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There are more applications running in the cloud than there are ones that run well there. If you’re 
considering taking advantage of cloud technology for your company’s projects, this practical guide is an 
ideal way to understand the best practices that will help you architect applications that work well in the 
cloud, no matter which vendors, products, or languages you use. 

Architects and lead developers will learn how cloud applications should be designed, how they fit into a 
larger architectural picture, and how to make them operate efficiently. Authors Kyle Brown, Bobby Woolf, 
and Joseph Yoder take you through the process step-by-step.

•	 Explore proven architectural practices  
for developing applications for the cloud

•	 Understand why some architectural choices are  
better suited than others for applications intended  
to run on the cloud

•	 Learn design and implementation techniques for  
developing cloud applications

•	 Select the most appropriate cloud adoption patterns  
for your organization

•	 See how all potential choices in application design relate  
to each other through the connections of the patterns

•	 Chart your own course in adopting the right strategies  
for developing application architectures for the cloud
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Cloud Application Architecture Patterns

“In your hands you now hold a well-written, eminently actionable,  
and incredibly comprehensive distillation of the industry’s proven and  
battle-hardened institutional knowledge, covering everything you need  
to know about architecting software-intensive systems for the cloud.”
Grady Booch, IBM Fellow and chief scientist for software engineering

“These three pattern champions have unsurprisingly written a collection  
of cloud application architecture patterns in a welcoming style that will 
make practitioners better architects and developers.”
Vaughn Vernon, leading domain-driven design practitioner and author



List of Patterns

Adapter Microservice (135) How can the
application take advantage of existing func‐
tionality without abandoning the microser‐
vices approach?

Aggregate (211) How do you tie together
the groups of tightly related concepts and
the values that belong within them in a sub‐
domain?

Anti-Corruption Layer (229) How can we
design the system so that the Bounded
Contexts (BCs) can interact without being
tightly coupled together?

Application Database (328) How should
a cloud-native application store the data it
uses so that it can run as a stateless applica‐
tion?

Application Package (62) What features of
a computer language ecosystem are required
to implement a Cloud Application?

Backend Service (106) How can multiple
applications share the same reusable func‐
tionality?

Big Ball of Mud (22) What is the simplest
possible architecture for an application that
helps get something working quickly to get
needed feedback?

Bounded Context (201) How do you clearly
define the logical boundaries (edges) of a

domain and subdomain(s) where particular
terms and rules apply?

Browser Application (410) What is the
easiest, most universal Client Application
for any user that does not assume a specific
hardware or software configuration?

Client Application (406) How can an end
user take advantage of the services provided
by an application running in the cloud?

Cloud Application (6) How can I build
applications to take the maximum advantage
of all the features of the cloud for the best
future proofing and agility?

Cloud Database (311) How should a cloud-
native application store data persistently in a
cloud environment?

Cloud-Native Architecture (58) How can
I architect an application to take maximum
advantage of the cloud platform it will run
on?

Columnar Database (356) How can an
application most efficiently store data for
performing analytics, such as in a data ware‐
house?

Command-Line Interface (437) How can
an end user automate activities like bulk
loads, bulk changes, or scheduled execution
of activities using the services provided by
an application running in the cloud?
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Command Query Responsibility Segrega‐
tion (CQRS) (382) How do you optimize
throughput for query and updates by multi‐
ple clients that have numerous cross-cutting
views of the data?

Configuration Database (323) How can a
cloud service store its service state such that
all of the nodes in the service can share and
access the state?

Containerize the Application (478) How
can an application be packaged to facilitate
greater deployment density and platform
portability?

Data Module (366) How can I align my data
model with my application model so that
both are easier to maintain and can evolve
quickly?

Database-as-a-Service (378) How does an
application have access to an Application
Database?

Dispatcher (140) How can a client access
a microservices application through a
channel-specific service interface when the
business functionality is spread across an
evolving set of domain-specific APIs?

Distributed Architecture (38) How can I
architect my application so that parts of it
can be developed, deployed, and run inde‐
pendently?

Document Database (338) How can an
application most efficiently store and
retrieve data when the future structure of
the data is not well known?

Domain Event (193) How do you model
those aspects of a design that correspond to
things that happen during the various sce‐
narios encountered by the system?

Domain Microservice (130) How should a
set of microservices in an architecture pro‐
vide the business functionality for an appli‐
cation?

Domain Service (222) How do you model
those operations within a subdomain that
do not belong to a specific Entity or Aggre‐
gate?

Event (255) How do you represent a change
in one component to be communicated to
other components?

Event API (274) How can the reactive
components in an event-driven architecture
know what events to expect?

Event Backbone (279) How can reactive
components receive the events they are
interested in without being coupled directly
to the event notifiers that generate the
events?

Event Choreography (246) When a change
occurs in one component, how can a vari‐
able number of other components react
accordingly?

Event Notifier (269) How and when should
a component announce changes to other
components?

Event Sourcing (289) As an application’s
state changes constantly and unpredictably
due to evolving conditions, how can you
audit the history that created the current
state?

Event Storming (189) How do you get the
stakeholders to understand and describe the
elements and events around the domain and
subdomain?

External Configuration (97) How can I
build my application once and yet be able to
deploy it to multiple environments that are
configured differently?

Extract Component (535) How do you sep‐
arate loosely related parts of the code in our
monolith into distinct deployable units?

Graph Database (351) How can an appli‐
cation most efficiently store and retrieve
interrelated data entities by navigating their
relationships?
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Hairline Cracks (530) How do you identify
the areas within a monolith application that
are candidate boundaries for microservices?

Interaction Model (448) How do you avoid
mixing business and presentation logic
inside your Client Application?

Key-Value Database (344) How can an
application most efficiently store and
retrieve independent data entities that are
always looked up by the same key?

Lift and Shift (470) What is the simplest
possible way to move an existing application
to the cloud?

Micro Frontend (426) How do you avoid
creating a monolithic Single-Page Applica‐
tion by placing too much functionality in a
common front-end?

Microservices (119) How do you architect
an application as a set of interconnected
modules that can be developed independ‐
ently?

Mobile Application (430) How do you pro‐
vide the most optimized user experience
on a mobile device and take advantage of
the features that make mobile computing
unique?

Model Around the Domain (183) How
can you encourage stakeholders to explain
enough of the domain requirements in a
way that reveals the relevant capabilities for
the application you are building?

Modular Monolith (29) How can I archi‐
tect my application to make it easier to
maintain and evolve quickly?

Monolith to Microservice Proxy (552) How
can developers change the code in the mon‐
olith to access and use the functionality that
was replaced with microservices?

New Features as Microservices (521) While
strangling a monolith, how do you avoid
adding new functionality to the monolith

that will later have to be modernized into
microservices?

Pave the Road (496) How can we encourage
teams to move to the cloud and adopt these
new technologies without letting each team
go in their own direction and work at cross
purposes?

Playback Testing (556) How do you ensure
that the new microservices architecture
maintains the same functionality as the
old monolithic system, especially when the
amount of detailed end-to-end application
knowledge of the existing application may
be limited?

Polyglot Persistence (374) How can an
application store its Data Modules in the
type of database that works best for the
application’s data structure and how it
accesses the data?

Polyglot Development (146) What com‐
puter language(s) should be used for imple‐
menting microservices?

Public API (443) How do you best enable
third-party applications to interact pro‐
grammatically with a Cloud Application?

Reactive Component (260) How can you
construct an application that can react to
events?

Refactor the Monolith (484) How can
I make an existing application easier for
multiple teams to maintain and able to
run effectively in a multi-computer environ‐
ment?

Refactor then Extract (542) How do we
address coupling within the monolith to
facilitate extraction into microservices?

Relational Database (333) How can an
application store well-structured data that it
needs to query dynamically?

Replace as Microservice (546) How can
we move complex and important pieces
of functionality that are tightly coupled in
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the monolith to microservices with minimal
impact?

Replicable Application (88) How can an
application run reliably on an unreliable
platform and scale to handle greater client
load the way the platform scales?

Replicated Database (316) How can a
Cloud Database provide the same quality of
service as a cloud-native application, with
the same availability, scalability, and perfor‐
mance as the application?

Repositories (215) How do we address
coupling within the monolith to facilitate
extraction into microservices?

Self-Managed Data Store (154) How does a
microservice store its state?

Service API (70) How should an applica‐
tion expose its functionality to clients that
want to use the application?

Service Orchestrator (160) How does a
microservice perform a complex task, one
that is performed in multiple steps?

Single-Page Application (421) How do you
design the front end of your application to
provide the best mix of client responsiveness
and server optimization?

Start Small (492) How can we start adopt‐
ing cloud services and moving existing
applications to the cloud or writing new
applications for the cloud, possibly using
microservices?

Stateless Application (80) How can an
application support concurrent requests effi‐
ciently and recover from failures without
losing data?

Strangle the Monolith (514) How can we
replace a monolithic architecture with a
microservices architecture while reducing
overall risk?

Transform Monolith into Microservices
(526) How do you keep the original mono‐
lithic system working while you substitute
pieces of functionality with microservices
over time?

Virtualize the Application (475) What is
the simplest possible way to package an
application so that it can easily be deployed
to traditional IT or to the cloud?

Web Form Application (414) How do you
build a user interface to provide basic func‐
tionality to the largest possible set of users
using the largest possible set of devices and
hardware?

List of Supporting Patterns
Application Services (205) How can you
protect the internals of a bounded context?

Context Map (206) How do you understand
the relationships and boundaries between
different domains within a complex system?

Macro Service (538) How can we extract
larger internally entangled components
from the monolith to implement with
microservices?

Repositories (215) How do you mediate
between an Aggregate’s entities and the per‐
sistent storage for their values?

Ubiquitous Language (186) How can
adopting shared vocabulary minimize com‐
munication gaps between stakeholders for
various domains and subdomains?

Wrap the Monolith (518) How do we
decouple the monolith and new microser‐
vices from one another during the migration
process?
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Praise for Cloud Application Architecture Patterns

I’ve witnessed the authors’ deep understanding of software architecture for decades.
Cloud Application Architecture Patterns distills that hard-won wisdom into a blueprint,

a practical guide for building and modernizing applications in the cloud. From
cloud-first thinking to microservices and event architecture design, this book is

an essential resource for developers and architects navigating the complexities
of modern software development.

—Kerrie Holley, author of LLMs and Generative AI for
Healthcare: The Next Frontier

Years of knowledge on migrating and evolutioning complex, high-volume systems,
distilled into an easy-to-digest format. If I had access to this material

at the start of my career, many projects would have been far easier!
—Diego Oliveira, software developer manager, Amazon

This book has been an absolute pleasure to read. Cloud Application Architecture Patterns
is exactly what I’ve been looking for to help level up my teams and tech leads.

I’ll be recommending it for our tech book club later this year.
—Michael Keeling, senior staff software engineer at Kiavi and

author of Design It!: From Programmer to Software Architect

These patterns give you a simple path to building cloud applications the right way.
A valuable read for developers at any skill level.

—Steve Berczuk, principal software engineer,
Cambridge Mobile Telematics



As someone who’s wrestled with the complexities of cloud application architecture, I can
confidently say this book is a game-changer. Brown, Woolf, and Yoder have delivered
a truly practical and insightful guide. It’s not just theory; it’s a roadmap. They expertly
break down proven architectural practices, clearly explaining why certain choices are
superior in the cloud. I particularly appreciated how they connected the dots between

different technical decisions and adoption patterns, showing how they all fit into a
cohesive strategy. Finally, a resource that empowers you to not just follow a template,

but to intelligently chart your own course. If you’re serious about building efficient,
robust cloud applications, this book is an absolute must-read.

—William A Brown, CEO, CIO, architect, cloud
application engineering, distinguished engineer emeritus, and coauthor of

SOA Governance: Achieving and Sustaining Business and IT Agility

This book will help architects to apply the right pattern in cloud architecture
development, as well as application modernization and migration.

—Elizabeth Koumpan, distinguished engineer, BPO CTO

This is probably the most comprehensive book covering end-to-end cloud architecture
that I have read. The chapters are easy to read and have a great flow.

This will be my go-to playbook for years to come.
—Jim Episale, IBM CIO chief integration

and data architect, STSM

This book belongs on the bookshelf of every software engineer and architect! It
was written by three seasoned software experts, each with decades of practical, real-

world experience. Unlike many vendor platform-centric publications, the authors are
delightfully technology-neutral. The book covers everything one needs to architect and

design modern cloud applications. The authors explain the principles and practices of
cloud architecture using well-established architecture patterns. I strongly recommend this

book for those developing new applications or migrating a legacy monolith to the cloud.
—Dave Thomas, CEO, Bedarra Corporation

This book is all about getting applications to work with the cloud,
rather than in spite of the cloud.

—Sam Newman, technologist, author of
Building Microservices and Monolith To Microservices
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Foreword

Make it work. Make it right. Make it fast.
—Kent Beck

Cloud computing isn’t a new thing. Long gone are the days of hype, and what we
are left with is reality. Many organizations have already taken the leap, and with
the emergence of cloud infrastructure in the mid to late 2000s more and more
of the software we write runs on the cloud. Against this backdrop, it might seem
odd therefore for me to talk about a book on cloud application architecture being
important, but it is.

Fundamentally, the easy stuff has already gone to the cloud. Those applications that
haven’t made the move haven’t done so because it is hard for them to make that jump.
The low hanging fruit has been picked—we’re now reaching into the high branches,
and we need help and support to get there. And this is where this book comes in.

Given how long we’ve had access to cloud infrastructure, it’s important to understand
why many applications still haven’t made the switch. Legal and regulatory restrictions
have long since ceased to be a roadblock in most situations. But fundamentally, a
lot of applications are not built with the cloud in mind, so a planned transition is
difficult.

Even for the applications that have made the move over, there is work to be done. As
Kyle, Bobby, and Joe put it, “There are more applications running in the cloud than
there are ones that run well in the cloud”. I don’t have a problem with a lift-and-shift
approach to get applications into the cloud—what I have always objected to is seeing
that as the entirety of the process, rather than an initial step. This book is packed
with concrete patterns and practice to help take an application that runs uneasily on
the cloud, to one that is cloud native—built with the ethos and understanding of its
environment, rather than some awkward, ungainly alien transplant. This book is all
about getting applications to work with the cloud, rather than in spite of the cloud.

xv



This is also not a book with purist intentions, looking at beautiful and elegant
architectural patterns without any care to wider context. The appropriate systems
architecture is always a function of tradeoffs. The authors acknowledge this well,
while at the same time giving you a pathway of where to go when the expedient
choices made to quickly get a new product off the ground need to give way to
something more appropriate for a longer-lived, cloud-based application.

In a book about tradeoffs, it can be easy for the reader to become overwhelmed
with choice. But the authors clearly lay out their thinking, the variety of choices that
exist, but then articulately distill this down with concrete advice. Those looking for
useful guidelines will find them aplenty in these pages, but they will also find the well
reasoned rationale behind them.

If you’re a developer or architect struggling to understand how your existing applica‐
tion can make the switch to the cloud, then this book is packed with useful advice. If
you’re already dealing with a cloud-based application where you feel that you aren’t
getting full use of the cloud, then again this is for you. At its core, though, the
authors of this book recognize that the route to the cloud isn’t necessarily linear. And
whatever path you might take, this book will be a very useful guide.

— Sam Newman
Technologist, author of Building Microservices and

Monolith to Microservices
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Preface

This is a book about how to architect applications so that they will run well in the
cloud. It is not based on any particular technology or product. Rather, it is designed
for application architects using a variety of cloud platforms and technologies. Because
the concepts in this book are product-neutral and vendor-neutral, the concepts will
remain relevant even as technologies evolve and as old products fall out of favor
and are replaced by newer, better products. A book focused on a single product will
become obsolete when the product does, but one focused on architectural concepts
remains relevant as long as the architecture does, potentially even outlasting the
usefulness of the platforms that host the architecture.

Because this book focuses on designing applications to be deployed on the cloud, we
do assume a fundamental set of technologies that have become a de facto standard
stack that applications make use of to take advantage of cloud computing. These tech‐
nologies include Linux, containers, and container orchestrators. These technologies
and ones like them are referenced in this book.

To get the discussion rolling, we’ll explain why we wrote this book and who we intend
to read it. Adopting cloud is a very broad topic, more than can fit in one book,
so we’ll discuss what you can expect to learn, what topics are covered, and what is
outside the scope of this book. Lastly, we’ll give a quick overview of how this book
structures the material.

Why We Wrote This Book
Through our experience with hundreds of applications, we have discovered that there
are more applications running in the cloud than there are ones that run well in
the cloud. This may be because architects do not realize that applications should be
designed differently for the cloud than for traditional IT, or because they realize the
need but don’t know how to do it. By traditional IT, we mean applications that have
been written to run on premises using technologies and methods that were optimized
for the reality of computing prior to the introduction of the cloud. We (the authors)
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have hard-earned experience in making applications work well in the cloud, usually
through making mistakes and thereby realizing what does and does not work. We
have also successfully taught others these lessons and have captured that experience
in this book. We hope that we can convince you that the cloud is different from
traditional approaches, and teach you how to architect your applications differently,
thereby making cloud adoption much easier for you than it has been for us.

Who Should Read This Book
This book is for application architects and developers who want to learn proven
practices about how to design applications for the cloud. Architects who want their
applications to run well in the cloud need to know these proven practices and employ
them. These practices apply to any application that will run in the cloud. We assume
most developers are writing business applications for commercial enterprises—let’s
face it, that’s where the money is—but these techniques apply equally well to other
fields such as research and science, government, nonprofits—any field where users
have requirements for what an application should do and the organization wants to
deploy their applications on the cloud.

What You Will Learn
This book briefly explains what the cloud is, and it does not justify the business case
for using the cloud. We assume the reader already wants to use the cloud, so we focus
on how to develop applications that run well in the cloud. You will learn how to
architect applications for the cloud by understanding the following:

• The advantages and limitations of cloud computing architecture compared to•
traditional IT architecture and the consequences for application architecture

• How to make an application cloud native so that it will run well in the cloud•
• How an application can encompass collaborating microservices and how to•

design a set of microservices for a particular domain of functionality
• How to make multiple microservices and other software components collaborate,•

both through orchestration as well as via choreography
• How to apply agile development techniques to designing a cloud application•
• Strategies to rehost and replatform an existing IT application to run in the cloud,•

and to refactor an existing application while it is running in production

This understanding will enable you to create better cloud applications.
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What This Book Covers
This book organizes its approximately 70 practices into these 10 topics:

Cloud Applications (Chapter 1)
Architect a cloud application to take advantage of the strengths of cloud comput‐
ing while avoiding and compensating for its limitations.

Application Architecture (Chapter 2)
As traditional IT infrastructure has evolved, so has its application architectures.

Cloud-Native Application (Chapter 3)
As traditional IT evolved to become the cloud, application architecture evolved
to work well on the cloud.

Microservices Architecture (Chapter 4)
Decompose a large application into many small applications so that each per‐
forms a separate responsibility.

Microservice Design (Chapter 5)
Analyze interactions within the application to discover where one well-
encapsulated responsibility ends and another begins.

Event-Driven Architecture (Chapter 6)
Enable components to interact indirectly through dynamically discovered rela‐
tionships modeled as choreography.

Cloud-Native Storage (Chapter 7)
Incorporate newer databases that model data more flexibly, simplify how applica‐
tions access the data, and run better on the cloud.

Cloud Application Clients (Chapter 8)
Enable users to access the cloud application from a variety of device types via
user interfaces that are simple to install and update.

Application Migration and Modernization (Chapter 9)
Develop a cloud application by moving an existing application from traditional
IT to the cloud and updating it to work well on the cloud.

Strangling Monoliths (Chapter 10)
Incrementally convert an application from traditional IT to the cloud while
keeping it running in production.

With these practices, you are prepared to stop designing applications for traditional
IT and instead design them for the cloud.
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What This Book Does Not Cover
This is a book on application architecture, specifically for cloud applications. One
might be tempted to think that once you’ve designed the architecture for an applica‐
tion, you’re finished. Instead, architecture is only the beginning. Architecture is the
foundation for developing applications for the cloud, but there is a lot more to do that
is beyond the scope of this book.

Once the architecture and design for an application is established, additional work is
necessary to make the application usable and useful. It must be developed to create
the application from its design and then deployed to become a running application.
The application needs a custom environment defined in the cloud platform for the
application to be deployed into, an environment that may be distributed geograph‐
ically to enable the application to be more scalable and reliable. That application
running in production must be monitored and managed to keep it running and
ensure it is running correctly. The production application needs updates to fix bugs
and add features. All of this is beyond the architecture and design of the application
and is beyond the scope of this book.

This book does not focus on particular cloud platform hyperscalers; it is vendor-,
product-, and language-neutral. For specific technologies, it focuses on widely used
open source standards that most vendors incorporate into their platforms and tool‐
ing. Some of the examples do cite specific languages and products, but only to
illustrate how the pattern can be used and is used, not how it must be implemented.
As such, this book is not a tutorial on specific products, platforms, or even open
source technologies. This book focuses on the design decisions that apply to using
any of those, both ones that currently exist as well as many that may be invented in
the future.

How This Book Is Structured
As the title says, most of the content in this book is structured in the form of patterns.
Patterns are a proven and efficient technique for experts to capture knowledge and
convey it to novices, enabling them to gain expertise quickly. Patterns encapsulate
knowledge as reusable solutions to common problems, and they are given memora‐
ble names so those solutions can be used to clearly and concisely discuss design
alternatives. Because reusable knowledge is rarely one-size-fits-all, patterns capture
not just what to do but when and why it should be done—enabling the reader to
customize their application of the pattern each time they use it. Patterns are harvested
from experience and proven success, based not just on one person’s opinion but on
consensus among industry experts. Readers with expertise in this field have already
internalized these practices and so should find the patterns very familiar. Novices are
not familiar with these patterns, but learning them will help novices rapidly advance
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their knowledge. An expert may point a novice to this book as an efficient way to
learn the basics without needing an expert’s years of experience.

This book organizes its patterns into a pattern language—which interconnects the
patterns to form pathways for combining multiple related patterns to solve more
complex problems. More than just a catalog of solutions within the same problem
space, the patterns in a pattern language build upon one another into a blend the
reader customizes for a particular design.

Sets of patterns address a common topic, and we’ve organized each of those sets of
closely related patterns into a chapter. A pattern in the pattern language may well
refer to other patterns in other chapters but will refer primarily to other patterns in
the same chapter because they all address problems for the same topic.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/cloud-application-architecture-
patterns-1e.
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For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.
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Introduction

Almost everything runs in the cloud now. Music and television stream from the
cloud, documents are stored and edited in the cloud, and cars’ navigation systems
use the cloud to calculate the route to a destination. Today, we can’t imagine using a
personal computer that isn’t connected to the internet. Put a smartphone in airplane
mode and it suddenly does much less because it doesn’t have cloud access.

Most applications either run in the cloud or on a device that connects to applications
running in the cloud, but many of the applications running in the cloud don’t run
as well as they could because they were never designed for the cloud. We begin with
Cloud Applications (Chapter 1), which will explore why we architect applications
differently to deploy them to the cloud.

Before we get to that, let’s consider the phases of adopting the cloud, some newer
application development techniques, and how the cloud can help, as well as the
many aspects of managing a cloud application through its full lifecycle—bearing in
mind that many of these phases, techniques, and aspects, while important, go beyond
how to architect the application and therefore are beyond the scope of this book.
We will begin by reviewing how computer hardware architecture has evolved and
how application architecture has changed along with it, leading us to today’s cloud
platform hardware and cloud-native applications. Then, we will review the pattern
format used to structure most of the content in this book and how it documents best
practices to make them reusable. Next, we will review how this book is organized,
containing chapters that explore different aspects of how to architect an application
for the cloud, with each chapter anchored by a root pattern—an overall best practice
that leads to the other more detailed best practices in the chapter. Last, we’ll present
some strategies for how to get started reading this book. With that, you’ll have a
pretty good idea of what these best practices are going to teach you.
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Phases of Cloud Adoption
Fundamentally, cloud applications run in Linux, containers, and container orchestra‐
tors—all in a cloud-native architecture. In putting these fundamental technologies to
work, IT professionals can adopt cloud computing in three main phases:

Application Architecture and Design
Structure an application such that it will work well when deployed to the cloud

Application Development and Deployment
Create an application iteratively, configure an application environment in the
cloud to host the application, and deploy the application in the environment
frequently to make the improvements available to users

Cloud Operations and Nonfunctional Requirements
Monitor and manage a deployed application to keep it running reliably, distrib‐
ute it geographically to avoid single points of failure, and build in compliance
and security

Cloud applications are designed for and deployed using the fundamental cloud tech‐
nologies and are operated using them to keep the applications running.

This book focuses on the first phase of adopting the cloud: how to architect and
design applications to work well in the cloud. The explanation for how to do that will
start with the root pattern for this entire book, Cloud Application (6).

Modern Application Development
Let’s consider how applications are developed. Modern application development
incorporates several desirable software development techniques:

Modular code
Code should be developed in modules, each built by a separate team working
independently. Each team for developing a module should have about 5–10
people, often described as a two-pizza team because the team is small enough
that two pizzas are enough to feed everyone. Modules lend themselves to the
integration of external services (that are also modular), which rather than dupli‐
cating/re-creating code that already exists, encourages not only the reuse of
existing code but also the integration of existing services.

Polyglot development
All of an application’s modules shouldn’t need to be developed in a single
computer language or technology. Some developers prefer one language over
another, and some problems are more easily solved by some languages instead of
others. Each module can be written in any preferred language regardless of what
languages are used to implement the other modules.
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Iterative development
One of the main tenets of agile development is that code should be written
in small batches that can be developed in short iterations. Large code changes
should be deconstructed into these smaller batches and performed iteratively.

Continuous delivery
Continuous delivery is the practice of automating the process of building, testing,
and releasing software. User functionality, bug fixes, and other improvements
should be delivered frequently. When users report a bug or request a new feature,
once it is fixed or developed, that code change should be quickly deployed into
production so that the users can benefit from it immediately. When code in
production hasn’t been updated in weeks or months, it apparently must have no
bugs and the users don’t want any improvements—which probably means no one
is using this functionality.

Automated builds
When a team produces a new or revised set of code, an automated system
should build it into deployment artifacts, run automated tests on it, and ulti‐
mately deploy it into production. Frequent builds are known as continuous
integration (CI), and frequent deployment is known as continuous deployment
(CD). Together they’re known as a CI/CD pipeline. An important part of achiev‐
ing continuous delivery—making code improvements frequently and available
to users as soon as possible—is running code changes through the pipeline as
soon as they’re available. In addition, CI/CD pipelines should be instrumented
with automated evidence collection to provide auditors and security teams with
significant pipeline events and results that might be needed for enterprise or
regulatory compliance.

These techniques can be accomplished without cloud computing, but the cloud
greatly facilitates this style of development. The first two techniques impact an appli‐
cation’s architecture, so this book incorporates them.

Aspects of Software Development
So far, we’ve talked about modern application development techniques that can be
performed better using the cloud. Yet creating the application is just the beginning.
The full software development lifecycle (SDLC) for a cloud application includes many
stages, from architecture, development, and testing the application to deploying
and operating it. The lifecycle incorporates several aspects of software development,
including the following:
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Application architecture
Architect and design a new application to fulfill users’ functional requirements
and run well in the cloud. Delegate common tasks to a set of backend services
such as databases and messaging systems.

Application migration and modernization
Migrate an existing application to rehost it in the cloud, and modernize it to
make it run better in the cloud. This can be accomplished through various
methods—such as adopting a cloud-native architecture and refactoring to micro‐
services.

Application development
Continuously deliver the application with small development teams developing
independent modules in short, agile iterations.

Build pipeline
Automate building source code into deployment artifacts, including enforcing
quality controls and building images for virtual servers and containers.

Application deployment
Design deployment strategies such as virtual server management and container
orchestration, service mesh, external access, and the means to automate the
strategies such as GitOps.

Environment creation
Utilize infrastructure as code (IaC) to build the application environment (aka
landing zone) that the application will be deployed into.

Application operations
Augment the environment with tooling for site reliability engineering (SRE):
observability capabilities such as monitoring, log aggregation, and activity track‐
ing; and autonomic capabilities such as failover, restart, and elastic autoscaling.

Cloud topology
Architect a strategy for deploying an application across more than one data
center, including public cloud zones and regions, private cloud, hybrid cloud, and
multicloud.

Security
Protect data and functionality in a multitenant, public environment, as well as
enforce and audit compliance.

All of these aspects are too broad and too numerous to cover adequately in a single
book. This book will cover the first two aspects, with an eye toward enabling these
other aspects that will come later in the lifecycle.
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Evolution of Application Architecture
Some people describe the cloud as if it were a completely new technology, totally
different from anything IT has done before. Others derisively dismiss the cloud as
nothing new, just someone else’s computer but with better marketing. The truth
lies somewhere in between, that the cloud is an evolution from earlier computing
technologies that has culminated in bringing those technologies together and making
them more widely accessible. We can see how the industry has gotten to cloud
computing by looking at how application architectures have evolved.

The architectural structure of a computer application has evolved over time into
what, today, we call a cloud application. Here’s a whirlwind overview of some key
milestones in the evolution of computer hardware architecture and how application
architectures evolved along with it, which shows how the IT industry has ended
up with today’s cloud-native architecture. This won’t teach you how to architect
applications, but it is an interesting history of how we got to where we are today.

Mainframe Application
Starting in the 1950s, the first computers were mainframe computers. The 1960s
witnessed the invention of minicomputers—so named because whereas a mainframe
took up all the space in a raised-floor computer room, a miniature computer took
up only half of a room. Users in their offices accessed the mainframe using dumb
terminals, so called because the terminal was just a display and keyboard without
processing capabilities—only a dedicated connection to the mainframe that served as
a hardline network.

As shown in Figure I-1, a mainframe application was a monolith that ran entirely
on the mainframe in the computer room. All of the CPU, memory, and storage was
on the mainframe. Therefore, the entire computer program and all of its program
logic ran on the mainframe. The terminal just provided input and output for people
but no computation. It could be housed in the office where the people were located,
but it still needed to be near the computer room because the terminal required a
connection to the mainframe via a dedicated network cable that was short and slow
with very low bandwidth.

Figure I-1. Mainframe application structure
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Desktop Application
The 1970s and ’80s saw the advent of the personal computer. Like a dumb terminal,
a personal computer sat on the desktop and provided input and output via a display,
keyboard, and eventually a mouse. What made the personal computer unique is that
it contained a CPU, memory, and storage. This gave the computer the ability to
run its own programs; while it looked like a terminal, it worked like a very small
mainframe.

Personal computers originally didn’t have network connections, although some per‐
sonal computers had modems that dialed up over a telephone line to act as terminals
to remote servers. In the late ’80s, companies adopted LANs (local area networks) to
connect to nearby computers within a building. Offices with LAN networks added
file servers enabling users to share files easily.

A personal computer application was a monolith that ran entirely on the user’s
desktop computer (Figure I-2). Structurally, its architecture was very much like a
mainframe application but simpler. Whereas a mainframe application might support
multiple users, a personal computer application was highly interactive but supported
just one user. Multiple users in the same office each had their own computer. If they
were all using the same application, each user had their own copy of the application
installed on their computer, where it ran separately from all of the others, with each
copy using its own data stored locally on the computer. With a LAN and file server,
the application could use centrally stored files as well, but each desktop computer still
ran its own copy of the application.

Figure I-2. Desktop application structure

Client/Server Application
In the 1990s, computing capacity became centralized once more. LANs added server
computers with compute and storage that could be shared by all of the users on
the LAN. Unlike the mainframe, the office workers didn’t use dumb terminals; they
used the personal computers they already had on their desktops. So each worker had
their own compute and storage capacity on their desktop, as well as access to shared
compute and storage capacity on the server computers.
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Companies first used server computers to host database servers. The application still
ran on the desktop computer, but it could access not just centralized files but also
managed data. This enabled multiple workers to use data at the same time, even
editing data at the same time without overwriting one another and always having
access to the data with the latest changes.

Databases on centralized servers were a big improvement over sharing files on file
servers, but what office workers really needed was applications that ran on the server
computers. The application server emerged to centrally host applications so that
running applications could be shared much the way files and data were, as shown
in Figure I-3. Application servers are software platforms that run and manage busi‐
ness applications. Meanwhile, offices and homes became connected to the internet.
Application servers were hosted in centralized data centers that workers’ personal
computers connected to through their LAN and the internet.

Figure I-3. Client/Server application structure

With application servers, many of the applications that office workers relied on
became centralized and shared once more, much like the mainframe applications
before them. While simple applications for tasks like word processing still ran entirely
on the desktop, many applications became hosted in a centralized application server.
Multiple workers using the same application could all share a single application
running in the application server. But these workers weren’t using dumb terminals;
they had compute capacity on their desktops in their personal computers.

This led to the advent of client/server computing, where shared program logic and
data ran on the server and were accessed by personalized program logic running
on the client. As logic was spread across computers throughout the network, a
slogan emerged: the network is the computer. In other words, the computer isn’t one
machine; it’s all of the computers connected by the network. The desktop computers
hosted thick client applications, full mini-applications that used the shared applica‐
tions in the application server to perform the complex work that needed to be shared
with other users. Server computers were much more powerful and expensive, so they
performed complex work. But networks had limited bandwidth, so the thick client
application performed as much of its individual user’s work as possible to avoid the
network.
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The application server didn’t eliminate the need for a centralized database server; it
changed the purpose of a database. The application server and the database server
ran side by side on one or more server computers. An application running in an
application server didn’t need to manage its data; it could delegate that responsibility
to the database server. Multiple applications and multiple users in an application
could all share the same data in the database.

Service-oriented architecture (SOA) applied the client/server architecture to the
server application, dividing it into components that perform work for other com‐
ponents. Service components within the application that model business domain
entities are able to vary independently and be maintained by separate development
teams.

Cloud-Native Application
In the 2000s, application servers evolved into cloud computing. Whereas application
servers were typically specialized to run a particular programming language or tech‐
nology, cloud computers were generalized to run any program in a virtual machine.
The virtual machine acted logically like a server computer—a virtual server instance
—with not just virtualized compute capacity but also virtual storage and virtual net‐
working. The cloud also hosted databases; whereas data center operations personnel
who installed application servers also installed the database servers, the cloud could
host databases as a service so that application developers could easily create their own
databases without needing help from operations or a database administrator (DBA).

The cloud extended this database-as-a-service model to make everything a service,
which became known as software-as-a-service (SaaS). Workflow engines, messaging
systems, authentication directories, and anything else an application needed became
hosted as a service, as shown in Figure I-4.

Figure I-4. Cloud-native application structure

With the cloud, the application running on the server could focus entirely on domain
logic. It accessed any of the capabilities common to multiple applications—database,
workflow, messaging, authentication, etc.—as shared backend services. The applica‐
tion server simplified into a virtual machine with the technology to run the code the
application was implemented in—a runtime for a language like Java, Node.js, Python,
and so on. While the server was no longer necessarily an application server, the client
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was no longer necessarily a desktop computer or even a laptop computer. With the
popularity of the World Wide Web (WWW), web browsers became universal, and
application developers learned to create user interfaces for their server applications
that could run in any web browser. A user could access an application without having
to install a thick client; they could just use a single web browser to access any server
application. Furthermore, the client didn’t even have to run on a desktop. With the
advent of the smartphone and tablet, mobile devices became practical. They could
also run web browsers, then quickly evolved to also run small thick client apps for
accessing the server applications, often via a wireless network connection.

The cloud is mainframe-like compute capacity distributed across multiple server
computers running generalized application servers with built-in SaaS services for
common capabilities. Therefore the structure of a cloud application is a client/server
application. The server application only runs the logic for user requirements and
delegates all shared functionality to backend services. The client application can be a
web browser, mobile app, or even a kiosk or a chatbot.

A cloud-native application is one written or modernized specifically for the cloud,
to take full advantage of the cloud computing model. The application is designed
to run well in the cloud—to take advantage of the strengths of cloud computing
while avoiding and compensating for its limitations. Cloud native has become the
de facto best practice for designing many applications, even those to be deployed on
traditional IT, and so somewhat ironically refers less to where an application resides
and more to how it is built and deployed.

The cloud facilitates a new world of massive computing power available on demand
cheaply. Cloud-native applications are designed to take advantage of this on-demand
computing power, resulting in applications that are highly scalable, always available,
and that any user can access with a device and an internet connection.

Patterns and Pattern Format
This book documents best practices as patterns. We use the pattern format because
we don’t want to simply enumerate what tasks an application architect should per‐
form; we want to teach why these practices work well and how to apply them. While
explaining how to solve a problem, a pattern teaches a reader about the problem, why
it is difficult to solve, and why this solution solves it well. Each pattern is a decision
that can be made. A set of patterns is a very efficient way for an expert to document
their expertise and for a novice to not only learn that expertise but also how to apply
that expertise.

Simply put, a pattern is a reusable solution to a problem in a context. More
specifically, it’s a structured way of representing design information in prose and
diagrams that facilitate communicating time-tested solutions to common problems.
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Developing complex solutions requires applying multiple related concepts, which is
where a pattern language becomes important. A pattern language is a set of related
patterns that shows how the patterns are interconnected, how they fit together to
form a whole greater than the sum of the parts, and how each pattern leads to others.
A pattern language is generative, showing when and how to apply patterns to build
solutions.

Learning a new domain of knowledge is difficult, especially in domains that are
just inside the bleeding edge of a field of study. One of the issues with traditional
academic approaches is that they aren’t up to the problem of conveying “common”
knowledge. There can be limited enthusiasm for documenting know-how if “every‐
one knows it.” Yet not documenting what experts know makes it difficult for a novice
to gain all of the information they need to be able to start working on something that
uses ideas from the bleeding edge. When something is just relatively new, it’s often
hard to distinguish good ideas from bad ones, especially when you don’t have the
experience in a field to make that distinction.

As we use these patterns to describe how to design cloud applications, we avoid
saying to always do one thing or never do another. Rather, designing an application
involves a series of choices, and these patterns highlight many of the most important
decisions to be made. They don’t say what developers must do, they explain the pros
and cons of making the decisions one way or another. It is up to each reader to judge
their own organization’s context, determine which pros and cons are most important
for meeting their requirements, and decide accordingly. That will lead to a design that
is best for their circumstances and preferences.

The pattern idea came to computer science not from software architecture but
instead from the brick-and-mortar architecture world. The architect Christopher
Alexander published two important books, A Pattern Language (1977) and A Timeless
Way of Building (1979). In the brick-and-mortar world, Alexander uses patterns to
express the interaction of forces in a problem and shows how you can resolve those
forces to arrive at an elegant solution. He is also concerned with demonstrating how
each pattern fits in with other patterns to convey to a novice architect the broader
scope of how all the different issues come together. Several computer scientists in the
late 1980s and early 1990s picked up these techniques from Alexander and found that
they can also be applied successfully for developing computer software.

This book uses a modified Alexander style for the patterns. Each pattern consists of
these sections:

Name
An identifier for the pattern that describes the solution in a short phrase, usually
a noun, that can easily be used in a sentence to describe applying the pattern as
part of a design.
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Context
A description of the sort of work you might have been performing that caused
you to encounter this problem. The context often refers to other patterns that
you may already have applied.

Problem
Formatted in bold, this describes the difficulty you are facing, expressed as a
question. The problem statement should quickly tell you whether this pattern is
currently relevant to where you are in your design.

Forces
This elaborates on the problem and the opposing constraints that make it diffi‐
cult to solve, exploring possible solutions and showing their shortcomings. This
is where an expert can teach a novice about the problem and why it is difficult to
solve and help them appreciate that a solution isn’t necessarily easy.

Solution
Specific guidance that you can apply to solve the problem, not just in your
current situation but in the range of situations where the problem can occur. The
solution answers the question posed by the Problem. The Name, Problem, and
Solution are the core of the pattern.

Sketch
An illustration of the solution and how it’s typically applied. As this is a book on
architecture, the sketch is often a part of an architectural diagram.

Results
How the design changes because of applying the solution and how the solution
resolves the forces and balances them, improving the design better than the other
possible solutions.

Consequences
After a divider, a consideration of the strengths of the solution and its challenges.

Related Patterns
Guidance on other patterns to consider after this one, especially because solving
one problem can lead to new ones. The links to patterns in the Context and
Related Patterns sections are what make the patterns into a pattern language.

Examples
Optional sections showing the pattern in use, often citing well-known solutions
and explaining how they embody the pattern.

The patterns in a pattern language form a methodology for designing complex
solutions in a domain and a vocabulary for discussing those designs. Once a team
has internalized the patterns, design discussions become much more efficient. The
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team no longer needs to explain what they mean by an Adapter, Intention Reveal‐
ing Interface, Data Transfer Object, or Message Channel—those concepts are well-
known patterns, so the team’s discussion can focus on how the concept contributes to
the design. In the seemingly endless quest to make components reusable, capturing
knowledge as patterns in pattern languages has proven to be more reusable than any
executable code.

We use the following convention for pattern names in this book. All pattern names
are capitalized throughout the book. Any patterns that we cover in this book are
italicized. We will also include a link to the pattern in the book the first time we
mention it in a chapter or section. Any patterns that we mention but do not cover
within the book are formatted by using a bold font with external references to the
patterns the first time they are mentioned. Pattern problem statements and solution
statements are shown in bold.

Organization of This Book
The pattern language in this book forms a web of patterns referencing one another.
At the same time, some patterns are more fundamental than others, forming a hierar‐
chy of patterns introducing big concepts that lead to more finely detailed patterns.
The big-concept patterns form the load-bearing members of the pattern language.
They are the main ones, the root patterns that provide the foundation of the language
and support the other patterns.

Table I-1 lists the root patterns in this book.

Table I-1. Root patterns

Chapter Root pattern
Chapter 1: Cloud Applications Cloud Application

Chapter 2: Application Architecture (none)

Chapter 3: Cloud-Native Application Cloud-Native Architecture

Chapter 4: Microservices Architecture Microservice

Chapter 5: Microservice Design Model Around Domain

Chapter 6: Event-Driven Architecture Event Choreography

Chapter 7: Cloud-Native Storage Cloud Database

Chapter 8: Cloud Application Clients Client Application

Chapter 9: Application Migration and Modernization (none)

Chapter 10: Strangling Monoliths Strangle the Monolith
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This book groups patterns into chapters by level of abstraction and by topic area.
Figure I-5 shows the primary relationships between the chapters in this book.

Figure I-5. Book organization

Now we’ve seen the chapters in this book, how they relate to one another, and their
root patterns. Next, let’s look at what the chapters are about.

Relationship of Root Patterns and Chapters
The pattern language is divided into 10 chapters, which follow the relationships
shown in the diagram. The relationships are among these chapters:

Chapter 1: Cloud Applications
The pattern language begins with this chapter. It introduces the root pattern for
the entire book, Cloud Application (6).

The way to adopt the cloud is to host applications on the cloud. The architecture
and design of an application that works well in the cloud is significantly different
from one that works well in traditional IT. The cloud also facilitates adding many
great capabilities to applications.
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Chapter 2: Application Architecture
This chapter is a tangential discussion that applies to traditional IT as much as
the cloud. It explores three of the main approaches to architect an application:
Big Ball of Mud (22), Modular Monolith (29), and Distributed Architecture
(38).

Application architectures have evolved to make applications easier to develop
and to run more efficiently. We will discuss common architectures and how they
have evolved over time.

Chapter 3: Cloud-Native Application
This chapter explores how to design an application to work the way the cloud
works. It starts with the root pattern Cloud-Native Architecture (58).

Architect a cloud application to take advantage of the strengths of cloud comput‐
ing while avoiding and compensating for its limitations. This requires designing
a cloud application differently to give it advantages beyond any traditional IT
application.

Chapter 4: Microservices Architecture
This chapter explores how to model an application as a set of individually
deployable units that can be developed by separate teams. It starts with the root
pattern Microservice (119).

The traditional IT application architecture is one big monolith, which makes it
difficult for a large team to develop and cumbersome to deploy. To avoid the
same challenges in one big cloud application, break it into many small applica‐
tions that each performs a separate responsibility.

Chapter 5: Microservice Design
This chapter shows a strategy for discovering and scoping individual microser‐
vices in an architecture. It starts with the root pattern Model Around the Domain
(183).

How can developers design one big application as many small applications that
each perform a separate responsibility? Analyze interactions with the application
to discover where one well-encapsulated responsibility ends and another begins.

Chapter 6: Event-Driven Architecture
This chapter explains how to choreograph microservices that react dynamically
to one another and to external events. It starts with the root pattern Event
Choreography (246).

Complex functionality is often decomposed into a predefined set of orchestrated
steps. However, some components interact indirectly through dynamically dis‐
covered relationships that are more easily modeled as choreography.
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Chapter 7: Cloud-Native Storage
This chapter explains how to model data the way the application works and
manage it the way the cloud works. It starts with the root pattern Cloud Database
(311).

Enterprise IT has embraced the relational database as the best and only way
to store and access the data the enterprise depends on. Newer databases have
emerged that model data more flexibly and simplify the applications using the
data. These databases not only run better on the cloud but often are also included
as part of the cloud platform.

Chapter 8: Cloud Application Clients
This chapter explores how users outside the cloud interact with applications in
the cloud. It starts with the root pattern Client Application (406).

Cloud applications run in the cloud, but their users do not. Users need to be able
to access the cloud application from the device they’re using, via user interfaces
that are simple to install and update and that support an increasingly wide variety
of device types.

Chapter 9: Application Migration and Modernization
This chapter explores how to transform and modernize existing applications
into cloud applications. Strategies include Lift and Shift (470), Virtualize the
Application (475), Containerize the Application (478), and Refactor the Monolith
(484). It is best to Start Small (492) and Pave the Road (496) when you are
migrating and modernizing existing applications to run in the cloud.

Cloud applications can be developed from scratch, but they often start as tradi‐
tional IT applications that the enterprise later decides to host on the cloud.
Simply moving a traditional IT application onto the cloud as is has limited
success. The enterprise can achieve greater success by updating the application to
make it work well on the cloud.

Chapter 10: Strangling Monoliths
This chapter describes how to iteratively transform an application from a mon‐
olith into microservices. It describes the process used while migrating and mod‐
ernizing a monolith application to a microservices application.

A traditional IT application can be updated for the cloud in one big bang, but a
complex application that is already running in production can be converted more
easily by doing so iteratively. The trick is to keep the application running when it
is half traditional IT and half cloud.
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Getting Started
The standard way to read most books is straight through following the page numbers
and chapter numbers. That will certainly work with this book as well and will help
you gain familiarity with the patterns. While that can be the most effective way to
read a book, it is not necessarily the most efficient way to use a pattern language.

In a pattern language, rather than only following a fixed chapter order, you can jump
in where you need to and follow a path through the patterns that are helpful to you.
No two readers may read the same pattern language exactly the same way, and a
single reader may not read the same pattern language exactly the same way twice.

The best place to start reading a new pattern language is with the first pattern.
That’s true for this book’s pattern language, so a good place to start is with Cloud
Applications (Chapter 1) and the root pattern for the entire book, Cloud Application
(6). From there, the Related Patterns section at the end of the pattern lists other
patterns you might want to read next. And those patterns also have Related Patterns
sections. Following these pattern links will eventually lead to most of the book,
though often not in page or chapter order.

This pattern language is designed to facilitate learning at a high level before diving
into all of the details. To get a good feel for the pattern language overall, read only
the root patterns. They are listed in Figure I-5 and are the first pattern in each of the
chapters. Some chapters don’t have root patterns, and it’s OK to skip those chapters
for this overview; they’re not as key to the pattern language as the chapters with root
patterns. The root patterns don’t have to be read in chapter order, but that’s a pretty
good way to understand them. In fact, the book presents the chapters in this order
because it is a logical progression through the main topics of the book and likewise
for the topics’ root patterns. As with any pattern language, this ordering isn’t the only
path through and may not always be the best for all audiences, but it is a good way to
get started.

Keep in mind that the chapter relationships shown in Figure I-5 also demonstrate a
good order for following the root patterns. The order of the chapters in this book is
one suggested ordering but only one of many useful approaches, and some readers
will find other orderings more helpful for focusing on the material most relevant to
them.

Once you’re familiar with a pattern language, the best way to apply it is to think
about the specific design problem you’re facing currently. Read through the patterns
that seem like they may help you solve that problem, pick one that seems promising,
apply it, and then see if and how it helps. The Related Patterns section will lead to
other patterns you should consider. Once you’ve applied all of the patterns that seem
relevant, step back and repeat the process to consider what is now the next problem
you’re facing in your design and look for patterns that may apply. In this way, you’ll

xl | Introduction



use the pattern language to create a custom design by applying the patterns in a
specific order to create that design.

The act of reading a pattern language customizes it for each reader and each partic‐
ular application. As you get used to navigating the patterns in this way, you’ll find
the chapter order is irrelevant, and you may find that some of the patterns are never
relevant to your design and so may never read those pages of the book. That is OK;
each reader will use the patterns differently, and how you use the patterns is the right
way for your design.
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CHAPTER 1

Cloud Applications

Cloud computing is revolutionizing information technology. As the IT environment
evolves, application architectures need to evolve to take advantage of the new tech‐
nology, and IT professionals need to evolve their skills to succeed with the new
technology. These cloud application techniques apply to developing a new application
so that it will run well on the cloud, as well as migrating an existing application from
traditional IT to cloud computing.

Introduction to Cloud Applications
Some readers may wonder why applications need to be structured differently for the
cloud. To explain why, let’s cover a couple of background topics:

• In Cloud Computing Defined, beginning on this page, we’ll discuss how IT•
infrastructure in the cloud works.

• In Cloud Computing Practices, we’ll discuss IT practices for making applications•
work with cloud computing.

Then, once we’re all on the same page, we’ll go to the first pattern, which is the root
pattern for this entire book, Cloud Application (6).

Cloud Computing Defined
Let’s begin with what we mean by “the cloud.”

As the saying goes, the cloud is just someone else’s computer. However, the cloud is
way more than just a computer—and far more useful as well. What makes a cloud
valuable is the large number of computers available for you to use, your ability to
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manage your own usage, and the ability for your team members to readily access the
computers.

The National Institute of Standards and Technology (NIST) provides this definition
of cloud computing:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

Cloud computing has several qualities that make a pool of configurable computing
resources easy to share:

Universal access
A cloud can be accessed from any network connection, typically the internet, but
an enterprise may host its own private cloud internally, and public clouds can
support private network connections.

Shared resources
A cloud enables multiple applications to run on the same hardware. Capacity that
is not being used by one application is available to be used by others.

Distributed computing
A cloud isn’t just one computer; it’s lots of computers, plus storage and network‐
ing, which function like one huge computer. An application doesn’t run on just
one computer; it runs on several, and the parts need to work together over the
network.

Virtualized computing
The cloud’s compute, storage, and networking hardware is managed by a layer
of virtualization that can divvy up one computer to act like many smaller ones.
This virtualized layer can also combine many computers to behave like one large
computer—the cloud—with a giant pool of capacity.

Elastic computing
An application is not limited to a fixed amount of capacity. The capacity can
grow and shrink dynamically as the client load on the application changes.

Multitenant
Multiple users and organizations share a cloud. The cloud controls who has
access to which applications and resources and enforces isolation between them.

Self-service
When an organization wants to provision some capacity or deploy a workload,
they don’t need to send a request to the cloud’s central administration staff. Users
are able to perform these tasks themselves.
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API-driven
The resources and services that comprise the cloud are used and managed via
APIs. Some APIs are only available internally, enabling the cloud provider to
monitor and manage the cloud. Other APIs are available externally, enabling
self-service by the customers.

Multicloud
As much as it’s convenient to think of “the cloud,” there isn’t just one cloud;
there are lots of them: ones for different stages of the software development
lifecycle (SDLC), for different geographies, and for different lines of business.
Multiple vendors host different public clouds, and enterprises host their own
private clouds.

These qualities are what make a cloud more than just someone else’s computer.

Now we have a basic idea of what the cloud is. Next, to understand why cloud
applications are different and need to be developed differently, let’s review how cloud
computing compares with traditional IT.

Cloud Computing Practices
As developers create applications to be deployed on traditional IT, they bake into the
application a number of assumptions about how the hardware works, and therefore
how the application can and should work. When an application is going to be
deployed on cloud computing, many of these assumptions are significantly different.

Cloud computing has certain characteristics that differ from traditional IT and affect
how cloud applications need to work:

Reliability through redundancy
A traditional IT application is only as reliable as its hardware, so developers
tasked with making their applications reliable expect either 100% reliable hard‐
ware or accept downtime as unavoidable. Cloud computing embraced inexpen‐
sive commodity machines, any one of which is less than 100% reliable, and also
expects that planned outages are necessary for maintenance and that unplanned
outages can’t be avoided completely. To run reliably on unreliable infrastructure,
a cloud application must be more reliable than its infrastructure, which it ach‐
ieves by using redundancy.

Eventual consistency
A traditional IT application uses atomic, consistent, isolated, and durable (ACID)
transactions to enforce immediate consistency, even distributed across multiple
resources. This requires the complexity and overhead of a transaction manager,
concurrency locking, rollback, recovery, and retry. Cloud computing services
often employ eventual consistency. Cloud application developers should design
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for eventual consistency, which counterintuitively actually makes the applications
more reliable.

Generic hardware
A traditional IT application typically requires specific hardware, whereas cloud
computing provides generic hardware that will evolve in the future. A cloud
application must be infrastructure neutral so that it can run anywhere.

Application mobility
Traditional IT developers assume that once an application is deployed on a com‐
puter, it will always run on that computer. Cloud computing moves a running
application from one computer to another to balance load and avoid outages. A
cloud application must be transportable so that that cloud platform can easily
relocate it and it will keep working after relocation.

Multitenant
Developers design a traditional IT application to be the only one running on a
computer and to use all of its resources. Cloud computing often runs multiple
applications on the same computer and isolates each one to limit the resources it
can use. A cloud application must be designed to share its hardware.

Horizontal scaling
A traditional IT application runs on a single computer and scales by growing
on that computer, whereas cloud computing scales a cloud’s capacity by adding
more computers, and scales a workload by running it on multiple computers.
To support scaling across multiple computers, a cloud application must be able
to run as multiple copies that act like a single bigger application running on
one big computer. Multiple copies also make the application more reliable by
avoiding a single point of failure. Horizontal scaling can be applied manually or
automatically.

Stateless
A traditional IT application stores user data for long-term use by multiple units
of work. A cloud application loads data to perform a unit of work but must not
store data between units of work.

Immutable
When bugs are found in a traditional IT application, fixes are applied by patching
the running application. A cloud application is deployed as a release that does not
change while running.
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Componentized
A traditional IT application is often a single complex set of code with little
separation of concerns, all deployed in a large process that requires a large com‐
puter. Cloud computing hosts workloads on parts of multiple smaller computers.
A cloud application runs better when designed as multiple components with
limited interdependencies that can each run on a different computer.

Service catalog
Many traditional IT applications either implement their own low-level services—
such as data persistence and multithreading—or must be deployed into an appli‐
cation server that includes middleware services the applications require. Many
cloud computing platforms provide a catalog of reusable middleware services. As
much as practical, a cloud application should delegate middleware functionality
to shared services.

Cloud database
A traditional IT application stores all of its data in a single relational database
that the application must force-fit its data into, whereas cloud computing plat‐
forms often provide a variety of database types that are easy to provision and can
fit different types of data more naturally. A cloud application should provision
databases from the cloud platform’s service catalog and should use the best
database for each set of data.

Self-provisioning
When a development team needs a traditional IT environment provisioned for
their application, they submit requests, and the IT’s central operations team
performs the provisioning. For a cloud environment, that same development
team can perform the provisioning themselves. A cloud application should be
designed to deploy into a cloud environment that is self-provisioned.

These differences explain how an application developed for the cloud needs to work
differently than one developed for traditional IT. They also show how a traditional
IT application moved as is to the cloud doesn’t work as well in the cloud as an
application designed specifically for the cloud. The more an application’s design takes
advantage of these cloud capabilities, the better it will run in the cloud. As you
can see, adopting the cloud means that application developers need to adopt a new
mindset embodying a new set of practices.

We’ve now seen what the cloud is and how cloud computing differs from traditional
IT. With all of that under our belts, it’s time to begin discussing how to architect
applications for the cloud. We’ll start with the root pattern for this entire book, Cloud
Application (6).
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Cloud Application
You are developing a new application or modernizing an existing application. You
want your application to take advantage of cloud technology, both so that it will run
better and so that your team will be able to follow better development practices.

How can I build applications to take the maximum advantage of all the features of
the cloud for the best future proofing and agility?

Experienced application developers who are new to the cloud are used to developing
traditional IT applications and tend to fall back on those practices out of habit. Those
practices tend to develop an application that doesn’t work well on the cloud, so even a
newly developed application doesn’t work much better on the cloud than a traditional
IT application migrated onto the cloud with minimal changes. The developers either
ignore these limitations or get into a game of Whack-a-Mole trying to fix problems in
code that wasn’t designed well for the cloud.

The cloud offers highly desirable capabilities that traditional IT applications cannot
take advantage of:

Low cost, commodity hardware
Traditional IT applications expect hardware to be specialized and highly reliable,
but the most cost-effective cloud infrastructure is generic.

Equivalent computing
Traditional IT applications hardcode assumptions about the hardware they will
be deployed on, whereas the cloud is a loosely defined pool of hardware, and the
application could be deployed anywhere.

Unlimited scalability
Traditional IT applications are not designed to take advantage of the seemingly
infinite compute capacity of the cloud.

Traditional IT applications are unable to take advantage of these cloud capabilities.
These characteristics that work fine for traditional IT applications work poorly in the
cloud:

Monolithic
A traditional IT application is typically architected as one big program that runs
on a single computer.

Complex transactions
A traditional IT application typically performs several steps that must all com‐
plete successfully or none of them should, requiring that all of the steps are
performed in a transaction and each step can roll back.
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Infrastructure dependent
A traditional IT application is typically designed for a particular operating system
with device drivers for specific hardware.

Stationary
A traditional IT application is typically deployed once to run forever on a com‐
puter that is expected to run forever.

Vertical scaling
A traditional IT application can scale only as much as its computer is able,
becoming constrained by its computer’s limits on CPU, memory, storage and
network bandwidth.

Stateful
A traditional IT application will often store information in memory, making it so
that copies of the application are not fully equivalent from a client perspective.

Patchable
To fix bugs and add features in a traditional IT application, patching is often
preferred because a new version of the application that includes the fixes would
be too difficult to redeploy.

Exclusive resources
A traditional IT application is typically designed to be the only application
running on a computer, such that two applications may conflict.

Homogeneous data
A traditional IT application typically stores all of its data in a single enterprise
database of record with a strictly defined one-size-fits-all schema.

Not all traditional IT applications have all of these characteristics; some newer appli‐
cations may avoid some of these characteristics. While an application with some
or all of these characteristics may run well on traditional IT, the more of these
characteristics that are embedded in an application, the more difficult it will be to
migrate the application to the cloud and have it run well on the cloud. Developers
who have designed applications with these characteristics for traditional IT need to
learn newer approaches for designing applications that work better in the cloud.

Therefore,

Architect an application as a Cloud Application, designing it to take maximum
advantage of the capabilities of the cloud while avoiding its shortcomings.

Structure a cloud application as a set of services, preferably microservices, that takes
advantage of backend services provided by the cloud platform, accessed by client
applications that run outside the cloud (see Figure 1-1).
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Figure 1-1. Cloud Application

Developers adopting the cloud need to make a conscious effort to develop applica‐
tions with these qualities, to design the application to take advantage of the strengths
of the cloud (such as shared resources and elastic computing) while working around
its weaknesses (such as unreliable infrastructure and eventual consistency).

Cloud application design avoids the characteristics that make traditional IT applica‐
tions run on the cloud less effectively and instead embodies these corresponding
characteristics:

Modular and distributed
A cloud application is composed of multiple components that can run on multi‐
ple computers.

Simple transactions
A cloud application performs tasks as units that can succeed or fail independ‐
ently.

Infrastructure independent
A cloud application can run unchanged on a range of commodity hardware that
evolves over time.

Movable
The cloud can relocate a cloud application from one computer to another to
balance load and avoid outages.

Horizontal scaling
A cloud application can run across multiple computers, each with its own
resources and bandwidth, avoiding bottlenecks.

Stateless
A cloud application works best when the latest data is always persistent in the
databases.
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Immutable
A cloud application does not change after it is deployed and can always easily be
redeployed.

Shared resources
Multiple cloud applications often run on a single computer.

Data persistence flexibility
A cloud application often uses multiple databases designed for different tasks
with varying approaches to storing data.

These characteristics of a more flexible application are beneficial to traditional IT but
practically required to run well on the cloud. The more of these characteristics that
are embedded in an application, the better it will work in the cloud.

Some of the main benefits of building Cloud Applications are availability, scalability,
and flexibility. An application developed for the cloud tends to more modular. The
application’s modules that can be deployed and scaled independently of other parts of
the application.

As explained in Cloud Computing Practices (3), designing applications for cloud is
fairly different from the way traditional IT applications are designed. Organizations
accustomed to developing applications for traditional IT may find the cloud difficult
to adopt until they adopt these new architectural approaches for cloud applications.

Follow these best practices and related patterns to architect an application that works
well in the cloud:

Cloud native
The application is a Cloud-Native Application (Chapter 3), embodying a Cloud-
Native Architecture (58) that takes advantage of cloud capabilities.

Microservices
The application is not just cloud native but can be implemented as a Distributed
Architecture (38), usually incorporating a Microservices Architecture (Chapter
4) composed of Microservices (119) that modularize the application into decou‐
pled components that limit the boundaries of code changes and can run dis‐
tributed across multiple computers. This supports Polyglot Development (146)
so that each module can be implemented in a different language. The microser‐
vices incorporate a Microservice Design (Chapter 5) that models the enterprise’s
business domain and the user requirements.

Cloud Application | 9



Event driven
While it is typical for a business process or microservice to orchestrate preplan‐
ned work of other microservices, it can also be helpful to use an Event-Driven
Architecture (Chapter 6) of Reactive Components (260) to choreograph ad hoc
interactions between microservices.

Cloud storage
The application takes advantage of Cloud-Native Storage (Chapter 7) that is
scalable and reliable in the cloud. A cloud platform typically includes a variety of
Cloud Databases (311), each of which is optimized for a particular data structure
and usage, so an application can take advantage of Polyglot Persistence (374)
to segment data into encapsulated sets and store each set of data in the storage
technology that works best for that data.

Client applications
The application running on the servers in the cloud supports a variety of Cloud
Application Clients (Chapter 8), with different Client Applications (406) for dif‐
ferent platforms such as computers, mobile devices, and even other applications.

Cloud applications facilitate an application development process that makes agile
development easier to achieve. A cloud application can be the goal of developing a
new application from scratch, or it can be the result of Application Migration and
Modernization (Chapter 9) that transforms an existing traditional IT application into
a cloud application.

One of the most difficult aspects of modernization can be transforming an applica‐
tion while it is already being used in production. One way to address this is to
Strangle the Monolith (Chapter 10), which transforms an application incrementally
while keeping the existing application running.

Examples
Following are some examples of applications hosted on the cloud that use a cloud
application architecture:

Ecommerce
A retailer’s website that enables consumers to purchase products for mail-order
delivery.

Banking
A customer self-service website that enables customers to view their accounts,
deposit checks, and transfer money.

High performance computing (HPC)
An enterprise uploads data to the cloud for analysis and processing by artificial
intelligence.
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Ecommerce: Three-tier architecture
An ecommerce application enables its users to order products, often by placing
them in a shopping cart and checking out to make payment and place the order for
delivery. Modern remote shopping began with ordering by telephone. The telephone
customer service representative used an application hosted on traditional IT, often
hosted in the computer on their desk. The first websites, though accessible over the
web, were hosted in traditional IT on servers that were little more than fancy desktop
computers. As the cloud became commonplace, these applications became hosted on
the cloud.

Whether the user is the customer buying products or a representative facilitating the
purchase, the architecture for the cloud application is the same. The application has
functionality and databases for customers purchasing products. Both the customer
and representative access the cloud application via client applications that run in
web browsers and on mobile devices and even as thick clients deployed on desktop
computers.

As Figure 1-2 shows, the business logic for purchasing products runs as a program
hosted in the cloud. In this example, the business logic and its corresponding data
consists of product catalogs, warehouse inventories, customers, and orders. The
enterprise has an existing payment processing system still hosted on traditional IT
that is payment card industry (PCI) compliant, so the cloud application uses it to
manage payments. The warehouse has an existing inventory management system
hosted on-site on traditional IT, which the cloud application uses to query product
availability. Customers can make self-service purchases by accessing the website in a
web browser or using a mobile application. If the customer calls to place their order,
the customer service representative uses the same cloud application but accesses it via
their own client, perhaps a thick client application running on their desktop terminal.

Figure 1-2. Ecommerce Cloud Application
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Banking: System of engagement
Many enterprises have existing systems of record (SoRs) that cannot be moved to the
cloud (or at least haven’t been moved so far). Yet the cloud can still be helpful for
making those systems accessible to large numbers of users across a variety of user
interfaces. To do so, the enterprise implements a system of engagement (SoE) deployed
in the cloud that provides controlled access to functionality in the SoRs. The SoE
provides a new customer experience through a single modern user interface—such
as a web browser—that facilitates access to existing SoR functionality. In both a
three-tier cloud application and an SoE cloud application, the middle tier runs in
the cloud. In a three-tier application, the middle tier contains the majority of the
domain logic, relying on existing SoRs relatively little. In an SoE, the middle tier is
mainly a facade that delegates to the SoRs for all domain logic and computation.
Whereas the SoRs are difficult to use because of their legacy technology (such as
COBOL copybooks, a limited number of concurrent network connections, and batch
processing), SoEs use modern technology—such as JSON and XML, web services,
and scalability for a huge numbers of concurrent users. The SoE adapts the SoRs so
users can access them as a unified, modern application.

Consider a bank that wants to enable its customers and partners to interact directly
with its financial services. Those services are often provided by systems of record
that almost certainly do not run in the cloud and will not be migrated anytime soon.
Rather than rewrite these business-critical systems, and rather than giving public
internet users direct access to these business-critical systems, an SoE running in the
cloud can scale to support numerous concurrent users on a variety of devices with
security to control access to the SoRs via a limited number of shared connections.
The SoE provides the external functionality while reusing the existing systems to
implement much of that functionality.

The bank may rely on existing systems to manage different types of accounts—such
as checking, savings, mortgages, and credit cards. These systems may not even know
that multiple accounts are owned by the same customer, or that two customers with
separate accounts also own a joint account. Part of the goal for an SoE is to enable a
customer to see all of their accounts and manage them together, such as transferring
funds between accounts.

Another driver for an SoE is supporting new types of client applications made
possible by the internet. Whereas bank tellers used to access the bank’s SoRs via
dumb terminals, customers today want self-service access to their accounts using
websites and mobile apps. Meanwhile, other devices like automatic teller machines
(ATMs) need access. Telephone customer service representatives, bank tellers, and
even telephone voice prompt systems and internet chatbots need access to these
systems and need to be able to see all of the accounts for a customer. This system of
engagement is a new application and should be developed to run in the cloud.
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Notice that this banking architecture diagram (Figure 1-3) looks a lot like the e-
commerce architecture diagram (Figure 1-2). This is the basic architecture of a cloud
application. The business domains—ecommerce and banking—are very different, but
the cloud architectures are very similar.

Figure 1-3. Banking Cloud Application

Figure 1-3 shows a bank with the following:

Systems of record (SoRs)
Existing applications in the enterprise, such as ones for different types of
accounts like checking, savings, mortgages, and credit cards

Client applications
New client types such as web browsers and mobile apps, and support for new and
existing roles like tellers, ATMs, and customer service agents

System of engagement (SoE)
A program in the middle, hosted in the cloud, that integrates with the SoRs to
reuse their functionality and that is able to support the range of client applica‐
tions and large numbers of concurrent users

An SoE can be thought of as a facade for the SoRs, but it’s a very powerful facade.
It implements security to protect the SoRs and control which users can access what.
Most SoRs were never designed to handle very many concurrent users, but SoEs scale
to handle large numbers of users connecting at the same time over the internet and
internal networks, managing a small number of connections to the SoRs and sharing
them among a large number of users.

The cloud makes it possible for many old-school businesses—such as banks, insur‐
ance companies, airlines, hotels, phone companies, utility companies, hospitals, ticket
sellers—to make their old technology new again without changing it by adding an
SoE that reuses what they already have and exposes it in new ways.
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Data analytics: Cloud-scale job management
High-performance computing (HPC) hardware—such as high-performance graphics
processing units (GPUs)—can greatly accelerate performing analytics and artificial
intelligence (AI) on data. An enterprise can avoid the expense of installing HPC hard‐
ware in their own data center by instead using the compute capacity in a cloud. The
cloud vendor incurs the expense of continuously installing the latest-model GPUs as
well as provides large capacities that enable more data to be analyzed concurrently. If
the enterprise needs the capacity only at specific times, rather than own capacity that
often sits idle, it can pay-as-you-go: rent cloud capacity only when needed, and pay
for only what they use.

To facilitate this model, the enterprise doesn’t have to store its data in the cloud.
Instead, it can break its data into sets and send them to the cloud to process in
batches. Figure 1-4 shows the architecture.

Figure 1-4. HPC Cloud Application

The client application runs where the data is stored, often in its own data center.
That application breaks the data into jobs, then uploads each job for the cloud to
perform and receives the results. Each job is managed in the cloud serverlessly. The
cloud may have the capacity to manage large numbers of jobs concurrently, perhaps
in multiple data centers in multiple locations. Multiple enterprises can submit jobs
to be managed, all sharing the cloud’s capacity and each paying only for the capacity
they use. The data is not stored in the cloud long-term, so access to it in the cloud is
limited.

Some public clouds make uploading data expensive. If multiple jobs will upload
the same data, it can be stored on the cloud instead so that it has to be uploaded
only once. If all of the on-prem data will eventually be processed as jobs, the cloud
database can be a replica of the on-prem database, such that synchronizing the replica
keeps the data current.
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A domain-specific example of cloud-scale job performance: a user’s survey equip‐
ment could take numerous photographs of a large terrain over time and upload them
to the cloud for visual analysis using AI. The AI could identify the photos that show
interesting anomalies and send their IDs back to the user, filtering for the interesting
photos far faster than people could. When the equipment takes lots of photos, the
cloud can scale to process them all at the same time, and the user pays only for
the capacity they use. This approach also applies to other problem domains, such
as enabling next-generation machine learning tools, performing simulations, and
supporting research.

Conclusion: Wrapping Up Cloud Applications
In this chapter, we’ve examined the fundamental pattern for this whole book, Cloud
Application (6). For an application to work well in the cloud, it needs to be designed
for the cloud.

As we have seen in this chapter, there are important considerations that should be
addressed when developing a new application or modernizing an existing application
for the cloud. The Introduction showed how cloud computing has evolved from
previous computing architectures. Then this chapter addressed the latest iteration
of computing architecture—the cloud—as well as what the cloud is and how cloud
computing differs from traditional IT.

Cloud applications are different from traditional IT applications. The cloud has
newer, better qualities that traditional IT does not, qualities that make a set of
computers easy to share. While traditional IT incorporates several practices that don’t
work well on shared computing, the cloud incorporates rather opposite practices
that make shared computing useful. Meanwhile, the industry is adopting several
newer application development practices, and the cloud helps facilitate applying
those practices. The cloud application topic space is vast, with a lifecycle including
numerous aspects that range from application architecture to deployment to complex
topologies—more subject matter than can fit in one book, so this book focuses on the
first part, the application’s architecture.

We’ve seen that while cloud applications may seem completely new and unknown,
their structure has evolved from earlier technologies—from mainframe computers to
desktop computers to client/server computing to what is now known as cloud-native
computing.

We’ve reviewed the basic structure of a cloud application, how it solves the challenge
of designing an application to work well on the cloud. We reviewed examples for
ecommerce, banking, HPC, showing that this cloud application solution can be
applied across a range of industries using several architectural variations.
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The next chapter will explore the fact that although traditional IT and cloud appli‐
cations are different, they both run on computers and therefore both embody the
same fundamental Application Architectures (Chapter 2). Then, we’ll discuss the
basic capabilities an application should include to make it run well on the cloud, best
practices for designing a Cloud-Native Application (Chapter 3).
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CHAPTER 2

Application Architecture

Cloud applications can seem exotic, but their fundamentals evolved from traditional
IT. The architectures for applications are largely the same for the traditional IT
and cloud. Some of what can make cloud applications seem advanced is that they
incorporate advanced architectures that are used less commonly in traditional IT.

The three patterns in this chapter embody three broad approaches for how to archi‐
tect an entire application. These architectures are not specific to the cloud; they apply
equally well to both traditional IT and to the cloud. Developers experienced with
developing architectures for traditional IT applications may well already be familiar
with these patterns.

Introduction to Application Architecture
Before we dive into the architectures, we’ll review some background information that
is helpful for understanding them. An application architecture is a kind of software
architecture, so first we will define software architecture itself. Architectures are all
about trade-offs, so we will discuss the design constraints these architectures resolve
and the trade-offs they balance. Architectures arrange functionality into components,
so we’ll introduce some terminology for describing the components in an architec‐
ture.

Once we have that background, we will then present the three application architec‐
ture patterns in this chapter—Big Ball of Mud (22), Modular Monolith (29), and
Distributed Architecture (38)—and discuss the evolution they embody.
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Software Architecture
In the software industry, there are various opinions on what “software architecture”
means. For example, one definition states that architecture is the system’s structure
that comprises software elements with their visible properties and the relationships
between them. IEEE defines software architecture as “fundamental concepts or prop‐
erties of a system in its environment embodied in its elements, relationships, and in
the principles of its design and evolution.” In general, many of these definitions view
software architecture as the “big picture” of a system that shows the fundamental
structures and the organization of a software system. Less formally, the architecture
of a system is, as Ralph Johnson puts it, “those parts which are harder to change” or
“the decisions you wish you could get right early in a project.”

One of the most important yet difficult decisions that teams make early on in a
project is deciding which application architecture they will use. An application’s
architecture does not change its functionality; rather it changes how that functional‐
ity is developed and how it runs. An architecture organizes the code that implements
an application into a set of components, a collection of parts that form a whole.
Components can operate with relative independence from one another, interact with
one another, be reused, and be implemented and maintained by developers and small
squads working relatively independently from one another.

Architectural Trade-Offs
There are always trade-offs when making decisions about architecture. When devel‐
oping an application, you must resolve competing business and technical drivers such
as performance, availability, security, maintainability, modifiability, time to market,
developer skill-set, and more. Each architecture embodies decisions that address
these drivers by balancing these trade-offs.

A common trade-off that needs to be made early on for any application is develop‐
ment time. Teams and organizations need to decide whether they need to develop
something quickly and refactor it later—or whether they should think hard and
try to do it right the first time. Building something quickly does allow teams to
release sooner, thus providing user value earlier with the opportunity for needed
feedback. Doing “exploratory programming” to experiment in order to find a good
solution is sometimes the right choice. However, this comes at a cost in areas such as
maintainability, performance, reliability, or developer experience, to name a few.

Another common architectural trade-off is technical debt. Technical debt is the
implied cost of future effort required to keep a solution’s existing functionality work‐
ing and extend it with new functionality. Architectural decisions can avoid technical
debt or incur it intentionally. The development effort to maintain conformance with
an architecture can choose to completely eliminate existing technical debt, make a
minimal effort to keep it under control, or ignore it entirely.
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Figuring out how to budget your development effort over time is another important
trade-off we will examine. Functionality developed quickly may require less effort but
incur greater technical debt. Repairing the debt or at least keeping it contained will
require greater development effort down the line.

If an important consideration for an application is to minimize risks and make the
system easier to change, a team will need to think about an application architecture
with these advantages. Doing something quick and dirty will not work well for
minimizing risks and maintainability. For example, if there are many teams that need
to work independently on different parts of the application without affecting other
teams or parts of the system, having an architecture where you have pieces (modules)
that can be developed independently is a good decision. Ultimately, this could lead
to a requirement that the architecture enable different parts of the application to
be bundled and deployed in separate processes or computers and be able to scale
independently and run concurrently.

This chapter will examine some of these trade-offs and characteristics for deciding on
an application architecture and when to choose one architectural style over another.

Component Terminology
This book uses the following terms for different types of components in an
architecture:

Module
A cohesive set of code that implements a unit of functionality.

Service
A module designed to run in a different process than the clients that use it.

Program
A set of modules and services that implement a complete set of useful functional‐
ity to accomplish a particular domain purpose.

Workload
A deployable component, deployed on a physical or virtual server. A monolithic
application is a single workload, whereas a distributed application is composed of
multiple workloads.

Application
A program and the resources it needs to run, such as a web server and a database.
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Architecture
A strategy for decomposing functionality into modules comprising services that
collaborate. A single application can have different parts with different architec‐
tures, such as a single application with a combination of cloud-native architec‐
ture, microservices architecture, and event-driven architecture.

An application’s architecture is an architecture that applies to the entire application.
It defines what its components represent and how they are organized into these
component types.

Components structure solutions
The component types in an application architecture define how the architecture
structures solutions.

In an object-oriented architecture, each component is an object, and functionality
is divided into classes that can each be implemented by different developers. In a
service-oriented architecture, each component is a service, functionality is divided
into services, and separate teams can work independently to develop each service
provider and each service consumer.

Functional programming architects an application as a set of functions. Lan‐
guages that incorporate functional programming aspects (often together with object-
oriented aspects) such as JavaScript and Scala often explicitly declare modules as
part of the language definition or through language or platform extensions. For
example, Node.js adds modules for organizing JavaScript programs in Node.js, and
Require.js is a commonly used module loader for use in both Node and browser-
based programs.

Similarly, a layered architecture organizes components into layers, where the depen‐
dencies between one layer and the next are all unidirectional, such that the upper
layer is optional and the lower layer can operate without it. Like a module, each
layer has a purpose, the components in that layer all fit that purpose, and each layer
can be developed by a different team with well-defined dependencies on the lower
layers. For example, a three-layer architecture encompasses a user interface layer that
depends on a domain layer that depends on a data persistence layer.

Application architectures are independent of programming language. An application
can be implemented in assembler, FORTRAN, C, Java, Lisp, Clojure, or Go and still
have the same architecture. Some architectures can be implemented more easily with
some languages than others. For example, an application with an object-oriented
architecture can be implemented more easily with a language that includes built-in
features for method invocation, inheritance, and polymorphism.
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Architectural Patterns
Although there are many architectural styles and patterns, an application is com‐
monly structured with one of three fundamental architectures:

Big Ball of Mud (22)
An application with no discernable modularity or structure, where any compo‐
nent has access to all other components and where any code can access all
variables

Modular Monolith (29)
A monolithic application composed of modules whose code is cohesive, well-
encapsulated, and loosely coupled

Distributed Architecture (38)
An application composed of code modules built as separately deployable
workloads

The first two architectures are monoliths where the application is a single workload
that runs in a single executable process—we have seen distributed balls of mud. Often
a monolithic application is packaged as a single deployment artifact that runs in
an application server. The monolith consists of many components that may contain
domain logic for various functionality, which have dependencies among themselves,
and code maintenance over the years often increases these dependencies. In an
application with a Distributed Architecture, each module is a service that runs in a
separate process, possibly on a separate computer.

Architectural evolution
These application architectures are milestones in application evolution, increasing the
application’s sophistication. We see this in Figure 2-1.

Over two centuries, bicycles have evolved to become more sophisticated, to work
better, and to be easier to ride. Likewise, over time, application architectures usually
evolve from Big Ball of Mud to Modular Monolith to Distributed Architecture. Devel‐
opers may evolve an individual application through these stages over its lifetime. As
developers maintain and extend an application, they must reinvest into the architec‐
ture of the application throughout its life, otherwise even a Modular Monolith and a
Distributed Architecture can devolve into a Big Ball of Mud.
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Figure 2-1. Application Architecture evolution

Design is always about tradeoffs. Building a Distributed Architecture is challenging;
a Distributed Architecture is not always an improvement over a Modular Monolith.
Sometimes building a Modular Monolith is the right solution for your problem. The
key is knowing how far to take the evolution of the architecture of an application
based on the requirements of the particular application, which we will discuss later in
Application Migration and Modernization (Chapter 9).

This introduction has covered several topics that are helpful to be familiar with to
understand the patterns in this chapter. We’ve talked about the industry perspective
on what software architecture is, enumerated architectural trade-offs that these archi‐
tectures balance, defined terminology for the components in an architecture, and
introduced the patterns and how they evolve an application’s architecture.

With this background in mind, let’s explore patterns for how to architect an appli‐
cation. Those three application architecture patterns are Big Ball of Mud (22),
Modular Monolith (29), and Distributed Architecture (38).

Big Ball of Mud
You are developing an application to be deployed on traditional IT or on the cloud.
Perhaps you are in the early stages of development and therefore some or all of
the requirements are provisional or evolving quickly. For business reasons, the team
needs to get the software working and out the door quickly. You might need to
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engage in exploratory programming to learn about the requirements, get needed
feedback, and understand the best ways to approach the problem.

What is the simplest possible architecture for an application that helps a function
work quickly—allowing you to get needed feedback as early as possible

Often an application needs to be developed quickly and at limited cost in order
to explore novel functionality. It can be a bare-bones implementation described
as a demonstration, prototype, or proof-of-concept. Agile development techniques
encourage starting a new project by first developing a minimum viable product
(MVP). Lean startup methodologies for software show an application’s viability by
rapidly developing a simple version and using it to gather customer feedback.

Many application architectural practices make maintenance easier but can slow down
coding speed. Function headers and method signatures create barriers between units
of code that need to work together. Scoping variables makes them inaccessible to
other code that needs them. A reusable component takes time to design and requires
coordination between the developers that will reuse it. These are all positive factors
but are often overlooked when time and resources are limited.

Many developers aspire to create a well-designed system with clean code, applying
proven design patterns. Clean code and a well-designed architecture take significant
effort and time. However, teams in the early stages of development often need to
experiment with concepts to validate them and strive to find simple ways to develop
applications without a lot of overhead.

Too much focus on rapid prototype development and quick delivery, rather than on
sustainable architecture, often leads to a (correct) focus on business priorities but can
also lead teams to overlook architectural concerns, resulting in technical debt.

Developers differ in their levels of skill, as well as in their expertise and experience.
Such variation of experience covers domains, languages, and tools. These different
levels of skills lead to a large variation in implementation especially in larger systems
with many teams.

Therefore,

Focus on features and functionality before focusing on architecture and perfor‐
mance. Develop an application as a Big Ball of Mud—building the system by
any means available: produce simple, expedient, disposable code that adequately
addresses just the problem at hand.

Long before cloud computing, “Big Ball of Mud” was already recognized as the
most common, de facto standard software architecture. A Big Ball of Mud (BBoM)
can be considered a lack-of-architecture architecture, the architectural equivalent of
the number zero or the empty set. The telltale sign of a BBoM is that everything
talks to everything else with circular dependencies, as shown in Figure 2-2. Every
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shred of important state data might be global. Variable and function names might be
terse, uninformative, or even misleading. Some BBoM architectures are the result of
well-intentioned design ideas gone wrong or evolve from an accretion of expedient
implementation hacks.

Figure 2-2. Big Ball of Mud

A BBoM architecture defies structured code practices. Function signatures might
include long lists of poorly defined parameters, while their function bodies make
extensive use of global variables. Variables seemingly intended as constants have
changing values; variables seemingly intended as variables remain constant. Many
functions are lengthy and convoluted, each performing several unrelated tasks
instead of a single, well-defined task. The code is duplicated, and each copy is slightly
different. The flow of control is difficult to follow. The programmer’s intent is next to
impossible to discern. The code is simply unreadable and borders on indecipherable.
The code exhibits the unmistakable signs of patch after patch at the hands of multi‐
ple maintainers, each of whom seems to have barely understood the consequences
of what they were doing. Did we mention documentation? What documentation?
Any code comments might be as indecipherable as the code, and the code and its
comments might not match.

Although a BBoM is a mess, sometimes intentionally developing an application as
a BBoM is exactly the right thing to do. The simplest application architecture is no
architecture. Rather than wasting time designing for encapsulation, reuse, brevity,
and efficiency, simply implement each new feature with the simplest brand-new code
that might work. This is the easiest way for a developer to make progress quickly and
enables a group of developers working concurrently to all work independently. When
a new feature has functionality in common with an existing feature, copy and paste
code from the old feature into the new one and make changes. Make variables global
so they can be accessed by any code that needs them. Don’t worry about which values
are constant; just store them all as variables. It can always be refactored later.
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A common misconception about BBoM is that it is always an anti-pattern (AntiPat‐
terns, 1998). However, a good pattern in one context can be an anti-pattern in
another. A BBoM can be an anti-pattern in an application that needs to be maintained
long-term, but it can be advantageous in the short term.

The BBoM pattern can help make sense of complex systems, whether your ultimate
goal is to clean up or contain the mud or not. Many good reasons can lead to overly
complex architectures. In fact, architects and development teams doing exactly the
right thing can end up with some mud and unnecessary complexity in their systems.

Consider the often-used approach of a minimal viable product (MVP): teams work
toward building the smallest possible product—with the fewest extraneous features—
that can meet their business needs. Given the narrow focus on only the current
product release, teams building with an MVP approach usually end up either unin‐
tentionally or quite possibly intentionally building a BBoM. Only if the MVP is
successful will a team be able to move on to later releases, in which considerations
of extension or expansion become more important than immediate practical value.
However, teams following this approach easily get locked into a cycle of repeatedly
doing “just enough,” and as a result, technical debt (and mud) accumulates. What was
a good decision at the beginning ends up becoming less so over time.

You may not always end up with just a single Big Ball of Mud. Instead, another
possibility is building several mini “mud pies” that could then form a later focus for
refactoring. This assumes that you put some effort into modularity even at this early
stage. We will address this possibility in the next pattern.

“Big Ball of Mud” presents patterns that start to clean up a BBoM when it starts
to get out of control—such as Shearing Layers, Sweep It Under the Rug, and Recon‐
struction. Shearing Layers says to factor your system to group together artifacts that
change at similar rates. Sweep It Under the Rug says that if you can’t easily make a
mess go away, at least cordon it off. This restricts the disorder to a fixed area, keeps it
out of sight, and perhaps sets the stage for additional refactoring. You are at least not
adding to the mess.

“Patterns for Sustaining Architectures” outlines some patterns for sustaining an
architecture: Paving the Wagon Trail and Wiping Your Feet at the Door. These
patterns can help prevent your system from getting out of control and keep existing
components in your system clean. They help prevent mud from creeping into your
design and help you deal with improving evolving systems that might already have
muddy parts. They capture proven practices for sustaining complex and typically
muddy systems. They do so by shoring up architectural boundaries, identifying and
preserving core functionality, and providing easier ways to accomplish repetitive
programming tasks.

Big Ball of Mud | 25

http://antipatterns.com
http://antipatterns.com
https://oreil.ly/pVSro
http://www.wirfs-brock.com/PDFs/PatternsForSustainingArchitectures.pdf


The main advantage of a BBoM is that you are able to quickly develop something that
works and thus are able to promptly show progress and get feedback. In many cases,
getting a system up and working can be achieved without expending (wasted) time
and effort designing what might turn out to be the wrong architecture, undermining
the system’s grander architectural potential. A casual approach to architecture is
emblematic of the early phases of a system’s evolution when programmers, architects,
and users are learning their way around the domain.

Perfection can be the enemy of “good enough,” and it is often the case that something
not as good wins. Richard Gabriel’s “Worse Is Better” argues that in making software
(and perhaps in other arenas as well), it is better to start with a minimal working
program or system and grow it as needed. In other words, do what is expedient and
build what you need; do not worry about the architecture or clean code until later,
but use the running system to learn what is needed next. Also, in spite of the best
intentions, good decisions can lead to muddy architecture. Only in hindsight can you
see what a better, less muddy solution might be.

Kent Beck is known for this mantra: “Make it work. Make it right. Make it fast.”
“Make it work” means that we should focus on functionality up front and get some‐
thing running; “Make it right” means that we should concern ourselves with how
to structure the system only after we’ve figured out the pieces we need to solve the
problem in the first place; “Make it fast” means that we should be concerned about
optimizing performance only after we’ve learned how to solve the problem and after
we’ve worked out an architecture to elegantly encompass this functionality. Problems
arise when there is not enough attention given to the “Make it right” phase, thus
leading to substantial technical debt that if not addressed might lead to a bad BBoM.

The main disadvantage of a BBoM is that they can be very difficult to maintain
primarily because there is a lot of coupling between various parts of the system.
Changes in one part can break other parts, requiring them to be changed accordingly,
and so on, causing a cascade of changes throughout various seemingly unrelated
sections of code. Multiple developers working on the same BBoM might need to
coordinate their changes to prevent code collisions. Michael Feathers outlines some
useful techniques that are helpful for dealing with BBoMs in Working Effectively with
Legacy Code (2004).

A BBoM application is deceptively easy to build but can be riddled with technical
debt. To manage this technical debt, code can be better organized by Refactoring the
Monolith (484) into components to become a Modular Monolith (29) that is easier
to maintain.

26 | Chapter 2: Application Architecture

https://oreil.ly/0upgk
https://learning.oreilly.com/library/view/working-effectively-with/0131177052
https://learning.oreilly.com/library/view/working-effectively-with/0131177052


A BBoM executable that runs in traditional IT will also run in the cloud. If it ain’t
broke, don’t use the cloud as an unnecessary excuse to fix it. Just Lift and Shift (470) it
onto the cloud as is. Developers can Virtualize the Application (475) or Containerize
the Application (478) as a BBoM, packaging it more like a cloud application. Once
it’s replatformed onto the cloud, demo the success and deploy it into production.
If needed, refactor it later after moving it to the cloud. Alternatively, Refactor the
Monolith (484) before moving it to the cloud. A good way to modernize a BBoM
incrementally while moving it to the cloud is to Strangle the Monolith (Chapter 10),
which is an evolutionary approach to moving functionality out of the monolith and
replacing it with Microservices (116) and deploying it on the cloud.

A Cloud Application (6) can be developed incredibly quickly by developing each
additional feature with yet more code, resulting in a BBoM application.

Examples
A general example of an application with a BBoM architecture looks like spaghetti
code, with many parts connected to many others.

PayPal has publicly documented their application’s BBoM architecture and how they
refactored it to make it modular, to make those distributed, and to make them into
microservices.

Ecommerce application
Consider an ecommerce system developed quickly as a BBoM monolith—as outlined
in Figure 2-3. Ecommerce systems have functionality for buying products, which
includes functionality for putting items into a Shopping Cart and ways to Checkout
and pay for those items. A BBoM monolith might have many dependencies, shared
global information, and coupling between different functions. Notice that in this
example, the Buying Functionality, which includes the Shopping Cart and Check
out to pay for items, are overlapped and tightly coupled with many parts of the
monolith.

Functionality such as Shopping Cart and Checkout should each be encapsulated
within a single part of the application, but this diagram shows how the functionality
is spread across multiple parts and how some overlapping parts provide multiple
units of functionality. It also shows how each part depends on many others and that
the dependencies can become circular. No wonder a change in one part may have
unintended consequences in other, seemingly unrelated parts.

Big Ball of Mud | 27



Figure 2-3. Ecommerce Big Ball of Mud

PayPal
One of the most intriguing published stories of refactoring a BBoM is David Mosyan’s
“PayPal’s Microservices Architecture Journey” post about how PayPal was refactored
from a complex set of monolithic applications, each of them a Big Ball of Mud, into a
more modern Microservice (119) over a period of several years.

PayPal launched the initial web version of its electronic payments system (what we
now know and recognize as PayPal) in 1999. This version was written as a CGI
application, which grew substantially over time as more features were added. By 2007,
it consisted of over 70 linked monolithic applications, providing significant business
value to PayPal at the time. Big-bang releases were scheduled once a month, and the
release process often took an entire night or weekend, with accompanying problems
in supporting and maintaining the code.

The PayPal team began changing this code into something much more like a Modular
Monolith (29) around 2007 with their “isolated releases” idea. This concept essen‐
tially made each monolith a module and provided mechanisms to release only those
parts of the monolith affected by the changes in the release.

Around that time, they also abandoned a language-specific remote communication
technology and moved to a more generic XML-based communication mechanism.
There was a single C++ class that embodied most of the domain logic of the system,
and they even referred to it as a “big ball of mud”! That one class had well over 5,000
methods and over 500,000 lines of code, and each application that used it had to
pull in that enormous class and all of its dependencies—making it difficult to change
or maintain. This class included much of PayPal’s core functionality, and it became
critical to refactor this class to make it easier to change.
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The team spent parts of 2007 and 2008 breaking up that class and reorganizing
things in a more modular way. That set the stage for a later reorganization to a
fully Distributed Architecture (38) that was essentially a Microservices (119) Archi‐
tecture. They used REST for everything, adopted a more Polyglot Development (146)
approach (for example, using Node.js for some modules), and finally refactored the
system as a set of Microservices (119). They now have over 2,500 microservices and
750 externally published APIs.

Modular Monolith
You are developing an application for either traditional IT or the cloud. Maybe you’ve
performed some exploratory programming that developed a Big Ball of Mud (22)
that has been successful and you now need to maintain it. Or perhaps you want to
develop an application from scratch that should be more maintainable than a BBoM.
The system is important for your organization and therefore requires you to be able
to maintain and add features reliably and cleanly.

How can I architect my application to make it easier to maintain and evolve
quickly?

While many projects fail before the application ever gets deployed into production,
the applications that do get deployed tend to get used for the long run. Many that
are developed quickly to meet an immediate need end up still in use years later.
Having developed a prototype, the enterprise may decide to ship the prototype and
deploy it into production. Describing an application as a legacy is conceding that the
application is still useful. Because useful applications get used for a long time, most
of the development effort goes not into initially developing an application but into
maintaining it.

The easier an application is to maintain and evolve, the more valuable it is to an
enterprise. Not only does it provide useful functionality, but developers can efficiently
fix and expand that functionality to keep making the application even more valuable,
even as requirements and circumstances change. An application that doesn’t need
bug fixes and doesn’t need new features is one that no one’s using. Applications
need to be designed not only to provide the desired user functionality but also to be
maintainable.

When an application starts as a Big Ball of Mud (22), once it proves viable, maintain‐
ing and evolving it becomes a problem. Convoluted code with complex interdepen‐
dencies causes a fix for one thing to break several other things, and causes code
changes that work for each individual developer to fail when integrated into the same
build. Crosscutting concerns such as security are difficult to implement because the
hidden dependencies complicate both code reviews and security scans. To make the
application useful in the long run, developers must spend additional effort making it
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maintainable. It contains a lot of technical debt that needs to be paid down: making
code reusable, removing duplicate code, encapsulating code within functions and
classes, limiting variables’ scope, etc.

When a project starts with a clear understanding of the requirements, exploratory
programming may not be necessary. In this case, starting it as a Big Ball of Mud
(22) may ultimately slow down the project. Developers should strive to create main‐
tainable code from the beginning rather than have to dedicate time later to make it
maintainable.

The question then is—What sort of application architecture should you morph a
BBoM into to make it maintainable? How can you structure an application from
the beginning so that it is always maintainable? Developers need a way to structure
an application into parts that can be maintained, built, tested, and validated more
independently.

Therefore,

Architect an application as a Modular Monolith—a single executable composed
of separate encapsulated modules designed with limited dependencies between
them.

In an application with a Modular Monolith architecture, the code has been structured
by dividing it into modules. Each unit of functionality is implemented in a single
module or small set of modules. Each module implements just one unit of function‐
ality or a set of closely related units. The architecture creates limited dependencies
between one module and other modules and avoids circular dependencies (as shown
in Figure 2-4).

Figure 2-4. Modular Monolith
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Earlier, we defined a module. Modules generally do “one thing,” that is, they are uni‐
fied by a single concept. In Structured Design (1975), Larry Constantine introduced
two important concepts about modules: modules should have high cohesion and
low adhesion. That is, one module should contain all of the code to implement one
unified thing, and only that code and multiple modules should be loosely coupled
so that one doesn’t overly rely on others. This led to object-oriented programming,
which groups multiple related routines together into classes that hide implementation
to enforce loose coupling. That information hiding evolved into APIs that define the
boundaries of modules.

This book uses this definition:

A module is a cohesive set of code that implements a unit of functionality.

Each module can be designed to work fairly independently, with an explicit interface
that defines the module’s boundaries and encapsulates its responsibilities—as shown
in Figure 2-4 by the larger blocks with the heavier lines between the blocks. The
interfaces declare and limit dependencies between modules and therefore limit the
impact of changes in one on the others. Each module can be developed by a separate
team of developers working independently of the other teams, needing to coordinate
primarily to design the interfaces.

This difference in organizing the code within a monolith makes a world of difference
for a team of developers trying to work together to develop an application. Individual
developers and small teams can work on different modules at the same time and
avoid interfering with one another. This enables the codebase for an application to
grow in scale and capability beyond what a single developer can produce.

Because the modules are parts of a single monolithic unit, the application as a whole
can be built as a single executable that is easy to run. It is also easy to deploy to
the cloud and run in the cloud. Because all of the modules run in a single process,
their interfaces can share data using pass-by-reference (e.g., pointers), so the param‐
eters don’t have to be serialized. All of the modules are implemented in the same
language, with built-in capabilities for function lookup and method invocation. A
single executable process is easy to monitor and restart.

There are many Design Patterns (1994) that can help with creating Modular Mono‐
liths. Patterns such as Adapter, Bridge, Decorator, Facade, Proxy, and Strategy are
useful for making reusable components that help create separate modules within
your monolith. Additionally, there are many Pattern-Oriented Software Architecture,
Volume 1 (1996) patterns that assist with evolving your monolith to a more modular
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1 Master-Slave is the name of the pattern as described in Pattern-Oriented Software Architecture (POSA). There
has been multiple concerns with the evocations that the name brings. It has been suggested that it is time to
change the name. Note: This language is also used in Figure 7-10.

system such as: Layers, Master-Slave,1 Pipes and Filters, Broker, Model-View-
Controller, Blackboard, and Interpreter.

There are definite advantages when building a Modular Monolith. The main advan‐
tage is that individual modules within a monolith are easier to develop and maintain.
A large development team can work in small squads assigned to individual modules.
The modules are still a single code base built into a single deployment artifact and
run as a single executable. They can make the application easier to deploy, test,
debug, and deal with crosscutting concerns such as security. It is also easier to change
individual modules without affecting other parts of the monolith.

There are several other aspects that adding modularity within a monolith will
improve. These include better maintainability since it will be easier to locate code
within the monolith. Likewise, if each module only does one thing, it is easier to
reason about the code. Finally, testing is simpler because you can more easily isolate
changes within modules, each of which has fewer tests.

However, there are many challenges to building a Modular Monolith. It can take quite
a bit of experience and effort to properly design modules around the domain. There
is a need for extra time and budget to properly develop and maintain modules in
modular programming. It is a challenging task to get the design right and to be able
to combine all the modules. It also requires good documentation so that developers
can properly use and extend modules without affecting other modules. Getting reusa‐
ble modules without partly repeating the tasks performed by other modules can also
be challenging. However, with well-designed modules, it can be easier to build, test,
and deploy into production. Well-designed systems also become easier to maintain.

A Modular Monolith that runs in traditional IT will also run in the cloud, just Lift and
Shift (470) it onto the cloud as is. Developers can Virtualize the Application (475) or
Containerize the Application (478) of a Modular Monolith, packaging it more like a
cloud application.

A Cloud Application (6) can be developed more methodically by organizing its
functionality as a set of modules and assigning each module to a different team to
develop it. The teams’ work will be better organized, the outcome more predictable,
and the result more maintainable.
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To enable the modules in an application to scale and fail independently, develop
it with a Distributed Architecture (38), which is a step toward building a Microser‐
vices (119) Architecture. A good design principle to practice for modular program‐
ming is to design your modules by Model Around the Domain (183).

Examples
Here are several typical examples of a Modular Monolith:

Transformation from Big Ball of Mud to Modular Monolith
The general approach for refactoring a BBoM into a Modular Monolith

Ecommerce application
The ecommerce example from the BBoM pattern, refactored into modules

Java
Built-in support for modules implemented as JAR, WAR, and EAR files

Eclipse
An open source IDE with a pluggable architecture

Firefox
An open source web browser with a pluggable architecture

The first two are general techniques, the third is a language feature, and the last two
are public applications with documented modular architectures.

Transformation from Big Ball of Mud to Modular Monolith
A common way to create a Modular Monolith is to refactor (484) an application with
a Big Ball of Mud (22) (BBoM) architecture. Figure 2-5 shows the contrast between a
BBoM and modules with well-defined interfaces.

Figure 2-5. BBoM to Modular Monolith evolution
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In both architectures, the number of components is the same, but the modules
reduce the number of dependencies and make them more orderly with no circular
dependencies. The modules help limit technical debt, or at least scope it into smaller
parts that can be cleaned up more easily.

To transform a BBoM into a Modular Monolith, extract functionality into modules
that model the domain. Each module can then evolve independently without affect‐
ing other parts of the system.

Ecommerce application

In the ecommerce example, the Buy functionality is separated into two smaller sepa‐
rate functions, such as Shopping Cart and Checkout (see Figure 2-6).

Figure 2-6. Ecommerce BBoM to Modular Monolith evolution

Once these functions have been extracted into separate modules, different teams can
now work on them and deploy them with a much lower risk of breaking other parts
of the system.

Java
In Java, each module can be compiled as a separate JAR file, and then the collection
of JAR files can be built into a single executable JAR. Running the application is one
simple action that runs the JAR file in an application server.

In Jakarta EE, several WARs can be packaged together into an EAR along with other
JAR files. In this way, the specification encourages one form of a Modular Monolith by
making it possible to package together multiple WAR and JAR files. While the basic
specification encourages these WAR and EAR files to be loosely coupled, in practice,
this often devolved into a Big Ball of Mud through tight coupling between classes
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packaged in different JAR files. This was exacerbated by the fact that the standard
specification does not declare versions of classes or packages that are exported, often
leading to issues when multiple modules are integrated.

Eclipse
One of the best, and most well-studied, examples of a Modular Monolith is the
venerable Eclipse open source Integrated Development Environment (IDE). Eclipse
was released to open source in 2001, having been originally internally developed by
IBM, and control was turned over to the new Eclipse Foundation in 2004.

The key design principle that has defined Eclipse from its inception is that everything
in Eclipse is defined as a plug-in. In the original version of Eclipse, a plug-in was a
JAR file together with a manifest file (plug-in.xml) that described the dependencies of
that plug-in and what APIs were available for extension or consumption. A plug-in
is essentially, as we have described—a module. Eclipse runs inside a Java Virtual
Machine (JVM)—when Eclipse starts, it scans a set of directories for the manifest
descriptors and then builds an in-memory plug-in registry of the available plug-ins.
Plug-ins can then be built on top of the existing extension points of other plug-ins.
We show this in Figure 2-7:

Figure 2-7. Eclipse plug-in architecture

This very flexible modular architecture has allowed Eclipse to be extended well
beyond its original heritage as a Java IDE to provide support for languages and
environments from Ada to Xtest, covering nearly every letter of the alphabet in
between. One of the key things the Eclipse architecture has addressed that has often
plagued other Modular Monolith systems is that it fixed the issue of isolation between
modules when modules share common code elements (such as nested JAR files). This
was addressed in the Eclipse 3.0 release, which adopted the OSGi framework, turning
plug-ins into OSGi bundles.

OSGi is a set of specifications, implementations, and test compatibility kits that
constitute a dynamic module system for Java that goes well beyond the standard Java
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JAR specification. In OSGi, the unit of deployment (the module) is called a bundle. A
bundle addresses the shortcoming of the Java class loader by providing visibility only
to Java packages that are explicitly exported from a bundle and by declaring its pack‐
age dependencies explicitly. What’s more, it also provides a versioning mechanism for
exporting and importing packages at only a specific version level or range of levels.

Firefox
This concept of a plug-in architecture—that is, an architecture of a platform that is
specifically designed for extension—is one of the most common ways that a Modular
Monolith can survive over the long term without becoming too unwieldy. However,
even when an extension architecture becomes unmanageable due to accumulated
technical debt, you can refactor it to bring the architecture back to a more manage‐
able state. An excellent example of this is the evolution of the Mozilla (Firefox)
extension architecture, which underwent a similar transformation.

Firefox is another venerable open source project—it was originally released in 2004,
and the project was originally named “Firebird” to signify it was rising from the
ashes of the older Netscape browser. One of the design decisions made in the original
Firefox project was to build it using a component architecture—in particular, the
architects of Firefox designed one specifically for this project. That was XPCOM (The
Cross-Platform Component Object Model).

XPCOM was a cross-language component model developed by Mozilla that was
similar to both Microsoft COM and Open Group’s CORBA. Nearly all of the internal
capabilities of Firefox were developed as XPCOM components. That was important
to the original extension architecture of Firefox, in which third-party extensions to
the platform were called “add-ons.” Figure 2-8 shows the main components of this
architecture.

Figure 2-8. Original Firefox architecture

The key here is that the developer of an add-on could use nearly all of the
internal XPCOM components within the platform from their extensions. The
extensions themselves were also built using XPCOM components. However, over
time this turned out to create some issues. One was that the performance of the
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communication between the core platform modules was hampered by the require‐
ments (such as parameter marshaling) of the XPCOM standard. Another was that
the broad set of capabilities made available to add-on developers resulted in them
using services that probably should have remained private to the platform—making
it hard for platform developers to make changes without breaking the extensions. In
other words, tight coupling between the code within the platform and the code in the
extensions made changes difficult.

Those factors, among others, led to a major change in the architecture in 2016. Moti‐
vated by the newer extension architecture of Chromium-based browsers (Chromium
was released as open source in 2008), Firefox released a new extension architecture in
2016. This led to the deprecation of XPCOM in 2017.

This new architecture consists of a simpler approach where extensions are written
using the exact same technologies as are used in building web pages—HTML, CSS,
and JavaScript. For the most part, a browser extension is simply a collection of HTML
and CSS pages and JavaScript code. An extension is defined as a directory containing
a JSON manifest, pages (in HTML and CSS), actions (button icons with optional
HTML and JavaScript), scripts (in JavaScript), and web-accessible resources. The final
piece of this architecture is that scripts and actions can call the WebExtensions API,
which defines a much more narrow, tightly controlled public API that limits the
access that extensions have to the browser internet. This is shown in Figure 2-9:

Figure 2-9. Post-2016 Firefox architecture

Web Extensions are standard APIs that cover browser functions like manipulat‐
ing cookies, setting bookmarks, adding to menus, reading the DOM or taking
actions based on the content of a page, setting notifications, manipulating tabs, and
much more. This API is broadly compatible with the extension API supported by
Chromium-based brokers, which makes it easier to write extensions for both sets of
browsers. This new architecture is loosely coupled, based on languages and tools that
are already in use by web developers and aligned with the rest of the industry for
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greater portability. We will see all of these requirements and features again when we
start to examine how to evolve component models into a Distributed Architecture
(38). The fact that they are still required even when building a Modular Monolith is
very telling.

Distributed Architecture
You are developing an application for either traditional IT or the cloud. If any
development has occurred so far, the application has been architected either as a
Big Ball of Mud (22) or a Modular Monolith (29). Parts of the system need to
evolve independently and possibly by different teams. Various parts of the system
have different resource requirements, and some parts of the system can possibly run
concurrently with other parts.

How can I architect my application so that parts of it can be developed, deployed,
and run independently?

A monolithic application is built, deployed, and run as one big application. A single
executable can be easier to test and debug because there are fewer moving pieces to
keep track of. However, over time as a monolith increases in size, testing becomes
cumbersome, because a change in one part requires retesting all of it. As a monolith
gets bigger, running it requires computers with greater capacity. An application run‐
ning as a single monolith runs on a single computer and is a single point of failure.

Deploying a new version of a monolith, even a Modular Monolith (29), is a big
bang. Parts cannot be deployed independently; to deploy one part, developers must
redeploy the entire application. To change one part of the application, all of it
needs to be rebuilt, retested, and redeployed. Developers and teams may be able to
independently improve different modules, but rebuilding and redeploying cannot be
done independently. This means that development teams working on the various
modules must coordinate to reach a stopping point and all be ready at the same
time to build the application. Deploying a monolith requires testing all the modules
together and ensuring that the modules are integrated properly. Therefore, everyone
(all the teams) must be ready for a new build, and improvements in one module
won’t be deployed until all of the modules are rebuilt and redeployed. The bigger
a monolith gets, the more complex and burdensome it may be to redeploy, often
requiring an outage while the old version is shut down and uninstalled. Then the new
version is installed and started. If the redeploy fails, the entire application is down
until recovery is successful.

Even if you have spent the time to refactor a monolith into modules, it is still a single
unit. Development teams would prefer an architecture that not only allows them to
develop the modules independently but also to deploy them independently and have
them run independently.
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Therefore,

Architect an application with a Distributed Architecture, which creates a compo‐
site application that is a collection of modules, each designed to run separately in
its own process.

A Distributed Architecture structures the modules in a Modular Monolith (29) to
each run as a workload in a separate process and to be able to invoke one another
remotely over the network. The architecture enables modules in a single application
to run distributed across multiple computers and still connect to operate as a unified
application, as shown in Figure 2-10.

Figure 2-10. Distributed Architecture

A Distributed Architecture enables the modules in a single application not only to be
developed independently but also to be built and deployed as separate workloads that
run in their own processes. A distributed architecture application runs as a composite
application, a collection of workloads—each a module running in a process—often
called services. One service invokes another remotely via its interface. Multiple serv‐
ices can run on the same computer, and they can each run on different computers.

A service is a coherent, ready-to-use software component that is designed to provide
a unit of domain functionality. Services are modules that clients access through APIs
that encapsulate and hide the underlying implementation and technology. A service
is implemented by a service provider that performs automated tasks, responds to
events, or listens for data requests from other software. A service consumer invokes
a service to request information or perform a task. The consumer passes parameter
values in the request, and the provider passes a result value or error in the response.

A service consumer and provider communicate over a network connection via either
a remote call or message distribution technology. Most commonly today, that will
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mean an RPC technology like gRPC or a more general remote technology like REST.
Message passing with a queuing system like RabbitMQ or an Event Backbone (279)
like Kafka is also common. All of these remote technologies transmit parameters
and result values across the network by marshaling or serializing each value’s data.
Remote invocation and value marshaling can create performance overhead, which
an API should limit by defining course-grained tasks that reduce the round-trip
interactions between the consumer and provider. (See Session Facade (Core J2EE
Patterns, 2003) and Remote Facade (Patterns of Enterprise Application Architecture,
2002).)

The services in a Distributed Architecture are deployed independently and can scale
and fail independently. When one service becomes a bottleneck, it can be scaled
without the others needing to scale. If one service’s process crashes, the others
running in their own processes keep running. When an infrastructure component
fails, only the services running on that component fail with it; the services on other
components keep running.

A distributed application may run more efficiently not only on multiple computers
but even on a single CPU. Today, the CPUs in most devices are multicore CPUs.
When combined with modern operating systems, any such device can multitask con‐
currently both by multithreading within a process and by running multiple processes
simultaneously in multiple CPU cores.

Making an application distributed does increase design complexity by introducing
challenges such as concurrency, failure handling, and crosscutting concerns such
as performance, logging, security, debugging, and testing. To distribute components
effectively, the data the components use must be stored in a data store that is also
distributed; otherwise the data store will become a bottleneck and single point of
failure.

A Distributed Architecture is often built by extending a Modular Monolith (29), where
the services are modules that can be deployed independently, so the design patterns
for developing modules also apply to developing services. Many distributed comput‐
ing patterns are also helpful for designing services, including Publisher-Subscriber
and Presentation-Abstraction-Control (Pattern-Oriented Software Architecture, Vol‐
ume 1, 1996); Message Channel, Message Endpoint, Message Translator, and Mes‐
sage Router (Enterprise Integration Patterns, 2003); and Client Request Handler.

There are many advantages to building a Distributed Architecture. An obvious
advantage, as previously discussed, is scalability across multiple computers. Another
advantage is that the services can be developed and deployed independently. Resil‐
ience and redundancy are also key advantages. Each module in a Distributed
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Architecture scales and fails independently. When one module becomes a bottleneck,
it can be scaled without the others needing to scale. If one module’s process crashes,
the others running in their own processes keep running.

There is another advantage in modern systems that may not be as obvious. With
almost no exceptions, all CPUs in desktops, mobile devices, and even embedded
devices are multicore. That means that, when combined with modern operating
systems, nearly any device can not only handle multithreading within a process
but will easily handle multiple processes running simultaneously. Using all of those
cores effectively almost always requires running multiple processes. Thus, even in
a single CPU, building a Distributed Architecture of multiple cooperating processes
may be advantageous. Likewise, even on a single CPU, there are advantages in that
each process has its own memory space. Splitting across multiple processes that
communicate therefore limits the “blast radius” of some types of memory issues.

There are also challenges to building a distributed architecture, such as concurrency,
failure handling, and crosscutting concerns like performance and logging. One par‐
ticularly serious challenge is related to data. A monolithic application typically uses
a centralized database, whereas distributed architecture can follow the Self-Managed
Data Store (154) pattern. The simplest alternative to splitting data across multiple
databases is for an extracted service to directly access the monolith database, but
that alternative creates undesirable coupling and, if applied, should be temporary. A
common approach requires replicating the data across dedicated service data stores
and any monolith data store. This option increases the design complexity, requires
the implementation and constant overseeing of a data synchronization mechanism,
and may cause the services to access stale data due to the eventual consistency setup.

Additionally, there is the challenge of dealing with crosscutting concerns such as
security. It is much harder to ensure security when you have multiple services run‐
ning in different memory spaces. Providing adequate security in distributed systems
is challenging because the services and their connections need to be secured as well.
This can also make debugging and testing more difficult.

An application with a Distributed Architecture that runs in traditional IT will also
run in the cloud. To move these to the cloud, simply Lift and Shift (470) each of its
services to the cloud as is. Developers can apply the Virtualize the Application (475)
or Containerize the Application (478) patterns for each of the services in a distributed
architecture, packaging them into components in a cloud application.

A Cloud Application (6) can be developed for more flexible deployment by organiz‐
ing its functionality as a set of services that run independently. The application can
more easily take advantage of cloud capacity if it can distribute its components. An
important design principle for services is to Model Around the Domain (183).
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A Microservices Architecture (Chapter 4) is a Distributed Architecture where each
service is a Microservice (119).

Services are often developed as an Event-Driven Architecture (Chapter 6) where the
services can be a Reactive Component (260).

Examples
Here are several typical examples of a Distributed Architecture:

Transformation from Modular Monolith to Distributed Architecture
The general approach for repackaging modules for distributed deployment

Ecommerce application
The ecommerce example from the BBoM and Modular Monolith patterns,
repackaged into workloads

Airline reservation system
Three applications in one with differing requirements

AJAX Frameworks and Node.js
Distributed architecture for user interfaces hosted in web browsers

VS Code
Distributed architecture that deploys support for each computer language as a
“Language Server”

Eclipse Theia
Distributed architecture with separate IDE frontends and backends

The first two are general techniques, the third is domain-specific, the fourth is a lan‐
guage feature, and the last two are public applications with documented distributed
architectures.

Transformation from Modular Monolith to Distributed Architecture
A common way to create a Distributed Architecture is to transform each module in a
Modular Monolith (29) by augmenting it with a remote API and packaging it to run
in its own separate runtime. Figure 2-11 shows the contrast between an application
composed of modules and the same one composed of processes.
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Figure 2-11. Modular Monolith to Distributed Architecture evolution

In both architectures, the number of components is the same, but the modules
packaged in one process can be deployed separately from the modules in another
process. Whereas the monolith can be deployed only on one computer, the processes
in the distributed application can be deployed on the same computer or on different
computers.

Ecommerce application
Expanding on our example from the BBoM evolution to the Modular Monolith,
we can take a step toward a distributed architecture by extracting (refactoring) the
“Buy Service,” which includes both the Shopping Cart and Checkout modules into a
separate service (see Figure 2-12).

Figure 2-12. Ecommerce Distributed Architecture evolution

This new service can then be deployed independently of the monolith, either on the
same virtual computer or on a completely separate computer running in its own pro‐
cess. Ultimately, this buy service can be refactored further into two separate services
for the Shopping Cart and Checkout functionality, each running independently of
the other and the monolith.

Rather than deploy a new version of a monolith as one “big bang,” each new version
of a module can be deployed as its own “little bang.” An outage still occurs, but it
affects only one part of the application rather than the entire application. Compared
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to redeploying an entire application, a smaller deployment goes faster and can be
performed more reliably.

Airline reservation system
As an example of this separation of services, let’s consider an airline frontend reserva‐
tion system. Airlines in general are interesting in that they are the intersection of two
different businesses:

Product sales
The process of selling seats, which is much more like an ecommerce problem
than anything else

Transportation management
Moving passengers (who hold tickets for specific seats) from point A to point B
safely, efficiently, and on time, which is a classic logistics problem

The result of this is that different parts of the backend of the same mobile app or
website have different scalability needs. Most customers, especially during busy times
of the year like holidays, are just browsing for flight prices—they may specify a pair
of dates and an origin and destination, and then “abandon the cart” if nothing looks
attractive from a price or time perspective. A much smaller number of customers
will actually complete the transaction and purchase tickets on a particular flight. An
even smaller number of customers are the elite fliers who want to check their account
status or redeem points or miles for a ticket.

This means that the different parts of this application (browsing, purchasing, and
tracking frequent fliers) have vastly different scalability needs. The system may need
10x the computing power to handle the browsing transaction load than it needs for
the purchase load, which is again 10x larger than the frequent flier load. Developers
deploying a monolith only have one option: deploy the entire monolith as many
times as needed to cover the compute load of the most loaded part of the entire
application. But that also means tying together the deployment processes of all of
these different pieces.

If the system had a shopping service, a reservation service, and a frequent flier service
that are each implemented by distributing the relevant modules behind a remote
interface or messaging system, then it becomes easy to see how the shopping service
could scale independently of the reservation service, if each is deployed as its own
workload. The downside is that the system will still need to coordinate between
these services. For example, the shopping service may need to pass the selected flight
off to the reservation service to enable the customer to complete the reservation
and purchase the ticket. This may amount to only a few pieces of information in
our example (perhaps a few K of XML or JSON text), but this would expand in
a more complex area of the domain, for example, in managing the complexity of
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the inventory of spare parts that would be involved in servicing an airplane. That
is why it is critical to carefully craft interfaces and limit the amount of information
transmitted between parts of a distributed architecture.

AJAX frameworks and Node.js
A hallmark of a true pattern is that when it becomes so common and so ingrained
into the way that people think about a problem, no one talks about the particular
solution as a pattern anymore.

When developing a new application with JavaScript, nearly 100% of developers will
assume the solution will be developed with Node.JS and a frontend JavaScript AJAX
framework like Angular or Axios. These are, of course, based on AJAX (Asynchro‐
nous JavaScript and XML), a feature that is such a common part of modern web
development that an entire generation of developers has grown up through the
industry assuming that user interfaces always worked this way. AJAX was added
to JavaScript as the XMLHttpRequest class, which wasn’t even supported in all
browsers until as late as 2007 and wasn’t made an official W3C standard until
2008. XMLHttpRequest was a revolution in how developers wrote JavaScript code in
the browser, introducing the idea of fine-grained server calls within the JavaScript
running on a web page, enabling one part of a page to be updated while another part
is rendered, and enabling for controls that changed the content of the page based on
a server-side query when the control was activated. The basic flow of this process is
shown in Figure 2-13.

Figure 2-13. AJAX as a Distributed System

That revolution led to the introduction of all of the client-side AJAX frameworks we
now have today, beginning with now-venerable libraries like jQuery and Backbone
and leading up to more modern frameworks like Angular and Axios. This idea of
now having JavaScript in both places—in the client code running in the browser and
also in the Node.js server code, usually seamlessly communicating via JSON (which
is nothing more or less than a method for marshaling JavaScript objects)—is so much
a part of web development that few developers stop to think that they are actually
building their web browser user interface as a Distributed Architecture.
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Visual Studio Code
One of the interesting evolutions of this idea is that the newest generation of develop‐
ment tools has evolved from traditional desktop IDEs like Eclipse to systems rooted
in the Distributed Architecture paradigm promoted through JavaScript in the Browser
and JavaScript in Node.JS described previously. The first of this generation, and still
by far the most popular, is Microsoft Visual Studio Code (VS Code).

At this point, if you’ve ever installed VS Code, you may be saying, “Wait a minute!
VS Code is a desktop application, not a browser application—how is it a distributed
system based on JavaScript and Node.JS?” That is one of the interesting and unique
design features of VS Code—how it is based on the Electron framework (see “Why
did we build Visual Studio Code?”) and the way it is architected to be in some
ways the best of both worlds (e.g., see the VS Code extensions built in this project
at Delft University of Technology). Electron is a framework for building desktop
applications that embeds both Chromium and Node.JS as part of its Application
Package (62). Thus it allows you to build desktop applications that use all the same
technologies—and patterns—as Distributed Architectures. There are several commu‐
nicating processes in VS Code, which often confuses people when they first look at
VS Code in tools like the Windows Task Manager or Mac Activity Manager and see it
represented as several processes.

One simple and straightforward example of this is how VS Code handles support for
different languages. The way in which they have implemented multilanguage support
is to separate the Developer Tool (which hosts the Code Editor) from the Language
Server for each computer language that can be edited in VS Code (see “A Common
Protocol for Languages”). This is shown in Figure 2-14.

Figure 2-14. VS Code Language Server
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The two processes communicate via a specialization of JSON-RPC that they call the
Language Server Protocol (LSP). This allows the Language Server (which actually
understands the abstract syntax tree (AST) of the program in the target language) to
respond to changes in the document being edited and send back diagnostic informa‐
tion in the form of errors and warnings that are displayed in the code editor as the
document is being edited.

Eclipse Theia
Not to be outdone, the Eclipse Foundation responded to the advances in VS Code
by starting new projects that ended up adopting many of the patterns and design
principles, and even protocols, that were introduced in VS Code. For instance, the
Eclipse Theia project parallels VS Code in that it also encompasses several cooperat‐
ing processes in a Distributed Architecture that each handles different aspects of the
development process. Eclipse Theia adopted the Language Server Protocol from VS
Code and has the same separation of code editing from language-specific syntax
understanding. Where Eclipse Theia goes even further than VS Code is that it allows
for several different styles of packaging, starting with the same local packaging of
frontend and backend using Electron that VS Code follows, but also including a
Web Client frontend and remote backend (a cloud IDE) and a local Electron-based
frontend that is combined with a remote backend.

These options are shown in Figure 2-15:

Figure 2-15. Eclipse Theia deployment options

A simplified component diagram of Eclipse Theia is shown in Figure 2-16. It dem‐
onstrates how you can combine modularity in several ways—both in the idea of
packaging things as a Modular Monolith (which we can see in the packaging of the
frontend) and as a Distributed Architecture, especially in considering the backend
packaging.
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Figure 2-16. Eclipse Theia Architecture

Eclipse Theia has been used as the basis of several products from a number of
companies, including Red Hat CodeReady Workspaces.

Conclusion: Wrapping Up Application Architecture
In this chapter, we’ve examined a set of patterns related to application architecture.
Although there are many architectural styles and patterns, applications are generally
structured with one of three fundamental architectures:

Big Ball of Mud (22)
An application with no discernible modularity or structure, where any code has
access to all other code and variables

Modular Monolith (29)
A monolithic application composed of loosely coupled, well-encapsulated code
modules

Distributed Architecture (38)
An application composed of code modules that can run on separate computers
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The first two architectures are monoliths where the application is a single workload
that runs in a single executable process, whereas a Distributed Architecture has many
pieces that can run independently in their own processes. It should be noted that we
have seen distributed balls of mud which is far worse than a monolithic BBoM.

The three architectures all balance the same set of trade-offs, but each one balances
them differently. Which architecture is better for a particular application at a partic‐
ular point in its lifetime depends on how the development team wants to balance
those trade-offs. There is no one right answer for how to solve these trade-offs,
which is why there are multiple solutions embodied in multiple architectures. The
generic answer is that it depends. It depends on context, and selecting the important
criteria and qualities for your solution allows you to capture and describe them.
Architecture and design is always about making trade-offs. When you are designing,
you are making a design decision. For every architecture or design decision, you
are compromising on some factors. When you choose one thing, you are going to
sacrifice something else.

Sometimes a monolithic architecture is the right approach. If an existing monolithic
solution works fine, is understandable, and helps the organization to promptly
address new requirements, there’s no pressing reason to change it. BBoM architec‐
tures are still seen today. BBoMs can be a mix of doing what it takes to meet business
requirements and being obliviousness to technical debt when business drivers do not
allow time to address such debt. Sometimes it is difficult to know the best design
or even how to approach a problem. In these situations, doing some exploratory
programming to experiment to find a good solution is exactly the right approach.

Over time, technical debt can accumulate in parts of the system that are integral
to the business—especially parts of the system that require regular maintenance.
When this happens, refactoring these parts of the monolith to make it easier to
change is a good decision. This can lead to a better design that is easier to change:
a Modular Monolith. Modular systems make changes less risky, facilitate reuse, and,
most importantly, enable teams of developers to work independently with each team
focusing on separate modules.

Distributed Architecture is the next step of this evolution. It extends the idea of mod‐
ules as well-encapsulated units of independent development to execution bundles
deployable in separate processes or computers and able to be run concurrently. Not
all Modular Monoliths need to evolve to a Distributed Architecture. Building a Dis‐
tributed Architecture is very challenging. Sometimes avoiding distributed complexity
is the right approach.

Even though an architecture can evolve from a BBoM to a Modular Monolith to a
Distributed Architecture, in practice it can be much more complicated. When building
complex systems, it can be all too easy to primarily focus on features and overlook
software qualities, specifically those related to the architecture and dealing with
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technical debt. Some believe that a clean architecture will magically emerge by simply
following agile practices—starting as fast as possible, keeping code clean, and having
lots of tests. Indeed, an architecture will emerge, but if not enough attention is paid to
the architecture and the code, technical debt and design problems will creep in until
the overall system becomes muddy, making it hard to deliver new features quickly
and reliably. Often a Modular Monolith devolves into a BBoM, making it difficult to
add new features or maintain the system. This even becomes worse and scarier when
you have a distributed BBoM.

Of these three main strategies to architect a complete application, Distributed Archi‐
tecture is the most fundamental one for Cloud Applications (6). While a Cloud
Application can be a monolith, most are distributed because cloud computing is
distributed.

Next, we will discuss best practices for designing a Cloud-Native Application (Chap‐
ter 3). Then we’ll explore two specializations of Distributed Architecture, Microser‐
vices Architecture (Chapter 4) and Event-Driven Architecture (Chapter 6). Like
Distributed Architecture, neither of these requires cloud computing but both are
important building blocks for an application that runs well on the cloud.
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CHAPTER 3

Cloud-Native Application

While the fundamental architecture for an application is the same for both traditional
IT and the cloud, the architecture selected must then be refined further to optimize
the application for the cloud. We’ve discussed how cloud computing enables you
to run your applications on someone else’s computer, how it incorporates practices
that are different from traditional IT, and how those practices impact the way that
applications work. With that in mind, let’s look at how to architect an application to
incorporate these cloud computing practices. To make an application run well on the
cloud, architect and design it as a Cloud-Native Application.

Introduction to Cloud-Native Application
We need to distinguish between these two separate but closely related topics:

cloud computing
How the cloud makes its IT infrastructure available

cloud native
How to architect and design an application to work well with the cloud

These two topics are two different sides of the same coin: the compute infrastructure
that the cloud provides and the application that works well within that infrastructure.
These topics are counterparts because to understand why cloud native works the way
it does, it is helpful to first understand how cloud computing works.

While cloud computing is well defined, the characteristics that make an application
cloud-native have not been articulated as clearly. This chapter will introduce seven
patterns that provide guidance on how to architect and design Cloud-Native Appli‐
cations. Those patterns assume some background on how the cloud works, so let’s
review that first. Let’s take a look at how the industry defines cloud computing
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and Cloud-Native Applications, along with a widely accepted methodology of 12
practices for building modern applications. Then we’ll introduce the patterns and
briefly review how they fit together.

With this background, we’ll then start with the root pattern for this chapter, Cloud-
Native Architecture (58).

Cloud Computing
“The cloud” is shorthand; it is how we refer to the infrastructure provided by cloud
computing. Beyond the definition of what cloud computing is, there are multiple
dimensions to how cloud infrastructure embodies itself as “the cloud.”

As we’ve already seen in Cloud Applications (Chapter 1), the National Institute of
Standards and Technology (NIST) provides a definition of cloud computing that
says it’s a shared pool of computing resources, widely available with self-service
provisioning. The NIST definition elaborates further to say that the cloud model is
composed of five essential characteristics, three service models, and four deployment
models.

The NIST’s five essential characteristics of cloud computing are as follows:

On-demand self-service
A consumer can provision computing capabilities as needed without requiring
human interaction with the service providers.

Broad network access
Capabilities are available over the network.

Resource pooling
The provider’s computing resources are pooled to serve multiple consumers
using a multitenant model.

Rapid elasticity
Capabilities can be elastically provisioned and released to scale rapidly outward
and inward commensurate with demand.

Measured service
Cloud systems automatically control and optimize resource use by leveraging a
metering capability.

The NIST’s three service models of cloud computing are as follows:

Software as a Service (SaaS)
The capability provided to the consumer is to use the provider’s applications
running on a cloud infrastructure.
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Platform as a Service (PaaS)
The capability provided to the consumer is to deploy onto the cloud infrastruc‐
ture consumer-created or acquired applications created using programming lan‐
guages, libraries, services, and tools supported by the provider.

Infrastructure as a Service (IaaS)
The capability provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where the consumer is
able to deploy and run arbitrary software, which can include operating systems
and applications.

The NIST’s four deployment models of cloud computing are as follows as follows:

Private cloud
The cloud infrastructure is provisioned for exclusive use by a single organization
comprising multiple consumers (e.g., business units).

Community cloud
The cloud infrastructure is provisioned for exclusive use by a specific community
of consumers from organizations that have shared concerns (e.g., mission, secu‐
rity requirements, policy, and compliance considerations).

Public cloud
The cloud infrastructure is provisioned for open use by the general public.

Hybrid cloud
The cloud infrastructure is a composition of two or more distinct cloud infra‐
structures (private, community, or public) that remain unique entities but are
bound together by standardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load balancing between clouds).

This NIST perspective has been widely adopted by the industry.

These definitions from NIST help us understand what the cloud is, and they intro‐
duce a lot of terminology used to describe aspects of the cloud. Clearly, the cloud
is rather different from traditional IT. The IT industry has perfected techniques for
producing applications that run well on traditional IT. However, because the cloud
works so differently, many of those techniques don’t work as well for producing
applications that run well on the cloud. Instead, we need to learn new techniques
to develop applications for the cloud, techniques that are generally known as “cloud
native.”

Cloud Native
The IT industry commonly uses the term cloud native, yet while the industry has
generally accepted the NIST definition of cloud computing, there is no one highly
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agreed upon definition of what it specifically means for an application to be cloud
native. The industry refers to a “cloud-native application” to describe one that works
better in the cloud than one that is not so cloud native, but that’s a self-referential
definition at best, and those using the term otherwise tend to assume its meaning.
Let’s look at some authoritative sources that offer their own definitions.

Ironically, a so-called Cloud-Native Application doesn’t necessarily have to run in
the cloud. But if it were deployed to the cloud, it would run well. “Cloud Native
Applications” by IBM points out:

Cloud native refers less to where an application resides and more to how it is built and
deployed.

Cloud native does not mean an application runs on the cloud but that it is built to be
deployed on the cloud and to run well, which also makes it run better on traditional
IT. Explaining cloud native further, Microsoft’s “Architecting Cloud Native .NET
Applications for Azure” elaborates:

Cloud-native architecture and technologies are an approach to designing, construct‐
ing, and operating workloads that are built in the cloud and take full advantage of the
cloud computing model.

For this book, we’ll introduce our own working definition, one consistent with a
range of industry perspectives:

Cloud native is an approach that designs an application to run well in the cloud, to
take advantage of the strengths of cloud computing while avoiding and compen‐
sating for its limitations.

Applications that are cloud native are often built using technologies like microser‐
vices and container orchestration and take advantage of services like autoscaling. The
patterns in this chapter will articulate practices that make an application cloud native,
that is, that make it run well in the cloud.

Cloud-Native Maturity
It’s tempting to think that cloud native is just about developing an application with a
cloud-centric architecture and design. However, making the application work well in
the cloud is just one aspect of adopting the cloud into an organization.

Developing Cloud-Native Applications involves more than just modernizing technol‐
ogy, it permeates how the IT department works and how it supports the business.
The Cloud Native Computing Foundation (CNCF), part of the Linux Foundation,
developed the Cloud Native Maturity Model 2.0 that elaborates on these five aspects
of maturity:
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People
How do we work, what skills do we require, what does our organization look like
as we move through this process, and how do we weave security into how people
work?

Process
What processes do we need, what technology is required, how do we map
workflows and CI/CD using infrastructure as code (IaC), and how do we shift
security as “far left” as possible?

Policy
What internal and external policies are required to achieve security and compli‐
ance mandates? Do these policies reflect your business’s operating environment?

Technology
What technology is required for you to deliver on the benefits of cloud native
and support people, processes, and policy as well as the technology for CI/CD,
adoption of GitOps, observability, security, storage, networking, etc.?

Business outcomes
What can the business expect to achieve from cloud native? How are you going
to communicate the benefits to the CXO and/or business leadership?

Cloud native embraces the cloud, and that affects all IT practices.

While these definitions and goals are aspirational, they don’t provide actionable steps
that guide a development team on what to do. Teams want to follow a specific set of
technology practices, ones that remove obstacles to gaining benefits from the cloud,
ones that they can focus on to achieve these goals more easily. Next, let’s look at a
well-known methodology that you can apply to make your application more cloud
native.

The Twelve-Factor App
Ask a developer how to make an application cloud native and often they will point to
the Twelve-Factor App practices. Heroku developed these practices to explain how to
develop applications that work better on Heroku’s PaaS cloud platform. Although the
practices were discovered while developing Cloud Applications, a Twelve-Factor App
does not have to be deployed on a cloud, and the approach has become recognized
as advantageous for developing applications for traditional IT as well as the cloud.
Nevertheless, because these 12 factors help make applications work better in the
cloud, they are often used to explain cloud-native architecture.

The Twelve-Factor App is a definitive guide to developing modern applications.
Twelve Factor is a methodology for building SaaS applications that are very
scalable and can deploy easily on modern cloud platforms: they are declarative,
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offer maximum portability between operating systems, enable continuous delivery,
and minimize the differences between development and production environments.
Twelve-Factor Apps help developers collaborate more effectively, evolve well over
time, and avoid technical debt.

As the name implies, the methodology consists of 12 practices:

1. Codebase
One codebase tracked in revision control, many deploys

2. Dependencies
Explicitly declare and isolate dependencies

3. Config
Store config in the environment

4. Backing services
Treat backing services as attached resources

5. Build, release, run
Strictly separate build and run stages

6. Processes
Execute the app as one or more stateless processes

7. Port binding
Export services via port binding

8. Concurrency
Scale out via the process model

9. Disposability
Maximize robustness with fast startup and graceful shutdown

10. Dev/prod parity
Keep development, staging, and production as similar as possible

11. Logs
Treat logs as event streams

12. Admin processes
Run admin/management tasks as one-off processes

To make an application cloud native, these 12 practices are a good start. Next, let’s see
an overview of this chapter’s patterns for how to develop Cloud-Native Applications.
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Designing Applications for the Cloud
This chapter defines a collection of seven patterns that together explain how to design
Cloud-Native Applications. Figure 3-1 shows the patterns and their relationships.

Figure 3-1. Cloud-Native Application patterns

A Cloud-Native Architecture (58) is the foundation of a Cloud-Native Application.
The architecture structures the application in two parts that lead to several other
practices:

Application
This is the program part of the application that a development team implements
using a programming language. It is built into and deployed as an Application
Package (62), exposes its functionality to clients via a Service API (70), runs
as a Stateless Application (80) that is also a Replicable Application (88), and is
configured with an External Configuration (97).

Services
These programs reuse functionality from Backend Services (106), specialized
SaaS services that are reusable across applications, typically stateful, and often
part of the cloud platform or otherwise developed by third-party vendors. A
common example is a database service hosted on the cloud platform and man‐
aged by either the cloud vendor or the database vendor.

Follow these best practices to produce an application that runs well in the cloud, tak‐
ing advantage of the strengths of cloud computing while avoiding and compensating
for its limitations.

This introduction has covered several topics that are helpful to be familiar with to
understand the patterns in this chapter. We’ve talked about the industry perspective
on what cloud computing is, presented an explicit definition of what the industry
generally means when it describes an application as cloud native, and summarized
the Twelve-Factor App methodology for creating applications that work well on the
cloud.
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With this background in mind, let’s discuss patterns for how to architect and design
Cloud-Native Applications. We’ll start with the root pattern for this chapter, Cloud-
Native Architecture (58).

Cloud-Native Architecture
You are developing a Cloud Application (6) or perhaps refactoring a piece of a larger
application to run on the cloud. You may be tempted to architect this application the
same way you’ve always architected traditional IT applications. Yet the cloud offers
new capabilities and imposes new challenges.

How can I architect an application to take maximum advantage of the cloud
platform it will run on?

Developing an application to run in the cloud has some significant differences from
developing one for traditional IT. You might think, “How different can the cloud be?
Isn’t an application designed for the cloud pretty much the same as ones I’ve designed
for traditional IT?” A Cloud Application works differently in some respects.

One difference is application mobility. A traditional IT application is installed on a
computer and runs there for the rest of its lifetime. Often a traditional IT application
is designed for a specific hardware architecture and operating system version, so if
it can be redeployed to a different computer, the new one must be exactly like the
old one.

A traditional IT application that expects to always run on the same computer in the
cloud is in for a shock. The cloud moves an application around from one computer
to another to balance load and avoid outages. An application must be packaged as a
simple unit which can be moved easily, that means it must have limited dependencies.

Another difference is middleware functionality. A traditional IT application that
needs a business process engine or a rules engine is deployed in a middleware server
that provides that functionality. The functionality is built in, easy to access, and
reliable. The application becomes very dependent on that functionality and can move
to another server only with that same middleware.

Cloud Applications don’t assume all services are packaged inside the application.
Instead, the cloud includes a catalog of external services that provide “middleware”
functionality. An application that relies on that functionality must delegate to these
services. The services are remote, which makes accessing them more complicated
than if they were incorporated into the application itself. This means a Cloud Appli‐
cation must be built on an architecture that facilitates mobility and delegation to
services.

Therefore,
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Structure the application with a Cloud-Native Architecture by implementing the
custom domain logic in an application separate from the reusable services.

The basic architecture of a Cloud-Native Application looks like Figure 3-2. This
representation is intentionally very high-level, a starting point for understanding the
overall structure of an application that is cloud native. The rest of this book will go
into much greater detail.

Figure 3-2. Cloud-Native Architecture

As the diagram shows, an application with a cloud-native architecture fundamentally
consists of two main parts:

Application
This is the part created by the application development team. It implements the
user requirements, or at least all of those that the application has been unable
to delegate to the services. It is typically implemented in a computer language,
which can be almost any language. Popular ones include Java, Node.js, and
Python.

Services
These are solutions from the platform’s service catalog—or other third-party
services—which are specialized SaaS services that are reusable across applica‐
tions. They are already written, so the application development team can buy
rather than build. They are managed by the cloud platform, so the application’s
operations team can outsource managing the services and focus on managing the
application.

A Cloud-Native Application also has one or more clients running outside of the cloud
that use the application. See Figure 3-3.

Figure 3-3. Cloud-Native Architecture with client
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The client is typically a user interface, such as a web browser or mobile application.
The client can also be another application, where someone else’s application is invok‐
ing this one.

The application runs separately from the services and the clients. The application can
run on any computer as long as it can access the services and the clients can access it.

Separating the application from its middleware facilitates mobility within the cloud.
The application is smaller and easier to deploy. It can run on a simple server without
having to first install middleware on that server. The application and its services can
move around independently.

Separating the application from its middleware facilitates reusing services from the
service catalog. When an application requires middleware functionality, it can’t dele‐
gate to functionality built into its server; it must delegate to functionality built into
services from the catalog. This separates the part the custom application developers
create from the reusable parts created by third-party vendors.

An application with a cloud-native architecture splits the application from the serv‐
ices that it uses, separating the part that implements unique user requirements from
the parts that provide reusable functionality. This enables the application to incorpo‐
rate several features that make it run better on the cloud—particularly packaging,
statelessness, and replicability.

However, there are some potential downsides to a cloud-native architecture that a
team must plan for:

New skills
Developers who are used to implementing traditional IT applications can find
cloud-native development practices difficult to adopt. Traditional IT developers
must learn new skills to develop Cloud-Native Applications.

Deployment simplicity
In traditional on-premises development with an application server, the applica‐
tion is easy to deploy; just add it to the server. There is no need to bind to or
authenticate against remote services. An application that runs in a middleware
server accesses simple built-in middleware functionality via local function calls.

Cost
Each element of a cloud-native architecture, from the VMs or containers that run
the application to the Backend Services that the application relies upon, are indi‐
vidually priced and metered. When a team is not careful with their application,
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the use of cloud services can expand quickly, leading to very high costs—often
more than is planned for.

Fine-grained control
When you build an application in a cloud-native way, you give up some of the
control that you otherwise exercise in an on-premises application. For instance,
you may not have the ability to tune or control the hypervisor your application
VM runs within. You may also lose control over the fine details of tuning your
database servers and the operating systems that the application and database
server runs on.

A Cloud-Native Application incorporates many best practices to help it work well
with cloud computing:

Virtualized, multitenant computing with shared infrastructure
The application is deployed as an Application Package (62) so that it can be
deployed anywhere, and it keeps itself isolated from anything else running there.

Distributed computing with universal access
The application exposes its functionality as a Service API (70) that makes it
remotely accessible for client/server computing across the network.

Elastic scaling
The application runs as a Stateless Application (80) that is also a Replicable
Application (88), which makes the application able to replicate across multiple
computers, making the application more reliable than any one of the computers.

Deployment to multiple environments
The application has an External Configuration (97), enabling it to be deployed
unchanged in different environments for multiple lifecycle stages, geographical
regions, and cloud platforms.

Service catalog
The application uses multiple Backend Services (106) to implement stateful func‐
tionality that can be built into the cloud platform and reused across applications.

By following these practices, a Cloud-Native Application architecture takes advan‐
tage of the strengths of cloud computing while avoiding and compensating for its
limitations.

A cloud-native architecture serves as the foundation for the rest of a Cloud Applica‐
tion. That creates the opportunity for additional decisions:

Microservices Architecture (Chapter 4)
A Microservices Architecture is a special kind of a Distributed Architecture (38)
that breaks up a monolithic application into multiple components, to improve
reliability of each component and to simplify the development and testing of
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each component. Each component is a microservice—a small, specialized cloud-
native application.

Event-Driven Architecture (Chapter 6)
Another kind of Distributed Architecture (38), often composed of microservices,
where the services are coordinated through event choreography rather than
service invocation.

Cloud-Native Storage (Chapter 7)
Cloud-Native Applications are stateless, but applications use data. The data tier of
an application needs to be as scalable and reliable as the application tier.

Cloud Application Clients (Chapter 8)
Users need to be able to access the application, which they do using applications
that run on client computers that access the Cloud Application remotely over the
network.

All of these choices add additional flexibility and capability to the application, at the
cost of increased complexity. However complex a Cloud Application becomes, it all
begins with being cloud native.

Application Package
You are implementing an application with a Cloud-Native Architecture (58). You
have a choice of computer languages to use to implement the application and want to
choose one that will work well in the cloud.

What features of a computer language ecosystem are required to implement a
Cloud Application?

The cloud is very flexible and able to run pretty much any program implemented in
any language that can run in a standard operating system, such as Linux or Windows.
Yet for a program to run well in the cloud, some conventions must be followed to
remove dependencies the cloud may not be able to provide.

Traditional IT applications tend to be highly dependent on their hardware and
operating system. A program written in a language like Assembler or C would run
correctly only on a certain hardware model running a specific operating system ver‐
sion, and even then it would often require installing optional features and otherwise
configuring the OS in a very specific way. Before the application could be installed,
the operating system had to be customized for the application. The program might
even be dependent on a specific version of the operating system. When a new version
of the OS was released, some programs that worked in the old version wouldn’t
work in the new one. Programs needed complicated installers to verify all of these
dependencies and perform the necessary configuration.
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Programs can not only be dependent on a specific operating system with optional
features and a specific configuration; they can often have other dependencies as
well. Programs often require additional libraries, and each program requires different
libraries. At best, these libraries have to be installed on the OS as part of installing
the program. A way to avoid this complexity is to have the program dynamically load
the required libraries from elsewhere. At startup, the program downloads the libraries
from a central catalog. This creates a major dependency on the catalog that can cause
problems for starting the program. If the program cannot access the catalog, it cannot
run. If the catalog doesn’t contain the right libraries or contains the wrong versions of
the libraries, the program cannot run.

Traditional IT applications often customize their platform so much that two applica‐
tions cannot be installed on the same platform. One application requires an extensive
set of configuration settings, and another requires its own incompatible settings. Two
applications delegate to the same library, but require two different versions of the
library, yet only one can be installed on the platform. Each application must be run
on a separate computer so that it can uniquely customize its computer.

For a program to run in the cloud, it needs to be portable. It needs to be isolated from
the OS and able to run on a range of compatible versions. It needs to include every‐
thing needed to run, with no dependencies on outside catalogs or other resources. It
needs to be able to install on the same computer as other program—none of them can
customize it.

Therefore,

Implement an application’s program in a language and toolset that encapsulates
the application as an Application Package. Package the application with all depen‐
dencies that the program requires to run.

An Application Package contains a program and everything else needed to run the
program. Figure 3-4 shows an Application Package that contains a program and two
libraries.

Figure 3-4. Application Package
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An Application Package is specific to a particular language. It contains a program
implemented in that language, includes code libraries implemented in that same
language, and includes configuration settings meaningful to that language.

An Application Package is not a running application, but the cloud platform can
deploy it as an application.

As Figure 3-5 shows, the cloud platform’s management functionality includes an
application deployer, which performs the function of creating a new workload
instance of an application from its Application Package.

Figure 3-5. Service API

Modern programming languages such as Java, Node.js, and Go are cloud-friendly
because they encapsulate a program in an Application Package. To build and run a
program as an Application Package, the language uses two features:

Runtime environment
A separately installable, language-specific runtime that executes the program.
Any program written in this language can reuse the runtime environment. The
runtime isolates the program from the OS, so that the program has no direct
dependencies on the OS and the same program can run unchanged on multiple
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OSs. The runtime environment may be a different executable for each OS and
hardware architecture.

Package manager
An application that packages the program with all of the libraries, dependencies,
and configuration that the program specifies. This packaged program will run in
the runtime environment on any operating system. The package manager needs
access to a registry of libraries to build the package, but the runtime environment
does not need access to the library registry because the package contains the
libraries. The package manager may be part of the runtime environment or may
be separate.

An Application Package runs in its runtime environment, which runs in the operating
system. Figure 3-6 shows that stack for running the program.

Figure 3-6. Running program

Programs that run in a runtime environment are more portable because they can run
anywhere the runtime environment is installed. Java was one of the first program‐
ming languages to introduce a runtime environment. The Java Runtime Environment
(JRE) that incorporates the Java Virtual Machine (JVM) provides a standard set of
functionality for running a program. Different implementations of the JVM run on
different operating systems, such as Windows, macOS, and Linux. The Java slogan
was “Write once, run anywhere,” meaning that the same Java program can run on
any platform that has the JRE installed. Other languages such as Node.js and Python
adopted this convention of running programs in a runtime environment.

While a runtime environment enables the same program to run on different plat‐
forms, an Application Package makes deploying the program in a runtime envi‐
ronment simple and reliable. The runtime environment is standard, and every
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Application Package runs in equivalent runtime environments. The package is immut‐
able; once it is built, it can be deployed repeatedly without changes.

The program is implemented in a language that can build it as an Application Pack‐
age. A package manager builds the Application Package for a program, as shown in
Figure 3-7.

Figure 3-7. Package manager

The package manager has access to a registry of code libraries for the language
it packages. The program includes a configuration that lists the program’s depen‐
dencies, including the code libraries the program requires. The package manager
packages the program with its libraries and other dependencies.

As explained in The Twelve-Factor App: II. Dependencies:

A twelve-factor app never relies on implicit existence of system-wide packages. It
declares all dependencies, completely and exactly, via a dependency declaration mani‐
fest. Furthermore, it uses a dependency isolation tool during execution to ensure that
no implicit dependencies “leak in” from the surrounding system. The full and explicit
dependency specification is applied uniformly to both production and development.
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To deploy an application to run in the cloud, install the runtime environment for
the application’s programming language onto the cloud platform’s OS (usually Linux
but possibly Windows), then deploy the Application Package into the runtime envi‐
ronment. Once deployed, the cloud can start and stop the application as needed.

An Application Package makes a program simple and reliable to deploy anywhere a
runtime environment is installed. The package has no external dependencies other
than the runtime environment. Anywhere the cloud can run the runtime environ‐
ment, it can run the program in its Application Package.

However, not all programming languages support packaging applications and run‐
ning them in runtime environments. Programs written in those languages will be
more difficult if not impossible to run on the cloud.

Each Application Package is deployed to its own copy of the runtime environment,
so each application can be implemented in a different language using Polyglot
Development (146).

Cloud management’s application deployer typically does not actually deploy copies of
the Application Package but rather deploys copies of a virtual machine image (475)
or container image (478) that includes the Application Package. One advantage of
packaging an application as an Application Package is that the package makes it easier
for the cloud platform’s application deployer to deploy the application simply and
reliably. By packaging the Application Package as a virtual machine or container, it is
even easier for the application deployer to deploy.

The program in an Application Package to be deployed on the cloud should be a
Cloud-Native Application, which means it exposes its functionality via a Service API
(70), is implemented as a Stateless Application (80) that is also a Replicable Appli‐
cation (88), and has an External Configuration (97). The program uses Backend
Services (106), specialized SaaS services that are reusable across applications, typically
stateful, and often part of the cloud platform or otherwise developed by third-party
vendors. A typical example is a database service hosted in the cloud.

Examples
Some examples of popular languages with runtime environments and package man‐
agers include the following:

Java
The runtime environment is the JRE, which includes the JVM. Server environ‐
ments such as Spring Boot, Open Liberty, and Quarkus, incorporate the JRE
plus additional code libraries. A Java program is packaged as a web application
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archive (WAR or .war) file or an enterprise application archive (EAR or .ear)
file. The Java JDK (Java Development Kit), which includes the JRE, doesn’t
include a built-in package manager, but Maven and Gradle are optional third-
party package managers for Java.

JavaScript
The server runtime environment is Node.js. TypeScript extends Node.js with
additional code libraries to support type-safe JavaScript. The Node Package Man‐
ager (NPM) packages the program with the libraries specified in the program’s
configuration and can then run the package.

Go
The runtime environment can run a Go source code file on any system architec‐
ture. It can also build a compiled Go package that runs natively in the system
architecture used to build it.

Python, PHP, Ruby, and even COBOL have runtime environments. On the other
hand, C, C++, Assembler, and shell scripts don’t have separate runtimes; those pro‐
grams are highly dependent on the underlying OS.

Java
Java is a particularly interesting example for a package manager because the JDK
doesn’t include a built-in package manager, but there are two commonly used third-
party package managers available for Java: Maven and Gradle. This separation clearly
shows where the language ends and the package manager begins; it also shows
alternative approaches for achieving the same application packaging goal.

A Java program runs in the JRE, which is part of the JDK for developing Java
applications, and it is run using the java command. The command java <program>
runs a program contained in a class file in the JRE, and java -jar <program>.jar
runs a program contained in a Java Archive (JAR) file. The runtime environment
contains a catalog of code libraries. When running a program, more code libraries
can be added to those in the JRE by specifying them on the class path. The JRE
includes the Java Virtual Machine (JVM). There are JVM implementations for Linux,
Windows, and macOS and even Unix distributions such as Solaris, any of which can
run any Java program.

Maven specifies a project’s configuration in the pom.xml file. The project specifies the
libraries a program requires in the dependencies section. Run mvn clean compile
to build the runtime artifacts. Run mvn package to create a JAR file containing the
runtime artifacts, which can easily be deployed and run on any computer with the
JRE installed.

Gradle specifies a project’s build script in the build.gradle file. The project specifies
the libraries a program requires in the dependencies section, which also specifies
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how to find those libraries in the catalogs specified in the repositories section.
The items in the plugins section add tasks that assemble the package using the
dependencies. Run gradlew assemble to run the set of tasks to build the runtime
artifacts in a JAR file that can run anywhere the JRE is installed.

Open Liberty
Open Liberty is an application server that implements Java Platform, Enterprise
Edition (Java EE), and Jakarta EE. A program that runs in Open Liberty uses the
server.xml file to configure its environment. It includes a section to configure the
feature manager to load the features (which are Java libraries) that the program
requires. The configured program runs in Java’s JRE.

For example, the server.xml in Example 3-1 configures the server with the library
for REST web services (see Service API (70)).

Example 3-1. Open Liberty server.xml

<server description="Sample Liberty server">
  <featureManager>
    <feature>restfulWS-3.0</feature>
    ...
  </featureManager>
  ...
</server>

Then build a server starting with the openliberty-kernel package—which is the
Liberty server with the minimum set of features possible. The build will load only the
features specified in the server configuration, ensuring that the application has access
to the features it needs and that the server is as small as possible—only containing
features that the application requires.

Node.js

A Node.js program specifies the libraries it requires as dependencies in the pack
age.json file. For example, to specify that the program requires the upper-case
module, include the configuration in Example 3-2.

Example 3-2. Node.js package.json

{
  "dependencies": {
    "upper-case": "^2.0.0",
    ...
  },
  ...
}
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Use NPM to package and run the program. Node is just a runtime environment, but
NPM is both a package manager and a runtime environment that uses Node to run
the packages it creates.

Service API
You are developing an application with a Cloud-Native Architecture (58) that runs
in an Application Package (62). You want clients to be able to connect to your
application in a way that makes both of them easier to write and maintain, that
supports connecting remotely over a network, that performs well over the network,
and that supports the internet—the universal network.

How should an application expose its functionality to clients that want to use the
application?

An application on a client device invoking behavior in a Cloud Application is funda‐
mentally a client/server relationship: the client application is invoking behavior on
the server. Making client/server interactions work well for the cloud entails four levels
of difficulty:

Clean separation of client functionality from server functionality
To separate the client from the server, both must be well encapsulated. The
code in traditional IT applications is often difficult to separate into components.
Spaghetti code, which is code that depends on any and all other code in the
application, is difficult to separate into parts. (See Big Ball of Mud (22).) What
is needed is a wall between the client code and the server code that separates
the two sets of code, encapsulates the server, prevents the server from depending
on the client, and restricts and controls the dependencies the client has on the
server. Yet this wall must enable the server to expose its functionality to the client
so that they can still work together. This wall will enable the client and server
to evolve independently. It will also enable the two development teams working
on the client and server to work independently, only needing to coordinate on
designing the wall between the client and server.

Remote access to the server from the client
The code in a single application runs in a single process, but a client and a
server are more useful when they can run in different processes—perhaps on
different computers—connected by a network. However, interprocess communi‐
cation (IPC) is a lot more complicated than one function calling another within
the same process. The fallacies of distributed computing by L. Peter Deutsch
explain how remote invocation is more complex than it appears. Martin Fowler
summarized them as his First Law of Distributed Object Design: “Don’t distrib‐
ute your objects!” What is so complicated about Remote Procedure Invocation
(Enterprise Integration Patterns, 2003) (aka remote procedure calls (RPCs) and
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remote method invocation (RMI))? First, invocations between processes need a
synchronous network protocol. To use the protocol, applications need a method
to serialize complex objects so they can be sent across the wire, such as Java
or .NET serialization. While there are many implementations to choose from, for
example, XML-RPC, REST, and gRPC, all have disadvantages. This is why there
are so many to choose from and why new remote protocols are added every few
years. To communicate, the client and server have to agree on the option they’re
going to use.

Efficient communication between the client and server
Practices that work well for function calls in the same process can become
incredibly inefficient when used between processes. Communication between
functions can be very chatty, implementing behavior with lots of small, frequent
calls between the participants. These participants also like to share data often
pass by reference where all the participants share pointers to a single copy of the
data, but they also pass by value where the caller receives its own copy of the
data. Since pointers are difficult to use between processes, remote calls usually
share data between processes using pass by value. But passing copies of large
objects or data sets across the network harms performance as serialization takes
time to perform and consumes memory and bandwidth. To make the communi‐
cation efficient, the remote procedures need to be invoked less frequently and
exchange less data.

Access over common networks
For cloud computing to be truly ubiquitous, the client and server need to support
connecting over the public internet, since that is the network that connects
everything. At the same time, when components in a Cloud Application are
distributed, they need to support connecting over internal networks as well as
the internet. The internal networks and the internet need to work the same so
that clients and servers can connect over either as needed. Hypertext Transfer
Protocol (HTTP) is universally used by modern systems yet has limited capabil‐
ities for connecting applications. Protocols like Distributed Component Object
Model (DCOM) and Common Object Request Broker Architecture (CORBA)
work for application integration but don’t work as well with worldwide networks
optimized for HTTP.

An application integration approach must overcome these challenges in order to
allow clients and servers to work well together over the internet.

Therefore,

An application should expose a Service API consisting of tasks the application can
perform. Implement the API as a web service to make the application easy to use
in a cloud-native architecture.
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The Service API is a contract between a service provider (i.e., the service application)
and a service consumer (i.e., the client). The provider implements the contract, and
the consumers depend on it. The consumers can invoke any of the tasks in the Service
API but do not know how the provider implements those tasks. The provider can
change its implementation of the tasks without impacting the consumer as long as the
provider does not change the API.

As Figure 3-8 shows, the Service API defines a set of tasks that are the use cases the
service application can perform. The service application implements each of those
tasks so that each one performs the behavior it’s supposed to. The client can invoke
any of the tasks, but it has access only to the definitions of the tasks, not to the service
application’s internal implementations of the tasks. The set of tasks in the Service
API is a contract between the client and service application. It is implemented as a
web service so that the client and application can connect across the internet or any
network built on internet technology, such as a data center’s internal network.

Figure 3-8. Service API

A Service API combines the application functionality of a service-oriented interface
with the network protocol of a web service. It exposes a service-oriented interface as
a web service that clients on the internet can invoke efficiently. This solution resolves
all of the challenges of enabling a client and server to communicate effectively and
efficiently over the internet, incorporating solutions that have already been developed
for technologies other than cloud computing:

Clean separation of client functionality from server functionality
How can a client and server be separated into two separate sets of code?

As computer programs have grown in complexity, the need to encapsulate
functionality and make it reusable has become well understood. Procedural
programming evolved into object-oriented programming. In object-oriented
programming, the only way to interact with an object is through its interface—
which is the set of messages to which the object can respond (Smalltalk-80, 1983).
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A Facade (Design Patterns, 1994) defines a unified, higher-level interface for a set
of interfaces in a subsystem, making the subsystem easier to use.

An application programming interface (API) is an interface that is designed to be
invoked by client code (rather than used by a human). An API makes an applica‐
tion easier to work with, enabling the application to expose a set of behaviors for
clients to invoke while also enabling the application to hide its implementation.
The API creates a clear separation between the client and application, acting
as a contract between them. By using the API to hide its implementation, the
application preserves its ability to change its implementation without impacting
the clients, so long as it maintains its API. The client and server can evolve
independently, and the client and server development teams can work independ‐
ently, only needing to coordinate to develop the API itself. Often, the server team
designs the API and the client team uses whatever the server team designed, so
even that coordination can be pretty minimal.

Remote access to the server from the client
How can a client invoke a server remotely across a network?

A procedural programming language supports function calls within a process—
an object-oriented language supports invoking methods on objects within a pro‐
cess, but something more is needed for a client to invoke a server remotely across
a network between processes. A Remote Procedure Invocation (Enterprise Inte‐
gration Patterns, 2004) enables one application to invoke behavior in another
application across a network. The behavior could be procedural, invoked via a
remote procedure call (RPC), or it could be object-oriented, invoked via remote
method invocation (RMI).

Remote procedure invocation enables a client to invoke a server remotely. How‐
ever, as the pattern explains, the fact that remote procedure invocation works so
much like local procedure calls can actually become more of a disadvantage than
an advantage. There are big differences in performance and reliability between
local and remote procedure calls because the later occur over a network. Remote
access enables a client and server to work remotely, but they will achieve rather
poor performance.

Efficient communication between the client and server
How can a server expose its functionality so that a client can invoke it efficiently?

A Session Facade (Core J2EE Patterns, 2003) or Remote Facade (Patterns of
Enterprise Application Architecture, 2002) improves efficiency over a network by
providing a course-grained facade on fine-grained objects. A Service Layer (Pat‐
terns of Enterprise Application Architecture, 2002) gathers multiple remote facades
as services in a layer that encapsulates a domain model as a set of available oper‐
ations that can also be made remotely accessible. Service Facade (SOA Design
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Patterns, 2008) generalizes services in a service-oriented architecture (SOA) that
abstracts a part of the service architecture and increases its decoupling from the
rest of the architecture.

An API implemented as a set of service tasks encapsulates a set of use cases for
what the application can do as well as for how clients will use the application.
With a service interface, the application exposes its behaviors as a set of tasks it
can perform for clients, enabling the client to treat the application as a service.
When a client invokes a service task in the application, it can pass any context
necessary as parameters in the invocation. When the application produces a
result or error while performing the task, the invocation can return that result
or error back to the client. Because large objects are expensive to transfer (that
is, copy) across the network, the parameters and return values for each service
task should be primitives and simple objects that are easy to serialize. Often a
primitive is a unique identifier—a Claim Check (Enterprise Integration Patterns,
2003)—for a complex object, so that when the receiver wants to use the object, it
can use the primitive to find the object in a shared data store and load it for use.

Access over common networks
How can a server expose its efficient application interface for use over the
internet and similar internal networks?

As the internet evolved into the World Wide Web (WWW), the hypertext transfer
protocol (HTTP) became the common protocol of choice for web-based applica‐
tions. HTTP enables a caller to specify not just the application listening on a
port but also individual endpoints within that application. The firewalls, routers,
browsers, and the rest of the backbone of the global internet support HTTP
since it is already used to access web pages. This enables simpler connections
between the user’s desktop and servers running backend code—new ports do not
need to be opened for each application. Applications thus evolved to expose their
functionality via HTTP as web services.

While the concept of web services itself has become fairly stable, the protocol
for performing web services has evolved over time. All of the protocols use
HTTP as the universal transport, but they differ in the format of the data on
that transport and in the schema to describe the protocol’s API and its data
formats. The first major web service protocol was Simple Object Access Protocol
(SOAP), which used Extensible Markup Language (XML) to define application
interfaces expressed as Web Services Description Language (WSDL) that work
much like the objects in object-oriented programming. SOAP was eventually
replaced by Representational State Transfer (REST) protocol, which makes parts
of an application available as resources that the client specifies using HTTP Uni‐
form Resource Identifiers (URIs) and operates on using HTTP methods (such as
GET, PUT, POST, and DELETE to CRUD resources as units of data). REST APIs
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can be published as Swagger documents that define the API as a contract. The
service application implements the Swagger API’s contract and the client depends
on the Swagger API’s contract to invoke service behavior. Specifications such as
OpenAPI and gRPC standardize web service protocols for universal integration
by development teams who are then able to otherwise work independently.

Thus a Service API resolves the difficulties of making client/server interactions work
well.

Service API incorporates and expands upon the practice explained in The Twelve-
Factor App: VII. Port binding:

The web app exports HTTP as a service by binding to a port, and listening to requests
coming in on that port….The port-binding approach means that one app can become
the backing service for another app, by providing the URL to the backing app as a
resource handle in the config for the consuming app.

A Service API defines a service-oriented API that clients must adhere to as they access
the service. A Service API can be easily implemented as a border for remote access,
making the application accessible across a network connection by any client running
in a separate process.

A Service API creates a clean separation between an application and the clients
that use it, reducing coupling between them, making both easier to implement, and
enabling them to evolve independently as long as they preserve the API. It can
support remote access, providing course-grained tasks that make remote invocation
more efficient.

One of the biggest challenges to applying Service API is designing the API. It must
make the producer’s functionality available while hiding the implementation details.
Once an API is put into use, it can be difficult to evolve, often requiring an API
versioning strategy.

A service can be stateful or stateless. A Cloud-Native Application with a Service API is
typically implemented to run as a Stateless Application (80).

These services are often part of a Microservices Architecture (Chapter 4). Services
with broad responsibilities can be implemented by a Service Orchestrator (160) that
orchestrates other services with more specialized responsibilities. Services can also be
choreographed more loosely in an Event-Driven Architecture (Chapter 6).
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Examples
An easy way to understand APIs is as the interface feature in languages such as Java.
The interface’s functionality should be abstracted as a service capability comprised of
service tasks. An interface is a contract between the object and its client that separates
what the object needs to be able to do from the class that implements how it’s done.

OpenAPI is the prevailing industry standard to publish a web Service API as a
contract. It’s typically implemented using Swagger to create a REST over HTTP web
service. The service application implements the OpenAPI contract, and the client
depends on the OpenAPI contract to invoke service behavior. gRPC is an alternative
to REST that defines a web Service API as an RPC instead of resources.

Java interface
Here is a service that converts money from one currency to another. It has a very
simple Service API that performs a single task, convert.

First, let’s specify the money conversion Service API as a Java interface. Example 3-3
shows the code to create a Java interface named MoneyConverter that declares a single
convert method.

Example 3-3. Java interface for MoneyConverter

import java.math.BigDecimal;
import java.util.Currency;

public interface MoneyConverter {
  public BigDecimal convert(BigDecimal amount, Currency from, Currency to);
}

The convert method accepts an amount of money in one currency (from) and returns
the amount in another currency (to). It is an interface, so it does not implement
the method, just declares its signature. Each method in a Java interface is essentially
a Template Method (Design Patterns, 1994), except that rather than implement the
skeleton of an algorithm, an interface method implements no algorithm at all. This
sort of interface that defines methods for performing tasks is the essence of a Service
API.

A class that actually performs the conversion implements the interface. Example 3-4
shows MyConverter, which implements the MoneyConverter shown in Example 3-3.

Example 3-4. Java class for MyConverter

import java.math.BigDecimal;
import java.util.Currency;
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public class MyConverter implements MoneyConverter {
  public BigDecimal convert(BigDecimal amount, Currency from, Currency to) {
    /* Code that converts the amount from one currency to another. */
  }
}

A client that needs the conversion performed delegates the work to an instance
of MoneyConverter. Example 3-5 shows how the converter object, myConverter, is
initialized as an instance of MyConverter, the concrete class with code that actually
performs the conversion.

Example 3-5. Java client code using MyConverter as a MoneyConverter

BigDecimal unconvertedMoney = 1000.0;
Currency originalCurrency = Currency.getInstance("INR");
Currency newCurrency = Currency.getInstance("USD");
BigDecimal convertedMoney = null;

MoneyConverter myConverter = new MyConverter();

convertedMoney = myConverter.convert(unconvertedMoney,
                                      originalCurrency, newCurrency);

// For example, 1000.00 Indian Rupee equals 12.23 US Dollar
System.out.println(unconvertedMoney + " " + originalCurrency.getDisplayName()
           + " equals " + convertedMoney + " " + newCurrency.getDisplayName());

After myConverter is initialized, all subsequent code treats it as a MoneyConverter,
not knowing whether the converter object is actually an instance of MyConverter or
some other concrete class. This makes the code able to handle any concrete class
that implements the MoneyConverter interface. The interface, MoneyConverter, is a
contract between the client and the concrete class, MyConverter. The majority of
the client code just knows the object implements the contract represented by the
interface, so it can use an instance of any concrete class that implements the interface.

JAX-RS interface

The MoneyConverter service can only be used locally within a Java program. Let’s use
the Java API for RESTful Web Services (JAX-RS) to expose this local service as a web
service.

Example 3-6 shows the web service declaration. Its root URI is /api.

Example 3-6. JAX-RS web service declaration

import javax.ws.rs.*;
import javax.ws.rs.core.*;
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@ApplicationPath("/api")
public class RestApplication extends Application {
}

Example 3-7 shows the resource CurrencyResource, which has a convert method. It’s
implemented using the MyConverter class from Example 3-4.

Example 3-7. JAX-RS web resource

import java.math.BigDecimal;
import java.util.Currency;
import javax.ws.rs.*;
import javax.ws.rs.core.*;

@Path("/currency")
public class CurrencyResource {
  @POST
  @Path("/convert/")
  @Consumes(MediaType.APPLICATION_FORM_URLENCODED)
  @Produces(MediaType.TEXT_PLAIN)
  public String convert(@FormParam("amount") String amount,
                        @FormParam("from") String from,
                        @FormParam("to") String to) {
    BigDecimal unconvertedMoney = new BigDecimal(amount);
    Currency originalCurrency = Currency.getInstance(from);
    Currency newCurrency = Currency.getInstance(to);
    BigDecimal convertedMoney = null;

    MoneyConverter myConverter = new MyConverter();

    convertedMoney = myConverter.convert(unconvertedMoney
                                      originalCurrency, newCurrency);

    return convertedMoney.toString();
  }
}

When a web service client invokes <domain>/api/currency/convert with an HTML
form containing the three parameters, it gets a response containing the converted
money.

Go interface
Like Java, the Go language also has an interface feature. The code in Example 3-8
declares a MoneyConverter interface using the types Float and Currency.
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Example 3-8. Go interface for MoneyConverter

type MoneyConverter interface{
  Convert(amount Float, from Currency, to Currency) Float
}

OpenAPI interface

A Swagger document for our API would include a /convert path. It requires the
usual three input parameters: amount, from, and to. And it returns a number. (See
Example 3-9.)

Example 3-9. OpenAPI document for Convert task

openapi: 3.0.0
. . .
paths:
  /convert:
    post:
      description: Convert money from one currency to another
      requestBody:
        required: true
        content:
          application/json:
            schema:
              type: object
              required:
                - amount
                - from
                - to
              properties:
                amount:
                  type: number
                from:
                  type: string
                to:
                  type: string

      responses:
        '200':
          description: Successfully converted the money amount
          content:
            application/json:
              schema:
                type: number
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1 In Patterns of Enterprise Application Architecture (2003), Chapter 5: Concurrency and Chapter 6: Session State,
Fowler has an extensive discussion of how applications use business and system transactions, session state and
what he calls record data.

Stateless Application
You are developing an application with a Cloud-Native Architecture (58) that has a
Service API (70). You want it to scale easily, shut down cleanly, and recover from
failures gracefully.

How can an application support concurrent requests efficiently and recover from
failures without losing data?

Applications, whether hosted on the cloud or traditional IT, manage two types of
state: session state is data used temporarily and limited to a single user; domain state
is data used long term and is available to all users in all sessions, and it can even be
shared between different applications.1

Developers creating applications for traditional IT have learned that they can
improve application performance by loading domain data into the application and
keeping it there. Applications store domain data—data that is available to all applica‐
tions and services across all transactions—in databases to keep it safe and so they
can share it. When database access is slow—due to overloaded data center networks,
inefficient disk drives, and data locking and contention—an application can provide
better throughput by prefetching any data that might be needed, caching it in mem‐
ory, and never letting go because it might eventually be needed again.

Storing domain data read-only in an application causes a couple of problems:

Performance
Holding data in memory helps improve performance by responding to client
requests faster without having to retrieve data from a slow database, but hurts
performance by making the application start slower and spend CPU managing
the copies of the data. Prefetching data takes time, which makes the application’s
startup take longer. The application can avoid prefetching by only caching data
the first time it’s retrieved, but that hurts the throughput for users waiting for
uncached data to be retrieved the first time.

Scalability
Each object will hold its own copy of the same data. Storing so much data in
memory causes the application to run out of memory sooner—limiting scalabil‐
ity. Multiple objects could try to share the same data, but then they have to
implement a shared cache, which gets complicated. To avoid running out of
memory, the objects could limit how much data they will cache, but then they
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need to implement an eviction policy for removing cached data so that more data
can be added.

An application that delays persisting the changes it makes to domain data can suffer
even bigger issues:

Consistency
When multiple objects each hold their own copy of the same data and one of
them changes that data, only one copy gets updated. The other objects continue
to use old copies that haven’t been updated. Stale copies of data mean that
different users get different answers based on what is supposed to be the same
data.

Graceful shutdown
To shut down a stateful application cleanly, before the application can shut down,
any changes in its data must be persisted first by writing all of the data—or
at least the data that has changed, if the application knows which data that is—
to that slow database that the application has been avoiding. If the application
crashes, all those data changes are lost.

Recoverability
A stateful application’s tendency to lose data changes when it crashes wreaks
havoc on disaster recovery (DR). A DR strategy tries to minimize the recovery
point objective (RPO), which is the point before the application crashed that can
be recovered. All changes in the application after the RPO are lost, which is why
a DR strategy strives to keep the RPO short. A stateful application is an RPO
tragedy waiting to happen. If an application enables users to make data changes
but persists those changes only once an hour, the RPO effectively becomes an
hour. When the application crashes, all of those changes the users thought they
had made as long as an hour ago are lost. When DR restarts the application, it
will not have those users’ changes.

An application can avoid these issues by not caching domain data in memory.

An application that stores session data limits how many users it can support. When
an application ran on a user’s desktop computer, it needed to support only that one
user. But when client/server computing technologies like Java 2, Enterprise Edition
(J2EE) moved the application’s business logic back onto the server, multiple users
became able to access a single copy of the application.

How can an application on the server support multiple users? A client interacts with
the application repeatedly via a session that associates the client’s calls. The session
includes session data—data gathered from the history of what the client has done.

Where should session data be stored? For web browser clients, that somewhere
becomes an HTTP session object, server objects that servlets use to support web
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browsers running on the client. Each user’s browser has its own HTTP session that
keeps session data on the server, which greatly improves performance because it
avoids sending data back to the browser using what is (or used to be) often a very
slow internet connection.

HTTP sessions create their own scalability problems. Each user’s browser has its own
HTTP session object, so a server is limited in how many browsers it can support
by how many HTTP sessions it can host. Furthermore, each browser has to send
its series of requests to its own HTTP session, not any others. The browser stores
its HTTP session’s identifier in a cookie named JSESSIONID, which the server uses
to implement sticky sessions where a browser’s requests are always routed not just
to any HTTP session but to the specific HTTP session with that session ID. While
keeping session data on the server helps avoid performance problems caused by
slow network bandwidth, the trade-off is scalability problems that limit how many
concurrent users an application on the server can handle.

As long as session data is stored on the server, there will always be a limit how
many concurrent users an application on the server can handle. As long as an
application stores domain data in memory, the application will run into problems
with performance, scalability, consistency, graceful shutdown, and recoverability.

Therefore,

Design the application as a Stateless Application that stores its domain state in
databases and receives its session state as parameters passed from the client.

What makes an application stateless is not that it has no state but that it stores its state
elsewhere, which makes it more scalable and resilient.

Figure 3-9. Stateless Application

As shown in Figure 3-9, a Stateless Application has three parts: the Stateless Applica‐
tion, its databases where it stores its domain state, and its clients, each of which
separately holds its own session state. The application still operates on domain state,
but it stores that state in databases, not in the application. The application uses ses‐
sion state to decide what to do, but it doesn’t store session state; it gets the context for
performing requests as parameters to the request. Each application client maintains
its own session state and uses it to populate the parameters in each of its requests.
For example, the client might pass in a bank account number or a product ID from
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its session state, then the Stateless Application uses that parameter to load the bank
account or product details from it domain database.

Making an application stateless resolves the problems with a stateful application:

Performance
The Stateless Application doesn’t spend bandwidth populating the cache and CPU
managing the cache.

Scalability
The Stateless Application doesn’t spend memory duplicating data that is already
stored in databases.

Consistency
The Stateless Application doesn’t duplicate data from the database, and so it
cannot get out of sync; it is always in sync with the database.

Graceful shutdown
The Stateless Application is always ready to shut down cleanly between business
transactions. The application can be quiesced to finish performing business
transactions before shutting down.

Recoverability
When a Stateless Application crashes, the only data that is lost is changes in
any business transactions that did not complete successfully. The application can
minimize these by keeping its business transactions brief. All other domain data
is persisted to the databases and can be recovered easily.

A Stateless Application can perform requests concurrently for multiple clients because
they each have the same state—which is no state. It performs each business transac‐
tion in its own thread with its own context from the request that loads the domain
data it needs from the database. When the application finishes performing the busi‐
ness transaction, the thread ends and the data is discarded, making the application
stateless once again.

The drive toward applications with no session state arose with web services—which
work the way the WWW does and are accessed via faster internet connections.
Each web service is stateless; the Client Application (406)—be it a web application, a
mobile application, a CLI, or a chatbot—is responsible for maintaining session state
and passing it to the web service as parameters. Each client typically runs on its own
computer, so the solution scales quite well.

Most applications have domain state, so if the program is stateless, where does the
state go? The application stores domain data in Backend Services (106), such as
databases. Cloud platforms typically provide numerous different Cloud Database
(311) services.
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A Stateless Application loads its domain state from storage while it performs work for
a client. Each call to the Service API defines a logical transaction. The application can
cache data temporarily during the transaction but not between transactions. Concur‐
rent transactions in the same Stateless Application each run in a separate thread that
caches its own data. At the beginning of a transaction, a Stateless Application uses the
context in the request parameters to find and load the relevant domain data from the
database to perform business logic. At the end of a successful transaction, a Stateless
Application stores any updates to the data back to the database before returning a
result to the client. After a transaction, a Stateless Application effectively flushes all of
its data before starting the next transaction.

As explained in The Twelve-Factor App: VI. Processes, applications should persist
their data:

Twelve-factor processes are stateless and share-nothing. Any data that needs to persist
must be stored in a stateful backing service, typically a database. The memory space or
filesystem of the process can be used as a brief, single-transaction cache.

The practice goes on to say that an application also should not store session data:

Sticky sessions are a violation of twelve-factor and should never be used or relied upon.
Session state data is a good candidate for a datastore that offers time-expiration, such
as Memcached or Redis.

Stateless services are the building blocks for service-oriented architecture (SOA).
“Service Statelessness,” Chapter 11 in SOA: Principles of Service Design (2016), dis‐
cusses at length how to design stateless services.

Statelessness enables an application to start quickly and shut down cleanly and
simplifies crash recovery. To shut down a stateful workload cleanly, the platform
must first persist the state. To restart a stateful workload, the platform must start the
workload and then load its persisted state before making the workload available to
handle client requests. When a stateful workload crashes rather than being shut down
cleanly, the platform doesn’t have the opportunity to persist its state first, and so
that state is lost. These problems go away when the workload is stateless. A stateless
workload is much easier to quiesce and shut down with no data loss because it doesn’t
have any state that needs to be persisted. It is easier to restart because it doesn’t have
any state that needs to be reloaded. When a stateless workload crashes, the only state
that is lost is the intermediate state of logical transactions that haven’t yet completed,
so the lesson is to keep those transactions brief and that intermediate state small and
persist it quickly.

84 | Chapter 3: Cloud-Native Application

https://oreil.ly/WP8Rl
https://learning.oreilly.com/library/view/soa-principles-of/9780132344821/


A challenge for a Stateless Application is that retrieving the same domain data repeat‐
edly may degrade network performance between the application and its database.
This can be remedied with a caching service, which keeps the application stateless.
Likewise, if a client’s session state becomes extensive, it may degrade network perfor‐
mance between the application and its client. This encourages designing an API with
parameters that are few and simple, limiting the session state that is necessary.

Statelessness makes scalability much easier. Making an application into a Replicable
Application (88)—one that scales the way cloud scales—is much more complex
when the replicas have state. When the replicas are stateful, the platform must use
sticky sessions, a technique from traditional IT that should be avoided in the cloud.
Furthermore, each replica’s state has to be duplicated or persisted so that it’s not
lost if the replica crashes or needs to fail over. With a Stateless Application, all of
the application’s replicas are equivalent because they’re all stateless. All replicas have
the same data because it’s all stored in a shared database. Routing is simpler—any
replica can serve any client request because they’re all equivalent. When scaling in, it
does not matter which replicas the platform selects to shut down because they’re all
equivalent.

A Stateless Application is easier to implement when it has a Service API (70). The
workload doesn’t expose its state via the API—it doesn’t have any state to expose.
Rather than expose the domain state that it manages, the workload should use its API
to provide tasks that keep the state encapsulated and hidden from the client and limit
the scope of the session state.

A Stateless Application with a Service API is a stateless service, which is the preferred
model to implement functionality in a cloud-native architecture. It is the basis for
implementing a Microservice (119).

If an application still wants to cache domain data to improve performance, it should
use a Backend Service (106), that is, an in-memory database, such as Redis or
Memcached.

Examples
When a team that is new to cloud-native architecture is told that their application
needs to be able to run statelessly, their first reaction typically is to say that their
application won’t work that way. “You don’t understand,” they explain, “our applica‐
tion has state.” No kidding. Every application more complicated than a calculator has
state. The trick is to figure out what in the application’s implementation is storing
data and move the data outside your program. In a sense, this is a form of functional
programming, and if your language of choice supports functional programming
constructs, it may be easier to implement these approaches in that way. Two common
ways of storing data in your application can be addressed with these fixes:
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• Make domain state external•
• Make session state external•

Make domain state external
With traditional IT, it is common to cache data from the database so that it only has
to be fetched once. The most common way to do this is to define an instance variable
to keep cached data. When retrieving a piece of data, retrieve it from the cache; if it’s
not already in the cache, first load it from the database into the cache, then retrieve it
from the cache. A very simple version of the code (in Java) looks like Example 3-10.

Example 3-10. Stateful ProductManager stores products

public class ProductManager {

    private Map<Product> products;  // products is an instance variable

    private Database getDatabase() {
        Database database;
        database = /* Get the database connection */
        return database;
    }

    public getProductNamed(String name) {
        Product product = products.getOrDefault(name, null);
        if (product == null) {
            product = this.getDatabase().get(name);
            products.put(product.name(), product);
        }
        return product;
    }
}

If you want your application to be stateless, the object should be stateless. So, don’t
cache the data, retrieve it from the database every time. As shown in Example 3-11,
the class no longer declares an instance variable, and the getProductNamed() method
becomes much simpler.

Example 3-11. Stateless ProductManager does not store products

public class ProductManager {

    // Do NOT declare a products instance variable

    private Database getDatabase() {
        Database database;
        database = /* Get the database connection */
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        return database;
    }

    public getProductNamed(String name) {
        Product product = null; // products is a temporary variable
        product = this.getDatabase().get(name);
        return product;
    }
}

But won’t this stateless version be inefficient? In the cloud, databases have gotten
faster, especially if they’re NoSQL databases and have their own caches. Network
connections have gotten faster. Run multiple replicas of the database so that each
replica has less work to do and can do it faster; see Cloud Database (311). If data still
needs to be cached in memory, use a Backend Service specialized for that purpose,
such as Redis or Memcached. Making the database faster and the application stateless
will ultimately be a much better solution.

Make session state external
Session state refers to an application’s data that is unique to a particular user. When
processing multiple requests that are related through a common interaction with a
user, session state is that data that needs to be carried across all of those requests. For
example, session state might include the identity of a user, so that the right records
could be fetched back from the database using the approach previously described.
The user identity can’t only be in the database, because it’s part of the key that’s used
to find the right data. Luckily, there are approaches to externalize session state as well.

The most common approaches involve storing a key (such as the user’s identity) in
something that is attached to every user request. In the example of a request carried
over HTTP, this could be in the contents of an HTTP cookie or in the parameters of
the request itself. Regardless of which protocol or framework you are using, that’s the
usual approach—make sure that a top-level key that is associated with the user gets
passed in with each request.

However, even in this case, there is the temptation to store this information within
the program, typically in a Singleton (Design Patterns, 1994) or in a class variable.
Similar to the example above, classes should use temporary variables, not instance
variables. Temporary variables passed as parameters are part of the thread running
the method, so each thread gets its own copy, and the variables’ lifetime ends when
the thread does. That means that your class can be completely threadsafe, which
makes debugging easier.

The side benefit of following these approaches is that the application is now a Replica‐
ble Application. Not only does it not matter if any particular copy of the application
fails and is restarted (because no state is stored in the application), but it also does not
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matter how many copies of the application are running and receiving requests at any
time, because all copies can handle any request equally well. Statelessness is difficult
to achieve in that it takes more work to think about developing applications in this
way, but the benefits are often well worth the trouble.

Replicable Application
(aka Horizontally Scalable Application)

replicable adjective
rep·li·ca·ble (ˈre-plə-kə-bəl)

• that which can be replicated•
• that which can be produced again to be exactly the same as before•

You are developing an application with a Cloud-Native Architecture (58) encapsula‐
ted in an Application Package (62). You want your application to always be available,
even though the cloud can be unreliable and client load can grow greater than a single
instance of the application infrastructure can handle.

How can an application run reliably on an unreliable platform and scale to handle
greater client load the way the platform scales?

When developers of applications for traditional IT are asked how reliable their
application is, they often reply, “My application is as reliable as the hardware it’s
running on.” In this way, traditional IT applications punt responsibility for reliability
and make it the responsibility of the hardware engineers and operations staff to
make their IT environments reliable. This also avoids the uncomfortable truth that
sometimes applications fail even when the hardware is functioning properly. These
failures can have many causes, such as memory leaks, deadlocked threads, blocked
I/O connections, or storage issues.

There are limits to how reliable hardware can be, not to mention the reliability
of the OS and other system services the application depends on. As the reliability
of hardware goes up, the price tag rises even faster—mainframes cost more than
commodity computers, RAID arrays cost more than simple storage. Even if hard‐
ware can be made to fail infrequently, that only lowers the frequency of unplanned
outages; it doesn’t eliminate them completely. Furthermore, there are also planned
outages—from OS patches to system upgrades—that cause the ubiquitous “system is
currently unavailable because of maintenance” status that systems frequently display
on weekends and holidays. (Not to mention that planning maintenance outages at
times that avoid inconveniencing the users requires that the operations staff spend
their weekends and holidays at work upgrading systems. And they do so with the
ever-present threat that they’d better have their work completed and the system
functioning again by Monday morning!)
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Cloud computing embraces a new perspective: nothing is truly reliable, including
computer systems. Rather than wasting money on trying to make your systems
infinitely reliable, it’s more practical and cost effective to design them to be redundant
in the hope that even as some parts fail—or are intentionally shut down for mainte‐
nance—other parts will keep operating, thereby keeping the overall system reliable.
This approach enabled one vendor who embraced cloud techniques to intentionally
purchase RAM chips with a greater failure rate because they were cheaper. If the
vendor found that a batch of RAM chips was too reliable, they assumed that they
were being overcharged and that they should be able to get less-reliable chips instead
at a significantly better price.

Accepting that hardware is unreliable recognizes the problem but doesn’t solve it:
How can a Cloud-Native Application run reliably even when a cloud platform is less
reliable? The key is to not only structure the hardware as redundant parts but to
structure the application as redundant parts as well.

Meanwhile, an application running in the cloud is shared by numerous users. When
many of them start using the application at the same time, it can become overloa‐
ded with more client requests than it can handle. Some user requests may still get
processed efficiently, and to them the application will still seem reliable. But for
others, either their requests suffer very poor performance, or requests get lost and
ignored completely, or the application becomes overloaded and crashes. Whatever
the problems, the application becomes less reliable, even on reliable hardware, when
too many users create too much load.

Ideally, the application should be reliable for all users at all times. With traditional IT,
there are two main approaches for providing capacity for client requests:

Vertical scaling
Grow the application to use more of its computer’s capacity.

Maximum sizing
Size the application to handle the maximum client load that can occur.

Vertical scaling requires that the application is able to access additional CPU and
memory capacity in its computer. The application uses this additional capacity to
serve more concurrent client requests. The application cannot grow once the com‐
puter runs out of CPU or memory and can also become constrained when it is using
all of the computer’s network bandwidth or storage. While an application can scale
up vertically, it often cannot scale down again—memory and storage, once acquired,
can be difficult to release, often at a minimum requiring the process to restart.

Maximum sizing ensures reliability at all times by determining the maximum client
load that is likely to occur, then sizing the application for that. The problem is that
most of the time the client load is much less and the application uses only a fraction
of its capacity. An application that reserves a lot of capacity but uses much less
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of it is wasting money paying for capacity that it is not using. And however high
the application’s maximum client load may be, there’s always the possibility it could
receive even greater load and still become unreliable.

How can a Cloud Application reserve a lot of capacity when it has a lot of client load
but less capacity when it has less load, so that its capacity is always proportional to the
current level of client load? And how can the application always have the capability
to grow more and more if it needs to? The key is to structure the application to scale
bigger and smaller as client load increases and decreases.

The application should run as redundant parts for reliability and should be able to
scale bigger and smaller as client load changes.

Therefore,

Design the application as a Replicable Application that is able to run as multiple
redundant application replicas that all provide the same functionality without
interfering with one another.

By designing a Cloud-Native Application to be replicable, the cloud platform will be
able to deploy replicas of the application.

Figure 3-10. Replicable Application
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As Figure 3-10 shows, the cloud platform’s management functionality includes an
application deployer, which performs the function of creating a new workload
instance of an application from its Application Package. When cloud management
runs the deployer repeatedly, it creates multiple replicas of the application.

Because a Cloud-Native Application is encapsulated as an Application Package, the
cloud platform can easily create new replicas of the application by deploying the
package repeatedly. Each replica is a deployment of the same Application Package, so
all of the new replicas are equivalent. The replicas run independently of one another,
do not even know about one another, and do not interfere with one another.

Application replication is a fundamental feature in most cloud platforms. Platforms
that provide autoscaling use replication for that as well, but autoscaling isn’t a
requirement of replication. Some examples include the following:

Amazon EC2
EC2 Auto Scaling adds EC2 instances when demand spikes

Kubernetes ReplicaSet
Guarantees the availability of a specified number of identical Pods

Azure Function
As requests increase, Azure automatically runs more functions

IBM Cloud “Auto Scale” for VPC
Dynamically creates virtual server instances to improve performance based on
metrics like CPU, memory, and network usage

With each of these examples, the platform is able to deploy new replica instances of
the application that are equivalent to existing replica instances, such as to start an
application by deploying redundant replicas or to replace a replica that has crashed or
become unresponsive.

The cloud platform treats multiple replicas of an application as a group and makes
the group behave like one big copy of the application. Running multiple replicas
rather than one big replica solves both of the challenges of making an application
more reliable than its hardware:

Scalability
Each replica can run on a different computer, providing the capacity of multi‐
ple computers, which is greater than the capacity of any single one of those
computers.

Reliability
If one computer fails, only the replicas running on that computer fail; the rest of
the replicas keep running.
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The multiple replicas provide greater capacity for serving more concurrent client
requests than a single replica could. While all of the replicas could run on a single
computer, running on multiple computers enables them to use the capacity of multi‐
ple computers. When a computer fails, only the replicas running on that computer
fail; the rest of the replicas keep running, making the application highly available and
providing greater reliability for the clients.

The application can run as a single replica, but as explained in The Twelve-Factor
App: VIII. Concurrency, “The application must also be able to span multiple
processes running on multiple physical machines.” A significant advantage of this
approach is that scalability becomes much simpler: “The process model truly shines
when it comes time to scale out. The share-nothing, horizontally partitionable nature
of twelve-factor app processes means that adding more concurrency is a simple
and reliable operation.” Each workload replica can still employ other techniques for
scaling: “An individual process can handle its own internal multiplexing, via threads
inside the runtime, can support the async/evented model, and vertical scaling is
possible.”

The application can not only scale out to add capacity, it can also scale in and
reduce capacity simply by shutting down some of the replicas. As explained in The
Twelve-Factor App: IX. Disposability:

The twelve-factor app’s processes are disposable, meaning they can be started or
stopped at a moment’s notice. This facilitates fast elastic scaling, rapid deployment of
code or config changes, and robustness of production deploys.

For an application to be replicable, avoid anything that fits the the Singleton pattern
(Design Patterns, 1994) in which an object has only a single instance that cannot
be replicated and must be shared globally. Avoid any design details that mean the
application can run only as a single workload and therefore on a single computer,
such as components with shared memory, concurrency semaphores, or a fixed IP
address or domain name. Such designs were common with traditional IT, but they
cannot support multiple copies in the cloud.

Fortunately, business applications and many multiuser environments typically repli‐
cate easily. When the user buys a book, views a bank account, or browses movies
to stream, the business transaction is implemented by a logical thread performed
in a slice of the application architecture from the graphical user interface (GUI)
through the business logic to the database and back. A replica may have capacity to
handle tens or hundreds of such transactions in isolated, concurrent threads. Multiple
replicas can handle many more, each handling its share of the total concurrent
transactions and none of them interacting with one another except for updating
shared Backend Services.
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A Replicable Application can run multiple redundant copies of itself without them
interfering with one another. The cloud platform is what deploys the replicas. The
cloud platform makes multiple replicas of the same application work like one big
application, which improves the application’s scalability and reliability. Replication
works well for typical business applications.

However, developers who have never designed an application to be replicable often
find doing so a challenge. Traditional IT developers are accustomed to designing
an application with a single replica that scales vertically. The number one enemy of
replication is the Singleton pattern and variations thereof—such as block storage and
fixed IP addresses. These should be avoided.

The cloud platform will have an easier time distributing requests across replicas and
scaling them in if the application is a Stateless Application (80). Stateful replicas
require that the load balancer implement sticky sessions, a technique that the cloud
avoids. When replicas are stateless, they are all equivalent, not only when new repli‐
cas are created from the same Application Package but throughout their lifetimes. To
scale in, any stateless replica is an equally valid candidate to be shut down because
they are all equivalent.

While replicas do not know about one another, they do coordinate via shared Back‐
end Services (106). Because all of the replicas of an application share the same set of
Backend Service instances, they all have access to the same external functionality and
state—helping them all work the same way.

Replicas often share a common set of domain data in a shared Cloud Database (311).
Many cloud databases are able to replicate across multiple computers and storage,
thereby scaling the same way the application does. A distributed database has better
high availability and throughput than a database running in a single server. The
application should avoid managing its own storage directly by employing measures
such as a file system or especially block storage—which typically cannot be shared, as
that can break the equivalency of the replicas.

This ability to dynamically replicate on demand is a key advantage of a Microservice
(119), which enables part of an application to scale rather than the entire monolith.

Application replicas typically are not simply copies of the Application Package, but
rather are copies of a virtual machine image (see Virtualize the Application (475))
or container image (see Containerize the Application (478)) that includes the Appli‐
cation Package. One advantage of packaging an application as an Application Package
is that the package makes it easier for the cloud platform’s application deployer to
deploy the application simply and reliably. By packaging the Application Package as a
virtual machine or container, it is even easier for the application deployer to deploy
repeatedly.
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Examples
When a team that is new to cloud-native architecture is told that their application
needs to be able to run multiple copies simultaneously, often their first reaction is
to say that their application won’t work that way. The trick is to figure out what in
the application’s implementation prevents multiple replicas running at the same time
from working correctly. The following are some typical problem scenarios that would
occur if multiple replicas of the application were running at the same time:

• The application depends on a Singleton (Design Patterns, 1994). Managing a Sin‐•
gleton within a replica may be straightforward, but managing it across replicas is
complex.

• They will interfere with one another—such as overwriting one another’s data—•
and keep any of them from working.

• They will each store their own data—such as in their own disk storage—and each•
will work but will not know about the data in the other replicas.

• The first replica will establish a lock on a resource, and the others will block•
while waiting to establish their own locks on the same resource.

• To establish a lock on a resource only once, all of the replicas will coordinate•
to elect one replica that will establish the lock that they will all then share. This
might work until the replica that established the lock crashes without releasing
the lock. Then, none of the replicas work, including the replacement for the
replica that crashed.

• A scenario similar to a resource lock is an application that can run only on a•
particular IP address. The first replica reserves that IP address and assigns it to its
network interface, then the other replicas cannot use it.

A theme here is that typically multiple replicas work OK internally; the problem
is how they use external resources and that the program was designed with the
assumption that it would be the only replica using the external resource. The trick is
to discover where these problem scenarios occur in the program, discover the design
assumptions that led to the problem, and redesign that part of the program with
better assumptions that eliminate the problem and enable replication.

Here is some detail about a few specific examples:

• Avoid Singletons.•
• Store data in a shared database service, not in disk storage.•
• Manage a connection pool using an integration service.•
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Avoid Singletons
An application that uses the Singleton pattern will have difficulty running application
replicas. When the application runs, it will create a single instance of an object that all
of the application will share. If the application is run twice, each replica of the appli‐
cation will create its own Singleton. Two threads running in an application replica
will share the same Singleton, but two threads running in two separate replicas will
each access its replica’s Singleton, which usually defeats the purpose of making the
object a Singleton. If two threads can successfully use two different Singleton copies,
the object doesn’t need to be a Singleton.

Perhaps the application can be structured such that the first replica creates the
Singleton, then subsequent replicas will all access the Singleton in the first replica.
This creates a couple of problems. First, it is complex to implement, with each new
replica needing to know that the original replica already exists and how to access
it and its Singleton. Second, any network problems between the replicas will make
accessing the Singleton slow and unreliable. Third, if the first replica—the one with
the Singleton—crashes, none of the other replicas will work because they have lost
access to the Singleton. The surviving replicas need to detect that the Singleton is
lost and create a new one, working together to ensure that only one of the surviving
replicas creates the replacement and they all know how to access it.

Rather than confront this coding complexity, a much simpler approach is to design an
application to avoid any Singletons. Then, it is easy to run as a Replicable Application.

Store data in a shared database service, not in disk storage
An application that stores data directly in block or file storage will be difficult to
replicate. It should instead use a database that the replicas can share.

An application has some data to persist, so it creates a block storage volume and
stores blocks of data. The problem with running multiple replicas of the application
is that each one creates its own storage volume and stores its own data, but each
replica knows only the data it stores in its volume and has no access to the data
the other replicas have stored in their volumes. This is an even bigger problem
if any replicas shut down or crash—the data in those replicas’ volumes becomes
inaccessible, effectively lost.

Rather than each replica creating its own volume, they could create one volume and
share it. The first replica does not find the volume creates it, then subsequent replicas
find the existing volume and also attach to it. This will not work because block
storage volumes typically cannot be shared by more than one workload process. Even
if they could, how would each replica know about the blocks stored by the other
replicas while avoiding overwriting one another’s data? The application might be able
to implement enough functionality to solve all of these constraints, but in doing so
would end up implementing its own database.
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While traditional IT applications used to implement their own data persistence,
Cloud Applications don’t have to. Instead, the solution for a Cloud Applications is to
store its data in a database that has been created in a platform-managed database
service and can be shared by multiple replicas of the application. This can even be a
relational database or some other database running in a single server. The database
coordinates requests from multiple threads—whether they are running in the same
application replica or in different replicas—and coordinates writing data to blocks,
remembering where the blocks are and avoiding overwriting blocks in use. As new
application replicas are started and old ones are shut down, they all continue to share
the same database. Such database services already exist, so no application should
write its own. See Cloud-Native Storage (Chapter 7).

Manage a connection pool using an integration service
A Replicable Application can grow big enough to overwhelm a legacy system of record
(SoR). Care must be taken in the application’s design to avoid this problem.

When an application accesses an SoR, the SoR can typically handle only a limited
number of concurrent connections. Too many concurrent connects will result in a
crash. If the SoR can handle only 10 concurrent connections, the application creates
a connection pool with 10 connections, perhaps using a programming language’s
connection pooling framework such as Java EE Connector Architecture (JCA). It
channels all access through the pool so that it uses up to 10 connections at the same
time. The problem with running multiple replicas of the application is that each
one creates its own connection pool, each with 10 connections. Multiple application
replicas using 10 connections each can create more than 10 concurrent connections
to the SoR and crash it.

Again, coordination between application replicas may be the solution to the problem.
Each replica adds only a few connections to its pool so that they all have only 10
connections total. This won’t scale for more than 10 application replicas. Even with
ten or fewer, how are they going to coordinate to know how many connections
each one has and make sure each gets a fair proportion of the connections to use?
When a replica shuts down, how do the others know so that they can start using its
connections? Implementing a shared, distributed connection pool will not be easy.

The solution is for the application to not implement a shared connection pool at
all, much less one distributed across multiple replicas of the application. Rather, the
application should use an integration solution to connect to the SoR and let it manage
the connection pool. An integration solution such as IBM App Connect Enterprise
or MuleSoft AnyPoint can manage connections to the SoR and be shared by multiple
workload replicas.

Figure 3-11 shows a Replicable Application that accesses an SoR. Rather than connect
to it directly, the replicas share a connection pool managed by an integration service.

96 | Chapter 3: Cloud-Native Application

https://oreil.ly/hSZbo
https://oreil.ly/Hxt4p


The integration service enforces the constraints for connecting to the SoR, such
as a limited pool of connections that it creates and shares. The workload replicas
then share the integration service. Much like a database service coordinates multiple
replicas accessing the same data, the integration service coordinates multiple replicas
accessing the same SoR.

Figure 3-11. Replicable Application with a connection pool

External Configuration
You are developing an application with a Cloud-Native Architecture (58). You want
to be able to deploy the same Application Package (62) to multiple environments
without rebuilding it.

How can I build my application once and yet be able to deploy it to multiple
environments that are configured differently?

An application is not deployed only once to a single environment; it is deployed
multiple times to different environments. Each of these environments may be set up
and operated differently, possibly requiring the application to work differently in each
environment.

Cloud Applications (Chapter 1) are portable, designed to run on whatever hardware
is available. Developers should be able to deploy a Cloud Application to different envi‐
ronments as long as they are equivalent. One common environment is the developer’s
local computer, where the developer may test out their latest changes. Other common
environments are the stages in the software development lifecycle (SDLC) (such as
dev, test, stage, and prod), which are separate but equivalent environments. An
enterprise may also encompass multiple production environments, perhaps for differ‐
ent geographies (such as north america and europe) or different lines of business in
the enterprise (such as marketing and accounts receivable). Equivalency of these
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separate environments is the principle behind The Twelve-Factor App: X. Dev/prod
parity. The application must be able to run equally well in any of these equivalent
environments.

While various environments are equivalent in many ways, they are not the same. A
developer’s laptop is not running the same services as a cloud platform. The cloud
environments for testing should include equivalent but separate service instances
from those for production. For example, if the application requires a relational
database with a particular schema, the database is provided as one installation on the
developer’s laptop, another service instance is provided for testing environments full
of fake test data, and at least one more service instance full of proprietary enterprise
data is provided for production. The equivalent databases are hosted on separate
network endpoints (e.g., IP address, domain, or URL) and certainly have different
authentication credentials. These databases are equivalent, but because they’re sepa‐
rate servers, they’re accessed differently.

An application has access only to the services in its environment. When the applica‐
tion is deployed to a development environment, it should have access only to the
development database. Only when it is deployed to the production environment
should it have access to the production database.

The application should be built to be immutable. This is one of the principles behind
The Twelve-Factor App: V. Build, release, run, as well as both a consequence and
benefit of packaging an application as an application container image—such as a
Docker image. An immutable application means that the exact same deployment
artifacts are deployed into each environment. Deployment should not recompile or
rebuild an application to deploy it into a new environment. When the application is
immutable, the exact same artifacts that were used for testing are also deployed into
production. Otherwise, if an application must be changed and rebuilt to deploy it into
production, what’s running in production is not what was tested and approved in the
testing environment.

How can the same application use a different service instance (e.g., a different data‐
base) depending on the environment it’s deployed into? One approach is to hardcode
literals for the service instance’s endpoint and credentials. But then every time the
application is deployed into a new environment with a new service instance, the
application’s code needs to be modified to change those literals, be recompiled, then
retested. An immutable application cannot be modified and recompiled between
environments.

Another approach might be for the application to hardcode the endpoint and creden‐
tial literals for all of the service instances in all of the environments. This assumes that
the developers know all of the environments the application will ever be deployed
into, that the service instances’ connection properties can never change, and that
the developers should have access to all of these settings. That would mean giving
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developers access to the authentication credentials for the production services, set‐
tings that the production operations team should treat as a closely guarded secret.
Even if this would work, the unchanged application has no way to know which
environment it has been deployed into and therefore which set of literals to use.

Another problem with hardcoding settings comes with committing code into the
source code management (SCM) system. An SCM is widely shared with all develop‐
ers who need access to the code. Environment settings should not be widely shared
because anyone who knows the settings gains insight into how the enterprise’s inter‐
nal environments are set up. Secret credentials should be even more closely guarded,
not stored someplace widely shared.

In traditional IT, a common approach to avoid hardcoding settings within an applica‐
tion is to store them in a properties file. That way, developers can change the settings
by editing the file, and they do not have to recompile the rest of the application.
However, this approach doesn’t work well in the cloud. A Cloud-Native Application is
stateless, and a properties file is state (unless you are storing it in an external service
like a secrets store). Even if properties are an exception, a cloud environment may
not even have a file system to store the properties file into. Also, the properties file
is deployed with the rest of the application, so the application still cannot deploy to
multiple environments unchanged.

Cloud Applications support Polyglot Development (146), where an application’s mod‐
ules don’t all need to be developed in a single computer language. Settings need to be
stored in a way that is language-independent, using an approach that will work for all
languages and all environments, including cloud environments.

Therefore,

Store an application’s settings in an External Configuration separate from the
application’s code so that the settings can be changed without changing the appli‐
cation artifacts.

Configuration is typically stored in environment variables.

An application accesses its configuration as an internal set of variables, populated
from values that are stored externally. Because these configuration values are stored
externally from the application, the values can be changed without having to change
the application’s code and recompile it. An application can be deployed to different
environments with different configurations without having to change the code, just
change its set of External Configuration values in each environment.

As shown in Figure 3-12, the application stores its configuration internally as vari‐
ables and sets their values from a configuration that is stored externally.
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Figure 3-12. External Configuration

The External Configuration values are typically stored in the OS as environment
variables, as shown in Figure 3-13. Most include environment variables as a feature.
Most programming languages have features for reading environment variables, so the
program just needs to use those features. For each configuration variable the program
needs to read, the program just needs to know the name of the corresponding
environment variable.

Figure 3-13. Environment variables

As Figure 3-14 shows, configuration for the application is stored in environment
variables in the OS’s environment. The deployment process, whether manual or
automated, declares the environment variables and sets their values when it deploys
the application into the OS. When the application runs in the OS, the program reads
its configuration from the environment variables, optionally stores these values in its
own internal variables, and uses the values as needed.
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Figure 3-14. External Configuration usage

In this example, the configuration specifies the credentials to access and authenticate
with an external MySQL database containing data for products. The deployer can set
this configuration for one database in the development environment and a different
database in production without having to change the program code, so the same
Application Package can be deployed without modification in both environments.

As explained in The Twelve-Factor App: III. Config:

The twelve-factor app stores config in environment variables (often shortened to env
vars or env). Env vars are easy to change between deploys without changing any code;
unlike config files, there is little chance of them being checked into the code repo
accidentally; and unlike custom config files, or other config mechanisms such as Java
System Properties, they are a language- and OS-agnostic standard.

Environment variables are a very good place to store the configuration settings for an
application. They are not specific to any one language or OS. Unlike a properties file,
environment variables do not require a local file system. If needed, each variable can
be shared by multiple applications, as long as that doesn’t create an unnatural cou‐
pling between the applications. If multiple applications always need the same setting,
such as sharing the same database, they should share a single environment variable.
If they may eventually need different settings, such as each using its own database,
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they should use separate environment variables that may or may not contain the same
value.

Application settings may include private data such as credentials that should not be
stored in a public SCM. Whereas properties files may accidentally get checked into an
SCM, environment variables will not.

While storing an application’s configuration in the OS’s environment solves many
issues, setting an environment’s variables can be a chicken-and-egg problem. As part
of the deployment process, something must set the environment’s variables with the
configuration settings, which must be set before the application is deployed into an
environment.

An easy way to initialize the environment variables is to store the settings in a
properties file that a deployment script can use to set the variables before deploying
that app. The environment variables decouple the application from how the values
are stored—only the deployment process needs access to the properties file and the
file system. If the values are stored in a properties file, that file shouldn’t be checked
into SCM. Settings can also be stored in two files, sensitive and nonsensitive, where
only the nonsensitive file is checked into SCM. The sensitive settings should be stored
in a secrets vault.

Rather than storing the External Configuration in environment variables, it is some‐
times stored in a database. While convenient, this approach requires that the applica‐
tion have access to a database, an extra middleware service that is not built into an OS
like environment variables but one that most applications are likely to need anyway.
This database approach also creates its own chicken-and-egg problem for initializing
the application: the application needs settings for accessing the database that contains
the settings.

Environment variables are often populated from a values management service pro‐
vided by the platform—such as HashiCorp Vault, Parameter Store on Amazon Web
Services (AWS), and Secrets Manager on IBM Cloud. An application can access
such a service directly via an API, bypassing environment variables. However, that
approach makes the application directly dependent on the service, with all of the
problems of making the application directly dependent on a database of values.
Furthermore, each service has its own API, locking in the application so that its
code works only on the platform with that service. Environment variables avoid this
lock-in by separating how the application accesses the values from how the values
are populated, enabling the deployment process to easily switch between different
storage methods without needing to modify the application, and without making the
application dependent on the storage method.
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Externalizing an application’s configuration into environment variables makes the
settings part of the environment the application is deployed into. Each environment
independently sets the variables for its configuration. The application is able to run
unchanged in multiple environments and use a different configuration in each envi‐
ronment. Cloud environments and their OSs support storing environment variables,
and modern programming languages support reading environment variables. Unlike
with a properties file, environment variables do not require a file system and cannot
accidentally get checked into an SCM.

When an application externalizes its configuration as a set of environment variables,
the cloud environment must provide a way to set environment variable values when
running the application. Each platform handles that differently. Setting these environ‐
ment variables’ values can be a chicken-and-egg problem. The configuration for the
code that initializes the variables should not be checked into SCM, and credentials
should be stored in a secrets vault. Thus, many cloud platforms provide some sort of
Configuration Database (323) to solve this problem for applications running on their
platform.

When the application is a Replicable Application (88), the platform sets the environ‐
ment once so that all of the replicas share the same configuration.

Externalizing your configuration enables other design principles. For example, a
developer may choose to test locally with a local copy of a database like Postgres
and then connect to an AWS or Azure database service when testing in the cloud.
This toggling of features and environment-specific configuration choice is critical
when testing applications built using a Microservices Architecture (Chapter 4). Each
component can be tested individually and integrated within the system before testing,
rather than always having to test a component with all of its dependencies—which
can lead to having to test an entire system just to test one component in the system.

Examples
Application languages that support deployment techniques like application packag‐
ing also support accessing environment variables. Likewise, cloud technologies like
containers and container orchestrators provide features for setting environment vari‐
ables. Cloud platforms provide services for storing credentials securely and making
them available to applications by setting them in environment variables.

Read environment variables in Java
As Oracle documents in Environment Variables, a Java application can read environ‐
ment variables using the System.getenv static methods.

An application can read all of its environment’s variables into a Map, as shown in
Example 3-12.
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Example 3-12. Java code for reading all of an environment’s variables

Map<String, String> env = System.getenv();
for (String envName : env.keySet()) {
    System.out.format("%s=%s%n", envName, env.get(envName));
}

An application can also read an individual environment variable’s value by specifying
its name, as shown in Example 3-13.

Example 3-13. Java code for reading one of an environment’s variables

String name = "PORT";
String value = System.getenv(name);
if (value != null) {
    System.out.format("%s=%s%n", name, value);
} else {
    System.out.format("%s is" + " not assigned.%n", name);
}

A deployment tool that the Java application doesn’t even know about can set the
values of environment variables, and the application can read them simply by know‐
ing the variables’ names. This works on a range of platforms and helps keep the
application platform-independent.

Read environment variables in Node.js

A Node.js process makes all environment variables accessible using a global env pro‐
cess object. Example 3-14 shows how an application can read all of its environment’s
variables from this object.

Example 3-14. Node.js code for reading all of an environment’s variables

const process = require('process');
var env = process.env;
for (var key in env) {
    console.log(key + ":\t\t\t" + env[key]);
}

An application can also read an individual environment variable’s value by specifying
its name, as shown in Example 3-15.

Example 3-15. Node.js code for reading one of an environment’s variables

const app = require('http').createServer((req, res) => res.send('Ahoy!'));
const PORT = process.env.PORT || 3000;

app.listen(PORT, () => {
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  console.log(`Server is listening on port ${PORT}`);
});

A deployment tool that sets the values of environment variables and the application
that reads them do not need to know about each other. The setter doesn’t need to
know the language used to implement the application—Java, Node.js, or another—
only that the application is able to read environment variables.

Docker container environment variables
Like application programs and packages, container images should also be built with
an External Configuration so that their containers can be deployed to a number of
environments. The running container will read the environment variables and make
them available to its processes. For example, when running a container using Docker,
use -e flags in the docker run command to specify environment variable settings.

Kubernetes Configuration Map and Secret
Kubernetes, a popular container orchestrator, enables an application to access set‐
tings as environment variables using two features: ConfigMap and Secret. Both a
configuration map and a secret store a set of data as key-value pairs. The data in a
configuration map is stored as plain text and so should not be confidential. The data
stored in a secret is encoded and so can be as confidential as the encoding method.

For example, the YAML code in Example 3-16 creates a ConfigMap named game-
demo that sets the values for two properties.

Example 3-16. Kubernetes configuration map

apiVersion: v1
kind: ConfigMap
metadata:
  name: game-demo
data:
  # property-like keys; each key maps to a simple value
  player_initial_lives: "3"
  ui_properties_file_name: "user-interface.properties"

An application in a pod that reads this configuration map has access to those two
values named player_initial_lives and ui_properties_file_name.

The YAML code in Example 3-17 creates a Secret named mysecret that sets the
values for two properties.
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Example 3-17. Kubernetes Secret

apiVersion: v1
kind: Secret
metadata:
  name: mysecret
type: Opaque
data:
  USER_NAME: YWRtaW4=
  PASSWORD: MWYyZDFlMmU2N2Rm

An application in a pod that reads this secret has access to the plain text data for the
values named USER_NAME and PASSWORD.

Secrets storage and encryption
An enterprise should store the sensitive settings in a secrets vault such as HashiCorp
Vault, or better yet a hardware security module (HSM) that only the enterprise can
access. If sensitive settings must be stored in SCM, they should be encrypted using
tools like git-crypt.

AWS Systems Manager Parameter Store and AppConfig
AWS Systems Manager Parameter Store stores configuration data and secrets.
This data can be accessed in compute services such as Amazon Elastic Compute
Cloud (Amazon EC2), Amazon Elastic Container Service (Amazon ECS), and AWS
Lambda. A feature within AWS System Manager, AWS AppConfig, allows users
to store and manage custom application configuration from within application pro‐
grams.

IBM Cloud Secrets Manager
IBM Cloud Secrets Manager—built on HashiCorp Vault—stores configuration set‐
tings that should not be stored in source code management. It manages their lifecycle,
controls access to them, records their usage history, and optionally encrypts them
with user-provided keys. It can also be configured to create Kubernetes secrets, and
those secrets can be encrypted with user-provided keys. Applications can use these
secrets to authenticate to databases and storage, and continuous delivery services can
use them to gain access to deployment environments.

Backend Service
You are developing an application with a Cloud-Native Architecture (58). The appli‐
cation implements custom business logic that deploys as an Application Package
(62). The application needs some functionality that is common among many applica‐
tions—such as data persistence or messaging.
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How can multiple applications share the same reusable functionality?

A common approach in traditional IT to make functionality reusable has been to
implement it as a reusable code library. Any application that needed the functionality
would compile and link in the library as part of its executable process. For example, a
Java program can include separate JAR files, Node.js programs can include modules,
and a C# program can use the .NET libraries.

The library approach has several limitations:

Language
An application implemented in a particular language can typically only use
libraries written in the same language.

Distribution
The libraries are part of the application process and therefore can only run on the
same computer as the rest of the application.

Scalability
The library scales with the application process. The library cannot scale inde‐
pendently of the rest of the application.

Failure
If the library fails, it causes the rest of the application to fail, perhaps causing the
entire application process to crash.

Composable
To reuse multiple libraries, an application must be able to include them all in its
process. This can be a problem for libraries unless they were designed to work
together.

Duplication
Multiple applications that embed the same library each load their own copy,
causing bloat that limits scalability.

Traditional IT applications typically run in middleware servers that provide capa‐
bilities like automating business processes, running rules, and queuing messages.
Middleware that also hosts the application is essentially a giant code library, with the
same code library limitations.

The cloud needs to be able to vary the application independently of code libraries.

Therefore,

A Cloud-Native Application should connect to reusable functionality remotely as
a Backend Service. The service can be stateful, reused by multiple applications,
and managed by the cloud platform.
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A single Cloud-Native Application can delegate to multiple Backend Services. A single
Backend Service can be used by multiple applications.

As shown in Figure 3-15, a Cloud Application can delegate to several Backend Serv‐
ices, such as a database, a messaging system, and a process automation engine. Many
cloud platforms include a catalog of services hosted as SaaS that applications can
reuse as Backend Services. Many Backend Services perform the sort of functionality
provided by middleware servers on traditional IT.

Figure 3-15. Backend Services

While Cloud Applications can embed reusable code libraries the way a traditional IT
application can, they gain even greater flexibility by being able to connect to Backend
Services remotely. A Cloud Application can even reuse other applications by treating
them as Backend Services.

In cloud, reusing code libraries as a Backend Service overcomes the limitations of a
library:

Language
The application and the service can be implemented in different languages and
technologies.

Distribution
The application and the service run in different processes, so they can run on the
same computer or on separate computers.

Scalability
The application and the service run in different processes, so they can scale
independently.

Failure
The application and the service run in different processes, so a failure that
crashes one does not crash the other.
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Composable
An application can connect to multiple services and combine their functionality.

Duplication
Multiple applications that reuse the same service share a single copy, thereby
consuming just one set of capacity.

The role of a Backend Service is distinct from that of the application program.
Backend Services are specialized for reusable application functionality, whereas an
application’s program is specialized for the business logic that implements a particular
set of user requirements. A Backend Service performs a single capability that many
applications need, such as data persistence, messaging, rules processing, or event
processing. Whereas business logic is often industry-specific and gives an enterprise
competitive advantage, Backend Services are usually industry-neutral. The Backend
Service does not give an enterprise competitive advantage as is; the advantage to the
enterprise is in how they use the service and the fact that they could buy the service
rather than build it themselves. An application program typically runs on behalf of a
single enterprise, whereas a Backend Service is typically used by multiple enterprises
while enabling an enterprise to isolate its usage by creating its own instance of the
service.

As explained in The Twelve-Factor App: IV. Backing services:

A backing service is any service the app consumes over the network as part of its
normal operation….Backing services like the database are traditionally managed by
the same systems administrators who deploy the app’s runtime. In addition to these
locally-managed services, the app may also have services provided and managed by
third parties.

The Backend Service paradigm works so well that cloud platforms tend to make all
functionality into services, yet some of the services in a service catalog are more
backend than others. The services in a catalog come in two broad varieties:

Application service
The application connects directly to the service as a Backend Service. Its imple‐
mentation includes client code that invokes the service’s API, such that the
service is required for the application to work. For example, for an application to
work with a database or a messaging system, it must be written to do so.

Platform service
The cloud platform environment is configured to include the application and
services that enhance how it runs. The application does not depend on these
services directly—they are optional. For example, an application usually does not
interact with a key vault directly; the database does. Observability services can be
added to the environment and gather information about the application without
changing the application.
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The concept of Backend Service existed before the cloud. Even in traditional IT, most
databases and messaging systems run in separate servers that applications connect to
remotely. The cloud takes this to an extreme, whereby a program is only the code
implemented by the development team and perhaps some embedded code libraries,
and everything else in the application is Backend Services the program connects to
remotely.

Backend Services can be developed by third-party vendors so that application devel‐
opers can focus on the user functionality that makes their application unique. Many
cloud platforms provide a catalog of Backend Services, available for applications
deployed on that platform to use. Many software vendors make their products
available as SaaS that applications can use as Backend Services. OperatorHub.io and
Red Hat Marketplace make libraries of Kubernetes operators available, which can be
installed in application environments so that applications can use them as Backend
Services.

A single application can delegate to multiple Backend Services, and a Backend Service
can be shared by multiple applications. Each Backend Service can be written in
a different language and used by applications written in different languages. An
application and its Backend Service can run on different computers, and they are able
to scale independently. Each Backend Service focuses on a specific set of functionality
that is highly reusable by multiple applications. Applications can connect to applica‐
tion services directly and indirectly make use of platform services embedded in the
cloud platform. Backend Services can be developed by third-party vendors and made
available built into a cloud platform in a service catalog.

However, Backend Services can complicate an application architecture. The applica‐
tion must be able to access the service remotely via a network connection, which can
be slow and unreliable. It is not always clear where and how a Backend Service is
hosted, which can be a challenge for applications with data sovereignty restrictions.
It is not always clear whether a Backend Service is single-tenant or multitenant, and
how multiple tenants are isolated. A Backend Service’s reliability can be lower than
an application requires, effectively lowering the application’s reliability. Each Backend
Service should include a user agreement that stipulates its service-level agreements
(SLAs), which the application developer must confirm are compatible with their
application’s requirements.

If an application is designed as a Replicable Application (88), all of its replicas will
share the same Backend Services. These shared services help the otherwise unrelated
replicas coordinate to act like one big application.

110 | Chapter 3: Cloud-Native Application



Any Cloud Database (311) can be a Backend Service, as long as it runs in a separate
process from the application. Some databases can be embedded within an application:
Apache Derby in Java programs, SQLite as a C library, eXtremeDB for C and C++
programs. When embedded, a database is not a backend system. When the database
server runs independently of the application and can be shared by multiple applica‐
tions, Cloud Applications use it as a Backend Service.

A Backend Service is part of a Distributed Architecture (38) that can be implemented
as a Microservices Architecture (Chapter 4).

An Event Backbone (279) is a Backend Service. It connects event consumers to event
producers, all of which use it as a shared Backend Service.

Examples
A compelling advantage of many public cloud platforms is that the platform is
chock full of Backend Services. These services are designed for applications to use
as Backend Services or otherwise to add capabilities to an application that the devel‐
opment team doesn’t have to implement itself. Infrastructure-as-a-Service (IaaS) and
Platform-as-a-Service (PaaS) services such as virtual servers and container orchestra‐
tors host applications but are not Backend Services for applications. An application
can connect directly to application services, which are SaaS services for adding
functionality to the application, such as data persistence, caching, messaging, and
process automation. An application’s environment can be configured to include plat‐
form services that the application doesn’t connect to directly, such as API gateways,
authentication, key management, monitoring, and log aggregation.

Database services (application service)
A Cloud-Native Application runs as a Stateless Application (80). A problem with
making an application stateless is that most applications have state, so where does
the state go? It goes in databases and other data stores, which the application uses
as Backend Services. The database server runs as a service, available for any client
application that wants to use it to create a database and store data. Cloud platforms
provide numerous different Cloud-Native Storage (Chapter 7) services.

Examples of database Backend Services include Amazon Relational Database Service
(Amazon RDS) and Amazon DocumentDB, Azure Cosmos DB (document) and
Azure Cache for Redis (key/value), and IBM Db2 on Cloud (relational) and IBM
Cloudant (document). Object storage services—such as Amazon Simple Storage Ser‐
vice (Amazon S3), Azure Storage, and IBM Cloud Object Storage—are also Backend
Services.
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Integration services (application service)
Messaging services connect applications; each application connects to a messaging
service as a Backend Service. Examples include Kafka, Amazon Managed Streaming
for Apache Kafka (MSK), Azure Event Hubs, and IBM Event Streams; IBM MQ on
Cloud, Azure Service Bus, Amazon MQ, RabbitMQ, and Apache ActiveMQ; and IBM
App Connect on IBM Cloud.

An API gateway exposes internal application APIs as external endpoints and can
authorize their use. An application doesn’t try to manage this itself. The gateway
runs as a service, but rather than connect to the gateway as a Backend Service, the
deployment process publishes the application’s APIs as endpoints in the gateway.
Examples include Amazon API Gateway, Azure API Management, and IBM API
Connect.

Security services (platform service)
A key management service (KMS) or a key vault that stores cryptographic keys
securely is a Backend Service. Keys are stored in the KMS for safe keeping. When
a database or storage service needs a key, it retrieves it from the KMS. Examples
include Azure Key Vault Managed Hardware Security Module (HSM), AWS Key
Management Service (AWS KMS), and IBM Cloud Hyper Protect Crypto Services.

External Configuration (97) talks about storing secrets in a secrets vault. Like a
key vault, a secrets vault is typically hosted as a Backend Service. The application
may interact with the secrets vault directly, making it an application service. Or the
application may be able to interact with the secrets vault indirectly, such as by sharing
Kubernetes secrets, making it a platform service.

A user authentication service enables the user to log in to the application. Rather than
the application implementing this functionality itself, multiple applications can all
share a service that sits in front of the applications and authenticates users on behalf
of the applications. Examples include IBM Cloud App ID and Azure Front Door.

Observability services (platform service)
Monitoring services and log aggregators gather events from applications while they
are running to display to the operations staff. Rather than each application perform‐
ing this functions itself, separate services perform this work. The application may
not even know these services are connected to it. Examples include Prometheus for
monitoring and Fluentd for log aggregation.

Conclusion: Wrapping Up Cloud-Native Application
This chapter discussed how best to build applications that not only run in the cloud
but work well in the cloud. A Cloud-Native Application is an application that is
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designed for the cloud. It incorporates a Cloud-Native Architecture (58) that takes
advantage of the cloud computing model by dividing an application into an applica‐
tion program and services. A Cloud-Native Application is built and deployed as an
Application Package (62). It exposes its functionality to clients via a Service API (70),
runs as a Stateless Application (80) that is also a Replicable Application (88), and is
configured with an External Configuration (97). It delegates to reusable functionality
provided by Backend Services (106).

The program part of a Cloud-Native Application implements the custom domain
logic for the application’s desired user functionality. The program is built into an
Application Package that can be deployed on any cloud platform. It runs as a stateless,
replicable workload that clients access as a service via an API. This makes a single
program able to support concurrent requests from multiple clients and run multiple
replicas that share the same data. The interface hides the program’s implementation,
enabling the implementation to evolve without requiring code changes in the clients.
Once built, the package is immutable with an externalized configuration, enabling
it to be configured differently for deployment to multiple environments without
requiring modification to the immutable package. The cloud platform can relocate
the application to maintain availability even while outages occur in the platform.

Separating the program from the Backend Services achieves several advantages. It
separates the stateless parts of the application from the stateful parts, which makes
the program lighter weight, less error-prone and able to start quickly, shut down
cleanly, and recover from crashes more easily. It separates the services that can be
reused by multiple applications from the custom domain logic unique to a single
application. It enables the application development team to implement the program
in almost any computer language they choose, regardless of the technologies used
to implement the Backend Services. It enables the program to scale independently
of the Backend Services and enables the Backend Services to be topologically and
geographically dispersed from the program and each other.

The patterns in this chapter for making an application cloud native can be applied
to any of these architectures to make the applications embodying the architectures
run well on the cloud. Nowadays, most Cloud Applications are built using the Micro‐
services Architecture (Chapter 4) and Event-Driven Architecture (Chapter 6) styles,
which we’ll discuss in the next two chapters.

Later in Cloud-Native Storage (Chapter 7), we’ll explore how a Cloud-Native Appli‐
cation can persist data that is distributed and replicated just like the application.
We’ll also discuss Cloud Application Clients (Chapter 8) that enable users and other
applications to interact with the application hosted in the cloud.
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CHAPTER 4

Microservices Architecture

While a Cloud-Native Architecture structures an application to incorporate cloud
computing practices, a Microservices Architecture refines that further to modu‐
larize the application and distribute the cloud-native modules across the cloud
infrastructure.

Back in the day, all applications were monolithic applications. Developers didn’t need
to specify that what they were producing were monoliths; they were just applications.
Then with the advent of client/server computing, developers started designing appli‐
cations with Distributed Architecture (38), structuring a single application as coor‐
dinated parts that could run on different computers. Service-oriented architecture
(SOA) evolved to structure the distributed parts as services that could invoke one
another to perform functionality. This is when monolithic architecture became one of
multiple possibilities: an application could be a monolith or distributed.

With the advent of cloud computing, developers started creating Cloud-Native Appli‐
cations (Chapter 3). Likewise, developers designed the services in service-oriented
architecture to run on the cloud by incorporating Cloud-Native Architecture (58)
into services, evolving services into miniature applications that became known as
microservices.

Introduction to Microservices Architecture
This chapter explains how to build applications that work the way cloud does:
composed of a constellation of small components that can be replicated easily and
distributed across infrastructure. Microservices Architecture accomplishes this by
combining Distributed Architecture with Cloud-Native Architecture. Each Microservice
is a component in the Distributed Architecture that is not only a service but a
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cloud-native service, one designed to perform a capability in the application’s busi‐
ness domain.

These patterns assume a basic understanding of microservices, so let’s review that
first. We’ll take a look at how the industry defines a microservice, how a Microservices
Architecture differs from a monolith, and how it relates to Cloud-Native Architecture.
We’ll then introduce the patterns and how they fit together to architect and design a
microservices application.

With this background on what microservices are, we’ll then present patterns for
designing an application with a Microservices Architecture, starting with the root
pattern for this chapter, Microservice (119).

Microservices
An application with a Microservices Architecture is one composed of Microservices.

In “What are Microservices?”, Amazon AWS provides this definition:

Microservices are an architectural and organizational approach to software develop‐
ment where software is composed of small independent services that communicate
over well-defined APIs. These services are owned by small, self-contained teams.

In Building Microservices (2015), Sam Newman defines a microservice as follows:

An independently deployable service that communicates with other microservices via
one or more communication protocols.

What is a microservices architecture? In Microservices Patterns (2018), Chris
Richardson defines microservices architecture this way:

An architectural style that structures an application as a collection of microservices
that are:

• Highly maintainable and testable•
• Loosely coupled•
• Independently deployable•
• Organized around business capabilities•
• Owned by a small team•

From the outside, an application with a Microservices Architecture looks like any
other server application, presumably one with a monolithic architecture. Application
Clients (Chapter 8) running in web browsers and mobile devices interface with the
application, typically over the internet via REST APIs that should define the services
that the server can perform for the clients. The clients cannot tell whether the
server application is a monolith or composed of microservices. The server application
could even start out as a monolith and later be refactored into microservices (see
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Refactor the Monolith (484)) while preserving the services’ interfaces and without
ever changing the clients.

Microservices Architecture Versus Monolithic Architecture
The difference between the microservices and monolithic architectures is in how
the server application works. A monolithic application is developed by a single large
team, built and deployed as a unit, scales vertically in a single process or horizontally
by duplicating the entire application, and fails as a unit. A Microservices application is
composed of modules for individual business capabilities with their own Service APIs.
It differs from traditional services approaches in that each module is developed by
a separate small team working independently from the others, able to build, deploy,
and scale those modules independently.

An application with a Microservices Architecture has significant advantages over one
with a monolithic architecture. A Microservices application scales more efficiently
and isolates failures better. Microservices help users avoid experiencing outages—both
because microservices are deployed redundantly and because new versions can more
easily replace old ones with zero downtime. A primary reason to adopt the Microser‐
vices Architecture is to accelerate the delivery of large, complex applications by many
small, independent teams. Smaller development teams mean that each team member
only has to coordinate with the other members of their team, not with everyone else
in the department. This way, they can spend less time in meetings and more time
writing code. The teams can iterate more rapidly, improving agile development and
continuous delivery, because they can test and deploy their microservice when it is
ready without having to wait for the rest of the department to be ready to build and
deploy the entire monolith.

The Microservices Architecture also has disadvantages—they are typically outweighed
by the advantages, but they cannot be ignored. These disadvantages are generally
related to complexity: microservices applications, like distributed applications before
them, are more complicated than monolithic ones. More microservices means more
service interfaces, which require time to design and coordination between otherwise
independent teams that implement and use a microservice. Each team needs to create
and run its own build pipeline to deploy its microservice independently. Distributed
transactions are more complex than simple ones. More components makes end-to-
end testing more difficult. The operations team needs to monitor and manage lots of
little microservices instead of one big monolith, aggregating their logs and measuring
individual resource consumption. Traceability becomes more complex, as a request
is passed from one microservice to another and performed in stages. On the other
hand, each service interface is a convenient point for testing and monitoring that can
actually help visualize what is working and pinpoint where problems are occurring.
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Each microservice is essentially a small application. Lots of small applications are
more complicated than one big application, but each small application is simpler and
works better so that the whole works better as well.

Microservices and Cloud-Native Architecture
Microservices do not have to run on a cloud platform, but regardless of their
deployment platform, Microservices Architecture is an extension of Cloud-Native
Architecture (58). Just like a cloud-native application, microservices are Stateless (80)
with Service APIs (70). Microservices need to be able to deploy easily in multiple
environments with limited dependencies on the environment, so they encapsulate
their program as an Application Package (62) with an External Configuration (97).
Stateless packages are easier to make into Replicable Applications (88). And microser‐
vices access specialized, reusable functionality as separate Backend Services (106).

Although not required, a cloud environment makes lots of small microservices much
easier to manage. Multiple microservices can more easily share a pool of capacity, and
the environment can more easily provision capacity for each individual microservice
as needed. Capacity can also be made available more easily for a new version of
a microservice to replace an old one without causing an outage. The environment
provides load balancers that enable clients to access a pool of microservice replicas
as though they are a single instance that is both highly reliable and highly scalable.
Microservices can get their Backend Services from the cloud platform’s service catalog.

Architecting Microservices Applications
This chapter defines a collection of seven patterns that explain how to architect and
design applications with a Microservices Architecture. Figure 4-1 shows the patterns
and their relationships.

Figure 4-1. Microservices Architecture patterns

118 | Chapter 4: Microservices Architecture



An application with a Microservices Architecture is composed of multiple Micro‐
services (119) that each perform an independent business capability and make it
available via a Service API. We classify microservices into four different types:

• Domain Microservices (130) that implement functionality from a business•
domain as a complete capability with a Service API and manage the data for
that capability

• Adapter Microservices (135) that access existing external functionality and give it•
a Service API, thereby encapsulating the rest of the application’s dependencies on
the external functionality

• Service Orchestrators (160) that implement complex functionality by combining•
the functionality of multiple simpler microservices into one that’s more complex,
providing a means to perform transactions in a cloud environment

• Dispatchers (140) that provide clients with a single Service API to access the•
business functionality distributed across multiple microservices

Microservices are language-neutral and support Polyglot Development (146), ena‐
bling each one to potentially be implemented in a different computer language. To
maintain their independence even at the data layer, each microservice manages its
own persistent data in a Self-Managed Data Store (154).

This introduction has covered several topics that are helpful to be familiar with to
understand the patterns in this chapter. We’ve talked about what a microservice is,
how it brings together Distributed Architecture with Cloud-Native Architecture and
forms the basis of implementing a Microservices Architecture. Microservices do not
require a cloud platform, but microservices work the way the cloud does, and the
cloud makes microservices easier to manage.

With this background in mind, let’s discuss patterns for how to architect and design
applications with a Microservices Architecture. We’ll start with the root pattern for
this chapter, Microservice (119).

Microservice
You are designing a server-side, multiuser application with a Cloud-Native Architec‐
ture (58). The application may be deployed to run in either the cloud or traditional
IT. Typically, you would architect an application as a single monolithic program.

How do you architect an application as a set of interconnected modules that can
be developed independently?
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The code a developer writes has two audiences: the computer that will run it and
the other developers who will maintain it. When computers were new, developers
focused on making the program as efficient as possible so that it would run on a
machine with limited memory and CPU. When networking was new, bandwidth was
limited, so even powerful programs needed to limit the amount of data they sent
across the network.

Over time, computers became available with greater capacity at much lower prices, a
pattern known as Moore’s Law. The computer’s and network’s capacity were no longer
the main limitation on computer software. Of the two audiences, the developers were
the constraint limiting computer software.

As computers became more powerful, the priority became to make developers more
productive. Higher-level computer languages evolved whose compiled code might be
less efficient than hand-crafted assembler, but that enabled developers to program in
abstractions with which they could describe functionality more easily. That helped
developers write more functionality faster with less code that was easier to maintain.
But applications are still a Big Ball of Mud (22) whose functionalities were difficult to
maintain. Multiple developers working on the same application tended to break one
another’s changes unless they coordinated very carefully. Even with higher-level lan‐
guages, the application’s (lack of) architecture lowered the developers’ productivity.

Developing ever more complex applications requires ever greater amounts of code
written by larger numbers of developers. Even with higher-level computer languages,
to make developers more productive, multiple developers need to be able to work
independently on different parts of the application with minimal coordination, and
their efforts to integrate together smoothly into a single merged application that
works properly.

An evolutionary step to make developers more productive and enable more complex
applications is to make an application a Modular Monolith (29) with a modular
architecture. A modular architecture does little to benefit the computer it runs on
because the application is still a monolith, but dividing code into modules should
enable developers to maintain modules separately and therefore work independently.
This works somewhat, but dependencies between modules still mean that changes
by one developer will mess up another developer’s work in another module, so the
developers still have to coordinate. Distributed Architecture (38) enables running
modules on separate computers, but now modules are even more complex because
of remote interfaces, and distributed modules still cannot be developed independ‐
ently. Dependencies between modules, even districted ones, still decrease developer
productivity.
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One popular modular architecture is the four-layer architecture that divides a tradi‐
tional IT application into four stacked horizontal layers: view, application model,
domain model, and persistence (see Figure 4-2).

Figure 4-2. Four-layer application architecture

Although the four-layer architecture separates the concerns into layers, the layers
are still developed and deployed as a monolith. The architecture can be distributed
by making the layers into tiers deployed on separate computers—making the archi‐
tecture somewhat client/server. Either way, the layers or tiers are still developed
by a coordinated team and deployed as a set. Each layer or tier must be designed
to depend on others, and if one layer stops working, the entire application stops
working. The developers of each layer must coordinate with those developing others,
limiting developer productivity.

Another popular modular architecture is the service-oriented architecture (SOA)
that wrappers legacy systems as services with Service APIs (70) that can then be
orchestrated to form higher-capability services (see Figure 4-3).

Each SOA service and orchestration is a module, and they can be distributed. The
services are supposed to align with the business and abstract business functionality
such that a business analyst would recognize the Service APIs, making services reusa‐
ble and allowing for multiple implementations of the same Service API by different
service providers. In reality, each service’s API often does little to abstract the existing
functionality of the existing system it wrappers. The orchestration and other service
clients are written for services aligned with the business, so an increasingly complex
enterprise service bus (ESB) is required between the services and their consumers
to make them work together. This SOA approach increases developer productivity
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by making existing systems-of-record (SORs) easier to integrate into newer systems-
of-engagement (SoEs), but it does little to enable developers to work independently
because of the dependencies between the services and within the ESB.

Figure 4-3. SOA stack architecture

Developers need an approach that treats modules as first-class objects, not just as
sections in a code base or even as services that can be reused individually, but as
units that can be developed, built, and executed fairly independently of one another.
We need a way for development teams to create modules that can be developed
independently.

Therefore,

Architect the application as a set of Microservices. Each Microservice is an inde‐
pendent business capability with its own data, developed by a separate team, and
deployed in a separate process. The Microservices work together to provide the
application’s full set of business functionality.

A Microservice exposes its functionality as a Service API, implements its functionality
statelessly, and persists its state in a data store, as shown in Figure 4-4.
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Figure 4-4. Microservice

Microservices implement the domain-specific logic of a complete application. There
are multiple kinds of Microservices, such as Dispatchers, Domain Microservices, and
Adapter Microservices. Figure 4-5 shows a complete application with these three types
of Microservices.

Figure 4-5. Microservices application

Each Microservice is implemented with a Cloud-Native Architecture (58), which
makes it stateless and replicable with a Service API and an implementation that
delegates to Backend Services.

Once James Lewis and Martin Fowler popularized the concept in “Microservices”
in 2014 and Sam Newman expanded upon it in Building Microservices (2015), the
Microservices approach has become a de facto standard for developing large-scale
business applications.
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Microservices make modularity practical and solve the challenges of monolithic and
distributed applications:

• Each Microservice implements a single domain capability.•
• Microservices are composable, combining their capabilities to implement an•

application’s complex domain functionality.
• Microservices communicate via Service APIs and events.•
• Each Microservice has an interface that defines the domain tasks the Microservice•

performs, which clients use to interact with Microservices and which Microser‐
vices use to interact with one another.

• Each Microservice can be developed by a separate team, enabling teams to work•
independently.

• Each team develops a Microservice as a separate code base, ensuring modularity.•
• Each code base can be built and deployed separately, enabling each team to work•

at its own pace.
• The Microservices in an application can all run on a single computer or dis‐•

tributed across multiple computers.
• Each Microservice runs in its own process that can scale and fail independently of•

other Microservices.
• Each Microservice can own and manage its own data, keeping it separate from the•

data used by other Microservices.

The Microservices Architecture has become so popular precisely because the combi‐
nation of these points and the benefits obtained from following them is so powerful.

Figure 4-6 shows the structure of a more complete Microservices application. It shows
four Domain Microservices that implement domain logic, each with its own data store,
and Dispatchers for three different types of clients: a web application, a mobile app,
and the API for a CLI or partner application developed independently.

At its simplest, a Microservices Architecture has four layers:

Clients
These enable users and other applications to interact with the Microservices appli‐
cation. They are applications separate from the Microservices application that
typically run outside of the cloud. Typical client types include web clients that
run in a web browser, mobile clients that run on mobile devices, and thick-client
tools such as CLIs and other applications that interface with the Microservices
application.
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Dispatchers
These are Microservices that run on the server as part of the Microservices appli‐
cation and act as interfaces between the clients and the rest of the application.
Each client type—such as web clients, mobile clients, and thick clients—has its
own customized Dispatcher on the server.

Domain services
These are the heart of the Microservices application, implementing functional
requirements as business entities with business logic. Although shown as a single
layer for simplicity, the domain layer is often a hierarchy and web of interconnec‐
ted services.

Domain state
These are databases, storage, automation engines, and legacy systems that persist
the state for domain services and help perform their functionality.

Figure 4-6. Microservices Architecture application

Figure 4-7 shows how the Microservices Architecture actually incorporates the layers
from the four-layer architecture that was shown in Figure 4-2.
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Figure 4-7. Four layers in Microservices Architecture

Rather than each layer being global to the entire application, each Microservice con‐
tains its own layers:

• Each client is an individual view.•
• Each Dispatcher contains the application model for its individual client.•
• Each Domain Microservice contains the domain model for its functional require‐•

ments, as well as the persistence logic for accessing its domain state.

The four-layer architecture is alive and well within the Microservices Architecture,
but like Microservices themselves, the four layers are broken into smaller modules.
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Microservices can be thought of as “service orientation done right”. Whereas services
in an SOA focus on wrapping existing systems, each Microservice focuses on model‐
ing a complete domain capability. A Microservice and its clients are designed with a
common Service API so that no ESB is needed to integrate them.

By incorporating a single, complete set of domain functionality within a Service
API, packaged to be deployed separately, Microservices more than any previous archi‐
tecture finally achieve the nirvana of distributed code modules that developers can
create and maintain independently.

The quickest, easiest way to develop functionality is to write a whole bunch of code
structured as a Big Ball of Mud. Developing and following the architecture for a
Modular Monolith takes more effort, a Distributed Architecture takes even more effort,
and a Microservices Architecture takes more effort still. The benefit of this effort is
increased developer productivity and runtime efficiency, but it requires an initial and
ongoing investment.

Develop a Microservices Architecture by following several best practices:

• Split an application’s domain functions into individual Domain Microservices•
(130), each a domain capability. This designs Microservices that model a business
domain and enables each to be developed by a separate, small team.

• Existing external or internal components may implement functionality needed•
in the application but may not implement a good Microservice interface. Use
an Adapter Microservice (135) to incorporate an existing component into a
Microservices Architecture.

• Application clients need the functionality in a network of Microservices but need•
a single connection point. Add a Dispatcher (140) that implements the API the
client expects by delegating to the Microservices on the backend.

• Each development team will develop their Microservice as an Application Package•
(62). With many languages to choose from, separate teams may want to use
different languages. Polyglot Development (146) enables each team to implement
their Microservice using their language or technology of choice.

• Each stateless Microservice persists its state in its own Self-Managed Data Store•
(154).

• A Service Orchestrator (160) combines the functionality in multiple Microser‐•
vices into a unified higher-level Microservice.
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It is often difficult to determine how to model a complex domain of functionality as a
collaborating set of Microservices. Microservice Design (Chapter 5) explains a process
for discovering and scoping individual Microservices within a domain.

Microservices can be called explicitly via their Service APIs, and they can also interact
in an Event-Driven Architecture (Chapter 6) that choreographs the interactions
between Microservices rather than explicitly orchestrating the interactions.

Example
As an example of a Microservices Architecture, let’s consider how an airline would
architect their application. Then let’s review Netflix’s transition to the cloud and
Microservices.

Airline application
An airline’s application built with a Microservices Architecture has components
specific to its functionality, as shown in Figure 4-8.

Figure 4-8. Airline Microservices Architecture

This application architecture is the standard Microservices Architecture, customized
for the airline. The application includes the following:

Dispatchers
The application supports three client types: the airline’s website, its mobile app,
and an API for other travel websites and apps.
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Domain services
It models its business functionality as four domain services: booking flights,
performing lookups in timetables, calculating fares, and allocating seats.

Domain state
Each service has its own persistence, and calculating fares uses a rules engine
rather than a database.

In a similar fashion, any domain functionality can be modeled as a Microservices
Architecture.

Netflix
One of the earliest and most vocal success stories of applying a Microservices
Architecture has been Netflix, the video DVD and streaming company. The story
of Netflix’s transformation to the cloud is detailed in the following interviews and
presentations:

• “Adrian Cockcroft on Architecture for the Cloud” and “Migrating to Cloud•
Native with Microservices” by Adrian Cockcroft, Director of Architecture for the
Cloud Systems team at Netflix

• “How Netflix Leverages Multiple Regions to Increase Availability: An Active-•
Active Case Study” and “Microservices at Netflix Scale: Principles, Tradeoffs &
Lessons Learned” by Ruslan Meshenberg, Director of Platform Engineering at
Netflix

• “Completing the Netflix Cloud Migration”•

When Netflix started moving to the cloud—specifically Amazon Web Services
(AWS)—in 2009, they first moved non-customer-facing tasks like batch jobs for
encoding movies and storing logging data because it gave them much greater data
center capacity than they had on-premises. By early 2010, Netflix foresaw that they
needed to move all of their IT operations to the cloud, including the customer-facing
functions, because the business was growing so fast that Netflix would run out of on
premises capacity by the end of 2010. Even with this move, many existing SoRs would
remain on premises for the time being because they weren’t growing as rapidly and
would be difficult to move.

When Netflix moved their software from traditional IT to the cloud, they couldn’t
just lift and shift the existing systems as is; they had to rearchitect the software. A
major portion of that effort was transforming a single giant monolithic Java WAR
application into Microservices. The transition took seven years from 2009 to 2016,
and as a result Netflix runs on Microservices. Netflix’s development methodology
evolved from a single release plan were all developers created a single monolithic
application to multiple release plans for parts of the application so that they could
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be developed and deployed independently. This required structuring functionality
as fine-grained services with REST interfaces, where each small group of developers
worked on only one service. These services always ran as at least three replicas in
three different availability zones so that the application kept running even when a
zone went down. Each service had its own database, which meant that the database
couldn’t manage transactions across multiple sets of data because the data wasn’t in
the same database, which forces the application-level code to handle transactions,
joins, and consistency. The billing service was the last one transitioned to the cloud
and Microservices because it is stateful, transactional, and has to work properly.

To manage all of this, Netflix developed a suite of utilities to augment the AWS
platform’s capabilities, especially its EC2 virtual machine service, and manage these
running application services. Netflix started releasing these utilities in 2012 as the
Netflix Open Source Software Center (Netflix OSS). The software center included
utilities like Eureka for service discovery, the Zuul gateway service, and Ribbon
for client-side load balancing. When Kubernetes was released for container orches‐
tration, it incorporated many Netflix OSS capabilities, such as service discovery,
managed ingress, and server-side load balancing. The Netflix OSS utilities eventually
became known as a service mesh and lead to infrastructure layer libraries like Istio,
Consul, Kuma, Open Service Mesh (OSM), and AWS App Mesh.

Domain Microservice
(aka Decompose by Business Capability (Microservices Patterns, 2018))

You are architecting a new application using Microservices (119) or refactoring an
existing application into Microservices. Users have functional requirements for an
application, expecting it to provide certain business functionality. Despite the hype
associated with the Microservices Architecture, it’s not entirely clear from the basic
Microservices principles exactly what the Microservices should do.

How should a set of Microservices in an architecture provide the business func‐
tionality for an application?

SOA makes traditional IT applications more modular by dividing an application
into services, each of which defines a Service API (70) between the service provider
and service consumer. SOA often derived services by wrapping existing systems to
give them service interfaces. This resulted in services that were often just a thin
veneer over the existing system, with a service interface that did little to abstract
the existing system’s implementation. The service was not designed to implement
particular business capabilities or user requirements but rather to expose whatever
capability the existing system already provided. This process created SOA services
that varied greatly in level of abstraction, granularity, and often didn’t even agree on
the data formats being exchanged. These mismatches often required an ESB to make
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service consumers and providers fit together. Even when multiple services provide
the same functionality, their interfaces might differ enough that consumers require an
ESB to use them interchangeably.

An application with a Microservices Architecture should be composed of Microser‐
vices that represent individual business capabilities that align with how the business
actually works, regardless of the capabilities implemented by existing systems. They
should be designed to work together with compatible APIs and data models so that
they don’t require an ESB for integration.

When designing services from scratch, it is not necessarily obvious what the individ‐
ual business capabilities are. An application can be designed as a few course-grained
Microservices or many fine-grained Microservices. This is easier to determine when
wrapping existing systems: a good start is to design a Microservice for each existing
system (even if that doesn’t model the domain as an individual business capability).
When designing Microservices from scratch, how big is too big or too small?

It’s not enough to know what a Microservice is. A team also needs to figure out how to
model an application and its business domain as a set of Microservices.

Therefore,

Develop each business capability as a Domain Microservice that implements a
Service API for that capability and encapsulates all the business functionality that
implements the capability.

A Domain Microservice encapsulates a single business capability. It implements the
business functionality for that capability and, like any Microservice, exposes it as a
Service API. If the business functionality has state, the Microservice persists it in one
or more data stores. Figure 4-9 shows the structure.

Build an entire application by composing together all of its individual business
capabilities, each implemented as a Domain Microservice. Domain Microservices form
the business functionality layer in a Microservices Architecture.

Figure 4-10 shows a complete application with the Domain Microservices highlighted.
All of the application’s business functionality is divided into this set of Domain
Microservices.

Domain Microservice | 131



Figure 4-9. Domain Microservice

Figure 4-10. Domain Microservices in Microservices Architecture
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The scope of a Domain Microservice is defined by the business transactions it per‐
forms and the data they use. Here are some guidelines for deciding how broad a
Domain Microservice should be:

Manages a business transaction and its data
Scope a Microservice’s responsibilities broadly enough that it can perform entire
business transactions and do so using only the data that it manages. When
a business transaction is split across multiple Microservices, the design risks
that one Microservice might succeed while another fails, resulting in a business
transactions where the “transaction” is performed but only partially. If both
Microservices manage their own data, one database might get updated while
another does not, resulting in inconsistent data. Avoid dependency chaining—
where one Microservice calls another that calls another—to perform a business
transaction. If two parts of a business transaction are performed by two different
Microservices, especially a transaction that updates data, consider merging the
Microservices into a larger one. There are, however, situations where this is not
possible. Eventual consistency, compensating transaction, or other techniques
might need to be part of the solution in these cases.

Avoid tightly coupled microservices
Scope a Microservice’s responsibilities broadly enough that it can perform its
functionality without having to be tightly coupled to other Microservices. For
example, if one Microservice produces the data that another Microservice pro‐
cesses, a client will always have to use them together. Encapsulate both functions
in a single Microservice that produces the data and also processes it, simplifying
the Service API and the client.

Dividing business functionality into a set of individual business capabilities will make
it easier to maintain and reuse.

Like building blocks, Domain Microservices that perform individual business capabili‐
ties can easily be composed into complex applications.

Designing Domain Microservices around business capabilities is rather difficult when
the individual business capabilities are difficult to identify. Fundamentally, designing
the functionality in Domain Microservices is much like designing the domain objects
in a Domain Model (Patterns of Enterprise Application Architecture, 2002) in object-
oriented programming.

Model Around the Domain (183) explains how to design Domain Microservices by
applying domain-driven design (DDD) techniques and Event Storming (189). How
a business operates can be assessed both statically and dynamically. The static view
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models the structure of a business domain as a set of Aggregates (211) augmented
with Domain Services (222). The dynamic view models the interactions within a
business domain, which can be discovered through Event Storming and captured as
Domain Events (193).

While a Microservices Architecture is comprised primarily of Domain Microservices
that are designed from scratch and implement their own behavior, the architecture
can also use Adapter Microservices (135) to incorporate existing systems.

To compose a complex business capability from multiple Domain Microservices,
implement it as a Service Orchestrator (160).

Since each Domain Microservice runs in its own process, Polyglot Development (146)
enables developers to implement each Domain Microservice in a different language or
technology.

Each Domain Microservice that has state should persist it in one or more Self-
Managed Data Stores (154).

Building a single new Domain Microservice is a great way to introduce a team to how
to Start Small (492) by starting with Microservices. It is often best to do this with a
new business area rather than trying to start off the bat with refactoring a monolith.
There is a lot of learning that a team needs to do to become productive with Micro‐
service development, and starting with a simple, green-field Domain Microservice is
often the best way to do that.

Example
As an example, let’s return to the airline application from the Microservice (119)
pattern, shown again in Figure 4-11.

This application architecture divides the airline’s business functionality into four
Domain Microservices:

Book flights
Overall functionality enabling the user to purchase an airline ticket.

Lookup timetable
Functionality to find the flights available between the desired cities on specified
dates.

Calculate fare
Functionality to determine how much to charge for the selected flight. It doesn’t
persist state in a data store; it delegates to a rules engine.

Allocate seats
Functionality to either assign a seat to the passenger or enable the passenger to
select a seat.

134 | Chapter 4: Microservices Architecture



Domain Microservices like these can implement all of the business functionality for an
airline.

Figure 4-11. Airline Microservices Architecture

Adapter Microservice
You are architecting a new application using Microservices (119) or refactoring an
existing application into Microservices. The application needs to incorporate existing
sources of functionality.

How can the application take advantage of existing functionality without aban‐
doning the Microservices approach?

The ideal way to incorporate existing functionality into a Microservices Architecture
is to reimplement the existing code as Microservices, for example by Strangling the
Monolith (514). Then the existing functionality will be reimplemented to be cloud
native, to run well in the cloud, and will run better and be easier to maintain as
Microservices. However, this approach assumes that the current development team
controls the code for the existing functionality and has the time and expertise to
modernize it.

There are several reasons why an existing system may need to be reused as is without
modifying it:

• The existing functionality may be hosted by a third party that develops and•
maintains it, such as a software-as-a-service (SaaS) web service.
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• The existing functionality is the only API that can access specific enterprise data•
sources.

• The existing functionality is a legacy application that is too difficult to modify or•
replace.

• The existing functionality is a legacy application that a future phase will eventu‐•
ally replace by reimplementing it as Microservices, but for now it needs to be
reused as is.

The new application with the Microservices Architecture needs to incorporate the
functionality of the existing system without modifying the existing code.

Therefore,

Add an existing system to a Microservices Architecture by developing an Adapter
Microservice with a Service API like the other Microservices in the application and
an implementation that delegates to the existing functionality.

As shown in Figure 4-12, an Adapter Microservice encapsulates an existing, external
system of record (SoR) as a capability.

Figure 4-12. Adapter Microservice

The SoR capability in the Microservice is like a business capability that is limited
to the behavior in the SoR. The Microservice implements adapter functionality for
accessing the SoR remotely. Like any Microservice, an Adapter Microservice exposes
its functionality as a Service API (70), yet this API is limited by the SoR’s existing
interface. New clients, such as other Microservices in the new application, use the
Adapter Microservice’s Service API, while existing clients can continue to use the SoR’s
interface directly as is.

An Adapter Microservice converts the interface of an existing SoR much like an
adapter object. In object-oriented programming, sometimes an existing object has
one interface but an existing client expects a different interface. Rather than modify
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either of the existing sets of code, a developer can employ the Adapter pattern
(Design Patterns, 1994) converting the interface that an existing object has into the
interface that a client expects. The Microservice also acts as a Proxy (Design Patterns,
1994), providing local access within the Microservices Architecture to the remote
SoR outside of the architecture.

An Adapter Microservice works similarly to an endpoint in an ESB that converts
one service’s interface into another. The SOA approach for incorporating existing
functionality is to implement an ESB that converts the APIs the service consumers
wish the functionality had into the interfaces the functionality actually has. The ESB
can also transform the existing functionality’s data models into ones that work better
for the consumer. ESBs are often implemented using products like IBM App Connect
Enterprise (ACE), Mule ESB from MuleSoft, or open source solutions like Apache
Camel.

Whereas a Domain Microservice (130) is an evolution of an SOA service that models
a complete business capability, the implementation of an Adapter Microservice is
more like that of a traditional SOA service that attempts to wrap a service interface
around an existing SoR:

• The service implements little to no domain logic; it reuses domain logic already•
implemented in the SoR. If additional domain logic is needed, it should be
implemented in Domain Microservices that use an Adapter Microservice to access
the external SoR through a well-designed service interface.

• The service’s functionality is based on the SoR’s functionality. The SoR’s scope•
of functionality and how it enables functionality to be accessed dictates how the
service and the service’s API will work.

• The service predominately contains integration logic, implemented as adapter•
functionality focused on how to connect to the SoR over the network and how to
work with the SoR’s interface, functionality that SOAs often delegate to an ESB.
The adapter functionality may include data validation logic.

Even if the existing SoR already has a perfectly good Service API, such as a well-
designed SaaS web service, incorporating an Adapter Microservice improves the
maintainability of the Microservices Architecture:

• The adapter isolates the application from the external SoR’s existing API, protect‐•
ing the application when the API provider changes the API or discontinues
support for it.

• The adapter can transform the external SoR’s data model into data formats that•
better fit the Microservices Architecture. For example, if the external SoR’s data
format is a COBOL copybook or binary, the adapter should transform the data
into a more modern format like JSON or XML.
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• One or more Adapter Microservices can perform significant API translation. The•
adapter can add the existing SoR’s functionality into the Microservices Archi‐
tecture by reusing only a subset of the existing functionality, or reusing that
functionality by splitting it into multiple Microservices that each reuse a subset, or
combining the functionality from multiple SoRs into a single Microservice.

• The existing system’s quality of service (QoS) model may not meet the QoS needs•
of the Microservices. For example, the adapter can improve performance using
caching or improve the reliability of unreliable functionality by adding retry
behavior.

An Adapter Microservice can be a temporary step, reusing an existing SoR until it
can be replaced. The existing SoR can be reimplemented as a Domain Microservice
with the same Service API as the adapter so that it can replace the adapter. If the
existing SoR is better modeled as multiple Domain Microservices, coordinate them
with a Service Orchestrator that implements the same Service API as the adapter so
that the orchestrator can replace the adapter.

If the existing SoR provides callbacks to its clients, the Adapter Microservice can
handle those callbacks and even expose corresponding callbacks to its clients as part
of its Service API.

Some ESB products have evolved to support Microservices, including IBM App Con‐
nect Enterprise (ACE) and Camel. This way, a Microservices Architecture can use an
existing ESB. Furthermore, the architecture can replace the ESB by splitting apart the
ESB into independent APIs and implementing each API as an Adapter Microservice.

Adapter Microservices enable a Microservices Architecture to incorporate existing
SoRs as Microservices without changing the SoRs.

However, the Adapter Microservice’s functionality is constrained by the existing SoR’s
functionality. While the adapter makes the SoR more reusable, the SoR is no more
scalable than it ever was, and it continues to be a single point of failure in an
otherwise highly available architecture. An SoR with an interface that exposes its
implementation leads to a Microservice whose API may lack the abstraction of a
service interface.

Having developed an Adapter Microservice, an application will also need Domain
Microservices and Service Orchestrators (160) that reuse the adapter’s functionality.

The SoR that an Adapter Microservice integrates is typically a monolith with a Modu‐
lar Monolith (29) architecture or even a Big Ball of Mud (22) lack of architecture.
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Since each Adapter Microservice runs in its own process, Polyglot Development
(146) enables developers to implement each Adapter Microservice class in a different
language or technology.

Whereas an Adapter Microservice adapts an existing external system, a Dispatcher
(140) adapts multiple Microservices into a single Public API (38) expected by an
external client.

Example
As an example, let’s return to the ecommerce application from the Cloud Application
(6) pattern, shown again in Figure 4-13.

Figure 4-13. Ecommerce application with Adapter Microservices

This application is composed of five Microservices. Three of them are Domain Micro‐
services: Catalog, Customers, and Ordering. They implement ecommerce business
functionality and persist their data in data stores.

The other two, Inventory and Payments, are Adapter Microservices. They wrapper
existing SoRs, Warehouse System of Record and Payment Processing, respectively.
They don’t implement business functionality like the Domain Microservices do; they
delegate to the SoRs for the business functionality the SoRs already implement. The
SoRs may have fairly ugly interfaces that are difficult to reuse—they may even require
screen scraping!—and antiquated data formats, but the Adapter Microservices have
clean Service APIs that fit easily into the rest of the Microservices Architecture. The
adapters may improve on the SoR’s nonfunctional quality of service, such as adding
security features like enforcing authorization and encrypting data.

The architecture may eventually replace one of the SoRs by modernizing its function‐
ality as Microservices, which would also replace the corresponding Adapter Microser‐
vice. The adapter can be replaced by a single Domain Microservice with the same API,
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or by a set of Domain Microservices coordinated by a Service Orchestrator with the
same API.

Dispatcher
(aka Backend for Frontend (Building Microservices, 2015), API Gateway (Microser‐
vices Patterns, 2018), Aggregator)

You are architecting a new application using Microservices (119) or refactoring an
existing application into Microservices. You notice a mismatch between the Domain
Microservices (130) that implement the business functionality and client GUIs that
enable people to use the functionality.

How can a client access a Microservices application through a channel-specific
service interface when the business functionality is spread across an evolving set
of domain-specific APIs?

When the server application is a monolith running in traditional IT, it’s easy for a
client to connect. The application is a single process running statically, so the client
connects through a single endpoint or set of endpoints that never changes. The
application has just one client for all of the users, or different clients work the same so
that they can all use the same endpoint.

Cloud-native applications, especially Microservices applications, are more complex to
connect to. Cloud applications (6) are much more dynamic, with components repli‐
cated horizontally, running in IP addresses assigned dynamically. In a Microservices
Architecture, not only is each Microservice replicated independently (see Replicable
Application (88)), but multiple Microservices break one set of business functionality
into multiple Service APIs (70). Meanwhile, the easiest way for a client to interface
with a server is still through a single API, not multiple Microservices’ APIs.

An application’s set of Microservices and their APIs change over time as the applica‐
tion evolves. A single Microservice might be refactored into two, and two Microser‐
vices that are highly dependent on each other might be merged into one. Once
a Microservice has been implemented, although ideally its API shouldn’t change
because then its clients have to change as well, realistically an API may evolve over
time as its responsibilities change.

All of this evolution in the Microservices on the server cause havoc for the clients.
When the Microservices APIs change, the clients must be reimplemented to use the
new APIs. Deploying new versions of Microservices, although complex, is relatively
easy compared to updating all of the devices that have the clients installed. It would
be much easier if the clients didn’t have to change just because the set of Microservices
and their APIs changed.
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Different types of clients—web browsers, mobile apps, CLIs—may need different
APIs even when they offer the same business functionality. Likewise, clients for use
by an enterprise’s employees may require different APIs from the clients for the
enterprise’s customers because the client applications for these different types of users
offer access to different functionality. Yet all of these different clients with their
differing API needs should not duplicate business functionality. These clients should
still access the same set of Microservices so that they all consistently offer the same
business functionality.

We need a way for various types of clients to have easy, stable access to a dynamic and
evolving set of microservices on the server.

Therefore,

Build a Dispatcher (aka a Backend for Frontend, or BFF) that provides a unified
API for clients to use the functionality in multiple Microservices. Implement
different Dispatchers for different types of clients, each with an API customized to
what that client type needs.

As shown in Figure 4-14, a Dispatcher exposes a single API for an external client and
implements that API by delegating to Microservices in the architecture.

Figure 4-14. Dispatcher

The Dispatcher provides a single endpoint for the client to access the application,
one with an API the provides the exact functionality the client requires. The client
does not need to know how that functionality is distributed across the Microservices.
Rather, the Dispatcher encapsulates the logic for how the functionality is distributed,
delegates to those Microservices to invoke the functionality, and consolidates it into
the API the Dispatcher provides for the client. Each type of client requiring a different
API uses a different Dispatcher.

Building Microservices (2015) introduced this pattern as Backends for Frontends:

Rather than have a general-purpose API backend, instead you have one backend per
user experience—or a Backend For Frontend (BFF). Conceptually, you should think of
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the user-facing application as being two components—a client-side application living
outside your perimeter, and a server-side component (the BFF) inside your perimeter.

Dispatchers form the client-facing layer in a Microservices Architecture.

Figure 4-15 shows a complete application with the Dispatchers highlighted. The
clients all access the same application but through different Dispatchers. The archi‐
tecture includes a Dispatcher implementation for each client type, such as a web
Dispatcher for web apps, a mobile Dispatcher for mobile apps, and an API Dispatcher
for partner/CLI apps.

Figure 4-15. Dispatchers in Microservices Architecture

The Dispatchers define the external APIs that clients outside the cloud use to access
the Microservices application hosted in the cloud. A Dispatcher’s API is a Service
API (70), typically implemented as a web service, that makes the entire Microservice
application look like a single API. Each client type—web browser, mobile app, CLI,
etc.—should have its own Dispatcher. Each Dispatcher should have an API that’s
customized for its client, so each client type gets exactly the API it needs to use the
server application.
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Dispatchers encapsulate a Microservices Architecture, which protects clients from
changes in the architecture and protects the architecture from changes in the clients.
As the architecture evolves—refactoring behavior, adding new Microservice classes,
removing obsolete ones—and the Microservices’ APIs change, the Dispatchers’ imple‐
mentations will evolve as well and absorb the changes, leaving the clients unaffected.
Likewise, when a client needs new functionality or different data formats, its Dis‐
patcher’s API and its implementation evolve accordingly, yet as long as the Microser‐
vices still provide all of the functionality that the client needs, the Microservices
Architecture is unaffected by changes in the client.

A Dispatcher should not contain any domain logic. Because each Dispatcher is specific
to a single client type, any domain logic implemented in Dispatchers won’t be shared
across all client types. The Dispatcher delegates to Microservices in the architecture,
based on which ones implement the functionality needed to implement the Dispatch‐
er’s API. Each Microservice can be any type, such as a Domain Microservice, Adapter
Microservice, or Service Orchestrator.

A Dispatcher’s internal implementation performs routing and conversion between the
API the client wants to consume and the APIs the Microservices provide, such as the
following:

Orchestration
It can orchestrate several calls to Microservices to implement a single client
action.

Translation
It can translate the results of a Microservice into a channel-specific representation
that more cleanly maps to needs of the user experience of that client type.

Filtering
It can alter the results from the Microservices to remove items or details that are
not needed by a particular client type.

The scope of a Dispatcher is usually straightforward: its API is customized for the
client type it supports. Its implementation is usually pretty simple, implementing the
API to route requests to Microservices as necessary.

This pattern is a key part of building the range of Client Applications (406) that can
be used to access a cloud application with a Microservices Architecture. Client types
such as Mobile Application (430) and Single Page Application (421) introduce unique
translation or filtering requirements that often necessitate the use of a different
Dispatcher for each client type. For example, in a mobile application, don’t send a
large set of data to the device that may have limited bandwidth; only send what
it can display on its small screen. Likewise, a single page application may walk
the user through a multi-screen wizard that requires orchestrating separate Domain
Microservices on the server.
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Because a Dispatcher’s API is customized for its client type, the client and its Dis‐
patcher tend to evolve together. Because of this coupling of their functionality, the
same development team should implement both the client and its Dispatcher and
modify them together, as shown in Figure 4-16.

Figure 4-16. Dispatcher teams

Since both the client and Dispatcher are implemented by the same development team,
the team often finds it convenient to implement them both in the same language.
For example, the developers building a single page application using JavaScript will
want to develop their Dispatcher services using Node.js on the server side. Likewise,
Java developers building a native application for Android may want to develop their
Dispatcher services with Java.

A Dispatcher is often a convenient place to cache data for the client. When Domain
Microservices produce a large data set as a result, it may not make sense to return
all of that data to the client at once, since bandwidth to the client may be limited,
the client’s storage may be limited, and its screen may be able to display only a
small amount of data. Instead, the Dispatcher can make one call to the Domain
Microservices to get the result, cache the data set, and enable the client to request it a
page at a time.

A Dispatcher organizes all of the APIs in all of the Microservices in an architecture
into a single API that does exactly what a client needs, encapsulating the application
for the client and simplifying the client’s interface with the application.

A Dispatcher can only provide functionality that the Microservices provide. When
a client requires additional functionality, it will need to be implemented in the
Microservices Architecture, and the changes will ripple through the Microservices, the
Dispatchers, and the clients.
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A Dispatcher is a type of Microservice but a specialized one that works differently.
A Dispatcher is stateless and replicable, but its simple routing implementation rarely
becomes a performance bottleneck that requires replication. Its Service API isn’t based
on a domain capability but more so on the requests that a client wants to make of
the application. Dispatchers don’t delegate to other Dispatchers, and microservices
don’t delegate to Dispatchers; Dispatchers are a single layer in the architecture, the
architecture’s client-facing layer.

A Dispatcher adapts multiple Microservices within an architecture, whereas an
Adapter Microservice adapts a single system of record outside of the architecture.

A Dispatcher’s API is often a Public API (443) expected by the client.

Since each Dispatcher runs in its own process, Polyglot Development (146) enables
developers to implement each Dispatcher class in a different language.

Example
Let’s examine how Dispatchers can help implement a banking application. Let’s sup‐
pose we are part of a bank that has two disparate sets of customers (common with
retail banks today). The first set of customers wants a simple web application to
allow them to check their balances, do electronic transfers, and schedule payments.
The second set wants all of those things but also wants to be able to trade equities,
manage their investment portfolio, and explore new investment opportunities. What’s
more, the second set is more comfortable with technology and wants a richly featured
mobile application they can use on their phones or tablets.

These two types of customers will need two different user interfaces, but those UIs
can share the same Microservices functionality. Since the set of features that the
second type of customer wants is a superset of the features needed by the first type of
customer, one might assume that the two UXs can simply use the same Microservices
directly. That may be true in some cases, but the odds are that the mobile app team
wants to display the information on Accounts differently than the web app team does.
They likely do not need to display all of the same information at the same time,
nor do they necessarily need to show the same amount of information. Thus, the
mobile team would need their own Dispatcher to filter information from the (shared)
Accounts Microservice. This approach is shown in Figure 4-17.

The application needs two user interfaces, one for simple banking that runs in a
web browser and another for stock trading that runs on a mobile device. These two
UIs require two Dispatchers, each of which provides its UI with exactly the API and
behavior it needs, and in doing so encapsulates the Microservices from the client. The
Dispatcher for the banking UI encapsulates functionality in the bank account Micro‐
services. The Dispatcher for the stock trading UI encapsulates functionality in the

Dispatcher | 145



equity Microservices and, because the stock trading UI enables banking functionality
as well, also delegates to the bank account Microservices.

Figure 4-17. Banking UIs and Dispatchers

Polyglot Development
You are architecting a new application using Microservices (119) or refactoring an
existing application into Microservices. The languages used to implement programs
for traditional IT can also be used for cloud, but other languages should possibly be
considered as well.

What computer language(s) should be used for implementing Microservices?

Computer science has created many different computer languages and keeps creating
new ones. How should an IT department select the best language for implementing
its Microservices?

For decades, an enterprise IT department would develop all of the programs in
the same language. A science and engineering department would implement all of
its programs in FORTRAN. The data processing department used COBOL. More
recently, some huge companies wrote everything in Java, whereas others exclusively
used PowerBuilder, Visual Basic, or C#. Most developers specialize in one particular
language—typically the one that the department they work in uses the most.

This uniformity with computer languages was the result of several drivers:

Monolithic applications
When the code for an entire application runs in a single process, all of it is
usually written in the same language. Even in a Modular Monolith (29), all of the
modules are usually implemented in the same language.
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Interoperability
Applications are easier to connect together if they’re written in the same lan‐
guage. If a COBOL program uses COBOL copybooks, other programs that work
with it will need to be written in COBOL as well. Universal support for SQL
databases gave some language flexibility, but then interconnectivity technologies
like sockets and CORBA limited language choice once again.

Platforms and frameworks
The runtime environment supported by the enterprise’s operations team could
dictate language or technology. When the preferred deployment platform is Java
EE application servers, all programs need to be written in Java. In a department
that prefers the advantages of .NET, Java programs are useless; they need to be
written in languages like C#. Android OS supports Java programs well, while iOS
lends itself to Swift. Web browsers are optimized to run JavaScript, which also
implements UX platforms like Angular and React.

IT department staffing
When all of the projects in a department write programs in the same language,
staff can more easily move between projects. The department hires only new staff
who have skills with that language.

Cloud computing and Microservices can run programs written in any language that
runs on commodity hardware. An enterprise IT department or product development
team accustomed to writing all of its programs in the same language may be tempted,
by design or out of habit, to also develop all of the Microservices in an architecture in
the same language.

With Microservices, language uniformity isn’t required. The traits of a Microservices
Architecture provide isolation between Microservices, and these same traits support
developing Microservices in different languages, even in the same application. Cloud-
Native Architecture (58) practices enable distributed modules to be written in differ‐
ent languages. Not only does each Microservice run in its own process, but it is
bundled as an Application Package (62) with its own runtime, enabling each package
to embed a different runtime. Microservices communicate through Service APIs (70),
typically through a universal protocol like REST, enabling components written in
different languages to interoperate nevertheless. Backend Services (106) separate the
stateful shared resources from the stateless Microservices, so a Microservice and its
Backend Service can be implemented in different languages. Cloud computing’s domi‐
nant operating systems—Linux and Microsoft Windows—support hosting runtimes
for a variety of languages.
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Therefore,

Microservices Architecture supports Polyglot Development, where each Microser‐
vice can be implemented in a different computer language, allowing each team to
select the language they use to develop their Microservice.

In a Microservices Architecture, each Microservice doesn’t have to be implemented
in a different language, but it can be. Figure 4-18 shows a standard example of
an application with a Microservices Architecture, including an application client,
a Dispatcher, and three Microservices. The Microservices are implemented in three
different languages: Node.js, Java, and Go.

Figure 4-18. Polyglot Development

A monolithic application runs in a single process, and so it must be implemented
in a single language. Polyglot Development takes advantage of the fact that each Micro‐
service runs in its own process and so can be implemented in a different language.
Multiple Microservices can still be implemented in the same language, and usually are.
However, Microservices that work very differently may be easier to implement and
may work better by using different languages and technologies.

Polyglot Development offers a key opportunity: for each Microservice, figure out how
to implement it, and choose the best language for the task. Suit the solution to the
problem. If a Microservice needs to model a business domain with procedural rules
and complex interactions, a good approach is to Model Around the Domain (183)
and implement the Microservice using an object-oriented programming language
such as Java. Alternatively, if a Microservice needs to make classification decisions or
determine best choices from incomplete data, implementing machine learning with
Python may work well. If a Microservice needs to manipulate complex mathematical
rules or construct models of physical activities, implementing functional program‐
ming with Scala or even JavaScript may be a good way to go. An additional feature
of Polyglot Development with Microservices is that when implementing a service that
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needs the capability of specialized hardware (such as a GPU) you can implement that
Microservice (and that Microservice only) in a language that supports that hardware.
That means that you only deploy this Microservice onto hardware that has that
specialization.

A single application with a Microservices Architecture could use some or all of these
approaches, plus additional approaches such as scripting or Event-Driven Architec‐
ture (Chapter 6), as shown in Figure 4-19.

Figure 4-19. Event-driven program with polyglot components

Each component in this architecture is implemented in a different language. The web
client is implemented in JavaScript, the Dispatcher is written in Node.js, the Account
Microservice is written in Java, and the Account Fraud Protection Microservice is
implemented using Python.

In a Microservices Architecture, individual Microservices must communicate using
network transports (e.g., HTTP) and payload data formats (e.g., JSON, Google
Protocol Buffers) that support cross-language operations. This means that it does
not matter which language each Microservice is implemented in, since that detail is
abstracted away by the protocol and encoding.

Polyglot Development can be used not only to implement each solution with the best
language but also to enable each development team to program with the language
they prefer. If some developers are more highly skilled with one language and some
another, rather than putting them all together and making them fight it out, put them
in separate teams and let those develop separate Microservices. Each should choose
a Microservice they can implement well using the language they prefer. If a solution
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requires a language that the developers lack experience using, put those who want to
learn that language on a team and provide them with education to learn the language.

Polyglot Development makes sharing libraries more difficult because two Microservices
implemented in different languages cannot always share the same library. That is
actually an advantage, however, because a library shared between two Microservices
creates a dependency between the Microservices that can make them difficult to
maintain and evolve independently. Imagine if the development team maintaining
one Microservice wants to make changes to the library, and the other team doesn’t
want those changes. Each Microservice should develop its own libraries in its own
preferred language. The Microservice’s application package will bundle the Microser‐
vice program with its own copies of the libraries it requires.

An enterprise should provide guidance to its development teams on which languages
are supported in order to prevent a development team from selecting a language that
the enterprise cannot support. The enterprise must ensure it has a sufficient pool of
developers to create not only Microservices in a supported language but also ones
who will be able to maintain it over the long run and that have sufficient tooling,
frameworks, and technical support to be successful with the enterprise’s approved
technologies. Without this governance, a team may select a niche or outlier language
that may become difficult for the enterprise to support long term.

The Microservices Architecture enables Polyglot Development, which enables each
team to implement its Microservice in the language that works best, regardless of the
languages used to implement other Microservices.

An enterprise needs to govern the selection of languages to avoid developing a
Microservice that lacks sufficient staff to maintain it.

Each kind of Microservice can be polyglot, whether it is a Domain Microservice (130),
Adapter Microservice (135), Dispatcher (140), or Service Orchestrator (160). Some
may even be implemented not with a programming language but with a technology
such as a process engine, rules engine, machine learning engine, etc.

A Microservice can be implemented in almost any computer language, but to run well
in a Microservices Architecture or hosted on the cloud, the language should be one
that supports delivering a program in an Application Package (62). A language whose
programs are difficult to package may be able to implement a Microservice adequately,
but that Microservice will be difficult to deploy and manage.

Polyglot applies not only to language and technology but to persistence as well.
Stateless Microservices with data store it in Self-Managed Data Stores (154). When
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the data stores are Cloud Databases (311), Polyglot Persistence (374) enables each
development team to select the database type that works best for its Microservice.

Examples
In the following sections, we’ll discuss a common multilanguage architecture, as well
as the different language selections that are more common for each component.

Polyglot Node.js Dispatchers with Java Microservices
A common implementation strategy for a Microservices application is to implement
the Dispatchers in Node.js and the Microservices (domain, adapter, and orchestrators)
in Java, as shown in Figure 4-20.

Figure 4-20. Polyglot Node.js Dispatchers with Java Microservices

A Dispatcher must support web clients, a task Node.js does well. A popular web
application can have thousands of web clients, so the Dispatcher must scale well. A
web client spends most of its time waiting on its user rather than performing work, so
the Dispatcher shouldn’t block waiting as well. A web client communicates via HTTP
request and response. When a web client does submit a request, it will be input that is
fairly simple to process even if it’s for a task that’s complex to perform.

Node.js is optimized for these web client requirements. It works well with HTTP.
It runs single-threaded, dispatching each HTTP request quickly to a callback and
moving on to the next. This way, it can scale well without managing multithreading
or blocking threads. A complex request would bog down the Node.js process and
block all of its web clients, but a Node.js Dispatcher can be designed to dispatch its
request to another process to perform the task.

A Domain Microservice performs business functionality and attaches to external
resources—capabilities that Java does well. Java is good at performing CPU-intensive
computations and data processing. Its multithreaded process can scale efficiently to
perform tasks for multiple concurrent clients. Its adapters make it easy to connect to
Backend Services (106) such as databases (JDBC), messaging systems (JMS), and any
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other external resource that supports a connector (JCA). Its HTTP interface (JAX-RS
and JAX-WS) maps requests to concurrent threads.

When in doubt about which language to use for which parts of a Microservices
Architecture, Node.js Dispatchers with Java Microservices is a good approach to con‐
sider.

Dispatchers
There is usually a one-to-one correspondence between Dispatchers and clients: web
clients connect through corresponding web Dispatchers, mobile clients via mobile
Dispatchers, etc. Each dispatcher runs in a separate process, so they can employ Poly‐
glot Development and each Dispatcher can be implemented in a different language.

Each Dispatcher should be implemented by a single team, and the same team should
develop the client and its corresponding Dispatcher together. The team can choose
to implement the Dispatcher in the language that makes the most sense, and each
team can develop their Dispatcher in a different language. Often a team chooses to
implement the Dispatcher in the same language as the client so that the team can use
the same skills implementing both parts, and the two parts can interoperate more
easily. Different clients often require or lend themselves to different languages, which
helps guide the language to use for the Dispatcher:

Web browser
As we discuss in Single-Page Application (421), SPAs are often implemented
using JavaScript, so implement the Dispatcher using Node.js (since Node is
the server-side version of JavaScript; the “.js” in the name Node.js stands for
JavaScript).

Apple iOS
The client is often implemented in Swift, so implement the Dispatcher using Swift
as well.

Google Android
The client is usually implemented in Java, so also use Java to implement the
Dispatcher.

The Dispatcher can be implemented in a completely different language from the
client, but that is often less convenient, especially since the Dispatcher and client
should usually be written by the same team.

These examples notwithstanding, as noted in the previous example, Node.js is typi‐
cally a good language to use for implementing Dispatchers. Dispatchers need to handle
HTTP web service I/O efficiently to support large numbers of concurrent clients, and
Node.js scales well for network I/O.
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Domain microservices
Each Domain Microservice runs in a separate process, so they can employ Polyglot
Development—with each Microservice implemented in a different language. Domain
Microservices often use databases and other Backend Services. When they do, each can
choose its own database service.

Each Domain Microservice should be implemented by a single team. The team should
choose a language that works well for implementing the Microservice’s solution, and
a database service that works well for how the data will be stored and used, and the
language should work well with the database. Each team makes these decisions for
their Microservice independently of what other teams choose for their Microservices.

The team can use the best language for their domain and the problem they are
solving. For example, when implementing Domain Microservices, if the business logic
requires business calculations to be multithreaded and use CPU efficiently, Java is a
good choice. Java is also good for Microservices that need to connect to external leg‐
acy systems, since Java includes adapter technologies to facilitate these connections.
On the other hand, if it’s a heavily network-based application, Go Lang could be a
good option instead.

Adapter microservices
Adapter Microservices are much like Domain Microservices, in that each runs in a
separate process and so can be implemented in a separate language and each is
developed by a separate team that can use the language it chooses. Even more
than Domain Microservices, Adapter Microservices focus exclusively on connecting to
external legacy systems.

Java is typically a good language to use for implementing Adapter Microservices
because of the multithreaded connectors it provides. Another choice for implementa‐
tion of an Adapter Microservice is to use a commercial API Gateway (such as WebMe‐
thods, Apigee, API Connect, or many others), which will often provide low-code or
no-code options for common protocols and SaaS systems.

Again, since each Adapter Microservice is implemented independently, some can be
implemented in Java while others are implemented using one gateway technology and
others use another gateway technology. How one is implemented does not limit how
the others can be implemented.
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Self-Managed Data Stores
(aka Database per Service (Microservices Patterns, 2018))

You are architecting a new application using Microservices (119) or refactoring an
existing application into Microservices. A Microservice, such as a Domain Microser‐
vice (130) or Service Orchestrator (160), implements its Service API (70) using
domain data.

How does a microservice store its state?

Microservices are Stateless Applications (80), so they don’t store state internally. Yet
most applications have state, and Domain Microservices implement business function‐
ality that has data. If the Microservice doesn’t store its business data internally, it has
to persist that data somewhere.

A traditional IT application persists its data in external storage, typically a database.
The entire application is connected to the database and has access to its data. A
Modular Monolith (29) is a single application and so typically has one database that
all of the modules share. When multiple modules need to use the same data, it’s
simple for them to all access it in the shared storage. The application is developed
by a single team, or multiple teams working together, so it is easy to coordinate as
necessary to make the data persistence work for all of the code that needs to use it.

For developers of traditional IT applications, the modules in an application sharing
data in a database is a natural extension of the way multiple applications in an
enterprise share a database of record (DoR). A complex enterprise includes several
mission-critical applications and at least one DoR, typically a relational database, that
is shared by many of those applications. DoRs become huge, containing any data
that any application needs. Any one application typically uses only a small subset
of the data in the DoR. Yet all of the data in the DoR is used by some application,
and typically a useful set of data is used by multiple applications. The applications
share the data, often integrating the applications as a Shared Database (Enterprise
Integration Patterns, 2003) that passes data when one application stores it and another
application reads it.

Any shared database—especially one as widely shared as a DoR—creates couplings
and dependencies between the applications. The database schema cannot evolve
because changes often necessitate updating all of the applications that use the data.
When one application messes up some shared data, that in turn messes up all of
the other applications that use the data. Even worse, if one application deletes a
record that other applications still need, those application’s actions can become flawed
because of the missing data. Enterprises sometimes develop policies that prohibit
deleting data from DoRs. The reasoning behind these policies is that enterprises find
it cost-prohibitive and difficult to be sure that none of their various applications
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is using the data—because data that has no use in their current applications might
become useful again in the future. Databases become bloated with data that hasn’t
been used for years but looks as valid as any other data in the DoR.

Not only is the data difficult to maintain, but the applications become difficult to
maintain as well. Each application must store its data in a certain format, not because
that format is natural for the application but because the DoR uses that format.
That format must have been useful to some application at one time but possibly
has become a poor fit for all of the applications that still use it. Meanwhile, if an
application has data to store that is not part of the DoR’s schema, the application may
be out of luck and must throw away the data.

DoRs also become performance bottlenecks. When too many applications access a
shared resource, performance limitations in that shared resource slow down all of
the applications using it. When one application locks a row or table, any other appli‐
cation that needs the data must block and wait. Many DoRs run in older database
servers that can support only a very limited number of connections, limiting the
applications that can use the data. Enterprises develop data access strategies with
read-only copies of the DoR to enable greater access. As described in Command
Query Responsibility Separation (382), applications must queue their data updates
so that one processing application can perform the updates in batches that optimize
limited connections and avoid locking conflicts. The enterprise effectively reinvents
the capabilities a database is supposed to perform in the first place.

Compared to a DoR shared by many applications, storage shared by modules in a sin‐
gle application seems much simpler. Yet just as storage shared between applications
creates a coupling between them that makes it more difficult for those applications
to evolve independently—storage shared between modules in an application creates a
similar dependency that limits evolving the modules.

Microservices should be independent, able to be developed by different teams, and
able to be deployed separately. If they share the same data storage, that creates a
dependency between them. Teams developing multiple Microservices must coordinate
how their independent sets of code will store and share common data. To evolve the
data format, all of the Microservices must be updated to use the new data format. To
deploy the Microservices, whichever is deployed first must allocate the storage, then
the others must be sure not to create duplicate storage but rather to share the storage
that has already been created by whichever Microservice came first. The shared
storage can become a performance bottleneck as differing Microservices compete to
read and update its data, and likewise is a single point of failure.

Microservices need to remain independent even when they share the same data.
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Therefore,

Each Microservice with state should include a Self-Managed Data Store to store
that state, storage the Microservice manages that is accessed exclusively by the
Microservice. Each different Microservice has its own data store, while replicas of
the same Microservice share the same data store.

Two Microservices do not share the same Self-Managed Data Store; they each have
their own, as shown in Figure 4-21.

Figure 4-21. Self-Managed Data Stores

The two Microservices will be developed independently. Separate data storage enables
each team to develop its Microservice’s storage independently as well. If the Micro‐
services shared the same storage, that would be a dependency that would require
coordinating the development and maintenance of the Microservices.

When one Microservice needs to use another Microservice’s data, it delegates the
work to the other Microservice via its Service API, enabling the other Microservice to
perform the work using the data in its own storage. This way, no matter how many
different Microservices may use a set of data indirectly, the only Microservice with
direct access to the data is the single Microservice that owns the data.

When a Microservice is a Replicable Application (88), its replicas all share the same
Self-Managed Data Store.

As shown in Figure 4-22, multiple replicas of a Microservice share a single data store.
Replicas are interchangeable, which is possible only if they share the same data. Each
replica could try to store its data in its own data store, but then each replica would
have different data. Replicas with different data behave differently from one another
and therefore are not interchangeable.
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Figure 4-22. Microservice replicas share a data store

If multiple Microservices all depend on the same shared database, such as a DoR, they
run into the same problem of shared dependencies that occurs with multiple tradi‐
tional IT applications depending on the same DoR. Any Microservice that updates the
data incorrectly will corrupt it for all other Microservices. If one Microservice creates a
lock on the data, it blocks all of the other Microservices. If one Microservice wants to
change the data format, all of the other Microservices also need to be updated to use
the new format. The Microservices may seem to run independently, but by sharing the
same storage, they all share a performance bottleneck and single point of failure.

Microservices avoid these dependencies by not sharing storage. One will not fail
because another has corrupted its data, nor will it be blocked by another using
its data. One Microservice can change the way it stores its data without impacting
the other Microservices. One Microservice using its data heavily will not affect the
performance of other Microservices, and storage becoming temporarily unavailable
affects only one Microservice’s replicas, not all other Microservices as well.

Each Microservice managing its own data store helps keep the Microservices inde‐
pendent. Each Microservice is the only code using its storage, so it controls its data
and the data’s lifecycle, and can evolve its format.

Data is no longer centralized in one massive DoR; it is dispersed among multiple
specialized databases. Multiple data stores require additional management, such as to
back up the data.

Each Self-Managed Data Store should be a Cloud Database (311), which works better
than a Microservice using block or file storage to store data. The database should be
a Replicated Database (316) so that it will scale the way the replicable Microservice
scales, and an Application Database (328) whose functionality favors making the
data simple to access rather than optimizing storage. A data store that supports the
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data formats that are incorporated into the Microservice’s interface will make the
Microservice simpler to implement with less conversion of the data. Likewise, a data
store that enables the Microservice to access the data—find it, update it—the way the
Microservice’s interface works will also simplify the Microservice’s implementation.

Not only can Microservices have separate storage, they can each have different kinds
of storage. With Polyglot Persistence (374), each set of data is stored in the type of
storage that is best suited to that data.

Example
To illustrate a Microservices Architecture with multiple Microservices that each has its
own Self-Managed Data Store, let’s consider an airline reservation system. An airline
reservations application may have a Microservice that enables the passenger to select
seats on their flights. The seat selection Microservice doesn’t read the seating chart for
each flight and try to interpret it. Instead, a flights Microservice manages each flight,
including its seats, and the seat selector delegates to the flight manager. Some flights
might be on different airlines. Each one encapsulates rules for when to show a seat
as taken, not only because it’s been assigned to another passenger but also perhaps
because this passenger is told that that a premium seat is unavailable, or that a block
of seats is unavailable because it’s being held so that a family can sit together. The
flight Microservice manages its seats, and the seat selection Microservice enables the
passenger to choose one they’re allowed to reserve and records that selection in its
storage.

The Microservices Architecture for this airline reservations application might divide
it into several Microservices, as shown in Figure 4-23.

To make a reservation, a user logs in as a particular customer, purchases a ticket, and
selects a seat. The Microservices Architecture is composed of several Microservices to
manage this functionality, such as Customer Management, Ticketing, Flights, and
Seat Selector.

These multiple Microservices could all share one massive data store containing several
sets of data. Instead, each Microservice includes its own Self-Managed Data Store, so
the solution includes multiple data stores, each of which is specialized for the data
that one Microservice needs and manages:

• Customer Management has its own Customer Data, a data store containing data•
about Customers. Only the Customer Management Microservice needs access to
this Customers data.

• Ticketing has its own Ticketing Data, a data store containing Tickets data.•
Ticketing is the only Microservice with access to the Tickets data.
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• The Flights Microservice has its own data store for Flight Data that contains•
two sets of data, Flights and Seating Charts, and only it can access that data.
The Flights and Seating Charts data are encapsulated together in a single
data store because part of Flights’ responsibilities is to keep the Flights and
Seating Charts data consistent with referential integrity so that every flight has
exactly one seating chart and each seating chart is part of an existing flight’s data.

• The Seat Selector Microservice is pure functionality, so it doesn’t have any•
additional data and therefore doesn’t have its own data store.

Figure 4-23. Self-Managed Data Stores in an airline reservations application

The Seat Selector Microservice enables the user to assign a seat by using Flights
to find an available seat and using Ticketing to assign that seat to the customer.
The Seat Selector Microservice never accesses any of that data directly; it does so
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indirectly by invoking behavior in the other Flights and Ticketing Microservices
that do have direct access to the data. Flights and Ticketing are each responsible
for keeping the data they manage consistent; there is no way for Seat Selector to
make the data inconsistent.

Service Orchestrator
You are architecting a new application using Microservices (119) or refactoring an
existing application into Microservices. Each Microservice has a Service API (70) and
its own Self-Managed Data Store (154).

How does a Microservice perform a complex task, one that is performed in multi‐
ple steps?

A task in a Service API can be a complex task, one that a Microservice performs
in multiple steps. Buying a concert ticket requires reserving the seat, processing
the payment, and delivering the entry pass. Planning how to ship a product means
finding the customer’s shipping address, the product’s dimensions and weight, and
the warehouses’ inventories. A bank transfer requires updating both accounts.

This seems like a simple problem to solve. Each step in a complex task should be
a simpler task in a Microservice. The complex Microservice implements its task to
invoke the simpler tasks, combining multiple simpler tasks into the single complex
task. For the complex task to be successful, all of the simpler tasks must complete
successfully. The trick is for the Microservice to perform the complex task such that it
performs either all of the steps or none of them.

This problem might be simpler if all of the tasks were implemented in a single Micro‐
service, but that’s not the way Microservices work. Because each Microservice imple‐
ments a single business capability, diverse subtasks may be distributed across multiple
Microservices, so the complex Microservice invokes multiple simpler Microservices.

Likewise, it might be easier if the Microservices all shared a single database, but that’s
also not the way Microservices work. Each Microservice is stateless and persists its
state in a Self-Managed Data Store such as a database. Each Microservice manages its
own data and the persistence of that data. For one Microservice to access another’s
data, the one must delegate to the other and use its tasks that have access to the data.
So a complex task incorporates not only multiple Microservices but also their multiple
databases.

Applications in traditional IT solve this problem using transactions. Data is kept
immediately consistent; updates to the data transition it from one consistent state
to another by making a complete set of changes. A simple transaction runs in a
single resource and ensures that a set of updates either all commit at once or none
of them do. A distributed transaction runs across multiple resources and ensures that
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the updates in all of the resources either commit together simultaneously or not at
all. Transactions provide insurance that a set of changes is complete and the data is
always consistent, but they have overhead that hurts performance, which can seem
unnecessary when the majority of transactions never roll back. When an update in a
transaction does fail, rolling back the transaction can be complex and may itself fail,
requiring manual intervention to clean up the resources.

The cloud is rather inhospitable for performing transactions. When necessary, the
cloud stops and restarts servers, making them unreliable by traditional IT standards.
Cloud workloads are mobile and elastic, and as the platform relocates applications
and resources, it stops and restarts them. To compensate for this, tasks need to be
interruptible units of work that can start over and retry. Depending on transactions
constantly rolling back successfully makes an application less reliable, not more so. To
support retry, an application updates each resource separately.

Updating each resource separately fits naturally with performing a complex task as
separate simple tasks in separate Microservices with separate storage. Yet a complex
Microservice needs to perform these simple tasks as a unit, all of them or none of
them.

Therefore,

Design a Microservice that performs complex tasks as a Service Orchestrator that
coordinates tasks in multiple simpler Microservices.

A Service Orchestrator is a kind of Microservice that performs a complex task as a unit,
implementing the complex task by composing it out of simpler tasks. See Figure 4-24.

Figure 4-24. Service Orchestrator
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A Service Orchestrator provides tasks in a Service API that are complex, requiring
multiple steps to perform. A Service Orchestrator may consist of both complex tasks
and simple tasks, and a task may combine other complex tasks as well as simple tasks.

A Service Orchestrator typically implements business functionality, making it a type of
Domain Microservice (130). Because the Service Orchestrator does not implement the
same business capability as the simpler Microservices it orchestrates, it itself is not a
Composite object (Design Patterns, 1994) because it does not have the same Service
API as the simpler Microservices. The Service API hides the complex implementation,
so a client doesn’t know whether the Microservice with the business capability is
implemented as a Service Orchestrator or as a more atomic Domain Microservice.
A Microservice that is first implemented as an atomic Domain Microservice could
become more complex and evolve into a Service Orchestrator with the same Service
API and its clients would remain unchanged. A Service Orchestrator may require its
own storage, such as for data it collects from and passes to its simpler tasks, so that
an orchestration that is interrupted—such as when the cloud platform relocates it to a
different server—can restart where it left off.

By performing a complex task as a unit of work, a Service Orchestrator ensures that
either all of the steps are performed or none of them are. To accomplish this on the
cloud without transactions, a Service Orchestrator can be implemented with any of
three design strategies:

Orchestration microservice
The Service Orchestrator implements each step in a complex task by invoking
another Microservice task.

Consolidated microservice
Combine several Microservices into a Service Orchestrator that can perform all of
the steps itself.

Business process
Implement the Service Orchestrator as a business process that implements each
step by invoking a task in another finer-grained Microservice.

Let’s examine each of these strategies in more detail.

A Service Orchestrator implemented as an orchestration Microservice simply calls
other Microservices. For this to work, the complex task and all of its subtasks must
be either read-only or idempotent. Read-only means that the task does not change
the state of any of the systems it interacts with, nor does it otherwise create any
side effects. An idempotent task produces an effect the first time it is run but
when repeated produces no additional effects. Because the tasks are read-only or
idempotent, if the entire orchestration Microservice fails or restarts, it can simply
start over and try again. The orchestration Microservice’s client gets an error instead
of a valid result, so it retries the complex task. If a subtask fails or is interrupted,
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the orchestration Microservice retries it. In this way, the entire read-only complex
task—including its subtasks—can be retried until it succeeds.

As shown in Figure 4-25, the orchestration Microservice implements the steps in its
complex task to invoke tasks in other Microservices. Each of those Microservices uses
its own database or other Backend Services to implement its task.

Figure 4-25. Orchestration microservice

The key is that the tasks are all read-only—the state of the databases after the tasks
is the same as before the tasks. If one of the subtasks updated its database, but
then the complex task failed to complete, it could restart, but then it would perform
the successful subtask again and update its database twice, corrupting the data. A
read-only task can be run repeatedly if needed without corrupting the data.

For example, an ecommerce task to prepare a product shipment needs to retrieve
the customer’s shipping address, the product’s dimensions and weight, and the ware‐
house’s inventory. All of these tasks are read-only, so preparing a shipment can be
implemented as an orchestration Microservice.

An orchestration Microservice is a perfectly valid strategy but has the limitation that it
works only with read-only data or idempotent tasks.

A Service Orchestrator implemented as a consolidated Microservice implements the
complex task and all of its subtasks as one Microservice with one persistent Backend
Service, such as a database. This requires either designing a single Microservice from
the beginning or refactoring existing code to merge several Microservices into a single
Microservice. When merging Microservices, the refactoring merges their data stores as
well.
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As shown in Figure 4-26, the consolidated Microservice implements multiple tasks,
and they all share the same database. The Service API exposes the complex task and
can also expose any of the subtasks clients need to invoke individually.

Figure 4-26. Consolidated microservice

The key is that all tasks update data in a single database via a single session that
doesn’t commit until the end of the complex task. The complex task not only invokes
the subtasks but also combines all of their database updates into a single commit in
their shared database. This way, if the Microservice fails or restarts during its complex
task, including any of its subtasks, the database never commits and its session rolls
back. The Microservice can then restart and retry as if this were the first attempt.

For example, a banking task that transfers funds from one account to another must
make sure that the updates occur in both accounts. To implement this service orches‐
tration as a consolidated Microservice, the complex transfer task and its simpler
deposit and withdrawal tasks must all be implemented in a single Microservice, and
the data for all of the bank accounts must all be stored in the same database.

A consolidated Microservice is a perfectly valid strategy, but it has the limitation that
it must be designed from the beginning as a single Microservice, or that multiple
existing Microservices can be merged without breaking their clients. The need for
this refactoring is caused by defining too many Microservices, each with a single
business capability that is too narrowly focused, such that multiple Microservices must
collaborate to perform a complex task. Instead, design the Microservice around a
single business capability broad enough to perform complex tasks in the domain.

A Service Orchestrator implemented as a business process implements its complex
task to run in a business process management (BPM) engine. The business process
performs each step in the complex task by invoking a Microservice task.
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As shown in Figure 4-27, the business process consists of multiple steps, each of
which invokes a task in another Microservice, where each Microservice uses its own
database or other Backend Services to implement its task. The subtasks aren’t required
to be read-only or idempotent; each one can read and change the data in its database.
The BPM engine can expose the business process as a Service API, or a Microservice
can front the business process to expose it as a Service API, kind of an Adapter
Microservice (135).

Figure 4-27. Business process

The key is that the business process can perform each step as its own de facto
transaction. It invokes each subtask individually; each Microservice with a subtask
thinks the business process is just any client invoking the task. The business process
can keep track of which steps have completed successfully and can retry ones that fail.
If the business process fails or restarts, it doesn’t repeat the steps that have already
completed; it starts again where it was before. The business process might even restart
on a different computer and perform the rest of its steps there. A business process
can even reverse steps that have already completed by performing compensating
transactions—tasks that do the opposite of another task, usually implemented in the
same Microservice as a pair in which the compensating task performs the reverse
of the task. The business process works much like an orchestration Microservice.
It ensures that each step is performed successfully only once, so the steps can be
read-write.

For example, the ecommerce application probably has separate Microservices for
capabilities like customer management, product management, warehouse inventory,
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shipping logistics, and payment processing. A complex task such as checkout (pur‐
chasing the items in a shopping cart) requires coordinating across simpler tasks
in multiple Microservices. Combining all of those specialized Microservices into one
generalized consolidated Microservice would be a poor Microservices Architecture.
Instead, the Service Orchestrator will need to implement the checkout task as a
business process.

A business process is a perfectly valid strategy, but it requires a BPM engine. The
Microservice is implemented in the BPM engine or to delegate to the BPM engine.

When choosing among these three strategies (Orchestration Microservice, Consoli‐
dation, and Business Process), you need to consider which is most appropriate for
your situation, looking at the pros and cons of each. The issue is that that once you
make this choice you will often need to follow it for other similar situations in your
design. Thus, you will make a choice at least for a subsystem of several Microservices,
if not for an entire system. An architect should consider each for the system as a
whole and choose the most appropriate. For instance, you may choose to select an
orchestration Microservice as your first choice and then later in a refactoring, change
the architecture to use a BPM engine.

Designing a Microservice as a Service Orchestrator enables it to perform complex
tasks by combining other complex and simple tasks. Three design strategies handle
read-only tasks, multiple tasks in a single Microservice, and multiple Microservices
with read-write tasks.

A Service Orchestrator’s design is more complex than traditional IT code that simply
performs multiple tasks. The later coding strategy either depends on transaction
management, which the cloud does not provide, or worse yet just assumes that
multiple updates will always succeed. Code from a traditional IT application migrated
to the cloud may run successfully, but without a transaction manager, it will not
handle failures correctly.

Compared to simple Microservices, Service Orchestrators can be more complex to
design. Not only do they implement complex tasks, but those tasks need to be
designed with a lot more care to ensure that they complete as a unit.

The design for a Service Orchestrator must be aware of the Self-Managed Data Stores
involved in performing the task. As long as only a single data store is involved, or the
data stores are used read-only, the orchestrator’s design can be simplified. A complex
task that uses multiple read-write data stores needs to be implemented as a business
process.
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To perform short-running tasks, relational databases rely heavily on locking data with
read, write, and update locks. Locking in relational databases can cause performance
bottlenecks and deadlocks as one session locks data that other sessions also require.
Many Cloud Databases (311) strive to avoid these performance problems by incorpo‐
rating designs that avoid and minimize locking.

A business process Service Orchestrator can be hosted in a BPM engine, or can
remotely invoke a process hosted in a BPM engine. When invoking the BPM engine
remotely, the Service Orchestrator is an Adapter Microservice (135) that reuses the
business functionality residing in the BPM engine.

A Service Orchestrator orchestrates multiple tasks following a predefined plan. Alter‐
natively, multiple tasks can be choreographed dynamically in an Event-Driven Archi‐
tecture (Chapter 6).

Since each Service Orchestrator runs in its own process, Polyglot Development (146)
enables developers to implement each Service Orchestrator class in a different lan‐
guage or technology.

Examples
As examples of the Service Orchestrator pattern, let’s examine how an ecommerce
website could implement displaying a product’s availability using a Service Orchestra‐
tor with the Orchestration Microservice strategy and managing a purchase using a
Service Orchestrator with the business process strategy. In between, we’ll look at a
business process orchestrator implemented using an enterprise integration router.

Ecommerce: Displaying availability
When displaying information about a product for sale, a shopping website might
display not only details about the product but also whether the product is currently
in stock. In a Microservices Architecture, there are may be one Microservice for
managing the catalog of products that the website sells and another Microservice
for managing the inventory currently stored in the warehouse and which of those
items have already been sold to other customers. The website needs a single shopping
Microservice that can provide all the details needed to display a product, including
whether the warehouse has any available. The ecommerce application can be archi‐
tected like the solution shown in Figure 4-28.
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Figure 4-28. Displaying availability

The architecture contains the following Microservices:

Shopping

A Service Orchestrator whose display product task is composed of two simpler
tasks, product details and inventory

Product Catalog

A Domain Microservice that implements the product details task

Product Inventory

An Adapter Microservice that implements the inventory task by delegating to the
Warehouse Management system of record

Neither simpler Microservice implements all of the functionality that the ecommerce
application requires to display the product completely. The Shopping Microservice
doesn’t implement all of that functionality either, but it acts like it does, delegating to
the simpler Microservices and combining their functionality into the complete set that
the ecommerce application requires.

The Shopping Microservice is a Service Orchestrator. Because the product details
and inventory tasks are read-only, as is the display product task that delegates
to them, the Shopping Microservice can be implemented using the Orchestration
Microservice strategy. Simple code calls one task, then the other, then combines their
data for display.

This basic MVP of a Shopping Microservice could be expanded to provide additional
information, such as pricing in multiple currencies, dynamically fluctuating prices,
delivery time estimates, and product ratings. The Service Orchestrator probably would
not implement any of this functionality, instead delegating to other Microservices that
specialize in these functions.

168 | Chapter 4: Microservices Architecture



Enterprise integration router
When integrating multiple applications, the routing in the middle may function as
a service orchestration. When the application interfaces are more or less service
oriented and a router combines them with its own interface that is more-or-less
service oriented, that’s a Service Orchestrator.

For example, a Composed Message Processor (Enterprise Integration Patterns, 2003)
uses a Splitter (Enterprise Integration Patterns, 2003) to split a composite message
into a series of individual messages, routes each individual message to its destination,
and then uses an Aggregator (Enterprise Integration Patterns, 2003) to combine
the results from the destinations into a single result for the original message. This
process is a kind of orchestration, but it may or may not be service orchestration.
With enterprise messaging, the messages can be very data-oriented (see Document
Message (Enterprise Integration Patterns, 2003)), simply passing data between appli‐
cations, which is not a good example of service orchestration. When the destinations’
interfaces are Service APIs or kind of like Service APIs, the message is a request (see
Command Message (Enterprise Integration Patterns, 2003)) that specifies what the
destination should do but not how to do it, which typically means that the original
composite message is also a request. Likewise, the result message for a request is
typically a response. A request split into smaller requests and responses merged into
an overall response fits the Request-Reply (Enterprise Integration Patterns, 2003)
pattern, which makes the router a Service Orchestrator.

Figure 4-29 shows the solution for a Composed Message Processor that acts as a
Service Orchestrator.

Figure 4-29. Composed Message Processor

The router has a Service API with a validate task whose request takes a New Order
as a parameter and whose reply returns a Validated Order. That is the Service Orches‐
trator’s API. The router orchestrates two services, Widget Service and Gadget Service,
which also have Service APIs. The router combines their specialized capabilities into a
general capability, which is service orchestration.
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Another enterprise integration routing pattern, Process Manager (Enterprise Integra‐
tion Patterns, 2003), is an even more sophisticated message router that performs a
predefined set of steps that can vary based on intermediate results. If it uses service
interfaces, this is a Service Orchestrator, specifically the business process strategy. The
business process strategy is often implemented in a business process engine, as shown
in the next example.

Ecommerce: Managing a purchase
When processing a purchase, a shopping website needs to make sure to perform two
main tasks: ship the product to the customer and gather payment from the customer.
Both tasks are part of a single logical business transaction—either both succeed or
neither should be performed. If one fails, it needs to be retried until it succeeds. If
one succeeds but the other cannot be completed successfully, the first one needs to
be undone, often by executing a compensating transaction that performs the opposite
steps. The compensating transaction must complete successfully.

A good approach to perform multiple tasks as a single transaction is to implement
the transaction as a business process, which will make the Service Orchestrator one
implemented using the business process strategy. Figure 4-30 shows a Microservices
Architecture with a business process (using the notation for UML activity diagrams)
for performing the checkout task in a Purchasing service.

The checkout task performs four activities: receive order, fill order, send
invoice, and close order. The Purchasing service implements the fill order
activity by delegating to another Microservice, Order Fulfillment and its ship
product task. Likewise, it implements its send invoice activity by delegating to
Payment Processing’s charge credit card task.

This design makes Purchasing a Service Orchestrator, a Microservice that composes
its functionality from the simpler Order Fulfillment and Payment Processing
Microservices. Purchasing is implemented as a business process so that it can run in a
BPM engine, which can run fill order and send invoice concurrently and ensure
that both complete successfully before running close order. If the BPM engine can‐
not complete one of the concurrent activities successfully and the other concurrent
activity has already completed successfully, the BPM engine will automatically run
a compensating transaction to reverse the successful one, often by performing the
successful activity in reverse. The Purchasing service is much easier to implement
because it can delegate all of this process management to the BPM engine, which is
specialized to perform business processes reliably for any application.
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Figure 4-30. Purchasing business process

A Service Orchestrator can delegate to other Service Orchestrators. For example,
checkout delegates to ship product and charge credit card. While charge
credit card may be an atomic task—either it succeeds or it fails—the ship product
task may be multistep and so Order Fulfillment may also be implemented as a
Service Orchestrator. In this case, the Purchasing service, a Service Orchestrator, dele‐
gates to Order Fulfillment, which is implemented as another Service Orchestrator.

Conclusion: Wrapping up Microservices Architecture
This chapter discussed how best to build applications that work the way the cloud
does: small components that can be replicated easily and distributed across infra‐
structure. A Microservices Architecture combines Cloud-Native Architecture (58)
with a Distributed Architecture (38), forming an architecture that makes an appli‐
cation work the way the cloud does. The architecture structures an application to
model a domain as a set of Microservices (119), components that collaborate through
well-defined Service API (70) interfaces, where each implements a single complete
business capability, manages its own data, is deployed independently, runs independ‐
ently, and can be developed by a small development team working independently
from others.
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The main type of Microservice is a Domain Microservice (130), what tutorials usually
mean when they say “microservice.” A Domain Microservice, like a domain object
in object-oriented programming, models and simulates a single business capability
in an enterprise’s business domain. Each Domain Microservice is designed to work
the way the domain does, to model and automate the business’s rules and logic.
This kind of Microservice offers the most design flexibility: the business analysts and
programmers have complete control to subdivide the domain into what they consider
individual capabilities, scope them, assign them meaningful functionality, and invent
an interface for clients to access that functionality.

Another type of Microservice is an Adapter Microservice (135), a type that is less
commonly documented but very necessary for a Microservices Architecture that
needs to work with existing systems. An Adapter Microservice wraps an existing sys‐
tem of record or other external SaaS service and includes it as another Microservice
in the architecture. Whereas a development team has extensive flexibility to design
a Domain Microservice as a complete business capability, an Adapter Microservice’s
scope of functionality is dictated by that of the existing system it wraps. To the extent
the existing system’s functionality isn’t a very good business capability or its interface
isn’t very service oriented, the Adapter Microservice won’t be either. The Microservice
can try to transform the existing system’s capability, functions, and data structures
into a well-designed Microservice, but the Microservice may be little more than a thin
veneer around an artifact from a bygone era that nevertheless is still running in the
enterprise, providing important business functionality. That functionality should be
incorporated into the Microservices Architecture as is, and an Adapter Microservice
provides the means to do so.

A Service Orchestrator (160) is a composite type of Microservice that composes
its functionality from other Microservices, mostly Domain Microservices, as well as
Adapter Microservices and even other service orchestrators. Each Microservice has
a different interface that abstracts the functionality it provides. By combining the
functionality of other Microservices, a Service Orchestrator makes bigger parts from
smaller ones. A Service Orchestrator is in a position to manage transactions, bring‐
ing transactionality to Microservices Architecture and Cloud-Native Architecture
that otherwise doesn’t support transactions. Service orchestrators lend themselves to
implementing business processes and are often implemented as business processes in
business process management (BPM) engines.

A special kind of Microservice is the Dispatcher (140). It forms the interface between
a client outside the Microservices Architecture and the ever-changing multitude
of Microservices inside the architecture. Whereas other types of Microservices are
composable and appear throughout the architecture, Dispatchers are positioned only
on the edge of the architecture with the external clients. Microservices delegate to
other Microservices, but not to Dispatchers, and Dispatchers do not delegate to other
Dispatchers, only to Microservices. Yet like other Microservices, each Dispatcher can
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be developed independently, deployed independently, and replicated and distributed
across multiple computers. It fails independently and can even scale independently,
although Dispatchers rarely need to. Whereas Microservices provide business capabil‐
ities, a Dispatcher provides whatever functionality its client requires, modeling the
client’s capabilities more than the domain’s and implementing its functionality using
whatever Microservices it needs in the architecture. Like other Microservices, each
Dispatcher can be developed by a separate team, one that usually also develops the
client that uses the Dispatcher.

A Microservices Architecture supports Polyglot Development (146), where each
development team gets to choose the language for implementing their Microservice.
Monolithic applications are usually monolingual, meaning that all of the code has
to be written in one language because it all runs in the monolith’s runtime. Because
each Microservice runs in its own process with its own Application Package (62)
runtime, separate Microservices can have different runtimes and can therefore be
written in different languages. Typical cloud-friendly languages for implementing
Microservices include Node.js, Java, Go (aka Golang), and Python. Dispatchers are
often implemented in Node.js, and Domain Microservices are often implemented in
Java. Adapter Microservices may be implemented in Java to use the Java Connector
Architecture (JCA) but can also be implemented using enterprise service bus (ESB)
technologies for adapting service interfaces onto legacy systems of record. Service
orchestrators can be implemented in programming code but can sometimes be
implemented better using a business process management (BPM) engine. If one
language or technology is the best fit for all of the Microservices in an architecture,
use it; but the architecture also supports implementing each Microservice in whatever
language or technology works best for its requirements, regardless of what is used to
implement other Microservices.

Each Microservice should persist its data in its own Self-Managed Data Store (154).
Replicas of a Microservice all share the same data store. Microservices support Poly‐
glot Persistence (374), where separate Microservices can choose different types of data
stores that best fit each Microservice’s requirements. Only a Microservice can access
the data in its data store. The rest of the application can only access a Microservice’s
data by invoking that Microservice’s interface. The Microservice has complete control
to decide the format of its data and to evolve that format as necessary, and to manage
the data’s consistency according to the rules of the Microservice’s capability.

Microservices can run in a traditional IT environment or in a cloud environment.
While the cloud is not required, cloud services such as lifecycle management, load
balancing, and autoscaling make Microservices much easier to deploy and manage.

Next, we’ll explore how to design Microservices, especially Domain Microservices.
It’s easy to say that a business domain should be separated into individual business
capabilities and that each Microservice should model a single business capability, but
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it is much more difficult to analyze a business domain and figure out what those
individual business capabilities are so that they can be modeled. Microservice Design
(Chapter 5) 5 shows how to use the event storming technique and domain-driven
design concepts to model a domain and discover its individual Microservices.

After that, we’ll look at Event-Driven Architecture (Chapter 6), an alternative to cen‐
trally controlled service orchestration that uses events to choreograph Microservices
in dynamically discovered interactions. After that, Cloud-Native Storage (Chapter
7) explores how to persist and manage data in a distributed and unreliable cloud
environment, and Cloud Application Clients (Chapter 8) describes a range of options
for making the UIs that people will use to interact with cloud applications.
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CHAPTER 5

Microservice Design

When embarking on developing an application using a Microservices Architecture
(Chapter 4), it is important to understand how to best design the Microservices
(119) that your application needs. Building a Distributed Architecture, such as a
Microservices Architecture, has many challenges, and can be difficult to get right,
specifically when dealing with possible failure points and distributed transactions.

When developing systems, it has been proven that designing, modeling, and building
systems around the domain is a recipe for success. This is true regardless of the
architectural style you are using. Understanding the requirements for a system and
modeling the domain usually starts with a requirements-gathering phase to gain a
better understanding of the domain and the problem we are solving. Requirements-
gathering can elicit software requirements from various activities, such as discussing
user scenarios, creating user stories, looking at sequences of events for the system,
discussing various rules of the system, and examining how to validate the require‐
ments. After the requirements have been gathered, discussed, and validated with
the stakeholders, there is usually some form of a modeling phase. In the past,
this modeling phase usually included taking your requirements and mapping your
domain through some form of a business process modeling technique (i.e., Business
Process Modeling Notation (BPMN), Unified Modeling Language (UML) diagrams,
flow charts, and data flow diagrams). As useful as these modeling techniques with
their diagrams can be, their technical nature means many domain experts are usually
not that engaged during the modeling part of the analysis and design phase.
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1 In 2000, Robert C. Martin published an article entitled “Design Principles and Design Patterns”, which was
later compiled into the acronym SOLID by Michael Feathers. These design principles for object-oriented
programming encourage the creation of software that is easier to maintain, more understandable, and
more flexible. The SOLID principles are Single responsibility, Open/closed, Liskov substitution, Interface
segregation, and Dependency inversion.

2 These IDEALS evolved through a collaboration between Paulo Merson and Joseph Yoder at the end of
2018 and early 2019. Paulo had some original IDEAS that we evolved for a talk at the SATURN Software
Engineering conference. After some early feedback and discussions, these principles evolved to become what
we are calling Guiding IDEALS for Designing Microservices.

Introduction to Microservice Design
Agile teams promote more lightweight interactive processes that include feedback
loops and participation from all stakeholders, including domain experts and end-
users throughout the entire development process. Agile approaches encourage
domain experts to work closely with the development teams. Most Agile teams
deliver working systems, which includes getting valuable feedback and adapting
as they learn. This kind of iterative process is at the core of “Agile” development
processes. However, even this approach can have problems. The developer acts as
a translator, translating the domain expert’s mental model into code. But, as in any
translation, there can be problems.

Another approach focuses on having the domain experts, the development team,
other stakeholders, and (most importantly) the source code share the same model,
thus they don’t need translation from the domain expert’s requirements to the code.
Recently, lightweight techniques have become popular such as Event Storming (189),
which promotes a more collaborative approach to understanding and modeling the
domain. Event Storming often uses a subset of concepts from Domain-Driven Design
to create an understandable model of the system that can then be mapped to a
Microservices implementation. The results of these models are useful for creating sys‐
tems with better availability, scalability, reliability, and modifiability. To be successful
with the Microservices architectural style, you need to understand the good design
principles (Guiding *IDEALS*) for microservices design.

Guiding IDEALS for Designing Microservices
One might ask, what are good design principles for Microservices? Are there princi‐
ples similar to the SOLID principles for designing object-oriented systems?1 There
are some fundamental IDEALS that have been outlined for designing modern
service-based systems, which are six principles that are key for developing and
implementing successful Microservices.2 IDEALS is a mnemonic acronym meaning:
Interface segregation, Deployability, Event-driven, Availability over consistency,
Loose Coupling, and Single responsibility. Let’s examine how these principles relate
to Microservices.
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• First there is Interface segregation, which tells us that different types of clients•
(such as mobile apps, web apps, and CLI programs) should be able to interact
with services through the contract that best suits their needs. This is similar
to Interface segregation you see in SOLID, except now we are extending it to
the interface of our services. Some well-known patterns can help with this. For
example, you can use some form of a Dispatcher (140) such as a BFF (Backend for
Frontend is a variation of the API Gateway pattern). BFFs allow you to develop
a specific API Gateway for each type of client (or frontend). Each API Gateway
does routing, transformations, filtering, and the like. The main concept here is to
develop different API calls for the different types of clients that need to call your
Microservice. You can also create different APIs for your service.

• Next we have Deployability, which acknowledges that in the Microservice era,•
which can be called the DevOps era, there are critical design decisions and
technology choices developers need to make regarding packaging, deploying,
and running Microservices. Good design and implementation alone don’t war‐
rant success. Good Deployability practices are essential for the success of
any system, and even more so with Microservices, as they greatly increase the
number of deployment units. Several strategies can be employed to help with
successful deployments such as Continuous Delivery, DevOps, Containerization,
Serverless architecture, Monitoring, and Logging. There are variations of deploy‐
ment strategies such as blue-green deployment, canary deployment, and rolling
deployment that are very useful for deploying more reliably and safely into
production environments.

• Another design principle for Microservices is Event-driven, which suggests that•
whenever and wherever possible, we should model our services to be activated by
an asynchronous message or event, rather than a synchronous call. Synchronous
request-response calls are still needed and used, but today’s scalability and per‐
formance requirements pose a challenge that can be solved by processing events
asynchronously. Event-Driven Architecture (EDA) is an architectural style that
has been around for a long time. The core of EDA is where components commu‐
nicate primarily through asynchronous messages or events. It is based upon a
publisher/subscriber model (usually referred to as pub/sub) where services or
components are decoupled from direct calls. Rather, they publish an event on an
event bus, and those interested services or components subscribe to the events of
interest.

• The next principle for Microservices is Availability over consistency, which•
reminds us that, in general, end users value the availability of the system over
strong data consistency, and they are generally OK with this as long as they have

Introduction to Microservice Design | 177



3 More about the CAP theorem is available at Wikipedia.

eventual consistency. The problem is related to the CAP3 theorem, specifically
when dealing with distributed systems. The CAP theorem outlines that you can
guarantee only consistency or availability but not both at the same time. So for
a better user experience, nowadays it is usually better to favor Availability over
consistency whenever possible.

• Loose coupling has always been an important design concern, and in the case•
of Microservices, has become even more critical, specifically concerning afferent
(incoming) and efferent (outgoing) coupling. If you implement Microservices
with a lot of dependencies, you are in a sense building a distributed monolith,
or what we call a macro- or microlith. These systems are far worse than any
problems a monolith may have specifically as you still have all of the coupling
problems and now they are distributed. These systems can be very difficult when
dealing with debugging and distributed transactions!

• The last principle is Single responsibility, which focuses on modeling the right-•
size Microservices that are not too large or too slim. Therefore, they will contain
the right amount of cohesive functionality. This principle is usually the easiest
to understand but one of the hardest to get right. To achieve the right-size
service that is designed around a Single responsibility, it is important to Model
Around the Domain (183). Any good domain modeling techniques can help you
build well-designed, right-sized Microservices that meet the Single responsibility
principle.

These design principles are useful when developing modern service-based distributed
systems (which today we call Microservices). Domain modeling techniques such as
those presented in the patterns in this chapter help you achieve these design princi‐
ples.

Domain Modeling Techniques for Designing Microservices
This chapter presents seven patterns that describe techniques to model and design
Microservices around the domain (see Figure 5-1). It starts by discussing how to
Model Around the Domain (183) by applying Event Storming techniques along with
a subset of domain modeling concepts to help design the right size Microservices (see
the section “What’s the Right Size for a Microservice?” on page 180).
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Figure 5-1. Microservice Design patterns

An Event Storming session brings stakeholders together to get a better understanding
of the domain. The concepts within a domain are defined according to the language
of the domain, called the Ubiquitous Language. Event Storming sessions begin by
describing the various Domain Events (193) that happen to the system usually based
upon user scenarios. Once you have an understanding of the events within the
domain, you can then begin describing the boundaries (Bounded Contexts (201))
of the system. You will then define the types of things with their values (Aggregates
(211)) for the domain and their respective Repositories to persist them through a
persistence layer.

The storming session will also describe various behaviors of the system. Some of
these behaviors belong to entities and will be associated with the entities. There will
be other behaviors that do not belong to a specific entity but need to interact with
multiple entities or Aggregates within the same Bounded Context. Domain Services
(222) are used when the behavior is associated with multiple Aggregates independent
of a specific entity. Protecting the system from change and allowing various parts of
the system (Bounded Contexts) to evolve independently is supported by providing an
Anti-Corruption Layer (229) which isolates individual parts of the system from one
other.

The patterns in this chapter are independent of Microservice design and are useful for
any type of architecture. However, these patterns are especially useful when applying
the Microservices Architecture (Chapter 4) style. Successful design starts by knowing
how to design the right size Microservice (see the section “What’s the Right Size for a
Microservice?” on page 180).
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Out patterns will begin with our foundational pattern, Model Around the Domain
(183). This chapter will conclude with a section that tells you how to take your design
that was Modeled Around the Domain and implement it using the Microservices
architectural style.

What’s the Right Size for a Microservice?
Microservices Architecture (Chapter 4) has become well entrenched and accepted
as an architectural style. Microservices became popular as an architectural style
after James Lewis and Martin Fowler published their seminal paper on the subject,
“Microservices”, in 2014. Since that time, we’ve learned some important lessons about
building Microservices (119), and one of those lessons has to do with making sure
that you think about and design the scope of each Microservice in the proper way.

When you think of the term “microservices,” the first thing that catches your eye
is the prefix “micro.” According to most college Classical Greek textbooks, μικρός
would have meant only “little” or “small” to Plato or Aristotle. However, in everyday
English usage, “micro” tends to denote something astonishingly small—after all, a
“micrometer” is a millionth of a meter, and you use a “microscope” to see things that
are otherwise invisible to the naked eye because of their extremely small size.

It’s in that difference of perception that the trouble lies. A Microservice should be
“small” in comparison to the monoliths that came before it. However, it shouldn’t be
too small—trying to make your Microservices too small is one of the most common
mistakes teams fall into when attempting to implement a Microservices Architecture.
For example, you could create a Microservice for every function. This would create
very chatty services that would need to cross many transactional boundaries in order
to fulfill a request.

It’s this thought that “microservices must be tiny” that leads to our first problem.
One of the other common complaints we hear about Microservices is that it’s too
difficult to use them for complex domains such as banking because the REST or
messaging interfaces they require don’t provide a way to do two-phase commits
across multiple Microservices. Whenever we hear that complaint, it sets off warning
bells in our heads—that complaint is often a symptom that the team is thinking of
their Microservices as very tiny things.

On the other hand, if Microservices are too large, you also have many potential
problems. When you develop a Microservices Architecture that looks like the previ‐
ous architecture, you have essentially gone all the way back to the problem that
Microservices were intended to solve! You’ve not only re-created the monolith, but
you’ve made it worse by creating a distributed monolith (or what we sometimes like
to call macroliths).
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Because of this, the term Microservice has led many to ponder the question, How big
or how small should a Microservice be? Many say it should be small enough to be
developed in one week by a team that can be fed by two pizzas. This can be a difficult
guideline to follow, some of us can eat a lot of pizza. If you google this question, you
find many possible answers. Instead, let’s formulate an upper and lower bound for
consideration.

Lower Bound
A Microservice should consist of no less than an Aggregate (or at least an independent
entity) and the associated Application and Domain Services that operate on the
entities of that Aggregate.

Aggregates (211) are groups of related entities whose lifecycles are tied together,
allowing them to be treated as a single cohesive unit. The canonical example of an
Aggregate is the Order/LineItem relationship, which we will explore at length.

As we have referred to earlier, a service is a “reification” of a function. We have also
pointed out that Domain Services (222) refers to a domain concept that does not
naturally correspond to any particular entity or Value Object. The Banking account
“Transfer” that we called out in our earlier example is a perfect example of that idea.

The most important design point here is that when thinking about how small to
make your Microservices, you have to think very, very carefully about transaction
boundaries. First of all, you have to think about the lifecycle of the entities involved
in your Microservice—the create/read/update/delete cycle that we always think about
in terms of persistence. But then you have to extend your thinking to all of the
updates that can happen to groups of these entities—these are the kinds of things that
Domain Services will identify. However, it’s not just simple one-to-one transactions
like transfers that you need to think about. You need to think more widely in the
domain about other operations on groups of entities—particularly around things like
batch updates and complex queries.

At this point, some purists may be shouting, “But wait! This would require 10,
maybe 20, separate REST interfaces on my microservice!” That may be true. If the
particular area of your domain is complex enough to warrant that many operations
on a single set of entities, that is the smallest unit that you should be releasing as your
Microservice. It may feel more like a mini-monolith, but it’s still better than trying to
solve the problems that trying to split it any smaller would create.

What we have found is that it is always better to initially err on the side of making
a Microservice too large than making it too small. It is easier to take a larger (coarser-
grained) Macro Service and split (refactor) it into two services than it is to take two
fine-grained Microservices and combine them.
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If this is the right lower bound for a Microservices design, how do you practically go
about identifying all of those Aggregates and especially the services that go along with
them? Luckily, there is a very good answer to that question: start your design process
by performing Event Storming (189).

Upper Bound
A Microservice shall be no larger than the bounded context of a group of related
(cohesive) Aggregates as you model around the domain.

When you Model Around a Domain (183), a central pattern that delimits the bound‐
aries around the domain model of a subdomain is Bounded Context (201). This is
where you can partition your system into different boundaries and discuss the inter‐
relationships between these boundaries. Bounded Contexts define the boundaries
within a subdomain and can also be seen as the boundaries of Microservices. Within
each Bounded Context, we have Aggregates, which are the related types of things
within the domain (Entities), and their values. The Bounded Contexts also include the
behaviors within that boundary. Therefore, a Microservice can have a single Aggregate,
or two, or more as long as they are cohesive.

One more possible litmus test to apply on the upper bound is to look at the business
capabilities. If your Microservice were to fail, and it would cause more than one
business capability to fail, either your Microservice is too coarse grained and you
should refactor it or you have a different problem in that you have too many business
processes depending on this one particular Microservice (e.g., you put it on the
critical path of several different flows). Once again, this is where Event Storming can
help you model around these business capabilities specifically when you find the
boundaries through context mapping.

Finding the Right Level of Abstraction
One of the biggest problems that we see in the field with teams building Microservices
designs is that they don’t often start with a technique like Event Storming while
applying principles of domain modeling. Instead, they start somewhere else, like
with the design of their existing system, and try to derive their Microservices from
there. Or else they start with an architecture (often specified in terms of tools and
frameworks) and try to just let the Microservices evolve “organically.”

In both cases, what you end up with are not what we would call Microservices—
they tend to be focused on technology and not at all related to terms that the
business would recognize. A symptom of inadequate design is that there are few or
no Domain Microservices (130) in the solution, because you didn’t start with the
business vocabulary. Starting with the business vocabulary, the Ubiquitous Language,
is a critical first step, and that’s why we suggest that all teams building Microservices
apply domain modeling as part of their design process.
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A detailed discussion of this topic can be found on the blog entry “What’s the Right
Size for a Microservice” by Kyle Brown.

Model Around the Domain
You are embarking on developing an application using the Microservices Architec‐
tural (Chapter 4) style and deploying it on the cloud. Part of this development
starts with stakeholders describing the requirements for building the application. You
understand the benefits of using Microservices for new applications and refactoring
applications to Microservices, but you are unsure how to best start.

How can you encourage stakeholders to explain enough of the domain require‐
ments in a way that reveals the relevant capabilities for the application you are
building?

Gaining a shared understanding of the requirements for the domain and building the
right thing is challenging regardless of the architectural style used. The temptation
is to start as quickly as possible and let the system evolve as you learn more about
the domain. However, having a clear understanding of the domain and the problem
being solved is useful for developing the right solution, particularly if that solution
includes Microservices.

Many team members understand how to develop a monolithic application. Knowing
how to design the right size Microservice can be challenging. How big or how small
should a good Microservice be? How should various parts of functionality be devel‐
oped and deployed? How should all of those different components relate to one
another and communicate with one another?

It can be difficult to know what should be included in a Microservice and what should
not be part of a Microservice. Where should the boundaries be between Microservices?
What if our services need to share data? Should we have multiple databases, and if so,
how do we keep multiple databases consistent?

Although there are many benefits to Microservices, building a Distributed Archi‐
tecture (38) can be very challenging. They can be difficult to test. There can be
complexity because of many services. How can we minimize dependencies between
Microservices? Microservices inherit all of the problems or challenges inherent in
Distributed Architecture (38).

Therefore,

Model Around the Domain to capture the application’s requirements by bringing
stakeholders together to describe the subject area in terms of the domain that you
are implementing.
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4 Photo of Graziela Simone Tonin and Joe Yoder discussing some Domain Modeling principles near Cologne
Germany in 2024.

Domain modeling techniques help team members acquire an understanding of the
system to be built, specifically the requirements from the perspective of the domain
experts. You bring developers and key domain experts to describe and model the
requirements or subject area of interest. This includes identifying key concepts,
looking at the types of things that happen within the domain, identifying the types
of things and values needed for the system, and describing the relationships between
elements of the domain. The main goal is to get an understanding of the details of the
domain and the requirements for the system.

Domain modeling sessions help those involved with the system to acquire an under‐
standing of it and create a description of the domain to translate the requirements
for building the system. Domain modeling helps to clarify requirements and usually
includes a domain model representation of the problem space. Most domain model‐
ing techniques include a visual representation of the domain model. These sessions
are usually informal and use lightweight techniques using whiteboards and sticky
notes, either physical or virtual (see Figure 5-2). They avoid discussing technical
issues and keep the focus and the discussion around understanding the terminology
for the domain.

Figure 5-2. Domain modeling session4

A domain model is a representation of real-world ideas that usually include the flow
of a system to be built. Domain models include entities or “things” within the system
and explore how they are related. Domain models can be represented graphically,
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and various diagrams and tools can be used to model domains. A domain model
is a conceptual model of the domain that incorporates both behavior and data. It
describes both the entities (the types of things included in the domain) and the types
of values these entities include. Domain models also include the rules and events for
things that happen within the domain.

A domain model also includes the vocabulary and key concepts of the problem
domain, and it identifies relationships and the rules among the entities of that
domain. Domain modeling helps stakeholders gain a better understanding of the
domain and discover the domain in-depth. Additionally, domain modeling can help
create a common language that includes business knowledge about the domain. The
idea that software systems should be modeled closely to the domain has been around
for a long time.

Building a Distributed Architecture, such as a Microservices Architecture (Chapter 4),
has many challenges and can be difficult to get right, specifically when dealing with
possible failure points and distributed transactions. Many have suggested that using a
subset of Domain-Driven Design (2003) (DDD) modeling techniques can help define
the functional scope of Microservices. But the techniques needed to apply this idea
“in practice” are not clear to everyone. Domain modeling is not only an approach
to Microservice design but is also a proven general technique useful for any design,
whether Microservices or not.

Domain modeling helps you identify the right business capabilities that map to good
Microservices and aids in designing the right-sized Microservices modeled around
the domain. We will focus on that subset of DDD concepts that are most useful
for designing microservices (or components in a Modular Monolith (29)), such as
Domain (and subdomain), Domain Models, Aggregate, Entity, Value Object, Bounded
Context, Anti-Corruption Layer, Ubiquitous Language, Application Service, Domain
Event, and Domain Service.

The primary concept discussed as part of DDD is domain and subdomain. A defini‐
tion of a DDD domain outlined by Eric Evans is: “A sphere of knowledge, influence,
or activity. The subject area to which the user applies a program is the domain
of the software.” Some examples of domains are banking, insurance, medical, and
airline booking services. The main principle of DDD is driving the design around the
domain you are working on.

A domain is the area in which you solve a problem with software in an organiza‐
tion—for example, finance, insurance, banking, manufacturing, etc. This includes the
concepts and business rules needed to achieve the business goals of the organization.
Domain refers to the specific subject that the project is being developed for. The goal
is to limit the complexity of a solution by tailoring it as closely as possible to the
domain with the help of experts from that domain. When modeling systems, we have
to choose the most appropriate domain boundaries with which to align our software
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5 Ubiquitous Language is an implicit pattern originally described in Domain-Driven Design (Addison-Wesley
Professional).

and organizational boundaries. When Modeling around the Domain, it is important to
think about the core domains within the systems you are developing. For example,
if we are dealing with the banking domain, you can say that the main domain is
everything related to money, finances, and customer relationships. Of course, there
are many subdomains for banking, such as personal banking, investment banking,
and credit cards.

Most domains are composed of subdomains. What’s the difference between a domain
and a subdomain? A domain can contain subdomains, which can contain subdo‐
mains. Every subdomain is, in a sense, a domain, and most domains are a subdo‐
main. The only time a domain is not a subdomain is when the model does not
contain a higher-level parent domain. So for the personal banking subdomain, you
can have a subdomain of accounts that could also have a couple of subdomains, such
as cash accounts and credit accounts.

The goal is to develop a shared mental model that various stakeholders use to
communicate about the system around the domain. This shared mental model is a
common understanding of the concepts used by all the teams in an organization.
The challenge in Modeling around the Domain is to describe the domains with
subdomains, and within each subdomain to describe the things (entities and values)
along with the behavior (Domain Events and domain services). For each subdomain,
you have boundaries (called Bounded Contexts) and a common business language
(Ubiquitous Language)5 for that subdomain.

Ubiquitous Language
In the early days of modeling, there was an emphasis on developing an enterprise
model that could be shared across the entire organization. Idealistically this sounded
good, but in practice, it led to many problems, specifically as different parts of the
enterprise had different views and needs for their various systems and subsystems.
Trying to manage and maintain an enterprise model created a maintenance night‐
mare and often required different systems within your organization to deal with
various attributes and behavior they did not need. DDD has a concept that helps with
this called Ubiquitous Language.

Ubiquitous Language is a concept that emphasizes building a common, rigorous lan‐
guage between developers and domain experts about your domain and subdomains.
This language should be based on the Domain Model using terminology from the
domain experts. Eric Evans says, “Domain experts should object to terms or struc‐
tures that are awkward or inadequate to convey domain understanding; developers
should watch for ambiguity or inconsistency that will trip up design.” Ubiquitous
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Language is a common vocabulary that the entire team shares and uses together as
they communicate about the system. The code should also express the Ubiquitous
Language. For example, entities, values, and events should use the same terms that are
part of this Ubiquitous Language.

A Ubiquitous Language is not a Universal Language. The same term may mean
different things in different subdomains. A domain entity may show up in different
subdomains with different attributes and behaviors. For example, think of the con‐
cept of an account entity within a banking system. The concept of an account will be
seen in many subdomains, such as the CreditCard and SavingsAccount subdomains.
The concept of Account for the CreditCard subdomain will have different attributes
than the concept of Account for the SavingsAccount subdomain. A credit card
account might need attributes such as credit limit, charges, and the like—whereas a
savings account will need values such as balance and interest. They may have some
common attributes, such as the owner of the account, but they will each have their
respective view for their subdomains. So when applying the concept of Ubiquitous
Language, rather than trying to create an enterprise model representing everything
about accounts for all subdomains, we have a language and view of accounts for
each domain or subdomain; the CreditCard domain will have its common language
for a credit card account, while the Saving Account domain will have its common
language for a Savings account. Therefore, we don’t have to maintain an enterprise
view of Account. CreditCard and SavingsAccount will each have their unique view of
Account. Therefore, the two subdomains can vary independently as needed without
affecting other systems or subdomains.

As the saying goes, “Context is king.” The meaning of a concept depends upon the
context (the domain) in which it is being used. Another example could be something
like a Customer (or user) of an online ordering system. For placing the order, we
need just enough general information about the Customer to place the order. How‐
ever, when processing payment, we probably need different information about the
Customer. Order placement and Payment processing are two different subdomains.
Depending upon the context, we allow the different subdomains to have their view of
the Customer it needs without corrupting it with views from other domains. In other
words, different from a Universal or Unified language, Ubiquitous Language evolves
as it makes sense within a subdomain, without any concern about concepts that are
part of other subdomains.

Regardless of the architectural style, modeling around the domain has proved to be
very useful to get a better understanding of the domain and the problem you are
solving. It also assists with understanding the requirements and finding what types of
things with values and events will be happening within the system. Modeling Around
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the Domain helps to create a RESTful service design for Microservices. Not all of these
will become part of your Microservices design—some might be hidden in your service
implementation—but you can start to understand the types of things that you’re
dealing with.

An ongoing argument exists about which comes first: the design of your API or
the design of the objects or components that implement your API. Many early
distributed-computing proponents advocated designing the objects first and then
making your API the same as your Object API. This approach led to problems in
the granularity of the API, which often resulted in APIs that represented technical
interfaces instead of interfaces designed around the domain. When you start with
the API, you can focus on solving the domain problem and avoid getting lost in the
technical details of a particular implementation. This is similar to design by contract
in that you focus on the contract forming the agreed-upon API.

The main challenge to modeling is to get the right stakeholders together to get a
shared understanding of the domain. It takes time and commitment from people who
usually have very busy schedules. The temptation for many agile organizations is to
start quickly and let the details of the domain evolve as you go. However, this can
come at a cost, especially when the system evolves around the boundaries between
subdomains. If boundaries are not properly defined, then the system can become
muddy (22), making it hard to evolve and maintain. Fortunately, there are lightweight
techniques that can assist with this and are worth the time and effort.

When you design Microservices for an application, you first need to get stakeholders
together to understand the domain. This can be done through Event Storming (189).
Event Storming is a popular nontechnical domain modeling technique to help stake‐
holders gain a better understanding of the requirements by describing them in the
language of the business. This technique uses concepts from domain modeling and
helps establish the Bounded Contexts (201) (boundaries) for your teams’ Domains
and Subdomains. Event Storming helps create an understandable model of the system
that can then be mapped to a Microservices implementation. The results of these
models are useful for creating systems with better availability, scalability, reliability,
and modifiability.

When modeling, you define the boundaries of your domain and subdomains, specif‐
ically the strategic boundaries called Bounded Context. An Anti-Corruption Layer
(229) can help Bounded Contexts to evolve independently from one another regard‐
less of the interactions between them.

Within each Bounded Context, you will identify the types of things needed within
each BC (the entities and values), which are grouped together in Aggregates (211).
Domain modeling also describes the behavior of the system, called Domain Services
(222), which can be triggered by a Domain Event (193). You will also define the API
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for the Bounded Context, which is called Application Services. The concepts within a
Bounded Context are described using a Ubiquitous Language.

The end design goal for these Microservices will be to build a Microservices Architec‐
ture (Chapter 4) based on an Event-Driven Architecture (Chapter 6).

Event Storming
You are Modeling around the Domain (183) and have started by gathering stakehold‐
ers to describe the requirements for designing a system to get a better understanding
of the domain and the problem you are solving.

How do you encourage the stakeholders to understand and describe the elements
and events around the domain and subdomain?

Domain modeling techniques help team members acquire an understanding of a
given project or program and create a description of the domain to translate the
requirements of that project into software components. Domain modeling helps to
clarify requirements and usually includes a domain model representation of the
problem space. Most domain modeling techniques include a visual representation
of the domain model. It is often difficult to know how to start the modeling of the
domain, especially with many stakeholders with different backgrounds.

Many teams want to start developing the system as fast as possible. This is at the
core of agile practices. Designing, modeling and building systems around the domain
is a recipe for success. Most agile teams deliver working systems, which includes
getting valuable feedback, and adapting as they learn. This kind of iterative process is
at the core of “agile” development processes. However, even this approach can have
problems. The developer acts as a translator, translating the domain expert’s mental
model into code. But, as in any translation, there can be problems.

One of the complaints that many people have had about many domain modeling
techniques is that they seem to be concerned only with the static functionality of the
system. Concepts from modeling can be helpful for getting a better understanding
of the vocabulary (the Ubiquitous Language) of a business domain. However, many
practitioners struggle to determine how to translate the pieces of the Ubiquitous Lan‐
guage expressed as Entities, Aggregates, and Services into a complete and functioning
system.

A dynamic view of a system allows stakeholders to understand how data is created,
how it flows through the system, and how the system should react in response
to changes introduced from the outside world. Getting this dynamic view can be
challenging and requires many stakeholders to come together to communicate and
validate this view.

Event Storming | 189



6 While Event Storming does not require any computer support, it is perfectly acceptable, but perhaps not
optimal, to conduct remote Event Storming sessions using computerized sticky note boards such as Mural.

7 A more detailed description of a variation of these steps can be found on “Event Storming by IBM”. You can
also find an example Microservices implementation that includes an example of Event Storming for Container
Shipment in the IBM article “Container Shipment Example”.

Therefore,

Perform an Event Storming session to elucidate the set of Domain Events that flow
through a system

This process reveals the boundaries of the system and describes the types of things
and actions within a subdomain. Event Storming is a brainstorming or design think‐
ing technique developed by Alberto Brandolini in 2012 to quickly find out what is
happening in the domain for a system to be developed. Compared to other methods,
it is extremely lightweight and intentionally requires no support from a computer.6

Event Storming is not data modeling or object modeling. Rather, it focuses on the
events or behavior of the system that can be quickly implemented and validated. The
basic idea is to bring together software developers and domain experts to learn from
one another. Originally this was done in person at the same physical location.

Event Storming creates a shared common understanding of the domain model. The
stakeholders involved include domain experts, technical people, product managers,
and product owners. It is intentionally a lightweight, nontechnical, workshop-based
method that helps participants quickly describe the domain and events of the desired
system. It is usually done with sticky notes on a wide wall, although remote Event
Storming has become popular and can be done with various online tools. Although
the results will influence your architecture and technical decision, these sessions
avoid discussing architectural and implementation issues.

When doing an in-person Event Storming session, it is important to have a lot of
sticky notes, pens, and markers. Participants are primarily standing and working
together placing sticky notes on a wall or board. Therefore, it is good to have a lot of
space. The workshop will consist of several steps, so it is a good practice to time-box
each step.

Event Storming has various steps to assist with the brainstorming session for eliciting
events, Aggregates, and views of the system. The following outlines the main steps in
Event Storming:7

1. Identify sequences of Domain Events.
2. Add commands that caused the Domain Events.

2a. Add the actor that executes the command.
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8 If you are reading the print book, you will see sticky notes in different shades of gray. For the full color figures,
please see the digital version of the text on the O’Reilly online learning platform.

3. Add corresponding Aggregates (this will reveal the entities and values).
4. Identify Bounded Contexts around pivotal events.

The team needs to decide on a legend for the colors of the sticky notes used during
the Event Storming session. For example, you might consider something similar to
that outlined in Figure 5-3 (Domain Events are orange, Command is blue, and
Aggregate is yellow).8 At the minimum, you need something for Domain Events,
commands, actors, and Aggregates. You might also have color stickies for policies,
views, errors, questions, external systems, and others. See Chapter 7 in Vaughn
Vernon’s book Domain-Driven Design Distilled (2016) for examples of color options.

Figure 5-3. Event Storming layout

You begin with identifying the sequences of Domain Events. Event Storming begins
with a team writing down all of the “facts” about their system that they can think
of on sticky notes. A fact should be expressed in the past tense, such as, “Deposit
has been credited.” These facts are the events that can happen to the system. The
team then arranges all of the facts they discovered in linear (time-sequence) order
horizontally on a wall (usually from left to right). These facts are the Domain Events
that can happen in the system. They show how one occurrence will be followed
in time by another and another and another. Where simultaneous events occur,
they can be placed in different horizontal swim lanes separated vertically as seen in
Figure 5-4, which outlines candidate system boundaries. These lines for swim lanes
and boundaries are usually shown in blue as you create them on a whiteboard with
blue painter’s tape.
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Figure 5-4. Bounded Context around pivotal events

After the team agrees on the sequence(s) of events in time, they can then “decorate”
the events by adding: “commands” that create an event, actors that cause commands
to be issued, policies that automatically turn one event into another, and data that
each event either requires or generates (Aggregates). As a result, a dynamic system
design begins to emerge from the sequence of time-based events.

Finally, the events can be grouped by data elements and related commands within a
scenario to represent a Bounded Context. In this way, the Event Storming approach has
thus helped find and validate the related set of Entities with values called Aggregates.
You also describe the commands and actors within a Bounded Context.

Each Bounded Context that you identify is a candidate Microservice. It is important to
start with “Step 1” by identifying the sequence of Domain Events, and “Step 2,” which
identifies the actors and commands for the events. Steps 3–4 can be done in any
order by members of the team. For example, after they have identified the Domain
Events with their respective commands and actors triggering the events, teams can
start outlining the boundaries of the events (Bounded Contexts) before they describe
the Aggregates.

Event Storming brings together various stakeholders, including domain experts and
other participants with different expertise, to share their domain knowledge by
expressing it on colorful sticky notes on a wide wall. Event Storming is effective
primarily because it is a fast, lightweight, interactive, nontechnical workshop. It is
also very straightforward and easy to do. Rather than using complex UML or other
modeling techniques, Event Storming breaks the process down into simple terms that
both technical and nontechnical stakeholders can understand. Event Storming is very
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engaging and effective, its greatest value perhaps being the conversations around the
domain and business processes for the system being developed.

The main challenge of Event Storming is the difficulty of finding the time to engage
the necessary stakeholders. Trying to get the right set of stakeholders together can be
difficult. Event Storming sessions require a skilled facilitator to guide the discussions
and to manage the time in order to keep the participants focused and moving
forward. The sessions can provide incomplete information because the model may
primarily reflect the views and understanding of the participants with the strongest
voices. The sessions may overlook or be missing perspectives from important stake‐
holders who do not attend. Finally, Event Storming can be challenging in that it does
not specify to teams all of the necessary parts of an implementation. Fortunately,
there are some well-known practices discussed in this chapter that will describe how
to meet these challenges.

While performing Event Storming (189), you can use the following concepts to
further model your domain:

• Identify Domain Events (193) in terms of the Ubiquitous Language for the busi‐•
ness logic across Bounded Contexts.

• Identify the Bounded Context (201) around pivotal events that reveal the bound‐•
aries of the subdomains for the system.

• Identify Aggregates (211) (entities and values) and their respective Repositories•
defined in terms of the Ubiquitous Language.

• Identify Domain Services (222) using terms of the Ubiquitous Language for the•
business logic within a Bounded Context.

• When looking at interactions between Bounded Contexts, consider an Anti-•
Corruption Layer (229) to protect from change.

Once you have applied Event Storming to identify the Domain Events, you will find
you are well on your way to beginning to implement an Event-Driven Architecture
(Chapter 6). During the modeling session, boundaries (Bounded Contexts) will be
outlined that will map to the boundaries of a Microservices Architecture (Chapter 4).

Domain Event
You are Modeling around the Domain (183) a system and started by getting stake‐
holders together to perform an Event Storming (189) session to better understand
the domain. The primary goal of this session is to get an understanding of the
requirements and what happens in the domain of the system being built.
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How do you model those aspects of a design that correspond to things that happen
during the various scenarios encountered by the system?

There are many types of things that can happen to a system over time. Sometimes it
is some simple change to some data. When this happens, we associate the behavior
to make that data change with the entities responsible for that data. The process of
making that change may, in turn, also invoke some other domain-specific operation.

However, there are many cases where you have some actions or changes within a
Bounded Context that are not the responsibility of any specific Entities. For example,
there are times when some state changes will need to trigger some action to be taken.
These actions might need to trigger something to invoke a behavior, possibly in
another Bounded Context. In other words, something could happen to an Aggregate
that will trigger an event that might need to change another Aggregate either in its BC
or cause something to happen to another subdomain (a different BC).

However, one of the biggest potential issues is one of extension. When all you have is
the Service API of a module or Microservice, the only way to find anything out about
the state of the information hidden by that module is to call its API. That API is
static; if you want to identify that something has changed over time, your only option
is to repeatedly call a part of that API until you get a different response. But the
thing is that systems tend to evolve and gain new features associated with whenever
changes occur.

As a very simple example, the best time to offer you a paid upgrade to a hotel
stay is once you’ve arrived at the hotel but before you’ve checked in. Let’s say the
hotel has upgrades that are unsold—if you’ve arrived but not checked in, you’re
at the best possible time to pay for that slightly larger room or bigger bed. You’re
already thinking about getting to your room, and the promise of a better stay is very
enticing—more so than it would have been when you booked your room and were
being budget conscious. But to offer you this upgrade, the hotel application (or staff!)
has to act fast to offer you that upgrade during that optimal time window.

This is all to say that the time element is important to system design—especially
when you want to think about how to extend your system’s basic functionality to
cover cases (like just-in-time hotel upgrades!) that your original design may not have
anticipated. Having a system extension point that allows you to take advantage of
changes in time is a critical way of making the system open for extension while
remaining closed for modification.

Therefore,

Whenever something changes, create a Domain Event noting that something has
occurred or changed so that appropriate action be taken.
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A Domain Event is a representation of something that has happened in the domain
and that you want other parts of the domain to know about. A Domain Event can
also be seen as a statement of a fact that something of interest has happened in the
Ubiquitous Language of the domain. These facts or events about the system are always
expressed in “past tense,” such as “Deposit has been credited.” Domain Events are
sometimes called business events and express things that occurred to the domain at a
specific point in time.

These events signify that something of interest has happened within a domain and
can trigger a change or some action in another part of the domain. There are
commands that trigger these events and actors that execute the commands. These
events can occur in a subdomain of the larger domain and can trigger some action in
a different subdomain.

Let’s examine the domain of a pizza delivery place called Joe’s Pizza to illustrate
Domain Events. Joe’s Pizza allows customers to order pizzas either online or by phone.
When a customer wants to place an order, they will trigger an Order Requested
event. Once this happens, the system will need to get the pizza types the customer
desires, their payment information, and the customer’s delivery address. Once the
Pizza Type Entered, Payment Info Entered, and Customer Address Entered

events have been completed, we can place an order by triggering an Ordered Placed
event (see Figure 5-5).

Figure 5-5. Joe’s Pizza order events

Domain Events typically represent state change. For example, in our online ordering
system, we will have events such as Order Placed, Payment Accepted, and Order
Shipped. When these events happen, they usually trigger some actions or behaviors
to be invoked. Sometimes an event will trigger a simple action within the same part of
the system. For example, in a ShoppingCart, you can think of changing the quantity
of some item you are ordering. This would simply trigger a call to update the number
of items for that order. On the other hand, some events might trigger a more complex
action, such as when an “order is placed,” you want to trigger an action to Ship the
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Order. And, once an order has been shipped, it will trigger events that result in
actions, such as email the customer.

Domain Events can either be part of the domain or be triggered by something outside
of the domain. The most obvious case, of course, is when a human interacts with
a system through its user interface to trigger an event (like item added to cart).
However, there are many other ways in which external actions or systems can trigger
Domain Events as well. The Internet of Things is a great set of examples for this—
many homes (and most cell phones!) have lots of different types of sensors that can
be used to trigger events. For instance, almost every cell phone has a light sensor
that’s used to determine how to set the brightness of the screen. It turns out that
applications can use that same sensor as a movement sensor to guess if a person is
moving inside or outside, or if they are moving between rooms with different light
levels. RFID (Radio Frequency Identifier) sensors are also built into most phones and
can sense when a person moves past a particular radio transmitter (a “beacon”). All
of these contribute to geolocation events that can help an application, for instance,
locate someone on a map inside a building where GPS signals don’t reach.

Finally, external systems may trigger events—you may receive an email, or a text,
or some other communication over any of a variety of protocols, old and new. You
need to represent those changes inside your system as well, so this is an important
way to isolate your system from knowledge of these protocols (perhaps with an
Anti-Corruption Layer (229)) while still taking advantage of the notification that the
communication has taken place.

Implementation
Implementation of Domain Events will vary depending upon the event. You will see in
the next section how to partition subdomains into Bounded Contexts that ultimately
map to the boundaries of Microservices. In our pizza example, sometimes there will
be events that trigger simple actions, such as the one for requesting the order. When
an order is requested, some commands might lead to simply creating the Aggregates
to represent the customer and the type of pizza they want. On the other hand, some
events might trigger an action that needs to interact with another subdomain, such
as the example of when the order for the pizza has been placed. Domain Events are
usually implemented and deployed as part of the Microservice Bounded Context for
where the event belongs.

When an event triggers something that needs to interact with a different subdomain,
it will publish the event as part of a publishing subdomain, and there will be subscrib‐
ing subdomains interested in the event. Figure 5-6 shows an example of a publishing
subdomain (Bounded Context) that sends an event to a messaging mechanism that will
have a subscribing subdomain (Bounded Context) handle the event. In other words,
these events will represent that something has happened in the publishing domain
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that the subscribing domain is interested in, which might invoke some action by the
subscribing domain.

Figure 5-6. Domain Events interacting between subdomains

Domain Events will be implemented using the technologies and message mechanisms
that your architecture is built upon. Domain Events are usually implemented and
deployed as part of the Microservice they belong to—the Bounded Context in which
the Domain Event has the most relevance.

Using Domain Events to communicate changes across Bounded Contexts (201) can
bring several advantages—such as decoupling, scalability, and consistency. Domain
Events reduce the dependencies and coupling between different bounded contexts,
allowing them to evolve independently and avoid tight integration. Domain Events
help describe and support the Event-driven and Availability over consistency design
principles from IDEALS.

A Domain Event can be seen as a statement of fact—it represents a set of things tied
together by an occurrence of a fact at a particular point in time. You can’t “undo” a
fact, but you can replace a fact with a new piece of information that comes at a later
point in time. Another way of saying this is that facts accrue over time. The issue
here is that while events tell you what happened, they don’t necessarily tell you the
state of something at a particular time unless you can look at the entire history of
events affecting that object over the entire span of time. One ramification of this is
that if something needs to be reversed, you need to generate a new Domain Event that
represents the replacement information. That implies that a certain level of auditing
of the stream of events should be expected—your system needs to deal not only with
the possibility of events arriving out of order and also with them not arriving at all.
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Domain Events, not surprisingly, arise out of the Event Storming (189) process. That
entire process begins with making a timeline of events that occur within the busi‐
ness domain and then finding the parties involved and identifying data, processing,
and interfaces that receive, generate, and react to those events. Domain Events are
expressed in terms of the Ubiquitous Language of the domain.

Domain Events can be used to represent actions between Aggregates (211) within the
same Bounded Context but also represent interactions across Bounded Contexts. So in
our online ordering system, when a Cart is checked out, a Cart Checked Out Domain
Event can trigger an action that will create an Order in the system and begin the
fulfillment process for the Order. A Domain Event can trigger an action that invokes
Domain Services (222).

In Event-Driven Architecture (Chapter 6) we discuss how Domain Events are imple‐
mented by building Reactive Components (260) that each have a specific Event API
(274) and that communicate over an Event Backbone (279).

Examples
The following online ordering, shipping, and airline examples highlight the use
of Domain Events for describing when something happens within their respective
domains.

Online ordering
Let’s start with a simple example of online ordering. (Note: we have dramatically
simplified this example in a number of ways. We have experience building online
shopping systems and know the thousands of complications involved in building a
real system—this example is meant to show only the principles and the process.)
Let’s say you’ve invented a new widget, and you need an online ordering system
to let customers purchase your wonderful new inventions. You’ve developed a wide
selection of widgets for different uses, enough that customers will need to tell you
what kind of widget they need in order to find just the right widget for their purposes.

The first step in the design process for building a cloud-native system like this would
be to gather the experts and carry out an Event Storming exercise. We’ve covered the
process for Event Storming, but the first step is to gather all the experts in a room
and have them individually write out all the possible facts about the process, and then
as a group put them into a single timeline (see Figure 5-7). In this particular case,
we’ll start with the simplest set of interactions at the start of the process—the process
of a Customer interacting with your website to select widgets to purchase and then
checking out to create an order. You’ll note that we indicate that this is all done by the
Customer by adding a “Persona” sticky for the Customer.
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Figure 5-7. Simplest event timeline

There are several important things to call out from this example, as simple as it
is. Note that the events have been placed into a single timeline. Sometimes that’s
difficult to do, especially when actions can be repeated. We see that there is only a
single instance of “Item added” and “Item removed” on the timeline, even though
those actions may occur in a number of orders and be repeated a number of times.
That’s fine—in later stages of the process, you can split out different possibilities into
different scenarios if it helps you reveal more things about the domain.

The most important thing, though, is that you notice that all of these events are
phrased similarly, even though they refer to different aspects of the system. We’ve
mixed up events about the Customer with events about Search and events about
Items and Orders. That’s fine! They are all Domain Events. What this is suggesting
to us is that these different Domain Events may be related to different parts of the
domain. We will see later that this often implies that some of these events are related
to different Aggregates, which are initially hinted at in the name of the event. We’ll
find out more about how the Event Storming process helps to call these out when we
continue this example in Bounded Context (201).

Shipping
We’ve called out how Domain Events come into being as part of the Event Storming
process, but it’s worthwhile to discuss how the simple “sticky-note”-based representa‐
tion of them is only a subset of the richness that a Domain Event can represent. For
instance, if you’re the owner of a shipping company, you can see why that particular
fact would be of interest.
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The container ship, Anne of Cleves, left the port of Los Angeles,

U.S.A., bound for the port of Hangchow, China, at 7:10 a.m. Pacific

Time, January 3, 2018.

After all, your ships have a schedule they need to adhere to, and you have customers
who are expecting their shipments to be delivered. Here’s another that may be a little
less obvious.

The container ship, Anne of Cleves, crossed out of U.S. territorial

waters into international waters at 74.23.125N, -23.44.281W at 12:45

p.m., January 4, 2018.

Why would the ship owner care about that? Well, the ship owner may not care about
that on their own, but they may be required by law to notify customs officials when
one of their ships crosses in or out of territorial waters.

Now what is the similarity between these two different statements of fact? Well, there
are a few obvious things. For one, they are all statements referring to something
that happened at a particular point in time. What’s more, both statements contain
information about the particular object(s) involved in what happened—in this case,
the ship and perhaps the port. They also carry additional descriptive information
about the occurrence, such as the type of occurrence, e.g., leaving port or crossing
an international boundary. When doing Event Storming, it’s often useful to list out
some of this detailed data about the Domain Event as part of the process as you work
through real-life scenarios—because it can then lead to a better understanding of the
data that makes up the event and the data used by the commands, policies, and other
parts of the Event Storming process.

Airline
Finally, we can see how Domain Events can help solve additional issues about reduc‐
ing the coupling between different components in your system. For instance, on most
airlines, you can register for notification of changes to a flight’s departure or arrival
time. The Domain Event is the fact that the status of the flight changed. What you
register for is a notification of these status changes, which can be sent by text, voice,
or email. This notification is distributed to any number of recipients, each responding
in its own way. That could, for instance, be used by passengers on a flight or by
people meeting passengers at the airport.

The important thing to note is that this solution reduces potential coupling between
applications. You see, the airline could keep track of the full travel itinerary of each
passenger on the flight—not only connecting flights on the same airline but also
flights on other airlines, reservations for rental cars and hotels, and any other travel
arrangements. For privacy reasons, the passenger may not be comfortable revealing
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all of this information to the airline. Also, the airline doesn’t want to be responsible
for storing all of this information and for processing updates to frequently changing
travel plans. And even if the airline had the most up-to-date itinerary, it doesn’t want
to be responsible for having to change the reservations with all of these other travel
service providers.

The preceding solution, in which the airline simply gives out a notification of travel
changes that allows different people, applications, and organizations to formulate
their own solutions, is the best approach. It keeps us from tightly coupling all of these
various systems. We’ll revisit this idea later when we look at the advantages of an
Event-Driven Architecture (Chapter 6)

Bounded Context
You are Modeling around the Domain (183) through an Event Storming (189) session
to get a better understanding of the domain and the problem you are solving. This
session has revealed many events with the commands and actors that trigger those
events. The session might have also outlined the types of things (Aggregates (211)
with Entities and Values) needed for the systems.

How do you clearly define the logical boundaries (edges) of a domain and subdo‐
main(s) where particular terms and rules apply?

The problem with a single domain model (e.g., a single vocabulary and set of entities
with values) that covers an entire domain is that it will often be too big to be
manageable. Human beings have limits to how much information they can easily
keep in their heads at one time. For instance, George Miller’s “The Magical Number
Seven Plus or Minus Two” describes the limitations of our short-term memory.

When more than one team shares a single common model, and common code
base, the members of the teams will inevitably run into one another when making
changes that are internally consistent with one team’s view of the model but can be
inconsistent with another team’s view. This leads to one of the problems often seen
with muddy, monolithic applications—it becomes difficult to test components that
simultaneously represent different viewpoints.

Getting the right stakeholders together to understand the system enough to partition
a domain into its parts and define the logical boundaries can be a difficult and tedious
task. Understanding which concepts are part of a subdomain and which concepts are
not can be challenging, especially when there might be some concepts that appear
to belong to multiple subdomains or bridge more than one domain. A large domain
that has many subdomains will often evolve over time, which might lead to adding,
removing, and reconfiguring subdomains as the business changes or you learn more
about the domain.
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Another motivation is the Single responsibility principle from IDEALS. One of the
hardest parts of domain modeling is determining where one domain (or subdomain)
ends and another begins. Many concepts don’t have extremely well-defined start and
end points but instead blur into each other. For instance, consider education—once
we had extremely well-defined start and end points in time that clearly delineated
primary education from secondary education and postsecondary education. How‐
ever, the rise of online learning has begun to confuse those lines. Concepts like
apprenticeship and certification blur the lines between work and education. What
this means for design is that we need to be very clear in defining our terms limited
to the specific purpose we are addressing at the moment. If we’re building an online
course registration system for courses on domain modeling, we don’t need to address
all the possible reasons why a person could be registering for a course or where they
are in their educational journey; we just need to keep to the particular problem at
hand.

Therefore,

Group related aspects of a subdomain into a Bounded Context where particu‐
lar concepts (Domain Events, Aggregates and behavior) act as a cohesive whole
addressing a particular purpose.

As previously discussed, large domains are usually broken down into smaller
domains, which are called subdomains. Domain models describe the logical imple‐
mentation (or the solution space). When modeling a domain, larger domain models
need to be partitioned into smaller pieces or domain models, and we need to put
boundaries around them. A Bounded Context (BC) delimits the scope or boundaries
of a domain model. A BC is simply the boundary within a domain where elements of
that domain apply.

A BC defines the boundaries of the applicability of a subdomain. It is an area where
certain terms and rules within a subdomain make sense, while terms from other
subdomains don’t. The scope of a BC can be the entire model of a subdomain (highly
recommended), or sometimes it can be domain models of 2 or more subdomains
(this often happens with dealing when legacy systems or more complex subdomains).

A BC is a logical boundary of a domain where particular terms and rules apply
consistently. A BC represents a boundary around a set of functional features (user
stories or use cases) within a domain. For example, it could be everything that
is related to customer management in an online ordering system, such as create
customer, update customer, and update customer address. A BC is simply the boundary
within a domain where a particular domain model applies. A BC delimits the scope of
a domain model.

Let’s extend the Joe’s Pizza example to illustrate how you can go from Event Storming,
where you gathered Domain Events, and to finding the boundaries (BCs) of the
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system and how they relate to subdomains. After further analysis through our Event
Storming session, we have learned that we can break Joe’s Pizza domain into three
subdomains: Order Pizza, Prepare Pizza, and Deliver Pizza (see Figure 5-8).

Figure 5-8. Joe’s Pizza Bounded Context example

Joe’s Pizza allows customers to place orders, which will prompt them to enter the
type of pizza requested, the customer’s address, and their payment information. In
this example, there is an outside Domain Event called Order Requested that triggered
actions (commands) within the Order Pizza subdomain—Enter Pizza Type, Enter
Customer Address, and Enter Payment Info. Once these commands are completed,
they trigger the Domain Events for the Pizza Type Entered, Customer Address
Entered, and Payment Information Entered. Once all of these commands have
finished, they will trigger a Domain Event that says that the order has been placed.
Notice that the Prepare Pizza subdomain is interested in this event, and once it

Bounded Context | 203



sees that an order has been placed, the pizza can be prepared, cooked, and packed
for delivery. The Prepare Pizza subdomain has a different actor, which is the Pizza
Chef. The chef will prep the pizza, cook the pizza, and package the pizza. Once the
Pizza Is Packed event has occurred, the pizza is ready to be picked up and delivered
to the customer by the delivery person.

A BC sets the limits around what a specific team works on and helps them to define
their domain-specific vocabulary within that particular context. Take the example
of a customer in retail. In one context, a customer is a person who buys products
from a store. In another context, a customer is a person to whom a retailer markets
its products. The customer, in reality, is the same person but will need different
perspectives in different BCs, each of which acts on the customer entity based on
their own rules.

Usually, a BC will be the boundary of a subdomain. However, there are times when
you might have more than one BC in a subdomain. To illustrate this, let’s consider the
banking domain. We can break that domain down into subdomains, such as credit
cards, loans, and accounts (see Figure 5-9). Sometimes a BC will be the complete
subdomain, such as the Loans subdomain mapping to a single BC. On the other
hand, there are times when a subdomain will be partitioned into multiple BCs, such
as the credit card in our example. In this subdomain, we have a Credit Card BC
that encapsulates information about the credit card, such as the number, code, limit,
etc. Then there is the Purchases BC that will keep track of the information about
purchases for a credit card.

When you define a BC, you define who uses it, how they use it, where it applies
within a larger application context, and what it consists of in terms of things
like Swagger documentation and code repositories. Each BC will have its unique
Ubiquitous Language for that subdomain. For example, the concept and view of an
Account for CreditCard will be quite different from the concept of an Account in
the Loans BC, which will also be different than the concept of an Account in the
CheckingAccount BC.
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9 Application Services is an implicit pattern originally described in Domain-Driven Design (2003) as a type of
Service.

Figure 5-9. Banking Domain with subdomains Bounded Contexts

Application Services
Clients of a BC should not have direct access to domain model elements (such as its
Aggregates). The interaction should be through what is called Application Services.9

An Application Service exposes the functionality to the application clients. Application
Services offers operations that correspond to use cases for the domain. Application
Services coordinates calls to domain elements and may access different Aggregates
within the BC. Application Services does not contain domain-specific business logic.
Rather, Application Services coordinates outside calls to the Aggregates and business
logic included within the BC. Application Services can deal with transactions, access
control, logging, and calls to other applications or BCs.

So to summarize, a BC can be seen as a cohesive grouping of one or more Aggregates,
with any related behavior related to them, and the interface (Application Services) to
these Aggregates and related behavior. A BC explicitly defines the boundaries of your
model. This concept is critical in large software projects. A BC can be used to define
the boundaries of your Microservices (119). When defining BCs, it is important
to remember that they are autonomous, and a developer should be able to know
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10 Context Maps described by Millet and Tune are used as a means to capture the technical and organizational
relationships between various Bounded Contexts.

whether a concept is included in, or out of, a BC. Context Mapping is a technique
useful for finding these boundaries:10

Context Map
Once you have identified subdomains, Aggregates, events, and boundaries, you can
start drawing the relationships between the BC—this map of the relationship is called
a Context Map. A Context Map is responsible for defining a boundary between BC.
These maps should be simple enough to be understood by the domain expert and the
technical team. A Context Map gives a comprehensive view of the system and can be
used to capture the technical and organizational relationships between the BCs (see
Figure 5-10 for an example in the pizza domain).

Figure 5-10. Context Map example
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When building the Context Map, it is important to avoid technical details. The
following outlines some steps that can be taken to build a Context Map:

1. Start with an Event Storming session to Identify Domain Events and the Aggre‐1.
gates (entities/values).

2. Group the Aggregates and Domain Events into BC and start drawing relationships2.
between them.

3. Label the relationships based on the Domain Events and how they trigger com‐3.
munication between and within BC.

4. Iterate through and discuss, evolving your Context Map as you learn.4.
5. Identify the team responsible for the BC.5.

While doing these steps, it is important to invite domain experts, technical people,
and other related stakeholders.

Implementation
In a BC, you partition your system into different boundaries and discuss the inter‐
relationships between these boundaries. To protect the internals of a BC, such as
Aggregates and Domain Services, we limit access to BCs to be available only through
the API of a BC.

The basic rule of thumb when going from design to a Microservice implementation is
to implement a Microservice for every BC you have modeled. So BC are the starting
point to define the outlines of your Microservices. A BC will include Aggregates
(groups of entities with values) and various behaviors that are either described as
part of an entity or Domain Services for behavior that does not belong to a specific
entity. Finally, a BC can include some implementation for the Domain Events, which
represent that something of interest has happened within a BC. These events can
trigger actions within the BC or might trigger an action in an interested BC. You
access anything within a BC through the interface to your Microservice, which is
called an Application Service.

One of the main advantages of BCs is separation of concerns. As stakeholders get
together and better understand the domain, the system can be better designed and
organized to best meet the needs of the organization. By breaking a system into
smaller and more understandable pieces, you get the benefit of a smaller, more stable
interface that allows the system to more easily evolve to changing requirements. This
is an example of applying the Single responsibility principle from IDEALS. Also,
Application Services provide a means of Interface segregation.
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One of the main challenges in finding BCs is that it requires coordination between
more teams and stakeholders. Coordinating and understanding various domains,
sharing models, and understanding the business language is expensive and takes
time. How to organize teams according to the BCs can be difficult, and understanding
the best way for BCs to interact can be very challenging. This can in a sense lead to
the Inverse of Conway’s Law, in that you must design the organization to reflect the
design of your software.

An Event-Storming (189) session helps you define the BC that map to the logical
boundaries of a Microservices Architecture (Chapter 4). This session also helps
identify the types of things (Aggregates (211)) that belong to the BC. Some behavior
belongs to the Entities within a BC. There will also be behavior that does not belong
to a specific entity in the BC. Domain Services (222) and Domain Events (193) can be
used for this type of behavior within your BCs—and they are often implemented with
an Event-Driven Architecture (Chapter 6). Application Services are the API into BCs,
and Repositories are used for persisting the Aggregates within a BC.

A BC can also form the boundary of modules in a Modular Monolith (29). When BCs
are implemented as a Distributed Architecture (38), they become an example of the
Microservices Architecture style.

An Anti-Corruption Layer (229) allows BCs to evolve independently, thus keeping
your BCs from becoming entangled and devolving into a Big Ball of Mud (22).

Example
Let’s return to our online ordering example. After finding the initial set of domain
events, the next step is to look for “pivotal” events. In our particular case, we’re just
looking at a segment of the entire timeline (we’ll see more later), but the first thing
that everyone in the group notices is that the person interacting with the system,
the persona (in this case, the Customer), changes at a specific point in the process.
Initially, everything is done by the customer who is browsing, selecting, and checking
out. You can see this in Figure 5-11.
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Figure 5-11. Events on a timeline with pivotal events

Once the checkout process is completed, though, the warehouse staff needs to get
involved to fulfill the order. Likewise, the shipper will need to get involved to
physically deliver the order to the customer. That makes the start of the process
(customer sign-in) and the end of this part of the process (customer checkout)
uniquely important. That transition suggests that part of the process represents at
least one BC—in this case, part of what bounds the BC is a time boundary that is
suggested by the handoff from the customer to your business. That’s represented by
the lines going vertically through those events. But there are other boundaries that
form the remaining outlines of the BC that we still need to find.

One important potential boundary that we’ve implicitly defined so far here is the
boundary of who is operating on the events—the Persona. If we extend the timeline
to the right after Order Created, you’ll find that there are different Personas (in this
case, Shipping and Warehouse) that get involved in the process. You can see this in
Figure 5-12.
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Figure 5-12. Shipper and Warehouse events

That shows us two possible “bounds” for a BC. One is time-based and based on pivo‐
tal events that signal important process changes. For instance, this entire part of the
process begins when the Order is created upon Checkout. That’s an important shift
in the process. However, the other possibility is that you have a boundary entirely
based on who (which Persona) is operating on the events. In this case, you’ll see the
Shipper is the one responsible for picking up the order and informing everyone that
the order has been picked up or that it has arrived. The Warehouse is interested in
that but doesn’t actually change the status of the order themselves until a far point in
the future when the order is archived.

Let’s extend our online ordering system example by going back and again looking
at user scenarios for when a customer places an order. After a customer logs in to
the system, they can browse through the online catalog of products and start adding
products to their shopping cart. After they have added one or more items to their
shopping cart, they can then checkout and place an order. Checkout is where the
customer will enter in their payment and shipping information for the order and
then place the order. Once the order has been placed, an event will be triggered for
shipping the order.

Returning to our ongoing Event Storming example about online ordering, in the
phase that follows identifying BCs, you start looking more deeply at the common
terms referenced in the events or that are suggested by the events. If the events
represent facts that have already occurred, then what you are looking for are the
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things that are referenced in those facts. In our case, we notice quickly that there’s
a difference between interaction with the catalog (browsing and searching) and inter‐
action with the cart (adding and removing items). Likewise, there are some pieces
of information that seem more tied to the customer (like their address and their
payment information) than to the order itself—after all, we want repeat customers!
Finally, there’s a phase change when checkout is complete—the Cart is no longer a
Cart; now it’s an Order that needs to be fulfilled by the warehouse staff. In Event
Storming, you can represent this just by sorting the events (still in timeline order) into
different swim lanes, as shown by the horizontal lines. You then identify the potential
Aggregates (Catalog, Customer, Cart, and Order) on which the events in those swim
lanes operate. We show those with Aggregate stickies (see Figure 5-13).

Figure 5-13. Shipper and Warehouse events

What this is leading to is that based on user scenarios for our online ordering
system, we have now identified a few core subdomains. There is one for search
and another for when a customer adds and removes items to their shopping cart
and then checks out. These subdomains include product catalog, cart, and order
subdomains. There is also one subdomain for entering customer details around
shipping and payment. There are others that we could potentially find in later phases
of the process, but we’ll leave those for later patterns.

Aggregate
You are performing an Event Storming (189) session to Model Around the Domain
(183) so you can design a system to be deployed on traditional IT or the cloud. When
modeling, stakeholders come together to better understand and describe the details
of the domain and subdomains for the system.
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How do you tie together the groups of tightly related concepts and the values that
belong within them in a subdomain?

Agile teams like to start quickly by working on their user stories to begin coding
functionality into the system. As part of this, they create objects or data structures
corresponding to what they currently understand about the system. The problem
arises when you need to start understanding how different viewpoints of the same
concept apply. You often end up with either multiple classes with slightly different
names and responsibilities or (even worse) huge classes with very different responsi‐
bilities and vast amounts of shared data.

A domain model is a representation of real-world ideas for your system that will
describe the different types of things and values in the system and how they are
related. It can be difficult to divide up and correctly describe the concepts in a
subdomain. You have to think carefully about the ownership and lifetime of each
piece of data and under what context different viewpoints apply.

The concept related to the types of things needed for a system has been around for
a long time. They are often called entities. Entities are domain concepts within a
system that have meaning (and therefore will have a unique id). For example, you
might think of an online ordering system, and you have the domain concept of an
Order. Entities almost always have values. Some values are simple values like strings
or integers. Extending on the Order example, a simple value for Order might be the
orderDate. Entities can also have more complex values, such as the Price, which can
include both a numeric value and currency, such as five dollars.

From Entity-Relationship modeling, you know that sometimes entities might be
well-defined and have a specific well-known identifier, but they might not live inde‐
pendently. For example, an order will have the line items of products that are part of
the order. Describing and grouping these entities can be challenging.

Therefore,

Identify and describe the Aggregates needed for your subdomains.

An Aggregate is a cluster of domain objects (entities and values) that can be treated
as a single, cohesive, conceptual unit. They are a group of related entities and their
values. The main purpose of Aggregates is to group the related entities and values so
they can be treated as a single domain concept.

Every domain, including its subdomains, will need to model the types of things
(entities) that you will need to keep track of, and the values and behavior associated
with these things. Entities are the things that the system or the domain is about.
For example, an online ordering system could have entities such as Customer, Order,
and Payment. An entity always has a distinct identity (or ID) that runs through time
and different representations. When you think of an entity, imagine something that

212 | Chapter 5: Microservice Design



needs to be tracked over time and whose attributes are likely to change over time. For
example, when I place an order, we will need to process the payment and ultimately
ship the order. The status of the order will change over time.

Entities are not just data; they also have behavior. So rather than entities being simple
data objects with no behavior, entities are what we often call rich domain objects
with behavior related to the entity. Therefore an entity interface favors behaviors, not
simply getter and setter functions. Entities should be the first place where we think of
putting the domain logic, specifically the logic associated with that entity. Entity is a
business concept that exposes behavior.

Of course, entities have values. For example, an order might have a simple attribute
such as the order date. These attributes can be represented as simple types such as
a string or integer. However, some values for entities can be complex, such as a
compound value like Address, Amount, Distance, Price, and Geolocation. These
other types of values are referred to in DDD terms as ValueObjects or VOs. The
identity of VOs is defined entirely by their state, and they are usually immutable.
When thinking of VOs, remember that they are values that don’t have and ID or
lifecycle. However, they often do have behavior. One way to look at these values is to
consider them as smart variables, primarily because they are values with behavior. For
example, you could have a Weight VO that has a function that converts the value from
pounds to grams. Two VOs with the same values for all their attributes are considered
equal. ValueObjects have no meaning without the entities they are associated with.

Let’s look again at Joe’s Pizza for when someone orders a pizza. Whenever there is an
Order Requested event, the system needs to capture information about the Order.
When examining the Order Placed Domain Event, we noted that we will need an
Order Aggregate to capture details of an order, such as the size of the pizza, toppings,
etc. (see Figure 5-14). It should be noted that this is a simplified subset of the domain
for ordering pizzas to illustrate the concept of Aggregates.

Figure 5-14. Joe’s Pizza Aggregate example
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In this example, the Order Aggregate has an Order entity associated with one or more
Item entities. An Item is associated with a Pizza entity that has the type of crust and
the size of the pizza and is associated with one or more toppings that are represented
as a VO (type of topping, like pepperoni), what side of the pizza the topping goes on,
and the amount (such as extra pepperoni). You might argue or ask, “Shouldn’t you
have a Pizza Aggregate, or better yet a Product Aggregate?” We could have designed it
this way, but we chose not to in this example both to make it easier to understand and
also to make a point that you don’t always need multiple Aggregates in a subdomain.
Simpler is often better.

It’s important to discuss why Pizza is an entity and Topping is not. Simply put, one
is entirely a subpart of the other. You could return a pizza to have it remade, but you
can’t have just a single topping removed or added without ruining the entire pizza.

Likewise, you might also ask why LineItem and Pizza aren’t modeled as a single
entity since there is a one-to-one relationship between them. You could model these
as one entity, but it’s better if these two concepts evolve independently. Separating
these two concepts into two entities follows the Single responsibility principle by
allowing rules and information about the pizza to evolve independently from the
rules and information needed for calculating the item’s price. Therefore, we decided
to not have a single entity for both of these concepts. The reason is that if we had to
have a single entity for both, we would have to pollute the interface and logic of Item
with the interface of Pizza.

So in summary, within a domain or subdomain, you will have Aggregates, which are
groups of the types of things (entities) with their values and any behaviors associated
with the entities. Entities have ID and can have values that change over time. Some
values for entities are more complex (or compound) values with behavior, which
are called ValueObjects. VOs usually don’t have ID or lifecycle. External objects
or services access the Aggregate only through the Aggregate Root or API into the
Aggregate. It is important to define the Aggregates (entities and values) in terms of the
Ubiquitous Language of the domain model.

It is more important to focus on the concept of the API for the Aggregate rather
than focusing exclusively on the entity that forms the Aggregate Root. In other words,
there needs to be an API to the Aggregate, which may or may not be the API of a
single entity. The important concept is that you have a single interface (API) to the
Aggregate as a whole. Another thing to keep in mind is that Aggregates usually either
succeed or fail as a whole. They often form the boundaries of transactionality and
have a Repository associated with them to encapsulate database access.
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There are some important considerations when dealing with Aggregates. Aggregates
are the basic element of transfer of data storage for your domain—you request to load
or save whole Aggregates. Transactions should not cross aggregate boundaries. An
Aggregate defines a (transactional) consistency boundary that remains transactionally
consistent throughout its lifetime. It is often loaded and saved in its entirety from the
database. If an Aggregate is deleted, all of its entities and VOs are deleted. A database
transaction should touch only one Aggregate.

Repositories
Repositories were originally described as a pattern by Evans as part of DDD. They
have gained traction once again with the rise of domain modeling techniques—
specifically in the context of Microservices. A Repository mediates between the entities
and the persistent storage for their values. Repositories make it so that your applica‐
tion can work with a simple abstraction of the data associated with your Aggregates
without having to know the details about underlining persistent mechanisms, such as
dealing with database connections, transactions, and the like. The benefit is that the
Aggregates are now more loosely coupled with whatever persistence mechanism you
are using, thus keeping these concerns out of the domain objects. Repositories provide
a means for the Aggregates as a kind of in-memory abstraction of the entities values.

A Repository is an in-memory abstraction of all elements of the Aggregates entities
and values. Therefore, the scope of a Repository is an Aggregate. A Repository is not
a Data Access Object (DAO). Rather, Repositories provide an interface around their
Aggregates with methods to add and remove objects and query objects based on some
criteria. A Repository allows you to populate data in memory that comes from the
database in the form of the domain entities. Once the entities are in memory, they can
be changed and then persisted back to the database through transactions.

Implementation
Let’s examine the concept of Customers and Orders for an ordering system to discuss
some implementation alternatives. Any ordering system will have Customers, which
will have Addresses associated with them. Address can be modeled in your ordering
system as a ValueObject, and you would never have an address without it being
associated with a Customer. A Customer will have a lifecycle, and all Customers for
an ordering system will have Addresses. Figure 5-15 is an example of the Customer
Aggregate.
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Figure 5-15. Customer and Order Aggregate example

From this example, you can see that an Aggregate can have one or more entities
with possible VO (you must always have at least one entity). The typical aggregate
has one entity and a few VOs, but Aggregates with 2–3 entities are also common, as
long as they are cohesive. You can have an Aggregate with only one entity and no
VOs. Each Aggregate will have a single API to access anything within the Aggregate,
which sometimes maps to a single root entity called the Aggregate Root in domain
modeling terms. The Aggregate Root is the main entity within the aggregate, that the
Aggregate is primarily about. For example, the Customer Aggregate would include
the Customer and Address entities. Since it doesn’t make sense to have an Address
without a Customer, the Aggregate Root would be the Customer entity. The entities
and ValueObjects can be implemented in the way we would generally implement
them given the language we are using. For example, in Java, we would create a Java
class for each entity and VO.

Aggregates will be implemented as part of the Microservice they belong to; the
Bounded Context that contains their Aggregates. A couple of design principles to
consider when implementing Aggregates related to SOLID are the Single responsibil‐
ity principle and the Interface segregation principle. We want to incorporate and
modularize our Aggregates so they can evolve independently and be protected from
change. There are various ways to achieve these principles, and one way is to create
a service for each Aggregate. This will encapsulate the domain objects and the Service
API will be the interface to any entities inside the service.
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11 Repositories is an implicit pattern that was originally described in Domain-Driven Design (2003).

So a BC will be implemented as a Microservice that can be packaged as a Microservice
with a single service when it has one Aggregate; or it could contain 2, 3, or more
services when there are multiple Aggregates, as long as they are cohesive. Packaging
these cohesive Aggregates together into a single Microservice creates a transaction
boundary for these related aggregates.

The main advantage of Aggregates is that they group logically related things (entities
and their respective Values) as a single cohesive business concept. This provides
for encapsulation and also ensures that the related concepts are treated as a single
unit, thus supporting the Single Responsibility principle from IDEALS. This also
supports the Interface segregation principle. Both of these help when designing
Aggregates with the end goal being a Microservice or a component of a Modular
Monolith.

That brings up another valuable advantage of Aggregate. One of the truisms of Dis‐
tributed System design is Fowler’s First Law of Distributed Object Design, which is
“Don’t distribute your objects!” By that Fowler meant to keep your distributed inter‐
faces, that is to say, your distribution cross-section, small. The more information you
transmit, the longer each distributed call takes, which leads to more opportunities
you get out of sync with the current database state and a greater chance of polluting
one abstraction (or Bounded Context (201)) with another. Aggregates (211) reduce
that overall interface size by hiding the entities and value objects inside of them.

On the other hand, it can be hard to find these groups of related things to make up
these Aggregates—specifically when you are trying to not overdesign. There can be
a temptation to try to model your entire enterprise, something that has often been
attempted but rarely succeeds.

Event Storming sessions help find the Aggregates, which are the related types of things
with their values. Aggregates with their entities and VOs always belong to a specific
Bounded Context. Any behavior that belongs to an entity is put into that entity.
Domain Services (222) and Domain Events (193) are used for behavior that does
not belong to a specific entity or value object. All concepts for Aggregates should be
defined in terms of the Ubiquitous Language for the domain.

Repositories provided an abstraction for handling the interactions between Aggre‐
gates with their entities and values to the persistent storage. Repositories, when
implemented within a Microservice, is an example of applying the concept of a
Self-Managed Data Store (154).11 The values for Aggregates when implemented using
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a Microservices Architecture (Chapter 4) as part of a Cloud Application (Chapter
1) will use persistent storage to save their values by applying Cloud-Native Storage
(Chapter 7) patterns.

Examples
You can find a simple example of the entity/Aggregate relationship in a retail store.
If you go to the soda aisle in a grocery store, you can buy a 12-pack carton of soda.
Each can in the carton has a bar code to identify it individually, but you can’t buy
a single can from the carton. The cans are entities that are referred to as dependent
entities. The root entity is the carton. The carton is the Aggregate because it defines
the dependent entities’ lifecycle (at least as far as the retail store is concerned).

Online ordering system carts
Returning to our ongoing Event Storming example about online ordering, in the
phase that follows identifying Bounded Contexts, you start looking more deeply at
the common terms referenced in the events, or that are suggested by the events. If
the events represent facts that have already occurred, then what you are looking for
are the things that are referenced in those facts.

In our simple example, the customer can add or delete items from the cart. Once they
are ready to place the order, the customer can proceed to checkout, enter or perhaps
check their payment and shipping information, and place the order.

In our case, we notice quickly that there’s a difference between interaction with the
catalog (browsing and searching) and interaction with the cart (adding and removing
items). Likewise, there are some pieces of information that seem more tied to the
customer (like their address and their payment information) than to the order itself—
after all, we want repeat customers! Finally, there’s a phase change when checkout is
complete—the Cart is no longer a Cart; now it’s an Order that needs to be fulfilled
by the warehouse staff. In Event Storming, you can represent this just by sorting into
events (still in timeline order) and into different swim lanes (shown by the horizontal
lines) and then by identifying the potential Aggregates (Catalog, Customer, Cart, and
Order) that these swim lines represent events operating on. We show those with
Aggregate stickies (see Figure 5-16).
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Figure 5-16. Customer purchase Happy Path

These horizontal lines represent another important “boundary line” that helps define
a Bounded Context. This is the boundary between entities and Aggregates. A good rule
of thumb is that you shouldn’t have single events operate on more than one entity—if
you find yourself doing this, that’s a signal that you probably are mashing multiple
events together, or perhaps that you’ve missed an Aggregate that ties several entities
together into a cohesive whole.

Finally, in the last step of the current part of the process, you add the additional
“decorations” to the timeline. This includes noting potential data elements that the
Aggregates contain or refer to on the stickies, as well as adding blue stickies for
all the commands (e.g., things the user needs to invoke) that result in these events
being recorded. Whenever there’s a system-triggered step, you capture that as a pink
“policy” sticky, as we see in this case when an Order is created from what used to be a
Cart upon checkout (see Figure 5-17).
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Figure 5-17. Decorated Purchase Happy Path

The command stickies (Enter search item, Sign in, Enter customer address, Enter
payment info, Add to cart, Remove item, and Check out) will help you identify the
operations on the Aggregates that you have found. Along the way you not only find
additional attributes for the existing Aggregate stickies, but you often find entirely
new ones when you have commands that don’t seem to operate on any of the ones
you’ve already identified.

Now, at this point, you have a couple of different directions you can take with the
expansion of your example. You can either look wider at the other parts of the
timeline, or you can go deeper on the entities and potential Aggregates you’ve already
found. Let’s start with the latter case.
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So far, we’ve seen that the shopping cart will have a list of the items that the customer
has added for a potential order. Each item in the shopping cart will need to include
the desired quantity for each item as well as the unit price and the total price for
the requested quantity of each item. That leads us to the next stage of the domain
modeling process, which moves beyond working on the stickies alone and begins to
consider details that are closer to implementation.

We’ve noted that the shopping cart contains products that the customer is thinking
about ordering. A bit of thought leads us to conclude there ought to be another entity
associated with the Cart entity, which is the Item entity. The Item can then have
attributes for the productID, quantity, and unit price.

That means that in this example, our Cart Bounded Context has an Aggregate with
two entities, a Cart that is associated with the Item (this is a one-to-many relation‐
ship—it can have many products the customer would like to order). Because these
two entities are closely related, we created an Aggregate called the Cart Aggregate for
these two related entities.

This Bounded Context is fairly straightforward and includes only one Aggregate,
which we call the Cart Aggregate. This Aggregate has two entities, Cart and Item.
There is a one-to-many relationship between the Cart entity and the Item entity.
Notice that we will never have Items without a Cart, therefore the Cart is the
Aggregate Root in this example.

A bit more consideration makes us think about the relationship between the
Customer entity and the Cart entity. This is a looser relationship. Once a customer
enters their address, you may want to save that address for a long time, for instance,
in preparation for the next order they place. The customer also doesn’t disappear
when the Cart is checked out—they could then begin to fill a whole new shopping
cart if the urge strikes them. That means that while there may be a relationship
between the two entities, it’s not the same as between Cart and Item. In that case, the
Customer may not be a part of the Cart Bounded Context—it may be an entity that
has an independent set of activities associated with it and an entirely independent
lifetime. We show this in Figure 5-18.
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Figure 5-18. Cart Aggregate within the Cart Bounded Context

You would need to maintain a loose reference from one to the other in order to find,
for instance, where to ship the order to, but they are not part of the same overall
context and thus not part of the same Aggregate.

Domain Service
You are Modeling around the Domain (183) a system you are developing and start
by getting stakeholders together to perform an Event Storming (189) session to
better understand the domain. During this session, various rules and operations are
outlined and described for the subdomains of the system being built.

How do you model those operations within a subdomain that do not belong to a
specific entity or Aggregate?

When developing systems, understanding the rules about a domain and knowing
where behavior should be is always challenging. Some behavior belongs to the enti‐
ties, such as updating a Customer’s address. Any behavior specific to an entity or its
related entities within the same Aggregate is put into those entities. However, there are
cases where you have some business rules or behavior in the domain that are not the
responsibility of a specific entity or ValueObject.

Consider the simple case of modeling a transfer between Accounts. The transfer is
not one of the CRUD operations of an account. Rather, it is a concept that affects
multiple entities, especially if the transfer is between different account types (such
as Loans and Checking) residing in different Bounded Contexts. So how do you
represent these functional concepts that do not map to a specific Aggregate, especially
when they might be behavior related to two or more entities within the same Bounded
Context?
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Previous design methods often tried to force many operations into an entity-based
model, usually with adverse consequences. Trying to shoehorn an operation like
Account transfer into one or the other of the Accounts would be a violation of the
Single responsibility principle.

There is also the case where there may be no entities that fit a particular concept
in a domain. This is particularly true when you have interfaces to things that reside
outside your system. For instance, in our online ordering scenario, the shipper lies
outside the system—we need to interface with an external API provided by UPS or
FedEx to create a shipping label or check on the status of a shipment, but the only
connection we have to that system is a single identifier: a tracking number. It would
be absurd to force-fit that interface functionality into any of the other entities in our
system.

Therefore,

Model operations that do not belong to a specific Entity and need to interact
with multiple entities within the same Bounded Context as a standalone interface
declared as a Domain Service.

A Domain Service performs operations within a Bounded Context that do not belong
to any specific domain objects. For example, a banking application might have a
Domain Service that handles the transfer of funds between accounts. Domain Services
are stateless and are used to perform domain operations and business rules across
multiple entities.

Domain Services have three important characteristics: first, the operation relates to a
concept that is not part of an entity or ValueObject. Second, the interface is defined
in terms of elements of the domain model, and third, the operation is stateless. It is
important to define the interface of the service in terms of the Ubiquitous Language
of the domain model. Domain Services are frequently used to orchestrate multiple
entities or domain objects.

Let’s see how we can extend our model for Joe’s Pizza to include Domain Services.
When ordering a pizza, the customer will select the types of pizzas they desire with
their toppings. Customers who shop regularly can get a discounted price, and the
cost of delivery is dependent upon where the customer lives. Whenever an item
is added to the order, the system needs to calculate the current price of the order
depending on the items in the order and some customer information. Therefore, the
price calculation is dependent upon the Order aggregate with its LineItems of pizzas
ordered and the Customer aggregate (see Figure 5-19).
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Figure 5-19. Joe’s Pizza Domain Service example

One way to model this is to include the business logic to calculate the price in the
Order aggregate. However, this would couple the Order aggregate with the Customer
aggregate, violating the Single responsibility principle. This business logic should be
separate and designed to interact with these entities to perform its operation. Thus we
create a Domain Service for calculating the price, which in this example can be seen as
sort of a Strategy.

The operations in a Domain Services may only read (e.g., calculate a value with
input from different entities) or may change the state of one or more entities. These
operations are part of the business domain—they are not technical issues of imple‐
mentation. Things like “Login,” “Authentication,” and “Logging” aren’t appropriate
services of this type. However, a concept like “Funds Transfer” in banking, “Adjudica‐
tion” in insurance, or “Calculating the Price of an Order” in ecommerce might be.
Domain Services are not CRUD operations; those would be put into a Repository or
perhaps into the interface of an Aggregate. They should also not have dependencies
on infrastructure elements.
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You never directly access a Domain Service from outside a Bounded Context. Rather,
a Domain Service can be called by an Application Service or other Domain Services
or entities within the same Bounded Context. Domain Services are different from
Infrastructure Services and Application Services because they include domain logic
and operate on domain entities. Domain Services should always be described using
the Ubiquitous Language. Domain Services contain domain logic, whereas Application
Services orchestrate between domain elements within a Bounded Context and do not
implement any domain logic.

Implementation
The implementation of a Domain Service will be dependent upon the language and
technologies you are using for building the system. Let’s look at how we might
implement something for a banking account subdomain (BC) with three Aggre‐
gates: SavingsAccount, CheckingAccount, and AccountHolder. The BC also includes
a TransferFunds Domain Service that interacts with the SavingsAccount and the
Checking Account Aggregates to transfer money between the two accounts for the
AccountHolder (see Figure 5-20).

Figure 5-20. Bank account Domain Service example
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In this example, the logic for transferring money does not belong to either the
SavingsAccount entity or the CheckingAccount entity. Rather this is business logic that
is separate from and needs to interact with these entities to perform its operation.

The Domain Services are implemented with the programming language you are
using to build your systems. For example, in Java, we would create a Java class for
the Domain Services. Domain Services will be implemented and deployed as part of
the Microservice they belong to—the Bounded Context that contains their Domain
Services.

Domain Services provide an abstraction for domain logic that does not naturally
belong to a specific entity. This abstraction can keep core domain entities clean. This
can reduce the coupling between entities within aggregates, allowing them to evolve
independently. Domain Services help support the Single responsibility principle from
IDEALS by not overloading responsibilities within an entity. It also helps with Loose
coupling by not entangling related concepts of aggregates with one another.

It can be challenging to understand the domain and know how to organize and
partition domain concepts. Various stakeholders—including domain experts—collab‐
orate closely to understand and model the domain. It can be difficult to decide
which rules and behaviors belong to an entity and which are independent of a
specific entity. This can be especially true when there is poor communication between
stakeholders. Insufficient communication between developers, business analysts, and
domain experts can result in misaligned expectations and a system that does not meet
user requirements.

Some domain logic naturally belongs to a specific entity. When this happens, you
implement the domain logic within that entity. Some domain logic does not belong
to a single entity; rather, it can include operations across multiple entities. Domain
Services is a domain concept within a Bounded Context (201) to encapsulate the
domain logic between Aggregates (211) and are described in accordance with the
Ubiquitous Language for its subdomain. Domain Services can be invoked by the Appli‐
cation Service of its BC when an external system needs to call the domain logic of that
service. Also, Domain Services can be invoked from some action that is triggered by a
Domain Event (193).

This last point is worth expanding a bit. For instance, in our online ordering example,
an Order is not created until the Cart is completely checked out. Whose responsibil‐
ity is it to create the Order? It’s not the responsibility of anything inside the Cart
Bounded Context. Placing it there would expose far too many details of how the Order
is implemented outside that Bounded Context. Instead, that should be the job of a
Domain Service inside of the Order Bounded Context—the process would be initiated
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by receiving a Domain Event that signals that the Cart has been checked out. That is
why the Event API (274) is so important. It serves as a contract between the Bounded
Contexts that communicate in this way—the Order Bounded Context knows it needs
to listen on a specific channel for a specific event in order to begin its job.

Example
One of the things we’ve intentionally kept vague in our online ordering system
example is how payment is accepted for the widgets purchased in our online widget
store. Even in the earliest Event Storming timelines for this example, we had “payment
accepted” as an event in the timeline prior to the Order being created from the Cart.
We show that in the segment of the event timeline in Figure 5-21.

Figure 5-21. Zoom of purchase timeline

We also grouped “payment accepted” as part of the Cart Bounded Context in the
earlier groupings of Domain Events. However, we’ve not paid any attention to that
part of the process. We’ve looked at ways that prices and order totals could be calcula‐
ted from line items in our other example for Joe’s Pizza, so we could extrapolate that
to our widget example. We’ve even seen how payment (credit card) information could
be gathered from the customer, but an important question comes to mind—what do
we do with that payment information?

The long and short of it is we need to use external (third-party) services to complete
the crucial step of charging the credit card that the user provided for the total amount
(including any applicable taxes and shipping fees) of the Order. For that, we need
to reach out to these external services. But the question is, where does that behavior
go? If you look at the grouping of the Domain Events, Aggregates, and actions from
our Event Storming session in Figure 5-22, you’ll see that it’s not obvious where this
behavior should sit.
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Figure 5-22. Cart Bounded Context

We could potentially try to attach the logic for doing this to the Cart Aggregate, but
the thing is, it doesn’t really fit there. Nor does it fit with the Repository that would
be needed to find all the Carts and keep them up-to-date as users browse the catalog
and add and remove items. Any behavior that is specific to an entity is put into that
entity. This doesn’t fit those cases. What you quickly conclude is that you need a
different location for this domain logic—and that is exactly what the purpose of a
Domain Service is.

Whenever you have business rules or behavior in the domain that is not the respon‐
sibility of a specific entity or ValueObject, you can add an operation to the model
as a standalone interface declared as a Domain Service. So we can create a Payment
Processing Domain Service that can be called from the checkout process. You can see
this in Figure 5-23.

This is a fairly complicated process, with a lot of moving parts. Once checkout is
initiated (let’s say from a Checkout Application Service), the Checkout Application
Service then has to coordinate several pieces. First, it has to find the Cart that is
being checked out (from the Cart Repository). Then it has to ask that Cart for
the total price. Next, it needs to obtain the previously saved payment (credit card)
information from the Customer Bounded Context. Only now can it ask the Payment
Processing Domain Service to accept the payment for this amount and use this credit
card information.
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Figure 5-23. Checkout process

That Domain Service can then reach out to the Payment Gateway external API
(Payment Gateways are third parties such as Stripe or Square) and securely transmit
the payment information to the gateway. The Payment Gateway then handles sending
the request on to the Payment Processor (such as PayPal) that will authorize the
transaction with the bank or card network. If the payment is authorized, the transac‐
tion can complete, and the “Payment Accepted” event can be sent out on the Cart
channel of the Event Backbone.

Anti-Corruption Layer
You are Modeling around the Domain (183) to design and implement an application
to be deployed on traditional IT or on the cloud. There are multiple systems or
subdomains (Bounded Contexts (201)) that need to interact with one another.

How can we design the system so that the Bounded Contexts (BCs) can interact
without being tightly coupled together?

Sometimes you need multiple bounded contexts to interact with one another. For
example, in a banking domain, you could have a CheckingAccount BC that needs to
interact with a CreditCard BC when making a credit card payment from a checking
account. Their domain models are different, and adapting the BC of CheckingAc‐
counts to the bounded context of Credit Card’s interfaces can lead to “corruption” of
the BC CheckingAccounts model.
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There are times when one Bounded Context needs to interact with another Bounded
Context. However, their domain models are different, and “adapting” the two BC
interfaces can lead to the BCs being tightly coupled and dependent on each other. In
particular, you need to keep the amount of information exposed by the Service API
of each Bounded Context low—you don’t want to expose all the details of how your
system operates: if too many external systems know about it, it will become fragile.
For instance, you wouldn’t want to expose all the details of calculating shipping
charges by a third-party shipper in an online ordering scenario to every part of the
system if you wanted to be able to explore potentially cheaper, more exotic options
like drone delivery. Why would you always generate a tracking number and attach it
to all your steps if a drone does the delivery? Instead, it’s best to keep each Bounded
Context tightly in its own lane, which is a way of upholding the Single responsibility
principle.

There are also times when your system needs to accept a variety of requests from
external systems or components. You need to integrate existing inflexible systems
with your components. These systems often send requests and data in different
formats. You’d like to define a common format for identical requests from external
systems, but it is not possible to make them conform to a single interface specifica‐
tion. How can you architect your system to accommodate these variations? How
can you support variations in requests and data formats without muddying up your
implementation? In a sense, this is a form of Interface segregation. You want to keep
external things internal and internal things internal.

You would like to keep the interfaces to the functionality provided by components
of your system simple and straightforward. However, you need to interact with other
systems that may be poorly architected and don’t conform to your architecture.
When these external systems are muddy, you need to find ways to integrate these
systems without compromising your existing interfaces.

There are times when you have limited ability to change existing, possibly muddy,
components that are outside your control. You need to integrate your software with
these external components. These components are not easily modified and may be
poorly designed. How can you preserve the design integrity of your system’s core
components while integrating with existing components?

As new functionality is added or existing functionality is modified, programmers
routinely add code to integrate with external components and systems. Can they do
so with minimal impact on existing core components?

Therefore,

Create an Anti-Corruption Layer (ACL) that handles interactions and adheres to
the interfaces of the bounded contexts that need to interact with one another.
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The Anti-Corruption Layer acts as an isolation layer that offers an interface for the
two Bounded Contexts (BCs) to interact. This isolation layer adapts and translates to
the interfaces of the BCs. It contains translation logic only, not business logic. It is in
a sense the glue-code between the two BCs that keeps the two BCs clean from their
respective APIs.

Ideas related to ACL have been around for a long time and help two separate systems
to evolve independently without becoming tightly coupled, which could lead to a
system becoming a Big Ball of Mud. An ACL helps ensure that the semantics in one
BC do not “corrupt” the other BC’s semantics. ACLs provide a specialized interface
to your “protected” components, which can perform data verification and possible
filtering or data cleansing before delegating the call to the preserved “clean” interface
of the component you don’t want to be compromised. An ACL promotes Loose
coupling across BCs.

This pattern is similar to Adapters or Facades and sometimes will be a two-way
adapter. One way to accomplish this is to implement an Adapter or Bridge that takes
(possibly muddy) requests and translates them into calls that preserve the “clean”
interface. This cleansing and transformation can also be implemented using a Proxy
or Facade.

This is especially an issue when you have to couple your internal components to
some external systems interacting with your components. This could muddy up
the code and make it more difficult to support new variations. By separating these
concerns about the API and the cleansing and filtering functionality into separate,
client-specific components (the adapters or proxies), you allow the common internal
component to remain clean and focused on its main responsibility. This also helps
solidify the boundaries between different parts of the system, ensuring clear roles and
distinct responsibilities. These boundary areas are also where trust regions can be
defined and enforced. Both input and outputs to and from the protected component
can be filtered and transformed to provide the desired results (see Figure 5-24).

Figure 5-24. Anti-Corruption Layer protecting components
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There are many patterns from Design Patterns (1994), such as Adapter, Bridge,
Decorator, Facade, Proxy, and Strategy, that can be applied when implementing an
Anti-Corruption Layer. An Adapter can be used to translate one interface of a BC
into a compatible interface for another BC. A Mediator can be used to implement an
Adapter that has to communicate and adapt to multiple BCs. The mediator provides
the glue-code to keep the BCs clean. You might also include filtering and security
checks. Interceptors (Pattern-Oriented Software Architecture, Volume 1, 1996), which
are dynamically invoked, can be used to filter and do preprocessing before invoking
core components.

A handy way of combining several of these ideas from Design Patterns is with Remote
Facade (Patterns of Enterprise Application Architecture, 2002). This pattern acts like
a Facade, which in turn acts like an Adapter between internal APIs and external
(distributed) APIs. A Remote Facade could be built either as a wholly internal ACL
within the Bounded Context (in which case, it also represents the Application Services
of the Bounded Context, particularly in a Microservices Architecture (Chapter 4), or
as an external ACL that handles external API’s in a Modular Monolith (29).

An ACL makes it so that services and clients are more loosely coupled. It insulates the
clients from knowing how the application is implemented. An ACL also simplifies the
client by removing dependencies between services. This preserves the integrity of the
clean component and its desired interface. ACLs provide a place to link in alternatives
including untrusted code, thus allowing for validation and verification along with
filtering and cleansing without adding complexity to existing components. They sep‐
arate transformation/validation from code that implements component functionality.
Additionally, they make it so that you can add one or more customized interfaces
to support muddy code without breaking/changing existing code. ACLs are a way of
supporting the Loose coupling principle from IDEALS.

ACLs also have some challenges. One is related to increased complexity—there
is another evolving interconnected part that must be understood and maintained.
This could cause an increased maintenance and governance burden. ACLs have the
overhead of the extra network hop via the API, which can decrease performance
with translation layers between components. When new behaviors need to be added
to a service, you have to evolve the ACL for communication with other services.
The extra adaptation layer to interact with components increases complexity, and is
another spot where mud can start to grow—however, this complexity or glue-code is
contained within the ACL, and good design principles can help with this.

An Anti-Corruption Layer keeps Bounded Contexts (201) from becoming entangled
and tightly coupled with one another. They allow interacting Bounded Contexts to
evolve independently. This is especially useful when you are interacting with Bounded
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Contexts created by someone else or a third party that you have an incomplete under‐
standing of and little control over. An ACL can be implemented with Dispatchers
(140) or Adapter Microservices (135).

As referenced earlier, Anti-Corruption Layers are often seen in Modular Monoliths
(29) and Distributed Architectures (38) as a means to keep components or subsys‐
tems clean.

Example
As an example, let’s revisit our online ordering system. After an order is created by
the system, we will need to fulfill and package the order and then ship the order. One
possible solution is to include the fulfillment and shipping within the same Bounded
Context. The problem with this is that the concept of order fulfillment can evolve
independently from how we ship the orders—for instance, we may want to make it
possible to change the shipping company in the future or do our own shipping.

We don’t want to muddy the concept of orders with the concept of shipping. So
rather than put shipping within our BC, we separate it into its own subdomain with
a different BC. Thus, these concepts can evolve independently. However, these two
BCs will need to interact. For example, when you place an order, you will need to
make sure that the order is shipped. To prevent these BCs from overlapping or being
muddied, we can create an ACL between the two. ACLs are commonly used to protect
our system from changes from external (sometimes third-party) systems that we have
no control over. ACLs also allow different subdomains (BCs) to evolve independently.

Conclusion: Wrapping Up Microservice Design
So far in this book, we’ve discussed a number of architectural guidelines for building
cloud-native, service-based distributed systems, of which Microservices are one such
architecture. The Guiding IDEALS for Designing Microservices are one proven set of
design principles that motivated the patterns in this chapter.

Our design approach focuses on avoiding translation errors from the domain expert’s
requirements to the code. The foundational idea presented in this chapter is that
Modeling Around the Domain (183) is critical to avoiding these translation errors
when designing applications, regardless of architectural style.

Modeling Around the Domain presents a subset of domain modeling concepts that
are extremely useful when building applications using the Microservices architectural
style. To be successful, you must first understand the core domains and subdomains
reflecting what the business or software system is primarily about. The goal is not to
try to create a universal (or enterprise) language. Rather, modeling should be phrased
in terms of the Ubiquitous Language that makes sense within a subdomain.
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That modeling process begins with an Event Storming (189) session. That session
describes a linear sequence of Domain Events that represent facts about the system
that have occurred. These events can trigger a change or some action in another part
of the domain.

Emerging from that process, you delimit the boundaries around the domain model of
a subdomain with a Bounded Context (201), or BC. The boundary of a BC maps well
to the boundary of a Microservice. We limit access to the internals of a BC through
Application Services—which are the APIs of a Bounded Context.

Within a Bounded Context, there will be Aggregates (211)—which are the clusters
of related domain objects (entities) that are likely to change over time. Aggregates
include the related entities and their values, together with possible Value Objects
within a subdomain. Repositories provide an abstraction for handling the interac‐
tions between Aggregates and persistent storage—hiding implementation details of
the persistence mechanism.

There is often logic that does not belong to a specific entity. Domain Services (222)
handle domain logic that falls between or outside Aggregates.

Finally, an Anti-Corruption Layer (229) (ACL) protects the semantics of a Bounded
Context from being corrupted by the semantics of another BC.

Figure 5-25 shows an example of these concepts working together. In this diagram,
we illustrate several key concepts, including how a single Bounded Context can have
one or more Aggregates, each comprised of related entities, and that the persistence of
the entities within a Bounded Context is handled by a Repository. Likewise, external
access to the behavior of an Aggregate is provided through Application Services,
which may be mediated through an ACL. This ACL can be implemented either as a
separate service or may be part of the Application Service on either side.

Behavior in between Aggregates is handled by Domain Services. Finally, Domain
Events can be created and placed on an Event Backbone whenever anything changes
within the bounds of a Bounded Context. That allows for a style of communication
between Bounded Contexts that greatly limits coupling between the modules or
Microservices that make up the implementation of our Bounded Contexts.

234 | Chapter 5: Microservice Design



Figure 5-25. Domain modeling concepts

Going from Domain Model to Microservices
Once you have an understanding of the requirements and have completed enough
modeling, you might ask, “How do I go from my domain models to a Microservices
implementation?” Domain modeling techniques are a way to model a domain so that
the Microservices architectural style can be applied to the implementation of a system.

To see how to go from our modeling sessions to implementation, let’s look again at
what we mean by Microservices. In “Microservices”, James Lewis and Martin Fowler
described Microservices in the following statement: “The microservice architectural
style is an approach to developing a single application as a suite of small services,
each running in its own process and communicating with lightweight mechanisms,
often an HTTP resource API. These services are built around business capabilities and
independently deployable by fully automated deployment machinery.”

There are a few distinguishing factors we can pull out of this definition. It is a way
of developing or building a system with a suite of small independent services. An
important factor is the ability to be independently deployed, and the deployment
unit (the Microservice) should contain only one service or a few related cohesive serv‐
ices. Critically, this definition also points out that Microservices should be modeled
and built around business capabilities. This last point is closely related to domain
modeling techniques since they focus on identifying the business capabilities within a
domain.
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So when we get ready to implement our Microservices, a Bounded Context must be
one of the first concepts to consider. A BC should be used as a starting point to
define the boundaries of your Microservices. A BC will include Aggregates (entities
with values) and various behaviors that are either described as part of an entity or
as Domain Services for behavior that does not belong to a specific entity. Finally,
a BC should include Domain Events, which represent that something of interest
has happened within a BC. Access to anything within a Bounded Context is limited
through the interface to your Microservice, which is called an Application Service.

The basic rule of thumb when going from design to a Microservice implementation
is to implement a Microservice for every Bounded Context you have modeled. Then
for each Microservice that maps to a BC, create a service for each Aggregate within
that BC. This encapsulates the Aggregates and you provide an interface (API) into
the Aggregate through the Service API. Finally, implement any Domain Services and
Domain Events as part of the Microservice that you have modeled within the BC. For
any Aggregates that need to be persisted, you will include a Repository for reading
and persisting these values.

There are a lot of possible scenarios that influence how your Microservices should be
implemented. These scenarios will either contain all of the business logic within a
Bounded Context or there will need to be interactions between bounded contexts.

Business Logic contained within a single Bounded Context
The simplest scenario is when the business logic is contained entirely within the same
bounded context and does not need to interact with other BCs. When you have this
scenario, you implement the BC as a Microservice and then implement a service for
each Aggregate within the BC. These Aggregates contain cohesive entities with their
values and behaviors. Communication through the Aggregate is only done through
the Aggregate API, which is sometimes called the Aggregate Root. We then deploy all
the Aggregate services within a BC as a single Microservice.

A Microservice can contain a single service or a few services, as long as they are cohe‐
sive. By implementing each Aggregate as a service within the Microservice, we isolate
and protect the Aggregates from change, reducing coupling between Aggregates.

This follows the Single responsibility principle. We expose the interface to the
deployed Microservice through an application service and use domain events to flag
when something happens within the microservice. Domain Services include logic that
does not belong to a specific entity. The Aggregates of entities and VOs, domain
events, and domain services are usually considered the domain layer of the BC. This
domain layer can interact with an infrastructure layer, such as making a call to a
Repository.
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Interactions between different Bounded Contexts
For more complicated scenarios, when there are interactions between different boun‐
ded contexts, we will still create a service for each Aggregate within the BC and deploy
them all together as a single Microservice. We will also need to deal with interactions
between bounded contexts. Sometimes these interactions are done through direct
synchronous (HTTP) calls to another Microservice for the BC we need to interact
with. If needed, you can put an Anti-Corruption Layer between Microservices (for
example, an API Gateway) to help minimize this coupling.

Other times, we will have asynchronous calls that we implement with events for com‐
municating between BCs. Events are communicated asynchronously, which provides
the benefit that the system as a whole is still available even if the subscribers are not
available. For example, the Catalog Microservice could continue to work even if the
RecommendationEngine Microservice is not available—it would just display items in a
default order rather than in a recommended order that maximizes potential purchase.

Domain Modeling Concepts Leads to a Layered Design
In Patterns, Principles, and Practices of Domain-Driven Design (2015), Millett and
Tune point out that modeling with domain concepts can lead to a layered design (see
Figure 5-26).

Figure 5-26. Domain modeling can lead to a layered architecture
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Within each Bounded Context, you will have an application layer (which is the
Application Services). This is the top-level interface to your Microservice and is on top
of the domain layer that includes the Aggregates of entities and VOs, Domain Events,
and Domain Services.

This layer usually interacts with an infrastructure layer where we can make calls to
a Repository that will store your Aggregates through a persistence layer, such as to
an SQL or a NoSQL database. Access to each Bounded Context is only through the
Application Services. So the next layer on top of this is either some API service or GUI
service, which sometimes go through a Dispatcher such as an API Gateway or a BFF
which is an example of an Anti-Corruption Layer.

Now that we have explained the critical concepts involved in Modeling Around the
Domain, you are ready to implement these concepts in a Microservices Architecture
(Chapter 4) compliant with the IDEALS. This will set you up for building an Event-
Driven Architecture (Chapter 6) for your Microservices, which will then rely on
Cloud-Native Storage (Chapter 7) for persistence, as you will see in the next two
chapters.
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CHAPTER 6

Event-Driven Architecture

A recurring theme for evolving an application architecture is to encapsulate compo‐
nents and decouple them. One motivation for identifying modules in a Modular
Monolith (29) is to reduce the coupling between cohesive units of code in the same
application. Likewise, a Distributed Architecture (38) decouples modules further into
services so that they can run on separate computers. Microservices Architecture
(Chapter 4) decouples services even more into Microservices (119) so that they can
be developed and deployed independently.

Loose coupling facilitates disassembling an application into independent components
by minimizing the dependencies of each component on the implementations of other
components that it uses. A Service API (70) decouples a service consumer from a
service provider, so much so that when one service provider is replaced by another
with the same service interface and similar functionality, the overall application still
functions correctly. The service interface hides changes in the service provider’s
implementation from the service consumers. This loose coupling enables the applica‐
tion to evolve incrementally, upgrading individual component implementations one
at a time with enhanced versions while preserving the correct behavior of the overall
application at each step.

Yet with a service interface, there’s another type of coupling that still remains: the
components are coupled by the timing and synchronization of the calls they make
between one another. When the consumer is ready to invoke the service functionality,
the provider must be ready to perform the functionality. The consumer must be able
to locate the provider to invoke it, such as via a load balancer. The consumer waits
while the provider performs the functionality. If the provider fails, the consumer
must handle the error or else it will fail as well.
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Introduction to Event-Driven Architecture
This chapter explains how to design applications that avoid coupling not only of
their components and the implementation of functionality but also of the location
of the service provider and the timing of when the functionality will be provided.
Event-Driven Architecture (EDA) accomplishes this by decoupling components so
that they interact through Event Notification (see Event Notifier (269)) rather than
service invocation. Transforming a service invocation into an Event Notification pro‐
duces even greater decoupling between the components.

These patterns assume a basic understanding of how Event Notification differs from
service invocation, so we’ll review that first. We’ll review the types of components
involved in Event Notification, how they help decouple components even more than a
Service API (70) can, and how the cloud can make these components easier to host.

With this background on what an Event-Driven Architecture is, we’ll then present
the patterns that show how to design an Event-Driven Architecture, starting with the
root pattern for this chapter, Event Choreography (246).

A Motivating Example
Consider the following problem. Let’s say you are building a system to handle
onboarding for new employees at a company. When a new person is hired, many
components need to be updated to perform tasks such as assigning an email address,
starting salary payments, sending a welcome package, etc. Especially if new HR
policies are being added frequently, there may be no single centralized business
process for onboarding that understands everything that has to be done when a new
employee is hired, particularly if there are geographical or divisional differences for
onboarding.

It seems like the onboarding process should be able to simply update HR policies
about the new employee, and that they should be able to react as needed in turn.
We’ve encountered this idea before, in the Event Storming (189) pattern in Microser‐
vice Design (Chapter 5)—this is the idea of an Event (255). An Event is an announce‐
ment of an interesting occurrence of a phenomenon, typically a state change in an
Aggregate (211). That idea can extend the idea of loose coupling to loosening the
bounds of who calls a component and how they call it. This leads to what is known as
an Event-Driven Architecture.

From Service Orchestration to Event-Driven Architecture
Event-Driven Architecture facilitates composing complex functionality from simple
components. An approach from Microservices Architecture (Chapter 4) for compos‐
ing functionality is to employ a Service Orchestrator (160). Service Orchestration
couples components tightly and provides greater control for performing preplanned
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procedures. Event-Driven Architecture couples components loosely and facilitates
emergent behavior dependent on context.

A Service Orchestrator is tightly coupled with each of the services it orchestrates.
When a change occurs in a Service Orchestrator, it reacts by invoking a service syn‐
chronously, causing the service to react to the change. That couples the orchestrator
to the service, because the orchestrator has to know about the service to invoke its
behavior, which means that the orchestrator cannot work without the service. It also
assumes the orchestrator knows how the service will handle the change and that the
service will always handle every change the same way. It also assumes that there’s only
one service; for more than one, the orchestrator will have to know about all services,
know which task to invoke in each, and know which changes each service knows how
to handle. The orchestrator will then be coupled to all of those services, such that it
cannot run unless they are all available.

To facilitate loose coupling among components, rather than using service invoca‐
tion, an Event-Driven Architecture incorporates a new style of interaction—Event
Notification.

Pseudosynchronous and Asynchronous Service Invocation
As explained, to decouple components beyond their Service API, the next step is
to increase decoupling of the timing and synchronization of the service invocation
calls between a service requestor and a service provider. This sounds like a job
for asynchronous messaging. When the requestor and provider use messaging (the
Request-Reply pattern (Enterprise Integration Patterns, 2003)), they don’t need to
know each others’ location; the sender can put the message on the queue when it’s
ready, and the receiver can read the message from the queue when it’s ready.

However, a service invocation via asynchronous messaging may not be asynchronous.
If the requestor puts the request message on the queue and then blocks waiting
for the response, the service invocation is not asynchronous. The blocking reques‐
tor makes the service invocation pseudosynchronous, meaning that it’s making an
asynchronous call synchronously. Pseudosynchronous service invocation consumes
threads, complicates crash recovery, and still has to correlate responses with requests,
all while turning a single transaction into multiple transactions.

For a service invocation to be fully asynchronous, the requestor needs to listen for
responses in a separate thread. The requestor sends the request in one thread and
receives the response in a separate thread that listens to the response queue. The
requestor uses separate transactions for the request and response, just like asynchro‐
nous messaging does. The requestor must correlate each response with its request.
Asynchronous service invocation scales better because it doesn’t block threads, and
any replica of a stateless requestor can handle any response and recover from crashes.
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While asynchronous service invocation is an improvement over pseudosynchronous,
it still has complexity. Once the request is sent, its logical transaction needs to com‐
plete—the provider needs to receive the request, perform the service, and send the
response, which the requestor needs to receive and process. For this whole process
to be reliable, the messaging system needs to make the network more reliable by
providing guaranteed, exactly-once delivery of the request and the response. If either
message is lost, the requestor doesn’t know whether the provider performed the
request and what was the outcome. The requestor can retry, but that may cause the
provider to perform the service more than once.

The cloud’s unreliable infrastructure makes asynchronous service invocation even
more difficult to perform reliably. Message Queuing (MQ)–style messaging systems
are able to provide guaranteed, exactly-once delivery of a message because the mes‐
sage is in only one queue manager at any given time. To transfer exactly one copy of
a message from one queue manager to another, MQ-style messaging systems imple‐
ment distributed transactions. As explained in Service Orchestrator (160), distributed
transactions do not work well in the cloud. When the single copy of a message is at
rest in a queue manager and the queue manager’s infrastructure stops working, the
message becomes unavailable until the queue manager recovers, and is lost unless
the queue is persistent. Event-style messaging systems like Apache Kafka run more
reliably on the cloud by embracing replication, similar to a Replicated Database (316)
for Event streaming. Replication avoids distributed transactions and single points of
failure, and replicated messaging systems provide at-most-once delivery and at-least-
once delivery, but replication makes exactly-once delivery very difficult to achieve.
For a more in-depth discussion of the different types of messaging technologies and
messaging styles, including the pros and cons of each, the interested reader should
refer to Enterprise Integration Patterns (2003).

For all of these reasons, there are limits to how reliably service invocations can
be performed asynchronously, and therefore how much more service invocation
can decouple requestors and providers beyond the service interface. One of the
benefits of Event-Driven Architecture is to provide components that need to commu‐
nicate an alternative to service invocation. Event-Driven Architecture can decouple
components even more than asynchronous service invocation can, by changing the
messaging semantics from bidirectional service invocation to unidirectional Event
Notification.

Event-Driven Architecture provides not just one component like an orchestrator but
a set of collaborating components:

Event
Encapsulates information that describes a change
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Event emitter
Detects changes, encapsulates them as Events, and sends those out as notifica‐
tions

Event listener
Receives Event Notifications and decides if and how to react

Event channel
Connects Event emitters to the Event listers that are interested in the emitters’
Events

These components collaborate to implement Event Notification in an Event-Driven
Architecture.

Decoupling Listeners from Emitters
Event-Driven Architecture decouples event listeners from event emitters so that both
can evolve independently. Multiple event listeners may receive events from multiple
event emitters. An event emitter does not know which event listeners receive its
events. An event listener may receive events from multiple event emitters and does
not know which event emitter sent an event.

The distinguishing characteristics of Event-Driven Architecture are:

One-way transmission
The events are transmitted one way—not bidirectionally—from the event emitter
to the event listener. No reply to the event is needed or expected.

Change notification
Event interactions are notifications describing something that has happened.
They carry no intent that any particular processing is expected because of the
event. Event-Driven Architecture enables two event listeners to react to the same
event quite differently.

With these characteristics, Event-Driven Architecture enables a family of interacting
components to evolve easily with minimal impact on the overall architecture:

Add an event listener
A completely new component can be added into the family with a new event-
handling interface; by expressing an interest in appropriate events, processing in
the new component will be initiated at appropriate times using appropriate event
data as input, even though no other application or component in the preexisting
family explicitly invokes it.
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Add an event emitter
New event-producing components and even other applications may be added
into the family. Their emitted events will trigger additional appropriate
processing by event processors (even though the new event producer is not aware
of what this processing is).

Refine an event channel
Intelligence may be added to improve the quality of event-based matching and
interactions—for example, duplicate event detection and removal may increase
the efficiency of component interactions within the component family by elimi‐
nating redundant processing.

This is how Event-Driven Architecture decouples event listeners from event emitters
so that the architecture can evolve.

Event-Driven Architecture and Cloud-Native Architecture
An Event-Driven Architecture does not have to run on a cloud platform, but its
components work better when they follow a Cloud-Native Architecture (58). Emitters
and listeners are often Microservices, which are cloud native. Modeling Around the
Domain (183) is critical because this helps you both find your Microservices and
discover the events and relationships between the Microservices. Even eventing com‐
ponents that are not Microservices will run better if they’re Stateless Applications (80).
To make them easier to deploy in multiple environments with limited dependencies
on the environment, encapsulate their program as an Application Package (62) with
an External Configuration (97). Stateless packages are easier to make into Replicable
Applications (88). And eventing components that are cloud native can access special‐
ized, reusable functionality as separate Backend Services (106).

Although not required, a cloud environment makes lots of small eventing compo‐
nents much easier to manage. All of the emitters and listeners can more easily share
a pool of capacity, and the environment can more easily provision capacity for each
individual component as needed. Capacity can also be made available more easily for
a new version of a component to replace an old one without causing an outage. The
environment can provide messaging services for implementing event buses. Eventing
components can get their Backend Services from the cloud platform’s service catalog.

Developing Event-Driven Architecture
This chapter defines a collection of seven patterns that together explain how to design
applications with an Event-Driven Architecture. Figure 6-1 shows the patterns and
their relationships.
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Figure 6-1. Event-Driven Architecture patterns

An Event-Driven Architecture enables application components to coordinate and
compose complex functionality via Event Choreography (246).

Event Choreography provides two principle benefits that leverage the decoupling
provided by the Observer pattern and further increase the decoupling:

Separation of API
Event notification uses a generic API.

Separation of time and space
Event notification can queue until the receiver is ready to process the event and
works equally well between and within processes.

The participants in Event Choreography are as follows:

Event (255)
Events contain information describing changes. Each one provides notification
when a change occurs. Components coordinate by exchanging events.

Reactive Component (260)
This component listens for events, determines which ones it considers interest‐
ing, and reacts to the interesting ones.

Event Notifier (269)
This component provides notifications of changes by emitting events.

A single component can be both an Event Notifier and a Reactive Component. It can
receive an event and react in part by emitting other events.

Event Notifiers connect to Reactive Components via a shared set of channels that
transmit events:

Event API (274)
Defines and describes a set of event types: the format of the events, their mean‐
ing, and the circumstances that will create new events. This defined API enables
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the event notifiers and Reactive Components connected by each channel to agree
on how they will communicate.

Event Backbone (279)
Implements a set of channels, one per event type in the Event API. Each channel
connects the Event Notifiers that emit that event type to the Reactive Components
that listen for that type of event, and transmits the events from the Event Notifiers
to the Reactive Components.

The current state of each Reactive Component changes constantly as it receives new
events. The record of events for a Reactive Component enables Event Sourcing (289)
to show the component’s current state and the history that led there.

This introduction has covered several topics that are helpful to be familiar with to
understand the patterns in this chapter. We’ve talked about making the loose coupling
between service components even looser with Event Notification, an example of all
the systems that need to be updated when onboarding a new employee, how Event
Notification differs from Service Orchestration, difficulties making service invocation
asynchronous, and the component types for Event Notification and how Event-Driven
Architecture decouples them.

Event-Driven Architecture does not require a cloud platform, but the cloud makes
eventing components easier to manage. In this chapter, we will show how Microser‐
vices can be built using event-driven components. We’ll start with the root pattern for
this chapter, Event Choreography (246).

Event Choreography
You are developing an application as a distributed set of components in a Distributed
Architecture (38), such as a Microservices Architecture (Chapter 4) with Microser‐
vices (119). Or you might be refactoring an existing application, possibly a Modular
Monolith (29), into distributed components.

When a change occurs in one component, how can a variable number of other
components react accordingly?

The real world changes constantly, and changes happen on irregular schedules.
Dealing with constantly changing conditions in the real world is difficult. Changes
happen often, at inopportune times, and in unexpected ways. Applications need to
be updated to reflect those changes. A single change in the real world may affect
multiple components or applications. What’s more, you don’t want to have to wait
until everyone who might be interested in a change reacts before you move on with
your processing.

When something changes, we want to allow that change to affect many other com‐
ponents without tightly coupling them to the original component. A good design
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principle is to have loose coupling between components. That was one of the IDE‐
ALS that we discussed earlier in Microservice Design (Chapter 5). Whenever you are
developing an application that touches on multiple aspects of your business, you want
to communicate information between those components yet avoid tying everything
together like spaghetti.

Let’s return to an example from Domain Event (193) to see what effects an airline
flight running late can have. For example, if you have a connecting flight, you may
miss it and need to be rebooked on a later flight, possibly arriving at your destination
the next day. If you have a rental car reservation or a hotel reservation and you will
not get to that city until the next day, you will not need the reservation for tonight.
These are just the consequences and adjustments per passenger. Multiply them times
the 100 or so passengers on the flight and you see the issues that can arise and why
there are often lines at customer service counters whenever a flight is canceled.

There are also consequences for the airlines. The plane will be delayed for its next
flight. Another aircraft may need to be assigned for the next flight and the original
aircraft reassigned. The flight crew may miss their next flights. The flights must be
delayed or replacement crews assigned. All these consequences occur because one
flight is late. Once the airline knows its flight is late, what can it do to mitigate these
consequences?

One possibility is that the airline could know the full travel itinerary of each passen‐
ger on the flight—not only connecting flights on the same airline but also flights on
other airlines, reservations for rental cars and hotels, etc. It could then be responsible
for updating all of the applications for each affected passenger. However, the passen‐
ger may not be comfortable revealing all of this information to the airline. Likewise,
the airline doesn’t want to be responsible for storing all of this information and for
processing updates to frequently changing travel plans. And even if the airline had
the most up-to-date itinerary, it wouldn’t want to be responsible for having to change
the reservations with all of these other travel service providers.

What this means is that responding to events is important not just within a single
application but to interapplication communication as well. When working with
things that happen in the real world, you usually don’t just have a single application
modeling an entire process; you usually have a web of applications, each modeling
and managing part of a process. That means that there are many different ways in
which applications will want to respond to updates and notifications from a variety of
sources.

There are at least a couple of ways in which you could build applications to react to
external stimuli:

• Putting APIs into your application is one possible way around this, but that•
requires something external to your application or component to call the API at
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the appropriate time. That is the idea behind Service Orchestration (see Service
Orchestrator (160)), and we’ve already seen both its advantages and limitations.

• Batch processes are another possible way of forcing updates. You could schedule•
regular timed updates when components or applications swap information on
what has changed in each of them during the interval since the last update.
The first problem is that this is not in real time, or even near-real time. Many
components can wait an hour or two between updates, but in situations where
human lives (or millions of dollars) are at risk, relying on a slow, timed updating
process is not enough. Communication between applications often needs to
happen at unexpected and impossible-to-predetermine intervals.

• Another possible solution is to use database triggers so that whenever a change•
occurs in a database, it triggers a change in another table or another database.
Database triggers work in real time, but that only updates the information in
your database. It does not invoke processing within the application, which both
leads to the kind of data coupling we want to avoid with Microservices and to the
logic of the application being built within the database.

Since none of these solutions fully solve our problem, we need something else that
can be made part of the application design itself, like an API, but that can work
asynchronously like a database trigger. It also needs to be invoked whenever the
change occurs, as opposed to on some predetermined schedule.

Therefore,

Coordinate multiple components through Event Choreography so that when one
changes, the others can react at their own pace and in their own way.

Event Choreography is the idea that each component can react independently to
events they receive and that no central orchestrator is required. Each component
(Microservice) is truly independent of all the others, even down to not requiring
an explicit API to trigger actions that are implemented by the Microservice. Event
Choreography is based on several older, well-established concepts that come together
into a consistent architecture. To understand how that happens, we need to start with
some simple building blocks.

The first building block is that you can send an abstract notification to any of a
number of receivers that register interest in a notification. This comes from the
Observer pattern (Design Patterns, 1994). In this pattern, whenever a change occurs
in the sender (called the “Subject”), a notification is sent in Observer to all the
receivers (called “Observers”). The API of this interaction is generic—different sub‐
ject/observer pairs didn’t have different methods in their API, so all updates from
all potential Subjects were processed by the same method on the Observer—the
important thing is the parameters sent along with the notification, which indicate
who the update came from and what the update was for.
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That is the origin of our first principle benefit: Separation of API. This is shown in
Figure 6-2 (adapted from Design Patterns (1995)).

Figure 6-2. Observer pattern

What is critical about this is not only that you don’t need a special API on the
receiving end but that the relationship is indirect in other ways as well. Observers
are optional—a Subject can send out a notification even if there are no Observers to
listen for it. Also, Observers can choose to either react to or ignore any notifications
they receive.

The next important set of building blocks can be constructed by introducing pat‐
terns from Enterprise Integration Patterns (2003) (EIP). This book looks at the same
problem and forces discussed previously and concludes that what is needed is a
mechanism (Messaging (Enterprise Integration Patterns, 2003)) that is not only asyn‐
chronous, which the Observer pattern did not require, but also multiprocess. This is
shown in Figure 6-3 (adapted from EIP).

Figure 6-3. Messaging pattern

As we introduced above, the second principle benefit is separation of time and space.
Figure 6-3 summarizes this benefit. The first idea is that you need a process between
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the sender and receiver that handles the implementation of the Observer pattern
in that it takes abstract messages (data) from any process through a fixed API and
then transmits it to any other process that chooses to receive that data, regardless
of that process’s location. Subjects and observers are connected by a Message Bus
(Enterprise Integration Patterns, 2003), which is made up of many Message Channels
(Enterprise Integration Patterns, 2003) that carry messages. It has its own network
protocols to manage that data communication. This provides separation of space
since any component inside or outside any process can talk to any other process.

A benefit is that this communication happens asynchronously—that is, once the data
is handed over to the channel, the sending process does not need to wait for a
reply from any (or all) of the receiving processes. What’s more, the messages may be
delivered immediately or after an indeterminate amount of time (perhaps if there is
a problem in the channel or the receiving process)—the sending process should not
care about how quickly the messages are delivered or if they are delivered at all.

The architecture for Event Choreography (derived from the one in EIP) is illustrated
in Figure 6-4. It should be noted that this diagram has replaced computers with appli‐
cations from the EIP drawing. Applications can either run on separate computers or
in virtual machines running on the same computer. Additionally, each application
can be deployed in the cloud and scaled up by having multiple instances of an
application deployed in the cloud.

Figure 6-4. Event Choreography pattern

Choreographed components announce changes as Events (255). Events are imple‐
mentations of Domain Events and which are transmitted as Event Messages (Enter‐
prise Integration Patterns, 2003). Events are carried on an Event Backbone (279)
through topics. An Event Backbone is a special type of Message Bus that is optimized

250 | Chapter 6: Event-Driven Architecture

https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683/
https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683/
https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683/
https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683/


to carry Events over Publish-Subscribe Channels (Enterprise Integration Patterns,
2003) and also supports patterns such as Event Sourcing (289).

There are two types of choreographed components: Event Notifiers and Reactive
Components:

• An Event Notifier (269) is a component that is able to announce its changes as•
events.

• A Reactive Component (260) is a component that is interested in knowing about•
changes and is able to listen for changes as events.

The set of the descriptions of all the Events that are sent out by Event Notifiers and the
topics on which they are carried makes up your Event API (274).

The Reactive Components interested in a set of related Events register interest on a
topic to connect to the Event Notifiers in which the changes represented by those
Events can occur. Event Notifiers connect to the topic to publish events. Different
types of changes are transmitted on different topics. The Event Notifiers for a type of
change and the Reactive Components listening for that type of change all connect to
the same topic.

An Event-Driven Architecture that enables application components to coordinate
and compose complex functionality via Event Choreography has a number of advan‐
tages from the overall system point of view:

Publishers and subscribers are independent and hence loosely coupled
There’s more flexibility to add functionality by simply adding subscribers or
events. That creates a very important extension point that is much easier than
when you are using Service Orchestration as your only mechanism for extension.
If you only have a Service API (70) and you want a new action to occur when
something changes, you are forced to go into the implementation of a service and
add that new feature—adding a new Reactive Component to listen to an existing
event and perform a new action is much easier.

Scalability and throughput
So far, we’ve been mostly discussing the design benefits of an Event-Driven
Architecture. However, there are multiple performance and scaling benefits as
well. Most notably, Event Notifiers are not blocked when they publish an event.
Since they do not have to wait on one (or many) responses, no threads are
blocked and the system can continue processing new actions or events. Likewise,
since events can be consumed by multiple subscribers in parallel, if multiple
actions need to occur when a single event is detected, you don’t need to do them
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all serially inside a single component—just build multiple different Reactive Com‐
ponents (or multiple listeners within a single Reactive Component), each of which
performs a different action when it receives the same event simultaneously.

Availability
When you are building an event-driven system, temporary failures in one service
that sends out Events are less likely to affect others. The reason is that interaction
is intermediated through the Event Backbone. However, this advantage is offset
by the potential disadvantage of reliability, as we discuss in the paragraphs that
follow.

Listed here are some of the major challenges of Event Choreography:

Message Reliability
This is perhaps the biggest single drawback to an Event-driven approach. An
event system does not guarantee delivery. It is, instead, best effort. There are
several ways in which an Event can be undelivered:

• The event can fail to be delivered and be lost by the Event Backbone to•
any Reactive Component because of a failure in the Event Backbone. This is
rare but still possible when using common Event Backbone technologies like
Apache Kafka.

• There may be no Reactive Component listening on a topic. This is a more•
common occurrence and can happen due to startup failures of the Reactive
Component or a temporary failure of the component during the time an
Event has been published. Most Event-Backbone systems have a mechanism
to allow a Reactive Component to “catch up” on missed Events when they
restart, but even this has limitations.

• The Reactive Component may encounter a failure during processing of an•
Event. Since Events are asynchronous and nontransactional, there is often no
built-in mechanism for recovery. Once an Event is consumed, if something
goes wrong, it’s up to the Reactive Component to do its own recovery by
restarting earlier in the event stream.

Event Choreography
Increases the complexity of the control flow for the application, which can
make testing and debugging more difficult. There are various interacting mov‐
ing pieces that might require synchronization points for coordinating activities.
Orchestration is particularly useful for managing complex workflows, where
several moving pieces need to be coordinated.

Error Handling
In general, error handling in a system based on events is more complicated than
in a corresponding system based entirely on synchronous calls through a Service
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API. The root of this problem is that since event notifications are one-way,
there’s no easy approach for letting upstream components know that downstream
components have encountered problems without creating correction or rollback
events, which adds another level of complexity.

Event Choreography is different from Service Orchestration in that choreography deals
with the possibility that interactions can be unpredictable. Reactive Components
(260) may be added at any time or removed at any time. Event Notifiers (269) may
decide to add new events or stop sending out events. If interactions are predictable,
they can (and should) be orchestrated. It’s the constantly changing, unpredictable
types of interactions that are best suited for Event Choreography.

What this means is that the two principle benefits of Event Choreography—the
separation of API and the separation of time and space—dramatically reduce the
coupling between components that participate in Event Choreography as compared to
components that take part in Service Orchestration. What this amounts to is there are
multiple differences between Service Orchestration and Event Choreography:

• Orchestration can run steps in order or concurrently. Choreography can only run•
steps concurrently.

• Orchestration knows when a step is completed and what the result or error was.•
Choreography doesn’t know if the step was ever performed; maybe it still will be.

• Orchestration ensures a step is performed once and can be reversed with a•
compensating transaction. An event may cause zero-to-many steps to run. This
may have the effect of running the same step multiple times, making it difficult
to reverse a step or even unclear which steps were performed that need to be
reversed.

• Orchestration can achieve 100% completeness and ensure consistency. Events•
can get lost, duplicated, and/or lead to side effects other than the main intended
reaction. While events may naturally lead to 99% completeness, for 100%, the
application must periodically run auditing to find incomplete or duplicate work
and remediate it.

Both orchestration and choreography are useful in system design. However, when‐
ever the emphasis is on reducing coupling—as is often the case in component
design—Event Choreography should be preferred whenever strict order and transac‐
tionality are not required.

Example
Let’s say a company wants to provide a travel safety service for its employees. There
are many different possible things that it may want to warn its traveling employees
about; weather events, public transit disruptions due to strikes, etc. (see Figure 6-5).
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The application can receive notifications from various sources, including weather,
government travel advisories, and the news. The application can then notify the
employees in the affected region through their preferred means of communication if
the message matches their notification preference.

Figure 6-5. Requirements for employee safety notifications

Let’s look more closely and find out why Event Choreography is such a good solution
for this particular problem. We can break the problem down into four stages; first,
there are the data sources that might indicate a potential travel problem that we listed
in Figure 6-5. Second, there’s a stage where you have to identify employees that are
within an affected area. Then you want to look at the preferences of each individual
employee and send them a notification through their preferred channel (email, text,
etc.)

The first set of components (the potential issue sources) are fantastic examples of
Event Notifiers because they don’t care about who, if anyone, gets the notifications
they send out! They simply are endless loops gathering and parsing data from sources
like The Weather Channel API or RSS news feeds or by scraping government websites
and then sending those along as Events on the Event Backbone as potentially interest‐
ing travel disruptions.

Then there is the second stage. Here you can also be driven from events, but the
events that drive this stage are travel events—if you require that your employees use
a specific travel agency, that agency (or the airlines or train companies they work
with) may be able to send out notifications when a flight or train arrives or departs.
This is essentially the same as the airline example we looked at the beginning of the
chapter. The difference here is that this requires a Reactive Component to listen on
two different topics, the travel event topic and the travel disruption topic. Whenever
it receives a travel event, it updates an internal database of employee locations to
show that they have arrived (or departed) from a particular area. When it receives
a travel disruption event, it calculates which employees in its internal database are
within the potentially affected area. It then looks up their communication preference
and sends out another event for each employee, a disruption notification event, to
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another topic that different Reactive Components listen on to send out notifications
on the preferred channel.

You see this entire set of interacting components in Figure 6-6.

Figure 6-6. Design for employee safety notifications

In short, Event Choreography is great for this example since it allows lots of variation.
New Event Notifiers can be added for new data sources without having to change
any existing components. Likewise, new Reactive Components on the end can support
new notification styles just as easily. And if the company wants to change travel
agents, that’s also something that is isolated to a single component—again, easy to
update or modify.

Event
You are using Event Choreography (246) to coordinate multiple components so that
when a change occurs in a component, other components interested in that change
can react accordingly yet not be tightly coupled through APIs.

How do you represent a change in one component to be communicated to other
components?

There is a tension in the design of any set of communicating components. Compo‐
nents, like the objects they are often built from in object-oriented programming,
should avoid revealing too much about their internal implementation details. This
is the basic idea of encapsulation, or information hiding, and is an important con‐
sideration in component design. At the same time, you also don’t want to have to
constantly rework every component whenever a new business process step is added—
this is essentially the open-closed principle (OCP), first coined by Bertrand Meyer
(Object-Oriented Software Construction, 1988), that components should be “open for
extension, but closed for modification”. But implementing that principle in practice
can be challenging:

Event | 255

https://en.wikipedia.org/wiki/Object-Oriented_Software_Construction
https://oreil.ly/DQePY
https://oreil.ly/DQePY


• You don’t want to overwhelm the system with information, nor do you want to•
unnecessarily expose internal details of your component to the outside world and
thus couple components together too tightly.

• You also don’t want to miss important changes that should be communicated•
with other components.

• You want to provide a mechanism for an extension for your components that•
does not require changes to the component itself.

It would be great if a component could announce the fact that your state has changed
to the world without having to reveal exactly how that state changed. That way inter‐
ested parties could politely inquire about the Service API (70) of your component to
find out more details about what changed and not break encapsulation.

Therefore,

Capture the minimal description of each change as an Event and communicate
that to the other components.

Once emitted, an Event is transmitted on an Event Backbone (279) as an Event
Message (Enterprise Integration Patterns, 2003). The critical thing about an Event is
not the fact that it is a message—in this book, we are actually less interested in the
details of the messaging system itself, as that was more than adequately covered in
EIP. What is most interesting for our purposes is how the message is represented and
why the message is being communicated.

In Figure 6-7, we show a very simple example of an Event, a “Temperature Change”
Event, being carried from an Event Notifier (presumably a temperature sensor) to one
or more Reactive Components over an Event Backbone, which shows how the Event
pattern fits together with the others in this chapter.

Figure 6-7. Event in transit

To see how this all works, let’s go back to the idea of the Observer pattern (Design
Patterns, 1994). In that pattern, the information being conveyed from the Subject
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to the Observer is described as being a description of a state change. That is funda‐
mental. Earlier in Microservice Design (Chapter 5), we saw how the Event Storming
(189) process allows us to find within a Bounded Context (201) the set of commands,
Aggregates (211), and policies that form the basic design outline of a Microservice.
But we also found that the most elementary step in the process was discovering the
Domain Events (193) that represent the set of changes of state in the system as a
whole.

The set of Domain Events discovered in this step is the best place to identify your
potential Events and the set that you should begin with. But there are other things
that can result in an Event being triggered as well once you get down into the detailed
implementation of a system:

• A database update•
• A state change in a process/workflow•
• A reported (or even anticipated) problem or other “unusual situation” detected•

by the system

The simple rule of thumb is that if you think it’s possible that another component
might be interested in a state change either in your current design or in a future
version of your design, you should probably create and send out an Event to represent
that state change. But at the same time, you want to be parsimonious about how
much data you transmit in the schema of the Event. You want enough information to
do the following:

• Identify the type and cause of the event•
• Identify the component (Microservice) that was the source of the event•

If the data involved is very small, you may pass that along if it is relevant to the notifi‐
cation of what changed. For instance, in an IOT scenario, if you detect a temperature
change, passing the new temperature along as part of the Event is probably fine.
However, if you’ve updated an entire document or inserted a database row, simply
passing along the primary key or equivalent identifier is enough (that is the heart
of the Claim Check pattern (Enterprise Integration Patterns, 2003). In any case, you
don’t want to break encapsulation and force unnecessary internal knowledge of the
Event Notifier implementation on your Reactive Components if that will more tightly
couple your components.

Many of the advantages described in Event Choreography also apply to Events. One of
the main advantages is that with Events you can “fire and forget,” thus, you don’t need
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to wait for downstream processes. This makes it easier to scale parts of the system
independently of other parts. Additionally, you get the advantages of low coupling. It
is straightforward to add new behavior by simply adding new services that subscribe
to an event. It should also be noted that although the services are loosely coupled
through the API of the services, they are still coupled by the events and the topic they
are subscribing to. This becomes the contract, so thinking about this carefully and
designing these with the principles outlined in Microservice Design (Chapter 5) can
help with this.

One of the biggest challenges is to figure out which Events are important and what
is needed for them. It’s important to note that when you are forming your Events,
you should think carefully about making the data structures consistent across the
entire set of Events in your system. It would be unhelpful, for instance, to have two
representations of the same Event that just happen to be emitted from two different
components. That is the purpose of a Canonical Data Model (Enterprise Integration
Patterns, 2003) and forms the basis of the Event API (274).

There are two types of choreographed components that interact with Events—Event
Notifiers (269), which produce Events, and Reactive Components (260), which con‐
sume Events. In many cases, a single component or Microservice will take on both
roles.

All Events travel over the Event Backbone (279) over specific topics unique to a
particular set of Events. Topics are often separated either by event type (schema)
or by the general type of Bounded Context that creates those Events, which is often
implemented as a single Event Notifier.

Examples
The following derived events in shipping and clickstream processing are examples
that illustrate the Event pattern.

Derived events in shipping
One of the more interesting possibilities in the Event model is the possibility of
forming events from other events. This is the domain of complex event processing
(CEP), where multiple events are processed in order to get a result. The point is to
look for patterns in the stream of events and take action accordingly. That is why this
is sometimes called Event Stream Processing, but it means the same thing.

Earlier, in our description of Domain Events, we talked about an example from
shipping. When you think about the experience of being loaded on a ship from the
container’s perspective, you realize that there’s a set of closely related events that take
place in a time sequence. A container arrives at a port either by truck or by rail and
is checked in and placed in a holding area. At some later point in time, the container
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is moved from the holding area to the place where it will be picked up by a crane and
loaded onto a container ship.

That particular string of Events—#containerArrived, #containerHeld, #container
Prepositioned, #containerLoaded, and (if it’s a reefer, e.g., a Refrigerated Container)
#containerConnected—are all related by both subject and time. We often find in a
Microservices approach that a single Microservice handles all of these events for that
type of situation when they are connected by the same BoundedContext.

One of the problems that occurs in shipping is that refrigerated containers have a
failure rate—especially in rough seas and on long voyages in extreme temperatures.
That can result in wasted goods, due to unit failure and incorrect temperatures. What
is needed is a way to predict when a unit is about to fail before it fails and the goods
inside become unusable. That would give the crew time to perhaps fix the unit or
move the goods inside into another unit.

This is where techniques like machine learning (ML) can come into play. Let’s assume
that there are a number of different events that are coming in a stream—that the
unit is sending out #containerPowerManagement events (how much power per hour
is being consumed) and that there are also #containerTemperature events indicating
whether the unit is running too hot or too cold. That would allow an ML model built
into an Event Notifier to perhaps predict (based on known failure data) when a unit
is likely to fail in the near future. That model could be built from historical tracking
data on existing units. That would allow a system to send out a #predictedContainer
Failure event that can be listened for by another Reactive Component.

That Reactive Component would allow alerts to be sent to responsible parties to
“react” in a more timely manner and take actions like running scheduled mainte‐
nance, adjusting the unit, or moving the contents if necessary, resulting in an overall
reduction in labor costs and increased customer satisfaction.

Clickstream events
Another good example of Events of many different types all within the same design
can be found when you think about the problem of monitoring (and perhaps
monetizing) the interactions that your users have with a website. These are called
clickstream events and represent the different links or buttons that a user presses in
the specific order in which they interact with them. This can be immensely useful
not only in simple tasks like prioritization (putting commonly accessed articles or
widgets first) but in more complex situations as well. Let’s consider the following
typical but not enormously complicated case (see Figure 6-8).

Event | 259



Figure 6-8. Clickstream analytics

You start with a Collector that gathers click information from places like HTTP
server logs and then uses that information to pass clickstream events to the Event
Backbone. At the raw clickstream level, there’s not a lot of interest. But when you
do some simple analytics like grouping users by demographics (by combining user
login events with the events that follow in the clickstream), you can start to gather
some useful information, like what kinds of users are clicking on what page. You can
do this with simple streaming analytics tools, which can just pull events from the
Event Backbone and then add metadata before placing it in a time series database.
This allows the product owner to later analyze the behavior of the different groups
of users. But what is really interesting is the possibility of using existing events to
generate entirely new derived events (often called synthetic events). For instance,
when a user fills a cart with catalog items and then doesn’t press the “Check Out”
button within a specified period of time, that’s called an abandoned cart.

Data scientists can use tools to process the extracted clickstream data and look for
user struggles and optimization opportunities. For instance, a data scientist could
use this data to build more sophisticated models that can determine when a user is
about to abandon a cart. They can then publish an Event to take action, for instance,
offering the user a discount on their cart for a limited time.

Reactive Component
You are using Event Choreography (246) to coordinate multiple components so that
when a change occurs in a component, other components interested in that change
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can react accordingly yet not be tightly coupled through APIs. The choreography
communicates information about each change as an Event (255).

How can you construct an application that can react to events?

When building an application that will take advantage of Event Choreography, there
are a number of issues that need to be addressed within the components:

• You want to allow your components to work together without tightly coupling•
them to one another.

• You want your components to be able to take advantage of cloud scaling (as in a•
Replicable Application (88)) as needed without undo restrictions.

• You want to allow each component to be selective in terms of which events to•
which it reacts.

• You want to allow components to be added or removed easily so that different•
parts of your application can respond to the same event in different ways

In Service Orchestration (see Service Orchestrator (160)), tasks occur in a very
orderly, linear fashion, but the sequence and number of things that happen are fixed.
But the real world changes constantly. Let’s go back to the example of a system that
does all the things that need to happen when a person is hired that we looked at
in Event Choreography. There are some things that everyone will need when they
start a new job—an email address, maybe access to some internal systems, perhaps
a welcome packet. But as you start to consider all of the variations that can happen
when a person comes into a new job, you realize that this is a complex set of
possibilities.

If the person who is hired is going to be working in a physical office, they may not
need a laptop if there are systems already available. But if they’re a remote worker,
a laptop is essential. On the other hand, you will need an office or desk assignment
if you’re working in a physical office. But in an emergency, like a global pandemic,
suddenly everyone needs a laptop.

Now, each of these possibilities can be represented by if-then statements within a
single business process. That might look like “If the worker is remote, send a laptop;
otherwise assign a desk.” But as the number of variations increases, this code gets
significantly more complicated, and the possibility of mistakes in the complicated
branching logic increases. But what if you could instead have each different option be
represented by a different component, each of which was reacting to the same new
hire event differently?

Therefore,

Build an application from one or more Reactive Components that listen for and
react to specific sets of events when they occur.
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A Reactive Component (260) listens for particular events that are generated from
either external or internal stimuli and then determines how to react accordingly
(which may well be to do nothing). Reactive Components can be built with Reac‐
tive Programming techniques, although they are not required to build a Reactive
Component.

Each Reactive Component type decides which topic it listens to (see Figure 6-9).
A single Reactive Component may listen to one or perhaps more topics and react
differently to the Events it receives on each topic. Another important distinction is
that Reactive Components can not only make decisions based on the type of the event
but can also choose to react (or not) based on the content of the data that the Event
carries along.

Figure 6-9. Reactive Component

That choice is critical. When a Reactive Component is listening to a topic, it has to
receive all the Events on a channel’s API, but it doesn’t have to react to all the events
in the channel. It can choose to ignore some of them and throw them away after
receiving them. If we break the steps that a Reactive Component follows, it comes
down to parsing all the events that arrive on the channel (unless your Event Backbone
allows filtering prior to it being received by the component), deciding what to do
with the parsed message, and then reacting to only the subset of messages that the
component deems important.

This is quite different from the synchronous nature of a Service API (70). In a Service
API, the system has already managed the parsing and deciding for you; the only
decision in the implementation of a Service API is how to react to the call—not
whether it should react at all.

In the Event Storming (189) process, we found that each Bounded Context (201) was
connected to a specific set of events. As part of the implementation of a Bounded
Context, a Reactive Component will respond to a specific set of events. However, the
code that is invoked when asynchronously reacting to an event is not necessarily
the same code that will be called synchronously from a Service API. In fact, the
synchronous elements of the Service API come from a different part of the Event
Storming process, as the Service API derives from the Commands (the blue stickies
in Event Storming) as opposed to the Policies (the pink stickies in Event Storming)
that correspond to the processing that occurs when an Event is received by a Reactive
Component.
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In many cases, Reactive Components are Microservices. When this happens, the Event
API (274) may or may not overlap with the Service API—it’s not necessary to have
a Service API task for every Event on an Event API, or vice versa. The two are
independent. They may partially overlap, but that is not required. In fact, they are
often complementary rather than overlapping. We will explore this in depth in a
subsequent examples.

Events are carried over an Event Backbone (279). The Event Backbone is responsible
for making sure all applications and components that register interest on any particu‐
lar event channel are notified when an Event occurs. Each Reactive Component will
need to register interest on one or more Event topics within the Event Backbone.

This design makes Reactive Components independent of Event Notifiers (269) in a
way that the components that invoke a Service API are not. The two are more loosely
coupled than the two parts of a synchronous Service API since the Event Notifier
doesn’t really care who (if anyone) receives the Events that it sends out on the Event
Backbone. This gives you more flexibility to add functionality by simply adding new
Reactive Components to the system to react in a different way to the very same Events.

However, there are some real challenges to this model, too. The biggest one is
the question of testability. It’s easy, in principle, to test a Reactive Component in
isolation—just send the Event that it is listening for down the proper channel and
observe the results. You can, of course, simulate this entire process with Mocks as
well. However, the issue comes in when you consider the sequencing of multiple
potential reactions to a single Event. There is no fixed order of execution of multiple
Reactive Components listening on the same topic. They could respond in any possible
order. If two things need to occur in a particular order, you need to instead rely on
Service Orchestration to fix the sequence.

What’s more, there are potential drawbacks in maintainability when building systems
out of Reactive Components as well. In general, since there is no fixed order of exe‐
cution, and since the components are independent, the event-driven programming
model is more complex. If you really do need to wait until more than one event
happens before an action is triggered, you will need to add persistence and some sort
of synchronization mechanism. That is one of the possible uses for Event Sourcing
(289), as we will see in that pattern.

Possibly the biggest potential drawback, however, and one that often leads to choos‐
ing to use the more predictable Service Orchestration instead of Event Choreography
is the need to ensure that things happen only once. It is important to note that
Reactive Components are a type of Event-Driven Consumer (Enterprise Integration
Patterns, 2003) and not a Competing Consumer (Enterprise Integration Patterns,
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2003). The difference is subtle but vitally important. What this means is that every
Reactive Component receives its own copy of the Event—and if there are multiple
replicated copies of a component because your application is a Replicable Application
(88), then each one will get its own copy. Therefore, it is imperative that if you
build your application in this way, the Reactive Component must be an Idempotent
Receiver (Enterprise Integration Patterns, 2003). An Idempotent Receiver means that
if a message is received once, or even a hundred times, the effect is the same. This
has ramifications for how you build your Repositories in that you would need to, for
instance, check to see if a row in a Relational Database (333) is already inserted before
inserting a new one, or checking to see if a document in a Document Database (338)
exists before adding a new one.

Finally, there’s one more trade-off that may lead you to mix the Service Orchestration
and Event Choreography models. With Service Orchestration (business processes),
it’s sometimes difficult to know how/when it should end. There could always be
more steps. So, for example, even after an order is placed, it must be packaged, and
shipping must carry it from origin to destination. Even once it is received, it may
be returned. A successful payment may later be rescinded for fraud. The end of an
airline flight or hotel stay or the return of a rental car is not necessarily the end of a
trip.

This leads you to use Service Orchestration to group steps that should either all be
completed or none of them—steps that represent a long-running transaction. Let the
business process end when its work is complete. In the end, the last step can send
events to start other work in other business processes with Event Choreography.

Whereas a Reactive Component listens for changes as events, an Event Notifier (269)
announces changes as events. When the internal state of an Event Notifier changes,
that fact itself is sent out immediately as an event over an event topic.

A Reactive Component is often a Microservice (119) with additional functionality to
listen for changes as events. The same Microservice can be both an Event Notifier and
a Reactive Component. The Reactive Components interested in a change use an event
topic to connect to the Event Notifier where the change can occur.

In addition to these patterns, there are two other patterns that also derive from the
Reactive Component.

Event Sourcing (289) is a technique by which a component, or an entire application,
can rely on the memory of the events within the Event Backbone to reconstruct
the state of the component at any time. This can improve the resilience of the
component.

Command Query Responsibility Segregation (382) is another technique for Micro‐
service Design (Chapter 5) that incorporates the asynchronicity of the Reactive
Component to maintain independent databases for querying and updating. This is
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especially useful when you are bringing existing legacy systems into an Event-Driven
Architecture made up of Reactive Components.

Examples
The following online ordering and airline system examples show the use of the
Reactive Component pattern.

Online ordering example
To show how a Service API (70) relates to an Event API (274) and how all of that
comes together in a single Reactive Component, we return to our online ordering
example from Microservice Design (Chapter 5). Let’s begin by looking at the results
of Event Storming (189) for part of that example (Figure 6-10).

Figure 6-10. Cart contributions to Event API and Service API

In this picture, you see that in the Event Storming process, we identified a number
of Domain Events (193) that were related to the Cart entity. Likewise, there were
several Commands that also operated on the component (Bounded Context (201))
surrounding that entity. As we see, the Commands become part of the Service API for
that component. The Events (255) generated by the component become part of the
Event API, with a channel’s API being made up of related events carried on a single
channel. Those channels can all now be listened to by Reactive Components that care
about those Events. We see something similar (but with more detail) in the next part
of the example, where we expand the Event API further with additional APIs for
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individual channels derived from the results of Event Storming the Order Bounded
Context. We show this in Figure 6-11.

Figure 6-11. Order contributions to Event API

In that example, you see how several additional channels’ APIs around Orders,
Returns, and Refunds are added to the Event API. But how does this all come
together in a single component, be that a Microservice or a component of a Modular
Monolith? And how does a Reactive Component tie into the Event API? You can see
how these patterns come together from the Event Storming design process in the
details of the Order Component implementation in Figure 6-12.

As you can see (as indicated by Arrow 1 in the diagram), Commands become the
Service API of the component. The Policies that refer to Events determine which
channel’s API the component (acting as a Reactive Component) must react to, as
indicated by Arrow 2 in the diagram. In our case, one specific Event generated by
the Cart component (the “Checked Out” event) is exactly what the Order component
needs to listen for on the Cart channel in order to know to create a new Order entity.
That Event would have been triggered by the user interface invoking the checkout
function (through a URL) on the Cart component upon checkout.
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Finally, the Events generated by the component become part of the Event API as the
Component needs to act as an Event Notifier and send those Events out down the
corresponding channels whenever the relevant events occur, as indicated by Arrow 3.
There may be an opportunity for these different APIs to come together to share code
inside the underlying (hidden) component implementation, but that is a detailed
design decision and not a requirement.

Figure 6-12. Patterns in Order Component

Airline example
For an additional example, let’s go back to our airline application described earlier.
On most airlines, you can register to receive notification of changes to a flight’s
departure or arrival time. The notifications can be sent by text, voice, or email. This
service can be used by passengers on a flight and by people meeting passengers for
a flight. Remember, each Event is just a reification of a fact, such as “Flight 999 is
delayed by 1 hour” or “Flight 222 is canceled,” specific to the business domain. What
if we could implement those notifications as an Event?

We want to let each Reactive Component determine on their own what to do about
each event. That could include either making a decision to change their own internal
data representation, performing some processing to handle the occurrence of the
event, or simply ignoring the event.
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Some specific examples of how airline flight notification can help a passenger manage
the consequences of a delayed flight are as follows:

• An itinerary component in the airline’s computer represents a passenger’s flight.•
It receives notification of the flight delay, determines whether the passenger will
miss a connection, and schedules new flights accordingly.

• The reservation record in a rental car company’s computer registers for notifica‐•
tions for the renter’s incoming flight. When it receives notification of a delay,
according to company business rules, it releases the renter’s car to other custom‐
ers and reserves a different car that will be available at the flight’s new arrival
time.

• The hotel’s system has a similar reservation process. When the airline itinerary•
announces the incoming flight has changed to the next day, the hotel cancels
the traveler’s reservation for that night and makes the room available for other
customers.

• The passenger’s calendar program (Google Mail, Outlook, etc.) could register•
dependency with the airline itinerary and/or travel agency itinerary. When the
itinerary changes, the calendar (perhaps with human assistance) can look for
conflicts, start rescheduling meetings, and notify meeting participants.

You can see how all of these different Reactive Components work together in Fig‐
ure 6-13.

Figure 6-13. Flight Canceled Event

In this way, Event Notification (see Event Notifier (269)) can be used to provide
complex coordination across multiple complex components, even if each component
is developed by a different team or vendor. Each component is responsible for
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handling notifications when they occur and providing notifications when needed. No
component has more information than it needs. It only has to know what resources
it depends on (such as a rental car company or hotel needing to know a customer’s
incoming flight).

Event Notifier
You are using Event Choreography (246) to coordinate multiple components so that
when a change occurs in a component, other components interested in that change
can react accordingly yet not be tightly coupled through APIs. The choreography
communicates information about each change as an Event (255).

How and when should a component announce changes to other components?

We’ve discussed several times in this chapter how Events are intended to provide the
second principle benefit of Event Choreography, the separation of time and space,
between components. At the root of that separation is the fact that not every change is
necessarily important to every other component. There needs to be selectivity in what
changes are communicated and when.

You want to avoid coupling components too tightly, following the principle of Loose
Coupling from IDEALS as described in Microservices Design (Chapter 5). You
would like to allow extensions to your system without revealing details of how your
components are implemented.

Additionally, you would like to allow components to organize the events that they
notify other components about so that not every component has to listen for every
event. You don’t want to overwhelm the system with so many notifications that the
system grinds to a halt.

Another thing to avoid is coupling components through their data models. One of
the big reasons why a shared database is usually a bad idea between components
is that allowing components access to the entire data model of another component
means that they can react to what might be minor or temporary changes in an
inappropriate way.

For instance, in our shipping example, it would be a bad idea if the order processing
team started picking down, packing, and then unpacking and reshelving items every
time a potential customer added or removed an item from their shopping cart! There
are reasons why these kinds of data and process boundaries are important to preserve
the boundaries between each Bounded Context (201).

Therefore,

Design each component as an Event Notifier that is able to announce its most
important changes as Events.
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Event Choreography can’t exist without Events being published. When we looked at
the Event Storming (189) process, we saw that one of the key parts of that process
was identifying the Domain Events (193) that make up the timeline of what happens
within a system. Later on, we found how those can be separated by boundaries
delineated by pivotal events (the events in between two pivotal events representing
a business process) and by persona. Those boundaries form the edges of a Bounded
Context (201) (which group the Aggregates (211) and Commands that are associated
with those Events) that forms the outlines of a Microservice Design.

Perhaps the most pressing question when deciding how to implement an Event
Notifier is which events to publish, which gets to the question of where to draw
the line between Service Orchestration (see Service Orchestrator (160)) and Event
Choreography (246). Synchronous request-response calls are still needed and used.
Sometimes when something happens, you may need to process it synchronously.
For simple sequential tasks that you need to guarantee the results and control the
flow, it is good to use synchronous calls. When the tasks are complex, requiring
multiple steps to perform, you can process them synchronously as described in
Service Orchestrator.

However, for complex tasks that are independent and when speed and responsiveness
is crucial, it is good to use asynchronous design. In the previous chapter, we described
guiding IDEALS for designing Microservices (119) that included the event-driven
principle, which states that today’s scalability and performance requirements pose a
challenge that can be solved by processing events asynchronously (a good time to
consider Event Choreography).

When implementing any event system, we need a way for components to signal when
something of interest has happened to them so that any interested components can
be notified and take appropriate action (see Figure 6-14). We do this by making the
component an Event Notifier. At the minimum, the component will implement some
notification mechanism that announces when something of interest has happened to
it. A component can be an entity, an Aggregate, or a Domain Event component that
belongs to a Bounded Context. When an Event of interest happens, the component
(Event Notifier) will publish to a topic that is part of an Event Backbone (279). Notice
that an Event Notifier does not need to know any details about which component
might receive and process the event.

Figure 6-14. Event Notifier
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The simplest option is to create an event for every change that happens within a
component. One problem with that option is that you may flood your event system
with many more events than it can handle, or create thousands of events that, in
essence, no one will ever care about. However, events are cheap; you can argue that
each individual event is quite small, and most systems run on human timescales—
until your system reaches very high levels of performance and scaling. This is a good
place to start.

While sending every potential change as an event can be a starting point, it should
not be the ending point. What should instead motivate you is to look back to your
original intent for the component, particularly if you elucidated that intent by follow‐
ing the Event Storming approach. If an event was important enough that a person
remembered to capture it on a sticky note as a Domain Event, then it is probably
at the right level of granularity to preserve as an Event to be sent through an Event
Backbone. Where this may diverge from the original set of Domain Events that you
see in Event Storming is tied to another part of the Microservice Design process.

Remember that Aggregates are made up of logical groupings of one or more entities.
Often you change the state of an Aggregate by adding, removing, or changing one
of its components. For instance, if you are representing an internal combustion
engine as an Aggregate—with the components being all of the various pistons, rods,
crankshafts, valves, and other parts that make it up—you have an interesting choice
to make if you have another part of your system (like a dash or infotainment
component) that wants to know if the engine started when the button was pressed to
start it. We show that level of communication in Figure 6-15.

Figure 6-15. Engine component communication

You can issue Events from every involved component when the engine as a whole
receives its initial “start” command. That may be useful in debugging the engine when
something goes wrong; however, the dashboard system only cares about one event,
which is #engineStarted, or perhaps #engineStartupFailed. What this means is
that your Event Notifier will want to send that event on the relevant topic (like
#engineStatusTopic) that other components can listen to on an Event Backbone.
Whether or not the other lower-level events are sent on other topics (like #cylinder
StatusTopic) is a component-level design decision that each team can make on their
own. Therefore, when starting, you first want to focus on those top-level events that
are likely to be used between components.
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Related to that decision is another decision on how much data to send along with
each event. In general, keep events quite small. Large data changes should not be sent
as part of the event. Instead, the Claim Check pattern (Enterprise Integration Patterns,
2003) should be your guide. If a data element is more than a few lines of text or
JSON, consider merely sending along a key that another component can use with
the external Service API (70) of your component to discover the relevant details of
your component’s internal state. That is a better way of ensuring encapsulation and
reducing coupling between your components.

In addition to all of the main advantages that you get from any Event-Driven
Architecture, you also have the main advantage of an Event Notifier, which is that
since publishers and subscribers are independent and hence loosely coupled, you
can evolve notifier components independently of the Reactive Components (260). You
can also add some new behavior or a new feature by simply adding a new Reactive
Component to listen to an existing Event and perform a new action.

When building any Event-Driven Architecture, it can be challenging to identify the
important Events of interest and associate them with the components to trigger the
Events. Another challenge when designing an Event Notifier is control flow, especially
if fire-and-forget doesn’t work so well. These systems can become more complex
when we need to handle control flow, especially if the notifying component will
need information from any components reacting to its Events. This is especially true
when something goes wrong and we have to deal with error handling, which is more
complicated than in a corresponding system based entirely on synchronous calls.

As we covered in Microservice Design (Chapter 5), domain objects are gathered into
Aggregates (211). One or more Aggregates are usually grouped within a Bounded
Context (201) that represents the boundary of a Microservice (119)—which may
have one or more Service API (70). That leads us to some general recommendations
around the use of both Service Orchestration (see Service Orchestrator (160)) and
Event Choreography (246):

• Within a Bounded Context, you’ll almost always use a Service Orchestrator, and•
make internal Events optional if they seem useful for debugging or extension
purposes.

• Between Bounded Contexts, you’ll mostly use Event Choreography. One Bounded•
Context sends an Event hoping others will react as necessary; hopefully, another
Aggregate receives the Event and reacts. The exception to this rule is that when‐
ever a response is needed immediately, you should use a Service API and invoke
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the service using REST or another synchronous protocol. However, there are
fewer cases where that is required than you might think.

An Event Notifier is part of a Microservice with additional functionality to announce
its changes as Events. The same Microservice can include an Event Notifier and be
a Reactive Component. Whereas an Event Notifier announces changes as Events, a
Reactive Component listens for changes as Events.

The description of the set of Events that each Event Notifier will send on various event
topics makes up the Event API (274) of the system as a whole.

Example
Back in Microservice Design (Chapter 5), in Domain Event (193) pattern, we intro‐
duced some simple Domain Events that might be generated by an Event Notifier tied
to a container ship. As you can imagine, these are mostly Events that are about the
status of the ship as a whole—things like #DepartedPort and #ArrivedAtPort. It’s not
too difficult to imagine that there would be other general-purpose events relating to
the ship as a whole, like #LoadingCompleted. But the unique thing about a container
ship is that it is carrying hundreds or thousands of containers—each of which can
be also instrumented with sensors and could individually generate events. This is a
perfect example of the marriage of Event-Driven Architecture and the Internet of
Things (IoT).

This is especially true of containers that aren’t just moving dry goods such as TVs or
car parts but are special climate-controlled containers that are designed to carry fresh
or frozen foods. These are refrigerated containers (commonly called “reefers”), and
they are an even better source for imagining multiple types of Events that the crew
of the ship and the shipping company would be interested in knowing about. Repre‐
senting each RefrigeratedContainer by an Event Notifier that emits these events
would be an excellent design choice. This could be implemented by a microcontroller
connected to the refrigerated container’s refrigeration unit, which then connects to
the shipwide network.

Sending out events that can be monitored by multiple different Reactive Components
is important to reduce wasted fresh and frozen goods due to unit failure or incorrect
temperatures. So not only could internal temperature measurements be emitted as
an event, such as (#TemperatureMeasured - 4C), but it would also be useful to
take and emit measurements related to power management, such as #UnitLostPower
or #UnitPowerConnected. Detecting whether a unit is running too hot or too cold,
or whether a failure condition like a power loss has occurred, is important to alert
responsible parties to “react” in a timely manner. This would also allow the shipping
company to observe the stream of temperature and power management events and
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take preemptive actions, such as scheduling maintenance, asking the crew to adjust
the unit, or moving the contents if necessary if the unit seems likely to fail.

Event API
You are using Event Choreography (246) to coordinate multiple components so that
when a change occurs in a component, other components interested in that change
can react accordingly yet not be tightly coupled through APIs. When a change occurs
in an Event Notifier (269), it sends an Event (255) to notify interested Reactive
Components (260) so that they can react accordingly.

How can the Reactive Components in an Event-Driven Architecture know what
events to expect?

A Service API (70) defines the interface between a client and a service. A client
and service must both implement their respective sides of the same interface
so that they’ll work together. The interface is fixed and incorporated into the
implementations.

While a service requestor and provider are bound directly, the relationship between
an Event Notifier and a Reactive Component is indirect via a shared topic. When
an Event Notifier and a Reactive Component communicate, the communication is
indirect via an Event. An Event is not fixed like a Service API; it is transitory. A topic
doesn’t specify an API. An Event Notifier and a Reactive Component need to agree on
how they are going to communicate, and that agreement will be a lot more indirect
than a Service API.

A Reactive Component needs to know what events to expect. It isn’t interested in all
of the events in an Event-Driven Architecture; it’s interested in ones for a certain
purpose. Publish-subscribe messaging uses a topic to publish messages for the same
purpose, whereas messages for other purposes are published to other topics. A
Reactive Component needs to know the set of topics in an Event-Driven Architecture
and to subscribe to the appropriate topic. Likewise, an Event Notifier also needs to
know the set of topics and to publish event notifications to the appropriate topic.

A Reactive Component needs to know how to interpret the events it receives. After
it subscribes to a topic, it receives Event Messages (Enterprise Integration Patterns,
2003) from that topic. To make use of an Event Message, the Reactive Component
needs to know the message’s format so that it can parse the message. It expects all
Event Messages on a topic to have that same format so that it can parse them the
same way. This means that all of the Event Notifiers that publish on that topic need to
format the Event Messages the same way, which is the way the Reactive Components
expect to parse the messages.

274 | Chapter 6: Event-Driven Architecture

https://learning.oreilly.com/library/view/enterprise-integration-patterns/0321200683/


To communicate properly, the Reactive Components and the Event Notifiers need to
agree on the topics to use and the Event Message formats to use.

Therefore,

Define an Event API for an Event-Driven Architecture that describes the events
the Event Notifiers publish and the topics they publish the events on.

An Event API is a contract in an Event-Driven Architecture between the Event
Notifiers that publish events and the Reactive Components that receive the events. It
describes the topics events can be published on and the format of the events on each
topic. When an Event Notifier has an Event Notification to announce, it announces
the Event on the topic for that purpose, publishing an Event Message with the
format specified for that topic. When a Reactive Component needs to receive event
notifications for a particular purpose, it subscribes to the topic for that purpose.
When it receives an Event Notification on that topic, it knows the Event Message will
have the format specified for that topic.

Figure 6-16 shows an Event API for a set of event notifiers that emit events and a set
of Reactive Components that listen for events. The API describes the list of topics in
the Event-Driven Architecture. For each topic, the API describes the format of each
of the Event Messages on that topic.

An Event API defines what to do for both the Event Notifiers and the Reactive
Components. If an Event Notifier and a Reactive Component both follow an Event
API, the Reactive Component will always be listening for announcements of a type of
change on the same topic that the Event Notifier announces the changes on because
they both use the topic that the Event API specifies for that type of change. If they
both follow the same Event API, the Reactive Component can parse the Event Message
that the Event Notifier publishes because they both use the event format specified for
their shared topic in the API. If two development teams implement the Event Notifier
and the Reactive Component and miscommunication occurs, the teams can determine
which one is at fault—the problem is in the component that doesn’t comply with the
Event API properly.
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Figure 6-16. Event API

An Event API defines a set of topics for an Event-Driven Architecture. For each topic,
the API defines the topic’s purpose and the format of the Event Messages on that
topic. The Event Notifiers and the Reactive Components communicate by using the
same topic for the same purpose and by exchanging Event Messages formatted for
that topic.

Whereas a code compiler can enforce a Service API, an Event API is not a code
construct a compiler can enforce. It is created by tooling, similar to the tooling used
to generate RESTful APIs for service components.

An Event Backbone (279) that connects Event Notifiers (269) and Reactive Compo‐
nents (260) implements an event API. The set of topics in an Event Backbone defines
the scope of the Event API.
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Examples
AsyncAPI is a specification for describing the API between components communi‐
cating asynchronously. Event Storming (189) defines Microservices (119) by discov‐
ering them through the events they exchange.

AsyncAPI
An Event-Driven Architecture can specify the topics and event formats in an Event
API using AsyncAPI. AsyncAPI provides a standardized approach for describing
a set of channels and messages for messaging communication. It specifies asynchro‐
nous communication similarly to how OpenAPI specifies synchronous communi‐
cation, such as REST services. The specification includes open source tools that
generate API documentation and validate the code for messaging components, as
well as GitHub actions that can be incorporated into a CI/CD pipeline.

An AsyncAPI spec defines a set of channels, operations, and messages. For each
channel, it defines the channel’s purpose, its URI, a set of operations that the compo‐
nents can request and perform, and message formats that the requestors build and
the performers parse. An Event-Driven Architecture can use an AsyncAPI to specify
the topics and event formats in an Event API.

Event Storming and the Event API
An Event Storming (189) workshop discovers the set of events in a domain and the
Bounded Contexts (201) that exchange them. These events are common to the entire
system from end to end. However, there are some bounding assumptions that are
implicit in the way you begin the system design process with Event Storming (see
Figure 6-17).

Figure 6-17. Event Storming early timeline phase

The full list of events found in the workshop and communicated on a common
Event Backbone make up the Event API. However, if you remember the rest of the
process, it’s only in the later phases of the process that you break up the system into
components and specify which components generate and receive which events. That
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set of events (those generated and those received or subscribed to) form the slice of
the Event API for the component (see Figure 6-18).

Figure 6-18. Event Storming later timeline phase

This second phase of the process brings in another crucial piece of information: the
names of the data elements the Events are related to. This is often used to name
not only the component that derives from this combination of events, data, and
processing but also, crucially, the corresponding topics that the set of related Event
Messages flow on.

The API for a single channel is effectively the subset of the Event API for a single
topic and all of the Event Messages that are published on that topic. Listing all of
the channels’ APIs out in a common place, as documentation, provides the benefit
that developers of new components can easily decide which channels to subscribe to
in order to receive the events they are interested in, but it also reduces duplication—
in designing a component, you may find that the component can also generate an
already-identified event. Even if an event is new, it may be related to other events
and carried on the same channel (particularly in the case of “synthetic” or “derived”
events). This is often seen most clearly if the Event API is presented in a tabular form
(see Table 6-1).

Table 6-1. Event API Example

Channel Event 1 Event 2 Event 3
Order processing Order placed Order acknowledged Order shipped

Item processing Item picked Item packed

Invoice processing Invoice issued Invoice paid

Each channels’ APIs is represented by one line in the Event API that refers to that
particular topic. This table in and of itself is useful, but let’s take the idea one step
further. Let’s also suppose that you can take the information from the later Event
Storming phase and decide which information needs to be passed along with each
event. In this way, you start thinking about each event in terms of the description
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of the payload of the Event Message that you send. You could represent each event
payload description as a JSON document (see Table 6-2).

Table 6-2. Event API JSON Example

Channel Event 1 EV1 JSON Event 2 EV2 JSON Event 3 EV3 JSON
Order processing Order

placed
JSON for order
placed

Order
acknowledged

JSON for order
acknowledged

Order
shipped

JSON for
order
shipped

Item processing Item
picked

JSON for item
picked

Item packed JSON for item packed

Invoice processing Invoice
issued

JSON for
invoice issued

Invoice paid JSON for invoice paid

This may seem like a lot of work, but you’ve gained some additional benefits here—
now everyone is aware of not only what possible Events can be sent on each channel
but also what the detailed data structure of that Event would be. Given the wonderful,
extensible nature of JSON, you can also maintain version compatibility by always
adding additional fields, rather than taking earlier fields away or renaming them. The
tabular format we just described is the central idea in AsyncAPI.

Event Backbone
You are using Event Choreography (246) to coordinate multiple components so that
when a change occurs in a component, other components interested in that change
can react accordingly yet not be tightly coupled through APIs. The changes are
represented as Events (255) that are communicated from Event Notifiers (269) and
are reacted to by Reactive Components (260).

How can Reactive Components receive the events they are interested in without
being coupled directly to the Event Notifiers that generate the events?

The first principle benefit of Event Choreography, the separation of API, has been
a feature of all Event systems dating back to the earliest implementations of the
Observer (Design Patterns, 1994) pattern in Smalltalk. That is a different way for
components to interact than by a Service API (70) in that changes are communicated
through a single, common API as data, rather than as separate invocations or REST
endpoints.

The second principle benefit of Event Choreography, the separation of time and space,
specifies that the event system should work asynchronously so that the process or
thread generating the event does not need to wait until all receivers receive the event,
and the event system should work over the network so that the process or thread
receiving the events can be part of a Distributed Architecture (38).

Event Backbone | 279

https://learning.oreilly.com/library/view/design-patterns-elements/0201633612/


The issue is that each of these elements has often “locked in” developers to particular
solutions. For instance, to produce events in an implementation of the Observer
pattern, the event provider (the Subject) would have to know about each of the
event receivers (Observers) in order to deliver events to them.

Finally, you do not want to limit producers or consumers of events to one particular
physical location from which to send or receive events. Encoding the location of event
infrastructure into the consumer’s code limits its ability to scale and to deal with
failure situations. A Reactive Component should not need to be aware of where the
events it subscribes to were originally generated or by which component. An Event
Notifier should not need to be aware of who receives its events or how many receivers
subscribe to its events.

Therefore,

Connect Reactive Components to Event Notifiers indirectly via an Event Backbone
that defines a separate topic for each type of event.

An event topic is a way to create a publish/subscribe connection for transmitting
events. Event Notifiers connect as publishers, and reactive components connect as
subscribers. This is an example of a Publish-Subscribe Channel (Enterprise Integra‐
tion Patterns, 2003). When an Event Notifier publishes an event to an event topic, the
topic transmits the event to all of the Reactive Components that are subscribed, and
each of them gets its own copy of the event.

The basic structure of systems that follow this overall architecture is shown in Fig‐
ure 6-19.

Figure 6-19. Event Backbone

Each event topic is not part of the Event Notifiers or the Reactive Components; it
sits between them. It uses the network to connect but provides publish/subscribe
functionality beyond a network’s capabilities. All of the topics can reuse the same
publish/subscribe functionality if it’s implemented in a central place. That is why you
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need a single component that ties all of the different event topics together. This is the
purpose of the Event Backbone.

There are some architectural constraints that this Event Backbone must allow for:

• It should allow for multiple independent channels or topics that encourages•
the separation of different event types—receivers should be able to choose to
subscribe to those topics or channels that they are interested in and no more

• The Reactive Components should not depend on the physical location of the•
Event Backbone. This can be achieved through the use of distributed messaging
protocols.

All of the Event Notifiers and Reactive Components connect to the backbone to
communicate via its topics. The backbone spans locations, enabling components in
different locations to connect, even if their locations change.

An Event Backbone separates the Event Notifiers from the Reactive Components in
both time and space, which is the second principle benefit of Event Choreography.
They connect to the same topic but run in different processes. An Event Notifier can
send an event notification when it is ready, and a Reactive Component can read that
notification later when it is ready.

An Event Backbone creates a centralized component that every part of the Event-
Driven Architecture relies on. Although the technology can be distributed with
replication, the backbone is a logical single point of failure. This is in contrast to a
completely distributed technology like REST, where there is no central service that
everything must connect to. It is also in contrast to the Microservices (119) approach
of Self-Managed Data Store (154), where even if a single Microservice can’t connect
to its database, other Microservices (perhaps working with other database services or
even just other database instances) may continue to function. While different Event
Backbone technologies use many different approaches to improve their availability
(for example, Apache Kafka replicates topics across multiple brokers in a cluster), this
still remains a potential problem.

Another challenge is that once an application is written for a particular backbone
technology, such as Kafka or RabbitMQ, it ends up becoming tied to the particular
API for that solution or vendor. Vendor lock-in can make it difficult to change to
another solution in the future. This is sometimes an opportunity to use an approach
like an Anti-Corruption Layer (229), but in many cases that may be more trouble
than it is worth. We have found in practice that these types of infrastructure decisions
change slowly and rarely. It’s best to instead carefully consider the options before
picking a technology.
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The minimal functionality for an Event Backbone is to connect Event Notifiers to
Reactive Components and transmit Events between them. Most backbone implemen‐
tations incorporate publish-subscribe topics rather than point-to-point queues, which
facilitates delivering a single notification to multiple Reactive Components. Many
Event Backbones also keep a log of the events they transmit, which can be used to
facilitate Event Sourcing (289) so that the sourcing doesn’t have to record the event
history separately.

An Event Backbone is a type of Message Bus (Enterprise Integration Patterns, 2003),
but one that is specialized to carry only Event Messages (Enterprise Integration
Patterns, 2003) and not other types of messages.

Examples
An Event Backbone can be implemented using either of two types of messaging sys‐
tems: event-style messaging systems and MQ-style messaging systems. Both imple‐
ment the topic functionality needed to build an Event Backbone, but they do so with
rather different architectures. Event-style messaging systems maximize availability
while sacrificing consistency, whereas MQ-style messaging systems do the opposite,
maximizing consistency while sacrificing availability when necessary.

Event-style messaging system
Apache Kafka is the most common event-style messaging system, along with prod‐
ucts built on Kafka like Confluent, IBM Event Streams, and Azure Event Hubs. Other
examples of eventing systems include Amazon EventBridge and Azure Event Grid.

An event-style messaging system hosts multiple topics, enabling event notifiers to
provide event notifications by publishing events to topics and enabling Reactive
Components (260) to receive notifications by reading events from topics. Event-style
messaging systems run more reliably on the cloud by embracing replication, similar
to a Replicated Database (316) for event streaming.

Figure 6-20 shows an event-style messaging system running in three brokers with
one topic split across three partitions. Each partition has two replicas, hosted in two
different brokers. All of the events shown here are published on the same topic.
Each event is published to one of the topic’s partitions. When a Reactive Component
receives a particular event, it reads the message from the partition that stores that
Event Message.
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Figure 6-20. Event-style messaging system

Event-style messaging systems are designed to be always available. The replication
between partition replicas is eventually consistent, which complicates exactly-once
delivery during failure scenarios. If one broker becomes unavailable, the partition
replicas in the other brokers keep all messages available, and the messaging clients
can still publish and consume events using the functioning brokers.

MQ-style messaging system
IBM MQ (formerly known as MQ Series) was the first MQ-style messaging system.
Others include RabbitMQ, Apache ActiveMQ, Amazon Simple Queue Service (SQS),
and Azure Service Bus. Many MQ systems are compliant with Java Message Service
(JMS), providing the specification’s Queue and Topic features.

Like an event-style messaging system, an MQ-style messaging system also hosts top‐
ics and enables Event Notification between Event Notifiers and Reactive Components.
Unlike event-style messaging systems, each queue manager in an MQ-style messaging
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system is unique, holding its own set of messages and transmitting them from one
queue manager to the next.

Figure 6-21 shows an MQ-style messaging system with three queue managers con‐
nected to transmit messages. They have one topic defined. Messaging clients connect
not to the cluster in general but to a specific queue manager. While the clients can
connect to any queue manager, for simplicity, this diagram shows all of the event
notifiers connected to the left queue manager and all of the Reactive Components
connected to the right queue manager. Transmission runs over time and transmits
from Event Notifiers to Reactive Components, so time runs left to right.

Figure 6-21. MQ-style messaging system

The Event Notifiers have added three events to the left queue manager. To transmit
them to the Reactive Components, the left queue manager has transmitted events 1
and 3 to the middle queue manager, but hasn’t transmitted event 2 yet. Perhaps the
transmission for event 2 failed. The queue managers will retry transmitting event
2 until it succeeds. The middle queue manager has transmitted event 1 again to
the right queue manager, where it is now available to be delivered to the reactive
components that are attached to that queue manager and subscribed to the topic.

MQ-style messaging systems maximize consistency at the expense of availability.
Each message is stored in only one queue manager at a time. The transmission of
messages is always consistent, making exactly-once delivery more reliable. If one
queue manager stops running, any transient messages it stores are lost; the messages
it stores persistently become unavailable but are recovered when the queue manager
recovers or is replaced by a standby duplicate queue manager. Meanwhile, its clients
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cannot send or receive events unless they reconnect to an available queue manager.
If a queue manager becomes disconnected from the others, typically by a network
outage, it keeps its messages queued and will resume transmitting them when it
reconnects to the other queue managers.

Enterprise backbones
When we described the Microservice Design (Chapter 5) process, we emphasized that
Microservices (119) are derived from Bounded Contexts (201) within a domain. Most
domains are composed of subdomains, and you will sometimes discover multiple
Bounded Contexts within a single domain. This becomes clear during the Event
Storming (189) process, where we pointed out that there are often significant events
that signal a “change of context” between one or more Bounded Contexts.

If we extend this idea a little further, we find that in very large systems or in very
large enterprises there is not just a single domain of discourse but potentially several
interacting domains.

As an example, let’s consider a company that sells software as a service (SaaS), mostly
through a self-service website. The sales process is its own rich domain. You need
to support your sales teams as they contact leads, turn leads into customers through
contracts, and then handle the process of contract renewals and changes.

The process of billing customers for the software they’ve purchased is its own equally
complex domain. There, you have to decipher how individual client IDs roll up to
accounts and how accounts are billed to the customers. This can sometimes be a
surprisingly complicated process where multinational companies are involved!

Even the bills themselves are complicated, as contracts can specify many different
types of discounts, offers, and pricing structures. At some point, you might want
to consider paying your sales staff on a commission system. Doing so will require
that your sales process be connected to your HR processes—which is again its own
domain.

We’ve not really addressed this level of complexity in this book. We’ve talked exten‐
sively about breaking down complex issues into appropriately sized pieces (Microser‐
vices) but not about how you manage this level of interdomain connection. Luckily,
the Event Backbone and Event API patterns, with a few simple extensions, can provide
part of a very elegant solution for this kind of architectural organization.

If we consider each domain to be comprised of several interoperating Microservices,
the asynchronous, event-based communication between those services will take place
over an Event Backbone. What’s more, it’s probably true that there isn’t just one
application comprised of Microservices in each domain—if the organization is suf‐
ficiently large, there may be several applications (potentially dozens or hundreds)
in each domain. That warrants each domain having its own Event Backbone to
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facilitate that communication, especially if organizations are free to make their own
technology choices. Figure 6-22 shows what this could looks like within an enterprise
environment.

Figure 6-22. Multiple backbones

The Billing backbone may be implemented in an environment such as SAP Event
Management because most of the applications in the billing organization are built on
SAP. However, in Marketing, a more special-purpose event environment tied more
closely to digital marketing, like Twilio’s Segment, might be appropriate. The Delivery
team may choose to build their own backbone with Apache Kafka.

Where things get interesting is when the different organizations and systems need to
communicate. Again, we want this to happen in a reactive, event-driven way. At the
same time, it’s not appropriate for every low-level sales event (e.g., someone clicked
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“SCHEDULE A DEMO”) to be sent to the Event Backbone for Billing or HR. Instead,
we need a special Event API that is a subset of the Events that are published to each
Event Backbone to be shared across the different backbones.

So while clicking “SCHEDULE A DEMO” may be interesting only to the Sales
department, clicking “BEGIN A TRIAL” may be interesting to both Marketing and
delivery. Clicking “BUY” would be interesting to both billing and Delivery, since
Delivery may need to provision a production instance of the software if it’s not natu‐
rally multitenant. We show this kind of Event API crossing domains in Figure 6-23.

Figure 6-23. Multidomain Event API

In this example, we see two events that cross domains. When a metering event is
recorded in the Delivery domain (for instance, someone called an API for a SaaS
service), that Event is interesting to the Billing domain, which must update the
current account for the customer by the amount per API call specified in their
contract (a process called Rating). You can imagine the process of beginning a trial,
or converting a trial to a contract, would be even more complex, with many shared
events between domains. It’s important to note that not every Event in an Event API
will cross domains. Limiting the set of Events that are of interest to other domains is
part of the challenge of designing systems of this level of complexity.

What this means is that there needs to be a way to connect many or all of the different
departments’ Event Backbones with a backbone of backbones or an Enterprise Back‐
bone (see Figure 6-24).

In this architecture, the Enterprise Backbone receives selected events from the other
backbones and then retransmits them to any interested parties, including other
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backbones. This kind of inter-backbone connectivity is often carried out through a
“bridge.” A bridge may be a standalone piece of software or merely a feature of the
backbones themselves. Each bridge acts as a Reactive Component in that it receives
events from one backbone that it sends on to a second backbone by acting as an Event
Notifier to the second backbone.

Figure 6-24. Backbone of backbones

That Messaging Bridge (Enterprise Integration Patterns, 2003) may be a standalone
piece of software or merely a feature of the backbones themselves—for example,
AMQ Streams to Kafka or Segment to Kafka.

Jim Episale gives an example of how this kind of Enterprise Backbone was built in
the IBM CIO office, along with the benefits of this type of architecture in James
Episale’s blog post “Building a Cross-Pipeline Data Registry for Multi-Application
Ecosystems.”

Each team that is responsible for a domain—for example, Billing—should be respon‐
sible not only for the Microservices in that domain (as we have discussed earlier)
but also for the backbone for that domain. That then means they are also responsi‐
ble for the Event APIs for their domain as well (intradomain). If each individual
domain team is then responsible for their own backbone, then who is responsible
for the Enterprise Backbone and the shared Event API that goes across domains
(interdomains)? That needs to be the responsibility of a shared services team, perhaps
composed of representatives of the individual domain teams. That same shared
services team can form the core of a governance team for the overall architecture as a
whole—this shared services team will be responsible for publishing the shared Event
APIs and can be responsible for bridging between backbones.
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Event Sourcing
You are using Event Choreography (246) to coordinate multiple components so that
when a change occurs in a component, other components interested in that change
can react accordingly yet not be tightly coupled through APIs. The choreography
communicates information about each change as an Event (255), which the Reactive
Components (260) use to update their state.

As an application’s state changes constantly and unpredictably due to evolving
conditions, how can you audit the history that created the current state?

Let’s say you’re building an application to represent a complex, evolving process. One
of the hardest parts of applications like this is figuring out how to represent the
state of the current process but also explaining how the process got into the state it’s
currently in. In other words, the history of the process is an important part of the
process itself.

This is true in a number of fields. For example, in accounting, there’s an entire field
called forensic accounting that uses investigative techniques to uncover financial fraud
by examining the history of transactions to trace funds or identify where assets have
been directed. When you’re trying to trace something such as a theft of cryptocur‐
rency, the ability of the blockchain to serve as a history of all the transactions that
happened and how they relate to one another is an important enabler. In medicine,
knowing the history of a patient in terms of what treatments they have been given,
what tests have been performed, and what the results were are likewise immensely
valuable in understanding a patient’s current state. In shipping or transportation,
knowing where something has been is important in determining questions like what
taxes or duties need to be paid or what delays or adverse conditions it might have
experienced, or in making predictions about things like arrival times.

It seems like trying to store all of these things separately might be too complicated.
You could have a single state variable of the latest test result (say, their body tempera‐
ture) for a patient, for instance, but that doesn’t give the same information as if you
had all of their temperature records. If a single state variable is not a reasonable solu‐
tion, then what is? You could try having multiple state variables that each represent
each of the different cases, but that quickly becomes too complex to manage. Imagine
trying to line up all of the different records for a patient’s temperature with when they
were given medication if those are stored in separate arrays or lists. If we can’t line
up the times in which they happen, it would be difficult to figure out whether a test
result is an indication of a medication working or whether the abnormal result is a
side effect of the medication.

The worst part comes when something in a complex system has to be undone or
reset. This happens all the time. To reverse a financial fraud (say, a stolen credit card),
you need to remove or undo invalid credit card transactions. To cancel a financial
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transaction that is in flight, you need to rewind all of the different parts of the
transaction to the state they were in before it began. Undo is an interesting verb. It
means we want to turn back time to before something happened and change the past.
What if we could do exactly that? What if we could rewrite history?

Therefore,

Log the history of events that each Reactive Component receives so that Event
Sourcing can understand the component’s current state and reconstruct its state if
necessary.

To do this, you need to first record the history of a Reactive Component as an ordered
set of the events that were received. You next need to allow queries (navigate) over
this history to understand how the component got into its current state. Then you
should allow the system to simulate a change in its state by changing its “current
position” in the event stream and selectively replaying events. Finally, allow the
system to repair its final state by either replaying the events on the real component or
compensating for the difference between the simulation and the original state.

The first part of the solution is a history of the events that have occurred on a
particular event topic. Every critical change to the Reactive Component has to be able
to be represented by or “created from” an event in this history. It’s important that
these events be stored in the order in which they arrived. Ships, trains, and airplanes
don’t arrive at their destinations before they depart their origins, and likewise, the
order of orders placed and payment received for an online store is also critically
important. If one of the desired properties of our solution is to “turn back time” to
an earlier state, we need to understand how the system was put into that state—that’s
recorded not just in the events themselves but importantly in the order in which they
arrive on the topic (see Figure 6-25).

Figure 6-25. Event sourcing

So let’s take a very simplified and low-stakes example. Let’s say that we’re teaching
a course on event-driven development. During the course, we give out homework,
which is turned in and graded—and then give quizzes, which are also turned in and
graded. A simple history early in the course for one student (corresponding to a
single event topic) can be seen in Table 6-3.
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Table 6-3. Event history example

Assignment Grade
Homework 1 98

Homework 2 100

Quiz 1 84

Homework 3 92

The next part is the ability to navigate (forward and backward) through that his‐
tory—both for simple queries answering the question “how” the process got to this
particular state but also to use this history to make decisions about which events
are good and which might be problematic. Thus, searching through the history is
important. But it’s not only search but also simulation of internal states at a particular
point in time that becomes critical.

Returning to our motivating example, let’s say that we have to report midterm grades
halfway through the course. This could just be a simple weighted average where a
quiz is worth twice as much as a homework assignment, and then you use a simple
90-80-70-60 scale for letter grades A (superior) through D (failing). Our student has
the following history at the time that midterm grades are calculated (see Table 6-4).

Table 6-4. Event history midterm grades

Assignment Grade
Homework 1 98

Homework 2 100

Quiz 1 84

Homework 3 92

Quiz 2 41

Reported Grade C

At this point, we report the midterm grade of C (passing but unexceptional) to the
registrar and it goes out, possibly influencing the student’s chances at a scholarship.
But then the student runs into class and shows us their second quiz—two pages had
stuck together and one page had not been graded at all! The grade should not have
been a 41 but a 91!

When we change history and update the 41 to a 91, the weighted average immediately
changes to 91 for all assignments—a solid A grade for one of our brightest students.
What we need to do, though, is not just determine that the new average should be
91—which is simulating what really would have happened without the mistake—but
instead change the actual reported grade; in essence, we want to go back to the point
in time before the second quiz and replay events forward with the new set of events
(see Table 6-5).
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Table 6-5. Event history changed example

Assignment Grade
Homework 1 98

Homework 2 100

Quiz 1 84

Homework 3 92

Quiz 2 91

Reported Grade A

When you put all three of these pieces together, you get the ability to take the
following steps:

1. Pick a point in time (which may be the beginning of time) and reset the state1.
of the component to the state it had at that point in time. If the point of time is
the beginning of time, that means resetting everything to where the component
initialized to.

2. Search the event history to find the set of events forward from that point2.
3. Select only those events that you judged as good (perhaps leaving out things like3.

fraudulent or incorrect events or replacing them with other events, as in our
example).

4. Replay those good events by having the Reactive Component respond to them in4.
the same way that it had originally responded to them in the first place.

One of the ramifications of this tiny example is that we have found that to be able
to undo or re-create a state, you need the ability to identify a starting point in the
event stream and reset the component’s state to the state at that point in time. In
our simple example, we could rewind to the beginning of the semester and play
everything forward. If your critical state is a simple number like our weighted average
or a current account balance in a financial system, it’s easy because you can always
rewind to the beginning and start at zero. However, storing that state (such as a
current account balance) at another point in time allows you to go back to that earlier
point and then restore the state of the account to where it was at a known point in the
past. In that case, storing the critical state of a component as a snapshot or checkpoint
can simplify the calculations going forward (see Figure 6-26).
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Figure 6-26. Event history and checkpoint

Here, having a checkpoint between events 3 and 4 is important because it means that
if we need to rewind event 4 or 5, we need only go back to that last checkpointed
state, not necessarily all the way back to the beginning, and then play forward only
from the last checkpoint.

When implementing Event Sourcing, you need to decide on how and where to store
your event history. In simple cases, you may be able to take advantage of the capabili‐
ties of the Event Backbone and use the Event Backbone as the event history (Option
1 in Figure 6-27). However, most systems that serve as an Event Backbone limit how
long they store messages. In the case of Kafka, for instance, the default retention
period is one week (although that is configurable). That is enough for many case, but
not all.

Figure 6-27. Alternatives for Event Sourcing
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If you need a history that is longer than that, you may want to consider using an
external database, like a time-series database, to store your event history (Option 2
and Option 3 in Figure 6-27). Option 2 will store the component level history as it
receives events, while Option 3 will store the topic-level event history that arrives to
the Event Backbone.

One of the main advantages of Event Sourcing is that because you have the events
and the order they were processed, you can replay the events if needed. This could
also result in replaying the events with new features. For instance, imagine a financial
system where one of the actions is the calculation of a daily interest payment on
a short-term loan. Now, further imagine that for some period of time—due to an
incorrect interest rate being entered—we have been calculating that daily interest
wrong for a few weeks. The problem is that this means that the balance every day (on
which the new balance is calculated) is also wrong. We need to at a minimum know
the history of the debits and credits to the system to replay the interest calculations
correctly in order to find what the daily interest should have been over that time, and
then we need to create a new credit or debit at the end to make up for the incorrect
calculations.

A potential downside of keeping the state of an application as a series of events in an
event stream is that reconstructing the current state of the application always involves
a query to the history, which can take a varying amount of time depending upon
how long the event stream is (how many events it consists of) and the performance
of your query. When formulating your queries, even in the simplest case, you need
to come up with a mechanism for knowing how far back in time you want to query
the event stream. Essentially, you always need to have a way of identifying a bounding
event that marks the beginning of a query.

Another challenge to Event Sourcing arises when you are dealing with external sys‐
tems that were not designed with this approach. Additionally, you need to manage
how you store the events, as noted earlier, which may add extra cost to your solution.
Also, if reversal of events is required and is not straightforward, you might need to
build into events how to reverse themselves.

Obviously, you can’t have an event history without Events (255), so Events are funda‐
mental to the pattern. Likewise, as we’ve mentioned, the history of events received is
specific to a particular event channel, so knowing the Event API (274) of your events
is critical. Likewise, the event history is either part of the Event Backbone or should be
pulled off the Event Backbone (279) and stored separately by a Reactive Component
(260), depending upon your particular needs.
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Examples
The following financial services and ride-hailing examples illustrate the use of Event
Sourcing.

Financial services
One of the most common domains in which we have seen the pieces of the Event
Sourcing pattern come together is in the financial services domain. Let’s consider a
common structure that emerges in that domain constantly. We are all used to seeing
financial statements—such as a bank account statement—represented as rows of text
arranged as columns for descriptions of the transaction, with numbers in one or the
other column representing whether the transaction is a credit or a debit, possibly
accompanied by a running total or balance (see Table 6-6).

Table 6-6. Event-Sourcing transactions

Date Description Credit Debit Balance
010224 Starboots Coffee 5.24 104.10

010224 Public Grocery 27.19 76.91

010324 EBX, Inc (Paycheck) 1017.99 1094.90

This kind of representation is called a “Ledger” and has been common in accounting
since it was adopted by Italian merchants in the fourteenth century. For our purposes,
what is critical is that each entry in the ledger is important—be it a credit or a
debit—but also that the order of the entries is important. When financial transactions
are represented in this way, it provides a history of the account. That would make
it possible, for instance, for the account owner to locate and dispute a transaction
if there was financial fraud (like someone stealing a debit card and buying lots of
extra-fancy coffees).

If we view each credit or debit as a separate Event and then view the sequence of
events as a time series, we’ve fulfilled the first criteria for Event Sourcing. The reason
we don’t think of this as being an example of Event Sourcing is that we’re so used
to this kind of representation of financial transactions that we almost can’t imagine
them being represented in any other way (as we said, this has been around since the
14th century).

The next criterion is to look at what you can do with the time series of Events. We’ve
already seen that the history allows you to traverse it forward and validate that every
transaction is valid. This is especially helpful in today’s world of opt-out subscrip‐
tions, where a seemingly innocent online purchase can lock you into a recurring (and
often unwanted) monthly fee. This is the domain of a number of different software
solutions today that (when given access to your accounts) will search for these types
of transactions and tell you how much you could save in a month if you dropped
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all of your subscriptions. That fulfills the second criterion, search and simulation. A
calculation of what your monthly checking account balance looks like without your
bacon of the month club subscription is a simple case of simulation.

But the final criteria (repair) is the one that often leaves developers scratching their
heads. This gets to the difference between simple and complex cases. In the simple,
one-account case, having a reverse operation for the two operations (debit and credit,
which are themselves their reverse operations) is a decent solution. In fact, you can
even see that in your own bank and credit card accounts if you dispute a charge. You
may see entries in your bank account ledger similar to those shown in Table 6-7.

Table 6-7. Event-Sourcing disputed charge

Date Description Credit Debit Balance
010224 Starboots Coffee 5.24 104.10

010224 Public Grocery 27.19 76.91

010324 EBX, Inc (Paycheck) 1017.99 1094.90

010424 BigBank - Provisional Credit -012424 Starboots 5.24 1100.14

Where things really get interesting, and where replay and replacement becomes
helpful, is when you don’t just have a single account but multiple, linked accounts
with complex transactions moving between them. Consider the following scenario.
Let’s say you have a retirement account (like a 401K) that contains lots of different
exchange traded funds (ETFs), mutual funds, and individual stocks and bonds.

From the perspective of the account holder, even a complicated thing like an account
rebalance should look to them like one single transaction—they just set up what
they want their new portfolio to look like in terms of what ETFs, funds, stocks, and
bonds they want to own in what percentages, and tell the system to make it so.
Internally, that’s a pretty complicated, but usually trouble-free, process. ETFs, stocks,
and bonds are traded to other parties at the current market price, the proceeds move
into one or more “sweep” cash accounts, and then the resulting cash is used to buy
the desired set of equities and other products to make up the final percentage. If
everything goes well, this is like a well-oiled machine, with the amounts in all those
different subaccounts for each financial product being predictable from the moment
the rebalance is requested, and the account holder being no better or worse off than
when they started.

However, things can go wrong, sometimes badly, and sometimes it’s the broker’s
fault. Systems can freeze, trades can be halted or reversed by the other party, and,
ultimately, it’s the broker that holds the account that has the fiduciary responsibility
to make things whole for the account holder if they are the ones who screw up. That’s
where replay really comes into the forefront. Even if something goes horribly wrong
and one or more trades can’t complete, or worse, complete at a loss caused by the
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broker’s actions, the broker can use the event stream to then rewind and playback a
simulation of what should have happened, then make things whole for the customer
by doing their own internal compensation for any losses that were the broker’s fault.

Ride-hailing
A simple example of Event Sourcing can be drawn from ride-hailing services. Let’s say
we have a driver that’s participating in a car-hailing service (like Uber). All day long
the driver will receive notifications of hails, decide whether to respond to those hails,
pick passengers up, take passengers to locations, drop them off, and then repeat the
process. The problem with a point-in-time representation is that it is hard to keep a
single state variable up-to-date, especially when there is the possibility of network lag
or having the driver’s app drop off the network when cellular coverage is bad. What’s
more, it’s also hard to figure out the logic of how to “undo” things when conditions
change.

For example, let’s imagine that a driver receives a request to pick up a passenger. We
could say that the current state of the car is that it’s on a trip. But what if the passenger
cancels the request before they are picked up? Or what if the passenger arrives at
a destination only to let the driver know they wanted to use an ATM and then be
carried to another location, which was their real destination? The conditions evolve
quickly and are hard to represent in a static form.

Trying to represent this complex set of conditions as a single state variable would be
difficult. You could implement it as a state machine, but there’s always the chance
that your state machine may not represent all of the possible edge cases of what can
happen in reality—like passengers canceling both before the ride begins and after
it begins or the driver deciding they want to cancel the ride for some reason (like
fearing for their safety).

Instead, if we keep a history of events, in whatever order they were received, you
can find the current state of the car by simply examining the last event on the event
stream. But representing your application state this way brings other advantages too:

• You can easily derive other information that is useful to the application by query‐•
ing the event stream over time. For instance, calculating the average trip time for
a trip simply amounts to scanning the event stream from a given point (like the
initial sign-in of the day) and then summing the timestamp differences between
trip starts and trip completes, then dividing by the number of start/complete
pairs found during that day.

• Undoing amounts to adding new events to the event stream that reverse previous•
actions. Likewise, if you need to restore the state of an application to that of a
previous point in time, you can simply replay the event stream from an earlier
save point to that point.
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• It is possible to go back in time and reconstruct the state of the application at any•
point in time. For instance, if there is a dispute between a passenger and a driver
over who canceled a ride or whether a car arrived at the right pickup point at a
specific time, you can rewind the event stream to find what the state was at that
particular time.

This kind of backward-looking through time over an event stream is illustrated in
Figure 6-28.

Figure 6-28. Ride hailing Event-Sourcing example

In this car-hailing example, the last trip end event can be a bounding event that serves
as a good point to take a checkpoint. You can reconstruct the status of a ride at any
point between the time it starts and the time it finishes, but rides themselves are
bounded. You would not need to look for any events prior to the previous trip end
event in constructing the current status of a ride.

Conclusion: Wrapping Up Event-Driven Architecture
This chapter discussed how to design components to coordinate without ever know‐
ing about one another. Event-Driven Architecture builds on Microservices Architec‐
ture (Chapter 4), developing a different approach for how Microservices or entire
applications can collaborate.

Event-Driven Architecture designs components to collaborate through Event Chor‐
eography (246). These choreographed components can be as simple as a Microservice
(119) to as complex as a Modular Monolith (29). Choreography enables components
to collaborate without a central plan, to handle unexpected changes, and to evolve
independently with changing requirements.

A Service Orchestrator (160) follows a predefined plan and coordinates executing
each step in order by tightly coupling the orchestrator with its services and invoking
them synchronously or pseudosynchronously. This contrasts to Event Choreography
where you coordinate multiple components so that when a component of interest
changes, it triggers an Event (255) allowing any components interested to react to that
change. While both approaches compose greater functionality from simpler services,
they accomplish the composition very differently. Event Choreography is coupled only
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to its topic, announces a change that propagates asynchronously, and then lets the
simpler services individually decide whether they consider the Event important and
how to process it.

Orchestration ensures that the overall function is performed correctly and com‐
pletely, whereas choreography enables components that were never designed to work
together to collaborate to fulfill a collective purpose, doing so with greater scalabil‐
ity and resilience. We can debate which approach is better, and of course, each
has advantages in the right circumstances. Rather than choosing a one-size-fits-all
solution, an application can have the best of both worlds by incorporating both
Microservices Architecture and Event-Driven Architecture taking advantage of each
when it fits the functional requirements best.

Microservice Design (Chapter 5) helps you discover the boundaries of your Microser‐
vices and reveals when and where your Microservices can benefit from Event-Driven
Architecture. The events discovered in Event Storming (189) and used to scope
Microservices are recast as event notifications that choreograph the Aggregates (211).
Event-Driven Architecture recognizes that event design and incorporates it back into
the running application.

Event-Driven Architecture enables choreography by organizing Microservices and
other components not only as Service API (70) consumers and providers but as Event
Notifiers (269) and Reactive Components (260). Notifications are communicated as
Events that are sent on topics on one or more Event Backbones (279). An Event API
(274) describes the topics and the Event Message (Enterprise Integration Patterns,
2003) formats to teams who will produce or consume Events. Event Notifiers are
designed to send Events to topics shared with Reactive Components they collaborate
with. These Events have well known formats understood by both sides of the col‐
laboration. New Event Notifiers and Reactive Components can easily be added to
the collaboration, and unneeded ones can easily be removed, all without causing
changes to the existing components. The components need never know that they’re
collaborating with one another.

This chapter also shows how Event Sourcing (289) records a log of changes to
Reactive Components that explains their current state. The log is the history capturing
a paper trail of the Events that impacted the components, one that can be queried
to explain how the components’ current state came to be. The application can replay
portions of the history to re-create a component’s previous states, effectively looking
at the component back in time, and can replay events selectively to create new
states for the component. Furthermore, if the current state of the component is
found lacking, the application can replace the current component with the result of
a simulation, effectively undoing Events that corrupted the current component by
skipping them the second time around. All of this Event Sourcing—history, querying,
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simulation, and replacement—is made possible by an Event-Driven Architecture that
updates Reactive Components’ state via Events.

Next, we’ll explore how stateless components store their state externally. Cloud facili‐
tates a wealth of Cloud-Native Storage (Chapter 7) options and databases that work
the way the cloud does. A range of database options enables persisting data the way
the application wants rather than the way the database wants. Database services make
it easy for development teams to create and manage their own databases without
needing a separate database administrator (DBA) and enable each Microservice to
have its own Self-Managed Data Store (154) hosted in a manageable set of database
servers.

300 | Chapter 6: Event-Driven Architecture



CHAPTER 7

Cloud-Native Storage

For cloud-native applications to work better in the cloud, they need to persist their
data in storage that works better in the cloud.

A Cloud-Native Application (Chapter 3) can pose a difficult problem: you would like
for one to be a Stateless Application (80), and yet most applications have state. If
the application’s state isn’t in the application, where does the state go? Microservices
Architecture (Chapter 4) seems to compound this problem because each Microser‐
vice (119) has its own Self-Managed Data Store (154). So the question is not just what
one application does with its one set of data but what all of its Microservices do with
all of their separate sets of data.

The cloud has brought developers and architects a wealth of new options for data
storage. Long gone are the days when the only data storage option was an enterprise
relational database for all applications, regardless of whether the type of data that was
being stored was suited for a table-based representation. However, with new choices
come new potential problems. In particular, the nonfunctional requirements that an
enterprise relational database addresses now become more important, as the number
of ways in which these requirements can be addressed increases.

Introduction to Cloud-Native Storage
This chapter explains how to store data in ways that work better on the cloud and
that enable applications to use the data more easily. While the cloud includes storage
infrastructure, databases hosted in the cloud work more the way Cloud-Native Appli‐
cations work. The patterns in this chapter show how databases on the cloud provide
more sophisticated data management than storage infrastructure does by managing
the storage for the application, thereby simplifying applications while providing them
with additional capabilities.
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To introduce these patterns, we’ll first review the problems with making storage
infrastructure work the way Cloud-Native Applications work.

With this background, we’ll then present patterns for how Cloud Applications can best
use storage, starting with the root pattern for this chapter, Cloud Database (311).

Storing Data for Cloud-Native Applications
A cloud platform provides storage infrastructure—typically three types: block, file,
and object. An application can use raw storage directly. However, storage often
doesn’t provide the nonfunctional requirements that applications require, such as
resiliency, backup, performance, and security. The limited capabilities of storage
forces the application to do a lot of the work of managing the data.

Cloud-Native Applications work better on the cloud. To do so, their data storage
also needs to work better on the cloud. Making storage work the way Cloud-Native
Applications work introduces some key questions:

• How should you represent your data if each Microservice or module should•
manage its own data? What ramifications does that have for how many databases
you have in an application and the types of data they should manage?

• How does the database contribute to and help meet the quality-of-service (QoS)•
requirements of your application, such as availability, redundancy, and data con‐
sistency? How can your database keep up with the scaling requirements of your
application if you have a Replicable Application (88)?

• How should you host and manage all of these different databases?•

The patterns in this chapter address these questions.

Architecting Applications with Cloud-Native Storage
This chapter defines a collection of thirteen patterns that explain how to design appli‐
cations that use cloud-native storage to persist data. Figure 7-1 shows the patterns
and their relationships.

An application or Microservice persists its data in one or more Cloud Databases (311),
rather than using raw storage such as file storage or disk storage. (Object storage is a
special-case alternative to a Cloud Database.)

Most databases run in the cloud as a Replicated Database (316), making the data
reliably available on the cloud’s unreliable infrastructure and scaling the way the
application scales. Whereas databases can be designed for replication, storage either
doesn’t replicate or the replication has limitations. Database replication is far more
flexible and configurable.
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Figure 7-1. Cloud-Native Storage patterns

Some cloud databases are Configuration Databases (323), used to persist and share
the settings for cloud services and platforms. While useful for implementing cloud
capabilities, they generally are not used directly by cloud-native applications.

Cloud-native applications do have state that they need to store. For the application
to remain stateless, it persists its data in an Application Database (328). There are
several different types of application databases, optimized for different strategies for
storing and accessing the data:

Relational Database (333)
Stores well-structured records in tables, normalized to optimize for dynamic
querying

Document Database (338)
Stores semi-structured data in unnormalized records with direct access via keys

Key-Value Database (344)
Stores unstructured records indexed in a hash map for direct access using their
keys
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Graph Database (351)
Stores semi-structured entities optimized for navigating the relationships con‐
necting entities

Columnar Database (356)
Stores structured records in tables optimized for analytics

Rather than use a single database for the entire application, a cloud-native application
typically separates data into Data Modules (366), such as each Microservice storing
and managing its own data separately. The application should store each data module
in a separate database.

Data Modules facilitate Polyglot Persistence (374), where the database for each mod‐
ule can be a different type best suited to how the application formats and uses that set
of data.

Having selected a database to use, rather than the developers or operations installing
it manually, a Database-as-a-Service (378) hosts databases that it installs and man‐
ages. One service instance can host multiple databases for multiple Data Modules that
are all stored in the same database type.

A database can optimize the performance of either updating data or querying data,
which becomes a problem for data that is constantly being queried while it is also
being updated. Command Query Responsibility Segregation (382) (CQRS) is a data‐
base strategy that optimizes the throughput of both querying and updating the data
simultaneously.

This introduction has covered several topics that are helpful to be familiar with to
understand the patterns in this chapter. We’ve talked about how stateless applications
have an even greater need to persist data, and Microservices require an even greater
number of separate data stores. Meanwhile, raw cloud storage doesn’t work the way
cloud-native applications do, but the cloud platforms host databases that do work like
cloud-native applications.

Before we begin, it is useful to review some topics from the section “Database Topol‐
ogy and Database Selection” on page 304 that become critical when understanding
the decisions behind some of these patterns. With this background in mind, we
will then move on to discuss patterns for architecting and designing the storage for
cloud-native applications. That discussion starts with the root pattern for this chapter,
Cloud Database (311).

Database Topology and Database Selection
To understand how to best address the concepts of resiliency and horizontal scalabil‐
ity, it’s worth surveying some topologies for database management systems and how
they address these issues. This evolution toward better solutions for these two areas is
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important in understanding the issues involved in choosing a database management
system (DBMS) for a cloud-native system.

The first topology to examine is the single-server, single-storage approach. This is
illustrated in Figure 7-2. For most of us, a system like this is our first introduction
to a DBMS. It may have been a single-server instance of MySQL or Postgres or (for
those of us older than that) a single-server system like Microsoft Access. Note that
in this and all the following diagrams, a rectangular box represents a server process,
with the text showing whether clients can read or write to that process (or both) with
a database icon representing storage.

Figure 7-2. Single-server topology

The advantage of this approach is that it is simple. It gives you the ability to use a
DBMS without spending a lot of time on installation, configuration, or setup. It is
also relatively cheap in that it requires only one server, VM, or container and attached
storage.

The disadvantage is that it provides neither scalability nor redundancy. The single
database server process creates a single point of failure—as does the single location
for storing the data. If a physical disk fails, even in the cloud, the data may become
unavailable or corrupted. Nevertheless, this is a great way to get started with under‐
standing the programming model of a DBMS system, and the simplicity makes it easy
to build simple systems, perhaps MVPs, that can later scale if needed. That is why this
is the simplest choice not only for traditional Relational Databases (328), including
PostgreSQL, but also for the most elementary installations of Redis (single node) and
CouchDB (single node). You do not gain scalability or redundancy but only a slight
modicum of resiliency through containerizing these databases—if you connect from a
container to persistent storage, the quick restart time of a container will mean that if
the container dies, it will be quickly restarted.

Seeking to address the resiliency problems of a single-server model, the next model
to evolve was the leader-follower model. In a leader-follower model, reads and writes
are all directed to the leader. However, there is an unseen (to the user) second
database server, connected to a separate storage, that receives a copy of all the updates
to the leader as they are made (usually through a mechanism like log shipping).
That means that the follower storage holds a copy of the data (minus perhaps the
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last transaction in progress) and that the follower database server process is ready
to accept reads and writes but is not yet doing so. In the event of a leader failure,
the follower takes over and begins processing reads and writes to the database (this
process is called fail-over, and when the leader process becomes functional again, a
similar process called fail-back must occur). This is shown in Figure 7-3.

Figure 7-3. Leader-follower topology

Now you have a measure of redundancy in that the leader-follower model can survive
the failure of a single process or the failure of its attached storage. However, this
doesn’t address the question of scalability—you’re still limited to the number of
transactions in a unit of time that the single server can support.

That leads us to the next variation on the leader-follower model. You can easily add
some horizontal scalability if you allow reads on one or more follower processes—so
long as writes are forbidden, you have no possibility of a conflict requiring resolution.
That leads you to the model shown in Figure 7-4.

Figure 7-4. Leader-follower with read replicas topology

These additional follower processes are called read replicas. While this adds some
scaling, it works best when the read/write ratio is heavily skewed toward reads. This
occurs, for example, in the retail industry, where people view items more often than
they choose to add them to their cart. It also occurs in many types of web applications
where the output is primarily informational—if a website is semi-static this is quite
useful. However, if you need to scale this to cloud sizes, even this approach will fail to
scale as you will quickly reach the limitations of the single-writer process.
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What’s more, there is an insidious problem lurking below the surface that can also
create issues, even if you do not reach that level of scaling; it takes a finite amount
of time to transmit the changes from the leader to all the followers. If this happens
synchronously (e.g., all followers must be updated before the transaction completes
and control returns to the writer process) the total time for any transaction will
increase as you add additional follower processes, eventually reaching a point where
it becomes noticeable or restrictive. If, on the other hand, you update the followers
asynchronously, you introduce a different problem—the problem of consistency,
where two copies of the data can get out of sync for a period of time. We will address
the issue of consistency later in this section.

Even though this approach has issues as described, it is quite common in the indus‐
try as it does address many real-world problems. For instance, it is used in Redis
Sentinel, in MongoDB with replica rets, and in SQL databases, such as MySQL (when
configured with InnoDB clusters and mirrored), and even in Enterprise databases
like DB2 HADR.

In fact, enterprise databases were the first to introduce the next variation on the
theme, which looks at the problem we have considered by relaxing the other con‐
straint—gaining linear scaling while leaving the problem of data redundancy to a
different solution (see Figure 7-5).

Figure 7-5. Shared-storage topology

In this model, you have a shared, networked filesystem that is available to all the
processes running in all of the distributed computers that are part of the solution.
This has several advantages:

• You can add nearly as many read/write processes as you want, and the solution•
will scale linearly so long as you can manage load balancing across all the
processors (load balancing is not shown in the diagram but is assumed either
through an external load balancer or a client-based load balancing scheme).

• Failure of any read/write process does not affect any of the remaining processes.•
Read/write processes can be added or removed at will, which allows scaling up
and down.
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• Managing the concurrency of reads and writes to the database across all these•
processes reduces the problem of managing shared file access in a multiprocess
operating system, something that operating systems have been able to do since
the 1960s.

The downside of this is that it requires a shared, networked filesystem. And these
have their own issues. First, they are often difficult to set up and sometimes expensive
to manage, even in cloud systems, which limits their use. Second, they have their own
problems similar to the problems we’ve seen with databases themselves. To perform
adequately, the clients will often take advantage of approaches like caching, buffer‐
ing, and prefetching. This creates additional complexity and may reduce the overall
performance of the system, particularly in complex read/write scenarios involving
conflicts to the same file or parts of a file (the most common assumption in shared
file systems is that most files are read-only, which is not the case in this scenario).
What’s more, it moves the failure point away from the database server processes to
the process (and associated hardware) hosting the shared file system. That can, in
some cases, create a single point of failure but more often simply requires expensive,
special-purpose storage hardware with multiple redundancies.

Nonetheless, this is the approach taken by Oracle RAC and IBM DB2 pureScale in
providing scaling for enterprise databases. The complexity and cost of this solution
and its reliance on distributed file systems are what led to the evolution of the final
solution we will examine, as shown in Figure 7-6.

Figure 7-6. Partitioning with replication topology

This solution is called partitioning with replication, and it combines the replication of
data we’ve seen in the preceding solutions. It avoids the issues with distributed file
systems by not requiring them; it instead uses a local file system for each process.
What is unique is that all the data is not stored in each local file system. Instead,
only a part of the data is stored on each file system, and only a part of the data is
accessible to each read/write database process. This requires splitting up the data by
some feature of the data, which is called partitioning. Each partition of the data is
then stored multiple times across different servers (a minimum of two servers per
partition is required for redundancy in case of database server failure, but there is no
theoretical maximum).

308 | Chapter 7: Cloud-Native Storage



Almost all Replicated Databases are designed as distributed consensus systems. These
are systems that enable multiple nodes in a distributed system to come to a consensus
on a shared value or state. They provide a way for nodes to coordinate their activities
and reach an agreement on a common set of data or configurations. The most com‐
mon approach for achieving consensus is called the Raft protocol. The Raft protocol
works by selecting a single node in the system to act as the leader and by having
the other nodes in the system follow the leader and replicate its actions. The leader
is responsible for receiving and processing requests from clients and for replicating
those requests to the other nodes in the system.

The Raft protocol ensures that all of the nodes in the system agree on the order in
which requests are processed and the state of the system by requiring that all nodes
communicate with one another and reach a consensus on the order of requests. If
a node becomes unavailable or fails, the Raft protocol allows the other nodes in the
system to detect the failure and to elect a new leader so that the system can continue
to operate without interruption. This ensures that even if a leader node fails, the
database as a whole can continue to service requests.

This seems to have all the advantages you need; it can scale infinitely (you just need
to add more partitions of your data), survives the failure of one or more database
servers easily, and does not require a distributed file system and all its associated
complexity. However, there is something important that is sacrificed to gain these
advantages. The reality of the matter is that once you add both clustering and
partitioning to your database design, you are now at the mercy of Brewer’s CAP
theorem (“Towards Robust Distributed SystemsDistributed System”). CAP stands for
Consistency, Availability, and Partition Tolerance. The theorem states that you can
have, at most, two in any design. For each database, it is important to know which
two the designers have chosen.

The most common case is the that “C” of CAP, Consistency, is the one sacrificed.
To maintain consistency across multiple copies in a cluster, you either need to lock
all the copies of a partition for the duration of an update or allow only one process
to update any partition (which brings us back to leader-follower with read replicas).
Instead, most databases that take this approach adopt the model called eventual
consistency. In Eventual consistency, it’s accepted that some reads to partition copies
will be “out of date” for a short period of time, but that over time updates will
propagate across the network to all the copies of a partition.

This solution is used by many NoSQL databases, so many that by default when people
think of NoSQL, they immediately assume eventual consistency, even when that is
not true of that particular database. It is used by Redis Cluster, Scylla Rings, and
Couchbase Cluster but also by some NewSQL databases like Cockroach DB.

For most applications, this is not a bad assumption. Especially when data is being
used for analytics purposes, or when the timing of updates is not ultimately that
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important in the grand scheme of things (is it that much of a problem if a post
in your social media feed is delayed by even a second or two, much less a few
milliseconds?), the combination of scaling, lack of special infrastructure or network
storage support, and redundancy in this solution makes it the obvious choice. How‐
ever, not all applications fit this model. Banking applications are one example where
consistency is very important.

To summarize which two of the three are chosen from Brewer’s Theorem for the most
common cases:

CA databases
As exemplified by traditional relational databases (e.g., most Relational Databases
(333)), these databases prioritize consistency over availability. To achieve ACID
semantics, synchronous replication is most commonly used, where a write is not
considered complete until it has been replicated to all nodes.

AP databases
Many NoSQL databases focus on being partition-tolerant and ensure that the
system remains operational even during network events where the database
nodes become separated (or “partitioned”) and cannot communicate and remain
consistent. They may use strategies like eventual consistency, where consistency
is achieved over time, or provide tunable consistency levels to balance between
consistency and availability. All nodes remain available when a partition occurs,
but some might return an older version of the data. CouchDB, Cassandra, and
ScyllaDB are examples of AP databases.

CP databases
Some databases aim to provide both consistency and partition tolerance by sacri‐
ficing availability under some scenarios. These systems often use synchronized
clocks and distributed transactions to achieve strong consistency. MongoDB and
Redis are good examples of this kind of database.

However, you can’t just select a database entirely on this assumption. Most databases
have a range of options that will balance which (if any) of the elements of the
CAP Theorem are sacrificed under particular conditions. You may have noticed,
for instance, that we have described that Redis has several different options that
correspond to different distribution models. This allows you to decide which option
suits your needs under any particular circumstance—balancing complexity against
the elements of redundancy and scalability. Most other databases also allow multiple
options to choose from. What you should do instead is select the database type first
based on your data structure needs, then select the best database architecture to suit
your redundancy and scalability needs.
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Cloud Database
You’re developing an application with a Cloud-Native Architecture (58) that has
domain data and needs to persist it. Perhaps you’re developing a Self-Managed Data
Store (154) for a Microservice (119).

How should a cloud-native application store data persistently in a cloud
environment?

As discussed in Stateless Application (80), applications manage two types of state:
session state and domain state. A database of record is storage for the most reliable
copy of the domain state.

Where should an application store its domain state? An application needs to persist
its domain state so that the data can be recovered after a crash and shared among
replicas of the application, users of the application, and other applications. Raw
storage—such as block, file, and object storage—seems like a tempting place, and
that is ultimately the infrastructure where data is persisted. But storage presents two
challenges for applications that need to persist and access their domain state:

Concurrency
Storage can easily manage data when there’s only one application client thread at
a time reading or writing. But when one thread tries to read data while another
is updating it, applications can retrieve inconsistent data from storage. If two
threads try to write data at the same time, it’s possible to overwrite or corrupt
the data in storage. Even if a Microservice is the only application accessing the
data in its Self-Managed Data Store (154), concurrency still occurs between the
Microservice’s replicas (see Replicable Application (88)) that share the data store.

Querying
Storage works well when an application knows what data is stored and what
data it wants and can specify where in the storage to find that data. But if an
application needs to perform a search, all it can do is read all of the storage and
filter for the data it wants, which is terribly inefficient, especially as data sets grow
in size.

Databases, such as the Relational Databases (333) in traditional IT, help applications
manage storage. However traditional enterprise databases may not fit the cloud well
in three respects:

Schema
Traditional databases force data into a common schema, thereby telling the
application how to structure its own data. Applications have to accommodate the
database, with many applications having to implement complex object-relational
mapping just to make their Domain Model (Patterns of Enterprise Application
Architecture, 2002) (see Domain Microservice (130)) fit the database schema. An
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application with data that doesn’t follow a strict structure will have difficulty
mapping it to a fixed schema database.

Storage minimization
An enterprise database strives to write as much data as possible into as little
storage as possible. Such databases typically update records in place, which uses
storage more efficiently but requires aggressive use of locking, hurting the perfor‐
mance of concurrent threads and lowering the database’s overall throughput and
scalability.

Single process
Enterprise databases often run as a single active process that scales vertically but
not horizontally and so is a single point of failure.

Cloud-native changes the architecture of an application so that it works better in the
cloud. Likewise, databases need a new architecture so that they work better in the
cloud.

Therefore,

Persist the data for a Cloud Application in a Cloud Database, one that scales
horizontally as Cloud Applications do and offers the application flexibility in how
it stores and accesses the data.

A Cloud Database works well hosted in the cloud and stores the state for a stateless
Cloud-Native Application (Chapter 3), as shown in Figure 7-7.

Figure 7-7. Cloud Database

A Cloud Database is much like a traditional IT database in that it is responsible
for storing and managing data, handling much of these responsibilities so that the
application doesn’t have to. A Cloud Database differs from its traditional IT counter‐
part in that it is able to run reliably on a cloud’s unreliable hardware, can easily
accommodate a range of topologies, and stores data in the way that applications
model domains.
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Databases organize data into records that can be stored anywhere on the disk, sim‐
plifying an application to work with records as units of data and not needing to
know where and how the records are stored. Databases must be designed to do the
following well:

Concurrency
A database isolates threads to keep the data consistent. A database will not allow
two applications to write to the same record at the same time, and when one
application thread is writing a record, a database will not allow any other thread
to read that data. A database caches data so that multiple read threads for the
same data access only the disk once and organizes the records on the disk to
avoid thrashing. Without a database, all of the applications are responsible for
coordinating all of their threads to avoid conflicts.

Querying
A database separates the identity of a record from where it is stored on disk,
understands the records’ structure to know which ones have the data an applica‐
tion is searching for, can index the structure to find records more easily, and can
navigate between related records. Without a database, this functionality becomes
each application’s responsibility.

Whereas enterprise databases are designed to accommodate data, Cloud Databases
are designed to accommodate Cloud Applications in the following ways:

Schema
Whereas an enterprise database has a one-size-fits-all approach that tells the
application how the data will be stored, an application tells a Cloud Database
how to store the data. Many Cloud Databases are schemaless, able to store
an application’s state the way it’s stored in the domain model. This makes the
state easier and faster to store and retrieve, and facilitates managing not only
well-structured data but also data that is semi-structured and unstructured, as
well as data representing networks of connected records.

Data access
Whereas an enterprise database will excel at storing maximum data in minimum
disk space, as disk has become cheaper, Cloud Databases have focused on ena‐
bling data access to meet the flexibility and availability of cloud environments,
simplifying data access for applications and maximizing concurrency and
throughput.

Multiple, horizontally scalable processes
Whereas an enterprise database often runs in a single active process, a Cloud
Database runs in multiple replica processes that can scale horizontally to work
the way the cloud works. It also replicates the data to keep it available even when
a database process becomes unavailable. A database may have difficulty updating
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multiple distributed copies of a record concurrently. Replicated Databases tend to
rely on eventual consistency, where each copy of a record receives an update over
time.

A Cloud Database manages storage better than an application accessing storage
directly, works more like how the application works, and works more the way the
cloud works.

Cloud Databases work the way the cloud does and the way applications do and reduce
the effort applications need to manage data persistence.

Because most Cloud Databases work differently than the Relational Databases most
traditional IT developers are accustomed to, the developers need to learn new data‐
bases and new approaches to persisting and accessing data. Eventual consistency can
be a challenge since application design tends to assume a single version of the truth.

There are many Cloud Databases to choose from. The best database for a Cloud
Application’s requirements depends on three criteria:

Replication
A Replicated Database (316) runs multiple server processes for accessing the
same data. With these processes, the database comprises horizontally scalable
redundant units, much like a Replicable Application (88).

Redundant data storage
A database running process replicas often also replicates its data, storing copies
of a record in multiple processes, both to reduce single points of failure and
to improve read throughput. The section “Database Topology and Database
Selection” on page 304 has a detailed discussion of how this is accomplished
across various database implementations.

Data structure
An Application Database (328) enables applications to persist data and access
it in a way that is appropriate to a particular application’s data structures and
algorithms.

In addition to application databases, cloud platforms also host Configuration Data‐
bases (323), which cloud platforms and services use to manage highly concurrent
shared configurations.

Just as an application monolith can be refactored into Microservices (119), a large
set of data (such as an existing enterprise database of record) should be refactored
into separate modules. A Data Module (366) stores each independent set of data in
a separate logical database. Multiple databases can be hosted in the same database
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server or in separate database servers. Database-as-a-Service (378) (DBaaS) makes
it easy to create and manage multiple database server instances to manage multiple
Data Modules. A single DBaaS server can store multiple Data Modules that are
designed for the same type of Cloud Database.

Multiple Data Modules enables the opportunity for Polyglot Persistence (374), which
allows for resolving these three criteria differently for different sets of data. Since each
application module or Microservice maps to its own Data Module, which is stored in
a separate logical database, each database can easily be of a different type, making the
overall application’s persistence polyglot.

Often a key set of data needs to be queried extensively while it is also being updated
frequently, which makes the database a significant performance bottleneck, even
a Cloud Database. The Command Query Responsibility Segregation (382) (CQRS)
pattern helps resolve this problem.

Examples
With a range of database services to choose from with different capabilities, Cloud
Applications do not all need to use a single enterprise database.

Several NoSQL databases work like cloud services whether deployed on traditional IT
or on a cloud platform, including Apache CouchDB, MongoDB, Apache Cassandra,
Redis, and Neo4j Graph Database.

Most cloud platforms include several Cloud Database services:

Amazon Web Services (AWS)
Hosts several DBaaS services, including Amazon Aurora, Amazon DynamoDB,
Amazon ElastiCache, Amazon DocumentDB, and Amazon Neptune

Microsoft Azure
Hosts databases such as Azure SQL Database, Azure Database for PostgreSQL,
Azure Cosmos DB, and Azure Cache for Redis

Google Cloud databases
Include Cloud SQL, AlloyDB for PostgreSQL, Bigtable, Firestore, Memorystore,
and MongoDB Atlas

IBM Cloud
Hosts a number of DBaaS services, such as IBM Db2 on Cloud, IBM Cloud Data‐
bases for EnterpriseDB, IBM Cloud Databases for PostgreSQL, IBM Cloudant,
IBM Cloud Databases for MongoDB, and IBM Cloud Databases for Redis

These Cloud Databases implement a number of the different patterns, which we will
see later in this chapter.
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Replicated Database
(aka Distributed Data Store)

You are building an application following a Cloud-Native Architecture (58) and are
in the process of choosing a Cloud Database (311). For your application to be highly
available, its database also needs to be highly available.

How can a Cloud Database provide the same quality of service as a cloud-
native application, with the same availability, scalability, and performance as the
application?

For a Cloud-Native Application (Chapter 3) to work well in the cloud, all of the
Backend Services (106) it depends on also need to work well in the cloud. An
application is only as reliable as its Backend Services. The single most important
Backend Service for many applications is its database, which is key to implementing
most of an application’s functionality. For an application to be highly available, its
database must also be highly available.

A common approach to make a database highly available on traditional IT is for it to
run in two processes, one active and one standby. The clients use the first process to
access data. If the first process fails, the database makes the second process active, and
the clients switch over to use it to access data.

This active-standby approach has limitations. If the processes share storage and that
fails, both processes become useless. Therefore, each process needs its own storage,
which means that every time the first process updates its data, the second process
needs to copy the update and do so with zero latency between the processes to avoid
any data loss in an outage. A detail that simplifies keeping both copies synchronized
is that changes occur only in the active copy, so copying data is performed in a single
direction, from active to standby.

Even with redundant storage, other problems remain. Switching the clients from the
first process to the second process takes time, during which the clients experience an
outage. If the second process also fails before the first process recovers, the clients
experience a prolonged outage until one of the processes can recover. By cloud
standards of always-on availability, active-standby is a less-than-perfect solution.

The unreliable nature of cloud infrastructure is especially problematic for the active-
standby approach. Failover from active to standby because of infrastructure failure is
no longer an unusual occurrence caused by a major outage; it can occur frequently
on the cloud simply as part of frequent routine maintenance. Database clients can
experience frequent outages because of frequent failover. Active-standby has no way
to avoid this problem other than wishing the active process could run as reliably on
cloud infrastructure as it does on traditional IT, which it cannot.
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A cloud-native application is able to scale elastically, which helps it maintain steady
performance, using more capacity when client load increases and releasing capacity
when the client load decreases. The active-standby approach has just one active
process, which has limits on how much client load it can handle from its applications.
An active process can grow bigger when the load increases, but only until its server
runs out of capacity. And it usually cannot grow smaller when load decreases. Even
if the active process can grow large enough, network I/O may become a bottleneck,
throttling numerous database clients accessing data through a single process.

For a database to scale, not only does the server process need to scale, but the storage
needs to scale as well. Just as a process cannot grow once it has used all of the capacity
of its server, the database’s data cannot grow once it has used all of the capacity of its
storage. Even if the storage capacity is huge, the active process has limits as to how
much storage it can manage effectively. A single process accessing huge amounts of
data will eventually be throttled by storage I/O.

For a database to be as scalable and reliable as its cloud-native application, it needs an
architecture that scales better than active-standby.

Therefore,

Select a Replicated Database, one that runs multiple active server processes for
accessing the same data, that stores multiple copies of the same data, and that
applies updates to the data consistently across the copies.

A Replicated Database runs not as a single server process but as a cluster of nodes,
each of which is a database server process with its own storage, as shown in Fig‐
ure 7-8. The database coordinates these nodes so that they work like one large
database server process. Clients access the database as though it runs in a single
process (as was shown in Figure 7-7).

Figure 7-8. Replicated Database
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The nodes in a Replicated Database’s cluster can all run on a single computer but can
also be distributed across multiple computers. Each node has its own storage, either
local to the computer hosting the node or accessible from the node’s computer. The
database stores its data redundantly by replicating copies across the nodes, making
the data highly available using commodity storage, thereby eliminating the need for
specialized high-availability storage such as a RAID array.

A Replicated Database works much like a Replicable Application (88), if the applica‐
tion were stateful and each replica also had storage. A Replicated Database scales by
adding nodes. While some of the nodes can run in standby mode, the database has
multiple active nodes capable of serving client requests, thereby distributing client
requests across multiple nodes.

The Replicated Database’s architecture makes the database more reliable and increases
the data availability, improves the scalability of client I/O, and enables the storage to
grow to store more data while also improving storage I/O performance. The database
runs reliably on unreliable cloud infrastructure because when a node and its storage
become unavailable, clients are still able to access the node’s data using other nodes
and their storage. A more reliable database improves the availability of its data. When
too many clients become a bottleneck for accessing data, the database scales to run
more nodes on more computers with more network connections and bandwidth.
When storage I/O becomes a bottleneck, by scaling to run more nodes with more
storage, the database scales to lower each node’s storage I/O demands.

Replicating across multiple nodes with redundant copies of the data works really well
for read-only data, but becomes a challenge for updating data. Whenever a client
creates or updates data, the database synchronizes its replicas. Because each data
record is stored redundantly in multiple nodes, when a client updates a data record,
synchronization duplicates that update on each copy of the record. While the data‐
base is updating multiple copies, those copies can become temporarily inconsistent
for clients reading that record.

While a single database server can keep its data always consistent, a data record
in a Replicated Database can become inconsistent temporarily while the database
synchronizes an update. A single database server keeps its data immediately consistent
by locking one or more records while it updates them. For a Replicated Database to
lock a set of records, it needs to establish a distributed lock across all of the nodes that
store copies of the records.

While some Replicated Database implementations do support distributed locking,
its complexity lowers the database’s reliability and performance. To avoid that com‐
plexity, the preferred configuration achieves eventual consistency, often by employing
multiversion concurrency control (MVCC) (Transactional Information Systems, 2001)
so that each replica can update at its own pace and clients can read the records
while they are being updated. Eventual consistency enables a distributed database
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to maintain availability with good performance. This advantage becomes most evi‐
dent when a node is unavailable and cannot be updated. Rather than blocking the
whole database and all of its clients while it waits for all nodes to be available, the
database keeps operating without the missing node by using the other nodes and
their redundant copies of the data. When the unavailable node rejoins the cluster,
the database restores the node by performing the data updates that it missed, thereby
reestablishing its consistency with the rest of the cluster.

During eventual consistency, while the database is updating each copy of a data
record individually, different clients reading the record may see different versions
of the data. During synchronization, clients reading the same logical record from
different nodes will each see a consistent version of the data, but they may be different
versions of the data. Effectively, some clients see the newly updated data, while others
still see the old data before it has been updated. Eventually, often in a matter of
milliseconds when the cluster is stable, the database will update all of the copies and
all clients will see the updated data. Another source of inconsistency can occur in
a Replicated Database when two clients update different copies of the same record.
When two clients make two different changes to two different copies of the same
data, the result is a conflict that the database will log as an error to be resolved
manually.

To simplify synchronizing updates across replicas and avoid deadlock and write
conflicts, many Replicated Databases store their data differently than a traditional
Relational Database does. A Relational Database often normalizes the data for a single
entity across multiple tables, optimizing storage efficiency and enforcing consistency
within shared data. Conversely, many replicated databases avoid normalizing the data
by storing each logical entity as a single record. A replicated database can synchronize
updates to a single record more easily, improving performance and reliability and
shortening the time that the replicas are inconsistent, thereby avoiding conflicts. Data
in a single record is not only easier for the database to manage, but it also simplifies
client access to the data and improves throughput to the client.

A Replicated Database has higher availability because its servers and its data are repli‐
cated, yet the relationship between the replicas affects how well the replication works.
There are two main replication models, which differ in the relationships between the
replicas: leader-follower (formerly known as master-slave, aka primary-secondary)
and quorum-based consensus. The leader-follower model is simpler because one
node is in charge but becomes a problem when the leader becomes unavailable.
Without a node that’s in charge, the followers don’t know what to do, and the
cluster stops working until it can either reestablish communication with the leader or
identify a new leader. With the quorum-based model, all of the cluster members are
equal, so as long as two out of three of the members are working, they can agree on
what to do and the cluster keeps working. The leader can become a bottleneck and
a single point of failure. A quorum-based cluster can avoid single points of failure
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by distributing members across anything that can fail, such as multiple computers in
multiple data centers in multiple regions.

Replication as a pattern is a basic requirement for a cloud-scale database. However,
there are multiple different topologies that can support data replication. These
include both solutions that use a leader-follower approach and those that use a
clustering approach. The section “Database Topology and Database Selection” on
page 304 explains the different potential topologies, but the key is that whichever
solution you choose must have a topology that supports both the replication of the
data and the process for accessing the data. In the end, this decision is internal to
the database and hidden from the application, and therefore not a decision for you to
make.

A Replicated Database scales the way a Cloud-Native Application scales, making the
database as scalable and reliable as the application. It makes the data highly available
on unreliable cloud infrastructure and maintains performance even as the size of the
data set and client load increase.

To maintain reliability and performance, a Replicated Database avoids distributed
locks and instead employs eventual consistency, which increases availability but
means clients may temporarily see old data in some replicas that has already been
updated in other replicas. To make synchronization more reliable, Replicated Data‐
bases often store all of the data for an entity in a single unnormalized record. How‐
ever, that single record is often also easier for an application to use. Some replicated
databases use different replication strategies than others, which can affect how well
the database works in a distributed outage.

The architecture for a Replicated Database is similar to that of a Replicable Appli‐
cation (88). Just as the application can scale by running in more replicas, which
also makes the application more reliable, a Replicated Database runs more nodes to
increase its scale and reliability.

To maintain immediate consistency, a Replicated Database would need to establish
a distributed lock so that it can update all of the copies of a record in a distributed
transaction. Service Orchestrator (160) explains the complexity of distributed trans‐
actions, especially in a cloud’s unreliable infrastructure, and why they should be
avoided.

Replicated Databases are used for two purposes, Configuration Databases (323) and
Application Databases (328). Different types of Application Databases store data
records in different formats to facilitate different usages. Polyglot Persistence (374)
enables different Data Modules (366) to be stored in different types of databases.
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The database provided by a Database-as-a-Service (378) is often a Replicated Data‐
base, making it a perfect Backend Service (106) to provide persistence or caching for
a Cloud-Native Application.

Examples
Most NoSQL databases are replicated. Let’s consider three of the most popular ones:
MongoDB, Redis, and CouchDB. Each runs in a cluster of multiple nodes that can
be distributed across multiple computers, and each database’s cluster can remain
functional even when some nodes fail, enabling these databases to run reliably on
unreliable cloud infrastructure. However, each one has a different cluster architecture
that makes some more resilient than others.

MongoDB
A MongoDB cluster, as shown in Figure 7-9, consists of a set of data baring nodes
with exactly one primary node and multiple secondary nodes. On a cloud platform,
each node can run on a different computer, thereby distributing the set across com‐
puters and making the database run more reliably on unreliable infrastructure.

The cluster synchronizes the data throughout the nodes in the set. The primary node
replicates data updates to the secondary nodes asynchronously, keeping their data
in sync. Because the data in the secondary nodes is synchronized with that in the
primary node, when a node fails, data is not lost.

Figure 7-9. MongoDB primary/secondary cluster architecture

The cluster ensures the set always contains exactly one primary node, even when
the primary node fails. The secondary nodes maintain heartbeats with the primary
node and with one another. When the primary stops communicating with the other
members of the set, the secondary nodes elect one of the secondaries and make it
the new primary. If the original primary becomes available again, one of the new
primaries is demoted to become a secondary so that only one primary node remains.
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The primary node receives all write operations from the database clients so that it can
maintain data consistency. By default, clients read from the primary, but clients can
specify a read preference to send read operations to secondaries. However, because
of asynchronous replication, reads from secondaries may return data that does not
reflect the state of the data on the primary.

Because all client write operations and most client read operations in a MongoDB
database go through the primary node, it can become a throughput bottleneck and
single point of failure (temporarily). A MongoDB database is more resilient than a
database that runs in a single server but can be less resilient than other Replicated
Databases.

Redis Cluster
A Redis cluster is a variation of a Redis database that runs in a cluster of multiple
equivalent nodes, as shown in Figure 7-10. Each node can run on a different com‐
puter in the cloud, distributing the nodes to avoid a single point of failure and
making the database run reliably on unreliable infrastructure.

Figure 7-10. Redis grid cluster architecture

A Redis database cluster is a mesh where every node is connected to every other
node in the cluster via the cluster bus. Asynchronous replication propagates updates
to replicas. While the nodes are equivalent, they can run in two different modes. A
primary node can service read and write operations, whereas a secondary or replica
node can only service read requests. Clients can connect to any node; the cluster
routes write requests to primary nodes and read requests to any primary or replica
node.
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A Redis cluster can remain operational when partitioned, such as when some of its
nodes fail or the network fails. However, at most one partition remains operational.
The operational partition must contain the majority of the primary nodes that are
reachable and must also contain at least one reachable replica for every primary
node that is no longer reachable. Any other partitioned nodes are unreachable. If the
reachable nodes are insufficient, the entire cluster fails until it recovers.

Apache CouchDB
An Apache CouchDB database runs in a cluster of equivalent nodes, as shown in
Figure 7-11. Each node can run on a different computer in the cloud, distributing
the nodes to avoid a single point of failure and making the database run reliably on
unreliable infrastructure.

Figure 7-11. CouchDB peers cluster architecture

Clients access the database through a load balancer that distributes requests across
the nodes. Any node can perform both read and write operations.

All of the nodes in the cluster synchronize via the network. When data is written to
one node, the cluster propagates the update to the other nodes asynchronously.

When the cluster becomes partitioned, each partition operates independently, serving
the clients that can reach it. When partitioning is resolved and all of the nodes in
the cluster are reachable, they all propagate their updates to resynchronize. When the
resynchronization detects conflicts where the same document was updated differently
in partitioned replicas, it logs the conflict for manual remediation.

Configuration Database
(aka Distributed Coordination Service)

You are implementing a cloud service – not a Cloud Application (6) but a service
that an application can use as a Backend Service (106). It will run distributed across
multiple computers in the cloud.

How can a cloud service store its service state such that all of the nodes in the
service can share and access the state?
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A cloud service runs in multiple redundant nodes across multiple computers. Much
like a Replicable Application (88), distribution across multiple nodes improves a
cloud service’s resiliency, availability, scalability, and performance. Multiple nodes
make a cloud service more resilient on unreliable cloud infrastructure: when one
node fails or becomes inaccessible on the network, the cloud service is able to keep
running properly on the remaining nodes.

Replicating nodes is simpler for an application than for a cloud service because a
cloud-native application is stateless, whereas most cloud services are stateful. An
application with a Cloud-Native Architecture (58) is not only a Replicable Application
but is also a Stateless Application (80) that stores its state externally. The state in a
Stateless Application goes in the Backend Services, which therefore are stateful. For
example, databases store data, secrets managers store credentials, monitoring services
log events, and API gateways track requests. When a cloud service runs distributed
across multiple nodes, it needs to share its state across those nodes.

Most cloud services are also configurable. When an administrator changes the con‐
figuration in one node, the other nodes must also update with those configuration
changes.

The cloud service needs to store its state independently of any one node and continue
to be able to share its state across the operational nodes. A cloud service needs data
storage that does the following:

• Ensures that all of the nodes in the service can access and update the shared state•
at all times

• Ensures that the entire service and each of its operational nodes retain access to•
the shared state when nodes fail

• Ensures that each of the nodes in the entire service is notified when configuration•
data changes

A cloud service could use raw storage, such as block or file storage, to store its state.
But as Cloud Database (311) explains, raw storage makes data difficult to replicate
and to read as individual records.

Data stored in multiple copies on multiple computers to survive when a node fails
—that sounds like a job for a Replicated Database (316). However, most replicated
databases employ eventual consistency, which can be a huge problem for the nodes
in a cloud service. For the service to work correctly, all of its nodes need to work the
same at all times, which means they all need to see the latest data at the same time and
cannot wait for it to eventually show up.

A cloud service needs to store its state in something that has all of the advantages of a
replicated database but none of the disadvantages.
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Therefore,

Store the session state for a cloud service in a Configuration Database, a Replicated
Database that is reliably consistent and notifies all of the nodes whenever the data
changes.

A Configuration Database is a Replicated Database, so it consists of multiple nodes,
each a server process coupled with its own storage. Unlike a Replicated Database,
a Configuration Database is reliably consistent, providing all clients the same single
version of the truth at all times. See Figure 7-12.

Figure 7-12. Configuration Database

A Configuration Database’s reliably consistent state means that once a record is upda‐
ted in any node, all of the nodes have the update, so a read from any node always gets
that latest data. Clients see the same data at the same time, and writes are immediately
visible to all clients. A Configuration Database typically employs the leader-follower
replication model, where a single leader node coordinates updates and maintains the
latest set of data.

A Configuration Database achieves reliably consistent data by doing what a Replicated
Database normally avoids: it performs each update as a long-running distributed
transaction. A write to the database is not complete until a majority of the nodes
have recorded it. The Configuration Database still provides very good performance,
handling thousands of reads and writes per second. It also enables clients to register
for notification when the data changes, so a client using a record knows its data has
changed.
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A Replicated Database that keeps its data reliably consistent sounds too good to
be true, so of course there are limitations. To maintain reliable consistency and
never return an incorrect result, it favors consistency over availability. When a Con‐
figuration Database becomes partitioned, the partitions become either read-only or
unavailable. A Configuration Database is able to keep its data reliably consistent by
restricting the format of the data and the amount of data it can manage. The database
can scale across many nodes, but it is optimized for small amounts of data.

To make its data easy to manage and quick to access, a configuration database
typically is a Key-Value Store (344) that stores its data as key-value pairs organized
in a hierarchy. The database does not support querying other than lookup by key.
Clients access and modify data using simple get and set operations that specify the
key. The database does not try to parse the values, storing each one as a binary or
character large object (BLOB or CLOB). Clients register for notification by specifying
the keys of the records they depend on.

A Configuration Database is reliably consistent with high throughput, but that works
for only relatively small amounts of data, and it has to be formatted as key-value
pairs. A configuration database is specialized to store the configuration for cloud
services. Reusable services often have to deal with issues of availability, performance,
and security stemming from multitenancy that most standard applications do not
need to be concerned with. As such, they need lower-level access to how their
topology is managed, controlled, and serviced than most applications do.

There are some challenges with Configuration Databases. With very complex systems,
it can be difficult to anticipate the impact of small configuration changes. For exam‐
ple, a change as small as an incorrect digit in a port number for a database connection
could render an entire system inoperative. Therefore, you need to make sure that the
data is up-to-date, accurate, and complete. If configuration changes affect multiple
systems, it can be challenging to trace the full impact of the change across all the
systems.

Applications typically need a more general-purpose database—an Application Data‐
base (328), particularly one that favors Availability over consistency when parti‐
tioned and that supports storing large amounts of data in a variety of formats.
Many Application Databases in turn use a Configuration Database as part of their
implementation so that a database cluster can configure all of its replicated nodes
consistently as they each persist large amounts of data.

Each cloud service stores its own configuration data separately, making that data a
Data Module (366).
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Different cloud services do not all have to store their configuration data in the same
type of Configuration Database. Instead, cloud services can use Polyglot Persistence
(374), where each cloud service can store its configuration data in a different type of
Configuration Database.

Like any cloud database, a Configuration Database can be hosted by a cloud platform
as a Database-as-a-Service (378).

Examples
Three common Configuration Databases are etcd, ZooKeeper, and Consul. Many
Application Databases incorporate these Configuration Databases into their own
implementations.

Etcd
Etcd, Cloud Native Computing Foundation (a CNCF project), is a distributed, consis‐
tent Key-Value Database for shared configuration that keeps working through node
failures and network partitioning. Etcd gained fame as the Configuration Database
used to implement the Kubernetes container orchestrator, storing the desired state
and current state for all of a Kubernetes cluster’s nodes and containers and enabling
all of the nodes to maintain a consistent view of the state of the cluster at all times.

Etcd employs the leader-follower replication model using the Raft consensus algo‐
rithm to distribute states across a cluster of computers. A client can connect to any
etcd node to perform an update, but when the node is a follower, it forwards the
update request to the leader, which logs the update and tells the followers to do
so. When a quorum of the followers confirms the update, the leader confirms it to
the client, and it becomes the new value for all nodes. When the leader becomes
unavailable, the followers elect a follower and promote it to the leader.

For more details about the Raft consensus algorithm, see the section “Database
Topology and Database Selection” on page 304.

Apache ZooKeeper
Apache ZooKeeper enables highly reliable distributed coordination through a cen‐
tralized repository of configuration information. ZooKeeper was created by Yahoo
as part of Hadoop, who donated it to the Apache Software Foundation. It became
famous when Netflix incorporated it into Netflix OSS, their Open Source Software
foundation for Microservices (119).

Like etcd, ZooKeeper employs the leader-follower replication model. Writes to a fol‐
lower are forwarded to the leader, which acknowledges the write when the followers
have updated.
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HashiCorp Consul
Consul by HashiCorp has many features, including a distributed coordination service
implemented as a distributed Key-Value Database for storing configuration data and
other metadata. It also provides service mesh features like service discovery with
health checks and encrypted communication between services.

Like etcd and ZooKeeper, Consul employs the leader-follower replication model
implemented using the Raft consensus algorithm.

Distributed Databases
Many database services use Configuration Databases to centrally store configuration
information:

Apache HBase
Also part of Hadoop from Yahoo, is a distributed Columnar Database (356)
that is built on top of Apache Hadoop and uses ZooKeeper for distributed
coordination

Apache Cassandra
Donated by Facebook, is a distributed NoSQL Columnar Database that uses a
peer-to-peer architecture and ZooKeeper for distributed coordination

CockroachDB
A distributed SQL database (a Relational Database (333)) that uses a hybrid
logical clock and vector clock algorithm based on Raft and etcd for distributed
coordination and consensus

On the other hand, many Cloud Databases do not incorporate etcd or ZooKeeper but
instead implement their own synchronization mechanisms. These include Apache
CouchDB and Redis Cluster.

Application Database
You are writing a Cloud Application (6) or Microservice (119) structured with a
Cloud-Native Architecture (58), so it is a Stateless Application (80). Yet a Stateless
Application has state and needs to persist it.

How should a Cloud-Native Application store the data it uses so that it can run as
a Stateless Application?

As Cloud Database (311) explains, a Cloud Application should store its data not in
raw storage but in a database. The question then is what capabilities a database should
have to work well for Cloud Applications.

Cloud Applications strive not merely for high availability but for continuous availabil‐
ity. Yet most applications are highly dependent on their database, so an application

328 | Chapter 7: Cloud-Native Storage

https://oreil.ly/wllwa
https://oreil.ly/kbaL9
https://oreil.ly/GrcCR
https://oreil.ly/fpYvE
https://oreil.ly/V4fr8
https://oreil.ly/V4fr8
https://oreil.ly/d8Kc7


is only as available as its database. A cloud database needs to also be continuously
available. A Replicated Database (316) can have very high availability, but when the
cluster becomes partitioned, consistency and availability become a trade-off.

Cloud Applications strive for scalability, which means they not only need to serve
more users but also need to store more data for those users. As more users perform
more tasks, they use more data, so the applications need to access more data more
quickly to serve all of those users. The easier it is for an application to access its data,
the less code application developers have to write, and the application will get better
performance accessing data.

A Cloud Application needs a database that is highly available, even if that means
its data becomes inconsistent temporarily. It needs to be able to scale in multiple
respects: store large amounts of data, enable the application to access the data easily,
and support large numbers of users concurrently accessing data.

Therefore,

Store the domain data for a Cloud-Native Application or a Microservice in an
Application Database, one that like the application is highly available, can store
large amounts of data, scales to support numerous concurrent users, and simpli‐
fies data access for the application.

An application database tends to be a Replicated Database, although some types
distribute across multiple nodes better than others. Some are reliably consistent, but
the ones that distribute well tend to use eventual consistency. No one diagram can
capture this range of capabilities, but the important feature to focus on is availability.

As shown in Figure 7-13, as a Replicated Database, an Application Database runs
across multiple nodes. When one of the database’s nodes becomes unavailable due to
failure or network partitioning, the database uses the remaining functional nodes to
keep working, keeping the database available so that the application maintains access
to its data.
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Figure 7-13. Application Database

When one node becomes unavailable, the data remains available in other nodes. A
database typically replicates a minimum of three copies of each data record in three
different nodes but may replicate many more copies to survive losing a large number
of nodes. For ultimate availability, a database can not only run a large number of
nodes but also replicate all of the data across all of the nodes, so then a single
surviving node can still keep the database available.

There are lots of ways to replicate across multiple nodes. For an exploration, see the
section “Database Topology and Database Selection” on page 304.

There are many types of cloud application databases, which fit into three broad
categories:

SQL databases
These traditional Relational Databases employ relational algebra to organize data
into tables, rows, and columns that clients can search and filter using structured
query language (SQL). SQL databases are well-suited for applications that require
complex queries, transactions, and referential integrity and are often used in
enterprise environments.

NoSQL databases
These are non-Relational Databases that do not use SQL as their primary query
language. They are designed to handle large amounts of unstructured and semi‐
structured data, and are often used in environments where scalability and high
availability are important. NoSQL databases are often used in web-scale applica‐
tions, such as social networking sites, online retailers, and other applications
that require fast read and write performance. NoSQL Distilled describes many
different aspects of NoSQL databases.
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NewSQL databases
These are a new generation of Relational Databases that are built to provide the
scalability and high availability of NoSQL databases, while still maintaining the
transactional consistency and SQL support of traditional SQL databases. They
are often used in environments where both scalability and strong consistency are
important, such as in financial and ecommerce applications. NoSQL databases
are typically less efficient at SQL-like queries because of differences in approaches
to query optimization. For an application that depends on SQL-centric com‐
plex query capability, a solution such as a NewSQL database or a distributed
in-memory SQL database may be more efficient.

All of these categories are Application Databases, but they differ in how they store
data and make it accessible to applications, making some easier for some types
of applications to use and others better suited for other uses. They optimize their
querying and update capabilities for a particular mechanism of data storage and
retrieval optimized for different application requirements:

• Some applications need a database to be highly optimized for efficient reads,•
while others need it to be equally efficient at reading and writing.

• Some applications need to simply store data as is and retrieve it in its original•
format, whereas others need the database to understand the data format to
facilitate searching and navigating it.

• Some applications need a database to enforce data format, whereas others want a•
database that can handle variable formatting.

No Application Database is a one-size-fits-all solution, so there are many different
ones to choose from.

Application Databases are databases, so they facilitate storing and managing large
amounts of domain data and enabling applications to easily access and manipulate
individual data records. A range of Application Databases differ in the trade-offs
they make between consistency, availability, and scalability. And perhaps most impor‐
tantly, they differ in the way they store and organize data and the types of data they
are designed to handle.

Because of the range of database categories, it is important to choose the right
database structure and retrieval mechanism for the job the application needs to
perform. Performance, scalability, and other application requirements will determine
the particular type of database to choose. An application’s component design should
be the driving factor in selecting a database, not the other way around. That is true in
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both the structure of the data the application is storing and in the way in which the
application needs to query or search data.

Compared to an Application Database, a Configuration Database (323) is much more
specialized. It manages a much smaller amount of data and only supports looking
up data record by their keys with no querying. It scales across numerous nodes
while keeping its data reliably consistent, but it does so by favoring consistency over
availability, whereas applications strive for availability.

There are several types of Application Databases. Each type works best for certain
requirements:

Relational Database (333)
Works well for relational data, an acknowledgment to the fact that relational rep‐
resentations are still sometimes the right way to store and manage certain types
of application data. SQL and NewSQL databases are optimized for scalability and
free-form querying.

Document Database (338)
Works most like a relational table row that the database can easily replicate across
multiple nodes. The records are schemaless JSON data, much like the parameters
in web services. The documents can be searched but not easily reformatted to
entirely new configurations as in the Relational Database approach.

Key-Value Database (344)
Works like a hash map, enabling an application to access unstructured data
directly with O(1) performance for many use cases.

Graph Database (351)
Excels at storing entity-relationship-attribute (ERA) data structured as entities
with relationships and attributes, and at easily traversing those relationships from
one entity to another. This works well for the data in social media networks,
travel networks (highways or flights), and the mathematical operations for con‐
structing and formatting large-scale neural networks.

Columnar Database (356)
Works well for data analytics, storing well-structured data and enabling rapid
access to all records with a specified value.

A single large application may make use of multiple Data Modules (366) that are
independent of one another. Different modules may require support for different data
types and access styles, so Polyglot Persistence (374) enables an application to store
each module in a different type of database. Each database should ideally be hosted by
the cloud platform as a Database-as-a-Service (378).
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Examples
The IT industry offers many different database products and open source projects
that are suitable for applications to use to store their domain data. Examples of each
Application Database category include the following:

SQL databases
SQL Relational Databases include Oracle database, IBM Db2, Microsoft SQL
Server, PostgreSQL, and MySQL. Public cloud platforms host SQL database
services based on those products.

NoSQL databases
Examples of NoSQL databases include MongoDB, Apache CouchDB, Redis, and
Memcached. Cloud services include ones that host those products as well as IBM
Cloudant, Google Cloud Datastore, and Amazon DynamoDB.

NewSQL databases
NewSQL databases include CockroachDB, MariaDB Xpand (originally known as
Clustrix), and SingleStore (originally known as MemSQL). Public cloud NewSQL
databases include Google Cloud Spanner and Amazon Aurora.

As shown earlier, major public cloud platforms host many of these types of databases
as services and host their own cloud-only databases as well.

Relational Database
You are writing a Cloud Application (6) or Microservice (119) structured with a
Cloud-Native Architecture (58) and are selecting an Application Database (328) for
your application to use to persist its domain data.

How can an application store well-structured data that it needs to query
dynamically?

Cloud vendors often support newer databases generally categorized as NoSQL data‐
bases. Developers often assume that a cloud database is always a NoSQL database, but
not all applications and not all data lend themselves well to NoSQL databases.

Most existing data in an enterprise’s traditional IT systems is typically stored in tables
in a relational database management system (RDBMS). When the data is already
structured to be stored in well-defined tables, converting it to a NoSQL format often
provides little benefit.

An enterprise’s existing traditional IT applications are typically written to use an
RDBMS. The applications expect to have data that are well-structured records, or
access those records by performing CRUD operations (create, read, update, and
delete), to update those records using ACID (atomic, consistent, isolated, and dura‐
ble) transactions, to query the records using SQL (structured query language), and
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to take advantage of database views to structure the same data as different record
formats for different uses. As long as the application works well as is, a NoSQL
database provides little advantage and in fact will require significant modifications to
keep the application working.

Even when developing new Cloud Applications that need to store new data in a cloud
database, a NoSQL database may not be the best choice. An application’s data may
naturally be well-structured, such as the records gathered from users filling in forms.
The application’s domain logic may do little more than CRUD and query the data. An
application like this needs a database that is optimized for performing these functions
on well-structured data, which is probably not a NoSQL database.

If a new or existing application would work well on traditional IT using an RDBMS, a
NoSQL database in the cloud will actually make it work worse.

An advantage of many NoSQL databases on the cloud is that they provide better
availability than a traditional IT RDBMS does. Many NoSQL databases run dis‐
tributed across multiple nodes so that if one node fails, the others keep the data
available. Ideally, applications should get the availability of data stored in a NoSQL
database without having to convert RDBMS data to NoSQL.

Therefore,

Store well-structured data that applications will query frequently in a Relational
Database—hosted in the cloud.

A Relational Database is an Application Database that stores its data formatted as a
schema of tables, rows, and columns. It enables an application to search its data using
SQL queries and can use database views to present the same data in different formats.
A Relational Database implements ACID transactions, so it favors consistency over
availability. Yet a Relational Database can run in multiple active processes to maxi‐
mize availability and scalability, making at least some of its data available at any given
time. As shown in Figure 7-14, a Relational Database stores each table row once, a
single consistent source of truth for that row’s data.

A Relational Database is usually a Replicated Database (316), but some Relational
Databases replicate better than others. Older SQL databases run active-standby, with
a single active node that stores all of the data and handles all client requests, and a
standby node that stores a copy of the data. Newer SQL databases run in multiple
active nodes.

The trick for a Relational Database running in multiple active nodes is to implement
ACID transactions that preserve the data’s consistency and referential integrity. The
database achieves this by storing each table row in only one node and storing related
table rows in the same node. One copy of each table row acts as a single source of
truth for the record, and storing related table rows in the same node enables the node
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to maintain referential integrity within the data. Storing a table row in a single node
makes the node a single point of failure for all of its table rows. The database can
compensate for this shortcoming by maintaining a standby copy of each active node.

A Relational Database server can host multiple schemas (i.e., a set of tables) in the
same node but can also host each database in a different node.

Figure 7-14. Relational Database

Some Relational Database servers not only distribute different databases to different
nodes but also distribute a schema’s tables across nodes, and can even split a single
table and distribute it across nodes (this is called partitioning and is described in
detail in the section “Database Topology and Database Selection” on page 304).
Figure 7-14 shows a single table, Table 1, split across two nodes, Database Node A
and Database Node B. It stores each of the table’s rows in a single node, but some
of the rows are stored in one node, while other rows in the same table are stored
in another node. The database uses distributed queries to search a table split across
nodes, running the query in both nodes and merging the results. The diagram also
shows a set of records normalized across two tables, with the rows in Table 3 referring
to rows in Table 4. Because of this relationship, the database stores both tables in
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the same node, Database Node C, and that node is responsible for maintaining the
referential integrity within the data.

Using these techniques, a Relational Database can achieve massive scalability and
wide distribution while preserving ACID transactions and efficient querying.

A Relational Database can be a good choice for a cloud-native application or Micro‐
service that needs access to existing relational data or has well-structured data it needs
to be able to query easily. The Relational Database enables moving existing relational
data to the cloud without needing to significantly alter the data or the applications
that use it. It also offers great flexibility for searching the data and presenting different
views of the same data for different uses. Many Relational Databases are more highly
available and scalable than their traditional IT counterparts while still preserving
ACID transactions.

While a Relational Database can be highly available as a whole, the availability of
any one record can be more limited. Each record is stored in a single node, so when
that node becomes unavailable, that record becomes unavailable unless and until the
database replaces it with a standby node.

A cloud-native application or Microservice is often implemented with an object-
oriented language such as Java, especially code developed using techniques like
domain-driven design. Storing data in a Relational Database necessitates object-
relational mapping (ORM), which can be difficult to develop and maintain and can
perform poorly at runtime.

Many cloud-native applications and Microservices work better with a Document
Database (338) in which semi-structured data is stored the way the application
represents it. While Document Databases are often highly scalable and available, the
data can become inconsistent temporarily and inefficient to query, shortcomings a
Relational Database does not share.

Sometimes the data in a Relational Database is just binary or character large objects
(BLOBs or CLOBs). A Key-Value Database (344) can store unstructured data more
efficiently and optimize access.

Relational Databases are terribly inefficient at following relationships between data
because doing so requires performing querying and joins across tables. A Graph
Database (351) maintains referential integrity between entities and simplifies navigat‐
ing relationships efficiently.

A Relational Database is for storing and accessing rows of data. When an analytics
program is interested in all of the unique values in a column and not in the rest of the
data in the row, use a Columnar Database (356).

336 | Chapter 7: Cloud-Native Storage



An application using a Relational Database should use it to store a single Data
Module (366) and use Polyglot Persistence (374) to store modules of table data in
Relational Databases and modules of other data formats in other types of databases.

A Relational Database should be hosted by the cloud platform as a Database-as-a-
Service (378). Most public cloud platforms host multiple table DBaaSs.

Examples
There are literally dozens of examples of Relational Databases. The oldest and most
familiar ones are enterprise SQL databases. An application does not require a tradi‐
tional enterprise database to use SQL. At least two other types of databases also
implement SQL: Small SQL and NewSQL.

Enterprise SQL
Databases for hosting an enterprise database of record include Oracle database, IBM
Db2, and Microsoft SQL Server. These have usually been hosted on traditional IT,
and many public cloud platforms host at least some of these databases as a service
(Database-as-a-Service (378) or DBaaS).

Small SQL
Small SQL databases such as MySQL and PostgreSQL have these advantages:

• These databases are very well supported, both by the open source community•
and by many vendors. It is relatively easy to find documentation and tutorials for
them and to find developers skilled in them.

• These databases are small and lightweight enough to containerize easily and•
deploy and update through the same GitOps mechanisms used to deploy applica‐
tion code.

• These databases are supported in DBaaS services on the public cloud platforms.•

A major shortcoming of Small SQL databases is that, as the name implies, they often
do not support the same level of scale (particularly with regard to sharding) that
enterprise databases can provide.

NewSQL
Scalability is where NewSQL databases shine. They combine the best attributes of
Small SQL databases and the scalability of NoSQL databases. These include Cock‐
roachDB, Apache Trafodion,, MariaDB Xpand (originally known as Clustrix), and
SingleStore (originally known as MemSQL). Public cloud NewSQL databases include
Google Cloud Spanner and Amazon Aurora.
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NewSQL databases can be a good choice for any application that needs ACID transac‐
tions, an SQL engine that fully supports the relational model, and extensive scaling
and sharding capabilities. Yet that choice comes at a cost—these databases are often
more complex to set up and manage than the older Small SQL solutions. It is also
harder to find people with skills in these databases. Regardless, when selecting a
Relational Database, these should be considered as options.

Document Database
You are writing a Cloud Application (6) or Microservice (119) structured with a
Cloud-Native Architecture (58) and are selecting an Application Database (328) for
your application to use to persist its domain data.

How can an application most efficiently store and retrieve data when the future
structure of the data is not well known?

When developing a new application, often the requirements for the domain data
it will need to persist are rather unknown. As the application evolves, the data
format can change. The application could start out using a Relational Database (333)
with a schema for well-structured data. By the time the data requirements are well
understood and the data format can be designed accordingly, it may be too late and
the application is locked into the existing schema.

One of the advantages of cloud is that it supports agile development. An application
can start as a minimum viable product (MVP) and then incrementally improve as
new features are discovered. For an application to evolve easily, its database must be
able to evolve easily as well. A Relational Database with a strict schema is difficult to
evolve. If early deployments of the application have created data, migrating the data
to new versions of the schema becomes cumbersome.

Another aspect of agile development is that an application must be able to access
data easily. Relational Databases require applications to implement object-relational
mapping (ORM) code to transform the relational data into the application’s domain
object model and back again. When developers spend time writing code to make
the application work with the database, they aren’t developing user functionality. The
application needs a database that works the way the application does, storing data in
the same format the data uses with minimal mapping. The database should make it
easy for an application to access a set of data that it needs as a single record that can
easily be read or written as a single task.

While a Relational Database is designed to store well-structured data, much of the
world’s data is not well-structured data. Real-world data tends to be semi-structured,
with enough structure to figure out what its fields are but with variability in the struc‐
ture from one record to the next. Even storing something as common as a customer’s
mailing address or phone number becomes complicated for an enterprise with an
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international customer base. Trying to store data with such variable formatting in a
fixed schema is difficult.

A Cloud Application needs to scale the way the cloud does, and so does its database.
A Cloud Application needs a Replicated Database (316) with the same availability,
scalability, and performance that the application has. A Replicated Database runs in
multiple nodes that can be distributed across multiple computers and make use of
multiple sets of storage, enabling the database to grow and run reliably even on
unreliable cloud infrastructure.

Therefore,

Store the application data in a Document Database, a database that structures its
data the way the application does.

A Document Database is a kind of NoSQL database and is schemaless, so it can store
data without a predefined schema, simply by storing data the way the application
delivers it. A Relational Database and a Document Database both store domain
entities, but rather than storing each entity as a table row normalized across several
tables scattered across the disk drive, it stores each entity a single document that
it can access in one easy step from one area of the disk drive without joins. A
Document Database typically represents its data externally as JSON data. It is typically
a Replicated Database that runs in multiple nodes and replicates each document
across those nodes.

Figure 7-15 shows a Document Database running in three database nodes that stores
two documents and has replicated both of them to all of its nodes. The database can
route each client request to any of its nodes. Since every node stores a replica of all
of the data, any node that receives the client request can serve its data. If each node
replicates only some of the data and a client requests data in another node, the node
that receives the request can redirect it to a node that stores a replica of the data.

A Document Database enables the data to evolve as the application evolves, facilitat‐
ing agile development. A Document Database does not have a fixed schema for its
data. Most Document Databases represent their data externally as JSON data, which
doesn’t mean that’s how the database stores it necessarily but explains how the data‐
base’s client APIs format data to be read and written. JSON records are nested with
individual key-value fields at each level, so the database understands the structure of
the data. Yet JSON can structure any data this way, and then so too can a Document
Database. By simply persisting the JSON data as is, the database doesn’t require any
prior knowledge of the data’s structure and doesn’t force the data to fit into any
predefined structure.
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Figure 7-15. Document Database
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Many Cloud Applications and web applications already structure data as JSON, so
doing it for the database is natural and no extra effort. Even if your application is
not written in JavaScript and thus already uses JSON, there are available libraries
to serialize and deserialize JSON into object structures in Python, Java, Golang, and
most other languages. A JSON-structured Document Database makes it easy to store
the data the way the application is already using it and to read the data back in that
format, which makes the database easy for the application to use and makes tasks
efficient because so little data transformation is needed. No ORM is needed since the
database and the application use the same structure to store the data. Because the
database understands the structure of the documents, it can facilitate more efficient
querying by indexing the shared attributes across many different item types.

A Document Database makes persisting data much easier so that developers can focus
their efforts on implementing user requirements. Document Databases model their
data the same way their applications do and do not normalize their data beyond
the normalization that the application does as part of modeling the domain. When
the application has data about a customer, product, or account and persists it to the
database, the database stores all of that data as a single record—a document. The
database can easily replicate that document to other nodes as an atomic unit. Every
document has a unique ID and a revision ID, making it easy for the database to
keep track of replicas in different nodes, as well as determine which replica has the
latest revision and which ones need to be synchronized. Two-way replication—where
some changes occur in one node and some in another and need to be synchronized
in both directions—is relatively easy to perform. Meanwhile, the application has
complete flexibility to normalize the data the way the domain does naturally. If
multiple members of a household share the same house, the application can store that
house once and share it among records for multiple residents. This same structure is
persisted in the database and can be navigated by the same relationships.

A Document Database also has shortcomings. Because a Document Database offers
so much flexibility in how it stores data, the database has little ability to enforce
data consistency or referential integrity, pushing those responsibilities back into the
application. Very large documents can limit performance, compelling the application
to decompose (i.e., normalize) a large document into smaller ones that it can query
and access individually.

A Document Database works the way a Cloud Application does, storing semi-
structured data in the same format the application uses, storing each data entity as a
document, and enabling individual documents to vary in format. A Document Data‐
base makes agile development easier because it requires limited code in the applica‐
tion for persistence and can evolve with the application. As Replicated Databases,
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Document Databases can be highly replicated for maximum availability on unreliable
infrastructure.

Document Databases make data easy to store and retrieve but do not enforce data
consistency or referential integrity. Querying the data may not perform well.

For well-structured data, consider a Relational Database (333) for a database
that enforces data consistency, maintains referential integrity, and optimizes query
performance.

For unstructured data that cannot be queried, consider a Key-Value Database (344)
for a database that provides direct access to binary or character large object (BLOB or
CLOB) entities via keys.

For data where the applications navigate the relationship between the entities more
than they use the data in the entities, consider a Graph Database (351), which
manages each entity like a document but is optimized for lookup via references.

An application using a Document Database should use it to store a single Data
Module (366) and use Polyglot Persistence (374) to store modules of document data
in document databases and modules of other data formats in other types of databases.

A Document Database should be hosted by the cloud platform as a Database-as-a-
Service (378). Most public cloud platforms host multiple document DBaaSs.

Examples
Document Databases are NoSQL databases, but not all NoSQL databases are Docu‐
ment Databases. (Others are Key-Value Databases or Graph Databases.) There are
a number of common Document Database products and public cloud platform
services. A common example of an application using a Document Database is an
ecommerce application storing a catalog of products.

Document database products and projects
These products and open source projects implement Document Database:

MongoDB
A very commonly used Document Database that is distinguished by its flexible
schemas, powerful built-in query capability, and scalability and availability

Apache CouchDB
Incorporates synchronization techniques from Lotus Notes that features built-in
conflict resolution and supports incremental replication

Couchbase
A document-oriented database that emerged from the team that built
Memcached
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Many cloud platforms also host these databases as DBaaS services.

Cloud platform document databases
These cloud platform services provide a Document Database (as a DBaaS):

IBM Cloudant
Built on Apache CouchDB

Amazon DynamoDB
Supports the document model in addition to the key-value model

Amazon DocumentDB
Compatible with MongoDB

Azure Cosmos DB
Can be used as a Document Database or a Relational Database

Google Cloud Firestore
A document-oriented database that supports the Google Firebase application
development platform

In most cases, the particular product you choose matters less than how well suited
your particular usecase is for a Document Database.

Document Database ecommerce example
When making a decision as to which NoSQL database to choose for any particular
Microservice, perhaps the default, first type to consider should be a Document Data‐
base. As stated earlier, Document Databases have the flexibility to represent anything
that can be serialized as a JSON document—which includes most object structures in
most languages. Thus, for simple object structures where the individual objects are
going to be searched by any one of several fields of the objects, it’s a good solution to
start with.

An example of this that we have seen in the ecommerce field is a product catalog.
In the online ordering example for Bounded Contexts (201), we discussed how most
users will begin their interaction with the catalog by performing a search. However,
we left the details of that search to be defined later!

Searching a product catalog can be a difficult process, because representing a product
can be complex. Different types of products have different attributes, so there is
no single product type with a fixed schema. It is difficult to model products in a
Relational Database because different types with different attributes need different
schemas, such as different database tables. The data for all of the products in each
table has to fit that schema, even if some products are missing some attributes or have
extras. Then all of the different tables need to be searched differently.

Document Database | 343

https://oreil.ly/MEXT6
https://oreil.ly/tNJRS
https://oreil.ly/hMgTk
https://oreil.ly/PsyLq
https://oreil.ly/_G7fb


A Document Database can keep all products in a single group, where the data for
each product lists whatever attributes it needs. Products can be searched by any
attributes that seem relevant, enabling customizable searching. If a product doesn’t
have a particular attribute that’s part of the search, the search can assume a default
value or ignore that product as not a match. If all products had the same attributes,
a Relational Database might be the best solution. But when they do not, a Document
Database may well be a better solution.

Let’s consider a couple of simple examples of different product types. The first
is something simple, like laundry detergent. The product description, size of the
container, and manufacturer are most of what someone might search. That’s a simple
product representation. However, searching for soft goods like clothing involves
several different aspects that weren’t part of the laundry detergent example—gender,
sizes or measurements, colors, and materials all would be added to the fields already
described for simple products. You may want to display many more pictures of a
piece of clothing than you would for a container of laundry detergent as well.

At one online merchant we worked with, the most complex search of all was for car
tires. Specifying a tire involves not only complex sizing and description codes but also
lots of additional attributes about the tire itself—for instance, the weather it’s for and
the details of the warranty on the tires. Complicating this was the fact that very often
people would search not by any attribute of the tire but by the vehicle models that the
tire is designed to fit!

All of these add up to different object representations, perhaps even an inheritance
hierarchy rooted at simple catalog items, and then with subclasses or other separate
representations for specialized types like clothing or car tires. Any or all of these
attributes will need to be searched, and what’s more, as the catalog expands and new
items are added to the products the vendor carries, they want to want to be able to
do that quickly, without having to change any of the existing catalog contents. This
is why a Document Database is perfect for this particular problem. You may not only
have different representations of the different products but also build and optimize
(index) different searches for all these different cases and add to it on the fly.

Key-Value Database
You are writing a Cloud Application (6) or Microservice (119) structured with a
Cloud-Native Architecture (58), and are selecting an Application Database (328) for
your application to use to persist its domain data.

How can an application most efficiently store and retrieve independent data enti‐
ties that are always looked up by the same key?

Sometimes an application wants to store an isolated data record using a unique ID
that the application can use later to retrieve the record as is. The application doesn’t
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need to query the database to look for the record; the unique ID specifies the exact
record the application needs.

This scenario is common for session management and for caching data. A session
stores data for a web application on the server to track the history and context of
the web user. A database cache stores data retrieved from a database so that the
application can avoid repeatedly retrieving the data from the database.

When an application stores and retrieves data by specifying a unique ID, a database
can easily index those data records. The database uses the unique ID as a key and
stores the record indexed by that key. The next time the application specifies the same
unique ID, the database uses that as a key to retrieve the record. The database can
store the record as an atomic value and doesn’t need to understand the content or
structure of the value it is storing. As far as the database is concerned, the record’s
data type might as well be a binary or character large object (BLOB or CLOB).

Other databases like Relational Databases (333) and Document Databases (338) add
a lot of overhead that isn’t needed in this scenario. The records in those databases
don’t necessarily have unique IDs, or those UIDs aren’t necessarily apparent to the
application. The application expects to search for multiple records matching its crite‐
ria and does not assume the match will always be exactly one record. The database
understands the structure of each record and the fields it contains, storing the field
values separately and indexing certain ones to enable applications to query for those
values. The database also understands the relationships between separate records,
managing them as a collection and enabling an application to retrieve multiple
related records more easily. This overhead is helpful for applications that use the
data more generally but isn’t needed when the application knows the exact ID of the
record it needs.

Applications need a more efficient, specialized database without this general-purpose
overhead.

Therefore,

When an application always performs lookup on the same key, store its data in a
Key-Value Database optimized to work like a hash map.

A Key-Value Database is a kind of NoSQL database and is schemaless, so it can store
data without a predefined schema, simply by storing data the way the application
delivers it. Key-Value Databases are often the most scalable type of database with the
best performance. A key-value database is optimized to store unrelated, unstructured
data records indexed by their unique IDs. It uses each record’s UID as a key and
stores its unstructured data as a value. It is typically a Replicated Database (316) that
runs in multiple nodes, storing its data in one or more partitions (i.e., tables) that it
replicates across multiple nodes.
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Figure 7-16 shows a Key-Value Database running in three database nodes that stores
records in three partitions with two replicas of each partition. The database can route
each client request to any of its nodes. If a node receives a request for a partition it
does not store, it reroutes the request to another node that does store the partition.

Figure 7-16. Key-Value Database

A Key-Value Database works like a hash map in a programming language like Java.
A hash map rapidly calculates the hash of the data in a key and uses that hash as
an index into an array structure. The hash map uses the hash index to insert a value
directly into the array and to directly access the value in the array to read it back out.
A key-value database replicates that approach as a database that can store billions of
individual values over multiple servers. Figure 7-17 shows the basic idea.
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Figure 7-17. Key-Value concept

This simplicity is extremely useful for situations like the caching scenario described
earlier, and Key-Value Databases are designed to take advantage of this simplicity.
For simple key lookup operations, most Key-Value Databases offer O(1) performance.
This is even true when the data is stored across multiple nodes in a cluster because it
is easy to partition key-value data and prepend the partition ID to the key, forming a
compound key, as is shown in Figure 7-18.

Figure 7-18. Compound Key-Value

The basic API for a Key-Value Database is very simple. The API is fundamentally two
operations: get(key) and set(key, value). Each key’s value is a primitive, such as
a string (i.e., character array) or integer. For the SET operation, the database stores
each value exactly as is. For the GET operation, the database returns the value as is,
deferring to the application to interpret the value’s format. When setting a value with
a key that is already in the database, the SET operation doesn’t update an existing
record; it replaces any existing record.

Many Key-Value Database implementations store each value as more of a document
that has structure. The Key-Value Database may support value types such as string
and binary, which are just CLOB and BLOB; other primitive types such as number,
Boolean, and null; collection types like list, set, and map; and JSON, which is a string
or CLOB that the database parses as a document. Databases that recognize these value
types typically enable them to be indexed and enable applications to query on the
values, which gives the database some Document Database functionality.
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Key-Value Databases excel at looking up data records by their keys. They are sche‐
maless and handle unstructured data, storing it as is and returning it as is. This
simple approach means they are usually the most scalable and best-performing type
of database.

Most Key-Value Databases make querying by value either impossible or quite slow.
Every value within a partition needs a unique key; if two values in the same partition
inadvertently use the same key, the last one replaces the one that was already in the
database.

If an application caches data using a Document Database (338), the performance
may be significantly worse than it would be with a Key-Value Database. That is
because Document Databases optimize for more complex cases such as searching by
the contents of the documents stored.

Sometimes an application stores its data in a Relational Database (333) when it
should instead use a Key-Value Database. For example, a Java enterprise application
may persist its domain objects in a Relational Database, presumably storing the
objects as relational data. Surprisingly, the persistence code in many of these applica‐
tions serializes the objects and stores the data as BLOBs. This occurs as the result
of a team throwing up their hands at the complexity of trying to map their domain
objects into relational tables and columns. BLOBs in a Relational Database have many
disadvantages: the database cannot query the data because it has no columns, and
the database manages such huge blocks of data inefficiently. Worse, if improvements
to the code change the object’s structure, the existing data may no longer be read‐
able because the persistence code cannot deserialize it. This is a scenario where a
Key-Value Database would work much better.

There are multiple types of databases—the trick is to use the best tool for the job. A
Key-Value Database is not always the best option. Rather than serializing Java objects,
the persistence code may be able to use a database more efficiently by serializing
the objects as JSON data rather than binary data and storing the JSON documents
in a document database. When an application wants to search for data, a Key-Value
Database is typically suboptimal if not useless, so the application should store its data
in a Relational Database or Document Database.

An application using a Key-Value Database should use it to store a single Data Mod‐
ule (366) and use Polyglot Persistence (374) to store modules of key-value data in
Key-Value Databases and modules of other data formats in other types of databases.

A Key-Value Database should be hosted by the cloud platform as a Database-as-a-
Service (378). Most public cloud platforms host multiple key-value DBaaSs.
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Examples
Here are some common Key-Value Database products and public cloud platform
services, as well as a domain-specific example for caching session data.

Key-Value Database products, projects, and services
These products and open source projects implement Key-Value Databases:

Memcached
A free, open source, in-memory Key-Value Database that is specifically targeted
at caching. It is very performant and is often used for storing session state and
web page caches.

Redis
A source-available, in-memory Key-Value Database but one that is more gener‐
ally usable for a variety of use cases. It has a more extensive API than the
simple get-and-put semantics of Memcached, which makes it more useful as a
general-purpose NoSQL database. As a result, it has become one of the most
commonly used NoSQL databases. Valkey is a fully open source fork of Redis
that was started in 2024 when the Redis license changed from open source.

Riak KV
A Key-Value Database built on a general-purpose, open source distributed sys‐
tems framework, Riak Core. Riak is a formerly commercial product that went
entirely open source in 2017. Other extensions of the Riak Core include Riak CS
(Cloud Storage) and Riak TS (Time Series), demonstrating that it is possible to
build multiple types of application databases on the same underlying distributed
systems model.

Ehcache
An open source Java distributed cache project that is based on Key-Value Data‐
base functionality.

These cloud platform services provide Key-Value Databases (DBaaSs):

Amazon DynamoDB
Supports both the key-value model and the document model

Google Cloud Bigtable
A Key-Value Database that is also a wide-column database (i.e., a Columnar
Database (356)), meaning that it supports very wide tables with tens of thousands
of columns

Azure Cosmos DB
Provides Key-Value Database functionality.
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While all Key-Value Database products function in the same way, they are optimized
for different usecases. So you need to carefully consider your usecase when selecting a
product.

Session Data and Key-Value Databases
As briefly described, a simple example of the use of Key-Value Databases that is very
common is managing HTTP session data. We will use Java as an example; however,
most web frameworks in other languages operate similarly. Jakarta Enterprise Edition
defines the HttpSession object as part of its servlet framework for building Web Form
Applications (414).

This interface serves as a key-value lookup mechanism for managing the user’s state
data (which can be literally anything but often represents selections the user has made
on previous pages in a navigation). There are two approaches for storing HttpSession
objects: in the JVMs and in a database.

The default implementation of most application servers stores the HttpSession
objects in an in-memory cache inside each web container’s JVM. Each user is identi‐
fied by a unique value, the JSESSIONID, that is encoded either directly in the URL of
the request or (more commonly) in a cookie that is stored on the user’s browser. In
this cache, the key is the JSESSIONID, and the value is the user’s session data.

This solution, while very simple, has a lot of downsides. The first is that if the
JVM crashes, all of the customer records stored in that in-memory cache are lost.
The second is that a complex routing solution (i.e., sticky sessions) is needed to
ensure that user requests are always routed to the JVM that holds the entries for that
particular user. This solution must be implemented in front of the JVMs being used
as application servers, often in a frontend proxy like NGINX. All of this adds up to
complexity that developers do not want.

That is why many teams have turned to using Key-Value Databases like Redis or
Memcached to instead store HttpSession data. The match between session data and a
key-value store is so straightforward that it’s hard to imagine teams choosing nearly
any other solution once they begin using them together. One common combination
for users of the Tomcat server is to use Redis along with the open source Redisson
library for using Redis as the backing store for HttpSessions. Likewise, Spring Boot
users will use Spring Session to connect to Redis as a backing store. Commercial
application servers like IBM’s WebSphere Liberty support the same type of function‐
ality as well.
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Graph Database
You are writing a Cloud Application (6) or Microservice (119) structured with a
Cloud-Native Architecture (58) and are selecting an Application Database (328) for
your application to use to persist its domain data.

How can an application most efficiently store and retrieve interrelated data enti‐
ties by navigating their relationships?

When we think of the structure of data, there are some obvious ways of representing
data that seem “natural.” Perhaps the most straightforward is with key-value data,
where an application performs a lookup on a single field value to find another field
value, or in document data, where an application stores data that reflects the way that
people still tend to think in terms of separate pieces of paper, such as forms.

But there’s a more challenging complex data type that we have to think about—
and that is the data model, consisting not only of a simple data structure, like
the attributes for a person, but also the very complex ways in which that person
relates to other people and other entities like employers, property, and community
organizations. A single person can belong to multiple different types of relationships:

• A Person relates to the other Persons in their family and has relationships with•
those family members.

• A Person relates to the people they work with and may have friendships and rela‐•
tionships outside of a company hierarchy—in other words, all of an employee’s
friends and coworkers may not report to the same boss.

• A Person has friends that they may know through multiple different venues, such•
as social clubs, their neighborhood, school, etc.

What this amounts to is that while it may be possible to represent a Person as
a simple data structure, mapping out their social networks gets complicated. The
data model starts adding more and more attributes to try to represent all of the
relationships to other people. The problem is that all of these relationships are similar
in some ways but different in others. A cousin can also be a friend, or a coworker
could be someone you went to school with. Managing when a Person is removed
from one subnetwork or added to another becomes complex. What is needed is a
simple way to represent these different networks such that an application can easily
navigate a particular network when it is focused on one particular type of relationship
but that easily enables it to also explore how these relationships intersect.
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Therefore,

Model and navigate relationships among entities with a Graph Database, which
represents relationships as a mathematical graph with nodes (entities) and edges
(relationships between nodes).

A Graph Database is a kind of NoSQL database and is schemaless, so it can store
data without a predefined schema, simply by storing data the way the application
delivers it. Graph Databases excel at modeling domain entities connected to one
another by numerous relationships. This capability simplifies implementing applica‐
tion functionality to determine the other entities that one entity is related to and
then follow the relationships of interest to explore those related entities. Each entity
is like a document in a Document Database (338), often represented externally as
a JSON document, but a Graph Database gives much better support for modeling
the entities’ relationships and navigating to other entities via their relationships. A
Graph Database makes navigation much more efficient than querying. It is typically
a Replicated Database (316) that runs in multiple nodes and replicates each entity
across multiple nodes.

Figure 7-19 shows a Graph Database running in three database nodes that store
six different entities—three people, two books, and a paper—and the relationships
between the entities. What this doesn’t show is that the database typically replicates
each entity and distributes the replicas across its nodes. The database can route each
client request to any of its nodes. If a node receives a request for an entity it does not
store, it reroutes the request to another node that does store the entity.

Graph data fits the structure of an entity-relationship-attribute (ERA) model. An
entity is an object in a domain. Its attributes are properties about the entity, similar
to the columns in a table or the fields in a document. Its relationships point to other
relevant entities.

A Graph Database solves several types of problems more easily than comparable data‐
base types. For example, consider if an application needs to do any of the following:

Navigate deep hierarchies
An application may have the functionality to look for relationships in a very
large family tree. For example, the University of Oxford has assembled the largest
ever human family tree, one that contains 27 million individuals, both living and
dead, in order to perform genetic research. Navigating this structure to track
small genetic changes across tens of thousands of individuals spanning dozens
of generations requires search optimizations that are simply not feasible in other
database types like Document or Key-Value Databases.

Find hidden connections between distant items
This is where Graph Databases become helpful for optimization problems. For
example, a transport network might have a bottleneck like a train derailment
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due to a washed-out bridge. To find another way around, a graph of data may
show that two distant cities are connected directly through a different type of
transport link (like a ship route) that ordinarily may not be an option, but may
end up saving time in this situation. A similar example is graph theory’s traveling
salesman problem (TSP), which searches for the shortest overall route through
several geographically disbursed points.

Investigate interrelationships between items
This is the largest set of potential cases where Graph Databases shine. For exam‐
ple, navigating the complex web of websites a person visits is absolutely critical
to making recommendations from retail websites based on shared interests,
common attributes, and similarities.

Graph Databases make these types of problems easier, simpler, and faster to solve.

Figure 7-19. Graph Database

While Graph Databases do have advantages, they also have somewhat significant
drawbacks. The first is difficulty finding developers with the skills to use these
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databases. Graph Databases are not as widely used as Relational Databases (333),
or even Document Databases (338) or Key-Value Databases (344), so developers
have less experience using them. What’s more, there is not a single dominant Graph
Database, nor is there a commercial product or an open source project. That means
that the user community of each database product is somewhat small and may make
it difficult to find skills or obtain answers when problems occur.

Another issue with Graph Databases is that there is not yet an accepted standard
for graph queries such as SQL for Relational Databases. As a result, several query
languages are available. For example, both Neptune and Cosmos support both Grem‐
lin and SPARQL, while Neo4J supports the Cypher query language. This lack of
standardization for the client API creates challenges when moving applications from
one database to another, as well as for developers learning to write code that uses
Graph Databases.

There are also issues with the nature of graph data, which impact Graph Databases
managing that data. For example, bulk updates are generally complex in a Graph
Database, since each entity must be updated separately, and updating an entity also
involves updating all the relationships to that entity. So, for example, if a company
was splitting up, to split a company directory built in a graph database, the process
would have to address each employee individually and re-create the new relationships
separately. That can be slow and computationally expensive.

Graph Databases naturally store data consisting of interrelated entities and simplify
an application’s ability to navigate those relationships.

However, Graph Database products are not widely used, so finding experienced
developers is difficult. The querying API is not standardized, leading to vendor
lock-in for applications using a particular database. Also, graph data is complex.
Graph databases help handle the complexity, but management can still be difficult.

There are multiple types of databases; the trick is to use the best tool for the job.
A Graph Database is not always the best option. Entity data with few relationships
can probably be managed more easily in a Relational Database (333) or Document
Database (338), especially for applications to search the data. If the entities are
unrelated, they can be stored in a Key-Value Database (344).

An application using a Graph Database should use it to store a single Data Module
(366) and use Polyglot Persistence (374) to store modules of graph data in Graph
Databases and modules of other data formats in other types of databases.

A Graph Database should be hosted by the cloud platform as a Database-as-a-Service
(378). Some public cloud platforms host graph DBaaSs.
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Examples
Here are some common Graph Database products and public cloud platform services,
as well as a domain-specific example implementing a recommendation engine.

Graph Database projects, products, and services
There are several Graph Databases in common use on the cloud:

JanusGraph
A Linux Foundation project, this is a scalable graph database optimized for
storing and querying graphs.

Neo4j Graph Database
A scalable, open source graph database that is available as the Neo4j Aura cloud
service.

Apache TinkerPop
A framework for graph databases that incorporates the Gremlin query language.

Azure Cosmos DB
On Microsoft Azure, this is a multimodal database that includes graph database
functionality that supports the Apache Gremlin API by incorporating most
Apache TinkerPop functionality.

Amazon Neptune
On Amazon Web Services (AWS), this is a fully managed Graph Database service.

There are not as many choices on each platform for Graph Databases as there are for
other Application Databases. This means that your application might need internal
code to address features that are not available on the platform databases.

Ecommerce Product Recommendations and Graph Databases
Users of ecommerce sites are probably familiar with the section below the particular
item you are browsing titled “similar items” or “purchased together with.” This is
the result of a product recommender system, and once you start looking for them,
you will find them everywhere. Amazon and other shopping websites typically rec‐
ommend other products that fit well with this product. A recommender system is
famously part of Netflix, which held annual contests to improve its recommendation
algorithms. It is the basis of systems like Spotify, which is essentially only a big
recommendation engine.

But what is a recommendation engine? At its heart, it’s an exercise in data science
and linear algebra. It usually comes down to constructing vectors for which you can
calculate cosine similarity showing how close two or more items are to each other
in that vector space. But how do you even construct those vectors? Where do the
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numbers in this data science exercise come from? That’s where a Graph Database
comes in and excels.

In a common implementation, whenever a user interacts with a system—purchasing
a product, filling a cart, or even browsing a page—the system records that interaction
as nodes and edges in a Graph Database. So if a user buys two products, edges
are created between the user node and the product nodes. That could allow your
analytics system to traverse those edges later and find that the user had purchased
the two products, and use that information to recommend the second product to
someone who is browsing the first.

More accurately, the recommendation system would construct vectors from the
records of the interactions of hundreds or thousands of users, each adding their own
information to strengthen specific connections between the nodes (incrementing use
counts), and then use the magic of linear algebra to find those products for which the
connections are the strongest.

When you throw in individual user interactions and their own preferences, this can
give you highly accurate and personalized recommendations.

Columnar Database
You are writing a Cloud Application (6) or Microservice (119) structured with a
Cloud-Native Architecture (58) and are selecting an Application Database (328) for
your application to use to persist its domain data.

How can an application most efficiently store data for performing analytics, such
as in a data warehouse?

Often an application needs to store data that it uses to calculate statistics or perform
Aggregate queries. This is especially common in Microservices Architecture (Chapter
4) when one Microservice pulls together data from several Microservices to perform
queries or Aggregate data.

An interactive user application requires online transaction processing (OLTP), and
Relational Databases (333) perform OLTP well. A user fills out a form, and the
database writes the fields from the form to a database table. As multiple users also fill
out that form, each user’s answers are written to a row in the table using a transaction
for each user. The answers are all the same format because they all come from the
same form, so the database table’s strongly typed schema handles it well. When a
user wants to see the form with the data they previously filled out, that database read
is a transaction. The application can use a couple of transactions to show the user
their data, let the user edit the data, and commit the changes. Similarly, for data that
is not as well structured, a Document Database (338) can perform transactions on
individual documents.

356 | Chapter 7: Cloud-Native Storage



In these OLTP scenarios, a read or write transaction involves an entire table row,
using all of the data in that record. The application can query to find the rows that
it needs, then reads or updates all of the data in those rows. Relational Databases
do this well because they are optimized to manage data as complete table rows.
OLTP requires both inserting data into the database as well as reading it back out
again. Relational Databases tend to be equally good at both, providing reasonable
performance.

Data analytics requires online analytical processing (OLAP). When a Relational Data‐
base tries to perform OLAP, it becomes a performance bottleneck, limiting how much
data can be processed quickly and not scaling well even with additional hardware.
Data analytics requires sorting through large amounts of data and finding interesting
data quickly. A Relational Database tends to approach the problem by reading all of
the data from disk and iterating through it linearly, which doesn’t scale well. Analytics
often is not interested in much of the data in a record, focusing more on knowing
which records or how many total match a search. Analytics needs a database that
can query data as efficiently as possible, even if that hurts the performance of insert‐
ing and updating data. While an OLTP database can efficiently insert and update
individual records, this is uncommon in OLAP databases. An analytics database often
loads data in bulk, writing the data in large batches, not one record at a time as with
OLTP. Analytics data is typically loaded once and then read repeatedly, as the data is
analyzed and reanalyzed for different purposes.

Analytics data often isn’t as well-structured as OLTP data. The data to be analyzed
can be gathered from multiple places that collect varying details about each record.
Force-fitting the semi-structured data into a strongly typed schema will at best make
the database table sparsely populated and at worst force the application to throw away
data fields that don’t fit into the schema.

OLAP needs a database optimized for reading and sorting through large amounts of
data, even if that means its performance suffers when writing individual records, and
that can still organize semi-structured data for efficient querying.

Therefore,

Store the data for an application that performs analytics in a Columnar Database,
a database optimized to find records quickly, even in semi-structured data.

A Columnar Database is often described as NoSQL but more precisely is schemaless
or wide-column but still based on tables. Columnar Databases support very rapid
SQL-style querying of large amounts of semi-structured data, rows of data that the
database organizes into columns. It is typically a Replicated Database (316) that runs
in multiple nodes, storing its data in one or more keyspaces that it replicates across
multiple nodes.

Columnar Database | 357



Figure 7-20 shows a Columnar Database running in three database nodes that store
records in three keyspaces with two replicas of each keyspace. The database can route
each client request to any of its nodes. If a node receives a request for a keyspace it
does not store, it reroutes the request to another node that does store the keyspace.

Figure 7-20. Columnar Database
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True to its name, a Columnar Database stores data not in rows but in columns. For
example, consider a table that stores the first names, last names, and zip codes for
a set of customers. A standard Relational Database would store each row separately
as a record written to disk, the data for one row all together on disk, followed by
another. Instead, a Columnar Database stores each column separately as a record
written to disk, the data for one column with the values for all rows all together on
disk, followed by another. Figure 7-21 shows the difference.

Figure 7-21. Column orientation

This differentiation may seem trivial, but when querying large data sets to look for
certain column values, this arrangement of the data makes the database much more
efficient.

A major disadvantage of a Columnar Database is that updates and inserts may take
much longer than in other types of application databases. An application still inserts
data records by row, but the database does not insert a single row. Instead, the
database must break the row into columns and insert its values into each of the
columns, writing the new column data to the same area of the disk as the existing
column data to keep it all contiguous. OLTP applications perform a lot of inserts
of individual records and therefore will work better with a Relational Database or a
Document Database. Once an OLAP application inserts or updates data, it then reads
it many times, making read efficiency a higher impact than write efficiency. When
an OLAP application does insert records, it tends to load the records in bulk, so the
database can perform the insert overhead once for all of the records. When data is
needed for both OLTP for user interactions and OLAP for analytics, an application
can store it twice in two different databases, where the application continuously
updates the OLTP database but queues the updates for the OLAP database to perform
them in bulk as a batch job.

Understanding how a Columnar Database is able to query data so much more
efficiently than a Relational Databases requires understanding how the Columnar
Database is implemented and how it organizes its data. A Columnar Database groups
entities that will be searched together, splits up rows to store the data by column,
skips empty column values, and compresses data for reading from disk faster.
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A common Columnar Database implementation groups its data into keyspaces con‐
taining column families. A column family stores records that externally seem like
rows of data with a UID for the record and a tag on each column value that specifies
the column. The column tags enable records in the same column family to specify
different columns. This makes each column family act somewhat like a Relational
Database table and each keyspace act like a schema (i.e., a collection of tables).

Figure 7-22 shows a keyspace with column families for two different entity types. The
database performs each search in a column family, essentially by retrieving a column
in that column family, so the application should put data that should be searched
together in the same column family. Each record in a column family needs a UID, so
if two records somehow have the same UID, they need to be put into two different
column families.

Figure 7-22. Columnar Database keyspaces

Although all of an application’s data can be stored in a single column family, a good
approach typically is to store each type of entity in its own column family, such as
customers in one column family and products in another, which enables the entity
types to be searched separately.

While an application still externally inserts data records by row, the database inter‐
nally stores the data by columns, as shown in Figure 7-23. The database can more
efficiently read a set of column values from one contiguous section of disk and reads
only the data for that column, making the amount of disk to be read minimal and
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the amount of RAM needed to load the data smaller. Then the database can search
that smaller amount of RAM more efficiently to develop statistics about the data.
Many OLAP use cases are multidimensional, with each dimension being a column.
Arranging the data by columns enables the database to read only the data in the
dimensions’ columns and then quickly find their intersection.

Figure 7-23. Columnar Database columns

For an example of how storing data by column makes querying more efficient,
consider looking up how many customers live in a particular zip code. A Relational
Database would need to iterate through all of the customer records, filtering for the
ones with the particular zip code, and then would return all of the data for all of
those records just to compute a count of the number of records. Even by optimizing
the database with indexing and performing the count in the database instead of
the application, a Relational Database cannot perform this search as efficiently as a
Columnar Database. A Columnar Database instead would store a column of zip codes
and could quickly find how many of those match the particular zip code. It might
even optimize the column to list each unique zip code once and, for each unique zip
code, list the rows with that zip code, which makes searching for a particular zip code
as instantaneous as finding that one value from that one column.

A Columnar Database can compress data, which enables it to perform queries even
faster. Compressing the data stores it using less disk space, which makes it faster
to read and allows more data to be loaded into the same amount of RAM. To
accomplish this compression, rather than storing all rows in a column, the database
stores only the rows that have values for that column, as shown in Figure 7-23. The
shorter the column, the more compact its data is, with no loss of data. For example,
the zip code column does not store data for all customers it only stores data for
customers with zip codes, making it more compact. If a customer does not include a
zip code, its data is stored in other columns but not in the zip code column. Columns
are also more efficient to store because all of the values in a column have the same
type so the database can store them with no wasted disk space. As mentioned earlier,
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the database can compress the column further by listing each unique column value
only once and then listing the IDs for the customers with that value, which for a
lengthy column value saves more disk space as well as makes a query for that value
more direct.

While the structure of data in a Columnar Database is more flexible and can seem
semi-structured compared to the well-structured data in a Relational Database, Col‐
umnar Database data still needs structure. A Columnar Database can work efficiently
as a wide-column database, storing records where most of the columns are blank. In a
Relational Database, all of the missing values would produce very sparsely populated
tables, as shown in Figure 7-24.

Figure 7-24. Columnar Database column families as tables

Since a Columnar Database stores only the columns that have values, it stores the
data with high density. Yet while columns can vary between records, the data needs
enough structure that it can be searched effectively, which means the records require
the important columns that the application will search. The Columnar Database
doesn’t force two records with the same data type to store both in the same column,
but if they have different column names, they will be very difficult to search. When
data has very little structure, where every record has different columns, the database
will store that data in a huge range of columns with very few rows per column, which
will be very difficult to search. For example, Column Family B in Figure 7-24 will be
very difficult to search effectively since none of the rows have the same column, so
any column value matches at most one row.

Although a Columnar Database is often characterized as a NoSQL database, that
perspective is misleading. A Columnar Database can appear somewhat schemaless
because it can act as a wide-column database where each record populates only
some columns. Yet it still has a schema, albeit not a predefined fixed schema but
one the database determines dynamically to include numerous columns as needed.
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Whereas NoSQL Document Databases and Key-Value Databases work well with
semi-structured and unstructured data, a Columnar Database needs data to have
enough structure that it can be queried effectively. Many Columnar Databases store
their data in Relational Databases, which are definitely not NoSQL. And unlike a
NoSQL database, many Columnar Databases can still be queried with SQL and can
be ACID compliant—even though their inserts are slow, they are consistent. In this
situation, you can think of a Columnar Database as an SQL database with a dynamic
wide-column schema.

A Columnar Database manages data for OLAP, optimizing data storage for query
efficiency at the expense of performance for inserting and updating data. It organi‐
zes data records into columns to make it more efficient to query. It can handle
semi-structured data, although the data has to be structured well enough for efficient
querying.

Analytics focuses on finding a small amount of interesting data within a large amount
of data. Columnar Databases make it possible to do this much more efficiently.

However there are some challenges, such as limited suitability for transactional
workloads, higher overhead for writing data, and complexity in handling joins. Also,
they can be resource intensive for small queries with increased complexity for certain
operations. Finally, there can be a learning curve along with scalability and concur‐
rency challenges.

For OLTP, use a Relational Database (333) or Document Database (338).

Each keyspace in a Columnar Database is a Data Module (366). Use Polyglot Per‐
sistence (374) to store Data Modules for OLAP in a columnar database and Data
Modules for OLTP in relational and document databases.

A Columnar Database should be hosted by the cloud platform as a Database-as-a-
Service (378). Most public cloud platforms host at least one columnar DBaaS.

Examples
Here are some common examples of Columnar Database products and public cloud
platform services, as well as a domain-specific example implementing marketing
using an airline application.

Columnar Database products, projects, and services
These products and open source projects implement Columnar Databases:
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Apache HBase
An open source, column-oriented, distributed, versioned, non-relational NoSQL
database modeled after Google’s Bigtable. Contributed by Yahoo as part of
Hadoop, HBase stores its data in the Apache Hadoop Distributed File System
(HDFS) or Amazon’s Simple Storage Service (S3) and is designed to support
real-time read and write access to large data sets.

Apache Cassandra
A distributed NoSQL database contributed by Facebook that uses a column-
oriented storage model and is designed to handle large amounts of unstructured
or semi-structured data.

ScyllaDB
An open source wide-column database designed to be API compatible with
Apache Cassandra while offering significantly higher throughput and lower
latency.

IBM Db2 Warehouse
A column-organized data warehouse with in-memory processing designed for
complex analytics and extreme concurrency.

These cloud platform services provide Columnar Databases (DBaaSs):

IBM Db2 Warehouse on Cloud
Supports columnar storage and is hosted on IBM Cloud using IBM Cloud Object
Storage and on AWS using Amazon Elastic Block Store (EBS) with Amazon
Elastic File System (EFS).

Google Cloud Bigtable
A hosted distributed NoSQL HBase–compatible database that runs on top of
Google File System (GFS), is designed to support real-time read and write access
to large data sets, and is integrated with the Google Cloud Data Platform. Google
describes it as “a sparse, distributed, persistent multidimensional sorted map.”

Amazon Redshift
A hosted petabyte-scale massively parallel processing (MPP) cloud data ware‐
house service with columnar storage designed to handle large-scale, high-
performance data storage and analysis needs for applications on AWS.

Amazon Keyspaces
A hosted, scalable, and highly available database service that supports the Cas‐
sandra Query Language (CQL) API.

Azure HDInsight HBase
Apache HBase hosted in a managed cluster using Azure Storage.
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When choosing a Columnar Database, an important factor is compatibility with
other parts of your analytics toolkit. You want to ensure, for instance, that your
reporting tools are compatible with your Columnar Database when making your
product selection.

Airline marketing example and Columnar Databases
Marketers often want to target a promotional offer to existing customers who are
likely to be interested. To do so, they search through a sea of historical data about lots
of customers’ purchases to look for activities similar to the new offer, reasoning that
customers who have made purchases like this in the past may be interested in doing
so again. This searching through historical data and looking for interesting patterns
is data analytics, and Columnar Databases are especially good at performing OLAP.
Other types of databases are tuned for OLTP, which provide poor performance for
analytics, but Columnar Databases are optimized for analytics to provide much better
performance.

For example, let’s consider an airline that is running a route to San Francisco from
Chicago. To drum up more business for this route, a marketer with the airline
may wish to find customers who might be interested in this route and offer them
a special promotion. To find these customers, the marketer runs a query on the
airline’s historical data along the lines of “Find all frequent fliers who purchased
flights leaving Chicago where the yearly spend was over $100,000 in the last year.”
This is a very complex query: it needs to filter for customers who are frequent fliers,
have departed from Chicago, have spent a lot on flights, and have done so in a
limited time frame. A Relational Database might contain the data for all customer
flights flown in the past several years, and running SQL across that much data would
require a lot of I/O that reads a huge amount of disk. The data needs to be filtered
in multiple independent ways—frequent fliers, Chicago departures, high spenders,
recent activity—and each filtering process will consume considerable memory and
CPU. Ultimately, the filtering will throw away data that never needed to be read in
the first place. When the querying finally produces a list, the marketer may find it
contains too many names or too few, necessitating adjusting the query and running it
all over again!

A Columnar Database is optimized to run multidimensional queries across huge sets
of data and read only the data that is needed. If the data for all flights flown in
the past few years is stored in a columnar database, the database will perform this
marketing search much better. It will have a much easier time producing a list of
customer IDs for frequent fliers, for fliers with Chicago departures, and for fliers
who are high spenders based only on their activity for the past year, than producing
the intersection for all three. Using a columnar database, the marketer will get their
results much faster, placing much less load on the infrastructure because it reads
much less data from the disk—only the customer IDs from the desired columns.
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They can look at the number of customer IDs and judge whether that’s a meaningful
number without reading all of the customer records. They can more quickly adjust
their query to find a meaningful list, even if that means running queries multiple
times to find one that works best.

With that list of customers who are likely to be interested, the marketer can then
recommend to those fliers that a vacation in San Francisco would be a great idea!

Data Module
You’re developing an application with a Cloud-Native Architecture (58) that has
domain data and needs to persist it. Perhaps you’re developing a Self-Managed Data
Store (154) for a Microservice (119).

How can I align my data model with my application model so that both are easier
to maintain and can evolve quickly?

An enterprise application often stores all of its data in a single large Relational Data‐
base. Furthermore, in many enterprises, the majority of the enterprise applications
share one huge set of data stored in one or a few enterprise databases of record. Even
when an application has some data that none of the others will use, it stores that data
in the same enterprise databases of record because that’s where all of the applications
store all of their data.

An enterprise database of record is difficult to maintain. No one application is
responsible for any set of data; it is shared by many applications, and they are
all responsible for it. Some of it may not even be used anymore—the applications
that once used it have changed, yet it still remains in storage. If one application
corrupts the data, all of the other applications that use the data are adversely affected,
all assuming the data is valid and having no way to determine which application
introduced the problem. Once data is stored in a certain schema, that schema cannot
be changed because multiple applications share the data, and they would all need to
be updated to the new schema at the same time that the database is updated. Thus,
an enterprise database of record becomes an ever-growing warehouse of data, much
of which is never used, stored in a schema that may no longer be ideal and that the
enterprise has no ability to improve.

Data is often convenient to store in an enterprise database so that any data can be
referenced and connected to any other data. Referencing data in separate databases
is difficult, but doing so in the same database is easy, and the database can maintain
referential integrity. Yet the more connected data is, the more difficult it is to change.
Schema is already difficult to change in a shared database. Connections between sets
of data create dependencies such that changes to some of the data, even without
changing the schema, impact other data such that it may also need to be updated.
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Large sets of interconnected data make the data more difficult to maintain and much
slower to evolve.

Therefore,

Divide the application’s total set of data into Data Modules, sets of data with no
or limited dependencies with one another, and store each in its own database or
schema.

Data Modules divide a large set of data into smaller sets of data. The data inside a
module is closely related, whereas the data in one module is more loosely related
to the data in another module. While one database can store multiple modules, to
maintain their independence, each module should be stored in its own database (aka
schema or set of tables). Each database can be hosted in its own database server, but it
can be more efficient to consolidate multiple databases into one database server.

Figure 7-25 shows the set of data for an application divided into four modules. Each
module includes multiple data types that together implement an encapsulated unit of
data. The data in one module can reference the data in another module, but most of
the references are within a module with relatively few references between modules.

Figure 7-25. Data Module
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Data Module is the data version of the Modular Monolith (29) and Distributed
Architecture (38) patterns for applications. Just as an application is more difficult to
maintain as a Big Ball of Mud (22), dividing data into modules and storing them in
separate databases makes the data easier to maintain.

Applications and modules should connect only to the databases with the Data Mod‐
ules that the code uses. Each application in an enterprise should not connect to all
of the Data Module databases in the enterprise; they should only connect to the ones
whose data it uses. This approach leads to fewer applications connecting to a given
module’s database, making that data easier to maintain and evolve. For applications
with a Modular Monolith architecture or Distributed Architecture, each module should
only connect to the databases of the data it uses.

The modularity of the data should reflect the modularity of the application so that
each application module typically uses a single data module. This alignment between
application modules and Data Modules becomes especially apparent in an application
with a Microservices architecture. Each Microservice manages its own data, which
is a data module, and stores it in its own Self-Managed Data Store (154), which is
the database that hosts the Data Module. Each Microservice has its own database, as
shown in Figure 7-26.

Figure 7-26. Schema per service

Figure 7-26 also shows that the databases for multiple Microservices can all be hosted
in a single database server. A single server enables multiple Data Module databases to
share the server’s infrastructure resources, administration effort, and licensing costs.
Each Microservice owns its data and stores it in a separate Data Module it controls,
yet shares the overhead of the database server. Each Microservice owning its Data
Module helps developers avoid coupling their microservices and the database (either
intentionally or unintentionally). To enforce this, configure each Microservice so that
it can connect only to its database, and vice versa.
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A data model with a good design groups data into well-organized modules. At one
extreme, every data type could be stored separately in its own module. At the other
extreme, all data types could be stored in a single module. Here are some guidelines
for figuring out a good set of modules:

• If one logical data type is normalized across multiple tables, those tables should•
all be hosted in the same module.

• If two data types need to be updated in a single transaction, they should be•
hosted in the same module.

• If two data types have the same lifecycle, such that when the record is created or•
deleted, records for the other data types should be created or deleted as well, put
them in the same module.

• If two data types have very different lifecycles, such that one is still viable after•
another is deleted, host them in separate modules.

• If one data type is shared by two other data types, host them in separate modules.•

For an enterprise with an enterprise database of record, refactoring the application
into modules may be much easier than refactoring the database. The application
has limited scope, whereas a database that is used by multiple applications cannot
be changed without also changing all of the applications. These constraints often
result in a set of Microservices that all share the single enterprise database just like
the other enterprise applications do. Ideally, the Microservices should each have their
own database, and they may be able to do that for new Data Modules, but when the
existing data is all one big module, multiple Microservices will have to share it as is.

Data that will be modified together should be stored in the same data module so
that it can be modified in the same transaction, but that creates a quandary when
two different sets of data need to be modified together. Two different Microservices
should store their data in separate Data Modules in separate databases, but then two
sets cannot be modified in a single transaction. This situation may require connecting
together the two Microservices through Service Orchestrator (160) or Event Choreog‐
raphy (246). Then when one Microservice updates its data, it invokes or notifies the
other Microservice so that it can update its data as well.

Data Modules enable making data as modular as the application. Data that is updated
together should go in the same module; data that is merely used together can go in
separate modules. Each module should be hosted in a separate database, and multiple
databases can be hosted in the same database server. Application modules should
connect only to the data modules with the data they use.
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An enterprise database of record can be much more difficult to refactor than an
application. A database may be shared by multiple applications, which would require
updating all of those applications when the database is updated. And data all stored in
one database may be highly intertwined and difficult to separate.

Store each Data Module in its own separate database, which is an Application Data‐
base (328).

Since each application database is separate, data in two Data Modules do not have
to be stored in the same type of application database. For each Data Module, use
Polyglot Persistence (374) to choose the type of application database that works best
for the data in that module.

Multiple Data Module databases can be stored in the same database server. On a
cloud platform, that database server can be hosted as an SaaS service, an instance of a
Database-as-a-Service (378).

Examples
Let’s explore what different types of databases and database products call the con‐
struct for dividing the server into databases for separate Data Modules. Then we’ll
look at a simple example of an ecommerce application that uses multiple Data
Modules. Finally, we’ll consider a quick example of refactoring a monolith with one
large database into Microservices (119) that each have their own database, all hosted
in a single database server.

Database server terminology for hosting multiple databases
Most database servers have a construct for dividing the server into databases for
separate Data Modules, but different types of databases and database products have
different names for that construct. Many NoSQL databases advertise themselves
as being “schemaless.” but the general concept of a boundary of separation that a
Relational Database schema provides is also provided in those databases. However,
exactly what it is called differs from database to database and (unfortunately) is often
tied up in the details of the clustering and management structure of each database.
Nonetheless, we can point to a single concept in most Application Databases (328)
that represents a distinct set of data and a description of the structure of that data that
acts as a single Self-Managed Data Store (154) that the operations of a single Domain
Microservice can operate on.

Here are a couple of different types of databases and the feature in each that repre‐
sents a Data Module:

370 | Chapter 7: Cloud-Native Storage



PostgreSQL schema
In PostgreSQL, a schema is a collection of tables that represents a single logical
database. PostgreSQL also has a concept it calls a database, which is a collection
of schemas tied together by a common set of users. Of these two concepts,
schema aligns most closely with Data Module.

MongoDB collection
In MongoDB, a collection is a set of documents. That collection represents both a
scope for searching documents and also the mechanism for finding the structure
of the documents. Thus each Data Module stored in MongoDB should be stored
in its own collection. MongoDB does not require that all the documents in a
collection fit the same schema, but when a collection has schema validation
enabled, MongoDB validates the format of data during updates and inserts it into
that collection.

Apache Cassandra keyspace
In Cassandra, a keyspace is a collection of tables and types tied to a replication
strategy. Store each Cassandra Data Module in a separate keyspace.

Neo4j Graph Database
In Neo4j Graph Database, the best equivalent to a Data Module is the database,
which is a single connected graph made of nodes, their properties, and the
relationships that tie them together. A single Neo4J installation can host multiple
databases (at least in the Enterprise Edition of Neo4J).

Redis shard key
Redis is the most difficult choice in which to implement this concept. In Redis,
there is no single built-in concept within the database API that directly corre‐
sponds to a Data Module. Redis partitions by sharding the key, so to store data in
Data Module, construct keys that include a unique identifier for each module.

Likewise, other database products and services have their constructs for organizing
Data Module as sets of data.

Ecommerce application
An ecommerce application keeps track of customers who order products. Figure 7-27
shows a potential modularized Data Module for the application.
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Figure 7-27. Ecommerce Data Modules

This Data Module separates the data into modules for customers, products, and
orders. While customer seems like a single type of data, each customer also has
closely related data, like their mailing addresses as well as the customer’s preferences.
Likewise, the data for a product also includes pricing data that tends to change
independently of the product, and each product can have multiple customer reviews.
Order brings these two units together, relating a customer to the products they
ordered. A separate order data type enables one customer to have multiple orders and
for multiple customers to order the same product. Even Order contains more than
one type of data. Orders must track the status of the order as it shifts through its
lifecycle and the details of the shipping process that also has its own lifecycle.

Refactoring a Big Ball of Mud and its database into Microservices with Data Modules
Let’s say that you are currently using a single, large Relational Database. In that
case, problems arise when you have two different Microservices that use the same
information—the same tables within the same schema. The problem is that when
everything references everything else, it is difficult to figure out how to split them
apart. You see what we mean in Figure 7-28.
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Figure 7-28. Monolithic Application working off One Big Schema

As you transition to Microservices, you must realize that there are many fewer prob‐
lems caused by sharing hardware at the server level—in fact, when doing the initial
refactoring to Microservices, there are a lot of advantages to keeping the new, more
cleanly separated schemas in the same enterprise servers because companies usually
already have teams and procedures in place for database backup and restore, and for
database server updates—which the teams can take advantage of. In a sense, what the
enterprise is providing through providing the hardware and software and manage‐
ment of an enterprise database is a limited version of a Database-as-a-Service (378).
This especially fits well with an approach that begins with more cleanly separating
parts of your monolith by functional area—starting out with a Modular Monolith, as
shown in Figure 7-29.

Figure 7-29. Schema per module

In this example (meant to show a refactoring work-in-progress). you can see how
the database has been broken up by separating out tables corresponding to three
new schemas (A, B, and C) that correspond to specific modules in the refactored
application. Once they have been separated like this, they can be cleanly broken out
into distinct Microservices. However, D and E are still being refactored—they still
share a single schema with interconnected tables.
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You can easily see how this is a step toward the desired end state of a set of microser‐
vices that each manage their own data.

Polyglot Persistence
You’re designing an Application Database (328) for an application to store its Data
Modules (366). There are many types of Application Databases to choose from.

How can an application store its Data Modules in the type of database that works
best for the application’s data structure and how it accesses the data?

When all of the applications in an enterprise share the same enterprise database of
record, choosing what database to use is simple: always use the enterprise database
of record; it’s the only choice. Furthermore, selecting the database technology for
hosting the database is simple because it is always a Relational Database. The only
real decision is whether to use Oracle, Db2, or SQL Server, and usually the enterprise
has already standardized on one of those long ago. So for any application with some
data to store, the decision is simple: store the data in the enterprise database of record
which is a Relational Database hosted in the database product the enterprise has
always used.

Cloud and distributed architectures have motivated innovation in database technolo‐
gies, resulting in numerous database products and open source projects to choose
from, implementing several types of Application Databases. While an application has
many databases to choose from, it’s not clear which one it should choose. Relational
Databases (333) have many advantages and disadvantages compared to Document
Databases (338), while Key-Value Databases (344) excel at some tasks but not others,
and so on for the other database types. An application can treat all of its data like
table data, but that may not work very well for some of the data.

Even with multiple database types and database products to choose from, an
enterprise may feel compelled to standardize on one product. One product shares
licensing costs across more data and makes staffing projects easier when all of the
developers have skills in the same database. Yet uniformity for licensing and devel‐
oper skills may stifle the opportunity for each application to use the best database for
its requirements.

An application works better if it is modularized into a Modular Monolith (29) or
Distributed Architecture (38) such as Microservices (119). Likewise, the application
will have more flexibility if it modularizes its data model into Data Modules. If the
application has modularized its data, to standardize on one database, it needs to store
all of its Data Modules in the same database, such as storing them all in a Relational
Database or all of them in a document database. For an application with diverse sets
of data, any database choice will work well for some data, but another database choice
would work better for other data.
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What is needed is a database that is optimized for each module in the data model. Yet
no one database is going to work best for every module.

Therefore,

Use Polyglot Persistence to store each data module in the type of database that
works best for that module.

Polyglot Persistence stores each Data Module not just in a separate database but also
in a different type of database. Some modules may happen to use the same type
of database, not because they all need to be stored in the same type but because
that type is the best choice for each of them. If two application modules both use
table data, they should store both of their Data Modules in Relational Databases.
But if one of them uses semi-structured data, it should store its Data Module in
a Document Database even though the other module uses a Relational Database.
Polyglot Persistence gives this flexibility.

Figure 7-30 shows an application split into three modules that split its data into three
Data Modules. While all three Data Modules could be stored in the same type of
database, the application modules have different types of data that can be managed
better by different database types, and Polyglot Persistence enables the design to store
each Data Module in a different database type. The first module has well-structured
data, so its Data Module works best in a Relational Database. The semi-structured
data in the second application module means its module of data stores most easily
in a Document Database. The third application module uses a Key-Value Database
because its data is unstructured. With Polyglot Persistence, the design stores each Data
Module in the database type that works best for that data.

Polyglot Persistence is the data version of Polyglot Development (146). Just as two
different Microservices can be implemented in the same language but do not have
to be, two Data Modules can be stored in the same database type but do not have
to be. Polyglot creates the opportunity not only to implement two Microservices in
two different languages but also to store two Data Modules in two different types
of databases. Since two Data Modules should be stored in two separate databases
anyway, when needed, those two databases can be of two different types.

Polyglot Persistence supports storing Data Modules in separate database servers but
does not require it. When a designer chooses to store two Data Modules in the same
database type, they can be hosted in two different databases within the same database
server. To host two data modules in two different database types, the two databases
must be hosted in two different database servers.
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Figure 7-30. Polyglot Persistence

While providing multiple database types gives applications flexibility in persisting
data, supporting them may introduce complexity. Each new type means hosting new
database servers, and servers of different types mean that a team will need database
administrators and application developers with skills to handle multiple types.

Polyglot Persistence enables storing each Data Module in a different database type but
does not require it. It enables development teams to choose the best database type for
each Data Module. Data Modules that store their data in the same database type can
be hosted in the same database server.

Multiple database types mean hosting and administering multiple database servers of
different types, skills, and costs that can increase application complexity.

Each database type is easier to host and administer if it is a Database-as-a-Service
(378).

Example
Let’s revisit our earlier example drawn from a simple ecommerce application consist‐
ing of a few easily understood Domain Microservices (130) and consider the different
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types of Data Modules and thus Application Databases that would be found in this
application:

Catalog

Enables the user to browse information on different products, see descriptions,
view images of the item, and find out the price of the item.

Shopping Cart

Enables the user to select items from the catalog and then store them for later
purchase.

Product Recommendations

Helps the user have a better shopping experience.

Order

Once you have passed through the purchasing process, including arranging for
payment and shipping, the order must be fulfilled

Each of these different Microservices requires different types of data, each of which
may fit a different set of storage requirements, and thus a different type of Applica‐
tion Database (328), for example:

• The Catalog is a perfect example of document data. Each catalog entry is a•
mix of different fields with different types of data in each, and what’s more, the
set of information may differ from product to product. (For example, there are
more things to describe in a complex item like a car than in a screwdriver.) A
Document Database (338) enables flexible data formats, efficient searching, and
support for returning multiple data types to the frontend as individual JSON
documents.

• The Purchase button will need to take the shopper through multiple screens (get•
shipping address, get credit card information, confirm the purchase, etc.), which
requires them to move back and forth between the screens. This session data can
easily be cached in a Key-Value Database (344).

• Product Recommendations require fast navigation through lots of different types•
of data, stored multidimensionally: what the user has purchased before, what
other users similar to them have purchased, their demographic data, etc. A Graph
Database (351) is exactly the right solution for navigating this data.

• The Shopping Cart allows for multiple possible solutions, such as a Document•
Database or a Key-Value Database. Either way, the Shopping Cart data is its own
Data Module (366) that separates the data for the Shopping Cart Microservice
from the Data Modules for the catalog Microservice or purchase Microservice.

• Once an Order has been created from a Shopping Cart, the order fulfillment,•
packing, and shipping process often involves lots of small changes to distinct
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parts of the original order (for instance, items may be shipped separately or in
small groups and also returned separately). That kind of searching and updating
of small pieces of information is perfect for a Relational Database (333).

As previously described, Polyglot Persistence is a necessary tool to solve the problem
of optimizing each Microservice to address its own unique set of problems in the
domain. For more information on each of the different specific use cases for this
example, see the corresponding examples in each of the individual patterns.

Database-as-a-Service
You’re designing an Application Database (328) to store the data for your Cloud
Application (6).

How does an application have access to an Application Database?

An enterprise database of record is not optimized for applications to persist data; it
is optimized for database administration. When an enterprise wants a new database,
or even a new table in an existing database, the developers submit a request to the
database administrator (DBA) team. The DBAs specialize in database management—
such as creating backups, restoring backups, normalizing and optimizing schema,
and software licensing—which relieves development teams of these responsibilities.

In their request to the DBAs, the developers must justify the need for yet another
database or tables and specify details like the schema, how much data will be stored,
and how it will be queried, details developers often do not know early in a project.
The DBAs limit the number of databases because a few big databases are easier to
manage than many smaller ones. Keeping track of which applications need access to
which databases is easier when all applications have access to all databases. Assigning
a database a large but limited amount of storage up front makes storage easier to
manage.

Database administrators and enterprise databases become an impediment to agile
development, especially of Microservices (119). Each Microservice should have its
own Self-Managed Data Store (154) to store its data as a Data Module (366) in its
own database. The team that develops the Microservice should also be responsible
for its database, creating a database when needed and controlling how it stores the
Microservice’s data.
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Creating a database isn’t simple and could require a whole new set of skills for
the development team. The team needs to provision a set of bare metal servers
or virtual servers (aka virtual machines (VMs)), as well as a set of block storage.
The team then needs to download the database software, install it on those servers,
and configure it with software licenses and to perform backups. All of this requires
database administration skills a developer may not normally have, and these skills
differ for each database product.

Since a Microservice is a Replicable Application (88), it can scale linearly, which
means its database needs to be a Replicated Database (316) so that it can scale linearly
as well. A replicated database is more difficult to install, if for no other reason than
because it requires provisioning multiple servers and installing the database software
on each of them.

Since the developers are using a cloud platform, rather than the development team
having to install and administer its own database, a service the cloud could provide is
to already have databases installed for development teams to use.

Therefore,

Create your Application Database by using a Database-as-a-Service, a cloud ser‐
vice that handles much of the work of installing and managing a database.

A Database-as-a-Service (DBaaS) is a software-as-a-service (SaaS) in the cloud.
Whether the service is built into the cloud platform, loaded onto the cloud platform,
or accessed remotely as a web service hosted by a vendor in their data center,
the application accesses a database in the service as a Backend Service (106). The
service manages a set of database servers and installs databases by hosting them in
those servers. The service simplifies creating databases in those servers, handles the
licensing, and simplifies management tasks like scheduling backups. Developers can
easily create a database and set it up with schemas and other database configurations
to store the application’s data.

Figure 7-31 shows three Cloud Applications that each has its own cloud database. All
three cloud databases are hosted by the same DBaaS. Each DBaaS is for a particular
database product, so this single DBaaS assumes that all three databases are instances
of the same product, such as all PostgreSQL or all MongoDB. Applications that
need two different database products, like a PostgreSQL database and a MongoDB
database, will need a DBaaS for each.

Database-as-a-Service | 379



Figure 7-31. Database-as-a-Service

While developers have a range of application database products to choose from, they
are limited to the DBaaS services available on their platform. The easiest ones to use
are ones built into the cloud platform as SaaS services. A second option is databases
that can be downloaded from a marketplace, such as the Kubernetes operators in
OperatorHub and Red Hat Marketplace. Much like the cloud platform, the operator
both installs the database service and manages it. A third option is database services
hosted by the vendors in their own data centers and made available remotely as web
services. If a development team wishes to use a database that is not made available
via one of these three methods, the development team is back to having to manually
download, install, and manage the database.

A problem with development teams creating and using their own databases is that
application developers may not have the skills to administer databases. Database
administrators (DBAs) have more practice performing database tuning, Relational
Database (333) works better with optimized table normalization and indexing. A
Document Database (338) works better when the granularity of the documents is
scoped to simplify data management. A Replicated Database (316) works better when
configured with customized partitioning and sharding policies.

To help development teams administer their databases, a common solution is to form
a dedicated team of experienced DBAs that the development teams share to tune their
databases. DBaaS will free the DBAs from creating and managing databases so that
the administrators can focus on configuring and optimizing the databases. The DBA
team can also look for opportunities to optimize the usage of the database servers by
hosting multiple databases in a shared set of DBaaS service instances. A skilled DBA
team is most important for administering production databases. For other stages of
the software development lifecycle (SDLC), such as dev and test, DBaaS databases
with default settings may be adequate, requiring minimal administration or tuning.
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Finally, a last element to consider in using Database-as-a-Service are the security
requirements of the data. In some cases, enterprises may prefer to keep data local
rather than store it in the cloud, negating the ability of teams to use Database-as-a-
Service. This may be due to regulatory requirements or merely to policy preference
on the part of the company building the application. Regulatory issues are increas‐
ingly less of an issue since cloud providers have worked diligently to provide security
features that are certified by regulatory agencies. However, there still may be cases
such as those involving proprietary data (particularly when the cloud provider com‐
petes with the company using the provider’s services), in which avoiding the use a
Database-as-a-Service may be a logical choice when made out of an abundance of
caution.

A Database-as-a-Service greatly simplifies creating and managing databases in the
cloud. The service has already installed the database servers, handles licensing, and
manages backups. Developers use the service to create a database and configure it
to store the application’s data, which is much simpler than installing the database
manually.

Developers are limited to the DBaaS services the platform makes available. For
any other options, the developers must manually install the database. Even with a
DBaaS to create and manage databases, development teams may not have the skills
to optimize databases and so can benefit from a dedicated DBA team to administer
the application’s databases, particularly its production databases. Additionally, there
can be vendor lock-in by a DBaaS provider, which may not allow your organization
direct control over the servers executing the database. Often the cloud service DBaaS
provider is in charge of monitoring the database platform and supporting infrastruc‐
ture, which might lead to security or confidentiality concerns along with compliance
or regulatory challenges.

All of the types of Application Databases and Configuration Databases that we cover
in this chapter can be hosted as a Database-as-a-Service. Rather than list them all
individually here, we provide multiple examples of different DBaaSs of each type in
the respective patterns.

Examples
There are literally dozens of examples (perhaps hundreds) of this kind of service on
cloud platforms. Among some of the most popular are:

Amazon Relational Database Service (RDS)
A popular DBaaS offering in AWS that enables users to launch and manage a
variety of Relational Database engines, including MySQL, PostgreSQL, Oracle,
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and others. Amazon RDS provides automated backups and point-in-time recov‐
ery and is designed to be easy to use. It supports read replicas for these databases,
which improves the scaling characteristics and addresses many cases requiring
horizontal scaling.

Amazon DynamoDB
An offering in AWS that enables users to create and manage a highly scalable,
fast, and flexible NoSQL database that supports both document and key-value
data models, and is designed to be highly available and durable.

Azure Cosmos DB
A DBaaS offering in Azure that enables users to create and manage a globally
distributed, multimodel database. Cosmos DB supports multiple data models,
including document, key-value, graph, and columnar, and is designed to be
highly available, scalable, and low-latency.

Google Cloud Bigtable
A hosted distributed NoSQL database that supports real-time read and write
access to large datasets.

IBM Cloudant
A document database that is available as an SaaS service on IBM Cloud and as a
third-party web service.

The choice of which DBaaS offering to use will depend on the specific requirements
of the application, the availability of the services on the application’s cloud of choice,
and the trade-offs between cost, performance, and features that are acceptable for the
use case.

Command Query Responsibility Segregation (CQRS)
You are designing a Cloud Database (311) to store the complex data structures for
multiple Cloud Applications (6). The application must manage complex Aggregate
object data that must be consistent during concurrent updates by multiple clients.
The applications will independently modify these complex data structures while they
also read the data.

How do you optimize throughput for query and updates by multiple clients that
have numerous cross-cutting views of the data?

At its simplest, the way an application uses the data in a database can be pretty
straightforward: the application CRUDs the data, which is to say that it creates, reads,
updates, and deletes the data records in the database. The application writes the data
with a particular format and reads it back in the same format. Some of the time
it writes data and at other times it reads data, but it usually doesn’t read while it’s
writing or try to update data while it’s reading that data. Each data item is a fairly flat
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record of primitives that maps easily to a row in a Relational Database (333) or rows
in normalized tables.

Yet many real-world applications are more complex. Data structures are nested, parts
are shared by multiple records, and relationships exist between seemingly independ‐
ent entities. For example, the product catalog for an ecommerce application has many
data elements for each product, some of which are relevant to multiple products, and
products are often related. Applications employ complex domain logic to validate
data changes, keep it consistent, and maintain referential integrity. That verification
works for one client updating the data, but when multiple concurrent client threads
update the data at the same time, the domain logic only verifies the changes in each
thread and cannot detect conflicts between threads. The domain logic needs to be
applied sequentially, making it a bottleneck that handles only one update thread at a
time and does not support replication (see Replicable Application (88)).

Another complexity is optimizing data access. To help maximize data throughput,
database administrators often optimize a database mostly for reading or mostly for
writing. This approach is difficult to apply to a database with data that is frequently
updated and read, especially data that is read while it is being updated. For example,
the product inventory in an ecommerce application is updated whenever items are
added to the warehouse and whenever a new order is placed. Meanwhile, the inven‐
tory is simultaneously read as users browse products and update their shopping carts.
Database tuning that makes the data easier to update makes it more difficult to
read, and data must be locked during updates specifically to prevent other threads
from reading it. Writing data updates tends to take priority, creating a bottleneck
for reading data, one that replication doesn’t improve and actually makes worse by
adding client threads accessing the database.

Yet another complexity is that not all applications look at the same data the same
way. The application for a buyer may need to view inventory data by geography,
whereas the application for restocking inventory needs it organized by quantity.
The application for shipping current orders is interested only in products that are
currently for sale, whereas an application for browsing order history needs data for
old products that were available in the past. Querying can find these different sets of
data, but a query can run more efficiently if the data is organized for that query. Yet
for data that will be used in many different ways, there is no one right way to organize
it. Any approach for organizing the data will help in using it in some ways but hurt in
others ways.

What is needed is a database and an approach for organizing data that handles com‐
plex data structures, maintains validity throughout concurrent updates, and serves
different views of the same data efficiently while the data is also being updated.
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Therefore,

Store the data in a Command Query Responsibility Segregation solution that dupli‐
cates the data in two databases, one that clients use to update the data and another
for clients to read the same data.

Command Query Responsibility Segregation (CQRS) stores a set of data not in one
single database but as two copies in a pair of databases: one for reading and another
for updating. The solution keeps the two copies synchronized—whenever the data
is updated in the write database, it is likewise updated in the read database. Clients
using the data do not access either database directly. Instead, the solution presents
clients with two separate APIs: one for making modifications to the data and another
for retrieving data. Clients need to choose which API to use; a client that wants
to read and write uses both APIs but uses them separately. The APIs segregate the
querying activity from the updating activity, directing each to the read and write
databases, respectively.

Figure 7-32 shows the Command Query Responsibility Segregation solution as two
segregated parts, a write solution and a read solution, connected by an Event Back‐
bone (279). The solution implements two databases, one in each part, each of which
stores a copy of the same data. There are many approaches for implementing the
CQRS solution; this shows one very comprehensive design with all of the solution’s
features clearly designated.

The write solution manages the write database and the API that updating clients use
to modify data in the write database. The write database is the database of record
for the entire solution because it always contains the latest consistent copy of the
data. Clients cannot access the write database directly. Rather, clients that want to
update the data do so using the modify API. The write solution implements the API
to encapsulate each update as a Command (Design Patterns, 1994). The command
facade can pass the update commands directly to the write model, or it can optionally
queue the update commands on a Command Bus (Enterprise Integration Patterns,
2003). In cases with relatively few simultaneous updates, the write model and its
updates to the database of record can process commands as fast as the command
facade creates them, so the command bus isn’t needed. In cases where the write
solution has many clients simultaneously using the command facade to create update
commands, queueing may be needed to help the write model manage concurrency by
serializing the update commands on a queue and enabling the write model to throttle
its consumption of update commands from the queue.
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Figure 7-32. Command Query Responsibility Segregation

A write model updates the database much as any application would, using a domain
model to enforce data validity. The write model performs the update commands
serially, performing each command to update the data in the database of record. At
the same time, the write model also creates an update event for the command and
queues it on the event backbone. The write solution can optionally include a log of
the changes made to the database of record. If it does, whenever the write model
performs a command and publishes an update event notification, it also records the
update history by logging the update to the change log.

As the write model reads and performs commands, to enforce data validity, it needs
to perform the commands sequentially and perform each command on the latest set
of data from the previous commands. To do so, the write model can be implemented
as a Singleton that reads commands one at a time, completing one before starting the
next. This design enforces serialization but makes the write model a performance and
availability bottleneck. To avoid the bottleneck, the write model should be replicable
(see Replicable Application (88)), which then means it must also be stateless (see
Stateless Application (80)). To perform each command statelessly, a write model
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replica must use a single database transaction to lock and read the data from the
database of record, use the domain model to update the data with the new data
from the command while maintaining validity, and write the valid data back to the
database. This is how the write model is able to serialize updates that the clients
make concurrently and preserve the validity of the data—even complex Aggregate
objects—after each update.

The read solution manages the read database and the API that querying clients use
to query the data in the read database. The read database mirrors the write database,
maintaining a replica of its data. Clients cannot access the read database directly.
Rather, clients that want to query the data do so using the retrieve API. The read
solution implements the API as a read model that queries the data from the query
database, a read-only replica of the data in the database of record; encapsulates the
results as Data Transfer Objects (Patterns of Enterprise Application Architecture,
2002) (DTOs); and returns the DTOs to the client. Meanwhile, the read solution
keeps the data in the query database synchronized with the data in the database
of record. An event processor reads the update notification events from the event
backbone (that were published by the write model) and reacts to each event by
updating the data in the query database. Only the event processor can update the
query database; the read model and its clients treat the query database as read-only.

CQRS is a complex solution to a complex problem that accomplishes a number of key
goals:

Serialize concurrent updates
By serializing the database updates as a queue of commands, the write model
performs multiple updates sequentially, even when they’re initiated concurrently
by independent clients. Sequential updates are not a bottleneck because they
are queued, so clients can queue updates as rapidly as they like. By performing
updates one at a time, the write model uses the domain model to validate each
update and resolve conflicts.

Manage complex data structures
The write model uses the domain model to organize a consistent set of complex
data and map it to the database efficiently.

Separate client workloads
Clients updating the data and clients querying the data no longer conflict because
they use separate databases. Locking to update the database of record does not
block clients from retrieving data from the query database. Read clients can
query concurrently because the database is read-only. Reading is only blocked by
the event processor synchronizing the data from the database of record.

Load distribution
The client load of updating and querying data is distributed across two databases.
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Schema optimization
The database of record can have a schema, storage strategy, and tuning optimized
for inserting and modifying data. The query database can have a different schema
and storage strategy and be tuned differently to optimize it for querying data as
defined by the retrieve API. While both databases can be Relational Databases
(333) or Document Databases (338), the two databases can easily be two different
types of Application Databases (328), such as a Key-Value Database (344) to store
primary copies of the data quickly and a Columnar Database (356) for optimized
querying. Try accomplishing that with any single database.

Update history
The write solution can maintain a change log. Logged changes can be used to
repeat missing updates and to perform Event Sourcing (289) to selectively update
the query database.

CQRS is an alternative to the strategy of each Microservice (119) storing a separate
Data Module (366) in a Self-Managed Data Store (154). When a Microservice man‐
ages its own data in its own database, it can avoid the complexities that CQRS
handles. CQRS is most useful with monolithic databases of data that has not been
modularized. Until those databases and their applications can be modernized, Cloud
Applications have to coexist with them, and CQRS is an approach for coexistence.

If a Microservice has a complex data model and its clients concurrently update
the data while reading it, the Microservice may benefit from implementing its Self-
Manged Data Store using the CQRS design. A Microservice with a complex data
model needs a domain model to keep the data valid. Meanwhile, multiple concurrent
threads in multiple Microservice replicas can cause conflicts between the concurrent
updates. Multiple Microservice threads attempting to read the data can conflict
with other threads that are updating the data. Just like CQRS can help multiple
applications coordinate, it can also help multiple threads in the same Microservice
coordinate.

CQRS is not limited to two databases. If multiple querying clients want very different
views of the data, design a retrieve API for each along with a separate query database
optimized for that API. All of the query databases can synchronize with the database
of record by all subscribing to the event backbone for the update event notifications.
Likewise, a query database can replicate data from multiple databases of record that
each have their own modify APIs, as long as each write solution manages a separate
set of data. All of those write solutions publish their updates as event notifications
on the event backbone, which the query database merges into one combined set of
read-only data.

Querying clients must be designed to expect eventual consistency. CQRS introduces
latency between the database of record and the query database that leads to eventual
consistency between the updating clients and the querying clients.
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Designing the modify and retrieve APIs can be daunting for developers accustomed
to direct database access, turning that access into contracts akin to Service APIs (70).
The APIs make accessing the database into tasks that can be performed on behalf of
the client. Implementing the modify API requires mastering the command pattern
and message queuing.

Command Query Responsibility Segregation separates clients that update data from
those that query it, combining two synchronized databases that act as one. This
separates handling of concurrent updates to complex data structures from concurrent
querying of the data as it’s being updated, performing both tasks more efficiently. It is
able to perform both inserts and queries efficiently since the read solution and write
solution can use different database architectures.

CQRS is a complex solution to a complex problem. The synchronization must work
well or the read clients will query incorrect data. The read-and-write solutions are
more complicated than direct database access. One challenge of CQRS is that it is
arguably more complicated. Complexity has been moved from the database into the
application. For those used to dealing with Relational Databases, the transfer of com‐
plexity can be difficult to adapt to. You also have to deal with eventual consistency.
CQRS makes the asynchronous aspects explicit, but it can take some getting used
to especially because it is unfamiliar to most developers. They may have to learn
additional database technologies.

Event Backbone (279) is a key component of a CQRS solution, connecting the write
and read solutions and implementing the basis for synchronizing the databases.

CQRS is an amazingly powerful idea. CQRS was introduced to most people in
CQRS by Martin Fowler. It has been elaborated further in many places, such as
Command-Query Responsibility Segregation (CQRS), which also elaborates on the
transformation from a simple application using a database to a full-blown CQRS
solution.

Examples
The following examples illustrate some implementation considerations for CQRS and
an example of refactoring to get the benefits of CQRS.

Implementation variations
Command Query Responsibility Segregation (CQRS) is a technique inspired by Ber‐
trand Meyer’s “command query separation.” The basic idea behind CQRS is to sepa‐
rate commands from queries. Commands are operations that change data (and don’t
return any data). Queries are operations that read data but don’t change anything. In
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distributed systems, changing data efficiently and consistently is challenging. Com‐
mands require a more complex design than queries. Also, it’s common for query
operations to be called far more often than command operations. There are design
alternatives for separating queries from commands when implementing CQRS. You
need to decide whether to implement it either with One Service or Two Services.
Query operations read from a dedicated data store, which is a replica of the primary
data store that is updated by command operations. The query data store can be
optimized for queries.

One service.    In a single service, you separate query from command operations, but
they’re still part of the same service. Query processor and command processor share
some of the service logic. You include an optimized query data store for quick queries
(read-only) of the data (see Figure 7-33).

Figure 7-33. CQRS one service implementation

Data from the “primary data store” is replicated to the “query data store,” which
can be either internal or external to the service. For example, you might optimize
your queries by creating an in-memory database. Because the data is replicated, it is
important to note that sometimes you might be querying stale data.

Two services.    You can also implement CQRS with two services (Figure 7-34), each
with its own contract and design. This approach gives you more flexibility for inde‐
pendently scaling the query and command operations.
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Figure 7-34. CQRS two-service implementation

For example, you can deploy the query service to 20 instances and the command
service to 3 instances. You could then have the query service get data from Elastic
Search while the command service uses MySql.

Refactoring example
Let’s give an example of when CQRS becomes important. Let’s say we have a team that
is not operating in a complete greenfield—there are existing sources of functionality
or data that must be reused to complete the application on time and within budget. In
particular, you cannot transition all at once to a Cloud Database because critical data
is stored in a large, existing monolithic database. In that case, how do you deal with
the fact that you can’t usually transition all at once between existing monolithic data
stores and the database-per-microservice approach?

The problem is that reading from data is different from writing data. A service
implementation usually has a specific “projection” of a set of relational data that
represents a specific view of the data. That view can usually be cached using any of
the data caching patterns described in this pattern language. The issue is that writing
to the database often involves writing to multiple tables with complex business rules
dictating how the information being written needs to be validated and updated. It’s
that latter code, often encoded in legacy applications, that is difficult to change.
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One of the key aspects of CQRS is that when it is used for modernization purposes, it
requires a data replication approach to keep the Read Model and the Write Model in
synchronization. In some cases, this can be done with specific data synchronization
tools for the databases being used for the Read Model and Write Model (for instance,
Oracle GoldenGate or IBM DataGate), but these technologies often have significant
limitations on which databases can be used for the data source and the data target.

However, by combining existing patterns, we can accomplish this more generally. We
create a new Read Model that is a projection of a data set in an existing application by
creating a brand new Domain Microservice (130). We have also created a new Write
Model that is an Adapter Microservice (135) that translates from the new API to the
existing API of the old application. This will require us to set up some type of data
replication between the two so the projection of the existing data will keep up with
changes to the Write Model. See Figure 7-35.

Figure 7-35. CQRS data replication

The most common way of setting up this data replication in this case would be
by introducing an Event Backbone (279) between the existing application and the
Microservice (119) that is serving as the Read Model (Figure 7-36). In this way, the
new Read Model can subscribe to changes made to the existing system and update its
data accordingly.
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Figure 7-36. CQRS with Event Backbone

The update events can be created directly in the existing application if you have the
ability to modify the existing application. That is by far the most general-purpose
solution for this problem. But if you do not, you can still use a technology like
Change Data Capture to record changes to the application’s underlying database.
Many existing Change Data Capture tools, such as IBM Infosphere Change Data
Capture and Oracle GoldenGate support connecting to a Kafka Event Backbone
directly, as do open source platforms like Debezium.

What’s more, you can even take this further. By introducing Event Sourcing (289),
you don’t even necessarily need a database for your Read Model that represents the
point-in-time. Instead, we can simply re-create the current state by reading the event
sequence either stored directly on the Event Backbone (279) or in a longer-term
archival event database.

Conclusion: Wrapping Up Cloud-Native Storage
This chapter has addressed several questions about how to store data effectively in
the cloud so that you can build efficient, reliable, scalable Cloud-Native Applications
(Chapter 3). This data storage strategy enables the application to run as a Stateless
Application (80). Each Microservice (119) that has state should store its data in
its own Self-Managed Data Store (154), multiplying the challenge of storing data
effectively.
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The chapter showed the advantages of applications storing their data in a cloud
database that can be distributed and replicated. It showed how some databases are
designed for implementing cloud services whereas others are meant for use by Cloud
Applications, and how different kinds of databases for applications offer options for
the types of data to be stored, how the database stores it, and how it enables access.
The chapter showed how to organize data across multiple databases, how different
databases within the same application can have different structures, and how cloud
platforms can make databases available as managed services. Finally, it showed a
common solution for managing data that must scale for concurrent writing as well as
concurrent reading.

Cloud Databases and Replication
While it may be tempting to store data in the cloud infrastructure’s block storage
or file storage, a Cloud Application or Microservice should store its data in a Cloud
Database (311). Better than storage, a cloud database manages concurrency between
multiple application threads, enables querying, stores the data more like the way the
application stores it, and makes the data easy for the application to access it.

More than just a database hosted in the cloud, most cloud databases are Replicated
Databases (316), running in multiple node processes that can scale horizontally the
way a Replicable Application (88) does. A replicated database works the way the
cloud does, making its data more highly available in unreliable cloud infrastructure
and distributing client load for better throughput. Older Relational Databases with
a single active process are not replicated, even when running in the cloud, and still
depend on vertical scaling. Other databases that are replicated have different architec‐
tures for coordinating their nodes: primary/secondary, mesh, and peer. The section
“Database Topology and Database Selection” on page 304 explores these database
management topologies in greater detail.

Cloud Database Categories
This chapter showed patterns for the two broad categories of cloud databases, both
replicated:

Configuration Database (323)
A Configuration Database implements cloud services as well as container orches‐
trators. Whereas most replicated databases are eventually consistent, propagating
and updating across nodes over time, a Configuration Database is reliably consis‐
tent because each update is made to all of its nodes at the same time. This way,
all of the replicas of a service always have the same configuration. Distributed
computing is hostile to reliable consistency, so to make it work, Configuration
Databases place restrictions on the format of data and how much of it the
database can store, and their performance can suffer. These restrictions mean
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that a Configuration Database does not have the flexibility of a general-purpose
database.

Application Database (328)
An Application Database is a general-purpose database for an application or
Microservice to store the domain data that constitutes its state. Designed for
applications, these databases are highly available, can store large amounts of
data, and can scale to support numerous clients. Different types of application
databases store data more like the way the applications do. On the cloud, a
database node can become unavailable because of the less-than-100% reliability
of cloud infrastructure’s computing and networking. Even when a node becomes
unavailable, the rest of the database keeps working and the replicated data
remains available. Types of databases include SQL, multiple types of NoSQL,
and NewSQL.

In a cloud environment, availability and consistency are a trade-off, and the architec‐
tures of the two database categories solve this trade-off differently. When the cloud
infrastructure and database nodes are working well, both database categories are
available and consistent. But in failure scenarios, something has to give. Configura‐
tion databases are reliably consistent, meaning that they favor consistency over avail‐
ability. Application databases are the opposite: they favor availability and sacrifice
consistency and as a result provide eventual consistency. Cloud Applications favor
availability, which is one reason why application databases are more suitable.

Application Database Types
The patterns in this chapter explained the five broad types of application databases:

Relational Database (333)
The easiest way to store data from a Relational Database in traditional IT is
in a Relational Database in the cloud. It doesn’t have all of the new features
of a NoSQL database, but it does work the way older applications expect, with
features like SQL querying, ACID transactions, and database views. It can be the
best way to store well-structured data that will be queried dynamically. Newer
SQL databases are replicated across nodes and distribute their data, but because
of the immediate consistency of their ACID transactions, they cannot replicate
their data, which limits the availability of the data during failures.

Document Database (338)
A Document Database is one designed to store data the way the application does,
making it easy for the application to access and easy for the database to replicate
across nodes. They provide great distribution of client load and great availability,
at the expense of eventual consistency. Some of the best-known NoSQL data‐
bases, such as MongoDB and Apache CouchDB, are document databases.
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Key-Value Database (344)
A Key-Value Database works like a hash map, providing the simplest way to
store and retrieve data, which provides some of the best performance and scaling
of any NoSQL database. At its simplest, a Key-Value Database stores a record
of data as a binary block, storing the data exactly as the application delivers
it and delivering it back to the application in exactly the same structure. The
limitation is that the data in a Key-Value Database cannot be queried; it can be
accessed directly only via its key. Some Key-Value Databases can parse each value
to support querying, which means they also work like document databases.

Graph Database (351)
A Graph Database works like a Document Database where the documents are
highly interconnected, enabling easy navigation among the entities by following
their relationships. Graph data efficiently models networks such as cities and
geographies, social networks, transportation routes, and other interrelationships.

Columnar Database (356)
A Columnar Database acts as a data warehouse for performing analytics.
Whereas other databases are optimized for online transaction processing
(OLTP), where data is frequently inserted as well as read, a Columnar Database
is optimized for online analytical processing (OLAP), where data is queried far
more than it is updated. A columnar database is especially efficient at finding
all of the rows that have a particular value. They are good at storing data that is
schemaless, wide-column, or sparse, though that can make the data difficult to
query effectively.

The different kinds of databases excel at storing different data with different levels of
consistency:

• Well-structured data fits well in a Relational Database with immediate•
consistency.

• Semi-structured data fits well in a Document Database or Graph Database with•
eventual consistency, or in a Columnar Database with immediate consistency.

• Unstructured data fits well in a Key-Value Database with eventual consistency.•

Application databases with immediate consistency have lower availability, while those
with eventual consistency can often achieve higher availability.

Many database products offer features of more than one kind of database and can
excel at storing data with multiple levels of consistency.
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Organizing and Accessing Data
Rather than store a large set of data in a large database, the more data can be divided
into smaller independent Data Modules (366), the more manageable each set of data
will be. Microservices not only modularize domain functionality into individual units
of functionality; they also modularize data, and each manages its data in its own
Self-Managed Data Store. The data for any one Microservice (not shared by others)
is a Data Module. Each Data Module should be stored in its own database. Multiple
databases of the same type can be hosted in separate database servers or grouped in
the same database server.

With each Data Module hosted in its own database, the Data Modules do not all have
to be stored in the same kind of database. With Polyglot Persistence (374), if the data
in one module works best in one type of database or specific product and another
module works best in another type or product, then store each module in a different
type of database, the one that suits it best. An application team or enterprise may
prefer to limit the range of database choices that will be supported, but within that
range, store each Data Module in the choice that suits it best.

Managed Databases
With so many different database types and products to choose from, it can become
a full-time job just learning how to install and manage all of these databases. A
database administrator (DBA) team may have the time to do this but not the range
of skills, and an application development team will probably have neither the time
nor the skills. With a cloud platform, they don’t have to. Many clouds provide at least
one Database-as-a-Service (378) (DBaaS), which provides a database as a managed
service. A DBaaS has installed a database, providing it as a service instance that
hosts database servers. Development teams can simply use the service instance to
create databases. The service instance then manages the databases, performing tasks
such as creating backups. When a platform provides a range of DBaaS services, a
development team can choose from among them and easily experiment with different
databases to find the one that works best for their application.

Multiuse Data Solution
A database with commonly used data can easily become a performance bottleneck.
Multiple threads concurrently writing to a database can bog down its performance,
as can too many threads concurrently reading from the database. Threads trying
to read data as it is being updated suffer especially poor performance. Command
Query Responsibility Segregation (CQRS) (382) can help remedy this situation by
duplicating the data in two or more databases whose access is controlled by two
APIs, one for modifying the data and another for reading it. By duplicating the
data in separate write and read databases, the CQRS solution can optimize each. It
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is responsible for keeping the data synchronized across the databases, treating the
write database as the database of record, and ensuring that each update to the DoR is
replicated in the read-only database.

Next we’ll explore how humans and other application clients access cloud applica‐
tions. Cloud Application Clients (Chapter 8) provides several types of user interfaces
(UIs) and other types of clients that enable users outside the cloud to access appli‐
cations hosted inside the cloud. The clients support different types of devices and
different preferences for access and can even facilitate one application accessing
another. They ensure that all users receive consistent functionality regardless of how
they access the application.

These Cloud-Native Storage patterns, together with the Microservices patterns you’ve
already seen and the Cloud Application Clients patterns, complete the core of a
simple application. You will see these patterns used again as we look into the prob‐
lems of modernization and refactoring existing applications into a Cloud-Native
Architecture.
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CHAPTER 8

Cloud Application Clients

A cloud application must provide consistent functionality to users accessing the
application from a variety of devices.

Today’s frontend client world is challenging. Your user community will often be
spread across multiple devices from multiple vendors, operating across several differ‐
ent potential technology platforms such as smartphones, tablets, or laptops. When
you want to provide the best user experience on each device and need the interface
to be best-in-class on each platform, it is difficult to build a single application in one
form factor that serves the diverse user community at all points in the interaction
lifecycle.

Perhaps the best example of this that we have encountered took place at a major
airline. In this airline, there are three major vehicles for customer interaction: the
airline’s mobile application, the airline’s website, and the check-in kiosks available
at the airport. What we saw is that the same users would sometimes use all three
points of interaction; they would buy tickets on the website and check in on the
mobile application but print bag tags from the kiosk! Of course, there was significant
functional overlap between all three points of interaction; you could, for example,
print a boarding pass at home or at the airport or display a mobile boarding pass in
the mobile application.

Introduction to Cloud Application Clients
This chapter explains how to design applications that can be accessed by users via
not just one type of device but by a variety of devices. One application that can be
accessed via different devices enables each user to access the application via their
preferred user interface (UI).
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To introduce these patterns, we’ll review some basics about developing user inter‐
faces. We’ll review the motivation for multimodal interfaces. Next, we’ll confirm
the need for the UI to be separated from the domain. We’ll review the Ports and
Adapters architecture, which highlights some principles for making an application
able to support a variety of user interfaces. Finally, we’ll review principles that make
application user interfaces work well.

With this background about user interfaces, we’ll then present patterns for how they
fit in a cloud application architecture, starting with the root pattern for this chapter,
Client Application (406).

Multimodal User Interfaces
Different users want to access the application using different types of devices. To
support this, an application architecture must be multimodal, enabling an application
to provide users with multiple modes of interacting with the application. This is most
common when you consider that even a single user may access an application in
multiple forms on several different devices.

The application can’t support just one client technology for one device type. Multi‐
modal architecture means developers must leverage different technologies to reach
different user communities. An application can still provide traditional web applica‐
tions, but developers must also be prepared to build more sophisticated frontends
such as mobile applications and single-page applications (SPAs).

Separate UI and Domain
To avoid descending into a hell of duplicate code for all of these device types,
developers should design application clients to interface with a more general-purpose
backend server representing the resources within a business domain, such as Domain
Microservices (130).

One of the fundamental principles that sits behind all of the advice in these patterns
is that there should be a distinct and firm boundary between UI code and domain
business logic. While this advice is so old that giving it again here may seem almost
quaint, the problem is that in practice, many teams fail to follow this principle.
Perhaps one of the best examples of this architectural principle is the Ports and
Adapters architecture, sometimes called the Hexagonal architecture.

Ports and Adapters (Hexagonal) Architecture
Previously, we have presented diagrams that looks like Figure 8-1, where we are
illustrating the parts of a cloud application. By now you should be familiar with this
three-tier representation of the architecture and understand what we mean by client,
application, and backend service.
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Figure 8-1. Three-tier architecture

Let’s now take a bit of a deeper dive into an application of this type. Let’s say that
you’re building an airline reservation application for a brand-new domestic airline
(another example we revisit several times in this book). When you first start out
thinking about this application, you may anticipate that it will only be used by
users from within a web browser. So it begins with an application implemented with
JavaScript, HTML, and CSS and running in a browser, accessing database services
provided by the application running in the cloud.

However, over time your airline becomes more successful, and you find that you need
to support not only a browser-based client but an iOS-based mobile client as well.
What’s more, your airline is getting ready to add its first international flight, to a
country that requires that all passengers first upload a digital copy of their passport
page prior to boarding the flight. That means that you not only have two different
client types but also two different cloud Backend Services (106) (object storage and a
database-as-a-service), as shown in Figure 8-2.

Figure 8-2. Modular application tier

This is where things begin to get really interesting. At first, you may have been
fine if your application had been architected to be a single Big Ball of Mud (22)
without much division between the parts that handled UI issues and the parts of
your application that handled database issues. However, as the number of client types
increases, you find that it becomes more important that you make distinctions in
your code between those parts of the application that handle UI and those that handle
databases. This is when you start to refactor your application into more of a Modular
Monolith (29).

What’s more, it’s not just that you want to separate out the UX code from the database
code and from the domain logic, but you also want to make sure that you handle
those parts that are unique to either the iOS mobile client or the JavaScript browser
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client separately from one another. The same is true of separating out the parts that
deal with each backend server. The API for object storage is different from a database
API such as the API for PostgreSQL, and it doesn’t make sense to call them from the
same code.

Luckily, there is a well-known design pattern that addresses exactly this kind of
problem—the Ports and Adapters pattern by Alistair Cockburn, originally called the
Hexagonal Architecture pattern. Figure 8-3 shows our example architecture from
Figure 8-2 expanded with an adapter for each client type and an adapter for each
storage type. These adapters can be thought of as ports into and out of your applica‐
tion, with ports on the driving side for clients that drive your application and ports on
the driven side for services that get driven by your application.

Figure 8-3. Ports and Adapters

The simple idea behind this pattern is that your application core (your domain
model code) should not have to know anything about the specifics of how data is
stored or managed. Likewise, even though the code needed to fill up and handle
navigation between screens is different between different UI types, the way in which
they interact with the core domain model code should remain the same. The constant
interfaces (on the “driving,” or UI side, and the “driven,” or data side) are called Ports.
Ports can have multiple implementations that either call into the domain code (on
the driving side) or are called from the domain code (on the driven side). These
implementations are called Adapters.

Although it was called the Hexagonal architecture, there is nothing special about the
number six (e.g., a hexagon)—it was just convenient for the first description of the
pattern. This visual effect allows people drawing these types of architectures to insert
ports and adapters as needed. Figure 8-4 shows the same application architecture
shown in Figure 8-3 as a Hexagonal architecture where it is rotated 45 degrees and
put on top of a hexagon.
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Figure 8-4. Hexagonal architecture

There are different types of driving and driven interfaces that can still fit with
the Ports and Adapters approach. We’ve called out two types of interfaces—user
interfaces and databases. Notifications (or what we would call outgoing events) are
another driven interface that the application core would interact with. Likewise, you
can think of incoming events as being another driving interface. The overall effect
is that you can have as many of these different incoming and outgoing types as you
need.

In our case, what we want to point out is that several times in our individual patterns,
we will call them out as acting like Ports and Adapters in a Hexagonal architecture.
For instance, back when we covered the Dispatcher (140) pattern, you can see how
they were acting as ports for Domain Microservices (130). Adapter Microservices
(135) are also a variation on Ports and Adapters in that they act as adapters for
existing systems and provide them with a port type that matches your domain API.
When we discussed Repositories in Aggregates (211) as a technique for keeping
database code away from your domain code in the process of Microservice Design
(Chapter 5), they were also functioning as adapters for databases implementing a port
type. Similarly, in the Event-Driven Architecture (Chapter 6) chapter on building
event-driven systems, Reactive Components (260) were likewise acting as adapters to
port types defined in an Event API (274).

If we only concern ourselves with the user interface portion of this approach, we
realize that what this approach was presaging was the separation of the code of

Introduction to Cloud Application Clients | 403



a Domain Microservice from the UX code that calls a Domain Microservice. The
entire Microservices Architecture (Chapter 4) is an architectural and organizational
mechanism for enforcing this type of separation. This is just another way to decrease
coupling between components.

Principles for Application User Interfaces
This concept of an application core surrounded by different types of adapters for dif‐
ferent purposes illustrates a key concept that the patterns in this section implement.
The different UI style is meant to be separated from the business logic it relies upon.
In a sense, they are all “adapters” in a Ports and Adapters architecture.

There are a handful of basic principles about client architecture that underlie the
patterns we will introduce in this chapter. These principles are as follows:

• Separate presentation logic from business logic.•
• Provide the users a consistent view of the application regardless of how they•

interact with it. Ideally, this consistent view should be supported by the appli‐
cation’s domain services (requiring you to explicitly model the user, which is
natural in many domains).

• Meet the application’s users where they are, in a form that is best suited to the•
particular type of interaction. This requires realizing that users are not homoge‐
neous, nor do they always interact with an organization in the same way all the
time. This means the application logic must be accessible in a variety of form
factors and through multiple channels.

• Enable development teams to work on complete end-to-end business processes;•
the same team should be responsible for both the frontend and backend parts
of this user interaction (e.g., the user experience in all its forms and the domain
services that implement the business process).

These principles help design an application that can be accessed with a variety of user
interfaces.

Architecting Applications with Multimodal Clients
The patterns in this chapter all stem in one form or another from these basic
principles:

Client Application (406)
This is the root pattern of this section and it describes the overall structure of
applications that must work across multiple types of user interaction. In particu‐
lar, you need a way of explicitly capturing and representing each particular style
of user interaction.
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Browser Application (410)
This is the parent of a number of different subtypes of applications that run
within a browser and require only commonly available open technologies in
order to present a user interface.

Web Form Applications (414)
These are one of the oldest types of Browser Application and still should be the
default option for small, simple applications. This approach combines server-side
rendering (using a template language) with simple forms-based navigation. It
is well suited for interacting with users who are on less-than-ideal hardware
platforms and places few requirements on the user’s side beyond opening a URL
in a browser application.

Single-Page Applications (421)
These are a common approach to building complex client-side web applications
that fully leverage the power of modern browsers. These applications take advan‐
tage of the power of browser-based JavaScript, CSS, and HTML to build highly
interactive user experiences.

Micro Frontends (426)
These are a way to avoid recommitting the mistakes of monoliths within a client-
side application built using the Single-Page Application architectural approach.

Mobile Application (430)
This describes the most customizable solution for consumer-facing client appli‐
cations. While Web Applications are still enormously common and are often the
best solution for internal corporate applications, many consumers now expect the
bulk of their interactions with many companies to take place through a dedicated
Mobile Application.

Command-Line Interface (437)
This is a way of interacting with the user at an operating system command line.
This is important because many simple types of actions the user may want to take
in order to automate interaction with the system are more easily done at an OS
command line than through other mechanisms.

Public API (443)
This is the mechanism for making your Application Services available to the
world of developers outside of your own team. They are important wherever
you have interactions with third parties, such as suppliers, business partners
or governmental entities, or if you want to build an ecosystem of independent
developers around your services.
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An Interaction Model (448)
This represents an interaction with a user in a particular technology stack or
channel. It allows for the separation of user interface and business logic while
encouraging commonality across interactions of different types.

There are multiple different types of technology, dependent patterns that are kinds
of or subtypes of Client Applications. The relationships between these patterns are
shown in Figure 8-5.

Figure 8-5. Client Application patterns

We will begin the discussion of these patterns with the root pattern of the section that
encompasses all the others, Client Application (406).

Client Application
You’ve developed a Cloud Application (6), perhaps with a Cloud-Native Architecture
(58), perhaps using Microservices (119). Users need to be able to use this cloud
application.

How can an end user take advantage of the services provided by an application
running in the cloud?
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A user accesses any application via its user interface. This is simple when the appli‐
cation runs on a personal desktop computer. It is a monolith, where the entire
application runs on the computer, including the user interface. The user has access to
the user interface because it is running on the user’s desktop computer.

An application running in the cloud is not running on the user’s desktop computer.
Whether the application is a monolith or a set of Microservices, it is running in the
cloud and the user is outside the cloud. Perhaps the user could run the application on
their computer, but then it wouldn’t be running in the cloud. Hosting the application
in the cloud creates a challenge for the user to access the application from their
desktop computer.

The user may not even be using a traditional desktop computer application. Instead,
the computer may be running a web browser. The user may not even be using
a desktop or laptop computer but instead may be using a smartphone or tablet.
Nevertheless, the problem is the same: the application isn’t running on the user’s
computer, browser, phone, or tablet; it’s running in the cloud. Yet the user needs to be
able to access the application from their device.

Therefore,

Develop a Client Application that implements a user interface for users to access
the cloud application. Each user runs the Client Application on their computer or
device and connects to the cloud application via a network such as the internet.

This problem was solved long ago by the client/server application architecture.
Client/server architecture splits the monolithic application into two parts, a client
portion that runs on the user’s local computer and a server part that runs on a remote
computer. The client portion is typically a user interface, while the server part is
the application’s headless domain functionality. Since the server application never
knows when a client may need to connect, it is always running and available, often by
hosting it in an application server.

In cloud computing, the server computer is the cloud, or more precisely compute
infrastructure in the cloud. The server application is no longer hosted in an appli‐
cation server—it is a cloud application hosted in the cloud, often a cloud-native
application with a Microservices Architecture (Chapter 4).

Whether the server application is hosted in an application server or on a cloud plat‐
form, the user interface runs on the client as a separate application. Each user runs
the client application on their computer or device. The Client Application connects to
the Cloud Application via a network such as the internet and interfaces with the server
application as a service provider. The Cloud Application runs in the cloud, whereas
the Client Application runs outside the cloud, as Figure 8-6 shows.
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Figure 8-6. Client Application

Because the Cloud Application is hosted in the cloud, it has access to Backend Services
(106) that are also hosted in the cloud. The Client Application may be capable of
running in the cloud or anywhere outside the cloud, but to be useful as a user
interface, it runs on the user’s device, such as their desktop computer. The user has
local access to the Client Application, which provides the user remote access to the
Cloud Application.

A single Cloud Application can have multiple Client Applications specialized for
different user roles and different client computer architectures. A Cloud Application
may provide different Client Applications for the same type of computer or device
but for different types of users, such as employees versus customers, usually to
provide different subsets of functionality available in the Cloud Application. It may
also provide different Client Applications for the same user functionality on different
types of computers or devices, such as for a laptop versus a smartphone. The Client
Application can tailor the user experience for the computer or device it’s designed to
run on, to compensate for constraints such as screen size or network bandwidth, and
to take advantage of capabilities such as GPS location and authentication mechanisms
like fingerprint readers and facial recognition.

A Client Application enables a user to access a Cloud Application by running a
user interface on the user’s device that remotely accesses the functionality in the
application running in the cloud. Each user gets their own copy of the user interface
running on their own device. Different types of user interfaces can support different
types of users and different types of devices.

Each Client Application is something additional for the development team to imple‐
ment and manage separately from the rest of the application that runs in the cloud.
An enterprise with a wide range of users that have a wide range of devices will have to
implement many similar but separate Client Applications.

The Client Application should interface with the Cloud Application via a Service API
(70), typically implemented by a Dispatcher (140). The API remains stable even as the
Cloud Application changes so that the Client Application can remain stable, enabling
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developers to independently evolve the Client Application and Cloud Application. The
Client Application and Dispatcher must work together, united by the API, and so the
same development team should implement the client, API, and Dispatcher together.

There are different kinds of Client Applications that support a multimodal archi‐
tecture—different kinds of clients accessing the same functionality in a Cloud
Application:

Browser Application (410)
This runs in an HTML web browser running on the user’s client computer or
device.

Mobile Application (430)
This runs on a client smartphone or tablet.

Command Line Interface (437)
This runs in an OS shell on the client computer or device, providing commands
for invoking individual functions in the server.

There are many other specialized types of interfaces that exist for additional types of
platforms, such as airport kiosks and bank automatic teller machines (ATMs). Other
application client types we will not cover include telephone voice menus, chatbots,
and more. However, these three form the basic set that other types can often be
derived from.

Examples
Any application running in the cloud that has users has Client Applications:

Websites
Any interactive website for ecommerce, banking, travel, driving directions, email,
etc., connects to a backend that these days is probably running in the cloud.
Likewise, many of an enterprise’s internal applications used by its employees now
often run in a web browser to access an enterprise-specific backend that may be
hosted in the cloud. The web interface is typically designed to run in any web
browser on any device.

Mobile Applications
An app running on a smartphone or tablet may seem standalone, but most don’t
work in airplane mode because they require a network connection—internet
access via cellular or WiFi. Like a website, these mobile apps delegate to a server
application to perform the heavy lifting, access vast amounts of data, and apply
domain logic, and those server applications often run in the cloud.
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CLIs
Developers commonly use CLIs to administer infrastructure and services.
Administering equipment in a data center used to require walking into the data
center, but now most equipment has a Service API and a lightweight web server
that enables any authorized user with network access to remotely administer the
equipment. Many cloud platforms extend this model to all of the cloud services
so that entire environments can be created and managed via the CLI.

As mentioned, airport kiosks are clients, and the services they access are often
hosted in the cloud. ATMs were developed long before the cloud or even the popu‐
larity of the internet, but newer ones can access banking systems hosted in cloud
environments.

About the only Cloud Applications that don’t require Client Applications are those that
process data and perform analytics or machine learning. Yet even those have Client
Applications that enable data scientists to set up the processing tasks and view the
results.

Browser Application
You are building a Cloud Application (6)—such as a Cloud-Native Application
(Chapter 3)—that is hosted in the cloud. Users need a Client Application (406) to
be able to interact with this cloud application.

What is the easiest, most universal Client Application for any user that does not
assume a specific hardware or software configuration?

Every application is based on a set of assumptions about the hardware and software
platform it is built to run on. However, this creates an issue: if there are too many
assumptions—that is if the required hardware and software is too specialized—then
the application may not find wide use. The class of applications that make relatively
few assumptions about the hardware and software they run on serve an important
purpose. They fill in a gap in the computing landscape that is sometimes difficult to
fill:

• Users may prefer not to have to download and install a Client Application if they•
are not committed to using it on a constant basis.

• Different users have different computers and devices running different operating•
systems, making it difficult to develop a single Client Application that will run on
all of them. Often a web page is the only available lowest common denominator
that can be used by many different types of devices.

• HTML web browsers with basic capabilities like JavaScript are ubiquitous and•
available on every computing platform
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Therefore,

Develop a Client Application as a Browser Application that will run in any HTML
web browser.

A Browser Application at its heart is a bit of a misnomer because the simplest form of
the application does not run in the browser at all. Instead, it is a dynamic website that
is merely accessed through the user’s browser over the internet (see Figure 8-7).

Figure 8-7. Browser Application

The principle behind any sort of Browser Application is simple—there is a program
running on a remote server that listens for HTTP requests at a particular URL. It
then responds to those requests by generating the appropriate HTML to form a web
page that represents the response to the HTTP GET, POST, or other HTTP verb.
Within that general statement, however, are many different variations. The program
could be embedded within another program like a web server (e.g., CGI), or it could
be standalone (as with Node). It could respond back with only HTML, or it could
respond with other content types as well—such as images, but more importantly CSS
and JavaScript. What’s more, the server can also respond with content types that
represent only information, like JSON (which becomes important when you consider
AJAX).

The benefits of developing an application as a web page (something that can show up
in a browser) are many:

• Any computer or device that has an HTML web browser (that is, nearly all of•
them) can run a Browser Application since all that is required is conformance to
HTTP and HTML.

• A Browser Application doesn’t have to be installed; it entirely runs within the•
browser accessing the website.

Browser Application | 411



• Browser Applications tend to be lightweight, require limited memory on the•
client, and work well with low-bandwidth network connections.

However, as common as they are, Browser Applications have their drawbacks:

• Browser Applications cannot take advantage of the unique features of a device•
(such as the camera, GPS, or magnetic compass on a smart phone) as easily as
a Mobile Application can. In some cases, this is worth the trouble of building a
Mobile Application simply for access to the device features.

• A Browser Application is not easily expanded by third parties in the same way that•
a Public API or Command Line Interface allows.

The advancement of web technologies has led to several forms of Browser Applica‐
tions, which we cover in later patterns:

Web Form Application (414)
A simple application built from HTML pages rendered server-side with no Java‐
Script where transitions between pages are triggered by following links or by
submitting HTML forms

Single-Page Application (421)
An application built from many different pieces of HTML assembled and ren‐
dered on the fly within the same webpage, constructed client-side using Java‐
Script and CSS

Micro Frontend (426)
Mini-applications that can be composed into a Single-Page Application via a
framework

All of these have evolved from the many content types that a Browser Application can
return in response to an HTTP request.

Examples
When the web was first imagined by Tim Berners-Lee (Weaving the Web, 1999), all
that was envisioned was the idea of a Web Server serving up static HTML web pages
and images. The web did not stay static for long, as the following examples show.

CGI
Soon after HTML 1.0 was released, another proposed standard called CGI (Common
Gateway Interface) came into being to make websites dynamic through various
means, such as programmatic generation. The first versions of this would call pro‐
grams externally to generate specific pages within a URL tree—some pages would
be served by the web server, while others would be delegated (through a special
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directory called cgi-bin) to dynamic pages generated by these external programs (see
Figure 8-8).

Figure 8-8. Web with CGI

Template Applications and PHP
The next evolution of browser applications was to combine the program generating
the HTML and dynamic content within a single template mechanism by which
programmatic statements are embedded inside an HTML page. A canonical example
of this approach is PHP (a recursive acronym for PHP, the Hypertext Processor). PHP
runs inside virtually any web server software and will work with most databases. PHP
programs are written inside of HTML pages where PHP statements are interpreted
inside special tags that are differentiated from HTML tags, usually with the syntax.
Any PHP code inside the tag is dynamically interpreted and evaluated to render
HTML that is then inserted into the appropriate place in the HTML page as it is
returned to the page requestor by the web server. This type of architecture is shown
in Figure 8-9.

Figure 8-9. Simple templating system
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ASP.NET, Servlet, and JSP
Developers soon realized that making the HTML template the target for requests
made it very difficult to choose what page to render when an HTTP request is
received. That led to a separation of the request processor from the template engine.
This approach was commonly used in ASP.NET and Java Enterprise Edition, where
the request processor such as a Java Servlet was separated from the template, which
was a Java Server Page or JSP. This is shown in Figure 8-10.

Figure 8-10. Separate template system and request processor

JavaScript and AJAX
The next major development in web application development was the introduction of
JavaScript into the browser between 1995 and 1997. Initially, JavaScript was only used
for small, standalone applications, much like other competing technologies like Flash.
However, this changed in 2006 with the introduction of a new feature in Internet
Explorer that allowed calls to a backend system from within a JavaScript application.
This approach (still called AJAX, or Asynchronous JavaScript and XML, even though
XML is now rarely used) was the cornerstone of a new approach to web applications.
We cover much more of that in the Single-Page Application (421) pattern.

Web Form Application
You are building a Browser Application (410) that needs to reach the largest possible
user community. You likewise need to get something out quickly to your users.

How do you build a user interface to provide basic functionality to the largest
possible set of users using the largest possible set of devices and hardware?

Some applications are meant for greatness. Most, however, are not. One of the
downsides of taking all of your architectural and business lessons from unicorns
and hyperscalers is that it is easy to believe that all applications will become virally
successful, require unheard-of scalability, and attract millions of adoring fans that
hang on every font and icon change with bated breath. The truth is, that while
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there are applications that fit that category, the reality is that much more than 90%
of all applications written will be written for an unchanging audience, whose size
is well-known ahead of time and whose usage patterns are both consistent and
sporadic. For instance, how many times have you had to update your home address
at your auto insurance company? The total number of times that particular part of
their website will be used in a year can be calculated very precisely from the size of
their covered population and a coefficient derived from some population movement
statistics obtained from the Census Bureau.

Even setting aside the fact that most enterprise applications are much more like
our hypothetical address-change app than a widely-used website like X or Facebook,
there are other fundamental issues that often make it less advisable to try to keep
up with the cutting edge of user interface technology. Probably the most important,
and least considered, is developer skill—if you adopt a new frontend JavaScript
framework, then you are implicitly saying that it is worthwhile to spend the time for
your developers to learn this framework—something that will make you even more
likely to want to use it to its fullest extent once that learning time is committed. What
this leads to is an example of the sunk cost fallacy—if your developers spent time
learning something, you want to get the benefit out of that time, which will often
result in applying technologies to problems for which they are, at best, overkill.

On the other hand, what if there were a set of technologies that were already well
understood, widely available in commercial and open source implementations, com‐
pletely compatible with cloud-native principles and, what’s more, could give you the
fastest path to value for many types of user interfaces? That would seem to be a
godsend to teams who struggle to learn all of the other parts of cloud adoption.
And what if those same technologies allow you to reach the widest possible user
community at the same time? In fact, that technology exists.

Therefore,

Build a Web Form Application that serves up HTML pages from a server-side
application and that takes input through HTML forms.

This approach works best for relatively small and simple applications, particularly
those that do not require intense graphical interaction or those that are used sporad‐
ically or rarely. Web Form Applications rely on the structure of HTTP for the basic
interaction with the user. Remember that there are only a handful of HTTP verbs.
Following are two most commonly used ones (and the ones most applicable to our
purposes):

GET
GET is a request from a browser to retrieve a web page from a server and can be
sent by typing a URL address in or from a link.
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POST
POST is sent from a browser to the server in response to the submission of a web
form.

If we consider only those two verbs, that determines the flow of how pages are shown
and how the user interacts with them. The flow for this kind of application is shown
in Figure 8-11.

Figure 8-11. Web Form flow

The important thing about this (very simplistic and highly simplified) summary
of HTTP 1.0 and 1.1 is that this approach is independent of the many different
mechanisms for implementing this. Note that this description doesn’t specify whether
you are using a single server process to handle everything on the backend or multiple
processes (such as a web server and application server combination). It doesn’t
specify if you use a templating mechanism or not. The fact is that any of these are
valid technical choices for different reasons.
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Many of you reading this may already be saying, “That’s what our old monolith
was! That’s what we’re trying to move away from!” You will note that we are merely
describing the approach that this type of application takes in constructing user
interfaces but do not say anything about how large or small each application would
be. The rejection of Web Form Applications entirely as a solution is an unfortunate
application of the principle of tarring two very different things with the same brush.

Just because many teams built Web Form Applications as Big Balls of Mud does not
mean that all Web Form Applications must necessarily be implemented as Big Balls
of Mud. First, there are many lightweight technologies today that allow you to build
Web Form Applications that are small and very lightweight. Node is perhaps the most
obvious one, but there are corresponding lightweight web form applications for other
languages like Python Flask. Even in the Java world, which often was derided the
most for large, unwieldy applications that require enormous Web Application Servers
to run, there are technologies like Spring Boot and Quarkus that allow you to build
small, cloud-native applications in Java that follow the Web Form Application pattern.

Servlet and JSP with Microservices and Interaction Models
We mentioned in the introduction to this chapter that one of the key principles in
building user interfaces should be the separation of domain logic from presentation
logic. One of the problems with many implementation architectures is that there
is no good way to enforce that separation. In fact, early template architectures like
PHP almost required that the two be mixed together, and to avoid doing so in
later template architectures like Servlet/JSP or ASP takes great discipline in building
application Facade (Design Patterns, 1994) objects that would act as adapters to the
core of the application. This is something many teams never took up, instead coding
business logic directly from the servlets or other request processors or (even worse)
the JSP or ASPs themselves.

Instead, a better way to do this is to formally separate the two by introducing separate
Interaction Models (448) and Domain Microservices (130). This version of the Web
Form Application architecture is shown in Figure 8-12.
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Figure 8-12. Interaction with Domain Microservice

By splitting away the Domain Microservice, we have created what Alistair Cockburn
refers to as the Application Core in the Ports and Adapters architecture.

In this way, the three parts of a Model View Controller (Patterns of Enterprise
Application Architecture, 2002) or Model View Presenter pattern are introduced. We
can call the common parts of these the “Model View X” approach, or “MVx”. The
Request Processor handles the issues of control flow (X), the Interaction Model (and
Domain Microservices) handles domain logic (M), and the template engine handles
building the HTML page (V). Building applications in this way can be a very fast
path to a minimum viable product, as fast or even faster than building a Single-Page
Application (421) depending upon the complexity of the screen flow. What’s more,
building this kind of application is something that many developers already have
skills in; Java programmers often learn Servlets and JSPs before learning frameworks
for building REST services, and PHP skills are common in the industry as well.
The tools, frameworks, and runtimes for building this kind of application are very
mature and stable, available as open source, and run both on premises and in every
available container technology and cloud provider—meaning that developers will not
be running on the bleeding edge of a new technology or locked into a particular
vendor.
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Here are some of the most important advantages of a Web Form Application:

• It is relatively simple to build. There are relatively few things to learn, and you•
can start building applications with common tools (like Node.js, ASP.net or JSP)
very quickly.

• Since the only requirement placed on the user is that they have a browser•
capable of rendering HTML (or HTML and CSS) it is possible to provide a user
interface that can be rendered on many different types and ages of devices. This is
especially important when considering the percentage of a user population that is
not on the latest hardware or operating system versions.

• The technologies needed to build these applications are well established and•
available in open source versions, and skills are easy to find.

• Since a Web Form Application follows the strict rules of HTTP 1.0/1.1 and•
HTML/CSS, the browser’s back button and browser history will always work.
This is something that users often expect to work and are surprised when appli‐
cations running as a Single-Page Application violate that implicit assumption. A
Web Form Application will follow that implicit assumption about how browsers
“should” work, causing fewer instances of lost work through inadvertent use of
the back button.

However, there are plenty of drawbacks of Web Form Applications as well, which is
why many other choices now exist for Client Applications:

• Web Form Applications are not nearly as responsive to user input as Single-Page•
Applications can be. The page-at-a-time mechanics of Web Form Applications
make them slower to react to input, especially over slow networks. HTTP/2
was specifically designed to improve the speed of browser-based applications
processing multiple requests at once (e.g., Single-Page Applications), and Web
Form Applications cannot take advantage of all of those speed improvements.

• Complex user interactions are difficult if not impossible to represent in a Web•
Form Application. You can always use JavaScript to make your user interactions
more sophisticated, but once you start using JavaScript in your pages, you are
already well on your way to a Single-Page Application and should probably think
carefully about implementing that pattern instead.

That last set of disadvantages gets to the best way to use Web Form Applications.
They are best suited for very simple, form-driven interactions that can (often) be
characterized by CRUD (Create, Read, Update, Delete) functions. Essentially, if you
are building a simple frontend on a database, a Web Form Application may suffice. If
you’re doing anything that requires more sophisticated interaction with the applica‐
tion than updating or fetching tabular data, you probably want to look at other Client
Application choices.
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Likewise, a key principle to follow in sizing a Web Form Application is that each
individual application should perform only one business function. If this sounds like
the same principle that applies to Microservices, that’s because it is. Not only will that
make the business logic more cohesive, but it will keep the presentation logic simpler
and more readable as well. If you keep the user interface of each application small
(fewer than ~10 pages per application) and directly reflective of a single business
process flow in the domain, many of the issues that led to the problems we saw with
large, monolithic Web Applications can be avoided. This is true regardless of what
technology combination you use—you can choose to construct your application with
template technologies like JSP, PHP or ASP or directly code your HTML into your
Node.js applications in JavaScript. The decision is yours, although most teams will
have an easier time when using a templating technology.

Whenever a business process (and screen flow) crosses from one domain entity or
Aggregate (211) to another, you should also cross over to another application to han‐
dle that flow. Thus, your web application boundaries should roughly correspond to
the boundaries of a Microservice. Going beyond that can lead to grouping unrelated
logic and leads to building a monolith. There also may be a temptation to build
multiple Web Applications that all communicate through a shared database, which
again should be avoided.

If you find yourself moving in that direction, or if you have a user interface that is
complex and not easy to express as simple forms and results pages, you probably
need a more capable client-side application based in JavaScript with backend logic
provided by Domain Microservices (130). In that case, a Single-Page Application
(421) is the best option. Of course, the ultimate in user interface customization is
possible if you build a Native Mobile Application (430), so you also need to consider
your options in that regard.

This pattern is related to Template View (Patterns of Enterprise Application Architec‐
ture, 2002) pattern and in fact may be considered a blending of Template View
and Application Controller (Patterns of Enterprise Application Architecture, 2002).
However, building a Web Form Application is only one user interface choice of many
that developers now face, so many of the reasons for separating the two are no longer
necessarily applicable given this plethora of choices. The Web Form Application
pattern is one of many such choices that “won out” in the end, even to find itself
replaced by other technology options.

Examples
There are many examples of Web Form Applications that were originally built to
highlight or explain particular languages, tools, or programming models. They all
began, however, with the original Java Pet Store.
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This application was introduced as the original reference application for the Java
Platform, Enterprise Edition (JEE) around 2001. That application was based on
Servlets and JSP and followed an MVC-style architecture as introduced in Core J2EE
Patterns (2003). Describing what it calls the Web Tier of the application (which was
a three-tier application, having a client tier consisting of a browser, a web tier, and
an Enterprise JavaBeans tier that represents the domain model and database interac‐
tion), the Java BluePrints site stated, “The Web tier is responsible for performing all
Web-related processing, such as serving HTML, instantiating Web page templates,
and formatting JSP pages for display by browsers.” The last available version of the
Java Pet Store 1.0 can be downloaded on the Oracle website.

Single-Page Application
You are developing a new Browser Application (410) that has complex navigation,
or you are refactoring a section of a Web Form Application (414) to make it more
interactive.

How do you design the frontend of your application to provide the best mix of
client responsiveness and server optimization?

When the user’s experience is of critical importance to your application, you find the
following criteria to be true when designing your frontend:

• You want your application to be responsive, fast, and to feel as much as possible•
like a native application.

• You want to provide the user with a very responsive application that they can•
interact with easily despite network lags. You do not want to make your applica‐
tion become completely unusable when internet connectivity is spotty or slow.
This means moving as much processing as possible to the frontend browser.

• You want the user to be able to interact with the application naturally, without•
arbitrary restrictions in user interface design. This means that you want to allow
the use of controls that provide immediate user feedback without requiring long
wait times while you contact a backend system.

• You want to enable your designers to provide the cleanest, most attractive user•
interface possible and to be able to make design modifications without requiring
them to work through your development team. This means the HTML pages
should be served up naturally through a Web Server and should be developed
and managed using a Content Management and Authoring system. You don’t
want extra steps where a development team would pick up and modify a page
after it was built by the design team.

The traditional Web Form Application (414) (even using page template technologies
like ASP.NET or JSP) does not meet these conditions. The page-at-a-time back and
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forth trips to the server make the applications slow and at the same time usually
require changes to both the frontend and backend code at the same time since the
backend code is often mixed with the frontend HTML.

However, that is not the only possible solution—all modern browsers now have
the ability to let JavaScript dynamically modify HTML, and what’s more that same
JavaScript can make its own requests of the server.

Therefore,

Design your Browser Application as a Single-Page Application, such that all inter‐
action takes place within a single logical page within the browser.

At its heart, the major element of a Single-Page Application (SPA) that makes it
different from a Web Form Application is that there is a JavaScript program running
within the web browser as part of what the browser loads as a single page. That
application will be responsible for the following:

• Handling user interaction. The JavaScript will provide event handlers that are•
invoked when the user interacts with any screen controls within the HTML page,
such as buttons, scroll bars, or text boxes.

• Communicating with the backend server responsible for providing information•
to the JavaScript in response to user requests. That service is pictured here as a
Dispatcher (140) and a set of Domain Microservices (130), although any other
type of Cloud Application (6) that understands HTTP will also serve, such as a
Modular Monolith (29).

• Producing or modifying the DOM (Document Object Model) of the HTML•
page that the browser displays from a template HTML page (something like
in the ASP or JSP model for a Web Form Application) that is augmented with
information that the JavaScript code obtains from the backend server.

The SPA approach is a variation on the traditional MVx patterns (MVx meaning
Model View Controller, Model View Presenter, and all of the variants of those
patterns) used in the dynamic web approach used by all Browser Applications in that
views are not complete web pages. They are simply portions of the DOM that make
up the viewable areas of the screen. The initial HTML load is simply a shell that
is broken up into child containers (or regions). Developers often use an MVx frame‐
work, such as React, Angular, or Vue, to handle the difficult parts of the application
management, such as routing to the right view, combining data from AJAX calls with
template HTML fragments, and managing the lifecycle of each view. The components
of the SPA program and the backend server are shown in Figure 8-13.
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Figure 8-13. Single-Page Application and backend

The SPA approach lets you store page state within the client and connect to the
backend through REST services. This approach is called “single page” because all
of the HTML, CSS, and JavaScript code necessary for a complex set of business
functions, which may represent multiple logical screens or pages, is retrieved as a
single page request.

The SPA approach allows for very responsive, fast applications that render quickly.
JavaScript code that executes within a web page can control the look and feel of the
application by generating and manipulating the client-side DOM in any way it choo‐
ses, and it also can request information from the server at any point based on user
interactions—resulting in more responsive user interfaces. The overall flow of infor‐
mation in the AJAX approach that is fundamental to SPA is shown in Figure 8-14.

Figure 8-14. AJAX interactions

SPAs are often written to take advantage of Responsive Design principles (Modern
Web Development with IBM, 2014) to optimize user experience for screen layout
and size. CSS media queries are often used to include specific blocks that apply for
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only specific screen types. This technique allows a different set of CSS rules to be
specified for tablets, mobile phones, or laptops, resulting in screens that are laid out
and configured specifically for those devices.

There are a number of distinct advantages to the SPA approach:

Speed
An advantage of the SPA approach is that the AJAX calls that are issued by
the SPA to the server have generally smaller payloads, and thus are faster to
execute, than corresponding calls that would transmit a completely rendered
HTML page. Since an SPA doesn’t have the same round-trip issues that a Web
Form Application has, they are often faster in responding to user requests.

Improved experience
An SPA will generally give you a more responsive user experience than a Web
Form Application, partially due to the improved rendering and processing speed
we discussed, but also because it allows for more fine-grained control of the user
experience. Each action by the user, be that typing a character, pressing a button,
or simply scrolling the application, can result in a small update to the DOM
being rendered by the browser, making the application seem very responsive as a
result.

Decoupling
The SPA approach effectively decouples presentation logic (particularly render‐
ing and entry validation logic) from server-side domain logic. This makes it
possible in many cases to make UI changes without having to update a corre‐
sponding server component.

State stored locally
Since the state is stored locally as part of the application, it’s easier to manage the
state from a development perspective than the entirely remote state management
in a Web Form Application.

There are also a set of disadvantages to the approach that teams need to consider:

Complexity
Any time you split the application logic across two computers (and often two or
more computer languages), you are increasing complexity. The navigation logic
of an SPA will be more complex in that respect than a Web Form Application
would be.
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Initial load speed
The downside of the SPA is that the initial download of the application is signifi‐
cantly slower when you use client-side rendering since all of the potential parts
of the SPA are loaded at once. You load a significant amount of HTML, CSS,
and especially JavaScript before you can use the application, particularly if you
use a library like React or Vue. You may remember that one of the advantages of
Browser Applications is that they are relatively lightweight—once you start adding
sets of large libraries to your SPA, you may find that this is no longer true.

Lack of browser history and the back button
An additional downside of the SPA approach is that it works counterintuitively to
the way that web browsers are “supposed to work” in that each page is available
for navigation one at a time with the forward and back buttons. Since the entire
application is within the context of a single page, hitting the back button wipes
the entire application, and whatever changes were in progress and not updated
to the backend are lost. As a result, many SPAs disable the back button entirely.
Some browser APIs mitigate this, but that requires additional development to
make this work.

Security issues
Since SPAs by nature use AJAX to communicate between the server that hosts the
HTML and JavaScript, the client and the server that the AJAX calls are made to,
the potential for cross-site scripting attacks exists.

In a complex business application, you may implement several SPA instances. Each
one represents a single logical set of screen interactions that perform a business
function. This approach maps extremely well into the Microservices (119) approach,
as you can match an SPA to the capabilities of one or more Domain Microservices
(130). However, you may need to perform some translation or conversion of the
results of a Domain Microservice in order to match the unique user interface require‐
ments of your SPA. That will naturally lead to the need for a Dispatcher (140).

Unfortunately, SPAs can sometimes grow to the same size and complexity as the
monoliths they are expected to replace. To avoid that, build complex applications as a
set of Micro Frontends (426) that are composable.

Examples
Just as with Web Form Applications, there have been hundreds of examples of Single-
Page Applications have been developed to explain different libraries, tool suites, and
frameworks for JavaScript. For example, the jQuery and jQuery UI projects host
dozens of sample applications highlighting how to use those venerable frameworks
for user interface interaction, AJAX, and DOM manipulation.
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The original Java Pet Store demonstrated the Web Form Application approach with
Servlets and JSPs using traditional Web 1.0 techniques. When the Web 2.0 techniques
embodied by the Single-Page Application came into use, Sun (now Oracle) produced
a new version of the application. It takes advantage of those techniques to show,
among other features, the infinite scrolling techniques popularized by applications
like Facebook and Twitter. You can find the Java Pet Store 2.0 on the Oracle website.

Micro Frontend
(aka Microapps)

You are developing a new Single-Page Application (421) or you are refactoring a sec‐
tion of an existing Single-Page Application to make it more modern. You realize that
the temptation exists to place unrelated functionality for several business processes
together in the same Single-Page Application, even though that “feels” contrary to the
Microservices (119) approach. You are already applying a Microservices Architecture
(Chapter 4) to divide your domain into separate services.

How do you avoid creating a monolithic Single-Page Application by placing too
much functionality in a common frontend?

Just as the desire to separate concerns and avoid placing business logic that doesn’t
need to go together into a monolith led to the Microservices approach, the same type
of concerns apply to frontend UI presentation and logic written in HTML, CSS, and
JavaScript as well. In particular, you’ll want to address the following concerns:

• You want to enable teams to be able to independently develop and release end-•
user functionality without having to retest or redeploy the entire UI.

• You want to enable cross-functional teams that own a feature from frontend to•
backend.

• You want to enable teams to have the freedom to choose from multiple frame‐•
works (such as Angular or React) when appropriate.

While the Single-Page Application approach is fantastic in that it allows teams to
entirely replace the UI layout and controls within a particular screen region at any
time, when a team building a large application tries to apply that approach to many
different areas of the business, the result can often be delays and unexpected conflicts
as different aspects of the business may need slightly different UI representations. For
example, the optimal screen layout in an airline website for choosing a flight may not
be the optimal layout for viewing your frequent flyer status. What’s more, you want to
allow for different customizations in different parts of your application. The payment
flow of your airline website may be different, for instance, if the customer is paying
with airline points (and started in the loyalty section of the application) than if they
are paying by credit card.
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Therefore,

Split your Single-Page Application into several Micro Frontends that align to spe‐
cific business features.

“Micro Frontends” by Cam Jackson introduced this concept. A Micro Frontend is
a Single-Page Application that consists of HTML, CSS, and JavaScript. Each Micro
Frontend has its own main container region and is loaded in a single HTML upload.
The Micro Frontend is contained within a parent application that performs activities
such as routing to the correct Micro Frontend and bringing it into the foreground
page. This allows the team responsible for that business feature to implement the full
flow of the frontend for the feature.

An example of this kind of architecture, drawn from our shopping cart example from
Microservice Design (Chapter 5) is shown in Figure 8-15.

Figure 8-15. General Micro Frontend architecture

Like both Microservices and other Single-Page Applications, a Micro Frontend should
be an independent, self-contained application that has no dependencies on other
Micro Frontends or shared libraries. For example, a change to a JavaScript library
or CSS in one Micro Frontend should have little or no impact on any other Micro
Frontend.

This level of isolation allows several Micro Frontends to be placed on a single web
page that can operate independently of one another, be deployed independently, and
even use different frameworks. For example, two different Micro Frontends on the
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same page could use Angular and React, respectively. To make this function, you will
often have to use a Micro Frontend framework like single-spa, which is a router that
enables the different frameworks to communicate.

Micro Frontends, being Single-Page Applications, share all of the advantages of SPAs
over Web Form Applications. But the unique split of a Micro Frontend brings its own
advantages as well:

Smaller deployable units
Each Micro Frontend is a small subset of the entire set of functionality of the
website as a whole. That means that each unit is faster to develop and test
and will individually load faster than a monolithic SPA that contains all of the
functionality for the entire application.

Independent deployment
Breaking up a monolithic SPA into Micro Frontends enables you to also break up
a larger team into smaller units, each working independently on a different Micro
Frontend.

Independently updated
Since each deployable unit is smaller, it enables teams to perform updates and
make changes independently from the other Micro Frontends.

Likewise, in addition to the disadvantages of Single-Page Applications, there are added
drawbacks:

Added complexity
Breaking up a Single-Page Application into a set of Micro Frontends adds to
the overall complexity of the solution since you now need added coordination
between the Micro Frontends at the parent SPA level.

UX inconsistency
While teams have the flexibility to choose any MVx framework they choose, and
also to specify their own look and feel choices through CSS, this freedom can
lead to inconsistency in the UI as you move from view to view. Instead, it is often
better for teams in an enterprise to consistently use a single MVx framework, or
at most a very small set of them, and share some common CSS files to specify
a consistent look and feel for the entire web application. Note that having a
separate team define that common set of styles and CSS files is an anti-pattern.
This is actually a better application of a loose “guild” approach to ensure that
your UX designers and HTML developers are working together toward common
goals.
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Micro Frontends should be aligned to the backend Microservices, especially those
Microservices that implement the Dispatcher (140) pattern. The best way to do this
is not to separate these teams but to keep development of an end-to-end feature
together as a single unified team. This implies that each Micro Frontend would
correspond to a different Dispatcher. This also allows the same team to own features
and functionality from frontend to backend and work independently.

In a sense, this pattern bears a similar relation to Single-Page Application that Mod‐
ular Monolith (29) does to Big Ball of Mud (22). This is a recurring theme that
we’ve also seen before with Data Module (366). Micro Frontends make the Single-Page
Application more modular.

Examples
There are many examples of Micro Frontends, particularly (as we touched on) on
the tool websites that are often used for building Micro Frontends, such as the
single-spa site. In our experience, we have seen it applied successfully in many
different domains, particularly in one that we mentioned earlier, which is in the
airline industry.

An example of an architecture (and team organization) that follows this pattern is
shown in Figure 8-16.

In this example, a team building a customer website for an airline is divided into
three stream teams, each one responsible for one major epic that represents a major
chunk of functionality in the application. That means each team is responsible for
both the backend Microservices and the Micro Frontends representing those epics.
Each stream team implements both the frontend and backend development of their
epics, although teams may connect at the Microservices level, such as the booking
team needing to be able to find flight availability if a flight is canceled and must be
rebooked.

By implementing the Micro Frontend pattern, you can develop and deploy small
features with more agility than in a monolithic Single-Page Application. This enables
cross-functional teams, ownership of frameworks, and end-to-end ownership of fea‐
tures and reduces complexity.
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Figure 8-16. Micro Frontend division

Mobile Application
You’ve developed a Cloud Application (6), such as a Cloud-Native Application (Chap‐
ter 3), that is hosted in the cloud. Users need a Client Application (406) to be able
to interact with this Cloud Application. Many of your customers are going to use a
mobile device as their preferred means of accessing your application.

How do you provide the most optimized user experience on a mobile device and
take advantage of the features that make mobile computing unique?

A Browser Application (410) that runs well on a desktop or laptop computer might
seem sufficient for a mobile device too. After all, mobile devices also have browsers,
and this way the application can be reused on multiple devices. Yet an application that
works well dynamically updating in a laptop browser that has a mouse, keyboard, and
a large screen may be difficult to use on a mobile device.

There are several aspects of building mobile applications that are fundamentally
different from building web applications (either Web Form Applications (414) or
Single-Page Applications (421)):
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Smaller, more varied screens
Mobile device screens are smaller and vary widely in size—as with phones and
tablets—and often a large part of the screen is obscured by a virtual keyboard.
The amount of content and detail that fits well on a laptop screen is often
too much for a mobile screen. The amount and layout of the content need to
adjust to the size of the screen and whether a widget such as a keyboard or an
enumerated list of choices is being displayed.

Human-machine interaction
Browsers can support interaction conventions that mobile screens typically do
not, such as pop-up menus and multiple tabs or windows.

Input
A touchscreen with a virtual keyboard works differently than a physical keyboard
and mouse. Scrolling and selecting may be more difficult, and typing long strings
of words can be tedious. Touchscreens often provide unique features like haptic
feedback that are not part of the web computing experience.

Sensors and integrated features
Mobile devices have many attached sensors and include capabilities that users
become accustomed to using in a variety of ways. These can include cameras
for scanning QR codes and taking pictures of checks, GPS for precise locations,
integrated calendars, and notification systems.

Platform evolution
The two major mobile ecosystems change rapidly. Applications that emulate a
mobile device’s look and feel often seem outdated when the native user interface
libraries of the mobile OS change.

Unreliable networks
Mobile networks can be slow and spotty. Single-Page Applications use AJAX,
which is specifically designed to be very chatty and assumes a fast, reliable
network. A mobile client’s connection to the server needs to be less chatty and
transfer less data to consume less bandwidth.

Local caching
A mobile client can cache state locally so that it connects to the serverless often
and may even be able to run disconnected, including in airplane mode.

Mobile home screen
A mobile device features a home screen that displays a catalog of programs it
can run. The user of a browser-based application must remember to bookmark
the webpage of the application. Failure to do so may make the browser-based
application more difficult to find next time.
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While Single-Page Applications provide a user interface that can be adapted to
different screen sizes and orientations—albeit often with a lot of scrolling— no
browser-based application can take advantage of all the features and capabilities of
a mobile device. What’s more, even though advances have been made in the speed
and performance of JavaScript in many browsers, the performance of applications in
mobile browsers is still noticeably worse than in laptop browsers.

Therefore,

Develop a Mobile Application, an app that runs natively on the user’s mobile
device and enables users to interact with the cloud application.

A Mobile Application enables users to interact with the application running directly
on their mobile device without requiring a web browser. You develop Mobile
Applications using the tools and capabilities provided by the native platform devel‐
opment tool suite. This means that you will need to develop a different Mobile
Application for each major mobile platform, such as iOS and Android. Developing
directly to the platform enables the app to take advantage of the hardware capabilities
of that mobile platform by invoking the facilities built into the mobile OS APIs.

The users download a Mobile Application from a secured, managed app store, which
enables the provider of the OS to vet the applications that are available for their
platform to make sure they are not malicious or do not violate the TOS of the
platform. A Mobile Application acts as a client of a Cloud Application and invokes
the capabilities of the Cloud Application in the same way as the other types of Client
Application. We show the basic structure of a Mobile Application in Figure 8-17.

Figure 8-17. Mobile Application

A Mobile Application does not have many of the problems that an SPA does when
running on a mobile device. What’s more, there are several advantages to writing a
Mobile Application instead of an SPA. A Mobile Application enables the developer to

432 | Chapter 8: Cloud Application Clients



take maximum advantage of the platform’s capabilities. Users can easily locate and
download the application through the platform’s application store and add it to the
device’s home screen for easy access. For most capabilities in a Mobile Application,
this will be the path of least resistance and will enable the easiest use of new device
capabilities as they evolve (see Figure 8-18).

A Mobile Application is not a world entirely on its own. It should fit within the
architectural guidelines and strategies we have outlined in the rest of this book. In
particular, it should communicate with backend domain services implemented using
standard component strategies, such as Microservice (119) or Modular Monolith
(29). Specifically, there is often a need for a Dispatcher (140) in front of those Micro‐
services or other components to mediate between the requirements of the mobile user
experience and the backend server. Another key strategy is to realize that wherever
possible you should share other code between multiple incarnations of your Mobile
Application. This is true not only for code to invoke services on the backend server
but for UX logic as well—since the different platforms recommend different default
toolsets and even languages for building applications, teams must often make the
decision to use frameworks and platforms that allow for development of applications
on multiple mobile platforms.

Figure 8-18. General Mobile Application architecture

Similarly, a design choice that many teams building Mobile Applications often struggle
with is how much of their entire application space to implement in the Mobile
Application. In a multimodal architecture, you often have more user functions in the
web application than may be available in the Mobile Application. In particular, there is
the question of how to enable access to seldom-used functions from within a Mobile
Application.

Sometimes, teams have used native functions such as web views to access existing
web content from within the Mobile Application, but that often leaves users confused
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as the interface of the web application is not consistent with the native Mobile
Application. Instead, what has emerged as a solution to this problem is the use of
frameworks such as React Native and Ionic that enable teams to embed application
code written as Single-Page Applications (421) inside of existing iOS or Android
applications. The advantage of this approach is that React Native is compatible with
existing web applications written using React, while likewise Ionic works with web
applications written in React, Angular, and Vue. Figure 8-19 shows an example of this
kind of overall architectural approach.

Figure 8-19. Native Mobile Application (hybrid)

While Mobile Application applies mainly to native applications on mobile devices (as
the name implies), it can also more broadly apply to any computer with a windowing
system. Web-based applications like team communications, email, and music and
video streaming can be accessed not only through web browser interfaces but also
through native applications. These native applications run not only on iOS and
Android devices but also on Windows and macOS computers, typically a different
distribution of the same application for each platform. Thus Mobile Application is a
subtype of native application, which applies to any client application implemented
to use its platform’s windowing system. While native applications for desktop and
laptop computers are somewhat common for commercial applications, this approach
is rarely used for enterprise applications.
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Since the introduction of the iPhone in 2007, there has been an entire generation of
users and developers for which interaction with a Mobile Application is the default
expectation. That has been fostered by the multiple advantages that Mobile Applica‐
tions bring to the table:

User interface specialization
This is perhaps the biggest advantage of a Mobile Application versus a Browser
Application. When an application is deployed as a Mobile Application, it is fully
integrated with the user experience of the mobile device. That includes placement
on the home screen, integration with the device features, and optimization of the
screen size.

Discoverability through the app store
For the “mobile generation” and many other user communities, the first place to
look for a solution to a problem would be to look in their respective app stores
for an application to solve a problem or interact with a company. The benefits
of discoverability should not be discounted as a marketing strategy. Many times
placement within an app store is just as important as placement within a search
engine.

User lock-in
When a user uses a Mobile Application, they tend not to want to leave the
confines of the application to move to another application. This is the genesis
of “all-in-one” applications that are common in certain parts of the world like
WeChat, which added features like mobile payment into a chat application so
that users would not have to leave the application. This is becoming increasingly
common in other parts of the world as corporations like Meta seek to build their
platforms in similar ways by expanding horizontally into adjacent areas. While
an advantage to the developer, this is perhaps a dark pattern that may not be in
the best interests of the users.

There are, however, many disadvantages to writing a Mobile Application that teams
must also think about:

Development effort
Mobile Applications are often much more complex (and therefore expensive) to
write than corresponding Browser Applications, especially for relatively simple
user interfaces. What’s more, where there are fairly significant differences in UX
capabilities between different devices running in the same platform (such as
tablets versus phones), you may need additional effort to write user interfaces
optimized for those different devices.
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Duplication of effort
When you write a Mobile Application in addition to a Browser Application, you
are absolutely duplicating effort and now have at least twice as much code to
maintain.

Specialized skills
One of the biggest drawbacks of writing Mobile Applications is that they often
require specialized skills and libraries. There are multiple tool suites you can use
to reduce this specialization, such as React Native, but you still need to have
mobile development skills to deploy and debug the applications.

Mobile development ecosystem (app stores) restrictions
Perhaps the biggest drawback for many developers is that you need to live
within the restrictions, and especially the cost structures, of the two mobile
development ecosystems. Deploying an application into the Android or Apple
App Stores requires developer registration, and application certification, and puts
restrictions on the kind of content that can be placed within the application (such
as the mandate for in-app purchases through the app store).

Just as with Single-Page Applications (421), Microservices (119) are a good match to
Mobile Applications since the business-oriented capabilities of a Domain Microservice
(130) map cleanly to the complex screen flow and interaction capabilities of a Mobile
Application. Mobile Applications are often paired with Dispatchers (140) that can filter
and translate results to data formats that are specific to the mobile platform.

Examples
There are literally hundreds of sample Mobile Applications that show the advantages
of working within the capabilities of the standard platforms. Apple’s Sample Applica‐
tion Library and Google’s Android Sample Library both provide many examples.
Google also provides an application called Now in Android that is designed to
highlight capabilities and best practices and is built in Kotlin and Jetpack Compose.

A simple, straightforward example of building Mobile Applications for multiple plat‐
forms with a toolkit that maximizes common code can be found on the Ionic website,
where they describe how a team built an application for the 2021 Enterprise Applica‐
tion Summit (EAS) using Ionic. This application was designed to handle all of the
standard features of conference software, such as allowing attendees to browse talks,
build a schedule, and provide reminders for talks that the users are interested in.
Since the application was built using Ionic, not only was the content shared across
Android and iPhone, but the content and logic were also shared with the website
since most of it was implemented as a Single-Page Application.
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Command-Line Interface
You’ve developed a Cloud Application (6) such as a Cloud-Native Application (Chap‐
ter 3) that is hosted in the cloud. Users need a Client Application (406) to be able to
interact with this cloud application. The users want to interact with the application
in a repeated or automated way—e.g., they may want to repeat an operation on
a schedule or repeat an operation many times, such as over a set of variables or
parameters.

How can an end user automate activities like bulk loads, bulk changes, or sched‐
uled execution of activities while using the services provided by an application
running in the cloud?

When most of us think about the user interface of a system, the most common
interpretation of the term user interface brings to mind a graphical user interface of
some sort. Since the advent of the WIMP (Windows, Icons, Mice, Pointers) paradigm
in the 1980s and early 1990s, it’s hard to conceive of any other way to interact with a
computing system. In fact, two entire generations of developers have grown up such
that this may be the only way in which they have ever interacted with computers.

However, there are times when a WIMP approach, be it on the web, or in a mobile or
desktop application, has its limitations. The simplest case of this is when a procedure
needs to be automated. Let’s says that you have a simple web page that shows you how
many people are registered for an event, such as a Meetup or a book club. If no one
registers for a particular event, you will still be charged for the event venue, even if no
one shows up. It would be great if you could look at the event signup just prior to the
cutoff time, see if anyone is registered and if not, cancel the event.

If you have only a Mobile Application (430) or Browser Application (410), then
unless the developer adds this functionality to the application, you are out of luck.
You might be lucky and the developer may have provided you with an API to the
application, but that is not guaranteed since web-facing APIs present their own
challenges to the application developer, nor is it necessarily something that would
make it easy for you to write your simple check and cancel the action.

What we need is something that facilitates these simple types of automation tasks yet
at the same time doesn’t require the complexity of programming to an API.

Therefore,

Build a Command-Line Interface (CLI) that enables the cloud application’s APIs to
be invoked from the command line of a shell in an operating system.

Your Command-Line Interface takes advantage of the services of a Cloud Applica‐
tion by enabling users to execute APIs at the operating system command line. A
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Command-Line Interface will usually be built up out of individual CLI commands that
each correspond to the major functions of your application.

The architecture for a Command-Line Interface has two parts, as shown in Fig‐
ure 8-20: a CLI client that implements the commands and the Cloud Application that
those commands invoke. The user must install the CLI client in their client machine’s
operating system.

Figure 8-20. Command-Line Interface (CLI)

This example shows how to implement the Cloud Application (6) with a Dispatcher
(140) and one or more Domain Microservices (130), but this client pattern applies
equally well to other cloud architecture patterns, like a Modular Monolith (29).

A Command-Line Interface for a Cloud Application enables users to invoke function‐
ality in several ways: from scripts, from unit testing tools, or through an automated
platform such as a Robotic Process Automation tool. A key element of a good
Command Line Interface is composition. This is a great way to facilitate the Pipes
and Filters architecture. The Pipes and Filters (Enterprise Integration Patterns,
2003) architecture is a classic way to implement an extensible architecture. In that
approach, as exemplified by Unix pipes and filters at the command line, the output
of one Command Line Interface command can be piped into the input of another
command, enabling the composition of multiple tools.

In any case, each CLI command (composable or not) serves as a point of connection
between the backend business logic (the Dispatcher) and the scripting code that calls
it. It also can serve as a point of contact to other code, such as schedulers (to run
tasks at a particular time) or to testing code that can automate development tasks like
regression testing (see Figure 8-21).
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Figure 8-21. CLI command architecture

The simplest implementation of a CLI (perhaps a degenerate case) is using cURL
(or another equivalent tool) in place of a custom CLI client to invoke the REST
endpoints in the server-side application’s API. However, that’s not a great solution to
the problem in that the parameters required to run cURL in this way would be quite
complex—cURL just moves the parameters of the HTTP request into the command
line, so while you make it possible to script or automate different combinations,
it does not make it easy to do so. Instead, one of the biggest design points of a
Command-Line Interface is that the commands should format the input and output
to be easily human-readable and human-writable. However, if the commands become
too fancy with formatting, that may interfere with the ability to pipe the output
of one command into the input of another without requiring additional complex
command-line switches to move between modes.

Going back to our simple hypothetical Meetup example, we can easily imagine that
there could be two commands, one equivalent to “Get Event Registration Details” and
another one equivalent to “Cancel Event.” They could be tied together with a simple
shell script in Linux, which could then be scheduled to run every night as a Cron job.
However, this is not the only program that could be easily written using a CLI. With
a little bit of an extension of the CLI (to include creating events), an application could
look for open dates and times for events at the venue, and then to schedule events at
those times. The ability to compose commands together creates many possibilities.

However, there are requirements on the CLI to make this kind of scripting feasible.
The Pipes and Filters pattern discusses that a common data format needs to be in
place among the different commands in the CLI to facilitate piping the output of one
command into the input of another. There also need to be facilities for managing
the identity of the user of the CLI integrated as part of the command set in order to
authorize access to the backend tasks that the CLI will need to call.

If you are building user interactions for a complex business process, one factor worth
considering is the order of development of the different patterns in this section.
We have found that in many cases the appropriate order of development should be
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API, CLI, and then GUI. The reason is that the most important thing to do is to
develop the services in the backend server that make up your business logic (e.g., the
API). However, once that is done, the most difficult issue is often how to facilitate
end-to-end testing of that API. Writing a web-based or mobile user interface and
then testing that user interface with a GUI automation tool like Selenium is possible
but often challenging.

Instead, if you begin by building a simple CLI that embeds the most important
commands, you can use that with simple scripting tools (such as Shell) to try out
different combinations of the APIs. This will often expose integration issues that
would otherwise be difficult to identify and fix when also facing the added complexity
of UI testing. Once the basic flows have been built and tested, you can move on to
building the user interface, but this always enables the scripting alternative for more
complex interaction combinations.

Since the Command Line Interface is such an old approach for user interaction, many
teams don’t even think of it as a possibility for modern solutions. But it comes with a
number of advantages:

Simplicity
The primary advantage of building a CLI is that they are easy to build. The
simplest CLIs require nothing more than the stdin and stdout libraries that all
languages support.

Resource consumption
CLI applications often consume fewer compute and network resources when
compared to graphical applications.

Ease of testing
A CLI is remarkably easy to test. Again, since the input and output are entirely in
terms of text, it’s simple to formulate test cases and feed them to the program and
to evaluate the responses.

Composition
A simple CLI is composable at the operating system level. So long as it is well-
behaved and treats input and output as text, standard operating system features
that have been available since the early Unix versions (such as piping outputs
into inputs and invoking commands through scripting) allow you to take advan‐
tage of a wealth of abilities built into the operating system itself. This includes
scheduling through commands like Cron in Unix/Linux and the Windows task
scheduler.
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However, there are many drawbacks to using a Command-Line Interface that must be
addressed:

Installation
The main disadvantage is that the CLI must be installed on the user’s device.
Luckily, for simple CLIs, this is a well-understood and easily solved problem. In
Linux, there are multiple package installers (such as apt in Debian derivatives or
yum in Centos and RHEL) that allow you to define and build packages that can
be easily installed by users. In the Mac world, homebrew formulas are similar
descriptions (which are actually small ruby programs) that define how a new tool
can be installed.

User-friendliness
A CLI is not intuitive to use. When compared to a web or graphical interface, it is
often difficult to understand how to use a CLI, and it usually requires referring to
documentation to even get started.

Discoverability
Most users don’t work day to day at the command line, even on computers
and devices that have CLIs. Thus, your application may not be easily discovera‐
ble once installed if a user has to use it. Once again documentation (both on
your computer and on the web, where it is search-indexed) becomes critical for
usability.

As noted, the simplest implementation of a CLI has a command for each task defined
by an API. But your CLI can also provide more complex commands, each imple‐
mented using multiple API tasks. This effectively makes each complex command
a Service Orchestrator (160), which means the different API tasks are performing
separate transactions, so you need to consider cases of rollback and failure.

The API can build in dynamic hook points for overriding behavior. This is especially
useful with Pipes and Filters, providing places (hook points) to override behavior at
various points in the process. An added benefit of a CLI is that it makes it easier to
quickly test things manually while also facilitating automated testing.

CLI commands can also serve as simple event triggers in an Event-Driven Architec‐
ture (Chapter 6). You might even consider an Event-Driven Architecture to be an
alternative to a CLI, but the problem with this view is that while an EDA easily
solves the problem of hooking into different stages of the business process easily, you
are still completely locked into the event system as the only means of expansion or
automation, which may or may not be what you want.

CLIs may use Interaction Models (448) within their design to more cleanly separate
connection with the backend logic (Dispatcher) from the mechanics of processing
command-line input and output.
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Finally, one thing to consider in your design of your CLI is exactly how far you
want to take the CLI. One of the assumptions that goes into this pattern is that each
command is (more or less) standalone and that sequencing and especially control
structures (loops, conditionals, etc.) are provided by a scripting tool that invokes each
command (such as Unix Shell or PowerShell). If you choose to make your language
more complete, including these kinds of control structures, you are probably better
served in writing a Domain Specific Language (DSL) (Domain-Driven-Design, 2003).

Examples
We show three different examples of CLIs, starting with the first generally recognized
CLI and then looking at more modern examples of how CLIs can be useful even in
the era of the web.

Multics and the origin of command lines
The first steps toward a command line (and perhaps the first CLI to see the light
of day) were part of the Experimental Time-Sharing System (ETSS) demonstrated at
MIT by Fernando Corbato in 1961. It was based on an earlier paper by Christopher
Strachey in which he envisioned a way to have one user debugging a program while
another user was running another program. ETSS featured just over a dozen or
so commands related to loading, running, and debugging programs. It replaced a
more cumbersome interface involving punched cards to represent the program and
switches and buttons to indicate what should be done with the programs. What is
generally recognized as the first fully formed CLI (which was not named such until
after the development of Graphical User Interfaces—they were often just called “con‐
soles” as they emerged simultaneously with the development of video-based system
terminals) was developed in 1964 as part of the pioneering Multics time-sharing
operating system by the combined efforts of MIT, Bell Laboratories, and General
Electric. Multics was the major inspiration for Unix by Bell Laboratories, whose
features have inspired every command line interface developed since.

cURL
Perhaps the best example of the utility of a CLI, even for a task that on the surface
seems completely wrong for it, is in Daniel Stenberg’s now-ubiquitous utility cURL.
cURL is a utility for getting and sending data, including files, via URLs. Essentially,
you can think of it as a command-line version of the address bar in a graphical web
browser. cURL has been used for testing websites, testing REST APIs, retrieving data,
uploading data, transferring files, and perhaps a thousand other uses. It is now built
into the operating system in macOS and Windows and was even part of the software
of NASA’s Ingenuity Mars Helicopter.
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Hyperscaler CLIs
In the next section we relate the story of how AWS embraced the concept of the
Public API from the introduction of their first cloud Backend Service (106). Likewise,
another common feature that cloud services from AWS and all the other hyperscalers
have provided is a CLI that enables users to create and manage instances of those
services from any remote system. The AWS CLI is one example of this, and CLIs
exist for Azure, IBM Cloud, and Google Cloud. In theory, an advantage of having
multiple interface types like this (web interface, CLI, and Public API (443)) is that
they should be completely identical and any new feature should be introduced into
all three simultaneously, but in practice, there are often delays, differences, or gaps in
coverage among the choices, leading to frustration for automation developers.

Public API
You’ve developed a Cloud Application (6) such as a Cloud-Native Application (Chap‐
ter 3) that is hosted in the cloud. Third-party applications developed and used outside
of your enterprise need to interface with your application and invoke its functionality.

How do you best enable third-party applications to interact programmatically
with a Cloud Application?

A problem we have often encountered in enterprises that need to work with third
parties (business partners, governmental entities, etc.) is that they don’t pay enough
attention to the communication between what’s inside their own walls and the enti‐
ties. There are two extremes in which we have seen companies fail in their public API
approach:

• The farthest end of the spectrum is assuming that you can simply publish your•
internal Microservices (119) as APIs to the world. The result is that as these
Microservices change, the changes are inflicted on third parties outside of the
company that depend on those APIs. This often results in teams having to sup‐
port multiple versions of API (we have seen up to six supported at once!) because
the third parties cannot change their code as fast as the internal development
teams can.

• The other end of the spectrum is that the APIs never change, resulting in lots of•
work and lost opportunities inside the company itself. For example, many retail‐
ing companies still practice FTP file exchange with their suppliers for catalog
entries, making it difficult to update catalog entries in real time and forcing teams
to write batch jobs to do daily or even weekly bulk updates. This becomes unten‐
able when manufacturers become better at tailoring products for small market
segments—especially when the number of products increases dramatically.
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Neither end will work—both ends put an undue burden on one or the other partner,
often both. What is needed is something that moderates the changes and isolates
internal changes to some degree from the external API.

Therefore,

Build a separate service that implements an externally facing Public API that
third-party applications can use to access the Cloud Application’s functionality.

There are two cases in which to consider a Public API:

• Often, you have the need to support applications that are completely outside your•
enterprise. These are applications implemented by third parties (such as business
partners, governmental entities, etc.).

• Even within an enterprise, you may have applications that are part of the enter‐•
prise but are implemented and maintained completely separately from the team
that builds the backend logic.

The APIs for the first group will usually have public internet-facing URLs or some
other way to access them from anywhere, such as a VPN. That is the primary use
case for the Public API. APIs for the second group have private/internal URLs that
are not generally publicly or externally accessible. Those are generally not initially
published as Public APIs but may become Public APIs if the functionality ever needs
to be exposed to business partners or third parties.

Public APIs are sometimes subdivided yet again into partner (closed) APIs and public
(open) APIs. The difference between these two is that partner APIs are usually
controlled through some contractual agreement and thus are more restricted in how
fast they can change in comparison to a Public API. In either case, you need to
think about both subtypes as being products—they have consumers outside of your
development organization, and you have to think about the impact of any changes on
that external user community.

That is why the Dispatcher (140) approach of creating unique Public APIs is so
powerful. It enables you to isolate changes that affect your external user community
(the Public API) from changes to your internal services (see Figure 8-22).

Figure 8-22. Public API
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A Public API should preferably be stateless, as it should require any state to be the
responsibility of the client program that invokes the Public API.

The service that you implement as a Public API essentially operates as a Facade
(Design Patterns, 1994) to internal services. This service acts as a specialized Dis‐
patcher. It differs from the Dispatcher pattern in at least two ways:

• In many cases, your own client applications need finer-grained access than those•
provided by Public APIs. There are often features you don’t want to expose to
applications outside of your control. As a result, Public APIs usually provide only
a courser-grained level of access that limits the functionality third parties can
provide over your systems. As an example, administrative interfaces are usually
not provided as part of a Public API. Likewise, fine-grained data access may
be disallowed in a Public API, but summary access may be allowed to preserve
privacy. This is, for example, the way the U.S. Census Data APIs operate—they
enable access to summary data but not data on individuals.

• A Dispatcher’s API should evolve over time—at the same rate as the Client•
Applications that use them. This is possible because you can adapt and maintain
both the Dispatcher and the Client Applications accordingly. However, a Public
API needs to be much more stable because changes can very easily break existing
third-party applications and also annoy third-party developers, potentially caus‐
ing them to stop using your products.

Here are the primary advantages of creating a Public API for your applications:

New business opportunities
A Public API may allow for the creation of new applications that you can’t
anticipate, which provides for new markets and new avenues for monetization of
your data and function.

Creating an ecosystem
The primary advantage of a Public API is that it creates an ecosystem of other
developers. By opening up your program to be called externally over the internet,
you are allowing the creativity of the rest of the programming community to
expand your vision in ways you could not imagine. That can, however, be both
a blessing and a curse, as you may find that use cases you had not intended for
your application to cover may become predominant, stretching your resources in
unintended ways.
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Creating a Public API is not something that should be done lightly. There are several
issues and potential disadvantages that teams need to carefully consider:

Versioning
Whenever you publish an API (internally or externally), you face a problem
of how to control the API’s evolution over time. One side effect of this is the
need to publish the version of the API and to werfor the detection of that
version by external clients so that they can determine if they are compatible with
that version of the API. You can do this by naming the APIs (including the
version number in the URL, for instance) or by including the version number
in metadata such as HTTP headers. That’s just the tip of the iceberg, however.
You also need to consider how many versions of the API you will maintain on
your server at once—if a change is a breaking change, one is probably too few.
Determining the upper limit depends on your tolerance for maintaining multiple
versions of the API.

Security
When you make an API available on the public internet, you open yourself up
to potential security issues. You have to determine ways of preventing things
like injection attacks (where hackers try to send information to your APIs to
gain access to your underlying data), man-in-the-middle attacks (where hackers
impersonate your APIs to steal user data), and even Distributed Denial of Service
(DDoS) attacks where hackers will attempt to overwhelm your compute and
network capacity. Having a robust security posture (often through what is called
a Zero Trust security approach) is a requirement for publishing a Public API.

A Public API is one type of Service API (70). One major difference here is that it is
a specialization of this pattern for a very specific purpose. All web services, especially
Microservices, must have a Service API. In that pattern, we spoke about how one
of the benefits is that it slows down the rate of change for clients by enforcing a
separation between API and implementation. However, the need for that separation
and the need to keep the rate of change of client and service implementation separate
is exacerbated by the fact that in a Public API, there is an expectation of stability—
external organizations are less tolerant of rapid change than internal teams are. That
is why protocols like FTP have remained so popular for B2B information exchange
even after multiple generations of innovations (such as SOAP and XML, REST and
JSON) have emerged to replace file transfers as better carriers of information.

Something else that is important to understand is that a Public API is not the same
thing as an API Gateway. The API Gateway (Microservices Patterns, 2018) pattern
solves a slightly different problem caused by the creation of Public APIs. Public APIs
should be discoverable, documented, and versioned—and access to them should be
limited to those clients that are properly authenticated and have the right level of
authorization. What has happened is that many API Gateway products also provide a
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form of the Adapter Microservice (135) pattern as part of their implementation—thus
people have often built the implementations of their Public APIs directly into the API
Gateway. This is limiting in several ways; first of all, it locks you into that particular
API Gateway vendor implementation, and second, these products are often limited
in how sophisticated the adaptation can be—resulting in Public APIs that are often
barely disguised versions of internal Microservices implementations. This is danger‐
ous in that it exposes too much of your private implementation to the outside world,
and it also limits your ability to change your underlying implementation. Taking the
architectural approach that a Public API should be its own, carefully designed entity
avoids this problem.

However, having said this, the API Gateway is an often useful addition to the
Public API pattern because you can use these products to secure, manage, and track
your Public API usage as well as provide a place to publish their documentation. Fig‐
ure 8-23 expands on the design in Figure 8-22 to show an example of an architecture
that combines both.

Figure 8-23. Public API with gateway

Examples
An important part of technology lore that emphasizes the importance of the Public
API is the “Bezos Mandate” that Jeff Bezos (CEO of Amazon) supposedly sent out to
all Amazon developers around 2002, as related in 2011 in “Stevey’s Google Platforms
Rant”. As the story goes, Jeff Bezos sent out an internal email that had the following
points:

1. All teams will henceforth expose their data and functionality through service1.
interfaces.

2. Teams must communicate with each other through these interfaces.2.
3. There will be no other form of interprocess communication allowed: no direct3.

linking, no direct reads of another team’s data store, no shared-memory model,
no back-doors whatsoever. The only communication allowed is via service inter‐
face calls over the network.

4. It doesn’t matter what technology they use. HTTP, Corba, Pubsub, custom proto‐4.
cols—doesn’t matter. Bezos doesn’t care.
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5. All service interfaces, without exception, must be designed from the ground up5.
to be externalizable. That is to say, the team must plan and design to be able to
expose the interface to developers in the outside world. No exceptions.

6. Anyone who doesn’t do this will be fired.6.

This story has never been denied by Jeff Bezos or anyone else in leadership at Ama‐
zon—it should be noted that the original email would have predated the founding
of AWS by four years. A culture of promoting APIs at Amazon was critical to the
development of the first AWS services.

The very first cloud service ever offered on AWS was the AWS Simple Queue Service
(SQS), which was initially released in beta form in 2004. SQS was a commoditization
as a service of a networked queuing mechanism that had previously been provided
only as end-user installed software from companies like IBM or TIBCO. The
announcement of the first publicly available version of SQS in 2006 (“Amazon Simple
Queue Service Released”) featured its “straightforward APIs to let you create queues,
send messages, receive messages, delete messages, list your queue collection, and to
delete entire queues.”

Interaction Model
(aka Application Model, Application Controller)

You are building multiple Client Applications (406) for different use cases (for
instance, an end-user client application and an admin interface). You want all of
the Client Applications to work consistently, but you find it’s very easy to embed
your business rules directly into the code that handles your user experience (UX)
actions. That makes maintaining the application difficult, especially as libraries and
frameworks evolve.

How do you avoid mixing business and presentation logic inside your Client
Application?

Mixed business logic and presentation logic is the bane of many corporate developers’
existence. Unfortunately, it is a common problem. This is one reason why Refactor‐
ing the Monolith (484) by Strangling the Monolith (Chapter 10) has become so
popular—often little attention was paid to the separation of presentation and business
logic, resulting in business logic that is spread throughout different layers of a system,
and that is inconsistent in its handling of user input and requests, sometimes leading
to security issues.

What’s more, user interface frameworks and libraries change, evolve, and fall in and
out of fashion over time. For example, in JavaScript, just since the introduction
of the AJAX approach (see Single-Page Application (421)), we have seen frontend
applications be rewritten multiple times because it became difficult to find people
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skilled in a particular framework, because the community supporting the open source
project behind the library started to shrivel or because the development team wanted
to take advantage of new features that were only available in another framework. So
in one application alone, we’ve seen it move from Dojo, to AngularJS, to Vue, to
React over a period of several years. Rewriting your entire frontend to deal with these
changing frameworks is something that teams would like to avoid.

Therefore,

Encapsulate the Client Applications’ interactions with the Cloud Application, and
manage the state of the user interaction as an Interaction Model.

The primary reason for the Interaction Model is to isolate domain logic from presen‐
tation logic. If you think about the reason we have a Dispatcher, this is the inverse of
that—it isolates the presentation logic away from having to know too much about the
backend but also serves as a bulkhead to keep the user interface from “polluting” the
backend. That means that it separates any channel-specific libraries—such as those
for Mobile Applications on iOS or browser-based applications in React—from the rest
of the application as well. Thus, the Interaction Model will interface with both of these
libraries and the backend Microservices (119) model (either through a Dispatcher
(140) or directly). You can see this in Figure 8-24.

Figure 8-24. Interaction Model

If you are careful in the design of the interface of your Interaction Model, you can also
make it easier to deal with changing winds of frontend libraries. If your Interaction
Model has an interface that specifies the abstract interactions of your user interface
but does not take (for example) specific JavaScript library objects as parameters, your
code is better able to handle changes when your team decides on a new user interface
library.
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Interaction Model is a concept that VisualWorks Smalltalk called Application Model.
VisualWorks updated the model-view-controller (MVC) framework to split the
model into two parts: the domain model and the application model (see Figure 4-2).
An application consists of one Domain Model (Patterns of Enterprise Application
Architecture, 2002) and multiple application models, one for each GUI. A GUI’s
application model made the domain model work the way the GUI expected it to,
focusing only on the domain functionality the GUI needed, presented via an API the
GUI preferred, and structuring the domain data the way the GUI preferred. While
the concept is sound, the name “application model” was always a bit of a misnomer,
because it wasn’t modeling the application, it was modeling a specific user interaction
with the domain model. Therefore, this pattern calls it an Interaction Model.

An Interaction Model interfaces with the domain model via a Service API (70). A
Cloud-Native Application (Chapter 3) provides clients access to its domain model
via Service APIs, which the Interaction Model uses to serve its GUI. A Microservices
Architecture (Chapter 4) structures its domain model as a set of Domain Microser‐
vices (130), which the Interaction Model accesses via Dispatchers (140).

Interaction Models are related to specific business processes. The same boundaries
that apply to domain models (for example, those found in the Event Storming (189)
process) also apply to the Interaction Model, since the Interaction Model captures the
interactions with the users that lead to the actions and events in the event model.
Likewise, Interaction Models are often also specific to a particular user persona as a
single business process usually has transition points where the focus shifts between
different personas; each individual section between the intersection of business pro‐
cess and persona would be its own Interaction Model.

Perhaps the single most important aspect of an Interaction Model is that it is the
locus of management for state of the current user interaction. Users interact with
a user interface framework through different mechanisms like button click events,
text submission in a text window, or voice input, among myriad other possibilities.
These interaction events have to be translated into meaningful actions in the business
domain. Doing so requires a “memory” of what the context of the button click, chat
request, or voice input represents in terms of the state of the current business process
that the UX is processing for that user.

An important question to address is how many Interaction Models you have in your
system. This is a similar and related question to how many Dispatchers you have in
a system using Microservices. There are no absolute hard and fast rules, but we can
generally say the following is true:

• You will have different Interaction Models for each of your major business pro‐•
cesses because that tends to be the differentiation between different major ports
of the user experiences. For example, in our ongoing online shopping example,
you could imagine that the purchasing business process (with customers using it)
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has a very different user interface flow than the order fulfillment process (which
is used by the internal shipping team).

• You will often (but not always) have different Interaction Models for each chan‐•
nel in a multimodal architecture. So in the simplest case, you’d have different
Interaction Models for a web channel as part of your Browser Application (410)
and the mobile channel for your Mobile Application (430). However, those two
may be able to share some code and, in the best case, could potentially be the
same implementation, depending on how unique the user experience in the two
channels would be.

Finally, relating back to the discussion in the section “Ports and Adapters (Hexago‐
nal) Architecture” on page 400, Interaction Models can be classified as Adapters in
a Ports and Adapters Architecture. However, there are other types of adapters in this
model that are not Interaction Models—you don’t want to take the analogy too far. An
Interaction Model may be distinguished by the fact that ultimately there is a human
on one end of the interaction and not a system or other piece of software. This is not
a hard-and-fast rule, as there will always be ways to simulate human interaction or
automate a system that is designed to interact with a human (such as user interface
testing software like Selenium). However at least part of the software design process
should be devoted to making sure that the interaction can be carried out with a
human in mind. Thus, it is intimately and inextricably tied into issues of UX and UI
design. An upfront Design Thinking approach (Design Thinking, 2011) should always
be employed in the development of an Interaction Model to ensure these issues are
considered.

Interaction Models may not be something that all developers naturally build into
their Client Applications, but they bring a wealth of advantages to Client Applications
including the following:

Testability
One key advantage of introducing an Interaction Model is that it improves
the overall testability of your system by introducing a point at which the two
halves (the client side and the server side) can be separated so that each half
can be tested individually using techniques like Mocks. Your Interaction Model
should have a limited set of external dependencies, usually represented by one
or two components (like Domain Microservices) or in more complex cases, by
a Dispatcher that acts a facade for several Domain Microservices. That limited
API makes it easy to replace those with a Mock so that your UI testing can
occur without invoking a backend server. Likewise, you can often using web
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mocking frameworks to automate unit testing of interactions with the backend
code without having to rely on a complex UI test.

Separation of Model from View
Separating the abstract interaction with the backend from the detailed imple‐
mentation of the frontend also makes it possible for you to isolate that backend
code from minor changes to the frontend. Even if you are practicing Responsive
Design principles, it is often true that you need slightly different web page
designs and detailed interaction design between mobile (or tablet) and desktop
versions of an application. Keeping those details separate from the backend
interaction is easier to maintain if you have one implementation of that logic
instead of two or more, leading you to want to share code between different
Interaction Model implementations.

Independence from frontend libraries
Frontend client libraries change with the seasons. In one example we are familiar
with inside IBM, the JavaScript client component libraries have changed three
times over the lifetime of the application—which is actually fairly typical in the
industry. Migrations from (for instance) Vue to React or from jQuery to Angular
are a common occurrence. An Interaction Model isolates your backend code from
that very changeable frontend code.

But no solution is perfect, and there are some trade-offs as well:

Extra maintenance
Adding an additional layer means that you have additional code to maintain. It
also means that you have to think about how to avoid polluting the Interaction
Model with details of your frontend client libraries while still representing the
client interactions appropriately.

Additional code size
Writing an Interaction Model results in more code—which when in JavaScript as
part of client application means that the code must be downloaded each time into
the browser. That means a longer load time.

There are other ramifications as well. In a multimodal architecture (where you are
building several different Client Applications for different purposes or communities),
there are concepts that span multiple different technology platforms. The concept of
a user is something that exists regardless of whether the user is interacting with a
system through a web application or through a Mobile Application. Allowing the user
to carry their identity through the different channels is important to the user in order
to follow the principle of least astonishment but also is vitally important in debugging
problems where users may find different results for the same interaction on different
platforms. This also leads to the need for consistent logging. To implement this, you
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sometimes have to implement duplicate logging logic for each channel type. This
ensures that these complex multimodal systems can be debugged.

The Interaction Model serves as the only point of interaction between any user inter‐
face frameworks and the backend server. This makes it possible for the Interaction
Model to also serve as the point of contact to other common libraries that may also
change, such as logging libraries. If you have common code (or at least dependency
injection aspects) to deal with tracing and observability, it is possible to trace requests
through all layers of the system regardless of the particular UI being used. This
interaction, including sharing common code like a User object between multiple
Interaction Models, is shown in Figure 8-25.

Figure 8-25. Interaction Model Relation to common code

In this case, the minimum code sharing you can have across multiple Interaction
Models in a system is to reuse common objects like a user or a logging library. In
some cases, if the language you are working in allows it, you may also want to have
the different Interaction Models descend from a common superclass to allow you to
push up some of these common functions like logging, user management, or even
connection to backend Dispatchers into the superclass. This is difficult if, for instance,
you implement your Mobile Application in Swift and your Single-Page Applications in
JavaScript, but if you are choosing to use the same language (for instance, JavaScript
with a framework like React) for multiple different types of Client Application, you
may be able to reduce overall code bulk in this way.

The Interaction Model is a broadened view of the Application Controller (Patterns
of Enterprise Application Architecture, 2002) pattern. That pattern was also concerned
with the separation of UI from business logic, and sequencing or selecting UI oper‐
ations, but is more tightly tied to page-based web interface technology, which is
only one example of the Interaction Model—see Browser Application (410) and its
newer descendants, Single-Page Application (421) and Micro Frontend (426). How‐
ever, the idea of business logic separation and explicit modeling of user interaction
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expands to many other areas as well—most notably as Mobile Applications (430) and
Command-Line Interfaces (437) but also to other technologies, such as chatbots.

Conclusion: Wrapping Up Cloud Application Clients
In this chapter, we’ve looked at an important but often overlooked set of decisions
that make up a critical part of a cloud application: examining your choices for the
application’s user interfaces. We emphasize user interfaces, plural because too often
teams make only one choice in how to implement the user interface. Today, multimo‐
dal interfaces have become the norm and should be considered when building user
interfaces for Client Applications (406). This multimodal interface decision allows for
the development of user interfaces for optimal use of the user’s device that remotely
accesses the functionality in the application running in the cloud—allowing you to
provide different types of user interfaces to support different types of users and
different types of devices.

This is achieved by surrounding an application core by various adapters that serve
different purposes. The UI styles we introduced help separate the business logic
they rely upon through the adapters in a Ports and Adapters architecture. A Client
Application should interface with the Cloud Application (6) via a Service API (70),
typically implemented by a Dispatcher (140). Thus the API can remain stable while
the Cloud Application evolves so that developers can evolve the Client Application and
Cloud Application independently of each other.

There are different kinds of Client Applications that support user experience of
their cloud applications—these can come in many forms, from the most common
approach, a Browser Application (410), to Mobile Applications (430) and other forms
that teams should also carefully consider, like a Public API (443) or a Command-Line
Interface (437). These are usually built using some form of a Ports and Adapter
architecture, which often uses Dispatchers that provide a unified API for clients to
interact with the internal business logic. In this case, to complete an end-to-end
architecture across the chapters up to this point, we also see how Repositories map to
specific Backend Services (106) and Cloud Databases (311), allowing requests to pass
all the way from user interface to database or other service (see Figure 8-26).
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Figure 8-26. Client Applications within Ports and Adapters

The history of the Browser Application provides several implementation options that
teams, again, may not consider by default but should consider carefully. A Web Form
Application (414) is something that can be quickly built for simple cases—and even
in more complex cases may be the best option for implementation. The Single-Page
Application (421) based on JavaScript running in the browser is the most common
choice, but even that has issues, some of which are resolved by building Micro
Frontends (426). When building these Client Applications, Interaction Models (448)
can help abstract away user interface library details and allow for better testing and
separation of concerns.

What we’ve covered up to now are all of the necessary pieces to build new cloud
applications. However, not every application starts fresh. You may have existing
applications that are not in the cloud. The next chapters will cover how to make
existing applications available on and better suited for the cloud.
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CHAPTER 9

Application Migration and Modernization

While an application can be designed new for the cloud, a Cloud Application often
begins as one that runs in traditional IT and then is moved to the cloud.

So far in this book, we have assumed that when designing and architecting an
application for the cloud, you are creating a new greenfield application from scratch.
While greenfield development can be ideal, the reality is that many Cloud Applica‐
tions (6) start their lifecycle as traditional IT applications that are later moved to
the cloud. These existing applications were designed for traditional IT and not for
the cloud. As explained in Cloud Applications (Chapter 1), legacy applications often
embed characteristics that work fine on traditional IT but are poorly suited for cloud
computing.

This chapter explores how to move an existing application to the cloud and make
it run better on the cloud. For these legacy applications to work well in the cloud,
developers need to not only move the application to the cloud but often also modify
the application to incorporate more of the best practices in this book.

Introduction to Application Migration and Modernization
The development effort to move an application to the cloud is often described as
migration and modernization. Migration moves the application to the cloud, while
modernization modifies the existing application to make it work better in the cloud.

Before we dive into patterns for moving applications to the cloud, we’ll review some
background information that is helpful for understanding them. While some of
this background comes from industry practices, much of it draws from principles
presented earlier in this book. Presenting a recap of these principles here serves as
a refresher—as well as an opportunity to show how they fit together to facilitate
migrating and modernizing applications.
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To develop this context, we’ll review several concepts. First, we’ll return to the NIST’s
definition of cloud computing, specifically expanding on the three service models
and the capabilities they provide for hosting applications. Second, we’ll explore
inhibitors to modernizing legacy applications, particularly the relationship between
existing user requirements and technical debt. Third, we’ll review the fundamentals
of structuring and hosting an application—platform, architecture, and packaging—
as well as how client/server and Cloud-Native Architectures (58) contribute to mod‐
ernizing an application for the cloud. Fourth, we’ll review industry-standard cloud
migration strategies, which include modernization.

Finally, we’ll introduce the four patterns for migration and modernization: Lift and
Shift (470), Virtualize the Application (475), Containerize the Application (478), and
Refactor the Monolith (484). We’ll also introduce two best practices for how to do it:
Start Small (492) and Pave the Road (496). We’ll summarize how these fit together
while also incorporating these foundational principles from earlier in the book.

Cloud Computing Service Models
The primary difference between a traditional IT application and a Cloud Application
is how it is hosted. The introduction to Cloud-Native Application (Chapter 3) dis‐
cussed the National Institute of Standards and Technology (NIST) definition of cloud
computing, including the NIST’s three service models of cloud computing. A cloud
platform organizes cloud services into these three service models:

Infrastructure-as-a-service (IaaS)
Physical and virtual servers with compute, storage, and networking capacity

Platform-as-a-service (PaaS)
Orchestrated application runtime environments

Software-as-a-service (SaaS)
Complete application software

Figure 9-1 illustrates the models, showing which services are managed by the cloud
platform and which the user must manage.

All of the service models—as well as traditional IT—are composed of nine services
(i.e., capabilities) for hosting applications. With each successive service model, the
cloud platform manages more of these capabilities:

Virtualized infrastructure - IaaS
The cloud platform manages compute servers, storage, and networking, as well
as their virtualization
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1 Function-as-a-service (FaaS) has become a popular cloud model which is beyond the scope of this book.

Managed runtime environment - PaaS
The cloud platform extends IaaS to also manage the runtime, middleware, and
operating system for the user-provided application and data

Managed application services - SaaS
The cloud platform manages all of the services, including providing the applica‐
tion and its data as software for applications or users to consume as a service

Figure 9-1. Cloud computing service models1

With each level, the standardization increases, thereby lowering time-to-value and
making solutions faster to develop. With increased standardization comes less
opportunity to customize the environment, so the application must conform to the
environment.

Modernization and Technical Debt
Whenever you are developing an application that runs in the cloud, you need to
know whether you are migrating an existing traditional IT application to the cloud
or developing a new greenfield application specifically for the cloud. Much like with
traditional IT applications, the decision of whether to create a new application from
scratch or update an existing application depends first on whether there’s an existing
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application that matches the current user requirements and, if so, how much techni‐
cal debt is embedded within that existing application. These scenarios determine
whether to modernize an existing application or create a new one:

Novel user requirements
If the user requirements are sufficiently novel—perhaps to enable an enterprise
to support a new line of business or a new and highly innovative approach to
serve an existing customer base—then a good choice is to start developing a new
application.

Established user requirements
If the user requirements are ones that have been well-known to the enterprise
for some time, the enterprise probably already has at least one application that
performs those requirements. If an application exists for most of the current
requirements, the decision hinges on technical debt:

Minor technical debt
If an existing application is fairly easy to maintain, it may be relatively easy
to migrate to cloud and is a good candidate for migration. Of course, it only
makes sense to migrate the existing application as long as the application
matches the current requirements.

Major technical debt
If the existing application is already difficult to maintain, it may be quite
difficult to migrate. If it is not a very close match to the current user require‐
ments and would need a lot of changes just to fulfill the requirements, it
may not only be difficult to maintain but also not worth maintaining. In this
case, you should consider either starting a new application from scratch or
planning on a modernization effort that sooner or later requires rewriting so
much of the code that it may feel like a new application.

Even if an application has a lot of technical debt, there are techniques to move it to
the cloud with relatively few changes, which may be worthwhile as long as it fulfills
the current requirements well. However, moving an application to the cloud as is does
not fix its technical debt, so the debt will move to the cloud as part of the application.
For the application to truly take advantage of the strengths of the cloud, the technical
debt will have to be repaired, and that may still require significant rewriting of the
application.

Application Fundamentals
What are the options for migrating an application to the cloud and modernizing an
application for the cloud? To answer that, first let’s consider the aspects of what we
call an application—cloud or otherwise.
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An application can vary in three aspects:

Platform
The location for hosting the application can be traditional IT or cloud.

Architecture
The application can be structured as a Big Ball of Mud, a Modular Monolith, or a
Distributed Architecture.

Packaging
Each process can run in a bare metal server, a virtual server, or a container.

Each of these aspects varies independently, so any combination is possible. A Big
Ball of Mud can be virtualized or containerized and hosted on traditional IT or on
the cloud, as can a Modular Monolith. Many cloud platforms provide bare metal
servers as a service, just like traditional IT infrastructure, and so bare metal can be
used to host an application with any architecture on traditional IT or on the cloud.
Virtual servers and containers can be hosted on traditional IT or the cloud. Rather
than explore all 18 possible combinations, we will explore each aspect individually,
knowing that they can be combined as needed.

An application embodies a combination of those three aspects. For any combination,
two more optional aspects can be added:

Client/server
Separate the user interface from the rest of the application so that it can be hosted
in the user’s web browser or mobile device while the rest of the application is
hosted on a remote server or in the cloud.

Cloud native
For an application to run well in the cloud, it must be architected for the cloud,
which also structures the application to run better on traditional IT as well.

Let’s explore all of these aspects of structuring and hosting an application in more
detail.

Platform
There are two fundamental choices for how to host an application:

Traditional IT
This is the newish term for what we previously called an application installed on
a computer. Each enterprise had its own equipment it managed, which was the
hardware that applications were deployed onto. The application developers knew
exactly what infrastructure the application would be deployed on, and if the
enterprise changed the infrastructure significantly, the application would have to
be modified accordingly.
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Cloud
This is computer equipment that is virtualized to abstract the infrastructure
that the operations team manages and separate it from the applications that
the development team creates. Cloud computing facilitates a vendor/customer
relationship between the provider of the cloud infrastructure and customers who
provision capacity for their applications.

Cloud Applications (Chapter 1) explained common characteristics of traditional IT
applications that hinder them from working well on the cloud. This chapter explains
how to move an existing application from traditional IT to the cloud.

Architecture
In Application Architecture (Chapter 2), we reviewed three fundamental application
architectures:

Big Ball of Mud (22)
A monolithic application with no discernible structure, where any code has
access to all other code and variables

Modular Monolith (29)
A monolithic application composed of loosely coupled, well-encapsulated code
modules

Distributed Architecture (38)
An application composed of code modules that can run on separate computers

The first two architectures are monoliths where the application runs as a single work‐
load in a single executable process. In an application with a Distributed Architecture,
each module runs as a separate workload in a separate process.

These architectures are independent of the platform. Any of these architectures
can be hosted on traditional IT infrastructure or cloud infrastructure. Whichever
platform hosts the application, its architecture doesn’t change.

Application migration and modernization
An application can be migrated to change its platform and modernized to change its
architecture.

Figure 9-2 shows how migration relocates the application from one platform to
another without changing its architecture, whereas modernization transforms the
application from one architecture to another without changing its platform.
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Figure 9-2. Application migration and modernization

Either or both approaches can be taken. A traditional IT application can be migrated
to cloud, maintaining the same architecture. An application on traditional IT or
cloud can be modernized to a more sophisticated architecture. An effort to update an
existing application will often both migrate it to a new cloud platform and modernize
its architecture.

Packaging
Another way to modernize an application, in addition to evolving its architecture—is
to package the application, which encapsulates it better to simplify its deployment.
Each of an application’s components that will run as its own process can be packaged
for deployment in one of three ways:

Bare metal server
Don’t package the component; just install it and its runtime directly onto a
computer’s operating system.

Virtual server
Install the component with its runtime and operating system into a virtual server
image that can run in a hypervisor.

Container
Install the component with its runtime and operating system libraries into a
container image (ideally one that is Open Container Initiative (OCI)–compliant)
that can run in a container engine.

An application’s packaging does not change its architecture. The way the architecture
is packaged determines how its runtime will be hosted.
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With these three ways an application can be packaged for deployment, this chapter
describes migration strategies that take an application currently running on a bare
metal server and either changes the hosting or modernizes the packaging. There are
three options:

1. Lift and Shift simply changes how the application is hosted without modernizing1.
the packaging.

2. Virtualizing an Application modernizes the packaging so that the application can2.
run in a hypervisor.

3. Containerizing an Application modernizes the packaging so that the application3.
can run in a container engine.

Virtualizing an Application and Containerizing an Application are alternatives. Either
can be combined with Lift and Shift to both modernize an application’s packaging and
migrate it to the cloud.

The packaging options are shown in Figure 9-3.

Figure 9-3. Application packaging modernization

Modernizing an application’s deployment packaging evolves it to make it more
sophisticated. Figure 9-4 shows the three deployment packaging options and how
each is more sophisticated than the last.
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Figure 9-4. Application packaging evolution

Developers may evolve an individual application through these stages over its life‐
time. In Application Architecture (Chapter 2), we saw that an application’s architec‐
ture can evolve—much like how bicycles have evolved to become more sophisticated.
Similarly, an application’s packaging can also evolve, from a bare metal application to
a virtualized application to a containerized application. The application or distributed
module is still the same, but each stage improves how it is deployed and run. The
intermediate stage is optional.

Client/server
If an application is hosted centrally where it can be managed and shared, its user
interface needs to be hosted on the user’s computer. The Introduction showed how
application architecture evolved from a monolithic application that ran on a single
computer to one with a client/server architecture where the client application runs
on the user’s computer and the server application runs remotely on a centralized,
shared computer. Cloud architecture is a specialization of client/server architecture
where the server is the cloud. In Cloud Application Clients (Chapter 8), we saw that
an application hosted in the cloud needs this client/server split.

Modernizing an application’s architecture for the cloud requires dividing the applica‐
tion into two client/server parts:

Client Application (406)
The user interface that runs on a user’s computer

Cloud Application (6)
The shared, multiuser functionality that runs in the cloud

This architecture enables users to access a Cloud Application remotely via a network
connection (such as the internet), which in turn enables a range of user interface
types (e.g., web browser, smartphone app, etc.) to access the Cloud Application. A
simple app on a smartphone can have the power of a supercomputer via its connec‐
tion to its Cloud Application.
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Cloud native
The Introduction went on to show how application architecture evolved from client/
server, where the server might be the cloud, to a Cloud-Native Architecture (58)
that structures the application to run well on the cloud. Cloud-Native Application
(Chapter 3) elaborated on this goal, explaining the advantages of an application with
a Cloud-Native Architecture, with other patterns showing details of how to establish
this architecture within an application. Cloud-Native Architecture can be optionally
added onto any of the structure architectures: A Big Ball of Mud can be made cloud
native (although it won’t be easy!). A Distributed Architecture is usually easier to
evolve further into a Cloud-Native Architecture.

Modernizing an application’s architecture for the cloud requires transforming it to a
Cloud-Native Architecture, one designed to use the cloud to run as well as possible.
This evolution divides the two-part client/server application into three parts:

Client Application
The part that runs on a user’s device (same as with client/server architecture)

Cloud Application
The part that runs in the cloud that is developed custom for a particular user
functionality

Backend Service (106)
The platform services that are developed by third-party vendors to be reused by
multiple applications

This architecture enables developers to focus on developing the functionality specific
to their enterprise’s domain that makes their application unique while reusing plat‐
form services to perform common tasks.

A Distributed Architecture combined with a Cloud-Native Architecture forms a Micro‐
services Architecture (Chapter 4), where each cloud-native Distributed Architecture
module is a Microservice (119).

Cloud Migration Strategies
Developers often refer to the Rs of cloud migration, which are strategies for how to
perform migration and modernization well. Gartner published in 2010 what became
known as the 5 Rs of cloud migration: rehost, refactor, revise, rebuild, and replace. In
2016, Stephen Orban revised these into “6 Strategies for Migrating Applications to the
Cloud”. The 6 Rs of cloud migration are:

Rehosting (rehost)
Also known as lift-and-shift, this strategy moves an application from traditional
IT to the cloud with as little change as possible—making it the quickest and
easiest way to move to the cloud. It doesn’t improve the application, but hosting
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it in the cloud can be more efficient and less expensive than maintaining private
data center capacity. An application may be easier to rearchitect for the cloud
after it’s already been moved to the cloud.

Replatforming (revise)
Also known as lift-tinker-and-shift, it moves an application to the cloud as is but
rehosts parts of the application in the cloud platform’s managed services when
possible. For example, a component hosted on prem on a bare metal server or
in a VMware VM might be migrated to the cloud’s virtual server platform, such
as AWS’s EC2. Relational data hosted in an Oracle database on prem might be
rehosted in a relational database service on the cloud, such as Azure Database
for PostgreSQL. The application maintains its current code and architecture but
takes advantage of the cloud platform’s operations and software licensing.

Repurchasing (replace)
This strategy replaces an application with commercial software hosted in the
cloud. For example, rather than continue to maintain a custom on-prem applica‐
tion for customer relationship management (CRM), enterprise resource planning
(ERP), or human resources (HR), replace it with an application hosted in the
cloud, such as Salesforce, NetSuite, or Workday.

Refactoring / Re-architecting (refactor, which can evolve into rebuild)
This strategy modifies an existing application for cloud, typically to make it more
cloud native. This is the most effective strategy for an existing application to
take advantage of the cloud but also the most difficult. An application can be
so difficult to refactor—perhaps because it is customized for specific hardware
or simply because it contains so much technical debt—that the effort effectively
becomes replacing the application. If replacement looks necessary, it is easier to
rebuild it from scratch rather than trying to refactor it.

Retire
An application may be running but without anyone using it. If so, rather than
move it to the cloud, simply shut it down—no one will miss it.

Retain
If an application is too difficult to move to the cloud, but is still useful and still
works, simply continue to run it where it is. An application may be too locked
into its on-prem environment to move to the cloud, a multitenant public cloud
may be considered too much of a security risk, or hosting an application in a
data center in another country may not be allowed. Or the application may be too
riddled with technical debt to refactor. In any of these situations, leave it alone.

Any of these strategies is a viable decision for how to move an application to the
cloud (or, in the case of retiring or retaining, deciding not to move it). Of these, three
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focus on migrating and modernizing an application on the cloud: rehost, replatform,
and refactor.

Migrating and Modernizing Applications in the Cloud
The considerations for developing an application that runs in the cloud are as follows:

• How to host the application in the cloud.•
• Whether to modernize an existing application or start a new one.•

You need to assess whether you have an existing application for the current require‐
ments, what technical debt is embedded within it, and whether it will be less effort
to migrate that existing application to the cloud than to develop a replacement
application from scratch. Once you have that in mind, you are ready to choose from a
set of patterns for migrating and modernizing an application:

Existing application
If you have an existing application that runs on traditional IT that you’d like to
migrate to the cloud, you have a couple of options:

• Lift and Shift (470): Rehost an application by migrating it without modern‐•
izing it, and perhaps replatform it as well to host some components in the
cloud’s managed services. A traditional IT application with any architecture
and packaging can be moved as is to the cloud. It’s a good way to start a
cloud journey, but it often leads to modernizing the application as well.

• Virtualize the Application (475): Replatform an application’s program and•
its components in a hypervisor. An application with any architecture that is
deployed onto bare metal servers can be modernized by packaging it to run
in a set of virtual servers, aka virtual machines. In the cloud, this approach
uses the IaaS service model. The Lift and Shift strategy is often combined
with this one to move an application from bare metal servers on traditional
IT to a similar set of virtual servers on the cloud.

• Containerize the Application (478): Replatform a program and its compo‐•
nents in a container engine. An application with any architecture that is
deployed onto bare metal servers or in virtual servers can be modernized by
packaging it to run in a set of OCI-compliant containers. This enables the
application to be hosted in a container orchestrator on traditional IT or the
cloud. In the cloud, this approach uses the PaaS service model.

• Refactor the Monolith (484): Refactor an application with a monolithic•
architecture, on traditional IT or the cloud, into a more modular architec‐
ture. A Big Ball of Mud can be refactored into modules to become a Modular
Monolith. The modules in a Modular Monolith can be refactored to each run

468 | Chapter 9: Application Migration and Modernization



separately in a Distributed Architecture. Strangle the Monolith (Chapter 10) is
a strategy for refactoring the application incrementally.

New Cloud Application (6)
The ultimate in refactoring an application is to rebuild the application entirely.
Whether starting from scratch or rebuilding an existing application, you must
design it from the beginning to run well in the cloud. Rebuild is the correct
strategy for an existing application with so much technical debt that it should
be replaced with a new one. While the new application can be designed for any
platform, architecture, and packaging, a Distributed Architecture will have the
most flexibility, and modules packaged as containers for a container orchestrator
on the cloud will be the easiest to deploy and give the cloud the greatest ability to
manage them. This may end up being the most challenging of all since in the end
you will be writing a new application.

These options are listed in order from the least to most cloud-friendly, from the
least amount of changes to an existing application to the most changes to writing a
new application from scratch. You can write a new application with the most basic
platform (traditional IT), the most basic architecture (Big Ball of Mud), and the most
basic packaging (bare metal, which is no packaging). But when starting from scratch
with no technical debt, developers these days should typically choose to start with the
most sophisticated approaches: a Distributed Architecture of containerized modules
to be deployed on the cloud. A refactored Cloud Application and a new Cloud Appli‐
cation produce equivalent results. By embodying distributed containerized modules,
both are well suited for the cloud. Where they differ is not in the resulting application
but in how they began. Either an existing application was converted to embrace the
cloud or a new application was built from the beginning to work well on the cloud.

The list is effectively ordered from the least cloud-native outcome to the most cloud-
native outcome. Because the cloud is distributed, any application deployed to the
cloud should ideally have a Distributed Architecture, either because it was written
that way from scratch or because an existing application was refactored to make it
modular and distributed. Until that is possible, the next best option is to containerize
the existing monolithic application so that it can be hosted in a container orchestrator
in the cloud. If that is not possible, at a minimum, host the application in virtual
servers in the cloud; the application is not much different, but at least it can more
easily be hosted on a cloud platform.

To perform these strategies, follow these best practices:
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2 Note that the Start Small and Pave the Road patterns evolved from the Strangler Patterns presented at
Pattern Languages of Programs 2020 by Joseph Yoder and Paulo Merson and a variation of these patterns
were described in the “Leading a Software Architecture Revolution” paper presented at Pattern Languages of
Programs 2022 by Marden Neubert and Joseph Yoder.

3 Ibid.

Start Small (492)2

Perform the work incrementally—not all at once, but in manageable chunks.

Pave the Road (496)3

Don’t make each team and developer invent their own practices; rather, build a
foundation of tools, environments, and policies for the developers to follow.

With these practices, migration and modernization will go much more smoothly.

This introduction has covered several topics that are helpful to be familiar with to
understand the patterns in this chapter. We’ve talked about the cloud computing ser‐
vice models, modernizing applications in the face of technical debt, the fundamentals
of architecting and hosting applications, and standard cloud migration strategies, and
we’ve introduced the patterns.

With this background in mind, let’s explore patterns for how to migrate and mod‐
ernize an existing application: Lift and Shift (470), Virtualize the Application (475),
Containerize the Application (478), and Refactor the Monolith (484). Then we’ll look
at how to perform these tasks: Start Small (492) and Pave the Road (496).

Lift and Shift
(aka Rehost)

You have an existing application, typically hosted in bare metal servers, that you
want to migrate onto the cloud. To minimize time and effort, you want to change
the application as little as possible. Although that will not give your application
many of the advantages of the cloud, you still want the advantages of hosting the
application in cloud infrastructure because it provides more flexibility and efficiency
than traditional IT infrastructure. The cloud infrastructure is presumably a vendor’s
public data center but could also be your enterprise’s private data center.

What is the simplest possible way to move an existing application to the cloud?

The existing application may or may not be well-architected for the cloud, but you
don’t have the luxury of rewriting the existing application right now. Making signifi‐
cant changes to an existing application to make it run better in traditional IT takes
time, effort, and skill, complexities that are magnified when modernizing a traditional
IT application for the cloud. Maybe later you’ll modernize it to make it more cloud
native, but for now, you just need to get it out of your enterprise’s data center and
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into a public cloud–or at least off of traditional IT and into a private cloud. There are
other issues you may also have to consider:

• Writing an application following a Cloud-Native Architecture (58) requires skills•
that your team may not possess. They may not be familiar with how to refactor
into Microservices (119), or they may not have experience with the new tools,
frameworks, and languages that a Cloud-Native Architecture would require.

• You may not be able to afford the development effort to rewrite or refactor an•
application into a Cloud-Native Architecture. You may have financial constraints
on how much you can spend on rewriting or refactoring your application.

• You may have constraints on how rapidly a solution to move to the cloud must•
be. You may, for instance, be shutting down an on-premises data center, requir‐
ing applications to move to a new location, which increasingly means moving
them into the cloud. Often these moves need to happen quickly, meaning that
you don’t have the luxury of exploring other options.

What you need is an environment in the cloud that closely matches the traditional IT
environment the application runs in.

Therefore,

Lift and Shift an existing application to the cloud by creating a set of compute
servers in the cloud that match the traditional IT computers the application has
been installed on and reinstalling the application into those cloud servers.

This is the first of the 6 Rs of cloud migration: Rehosting. Relocate (rehost) the appli‐
cation as is from a set of traditional IT computers to a similar set of cloud servers.
The relocated application will still run the same way it always has, but it will run in
the cloud. Figure 9-5 is an example of how to Lift and Shift a monolithic application
to the cloud without making any changes to the application. Note that could be a very
entangled system or modularized. It could have pieces of the application that could be
Lifted and Shifted to different cloud servers, especially if there were remote calls in the
original system.
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Figure 9-5. Lift and Shift

A Lift and Shift migration is the most straightforward and least intrusive path
for cloud adoption. It migrates the application but doesn’t modernize it. It moves
the application to the cloud while keeping code changes to a minimum. Whereas
most approaches to application migration and modernization rearchitect your appli‐
cation to work in the cloud, the Lift and Shift approach preserves the application’s
architecture and instead changes the cloud to match your existing traditional IT
environment.

There are four basic steps that you need to take to make a Lift and Shift possible:

1. Duplicate compute environment
You need to ensure that you can create a compute environment in your cloud
provider that duplicates as closely as possible the compute environment the
application was built for. You need to ensure that the cloud vendor supports the
operating system product and version that the application was built for, or that
the application dependencies on the version are so minimal that no code changes
are necessary to run on a new version.

2. Duplicate network environment
You need to ensure that you can duplicate the application’s networking depen‐
dencies in the cloud. This requirement depends on the application. While some
traditional IT applications may be flexible enough that the network dependen‐
cies between components can be adjusted in configuration files, many require
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customizing the network configuration. Cloud servers are typically hosted in a
Virtual Private Cloud (VPC), which creates a private network. For applications
that require network customization, the VPC’s private network can be configured
with any application dependencies, such as specific network addresses. Many
public clouds facilitate this by enabling you to Bring Your Own IP (BYOIP)
addresses to the cloud, relocating IP address ranges from traditional IT on prem
to the cloud. A VPC’s private network can also manage application isolation
using virtual firewalls, routers, and gateways.

3. Connect to on-prem resources
An application may need to continue to connect to existing on-prem resources
that cannot be relocated to the cloud, such as systems of record and databases
of record, as well as the enterprise’s existing corporate security components, such
as single sign-on (SSO) and authorization products, monitoring, and backup
utilities. The enterprise’s security requirements may require all requests to the
application to come in through an enterprise intranet rather than directly from
clients on the global internet. Many public clouds facilitate connecting to remote
data centers using features such as dedicated network connections over private
telephony networks (often called direct connect or direct link) as well as virtual
private networks (VPNs) over the internet.

4. Resolve data dependencies
You need to ensure that the application can access the data it needs, either in a
Cloud Database (311) or through an external connection through the enterprise
intranet to existing databases of record. Moving the data to a Cloud Database
provides much better performance and is easier to set up than a secure remote
connection to the enterprise intranet, but shared databases are difficult to move,
and data residency requirements may mean that the database isn’t allowed to be
moved.

This is a seemingly daunting list, but this is the minimum set of steps that have to
be carried out to move an existing application onto the cloud. The good news is that
there are many tools provided by cloud providers and other vendors that can help
you perform this kind of migration. For example, the AWS Application Migration
Service assists in workload migration. Azure Migrate likewise guides users through
discovery, assessment, and migration to their cloud.

Lift and Shift is a lightweight migration strategy and has the potential advantage
of being able to complete the migration in a short amount of time. It can also be
less complex for migrating features and various permissions. This technique also
minimized risk for disruption during migration.
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Lift and Shift has the drawback of not getting the full advantage early on of a
full-featured Cloud-Native Architecture. This might lead to missed opportunities and
poor cost optimizations. Third-party applications can also be challenging to migrate
using Lift and Shift if you cannot exactly duplicate the on-premises environment that
the vendor application requires.

Finally in a Lift and Shift, you often don’t gain any operating expense benefits.
Essentially, in a Lift and Shift, you are only moving the application without changing
the processes and tools you use to manage, operate, or deploy the application. You
trade operating expense (aka OpEx; the monthly bills from a hyperscaler) for capital
expense (aka CapEx; purchasing, operating, maintaining, and depreciating your own
data center equipment). If you do not take advantage of the operating features of
a cloud-native platform (such as DevOps tools, Containers, etc.), your agility gains
will likewise be minimal as development and operating tasks will likely take the same
amount of time as in the on-premises environment.

The term Lift and Shift often refers to a combination of strategies:

• Move the application from traditional IT to the cloud.•
• For an application hosted on a bare metal server, Virtualize the Application (475)•

to host it in a virtual server that can be configured the way the traditional IT
computer is configured. You can even Containerize the Application (478) so that
its parts can be hosted in a container orchestrator. If the application is hosted in
parts on multiple bare metal servers, virtualize or containerize each part.

• Migrate the application’s dependencies to the cloud by hosting them in the•
cloud platform’s Backend Services (106). This involves migrating to Application
Databases (328), which can be hosted as Database-as-a-Service (378).

Often the application being moved using Lift and Shift is a monolith. Refactor the
Monolith (484) to modernize it into a Modular Monolith (29) or even an application
with a Distributed Architecture (38). This process can be performed incrementally by
Strangling the Monolith (514).

Examples
Capital One has spoken at several conferences about its cloud modernization journey.
They have described how rehosting (e.g., Lift and Shift) has been one of many
strategies they followed across their portfolio.

Accenture has an interesting case study of how they helped Corteva (formerly part of
Dupont) to migrate their LIMS (Laboratory Information Management Systems) onto
Azure through a Lift and Shift.
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Virtualize the Application
You have an existing application that you want to migrate onto the cloud, perhaps
using Lift and Shift (470). You want to avoid changing the way the application is
written but are willing to change how the application is packaged for deployment so
that it will run better in the cloud.

What is the simplest possible way to package an application so that it can easily be
deployed to traditional IT or to the cloud?

Lift and Shift deploys an application to the cloud as closely as possible to the way it
was deployed to traditional IT. An application is typically deployed on traditional IT
by installing it in the operating system running on a bare metal server.

Bare metal servers are also an option on many cloud platforms. They are good for
specialized uses like high-performance computing (HPC) and workloads that need
an extremely customized environment, such as a specialized CPU or GPU. But for
general workloads, bare metal servers are unnecessarily inflexible and difficult for
the platform to manage. Most applications do not require bare metal’s efficiency.
Rather, they would benefit more from the flexibility that the cloud enables for many
workloads to share a set of hardware. Some of the problems of bare metal servers are
as follows:

• Bare metal servers require relatively more operational resources than other com‐•
puting options, such as virtualization or containerization. To run an application
on a bare metal server, operations personnel must first install the operating
system (OS) on the server, install any middleware or other dependencies needed
to run the application, and then install the application into the OS. This process
can be at least partially automated using automation technologies like Ansible,
but that automation must still be written or at least located and tested.

• Bare metal servers do not benefit from the ability of Cloud Applications (6) to•
transparently take advantage of any available server on the cloud. If a bare metal
server fails, another server must be provisioned and the OS, application, and all
its dependencies reinstalled.

An application installed on the operating system running on a bare metal server
is therefore tightly bound to that server. Ideally, operations should install the applica‐
tion into the operating system once and then be able to move that package from one
server to another without having to start from the ground up each time.

Virtualize the Application | 475

https://oreil.ly/kja4G


Therefore,

Virtualize the Application by packaging the application as a virtual server so that it
can be hosted in a hypervisor. The hypervisor can be hosted in the cloud, thereby
hosting the application in the cloud.

When you Virtualize the Application, the application does not change; what changes
is how it’s installed. Rather than install the application on a bare metal server, install
it in a virtual server, which can run in a hypervisor in the cloud (see Figure 9-6). All
cloud providers support at least one hypervisor type as part of their infrastructure-as-
a-service (IaaS) offerings.

Figure 9-6. Virtualize the Application

A virtual server packages an application installed in an OS so that the package can
run in a hypervisor. If an application is packaged as an Application Package (62), it
is especially easy to deploy, including installing into a virtual server’s OS. Wherever
the hypervisor can be hosted, the virtual server can be hosted, and so the application
can be hosted there as well. Virtualizing the application avoids having to install the
application into the OS more than once. The application is installed in the OS once
and is packaged as a virtual server, and that virtual server can be run repeatedly in
multiple hypervisors hosted in multiple environments without having to reinstall the
application in each one.

Cloud works more effectively by running workloads in the infrastructure-as-a-service
(IaaS) service model, where all of the hardware components are virtualized. Virtuali‐
zation enables the cloud to manage workloads more efficiently, such as enabling a
single set of hardware to host multiple workloads that share the hardware, easily relo‐
cating a workload from one set of hardware to another. Virtualization also enables
the cloud to allocate each workload exactly as much capacity as it needs, and perhaps
even to grow and shrink that capacity elastically to adjust to changes in client load.
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To host an application in a virtualized environment, developers need to package
the application so that it can be deployed to a virtualized environment. Packaging
applications as virtual servers makes them all look alike to the hypervisor, enabling a
hypervisor to run a server without regard to the application’s specifics.

Most applications can run successfully in virtual servers because virtual servers work
very much like their physical counterparts, bare metal servers. An application usually
requires an OS, so the bare metal server must host the necessary OS, which may need
to be customized for the application. Likewise, each virtual server hosts its own OS,
which the hypervisor calls the server’s guest OS and which can also be customized
for the application. The application can be installed on the guest OS the same way
it’s installed on the OS on a traditional IT’s bare metal server. Each virtual server can
host a different guest OS, enabling applications that require different OSs to run in
the same hypervisor on the same bare metal server.

The biggest advantage of Virtualize the Application is that once an application is
virtualized, it is no longer tied to a specific physical machine (like a bare metal
server). It can move to any hypervisor within the cloud environment, which makes
it easier and faster to recover from failures (in fact, this is automatic as images
will restart on another hypervisor or machine whenever an image crashes). What’s
more, patching of the OS or application becomes a more repeatable process, as the
work is done in a development environment where the new version of the OS and
application are tested outside of production long before the new image is released
into production.

Perhaps the biggest drawback of Virtualize the Application is that when you virtualize
an application, you are doing so for a specific hypervisor. If you want to use the
Amazon Elastic Compute Cloud (EC2) service, you need to package your application
as an Amazon Machine Image (AMI). If you are using VMware as your hypervisor,
either on premises or in the cloud, you must package your application as a VMware
Virtual Machine Disk (VMDK) file. There are tools like HashiCorp Packer that aid
you with building images for multiple different formats, but you must build these
into your deployment process.

Because of this need to build images for a specific hypervisor, images often end up
becoming “sticky” to a particular hypervisor as teams are less incentivized to move
the application to another hypervisor, even if there are technical or cost advantages,
because of the work required to repackage and redeploy the application. What’s more,
even in the cloud, there are operational differences (in tools and procedures) between
managing images on each of the different cloud providers, which again, leads to
“stickiness” to hypervisors and cloud providers.
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To move an application to the cloud, Lift and Shift and Virtualize the Application are
often combined: each application hosted on a bare metal server in traditional IT is
converted into a virtual server hosted in a hypervisor in the cloud. Most applications
can be virtualized, and this approach enables IaaS to host and manage the application
rather than traditional IT.

Most applications that can be virtualized can further be containerized, and Contain‐
erize the Application (478) enables the cloud to host the application even more
efficiently than virtualization.

If the application to be virtualized is a monolith—Big Ball of Mud (22) or a Modular
Monolith (29)—developers can Refactor the Monolith (484) into a Distributed Archi‐
tecture (38).

A virtualized application can be redesigned further to make it embody more of a
Cloud-Native Architecture (Chapter 3), which makes it even easier to run on the
cloud.

Examples
Application virtualization has been well-established for so many decades that there
are literally hundreds of case studies on the advantages of virtualization over running
on bare metal servers. Among those are the following:

• Amazon has published a case study of how Swire Coca-Cola used both Lift and•
Shift and Virtualize the Application to move from their on-premises data centers
into the AWS cloud.

• VMware, together with Forrester, has done a Total Economic Impact study of•
adopting VMware on AWS at a public university.

What makes these studies interesting is that they show the advantages of Virtualizing
the Application into a cloud environment.

Containerize the Application
You have an existing application that you want to migrate onto the cloud, or you
have already used Lift and Shift (470) to move it onto the cloud. You want to avoid
changing the application but are willing to change how the application is packaged
for deployment so that it will run better in the cloud.

How can an application be packaged to facilitate greater deployment density and
platform portability?

With greater deployment density, more applications can run on the same amount
of capacity, thereby using the hardware more efficiently. Platform portability enables
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packaging an application once that can then be deployed on any cloud, public or
private. The developers can change their minds about which cloud platform to use
and redeploy to a new platform without having to repackage the application.

One way to package an application is to Virtualize the Application (475), which pack‐
ages an application as a virtual server image. Virtual servers are highly customizable,
which facilitates being able to host just about any traditional IT application, but are
also very heavyweight. You can be more efficient with cloud resources when you
host an application in a container rather than a virtual server because containers are
lighter weight than virtual servers. When a packaged application is lighter weight,
it starts up faster and can scale more easily within the same memory and CPU
footprint.

However, most IT shops are very comfortable with virtual server technology because
it has been available on premises with traditional IT for decades and skills exist to
support well-known technologies (such as VMware ESXi). That makes virtualization
an easy place for teams to start since they believe they can build on existing skills,
even though the particular hypervisors and tools for virtualization on the cloud are
often different.

But there are other aspects of virtual servers that also make using them sometimes
challenging:

Patching
Virtual servers are originally created from images that begin from a known level
of software (operating system, middleware, and application). The problem is that
virtual servers often run for a very long time, incentivizing operations teams to
apply patches to the running software rather than build a new server image and
entirely replace the existing virtual server. That causes drift, which means that
it becomes more difficult to debug problems in virtual servers when they occur.
This is why patching is an anti-pattern, as explained in The Twelve-Factor App:
V. Build, release, run, which was introduced in the Cloud-Native Application
(Chapter 3).

Proprietary
Virtual server technology has not been standardized to the level of other packag‐
ing technologies. There is often significant work involved in porting a virtual
server image to another hypervisor or virtual image format.

Overhead
Virtual server technology often has a higher operating cost than other technolo‐
gies (such as containers) because of the lower density and greater effort required
to create, manage, and patch existing virtual servers. Even though startup costs
may be relatively low, the ongoing operating cost can be significant.
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So, much like Lift and Shift, Virtualize the Application often starts off very well as a
first step—it’s a great way to Start Small (492). However, as you get to the point of
scaling to greater numbers of applications and begin thinking about standardizing
techniques and approaches that work across your enterprise, you find that the lower
initial effort leads to higher effort over the longer term.

Therefore,

Containerize the Application by packaging the application as a container so that
it can be hosted in a container engine. The container engine can be hosted in a
container orchestrator that is hosted in the cloud, thereby hosting the application
in the cloud.

When you Containerize the Application, the application does not change; what
changes is how it’s installed. Rather than install the application on a bare metal server
or even in a virtual server install it in a container, which can run in a container engine
(see Figure 9-7). A container engine can run on a bare metal server or in a virtual
server, and is even more useful when running on a node in a container orchestrator
such as Kubernetes.

Figure 9-7. Containerize the Application

Containerization is the next evolution of application packaging beyond virtual
servers. A container packages an application with the OS libraries it requires so
that the package can run in a container runtime as part of a container engine. If an
application is packaged as an Application Package (62), it is especially easy to deploy,
including installing into a container. Whereas a virtual server includes a full guest
OS, a container includes only the additional OS libraries that the application requires.
Rather than each container including duplicate OS kernels, which is the biggest part
of the OS, multiple containers running in a single container engine share a single OS
kernel. This makes a container much more compact than a virtual server. Compared
to virtual servers, containers can be run in greater density on the same hardware,
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can start more quickly, and can reliably be shut down cleanly, making them ideal for
cloud-native applications. There are other advantages to containerization as well:

• Since a container shares the underlying OS kernel with the container platform,•
you can fit more containers into the same memory space than you can virtual
servers. Container images also take up less disk space than virtual servers due to
the way in which the container file system is built.

• Containers start up significantly faster than virtual servers because of the shared•
OS kernel and the fact that containers are running in a common shared process
space—there is simply less inside each container that needs to be started up.

• The way in which containers are built means that it is harder (by no means•
impossible, but much harder) to change a running container from the original
configuration (image) with which it was built. This sounds like a negative but is
instead a major positive to container technology. That means that containers do
not drift from their original configuration from when they were packaged, mak‐
ing them easier to operate since all containers created from the same container
image are absolutely identical. If a container fails, the new container that starts up
will be identical to the original in every way. This embodies The Twelve-Factor
App: V. Build, release, run.

• Containers are more portable than virtual servers. The container approach stan‐•
dardized early around image configurations (dockerfiles) and container runtime
engines built on a small set of open source projects. As additional projects
expanded on container technology, the creators of those projects were careful
to maintain compatibility with the earlier projects. Starting in 2015, the Open
Container Initiative (OCI) then proposed specifications within which all vendors
should maintain compatibility. As a result, if you build a container, it can usually
be moved across clouds and on-premises environments (such as Kubernetes
environments) more easily than a virtual server.

Cloud works more effectively by running workloads in the platform-as-a-service
(PaaS) service model, where the platform manages the application runtime and OS,
such that the developer has to supply only the application. A container orchestrator
(such as Kubernetes) accomplishes this, managing container engines running on
OS kernels. The developer is responsible only for the container that includes the
application.

The key question for adoption of Containerize the Application is, can the application
(that is, each of its processes) run in a container? There are a few considerations when
deciding whether an application can be containerized:

Operating system
A container, such as a Docker container, can run either Linux or Windows. The
application needs to be able to run in a current version of one of those OSs for
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containerization to work. This limits your options if your application only runs
on an OS that is not supported by a base container image, but luckily these two
options cover most applications.

Middleware
Does the application run in or depend on middleware, such as an application
server or database? If your application runs in a simple programming language
runtime that runs in a container OS (such as an Application Package (62)), the
application can be made into a container pretty easily. If the application requires
that it run in a more extensive application server or other middleware, that
server must be able to run in a container OS. Again, luckily this covers most
modern versions of middleware but may force you to migrate your application to
a supported version if only the latest versions are supported on a container.

Base image
You can create a container image from scratch for an application, but vendors
already provide base images for standard runtimes and application servers. So
if your application runs in a fairly standard runtime or application server, you
should build your image by starting with a vendor’s base image. If your vendor
does not provide a standard base image, you must build your own image and
install the middleware or application into the OS by writing your own installation
scripts and automation. This in particular means you may be at the mercy
of the vendor if the installation scripts are not amenable to automation (as is
true in many Windows installation scripts) or if it places requirements on the
installation (like connection to the internet) that may not be easy to meet in all
circumstances.

In the end, if your application is written in a common programming language,
runs on the latest versions of Linux or Windows, or uses standard commercial or
open source middleware, you are likely to be able to run it within a container fairly
easily. However, if your application or middleware places unusual restrictions on the
runtime environment, you may find it difficult to containerize and instead will be
better off Virtualizing the Application.

Containers are lightweight, can be more portable than virtual servers, and are faster
to manage and deploy than virtual servers. All of these factors can save time and
money with application deployment. Due to the standardization of container images
and runtimes, developers can package applications once and run them anywhere.
Containerization can make managing applications easier as they are isolated and
operated independently. Containers can assist developers in creating and deploying
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apps faster, and thus containers help in supporting decomposition of a monolith into
Microservices (119).

However, containerization as a process is not without its challenges:

• Existing development and deployment automation is often built to support vir‐•
tual server deployments. It takes time and effort to convert older automation to
containerization.

• Existing middleware or third-party applications may also be built or optimized•
only for virtual server environments. You may have to convert the middleware to
a version or product that supports containerization, which may involve rewriting
or updating your application.

• Lack of skills in container environments may be a barrier to converting develop‐•
ment and deployment processes and automation to support containers. You may
need to train your staff in this technology, which comes at a cost.

Containers can be difficult to build, especially manually. You are much better off if
you spend effort developing automation to build and deploy your containers in a
standardized way within your DevOps pipelines instead of letting each team solve
this problem on their own. This is a great way to Pave the Road (496) and let the first
teams adopting containers build reusable assets that later teams can adopt.

Container orchestration can be especially difficult to get right. Many teams try to
adopt container orchestration without having the skills in place to manage the con‐
tainer orchestration environment—it’s much better to have a common team with
those skills that can manage many different applications within shared orchestration
environments to leverage these rare skills. Adopting a common DevOps process to
make deploying applications as containers easier is also important, particularly a
build pipeline that compiles an application into deployment artifacts and packages
them in a container.

A containerized workload may not be the final destination in a cloud modernization
journey. Containerization may be all that’s needed in some cases, particularly if the
monolith is relatively small or if the team is able to deliver features at the rate and
pace you need. However, for larger monoliths where the complexity of the monolith
and/or testing time makes it impossible to deliver features at the pace the business
needs, you will want to Refactor the Monolith (484) to redesign it using Microservices.
Use Strangle the Monolith (514) to refactor it incrementally.

Another step in a cloud modernization journey is to redesign an application to make
it embody more of a Cloud-Native Architecture (Chapter 3). For example, if it runs as
a single process, its availability will improve as a horizontally scalable workload if you
can make into a Replicable Application (88).
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Examples
Containerization has been a well-accepted part of the computing landscape since
Docker was introduced in 2013, and as a result, there are many case studies available
that describe its successful adoption:

• The IBM CIO Office has been on a multiyear application modernization journey•
that has resulted in thousands of applications being moved from virtual servers
to containers in Kubernetes. This move to containers has resulted in a cost
reduction of 90% in operations costs and a 55% reduction in total operational
actions performed, as detailed in a case study.

• Tinder has documented how they moved their applications to containers and•
Kubernetes and the advantages they gained from the move.

• The Warehouse Group has also documented the advantages they found in their•
move to containers with Docker.

Finally, the Cloud Native Computing Foundation (CNCF) has a comprehensive list of
case studies that describe the advantages of many of the different projects within the
CNCF, all of which depend on beginning with containerization.

Refactor the Monolith
You have an existing application that works but has grown haphazardly. It’s a Big Ball
of Mud (22), and you’d like to modernize it into a Modular Monolith (29). Or you’d
like to modernize it from a monolith into a Distributed Architecture (38). It should
look like it was designed from the beginning as a new Cloud Application (6).

How can I make an existing application easier for multiple teams to maintain and
able to run effectively in a multicomputer environment?

Some application architectures are more sophisticated than others. Depending upon
the choices made in that architecture, an application’s architecture can either support
small development teams working independently or impede them. It can enable
the application to run more efficiently in an environment composed of multiple
computers or prevent it.

But not every application needs to run as a Distributed Architecture, or even follow a
Cloud-Native Architecture (Chapter 3). There are a set of decisions that lead you to
decide that your application cannot be supported in the long term in its current form:

• If your application changes often, and it is difficult to update the application•
because of its design, that may indicate that its current architecture is unsupport‐
able and should be changed. This is common with Big Balls of Mud.
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• If you have tried and failed to Virtualize the Application (475) or Containerize•
the Application (478) because the application has too many dependencies on its
current hardware and software environment, you should consider changing the
architecture of the application.

• If your application is very inefficient at using computing resources, its architec‐•
ture and packaging may be causing inefficiency. For example, if it is a Replicable
Application (88) but one in which the unit of replication is very large, it may
consume a lot of memory and/or disk compared to the CPU resources used.
Enabling more efficient replication may require a better architecture for better
packaging.

In the first case, small development teams working independently are more efficient
than one large development team. To enable them to work independently, the appli‐
cation must be modular, with limited dependencies between components. That ena‐
bles each team to work on a different module with limited dependencies between
teams. A team can make changes to their module with less concern that it will
adversely affect other modules.

In the second case, if an application is developed from the beginning to be modular
and distributed, it’s easy to maintain and deploy that way. However, some applica‐
tions, intentionally or otherwise, end up with an architecture that is more like a
Big Ball of Mud. The application performs user requirements correctly but was not
designed to be easy to maintain or flexible to deploy.

Finally, any environment composed of multiple processes is more scalable and resil‐
ient than a single process, and an application can be as well but only if it is designed
to run distributed across multiple processes. A monolith can only run as one process,
but a distributed application can run each module in different processes and in
a different computer. A distributed application has the flexibility to run all of the
modules on the same computer, each on a different computer, or any combination in
between.

Once an application is working, there’s hesitancy to change it. An improved applica‐
tion is only an improvement if it still works. The trick is to take a working application
that wasn’t designed for modularity and distribution and adapt it for your purpose
without breaking it.

Therefore,

Refactor the Monolith to convert it from an unstructured blob into a set of mod‐
ules that can run distributed across multiple computers.

This process starts by finding the parts of a monolith that are entangled and refactor‐
ing them where possible to be modular (see Figure 9-8).
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Figure 9-8. Refactoring a Big Ball of Mud to a Modular Monolith

Refactoring takes code that already works and changes it into code that still works
but has a better structure that is easier to maintain. In Refactoring (2018), Martin
Fowler describes refactoring as a way to improve the design of existing code “to
make it easier to understand and cheaper to modify without changing its observable
behavior.” Refactoring will always involve some level of rewriting. However, how
much you need to rewrite depends on both the approach to refactoring you take and
the overall design of your application.

The first decision is: do you keep any of the existing parts of the system at all? Some‐
times the monolith needs to be reconceptualized and reimplemented from scratch. If
the application was written using a language, framework, or toolkit that is no longer
supported, or that the current team has few skills in using, rewriting completely may
be the only possible decision. However, the cost and duration of a complete rewrite
often make it infeasible. If rewriting it is not feasible, the best approach is to refactor
the existing code to improve its structure without changing its behavior.

The next decision deals with whether to keep the monolith whole or split it into
pieces that can run on separate computers (e.g., as a Distributed Architecture). Some‐
times keeping the monolith whole and refactoring it to make it more modular is
the right approach. A well-partitioned application deployed as a single process (a
Modular Monolith) can be a viable solution.

A key decision point in making this determination is whether the different parts
of your application have different requirements for scaling. If all the parts of your
application have similar scaling requirements, you may want to keep them together,
at least at first. On the other hand, if they do have different scaling requirements, that
is a factor leading to splitting the application into different distributed components
using the Strangle the Monolith (Chapter 10) approach.

Refactoring a large application is not something that is done in a single step. It
involves lots of learning about how the cloud works and a deep understanding of how
your application functions. Teams often Lift and Shift (470) to the cloud as a first
step to gain experience with working on the cloud. As part of that Lift and Shift, they
also may decide to adopt Cloud Databases (311) or other Backend Services (106).
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While not a prerequisite to Refactoring the Monolith, addressing this may give the
team confidence to proceed with a more involved refactoring effort.

Refactoring a monolith so that it is more modular can make it so that the application
is easier to maintain, test, and deploy. However, a key aspect of any type of refactor‐
ing is that it is a behavior-preserving transformation. You need to ensure that the
behavior of the existing application does not change during the refactoring. That
means you need to have adequate test coverage of the application and also have
an automated testing strategy that allows you to run the tests quickly both before
and after any refactoring step. We refer readers to Michael Feathers’ book Working
Effectively with Legacy Code (2004), which discusses the strategies needed to add
test coverage to existing code that does not have unit tests in order to address this
issue. An improvement in the last several years since that book was written is that
automated test generation tools like Tackle have come along to help in the generation
of unit tests to speed up this process. You can use generative AI coding tools such
as Microsoft Copilot and IBM watsonx Code Assistant to speed up the process of
adding appropriate tests to legacy code where there are none.

Making a monolithic application, even a Modular Monolith (29), into a distributed
application is no small task. Finding Hairline Cracks (530) to separate modules and
remove duplications can be difficult. What we have found is that the amount of
effort required to accomplish this can sometimes prevent people from adopting and
using the Distributed Architecture (38) approach. Sometimes it is simply easier to
rewrite the application directly as cloud-native Microservices (119) from scratch.
That is especially true when the code base of the monolith is not well documented or
understood, particularly if none of the original developers are still part of the devel‐
opment team. Contributing to this is that distribution technologies have acquired
a well-deserved reputation for adding complexity to application development and
testing. Making an application into a Distributed Architecture is often a useful goal,
but it is not easy.

In this vein, converting a large application entirely into cloud-native Microservices
can take considerable time and effort, especially if the application is already being
used in production and needs to be maintained while the conversion is being
performed. To make this conversion process manageable, perform the process incre‐
mentally by Strangling the Monolith (see Strangling Monoliths (Chapter 10)). Part
of this strangulation process is making packaging decisions about the new (and
existing) parts of the application. You may also Virtualize the Application (475)
or Containerize the Application (478), or virtualize or containerize each of the dis‐
tributed components.
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Converting the application into a distributed set of Microservices makes it easier to
take advantage of the platform-as-a-service (PaaS) capabilities of cloud. Modernizing
a traditional IT monolith into a set of cloud Microservices is a significant transforma‐
tion. The ultimate goal is an application with Cloud-Native Architecture (58) that is
furthermore a Microservices Architecture (Chapter 4).

Examples
After mentioning a couple of case studies of refactoring a monolith, we will consider
in depth an example of refactoring an airline’s customer-facing application.

Published case studies
Following are two published case studies of refactoring a monolith:

• Allen Fang published a case study of how Shopback refactored a monolithic•
application that used a lot of the patterns we have already covered in this
book, such as Command Query Responsibility Segregation (CQRS) (382) and
Anti-Corruption Layer (229).

• The VMware Tanzu team documents how they refactored the sample monolithic•
SpringTrader application into Microservices for deployment onto Cloud Foundry.

The downside of these examples is that they don’t address the problem of coexistence
between the refactored and existing applications. The following example discusses
this.

Airline example
Several times in this book, we have shown examples drawn from a “hypothetical”
airline that has used the patterns to build a cloud-native application. In fact, this has
been a real transformation use case that one of the authors led. We can now dive
deeper into how a team at this airline used Refactor the Monolith along with other
patterns in this chapter (and a few from Strangling Monoliths (Chapter 10)) to pull
off a major architectural feat of taking a large existing application and making it
cloud native.

The team began with a traditional, on-premises Java application that implemented
their website as a Web Form Application (414). The customer profile information
and in-progress reservation data were stored locally in an Oracle relational database,
while the transactional work of booking the reservation once selections were made
and reserving seats was done by a backend mainframe application (which is still
common across the travel and transportation industry). This is shown in Figure 9-9.
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Figure 9-9. Original airline monolith

The team knew they wanted to work toward a more cloud-native application, but
there were many skeptics, both inside and outside the organization as to whether
or not the reimplementation would work. However, the team had an ace up their
sleeve, as it were. There was a high-priority executive request for a new feature to
their website that had been delayed for several months because it was so difficult to
make changes to the existing monolith. That feature, automatic rebooking upon flight
cancellation or delay, had the right combination of executive support and enough
need for development speed that their management was willing to try something new.

The team used this opportunity to not only Start Small with this one single feature
but also to try out several new elements. First, the team built a Single-Page Appli‐
cation (421) inside their more traditional website that would manage rebooking;
additionally, it served as an introduction to new design elements and approaches.
Second, they used a cloud-native approach using Microservices on the cloud to build
the new business logic. The resulting design was implemented over four months
from the inception of the project. This included training time, setup time, and the
time needed to spin up the new squads. The design—which was based on Domain
Microservices (153) and used a new Cloud Database (311) and Dispatchers (140)
between the Microservices and the SPA—is shown in Figure 9-10.
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Figure 9-10. Start Small example with rebooking

So far, we haven’t shown any refactoring, so why is this an example of Refactor the
Monolith? Everything up to this point has all been a means of Paving the Road
(496) to allow the team (and their management) to become comfortable with the
technology and to establish the principles and tools that would be needed for the next
phase, such as common DevOps pipelines and approaches. The real work happened
in the next phase, when the team took a few pieces of the existing code from within
the website and refactored it into new Microservices so that not only rebooking but
all booking could occur via the new Cloud-Native Application (Chapter 3). This
also required the team to modify their SPA-based approach to one that used Micro
Frontends (426) to represent multiple parts of the user experience within the new
parts of the website (see Figure 9-11).
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Figure 9-11. Refactoring Pave the Road example

This process happened over a period of more than a year as the team slowly chipped
away at the existing system and built new Microservices for each of the major pieces of
functionality. Finally, all that was left were the pieces of the original website that were
rarely used or that did not directly affect the revenue of the airline to a substantial
degree. The team then decided to containerize the remaining monolith (see Contain‐
erize the Application (478)) and move the remaining bits of the application, still
packaged as a single monolith but now substantially smaller, onto the cloud, changing
it only to the extent needed to move it to a Cloud Database (311) instead of the
original Oracle database. We see the final form of the system in Figure 9-12.
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Figure 9-12. Refactored Airline Monolith example

This clever technique, which is a variant of Lift and Shift (470) called Lift and Shift
at the End (Cloud Native Transformation, 2019), was the capstone to their effort in
Refactoring the Monolith.

Start Small
(aka Gradually Evolve the System, Baby Steps)

You either have an existing application running on your environment that has
been providing value to your organization for years or you need to develop a new
application. The decision has been made to begin moving toward a Cloud-Native
Architecture (58), but there are many different teams with different technologies and
skill levels in your organization. You are new to developing Cloud Applications (6)
and want any new or existing applications to take advantage of cloud technology,
possibly using the Microservices Architecture (Chapter 4) style.

How can we start adopting cloud services and moving existing applications to the
cloud or writing new applications for the cloud, possibly using Microservices?

The organization wants to minimize or amortize costs to evolve to the cloud architec‐
tural style and would like to do this fully as soon as possible.
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Teams and people want to start right away and successfully take advantage of the
cloud. This may include implementing Microservices (119). However, the organiza‐
tion is not ready for a major move to this new architectural style in terms of infra‐
structure and operational practices. The operations team worries about the prospect
of multiple environments proliferating.

Possibly only a few of the developers have the technical skills and the drive to evolve
the current system to the new architectural style. How can we motivate developers to
overcome the hurdles in creating their first Cloud Applications, and show the way to
the others?

Therefore,

Take baby steps when starting. Start Small, either by writing some new functional‐
ity as an application that is deployed to the cloud or by refactoring or rehosting a
small existing application and running it on the cloud.

The main idea is to start small and take a lot of baby steps toward your goal. This
can be done by implementing something simple and deploying it on the cloud. If
you have an existing system, you can consider pulling a few existing items out of
your current system (usually a monolith) and deploying these items (components or
services) on the cloud. The latter can be a good way to warm up, especially if you
have some simple and fairly decoupled capability. Figure 9-13 shows Service A being
moved (refactored out of the monolith) and deployed to a cloud server. It also shows
a new small simple application being built and deployed on the cloud.

Figure 9-13. Start Small

The main thing here is to start small. There are several good reasons why you may
want to do so:

1. A lot of learning has to happen before you can be successful on the cloud, even1.
on a small scale. Every cloud provider has a set of tools, APIs, and account
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management rules that have to be mastered. What’s more, even deploying the
simplest application requires understanding security policies, identity manage‐
ment, and issues like key management. This is a lot of cognitive load to put on
a team—starting with a small, easily understood application with relatively few
features reduces this overall cognitive load.

2. Corporate processes have to be changed in order to move things to the cloud.2.
Many companies, especially those with complex approval processes, will need to
change or adapt their practices for validation, auditing, deployment, and security
in order to deploy applications on the cloud. It takes time and energy to change
these processes, and doing this while also trying to work out how to deploy a
large and complex application can be too challenging for many teams.

3. Teams need time to adjust to their new roles. While the role of a developer3.
may be the least affected by a move to the cloud, operational and security teams
have greater changes that they have to adapt to. Even a DBA will often have to
adjust to new database tools or limitations or differences they may not face in
on-premise databases. Even simple procedures like backup and restore are differ‐
ent between cloud database services and on-premises databases, so mastering the
changes takes time as they work through the differences.

Because of this increased cognitive load, we strongly suggest that you begin with
the simplest possible application that can be moved to the cloud and still provide
measurable business value. This is why the idea of a Lift and Shift (470) is a popular
one for the first Cloud Application. One way to start small is to focus only on the
parts that are new, and a Lift and Shift eliminates any new application functionality
from the mix. Also, we have seen some new functionality that can easily be written
(possibly as Microservices) and deploying to the cloud can be a good first step.

Another popular option is to Containerize the Application (478)—although that adds
additional complexity to the problem in that not only do you need to master the
account management, tracing and monitoring, and potentially deployment tools of
your cloud provider, but you also need to learn how to build and deploy container
images as well. While this is a good longer-term solution, unless you have already
adopted containers and/or Kubernetes on premises, this is a lot to ask of any team.
Instead, building a common containerization environment that many teams can use
and benefit from is a good way to later Pave the Road (496).

Other solutions such as Refactor the Monolith (484) provide a better path to cloud-
native development but require a minimum level of operational readiness. Refactor‐
ing to Microservices requires having a DevOps deployment environment, with a
continuous delivery pipeline to independently build, test, and deploy executable
services, and the ability to secure, debug, and monitor a Microservices Architecture
(Chapter 4). Operational readiness maturity is required whether we are building
greenfield services or decomposing an existing system. While these early baby steps
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can help teams better understand Microservices Architecture, you cannot forget that
this also must include getting the needed infrastructure in place. This evolution to
operational readiness impacts the organization that will need to evolve and adapt
practices.

The main advantage to Starting Small is that the organization does not incur the high
cost and risk of a widespread change in technology. Initial projects will face several
challenges and technical roadblocks. By Starting Small, future Microservices won’t
have to pay the same price because you will be able to apply principles that you learn
from these beginning projects. Also, by Starting Small, you can potentially get some
benefits sooner (new technologies, small changes, etc.).

On the downside, adoption could take longer, and you have to maintain and govern
the old systems as well as the newer cloud solutions for a long time. The diverse
technology increases the total cost of ownership (TCO). Finally, it takes longer to
get the full benefits of the new architecture because there is a slower evolutionary
process, specifically because you are taking baby steps rather than “commit and move
forward” with most of your teams.

This pattern is closely related to Pave the Road, which can add organizational and
technological elements that encourage and enable the successful initial steps prescri‐
bed by Start Small. Adding these elements doesn’t happen at once. More likely, the
organization will run a pilot project that will drive the adoption of tools, technologies,
and practices. By Starting Small, you can learn how to Pave the Road by building
up the infrastructure and getting things running. You will also learn how to start
developing and deploying into the cloud. This pattern is similar to Baby Steps (More
Fearless Change, 2015).

Start Small sometimes begins with Refactoring the Monolith (484) by possibly
extracting some “larger services,” where you extract components from the system
into services that you can move and deploy in the cloud. If needed, you create a
Monolith to Microservice Proxy (514) to communicate from the monolith to the
extracted piece on the cloud. This can be the beginning of Strangling the Monolith
(514).

Example
In a migration and modernization effort of a financial system that strangled a fairly
large monolith to be replaced with a microservices implementation, the team Started
Small by moving a fairly decoupled component out of the monolith and implement‐
ing it as a microservice. This is shown in Figure 9-14, which illustrates an example
in that X in the figure is re-created as microservice X′ deployed on the cloud. This
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4 This is a subpattern described in the Extract Component (535) pattern.

diagram does not reveal the details of the actual system but rather illustrates what was
done to get started.

The company also started creating new logic using the Microservices Architecture
(Chapter 4) style and deploying these microservices in the cloud (shown by Z in the
figure). The diagram shows that a new microservice (Z) may need to make service
calls to the monolith. The scenario where component X is being called by other
components within the monolith is addressed either by adapting those calls to call
X′ or by the design solution described by creating a Monolith to Microservice Proxy
(514).

Figure 9-14. Start Small example of moving functionality to microservices

It might be a small, simple step to extract something larger (a Macro Service)4 from
the monolith as you learn. You can then further refactor these larger Macro Services
into smaller Microservices (119). One way to find these larger pieces is to look for
Hairline Cracks (530). Other times you might Refactor then Extract (542). Once
you have been successful in Starting Small, the organization might create a directive
to add New Features as Microservices (521), restricting the implementation of new
features in the monolith.

Pave the Road
(aka Make Cloud Adoption Easier, Make Cloud Development Easier, Make Microser‐
vice Development Easier)

You either have an existing application you need to modernize or need to develop
a new application. The decision has been made to move to the cloud and adopt
architectural styles such as Microservices (119). Your organization is new to the
cloud. You want to grant teams as much autonomy to make their own decisions as
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you can, but at the same time you do not want to waste time and effort by having
teams make the same mistakes over and over again.

How can we encourage teams to move to the cloud and adopt these new technol‐
ogies without letting each team go in their own direction and work at cross
purposes?

Some developers are excited about building applications using new technologies such
as cloud architectures and microservice-related architectures. However, when your
organization has little or no experience building cloud-native or Microservice-based
applications, it means that there will be many opinions as to the best way to begin
making that move.

Teams in your organization work side by side with business units to develop solutions
and want to focus on the problem domain and create and deploy applications faster.
New architectures promise to address some of those aspirations. However, moving to
a new architecture also brings anxiety and risks. Some developers have been working
with legacy applications for a long time, and the new architecture brings up some
concepts that may be foreign to them.

Your deployment process may require the coordination of different development
teams and operators. Such a process can hinder the organization’s agility. The practi‐
ces, policies, and technologies for establishing a DevOps environment may not be
in place. Developers may not be familiar with containerization, continuous delivery,
log consolidation, Microservices, and other recommended practices for cloud devel‐
opment. That means that teams would be responsible for developing each of these on
their own while at the same time learning a new set of tools and techniques.

Therefore,

Pave the Road by creating platforms, environments, and shared elements that ease
the fundamental tasks of creating or migrating applications to the cloud.

There are many ways to Pave the Road. The first step is to get the infrastructure
up and running. To be successful with the cloud, it is important to have a good
DevOps environment. This includes an automated pipeline of building, good tests,
deployment, and monitoring as part of the process. This also usually includes cre‐
ating a containerized environment and deploying an example application in this
environment. Figure 9-15 illustrates an example of building a DevOps pipeline and
releasing a containerized application in the cloud. Documenting this process and
sharing the best practices with examples is a good early practice to help Pave the
Road.
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Figure 9-15. Pave the Road example

There are a number of common tasks that in aggregate can be overwhelming when
taken on by a single team writing their own application. If a team is not highly
motivated and or given the amount of time necessary to learn the best way to
perform these tasks, they may choose to go back to their former ways of working
and abandon moving their applications to the cloud. Aiding teams in this task by
reducing the amount of work and cognitive load that they must be responsible for
is critical. Often these tasks are carried out by one or more Platform Teams (Team
Topologies, 2023) that create a common shared platform for application development,
deployment, and operations or software architecture.

On the application development side, some of these common tasks include:

• Creating simple examples, templates, and/or scripts to show developers how•
to write applications for the cloud. If teams will be deploying Microservices to
the cloud, simple examples and templates for building Microservices should be
included.

• Establishing standard DevOps practices, such as continuous delivery (Continuous•
Delivery, 2010). This often means building common DevOps pipeline elements,
including tool integrations, standard deployment options, etc. This should
include defining processes and setting up tools that provide the infrastructure
for automating the pipeline for building, testing, and deploying components,
including Microservices.

However, application development tasks are not the only tasks that take up an
application team’s time and energy. There are a set of platform-level issues that
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also contribute to this cognitive load and reduce the amount of time that can be
spent on core application development tasks. These include platform technology
elements related to the runtime environment, such as containerization, container
orchestration, log consolidation, monitoring, and distributed tracing. This also
involves establishing practices like External Configuration (97) and infrastructure
as code (Infrastructure as Code, 2016).

Following are some of the solutions we have seen that aid in these tasks:

Building a common/shared container infrastructure
In particular, one of the downsides of adopting a container orchestrator (such
as Kubernetes) is that many times teams build their own infrastructure—infra‐
structure that includes high overhead from the necessary control plane of the
container orchestrator. Stream Teams (Team Topologies, 2023) usually do not
have the time or the expertise to manage these efficiently.

Establishing centralized account management for public clouds
This is also an essential element for reducing overall public cloud spend. Note
that there is a fine line to tread here—you don’t want to take over full control
(e.g., the cloud should remain self-service), but you also don’t want teams to have
to swipe their own credit cards.

Building standardized automation for VM and service provisioning, building common
VM images or common setup automation, or creating common container base images

If you adopt open source tools such as Ansible or Terraform, or even cloud-
specific tools like AWS CloudFormation, you can save time and effort on tasks
that are often performed manually by development teams. However, this can
cause different development teams to build similar, simple automation tasks
multiple times. Sharing and standardizing of this automation code can drastically
reduce overall effort.

Establishing and maintaining common operational tools for observability, monitoring,
and debugging

Having common tools means that developers can share expertise in these tools,
and (importantly) it makes it possible to establish end-to-end observability
across all the disparate parts of a large system.

Then there is a set of architectural tasks that can aid multiple teams in large-scale
development. These are often taken on to create more consistency in application
development and architecture and to facilitate easier movement of team members
among teams:

Creating and documenting reference architectures for cloud adoption
This should include a description of all the implementation details required
to allow Stream Teams to implement them. This may include descriptions of
common patterns, preferred choices for Backend Services (106) to maintain easy
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communication across teams and development of documentation guidelines,
shared architectural principles, and guidelines for tool selection.

Developing or purchasing tools that generate the core of a system from a higher-level
specification or through a wizard UX

This can be done either algorithmically through the generation of templates or
through the use of generative AI tools to develop an application core from a
specified standard template. You can also build these tools yourself if you want
the maximum level of customization. For example, you can build a Domain Spe‐
cific Language (DSL) (Domain-Driven Design, 2003) to generate the beginning
of a Cloud Application (6) using Microservices, which includes the pipeline for
deploying to the cloud. This requires a lot of effort and should be done only once
an organization is more mature in cloud development and needs to expand the
number of teams working on Cloud Applications rapidly.

From the preceding list, you can see that there are many things to consider when
deciding on an appropriate solution. Our advice is to start with the simplest thing
possible that minimizes your maintenance effort and evolves as you learn. This usu‐
ally begins with building pipelines and deploying services (DevOps) and establishing
some level of common infrastructure like a container orchestrator.

Finally, it’s important that you hire experienced people and provide training and/or
mentoring. Nothing Paves the Road like someone who has been through the process
before showing teams the common pitfalls and helping them navigate past them.

With or without an expert in the ranks, the organization will typically launch a pilot
project. The team for this project should have ace developers who are also good at
transferring knowledge. They shall Pave the Road while building the pilot project and
documenting what is needed for other teams to follow their steps. The documenta‐
tion can take the form of README files, instructions on a wiki, architecture decision
records, a template for cloud projects, a reference architecture, and more.

One of the main benefits of Paving the Road is that it creates an Easier Path (More
Fearless Change, 2015) for developing Cloud Applications. New teams or people can
roll out their first Cloud Applications more quickly by learning from the examples,
documents, and templates created by the pioneer teams that Paved the Road. On the
other hand, it requires a lot of time and effort to build the software, process, template,
docs, etc. Some of these can be difficult, such as building out new DSLs. Also, there
can be maintenance issues associated with these items. The initial projects that will
Pave the Road will take longer and require a high upfront investment that will only
pay off later.
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The main anti-pattern that can emerge from the misapplication of Pave the Road is
“Build it and they will come.” In this, a team proceeds with building infrastructure,
automation, or tooling that is not wanted or needed—because they are choosing
technologies that the Stream Teams do not want or need to use or because they are
working either too far in advance or too far behind the Stream Teams. You have to
rely on the Stream Teams to “forge the trails”—in most cases, you only Pave the Road
where tracks have already been created by one or more Stream Teams.

This pattern goes hand in hand with Start Small (492). An initial small project might
be the pilot project that will shed light on the various new technologies and tools that
get to be adopted for cloud development. You can then Pave the Road by abstracting
the common features of the pilot and Paving the Road for other later projects. If
you are considering a move to Microservices, consider the homonymous pattern Pave
the Road for specific details on proven practices on how to pave the road for the
Microservices Architectural style.

It is a good idea to build a Quality Delivery Pipeline using deployment strategies
such as Blue-Green Deployment and Canary Deployment when you are Paving the
Road for cloud development with Microservices.

This pattern is similar to Paving over the Wagon Trail from the perspective of
creating reusable templates, scripts, or components. However, this pattern also talks
about other things that help, such as building the infrastructure, documentation,
training, and hiring good people.

Another important consideration is to rethink the way applications deal with persis‐
ted data, as they move from a more centralized database approach to the typical data
decentralization used in Distributed Architectures. For example, there might be the
need to use the Saga (Microservices Patterns, 2018) pattern in place of the original
single-connection transaction in the monolith.

Example
The following examples are from real-world systems that two of the authors have
worked on. The first is a fast-growing financial system in a Latin American company,
and the second is an experience from IBM.

Financial system
This pattern was used during a migration and modernization effort of a financial
system that strangled a fairly large monolith to be replaced with a Microservices
implementation. The company started growing rapidly as new business opportunities
emerged. The business was more than doubling every year in terms of revenue and
users. There was also a large growth in teams, which grew by an order of magnitude
in less than five years. Although the original architecture was suitable for the original
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needs, there was a point where they needed to make a more radical change to the
architecture (called a Software Architecture Revolution), which led to a committed
effort to evolve to using the Microservices Architectural style and deploying parts of
the system on the cloud.

At the beginning of this initiative, the organization Started Small by having a few
teams experiment with building some functionality with Microservices ultimately to
be deployed in the cloud. Part of this early effort required them to Pave the Road
by building the infrastructure for a Quality Delivery Pipeline, which became the
common CI/CD pipeline used by teams. This early work defined processes and set up
tools that provided the infrastructure for automating the pipeline for building, test‐
ing, and deploying the microservices. They also created simple examples, templates,
and/or scripts to show developers how to write the Microservice and deploy it to
production.

They also Paved the Road for microservice projects by addressing several technology
elements related to the microservice runtime environment—such as containerization,
container orchestration, log consolidation, monitoring, and distributed tracing. It
also includes creating and documenting DevOps practices, some of which require
infrastructure and tool automation. The result led to a successful migration and
modernization of the system as the company continued to grow and evolve. They are
now able to release very frequently using the Microservices Architecture (Chapter 4)
style deployed in the cloud.

IBM CIO Common CI/CD Pipeline
For several years, there has been an effort at the IBM CIO Office to foster large-scale
migration into a container-based hybrid cloud environment by first Paving the Road
with a common CI/CD pipeline. As noted earlier, building up a Quality Delivery
Pipeline is a common first step to encourage teams to adopt the cloud by helping
them get past some common problems in deploying to a new cloud environment.

In this particular effort, one of the issues they faced in trying to encourage teams
to onboard their applications into their container-based hybrid cloud environment
was that teams were reluctant to move from their existing CI/CD approaches. In the
past, each team had been responsible for building their own CI/CD pipelines on a
common Jenkins hosting infrastructure. That led to a great diversity of pipelines,
with little commonality across how different applications performed their build and
deployment. A ramification of this was that teams were each also responsible for
meeting internal security guidelines by running required open source license and
usage checks and running required Dynamic Application Security Testing (DAST)
and Static Application Security Testing (SAST) tooling on their applications. The
problem was that since each team did this on their own, both the frequency of checks
and the recordkeeping of the checks for these tools were spotty, causing audit failures.
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The team responsible for migrating applications onto the hybrid cloud environment
Paved the Road by introducing a new, common CI/CD pipeline approach based
on Tekton that performed these checks, among other fixed steps like a common
build approach, common testing tools, and common deployment step. The common
pipeline logged all the test and scan results into a common database, fixing the
recordkeeping problem that the teams had earlier encountered. The pipeline is
configuration-driven and flexible in that it supports multiple languages, and multiple
deployment targets, while still enforcing a set of shared goals for security and archi‐
tectural commonality. As teams adopted the new pipeline, it reduced their overall
development effort, improved security, and at the same time automatically managed
deployment into the new shared hybrid cloud environment. As a result, well over
2,000 applications were moved onto the common cloud environment over a period of
less than two years with a minimum duplication of effort.

Conclusion: Wrapping Up Application Migration and
Modernization
In this chapter, we’ve examined a set of patterns related to moving an existing appli‐
cation from traditional IT to the cloud and improving it to work like an application
that was originally written to run well on the cloud. Up until this chapter, this book
has discussed how to make an application work well on the cloud assuming that it’s a
new application being written for the cloud.

Moving an existing application to the cloud is performed in two broad stages,
migration and modernization. Migration moves an application from one platform
to another, in this case from traditional IT to the cloud. Modernization changes an
application to make it work better, in this case by changing its architecture so that it
runs better on the cloud as well as by changing its packaging so that it can more easily
be deployed on the cloud and so that the cloud platform can manage the application
more easily. This often includes applying the Microservices Architectural (Chapter 4)
style.

Performing Migration and Modernization
Moving applications to the cloud requires many decisions that need to be made
by architects, lead developers, and managers as organizations get used to the ben‐
efits and restrictions that the cloud provides. Examining different architectural
approaches needed to build new cloud-native applications or evolving existing appli‐
cations toward a cloud-native approach is a long and necessary journey. Early on,
an organization needs to design its cloud approach focused on business value that
is delivered rapidly so that it can take advantage of these small successes. This can
build excitement and help teams realize that there is a way forward into the cloud. So
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when you are new to either developing an application that runs or moving an existing
application into the cloud, it is best to follow the practices:

Start Small (492)
Start Small by having a team implement some new functionality in the cloud—
this is a good way to learn about cloud architecture principles and to build up the
infrastructure.

Pave the Road (496)
If the team is facing its first cloud project, you need to make sure you have the
infrastructure and the environment (both technical and organizational) to make
it easier to implement Cloud Applications.

Cloud development is not something that teams master all at once. Teams must be
substantially mature in DevOps and Agile practices before they can be successful
in applying this architectural style. Designing Cloud Applications should always be
an iterative process, where you build on small successes and then apply them over
and over again until teams are comfortable with one level of technology before
moving on.

Lift and Shift (470) and Virtualize the Application (475), the rehost and replatform
strategies, are terrific starting points for teams because they build on skills they
already have. However, it generally shouldn’t be the ending point of a cloud journey.
While virtualization has a low barrier of entry, it also has relatively low benefits since
it doesn’t change the way teams develop or operate their applications. Containerize
the Application (478) is a further step in the right direction in that it forces the
teams to adopt better (more modern) operational processes and requires that applica‐
tions be Replicable Applications (88). Finally, when a team is ready to Refactor the
Monolith (484), they are ready to take advantage of the principles of Cloud-Native
Architecture (58).

Migration and Architecture Modernization Patterns
This chapter presented a migration pattern that can be used to move an application
from traditional IT to the cloud:

• Lift and Shift (470) is the move-to-cloud pattern, the rehost strategy. Instead•
of deploying the application to traditional IT, replace it with a copy deployed
to the cloud. The application is deployed to the cloud the same way it is to
traditional IT, which means that the cloud must have the same sort of servers
(hardware or virtual machines) and operating systems that the application uses
with traditional IT.

This Lift and Shift relocation provides some of the advantages of a Cloud Application
(6). Moving the application to the cloud enables taking advantage of the cloud’s
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shared infrastructure. The cloud’s virtualized infrastructure provides scalability and
resiliency, which the application may be designed to exploit. If the platform is a public
cloud, the application owner can rent capacity rather than own it—converting the
cost of application hosting from CapEx (i.e., a capital expense) to OpEx (i.e., an
operating expense), enabling the application to utilize pay-as-you-go pricing.

After a lift-and-shift, an application does not run differently or better in the cloud
than it did in traditional IT. The cloud provides more shared capacity, which the
application may be able to use, but the application still works and runs the same.

This chapter has also presented an architecture modernization pattern, used to
improve the application’s architecture:

• Refactor the Monolith (484) is the pattern for improving the architecture of an•
application, the refactoring/rearchitecting strategy. It does not change the user
functionality in the application but rather changes the structure of the software
that provides the functionality.

There are two main paths for refactoring an application to improve its architecture:

• Refactoring a Big Ball of Mud (22) into a Modular Monolith (29) improves the•
application by making its architecture more modular. It still runs as a monolith
in a single process on a single computer.

• Refactoring a Big Ball of Mud or Modular Monolith into a Distributed Architec‐•
ture (38) improves the application by making its architecture modular (if it starts
as a Big Ball of Mud) and making the modules into services that run in different
processes that can run on separate computers. No longer bound to the capacity
of a single computer, a distributed application can better utilize the capacity of
multiple computers.

Either of these strategies make it easier for separate development teams to maintain
the individual modules or distributed components.

Strategies for Migrating and Modernizing Applications
The patterns can be combined to produce common migration and modernization
strategies. Figure 9-16 shows several strategies to use when applying the patterns
during migration and modernization and how these patterns can be applied:

Lift and Shift (1)
Migrates the application to the cloud

Refactor the Monolith (4)
Modernizes the structure of the application’s architecture
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New Cloud Application (5)
Can produce an application with any architectural structure

Figure 9-16. Application Migration and Modernization strategies

These strategies can be used individually, incrementally, or in combination. How
they’re used goes back to our options for migrating and modernizing an application:
what platform and structure are we starting with, and what do we want to end up
with? Find those two points in the diagram, and the path that connects them shows
the strategies to apply.

Following are the most commonly used strategies:

Lift and Shift (1)
Simply move the application from traditional IT to the cloud, preserving the
application’s architecture.

Lift and Shift (1) and Refactor the Monolith (4)
Move the application to the cloud and improve its architecture.

New Cloud Application (5)
A new application typically has a Distributed Architecture, but it could also be
structured as a Big Ball of Mud or Modular Monolith. Creating a new application
is an alternative to migrating and modernizing an existing application.

As part of moving the application to the cloud, developers should refactor the archi‐
tecture to add two more improvements:

Client/server
Refactoring a Big Ball of Mud, Modular Monolith, or Distributed Architecture into
a client/server architecture improves the application to separate the Client Appli‐
cation (406) from the rest with the user functionality that will run on the server.
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If the application’s architecture is still a monolith, refactoring will extract the
presentation logic from the domain logic so that they can be deployed separately.
If the application has a Distributed Architecture, if the same service implements
both presentation logic and domain logic, this refactoring will separate them and
combine the presentation logic into a single module that can be deployed on a
user’s computer.

Cloud native
Refactoring a client/server where the server is a Big Ball of Mud, Modular Mono‐
lith, or Distributed Architecture into a Cloud-Native Architecture will ensure that
the server portion of the application will run better on the cloud. This refactoring
will restructure the application to delegate to Backend Services (106) for middle‐
ware functionality, the repurchasing/replace strategy for the middleware so that
the rest of the application primarily implements domain functionality and can
run in a standard language runtime.

A Distributed Architecture where each service has a Cloud-Native Architecture evolves
into a Microservices Architecture (Chapter 4).

Hosting and Deployment Modernization
In addition to migrating an application to the cloud and/or modernizing its archi‐
tecture, another aspect of modernizing an application is to improve the way it is
packaged, which makes it easier to deploy and easier for the cloud to manage. There
are two main strategies for modernizing an application’s packaging, which can be
applied to migration and architecture strategies 1, 4, or 5 described previously:

Virtualize the Application (475) (2)
Packages the application or each of the services in a Distributed Architecture as a
virtual server that runs in a hypervisor. This is the how-to-leverage-IaaS pattern,
enabling the application or service to take advantage of the infrastructure-as-a-
service (IaaS) service model. By packaging the component as a virtual server, the
cloud platform manages the virtualized compute, storage, and networking so that
the application developers don’t have to.

Containerize the Application (478) (3)
Packages the application or each of the services in a Distributed Architecture as
a container that runs in a container engine. This is the how-to-leverage-PaaS
pattern, enabling the application or service to take advantage of the platform-as-
a-service service model. By packaging the component as a container, the cloud
platform manages the runtime, middleware, operating system, and virtualized
infrastructure so that the application developers don’t have to.

In the cloud platform service models, IaaS enables the cloud platform to pro‐
vide more standardization than traditional IT does, and PaaS provides more
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standardization than IaaS. More standardization lowers costs and enables developers
to achieve faster time to value. More specifically, the developers achieve this greater
standardization by applying these patterns to package the application as a virtual
server (that runs in IaaS) or better yet as a container (because it runs in PaaS).

These packaging patterns are orthogonal to the application’s platform and architec‐
ture. They modernize how the application is deployed and can do so on traditional
IT or the cloud. They can be applied whether the architecture is a Big Ball of Mud,
Modular Monolith, or Distributed Architecture and can be applied to an architecture
that’s been further modernized into client/server and cloud native. The combinations
are not endless, but numerous combinations are possible.

This chapter presented some migration and modernization techniques to use when
an organization moves a traditional IT application to run in the cloud. Another
common technique for migration and modernization incrementally develops a new
application around the original legacy application (usually a monolith). The next
chapter will examine how to Strangle the Monolith (514) by gradually migrating
a monolith architecture to a Microservices Architecture (Chapter 4) running in the
cloud.
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CHAPTER 10

Strangling Monoliths

Microservices (119) have been increasingly adopted by many organizations to better
address their software needs. Microservices encapsulate different parts of an applica‐
tion as independently deployable units that contain their own application logic, data,
and more. After the term “microservices” appeared, previous systems or architectures
developed were labeled as “monoliths.” Unfortunately, the term monolith gained a bad
connotation because these systems are often considered to be legacy systems or Big
Balls of Mud (22). Developing a system using the monolith architecture style is not
necessarily a bad design decision or an anti-pattern. Sometimes it is the right choice.
Building any kind of a Distributed Architecture (38) can be very difficult and has
many challenges. A well-designed Modular Monolith (29) is often the best choice for
organizations, especially when starting a new project.

Typically, a monolithic application is packaged as a single deployment file that runs
on an application server. The monolith consists of many components that may
contain business logic from various subdomains. These monolith components can
include services, modules, libraries, or any type of implementation. They also have
dependencies among themselves that typically increase over the years. Monolith
components that are visible on the network may use protocols, message formats, and
API design standards that are not fully compatible with network calls being used in
new client applications. For example, the monolith may provide Enterprise JavaBean
(EJB) services, and new applications in Python are not able to directly call these
services.

Over time even a great design can be compromised by successive architectural revi‐
sions, especially as technical debt (see the section “Modernization and Technical
Debt” on page 459) grows. The claim that the architecture that predominates in
practice was the Big Ball of Mud was first made in 1998; Big Ball of Mud (BBoM)
architectures are still seen today. They are the culmination of many design decisions
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1 Fowler later renamed this Strangler Fig Application.

that gradually result in a system that can be difficult to change and maintain. How‐
ever, BBoMs usually do not result from well-intentioned design ideas gone wrong.
Nor are they simply an accretion of expedient implementation hacks. Rather, they
stem from a mix of doing what it takes to meet expedient business requirements
along with paying insufficient attention to technical debt growth.

When a monolith becomes muddy, adding new functionality to it becomes difficult,
and it can be challenging to take advantage of new protocols and technologies. Addi‐
tionally, deployment becomes more difficult, especially for large entangled BBoM
systems; changes require testing the whole system because the changes might have
affected other parts of the system. When you are dealing with these issues, your best
option can be to replace the existing system with a Microservices Architecture (Chap‐
ter 4) by implementing new features as Microservices while gradually transforming
your monolithic system by “strangling” it—replacing existing parts of the monolith
with Microservices.

Introduction to Strangling Monoliths
Adopting the Microservices Architectural (Chapter 4) style yields benefits such as
shorter development times and increased flexibility for experimenting with new
ideas and technologies. However, most organizations have existing systems that were
developed before Microservices yet still provide value. As organizations evolve, a
monolithic system can become harder to maintain and hinder the ability to keep up
with new business needs. The poor flexibility of monoliths has driven many organiza‐
tions to apply the Microservices Architecture (Chapter 4) style, which leads to the
questions, ‘What do you do with the existing monolith?’ or ‘How do I transform my
monolith to Microservices?’

Martin Fowler coined the term Strangler Application as a metaphor to describe one
way of rewriting a system. The “Strangler Application” is based on an analogy to
“strangler vines” that “strangle” a tree that they are wrapped around.1 In software,
this means gradually creating a new system by adding new functionality outside the
original system and by replacing/rewriting existing functionality inside the original
system with new components outside the original system. You continue this process
until the old system has been “strangled”—that is, replaced by a new system. When
you are finished, all (or almost all) of the original system is implemented outside of
that system and the original is no longer needed or used.

The “Strangler Application” concept is independent of services (or Microservices)
because you can transform a system to a new architectural style without using
services—for example, you could evolve the current application to become a Modular
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2 Some of these Strangler Patterns were originally presented at Pattern Languages of Programs 2020 by Joseph
Yoder and Paulo Merson.

Monolith gradually by adding new functionality outside the entangled system and
by refactoring functionality within the system to be more modular. Over time, the
original system will be replaced (strangled) by this new better-designed modular
system. However, for this chapter, the focus on “strangling” is about transforming
a monolith architecture to a Microservices Architectural (Chapter 4) style while
keeping the monolithic system running.

Simply put, you “strangle” a monolith by replacing/rewriting it bit by bit as a fresh
system implemented using Microservices. During strangulation, some functionality
is provided to clients by the new system and some by the monolith, depending on
what has been migrated. Strangulation requires two mutually supporting activities:
abandonment and migration.

You “abandon” (rarely or never-used) functions in the monolith by performing all
new development in the fresh Microservice-based system. In some extraordinary
situations, you can replace a monolith by using only abandonment: for example,
if usage patterns are changing rapidly, the functionality provided by the monolith
might well become obsolete over time, and only the functionality provided by the
Microservice-based system is required—in this case, at some point the monolith can
simply be thrown away.

You “migrate” functionality by reimplementing pieces of it in the Microservice-based
system. During migration, some functionality originally provided by the monolith
will still be provided by that monolith, while functionality already migrated will be
provided by the new system. You might need to implement some functionality by
a combination of code running as Microservices and code running in the monolith;
this can happen when some parts of a cluster implementing a coherent chunk of
functionality have been migrated while others have not yet.

Strangler Patterns
When deciding to strangle a monolith, one of the first decisions is whether to
completely rewrite the monolith at once or move to Microservices by Strangling the
Monolith (514) over time.2 Sometimes rewriting the monolith is the right approach.
For example, if business needs have substantially changed, then the monolith may
need to be reconceptualized and reimplemented from scratch (possibly using Micro‐
services). However, often the cost and duration of a complete rewrite make rewriting
a monolith infeasible. If the monolith has become hard to maintain and is hindering
new projects, and rewriting it is not a viable path, it is time to start Strangling the
Monolith.
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3 This is a scaffolding pattern, described in the Strangle the Monolith (514) pattern.

Once you have decided to Strangle the Monolith, there are many possible variations
and proven practices that help you successfully evolve the system. Figure 10-1 is
a pattern map of techniques you can apply when moving a monolith application
incrementally to a Microservices application—this pattern map includes relationships
between the patterns. When Strangling the Monolith, it is a good idea to Start Small
(492) with manageable changes and Pave the Road (496) to enable teams to progress
faster and more reliably during the “strangling” process. This is usually done by
having a team implement some new functionality with Microservices and is a good
way to learn about Microservices principles. This also allows you to build the infra‐
structure and the environment (both technical and organizational) to make it easier
to implement Microservices—this can include setting up DevOps with a delivery
pipeline that allows you to build, test, and deploy Microservices.

Figure 10-1. Strangling Monoliths patterns

Once teams have successfully set up the environment and have successfully created
some Microservices, you can make strategic directives early on that help with the
strangling process. It is usually a good idea to protect the system from change by
Wrapping the Monolith.3 Wrapping the Monolith is commonly achieved by creat‐
ing a Proxy (Design Patterns, 1994) or Facade (Design Patterns, 1994) for existing
external systems. New requirements will inevitably need to be implemented and
released during the strangling process. Once you have validated that Microservices
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4 This is a supporting pattern described in the Extract Component (535) pattern.

development can be done successfully within the organization, you create a directive
that encourages and enforces any new development efforts to be done by adding
these New Features as Microservices (521). This strategy helps ensure you do not
continue to add the existing monolithic application.

However, there will still be a lot of functionality inside the monolith that needs to
be replaced with a Microservice implementation. This is achieved by Transforming
the Monolith into Microservices (526), which includes finding and prioritizing areas
that can be extracted, refactored, or replaced by Microservices. During the transfor‐
mation process, you will be moving and replacing pieces of functionality within the
monolith with Microservices.

You start the transformation by looking for Hairline Cracks (530) within the mono‐
lith—areas where you can easily extract pieces of functionality out of the monolith
and replace them with Microservices. Sometimes these Hairline Cracks reveal code
segments that are straightforward and easy to extract as components; if Hairline
Cracks reveal well-defined APIs, you can the Extract These Components (535) to a
Microservice implementation.

You extract this functionality out of the monolith by copying code out of the mon‐
olith and reimplementing it as Microservices. Extraction often starts by extracting
larger pieces of functionality as single pieces (Macro Services),4 and after extracting,
you refactor these larger pieces to smaller Microservices; it helps to first understand
the domain and Microservice design. This is a recursive process of breaking down the
monolith by extracting functionality around domain concepts.

Other times these Hairline Cracks will reveal some functionality that, with some
changes inside the monolith to the existing code, you will be able to Refactor Then
Extract (542) to Microservices—in other words, you refactor parts of the monolith
first to make these parts easier to extract to Microservices. You achieve this by looking
for areas inside the monolith that, despite some coupling, can be refactored to a
better design, such as modular components with well-defined APIs.

However, most monoliths will have many places where the functionality is tightly
coupled, and the only alternative is to lock it down in the monolith and to rewrite
and Replace as Microservice (546) that functionality. You achieve this by freezing
the code for this functionality in the monolith and reimplementing the functionality
with new Microservices. You remove the original implementation from the monolith
after the implementation has been validated.

There are a couple of supporting patterns to use when replacing functionality within
the monolith. Any place within the monolith that needs access to the new services
can use a Monolith to Microservice Proxy (552). This Proxy provides an access
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solution from any existing monolith components to either extracted or newly created
Microservices needed by the monolith. After extracting or reimplementing code from
the monolith to Microservices, you should validate that the new implementation is
running properly by testing the new implementation and comparing it to the original
implementation. You achieve this by Playback Testing (556) a set of inputs and
actions on the new implementation from the same set of inputs and actions on the
original system and comparing results.

To summarize, Strangling a Monolith primarily consists of two processes: implement‐
ing new features as a Microservice outside the monolith and recursively replacing
pieces of functionality within the monolith with Microservices. Adding new features
as a Microservice is a good way to start because it not only helps you learn about
Microservices but also helps ensure that you do not continue to add any new function‐
ality to the monolith that you might have to transform later. Once you start moving
to Microservices (119), the challenging part, and what most of this chapter is about,
is how to Transform a Monolith into Microservices until your monolith application has
been “strangled” and replaced with a new Microservices application.

Strangle the Monolith
(aka Strangler Application, Evolve System with Microservices)

You have a monolithic application that still provides value to your organization and
thus can’t be discontinued or shut down. Large parts of the monolith have devolved
into a Big Ball of Mud (22), although parts of the system may possibly be considered
a Modular Monolith (29). You have decided to replace your monolith system with a
Microservice Architecture (Chapter 4).

How can we replace a monolithic architecture with a Microservices Architecture
while reducing overall risk?

Microservices can help you better meet the needs of the organization, but moving
existing applications to Microservices (119) involves risk. However, reducing the
overall risk of your software development is critically important. For instance,
software requirements may be changing more rapidly than your organization can
accommodate, creating business risk. Adding features and managing existing features
within a monolith can be difficult due to significant coupling between components in
the monolith, so adding new functionality often creates bugs. Likewise, complex syn‐
chronization among the teams working on the monolith makes replacing or adding
functionality challenging because the additional communication paths between teams
create misunderstandings and delays.

Reconceptualizing and implementing the monolith from scratch with Microservices
can be the right approach. However, rewriting an entire application can be difficult,
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expensive, and can introduce an unacceptable amount of risk. Most organizations
don’t have the appetite for that much risk at once.

Replacing the entire monolith at once can be extremely risky for the following
reasons:

• A full all-at-once rewrite and replace would also not show value until the com‐•
plete rewrite is finished.

• Critical changes may not be made on the original system when time and effort•
are prioritized on the rewrite.

• Demands on the changes to the original system may make it impossible to staff•
the teams needed for refactoring or rewriting the monolith.

• Testing an entire replacement at once may be difficult, if not impossible.•
• There is a chance that the teams rewriting the system cannot keep up with•

changes to the original system, making the rewrite fail.
• If your legacy monolith is used by client applications, protecting those existing•

client applications is important because external clients are often unwilling or
unable to make large changes to their software on the same schedules as your
internal teams.

Organizations grow and change because business needs change over time. Since the
software architecture (according to Conway’s Law) parallels the structure of your
organization, your software organization also needs to grow and change accordingly.
When these changes result in growth, it creates more communication paths and
makes change harder. What’s more, organizational growth means developers with
varying ranges of experience make changes to the system. That results in technical
debt that makes it harder to change the monolith.

In most systems, changes require testing the whole system because they might affect
other functionality within the monolith. Also, a legacy monolith rarely shows obvious
seams for separating it cleanly into Microservices. Deployment time also increases
with the size of the deployment unit, making deploying the entire monolith difficult
and long.

From the preceding discussion, we see that modernizing to Microservices has a lot of
potential benefits, but rewriting an entire application all at once is risky. So how can
we address this?

Therefore,

Gradually replace the existing monolithic application with Microservices by itera‐
tively replacing existing functionality in the monolith with Microservices and by
implementing any new features as Microservices.
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These Microservices are developed and deployed independently of the monolith.
Apply the process recursively until the monolith is replaced (strangled) by the new
Microservices application. This strangling process is illustrated in Figure 10-2.

Figure 10-2. Strangling the Monolith process over time

When beginning the strangling process, you need to make sure you have the infra‐
structure and the environment (both technical and organizational) to make it easier
to implement Microservices. Therefore, if your team is facing their first Microservice
project, you Pave the Road (496). Paving the Road for Microservice projects includes
technology elements related to the Microservice runtime environment, such as con‐
tainerization, container orchestration, log consolidation, monitoring, and distributed
tracing. It also includes adopting DevOps practices, some of which require infrastruc‐
ture and tool automation, for example, continuous delivery, External Configuration
(97), and (Infrastructure as Code, 2016).

Once you have Paved the Road, it is time to start writing your first Microservice. Start‐
ing Small (492)—by having a team implement some new functionality—is a good way
to learn about Microservices principles and practices. Once one or a few Microservices
have been successfully created, the team might redirect any new development efforts
to add New Features as Microservices (521). Starting Small is also a good way to help
Pave the Road.

During the strangling process, at some point, you begin to Transform the Monolith
into Microservices (526). Once you start to replace functionality from the monolith
with Microservices, you often need to redirect requests to new services from existing
clients or monolithic code. There will also be times, especially early on in the process,
when the new Microservices need access to the monolith. Figure 10-3 is an example
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of this, showing where new pieces of functionality have been created outside of the
monolith as Microservices (X′, Y, and Z).

Figure 10-3. Architecture example while Strangling the Monolith

Note that in this example, X′ is a Microservice replacing the functionality of X, while
Y and Z are new Microservices providing some new functionality. Any code within the
monolith that needs access to X can be directed either to the original implementation
or to the newly replaced X′ implementation. Any new or existing clients can access
the monolith through a Facade (Design Patterns, 1994), thus not entangling any
current or new code with the BBoM monolith.

Many teams don’t consider Strangling the Monolith because they believe it will cost
more—specifically because you have to maintain both the original and new systems.
However, the alternative—completely rewrite the monolith—is just as costly and
time-consuming but riskier. An important reason to consider Strangling the Monolith
over a cut-over rewrite is reduced risk because the risk of new code introduction is
incurred in smaller increments spread over time. Another advantage is cost amortiza‐
tion because many organizations cannot afford an overall rewrite of the monolith in
a single undertaking. For these reasons, along with others, many organizations make
the decision to undertake this process of evolving their existing monolith to a new
Microservice implementation of the system.

A common strategy used to select pieces of the monolith to replace with Microservices
is to focus on high-value items or tasks first. Another technique is to find some
low-hanging fruit or places where you can easily pull out pieces of the monolith. This
can be thought of as a divide-and-conquer technique where you continue pulling
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5 Wrap the Monolith has not yet been written as a pattern but could be. Wrap the Monolith is an optional
scaffolding pattern and one of the first decisions that should be made after you have decided to Strangle the
Monolith.

pieces out of the monolith until the system has been replaced. During this iterative
process, you often start by Wrapping the Monolith to help keep the Microservices and
the monolith decoupled from one another.

Wrap the Monolith
Extracting logic out of the monolith into Microservices may create a situation where
the same logic (either in the monolith or implemented as Microservices) needs to be
accessed by both old and new client components.5 Existing clients need to access the
logic the old way, and new clients access the logic the new way, using current proto‐
cols and API standards. A general approach is to create a Proxy (Design Patterns,
1994) or Facade for old external systems or client components (see Figure 10-4). This
Facade sits between the client components and the logic in the monolith moved to
Microservices.

Figure 10-4. Wrapping the Monolith

Initially, this Facade doesn’t do anything but pass all traffic, unmodified, between
old client components and the legacy application (monolith). This approach protects
old clients from change. As Microservices replace monolith components, this Facade
converts and transforms protocols from old clients into the protocols, technologies,
and contracts used by the new Microservices being created. Note that this could be a
two-way Facade as there could be communication coming back from the monolith to
the calling client components.
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The ideal goal is to completely Strangle the Monolith, eliminating it completely;
however, there are cases where the benefit of doing so will not be worth the effort.
Sometimes, part of the monolith might not be worth completely rewriting. For exam‐
ple, some core pieces of the monolith may provide value and change infrequently. If
you have wrapped these pieces so that they are easy to use, the benefit of extraction is
minimal. Likewise, if a core piece of code is entangled and quite difficult to rewrite or
extract, it could make sense to leave this code as is. This is especially true if you have
addressed the essential problems in the monolith and don’t need to go any further.

Strangling the Monolith helps you take advantage of the Microservices Architecture
(Chapter 4) while the old architecture continues to provide value to the organization.
Having many frequent releases helps you monitor the strangulation progress while
adding new functionality, thus making sure the monolith system continues to func‐
tion properly. When features are moved from the monolith to Microservices, parts
of the monolith become strangled, and these parts can be retired. This pattern ena‐
bles any existing client calling code to continue to access the required functionality
whether it is part of the monolith or has been moved to Microservices.

Even with the previously mentioned benefits, there are also trade-offs when Stran‐
gling the Monolith. There is an overall challenge of maintaining and governing two
types of software architectural styles—the monolith and the microservice—that typ‐
ically use different implementation technologies, runtime environments, infrastruc‐
ture elements, and deployment procedures. This technology diversity may increase
the total cost of ownership (TCO) for the organization. Additionally, because the
strangling process is a gradual evolution, it can take quite a bit of time before you
start to get the advantages of the new architectural style.

There is also a challenge related to data. A monolithic application typically uses a
centralized database, whereas Microservices typically follow the Self-Managed Data
Store (154) approach. There are many issues that arise when you are dealing with
issues related to distributed databases. Some of these challenges are ensuring data
consistency, handling transaction management, syncing data across Microservices,
retrieving data from multiple data sources, and more. You need to think carefully
about these issues during the strangling process and apply both Microservice Design
(Chapter 5) principles and Cloud-Native Storage (Chapter 7) practices.

Strangling a Monolith is an iterative process. Therefore, to be successful, it is a good
idea to Start Small (492). Also, you want to ensure that changes do not break existing
functionality and to limit making changes to any client code that needs access to
the new Microservices by Wrapping the Monolith. You can use a Dispatcher (140) to
implement the Facade, which applies a technique similar to the Wiping Your Feet at
the Door pattern and can be considered a type of Anti-Corruption Layer (229).
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After starting and once you have built the infrastructure, you can encourage teams
to move toward the new architecture by having them add New Features as Microser‐
vices (521). After initial success with building Microservices, you are ready to begin
the process of Transforming the Monolith into Microservices (526).

Examples
There are many examples of small, medium, and large organizations that have Stran‐
gled the Monolith.

Uber
In a blog post, Uber shared their experience through this process during a period
of hypergrowth. During this challenging period, they broke down their original
monolith system into hundreds of Microservices to support their needs for scale and
growth, all while continuing to evolve their running system.

Netflix
Netflix went through a strangling process (described in a blog), during which they
rebuilt their video processing pipeline using Microservices; they thus maintained their
rapid pace of innovation and continuous improvement for member streaming and
studio operations. It was originally created as a single monolithic system that handled
all media assets. Over time, as the system expanded, there was a significant increase
in the complexity of the system, leading to coupled functionality, long release cycles,
and reduced development velocity. Netflix gradually transitioned from their mono‐
lithic system to Microservices partitioned based on business capabilities. There of
course were challenges during this transition related to data consistency, interservice
communication, and the availability of the system—effective monitoring and logging
were crucial for dealing with and resolving these issues.

eBay
eBay had an application that had evolved over more than a decade and contained
hundreds of features in monolithic modules, and because of the growth of the
app, the code became increasingly harder to maintain and thus needed to evolve
their monolith to Microservices. They incrementally migrated from their monolithic
system to the new Microservices Architecture (Chapter 4) while continuing to build
new features and release the app on a regular cadence.

Amazon
Amazon, which has one of the biggest ecommerce systems in the world, similarly
embarked on a journey of Strangling the Monolith over time to Microservices. Initially,
Amazon’s original architecture was a monolithic system. During the rapid growth of
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6 This pattern was originally called Microservices First Strategy in the Strangler Patterns by Joseph Yoder and
Paulo Merson.

the business, many challenges arose, including addressing the complexity of the orig‐
inal system, responding to change, and dealing with scaling issues. Over time, they
transformed their monolithic architecture into hundreds of Microservices developed
around their business capabilities. This transformation helped with scaling, improved
development velocity, and helped teams to work more autonomously.

PagSeguro
In a presentation at Agile Brazil called “Microservices for Agility: The PagSeguro
Story”, a couple of people shared their strangling experience of modernizing a large
monolithic system to many hundreds of Microservices to meet their growing business
needs during a fast-growing time at their organization. This transformation of their
system to Microservices helped the company continue to grow rapidly and be quick
and agile while adapting to evolving business needs. One of the keys to their success
was making sure to Start Small, Pave the Road, and Model Around the Domain (183)
during the strangling process.

These are just a few of many organizations that have gone through a process of
transforming an originally successful monolithic architecture to a Microservices
Architecture (Chapter 4) to meet their current and future needs. This was usually
done during a fast-growing period at these organizations and the choice to use the
Microservices Architectural (Chapter 4) style helped them address their challenges
during this growth.

New Features as Microservices
(aka New Functionality as Microservices, Microservices First Strategy6)

The decision has been made to move toward the Microservices Architecture (Chapter
4) style. You have started the strangling process by Starting Small (492) and Paving
the Road (496) to build the infrastructure for implementing Microservices.

While Strangling a Monolith, how do you avoid adding new functionality to the
monolith that will later have to be modernized into Microservices?

During the long-running process of strangling a monolith, it’s natural that develop‐
ers, and especially product managers, feel inclined to add pieces of functionality to
the monolith. Some developers may not fully engage in Microservice development,
perhaps because they didn’t get acquainted with the new technologies and tools.
These developers are more prone to keep adding code to the monolith.
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Adding to the monolith is typically faster and less expensive in the short term than
providing the same functionality by implementing it with Microservices. Teams may
prefer to take the shortest path and finish their tasks sooner by implementing it in
the monolith; especially if they do not know and understand the long-term benefits
of evolving the architecture to Microservices.

On the other hand, if teams are free to keep adding and changing features in the
legacy system, the initiative to Strangle the Monolith (514) may never reach its goals.
If there are no design standards or policies set forth to require new or modified
functionality to be created in the new architectural style, the monolithic system may
see continued growth despite efforts to reduce its scope.

Many developers have been working on the monolithic system for a long time and
are focused on feature creation and not familiar with the new technologies and tools.
Others may realize that the new architecture provides new technologies they could
benefit from but are unsure about how to use it, especially because this might involve
integration with some parts of the legacy system.

Therefore,

Create a new directive that whenever you add new functionality to the system,
these new features are implemented as Microservices.

The main objective is to avoid or contain the growth of the monolith and to get
teams to start to move to using Microservices for any new functionality. This is done
by encouraging teams to implement new features with Microservices. Figure 10-5
illustrates a Microservices-first directive that limits development in the monolith
while encouraging any new development to be done through Microservices.

One way to make sure that teams start adding New Features as Microservices is
to create a directive that is part of your governance process that promotes adding
new functionality first as Microservices while discouraging adding new functionality
to the monolith. It is important to explain this decision to stakeholders such as
product owners and developers and provide support to help them be successful using
Microservices. This discussion can be very challenging—you might need to show the
risks of continuing with the monolith and the need for transforming it. You may
have to use various tactics to convince them to use Microservices more often for their
implementations, such as providing them with tools that make building and test‐
ing Microservices easier, emphasizing the organizational advantages of Microservices
(e.g., it strengthens team autonomy), or pointing out specific flaws and difficulties in
maintaining the existing monolith.
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Figure 10-5. Microservices-first directive to promote New Features as Microservices

Sometimes you can do this by communicating with and encouraging teams to add
new functionality using Microservices. Some team members or developers will be
excited to do this, and the system will start to see some of the benefits. Teams
can also be encouraged by creating templates or examples, making it easier to add
functionality with Microservices (e.g., Paving the Road). This is an example of a
“carrot” approach to encourage the desired behavior. You can also encourage teams to
consider using Microservices when they are modifying existing features.

However, you may also need to restrict changes (the “stick” approach) when making
changes in the monolith. Teams and developers might be tempted to take the more
expeditious way to add new features by relying on what they have always done in
the past. In these cases, a “stick” may be more appropriate. Organizations might
want to add “speed bumps”—for example, using a governance committee to approve
changes to the monolith. This committee permits new code to easily be added using
Microservices, but if you want to change the monolith, you need to convince the
committee that the change needs to be implemented this way.

You usually do this by having a mechanism in place for reviewing any changes to the
system as a whole. This mechanism includes teams explaining why the change should
be made to the monolith rather than implementing the change with Microservices.
This review mechanism needs to ensure only critical (absolutely necessary) changes
are made within the monolith.
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When adding new features, the best scenario is when the new feature can be added
independently of the monolith. However, there will be cases where adding a new
feature might best be achieved by making some changes to parts of the monolith.
When this happens, you can look for ways to Extract Components (535) to move the
functionality out of the monolith into Microservices. Sometimes you may have to first
Refactor then Extract (542) some pieces of functionality. Additionally, there may be
cases where the functionality is so tightly coupled that your only alternative is to lock
the original functionality in the monolith and completely Replace as Microservice
(546) that functionality to implement the new desired feature.

An advantage of adding New Features as Microservices is that the organization can
expedite the move toward the new architecture, thus reaping the benefits of Microser‐
vices throughout the organization sooner. This helps teams learn more about the
Microservices Architecture (Chapter 4) and how to be more productive and success‐
ful with this architectural style. There is an additional advantage of not making things
worse in the monolith that will have to be reimplemented with Microservices later.

However, it can take longer to implement new features because you can no longer
simply add features into the monolith by using copy/paste techniques. Also, many
teams are comfortable and productive with making changes quickly in the monolith.
You will also need to spend time and effort to set up a governance committee that
can initially slow down development efforts that need to go through the new approval
process. Also, there is a cost for providing the training, tools, people, and support for
transitioning your teams to be productive with Microservices.

While implementing a new requirement with a new Microservice or for some changes
to existing functionality, you will sometimes need to Transform the Monolith into
Microservices (526) as part of this process. While adding new Microservices, you
sometimes will need to create a Monolith to Microservice Proxy (552) for any
monolith functionality that needs access to the new features implemented as Micro‐
services. Additionally, you can use a Facade (Design Patterns, 1994) to access any
functionality inside the monolith that any new Microservices need access to—this
could be the Facade you used to Wrap the Monolith.

This pattern is similar to the Restrict Changes to the Legacy Application and Freeze
patterns described in Leading a Software Architecture Revolution. Restrict Changes to
the Legacy Application establishes a directive that requires approval for any changes
to the legacy system, while Freeze locks changes in the old architecture to achieve
faster results.
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Example
Cyberark talks about how they began with a Microservices First strategy in the devel‐
opment of Conjur.

The airline example we described in Refactor the Monolith (484) began with a direc‐
tive to add New Features as Microservices for the new implementation of automatic
rebooking of flights on disruption.

A longer example of this pattern is illustrated through a migration and modernization
effort of a financial system that strangled a fairly large monolith to be replaced with a
Microservices implementation. This company created a directive early on that encour‐
aged teams to develop new features by implementing them first with Microservices.
Although this worked for some teams, many teams were reluctant because they were
more comfortable making the changes in the monolith, and often there was a lot of
pressure to get the new requirement out quickly. Therefore, this organization created
a governance committee to restrict changes to the monolith during the “strangling”
process.

This committee included representatives from both the technical and other areas
of the organization, including Products, Business, Sales, and Marketing. It was impor‐
tant that this committee be made aware of the risks of continuing to add to the mono‐
lith and agree on the importance of moving toward implementing new features with
Microservices whenever possible. The committee reviewed every proposed change to
the monolith, discussed impacts versus opportunities for the whole organization, and
decided whether the changes needed to be done in the monolith for business reasons.

Figure 10-6 outlines the process this governance committee used to restrict changes
to the monolith while encouraging new changes to be added with Microservices.
A new feature can always be implemented by using Microservices without getting
approval from the committee. Any new requirements that needs to be implemented
in the monolith must be approved by this committee.

This governance committee reviews why the team thinks the change needs to be
made in the monolith and then decides whether to accept the change being made
in the monolith or reject the change and demand that the team implement it with
Microservices. Additionally, the committee can postpone the decision by requesting
more details or alternatives from the change proponents.

New Features as Microservices | 525

https://oreil.ly/w68Uq
https://oreil.ly/w68Uq


Figure 10-6. Example process of governance committee

Transform Monolith into Microservices
(aka Replace Monolith Functionality with Microservices, Divide and Conquer)

The decision has been made to Strangle the Monolith (514), which included creating
a directive to add New Features as Microservices (521). You would like to move some
of the functionality out of the monolith into Microservices (119) to improve the
maintenance of the monolith and reduce the blast radius of new changes to it.

How do you keep the original monolithic system working while you substitute
pieces of functionality with Microservices over time?

Once an organization has started to reap some of the benefits of using the Micro‐
services Architecture (Chapter 4), there will be a lot of pressure to take advantage
of the new architectural style for pieces of functionality that are contained within
the monolith. However, the existing system will still require changes and necessary
updates.

There is a temptation to completely rewrite the monolith. However, it is more often
the case that the cost and duration of a complete rewrite make it infeasible to take
this path. Instead, if the monolith has become hard to maintain and is hindering new
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projects and desired features, and rewriting it is nearly impossible, you’d like to find a
path to move functionality out of the monolith while keeping it working. It is critical
that your system continues to work during your transition to Microservices.

In particular, existing clients need to keep working. Sometimes you have no control
over these, especially if they belong to other teams or are third-party clients. This is
challenging when implementing Microservices that use new protocols and message
formats. Likewise, it can be challenging to rewrite functionality in the monolith into
Microservices. The following situations can complicate the process of transforming a
monolith into Microservices:

• The monolith may use old versions of libraries and frameworks. Developers•
want to upgrade to the latest versions, but the upgrades are not fully backward
compatible and require updating a lot of code in the monolith. These upgrades
have been postponed time and again over the years, and now the discrepancy
between the old version and the latest makes the upgrades costly and risky.

• The monolith may have been written in a programming language that is no•
longer the best choice for the current context of the organization.

• Teams often want to develop new applications using different programming•
languages, different frameworks, or simply newer but incompatible versions of
languages or frameworks. Consequently, these new applications cannot directly
call components in the monolith.

• Teams want the potential benefits of using new protocols and technologies. How‐•
ever, client applications make use of the monolith by calling services that use old
protocols and technologies (e.g., SOAP, EJB) or by adding module dependencies
to the monolith and directly calling the logic inside it.

Most monoliths are usually large systems that contain business logic from various
domains. It can be difficult to understand where and how to break apart a monolith.
Teams often don’t know where to start with such an effort. It usually requires a lot
of time, effort, analysis, and refactoring of the monolith before pieces of the systems
can be separated. Also, once you start, when do you stop? How can you know the best
approach for replacing functionality in a monolith with Microservices?

Therefore,

Iteratively transform your monolith into Microservices by identifying the places
where you can split the monolith into components that you then extract, refactor,
or replace into smaller components that are modeled around the domain.

The main task is to find partitions (clusters of functionality) within the monolith that
can be replaced with Microservices and then prioritize and replace these pieces over
time. You are gradually transforming your monolith application into a Microservices
application (see Figure 10-7). This transformation process can be thought of as a
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divide-and-conquer technique where you continue pulling pieces out of the monolith
until the system has been transformed and replaced with Microservices.

Figure 10-7. Transforming a Monolith into Microservices

This transformation process can take a lot of time to completely replace the mono‐
lith, especially for an entangled monolith. A good starting point is to find some
low-hanging fruit or places where you can easily pull out pieces of the monolith—this
helps teams learn about Microservices and motivates them by delivering some results.
Another strategy you can use is to focus on high-value items or tasks first—those
areas that are causing problems and will provide a big win if you can replace them
with Microservices. These should be prioritized based on what yields the most value to
the teams and the organization.

There are various techniques that can assist with finding places (partitions) to pull
functionality out of the monolith—these partitions are found and replaced by apply‐
ing other strangling patterns (see Figure 10-8).

You begin this process by searching the monolith for obvious places that can be
exploited to extract functionality to a Microservice. These are areas that already have
well-defined interfaces—for example, a service inside your monolith. You find these
places by examining the monolithic application for Hairline Cracks (530) around
pieces of functionality that can easily be extracted. In these situations, you look for
specific areas within the code that are loosely decoupled in the monolith.

If you find a place already mostly decoupled from the monolith, you can then Extract
the Component (535) from the monolith, replacing it as a Microservice. Extract
Component works well for components or functionality within the monolith that
have well-defined interfaces and can easily be extracted and wrapped as Microservices.
Sometimes Hairline Cracks will reveal areas with some coupling that you might
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need to first Refactor then Extract (542) the components from the monolith into
Microservices.

Figure 10-8. Process for partitioning the monolith into Microservices

However, many monoliths, especially entangled ones, will have a lot of places within
their code that have less cohesion yet are tightly coupled. This is where you may need
to Replace as Microservice (546) that functionality. It can be extremely challenging
to find code groupings from these entangled parts of a monolith that can be replaced.
When transforming these more entangled areas within the monolith, it is usually
a good idea to focus on functionality that is changing a lot and causing a lot of
problems.

The main advantage when you Transform a Monolith into Microservices is that the
monolith application continues working and providing value to the organization
during the transformation process. Additionally, it can be easier to maintain, change,
and deploy functionality for any parts of the monolith that are transformed.

However, it can be difficult to Transform a Monolith into Microservices. It takes a
lot of time and effort to find and replace these pieces of functionality that could be
used for releasing new features or maintaining the system. Another challenge is that
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of maintaining two systems during the transformation process—for example, you
may have to synch data between the Microservices and the monolith and also make
updates to the monolith when something changes to a Microservice.

For any code that is extracted or replaced from the monolith, you can use a Monolith
to Microservice Proxy (552) so that any monolith code that needs access to this new
code will continue to work. During this transformation process, it is a good practice
to use Playback Testing (556) to validate the migration.

Whenever you are Transforming a Monolith, it is a good idea to wrap up pieces within
the monolith by applying well-known wrapper design patterns (Design Patterns,
1994) such as Adapters, Decorators, Facades, and Proxies so that you can protect
the new services from being entangled with the monolith.

Examples
All of the examples described in the Strangle the Monolith (514) pattern apply here.
Additionally, the examples described in Hairline Cracks (530), Extract Component
(535), Refactor then Extract (542), and Replace as Microservice (546) are exam‐
ples of Transforming a Monolith into Microservices.

Hairline Cracks
(aka Fracture Plane, Design Seams (Working Effectively with Legacy Code, 2004))

You have decided to Strangle the Monolith (514). You are evaluating an existing
monolithic application and have decided to take some or all of the functionality of the
application and rearchitect it for Microservices (119).

How do you identify the areas within a monolith application that are candidate
boundaries for Microservices?

You would like to separate functionality from the monolith to improve the mainte‐
nance of the application and reduce the blast radius of new changes to it. It’s not easy
to understand how a monolithic application can be broken apart into Microservices
to achieve this desired result. When evolving to Microservices Architecture (Chapter
4), there is often pressure to take advantage of the new architectural style as soon as
possible.
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It can be time-consuming and difficult to find places where the monolith can be split
apart and extracted into Microservices. You need to find places inside the monolith
that can be replaced with Microservices. If your monolith has multiple interfaces,
there are usually good odds that one or more of them can be separated from the
others.

Therefore,

Look for Hairline Cracks inside the monolith—these are the places where the
monolith will be easier to break and replace with Microservices.

Hairline Cracks reveal places (clusters of functionality) within the monolith that can
more easily be separated for extraction from the monolith (see Figure 10-9). You use
these Hairline Cracks to either extract pieces out of the monolith to Microservices or
to refactor to a better design before extracting to a Microservice. This is analogous to a
hairline crack in a piece of metal or a fracture plane in some rocks.

Figure 10-9. Finding Hairline Cracks in a monolith

The challenge is finding these Hairline Cracks. Monoliths usually contain components
or services that provide seams where you more easily split the monolith apart and
extract it to Microservices. A good place to start is to look for cohesive pieces of func‐
tionality that are loosely coupled inside the monolith—these are usually included as
part of a component within the monolith with a well-defined interface. For example,
in large monolithic applications, there are at least three very simple cases where you
can find obvious cracks that can be exploited regarding services, often exposed by
Service APIs (70) (see Figure 10-10).
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Figure 10-10. Examples of Hairline Cracks

Following are the three cases illustrated in Figure 10-10:

Case 1: Existing REST or Async services
This is by far the easiest case for refactoring. It may be that you have existing
services that are already compatible with a Microservices Architecture (Chapter
4), or that could be made compatible. Start by untangling each REST or simple
Async service from the rest of the application package, and then deploy each
service independently. At this level, duplication of supporting files is fine—this is
still mostly a question of packaging. Here you can begin the process of Extracting
Components, but remember that this is often an iterative process toward refac‐
toring to Microservices. Your new Microservices will still need to each perform
one and only one business function while following accepted cloud DevOps
principles.

Case 2: Existing older distributed services like CORBA, SOAP, or EJB
If you have existing services, they were probably built following a functional
approach (such as the Service Facade (SOA Design Patterns, 2008) pattern). In
this case, functionally based services design can usually be refactored into an
asset-based services design. The reason is that in many cases, the functions in the
Service Facade were originally written as CRUD operations on a single object.
In the case where that is true, the mapping to a RESTful interface is straightfor‐
ward—just re-implement the EJB session bean interface or SOAP interface as a
RESTful interface. You may need to convert object representations to JSON to
do this, but that’s usually not very difficult. In cases where it’s not a simple set
of CRUD operations (for instance, account transfer), you can apply a number of
different approaches for constructing RESTful services (such as building simple
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functional services like /accounts/transfer) that implement variants of the
Command (Design Patterns, 1994) pattern.

Case 3: Simple web interfaces
Many programs are really just simple Web Form Applications (414) (for example,
Servlet/JSP in Java) acting as frontends to database tables. If this code has a
domain layer, that can be extracted and a new Microservice built around it.
However, they may not have a domain object layer at all, especially if they follow
design patterns like the Active Record (Patterns of Enterprise Application Archi‐
tecture, 2002) pattern. In this case, creating a domain layer that you can then
represent as a RESTful service is a good first step and an example of Refactor
then Extract (542). Identifying your domain objects by Modeling Around the
Domain (183) will help you identify your missing domain layer. Once you’ve
built the domain layer (and packaged each new service separately), you can either
refactor your existing Web Form Application to use the new service or you can
build a whole new interface following a multichannel architecture approach.

In addition to these cases, there are often components or modules within a monolith
that can potentially be extracted to Microservices. It is usually a good idea to focus on
business capabilities to find these areas. These places often reveal partitions within
the code that may be easier to wrap into a component that can then be extracted to a
microservice—once decoupled from most of the monolith, they are usually fairly easy
to extract out of the monolith to be replaced with Microservices.

Perhaps the biggest problem in finding Hairline Cracks arises when the business
capabilities are not well-defined within the code or well-identified. In that case, the
best approach is often to begin with the data and work backward into the code. This
is particularly true when there is substantial interprocess communication through
the database and when logic is implemented within the database (perhaps as stored
procedures). In this case, it can be quite difficult to identify any business concepts at
all from the code.

In that case, beginning with the database structures and the stored procedures that
operate on them is the first step. That will help show you what domain concepts
may exist. Then you can begin working backward to find the pieces of code that
invoke the stored procedures and then continue moving backward from there to
the data structures in the code that represent domain concepts, even if they are
not well-named or well-defined. That can become the seed from which you can go
forward and begin Modeling Around the Domain. If you repeat that process several
times, you may then be able to identify the Aggregates within the system and begin
tracing out the edges of a Bounded Context (201) in earnest.
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Hairline Cracks reveal areas where you can refactor the monolith to a better design
as it is being strangled. Breaking a monolith along an easily identified Hairline Crack
is often a good introduction to the refactoring process and provides a team with the
confidence they need to proceed with more complex refactoring.

The main challenges are related to time and complexity because it can be difficult and
time-consuming to find these Design Seams (Working Effectively with Legacy Code,
2004) and refactor them to a better design. What’s more, as with any refactoring
effort, the benefits are not realized until after the refactoring is completed, so making
the effort to pay back the technical debt requires advanced planning and agreement
between the product owner and the technical team.

Finding these Hairline Cracks is similar to finding Design Seams. Finding these
Design Seams can help you find places where you can Extract Components (535).
Sometimes these Hairline Cracks reveal places where, although they have some cou‐
pling, there is potential to Refactor then Extract (542) the functionality from the
monolith to Microservices.

When finding Hairline Cracks, it is good practice to apply proven Microservice
Design (Chapter 5) modeling techniques to determine the best design and domain
boundaries to refactor toward. The goal is to build the right-size service that is
Modeled around the Domain (183).

Examples
The first example describes a tool for finding Hairline Cracks with a reference to a
case study of using it. The second example looks for Hairline Cracks in an ecommerce
app for extracting features to Microservices.

Mono2Micro
IBM Mono2Micro is a tool for identifying parts of your Java code that are loosely
coupled externally while more tightly coupled internally. The tool will find the
appropriate Hairline Cracks, partition the code into those sections, and then generate
wrapper code to refactor the partitions into Microservices. Jay Talekar and Sachin
Avasthi from the IBM CIO Office have written a case study of using this tool on a
number of applications as part of a larger modernization exercise.

Shopping cart and checkout from ecommerce
Let’s consider an ecommerce monolithic system that includes functionality for a
shopping cart and for checking out and paying for the order (see Figure 10-11).
In this example, after some analysis within the monolith, we decide to refactor the
shopping cart and checkout features to a better design to make it easier to maintain
and extract this functionality into a Microservice.
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7 A variation of this pattern was originally called Extract Component and Add Facade in Strangler Patterns by
Joseph Yoder and Paulo Merson.

Figure 10-11. Ecommerce Find Hairline Cracks and refactor to Microservice

After this refactoring, the checkout and shopping cart features can be extracted into a
separate service. Sometimes Hairline Cracks reveal components that can be extracted
with little or no refactoring to the monolith. Other times you might need to do quite
a bit of refactoring to extract the functionality.

Extract Component
(aka Extract Service, Extract Functionality to Microservice, Extract Component and
Add Facade7)

You have started the strangling process and are looking for ways to Transform the
Monolith to Microservices (526). You have identified some Hairline Cracks (530)
within the monolith that reveal some potential services or modules (pieces of func‐
tionality) that would be beneficial if modernized to Microservices (119).

How do you separate loosely related parts of the code in our monolith into
distinct deployable units?

A monolith by definition is a large deployment unit that encompasses functional‐
ity pertaining to many different subdomains. Some changes to the system require
changes across subsystems, often creating bugs or other issues. Teams often do not
have a full understanding of the domains and subdomains.
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Teams will want to pull out pieces that are causing pain and start using new
approaches—specifically Microservices. Since monoliths are large, different develop‐
ment teams work on different parts of the monolith. However, these teams are usually
organized in ways that are detrimental to this desire—such as organizing teams by
layer within a layered architecture. This requires teams to coordinate closely and
work together to make changes to the system. Any change in one part of a monolithic
system often requires changes to another part. which is usually owned by a different
team.

Developers usually have the freedom to take shortcuts, which often add dependencies
across components within the monolith when implementing new features or fixing
bugs. As a result, many monoliths are significantly tangled. Component interdepen‐
dencies then make it difficult to isolate fine-grained, cohesive components.

Despite this, there are often places inside the monolith that have some functionality
grouped around aspects of the domain. The monolith may include components with
well-defined interfaces that can be separated from the monolith. Monoliths often also
include some components or pieces that contain related pieces of functionality that
can be pulled out into their own component(s) or service(s).

Therefore,

Extract functionality identified by a Hairline Crack out of the monolith into its
own separate distributed component. Apply recursively until the components are
appropriately sized for Microservices.

To extract functionality, you start by examining those places (functionality or compo‐
nents) within the monolith identified by Hairline Cracks that show the most promise
for extracting into Microservices. You then gradually extract these components from
the monolith, working toward implementing them as Microservices. Any access from
existing clients that need access to extracted functionality can be routed through a
Facade (Design Patterns, 1994). Figure 10-12 illustrates the application of this pattern
to component X, which is extracted and becomes microservice X′.

Note that in Figure 10-12, component X is mostly decoupled from the rest of the
monolith. Usually, some detangling is needed to extract components from the mon‐
olith. If components inside the monolith were clients to X, you can either adapt
those clients to have them calling the new Microservice X’ through the intercepting
Facade, or, if possible, adapt them to directly call X’. In this example, an existing client
and component Y was calling X directly. These calls are now directed through the
Facade, which will call X’ by transforming any protocols and respond accordingly.
This example also shows that a new client application may also call Microservice X’
directly if the extra features of the Facade are not required for the interaction.
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8 Quick Wins is a pattern described in Leading a Software Architecture Revolution by Marden Neubert and
Joseph Yoder. When beginning any migration or modernization endeavors, it is a good idea to start with less
risky and less coupled subsystems before you engage in more complex activities so teams can learn about the
new architecture and the migration/modernization process.

Figure 10-12. Extract Component from monolith and add Facade

There are two approaches you can take when Extracting Components: top-down or
bottom-up. You can get some Quick Wins by applying a bottom-up approach, which
examines the low-hanging fruit (obvious places) you found when looking for Hairline
Cracks, and then extracting that functionality from the monolith to a Microservice.8

For example, as described in Hairline Cracks, you may already have some services
being implemented in the monolith, such as REST or Async services. There might
also be older distributed services such as CORBA, SOAP, or EJB. These services
can usually be extracted into a Microservice that is deployed independently of the
monolith in a straightforward way.

Also, some Hairline Cracks might reveal components or modules within the monolith
that have well-defined internal interfaces and are loosely coupled with the rest of the
monolith. These pieces are also good candidates for extracting out of the monolith
and require less effort than more tightly coupled pieces. You get to take advantage of
Microservices early on by extracting these components.

However, it is usually more often the case that an entangled monolith will contain
larger pieces or components that are tightly coupled internally and thus harder to
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9 Macro Service is a supporting subpattern that was originally called Macro then Micro in Strangler Patterns by
Joseph Yoder and Paulo Merson.

break into smaller pieces without a lot of refactoring. This is when you can apply
a top-down approach by taking larger pieces of functionality and extracting them
from the monolith even though they contain some entangled parts. In these cases,
pulling out these larger pieces first can help you begin to get the benefits of moving
toward Microservices and can make refactoring these entangled pieces to smaller
Microservices easier. Therefore, for a lot of the monolith, you will be extracting larger
pieces of functionality into a Macro Service and then breaking each of them down
into a Microservice after this functionality has been successfully extracted.

Macro Service
When Extracting Components, you often start by extracting high-level components
and then recursively breaking those pieces into smaller and smaller pieces.9 You
continue this process until you have reached the level of Microservices, where each
piece stands alone and meets the requirements for a Microservice. You can think of
the monolith as the biggest piece, and then we apply a divide-and-conquer technique
to break the monolith down into smaller and smaller pieces. An example is shown in
Figure 10-13, where tightly coupled components A and B are extracted as a Macro
Service.

Figure 10-13. Extracting Macro Service to Refactor to Microservices

Any original functionality within the monolith that needs access to the extracted
functionality is redirected to call the newly created service that implements the
functionality outside the monolith—for example, components C and D are redirected
to the newly created Macro Service as seen in Figure 10-10.

Extracting a Macro Service is the first step toward Microservices, but it begins as
a larger service because of coupling within the monolith that makes it difficult to
extract the smaller pieces. Once this intermediate solution is stable, you can then
begin to separate the Macro Service into smaller Microservices. After the Macro
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Service has been extracted, new clients can begin to access and use the functionality
of the extracted service. There may be some larger pieces of functionality that you
need to first refactor into a component with a well-defined interface that can then
more easily be extracted to a service.

When you are extracting a Macro Service, you may not be as concerned with all the
attributes that make a service qualify as a Microservice. For instance, it is common
for a Macro Service to perform more than one business function yet still be loosely
coupled to the rest of the monolithic application. An example of this is when there
is complex decision logic that chooses from among various options that are difficult
to refactor into separate components, but pulling out all of the decision logic plus the
additional domain logic behind the decision logic as a single large component is still a
good first step toward refactoring into Microservices.

Implementation Issues
Once you have decided on a component to extract, you clone the code that can be
extracted as is and release it as a Microservice. The next step is to test and validate the
extracted pieces. Once you are comfortable with the newly released Microservice, you
can then route any necessary calls to it. Existing client applications or components
that use functionality moved out of the monolith into a Microservice can be handled
as follows:

• They can be rewritten to call the new Microservice. This option takes time•
to be rewritten and may not be achievable before these components become
Microservices.

• They can remain unchanged and have their calls go through a routing intercep‐•
tor (the Facade component) to the new Microservice. This component performs
the protocol bridging and message transformations for the existing client compo‐
nents to interact with the new Microservice. This option is your only choice when
there are clients that you cannot change (i.e., third-party clients).

In addition to protocol bridging and message transformations, the Facade compo‐
nent, which can also act as a reverse proxy, can perform several operations, such as
security controls, dynamic message routing, traffic monitoring, circuit breaker, and
even caching.

Sometimes you can use refactoring tools such as IBM Mono2Micro to extract the
component. This tool can find the appropriate Hairline Cracks within a monolith and
then partition the code into sections that can generate wrapper code to refactor the
partitions, extract them into Macro Services or Microservices, and provide wrapper
code to delegate code from the monolith to the new Microservice.
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The main advantage is that you get the benefit of using the Microservices Architec‐
ture (Chapter 4) for functionality that can be extracted from the monolith. You are
also able to change, test, and deploy the extracted piece more quickly without affect‐
ing or releasing the monolith. The Facade component has the benefit of enabling
existing clients or code inside the monolith to seamlessly interact with the newly
created Microservice.

However, it can be difficult to find decoupled pieces within the monolith, and some‐
times you don’t see the immediate benefit of extracting these pieces. Also, for larger
pieces, the team might not have the time or inclination to refactor them to smaller
Microservices. Extracted Macro Services usually contain tightly coupled pieces, which
still makes modification of the code to add new functionality more difficult than it
would be if you completed the refactoring to Microservices.

Whether you are Starting Small (492) or not, you can Extract Components whenever
desired functionality in the monolith can benefit from being moved to a Microservice.
Hairline Cracks (530) reveals potential places in the monolith that can be extracted.
It is common to first extract a larger Macro Service and then refactor it into smaller
Microservices.

You might need to first Refactor then Extract (542) the components from the
monolith. If the functionality is tightly coupled in the monolith, you may need to
Replace as Microservice (546).

For any functionality in the monolith that needs access to the extracted behavior, you
can create a Monolith to Microservice Proxy (552), which can also act like a Facade
for external clients. The new Microservice likewise might need to access the Facade.

Modeling Around the Domain (183) is an important technique for finding the right-
size services (180) as the system evolves. Larger functional pieces being extracted are
usually modeled around Bounded Context (201) pieces of the domain.

Examples
The following airline and ecommerce examples describe how to apply the Extract
Component technique.
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Airline example
In an airline refactoring example we worked on, we found that the initial monolithic
application was performing three major sets of business functions suitable for refac‐
toring to better separate them:

1. “fly” represents “day of flight” functions like check-in, bag check, and upgrade1.
purchase

2. “try” represents flight search2.
3. “buy” represents the purchase process3.

This logical division gave us the ability to start looking for smaller logical units within
each group (or “chunk” as we called them).

We were then able to look through the code of each part of the monolith, looking
first for Macro Services to extract; one such was the ticket purchase process. This
process was large and tightly coupled internally—for example, it had many internal
logic switches, such as whether the customer was purchasing an upgrade or a new
ticket. Nevertheless, it was at the right level to be extracted as a Macro Service.
This reduced duplication in the overall system because the purchase function had
originally been replicated multiple times in the original code. It was a good early step
toward refactoring the system into Microservices, which continued as a refinement
process over several later releases.

Ecommerce
Figure 10-14 extends our example of extracting a Macro Service from an ecommerce
monolith similar to the example shown in Hairline Cracks. Note that Checkout
is well-defined functionality within a subdomain of an ecommerce system. In the
Checkout subdomain, you can check out and pay for any items you have added to
your shopping cart.

Analysis of the Hairline Cracks within the monolith revealed that we could extract
the Checkout functionality from the monolith without too much effort. We were
then able to refactor the extracted functionality into two smaller Microservices called
Checkout and Shopping Cart. Note that in this example, components Y and Z were
updated in the monolith to call the newly created services outside of the monolith.
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Figure 10-14. Extracting Macro Service ecommerce example

Refactor then Extract
(aka Reorganize Monolith then Extract to Microservices)

You have been Strangling the Monolith (514) with a focus on finding ways to Trans‐
form the Monolith into Microservices (526). Some areas have been identified by
Hairline Cracks (530) that you have been able to extract into Microservices (119).
However, there are other areas inside the monolith with some internal coupling (at
least partially) that you would like to get the benefits of being implemented with
Microservices, especially parts of the monolith that change frequently.

How do we address coupling within the monolith to facilitate extraction into
Microservices?

Monoliths are often tightly coupled with many dependencies between internal com‐
ponents, making it difficult to easily extract existing code. You need to find ways to
reduce that coupling to make it possible to extract that code.

However, the code may be very complex or difficult to understand, leading the team
to be cautious in making any changes at all to specific sections. A change in one part
of the monolith can break other parts of the system, and those breaks can be difficult
to detect, especially if the test coverage of the monolith is inadequate.
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Therefore,

Reorganize the monolith by refactoring partially coupled pieces to be more modu‐
lar with well-defined interfaces, and then Extract Components to Microservices.

You start by finding places within the monolith that you can refactor into mod‐
ules; these modules can later be extracted from the monolith into Microservices.
Figure 10-15 shows functionality “a” and “b” being refactored to components A and
B within the ecommerce monolith. Such refactored modular pieces can then be
extracted into Microservices.

Figure 10-15. Refactor then Extract to Microservices

In this example, both “a” and “b” functionalities are places that could be refactored
to separate modules (A and B) within the monolith. You can then Extract the Com‐
ponents (modules A and B) and add a Facade (Design Patterns, 1994) to migrate
the functionality of A and B to Microservices. Note that components C and D now
call the newly extracted Microservices. Alternatively, we could have left an interface
for A and B in the monolith to Proxy (Design Patterns, 1994) calls to the extracted
Microservices.

There are various techniques you can apply to help with this. If there are pieces
of functionality that have coupling, analyzing these pieces can identify places where
you could make the code more modular, thus making it easier to extract into a
Microservice. First of all, any Hairline Cracks that cannot directly be extracted are
potential places that can be refactored inside the monolith to make extracting them
easier. Code smell tools and refactoring tools can assist with finding these places and
will refactor the code inside the monolith.

While adding new features or fixing existing features, there will be areas within the
monolith that need to evolve to address the desired changes. When making these
changes within the monolith, there is an opportunity to see if there are pieces that can
be refactored and extracted to Microservices. This is often an evolutionary process—
for instance, you may begin by pulling multiple related calls together into a common
point using the Facade pattern—perhaps also using language features like Interfaces
in Java or Traits in Rust to facilitate this. You can then, over time, evolve that Facade
into a Service API (70), even while the code remains within the monolith. This gives
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you time to update the clients that used the original Facade into clients that consume
the Service API instead. Once you have done that, you are more likely to be able to
successfully pull out the code behind the Service API using Extract Component (535).

When the code is difficult to understand, it can be a good idea to “refactor to
understand,” which helps you learn more about the domain and the current imple‐
mentation and often reveals areas that can be extracted. Often, it is useful to split
your data before extracting the components—especially if you are using a large
shared database and communicating with other components through the database.
Database refactoring mechanisms like denormalization can facilitate that, especially
if you combine that with refactoring components to communicate through interfaces
rather than through the database.

The are two main advantages to this approach. First of all, parts of the monolith are
refactored to a better design, making it easier to evolve and maintain. Also, these
refactored components can more easily be extracted to Microservices when needed.

One disadvantage is that you might have to wait longer until you get the benefits
of Microservices. In addition to taking longer, it could also increase complexity in
the monolith as you create new abstractions. Learning and maintaining these abstrac‐
tions could be costly in terms of time and expertise.

After refactoring the functionality in the monolith, the next step is to apply the
Extract Component (535) pattern. Sometimes you will need to refactor larger pieces
or components from the monolith, then extract them as Macro Services, finally
breaking them down into smaller Microservices. After applying Refactor then Extract,
you can create a Monolith to Microservice Proxy (552) for any functionality in the
monolith that needs access to the extracted behavior.

This pattern is related to Refactor the Monolith (484) because you are refactoring
parts of the monolith so that you can more easily extract these pieces to Microservices.
The main difference is that you are not trying to refactor the complete monolith,
which might be independent of applying the Microservices Architecture (Chapter 4)
style. Rather you are finding pieces of functionality inside the monolith that have
the potential to be refactored to assist you in extracting that functionality into a
Microservice.

Examples
The following are examples of systems that have applied the Refactor then Extract
pattern.
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Financial services system
What we often seem to think about most in Refactor the Monolith (484) is the
process of breaking down complex components into ever smaller pieces. However,
sometimes the exact opposite approach is required. In one financial services system
that one of the authors worked on, the problem was that the developers had tried
to anticipate scaling in an altogether inappropriate way; they had essentially violated
Fowler’s First Law of Distributed Object Design—“Don’t distribute your objects!”—
and had made everything in their system a distributed object, requiring remote calls.
They did this by taking an overly layered approach to their system, where not only
their top-level domain concepts (like Retirement Plan) were distributed components,
but all of their data representations were distributed components as well. The over‐
head from all of these remote calls was enormous and brought system performance to
a standstill.

We recommended a two-step approach. First, refactor the internal (data represen‐
tation) calls to everyday Java method invocations instead of remote calls. This in
itself dramatically improved the overall performance of the system and allowed us
to then move on to the next stage—refactoring the domain concepts on the top
of the tree into components with RESTful interfaces that each performed one and
only one business function. The entire process from beginning to end is shown in
Figure 10-16.

Figure 10-16. Financial services refactoring and then Extract to Microservices

The advantage of this approach is that the team could show substantial results
early on in terms of reduced system complexity and improved performance before
completing the transition to a Microservices-based approach.
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Ecommerce system
We previously showed an ecommerce example where we found Hairline Cracks in
a monolith, refactored the Checkout and Shopping Cart functionality, and then
extracted the two functionalities into a single service (see Figure 10-11). We also
showed how to take this extracted Macro Service and break it down into smaller
Microservices (see Figure 10-14).

Figure 10-17 is an example of applying both of these techniques together for an
ecommerce monolith to extract the Checkout and Shopping Cart functionality. This
is an example of Starting Small (492) and taking some Baby Steps toward a Microser‐
vice implementation.

Figure 10-17. Ecommerce refactoring then Extract to Microservices

In this example, both the Checkout and Shopping Cart functionality were identified
as Hairline Cracks within the monolith as places where the functionality could be
refactored to separate modules within the monolith. Once this functionality is refac‐
tored to separate modules within the monolith, you can then Extract the Components
to migrate this functionality into a Checkout Macro Service that includes both the
Checkout and Shopping Cart functionality. After this has been extracted, then this
Macro Service can be split into Checkout and Shopping Cart Microservices.

Replace as Microservice
(aka Replace as Service, Reimplement as Service, Reimplement as Microservice)

You are Transforming the Monolith into Microservices (526). You have been able
to extract into Microservices (119) certain areas identified by Hairline Cracks (530).

546 | Chapter 10: Strangling Monoliths



However, there are other areas inside the monolith that you would like to get the
benefits of being implemented with Microservices.

How can we move complex and important pieces of functionality that are tightly
coupled in the monolith to Microservices with minimal impact?

In a monolith, especially one not well organized into modules, changing a single fea‐
ture often requires changing several parts of the monolith in a coordinated fashion.
For parts of the monolith that change frequently, you’d like to replace those parts with
Microservices, which makes them easier to change with less impact on other parts of
the monolith.

You may want to extract frequently changing parts of the monolith; however, because
they are tightly coupled with many dependencies between internal components,
they are difficult or nearly impossible to separate from existing code. The existing
monolith may be too fragile to add any new code to it, as any change can cause side
effects.

Therefore,

Reimplement (rewrite) components or functionality from the monolith as Micro‐
services. While doing this, lock down this functionality in the monolith.

When you have functionality within the monolith that cannot easily be extracted
and would be useful to implement with Microservices, you lock down the original
functionality in the monolith and rewrite the component(s) that provides core func‐
tionality as a microservice—Figure 10-18 is an example of component X in the mon‐
olith being locked down and then rewritten to Microservice X’. For many entangled
monoliths, this functionality will be spread across different parts of the monolith
rather than just one component; we are using a single component to illustrate this
pattern.

Figure 10-18. Replace as Microservice

Replace as Microservice | 547



10 Code-freeze is an example of Freeze described in Leading a Software Architecture Revolution. Freeze locks
changes in the old architecture to achieve faster results when Replacing as Microservices the original imple‐
mentation.

In this example, any development or changes to the original component X (or func‐
tionality related to X) in the monolith is locked down (frozen). A new version of
the functionality for X is then implemented as Microservice X’, and it becomes the
primary locus for that functionality. After the new Microservice X’ is tested and
validated, new client components can start using the functionality of Microservice X’.

Once the new Microservice becomes part of the new system and starts to evolve,
other components inside the monolith may need access to the new functionality
that is in the Microservice. In this case, there are two alternatives to access the new
Microservice from inside the monolith. One way is to rewrite any client components
in the monolith to directly call the new Microservice; Figure 10-18 shows Y being
updated to directly call X’. Another way is to create a Proxy (Design Patterns, 1994)
from the original component X in the monolith to call the newly implemented feature
in Microservice X’; this alternative is illustrated in Figure 10-18, where Z and W are
still calling X and then being delegated to X’ for the updated functionality.

The following outlines the steps for the Replace as Microservice approach:

1. Code-freeze10 the functionality you want to replace in the monolith.1.
2. Create a new Microservice implementing the functionality from the monolith that2.

you want to replace.
3. Canary Release the new Microservice while carefully testing.3.
4. Change the interface of the original implementation of the functionality in the4.

monolith to call the newly created Microservice.
5. Gradually rewrite the old client components to call the new Microservice instead5.

of the old component in the monolith.
6. Eventually remove the original implementation of the functionality if feasible.6.

There are variations to these steps. For example, you could start by freezing the
functionality and then create a new interface or abstraction to the functionality. This
interface could be a direct call (implemented as a Proxy) to the original implemen‐
tation of the functionality. Then, you update any monolith client code to call this
new interface. After you create the new Microservice and you are confident with the
new implementation, you can then switch the interface to use the new Microservice
implementation.
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Addressing Challenging Areas in the Monolith
Entangled monoliths by definition will include many areas inside them that have less
cohesion and are tightly coupled. This makes it extremely challenging to find code
groupings that can be extracted. You are trying to find areas or partitions within
the monolith that can be decomposed and possibly extracted or replaced. Sometimes
analysis can reveal Hairline Cracks where there are pieces of functionality that can be
refactored to a better design, creating components within the monolith that can more
easily be extracted. In these situations, you look for specific areas within the code that
can be decoupled from the monolith. On the other hand, there will be many areas
where this is not possible, and you will need to lock changes to that functionality in
the monolith and reimplement them with Microservices.

When addressing these entangled areas in the monolith to replace that functionality
with Microservices, it is usually a good idea to focus on key business capabilities that
change a lot, especially if the changes are causing problems. An entangled monolith
usually includes functionality that is coupled around these capabilities. The goal is to
decouple these capabilities by focusing on the domain. To find these, look for bound‐
aries inside the monolith around related business objectives and responsibilities, even
if they include many pieces of functionality. These boundaries reveal areas that can
potentially be grouped together and replaced with a Microservice. You can find these
places inside the monolith in the following ways:

• Look for high-level groupings of related functions that go together (examples•
include account management, invoicing, quoting, contracting, billing, shipping,
etc.).

• Look for smaller repeated use cases within those groupings of functions (exam‐•
ples include tax calculations, shipping provider selection, credit card payment,
loyalty point redemption, etc.).

• Identify code-level components within those repeated use cases to build into•
Microservices.

To search for these areas within your code, you can also analyze your commit logs
and examine problems from your issue-tracking tools such as Jira. You may also want
to use tools that show coupling and other code smells, such as SonarQube. Parts
of the system that change frequently and affect other parts of the system should be
included as potential sections to be moved to Microservices—it is valuable to extract
these pieces out of the monolith as soon as possible.

Replacing functionality with Microservices provides flexibility and the benefits of
being able to use new technologies, frameworks, and platforms. Also, teams can
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experiment with new ideas with less risk of breaking the monolith. Rewriting these
pieces also makes this functionality easier to change in the future because you have
decoupled it from the monolith.

On the other hand, the organization loses the benefit of adding features in the
monolith for that frozen piece of code. While the code is locked down, you cannot
add new features for this part of the system. Also, it can be complex for pieces in the
monolith to take advantage of the new features implemented in Microservices. Finally,
there could be data-syncing issues between the data stored in the monolith and data
stored in the new Microservices, specifically in the data used in the frozen code.

If any components within the monolith need access to the new features in the newly
created Microservice, you update them to directly call the Microservices, or you can
create a Monolith to Microservice Proxy (552) from the original locked component
to call the new Microservices. You can use a Facade (Design Patterns, 1994) to access
any functionality inside the monolith that the Microservice needs access to.

When you Replace as Microservice, the new implementation should be validated
through Playback Testing (556) by comparing the new Microservices implementation
to the original implementation from the monolith, especially because you are rewrit‐
ing and replacing the original implementation.

Branch by Abstraction (Monolith to Microservices, 2019) is a special case of Replace
as Microservice, where specific steps are outlined for replacing the code in the mono‐
lith with Microservices. In Branch by Abstraction, you create an abstraction point for
the functionality that will be replaced and have the code inside the monolith call to
this new abstraction. Replace as Microservice includes this scenario but also includes
other variations of replacing the functionality of the monolith with Microservices—
for example, by simply locking this functionality down and completely rewriting it
without creating the new abstraction inside the monolith.

Examples
The following examples illustrate the Replace as Microservice approach.

Major hotel chain
In this example, the hotel chain followed the Replace as Microservice approach to
replace an existing complex subsystem used for viewing and redeeming hotel reward
points within a large Web Form Application (414) that was being broken apart into
services. The existing code was buggy and complex, so they chose to rewrite the
entire rewards section as a distributed service (this was before Microservices became
known as such). The advantage of this approach in the long-term was that a few years
later, the hotel chain decided to replace their home-grown rewards tracking system
with a commercial rewards tracking application. They could only do this because
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they had a single remote API to the previously developed service that minimized the
amount of work needed to entirely change out the implementation of the rewards
system.

Ecommerce
Figure 10-19 is an example of an ecommerce system where functionality for the
“Authorize Payment” inside the monolith is Replaced as a Microservice. Authorization
is an approval of credit or debit cards that validate that the cardholder has sufficient
funds available to pay for the transaction that they are attempting to make. There are
third-party systems that provide this functionality, usually for 1.5% to 3.5% of the
transaction. For a lot of transactions, this cost can add up to quite a bit of money,
which sometimes is a good reason to implement this functionality internally.

Figure 10-19. Replace as Microservice ecommerce example

Note in Figure 10-16 that the “Authorize Payment” functionality is tightly coupled
inside the ecommerce monolith and also makes a call out to a third-party service (not
shown) to authorize a credit card payment. Because of this coupling, they decided to
lock any changes to this part of the monolith and rewrite this functionality outside
the monolith as a new service.

Once this new service was released, they were able to start testing and Canary
Release this service to new clients. Over time, they were able to rewrite parts of the
monolith to directly call this new service; Y is redirected to call the new “Authorized
Payment” service. This example also illustrates the use of a Monolith to Microservice
Proxy that delegates from the locked component in the monolith to call the new
Microservice implementation.
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Monolith to Microservice Proxy
(aka Proxy Monolith Components to Microservices, Proxy Monolith Service to
Microservice)

You are in the process of transforming your monolith to Microservices (119), and
you need existing monolithic code to call the new functionality made available as
Microservices.

How can developers change the code in the monolith to access and use the func‐
tionality that was replaced with Microservices?

During the long-running process to Strangle the Monolith (514), components in
the monolith are gradually replaced with Microservices. The Microservices may use
protocols and message formats that are different from what is used in the monolith.
However, evolving the monolith to use the same standardized message formats used
in Microservices can be expensive.

You would like to have the monolith take advantage of the new features provided
in the Microservices. However, the cost and risk of updating a large number of
components in the monolith to call the new Microservices is high.

Old client applications require access to components in the monolith that are being
extracted as Microservices.

Therefore,

When you move functionality out of the monolith components into Microservices,
keep the old components in the monolith but rewrite them as proxies to redirect
calls to the new Microservices.

The main idea is that the interface of old client components remains unchanged.
Monolith components that are replaced by Microservices no longer implement the
business logic to directly process the calls themselves. These components still expose
the same contract, but all they do now is route calls to the new, Microservice-based
implementation. Now that there’s a Microservice that does something the monolith
does, rather than trying to update all of the client code in the monolith, just replace
the monolith code that used to do the functionality with proxy code that calls the
Microservice. Figure 10-20 illustrates the application of the pattern to components X
and Y.
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Figure 10-20. Monolith to Microservice Proxy

The components are extracted or rewritten as Microservices X’ and Y’. The diagram
illustrates that these extracted or rewritten services can be synchronous or asynchro‐
nous. For example, service Y’ can be a synchronous REST service, and service X’ can
be a consumer of a message queue (e.g., a Kafka topic) and hence be activated by
asynchronous messages or events. In this example, Y is proxying directly to Y’, while
X is proxying by sending a message to a queue that X’ subscribes to.

Additionally, it should be noted that in this example, components X and Y are called
by existing clients and by components inside the monolith. These clients and the
components within the monolith are unaffected by the solution because they still see
the same contract exposed by X and Y, even though the actual business logic got
delegated to Microservices X’ and Y’.

Instead of adding a Facade (Design Patterns, 1994) interceptor component, you
have the monolith components acting as Proxies (Design Patterns, 1994) to the new
Microservices—in a sense, parts of the monolith are being converted into Facade.
Because new Microservices may have different contracts, monolith components acting
as Proxies may need to perform the message transformation and protocol bridging.
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The main benefit of this pattern over the generic Facade solution is related to han‐
dling calls from within the monolith. Clients and components within the monolith
are unaffected by the solution because they still see the original contract. We don’t
have that benefit when you simply Wrap the Monolith because you still have to
redirect calls from inside the monolith in some way.

Unlike Wrapping the Monolith, this pattern does not require creating, configuring,
and monitoring a Facade component to allow existing clients to seamlessly commu‐
nicate with new Microservices. Therefore, this pattern is generally easier to implement
and govern than that one. However, similar to the solution with the Facade, the
performance overhead exists of an extra network hop.

This pattern requires rebuilding and redeploying the monolithic application when‐
ever you Extract Component (535) as a Microservice, which is not the case with the
Facade solution. In that pattern, internal clients would need to be adapted to calling
the new Microservices, as the Facade typically would not intercept the in-process calls
within the monolith.

There are possible failure scenarios inherent in distributed systems that must be
dealt with when applying this pattern. These failures could compromise meeting the
reliability and performance requirements of the system.

This pattern is a variation of the traditional Proxy pattern applied to distributed
systems. In this case, the proxying components are also known as Remote Facades
(Patterns of Enterprise Application Architecture, 2002) or Ambassadors.

Examples
The following examples are from real-world systems (a payment system and a major
retailer) that two of the authors have worked on.

Payment System
One of the authors was involved in a migration and modernization effort for a
payment system that is similar to PayPal and Square together. This system involved a
transformation from a large monolith to a Microservices implementation over a few
years. A critical part of this system was the ability for customers to place their orders
and pay for items either with existing money in their account or by using a credit
card. This piece of functionality was known as Checkout. The Checkout process
needed to evolve, and they made the decision to replace this functionality within the
monolith as a Microservice. The functionality in Checkout was entangled within the
monolith, specifically because there were many calls to the Checkout API inside
the monolith. After they implemented and validated the Checkout functionality as a
Microservice, they were able to route calls to the new Checkout service by creating a
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Monolith to Microservices Proxy. A benefit of this Monolith to Microservices Proxy was
that it gave us the ability to Canary Release and validate the Checkout service.

Major retailer
A simple example of this approach was implemented by a major retailer several years
ago. In this case, the retailer had a very complex Web Form Application (414) that
had a custom-built frontend portion that enabled catalog browsing and cart filling,
which then passed on the cart information to a commercial Order Management
System (OMS) for recording and fulfilling the order upon checkout.

In this case, the original design had a flaw—the system was implemented as a mon‐
olith, with the OMS being directly integrated into the monolith as a library. Thus,
everything the user did happened within the same set of threads, controlled by the
same shared thread pool, of the application server the Web Form Application ran on.

Three hundred and sixty-four days out of each year, this was fine. The problem
happened the first Black Friday (the day after the US Thanksgiving holiday, the
busiest day for retail in the year) that this system was in place. On that day, the system
reached its maximum capacity—the bottleneck turned out to be in the capacity of the
database the OMS was running on, which could only write orders to the database at
a fixed rate. This backed the system up when the thread pool filled up with orders
waiting to be written, which caused the entire system to crash.

So the next year, we implemented the previously discussed approach—we refactored
the OMS by Extract Component into a Macro Service that ran in its own process
(and turned the entire system into a Distributed Architecture (38)). We then used a
queuing system between the catalog section of the monolith and the OMS, which we
hid behind a Monolith to Microservices Proxy. Thus, we could let the catalog section
run as fast as it could, with the only difference being that orders were placed on the
queue instead of being written to the database immediately. The OMS could write to
the database at its own rate, and eventually, as orders slowed down, it would catch
up and empty the queue. We show the old design and the new refactored design in
Figure 10-21.

This change worked well in this example because the problem never repeated itself,
especially given the additional capacity to the system as a whole that allows independ‐
ent scaling of both parts of the system created.
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Figure 10-21. Retail example of Monolith to Microservice Proxy

Playback Testing
(aka Parallel Run (Monolith to Microservices, 2019), Validate New Implementation)

You are modernizing an existing application that includes replacing components
from the monolith with Microservices.

How do you ensure that the new Microservices Architecture maintains the same
functionality as the old monolithic system, especially when the amount of detailed
end-to-end application knowledge of the existing application may be limited?

When you evolve to a new architecture, there is a period of time where new and
old systems coexist. It is important to plan for the transition and think about the
coexistence period and the special challenges that emerge during that period.

One of the unexpected difficulties of this coexistence period occurs just before the
new functionality goes live. A basic principle of refactoring is that before you begin
any refactoring effort, you should have a solid set of tests of the existing system that
you can also run against the new system. However, when refactoring legacy systems,
you can’t assume that this solid set of tests covering all potential code paths exists.

Systems that were not built with detailed testing in mind usually don’t have adequate
test coverage. In many cases, teams must work on building tests to validate new
systems without detailed knowledge of the underlying system they are reimplement‐
ing. That makes it difficult for teams to determine if a refactored system really will
respond in the same way as the existing system. What further complicates this is that
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even subtle bugs in the existing system may have become enshrined in workflows and
UIs—in such a way that they have become hidden or undocumented features rather
than bugs.

All this means is that teams would like to have a mechanism for ensuring that the
behavior of the new system can reasonably be determined to be “the same” as the old
system when a portion of the old system is reimplemented in the new system.

Therefore,

Test the new system by capturing a set of inputs and actions on the original system
and running a playback of the same inputs and actions on the new implementa‐
tion. Then, compare the results of the two systems for any differences.

The main idea is to first capture then Playback a set of transactions on both the
existing and new systems and then log a report of the comparison of the values dis‐
covered throughout the entire playback sequence. Figure 10-22 outlines an example
of running the new and the old followed by a comparison of the results.

Figure 10-22. Playback Testing

Running and comparing two systems has been around for a long time. In many refac‐
toring and replacement situations, particularly with older systems, not only are the
developers that built the system long gone, but the code may not even be able to be
fully analyzed for all possible functional outcomes. In many older systems, including
commercial off-the-shelf (COTS) systems, the source code may be unavailable or may
be written in a language (such as Assembly Language) that is not easily understood.

However, even if the code itself cannot be easily understood or analyzed to build a
functional test suite, the data (particularly data in flat files or a database) that the code
produces is usually much easier to understand. What’s more, the data has the advan‐
tage of being persistent—you can often write new programs that run asynchronously
that the team can use to read the values of the persistent data and report on it to other
programs.

Your situation is complex—simply checking for the final state of the system after
running a number of transactions through the playback might not be sufficient. This
may be because it is hard to understand the way the current system functions or
because you do not have a full test suite for the existing system.
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There are various ways to implement this playback. For example, if the functionality
that is being changed is creating transactions in a database, and the results of running
the system are simply updating and making some changes to a database, you can
simply compare the results of running both systems on two identical databases,
comparing the results. If your new system has a different database structure, this
comparison can be a little more difficult. If this is the case, you may need to write
scripts to extract and compare the results of the two systems, which might require
some transformation of the data before a comparison is done.

Another approach is to capture live transactions from existing calls over a period
of time from the old system as Events (255). You then transform those Events as
necessary to match the API of the new system and play them back as Events on the
new system to ensure that the behavior of the old and new systems match. These
Events should be selected around Domain Events (193) that occur in the original
monolith system.

There are three issues in implementing an approach like this. The first is capturing
the Domain Events. If you are following a Command Query Responsibility Segregation
(CQRS) (382) approach using Event Sourcing (289), one possibility is to capture a
set of existing calls to the write model, especially if the write model is just serving
initially as an Adapter Microservice (135) to the existing system. The calls can be
wrapped up as Events and then added to the Event Backbone (279) in this case. If
there are still calls going to the underlying existing system that do not go through the
write model, this becomes a little more complicated, as you may need to construct
your Events from log messages or other data capture mechanisms. A simplified form
of this is shown in Figure 10-23.

Figure 10-23. CQRS read model and write model for Playback Testing

Once the captured Events are added to the Event Backbone, the next decision is how
long you need to capture the events for playback. Often creating a database for these
events may be required if playback will cover a longer period than a few hours.
In any case, the Events must be transformed to the format consumable by the new
(refactored) write model—if you are capturing them from an adapter-based write
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model, this is already done for you but otherwise will be required if you are capturing
them from any other source.

The final stage of this is playing back the captured events on the new (refactored)
write model. One key decision is to determine whether the state of the new write
model reflects the state of the existing system after each transaction is played back
and executed. In the simplest case, you can do this at the end of the playback (perhaps
comparing summary and total information, by pulling reports, for instance) but in
more complex cases, a step-by-step comparison of all of the entities with their values
may be required.

Applying this pattern will help your team gain confidence in the functional test
coverage of the new application even when it is impossible to determine all of the
functional requirements of the existing application.

It can be difficult and time-consuming to create a test framework for validating and
comparing the old system to the new architecture. You also have to maintain both
systems during the testing phase.

This pattern is commonly used for validating your new implementation when you
are applying the Replace as Microservice pattern (546) and can also be used when
applying the Refactor then Extract (542) and Extract Component (535) patterns.

A Parallel Run (Monolith to Microservices, 2019) as described by Newman is part of
Playback Testing, although Playback Testing includes more details about the setup and
the infrastructure needed than is covered in Parallel Run.

Examples
This idea of comparing an old implementation with a new implementation has been
around for a long time. Many organizations have been applying this technique to
validate the new implementation with the original implementation of a system for
years. The following examples outline a couple of applications of Playback Testing.

Invoicing system
One of us worked on migrating and modernizing an invoicing system where the
client used Playback Testing to validate the new system. The original invoice system
was a monolith that calculated invoices for all the clients at the end of the month.
We replaced the system with invoice services that made it easier to create new
invoices for clients and calculate the invoices more efficiently and quickly. Calculating
invoices correctly was very critical for this organization, and making sure that the
new implementation calculated the charges correctly for each client was necessary
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before releasing and using the new invoice services. Therefore, to ensure the new
implementation was correct and good enough to release, they Playback Tested the old
invoice system before going live—comparing the results to the new invoice services
for all clients. Once they were satisfied with the results, they Canary Released the
new invoice services, ultimately retiring the old invoicing system.

US financial institution
A major US financial institution applied an example of Playback Testing as part of
a much larger modernization and refactoring effort. In this situation, the team was
building a new system using CQRS with a separate write model and read model.
At the same time, the team was transitioning from the existing system to the new
system. This example performed the capture through an adapter-based write model
and playback comparison through summaries. The overall approach is shown in
Figure 10-24.

Figure 10-24. Complete Playback Testing prior to shutdown

The team used Playback Testing with the goal that the existing system would be
completely eliminated and replaced with the new (refactored) write model, as shown
in Figure 10-25.
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Figure 10-25. Playback Testing after shutdown

It was only when all the reports were run simultaneously between the old and new
systems, showing the same results regardless of which system they were run on, that
the old system was finally shut down. In fact, after traffic was redirected to the new
system, making it the primary system, the old system continued to run for a time.
The reason the traffic was being directed to the old system was so that the reports
could be compared for a time after the new system became the primary system.

Conclusion: Wrapping Up Strangling Monoliths
In this chapter, we’ve examined a set of patterns to apply when modernizing a system
by migrating a monolith architecture to a Microservices Architecture (Chapter 4).
Sometimes a monolithic architecture is the right approach. Moving to Microservices
(119) brings several technical and organizational challenges. If an existing monolithic
solution works fine and allows the organization to address new requirements, there’s
no pressing reason to change it. Sometimes refactoring the monolith to make it easier
to change is the right choice.

If the monolith is getting harder to change and adapt to new requirements, a decision
needs to be made whether to refactor the monolith to make it easier to change,
completely rewrite the monolith by applying Microservices, or apply these Strangler
patterns. If the decision is to evolve the monolithic architecture to a Microservices
Architecture, there are strategies that can help you during this effort. Figure 10-26
outlines some possible paths that can be taken during the strangling process.
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Figure 10-26. Strangling a Monolith sequences

For organizations and teams that are new to Microservices, it is good to Start Small
(492) by having a team implement some new functionality using Microservices and
to Pave the Road (496) by building the infrastructure and the environment (both
technical and organizational) to make it easier to implement Microservices. This
can also include developing templates and training to make it easier to implement
Microservices and help with beginning the transition to the new architecture. You
may also want to Wrap the Monolith so that when you replace some pieces of
the monolith with Microservices, you can redirect any existing clients to these new
Microservices, adapting them as needed.

Once you have created a few Microservices and verified that designing and imple‐
menting your system with Microservices is a good idea, you are ready to apply the
“strangling” process. A good way to begin is to encourage and enforce teams to
develop New Features as Microservices (521). This creates a directive that requires
that all new functionality be added via a Microservice, thus not adding to the mono‐
lith. This directive can also encourage teams to make any changes to the monolith by
first attempting to implement the changes with Microservices.

Although implementing New Features as Microservices is a good start, a lot of func‐
tionality within the monolith will still need to be pulled out to fully take advantage of
the Microservices Architecture (Chapter 4) style. Therefore, after getting comfortable
with Microservices, the next step is to start Transforming the Monolith into Microser‐
vices (526). This is an iterative process that finds places in the monolith that can be
extracted, refactored, or replaced with Microservices.

To find pieces in the monolith that can be transformed, a good starting point is to
search for Hairline Cracks (530), which are areas of functionality or components
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inside the monolith where you can Extract Components (535) to a Microservice
implementation. Sometimes it will be easier to extract larger pieces of functionality
into Macro Services and then refactor them to smaller Microservices as you learn the
domain. Hairline Cracks can also reveal places in the monolith that, although they
have some coupling, with some changes you can Refactor then Extract (542) them to
a Microservice implementation. When the functionality is tightly coupled within the
monolith, your only option may be to rewrite and Replace as Microservice (546) that
functionality.

Transforming the Monolith into Microservices is a recursive process where you apply
both bottom-up and top-down approaches to partition and break down the monolith
into smaller and smaller pieces. For any extracted or replaced functionality, you can
use a Monolith to Microservice Proxies (552) to access the new Microservices from
the monolith. Playback Testing (556) should be used to validate any extracted or
replaced implementations of the original system during the strangling process.

Strangling Scenarios
There are various strategies or scenarios to follow when strangling. The following
outlines a few scenarios (stories) that an organization can enact during the strangling
process: Add New Feature, Pull Out Painful Pieces, and Can’t Use That Protocol.

Add New Feature scenario
When you need to add new functionality to the application, you try to implement
it as a Microservice wherever possible. This scenario describes a way for adding New
Features as Microservices, which mandates adding new features by implementing
them with Microservices. For example, you could implement a small piece of new
functionality as a Microservice, calling it from the monolith or external clients if
needed. Another possible way to add this new feature is to find Hairline Cracks within
the monolith related to that feature and then Extract Components from the monolith
to Microservices. This extraction is especially beneficial for new functionality that
extends or replaces old functionality in the monolith that became hard to change
and evolve. Sometimes it is easier to start by extracting a larger Macro Service. Then
after you have successfully implemented and released the extracted component and
after you learn more about the domain and the implementation, you can refactor
it into smaller Microservices. Whenever you replace functionality in the monolith,
you might need to create a Monolith to Microservice Proxy for any monolith code
that needs access to the new Microservice. You should always validate your new
Microservice implementation with some form of Playback Testing.
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Pull Out Painful Pieces scenario
You have different components from the monolith you would like to extract to
Microservices (119). Some of these are painful areas within the monolith that are
causing issues when adding new functionality or changing existing functionality. The
desire is to make it easier to make changes or add new functionality without breaking
the system. A good way to start Transforming the Monolith to Microservices for these
painful pieces is by finding Hairline Cracks in the monolith related to these pieces,
especially looking for components or services with well-defined interfaces. You can
then Extract Components from the monolith to the a Microservices implementation.
Extracting Components from the monolith enables the team to more easily make
changes to this extracted functionality or to add new functionality related to these
extracted modules by simply changing the extracted Microservice while minimizing
potential issues and changes to the monolith. If the original functionality is part of
a larger set of components coupled within the monolith, you can extract a Macro
Service and then refactor it into smaller pieces afterward. Sometimes the functional‐
ity you need to move to a Microservice is tightly coupled within the monolith. One
way to approach this problem is to freeze the functionality within the monolith
and completely rewrite it and Replace as a Microservice that functionality. Whenever
extracting or replacing functionality in the monolith, you often need to create Mono‐
lith to Microservice Proxies. For any pieces of functionality that you pull out of the
monolith, validate the new Microservice implementation through Playback Testing.

Can’t Use That Protocol scenario
The organization has already Started Small and Paved the Road and has been suc‐
cessfully using Microservices for new software solutions for some time. There is a
legacy monolithic application that uses an old communication protocol that is no
longer supported in new solutions. Part of the functionality in this monolith is now
required by new Microservices and is entangled within the monolith. To move this
functionality and Transform It from the Monolith to Microservices, we employ the
Replace as Microservice to rewrite that functionality as a Microservice. When the
rewrite is complete, we make the new Microservice known to other teams. Sometimes
you do this by applying Refactor then Extract to the code within the monolith to make
it easier to replace as a Microservice. Usually, you cannot tease out or rewrite small
pieces from the monolith, so you might start with a larger component or service and
then refactor it later after you start with a Macro Service. A team that has a software
solution that is using the original functionality in the monolith and then decides
or needs to use the new version in the Microservice can work with the team that
created the Microservice to implement a Facade (Design Patterns, 1994) that can do
the translation and Proxy (Design Patterns, 1994) calls to the new Microservice. Note
that it is common to create Monolith to Microservice Proxies whenever you create new
Microservices to replace functionality from the monolith. You should validate your
new implementation through some form of Playback Testing, which will compare the
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monolith implementation to the new Microservices implementation. Other teams that
use that functionality in the monolith gradually follow suit.

These are just a few examples of scenarios the authors have seen that can be applied
when Strangling a Monolith. There are many other sequences for different organiza‐
tional and technological contexts, and anyone Strangling a Monolith is encouraged to
create their own sequence of steps to best meet their strangling needs.

Other Strangling Considerations
The strangling process involves preparing, writing your first Microservices, and
replacing functionality in the monolith with Microservices. When starting, sometimes
it is best to protect the system from change by Wrapping the Monolith, which is usu‐
ally done by applying standard wrapper patterns such as Facade, Proxy, or Adapter
(Design Patterns, 1994). This wrapping supports the strangling process by providing
access to the new system (Microservices) through the old way (existing client code)—
additionally, this allows access to the newly developed Microservices from the original
system without being coupled to it. This wrapping can also be achieved by using a
Public API (443), an Adapter Microservice (135), or a Dispatcher (140). This will
encourage and facilitate existing clients to use the Microservices that will replace parts
of the monolith. By clients, we mean any existing code, components, or systems that
are accessing the monolith. Some of this client code could be from a third party that
you cannot change.

When Strangling a Monolith, you can sometimes completely strangle the monolith
(the monolith is gone); though it is often the case that completely Strangling the
Monolith might not be worth the effort—part of the monolith might be providing
value and it costs too much to rewrite. We’ve seen many strangling examples where
most of the monolith has been strangled, as outlined in Figure 10-27, but there are
some parts of the monolith remaining that are providing value and won’t change.

Conclusion: Wrapping Up Strangling Monoliths | 565

https://learning.oreilly.com/library/view/design-patterns-elements/0201633612/


Figure 10-27. Strangled Monolith

Although this chapter addresses some database challenges when applying these
patterns, we deferred writing additional patterns on “evolving or decomposing the
database” while migrating your monolith. For a description of patterns that cover
database decomposition and the trade-offs around data synchronization, transac‐
tional consistency, and referential integrity, we refer the reader to Sam Newman’s
book (Monolith to Microservices, 2019).
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Conclusion

In this book, we have shown how to architect and design applications that run well on
the cloud and how to modernize an existing application as part of migrating it to the
cloud. Applying the patterns in this book produces applications that work with the
qualities of cloud computing such as universal access, shared resources, distributed
computing, virtualized computing, elastic computing, multitenancy, self-service, API
driven, and multicloud. Let’s review what we’ve learned, how to apply these patterns,
and what comes next.

What We’ve Learned
Cloud computing works differently than traditional IT. Applications for the cloud
need an architecture and design better suited for cloud computing, requiring applica‐
tion developers to adopt a mindset embodying a new set of practices. Our patterns
have demonstrated these practices.

Applications that incorporate these patterns compensate for and take advantage of
the characteristics that cloud computing embodies. These characteristics include
unreliable infrastructure, eventual consistency, generic hardware, application mobi‐
lity, multitenancy, horizontal scaling, statelessness, immutability, componentization,
service catalogs, cloud databases, and self-provisioning. Given these characteristics,
there is no one right way to architect Cloud Applications (Chapter 1); rather, there
are numerous decisions that can help make an application work better or worse in the
cloud.

The patterns help you with the decisions that make your applications work well on
the cloud. Some of these decisions include the following:
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Monolithic or distributed
To what extent should an application be monolithic or distributed? It can start
out as a monolith when that’s easier, and then be converted to distributed when
that becomes advantageous. How will you know when a Distributed Architecture
is becoming more advantageous than a monolithic one? When multiple teams
need to work on different parts of the application, and when producing main‐
tainable code with limited technical debt becomes more important than hacking
together new functionality as quickly as possible. See Application Architecture
(Chapter 2).

Cloud native
What qualities should be baked into an application’s design to make it run well
on cloud computing? An application doesn’t need to be stateless or replicable,
bundled into an application package, or exposed with a Service API. Indeed,
most traditional IT applications don’t have these qualities. But the more an
application does have these qualities, the better it will run in the cloud. See
Cloud-Native Application (Chapter 3).

Microservices
When developing a Distributed Architecture, what components should be devel‐
oped as Microservices and why? Components designed as Microservices can be
developed and deployed, and scale and fail independently, which is usually worth
the extra design effort. How do we know how many different Microservices an
application should be decomposed into and what the scope of each one should
be? Model how business functions in the domain interact. Then implement each
of those business functions as a Microservice. See Microservices Architecture
(Chapter 4) and Microservice Design (Chapter 5).

Orchestration or choreography
How can Microservices collaborate when the interactions between them are com‐
plex, dynamic, and unpredictable? Since each Microservice is specialized for a
single task, to perform complex tasks, multiple Microservices must collaborate.
It’s difficult enough to model the collaborations when they are simple, stable,
and well-known. Rather than orchestrate the interaction, choreograph it. Within
a single application, simpler interactions that need to be more reliable can be
orchestrated, whereas unpredictable ones can be discovered through choreogra‐
phy. See the Service Orchestrator pattern (160) and Event-Driven Architecture
(Chapter 6).
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Storing state
Because cloud-native Microservices are stateless, where does the state go? Is a
relational database always the best way to store an application’s data? How can
storage work more the way the cloud does? See Cloud-Native Storage (Chapter
7).

Application clients
How do users access applications running in the cloud? How can an application
support users on different types of devices, such as computers, phones, and
tablets? How can other applications collaborate with your application? See Cloud
Application Clients (Chapter 8).

These patterns also prepare you to modernize a traditional IT application so that it
will work well in the cloud. These decisions include the following:

Migration and modernization
If an application runs well on traditional IT, why won’t it run well in the cloud?
What can be done to facilitate making an existing application run better in the
cloud? See Application Migration and Modernization (Chapter 9).

Strangling
What if an application running on traditional IT is too big and too important to
move to the cloud all at once? How can it be moved incrementally while the users
are still using it? See Strangling Monoliths (Chapter 10).

The patterns in this book will help you make these decisions wisely, in a way that is
customized to your application’s needs as well as to your team’s skills and preferences.
By doing so, you will develop an application that is ready to work well in the cloud.

Applying What We’ve Learned
Early on we presented Figure 1-1, which outlined the structure of a prototypical
Cloud Application (Chapter 1). Now we can annotate that diagram with how the
structure of the application embodies the chapters in this book, which we show in
Figure C-1.
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Figure C-1. Chapters in Cloud Application architecture

Each of the chapters in this book work together to inform decisions for building
applications that work well on the cloud:

Chapters 1 and 2
The entire application is a Cloud Application (6), as described in Cloud Applica‐
tions (Chapter 1). It can be structured as one of several Application Architectures
(Chapter 2), where Distributed Architecture (38) is the most flexible one that
works more the way the cloud does.

Chapter 3
The application shown here is a Cloud-Native Application (Chapter 3) with a
Cloud-Native Architecture (58).

Chapters 4 and 5
This application’s Cloud-Native Architecture is constructed as a Microservices
Architecture (Chapter 4), composed of a set of Microservices (119) discovered by
Modeling Around the Domain (183) to produce a Microservice Design (Chapter
5).

Chapter 6
This diagram shows only one application, but if there were multiple, they could
connect via an Event Backbone (279) and coordinate through Event Choreogra‐
phy (246) in an Event-Driven Architecture (Chapter 6).
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Chapter 7
The Cloud-Native Application and its Microservices are stateless, storing their
state in one of the options described in Cloud-Native Storage (Chapter 7), typi‐
cally a Cloud Database (311).

Chapter 8
Users access the application using a Client Application (406), one of the types
described in Cloud Application Clients (Chapter 8).

Chapters 9 and 10 (not shown)
While an application can be created new from scratch for the cloud, often an
existing application is moved from traditional IT to the cloud using the tech‐
niques in Application Migration and Modernization (Chapter 9), starting with
Lift and Shift (470). Strangling Monoliths (Chapter 10) describes how to perform
this transition iteratively, even on an application that is running in production,
starting with Strangle the Monolith (514).

These chapters have laid out a process for producing an application architecture,
starting with components of domain logic, how they collaborate, how they persist
their data, and how how the outside world can interact with them. While each chap‐
ter describes the best practices for one aspect of creating a Cloud Application, they all
fit together to show how to architect and design a complete Cloud Application.

Knowing what decisions to make and when to make them is half the battle, and
we hope these patterns will help you make those decisions. You get to decide how
to apply these principles based on your application requirements, your enterprise’s
priorities, and how your development teams prefer to work.

What Comes Next
As first laid out in the Introduction, IT professionals can adopt cloud computing in
three main phases:

• Application Architecture and Design•
• Application Development and Deployment•
• Cloud Operations and Nonfunctional Requirements•

Phase 1 is accomplished using the patterns in this book: how to architect and design
an application so that it will run well on the cloud.

Phase 2 comes next. To perform application development and deployment, apply
three main concepts:
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Application deployment
Having implemented an application or Microservice, it then must be deployed to
the cloud.

Build automation
Having figured out how to deploy the application or Microservice, the deploy‐
ment process should be automated.

Continuous delivery
Deployment, even automated deployment, shouldn’t be performed just once; it
should be part of an iterative development process.

This still isn’t everything you need to be successful with the cloud, but it is a good
next few steps in maturing your journey.

Application Deployment
A developer may have written the world’s greatest Cloud Application (Chapter 1) or
Microservice, but it’s not doing anyone any good sitting on the developer’s hard drive.
For users to benefit from this creation, it must be deployed into the cloud, where it’ll
run and users can access it.

Deployment sounds like one task but involves several steps. To deploy an application
to cloud infrastructure, each application component needs to be packaged, either
virtualized (see Virtualize the Application (475)) into virtual servers to be deployed
in a hypervisor or containered (see Containerize the Application (478)) as containers
to be deployed in a container orchestrator such as Kubernetes. The packaged compo‐
nents are managed using registries, which work differently for each package type
and platform. The deployment platform must be configured to host the application
correctly, which is done differently for each platform. Only then can the application
be packaged and deployed onto the configured platform so that it can actually run
successfully.

Build Automation
While application deployment can be performed manually, that quickly becomes
tedious and error-prone. To make deployment reliably repeatable, it should be auto‐
mated. This requires understanding not only how to deploy an application but the
steps for deploying an application reliably—this process is commonly known as
continuous integration and continuous deployment (CI/CD). It also requires under‐
standing common tooling for performing CI/CD, tooling that can be used to make an
application deployable with a single command.
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Continuous Delivery
Deploying an application should be part of a larger process of continuously improv‐
ing the application. As long as an application is being used, users will find bugs and
request new features. Developers can make these improvements, but an improvement
sitting on a developer’s hard drive doesn’t help the users. For the users to benefit from
the improvement, it must be deployed into the running application so they can use it.

If a new application release is deployed only once a year, users need to wait a long
time for improvements the developers made months ago. An improvement waiting
for the next release is not benefiting the users. Rather, as soon as an improvement is
available and approved, it should be deployed into production so that the users can
start benefitting from it.

Continuous delivery is a process to improve an application as frequently as is practi‐
cal. As agile development iteratively improves the application’s functionality, continu‐
ous delivery integrates, approves, and releases those improvements into production.
Users are able to benefit from each improvement as soon as possible, enabling the
enterprise to start realizing return on investment (ROI) as soon as possible.

Final Thoughts
The cloud has become the dominant platform for hosting computer applications.
Much like the way applications used to be designed for mainframes and then desktop
computers, modern applications must now either run well on the cloud or risk
becoming irrelevant. Architects and developers who do not know how to design
applications that run well on the cloud risk becoming irrelevant.

The intention of this book is to help application developers remain relevant and
increase their success using the cloud. Hosting applications on the cloud involves
much more than simply redeploying a traditional IT application onto a cloud plat‐
form or designing a new application the same old way. Developers need the skills to
design new applications that will run well on the cloud, and to modernize existing
applications so that they too will run well on the cloud. The patterns in this book go
a long way toward helping developers learn these skills so they can be successful with
the cloud.

Welcome to the cloud. You may as well get comfortable—we’re all going to be here for
a while.
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cloud platforms' Cloud Database services,

315
enterprise databases versus, 313
incorporating designs that avoid and mini‐

mize locking, 167
NoSQL databases acting like cloud services,

315
performance bottleneck from querying data

that needs frequent updates, 315
providing same quality of service as Cloud-

Native Applications, 316
Self-Managed Data Stores as, 157
working well in cloud and storing state for

stateless Cloud-Native Applications, 312
cloud native, 51, 53-55

maturity of, 54
Cloud Native Computing Foundation (CNCF),

54
case studies beginning with containeriza‐

tion, 484
cloud storage, 10
cloud-native applications, 51, 115, 461

Application Package, 62-70
best practices to help them work with cloud

computing, 61
connecting to, 140
designing applications for the cloud, 57
introduction to, 51
Twelve-Factor App practices, 55

Cloud-Native Architecture pattern, 57, 58-62,
115, 466
additional decisions for cloud applications,

61
application and services in, 59

combined with Distributed Architecture,
115

combined with Microservices Architecture,
118

enabling distributed modules to be written
in different languages, 147

Event-Driven Architecture and, 244
microservices implemented with, 123
potential downsides to, 60
redesigning application in for cloud mod‐

ernization, 483
cloud-native storage, 301-397

database topology and database selection,
304-310

introduction to, 301
storing data for Cloud-Native Applications,

302-304
wrap-up, 392

CNCF (Cloud Native Computing Foundation),
54
case studies beginning with containeriza‐

tion, 484
CockroachDB, 328
Columnar Databases, 332, 336, 356-366

Apache Cassandra, 328
benefits of, 363
column families as tables, 362
compression of data, 361
keyspaces, 360
limitations of, 363
major disadvantage of, 359
marketing example for an airline, 365
products, projects, and cloud platform serv‐

ices, 363
schema, 362
storing data for applications performing

analytics, 357
storing data in columns, 359
understanding how they perform queries so

efficiently, 359
Command Query Responsibility Segregation

(CQRS), 264, 304, 315, 382-392
duplicating data in two databases, one for

client updates and one for client reads,
383

implementation variations, 388
single service, 389
two service, 389

580 | Index



read model and write model for Playback
Testing, 558

refactoring example, 390
separating clients that update data from

those that query it, 388
solution to complex problem that accom‐

plishes key goals, 386
using Event Sourcing, 558

Command-Line Interfaces pattern, 405,
437-443
advantages of, 440
CLI clients, 140
CLI command architecture, 438
deciding how far to take it, 442
drawbacks to, 441
examples of

cURL, 442
hyperscaler CLIs, 443
Multics and the origin of command

lines, 442
supporting multimodal clients, 409
using Interaction Models, 441

commands (update), 384
commands for Domain Events, 192
Common Gateway Interface (CGI), 412
community cloud, 53
compensating transactions, 165
complex event processing (CEP), 258
components

communicating components, avoiding
revealing internal implementation, 255

component architecture in Firefox, 36
Events providing separation in time and

space for, 269
focusing on top-level events between, 271
in monolithic applications, 21
terminology for components in an architec‐

ture, 19
types in application architecture defining

how architecture structures solutions, 20
using functionality moved out of the mono‐

lith, 539
Composed Message Processor, 169

behaving as a Service Orchestrator, 169
conclusion, 567-573

applying what we've learned, 569-571
final thoughts, 573
what comes next, 571

application development, 572

build automation, 572
continuous delivery, 573

what we've learned, 567
concurrency

databases designed for, 313
domain state storage and, 311
multiversion concurrency control, 318

Configuration Databases, 320, 323-328
cloud service storage needs, 324
data consistency, 326
examples of

Apache Zookeeper, 327
distributed databases, 328
Etcd, 327
HashiCorp Consul, 328

hosted by cloud platforms, 314
hosted by Database-as-a-Service, 381
key-value stores, 326
limitations of, 326
performing updates as long-running dis‐

tributed transactions, 325
storing session data for cloud services in,

325
use in Application Databases, 326

consensus
distributed consensus systems, 309
quorum-based consensus in Replicated

Databases, 319
consistency

in AP databases, 310
availability over consistency design princi‐

ple for microservices, 177
CA databases prioritizing consistency over

availability, 310
in CAP theorem, 309
in Configuration Databases, 326
CP databases providing consistency and

partition tolerance, 310
Document Databases not enforcing, 342
eventual consistency, 309
favored over availability in Relational Data‐

bases, 334
records in Replicated Databases, 318
in Replicated Databases, 320

consoles, 442
Consul by HashiCorp, 328
container engines, 480
container orchestration, challenges to, 483
container orchestrators, xvii, 481
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Containerizing the Application, 464, 468,
478-484, 494
advantages of containers over virtual

servers, 480
benefits of containerization, 482
benefits of, versus Virtualizing the Applica‐

tion, 479
challenges to containerization, 483
deciding whether an application can be con‐

tainerized, 481
examples of, case studies, 484
packaging as container to host ultimately in

the cloud, 480
use for refactored airline monolith, 491

containers, xvii
advantages over virtual servers, 480
packaging Application Package as, 67
packaging applications with runtime and OS

libraries in, 463
context maps, 206
contexts

meaning of concepts dependent on, 187
continuous delivery, 573
costs

in Cloud-Native Architecture applications,
60

CouchDB, 305, 310, 315
example of Replicated Database, 323

CPUs, multicore and single core, 40
CQRS (see Command Query Responsibility

Segregation)
CRUD (Create, Read, Update, Delete) functions

form-driven interactions as, 419
cURL, 442
Cypher query language, 354

D
data access

enterprise databases versus Cloud Data‐
bases, 313

data analytics (see analytics)
data models

entities and their relationships, 351
grouping data into well-organized modules,

369
Data Modules, 304, 314, 366-373

alignment with application modules, 368
configuration data for cloud services, 326

data storage in different types of databases,
332

designing a good set of modules, 369
dividing large sets of data into smaller, 367
example set of data divided into four mod‐

ules, 367
examples

database server terminology for hosting
multiple databases, 370

ecommerce application, 371
refactoring Big Ball of Mud and its

database to microservices with Data
Modules, 372

multiple Data Module databases stored on
same server, 370

storage of for OLTP and OLAP, 363
storing data that will be modified together,

369
storing in separate databases, 370
storing in type of database best for applica‐

tion data structure, 374
using Polyglot Persistence for, 375

data stores, 41
(see also Self-Managed Data Store pattern)

data structure in application databases, 314
data structures, complex, managing in CQRS,

386
data transfer objects (DTOs), 386
Database-as-a-Service (DBaaS), 304, 315,

378-382
advantages for DBAs, 380
creating your Application Database by

using, 379
example cloud applications with databases,

379
examples of cloud platform services, 381
Replicated Database provided as, 321
security requirements of the data, 381
simplifying creating and managing data‐

bases in the cloud, 381
databases

application databases, types of, 394
cloud versus traditional IT, 5
concurrency and querying, design for, 313
different types of and feature representing a

Data Module, 370
external database storage for monolith's

data, 154
locking in, 167
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most important Backend Service for appli‐
cations, 316

performance bottleneck caused by querying
data that needs frequent updates, 315

Self-Managed Data Stores for microservices,
157

topologies and selection of, 304-310
balancing complexity against redun‐

dancy and scalability, 310
choices from Brewer's CAP theorem,

310
leader-follower topology, 305
partitioning with replication topology,

308
shared-storage topology, 307
single-server topology, 305

traditional enterprise databases not fitting
cloud environment, 311

types of, 395
databases of record (DoRs), 154

disadvantages of, 154
performance bottlenecks caused by, 155

DBaaS (see Database-as-a-Service)
DDD (domain-driven design), 176, 185
Decorator design pattern, 530
dependencies

cloud applications and, 62
created by shared databases, 154
created by sharing storage between mod‐

ules, 155
drawbacks of in SOA applications, 122
handling by Twelve-Factor App, 66
microservices avoiding dependencies by not

sharing storage, 157
among monolith components, 509
program dependencies packaged by package

manager, 66
deployability (microservices), 177
deployments

Application Package to runtime environ‐
ment on the cloud, 67

application packaging facilitating greater
deployment density, 478

cloud-native applications, deployment to
multiple environments, 61

handling with Eclipse Theia, 47
modernization of, 507
NIST's deployment models of cloud com‐

puting, 53

design patterns, 232
aiding in developing Modular Monoliths, 31
Model Around the Domain for modular

development, 33
Observer, 248

design seams, finding, 534
designing, modeling, and building systems

around the domain, 175
desktop applications, building with Distributed

Architecture, 46
development time, trade-off in application

architecture, 18
DevOps environment, 497

essential for success with the cloud, 497
practices paving the road for microservices

projects, 516
Dispatchers, 119, 124, 139, 140-146

versus Adapter Microservices, 145
best practices in developing Microservices

Architecture, 127
caching data for the client, 144
differences of Public API from, 445
example, helping to implement banking

application, 145
exposing single API for external client, 141
implementing Anti-Corruption Layer, 233
implementing Service APIs, 408
interface segregation with, 177
in Microservices Architecture, 125
Node.js Dispatchers and Java microservices,

151
Polyglot Development and language choices

for, 152
routing and conversion between desired cli‐

ent API and APIs of microservices, 143
same development team implementing cli‐

ent and its Dispatcher, 144
Distributed Architecture, 21, 38-48, 115, 462

advantages of, 40
architecting applications with parts that can

be developed, deployed, and run inde‐
pendently, 38

barriers to adopting in difficulty of refactor‐
ing monoliths, 487

challenges from increased design complex‐
ity, 40

combined with Cloud-Native architecture,
115
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combined with Cloud-Native Architecture,
466

of containerized applications to deploy to
the cloud, 469

data decentralization in, 501
developing modules for in Modular Mono‐

liths, 32
evolution of application architectures to, 21
examples of, 42-48

airline reservation system, 44
AJAX frameworks and Node.js, 45
Eclipse Theia, 47
transforming ecommerce application to

Distributed Architecture, 43
transforming Modular Monolith to Dis‐

tributed Architecture, 42
Visual Studio Code, 46

in Bounded Contexts implemented as, 208
Microservices Architecture as type of, 62
modular applications and, 120
refactoring or rebuilding applications to run

in, 469
distributed computing

patterns in, 40
with universal access in cloud-native appli‐

cations, 61
distributed databases, 328
Distributed Facade pattern, 232
distributed filesystems, challenges with, 308
distributed transactions, 242
Docker, 484
Document Databases, 332, 336, 338-344

cloud platform, 343
ecommerce example, 343
limitations of and alternatives for, 342
products and projects, 342
schemaless and structuring data as applica‐

tion does, 339
shortcomings of, 341
storing data when future structure is not

well known, 338
Domain Events, 134, 179, 188, 193-201

actions triggering, invoking Domain Serv‐
ices, 226

Bounded Context including some imple‐
mentation for, 207

capturing, 558
defined, 195
Event Storming session to elucidate, 189

Events as implementation of, 250
examples of, 198-201

airline application, 200
online ordering, 198
shipping, 199

identifying potential Events from, 257
implementation of, 196-198
Joe's Pizza example of, 203
Joe's Pizza order events example, 195
preserving as Events, 271
triggers for, 196

domain logic
Domain Services providing abstraction for,

226
in entities, 213
none in Dispatchers, 143

Domain Microservices, 119, 124, 130-135, 143
airline application example, 134
best practices in developing Microservices

Architecture, 127
choosing programming language for, 153
designing functionality in, 133
Java language for, 151
reusing Adapter's functionality, 138
steps for deciding breadth of, 133
in Web Form Applications, 417

domain modeling techniques, 184
for designing microservices, 178-180

domain models, 120, 126, 133, 202
contents of, 184
Event Storming creating shared common

understanding of, 190
fitting database schema, 311

Domain Services, 133, 181, 188, 222-229
defining, 224
Domain Events triggering action that

invokes, 198
example, payment for online purchases,

227-229
implementation example, bank account, 225
important characteristics, 223
Joe's Pizza Domain Service example, 223
in microservices, 125
operations not belonging to specific entity

and involving multiple entities, 223
providing abstraction for domain logic not

belonging to specific entity, 226
Domain Specific Languages (DSLs), 442
domain state, 80, 125
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(see also state)
storage challenges for, 311

domain-driven design (DDD), 176, 185
domain-specific example of cloud-scale job

performance, 15
domains

banking domain with subdomains and
Bounded Contexts, 204

defined, 185
modeling around, 186

(see also Model Around the Domain
design pattern)

with multiple microservices communicating
over Event Backbones, 285

separating UI and domain business logic,
400

versus subdomains, 186
DoRs (databases of record), 154

disadvantages of, 154
performance bottlenecks caused by, 155

DSLs (Domain Specific Languages), 442
DTOs (data transfer objects), 386
dynamic hook points, 441

E
eBay, use of Strangle the Monolith, 520
Eclipse Theia, example of using Distributed

Architecture, 47
ecommerce applications

evolving to Distributed Architecture appli‐
cation, 43

example cloud application using Adapter
Microservice, 139

example using Big Ball of Mud architecture,
27

example using three-tier architecture, 11
Service Orchestrator examples

displaying availability, 167
managing a purchase, 170

EDA (see Event-Driven Architecture)
Electron framework, 46
Embedded Chromium in Electron framework,

46
emitters (see event emitters)
enterprise backbones, 285-288

backbone of backbones, 287
enterprise databases, 307, 366

shared-storage topology, 307

traditional, not fitting cloud environment,
311

versus Cloud Databases, 313
Enterprise Integration Pattern (EIP)

benefit of Event Choreography, separation
of time and space, 249

Canonical Data Model, 258
Claim Check pattern, 257, 272
Event-Driven Consumer and Competing

Consumer patterns, 264
Idempotent Receiver pattern, 264
Message Bus, 282

enterprise integration router functioning as
Service Orchestrator, 169

enterprise service bus (ESB), 121
applications with Microservice Architecture

not requiring, 131
encapsulating existing functionality with,

137
products evolved to support microservices,

138
enterprise SQL databases, 337
entities, 212

and ValueObjects in Aggregates, 216
in Bounded Contexts, 188
Domain Services, operations not belonging

to specific entity and involving multiple
entities, 222

entity-relationship-attribute (ERA) data,
332, 351

entity/Aggregate relationship examples, 218
identification by Event Storming, 192
identifying for domains, 212
lifecycles of entities in your microservice,

181
values of, 213

entity-relationship modeling, 212
ESB (see enterprise service bus)
Etcd, 327
Event API, 198, 227, 245, 273, 274-279

contract between Event Notifiers and Reac‐
tive Components, 275

defined, 251
defining what to do for Event Notifiers and

Reactive Components, 275
examples

AsyncAPI, 277
Event Storming and Event API, 277-279

how Service API relates to, 265

Index | 585



multidomain, 287
Event Backbone, 40, 198, 279-288

all events traveling over, 258
architectural constraints, 281
challenges to, 281
in clickstream event analytics, 260
connecting Reactive Components to Event

Notifiers indirectly via, 280
connecting read model and write model in

CQRS, 384
CQRS with Event Backbone, 391
in Event Choreography, 246
event topics on, 280
example implementation, 282
example implementations

enterprise backbones, 285-288
event-style messaging system, 282
MQ-style messaging system, 283

functionality of, 282
Reactive Components registering for event

topics on, 263
reliability concerns, 252
using to store event history, 293

event channels
defined, 243
in Event Choreography, 246
refining, 244

Event Choreography, 246-255, 270
architecture for, 250
benefit of, separation of API for subject/

observer, 248
benefit of, separation of time and space, 249,

249
building applications to react to external

stimuli, 247
challenge in need to have things happen

only once, 263
challenges of, 252
choreographed components, Event Notifiers

and Reactive Components, 251
constructing application that uses, issues in

components, 261
defined, 248
dependence on Events being published, 270
differences from service orchestration, 253
example, employee safety design, 253
participants in, 245
responding to events and changes in real

world, 246

and Service Orchestration, recommenda‐
tions for, 272

service orchestration versus, 261
event emitters

adding, 244
decoupling from event listeners, 243
defined, 243

event listeners
adding, 243
decoupling from event emitters, 243
defined, 243

event notifications, 240, 242
Event Notifiers, 245, 269-274

challenge of control flow, 272
components signaling interesting events,

notification of, 270
connecting to Reactive Components via, 280
criterion for designing components as, 269
in employee safety design example, 254
in enterprise backbone, 288
Event API defining what to do, 275
in Event Choreography, 251
important question in deciding how to

implement, 270
interacting with Events, 258
main advantage of, 272
as microservices, 273
microservices being both Event Notifiers

and Reactive Components, 264
ML model built into in shipping events

example, 259
publishing events, 275
Reactive Components' independence from,

263
in Reactive Components airline application

example, 268
shipping example, 273

Event pattern, 255-260
choreographed components interacting with

Events, 258
Event, defined, 256
Events providing separation in time and

space between components, 269
example Event, 256
example, clickstream events, 259
example, derived events in shipping, 258
identifying potential Events from Domain

Events and other sources, 257
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making data structure consistent across
Events, 258

Reactive Components with multiple reac‐
tion to single Event, testing, 263

in Reactive Components airline application
example, 267

in Reactive Components online ordering
system example, 266

recommendations for service orchestration
and Event Choreography, 272

Event Sourcing, 246, 263, 289-298
advantage of, replaying events, 294
challenges to, 294
CQRS approach with, 558
deciding how and where to store event his‐

tory, 293
event history changed example, 291
examples of use

financial services, 295-297
history of event having occurred on event

topics, 290
identifying starting point in event stream

and resetting component's state to that
point, 292

logging history of events received by Reac‐
tive Components for, 290

storing snapshot of critical state as check‐
point between events, 292

Event Storming, 134, 176, 179, 182, 189-193
challenges of, 193
domain modeling technique, 188
effectiveness of, 192
and Event API, 277-279
example, online ordering, 210
examples of use

ride hailing, 297-298
identifying Aggregates, 217

online ordering system carts example,
218

identifying Domain Events, 198
layout of, 191
steps aiding in eliciting events, 190

event topics, 251, 258
history of events occurring on, 290
Reactive Components listening and reacting

to, 262
Reactive Components listening to in

employee safety design example, 254
Event, defined, 240, 242

event-driven (design principle for microser‐
vices), 177

Event-Driven Architecture, 10, 177, 239-300
availability in, 252
and Cloud-Native Architecture, 244
collaborating components provided by, 242
considering as alternative to CLI, 441
decoupling listeners from emitters, 243
developing, 245-246
distinguishing characteristics of, 243
Domain Events implementation, 198
enabling family of components to evolve

easily, 243
example, onboarding system, 240
from service orchestration to, 240
introduction to, 240
microservices interacting in, 128
multiple tasks choreographed dynamically

in, 167
Reactive Components, 261-269
scalability and throughput, 251
use with Internet of Things, 273
use with microservices and Polyglot Devel‐

opment, 149
wrap-up, 298

Event-Driven Consumer pattern (EIP), 264
event-driven principle (IDEALS), 270
events

capturing transactions from old system as,
558

constructing application that reacts to, 261
creating for each change in components,

271
quantity of data to send with, 272

eventual consistency, 309
challenge in cloud environments, 314
employed by Replicated Databases, problem

for cloud service nodes, 324
in Replicated Databases, 318, 320

existing applications
migrating and modernizing, patterns for,

470
migrating to the cloud, 468

Experimental Time-Sharing System (ETSS),
442

extension architecture, 37
external (third-party) services, 227
External Configuration pattern, 61, 499

Index | 587



external systems or components, requests from,
230

external systems triggering events, 196
Extract Components pattern, 513, 524, 528,

532, 535-538
applying after refactoring functionality in

monolith, 544
examples describing how to apply

airline example, 540
ecommerce application, 541

extracting components from monolith and
adding Facade, 536

implementation issues, 539
Macro Services supporting pattern, 538
Monolith to Microservice Proxy require‐

ments after applying, 554
top-down and bottom-up approaches to,

537
using Playback Testing with, 559

F
Facade pattern, 231, 232, 417, 530, 543

enabling existing clients or code in mono‐
lith to interact with newly created micro‐
service, 540

Facade component, calls going through to
new microservices, 539

functions in service facade, 532
main benefit of Monolith to Microservice

Proxy over, 554
Monolith to Microservices Proxy not need‐

ing, 554
using in Wrapping the Monolith, 512
using to access extracted functionality, 536

fail-back, 306
fail-over, 306

in active-standby approach to database
availability, 316

filesystems, distributed, challenges with, 308
Firefox, example of Modular Monolith, 36
followers (leader-follower database topology),

305
four-layer application architecture, 120
Fowler’s First Law of Distributed Objects, 217
Freeze pattern, 524
functional programming application architec‐

ture, 20

G
gateways, 153
geolocation events, 196
GET method (HTTP), 416
Go, 64

runtime environment and package manager,
68

good enough, perfection as enemy of, 26
Google Android

client of Dispatchers, use of Java, 152
Google Cloud CLIs, 443
Google's Android Sample Library, 436
Google, Cloud Databases, 315
Gradle, 68
Graph Databases, 315, 336, 351-356

advantages of, 352
drawbacks of, 353
ecommerce product recommendations and,

355
example running in three database nodes

storing entities and relationships, 352
modeling domain entities connected by

relationships, 352
projects, products, and services on the

cloud, 355
Gremlin query language, 354
GUIs (graphical user interfaces), 440

H
Hairline Cracks pattern, 487, 496, 513, 530-535

biggest problem in finding hairline cracks,
533

challenge in finding hairline cracks, 531
examples of

Mono2Micro tool for finding, 534
shopping cart and checkout in ecom‐

merce, 534
examples of and cases illustrated in, 531
finding hairline cracks, similarity to finding

design seams, 534
revealing areas for refactoring the monolith

while it's being strangled, 534
revealing suitable monolith components or

modules with loose coupling to rest of
monolith, 537

services being implemented in the mono‐
lith, such as REST or Async, 537

using in extracting components, 536
using in Refactor Then Extract, 543
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using in Transforming the Monolith into
Microservices, 513, 528

hardware
cloud applications sharing, 4
cloud versus traditional IT, 6
generic hardware in the cloud, 4
managed by virtualization layer in the

cloud, 2
hash maps, 346
HashiCorp Consul, 328
HBase database, 328
Heroku, Twelve-Factor App practices, 55
Hexagonal Architecture pattern, 402

(see also Ports and Adapters Architecture)
high-performance computing (HPC), 14

benefit of bare metal servers for, 475
hook points (dynamic), 441
hosting and deployment modernization, 507
HPC (see high-performance computing)
HTML, CSS, and JavaScript code in Single-Page

Applications, 423
HTTP methods, 415
HttpSession data, storing in Key-Value Data‐

bases, 350
hybrid cloud, 53
hyperscaler CLIs, 443
Hypertext Processor (see PHP)
hypervisors

packaging applications to run in, 476
and Virtualize the Application pattern, 477

I
IaaS (infrastructure as a service), 53, 458

virtualized hardware components, 476
IBM CIO Office

common CI/CD pipeline, 502
multiyear application modernization jour‐

ney, 484
IBM Cloud CLI, 443
IBM Cloud database services, 315
IBM DB2 pureScale, 308
IDEALS for designing microservices, 176
Idempotent Receiver pattern (EIP), 264
immediate consistency, 318
Interaction Models, 406, 448-454

advantages for Client Applications, 451
code sharing across multiple, 453
relation to common code, 453

in Servlets and JSP with microservices and
interaction models, 417

trade-offs with, 452
using with Command-Line Interface, 441

Interceptors, 232
interface segregation, 177

in Aggregate implementations, 216
provided by Bounded Contexts, 207

Internet of Things (IoT)
combination of Event-Driven Architecture

with, 273
sensors triggering events, 196

Ionic framework, 434
building Mobile Applications with, 436

iPhone, 435
isolation layer provided by Anti-Corruption

Layer, 231
IT

traditional application characteristics that
work poorly in the cloud, 6

traditional IT applications versus cloud
applications, 6

traditional, application hosting platform,
461

traditional, differences of cloud computing
from, 3

J
Java, 64

implementing Adapter Microservices with,
153

microservices implemented in, Node.js Dis‐
patchers with, 151

Open Liberty application server implement‐
ing Java Platform, Enterprise Edition
(EE), and Jakarta EE, 69

package managers and runtime environ‐
ment, 68

Servlets and Java Server Page, 414
Servlets and JSP with microservices and

interaction models, 417
use in implementing Domain Microser‐

vices, 153
Web Form Applications, 350

Java Pet Store application, 420
Java Platform, Enterprise Edition (JEE), 421
Java Runtime Environment (JRE), 65, 68
Java Virtual Machine (JVM), 65, 68
JavaScript
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and AJAX, 414
AJAX frameworks, 45
Node Package Manager (NPM), 68
in Single-Page Applications, 423
single-page applications implemented in,

152
JDK (Java Development Kit), 68
jQuery and jQuery UI projects, 425
JRE (Java Runtime Environment), 65, 68
JSON

Document Databases representing data as,
339

JSP (Java Server Page), 414, 417

K
Kafka, 242, 281
Key-Value Databases, 328, 332, 336, 344-350

advantages, disadvantages, and alternatives
to, 348

compound key-value, 347
Configuration Databases, 326
optimized to work like hash map, using for

applications using same lookup key, 345
products, projects, and cloud platform serv‐

ices, 349
session data and, 350
storing values as documents having struc‐

ture, 347
working like hash maps, 346

keyspaces (Columnar Databases), 360
Kubernetes, 481

L
Language Server (VS Code), 46
layered architecture, 20
leader-follower database topology, 305, 319

in Configuration Databases, 325
with Read Replicas, 306

legacy code, adding test coverage to, 487
libraries

programs' dependency on, 63
Lift and Shift, 458, 464, 470-474

advantages of, 473
combination of strategies referred to, 474
combination with Virtualize the Applica‐

tion, 478
deployment of applications to the cloud, 475
drawback and challenges to, 474
examples of, 474

steps to make it possible, 472
tools provided by cloud platforms to help

with, 473
using to gain experience working in the

cloud, 486
using to migrate Distributed Architecture

applications to the cloud, 41
using to migrate existing applications to the

cloud, 468
using with Big Ball of Mud applications, 27

lift-tinker-and-shift, 467
Linux, xvii
Linux Foundation

Cloud Native Computing Foundation
(CNCF), 54

listeners (see event listeners)
load distribution in CQRS, 386
locking

Replicated Databases and, 318
use in traditional enterprise databases, 312

log shipping, 305
logging, consistent, for Interaction Models, 452
loose coupling, 226, 239

of components, provided by events, 269
decoupling components using Event-Driven

Architecture, 241
of Event Notifiers and Reactive Compo‐

nents, 272
for microservices, 178

Anti-Corruption Layers supporting, 232
lower bound for microservices, 181

M
machine learning (ML)

model built into Event Notifiers in shipping
events example, 259

Macro Services, 496, 513
extracted from monolith, issues with, 540
refactoring larger pieces from monolith

then extracting as Macro Services, 544
using with Extract Components, 538

"Make it work, make it right, and make it fast"
(Beck), 26

managed runtime environment, 459
Maven, 68
Mediators, 232
Memcached, 349
Message Bus, 282
messaging, 169
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changing from bidirectional service invoca‐
tion to unidirectional event notification,
242

Event, 256
event-style messaging system, 282
Message Bus, 250
message queuing (MQ)-style systems, 242,

283
message reliability in Event Choreography,

252
passing messages in Distributed Architec‐

ture services, 40
Micro Frontends, 405, 426-429

advantages of, 428
alignment to microservices backends, 429
drawbacks of, 428
examples of, 429
general architecture, 427
splitting Single-Page Applications into, 426

microservices, 9
about, 116
alignment between Data Modules and appli‐

cation modules, 368
architecting so interconnecting modules can

be developed independently, 119
asynchronous, event-based communication

over Event Backbone, 285
backend, Micro Frontends aligned to, 429
Bounded Contexts containing commands,

Aggregates, and policies of, 257
clients updating data while reading it, 387
designing, 175-238

Aggregates, 211-222
Anti-Corruption Layer, 229-233
Bounded Contexts, 201-204
determining right size for microservices,

180-182
Domain Events, 193-201
domain modeling techniques for,

178-180
Domain Services, 222-229
Event Storming, 189-193
finding right level of abstraction, 182
guiding IDEALS for, 176
introduction to, 176
Modeling Around the Domain, 183-189
wrap-up, 233

Event Backbone approach versus, 281
event emitters and event listeners, 244

Event Notifiers in, 273
implementing to take advantage of the

cloud, 493
layers in, 126
making modularity practical and solving

challenges of monolithic and distributed
applications, 124

migrating monolith functionality by reim‐
plementing pieces in Microservice-based
system, 514

PayPal BBoM monolith refactored into, 28
Reactive Components as, 263, 264
refactoring monolith to, 494
Replace as Microservice pattern, 513
as service-oriented architecture done right,

127
Start Small example of moving functionality

to, 495
storing data in Data Modules, 369
structure of more complete application, 124
Transforming the Monolith into Microser‐

vices pattern, 513
Microservices Architecture, 62, 115-174

Adapter Microservices, 135-140
architecting microservice applications, 118
benefits of, 124
combined with Cloud-Native Architecture,

118
defined, 116
developing, best practice for, 127
Dispatchers, 140-146
Distributed Architecture combined with

Cloud-Native Architecture, 466
Domain Microservices, 130-135
example applications, 128-130

airline application, 128
Netflix, 129

introduction to, 115
layers in, 124
versus Monolithic Architecture, 117
Polyglot Development in, 146-153

examples of, 151-153
Self-Managed Data Store for each microser‐

vice, 154-160
Self-Managed Data Stores for microservices

example application, 158
Service Orchestrators, 160-171

examples of, 167-171
transforming monolith architecture to, 511
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wrap-up, 171-174
middleware functionality (cloud versus IT

applications), 58
middleware, application depending on, 482
migration and modernization of applications,

457-508
application fundamentals, 460-466
cloud computing service models, 458
in the cloud, 468-470
cloud migration strategies, 466-468
introduction to, 457
migrating monolith functionality by reim‐

plementing pieces in Microservice-based
system, 511

modernization and technical debt, 459
patterns for, 458
patterns for existing applications, 470
using Containerize the Application, 478-484
using Lift and Shift pattern, 470-474
using Pave the Road, 496-503
using Refactor the Monolith, 484-492
using Start Small, 492-496
using Virtualize the Application pattern,

475-478
wrap-up, 503

hosting and deployment modernization,
507

migration and architecture moderniza‐
tion patterns, 504

performing migration and moderniza‐
tion, 503

strategies for, 505
Mobile Applications, 140, 143, 399, 405, 409,

430-436
advantages of, 435
better access to device features, 412
disadvantages to writing, 435
examples of, 436
general architecture, 433
in multimodal applications, 433
native applications mixed with embedded

code, 434
Model Around the Domain design pattern, 41,

133, 148, 178, 180, 183-189, 533
boundaries around domain model of subdo‐

mains, 182
describing domains with subdomains and

their entities, values, and behaviors, 186
Ubiquitous Language, 186-189

Model View X (MVx), 418
Model-View-Controller (MVC) pattern, 422
Model-View-Presenter (MVP) pattern, 422
modernization of applications, 457

(see also migration and modernization of
applications)

modular application tier, 401
modular architectures

four-layer application architecture, 120
service-oriented architecture, 121

Modular Monolith architecture pattern, 21,
29-38, 120, 462
architecting an application for easier main‐

tenance and evolution, 29
Bounded Contexts forming boundaries of

modules, 208
challenges to building applications, 32
Data Modules and, 368
difficulty of deploying new versions, 38
example applications, 33-38

Firefox, 36
modules implemented in a single language,

146
morphing Big Ball of Mud application into,

30
refactoring Big Ball of Mud application to,

485
refactoring modules to run in Distributed

Architecture, 468
transformation to Distributed Architecture,

42
modules, 19

defined, 31
developing, building, and executing inde‐

pendently of one another, 122
in Distributed Architecture applications, 39
in Modular Monolith application, 31

MongoDB, 310, 315
example of Replicated Database, 321
with replica sets, 307

Mono2Micro tool, 534, 539
Monolith to Microservice Proxy, 495, 513, 540,

552-555
constructing after Refactoring Then

Extracting, 544
examples of use

major retailer, 555
payment system, 554

592 | Index



interface of old client components remain‐
ing unchanged, 552

main benefit over Facade solution, 554
monolith components acting as proxies to

new microservices, 553
using during Transforming the Monolith

into Microservices, 530
using with New Features as Microservices,

524
monolithic applications, 6, 115

Big Ball of Mud architectural pattern, 21
data storage, 154
existing SoRs integrated by Adapter Micro‐

services, 138
implementation in a single language, 146
Modular Monolith architectural pattern, 21
refactoring Big Ball of Mud and its database

to microservices with Data Modules, 372
Monolithic Architecture

versus Microservices Architecture, 117
monoliths, 462

applications often being moved by Lift and
Shift, 474

challenging areas in for Replace as Micro‐
service, 549

containerization of, 483
Refactor the Monolith pattern, 468, 484-492
strangling, 509-566

Mozilla Firefox, example of Modular Monolith,
36

MQ-style messaging systems, 242, 283
Multics (time-sharing operating system), 442
multimodal clients

architecting applications with, 404-406
different kinds of Client Applications sup‐

porting, 409
multimodal user interfaces, 400
multiversion concurrency control (MVCC),

318
MVC (Model-View-Controller) pattern, 422
MVx (Model View X), 418

Single-Page Applications as variation of, 422
MySQL, 307

N
National Institute of Standards and Technology

(see NIST)
Native Mobile Applications, 420
Neo4j Graph Database, 315

Netflix
example of applying Microservices Archi‐

tecture, 129
use of Strangle the Monolith, 520

New Features as Microservices pattern, 496,
510, 513, 521-525
advantages and disadvantages of, 524
avoiding adding new features to monolith

and later modernizing into microser‐
vices, 521

directive to add new features as microser‐
vices, 522

example of, 525
example process of governance committee,

525
using in Strangling the Monolith, 516
using Transforming the Monolith into

Microservices with, 524
NewSQL databases, 309, 331, 337

examples of, 333
NIST (National Institute of Standards and

Technology)
NIST's definition and characteristics of

cloud computing, 52
service models for cloud computing, 458

Node Package Manager (NPM), 68, 70
Node.js, 64, 69

in Electron framework, 46
using to implement Dispatchers, 152

Node.js and AJAX frameworks, 45
NoSQL databases

AP databases, prioritizing availability and
partition tolerance, 310

for cloud applications, 330
Columnar Databases versus, 362
eventual consistency in, 309
versus Relational Databases for cloud appli‐

cations, 334
replicated, 321
working like cloud services, 315

O
object-oriented architecture, 20
objects

implementing your API, design of, 188
Observer pattern, 248

events in implementation of, 280
OLAP (online analytical processing), 357, 359,

363
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multidimensional use cases and columnar
data, 361

OLTP (online transaction processing), 356, 359
one-way transmission (events), 243
online transaction processing (see OLTP)
Open Liberty, 69
operating expenses

no benefit from Lift and Shift, 474
operating systems

containers running on, 481
dependency of traditional IT applications

on, 62
full guest OS in virtual servers versus OS

libraries for applications in containers,
480

JVM implementations for, 68
separation from packaged program by run‐

time environment, 64
Oracle RAC, 308

P
PaaS (platform as a service), 53, 458

cloud working better running workloads on,
481

package managers, 65
building Application Package, 66
examples of programming languages with,

67-70
packaging for applications, 461, 463

containers, 480
evolution of packaging, 465
facilitating greater deployment density and

platform portability, 478
modernizing the packaging, 464
monoliths, 509
simplest way to package for deploying on

traditional IT or the cloud, 475
PagSeguro, use of Strangle the Monolith, 521
Parallel Run pattern, 559
partitioning, 335

CP databases providing consistency and
partition tolerance, 310

defined, 308
eventual data consistency in partitions, 309
partition tolerance in AP databases, 310
partition tolerance in CAP theorem, 309
partitioned Configuration Databases, 326
process of partitioning monolith into

microservices, 528

partitioning with replication database topology,
308

parts and adapters architecture, 400
Pave the Road pattern, 470, 496-503

architectural tasks aiding multiple teams in
large-scale development, 499

building DevOps pipeline and releasing
containerized application in the cloud
example, 497

close relation of Start Small to, 495, 501
common tasks overwhelming single team

writing an application, 498
examples of use

financial system, 501
IBM CIO Office, common CI/CD pipe‐

line, 502
for microservices projects, 516

(see also microservices)
hiring experienced people and providing

training and/or mentoring, 500
in containerization, 483
main anti-pattern arising from misapplica‐

tion of, 501
main benefit of, 500
making cloud adoption, cloud development,

and microservice development easier,
497

platform-level issues reducing time spent on
core application development, 498

solutions to aid in platform tasks, 499
use in refactoring airline monolith, 490
using in Strangling the Monolith, 512

Paving over the Wagon Trail pattern, 501
Payment Processing Domain Service example,

228
PayPal, example of refactoring a BBoM, 28
perfection as enemy of good enough, 26
performance

databases causing bottleneck with querying
data that needs frequent updates, 315

Replicable Databases improving, 318
persistence

data decentralization in Distributed Archi‐
tecture, 501

in four-layer application architecture, 120
polyglot, for microservices, 150, 158

PHP (Hypertext Processor), 413
Pipes and Filters Architecture, 438

hook points with, 441
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platform as a service (see PaaS)
platforms

application packaging facilitating greater
platform portability, 478

for hosting applications, 461
issues with, reducing time spent on applica‐

tion development, 498
Playback Testing, 514, 550, 556-561

CQRS read model and write model for, 558
ensuring new microservices maintain func‐

tionality of old monolith, 556
example applications of

invoicing system, 559
U.S. financial system, 560

validating new implementation when apply‐
ing Replace as Microservice, 559

ways to implement playback, 558
plug-in architecture, 36
Polyglot Development, 9, 67

in Adapter Microservices, 139
in Domain Microservices, 134
in Microservices Architecture, 127
support by microservices, 119
using in microservices, 146-153

example using Node.js, Java, and Go, 148
examples of, 151-153

using to store each Data Module in database
type best for it, 375

Polyglot Persistence, 10, 151, 374-378
as data version of microservices, 375
Data Modules facilitating, 304, 315
example, ecommerce application, 376
for microservices, 158
storing Data Modules in database type best

for application's data structure, 374
Ports (Ports and Adapters Architecture), 402
Ports and Adapters Architecture, 400-404
POST method (HTTP), 416
PostgreSQL, 305
private cloud, 53
programming languages

application architectures independent from,
20

Application Packages specific to, 64
deciding which to use in cloud applications,

62
enterprise governing selection of languages

for microservices, 150

examples of languages with runtime envi‐
ronments and packaging managers,
67-70

modern, cloud-friendly languages, 64
not supporting packaging applications and

running them in runtime environments,
67

VS Code support for different languages, 46
programs

program in Application Package, require‐
ments for, 67

terminology for components in an architec‐
ture, 19

proxies
monolith components acting as proxies to

new microservices, 553
rewriting old components in monolith as,

552
Proxy pattern, 231, 530

Monolith to Microservice Proxy, 514
Monolith to Microservices Proxy, 524, 554
use in Replace as Microservice, 548
using in Wrapping the Monolith, 512

pseudosynchronous and asynchronous service
invocation, 241-243

Public API, 139, 145, 405, 443-448
advantages of creating, 445
versus API Gateway, 446
cases to understand when considering, 444
differences from Dispatchers, 445
examples of, 447
with gateway, 447
sometimes divided into partner (closed) and

public (open) APIs, 444
specialization of Service API, 446

public cloud, 53
publish-subscribe messaging, 274
publishers and subscribers, 251

Q
quality delivery pipeline, 501, 502
querying

databases designed for, 313
domain state storage and, 311
no accepted standard for graph queries, 354
optimizing throughput for query and

updates by multiple clients simultane‐
ously, 382

queuing systems, passing messages via, 40
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Quick Wins pattern, 537

R
Rabbit MQ, 281
Raft protocol, 309, 327
React Native, 434
Reactive Components, 10, 198, 261-269

bridges between Event Backbones in enter‐
prise backbone acting as, 288

building an application from that listens for
and reacts to specific events, 261

challenges to building applications from,
263

connecting to Event Notifiers via Event
Backbone, 280

Event API defining what to do, 275
in Event Choreography, 251
Event Notifiers and, 273
Event Notifiers connecting to via shared

channels, 245
example, airline application, 267
example, online ordering service, 265
example, online ordering system, 265
failures in Event Choreography, 252
independence from Event Notifiers, 263
interacting with Events, 258
listening and reacting to event topics, 262
listening to event topics, 254
logging history of events received for Event

Sourcing, 290
as microservers, being both Event Notifiers

and Reactive Components, 264
mixing Service Orchestration and Event

Choreography models, 264
need to be built as Idempotent Receivers,

264
in shipping events example, 259
subscribing to event topics and reacting to

events, 274
Read model and Write model, synchronizing

for databases, 390
read replicas, leader-follower topology with,

306
recommendation systems (ecommerce), Graph

Databases and, 355
Redis, 305, 310, 315, 349
Redis cluster, Replicated Database example, 322
Redis Sentinel, 307
redundancy

redundant data storage in Cloud Databases,
314

Refactor the Monolith pattern, 468, 484-492,
544
challenges to converting large application

entirely into cloud-native microservices,
487

deciding that application cannot be sup‐
ported in the long term in current form,
484

decisions in refactoring, 486
ensuring behavior of application doesn't

change in refactoring, 487
examples of

airline application, 488
published case studies, 488

making existing application easier to main‐
tain and run in multicomputer environ‐
ment, 484

making monoliths into distributed applica‐
tions, 487

refactoring Big Ball of Mud application to
Modular Monolith, 485

Start Small beginning with, 495
Refactor Then Extract pattern, 496, 513, 528,

533, 542-546
addressing coupling in the monolith to

facilitate extraction into microservices,
542

applying Extract Components after refactor‐
ing, 544

difference from Refactor the Monolith, 544
examples of use

ecommerce system, 546
financial services system, 544

refactoring partially coupled pieces in mon‐
olith then extracting components to
microservices, 543

refactoring to understand difficult code, 544
techniques to help with, 543
using Playback testing with, 559
using with extracted components from

monolith, 540
refactoring

in cloud migration of applications, 467
defined, 486
having set of tests of existing system to run

against new system, 556
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refactoring tools, using to extract components,
539

rehosting, 466
Relational Databases, 301, 330, 332, 333-338

disadvantages of BLOBs stored in, 348
examples of

enterprise SQL databases, 337
NewSQL databases, 337
small SQL databases, 337

favoring consistency over availability for
ACID transactions, 334

handling of OLTP and OLAP tasks, 357
overhead added by, 345
query efficiency versus Columnar Data‐

bases, 361
as Replicated Databases, 334
single-server topology for, 305
storing well-structured data that application

query frequently, 334
techniques to achieve massive scalability

and wide distribution, 335
uses for Cloud-Native Applications or

microservices, 336
reliability

message reliability in Event Choreography,
252

remote technologies, 40
Replace as Microservice pattern, 513, 529,

547-551
addressing challenging areas in the mono‐

lith, 549
advantages and disadvantages of, 549
examples of use

ecommerce system, 551
major hotel chain, 550

steps in process, 548
using Playback Testing with, 559
using with functionality tightly coupled to

monolith), 540
replacing (applications), 467
replatforming applications, 467
Replicable Application pattern, 57, 61, 314

microservice replicas sharing same Self-
Managed Data Store, 156

Reactive Components and, 264
Replicable Databases working similarly to,

318
Replicated Databases, 242, 314, 316-323

Configuration Databases, 325

databases that run in the cloud, 317
designed as distributed consensus systems,

309
Document Databases, 342
examples of, 321

Apache CouchDB, 323
MongoDB, 321
Redis cluster, 322

improvements in reliability, availability,
scalability, and storage, 318

Key-Value Databases, 345
replication models, leader-follower and

quorum-based consensus, 319
running as cluster of nodes, not as single

server process, 318
Self-Managed Data Stores for microservices,

157
synchronizing updates across replicas, 319
use for Configuration and Application Data‐

bases and, 320
replicated messaging systems, 242
replication

in Cloud Databases, 314
in cloud-based databases, 320
event-style messaging systems on the cloud,

282
partitioning with replication database topol‐

ogy, 308
Repositories pattern, 179, 215

persisting Aggregates in a Bounded Con‐
text, 208

resiliency
problem with single-server database topol‐

ogy, 305
responsive design principles, 423
REST APIs, 116
Restrict Changes to the Legacy Application pat‐

tern, 524
retaining applications (too difficult to move to

cloud), 467
retiring applications, 467
revising (replatforming), 467
RFID (Radio Frequency Identifier) sensors, 196
routers

Composed Message Processor acting as a
Service Orchestrator, 169

enterprise integration router functioning as
Service Orchestrator, 169
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Rs of cloud migration (rehost, refactor, revise,
rebuild, replace), 466

runtime environment, 64
examples of programming languages with,

67, 70
installing on cloud platform OS, 67
managed, 459
supported by operations team, dictating lan‐

guage or technology, 147

S
SaaS (software as a service), 53, 458
Saga pattern, 501
scalability

for Cloud Databases, 317
of cloud applications, 329
different needs in airline reservation system,

44
of Event-Driven Architecture, 251
unlimited, for cloud applications, 6

scaling
cloud applications and their databases, 339
elastic scaling in cloud-native applications,

61
for enterprise databases, 308
Replicated Databases, 320

schemas
enterprise database versus schemaless Cloud

Databases, 313
Relational Database server hosting multiple

schemas, 335
schemaless Document Databases, 339
traditional database, 311

scripting tools, 442
ScyllaDB, 310
Self-Managed Data Store pattern, 41, 119, 150,

154-160, 301
as Cloud Databases, 157
delegating work to another microservice

that owns the data, 156
for Domain Microservices, 134
example with multiple microservices each

having its own data store, 158
microservice replicas sharing same Self-

Managed Data Store, 156
in Microservices Architecture, 127
Service Orchestrator design, awareness of,

166
separation of concerns

advantage of Bounded Contexts for, 207
servers

in cloud computing, 407
Service APIs, 57, 117, 119

Adapter Microservice exposing its function‐
ality as, 136

Client Applications interfacing with Cloud
Applications via, 408

common Service API for microservice and
its clients, 127

decoupling service consumers from provid‐
ers, 239

delegating work to another microservice
that owns the data, 156

for Dispatchers, 142
evolving Facade into, 543
how they relate to Event APIs, 265
in microservices, 122
Public API as type of, 446
Reactive Components listening to and react‐

ing to event topics versus, 262
in service-oriented architecture applica‐

tions, 121
support for different programming lan‐

guages, 147
service catalogs, 5, 61
service invocations, pseudosynchronous and

asynchronous, 241-243
service models of cloud computing (NIST), 52
Service Orchestrators, 119, 134, 160-171

complex commands as, 441
designed and implemented as business pro‐

cess, 164
designing microservices to perform com‐

plex tasks by combining other tasks, 166
differences between Event Choreography

and, 253
examples of, 167-171

ecommerce application, displaying avail‐
ability, 167

ecommerce application, managing a
purchase, 170

enterprise integration router, 169
for existing SoRs modeled as multiple

Domain Microservices, 138
in Microservices Architecture, 127
mixing service orchestration and Event

Choreography models, 264
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needed to reuse Adapter Microservice's
functionality, 138

Polyglot Development in, 167
recommendations for service orchestration

and Event Choreography, 272
from service orchestration to Event-Driven

Architecture, 240
service orchestration versus Event Choreog‐

raphy, 261
synchronous processing of calls, 270

service-oriented architecture (SOA), 115, 121
approach to encapsulating existing func‐

tionality, 137
microservices as SOA done right, 127

services, 19, 181
backend, 57
being implemented in the monolith, such as

REST or Async, 537
in cloud applications versus IT applications,

58
in Cloud Native Architecture, 59
in Distributed Architecture applications, 39
external or third-party, 227
for hosting applications, 458
older distributed services such as CORBA,

SOAP, or EJB, 537
service models for cloud computing, 458

Servlets, 414
and JSP with microservices and interaction

models, 417
session data, 81, 84

storing for cloud applications in Configura‐
tion Databases, 325

storing in Key-Value Databases, 350
session state, 80
shared databases, 154
shared-storage database topology, 307
shells, 442
single responsibility (design principle), 178, 202

in Aggregate implementations, 216
Bounded Contexts upholding, 230
in Bounded Contexts, 207

Single-Page Applications, 143, 405, 421-426
advantages of, 424
advantages of versus Web Form Applica‐

tions, 419
avoiding monolithic architecture by split‐

ting into Micro Frontends, 426
components of and backend, 422

designing for best mix of client responsive‐
ness and server optimization, 421

disadvantages of, 424
each representing single logical set of screen

interactions that perform a business
function, 425

examples of, 425
growing to monolithic proportions, 425
JavaScript implementation of, 152
JavaScript program running in browser,

responsibilities of, 422
single-server database topology, 305
small SQL databases, 337
SOA (see service-oriented architecture)
SoE (see systems of engagement)
software architecture, 18
Software Architecture Revolution, 501
software as a service (see SaaS)
SOLID design principles, 176

single responsibility and interface segrega‐
tion in Aggregates, 216

SoR (see systems of record)
SPARQL query language, 354
SPAs (see Single-Page Applications)
SQL (Structured Query Language), 334
SQL databases, 330

enterprise, 337
leader-follower topology in, 307
New SQL databases, eventual consistency in,

309
NewSQL databases, 331, 337
Relational Databases, 333
small, 337

stakeholders
getting together to understand the domain,

188
Start Small pattern, 134, 470, 492-496

downside of, 495
example of moving functionality to micro‐

services, 495
good reasons for using, 493
learning how to Pave the Road, 495
main advantage of, 495
Pave the Road pattern and, 501
sometimes beginning with Refactor the

Monolith, 495
use in refactoring airline monolith, 489
using in migrating and modernizing appli‐

cations for the cloud, 492
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using in Strangling the Monolith, 512
using in transforming monolith to micro‐

services, 516
using to motivate developers to create

Cloud Applications, 493
state

business functionality, persisted by Domain
Microservice in data store, 131

creating Events for state changes, 257
Domain Events representing state changes,

195
domain state in microservices, 125
persistence for microservice in Self-

Managed Data Store, 127
session and domain state, 80
undoing or recreating in Event Sourcing,

292
Stateless Application pattern, 57, 61

Event-Driven Architecture components, 244
storage, 41

(see also Self-Managed Data Store pattern)
storage minimization by traditional databases,

312
strangler application, 510
Strangling the Monolith, 135, 469, 486, 509-566

architecture example during, 517
benefits of, 519
challenge related to data, 519
costs and benefits of, 517
examples of

Uber, 520
examples of use

Amazon, 520
eBay, 520
Netflix, 520
PagSeguro, 521

gradually, using New Features as Microser‐
vices, 510

iterative process of, 519
process over time, 515
processes in, 514
replacing entire monolith at once, risks of,

515
replacing/rewriting monolith bit by bit

as system implemented using microser‐
vices, 511

selecting pieces of the monolith to replace
with microservices, 517

strangler patterns, 511-514

trade-offs with, 519
transforming monolith architecture to

Microservices Architecture, 511
using Extract Components pattern, 535-538
using Hairline Cracks pattern, 530-535
using Monolith to Microservice Proxy,

552-555
using New Features as Microservices,

521-525
using Playback Testing in, 556-561
using Refactor Then Extract, 542-546
using Replace as Microservice pattern,

547-551
using Transforming the Monolith into

Microservices, 526-530
wrap-up, 561-566

add new feature scenario, 563
can't use that protocol scenario, 564
other strangling considerations, 565
pull out painful pieces scenario, 564
sequences in, 561

Wrapping the Monolith, 518
Structured Design (Constantine), 31
subdomains, 188

Domain Events interacting between, 196
domains versus, 186
grouping related aspects of into Bounded

Contexts, 202
having more than one Bounded Context,

204
identifying and describing Aggregates

needed for, 212
in Joe's Pizza Bounded Context example,

203
for online ordering system example, 211
Ubiquitous Language evolving from within,

187
subscribers and publishers, 251
synchronous request-response calls, 270
systems of engagement (SoE), 12

in banking cloud application example, 12
easier integration with existing SORs in

SOA architecture, 121
systems of record (SoR), 12

existing, external SoR encapsulated in
Adapter Microservice, 136

reimplementing as Domain Microservices
instead of Adapter, 138
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SoRs integrated by Adapter Microservices,
typically monolithic applications, 138

T
technical debt, 18, 509

application modernization and, 459
arising from overlooking architectural con‐

cerns, 23
in Big Ball of Mud pattern, 26

technologies used in cloud computing, xvii
template applications and PHP, 413
template architectures, 417
Template View pattern, 420
three-tier architecture, 400
throughput

of Event-Driven Architecture, 251
Tinder case study, moving applications to con‐

tainers and Kubernetes, 484
trade-offs in application architecture, 18
transactions

capturing then playing back on existing and
new systems, 557

Columnar Databases and, 363
Configuration Database updates as long-

running distributed transactions, 325
distributed, implemented by MQ-style mes‐

saging, 242
Event Sourcing, 295
online transaction processing, 356
performing multiple tasks as single transac‐

tion, 170
scoping Domain Microservices for, 133
transaction boundary for cohesive Aggre‐

gates, 217
transaction manager, 166

Transforming the Monolith into Microservices,
513, 516, 526-530
difficulty of, 529
examples of, 530
main advantage of, 529
process for partitioning monolith into

microservices, 528
using Extract Components pattern, 528
using Monolith to Microservice Proxy for

extracted or replaced code, 530
using Replace as Microservice pattern, 529
using while adding new features as micro‐

services, 524

wrapping up monolith pieces with wrapper
patterns, 530

Twelve-Factor App practices, 55
dependencies and, 66

U
Uber, use of Strangle the Monolith, 520
Ubiquitous Language pattern, 182, 186-189

building common language between devel‐
opers and domain experts, 186

Domain Services, interfaces defined in, 223
importance of context, 187
versus Universal Language, 187

UIs (user interfaces)
building user interactions with complex

business process, 439
Client Application UI enabling access to

Cloud Applications, 408
interaction Model connecting UI to back‐

end services, 453
multimodal UIs, 400
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