~n",
[self(), Msg, State]).

And we can start with the idle state. For the sake of convention, we’ll
cover the asynchronous version first. This part of the idle state callbacks
shouldn’t need to care about anything but the other player asking for a trade.
This is because our own player, if you look at the API functions, will use a
synchronous call and will therefore need a different callback, with three
arguments.

idle({ask_negotiate, OtherPid}, S=tfstate{}) ->
Ref = monitor(process, OtherPid),
notice(S, "~p asked for a trade negotiation"”, [OtherPid]),
{next_state, idle wait, S#state{other=OtherPid, monitor=Ref}};
idle(Event, Data) -»
unexpected(Event, idle),
{next_state, idle, Data}.

A monitor is set up to allow us to handle the
other dying, and its reference is stored in the FSM’s
data along with the other’s pid, before moving to the
idle_wait state. Note that we will report all unexpected
events and ignore them by staying in the state we were
already in. We can have a few out-of-band messages here and there that
could be the result of race conditions. It’s usually safe to ignore them, but
we can’t easily get rid of them. It’s just better not to crash the whole FSM on
receipt of these unknown but somewhat expected messages.

When our own client asks the FSM to contact another player for a trade,
it will send a synchronous event. The idle/3 callback will be needed.

idle({negotiate, OtherPid}, From, S=t#state{}) ->

ask _negotiate(OtherPid, self()),

notice(S, "asking user ~p for a trade", [OtherPid]),

Ref = monitor(process, OtherPid),

{next_state, idle wait, S#state{other=OtherPid, monitor=Ref, from=From}};
idle(Event, _From, Data) ->

unexpected(Event, idle),

{next_state, idle, Data}.

Rage Against the Finite-State Machines 237

238

Chapter 15

We proceed in a way similar to the asynchronous version, except we
need to actually ask the other side whether it wants to negotiate with us.
You'll notice that we do not reply to the client yet. This is because we have
nothing interesting to say, and we want the client locked and waiting for the
trade to be accepted before doing anything. The reply will be sent only if
the other side accepts once we’re in idle_wait.

When we’re there, we need to deal with the other player agreeing to
negotiate following our invitation or asking to negotiate at the same time
we did (a race condition, as described in the protocol).

idle wait({ask_negotiate, OtherPid}, S=#state{other=OtherPid}) -»>
gen_fsm:reply(Ststate.from, ok),
notice(S, "starting negotiation", []),
{next_state, negotiate, S};
%% The other side has accepted our offer. Move to negotiate state.
idle wait({accept_negotiate, OtherPid}, S=#state{other=OtherPid}) ->
gen_fsm:reply(Ststate.from, ok),
notice(S, "starting negotiation", []),
{next_state, negotiate, S};
idle wait(Event, Data) -»>
unexpected(Event, idle wait),
{next_state, idle_wait, Data}.

This gives us two transitions to the negotiate state, but remember that
we must use gen_fsm:reply/2 to reply to our client to say it’s okay to start offer-
ing items. There’s also the case of our FSM’s client accepting the trade sug-
gested by the other party.

idle wait(accept_negotiate, From, S=#fstate{other=OtherPid}) ->
accept_negotiate(OtherPid, self()),
notice(S, "accepting negotiation”, []),
{reply, ok, negotiate, S};
idle wait(Event, From, Data) ->
unexpected(Event, idle wait),
{next_state, idle wait, Data}.

Again, this one moves on to the negotiate state. Here, we must handle
asynchronous queries to add and remove items coming both from the client
and the other FSM. However, we have not yet decided how to store items.
Let’s say we're somewhat lazy and assume users won’t trade that many items,
so simple lists will do it for now. However, we might need to change that
later, so it would be a good idea to wrap item operations in their own func-
tions. Add the following functions at the bottom of the file with notice/3 and
unexpected/2:

%% Adds an item to an item list.
add(Item, Items) ->
[Ttem | Items].

%% Removes an item from an item list.
remove(Item, Items) ->
Items -- [Item].

These functions are simple, but they have the role of isolating the actions
(adding and removing items) from their implementation (using lists). We
could easily move to proplists, dicts, or any other data structure without dis-
rupting the rest of the code.

Using both of these functions, we can implement offering and remov-
ing items:

negotiate({make_offer, Item}, S=#state{ownitems=OwnItems}) ->
do_offer(S#state.other, Item),
notice(S, "offering ~p", [Item]),
{next_state, negotiate, Ststate{ownitems=add(Item, OwnItems)}};
%% Own side retracting an item offer.
negotiate({retract_offer, Item}, S=#state{ownitems=OwnItems}) ->
undo_offer(S#state.other, Item),
notice(S, "cancelling offer on ~p", [Item]),
{next_state, negotiate, S#state{ownitems=remove(Item, OwnItems)}};
%% Other side offering an item.
negotiate({do_offer, Item}, S=#state{otheritems=OtherItems}) ->
notice(S, "other player offering ~p", [Item]),
{next_state, negotiate, S#state{otheritems=add(Item, OtherItems)}};
%% Other side retracting an item offer.
negotiate({undo_offer, Item}, S=#state{otheritems=OtherItems}) ->
notice(S, "Other player cancelling offer on ~p", [Item]),
{next_state, negotiate, S#state{otheritems=remove(Item, OtherItems)}};

This is an ugly aspect of using asynchronous messages on both sides.
One set of messages has the form “make” and “retract,” while the other has
“do” and “undo.” This is entirely arbitrary and only used to differentiate
between player-to-FSM communications and FSM-to-FSM communications.
Note that in those messages coming from our own player, we need to tell
the other side about the changes we’re making.

Another responsibility is to handle the are_you_ready message in the pro-
tocol. This is the last asynchronous event to handle in the negotiate state.

negotiate(are_you_ready, S=#state{other=OtherPid}) -»
io:format("Other user ready to trade.~n"),
notice(S,
"Other user ready to transfer goods:~n"
"You get ~p, The other side gets ~p",
[Sttstate.otheritems, Ststate.ownitems]),
not_yet(OtherPid),
{next_state, negotiate, S};
negotiate(Event, Data) ->
unexpected(Event, negotiate),
{next_state, negotiate, Data}.

Rage Against the Finite-State Machines 239

240

Chapter 15

As described in the protocol, whenever we’re not in the wait state and
receive this message, we must reply with not_yet. We’re also outputting trade
details to the user so a decision can be made.

When such a decision is made and the user is ready, the ready event will
be sent. This one should be synchronous because we don’t want the user to
keep modifying his offer by adding items while claiming he is ready.

negotiate(ready, From, S = #state{other=OtherPid}) ->
are_you_ready(OtherPid),
notice(S, "asking if ready, waiting", []),
{next_state, wait, S#state{from=From}};
negotiate(Event, _From, S) ->
unexpected(Event, negotiate),
{next_state, negotiate, S}.

At this point, a transition to the wait state should be made. Note that
just waiting for the other player is not interesting. We save the From variable so
we can use it with gen_fsm:reply/2 when we have something to tell the client.

The wait state is a funny beast. New items might be offered and retracted
because the other player might not be ready. So it makes sense to automati-
cally roll back to the negotiate state. It would suck to have great items offered
to us, only for the other player to remove them and declare himself ready,
stealing our loot. Going back to negotiation is a good decision.

wait({do_offer, Item}, S=tfstate{otheritems=OtherItems}) ->
gen_fsm:reply(Ststate.from, offer_changed),
notice(S, "other side offering ~p", [Item]),
{next_state, negotiate, S#state{otheritems=add(Item, OtherItems)}};
wait({undo_offer, Item}, S=tstate{otheritems=OtherItems}) ->
gen_fsm:reply(S#state.from, offer_changed),
notice(S, "Other side cancelling offer of ~p", [Item]),
{next_state, negotiate, Ststate{otheritems=remove(Item, OtherItems)}};

Now that’s something meaningful, and we reply to the player with the
coordinates we stored in S#state.from.

The next messages we need to worry about
are those related to synchronizing both FSMs so
they can move to the ready state and confirm the
trade. For this set, we should really focus on the
protocol defined earlier.

The three messages we could have are
are_you_ready (because the other player just
declared himself ready), not_yet (because we
asked the other player if he was ready and he
was not), and 'ready!" (because we asked the
other player if he was ready and he was).

We’ll start with are_you_ready. Remember that in the protocol we said
that a race condition could be hidden there. The only thing we can do is
send the 'ready!" message with am_ready/1 and deal with the rest later.

wait(are_you_ready, S=#state{}) ->
am_ready(S#state.other),
notice(S, "asked if ready, and I am. Waiting for same reply", []),
{next_state, wait, S};

We’ll be stuck waiting again, so it’s not worth replying to our client yet.
Similarly, we won’t reply to the client when the other side sends a not_yet
reply to our invitation.

wait(not_yet, S = #state{}) ->
notice(S, "Other not ready yet", []),
{next_state, wait, S};

On the other hand, if the other player is ready, we send an extra 'ready!'
message to the other FSM, reply to our own player, and then move to the
ready state.

wait('ready!', S=#state{}) ->
am_ready(S#state.other),
ack_trans(S#state.other),
gen_fsm:reply(S#state.from, ok),
notice(S, "other side is ready. Moving to ready state", []),
{next_state, ready, S};
%% Don't care about these!
wait(Event, Data) ->
unexpected(Event, wait),
{next_state, wait, Data}.

You might have noticed that we’ve used ack_trans/1. In fact, both FSMs
should use it. Why is this? To understand, we need to start looking at what
goes on in the ready state.

When in the ready state, both players’
actions become useless (except canceling). We
won’t care about new item offers. This gives us
some liberty. Basically, both FSMs can talk to
each other freely without worrying about the
rest of the world. This lets us implement our
bastardization of a two-phase commit. To begin
this commit without either player acting, we’ll
need an event to trigger an action from the
FSMs. The ack event from ack_trans/1 is used for
that. As soon as we'’re in the ready state, the mes-
sage is treated and acted upon, and the trans-
action can begin.

Two-phase commits require synchronous communications, though.
This means we can’t have both FSMs starting the transaction at once,

Rage Against the Finite-State Machines 241

242

Chapter 15

because they will end up deadlocked. The secret is to find a way to decide
that one FSM should initiate the commit, while the other will sit and wait
for orders from the first one.

It turns out that the engineers and computer scientists who designed
Erlang were pretty smart (well, we knew that already). The pids of any
processes can be compared to each other and sorted. This can be done no
matter when the process was spawned, whether it’s still alive or not, or if it
comes from another VM (we’ll see more about this when we get into distrib-
uted Erlang in Chapter 26).

Knowing that two pids can be compared and one will be greater than
the other, we can write a function priority/2 that will take two pids and tell
a process whether it has been elected.

priority(OwnPid, OtherPid) when OwnPid > OtherPid -> true;
priority(OwnPid, OtherPid) when OwnPid < OtherPid -> false.

And by calling this function, we can have one process starting the com-
mit and the other following orders.

Here’s what this gives us when included in the ready state, after receiving
the ack message:

ready(ack, S=#state{}) ->
case priority(self(), S#state.other) of
true ->
try
notice(S, "asking for commit", []),
ready _commit = ask_commit(S#state.other),
notice(S, "ordering commit", []),
ok = do_commit(S#state.other),
notice(S, "committing...", []),
commit(S),
{stop, normal, S}
catch Class:Reason ->
%% Abort! Either ready commit or do_commit failed.
notice(S, "commit failed", []),
{stop, {Class, Reason}, S}
end;
false ->
{next_state, ready, S}
end;
ready(Event, Data) ->
unexpected(Event, ready),
{next_state, ready, Data}.

This big try ... catch expression is the leading FSM deciding how the
commit works. Both ask_commit/1 and do_commit/1 are synchronous. This lets
the leading FSM call them freely. You can see that the other FSM just waits.
It will then receive the orders from the leading process. The first message
should be ask_commit. This is just to make sure both FSMs are still there—
nothing bad happened, and they’re both dedicated to completing the task.

ready(ask_commit, _From, S) ->
notice(S, "replying to ask_commit", []),
{reply, ready commit, ready, S};

Once this is received, the leading process will ask to confirm the trans-
action with do_commit. That’s when we must commit our data.

ready(do_commit, From, S) ->
notice(S, "committing...", []),
commit(S),
{stop, normal, ok, S};
ready(Event, From, Data) ->
unexpected(Event, ready),
{next_state, ready, Data}.

And once it’s done, we leave. The leading FSM will receive ok as a reply
and will know to commit on its own end afterward. This explains why we
need the big try ... catch: If the replying FSM dies or its player cancels the
transaction, the synchronous calls will crash after a timeout. The commit
should be aborted in this case.

Just so you know, the commit function is defined as follows:

commit(S = #state{}) ->
io:format("Transaction completed for ~s.
"Items sent are:~n~p,~n received are:~n~p.~n"
"This operation should have some atomic save
"in a database.~n",
[Sttstate.name, S#state.ownitems, S#state.otheritems]).

Pretty underwhelming, eh? It’s generally not possible to do a true safe
commit with only two participants; a third party is usually required to judge
if both players did everything right. A true commit function should con-
tact that third party on behalf of both players, and then do the safe write
to a database for them or roll back the whole exchange. We won’t go into
such details here, and the current commit/1 function will be enough for this
example.

We’re not finished yet. We have not yet covered two types of events: a player
canceling the trade and the other player’s FSM crashing. The former can
be dealt with by using the callbacks handle_event/3 and handle_sync_event/4.
Whenever the other user cancels, we’ll receive an asynchronous notification.

%% The other player has sent this cancel event.
%% Stop whatever we're doing and shut down!
handle event(cancel, StateName, S=#state{}) ->
notice(S, "received cancel event", []),
{stop, other_cancelled, S};
handle_event(Event, StateName, Data) ->
unexpected(Event, StateName),
{next_state, StateName, Data}.

Rage Against the Finite-State Machines 243

And we must not forget to tell the other player before we quit, like this:

%% This cancel event comes from the client. We must warn the other
%% player that we have a quitter!
handle_sync_event(cancel, From, StateName, S = #state{}) ->
notify cancel(S#state.other),
notice(S, "cancelling trade, sending cancel event", []),
{stop, cancelled, ok, S};
%% Note: DO NOT reply to unexpected calls. Let the call-maker crash!
handle_sync_event(Event, _From, StateName, Data) ->
unexpected(Event, StateName),
{next_state, StateName, Data}.

The last event to take care of is when the other FSM goes down. For-
tunately, we set a monitor back in the idle state. We can match on this and
react accordingly:

handle_info({'DOWN', Ref, process, Pid, Reason}, _, S=t#state{other=Pid, monitor=Ref}) -»
notice(S, "Other side dead", []),
{stop, {other down, Reason}, S};
handle_info(Info, StateName, Data) ->
unexpected(Info, StateName),
{next_state, StateName, Data}.

Note that even if the cancel or 'DOWN' events happen while we're in the
commit, everything should be safe, and the players will still have their own
items. No exploit allowing people to steal others’ items hides in there.

We used io:format/2 for most of our messages to let the FSMs communicate with their
own clients. In a real-world application, you might want something more flexible.
One approach is to let the client send in a pid, which will recetve the notices sent to il.
That process could be linked to a GUI or any other system to make the player aware of
the events. The io:format/2 solution was chosen for its simplicity, allowing us to focus
on the FSM and the asynchronous protocols.

There are only two callbacks left to cover: code_change/4 and terminate/3.
For now, we don’t need to do anything with code_change/4. We just export
it so the next version of the FSM can call it when it will be reloaded. Our
terminate function is also really short because we didn’t handle real resources
in this example.

code_change(_0ldVsn, StateName, Data, _Extra) ->
{ok, StateName, Data}.

%% Transaction completed.

terminate(normal, ready, S=#state{}) -»
notice(S, "FSM leaving.", [1);
terminate(_Reason, StateName, StateData) -»>
ok.

244 Chapter 15

Whew, we’re finally finished.

We can now try our trading system. Well, trying it is a bit annoying
because we need two processes to communicate with each other. To solve
this, I've written the tests in the file trade_calls.erl (available from http://
learnyousomeerlang.com/static/erlang/trade_calls.erl), which can run three dif-
ferent scenarios:

e main_ab/0 will run a standard trade and output everything.
e main_cd/0 will cancel the transaction halfway through.

e main_ef/0 is very similar to main_ab/0, except it contains a different race
condition.

If you try these, the first and third tests should succeed, while the sec-
ond one should fail (with a load of error messages, but that’s how it goes).

That Was Really Something

If you’ve found this chapter a bit harder than the
others, I must admit that I've just gone crazy and
decided to make something difficult out of the

generic FSM behavior. If you feel confused, con-

sider these questions: Amla

Snake?
e (Can you understand how different events are
handled depending on the state your process
is in?
e Do you understand how you can transition Q
from one state to the other?

e Do you know when to use send_event/2 and sync_send_event/2-3 as
opposed to send_all_state_event/2 and sync_send_all_state_event/3?

If you answered yes to these questions, you understand what gen_fsm is
about.

The rest of it—the asynchronous protocols, delaying replies and car-
rying the From variable, giving a priority to processes for synchronous calls,
bastardized two-phase commits, and so on—are not essential to understand.
They’re mostly there to show what can be done and to highlight the dif-
ficulty of writing truly concurrent software, even in a language like Erlang.
Erlang doesn’t excuse you from planning or thinking, and Erlang won’t
solve your problems for you. It will only give you tools.

That being said, if you understood everything about these points, you
can be proud of yourself (especially if you had never written concurrent
software before). You are now starting to really think concurrently.

Rage Against the Finite-State Machines 245

246

Fit for the Real World?

Chapter 15

A real game would have a lot of stuff going on that could make trading even
more complex. Items could be worn by the characters and damaged by ene-
mies while they’re being traded. Maybe items could be moved in and out of
the inventory while being exchanged. Are the players on the same server? If
not, how do you synchronize commits to different databases?

Our trade system is sane when detached from the reality of any game.
Before trying to fititin a game (if you dare), make sure everything goes
right. Test it, test it, and test it again. You’ll likely find that testing concur-
rent and parallel code is a complete pain. You’ll lose hair, friends, and a
piece of your sanity. Even after this, you’ll need to keep in mind that your
system is always as strong as its weakest link, and thus potentially very frag-
ile nonetheless.

While the model for this trade system seems sound, subtle concurrency bugs and race
conditions can often rear their ugly heads a long time after they were written, and
even if they have been running for years. While my code is generally bulletproof (yeah,
right), you sometimes must face swords and knives. Beware the dormant bugs.

Fortunately, we can put all of this madness behind us. We’ll next see
how OTP allows you to handle various events, such as alarms and logs, with
the help of the gen_event behavior.

EVENT HANDLERS

Back in Chapter 13, when we built the reminder
application, I mentioned that we could notify clients,
whether by instant messaging, email, or some other
method. In Chapter 15, our trading system used
io:format/2 to notify people of what was going on.

You can probably see the common link between these cases: They’re all
about letting people (or some process or application) know about an
event that happened at some point in time. In one case, we output only
the results; in the other, we took the pid of subscribers before sending
them a message.

248

This chapter covers the OTP event handlers, one of the many strategies
to handle notifications. After reviewing the handlers, we will put this knowl-
edge in practice by implementing a notification system for sports events.

Handle This! *pumps shotgun*

Chapter 16

The output approach we have used for notifications is minimalist and can-
not be extended with ease. The one with subscribers is certainly valid. In
fact, it’s pretty useful when each of the subscribers has a long-running
operation to do after receiving an event. In simpler cases, where you do
not necessarily want a standby process waiting for events for each of the
callbacks, a third approach can be taken.

This third approach simply takes a process that accepts functions and
lets them run on any incoming event. This process is usually called an event
manager, and it might end up looking a bit like this:

e event ;

SERVER

f (EUENT) g (EVENT)
Y (EVENT)

Taking this approach has a few advantages:

e Ifyour server has many subscribers, it can keep going because it needs
to forward events only once—to the manager.

e If there is a lot of data to be transferred, the data transfer happens only
once, and all callbacks operate on that same instance of the data.

e You don’t need to spawn processes for short-lived tasks.
And, of course, there are some downsides, too:

e Ifall functions need to run for a long time, they’re going to block each
other. This can be prevented by actually having the function forward
the event to a process, basically using the event manager as an event
forwarder (similar to what we did for the reminder app in Chapter 13).

e A function that loops indefinitely can prevent any new event from being
handled until something crashes.

The way to resolve these issues is actually a bit underwhelming. Basically,
you need to turn the event manager approach into the subscriber one.
Luckily, the event manager approach is flexible enough to make this change
relatively easy, and you’ll see how in this chapter.

I usually start by writing a basic version of the OTP behavior in pure
Erlang beforehand, but in this case, we’ll just go straight to the point. Here
comes gen_event.

Generic Event Handlers

The gen_event behavior differs quite a bit from the gen_server and gen_fsm
behaviors in that you are never really starting a process. The part about
“accepting a callback” is the reason for this.

The gen_event behavior basically runs the process that accepts and calls
functions, and you only need to provide a module with these functions.
This means that you have nothing to do with event manipulation except to
place your callback functions in a format that pleases the event manager.
All managing is done for free; you provide only what'’s specific to your appli-
cation. This is not really surprising, given that OTP is all about separating
the generic from the specific.

This separation, however, means that the standard spawn/initialize/
loop/terminate pattern will be applied only to event handlers. Recall that
event handlers are a bunch of functions running in the manager. This
means the currently presented model:

SpPAwWN event
manager

Ny

atach
handler

init [
handler oop >
NN

(Yo handlers)

Event Handlers 249

250

Chapter 16

Each event handler can hold its own state, which is carried around by
the manager. Each event handler can then take this form:

>
}

handle events
handle special messages

Now let’s look at the event handlers’ callbacks.

The init and terminate Functions

The init and terminate functions are similar to what we’ve seen in the pre-
vious behaviors with servers and FSMs. The init/1 function takes a list of
arguments and returns {ok, State}. Whatever happens in init/1 should have
its counterpart in terminate/2.

The handle_event Function

The handle_event(Event, State) function is more or less the core of gen_event’s
callback modules. Like gen_server’s handle_cast/2, handle_event/2 works asyn-
chronously. However, it differs in what it can return:

e {ok, NewState}

e {ok, NewState, hibernate}, which puts the event manager itself into hiber-
nation until the next event

e remove_handler

e {swap_handler, Argsi, NewState, NewHandler, Args2}

The tuple {ok, NewState} works in a way similar to what we’ve seen with
gen_server:handle_cast/2. It simply updates its own state and doesn’t reply
to anyone. In the case of {ok, NewState,
hibernate}, the whole event manager will
be put in hibernation. Remember that
event handlers run in the same process as
their manager.

Then remove_handler drops the han-
dler from the manager. This can be use-
ful whenever your event handler knows
it’s finished and it has nothing else to do.

Finally, there’s {swap_handler, Argsi, NewState, NewHandler, Args2}. This
one is not used too frequently. It removes the current event handler and
replaces that handler with a new one. Returning such a tuple will result
in the manager first calling CurrentHandler:terminate(Argsi, NewState) and
removing the current handler, and then adding a new one by calling
NewHandler:init(Args2, ResultFromTerminate). This can be useful in the cases
where you know some specific event happened and you're better off giving
control to a new handler. Generally, this is one of those things that you’ll
simply know when you need it and apply it then.

All incoming events can come from gen_event:notify/2, which is asyn-
chronous, like gen_server:cast/2. There is also gen_event:sync_notify/2, which
is synchronous. This is a bit funny to say, because handle_event/2 remains
asynchronous. The idea here is that the function call returns only after all
the event handlers have seen and treated the new message. Until then, the
event manager will keep blocking the calling process by not replying.

The handle_call Function

The handle_call function is similar to a gen_server’s handle_call callback,
except that it can return {ok, Reply, NewState}, {ok, Reply, NewState, hibernate},
{remove_handler, Reply}, or {swap_handler, Reply, Argsi, NewState, Handler2,
Args2}. The gen_event:call/3-4 function is used to make the call.

This raises a question: How does this work when we have something
like 15 different event handlers? Do we expect 15 replies, or just 1 that
contains them all? Well, in fact, we’ll be forced to choose only one handler
to reply to us. We’ll get into the details of how this is done when we attach
handlers to our event manager in “Game Events” on page 253, but if you're
impatient, you can refer to the gen_event:add_handler/3 function’s documen-
tation to try to figure it out.

The handle_info Function

The handle_info/2 callback is pretty much the same as handle_event (it has the
same return values and such), with the exception that it treats only out-of-
band messages, such as exit signals and messages sent directly to the event
manager with the ! operator. It has use cases similar to those of handle_info
in gen_server and gen_fsm.

The code_change Function

The code_change function works in the same manner as it does for gen_server,
except it’s for each individual event handler. It takes the arguments 01dVsn,
State, and Extra, which are, in order, the version number, the current han-
dler’s state, and data we can ignore for now. All it needs to do is return

{ok, NewState}.

Event Handlers 251

252

It’s Curling Time!

Chapter 16

Now it’s time to see what we can do with gen_event. For this example, we’ll
make a set of event handlers to track game updates of one of the most
entertaining sports in the world: curling.

For those who have never seen or played curling (which is a shamel!),
the rules are relatively simple. Two teams try to send a curling stone (a thick
stone disc weighing between 38 and 44 pounds (17 and 20 kilograms) with
a handle attached to the top) sliding on the ice to the middle of the red circle:

©

The teams do this with 16 stones, and the team with the stone closest to
the center wins a point at the end of the round (called an end). If the team
has the two closest stones, it earns two points; if it has the three closest
stones, it’s worth three points, and so on. There are 10 ends, and the team
with the most points at the completion of the 10 ends wins the game.

There are more rules, making the game more fascinating, but this is
a book on Erlang, not extremely fascinating winter sports. If you want to
learn more about curling, I suggest you head over to the Wikipedia article
on the topic.

For this entirely real-world-relevant scenario, we’ll be working for the
next winter Olympic Games. The city where everything happens has just
finished building the arena where the matches will take place, and they’re
working on getting the scoreboard ready. It turns out that we need to pro-
gram a system that will let some official enter game events—such as when a
stone has been thrown, when a round ends, and when a game is over—and
then route these events to the scoreboard, to a stats system, to news report-
ers’ feeds, and so on.

Being as clever as we are, we know this is a chapter on gen_event and
deduce we will likely use it to accomplish our task. We won’t implement all
the rules in this example, but feel free to do so after you’ve built the sample
app—I promise not to be mad.

The Scoreboard

We’ll start with the scoreboard. Because they’re installing it right now, we’ll
make use of a fake module that would usually let us interact with it, but for
this example, it will use only standard output to show what’s going on. This

is called a mock, and it’s there to help us develop code about parts of the
system that do not exist yet. This is where the following curling _scoreboard_
hw.erl file comes in.

-module(curling_scoreboard hw).
-export([add_point/1, next_round/0, set_teams/2, reset_board/0]).

%% This is a 'dumb' module that's only there to replace what a real hardware
%% controller would likely do. The real hardware controller would likely hold
%% some state and make sure everything works right, but this one doesn't mind.

%% Shows the teams on the scoreboard.
set_teams(TeamA, TeamB) ->
io:format("Scoreboard: Team ~s vs. Team ~s~n", [TeamA, TeamB]).

next_round() -»>
io:format("Scoreboard: round over~n").

add_point(Team) ->
io:format("Scoreboard: increased score of team ~s by 1~n", [Team]).

reset_board() -»
io:format("Scoreboard: All teams are undefined and all scores are 0~n").

So this is all the functionality the scoreboard has. Scoreboards usually
have a timer and other awesome features, but it seems like the Olympics
Committee didn’t feel like having us implementing trivialities for a tutorial.

Game Events

This hardware interface lets us have a bit of design time to ourselves. We
know that there are a few events to handle for now: adding teams, going

to the next round, and setting the number of points. We will use only the
reset_board functionality when starting a new game and won’t need it as part
of our protocol. The events we need might take the following form in our
protocol:

e {set_teams, TeamA, TeamB}, where this is translated to a single call to
curling_scoreboard hw:set_teams(TeamA, TeamB)

e {add_points, Team, N}, where this is translated to N calls to
curling_scoreboard_hw:add_point(Team)

e next_round, which gets translated to a single call to the function with the
same name

We can start our implementation with this basic event handler skeleton:

-module(gen_event_callback).
-behavior(gen_event).

Event Handlers 253

-export([init/1, handle_event/2, handle call/2, handle_info/2, code_change/3,
terminate/2]).

init([]) -> {ok, [1}.

handle event(_, State) -> {ok, State}.

handle call(_, State) -> {ok, ok, State}.
handle_info(_, State) -> {ok, State}.
code_change(_0ldVsn, State, Extra) -> {ok, State}.

terminate(_Reason, _State) -> ok.

This is a skeleton that we can use for every gen_event callback module
out there. For now, the scoreboard event handler itself won’t need to do any-
thing special except forward the calls to the hardware module. We expect
the events to come from gen_event:notify/2, so the handling of the protocol
should be done in handle_event/2. The file curling_scoreboard.erl contains the
changes to the skeleton, as follows:

-module(curling_scoreboard).
-behavior(gen_event).

-export([init/1, handle_event/2, handle_call/2, handle_info/2, code_change/3,
terminate/2]).

init([]) -»>
{ok, [1}.

handle event({set_teams, TeamA, TeamB}, State) ->
curling scoreboard _hw:set teams(TeamA, TeamB),
{ok, State};

handle_event({add_points, Team, N}, State) ->
[curling scoreboard hw:add_point(Team) || _ <- lists:seq(1,N)],
{ok, State};

handle event(next _round, State) ->
curling_scoreboard hw:next_round(),
{ok, State};

handle_event(_, State) ->
{ok, State}.

handle_call(_, State) ->
{ok, ok, State}.

handle_info(_, State) -»>
{ok, State}.

254 Chapter 16

You can see the updates done to the handle_event/2 function. Now let’s
try it:

1> c(curling_scoreboard_hwy).
{ok,curling_scoreboard hw}

2> c(curling_scoreboard).

{ok, curling_scoreboard}

3> {ok, Pid} = gen_event:start_link().

{ok,<0.43.0>}

4> gen_event:add_handler(Pid, curling_scoreboard, []).
ok

5> gen_event:notify(Pid, {set_teams, "Pirates", "Scotsmen"}).
Scoreboard: Team Pirates vs. Team Scotsmen

ok

6> gen_event:notify(Pid, {add_points, "Pirates", 3}).
ok

Scoreboard: increased score of team Pirates by 1
Scoreboard: increased score of team Pirates by 1
Scoreboard: increased score of team Pirates by 1

7> gen_event:notify(Pid, next_round).

Scoreboard: round over

ok

8> gen_event:delete_handler(Pid, curling_scoreboard, turn_off).
ok

9> gen_event:notify(Pid, next_round).

ok

A few things are going on here. The first is that we’re starting gen_event
as a stand-alone process. We then attach our event handler to it dynamically
with gen_event:add_handler/3. This can be done as many times as you want.
However, as mentioned in the handle_call discussion earlier, this might
cause problems when you want to work with a particular event handler.

If you want to call, add, or delete a specific handler when there’s more
than one instance of it, you’ll need to find a way to uniquely identify it.
My favorite way of doing this (which works great if you don’t have anything
more specific in mind) is to just use make_ref() as a unique value. To give
this value to the handler, you add it by calling add_handlex/3 as gen_event:add_
handler(Pid, {Module, Ref}, Args). From this point on, you can use {Module, Ref}
to talk to that specific handler, and the problem is solved.

Next, we send messages to the event handler,
which successfully calls the hardware module. We then
remove the handler. Here, turn_off is an argument to
the terminate/2 function, which our implementation
currently doesn’t care about. The handler is gone, but
we can still send events to the event manager. Hooray.

One awkward aspect of the preceding code snippet is that we’re forced
to call the gen_event module directly and show everyone what our protocol

Event Handlers 255

256

Chapter 16

looks like. A better option would be to provide an abstraction module on top
of it that just wraps up all the calls we need. This will look a lot nicer to
everyone using our code and will, again, let us change the implementation
if (when) we need to do so. It will also let us specify which handlers are nec-
essary to include for a standard curling game.

-module(curling).
-export([start_link/2, set_teams/3, add_points/3, next_round/1]).

start_link(TeamA, TeamB) ->
{ok, Pid} = gen_event:start link(),
%% The scoreboard will always be there.
gen_event:add_handler(Pid, curling scoreboard, []),
set_teams(Pid, TeamA, TeamB),
{ok, Pid}.

set_teams(Pid, TeamA, TeamB) ->
gen_event:notify(Pid, {set_teams, TeamA, TeamB}).

add points(Pid, Team, N) ->
gen_event:notify(Pid, {add_points, Team, N}).

next_round(Pid) ->
gen_event:notify(Pid, next_round).

And now we can run it.

1> c(curling).

{ok,curling}

2> {ok, Pid} = curling:start_link("Pirates", "Scotsmen").
Scoreboard: Team Pirates vs. Team Scotsmen
{0k,<0.78.05}

3> curling:add_points(Pid, "Scotsmen", 2).
Scoreboard: increased score of team Scotsmen by 1
Scoreboard: increased score of team Scotsmen by 1
ok

4> curling:next_round(Pid).

Scoreboard: round over

ok

This doesn’t look like much of an advantage, but it’s really about mak-
ing the code nicer to use (and it reduces the possibilities of writing the mes-
sages incorrectly).

This being done, the code should now be usable by officials. Olympics
do require us to do a little bit more, say, satisfying the press.

Alert the Press!

We want international reporters to be able to get live
data from the official in charge of updating our sys-
tem. Because this is an example program, we won’t
go through the steps of setting up a socket and writ-
ing a protocol for the updates, but we’ll set up the
system to do it by putting an intermediary process in
charge of it.

Basically, whenever a news organization feels
like getting into the game feed, the organization will
register its own handler that just forwards the data
the organization needs. We’'ll effectively turn our
gen_event server into a kind of message hub, just rout-
ing messages to whoever needs them.

First, we’ll update the curling.erl module with the new interface. Because
we want things to be easy to use, we’ll add only two functions: join_feed/2
and leave_feed/2. Joining the feed should be doable just by inputting the cor-
rect pid for the event manager and the pid to forward all the events to. This
should return a unique value that can then be used to unsubscribe from
the feed with leave feed/2.

%% Subscribes the pid ToPid to the event feed.
%% The specific event handler for the newsfeed is
%% returned in case someone wants to leave.
join_feed(Pid, ToPid) -»
HandlerId = {curling feed, make_ref()},
gen_event:add_handler(Pid, HandlerId, [ToPid]),
HandlerId.

leave feed(Pid, HandlerId) ->
gen_event:delete_handler(Pid, HandlerId, leave feed).

Note that we're using the technique described earlier for multiple han-
dlers ({curling_feed, make_ref()}). You can see that this function expects a
gen_event callback module named curling_feed. If we used only the name of
the module as a HandlerId, things would have still worked fine, except that
we would have no control over which handler to delete when we’re finished
with one instance of it. The event manager would just pick one of the han-
dlers in an undefined manner. Using a reference makes sure that some guy
from the Head-Smashed-In Buffalo Jump (Alberta, Canada) press leaving the
place won’t disconnect a journalist from 7%e Economist (no idea why that
magazine would do a report on curling, but you never know). Anyway, here
is the implementation for the curling_feed module:

-module(curling feed).
-behavior(gen_event).

Event Handlers 257

258

Chapter 16

-export([init/1, handle_event/2, handle call/2, handle_info/2, code_change/3,
terminate/2]).

init([Pid]) -> {ok, Pid}.
handle event(Event, Pid) -»
Pid ! {curling feed, Event},
{ok, Pid}.
handle call(_, State) -> {ok, ok, State}.
handle_info(_, State) -> {ok, State}.

code_change(_0ldVsn, State, _Extra) -> {ok, State}.

terminate(_Reason, _State) -> ok.

The only interesting thing here is still the handle_event/2 function, which
blindly forwards all events to the subscribing pid.
Now let’s use the new modules.

1> c(curling), c(curling_feed).

{ok,curling_feed}

2> {ok, Pid} = curling:start_link("Saskatchewan Roughriders",

2> "Ottawa Roughriders").
Scoreboard: Team Saskatchewan Roughriders vs. Team Ottawa Roughriders
{0k,<0.165.0>}

3> HandlerId = curling:join_feed(Pid, self()).

{curling feed,#Ref<0.0.0.909>}

4> curling:add_points(Pid, "Saskatchewan Roughriders", 2).
Scoreboard: increased score of team Saskatchewan Roughriders by 1
ok

Scoreboard: increased score of team Saskatchewan Roughriders by 1
5> flush().

Shell got {curling feed,{add_points,"Saskatchewan Roughriders",2}}
ok

6> curling:leave_feed(Pid, HandlerId).

ok

7> curling:next_round(Pid).

Scoreboard: round over

ok

8> flush().

ok

Here, we added ourselves to the feed, got the updates, and then left and
stopped receiving them. You can actually try to add many subscribers many
times, and it will work fine.

This introduces a problem though. What if one of the curling feed
subscribers crashes? Do we just keep the handler going on there? Ideally,

we wouldn’t need to do that, and in fact, we don’t have to. All that needs
to be done is to change the call from gen_event:add_handler/3 to gen_event:add_
sup_handler/3. If we crash, the handler is gone. Then on the opposite end, if
the gen_event manager crashes, the message {gen_event_EXIT, Handler, Reason}
is sent back to us so we can handle it. Easy enough, right? Think again.

DON’'T DRINK TOO MUCH KOOL-AID

At some time in your childhood, you probably went to your aunt or grandmother’s
place for a party or some other event. While there, you would have several adults
watching over you in addition to your parents. If you misbehaved, you would get
scolded by your mom, dad, aunt, grandmother, and so on, and then everyone
would keep harassing you long after you clearly knew you had done something
wrong. Well, gen_event:add_sup_handler/3 is a bit like that—seriously.

Whenever you use gen_event:add_sup_handler/3, a link is
set up between your process and the event manager so both
of them are supervised and the handler knows if its parent
process fails. In the section on monitors in Chapter 12, | men-
tioned that monitors are great for writing libraries that need
to know what's going on with other processes because, unlike
links, monitors can be stacked. Well, gen_event predates the
appearance of monitors in Erlang, and a strong commitment
to backward-compatibility introduced this pretty bad wart.
Basically, because you could have the same process acting

as the parent of many event handlers, the library doesn’t
ever unlink the processes (except when it terminates for
good) just in case. Monitors would actually solve the prob-
lem, but they aren’t being used there.

This mean that everything goes okay when your own process crashes—the super-
vised handler is terminated (with the call to YourModule:terminate({stop, Reason}, State)).
Everything goes okay when your handler itself crashes (but not the event manager)—
you will receive {gen_event EXIT, Handlerld, Reason}. When the event manager is
shut down though, either of the following will happen:

® You will receive the {gen_event EXIT, Handlerld, Reason} message, and then
crash because you're not trapping exits.

* You will receive the {gen_event_EXIT, Handlerld, Reason} message, and then a
standard 'EXIT' message that is either superfluous or confusing.

That's quite a wart, but at least you know about it. You can try to switch your
event handler to a supervised one if you feel like it. It will be safer, even if it risks
being more annoying in some cases. Safety first.

Event Handlers 259

260

Chapter 16

We’re not finished yet! What happens if some members of the media are
not there on time? We need to be able to tell them from the feed what the
current state of the game is. For this, we’ll write an additional event handler
named curling_accumulator. Again, before writing it entirely, we might want to
add it to the curling module with the few calls we want, as follows:

-module(curling).

-export([start_link/2, set_teams/3, add_points/3, next_round/1]).
-export([join_feed/2, leave feed/2]).

-export([game_info/1]).

start_link(TeamA, TeamB) ->
{ok, Pid} = gen_event:start link(),
%% The scoreboard will always be there.
gen_event:add_handler(Pid, curling_scoreboard, []),
%% Start the stats accumulator.
gen_event:add_handler(Pid, curling accumulator, []),
set_teams(Pid, TeamA, TeamB),
{ok, Pid}.

%% Returns the current game state.
game_info(Pid) ->
gen_event:call(Pid, curling accumulator, game data).

Notice that the game_info/1 function here uses only curling_accumulator
as a handler ID. In the cases where you have many versions of the same
handler, the hint about using make_ref() (or any other means) to ensure you
write to the correct handler still holds. Also note that the curling_accumulator
handler starts automatically along with the scoreboard.

Now let’s put together the module itself. It should be able to hold state
for the curling game. So far, we have teams, score, and rounds to track. This
information can all be held in a state record and changed on each event
received. Then we will only need to reply to the game_data call, as follows:

-module(curling_accumulator).
-behavior(gen_event).

-export([init/1, handle_event/2, handle_call/2, handle_info/2, code_change/3,
terminate/2]).

-record(state, {teams=orddict:new(), round=0}).
init([]) -> {ok, #state{}}.

handle event({set_teams, TeamA, TeamB}, S=#state{teams=T}) ->
Teams = orddict:store(TeamA, 0, orddict:store(TeamB, 0, T)),
{ok, Sttstate{teams=Teams}};

handle_event({add_points, Team, N}, S=tfstate{teams=T}) ->
Teams = orddict:update counter(Team, N, T),
{ok, Ststate{teams=Teams}};

handle event(next round, S=tstate{}) ->
{ok, St#tstate{round = S#tstate.round+1}};

handle_event(_Event, State=#state{}) ->
{ok, State}.

handle call(game data, S=#state{teams=T, round=R}) ->
{ok, {orddict:to 1list(T), {round, R}}, S};
handle_call(_, State) ->
{ok, ok, State}.
handle info(_, State) -> {ok, State}.
code_change(_0ldVsn, State, _Extra) -> {ok, State}.

terminate(_Reason, _State) -> ok.

So, we basically just update the state until someone asks for game
details, at which point, we’ll be sending them back. We did this in a very
basic way. Perhaps a smarter way to organize the code would have been to
simply keep a list of all the events to ever happen in the game so we could
send them all back each time a new process subscribed to the feed. That’s
not necessary for our purposes here, however, so let’s focus on using our
new code. Give it a try:

1> c(curling), c(curling_accumulator).
{ok,curling_accumulator}

2> {ok, Pid} = curling:start_link("Pigeons", "Eagles").
Scoreboard: Team Pigeons vs. Team Eagles
{ok,<0.242.0>}

3> curling:add_points(Pid, "Pigeons", 2).
Scoreboard: increased score of team Pigeons by 1
ok

Scoreboard: increased score of team Pigeons by 1
4> curling:next_round(Pid).

Scoreboard: round over

ok

5> curling:add_points(Pid, "Eagles", 3).
Scoreboard: increased score of team Eagles by 1
ok

Scoreboard: increased score of team Eagles by 1
Scoreboard: increased score of team Eagles by 1
6> curling:next_round(Pid).

Scoreboard: round over

ok

7> curling:game_info(Pid).
{[{"Eagles",3},{"Pigeons",2}],{round,2}}

Enthralling! Surely the Olympic Committee will love our code. We can
pat ourselves on the back, cash in a fat check, and go play video games all
night.

We haven’t covered all that can be done with gen_event as a module. In
fact, we haven’t discussed the most common use of event handlers: logging

Event Handlers 261

262

Chapter 16

and system alarms. I decided against showing them because pretty much
any other source on Erlang out there uses gen_event strictly for those pur-
poses. If you're interested in learning more about these uses, check out the
error_logger module of the standard library first.

Even though we have not covered the most common uses of gen_event,
we’ve explored all the concepts necessary to understand them, to build our
own, and to integrate them into our applications. More important, we’ve
finally covered the three main OTP behaviors used in active code develop-
ment. We still have a few behaviors left to visit—those that act as a bunch
of glue between all of our worker processes, such as the supervisor, which is
what Chapter 17 is all about.

WHO SUPERVISES THE
SUPERVISORS?

Supervisors are one of the most useful parts of OTP.
We’ve encountered basic supervisors in Chapters 12
and 13, where they offered a way to keep our software
going in case of errors by just restarting the faulty
processes. This chapter introduces OTP’s take on
supervisors, which is much better than ours.

In our earlier examples, our supervisors would start a worker process,
link to it, and trap exit signals with process_flag(trap_exit,true) to know when
the process died and restart it. This is fine when we want restarts, but it’s
also pretty dumb. Imagine that you're using the remote control to turn on
the TV. If it doesn’t work the first time, you might try again once or twice,
justin case you didn’t press the right button or the signal went wrong. But
our supervisor would keep trying to turn on that TV forever, even if it
turned out that the remote had no batteries or didn’t belong to that TV.
That’s a pretty dumb supervisor.

264

Something else that was dumb about our
supervisors was that they could watch only one
worker at a time. Although it’s sometimes use-
ful to have one supervisor for a single worker, in
large applications, this would mean you could
have only a chain of supervisors, not a tree. How
would you supervise a task where you need two
or three workers at once? With our implementa-
tion, it just couldn’t be done.

The OTP supervisors, fortunately, provide
the flexibility to handle such cases (and more).
As you’ll see in this chapter, they let you define
how many times a worker should be restarted in a given period before giv-
ing up. They let you have more than one worker per supervisor, and even
let you pick from a few patterns to determine how they should depend on
each other in case of a failure.

Supervisor Concepts

Chapter 17

Supervisors are one of the simplest behaviors to use and understand, but
one of the hardest behaviors to write a good design with. There are various
strategies related to supervisors and application design, but before getting
to the hard stuff, we need to cover some basic concepts.

One of the terms I've used previously in this book without much of a
definition is worker. Workers are defined a bit in opposition of supervisors.
If supervisors are supposed to be processes that do nothing but make sure
their children are restarted when they die, workers are processes that are in
charge of doing actual work and that may die while doing so. They are usu-
ally not trusted to be safe.

Supervisors can supervise workers and other supervisors. Workers should
never be used in any position except under a supervisor:

Supervisor

‘ Worker

Why should every process be supervised? Well, the idea is simple: If
you’re spawning unsupervised processes, how can you be sure they are gone?
If you can’t measure something, it doesn’t exist. If a process resides in the
void away from all your supervision trees, how do you know whether it actu-
ally exists? How did it get there? Will it happen again?

If it does happen, you’ll find yourself leaking memory very slowly—so
slowly your VM might suddenly die because the VM no longer has memory,
and so slowly you might not be able to easily track the problem until it hap-
pens again and again. Of course, you might say, “If I take care and know
what I'm doing, things will be fine.” Maybe they will be fine, but maybe they
won’t. In a production system, you don’t want to be taking chances. And
in the case of Erlang, it’s why you have garbage collection to begin with.
Keeping things supervised is pretty useful.

Supervision is also useful because it allows you to terminate applica-
tions in good order. You'll write Erlang software that is not meant to run
forever, but you'll still want it to terminate cleanly. How do you know every-
thing is ready to be shut down? With supervisors, it’s easy. Whenever you
want to terminate an application, you have the top supervisor of the VM
shut down (this is done for you with functions like init:stop/1). Then that
supervisor asks each of its children to terminate. If some of the children are
supervisors, they do the same:

shu}down

Supervisor
‘ Worker

This gives you a well-ordered VM shutdown, which is very hard to achieve
without having all of your processes being part of the tree. Of course, there
are times when your process will be stuck for some reason and won’t termi-
nate correctly. When that happens, supervisors have a way to brutally kill
the process.

Who Supervises the Supervisors2 265

So, we have workers, supervisors, supervision trees, ways to specify
dependencies, ways to tell supervisors when to give up on trying or waiting
for their children, and so on. This is not all that supervisors can do; but for
now, we have enough information to start looking at how to use them.

Using Supervisors

This has been a very violent chapter so far: Parents spend their time bind-
ing their children to trees, forcing them to work before brutally killing
them. But we wouldn’t be real sadists without actually implementing it all.

When I said supervisors were simple to use, I wasn’t kidding. There is
a single callback function to provide: init/1. The catch is that its return is
quite complex. Here’s an example return from a supervisor:

{ok, {{one_for_all, 5, 60},

[{fake_id,
{fake_mod, start_link, [SomeArg]},
permanent,
5000,
worker,
[fake_mod]},

{other_id,
{event_manager_mod, start link, []},
transient,
infinity,
worker,
dynamic}]}}.

Say what? A general definition might be a bit simpler to work with:

{ok, {{RestartStrategy, MaxRestart, MaxTime},[ChildSpec]}}.

Let’s take a look at each of these pieces.

Restart Strategies

The RestartStrategy part of the definition can be one_for_one, one_for_all,
rest_for_one, or simple_one_for_one.

one_for_one

one_for_one is an intuitive restart strategy. It basically means that if your
supervisor supervises many workers and one of them fails, only that one
should be restarted. You should use one_for_one whenever the processes
being supervised are independent and not really related to each other, or
when the process can restart and lose its state without impacting its siblings.

266 Chapter 17

’,’ .' \\\ > L. : ‘\
\,/ \ . ' \
) @ >
O old
D New

one_for_all

one_for_all has little to do with musketeers. It’s to be used whenever all your
processes under a single supervisor heavily depend on each other to be able
to work normally. Let’s say you have decided to add a supervisor on top of
the trading system we implemented in Chapter 15. If a trader crashed, it
wouldn’t make sense to restart only that one of the two traders, because the
traders’ states would be out of sync. Restarting both of them at once would
be a saner choice, and one_for_all is the strategy for that.

@, o — O
D% ¥ ¥ 0@

rest_for_one

rest_for_one is a more specific kind of strategy. Whenever you need to start
processes that depend on each other in a chain (A starts B, which starts C,
which starts D, and so on), you can use rest_for_one. It’s also useful in the
case of services where you have similar dependencies (X works alone, but Y
depends on X and Z depends on both). Basically, with a rest_for_one restart-
ing strategy, if a process dies, all the processes that were started after it
(depend on it) are restarted, but not the other way around.

O QO — O

> T Pead
. S/ , v , \
- ~S—
O old
D New

Who Supervises the Supervisors? 267

268

Chapter 17

simple_one_for_one

Despite its name, the simple_one_for_one restart strategy isn’t all that simple.
This type of supervisor takes only one kind of child, and it’s used when you
want to dynamically add children to the supervisor, rather than having them
started statically.

To say it a bit differently, a simple_one_for_one supervisor just sits around,
and it knows it can produce one kind of child only. Whenever you want a
new child, you ask for it and you get it. This could theoretically be done
with the standard one_for_one supervisor, but there are practical advantages
to using the simple version, as you’ll see when we look at dynamic super-
vision later in the chapter.

One of the big differences between one_for_one and simple_one_for one is that
one_for_one holds a list of all the children it has started (and had started, if you
don’t clear it after manipulating it manually), ordered by their starting order, while
simple_one_for_one holds a single definition for all its children and works using a
dictionary to hold its data. Basically, when a process crashes, the simple_one_for_one
supervisor will be much faster if you have a large number of children.

Restart Limits

The last part of the RestartStrategy tuple contains the variables MaxRestart
and MaxTime. The idea is that if more than the MaxRestart limit happens
within MaxTime (in seconds), the supervisor just gives up on your code,
shuts it down, and then kills itself, never to return. And that is based on
restarts for all children of the supervisor, not any one of them individually.
Fortunately, that supervisor’s supervisor might still have hope in its children
and start them all over again.

Child Specifications

And now for the ChildSpec part of the return value. ChildSpec stands for child
specification. Earlier we had the following two child specifications:

[{fake_id,
{fake_mod, start link, [SomeArg]l},
permanent,
5000,
worker,
[fake_mod]},
{other_id,
{event_manager_mod, start link, []},
transient,
infinity,
worker,
dynamic}]

The child specification can be described in a more abstract form,
as follows:

{ChildId, StartFunc, Restart, Shutdown, Type, Modules}.

And now we can look at how each part works.

Childid

ChildId is just a name used by the supervisor internally. You will rarely need
to use it yourself, although it might happen to be useful for debugging pur-
poses, and sometimes when you decide to actually get a list of all the children
of a supervisor. Any term can be used for this identifier, but I suggest mak-
ing it something readable, just in case you do need it for debugging.

StartFunc

StartFunc is a tuple that specifies how to start the supervisor. It’s the standard
{M,F,A} format we’ve used a few times already. Note that it is very important
that the starting function here is OTP-compliant and links to its caller when
executed. (Hint: Use gen_*:start_link() wrapped in your own module, all
the time.)

Restart

Restart tells the supervisor how to react when that particular child dies.
This can take one of three values:

® permanent
® temporary

e transient

A permanent process should always be restarted, no matter what. The
supervisors we implemented in our previous applications used this strategy
only. This is usually used by vital, long-living processes (or services) run-
ning on your node.

On the other hand, a temporary process is a process that should never
be restarted. These processes are for short-lived workers that are expected to
fail and have few bits of code that depend on them. You usually still want
to supervise them to know where they are, and to be able to shut them down
cleanly via the supervisor.

Transient processes are a bit of an in-between breed. They’re meant
to run until they terminate normally, and then they won’t be restarted.
However, if they die of abnormal causes (the exit reason is anything but
normal, shutdown, or {shutdown, Reason}), they will be restarted. This restart
option is often used for workers that need to succeed at their task, but it
won’t be used after they do so.

Who Supervises the Supervisors? 269

270

Chapter 17

You can have children of all three kinds mixed under a single supervi-
sor. This might affect the restart strategy. A one_for_all restart won’t be trig-
gered by a temporary process dying, but that temporary process might be
restarted under the same supervisor if a permanent process dies first!

Shutdown

Earlier in the chapter, I mentioned being able to shut down entire applica-
tions with the help of supervisors. Here’s how it’s done: When the top-level
supervisor is asked to terminate, it calls exit(ChildPid, shutdown) on each

of the pids. If the child is a worker and trapping exits, it will call its own
terminate function; otherwise, it’s just going to die. When a supervisor gets the
shutdown signal, it will forward that signal to its own children in the same way.

The Shutdown value of a child specification is thus used to give a dead-
line for the termination. On certain workers, you know you might need to
do things like properly close files, notify a service that you're leaving, and
so on. In these cases, you might want to use a certain cutoff time, either
in milliseconds or set as infinity if you are really patient. If the time passes
and nothing happens, the process is then brutally killed with exit(Pid, kill).
If you don’t care about the child and it can die without any consequences
without any timeout needed, the atom brutal_kill is also an acceptable value.
brutal kill will make it so the child is killed with exit(Pid, kill), which is
untrappable and instantaneous.

Choosing a good Shutdown value is sometimes complex or tricky. If you
have a chain of supervisors with Shutdown values like 5 — 2 — 5 — 5, the two
last ones will likely end up brutally killed, because the second one had a
shorter cutoff time. The proper value is entirely application-dependent, and
few general tips can be given on the subject.

Before Erlang RI14B03, simple_one_for_one children did not respect this rule with
the Shutdown time. In the case of simple_one_for_one, the supervisor would just exit,
and it would be left to each of the workers to terminate on its own after its supervisor
was gone.

Type

Type lets the supervisor know whether the child is a supervisor (it implements
either the supervisor or supervisor_bridge behavior) or a worker (any other
OTP process). This will be important when upgrading applications with
more advanced OTP features, but you do not really need to care about it at
the moment—just tell the truth and everything should be fine. You have to
trust your supervisors!

Modules

Modules is a list of one element: the name of the callback module used by
the child behavior. The exception is when you have callback modules whose
identity you do not know beforehand (such as event handlers in an event

manager). In this case, the value of Modules should be dynamic so that the
whole OTP system knows who to contact when using more advanced fea-
tures, such as releases.

Hooray, we now have covered the basic knowledge required to start
supervised processes. You can take a break and digest it all, or move for-
ward to see how supervisors work in practice.

Band Practice

Some practice is in order. And speaking of practice, the perfect example in
this case is a band practice! (Well, not that perfect, but bear with me for a
while.)

Let’s say we’re managing a band named *RSYNC, made up of a handful
of musically inclined programmers: a drummer, a singer, a bass player, and
a keytar player (in memory of all the forgotten 1980s glory). Despite a few
retro hit cover songs, such as “Thread Safety Dance” and “Saturday Night
Coder,” the band has a hard time getting a venue. Annoyed with the whole
situation, I storm into your office with yet another sugar rush-induced idea
of simulating a band in Erlang. You're tired because you live in the same
apartment as the drummer (who is the weakest link in this band to be hon-
est, but they stick with him because they don’t know any other drummers),
SO you accept.

Musicians

The first thing we can do is write the individual band members. For our use
case, the musicians module will implement a gen_server. Each musician will
take an instrument and a skill level as a parameter (so we can say the drum-
mer sucks, while the others are all right). Once a musician has spawned,
it will start playing. We’ll also have an option to stop musicians, if needed.
This gives us the following module and interface:

-module(musicians).
-behavior(gen_server).

-export([start_link/2, stop/1]).

-export([init/1, handle_call/3, handle cast/2,
handle_info/2, code_change/3, terminate/2]).

Who Supervises the Supervisors2 7

272

Chapter 17

-record(state, {name=
-define(DELAY, 750).

, role, skill=good}).

start_link(Role, Skill) -»
gen_server:start link({local, Role}, ?MODULE, [Role, Skill], []).

stop(Role) -> gen_server:call(Role, stop).

We’ve defined a ?DELAY macro that we’ll use as the standard time span
between each time a musician will show himself as playing. As the record
definition shows, we’ll also need to give each of the musicians a name, as
follows:

init([Role, Skill]) -»>
%% To know when the parent shuts down.
process_flag(trap_exit, true),
%% Sets a seed for random number generation for the life of the process.
%% Uses the current time to do it. Unique value guaranteed by now().
random:seed(now()),
TimeToPlay = random:uniform(3000),
Name = pick_name(),
StrRole = atom to_list(Role),
io:format("Musician ~s, playing the ~s entered the room~n",
[Name, StrRole]),
{ok, #state{name=Name, role=StrRole, skill=Skill}, TimeToPlay}.

Two things go on in the init/1 function. First, we start trapping exits.
As you’ll recall from the description of the terminate/2 function for generic
servers in Chapter 14, we need to do this if we want terminate/2 to be called
when the server’s parent shuts down its children. The rest of the init/1
function sets a random seed (so that each process gets different random
numbers) and then creates a random name for itself. The following are the
functions to create the names:

%% Yes, the names are based off the magic school bus characters’

%% 10 names!

pick_name() ->
%% The seed must be set for the random functions. Use within the
%% process that started with init/1.
lists:nth(random:uniform(10), firstnames())

++ ++
lists:nth(random:uniform(10), lastnames()).

firstnames() ->
["valerie", "Arnold", "Carlos", "Dorothy", "Keesha",
"Phoebe", "Ralphie", "Tim", "Wanda", "Janet"].

lastnames() -»>
["Frizzle", "Perlstein", "Ramon", "Ann", "Franklin",

"Terese", "Tennelli", "Jamal", "Li", "Perlstein"].

Now we can move on to the implementation. This one is going to be
pretty trivial for handle_call and handle_cast.

handle_call(stop, _From, S=#state{}) ->
{stop, normal, ok, S};

handle call(_Message, _From, S) ->
{noreply, S, ?DELAY}.

handle_cast(_Message, S) ->
{noreply, S, ?DELAY}.

The only call we have is to stop the musician server, which we agree to
do pretty quickly. If we receive an unexpected message, we do not reply to
it, and the caller will crash. This is not our problem. We set the timeout in
the {noreply, S, ?DELAY} tuples, for one simple reason that we’ll see right now.

handle_info(timeout, S = #state{name=N, skill=good}) ->
io:format("~s produced sound!~n",[N]),
{noreply, S, ?DELAY};
handle_info(timeout, S = #state{name=N, skill=bad}) ->
case random:uniform(5) of
1 ->
io:format("~s played a false note. Uh oh~n",[N]),
{stop, bad_note, S};
->
io:format("~s produced sound!~n",[N]),
{noreply, S, ?DELAY}
end;
handle_info(_Message, S) ->
{noreply, S, ?DELAY}.

Each time the server times out, our musicians are going to play a note.
If they’re good, everything will be completely fine. If they’re bad, they will
have one chance out of five to miss and play a bad note, which will make
them crash. Again, we set the ?DELAY timeout at the end of each nontermi-
nating call.

Then we add an empty code_change/3 callback, as required by the
gen_server behavior.

code_change(_0ldvsn, State, _Extra) -»>
{ok, State}.

And we can set the terminate function, as follows:

terminate(normal, S) ->
io:format("~s left the room (~s)~n",[S#state.name, Ststate.role]);
terminate(bad_note, S) -»>
io:format("~s sucks! kicked that member out of the band! (~s)~n",
[Sttstate.name, Ststate.role]);
terminate(shutdown, S) ->
io:format("The manager is mad and fired the whole band! "

Who Supervises the Supervisorse 273

274

Chapter 17

"~s just got back to playing in the subway~n",
[Sttstate.name]);
terminate(_Reason, S) ->
io:format("~s has been kicked out (~s)~n", [S#state.name, S#state.role]).

We have many different messages here. If we terminate with a normal
reason, it means we’ve called the stop/1 function, and so we display the
musician left on his own free will. In the case of a bad_note message,
the musician will crash, and we’ll say that it’s because the manager
(the supervisor we’ll soon add) kicked him out of the band.

Then we have the shutdown message, which will

come from the supervisor. Whenever that happens,
it means the supervisor decided to kill all of its chil- Wﬁgm
dren, or in our case, fire all of the musicians. We

then add a generic error message for the rest.
Here’s a simple use case of a musician:

1> c(musicians).

{ok,musicians}

2> musicians:start_link(bass, bad).

Musician Ralphie Franklin, playing the bass entered the room
{0k,<0.615.05}

Ralphie Franklin produced sound!

Ralphie Franklin produced sound!

Ralphie Franklin played a false note. Uh oh

Ralphie Franklin sucks! kicked that member out of the band! (bass)
3>

=ERROR REPORT==== 6-June-2013::03:22:14 ===

** Generic server bass terminating

** Last message in was timeout

** When Server state == {state,"Ralphie Franklin","bass",bad}
** Reason for termination ==

** bad_note

** exception error: bad_note

So we have Ralphie playing and crashing after a bad note. If you try the
same with a good musician, you’ll need to call our musicians:stop(Instrument)
function in order to stop all the playing.

Band Supervisor

We can now work with the band supervisor. We’ll have three grades of
supervisors: a lenient one, an angry one, and a total jerk. The lenient super-
visor, while still a very pissy person, will fire a single member of the band
ata time (one_for_one) —the one who fails—until he gets fed up, fires them
all, and gives up on bands. The angry supervisor, on the other hand, will
fire some of the musicians (rest_for one) on each mistake and wait a shorter
amount of time before firing them all and giving up. The jerk supervisor
will fire the whole band each time someone makes a mistake, and give up if
the band members fail even less often.

-module(band_supervisor).
-behavior(supervisor).

-export([start_link/1]).
-export([init/1]).

start_link(Type) ->
supervisor:start link({local, ?MODULE}, ?MODULE, Type).

%% The band supervisor will allow its band members to make a few
%% mistakes before shutting down all operations, based on what
%% mood he's in. A lenient supervisor will tolerate more mistakes
%% than an angry supervisor, who'll tolerate more than a
%% complete jerk supervisor.
init(lenient) ->

init({one_for one, 3, 60});
init(angry) ->

init({rest_for_ one, 2, 60});
init(jerk) -»>

init({one_for all, 1, 60});

The init definition doesn’t finish here, but this lets us set the tone for
each kind of supervisor we want. The lenient one will restart only one
musician and will fail on the fourth failure in 60 seconds. The angry one
will accept only two failures, and the jerk supervisor will have very strict
standards!

Now let’s finish the function and actually implement the band starting
functions and whatnot.

init({RestartStrategy, MaxRestart, MaxTime}) ->
{ok, {{RestartStrategy, MaxRestart, MaxTime},
[{singer,
{musicians, start link, [singer, good]},
permanent, 1000, worker, [musicians]},
{bass,
{musicians, start_link, [bass, good]},
temporary, 1000, worker, [musicians]},
{drum,
{musicians, start link, [drum, bad]},
transient, 1000, worker, [musicians]},
{keytar,
{musicians, start link, [keytar, good]},
transient, 1000, worker, [musicians]}

13}

So we’ll have three good musicians: the singer, bass player, and keytar
player. The drummer is terrible (which makes you pretty mad). The musi-
cians have different Restart values (permanent, transient, or temporary). The
singer is permanent, so the band could never work without a singer, even if
the current one left by choice. The bass player is temporary, because the

Who Supervises the Supervisors? 275

band could still play fine without a bass player (frankly, who gives a crap

about bass players?). Other musicians are transient, and so they can leave

on their own, but they might still need to be replaced in case of errors.
That gives us a functional band_supervisor module, which we can now try.

3> c(band_supervisor).
{ok,band_supervisor}
4> band_supervisor:start_link(lenient).
Musician Carlos Terese, playing the singer entered the room
Musician Janet Terese, playing the bass entered the room
Musician Keesha Ramon, playing the drum entered the room
Musician Janet Ramon, playing the keytar entered the room
{0k,<0.623.05}
Carlos Terese produced sound!
Janet Terese produced sound!
Keesha Ramon produced sound!
Janet Ramon produced sound!
Carlos Terese produced sound!
Keesha Ramon played a false note. Uh oh
Keesha Ramon sucks! kicked that member out of the band! (drum)
. <snip> ...
Musician Arnold Tennelli, playing the drum entered the room
Arnold Tennelli produced sound!
Carlos Terese produced sound!
Janet Terese produced sound!
Janet Ramon produced sound!
Arnold Tennelli played a false note. Uh oh
Arnold Tennelli sucks! kicked that member out of the band! (drum)
. <snip> ...
Musician Carlos Frizzle, playing the drum entered the room
. <snip for a few more firings> ...
Janet Jamal played a false note. Uh oh
Janet Jamal sucks! kicked that member out of the band! (drum)
The manager is mad and fired the whole band!
Janet Ramon just got back to playing in the subway
The manager is mad and fired the whole band!
Janet Terese just got back to playing in the subway
The manager is mad and fired the whole band!
Carlos Terese just got back to playing in the subway
** exception error: shutdown

Magic! We can see that at first only the drummer is fired, and then
after a while, everyone else gets kicked out, too. And off to the subway
(tubes for the UK readers) they go!

You can try the code with other kinds of supervisors, and it will end
the same. The only difference will be the restart strategy. Here’s the angry
supervisor at work:

5> band_supervisor:start_link(angry).

Musician Dorothy Frizzle, playing the singer entered the room
Musician Arnold Li, playing the bass entered the room
Musician Ralphie Perlstein, playing the drum entered the room
Musician Carlos Perlstein, playing the keytar entered the room

276 Chapter 17

. <snip> ...

Ralphie Perlstein sucks! kicked that member out of the band! (drum)
. <snip> ...

The manager is mad and fired the whole band!
Carlos Perlstein just got back to playing in the subway

With the angry supervisor, both the drummer and the keytar player get
fired when the drummer makes a mistake. This is nothing compared to the
jerk’s behavior:

6> band_supervisor:start_link(jerk).
Musician Dorothy Franklin, playing the singer entered the room
Musician Wanda Tennelli, playing the bass entered the room
Musician Tim Perlstein, playing the drum entered the room
Musician Dorothy Frizzle, playing the keytar entered the room
. <snip> ...
Tim Perlstein played a false note. Uh oh
Tim Perlstein sucks! kicked that member out of the band! (drum)
The manager is mad and fired the whole band! Dorothy Franklin just got back to
playing in the subway
The manager is mad and fired the whole band! Wanda Tennelli just got back to
playing in the subway
The manager is mad and fired the whole band! Dorothy Frizzle just got back to
playing in the subway

And that’s about it for static restart strategies.

Dynamic Supervision

So far, the kind of supervision we’ve covered has been static. We specified
all the children we would have directly in the source code, and let every-
thing run after that. This is how most of your supervisors might be set

up in real-world applications, usually for the supervision of architectural
components.

On the other hand, you may have supervisors who supervise undeter-
mined workers. They’re usually there on a per-demand basis. Think of a
web server that spawns a process per connection it receives. In this case,
you would want dynamic supervisors to look over all the different processes
you’ll have.

Using Standard Supervisors Dynamically

Every time a worker is added to a supervisor using the one_for_one, rest_for_one,
or one_for_all strategy, the child specification is added to a list in the super-
visor, along with a pid and some other information. The child specification
can then be used to restart the child and perform other tasks. Because
things work that way, the following interface exists:

start_child(SupervisorNameOrPid, ChildSpec)
Adds a child specification to the list and starts the child with it.

Who Supervises the Supervisors? 277

278

Chapter 17

terminate_child(SupervisorNameOxrPid, ChildId)
Terminates or brutal_kills the child. The child specification is left in
the supervisor.

restart_child(SupervisorNameOrPid, ChildId)
Uses the child specification to get things rolling.

delete_child(SupervisorNameOrPid, ChildId)
Gets rid of the ChildSpec of the specified child.

check_childspecs([ChildSpec])
Makes sure a child specification is valid. You can use this to try the
specification before using start_child/2.

count_children(SupervisorNameOxrPid)
Counts all the children under the supervisor and gives you a little com-
parative list of who is active, how many specs there are, how many are
supervisors, and how many are workers.

which_children(SupervisorNameOrPid)
Gives you a list of all the children under the supervisor.

Let’s see how this works with musicians, with the output removed (you
need to be quick to outrace the failing drummer!).

1> band_supervisor:start_link(lenient).
{ok,0.709.0>}

2> supervisor:which_children(band_supervisor).
[{keytar,<0.713.0>,worker, [musicians]},
{drum,<0.715.0>,worker, [musicians]},
{bass,<0.711.0>,worker, [musicians]},
{singer,<0.710.0>,worker, [musicians]}]

3> supervisor:terminate_child(band_supervisor, drum).
ok

4> supervisor:terminate_child(band_supervisor, singer).
ok

5> supervisor:restart_child(band_supervisor, singer).
{0k,<0.730.0>}

6> supervisor:count_children(band_supervisor).
[{specs,4},{active,3},{supervisors,0},{workers,4}]
7> supervisor:delete_child(band_supervisor, drum).
ok

8> supervisor:restart_child(band_supervisor, drum).
{error,not_found}

9> supervisor:count_children(band_supervisor).
[{specs,3},{active,3},{supervisors,0},{workers,3}]

And you can see how this could work well for anything dynamic that
you need to manage (start, terminate, and so on) and when few children
are involved. Because the internal representation is a list, this won’t work
well when you need quick access to many children.

In those cases, what you want is simple_one_for_one.

Using a simple_one_for_one Supervisor

With a supervisor that uses the
simple_one_for_one strategy, all the
children are held in a dictionary,
which makes looking them up faster.
There is also a single child specifica-
tion for all children under the super-
visor. This will save you memory and
time—you will never need to delete
a child yourself or store any child
specifications.

For the most part, writing a simple_one_for_one supervisor is similar to
writing any other type of supervisor, except for one thing: The argument
list in the {M,F,A} tuple is not the whole thing, but will be appended to
what you call it with when you do supervisor:start_child(Sup, Args). That’s
right—supervisor:start_child/2 changes meaning. So instead of doing
supervisor:start_child(Sup, Spec), which would call erlang:apply(M,F,A), we now
have supervisor:start_child(Sup, Args), which calls erlang:apply(M,F,Args++A).

We could use this strategy with our band_supervisor just by adding the
following clause somewhere in it:

init(jamband) -»>
{ok, {{simple_one_for one, 3, 60},
[{jam_musician,
{musicians, start link, []},
temporary, 1000, worker, [musicians]}

11

We’ve made all the musicians temporary in this case, and the supervisor
is quite lenient:

1> supervisor:start_child(band_supervisor, [djembe, good]).
Musician Janet Tennelli, playing the djembe entered the room
{0k,<0.690.05}

2> supervisor:start_child(band_supervisor, [djembe, good]).
{error,{already started,<0.690.0>}}

Whoops! This happens because we register the djembe player as djembe as
part of the start call to our gen_server. If we didn’t name the child processes
or used a different name for each, it wouldn’t cause a problem. Here’s one
with the name drum instead:

3> supervisor:start_child(band_supervisor, [drum, good]).
Musician Arnold Ramon, playing the drum entered the room
{0k,<0.696.05}

3> supervisor:start_child(band_supervisor, [guitar, good]).
Musician Wanda Perlstein, playing the guitar entered the room
{0k,<0.698.0>}

Who Supervises the Supervisors? 279

280

Chapter 17

4> supervisor:terminate_child(band_supervisor, djembe).
ok

That seems right.

DON’'T DRINK TOO MUCH KOOL-AID

Before Erlang version R14B03, it wasn't possible to terminate children with the
function supervisor:terminate child(SupRef, Pid). The function would instead return
{error,simple_one_for_one} and fail to terminate children. Instead, the following
would have been the best way to terminate a child with a simple_one for_one
supervisor:

5> musicians:stop(drum).
Arnold Ramon left the room (drum)
ok

Backward-compatible code should take this kind of behavior into account.

As a general (though sometimes wrong) recommendation, use standard
supervisors dynamically only when you know with certainty that you will
have few children to supervise and/or they won’t need to be manipulated
frequently or with any high speed requirement. For other kinds of dynamic
supervision, use simple_one_for_one where possible.

That’s about it for the supervision strategies and child specifications.
Right now, you might be having doubts and thinking. “How the hell am I
going to get a working application out of that?” If that’s the case, you'll be
happy to get to Chapter 18, which actually builds a simple application with
a short supervision tree to demonstrate how it could be done in the real
world.

BUILDING AN APPLICATION

We’ve now covered how to use generic servers, FSMs,
event handlers, and supervisors. However, we haven’t
gotten to how to put them all together to build com-
plete applications and tools.

An Erlang application is a group of related code and processes. An
OTP application specifically uses OTP behaviors for its processes, and then
wraps them in a very specific structure that tells the VM how to set every-
thing up and then tear it down. In this chapter, we’re going to build an
application with OTP components, although it won’t be a full OTP applica-
tion because we won’t do the “wrapping up” just yet. The details of complete
OTP applications are a bit complex and warrant their own chapter (the next
one). This chapter is about using OTP components to implement an appli-
cation, in our case, a process pool. The idea behind such a process pool is
to manage and limit resources running in a system in a generic manner.

A Pool of Processes

A pool allows us to limit how many processes run at once. A pool can also
queue up jobs when the running workers’ limit is hit. The jobs can then be
run as soon as resources are freed up, or they can simply block by telling
the user they can’t do anything else.

temporary
supervision
doesnt mind

dead children

N

A
(09
o

We might want to use process pools for several purposes, such as the
following:

e Limit a server to at most N concurrent connections.
e Limit how many files can be opened by an application.

e Give different priorities to different subsystems of a release by allowing
more resources for some and fewer for others. For example, you might
want to allow more processes for client requests than processes in charge
of generating reports for management.

e Allow an application under occasional heavy loads coming in bursts to
remain more stable during its entire life by queuing the tasks.

The process pool application we’ll build in this chapter will need to
implement a few functions to handle the following:

e Start and stop the application.

e Start and stop a particular process pool (all the pools sit within the pro-
cess pool application).

e Run a task in the pool and tell you it can’t be started if the pool is full.

282 Chapter 18

e Run a task in the pool if there is room; otherwise, keep the calling pro-
cess waiting while the task is in the queue. Free the caller once the task
can be run.

e Run a task asynchronously in the pool, as soon as possible. If no place is
available, queue it up and run it whenever.

These needs will help drive our program design. Also keep in mind
that we can now use supervisors, and, of course, we want to. However,
though supervisors give us new powers in terms of robustness, they also
impose a certain limit on flexibility. We’ll explore that trade-off next.

The Onion Layer Theory

To help ourselves design an application with supervisors, it helps to have an
idea of what needs supervision and how it needs to be supervised. As you’ll
recall from Chapter 17, we have different supervision strategies with differ-
ent settings, which will fit for different kinds of code with different kinds of
errors. A rainbow of mistakes can be made!
One thing newcomers and even
experienced Erlang programmers have
trouble dealing with is how to cope
with the loss of state. Supervisors kill
processes; state is lost; woe is me. To
help with this, we will identify different
kinds of states:

e A static state that can easily be
fetched from a configuration file,
another process, or the supervisor
restarting the application.

e A dynamic state that is composed of data you can recompute. This
includes state that you needed to transform from its initial form to get
where it is right now.

e A dynamic state that you cannot recompute. This might include user
input, live data, sequences of external events, and so on.

Static data is somewhat easy to deal with; most of the time, you can get
it straight from the supervisor. The same is true for the dynamic but recom-
putable data. In this case, you might want to grab it and compute it within
the init/1 function (or anywhere else in your code, really). The most prob-
lematic kind of state is the dynamic data you can’t recompute and that you
just hope not to lose. In some cases, you’ll be pushing that data to a data-
base, although that won’t always be a good option.

The idea of an onion-layered system is to allow all of these different
states to be protected correctly by isolating different kinds of code from
each other. In other words, it’s process segregation. The static state can be
handled by supervisors, as it is generally known as soon as the system starts
up. Each time a child dies, the supervisor restarts it and can inject it with

Building an Application 283

284

Chapter 18

some form of static state, which is always available. Because most supervisor
definitions are rather static by nature, each layer of supervision you add acts
as a shield protecting your application against their failure and the loss of
their state.

The dynamic state that can be recomputed has a whole lot of available
solutions. For example, you can build it from the static data sent by the
supervisors, or you could go fetch it back from some other process, data-
base, text file, the current environment, or whatever. It should be relatively
easy to get the data back on each restart. The fact that you have supervisors
that do a restarting job can be enough to help you keep that state alive.

The dynamic non-recomputable kind of state needs a more thoughtful
solution. The real nature of an onion-layered approach takes shape here.
The idea is that the most important data (or the data that is most annoying
to lose) must be the most protected type. The place where you are actually
not allowed to fail is called the error kernel of your application.

The error kernel is likely the
place you’ll want to use try ... catch
expressions more than anywhere
else, since handling exceptional
cases is vital there. This is the
area that you want to be error-
free. Careful testing must be done
around the error kernel, especially
in cases where there is no way to
go back. You don’t want to lose a
customer’s order halfway through
processing it, do you?

Some operations are going to be considered safer than others. Because
of this, we want to keep vital data in the safest core possible and keep
everything somewhat dangerous outside it. In specific terms, this means
that all related operations should be part of the same supervision trees, and
the unrelated ones should be kept in different trees. Within the same tree,
operations that are more failure-prone can be placed deeper in the tree, and
the processes that cannot afford to crash are closer to the root of the tree.

These principles result in systems where all related pieces of software
are part of the same trees, with the riskiest operations low in the tree,
decreasing the risk of the core processes dying until the system can’t cope
with the errors properly anymore. We’ll see an example of this when design-
ing our actual process pool’s supervision tree.

A Pool’s Tree

So how should we organize these process pools? There are two schools of
thought here. One tells people to design bottom-up (write all individual
components, and put them together as required), and another one tells
us to write things top-down (design as if all the parts were there, and
then build them). Both approaches are equally valid depending on the

circumstances and your personal style. For the sake of making things
understandable, we’re going to do things top-down here.

So what should our tree look like? Well, our requirements include
being able to start the pool application as a whole, having many pools, and
having many workers that can be queued for each pool. This already sug-
gests a few possible design constraints.

We will need one gen_server per pool. The server’s job will be to main-
tain the counter of how many workers are in the pool. For convenience, the
same server should also hold the queue of tasks. Who should be in charge
of overlooking each of the workers, though? The server itself?

Doing it with the server is interesting. After all, the server needs to
track the processes to count them, and supervising them itself is a nifty way
to do this. Moreover, neither the server nor the processes can crash without
losing the state of all the others (otherwise, the server can’t track the tasks
after it has restarted). It has a few disadvantages, too: The server has many
responsibilities, can be seen as more fragile, and duplicates the functional-
ity of existing, better-tested modules.

A good way to make sure all workers are properly accounted for would
be to use a supervisor just for them:

In this example, there is a single supervisor for all of the pools. Each
pool is a set of a pool server and a supervisor for workers. The pool server
knows of the existence of its worker supervisor and asks it to add items. Given
that adding children is a very dynamic thing with unknown limits so far,
we’ll use a simple_one_for_one supervisor.

The name ppool was chosen because the Erlang standard library already has a pool
module. Plus it’s a terrible pool-related pun.

The advantage of this approach is that because the worker_sup supervisor
will need to track only OTP workers of a single type, each pool is guaran-
teed to be about a well-defined kind of worker, with simple management
and restart strategies that are easy to define. This is one example of an
error kernel being better defined. If we’re using a pool of sockets for web
connections and another pool of servers in charge of log files, we are mak-
ing sure that incorrect code or messy permissions in the log file section

Building an Application 285

286

of our application won’t be drowning out the processes in charge of the
sockets. If the log files’ pool crashes too much, they will be shut down and
their supervisor will stop. Oh wait—their supervisor stopping is a serious
problem!

Because all pools are under the same supervisor, a given pool or server
restarting too many times in a short time span can take all the other pools
down. A solution might be to add one level of supervision. This will also
make it much simpler to handle more than one pool at a time, so let’s say
the following will be our application architecture:

|

|

I

|

|
|
I
(.

And that makes a bit more sense. From the onion-layer perspective,
all pools are independent, the workers are independent from each other
and the ppool_serv server is going to be isolated from all the workers. That’s
good enough for the architecture. Everything we need seems to be there.
We can start working on the implementation—again, using a top-to-bottom
approach.

Implementing the Supervisors

Chapter 18

We can start with the top-level supervisor, ppool_supersup. All this one needs
to do is start the supervisor of a pool when required. We’ll give it a few func-
tions: start_link/0, which starts the whole application; stop/0, which stops it;
start_pool/3, which creates a specific pool; and stop_pool/1, which does the
opposite. We also can’t forget init/1, which is the only callback required by
the supervisor behavior.

-module(ppool_supersup).

-behavior(supervisor).

-export([start_link/o0, stop/0, start pool/3, stop pool/i]).
-export([init/1]).

start_link() ->
supervisor:start_link({local, ppool}, ?MODULE, []).

Here, we gave the top-level process pool supervisor the name ppool (this
explains the use of {local, Name}, an OTP convention about registering gen_*
processes on a node; another one exists for distributed registration). This
is because we know we will have only one ppool per Erlang node, and we can
give it a name without worrying about clashes. Fortunately, the same name
can then be used to stop the whole set of pools, like this:

%% Technically, a supervisor cannot be killed in an easy way.
%% Let's do it brutally!
stop() ->
case whereis(ppool) of
P when is pid(P) -»
exit(P, kill);
_ -> ok
end.

As the comments in the code explain, we cannot terminate a supervisor
gracefully. The OTP framework provides a well-defined shutdown proce-
dure for all supervisors, but we can’t use it from where we are right now.
We’ll address how to do that in Chapter 19; but for now, brutally killing the
supervisor is the best we can do.

What is the top-level supervisor exactly? Well, its only task is to hold
pools in memory and supervise them. In this case, it will be a childless
supervisor.

init([]) ->
MaxRestart = 6,
MaxTime = 3600,
{ok, {{one_for_one, MaxRestart, MaxTime}, []}}.

We can now focus on starting each individual pool’s supervisor and
attaching them to ppool. Given our initial requirements, we can determine
that we’ll need two parameters: the number of workers the pool will accept
and the {M,F,A} tuple that the worker supervisor will need to start each worker.
We’ll also add a name for good measure. We then pass this ChildSpec to the
process pool’s supervisor as we start it.

start_pool(Name, Limit, MFA) ->
ChildSpec = {Name,
{ppool_sup, start link, [Name, Limit, MFA]},
permanent, 10500, supervisor, [ppool sup]},
supervisor:start child(ppool, ChildSpec).

You can see each pool supervisor is asked to be permanent and has
the arguments needed (notice how we’re changing programmer-submitted
data into static data this way). The name of the pool is both passed to the

Building an Application 287

288

Chapter 18

supervisor and used as an identifier in the child specification. There’s also a
maximum shutdown time of 10500. There is no easy way to pick this value—
just make sure it’s large enough that all the children will have time to stop,
if they need any. Play with the value according to your needs, and test and
adapt to your application. If you're really not sure what value to use, you can
try the infinity option.

To stop the pool, we need to ask the ppool super supervisor (the
supersup!) to kill its matching child.

stop_pool(Name) ->
supervisor:terminate_child(ppool, Name),
supervisor:delete child(ppool, Name).

This is possible because we gave the pool’s name as the child specifica-
tion identifier. Great! We can now focus on each pool’s direct supervisor!
Each ppool_sup will be in charge of the pool server and the worker supervisor:

Can you see the funny thing here? The ppool_serv process should be able
to contact the worker_sup process. If they’re both started by the same super-
visor at the same time, we won’t have any way to let ppool_serv know about
worker_sup, unless we were to do some trickery with supervisor:which_children/1
(which would be sensitive to timing and somewhat risky), or unless we give
a name to both the ppool_serv process (so that users can call it) and the
supervisor. However, we don’t want to give names to the supervisors for sev-
eral reasons:

e The users don’t need to call them directly.

e We would need to dynamically generate atoms, and that makes me
nervous.

e There is a better way.

The solution is to get the pool server to dynamically attach the worker
supervisor to its ppool_sup. Don’t worry if this sounds vague—you’ll get it
soon. For now, we only start the server.

-module(ppool sup).
-export([start_link/3, init/1]).
-behavior(supervisor).

start_link(Name, Limit, MFA) ->
supervisor:start link(?MODULE, {Name, Limit, MFA}).

init({Name, Limit, MFA}) ->

MaxRestart = 1,

MaxTime = 3600,

{ok, {{one_for all, MaxRestart, MaxTime},

[{serv,

{ppool serv, start link, [Name, Limit, self(), MFA]},
permanent,
5000, % Shutdown time
worker,

[ppool serv]}]}}.

And that’s about it. Note that the Name is passed to the server, along with
self(), the supervisor’s own pid. This will let the server call for the spawning
of the worker supervisor; the MFA variable will be used in that call to let the
simple_one_for_one supervisor know which kind of workers to run.

We’ll get to how the server handles everything in the next section.

For now, we’ll finish creating all of the application’s supervisors by writing
ppool_worker_sup, which is in charge of all the workers.

-module(ppool worker sup).
-export([start_link/1, init/1]).
-behavior(supervisor).

start_link(MFA = { , , }) ->
supervisor:start_link(?MODULE, MFA).

init({M,F,A}) ->
MaxRestart = 5,
MaxTime = 3600,
{ok, {{simple_one_for one, MaxRestart, MaxTime},
[{ppool_worker,
{M,F,A},
temporary, 5000, worker, [M]}]}}.

This is simple stuff. We
picked a simple_one_for_one
supervisor because workers
could be added in very high
numbers with a requirement
for speed, plus we want to
restrict their type. All the
workers are temporary, and
because we use an {M,F,A}
tuple to start the worker, we
can use any kind of OTP
behavior there.

Building an Application 289

290

The reason to make the workers temporary is twofold. First, we cannot
know for sure whether they need to be restarted in case of failure, or what
kind of restart strategy would be required for them. Second, the pool might
be useful only if the worker’s creator can have access to the worker’s pid,
depending on the use case. For this to work in any safe and simple man-
ner, we can’t just restart workers as we please without tracking their creator
and sending it a notification. This would make things quite complex just to
grab a pid. Of course, you are free to write your own ppool_worker_sup that
doesn’t return pids but restarts them. There’s nothing inherently wrong in
that design.

Working on the Workers

Chapter 18

The pool server is the most complex part of the application, where all the
clever business logic happens. Here’s a reminder of the operations we must
support:

e Running a task in the pool and indicating that it can’t be started if the
pool is full

e Running a task in the pool if there’s room; otherwise, keeping the call-
ing process waiting while the task is in the queue, until it can be run

e Running a task asynchronously in the pool, as soon as possible; if no
place is available, queuing it up and running it whenever

The first operation will be done by a function named run/2, the second
by sync_queue/2, and the last one by async_queue/2.

-module(ppool serv).
-behavior(gen_server).
-export([start/4, start link/4, run/2, sync_queue/2, async_queue/2, stop/1]).
-export([init/1, handle_call/3, handle cast/2, handle_info/2,
code_change/3, terminate/2]).

start(Name, Limit, Sup, MFA) when is_atom(Name), is_integer(Limit) -»>
gen_server:start({local, Name}, ?MODULE, {Limit, MFA, Sup}, []).

start_link(Name, Limit, Sup, MFA) when is_atom(Name), is_integer(Limit) ->
gen_server:start link({local, Name}, ?MODULE, {Limit, MFA, Sup}, []).

run(Name, Args) ->
gen_server:call(Name, {run, Args}).

sync_queue(Name, Args) ->
gen_server:call(Name, {sync, Args}, infinity).

async_queue(Name, Args) ->
gen_server:cast(Name, {async, Args}).

stop(Name) ->
gen_server:call(Name, stop).

For start/4 and start_link/4, Args will be the additional arguments passed
to the A part of the {M,F,A} tuple sent to the supervisor. Note that for the syn-
chronous queue, we'’ve set the waiting time to infinity.

As mentioned earlier, we must start the supervisor from within the server.
If you're adding the code as we go, you might want to include an empty
gen_server template (or use the completed file available online) to follow
along, because we’ll do things on a per-feature basis, rather than from top
to bottom.

The first thing we do is handle the creation of the supervisor. As
discussed in “Dynamic Supervision” on page 277, we do not need a
simple_one_for_one for cases where only a few children will be added, so
supervisor:start_child/2 ought to do it. We’ll first define the child specifica-
tion of the worker supervisor.

%% The friendly supervisor is started dynamically!
-define(SPEC(MFA),

{worker_sup,

{ppool_worker sup, start link, [MFA]},

permanent,

10000,

supervisor,

[ppool worker sup]l}).

We can then define the inner state of the server. We know we will need
to track a few pieces of data: the number of processes that can be running,
the pid of the supervisor, and a queue for all the jobs. To know when a
worker’s finished running and to fetch one from the queue to start it, we
will need to track each worker from the server. The sane way to do this is
with monitors, so we’ll also add a refs field to our state record to keep all
the monitor references in memory.

-record(state, {limit=0,
sup,
refs,
queue=queue:new()}).

With this ready, we can start implementing the init function. The natu-
ral thing to try is this:

init({Limit, MFA, Sup}) ->
{ok, Pid} = supervisor:start child(Sup, ?SPEC(MFA)),
{ok, #state{limit=Limit, refs=gb sets:empty()}}.

Building an Application 291

However, this code is wrong. With gen_* behaviors, the process that
spawns the behavior waits until the init/1 function returns before resuming
its processing. This means that by calling supervisor:start_child/2 in there,
we create the following deadlock:

(waits) ir\i"/'
start_child

Both processes will keep waiting for each other until there is a crash.
The cleanest way to get around this is to create a special message that the
server will send to itself and later handle in handle_info/2 as soon as the init
function has returned (and the pool supervisor has become free):

init({Limit, MFA, Sup}) ->
%% We need to find the Pid of the worker supervisor from here,
%% but alas, this would be calling the supervisor while it waits for us!
self() ! {start worker supervisor, Sup, MFA},
{ok, #state{limit=Limit, refs=gb sets:empty()}}.

This one is cleaner. We can then head out to the handle_info/2 function
and add the following clauses:

handle_info({start worker supervisor, Sup, MFA}, S = #state{}) ->
{ok, Pid} = supervisor:start child(Sup, ?SPEC(MFA)),
{noreply, St#state{sup=Pid}};

handle_info(Msg, State) ->
io:format("Unknown msg: ~p~n", [Msg]),
{noreply, State}.

The first clause is the interesting one here. We find the message we sent
ourselves (which will necessarily be the first one received), ask the pool
supervisor to add the worker supervisor, track this pid, and voila! Our tree
is now fully initialized. You can try compiling everything to make sure no
mistake has been made so far. Unfortunately, we still can’t test the applica-
tion because too much stuff is missing.

292 Chapter 18

Don’t worry if you do not like the idea of building the whole application before run-
ning it. Things are being done this way to show a cleaner reasoning of the whole
thing. While I did have the general design in mind (the same one I illustrated ear-
lier), I started writing this pool application in a little test-driven manner, with a few
lests here and there and a bunch of refactoring to get everything to a functional state.
Few Erlang programmers (much like programmers of most other languages) will be
able to produce production-ready code on their first try, and the author is not as clever
as the examples might make him seem.

Now that we’ve solved this bit, we’ll take care of the run/2 function. This
one is a synchronous call with the message of the form {run, Args} and works
as follows:

handle call({run, Args}, From, S = #state{limit=N, sup=Sup, refs=R}) when N > 0 ->
{ok, Pid} = supervisor:start child(Sup, Args),
Ref = erlang:monitor(process, Pid),
{reply, {ok,Pid}, S#state{limit=N-1, refs=gb _sets:add(Ref,R)}};
handle_call({run, _Args}, From, S=#state{limit=N}) when N =< 0 ->
{reply, noalloc, S};

We have a long function head, but we can see most of the management
taking place there. Whenever there are places left in the pool (the origi-
nal limit N being decided by the programmer adding the pool in the first
place), we accept to start the worker. We then set up a monitor to know
when it’s done, store all of this in our state, decrement the counter, and off
we go. In the case no space is available, we simply reply with noalloc.

The calls to sync_queue/2 will give a very similar implementation:

handle_call({sync, Args}, _From, S = #state{limit=N, sup=Sup, refs=R}) when N > 0 ->
{ok, Pid} = supervisor:start child(Sup, Args),
Ref = erlang:monitor(process, Pid),
{reply, {ok,Pid}, S#state{limit=N-1, refs=gb _sets:add(Ref,R)}};
handle_call({sync, Args}, From, S = #state{queue=0}) ->
{noreply, S#state{queue=queue:in({From, Args}, 0)}};

If there is space for more workers, then the first clause will do exactly
the same thing as we did for run/2. The difference comes in the case where
no workers can run. Rather than replying with noalloc as we did with run/2,
this one doesn’t reply to the caller, keeps the From information, and queues
it for a later time when there is space for the worker to be run. We’ll see
how we dequeue workers and handle them soon enough, but for now, we’ll
finish the handle_call/3 callback with the following clauses:

handle_call(stop, _From, State) ->
{stop, normal, ok, State};

handle call(_Msg, From, State) -»>
{noreply, State}.

Building an Application 293

These handle the unknown cases and the stop/1 call. We can now focus
on getting async_queue/2 working. Because async_queue/2 basically does not
care when the worker is run and expects absolutely no reply, we’ll make it a
cast rather than a call. You’ll find the logic of it very similar to the two pre-
vious options.

handle _cast({async, Args}, S=#state{limit=N, sup=Sup, refs=R}) when N > 0 ->
{ok, Pid} = supervisor:start child(Sup, Args),
Ref = erlang:monitor(process, Pid),
{noreply, S#state{limit=N-1, refs=gb sets:add(Ref,R)}};

handle _cast({async, Args}, S=#state{limit=N, queue=Q}) when N =< 0 ->
{noreply, S#state{queue=queue:in(Args,Q)}};

%% Not going to explain the one below!

handle cast(_Msg, State) -»>
{noreply, State}.

Again, the only big difference apart from not replying is that when
there is no place left for a worker, it is queued. This time though, we have
no From information and just send the worker to the queue without it. The
limit doesn’t change in this case.

When do we know it’s time to dequeue something? Well, we have moni-
tors set all over the place, and we’re storing their references in a gb_sets.
Whenever a worker goes down, we’re notified of it. Let’s work from there.

handle_info({'DOWN', Ref, process, Pid, _}, S = #state{limit=L, sup=Sup, refs=Refs}) -»>
io:format("received down msg~n"),
case gb_sets:is_element(Ref, Refs) of
true ->
handle_down worker(Ref, S);
false -> %% not our responsibility
{noreply, S}
end;
handle_info({start_worker_supervisor, Sup, MFA}, S = #state{}) ->

handle_info(Msg, State) -»

In this snippet, we make sure the 'DOWN' message we get comes from a
worker. If it doesn’t come from one (which would be surprising), we just
ignore it. However, if the message really is what we want, we call a function
named handle down worker/2:

handle_down worker(Ref, S = #state{limit=L, sup=Sup, refs=Refs}) ->
case queue:out(S#state.queue) of
{{value, {From, Args}}, 0} ->
{ok, Pid} = supervisor:start child(Sup, Args),
NewRef = erlang:monitor(process, Pid),
NewRefs = gb sets:insert(NewRef, gb sets:delete(Ref,Refs)),
gen_server:reply(From, {ok, Pid}),
{noreply, Ststate{refs=NewRefs, queue=Q}};

294 Chapter 18

{{value, Args}, Q} ->
{ok, Pid} = supervisor:start child(Sup, Args),
NewRef = erlang:monitor(process, Pid),
NewRefs = gb sets:insert(NewRef, gb_sets:delete(Ref,Refs)),
{noreply, Ststate{refs=NewRefs, queue=Q}};
{empty, _} ->
{noreply, Ststate{limit=L+1, refs=gb sets:delete(Ref,Refs)}}
end.

This is quite a complex function. Because our worker is dead, we can
look in the queue for the next one to run. We do this by popping one ele-
ment out of the queue and looking at the result. If there is at least one
element in the queue, it will be of the form {{value, Item}, NewQueue}. If the
queue is empty, it returns {empty, SameQueue}. Furthermore, we know that
when we have the value {From, Args}, it means this came from sync_queue/2;
otherwise, it came from async_queue/2.

Both cases where the queue has tasks in it will behave roughly the same:
A new worker is attached to the worker supervisor, and the reference of the
old worker’s monitor is removed and replaced with the new worker’s monitor
reference. The only different aspect is that in the case of the synchronous
call, we send a manual reply, and in the other case, we can remain silent.
In the case the queue was empty, we need to do nothing but increment the
worker limit by one.

The last thing to do is add the standard OTP callbacks:

code_change(_0ldVsn, State, _Extra) ->
{ok, State}.

terminate(_Reason, State) -»>
ok.

That’s it—our pool is ready to be used! It is a very unfriendly pool,
though. All the functions we need to use are scattered throughout the code.
Some are in ppool_supersup; some are in ppool_serv. Also, the module names
are long for no reason. To make things nicer, add the following API module
(just abstracting the calls away) to the application’s directory:

%%% API module for the pool
-module(ppool).
-export([start link/o0, stop/0, start pool/3,
run/2, sync_queue/2, async_queue/2, stop_pool/1]).

start_link() -»
ppool supersup:start link().

stop() ->
ppool supersup:stop().

Building an Application 295

start_pool(Name, Limit, {M,F,A}) ->
ppool supersup:start _pool(Name, Limit, {M,F,A}).

stop_pool(Name) ->
ppool supersup:stop pool(Name).

run(Name, Args) ->
ppool_serv:run(Name, Args).

async_queue(Name, Args) ->
ppool_serv:async_queue(Name, Args).

sync_queue(Name, Args) ->
ppool serv:sync_queue(Name, Args).

And now we’re finished with our pool for real!

POOL LIMITS

You'll have noticed that our process pool doesn't limit the number of items that can
be stored in the queue. In some cases, a real server application will need to put
a ceiling on how many things can be queued to avoid crashing when too much
memory is used, although the problem can be circumvented if you use run/2 and
sync_queue/2 only with a fixed number of callers (if all content producers are stuck
waiting for free space in the pool, they stop producing so much content in the first
place).

Adding a limit to the queue size is left as an exercise to the reader, but fear
not because it is relatively simple to do. You will need to pass a new parameter to
all functions up to the server, which will then check the limit before any queuing.

Additionally, to control the load of your system, you sometimes want to
impose limits closer to their source by using synchronous calls. Synchronous calls
allow you to block incoming queries when the system is getting swamped by
producers faster than consumers. This approach generally helps keep it more
responsive than a free-for-all load.

Writing a Worker

Look at me go—I'm lying all the time! The pool isn’t really ready to be used.
We don’t have a worker at the moment. I forgot. This is a shame because
we all know that in the chapter about writing a concurrent application
(Chapter 13), we built a nice task reminder. It apparently isn’t enough for
me, so for this example, we’ll write a nagger.

It will basically be a worker for each task, and the worker will keep nag-
ging us by sending repeated messages until a given deadline.

296 Chapter 18

The nagger will be able to take the following elements:

e A time delay for which to nag
e An address (pid) to say where the messages should be sent

e A nagging message to be sent in the process mailbox, including the
nagger’s own pid to be able to call

e A stop function to say the task is done and that the nagger can stop
nagging

Here we go:

%% demo module, a nagger for tasks,

%% because the previous one wasn't good enough

-module(ppool nagger).

-behavior(gen_server).

-export([start link/4, stop/1]).

-export([init/1, handle_call/3, handle_cast/2,
handle_info/2, code_change/3, terminate/2]).

start_link(Task, Delay, Max, SendTo) ->
gen_server:start link(?MODULE, {Task, Delay, Max, SendTo} , []).

stop(Pid) -»>
gen_server:call(Pid, stop).

Yes, we’re going to be using yet another gen_server. You’ll find out that
people use them all the time—sometimes even when not appropriate! It’s
important to remember that our pool can accept any OTP-compliant pro-
cess, not just a gen_server.

init({Task, Delay, Max, SendTo}) ->
{ok, {Task, Delay, Max, SendTo}, Delay}.

This just takes the basic data and forwards it:

e Task is the thing to send as a message.

Delay is the time spent in between each sending.

Max is the number of times it’s going to be sent.

SendTo is a pid or a name where the message will go.

Note that Delay is passed as a third element of the tuple, which means
the timeout will be sent to handle_info/2 after Delay milliseconds.
Given our API, most of the server is rather straightforward.

%%% OTP Callbacks
handle call(stop, _From, State) -»
{stop, normal, ok, State};

Building an Application 297

298

handle call(_Msg, From, State) -»>
{noreply, State}.

handle_cast(_Msg, State) -»>
{noreply, State}.

handle_info(timeout, {Task, Delay, Max, SendTo}) ->
SendTo ! {self(), Task},

if Max =:= infinity ->
{noreply, {Task, Delay, Max, SendTo}, Delay};
Max =< 1 ->
{stop, normal, {Task, Delay, 0, SendTo}};
Max > 1 ->
{noreply, {Task, Delay, Max-1, SendTo}, Delay}
end.

%% We cannot use handle_info below: if that ever happens,
%% we cancel the timeouts (Delay) and basically zombify
%% the entire process. It's better to crash in this case.
%% handle_info(_Msg, State) ->

%% {noreply, State}.

code_change(_0ldVsn, State, Extra) -»>
{ok, State}.

terminate(_Reason, _State) -> ok.

The only somewhat complex part here lies in the handle_info/2 function.
As seen back in Chapter 14’s introduction to gen_server, every time a time-
out is hit (in this case, after Delay milliseconds), the timeout message is sent
to the process. Based on this, we check how many nags were sent to know if
we should send more or just quit.

With this worker complete, we can actually try this process pool!

Run Pool Run

Chapter 18

We can now play with the pool. Compile all the files and start the pool top-
level supervisor itself:

$ erlc *.erl
$ erl
. <snip> ...
1> ppool:start_link().
{ok,<0.33.0>}

From this point, we can try a bunch of different features of the nagger
as a pool:

2> ppool:start_pool(nagger, 2, {ppool_nagger, start_link, []}).
{ok,<0.35.0>}

3> ppool:run(nagger, ["finish the chapter!", 10000, 10, self()]).
{0k,<0.39.0>}
4> ppool:run(nagger, ["Watch a good movie", 10000, 10, self()]).
{ok,<0.41.05}
5> flush().
Shell got {<0.39.0>,"finish the chapter!"}
Shell got {<0.39.0>,"finish the chapter!"}
ok
6> ppool:run(nagger, ["clean up a bit", 10000, 10, self()]).
noalloc
7> flush().
Shell got {<0.41.0>,"Watch a good movie"}
Shell got {<0.39.0>,"finish the chapter!"}
Shell got {<0.41.0>,"Watch a good movie"}
Shell got {<0.39.0>,"finish the chapter!"}
Shell got {<0.41.0>,"Watch a good movie"}
. <snip> ...

Everything seems to work rather well for the synchronous nonqueued
runs. The pool is started, tasks are added, and messages are sent to the
right destination. When we try to run more tasks than allowed, allocation
is denied to us. No time for cleaning up, sorry! The others still run fine
though.

The ppool is started with start_1ink/o. If at any time you make an error in the shell,
you take down the whole pool and need to start over again. This issue will be

addressed in Chapter 19.

Now let’s try the queuing facilities (asynchronous):

8> ppool:async_queue(nagger, ["Pay the bills", 30000, 1, self()]).

ok
9> ppool:async_queue(nagger, ["Take a shower", 30000, 1, self()]).
ok
10> ppool:async_queue(nagger, ["Plant a tree", 30000, 1, self()]).
ok

O ... <wait a bit> ...
received down msg
received down msg
11> flush().
Shell got {<0.70.0>,"Pay the bills"}
Shell got {<0.72.0>,"Take a shower"}
® ... <wait some more> ...
received down msg
12> flush().
Shell got {<0.74.0>,"Plant a tree"}
ok

Great! So the queuing works. The log here doesn’t show everything in
avery clear manner (although you should wait at @ and @ for best effect).

Building an Application 299

300

Chapter 18

What happens is that the two first naggers run as soon as possible. Then the
worker limit is hit, and we need to queue the third one (planting a tree).
When the nags for paying the bills are finished, the tree nagger is sched-
uled and sends the message a bit later.

The synchronous one will behave differently:

13> ppool:sync_queue(nagger, ["Pet a dog", 20000, 1, self()]).
{0k,<0.108.0>}

14> ppool:sync_queue(nagger, ["Make some noise", 20000, 1, self()]).
{0k,<0.110.05}

15> ppool:sync_queue(nagger, ["Chase a tornado”, 20000, 1, self()]).
received down msg

{ok,<0.112.05}

received down msg

16> flush().

Shell got {<0.108.0>,"Pet a dog"}

Shell got {<0.110.0>,"Make some noise"}

ok

received down msg

17> flush().

Shell got {<0.112.05,"Chase a tornado"}

ok

Again, the log isn’t as clear as if you tried it yourself (which is recom-
mended). The basic sequence of events is that two workers are added to the
pool. They aren’t finished running, and when we try to add a third one,
the shell gets locked up until ppool_serv (under the process name nagger)
receives a worker’s down message (received down msg). After this, our call to
sync_queue/2 can return and give us the pid of our brand-new worker.

We can now get rid of the pool as a whole:

18> ppool:stop_pool(nagger).
ok

19> ppool:stop().

** exception exit: killed

All pools will be terminated if you decide to just call ppool:stop(), but
you’ll receive a bunch of error messages. This is because we brutally kill the
ppool_supersup process, rather than taking it down correctly, which in turns
crashes all child pools. In Chapter 19, I will cover how to terminate the pool
cleanly.

Cleaning the Pool

In this chapter, we managed to write a pro-
cess pool to do some resource allocation in
a somewhat simple manner. Everything can & %
be handled in parallel, can be limited, and %@ o
can be called from other processes. Pieces

of your application that crash can, with the

help of supervisors, be replaced transpar-

ently without breaking the entirety of it.

Once the pool application was ready, we

even rewrote a surprisingly large part of our

reminder app with very little code.

Failure isolation for a single computer has been taken into account, and
concurrency is handled. We now have enough architectural blocks to write
some pretty solid server-side software, even though we still haven’t really
covered good ways to run them from the shell.

Chapter 19 will show how to package the ppool application into a
real OTP application, ready to be shipped and used by other products.
Although we haven’t explored all the advanced features of OTP, you're now
on a level where you should be able to understand most intermediate to
somewhat advanced discussions on OTP and Erlang (the nondistributed
part, at least). That’s pretty good!

Building an Application 301

BUILDING APPLICATIONS
THE OTP WAY

After seeing our whole application’s supervision tree
start at once with a simple function call, you might
wonder why we would want to package it in any way.
What could be simpler than a single function call?

The concepts behind supervision trees are
a bit complex already, and I could see myself
just starting all of these trees and subtrees
manually with a script when the system is first
set up. Then after that, I would be free to go
outside and try to find clouds that look like
animals for the rest of the afternoon.

This is entirely true, yes. This is an accept-
able way to do things (especially the part about
clouds, because these days, everything is about

cloud computing). However, like most abstractions made by programmers
and engineers, OTP applications are the result of many ad hoc systems
being generalized and made clean.

If you were to make an array of scripts and commands to start your
supervision trees, and other developers you work with had their own, you
would quickly run into massive issues. Then someone would ask something
like, “Wouldn’t it be nice if everyone used the same kind of system to start
everything? And wouldn’t it even be nicer if they all had the same kind of
application structure?”

OTP applications attempt to solve this type of problem by providing
the following:

e A directory structure

e A way to handle configurations

e A way to create environment variables and configurations

e Ways to start and stop applications while respecting dependencies

e Alot of safe control in detecting conflicts and handling live upgrades
without shutting your applications down

So unless you don’t want these aspects (nor the niceties they give, like
consistent structures and tools), this chapter should be of some interest to
you, as it introduces all the necessary concepts to get a good understanding
of OTP applications.

My Other Car Is a Pool

Merely using OTP components isn’t enough to guarantee we're creating an
OTP application, much like putting pieces of humans together won’t guaran-
tee you get a human being instead of some kind of Frankenstein’s monster.
We’re going to reuse the ppool application we wrote in Chapter 18 and turn
itinto a proper OTP application.

The first step in doing so is to copy all the ppool-related files into a neat
directory structure:

ebin/
include/
priv/
src/
- ppool.erl
- ppool_sup.erl
ppool supersup.erl
- ppool_worker sup.erl
- ppool serv.erl
- ppool_nagger.erl
test/
- ppool_tests.erl

304 Chapter 19

Most directories will remain empty for now. As explained in Chapter 13,
the ebin/ directory will hold compiled files; the include/ directory will con-
tain public Erlang header (.A1) files; priv/will hold executables, other pro-
grams, and various specific files needed for the application to work; and src¢/
will hold the Erlang source files you will need (as well as private .Arl files).

You’ll note that we added a
test/ directory, which holds the test
file ppool_tests.erl that I wrote for
Chapter 18, if you downloaded the
related code. Tests are somewhat com-
mon, but you don’t necessarily want
them distributed as part of your appli-
cation. You just need the tests when
developing your code and justifying
yourself to your manager (“Tests pass.
I don’t understand why the app killed people.”). Other directories end up
being added as required, depending on the case. One example is the doc/
directory, created whenever you have EDoc documentation (which is a way
to annotate Erlang code to generate documentation) to add to your appli-
cation. For more information on EDoc, see http://www.erlang.org/doc/apps/
edoc/chapter.html.

The four basic directories to have are ebin/, include/, priv/, and src/.
These are common to pretty much every OTP application, although only
ebin/ and priv/ will be exported when real OTP systems are deployed.

The Application Resource File

Where do we go from here? Well, the first thing to do is add an application
file. This file will tell the Erlang VM what the application is, where it begins,
and where it ends. This file lives in the ebin/ directory, along with all the
compiled modules.

This file is usually named yourapp.app (in our case ppool.app) and con-
tains a bunch of Erlang terms defining the application in a way that the VM
can understand. (The VM is pretty bad at guessing stuff!)

Some people prefer to keep the application file outside ebin/ and instead have a file
named myapp.app.src as part of scc/. Whatever build system they use then copies

this file over to ebin/ or even generates an app file in order to keep everything clean.

The basic structure of the application file is simply as follows:

{application, ApplicationName, Properties}.

ApplicationName is an atom, and Properties is a list of {Key, Value} tuples
describing the application. They’re used by OTP to figure out what your
application does. They're all optional, but they can be useful to debug run-
ning systems and make sure different applications interact in an orderly

Building Applications the OTP Way 305

manner. They’re also necessary for some tools. We’ll look at a subset of
them for now, and introduce the others as we need them.

{description, "Some description of your application"}
This gives the system a short description of the application. The field
defaults to an empty string. Although this field is optional, I suggest
always defining a description, if only because it makes things easier
to read.

{vsn, "1.2.3"}
This is the version of your application. This string can take any for-
mat you want. It’s usually a good idea to stick to a scheme of the form
Major.Minor.Patch, or something similar. When you start using tools to
help with upgrades and downgrades, this string is used to identify your
application’s version.

{modules, Modulelist}
This contains a list of all the modules that your application introduces
to the system. A module always belongs to at most one application and
cannot be present in two applications’ app files at once. This list lets the
system and tools look at dependencies of your application, making sure
everything is where it needs to be and that you have no conflicts with
other applications already loaded in the system. If you’re using a stan-
dard OTP structure and are using an Erlang build tool like rebar, this
is handled for you.

Rebar is an Erlang build tool used by the community in general. It understands the
principles behind OTP applications and can act the way Emakefiles do. It can also
fetch dependencies from git and mercurial repositories as needed.

{registered, AtomList}
This contains a list of all the names registered by the application. It
lets OTP know if there will be name clashes when you try to bundle a
bunch of applications together, but is entirely based on trusting the
developers to give good data. We all know this isn’t always the case, so
blind faith shouldn’t be used in this case, and some testing is always
recommended.

fenv, [{Key, Val}l}
This is a list of key/values that can be used as a configuration for your
application. They can be obtained at runtime by calling application:get_
env(Key) or application:get_env(AppName, Key). The former will try to find
the value in the application file of whatever application you are in at the
moment of the call. The latter allows you to specify a particular appli-
cation. These values can be overwritten as required (either at boot
time or by using application:set_env(Application, Key, Value)). Because

306 Chapter 19

it’s possible to overwrite these values, the env part of the application
resource file is usually used for default values. This helps make the
application usable with minimal user configuration.

All in all, this is a pretty useful place to store configuration data
rather than having a bunch of configuration files to read in some arbi-
trary format, without really knowing where to store them and whatnot.
People often tend to roll their own system to handle it anyway, since not
everyone is a fan of using Erlang syntax in their configuration files.

{maxT, Milliseconds}
This is the maximum time that the application can run, after which
it will be shut down. This is a rarely used item. Milliseconds defaults to
infinity, so you often don’t need to bother with this one at all.

{applications, AtomList}
This is a list of applications on which yours depends. The application
system of Erlang will make sure they were loaded and/or started before
allowing yours to do so. All applications depend at least on kernel and
stdlib, but if your application were to depend on ppool being started,
then you should add ppool to the list. It is important to add your depen-
dencies, given OTP has mechanisms to know whether an application
can be loaded or started based on this list. Not adding them is doing a
disservice to yourself.

Yes, the standard library and the VM's kernel are applications themselves, which
means that Erlang is a language used to build OTP, but whose runtime environment
depends on OTP to work. I’s circular. This gives you some idea of why the language
is officially named Erlang/OTP.

{mod, {CallbackMod, Args}}
This defines a callback module for the application, using the applica-
tion behavior (described shortly). This tells OTP that when starting
your application, it should call CallbackMod:start(normal, Args). It will also
call CallbackMod:stop(Args) when stopping it. People will tend to name
CallbackMod after their application.

And this covers most of what we need for now (and for most applica-
tions you’ll ever write).

Converting the Pool

Now let’s put this into practice! We’ll turn the ppool set of processes from
Chapter 18 into a basic OTP application. The first step for this is to redis-
tribute everything under the correct directory structure:

ebin/
include/

Building Applications the OTP Way 307

308

Chapter 19

priv/

src/

- ppool.erl

- ppool_serv.erl

- ppool sup.erl

- ppool supersup.erl

- ppool_worker sup.erl
test/

- ppool tests.erl
- ppool nagger.erl

You'll notice we moved the ppool_nagger.erl to the test directory. This
is for a good reason: It is not much more than a demo case and will have
nothing to do with our application, but is still necessary for the tests. We
can actually try it later on once the app has been packaged to make sure
everything still works, but for the moment, it’s kind of useless.

We’ll add an Emakefile (appropriately named Emakefile, placed in the
app’s base directory) to help us compile and run things later on.

"src/*", [debug_info, {i,"include/"}, {outdir, "ebin/"}]}.
{"test/*", [debug_info, {i,"include/"}, {outdir, "ebin/"}]}.

This just tells the compiler to include debug_info for all files in sr¢/ and
test/, go look in the include/ directory (if it’s ever needed), and then shove
the files up its ebin/ directory.

Speaking of which, let’s add the app file in the ebin/ directory.

{application, ppool,

[{vsn, "1.0.0"},

{modules, [ppool, ppool serv, ppool sup, ppool supersup, ppool worker sup]l},
{registered, [ppooll},

]}{mod, {ppool, []}}

This one contains only fields we find necessary; env, maxT, and applications
are not used.

We now need to change how the callback module (ppool) works. How
do we do that exactly?

First, let’s see the application behavior.

Even though all applications depend on the kernel and the stdlib applications, 1
haven’t included them. ppool will still work because starting the Erlang VM starts
these applications automatically. You might feel like adding them for the sake of
explicitness, but there’s no need for it right now.

The Application Behavior

Remember that behaviors are always
about splitting generic code away from
specific code. They denote the idea
that your specific code gives up its own
execution flow and inserts itself as a
bunch of callbacks to be used by the
generic code. To put it simply, behav-
iors handle the boring parts while

you connect the dots. In the case of
applications, this generic part is quite
complex and not nearly as simple as
other behaviors.

Whenever the VM first starts up, a process called the application controller
is started (with the name application_controller). It starts all other applica-
tions and sits on top of most of them. In fact, you could say the application
controller acts a bit like a supervisor for all applications. We’ll cover the
available supervision strategies in the next section.

e w

THE EXCEPTION THAT CONFIRMS THE RULE

The application controller technically doesn't sit over all the applications. One
exception is the kernel application, which itself starts a process named user. The
user process acts as a group leader to the application controller, and the kernel
application thus needs some special treatment. We don't need to care about this,
but | felt like it should be included for the sake of precision.

In Erlang, the /O system depends on a concept called a group leader. The
group leader represents standard input and output and is inherited by all processes.
There is a hidden 1/O protocol (http://erlang.org/doc/apps/stdlib/io_protocol.
html) that the group leader and any process-calling 1/O functions use to communi-
cate. The group leader then takes the responsibility of forwarding these messages
to whatever 1/O channels there are, weaving some magic that doesn’t concern us
within the confines of this text.

When someone decides to start an application, the application
controller (often referred to as ACin OTP parlance) starts an application
master. The application master is two processes taking charge of each indi-
vidual application. They set up the application and act like 2 middleman
between your application’s top supervisor and the application controller.
OTP is a bureaucracy, and we have many layers of middle management!

I won’t get into the details of what happens in there, as most Erlang devel-
opers never actually need to care about this, and very little documenta-
tion exists (the code is the documentation). Just know that the application

Building Applications the OTP Way 309

master acts a bit like the app’s nanny (well, a pretty insane nanny). It looks
over its children and grandchildren, and when things go awry, it goes ber-
serk and terminates its whole family tree. Brutally killing children is a com-
mon topic among Erlangers.

An Erlang VM with a bunch of applications might look a bit like this:

application controller
application master application master

application master

Up to now, we've been looking at the generic part of the behavior, but
what about the specific stuff? After all, this is all we actually have to pro-
gram. Well, the application callback modul