
Jacqui Read

Communication
Patterns
A Guide for Developers
and Architects

SOF T WARE ENGINEERING

“Communication Patterns
is a masterful guide that
unlocks the complexity
behind the language
of human interaction.
A must-read!”

—Mark Richards
Software Architect, Founder of

DeveloperToArchitect.com

“They might be called soft
skills, but they’re not easy
to learn since they are so
infrequently taught. This
book remedies that gap.”

—Rebecca Parsons,
Chief Technology Officer Emerita,

Thoughtworks

Communication Patterns

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Having a great idea or design is not enough to achieve
success. You must communicate your vision effectively
to gain stakeholder support for your design and secure
collaboration and contribution from your teams. In this
practical book, author Jacqui Read shows you how to
successfully present your architecture and gain the
commitment and understanding you need from
stakeholders.

Discover how to effectively communicate to avoid
misunderstandings that can lead to increasing costs, unmet
requirements, and an architecture that is not what you
intended. Through constructive examples and patterns, this
book teaches you soft skills you can use to express your
message clearly to the different audiences you’ll face.

This book shows you how to:

• Design diagrams and documentation suitable for your
expected audience, intended message, and project stage

• Create artifacts that are accessible to those with varying
roles, needs, or disabilities

• Master written, verbal, and nonverbal communication
to succeed in technical settings

• Communicate and collaborate with distributed teams
to successfully design and document software and
technical projects

• Apply the communication patterns presented in this
book in real-world projects and software designs

Jacqui Read is an internationally
recognized solution and enterprise
architect with hands-on experience
and expertise coding and architecting
software systems. She is a specialist
in developing architecture practices,
constructing evolutionary architectures,
and extracting business value from
data and knowledge.

US $65.99 CAN $82.99
ISBN: 978-1-098-14054-0

Praise for Communication Patterns

This book covers one of the most important aspects of software development, the
so-called “soft skills,” which ironically present the biggest challenges for many developers.
It is chock-full of patterns and advice, some of which are obvious in hindsight, which are

often the hardest to see beforehand. Highly useful and recommended for
technologists at all levels.

—Neal Ford, Director/Software Architect/Meme Wrangler,
Thoughtworks, Inc.

Jacqui shows that the skill of communication is not black magic for the lucky few: it can
be learned, practiced and polished. This complete overview full of practical insights will

help anyone improve and be more successful in achieving what they want.
—Kim van Wilgen, Customer Director, Schuberg Philis

Effectively communicating ideas and solutions is an essential skill for software developers
and architects. However, very few resources show you how—until now. Communication
Patterns is a masterful guide that unlocks the intricate web of verbal, written, visual, and

non-verbal communications. Through patterns and practical techniques, Jacqui untangles
the complex world of communication and helps us better understand the language

behind human interaction. This book promises to be one of the most important books of
the decade, one that should be on every technologist’s bookshelf.

—Mark Richards, Software Architect, Founder of
DeveloperToArchitect.com

Jacqui Read’s unique approach to communication is empowering, insightful, and imbued
with practical wisdom. Communication Patterns is the definitive guide to enhancing

communication skills in the tech industry.
—David R. Oliver, Principal Architect, Actica Consulting

We could all be better at communicating our technical decisions, designs, and
architectures. This book covers all the aspects you need to improve your communication,

all the way from the high-level concepts down to the practical details.
—Alistair Jones, Founder, nifdi.app

Communication Patterns is a great book that helps you communicate and illustrate
architecture better with anybody in so many ways. The patterns described by Jacqui Read

are helpful in improving communicative collaboration in your teams.
—Jonah Andersson, DevOps Engineer Lead, Microsoft MVP and

MCT, Author of Learning Microsoft Azure

What we think and communicate is what we build. Our communication skills define, for
better or worse, our software architectures. This book will improve both.

—Diana Montalion, Systems Architect, Founder, Mentrix

Practice alone does not make perfect. Communication Patterns covers common mistakes
and guides you toward more effective visual, verbal, and written communication.

—Stefan Hofer, Author of Domain Storytelling,
Workplace Solutions (WPS)

Communication is a skill all possess, but very few master. Starting with simple concepts
and ramping up to advanced skills, Communication Patterns is an invaluable aid for

engineers to become master communicators and wow the audience with crisp visuals,
engaging storytelling, and clear argumentation.

—Sonya Natanzon, Senior Director,
Enterprise Software Engineering

Jacqui gives us a treasure map in Communication Patterns. Her book addresses the
different layers, communication modes, and communication nuances in our craft, no

matter the formal position. She describes and gives names to my unspoken challenges,
and her experience as an architect and developer is translated to this book, where you can

leverage her knowledge to create inclusive and effective communication within your
team, department, and organization.

—João Rosa, Independent Consultant and Team Topologies
Valued Practitioner, Impactfulness

The subtitle might say this book is for developers and architects, but anyone, particularly
in a leadership position, should read this book to become more effective. And they might

be called soft skills, but they’re not easy to learn since they are so infrequently taught. This
book remedies that gap and helps demystify successful communication approaches.

—Rebecca Parsons, Chief Technology Officer Emerita,
Thoughtworks

In this book author Jacqui Read has collected a set of small, surprisingly sense-making
patterns, that will often leave the reader with the “Why didn’t I think of this before?”
question. Communication Patterns is an excellent read for architects, modelers, and

developers. While reading through the extensive set of patterns in this book, I often had a
warm, deja vu feeling. Jacqui puts her finger on the right spots and adds useful details

for architects, modelers, and developers.
—Sander Hoogendoorn, CTO at iBOOD.com, International

Keynote Speaker, and Author of Microteams, This Is Agile, and
Pragmatic Modeling with UML

Finally, a book about communication in the world of developers, bridging the gap
between complex code and meaningful conversations.

—Cecilia Wirén, Senior Developer, Microsoft MVP

In Communication Patterns, Jacqui Read doesn’t just lay out patterns for effective
communication with various stakeholders; she provides a compass for every developer
and architect. Each chapter reminds me that merely designing software collaboratively

with stakeholders isn’t enough; the real power lies in how we present it. Every time I
embark on a new software project or collaborate with teams and stakeholders, I turn to

this book for guidance on the best approach and how to structure our conversations.
—Kenny Baas-Schwegler, Software Consultant and

Software Architect, Weave IT b.v.

Communicating ideas effectively is not a skill that many developers and architects are
formally taught, so we go through our careers doing it badly and learning via trial and

error. What Jacqui has put together in this book should be foundational knowledge for
any aspiring software developer and will fill in many gaps for seasoned practitioners.

—Nick Tune, Principal Consultant, Empathy Software

I got into programming because of computers. Then I learned that programming is just as
much about people as it is about bits and bytes. Jacqui shows in this book how we

programmers can communicate with people—with each other and with domain experts—
in a very programmer-friendly way: by describing the patterns that lie behind it.

—Henning Schwentner, Coding Storyteller, WPS

Jacqui Read

Communication Patterns
A Guide for Developers and Architects

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14054-0

[LSI]

Communication Patterns
by Jacqui Read

Copyright © 2024 Read the Architecture, Ltd. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Louise Corrigan
Development Editor: Corbin Collins
Production Editor: Katherine Tozer
Copyeditor: Amnet Systems LLC, Sharon Wilkey
Proofreader: Sharon Wilkey

Indexer: BIM Creatives, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2023: First Edition

Revision History for the First Edition
2023-10-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098140540 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Communication Patterns, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098140540

Table of Contents

Preface. xiii

Part I. Visual Communication

1. Communication Essentials. 3
Know Your Audience 3
Mixing Levels of Abstraction 7
Representational Consistency 11
Summary 16

2. Clarify the Clutter. 17
Color Overload 17
Boxes in Boxes in Boxes 19
Relationship Spiderweb 22
Balance Text 26
Summary 29

3. Accessibility. 31
Relying on Color to Communicate 31
Include a Legend 37
Appropriate Labels 39
Summary 42

4. Narrative. 43
The Big Picture Comes First 43
Match Diagram Flow to Expectations 47
Clear Relationships 51

vii

Summary 54

5. Notation. 55
Using Icons to Convey Meaning 55
Using UML for UML’s Sake 57
Mixing Behavior and Structure 61
Going Against Expectations 64
Summary 66

6. Composition. 67
Illegible Diagrams 67
Style Communicates 74
Misleading Composition 75
Create a Visual Balance 81
Summary 84

Part II. Multimodal Communication

7. Written Communication. 87
Simple Language 87
Acronym Hell 90
Structured Writing 92
Syntax of Technical Writing 95

Strong Verbs 95
Short Sentences 96
Precise Paragraphs 96
Consistent Vocabulary 97
Audience Empathy 97

Summary 99

8. Verbal and Nonverbal Communication. 101
Encoding Messages 101

Using the Acceptance Prophecy 101
Giving Your Full Attention 102
Using Body Language and Gestures 103

Decoding Messages 105
Battling Bias 106
Being Present 108
Awareness of Cultural Differences 109

Influence and Persuasion 110
Summary 114

viii | Table of Contents

9. The Rhetoric Triangle. 115
Ethos 116

Establish Your Credentials 116
Use Trustworthy Sources 118
Be Transparent 119
Demonstrate Your Knowledge 121

Pathos 122
Tell a Story 122
Speak from the Heart 125
Use Vivid Language and Strong Imagery 126

Logos 128
Use Data and Facts 128
Make Logical Connections 129
Use Reasoning and Argumentation 129

Summary 131

Part III. Communicating Knowledge

10. Knowledge Management Principles. 135
Products over Projects 135

Project Mindset 136
Product Mindset 136

Abstractions over Text 140
Lists 140
Tables 141
Visual Abstractions 142
Word Clouds 143
Charts, Graphs, and Diagrams 145
Other Abstractions 145

Perspective-Driven Documentation 146
DRY Perspectives 147
Fractal Perspectives 148
Implementing Perspectives 149

Summary 152

11. Knowledge and People. 153
Get Feedback Early and Often 153
Share the Load 157

Nonproprietary Formats 157
Accessibility 159
Collaboration 161

Table of Contents | ix

Roles and Responsibilities 162
Further Techniques 162

Just-in-Time Architecture 163
Summary 167

12. Effective Practices. 169
ADRs 169

ADR Structure 171
ADR Content 174
ADR Storage 179
ADR Culture 180

Architecture Characteristics 183
All Documentation as Code 187

Technical Documentation 187
Automatically Generated Documentation 190
Other Documentation 192

Summary 194

Part IV. Communicating Remotely

13. Remote Time. 197
Synchronize Time 198

Time Zone 198
Empathy and Compromise 201
Split Shifts 202

Respect Working Patterns 204
Communicate Availability 205
Defend Part-Time Hours 205
Plan for Holidays 206
Account for Geography and Culture 208
Recognize Real Working Capacity 209

Improve Energy and Productivity 210
Control Notifications 210
Automate Tasks 211
Work with Others’ Rhythms 212
Schedule for Energy 212

Summary 214

14. Remote Principles. 215
Meetings to Sync 215

Synchronous Versus Asynchronous 215

x | Table of Contents

Enhance Meetings 218
Async to Think 223

Async Advantages 223
Async Obstacles 223
Direction Matters 224
Async Methods 226
Enhance Async 229

Remote-First Working 230
Remote-First Versus Remote-Friendly 230
Remote-First Benefits 232
Evolving to Remote-First 234

Summary 237

15. Remote Channels. 239
Symmetrical Email 239

Email Reasons 240
Email Expectations 240
Email Clarity 241
Email Tips 242

Online Presentations 244
Audience Engagement 244
Presentation Content 246
Screen Shares 247

Remote Tools and Governance 248
Selection Techniques 248
Remote Tools 250
Data Proliferation 252
Security 254
Tool Efficiency 254
Tool Governance 255

Summary 262

Epilogue. 263

Appendix: ADR Templates. 265

Index. 267

Table of Contents | xi

Preface

Communication underlies pretty much everything you do, from your facial expres‐
sion showing disapproval or enjoyment, to your email about the latest project update,
to what you say in a meeting or presentation. But what is communication, and how
do you make it successful?

The Oxford English Dictionary defines communication as “the activity or process of
expressing ideas and feelings or of giving people information.” This encompasses
many of the important aspects of communication but doesn’t indicate what would
make it successful. The same dictionary defines communicate as “to share or exchange
information, news, ideas, feelings, etc.” This definition provides more detail, but we
still need to go further to work out how to make communication successful.

The Merriam-Webster Dictionary adds that communication is “through a common
system of symbols, signs, or behavior,” introducing the idea of commonality and how
the ideas or information is conveyed.

Here’s what we have so far:

• Expresses ideas and feelings
• Gives people information
• Shares or exchanges information, news, and so on
• Uses a common system of symbols, signs, or behavior

That gives a good idea of what communication is, but what makes communication
successful?

The polyglot linguist Michel Thomas put it simply when he said the aim of commu‐
nication is to “get the ball over the net.” None of the definitions we’ve seen so far
cover this critical element of understanding.

xiii

https://oreil.ly/aoO-E

Let me take a stab, then:

Successful communication is the art and science of sharing or exchanging ideas and
information, using a common set of symbols, signs, or behaviors, resulting in shared
understanding.

The cost of miscommunication is high, whether it’s cumulative wasted time or the
price of putting things right. So why is there not more emphasis on making commu‐
nication successful, or at least improving it? That is the focus of this book.

Software development and architecture have patterns and antipatterns that can be
applied (or recognized) in writing code and architecting systems. A pattern is a reusa‐
ble solution that has been shown to be effective when used to solve a problem. The
biggest benefit is that someone else has done the hard work for you, and you just
need to apply the solution to your particular situation and problem.

Antipatterns are not the direct opposite of patterns. They are solutions that look like
they solve a problem but have consequences that outweigh any potential benefits.
Learning about antipatterns means that you can recognize them in designs or existing
systems, or recognize situations where they might occur so that you can avoid or mit‐
igate them.

This book applies the concept of patterns and antipatterns to communication.

People often quote Brian Foote and Joseph Yoder’s 1997 paper “Big Ball of Mud” (and
for good reason): “If you think good architecture is expensive, try bad architecture.” It
means that creating good architecture requires an investment, but not investing will
result in bad architecture that costs more in the long run. The same thing should be
said for communication: If you think good communication is expensive, try bad com‐
munication. Investing in good (successful) communication is less expensive than
bearing the costs of bad (unsuccessful) communication.

Why I Wrote This Book
Throughout my career in software development and software architecture, I have fre‐
quently discovered that the principles and techniques I apply naturally do not come
naturally to others. In some cases, I have applied knowledge I learned from some‐
where else to the technology domain, and in others, my approach just seemed to me
the right way to do it.

I realized that I had built up many patterns and antipatterns in my toolbox, and not
all were the type that can be applied to code or architecture. Some were applicable to
what many would describe as soft skills, like creating diagrams and documentation.
Even some that were designed to be used in code or architecture, I was applying out‐
side of their intended use.

xiv | Preface

https://oreil.ly/LO2bq

It turned out that these soft patterns and antipatterns could all be categorized as com‐
munication patterns and, recognizing that my tool kit was not widely accessible to
others, I determined to make it available. The result is this book and the training
courses that I provide through O’Reilly and privately (along with other architectural
courses and consulting).

My intention in writing this book is to improve communication of teams and organi‐
zations within the technology sector so that individuals can increase their productiv‐
ity and general happiness, and organizations see an improvement in their return on
investment (ROI) and even their bottom line.

Investing in your soft skills will enhance your technical skills and make you a stand-
out technical star.

I consider myself to be a lifelong learner and would love to hear your experiences of
applying the patterns and antipatterns in this book, and of any other methods you use
to optimize the way you and your colleagues communicate. You can contact me via
O’Reilly (“How to Contact Us” on page xix), my website, or social media.

Who Should Read This Book
This book is intended for developers, engineers, and all types of architects (solution,
software, data, enterprise, and so forth) at any point in their careers. Because the skills
this book presents are not formally or traditionally taught, even the most seasoned
technologist can benefit.

Applying this book’s patterns to your communication will set you apart as someone
who not only has the technical skills but also the soft skills to get things done and be
understood by technical and nontechnical audiences alike. For those aspiring to move
from development to architecture, or into a senior or tech-lead role, improving your
communication will remove at least some of the hurdles between you and the role
you desire.

Although principally tailored to developers and architects, the patterns in this book
can be applied by, and provide benefits to, anyone in the software and technology
industries (and other industries besides). The relevancy of each pattern and antipat‐
tern will depend on your role.

For example, Part I will be useful to business analysts (BAs), and Part IV will be use‐
ful to anyone working in a remote or hybrid environment, or with customers in
another time zone. Managers and leaders will greatly benefit from Parts II, III, and
IV, with the added benefit of being able to disseminate the techniques and principles
to their reports and teams.

Many patterns and principles in this book come from domains very different from
software, and I wouldn’t be surprised if they can be applied in still more domains.

Preface | xv

https://jacquiread.com

How to Read This Book
The book is structured into four parts, each covering one major aspect of communi‐
cation in the software and technology domain. You are free to start wherever you feel
would most benefit you, or with whatever piques your interest the most. Otherwise,
Part I is the place to start.

Part I covers patterns and antipatterns for diagrams and other visuals. Chapter 1 lays
the foundations that the other chapters in Part I build upon. Ensure you understand
and are applying the patterns in Chapter 1 before you start adding the other patterns
from Part I to your tool kit.

Part II includes patterns and techniques for written, verbal (spoken), and nonverbal
communication, which you can apply to remote and in-person interactions. Part III
contains principles, practices, and patterns to improve knowledge management and
sharing, including documentation. Part IV offers many strategies and patterns for you
to use when communicating with people in other time zones and with different work‐
ing hours, particularly in hybrid and remote environments.

Images and Color
Some of the figures in this book need to be viewed in color. In the printed version, all
images are grayscale, so we’ve included links to color versions of any images that need
to be viewed in color. All images are available on the accompanying website.

Software Tools
You do not need to use any specific software tools to put the patterns and techniques
in this book into practice, but I do mention various tools. When citing tools that
could be used for a particular purpose, I usually refer to those that are well-known.
The recommendations I make are mostly open source options. Remember to check
the license required for your situation and ensure that the terms of service meet your
needs.

To create my original diagrams and illustrations for this book, I used draw.io, for a
time known as Diagrams.net. I encourage participants to use draw.io when complet‐
ing exercises in the workshops I run. It is free, open source, requires no login, and
can be used as a desktop application or via a web browser. Draw.io has many integra‐
tions for other applications, and the desktop version is available for Windows,
macOS, Linux, and ChromeOS.

xvi | Preface

https://communicationpatternsbook.com
https://drawio.com

Polyglot Media
Polyglot Media is a fictitious company used to create examples for this book. The
company has around 150 employees, who are spread across several countries, and an
international customer base. Polyglot Media provides customers with access to vari‐
ous digital media (ebooks, audiobooks, and videos) on a subscription and pay-as-
you-go basis, and it also offers hard copies of books. Some media is stored in-house,
and some is provided by partners. The Polyglot Media system is also used by authors
to update and create publications and by editors (employed by Polyglot Media) to
access and edit the authors’ publications.

EXAMPLE

Polyglot Media Examples
Throughout the book, I used Polyglot Media in examples. You will see that lots of the
diagrams are based on Polyglot Media systems, and other examples are presented in a
box just like this one. All examples are fictitious but based on my own or others’ expe‐
riences and learning.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, and pat‐
tern or antipattern names.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xvii

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://communicationpatternsbook.com.

If you have a technical question or a problem using the code examples, please email
bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Communication Patterns
by Jacqui Read (O’Reilly). Copyright 2024 Read the Architecture, Ltd.,
978-1-098-14054-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

xviii | Preface

https://communicationpatternsbook.com
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/communication-patterns.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
This book would never have been written without the assistance and enduring stam‐
ina of one person: my husband Steve. His unending support enabled me to tackle the
adventure that is writing a technical book. From encouragement to technical proof‐
reading, from making sure I ate real food to taking on most of the jobs of running a
house while working a full-time job and parenting two neurodivergent children
almost single-handedly, he has allowed me the time and space to write this book. He
has also contributed a few good ideas himself. Thank you, Steve, for your belief, back‐
ing, and back-breaking efforts.

This book has greatly benefited from my technical reviewers, who put so much effort
into reading my drafts and giving valuable feedback. My thanks to Emily Bache, Ali
Greene, Alistair Jones, David R. Oliver, and Steve Read (yes, him again). I would also
like to thank David J. Oliver for his input into Chapters 10 and 11. Any mistakes you
may find in this book are certainly my own.

Many people have contributed to this book indirectly, through conversations, blog
posts, talks at conferences, books, and other interactions. Thank you to everyone who
has shared my journey so far and shared their experiences through events and publi‐
cations. Thank you also to those who have organized the conferences and events that

Preface | xix

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/communication-patterns
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

1 You can see all the finalist entries (including mine, The Archangels) for all the past katas in my GitHub repo.

I have spoken at or attended, and to all my speaker and author friends who I have met
at these conferences and who have accepted me as one of their own.

Thank you to all those who have shown support and encouragement for this book
before it was even published. I have received many kind and emboldening comments
and responses via social media and at conferences when I have talked about my
upcoming book and the prerelease. These messages have shown me that people do
want to read what I write, which has spurred me on when editing has been tough.

I also want to thank all those I have worked with at O’Reilly, particularly Louise Cor‐
rigan and Melissa Duffield, for their encouragement and belief in my proposal, writ‐
ing, and courses. I would also like to thank Corbin Collins for his sterling editing and
for pointing out how many commas I had missed. The production and illustration
team also deserve my thanks, including Katie Tozer and Kate Dullea, particularly for
working patiently with me on reproducing my diagrams for print.

My journey of working with O’Reilly started back in 2021, when I led a team to win
the autumn/fall 2021 Software Architecture Kata.1 I owe thanks to Neal Ford and
Mark Richards for that opportunity to practice my skills and show what I could do,
and particularly to Mark for his encouragement to go further. He said it would
change my career, and it did. Thank you, Mark, for your encouragement then and
your mentoring and friendship since.

Finally, I would like to thank my children, Matilda and Hugo, for their patience and
support while Mummy has been hidden away in her office writing some book that
they have no interest in at their age. Sorry for all the time Mummy had to “work.” We
can go and play now.

xx | Preface

https://oreil.ly/doiQ_

PART I

Visual Communication

Visual elements in software architecture and design communicate key information.
Your audience’s eyes are naturally drawn to these elements, which may be the only
thing they look at in any detail. Despite this, little guidance or training is available on
creating diagrams and visuals (except notation-specific courses, such as ArchiMate),
especially on how to effectively and successfully communicate your message to your
audience.

Visual literacy, the ability to understand and create visuals, is a skill architecture and
software training courses are missing. I wrote Part I to fill that knowledge gap. These
patterns and antipatterns guide you to create diagrams that serve your audience’s
needs and produce the outcomes you want. You will learn to strike a balance between
the need for information and for accessibility.

For any diagram or visual you create, Part I offers many patterns that you can apply
to successfully convey your message to your audience and get what you need in
return.

CHAPTER 1

Communication Essentials

This chapter provides the foundation that you will build upon with the other patterns
in Part I. When I refer to patterns and antipatterns, I mean the following:

Pattern
A reusable solution known to be effective when used to solve a specific or more
general problem, which may otherwise be known as techniques, practices, meth‐
ods, or rules.

Antipattern
A solution that is not recommended. It looks like it is the right way to solve a
problem when in reality its consequences outweigh any benefits.

I highly recommend making sure you are employing the patterns and antipatterns in
this chapter before building on them with all the others. Think of it the same way as
architecting a building: you need to get the foundation right before you can build the
walls, floors, and roof. Don’t start building on sand, or your construction will sink.
Get this groundwork right first.

Know Your Audience
The know your audience pattern is also known as understanding your customer. One
of the essential factors to keep in mind when creating and editing a diagram is who is
going to be viewing and reading it. Your diagram’s purpose is to communicate suc‐
cessfully with this audience. Knowing who they are and designing the diagram to
their needs are key to this purpose.

3

People who view your diagram could have the following roles:

• Developers (full-stack, frontend,
backend…)

• Architects (technical, solution,
security…)

• Business analysts

• Product owners
• Project managers
• Customers
• Support teams

Make a list of the roles that view your diagrams and then group the
roles based on the types of diagrams you create. You will likely find
that you have a different audience mix for different diagrams. Use
these lists with the questions near the end of this section.

The following diagrams have been created for different audiences, and the type of
diagram and notation have been chosen to suit the audience.

Figure 1-1 shows a Unified Modeling Language (UML) class diagram aimed at a tech‐
nical audience, including developers, architects, and database administrators. A prod‐
uct owner or project manager would be unlikely to need the information in this
diagram or be able to understand it without help.

Figure 1-1. UML class diagram, aimed at a technical audience

Figure 1-2 is a C4 context diagram. This is a versatile diagram, useful for both techni‐
cal and business audiences to get an overview of a system. This diagram is equally

4 | Chapter 1: Communication Essentials

readable and useful to roles such as product owner, project manager, architect, devel‐
oper, and business analyst.

Figure 1-2. C4 context diagram, useful to most audiences

The domain story shown in Figure 1-3 is aimed more at business roles, but also those
technical roles that are involved in translating business needs into technical solutions.
Domain stories are created to improve communication between business stakehold‐
ers and technical roles so that the solution meets the needs of the business and users.
Domain or subject matter experts (SMEs) would be involved in creating and verifying
a domain story, along with roles such as product owner (if not the SME), business
analyst, and architect.

Know Your Audience | 5

Figure 1-3. Domain story diagram, aimed at business roles and technical translator roles
such as architects and business analysts

After identifying your audience, ask yourself the following about them:

What do they want from you?
Consider your audience’s expectations and needs. Meeting their needs is key to
successful communication. Is your audience looking for specific information so
they can make a decision or report back to someone else? Keep your audience
happy by sending them away with the information and understanding they need
to do their jobs.

What do you want from them?
This question is often missed: what you need from your audience. Do you need
agreement or sign-off on your design decisions? Do you need them to make a
decision based on your diagrams? Make sure the audience understands what you
need from them and by when, and has all they need in order to meet your
expectations.

What is their technical understanding?
Your audience’s technical understanding will determine the type of diagram they
will benefit from. Consider how technical your project manager is. Does your
product owner want to know about the selected technology, or just about how
well the selection meets the requirements?

What level of detail do they need?
Whether the content is technical or not, you need to consider the appropriate
level of detail. Is this diagram for an architectural review board that will expect a

6 | Chapter 1: Communication Essentials

1 The level of detail in designs for development teams can be controversial, leading to clashes between develop‐
ment and those creating the designs.

2 A characteristic of the code that possibly indicates a deeper problem.

lot of detail? Does the development team need implementation details, or is
determining those details part of their job?1 Ask teams what they want, rather
than going by any written or unwritten guides the company gives you. If there
are rules that don’t meet the team’s needs, bring it up with the appropriate person.

Besides these questions, consider that members of your audience may not be native
speakers of the language you are using and may have a different cultural background
from you (see “Simple Language” on page 87).

Once you’ve identified your audience and their needs, you can begin your diagram.

Mixing Levels of Abstraction
Mixing levels of abstraction is a communication antipattern that has a counterpart in
the coding world. If you have ever coded, you will likely know mixing levels of abstrac‐
tion as a sin or a code smell.2 Although putting all the information someone could
need into one diagram might seem appropriate, this leads to clutter and confusion
from the audience’s perspective.

Levels of abstraction refers to the granularity or generality of the
information you present in a diagram. Abstraction levels range
from high-level views showing the major components of a system
and their relationships to one another down to low-level diagrams
detailing the code’s structure.
Using different levels of abstraction across multiple diagrams
allows you to communicate appropriately for the audience, while
still ensuring that all relevant information is captured.

All software is an abstraction, but in essence, levels of abstraction let you hide low-
level details from high-level concepts. Developers do not write software using ones
and zeros (binary or machine code); they develop by writing in higher-level lan‐
guages that abstract away the complexities of machine code and all the levels between
(interpreters, compilers, and so forth).

Take a look at Figure 1-4. If you think of the process of going to work as one level of
abstraction, the next level could contain the concepts of getting up, having a shower,
getting dressed, having breakfast, leaving the house, and so on. The next level for get‐
ting up would contain pushing back the covers, sitting up, and standing up. There
you have three levels of abstraction (going to work, getting up, pushing back the

Mixing Levels of Abstraction | 7

3 C4 also has some supplementary diagrams such as a deployment diagram.

covers), but in software terms, these should all be separate (such as in different meth‐
ods or classes) to avoid confusion and unneeded complexity, and to aid readability.

Figure 1-4. Levels of abstraction in everyday life

Using levels of abstraction applies to software architecture and diagrams in the same
way. In code, you apply this principle to methods, classes, layers in a layered applica‐
tion (such as a presentation layer, the business logic, a persistence layer, and the data
store), and more. In diagrams and software architecture, you apply this principle to
the content of diagrams and to the structure of services, microservices, and so forth.

The C4 model is a hierarchy of abstractions. It uses an abstraction first approach (pri‐
oritizing abstraction and building everything else around it). Its four abstraction lay‐
ers define its core diagrams:3

1. The system context shows an overview of the system and how it fits into its envi‐
ronment, including interactions between the system and other entities.

2. The container level zooms in on the software system in scope, showing the high-
level components or building blocks and how they interact with each other and
external entities.

3. The component level zooms in further on an individual container from the previ‐
ous level. It shows the components inside the container and their interactions
with each other and with external entities.

4. The code level zooms in still further on a component from the previous level. It
shows how the component is implemented. (This level is often more detail than
is necessary in your documentation).

You can think of these four levels as maps that you can zoom in on to reveal increas‐
ing levels of detail. The C4 abstraction layers can illustrate the need for varying levels
of detail.

8 | Chapter 1: Communication Essentials

https://c4model.com

Figure 1-5 isn’t a context diagram and it isn’t a container diagram. It is a mix of two
levels of abstraction. If you look at the diagram closely, it doesn’t make sense. The sys‐
tem in focus (Polyglot Media’s software system) seems to have been partially divided
into containers, and the relationship between the software system and containers
doesn’t make sense. The software system and the containers belong in different con‐
ceptual levels. In reality, containers within the software system will be interacting
with the containers shown.

Figure 1-5. C4 diagram showing both context and container levels of abstraction
(antipattern)

Figure 1-6 shows how the context diagram for Figure 1-5 should look. This is where
the software system in focus (Polyglot Media) belongs, with its related external sys‐
tems and actors.

Mixing Levels of Abstraction | 9

Figure 1-6. C4 context diagram

Figure 1-7 shows how the container abstraction layer information in Figure 1-5
should be shown in a C4 container diagram. The system in focus (Polyglot Media) is
shown as a dashed box with the containers inside it.

C4 models, based around a hierarchy of abstractions, are an excellent way to illustrate
the need to keep levels of abstraction separate in diagrams. This separation rule
applies to all types of diagrams. Apply it to your sequence diagrams, data flow dia‐
grams, diagrams with no formal notation, and all the other types of diagrams you use.
All your diagrams should follow this rule; it is essential for communication.

Once you have split up any mixed diagrams so that each has only one level of abstrac‐
tion, read on to find out how to make them easily navigable.

10 | Chapter 1: Communication Essentials

Figure 1-7. C4 container diagram

Representational Consistency
Using the representational consistency pattern is the next step after checking levels of
abstraction: linking discrete diagrams together so that your audience can navigate
between them easily and see how they fit together. Understanding how your diagrams
relate to one another should be easy for your audience. You risk unsuccessful com‐
munication if your audience has to think too much, or remember a key or pivotal

Representational Consistency | 11

detail, to understand relationships between diagrams (each an individual level of
abstraction).

Many notations, such as C4 and data flow diagrams, have formal and explicit ways of
communicating representational consistency. As noted previously, C4 diagrams also
have explicit levels of abstraction (context, container, component, and code). Take a
look at Figure 1-8, which shows the system in scope (Polyglot Media) in the center of
the diagram. This context level is the highest in C4 diagrams.

Figure 1-8. C4 context diagram

The next level down is a C4 container diagram (Figure 1-9). The method of connect‐
ing these diagrams is a dashed box in Figure 1-9, which is labeled (in the bottom left)
the same as the central box (Polyglot Media) in Figure 1-8. This allows the audience
to see the connection between these two diagrams, whichever one they see first.

12 | Chapter 1: Communication Essentials

Figure 1-9. C4 container diagram for Polyglot Media (showing the high-level interactions
within the Polyglot Media system)

Representational Consistency | 13

In a data flow diagram, you use numbers and letters to indicate the identity of its ele‐
ments, and then you can use those same numbers and letters to guide your audience
through different levels (shown in different diagrams). For example, in Figure 1-10
the processes are numbered 1 through 3 to indicate the order in which they occur,
and if those processes are further divided in another diagram, they can be identified
by that number.

Figure 1-10. Level 1 data flow diagram

In Figure 1-11, process 2 from Figure 1-10 is divided into three subprocesses. You can
tell this because they are numbered 2.1 through 2.3. The processes are again ordered,
but relative to the higher-level diagram in Figure 1-10.

Figure 1-11. Level 2 data flow diagram

14 | Chapter 1: Communication Essentials

4 Notice that the data store identities (A, B, and so on) are ordered in the same sequence as the data stores are
accessed in the flow of the diagram.

5 Cognitive load is the amount of effort a person has to exert to reason or think about something.

If you compare the data stores in Figures 1-10 and 1-11, you will notice that the data
stores labeled A and B in Figure 1-10 also appear in Figure 1-11 with the same
identities.4

If the notation you’re using doesn’t provide a formal way of connecting diagrams, you
will need to make the connection explicit yourself. For example, Figure 1-12 shows
another way to connect process 2 (Fetch media) in Figure 1-10 and its subprocesses
2.1 through 2.3 in Figure 1-11 using a similar method to the one employed by C4 dia‐
grams (shown previously in Figure 1-9). You could use a similar technique in many
types of diagrams.

Figure 1-12. Level 2 data flow diagram with explicit representational consistency

When including diagrams in documentation, refer to them in the
text of that documentation. Use hyperlinks if possible, and label
your diagrams (for example, “Figure 1: System X context diagram”)
and then reference that label explicitly.

Make representational consistency explicit in your diagrams and documentation to
reduce your audience’s cognitive load.5

Representational Consistency | 15

Summary
This chapter covered the essentials of visual communication, giving you a foundation
on which to build with the remaining patterns and antipatterns in Part I. As you con‐
tinue through the book, think about how you could apply these essentials along with
the other patterns and antipatterns explored.

Having thought about what your audience needs from your diagram, it is time to
consider the amount of information that you are presenting in it. Keeping this to the
bare minimum needed to communicate your message will improve your audience’s
understanding.

16 | Chapter 1: Communication Essentials

CHAPTER 2

Clarify the Clutter

Your chances of communicating successfully are drastically reduced if an audience
has to work hard to understand your message. This chapter explores the patterns and
antipatterns that will help you reduce your audience’s cognitive load. You will identify
and eliminate elements of your diagram that obscure your message, and split that
message across multiple diagrams where needed.

Color Overload
When talking about the color overload antipattern, I often refer to it as an explosion of
unicorns. In most cases, the colors used in diagrams are not given much, if any,
thought at all. When too many colors are used, the audience may have difficulty
matching them to their meaning without a lot of mental effort (even if a legend is
included). Even worse, colors that are used without any meaning at all cause the audi‐
ence to waste mental energy deciphering a detail that’s irrelevant to your intended
message.

This antipattern usually occurs because the diagram’s author had no motivation to
consider color or no idea that color is important in visual communication. The
author might use default colors or randomly selected colors in a diagramming appli‐
cation because that is quicker than taking the time to think about color selection or
because that individual or business has always used those colors.

17

Failing to consider color in a visual presentation is an example of
being “penny-wise but pound-foolish.” You may save time creating
the diagram but will spend more time (and therefore money) later
by having to explain to audiences, redo the diagram, or even clear
up a mess resulting from miscommunication. Just as fixing bugs in
code early saves money and time in the long run, so does getting
communication right early.

This antipattern applies not just to diagrams but to all visuals, except those purely in
black-and-white (that is black-and-white only, and not grayscale). But don’t think the
answer is to create all visuals in black-and-white. The way to combat this antipattern
is to consider color and use it to communicate.

If you’re reading this book in print, all the images are in grayscale.
Where color is important, the image caption includes a link to the
book’s website, which contains all color versions.

In Figure 2-1, an overpowering array of bright colors shows that each component in
the diagram is different, but without any consideration for communicating any fur‐
ther details. Think about how you would fix this before reading on.

Figure 2-1. Rainbow sequence diagram (https://communicationpatternsbook.com)

To fix Figure 2-1, you must minimize the color palette, using only the number of col‐
ors needed to convey your message. You don’t need a different color for every compo‐
nent. When selecting colors, consider which colors go well together (that is, they

18 | Chapter 2: Clarify the Clutter

https://communicationpatternsbook.com
https://communicationpatternsbook.com

don’t clash) as well as the luminosity of the colors; too many bright colors may over‐
whelm your audience.

Next you need to consider what you are trying to communicate to your audience via
these selected colors. You can use them to communicate aspects of the components
like function or type by using the same color for each category. For example,
Figure 2-2 uses four colors to differentiate the UI, data store, APIs, and service, and a
key communicates the meaning of the colors.

Figure 2-2. Colors used to group by type (https://communicationpatternsbook.com)

Grouping colors by type isn’t the only option for improving Figure 2-1, but it imple‐
ments the fixes just mentioned to minimize distraction from the message of the dia‐
gram. Avoiding distractions from your message is key to successful communication.

Boxes in Boxes in Boxes
Boxes are often used to communicate where a component in the diagram is situated
(conceptually, logically, physically…) as well as to group components. When you have
too many boxes, their many lines become visually confusing, meaning the audience
must spend precious attention and brainpower working out which line belongs to
which box. You need a lot of whitespace to make a diagram with many boxes legible,
leaving less space for what you actually want to communicate.

The boxes in boxes in boxes antipattern emerges as the diagram author uses the same
form of delineation to represent different meanings in a diagram. Maybe the author is

Boxes in Boxes in Boxes | 19

https://communicationpatternsbook.com

unaware of other ways of expressing meaning or ends up trapped in the this is the way
it has always been done way of thinking.

Whitespace is just as important as the content of your diagram. It
gives the eye a place to rest, reducing cognitive load, as well as
making the diagram easier to scan and more legible.

Whatever the reason, this antipattern disrupts communication and usually wastes
time or money. Your audience will not appreciate having to expend effort on deci‐
phering your diagram and will either not expend this effort or do so but still not
receive the message you are trying to communicate.

Many types of diagrams can fall prey to this antipattern, but structural diagrams that
convey situation or location (for example, logical location) are the most common vic‐
tims. Data flow or sequence diagrams can end up with lines and boxes too close
together, and the fixes discussed in this section will still apply.

Keep your background color subtle compared to the colors used
for borders and text. You must create high contrast between ele‐
ments in your diagram and the background so that your audience
can clearly differentiate everything in the diagram.

Figure 2-3 is a cloud resources diagram that uses dashed-line boxes to indicate vari‐
ous logical constructs like virtual network boundaries, storage accounts, and policy
application. The difference in line type (dashed versus solid) between boxes and rela‐
tionships is good, but a lot more can be done to make this diagram more readable.
How could you improve Figure 2-3?

20 | Chapter 2: Clarify the Clutter

1 Boxes hark back to the Windows 3.1 era when they are used by themselves. Far fewer colors could be dis‐
played on a screen.

Figure 2-3. Boxes in boxes in boxes cloud resources diagram (antipattern)

When you create diagrams, consider alternatives to boxes.1 Labels on components are
a good alternative. If you do use boxes, differentiate between them by using color and
pattern of both the box outline and background. Removing unnecessary detail and
splitting the diagram into multiple diagrams are also good techniques.

Figure 2-4 shows one example of how the diagram in Figure 2-3 can be improved:

• Some boxes have been replaced with labels or notes, reducing the number of
meanings boxes are used to communicate.

• Other boxes have been merged because their separation was not required to con‐
vey the message.

• Those boxes that remain have been differentiated using color and pattern (solid
line and a shaded background).

Boxes in Boxes in Boxes | 21

2 Most diagramming applications will remember your updated default settings, so you should need to set your
defaults only once.

Figure 2-4. Decluttered cloud resources diagram

Remember that boxes are just one way to communicate meaning in a diagram, and
the nesting of boxes is often visually confusing. Whitespace is your friend, along with
the other strategies discussed in this antipattern.

Relationship Spiderweb
Connections (or relationships) in diagrams are typically shown as lines, but the way
those lines are styled and arranged determines whether the relationships are clear.

When relationships cross over each other or even cross over other components in the
diagram, you end up with a spiderweb of confusion. It is not clear whether this cross‐
ing has meaning. If relationships are labeled, it is not clear which line the label applies
to as there are so many lines and labels close together. A spider would feel at home
and catch a good dinner if it lived in a diagram suffering from this antipattern.

The relationship spiderweb antipattern often occurs when not much thought, if any,
has been given to the layout of the components in a diagram or their relationships.
Some diagramming applications provide unhelpful defaults, such as arrows with
unclear line crossings. However, as the saying goes, “It’s a bad craftsperson who
blames their tools.” Change those defaults or change the tools you use.2

22 | Chapter 2: Clarify the Clutter

Any diagram that shows relationships can suffer from this antipattern, but structural
diagrams are more prone to it than behavioral ones. Even C4 diagrams, which pro‐
mote many good practices in creating diagrams, can fall foul of the relationship spi‐
derweb antipattern.

In Figure 2-5, relationships cross each other and even over containers, adding to the
audience’s mental load. To add further burden, it is not clear to which relationship
some of the labels apply.

Figure 2-6 shows an example of how Figure 2-5 can be improved. The arrows (rela‐
tionships) have been made orthogonal (using right angles) instead of straight. This
allows the diagram’s author to manipulate the relationship much more easily to
ensure higher clarity. It is now obvious to the audience which label applies to each
relationship. If required for further clarity, you can use pattern or color to distinguish
between different types of relationships.

The position of labels indicating relationships should be standard‐
ized in a diagram—for example, close to the beginning of the rela‐
tionship or in the middle of the line. Make exceptions to this rule
when moving the label would clarify the relationship or label, such
as away from a right angle or farther away from another label.

None of the components in Figure 2-5 had to be removed when creating Figure 2-6,
but if components such as a logging service were present, they could be moved into a
separate diagram so that its relationships would be clear in that separate diagram.

When two lines cross in a diagram, it is ambiguous whether they are right angled or
straight. Make it clear that they do not intersect by using a line jump (typically an arc
that jumps the line it crosses). No line jumps are required in Figure 2-6, but
Figure 15-2 has one.

Remember that diagrams are free; you should use as many as you
need to successfully communicate your message to the audience.
Multiple diagrams, each with a single purpose, are much more
effective than one diagram with multiple purposes (as discussed in
“Mixing Levels of Abstraction” on page 7).

Relationship Spiderweb | 23

Figure 2-5. Spiderweb C4 container diagram for Polyglot Media (antipattern)

24 | Chapter 2: Clarify the Clutter

Figure 2-6. Untangled C4 diagram

Relationship Spiderweb | 25

Balance Text
Having too much information in a diagram obfuscates the intended message but
sometimes you really need to add extra information to completely convey the mes‐
sage. In that case, you can apply the balance text pattern. You are balancing having
enough information for the audience to understand the message against having so
much clutter that the message is lost or only partially understood.

Information that isn’t best displayed in a diagram should be moved
to text or tabular form alongside the diagram. Information written
as sentences is a good candidate to abridge or remove from a dia‐
gram into separate text. Relational data is a good candidate to be
displayed in table form.

Some notations and types of diagrams, such as flow diagrams, have built-in ways of
adding more information—a standard format to add extra text without becoming vis‐
ually confusing. For other diagrams, notes or footnotes can add more information
without cluttering the main content.

If you do use notes, be wary of separating them entirely (for exam‐
ple, as text alongside the diagram), because if the notes get lost or
the diagram is viewed without them, the diagram could be misun‐
derstood.

The flow diagram in Figure 2-7 has too much text. The word customer, which has
been introduced through the subtitle, is repeated unnecessarily in the diagram boxes.
Note that some of the text doesn’t even fit within the flowchart components.

In general, it is better to follow an existing convention for adding
extra information to a diagram, such as the annotation shown in
Figure 2-8 (rather than separate notes). Using a common or
expected approach will aid the audience’s understanding, although
exceptions will exist.

26 | Chapter 2: Clarify the Clutter

Figure 2-7. Flow diagram with too much text (antipattern)

Look to Figure 2-8 for an example of how to apply this pattern and two ways to
include extra text in the diagram (one method is usually enough, but two are illustra‐
ted here). Excess text, like the repetition of customer, has been completely removed or
shortened. Information that is required has been placed into a flowchart annotation
(explaining “Select consumer mode”) and into four numbered notes (with superscript
references in the diagram), making the main flow much clearer.

Balance Text | 27

Figure 2-8. Flow diagram with excess text removed or moved to annotations and
references

Besides removing the repeated word customer, the text has been changed from full
sentences to short phrases. The subject, customer, can be inferred from the title and
context. You are not repeating information that can be deduced from the structure of
the diagram itself.

Deciding how to display information stripped from the main diagram will depend on
the type of diagram, your message, and the format of the delivery (presentation, doc‐
umentation, or other forms).

28 | Chapter 2: Clarify the Clutter

You may be tempted to move all excess information into notes or footnotes, but this
just moves the problem rather than solving it. The audience will still suffer from hav‐
ing to wade through excess information. Make sure to remove any information that is
not required to convey your message. Move it to another diagram if needed.

Summary
Your diagrams should now be free of clutter and have a single purpose. Look out for
scope-creep (where the scope of your diagram grows and grows), which will likely
make your diagram multipurpose and allow clutter to creep back in. Don’t be afraid
to split a diagram into multiple diagrams to clarify your message.

Your next stop on this diagramming journey is accessibility. In the following chapter,
you will see how default or common practices can make it much harder for some of
your audience to understand your visuals. You will find that what you have learned
about decluttering your diagrams has begun the process of making them more
accessible.

Summary | 29

CHAPTER 3

Accessibility

When most people hear the word accessibility in the world of software, they immedi‐
ately think of screen readers (for those who are blind or have reduced vision), but
they don’t think much further than this. Accessibility in the technology arena encom‐
passes much more.

When you create a diagram, you should consider whether your audience can fully
access it. If a stakeholder doesn’t fully understand your message, you both lose out.

Accessibility isn’t just for those with temporary or permanent disabilities or special
needs. Your diagrams and visuals need to be accessible to people with different levels
of knowledge, business functions, and familiarity with your product or domain. Your
audience’s environment also affects the level to which they can access your diagram,
including the screen size they are using and amount of time they have to consume
your information.

This chapter will help you consider accessibility beyond screen readers and produce
diagrams that can be accessed by a much wider audience.

Anyone can be disabled. It is their environment that disables them.
Your aim is to put everyone on an equal footing.

Relying on Color to Communicate
You are relying on color to communicate when you use color alone to represent mean‐
ing, such as different colored boxes to represent new or changed items in a diagram.
The most obvious and common form of the relying on color to communicate antipat‐
tern is to use color to represent positive and negative without providing any other

31

1 A diff is a visual of the differences between an original and an updated file or list of files.
2 Photophobia is light intolerance. Keratoconus is a disorder of the cornea. Glaucoma is damage caused to the

optical nerve, usually due to a buildup of fluid.

indication of meaning (such as a legend) for those who can’t distinguish the colors.
For example, green is used to show good or go, and red for bad or stop. A traffic light
at least uses position as an indicator of color meaning, but red and green are often
used in diagrams without even this sort of cue.

Having said that, there has been a movement away from using just the colors red and
green. For example, a diff in GitHub’s UI shows additions in green with plus signs, and
deletions in red with minus signs.1 That hasn’t happened for other colors, though, and
this is affecting the accessibility of diagrams and other visuals.

EventStorming (a collaborative modeling technique) uses colored
sticky notes to represent different elements. The notes also have
different shapes to ensure that everyone can see the difference
between any two elements.

You cannot rely on color to be perceived the same way by everyone for several rea‐
sons. Of the total population, 4.5% have some form of color blindness (color vision
deficiency). It is more prevalent in men (affecting 1 in 12 men) than women (1 in
200). So, sadly, as the tech industry is still dominated by men, more than 4.5% of your
audience likely cannot perceive the difference between two or more colors in your
visual.

Along with color vision deficiency, some people struggle to perceive low contrast—
for example, those who are partially sighted. Other conditions that might affect how
well your audience can view your diagram and its colors include photophobia, kera‐
toconus, and glaucoma.2 In addition to color, you need to consider contrast to make
your diagrams accessible.

Contrast
All of your audience needs to be able to easily perceive the content of your diagram,
and this doesn’t just include text. Arrows, icons, and patterns also need to have ade‐
quate contrast.

You can calculate a contrast ratio, the perceived difference in luminance between a
foreground and background color; for example, pure red (hex value #FF0000) on a
white background has a contrast ratio of 4:1. The ratio remains the same even if the
foreground and background colors are swapped. The ratio required changes
depending on the size of the text, icon, pattern, and so on (smaller requires a higher

32 | Chapter 3: Accessibility

ratio). WhoCanUse is one tool you can use to check the contrast ratio between two
colors.

The Web Content Accessibility Guidelines (WCAG) provide best practices and require‐
ments, along with success criteria, for making digital content accessible to people with
disabilities. For more information see the WCAG website, and WebAIM specifically
for contrast.

Another factor that affects the perception of colors in a diagram is format. The moni‐
tor or projector your audience is using may be calibrated very differently from the
monitor the diagram was prepared on. Similar colors may end up fairly indistin‐
guishable or unidentifiable. If a green color looks yellow to the audience, but you
refer to a “green” component, for example, the audience will be confused.

When using diagrams in multiple mediums—for example, a
wiki/web page or a presentation using a projector—you should
consider using different color palettes. This is especially true if the
background color will be different across mediums (for example,
white in a web page and black in a slide deck). Consider how the
audience will perceive the colors and how the background color
will change the contrast ratio of elements and labels.

Diagrams or visuals may be viewed in printed form, such as in a document (paper,
pamphlet, and so on) or a book, and could be printed in grayscale (a book is likely to
be printed in grayscale). All the colors are lost in grayscale, and only the saturation
(lightness/darkness) remains. In this case, all the colors in a diagram could appear to
be the same shade of gray.

If colors are indistinguishable, any meaning ascribed to them is lost. A legend is
meaningless if the audience cannot tell one color from another. When presenting a
diagram and referring to a component by color, part of your audience is likely to be
unable to tell which component you are referring to, whether the diagram is in color
or grayscale. Don’t think because it looks good to you that your message will be suc‐
cessfully communicated to the audience.

You have several options for avoiding the relying on color to communicate antipattern
and giving audiences a cue besides color. One method is to use patterns. By using a
suitably contrasting pattern, like the one shown in Figure 3-1, colors that may look
similar in grayscale or to someone with color vision deficiency can still be differenti‐
ated easily. This is a valuable technique when you can’t vary the color palette in your
diagram.

Relying on Color to Communicate | 33

https://www.whocanuse.com
https://wcag.com
https://oreil.ly/9agAc

Figure 3-1. Even in grayscale, pattern can differentiate two colors

Don’t refer to components of a diagram, either in speech or text, using only color as a
reference, such as “The red boxes in the diagram show…” This is the sort of situation
that can be solved by using patterns: “The red boxes with dashed borders show…”

Symbols are another useful tool for distinguishing between components or colors.
You can use symbols on their own or with color to clarify your message; for example,
when using red, yellow, and green for status, you could add a + (plus) to the green
and a – (minus) to the red.

Consider what colors and symbols mean, especially in cultural
terms, before using them in your diagram. Ensure that they com‐
municate your intended message and do not cause confusion or
offense.

You can also create an accessible color palette. The easiest way to check whether a
color palette is accessible is to use a tool. Many free options exist; you can install
some as an extension in your internet browser, which is particularly useful for check‐
ing website palettes.

Design Tools for Color Vision Deficiency
Here are some tools I recommended to help you create an accessible color palette:

• Color Oracle is a free application for Windows, Mac, and Linux that can simulate
four types of color vision deficiency (including grayscale/monochromacy).

34 | Chapter 3: Accessibility

https://colororacle.org

• Coblis is a free online tool that allows you to upload an image and simulate eight
types of color vision deficiency.

• Sim Daltonism is a better option than Color Oracle if you have a Mac or iPhone
because it simulates eight forms of color blindness and on Mac has a draggable
and resizable window.

• Chromatic Vision Simulator is a free application for Android and iOS, and also
has a web version. It simulates up to three types of color blindness live from a
phone camera or by using a saved photo or image.

• Viz Palette is a free tool for selecting color palettes for data and other visualiza‐
tions. It produces a color report to highlight colors which could be confused and
is optimized for copying and pasting in and out of JavaScript.

Figure 3-2 shows some of the standard colors from draw.io, a free diagramming and
drawing application. For those reading this book in print, the elements in Figure 3-2
look like the same shade in grayscale. For those reading a digital version, the colors
are all pastel tones, which are the same or similar luminosity. This indicates that the
color palette is not accessible. Draw.io offers several palettes, and you can select your
own colors. Assuming that a default palette is accessible could lead you to exclude
some of your audience.

Figure 3-2. Flow diagram showing some of the standard colors from draw.io (https://
communicationpatternsbook.com)

Figure 3-3 is a simulation of Figure 3-2 for a person with deuteranopia, a type of
color blindness preventing the perception of green. Although the original diagram
has four colors, the simulation shown in Figure 3-3 appears to have only three (at

Relying on Color to Communicate | 35

https://oreil.ly/SFkO2
https://oreil.ly/3l4Iy
https://oreil.ly/UCeqZ
https://oreil.ly/j_H8U
https://drawio.com
https://communicationpatternsbook.com
https://communicationpatternsbook.com

least without looking closely). There is hardly any difference between the color of
Customer UI and Customer API in Figure 3-3.

Figure 3-3. Deuteranopia (green-blind) simulation of Figure 3-2 (https://communication
patternsbook.com)

When considering a color palette, in addition to checking it with a simulator tool,
look to include colors with different levels of saturation. Contrast between colors will
improve differentiation for someone who requires high contrast or is color blind.

Don’t trust that a diagramming application’s palette or a corporate color scheme has
been checked for compatibility with grayscale or color blindness. It would be nice to
think that designers and companies (especially larger ones with bigger budgets) have
considered accessibility when it comes to the colors they choose for an official palette
or the default colors in an app, but you cannot count on this. Test your corporate
color palette, or the default colors of the diagramming application you use most
often, using a color blindness simulator. Make sure you give feedback on what you
discover, whether good or bad!

Alternate text (alt text) offers a text description of an image or dia‐
gram. Especially for public content (for example, documentation
for users), you should consider carefully crafting alt text for any
diagrams or other visuals.

Ask for feedback on your diagrams, especially from those with color blindness or a
disability, and incorporate this feedback into the diagram and your other future
visuals.

36 | Chapter 3: Accessibility

https://communicationpatternsbook.com
https://communicationpatternsbook.com

Include a Legend
Including a legend, or a key, with your diagram is a valuable technique to aid success‐
ful communication. Not including one assumes that the audience has specific knowl‐
edge, be that a full understanding of the notation, knowledge of all the terms and
acronyms in a diagram, or knowledge of all the symbols and icons contained in the
diagram. Don’t rely on your audience to have this knowledge unless you wish to risk
how well your diagram communicates its message.

It’s a balancing act: we all know that you cannot please everyone all of the time. But
you can put guides in for those who need them without getting in the way of those
who don’t. Getting this balance right results in successful communication. Consider
ramps and steps as a metaphor for a legend (see Figure 3-4). People who need the
ramp are enabled to get to where they need to go, while those who don’t need it can
choose to take the steps.

Figure 3-4. Ramps for those who need or want to use them, and steps for anyone who
wants to take them

Include a Legend | 37

You don’t always need a legend and, sometimes, including one can mean you fall foul
of clutter antipatterns. The intention of the legend is to clarify, not obscure, the mes‐
sage of the diagram. To fight clutter, where a legend is required, you can link to it and
therefore save all the space it would have taken up. For example, on a web page, your
legend could have a hide or show option (see Figure 3-5). But make sure the link is
explicit and obvious. You could also include a legend for one or more diagrams at the
top of a page.

Look out for cases where it would be simpler to use labels instead
of a legend. For many charts and graphs, reading a label for a col‐
umn or line is much easier than referencing a legend.

Figure 3-5. Including a link to a legend in a web page or document

A legend such as the one in Figure 3-6 can be particularly useful to an audience faced
with a UML diagram because many people do not know the UML notation or cannot
remember all its eccentricities. If a full legend like this takes up too much space, you
could include a partial legend, containing just the parts relevant to the diagram it is
explaining, or include a link to the legend, as previously mentioned (See Figure 3-5).

Be explicit, not implicit. Most diagrams will benefit from a legend.
If you aren’t including one, have a good reason not to (for example,
for a very simple diagram or chart, labels are a better choice).

38 | Chapter 3: Accessibility

3 And that is not the primary aim of code, although good code does communicate.

Figure 3-6. A UML legend showing the eccentricities of UML

Appropriate Labels
When creating a diagram, remember that what is written is as important as what is
not written. It is easy to include too much or too little information, or the wrong
information entirely. The appropriate labels pattern is about making sure text and
labels clearly communicate your message.

Besides the content of the text, you should consider its placement. Ensure that your
labels are close to the component or relationship you are labeling, and balance the
components and text with whitespace. The text should make the message of the dia‐
gram explicit through clarity of content and placement.

Interestingly, coders often put emphasis on writing code with thoughtful naming and
structuring so that it does not require comments (explanatory text that is not part of
the program). With diagrams, the emphasis is more on making the message explicit
via composition (arrangement), the chosen components, and the carefully crafted
labels and other text. You often need to include explanation (like comments in code)
to fully convey a message in a diagram because its primary aim is to communicate.3

Appropriate Labels | 39

The art of creating a diagram involves balancing the competing fac‐
tors of all the information you need to communicate and the clarity
you need to communicate successfully.

Figure 3-7 shows a C4 context diagram with not enough labels or descriptive text.
This gives you some idea of how your audience may feel when they see a diagram that
doesn’t give them enough information to understand the meaning. This context dia‐
gram doesn’t give enough context!

Figure 3-7. A C4 context diagram with few labels or text, providing little context
(antipattern)

Figure 3-8 adds descriptive text to the diagram’s components and descriptive labels to
their relationships. The diagram now successfully conveys the context of the illustra‐
ted system, without muddling the message with too much information or badly
placed labels.

40 | Chapter 3: Accessibility

Figure 3-8. A C4 context diagram with an appropriate level of information in labels and
descriptions

With any diagram, it is important to clearly describe what each component (system,
person, and so forth) is or does, but also the relationships between them. How you do
this, and to what level of detail, will depend on your audience and the overall goal of
your diagram.

Take care to make your text legible to the widest audience possible
when selecting a font in your diagrams. Aim for no smaller than 12
pt. Atkinson Hyperlegible is a free font the Braille Institute of
America designed to be legible for low vision readers.

A diagram with insufficient text, too much text, or misplaced text and labels will leave
your audience struggling to understand. Do not make your audience work to under‐
stand your diagram.

Appropriate Labels | 41

https://oreil.ly/2n9se

Summary
I did say it wasn’t all about screen readers! You have a lot to consider when it comes
to accessibility and won’t always get it right, but every little thing you do to make
your diagrams more accessible makes a bigger difference than you think. Coping
with inaccessibility is incredibly draining, especially for those who have to do so con‐
tinually on a daily basis. Reducing this burden and making people who have disabili‐
ties and other conditions feel seen offers a huge uplift.

The next chapter takes you on a journey and shows you how narrative can improve
accessible diagrams even further.

42 | Chapter 3: Accessibility

CHAPTER 4

Narrative

After nourishment, shelter, and companionship, stories are the thing we need most in the
world.

—Philip Pullman

The term narrative may remind you of an English literature class, but stories serve as
a means for so much more, including social bonding, problem-solving, and entertain‐
ment among others. As humans, we thrive on stories.

The other chapters in this part are more about what to show your audience to com‐
municate successfully; this one is more about the how. This chapter will help you tell
your audience a story to get your message across.

The Big Picture Comes First
When you look at the cover of a box of LEGOs you don’t see a picture of each individual
brick that’s inside. Instead, you see the picture of an exciting, fully assembled model…posi‐
tioned in a life-like pirate’s bay with cliffs and sharks.

—Gregor Hohpe, The Software Architect Elevator

Diagrams do not exist in isolation; they are part of a narrative, and the big picture
comes first pattern helps order that narrative. Most diagrams are not the beginning of
the story, and many are very much down in the nitty-gritty details of design.

Even if your audience is interested in the fine details, that is not what you should
show them first. They need the context and to be engaged and hooked into your nar‐
rative. Fine details are boring and confusing when you don’t know the big picture.
The levels of abstraction discussed in “Mixing Levels of Abstraction” on page 7 need
to be ordered to make sense. When you’ve been delving deep into the details of a

43

project, it’s easy to forget that you should first give your audience context and explain
the big why.

Imagine creating a presentation or document about a customer viewing media in an
online system. Would you start with Figure 4-1 or 4-2?

Figure 4-1. Data flow diagram—level 2

Figure 4-2. Data flow diagram—level 1

Figure 4-1 shows the detailed process of viewing the media. That is where you want
to get to eventually, but it is not where the document or presentation should start.

44 | Chapter 4: Narrative

1 See Figures 1-10, 1-11, and 1-12 in “Mixing Levels of Abstraction” on page 7 for more on levels of abstraction
such as these.

Before going to a level 2 data flow diagram, you need to give context and show the
level 1 data flow diagram, such as Figure 4-2.1

Data Flow Diagrams
A level 1 data flow diagram is actually the second level of data flow diagrams, after
level 0, which is a very high level of an entire system, possibly showing flows to and
from external systems (a similar view to a C4 context diagram). Level 1 then shows a
more detailed view of the system, breaking down significant processes. Level 2 pro‐
vides an even more detailed view, and level 3 is the most detailed level for data flow
diagrams.

At levels 2 and 3, you should have one diagram per process (from the preceding
level); otherwise, your one diagram will end up too large and complex to be useful.
Depending on your system’s size and complexity, you may not need to use all four lev‐
els, but for a large or complex system, you should consider creating multiple diagrams
per level, even at level 1.

Starting with level 1 is a move in the right direction but still doesn’t provide context.
A high-level architecture or context diagram, such as the one in Figure 4-3, is where
to start. You should also include other supporting materials such as business context
and benefits (or at least a summary and links to the full versions in the document or
presentation appendix).

You may not need to spend much time on the context and buildup
to the main subject or diagram you need to discuss. The amount of
time and detail will depend on your audience and what they
already know.

You can then move on in the narrative to a diagram such as a C4 container diagram,
if needed, to explain the next conceptual link to the audience, before moving on to
the data flow diagrams. You are leading them through a story via the diagrams, with
each level adding more understanding.

When you don’t give any context, you lose your audience and are unlikely to get your
desired response. Your diagrams and supporting materials (such as requirements,
business context, and business benefits) need to be ordered in such a way as to create
a narrative, starting with the big picture (like Gregor’s LEGO pirate bay with sharks).

The Big Picture Comes First | 45

Put all your diagrams into a narrative order. Are there any holes in
your narrative? Fill in those holes before you fall into them in front
of others.

Figure 4-3. C4 context diagram

46 | Chapter 4: Narrative

Match Diagram Flow to Expectations
The match diagram flow to expectations pattern enables you to create a diagram that is
easy for your audience to read from start to finish. Many people create diagrams
without thinking about how the audience will read them. All diagrams have a flow of
information, whether they communicate structure or behavior, that you want to
match as closely as possible to the audience’s expectations. While other patterns have
covered what to include or exclude from a diagram, this pattern is about using those
components to order a story in a way that makes sense to your audience.

When you pick up a book, you expect the text to start in the top left and finish in the
bottom right (or top right to bottom left if you are reading a right to left language). So
why would this not be so with a diagram? Successful communication breaks down as
many barriers as possible between you and your audience.

The flow isn’t quite as simple with a diagram as with a book, but having a focus or the
start of your diagram in or near the top left, or middle left, makes a lot more sense
than starting somewhere else on the canvas for those using languages written from
left to right. Follow this with a general flow top to bottom and left to right to aid your
audience in consuming the diagram’s message.

To avoid confusion, especially in a diagram that you cannot edit
and rearrange, you can add a label or symbol to show where the
audience should start reading. Start here, or a symbol such as an
arrow, pointing finger, or Play button are all options. You can also
use numbered labels to draw the audience through the diagram in
the correct order.

Figure 4-4 illustrates how a data flow diagram could end up if you don’t consider how
the audience will read it. Where should they start? The top left is the natural place,
but the start is actually closer to the bottom right at the Customer box. The flow is
then right to left and bottom to top, going against the audience’s expectation.

Like a story, your diagram should have a beginning (where the
audience should start to read), a middle (the rest of the content in
an appropriate order), and an end (the conclusions you want the
audience to draw).

Match Diagram Flow to Expectations | 47

Figure 4-4. Data flow diagram with no consideration of how the audience will read it
(antipattern)

Figure 4-5 rearranges Figure 4-4 to better indicate the direction of flow. Read through
to see how much easier this is to follow. The start of the diagram is on the left (Cus‐
tomer) with requests flowing left to right and responses flowing right to left. The
numbered events acting on the data flow top to bottom and left to right, along with
the letter identifiers (A–C) of the databases.

48 | Chapter 4: Narrative

Figure 4-5. Data flow diagram matching the left-to-right, top-to-bottom flow of English
text

Another aspect of a visual’s flow to consider is the interactions it depicts (for example,
labeled relationship arrows). A request should follow the same direction as text (left
to right in English), and a response should flow in the opposite direction.

Ensure that a response from a component always flows in the
opposite direction of any requests. Visually differentiating types of
interactions helps your audience understand your diagram more
easily.

Getting the flow correct is easy in sequence diagrams. The flow starts in the top left
and requests flow left to right and responses right to left. Figure 4-6 illustrates a
sequence diagram with a flow that meets audience expectations. The order of the
components along the top is critical to allowing the flow from left to right and then
right to left.

Match Diagram Flow to Expectations | 49

Figure 4-6. Sequence diagram showing requests flowing left-to-right and responses flow‐
ing right-to-left

Explain your diagram to someone (or even to a rubber duck) to
check whether your explanation flows across the diagram or jumps
about.

Structural diagrams should have a similar flow of information, but require additional
considerations. When creating a diagram that includes infrastructure, such as data‐
bases, the general expectation is that the infrastructure elements will be placed at the
bottom of the diagram, with elements such as systems and containers above, and then
elements such as actors or users at the top. This is not a hard-and-fast rule, but it
should be followed unless doing so means you fall foul of antipatterns.

Logical diagrams showing, for example, a layered architecture should follow the left-
to-right and top-to-bottom flow but also take into account the layers. Similar to other
structural diagrams, layers should be arranged logically from top to bottom, with the
user-facing layer at the top (such as the user interface or API layer). Within the layers,
consider the most logical way to lay out elements from left to right.

50 | Chapter 4: Narrative

2 Ensure you avoid the relying on color to communicate antipattern (see “Relying on Color to Communicate” on
page 31).

3 See “Include a Legend” on page 37 for more on this.

Layout expectations differ a little for a hexagonal architecture dia‐
grams. Think of the diagram more like the face of a clock. The top
left is still a good place to start because this is where people’s eyes
may naturally fall, but you could also draw their attention to the
center. Use color, bold/larger text, or thicker lines to draw their eyes
to where you want them to start and lay diagram elements out logi‐
cally in a clockwise direction.

Clear Relationships
A diagram has two main elements: components (containers, processes, and so on)
and the relationships between them (arrows, groupings, and so on). Both are critical
to the message in a diagram, but relationships lead the audience through a story, and
that is why the clear relationships pattern is important.

Without clear relationships, your message gets lost or confused, which could lead to
consequences such as:

• The design you give developers is not implemented the way you wanted it to be.
• You don’t get budget approval for the changes you want to make to the system

because key stakeholders did not understand how those changes would add
value.

It is best to have unidirectional (one-direction) relationships, and the label on any
arrow between two components should describe the relationship in the direction
shown. A line with arrowheads at both ends should be used only when the same pro‐
cess truly does happen in both directions. This is fairly rare.

Relationships can also be made clearer using pattern and color—for example, a dot‐
ted or dashed line for an arrow or a box.2 You’ll then need to include a legend.3

Sequence diagrams, such as Figure 4-7, are a good example of unidirectional relation‐
ships and flows. Don’t create a sequence diagram like Figure 4-8, which combines
each pair of unidirectional relationships into one bidirectional relationship. Compare
the labels in Figures 4-7 and 4-8 to see how much information is lost. The message of
the diagram is not clear when bidirectional relationships are used, and adding more
information to the labels would reduce whitespace and clarity.

Clear Relationships | 51

Figure 4-7. Sequence diagram showing unidirectional relationships

Figure 4-8. Sequence diagram showing ambiguous bidirectional relationships
(antipattern)

ArchiMate, an open modeling language for enterprise architecture, defines many
types of relationship via various combinations of patterns and shapes. This notation
is good for communicating a large amount of information in a small space, but it
requires a legend because the audience might not be familiar with the notation or
remember every detail.

Figure 4-9 shows a key to the types of ArchiMate relationships. Including a key
(showing at least the types used in the displayed diagram) is needed whenever you

52 | Chapter 4: Narrative

https://oreil.ly/AZlW0

create an ArchiMate diagram, to ensure that your audience understands the many
types.

Figure 4-9. ArchiMate relationship key

ArchiMate is a perfectly valid notation to use, but consider your audience’s needs.
Another notation, such as C4, could communicate your message in a much simpler
way without a key (although including a key is nearly always a good idea). I’ll discuss
trade-offs with regard to notation further in Chapter 5. Make the story that your rela‐
tionships tell clear and easy for your audience to understand.

Types of Relationships
You can convey many types of relationships via visuals. Here are five relationship
types to consider:

Hierarchical
Illustrates the parent-child connection between elements. It often represents
organizational structures or classification systems. Examples include organiza‐
tional charts, family trees, and taxonomies.

Sequential
Shows a linear progression or a series of steps. It indicates an order or a process
that must be followed. Examples include flowcharts, timelines, and step-by-step
guides.

Causal
Depicts cause and effect, as one element leads to or influences another. This type
of relationship is often seen in flowcharts, system diagrams, and decision trees.

Proportional
Illustrates the relative size, quantity, or scale of elements in comparison to one
another. Examples include bar graphs, pie charts, and treemaps.

Clear Relationships | 53

Spatial
Shows the physical arrangement or relative position of elements. This type of
relationship can be seen in maps, floor plans, and network diagrams.

Summary
Throughout this chapter, you have learned techniques for creating flow and narrative
in your diagrams to improve audience understanding and keep their attention. Along
with the patterns and antipatterns from previous chapters, you now have a large tool‐
box to draw from when creating diagrams, but there is still more to add.

In this chapter, I introduced notation, which is the system of symbols used to create
your diagram and convey your message. The next chapter dives into some antipat‐
terns to help you spot when, and when not, to apply some of the common notations
in use today.

54 | Chapter 4: Narrative

1 UML is a general-purpose modeling language originally developed in 1994 in an attempt to standardize the
diverse set of notational systems and approaches to software design of the time. BPMN is a graphical notation
for specifying business processes.

CHAPTER 5

Notation

When you create diagrams, you might use a standard notation, such as Unified Mod‐
eling Language (UML) or Business Process Model and Notation (BPMN), or a non‐
standard notation (for example, your own, or a corporate standard of boxes and
lines).1

You may not think much about the notation you use or, conversely, spend far too long
deciding on one. This chapter covers several antipatterns that will guide you to see
where a standard or nonstandard notation could reduce the likelihood of successful
communication with your audience.

Using Icons to Convey Meaning
Using icons to convey meaning is an antipattern that has arisen from cloud provider
icons becoming an almost formal notation. Before the cloud, people rarely created
diagrams using technology icons such as SQL Server, Java, or Python and definitely
did not do so without using labels. But now cloud provider documentation is full of
diagrams showing icons representing their versions of data stores, serverless func‐
tions, and platform-as-a-service (PaaS) offerings, among other things.

Cloud provider icon sets are frequently updated for various rea‐
sons, including for new services. Different versions are available to
use directly in diagramming applications, such as draw.io. Use clear
labels and be explicit about the version or type of the service to
avoid confusion if the icon changes in the future.

55

https://uml.org
https://bpmn.org

2 See “Acronym Hell” on page 90 for more on acronyms.
3 See “Abstractions over Text” on page 140 for more on using stars and other abstractions.

Using technology icons in a diagram isn’t bad in itself, but using them as the only
form of communication (or alongside very little textual information) can confuse
your audience. Diagrams following this antipattern could be seen as a test of the audi‐
ence’s knowledge of cloud provider icons. If they don’t know what the icon repre‐
sents, they can’t understand the message the diagram is trying to convey.

When considering icons for a diagram, ask yourself why you’d include them. The
answer should not be to convey information, because you cannot trust that everyone
in your audience has a perfect understanding of the icons you use. It is like adding
labels in another language and expecting everyone in your audience to know this
additional language, or using acronyms without defining them.2

Use icons only in addition to the information you want to convey. Use labels, and
make sure the text you use is clear too. You should be able to remove the icons and
have the message remain understandable. If you have a diagram containing icons
without labels and you cannot (or don’t have time to) edit it, then add a legend with
definitions of each icon. Consider whether your icons are cluttering your diagram
and making it harder to understand, rather than adding to the message.

To test whether your icons or logos are being used to communicate
information, try removing them completely from the diagram and
check that the message is still communicated effectively by labels
and other methods.

If you are using icons to symbolize information, including descriptive text as well is
good practice. For example, to show a score or rating, you might include 3.5/5 next to
three and a half stars, to make the information explicit and accessible.3

Figure 5-1 shows the difference between adding labels to both icons and relationships
(at the top of the diagram) and not adding them (at the bottom of the diagram). You
can see why internet traffic would be routed to the Azure CDN, but why would it be
routed to the component below that, and what is that component? It is Azure Front
Door, but you cannot assume your audience knows this or that they would know that
all the requests for nonstatic content would be routed this way.

Cloud provider documentation is usually somewhere between the
examples shown in Figure 5-1 (top and bottom): better than no
labels at all, but still assuming the audience knows what the icons
mean. Avoid using diagrams lifted straight from cloud documenta‐
tion for this reason.

56 | Chapter 5: Notation

Figure 5-1. Cloud provider diagram with labels (top) and without (bottom)

Using UML for UML’s Sake
UML is a useful notation when used appropriately, but many get into the mindset that
it should always be used, whatever the audience or reason for the diagram. The key to
deciding whether to use UML (or another standard) is to define the goal or objective
of the diagram and the audience. What are you trying to communicate? Who are you
communicating with? What knowledge do they have?

UML has 14 diagram types, which are split evenly between structural and behavioral
categories. Only a few of these diagrams are used regularly, and many professionals
don’t use them at all, so many people have little to no knowledge of the UML notation
and would not understand a UML diagram without help. Even a very technical audi‐
ence will not reliably have the knowledge needed to understand a UML diagram.

Another downside to UML is that creating and updating UML diagrams can be a
lengthy process and the content of a diagram can go out-of-date very quickly (espe‐
cially in an Agile environment). Although UML has gone through many formal relea‐
ses since the 1990s, its roots are in the time of waterfall development—a time when
releases, and therefore documentation updates, happened in terms of months or
years, not hours or days (or even minutes), as they can now.

One big consideration for any formal notation is comprehension not only of the
audience but also of the author(s). The person who creates or updates the diagram

Using UML for UML’s Sake | 57

has to understand the notation very well. This limits who can create or update a dia‐
gram if a formal notation is used or if a person cannot get up to speed quickly, creat‐
ing a bottleneck and increasing the likelihood of out-of-date documentation.

Be consistent with symbols, colors, and fonts in your diagrams.
This is important within a diagram, but consistency between dia‐
grams also reduces your audience’s cognitive load; they won’t have
to relearn how to read each new diagram.

Upon deciding that UML, or another notation such as BPMN, is not appropriate for
your audience, you need to decide what to use instead or how to adapt to the audi‐
ence. One alternative is to provide a legend, as I have mentioned before. This is an
especially useful technique if you cannot edit the diagram (maybe you have only an
exported image), but many people may need more than this to fully understand what
you are trying to communicate. You could also use another notation, either a simple
notation such as C4 or simply lines and boxes (a legend is still a good idea with either
of these options).

Figure 5-2 is an example of a UML component diagram.

Figure 5-2. UML component diagram

58 | Chapter 5: Notation

A UML component diagram is not an easy diagram to create. Most people would
require a legend to understand all the symbols. Who would need this type of techni‐
cal interface detail in a diagram? Even developers, who would be implementing this
design, would not find this more useful than the C4 diagram in Figure 5-3.

Figure 5-3. C4 container diagram

The C4 container diagram in Figure 5-3 shows most of the same information as
Figure 5-2 but would be useful to both technical and business audiences, and likely
effective even without a legend. Throw in a legend and you have given yourself a very

Using UML for UML’s Sake | 59

high chance of successful communication. The information conveyed by the symbols
in Figure 5-2 is replaced by labels on the relationships in Figure 5-3. The diagram is
easier to understand and needs less technical knowledge and time to create and
update.

Yet another option, which is often forgotten, is to simplify the UML notation. You do
not need to use UML exactly as specified if it does not meet your needs. Adapt it to
the audience, making sure they will understand what you create.

The UML sequence diagram in Figure 5-4 contains a lot of information and even
includes method names in the calls (relationships) between components. This kind of
detail goes out-of-date very quickly, and an audience is better served by a simplified
version such as Figure 5-5.

Figure 5-4. UML sequence diagram

In this simplified version (Figure 5-5), details such as method names have been
replaced by much more descriptive labels, meaning the information will remain cur‐
rent for longer but also be easier to understand by those who are not familiar with the
codebase itself.

60 | Chapter 5: Notation

4 SOLID stands for the single-responsibility principle, open-closed principle, Liskov substitution principle,
interface segregation principle, and dependency inversion principle.

Figure 5-5. Simplified sequence diagram

Carefully consider your choice of formal or informal notation and adapt to your
audience and the goals of your diagram.

Mixing Behavior and Structure
UML diagrams fall into two categories, structural and behavioral, and there is logic to
this separation. Including behavior and structure in the same diagram can be confus‐
ing, but many diagrams end up trying to communicate more than they should.

The Single Responsibility Principle
The single responsibility principle is the first of the SOLID principles and common
practice in object-oriented coding.4 It states that a piece of code (such as a method or
module) should have only one reason to change. In other words, do one thing and
only one thing.

Some of the benefits of abiding by this principle are easier-to-understand and more
maintainable code. These benefits also apply to diagrams that follow the single-
responsibility principle.

Mixing Behavior and Structure | 61

This rule of separating behavior and structure applies not just to UML, but to all dia‐
grams, whatever their notation. Apply the single responsibility principle to a diagram
to push the single message you aim to convey to the forefront to increase the likeli‐
hood of successful communication with your audience.

Structural diagrams communicate the what and the where, such as showing systems
and their relationships, or the physical location of hardware or running software.
Behavioral diagrams communicate the how and to whom, such as the flow of data or
state change within a system. If a diagram tries to communicate a mix of these, the
message will most likely be lost.

Figure 5-6 shows the mixing structure and behavior antipattern. It is cluttered and
conveys no clear message.

Figure 5-6. Don’t mix structure and behavior, as in this diagram (antipattern)

The information in Figure 5-6 can be split into a structural diagram (Figure 5-7) and
a behavioral diagram (Figure 5-8) so that each has one clear message. Figure 5-7
communicates the conceptual structure of the system, and Figure 5-8 communicates
the data flow (the behavior of the data) in the system.

62 | Chapter 5: Notation

Figure 5-7. Structural diagram at the conceptual level of abstraction

Figure 5-8. Behavioral data flow diagram

Mixing Behavior and Structure | 63

5 Steve Jobs was known for wowing audiences with the unexpected in his public presentations for Apple.

I have mentioned before that it is usually better to have more than just one diagram.
Splitting structure and behavior is another example of how to best split up your
diagrams.

Going Against Expectations
When communicating about software architecture, going against expectations is best
avoided. It can be effective in other situations, but this is an antipattern for our pur‐
poses. We’re not trying to be Steve Jobs (well, not every day).5 The unexpected can be
a useful tool to get people’s attention, but it detracts from your message when used
without thought.

Throughout their lives, your audience has developed mental models: internal repre‐
sentations of the way something works in the real world. These mental models affect
their interactions with the physical world (for instance, understanding the meaning
of traffic lights) but also with the digital world (like knowing how website menus
work). For example, the burger menus used in interfaces on smaller screens are a
newer mental model. You must take care to not break any mental models in your dia‐
grams, presentations, and so on, or risk causing misunderstanding.

Color is used in many diagrams but often without thought as to how the audience
will perceive it, as I’ve mentioned. Colors can have different meanings across cultures,
such as red being a sign of danger or meaning stop, but also a sign of luck (such as in
Asia). Avoid the going against expectations antipattern when it comes to color. It will
confuse your audience. Instead, use their expectations to your advantage, using the
colors in their mental model to communicate meaning. But be wary of using color on
its own when communicating (see “Relying on Color to Communicate” on page 31).

Some colors that you know may not even be considered separate
colors in some cultures. For example, in Japan, the color green
(midori) is often considered a shade of blue (ao), and the name for
green in Japanese has not existed very long compared to other
names for colors. Consider also that English words for shades of
colors, such as lilac, may not have equivalents in other languages or
may refer to a different shade.

People have expectations about the meaning of shapes and symbols too, which can
vary from culture to culture. Be especially aware of those that have a religious signifi‐
cance (such as some star shapes); you do not want to offend or suggest any link with
the significance of a religious symbol. But even geometric shapes can have meaning;
for example, a triangle can represent action or dynamic tension, and a square or

64 | Chapter 5: Notation

rectangle can represent trust, order, or formality. You may recognize the symbols in
Figure 5-9 from remote controls or music and video streaming websites, among
others.

Figure 5-9. An example of conventional symbols

Triangles are seen as dynamic and represent action. They are the symbol used at the
end of a line to create an arrow. The triangles in Figure 5-9 point to the right, symbol‐
izing play and fast-forward. The square and rectangles in Figure 5-9 represent stop
and pause. Although these symbols have not been around for long historically, they
have become ubiquitous.

Consider technology when avoiding this antipattern. There are conventions in tech‐
nology selection and how you implement them. Breaking these conventions can be
good and innovative, but you will need to have your justifications ready if you are
breaking convention for a reason. If you are breaking technological conventions,
make sure you have fully considered all the implications. Why does everyone else fol‐
low these conventions?

Then there is conventional notation. You do not always have to use a formal notation.
As long as your audience understands it, you can create your own notation, but that
notation should meet the audience’s expectations rather than clash with them.

Your audience may have expectations about the notation you will use in your dia‐
gram(s). Maybe they expect UML, C4, or a nonstandard notation that is used within a
company. You may find that by applying the patterns and avoiding the antipatterns in
this book, you need to change or adapt the notation that your audience expects to see.
Changing your notation is not a bad thing, but you may need to do so carefully.
Introduce your audience to the adapted or new notation you are using, rather than
slipping it in and hoping they don’t notice. Show them the benefits. Point out prob‐
lems that the notation you were using previously was creating.

When using a standard notation, make sure to stick to the expectations about that
notation, and clearly communicate any variations from those expectations. Your audi‐
ence needs to know if any assumptions they make, because of the notation, are incor‐
rect. It may be better to use another formal notation or a custom one instead to avoid
confusion.

Going Against Expectations | 65

Your audience has expectations of direction at more than one level.
Meet those expectations by following “Match Diagram Flow to
Expectations” on page 47 within your diagrams and “The Big Pic‐
ture Comes First” on page 43 for multiple diagrams, documenta‐
tion, and presentations.

Don’t be afraid to be unconventional when you have a good reason, but make sure
you are consciously choosing to deviate from expectations. There is always an excep‐
tion to the rule.

Summary
You now have some understanding of what you need to consider before selecting a
notation for your diagrams. Applying what you have learned so far, you can use these
notations to their full effect.

The next and final chapter on visual communication will show you how to arrange
your carefully and thoughtfully constructed diagrams to take them to the next level
for your audience.

66 | Chapter 5: Notation

CHAPTER 6

Composition

Visual composition is an essential aspect of software architecture diagrams; it helps
you convey the structure, relationships, and dependencies of the system being docu‐
mented. Effective visual composition ensures that diagrams are legible and improves
the ease with which the audience can understand them.

In this chapter, you will explore how the composition of your diagrams can increase
audience comprehension, how to avoid misleading your audience, and how to guide
them through the narrative of your diagrams.

Illegible Diagrams
When you create a diagram, you need to consider how it will be consumed and who
will consume it. This section covers how to avoid the illegible diagrams antipattern.

When creating a diagram in a tool such as draw.io or Visio, most people accept the
default canvas to work on. That default is typically something like A4 or Letter paper
size in portrait orientation. Is your audience going to view your diagram on a printed
piece of paper in portrait? These days, that is unlikely.

Maybe your audience will consume the diagram within a document in Microsoft
Word or Apache OpenOffice Writer (where the defaults, again, are A4 or Letter in
portrait), but if your diagram is created on a portrait canvas, the audience is unlikely
to be able to view it in its entirety on a computer screen (which is landscape) without
having to zoom out and risk not being able to read the text or other details.

The majority of diagramming tools, including draw.io and Visio, allow you to select
the canvas size, and draw.io specifically has options for a 16:9 or 16:10 ratio (along

67

1 Ensure you choose the landscape option so that 16 is the horizontal ratio.
2 4:3 was the typical ratio of screens in years gone by.

with many others, which may vary according to the platform—see Figure 6-1).1

Selecting the appropriate canvas/page size and ratio is the first thing you should do
when creating a diagram from scratch. Some tools, such as draw.io, will then remem‐
ber your preferences.

Figure 6-1. Example canvas/page options in draw.io

Most diagrams are consumed on a computer or presentation
screen, so unless you need to adhere to a specific format (such as a
printed book, poster, or document), you should create your dia‐
gram for a viewing ratio of 16:9 or 16:10 (the typical ratio of most
screens).2

68 | Chapter 6: Composition

Designing your diagram to fit the audience’s viewing format, as well as their needs,
will mean your audience can read and understand your diagram without having to
zoom, move around, or squint. The data flow diagram in Figure 6-2 is in portrait ori‐
entation and therefore will not display optimally on monitors or projectors because
roughly two-thirds of the screen will be whitespace. This wastes expensive screen real
estate and makes it highly likely that text or other details in the diagram are illegible
to at least some of your audience.

Figure 6-2. A portrait version of a data flow diagram displayed on a 16:9 ratio screen

Figure 6-3 shows a landscape version of Figure 6-2 also displayed on a 16:9 ratio
screen; you can see that the details are much easier to read.

Legibility also applies to the text in your diagram. Ensure that you
have selected easy-to-read fonts and that they are readable when
your audience views them. This might be on a projector or large
screen during a presentation, printed, on a small laptop screen, and
so on.

Illegible Diagrams | 69

Figure 6-3. A landscape version of a data flow diagram displayed on a 16:9 ratio screen

Sometimes you will need to use an existing diagram that is oriented incorrectly, and
you won’t have time to edit or re-create it. There are techniques you can use to help
your audience in this scenario too.

When presenting a diagram, or any image, that isn’t oriented correctly (or is just too
ridiculously big to fit on a slide), you can show your audience an overview, such as
the one in Figure 6-4, and then zoom in on the elements you are talking about by
inserting cropped and enlarged versions of the diagram on subsequent slides.

When cropping the diagram, make sure you include any required information like a
legend or repeat an element from a previous crop to give the audience context.
Figure 6-5 shows a cropped version of Figure 6-4. The audience has all the informa‐
tion they need to read this part of the diagram.

70 | Chapter 6: Composition

Figure 6-4. Portrait version of a flow diagram that will not display well on a landscape
screen

Illegible Diagrams | 71

Figure 6-5. Example crop of Figure 6-4

When you duplicate notes, as in Figures 6-5 and 6-4, you can differentiate between
labels shown in the complete diagram and those that are cropped. One way to do this
is to change black text to gray; for example, you can place a white box over the top
and reduce its opacity (but make sure the text is still legible).

Figure 6-6 shows the second and final crop of Figure 6-4 (note you may need more
than two for some diagrams). The title is retained so that the audience has all the
information needed to understand this part of the diagram.

In general, create diagrams in landscape format unless you know
that only portrait format is needed. Landscape can always be rota‐
ted to fit in a printed portrait document if needed.

72 | Chapter 6: Composition

Figure 6-6. Second example crop of Figure 6-4 with caption and notes retained

During a presentation, the audience either looks or listens. Most people can’t do both
well at the same time, so you need to make the content as clear as possible so that
your audience can pay attention to you for longer and take in your message.

Illegible Diagrams | 73

Style Communicates
The style communicates pattern is also known as metastyle. You have likely heard of
metadata (data that provides information about other data, such as image file dimen‐
sions, categories, or author names), but what about metastyle?

You are bombarded with visual messages all the time through branding and advertis‐
ing. Think about your favorite drink. Its branding has been designed to appeal to
people—to make them feel a certain way and think of certain things. The design of
the packaging and the brand are communicating to you without words.

Diagrams and visuals in software do exactly the same thing, whether you consciously
design them to or not, just as software architecture happens whether someone with
the title architect is working on the software or not. Consider the top and bottom dia‐
grams in Figure 6-7. What do the different styles say about the stage of the project?
Early, late? What do they make you think about the design and thought processes?
These visuals form part of your marketing materials, which communicate to and
influence your audience.

Figure 6-7. Sketch and solid-line style comparison

The style of a diagram is typically a result of personal preference and the application
used to draw it, rather than any conscious choice about how the audience will per‐
ceive the diagram. Open your preferred diagramming application (such as draw.io or
Visio) and create something similar using the default settings. Now ask yourself the
questions I asked before Figure 6-7. In addition, what do the default settings commu‐
nicate to your audience? What do you truly want to communicate to your audience?

When it comes to metastyle, neither one of these styles is always better than the
other; in the same way, you can’t say that any particular style of architecture is always
the best choice for a project, or indeed any type of diagram.

Style choice can be influenced by the domain or company you work in. Consider
which of the two styles in Figure 6-7 you might choose if you were designing systems
for a theme park. Would you select the same style if you were designing systems for a
hospital or bank?

You should consider what you are trying to communicate to your audience and then
style your diagram to support it.

74 | Chapter 6: Composition

EXAMPLE

Style over Substance
Nikki, an architect at Polyglot Media, needs approval for an architectural change and
sets up a meeting with the decision maker, Kaspar. It doesn’t go well. Nikki presents
the proposal, supported by diagrams, but Kaspar is having none of it. He pushes back
on almost every aspect of the proposed architecture. It is a hard “no.”

After the meeting, Kaspar asks if he can run through some ideas with Nikki and pulls
out some diagrams in a distinctive visual style. The next day, Nikki redraws the pro‐
posal diagrams in the same distinctive style and, a week later, presents the same pro‐
posal to Kaspar, with the same diagrams but in Kaspar’s visual style. The response is
completely different—enthusiastic approval, even though the content is the same.

Could Kaspar understand the proposal better? Could he imagine the proposed dia‐
grams fitting well with his own? He sees what he wants to see; he sees style over
substance.

Misleading Composition
In software architecture, you of course don’t want to mislead your audience, but you
can create misleading visuals by accident. Many examples of misleading diagrams and
charts exist, and understanding how they have been manipulated (intentionally or
unintentionally) can help you avoid misleading your audience in your own content.

Making changes to the baseline is one way to manipulate a chart. Figure 6-8 shows
the number of votes cast in an election. Setting the baseline at 450 has enabled the
Cool Party to exaggerate the difference in the numbers and encourage its supporters
to vote for it again. The manipulation especially targets supporters of the Bloop Party,
who may feel they have to vote for one of the other parties for their vote to make a
difference.

The general rule is to always leave the baseline at 0. Exceptions
exist, and a different type of visual might be better in those cases
(such as a table, rather than a chart or diagram).

Misleading Composition | 75

Figure 6-8. Chart with baseline set at 450 (antipattern)

Now take a look at Figure 6-9. This shows the same numbers as Figure 6-8, but the
Cool Party lead doesn’t look as good now.

Figure 6-9. Chart with baseline set at 0

76 | Chapter 6: Composition

In fact, by manipulating the baseline, two opposing parties could use the same statis‐
tics to show their own messages. Take a look at Figure 6-10, which again uses the
same numbers and same baseline as Figure 6-9 but has now been changed to be used
by an opposing political party. The Funky Party could use this chart to persuade sup‐
porters of the Bloop Party and unlikely voters to vote for the Funky Party so that the
Cool Party doesn’t win again.

Figure 6-10. Chart with the same baseline and figures as Figure 6-9 but rearranged to
promote another party’s message

Figure 6-11 shows an example of using comparison to mislead (intentionally or unin‐
tentionally). By putting the two charts side by side, the audience may be misled into
thinking that the bars in each chart represent the same scale, but they do not. The
bars in the ANZ chart on the right actually represent about half the value of those on
the left. The audience could end up with the mistaken belief that sales in Australia
and New Zealand are comparable to sales in the USA and Canada, but actually, sales
in New Zealand are about half those of the USA.

Misleading Composition | 77

3 An aphorism is a pithy observation which contains a general truth.

Figure 6-11. Charts showing how comparison can mislead the audience (antipattern)

When charts and diagrams are in close proximity, use the same scale or make the dif‐
ferent scales explicit and obvious to the audience. When creating software diagrams,
it is important to think about both the accuracy of the information you include as
well as how it could be read by the audience.

Diagrams are an abstraction of reality because the reality is usually
far too complex to communicate. You need to balance abstraction
with accuracy where it matters, accepting the aphorism “all models
are wrong, but some are useful” and aiming for the useful.3

Figure 6-12 shows a deployment diagram that doesn’t communicate the true message
to the audience. This C4 deployment diagram attempts to describe the horizontal
scaling of instances of each container or group of containers (see the number in the
top right of each of the three boxes inside the main Polyglot Media cloud infrastruc‐
ture box, such as x3), but if you look at Figure 6-13, you will see the true reality of the
scaling.

78 | Chapter 6: Composition

Figure 6-12. Misleading deployment diagram

In Figure 6-12, scaling was communicated for each group, and the maximum number
of containers is stated as if there will always be that many instances. However, the
reality, shown in Figure 6-13, is that either there can be fewer instances or the ele‐
ments of the group can have different scaling.

Misleading Composition | 79

Figure 6-13. True deployment diagram

An audience seeing Figure 6-14 could easily think that the enterprise service bus in
the diagram has more resources or hardware or has better scalability or a larger
capacity than other elements shown.

80 | Chapter 6: Composition

Figure 6-14. Easy-to-misinterpret service bus diagram

Changing the scale of the enterprise service bus to match other elements, as in
Figure 6-15, is less likely to mislead your audience. Keep elements the same size in
logical diagrams unless there is a reason not to, like showing different capacities. The
consistent sizing in Figure 6-15 does have trade-offs, though; the arrows and lines are
potentially harder to read because of the smaller size of the box. If this were a prob‐
lem, you could consider splitting the diagram into different types of services, for
example, or addressing a particular concern.

Figure 6-15. Closer-to-reality service bus diagram

Create a Visual Balance
The create a visual balance pattern is often overlooked and can set your diagram apart
from others. Balance is a key element in visual design, and it applies to diagrams as
well as photography and other visuals. Balance is an innate human expectation and
therefore an expectation of your audience. Giving your audience what they want is
fundamental to successful communication. (Of course, there is an exception to every
rule; what your audience thinks they want may not be what they really need.)

Create a Visual Balance | 81

Balancing a diagram does not make a bad diagram good, but it will enhance a good
diagram. One element of balance is symmetry. The diagram in Figure 6-16 is a per‐
fectly valid C4 container diagram, but it doesn’t have the satisfying effect of
Figure 6-17. Compare the two and you will find yourself drawn more to Figure 6-17.

Figure 6-16. Unbalanced C4 container diagram (antipattern)

82 | Chapter 6: Composition

Figure 6-17. Balanced C4 container diagram

Figures 6-16 and 6-17 contain all the same information and elements, but in different
places on the canvas. You do not need (and will not always be able) to make some‐
thing completely symmetrical (this is called bilateral symmetry), but you should be
able to apply another type of symmetry, such as approximate symmetry (where there
are small differences) as in Figure 6-17.

Symmetry can be applied to part of a diagram instead of the whole to improve read‐
ability. For example, when creating a diagram in which elements fan out and/or

Create a Visual Balance | 83

reduce, you can use symmetry at those expansion and contraction points when
arranging elements.

If symmetry is not possible, you may be able to employ asymmetry to achieve a simi‐
larly satisfying effect. In that case, you need to balance your elements by using posi‐
tion, weight/size, and direction. Think of your canvas as a seesaw and aim to get the
balance correct for a given axis or fulcrum on that canvas.

Diagrams do not have to be pretty, but consistency within a dia‐
gram and a set of diagrams makes them easier on the eye.

Summary
This chapter has given you tools to create legible, honest, and balanced diagrams that
communicate via their style as well as the information contained within them.

Now that you’re at the end of Part I, you should have a huge toolbox for creating and
using diagrams and other visuals. These last techniques of composition add the
gleaming tiles to the roof, whereas the essentials in the first chapter provided a strong
foundation.

But you know that diagrams alone don’t communicate everything you need to share
about software architecture and design. Technical writing is a skill in itself, some of it
separate from visual communication and some of it overlapping. Verbal and nonver‐
bal communication further complement written and visual communication, whether
you are speaking in person or remotely.

Part II explores technical written, verbal, and nonverbal communication and the
techniques you can apply to all three, as well as techniques for getting your audience
to put their trust in you and what you say.

84 | Chapter 6: Composition

PART II

Multimodal Communication

Part II covers patterns, antipatterns, techniques, and frameworks for written, verbal
(spoken), and nonverbal communication. Whether you work remotely, in an office,
or a mixture of the two, you use all these types of communication regularly. Putting
some extra thought into how you write, speak, and use body language and other non‐
verbal communication will make your message more understandable and increase
your chances of receiving your desired response.

The sections within the chapters in Part II are organized as collections of patterns and
antipatterns. You can apply the patterns for written communication to whatever you
write, including emails, documentation, and instant messages. The verbal and non‐
verbal techniques can be applied whether you are talking to someone (or a group)
face-to-face or remotely.

Chapter 9, the final chapter in this part, contains patterns and techniques for using
rhetoric, which you can apply to all types of communication. Originally developed by
Aristotle over two millennia ago, you might not think rhetoric would apply to com‐
munication in the modern technical world, but the techniques of ethos, pathos, and
logos have stood the test of time for a good reason.

Apply all these patterns and techniques to strengthen your message, whatever format
(or multiple formats) it takes.

1 An idiom is a group of words in a fixed order that has a particular meaning that is different from the mean‐
ings of each word on its own.

CHAPTER 7

Written Communication

As a professional, you understand the importance of clear and effective written com‐
munication. Whether you’re sending emails to colleagues, documenting require‐
ments, or creating reports, written communication is a critical aspect of your job.

This chapter explores various tips and techniques to help you write clear, concise, and
impactful communications. You’ll look at patterns that will help you improve your
writing and antipatterns that will help you avoid common pitfalls. Whether you’re a
seasoned writer or just starting out, this chapter provides practical guidance to help
you take your writing skills to the next level.

Simple Language
To make your language clear, you need to take many factors into account. The simple
language pattern can help you. It is easy to fall into the trap of thinking everyone
understands all the words you say or write. Trying to sound clever by using complex
vocabulary usually leads to confusion. Rather than people thinking more of you, they
are likely to think less of you because they have not understood.

For those who struggle with visual processing, such as people with dyslexia or atten‐
tion deficit hyperactivity disorder (ADHD), complex words and sentences may be an
even larger hindrance than for a neurotypical person. Large amounts of text, grouped
together, can also cause problems, especially if little whitespace remains. Those with
autism often struggle to understand sarcasm and idioms,1 so these are best kept out of
your diagrams and presentations.

87

2 See “Acronym Hell” on page 90.

Neurodiversity
Here are some quick definitions concerning neurodiversity:

Neurodivergent
Describes someone whose brain processes, learns, or behaves differently than
what is considered typical.

Neurotypical
Describes someone whose cognitive functioning is considered typical of the gen‐
eral population.

Nonnative speakers of a language have a smaller vocabulary than native speakers,
who typically have a vocabulary in that language of around 15,000–20,000 word fami‐
lies (groups of words with a common root). According to a 2022 study, a vocabulary
of around 4,000 word families is required to understand around 95% of news stories
written in English. Particularly when communicating in a native language, you need
to take into account that some of your audience may not be native speakers, especially
in today’s international and online society.

Consider that some of your audience may use translation software
to read your writing. Using simple language without idioms will
help them get a better translation.

Vocabularies vary from person to person, sometimes corresponding to education,
social standing, or age (older people having been exposed to more vocabulary over
the years, and different generations using different jargon). Vocabulary still varies
widely within these demographics because of factors like interests, culture, and geog‐
raphy. Common vocabulary also differs from business, domain, and technical vocab‐
ularies. Take into account that your audience’s vocabulary will vary, even if their
demographic doesn’t.

As with acronyms,2 it is a good idea to include a glossary for business, technical, and
domain vocabulary in your diagrams and documentation. If everyone knows the
exact definition of order details, for example, mismatches in meaning, where a name
means something different in different parts of the codebase, become far less likely.
Naming is hard, and a glossary and ubiquitous language helps with this.

88 | Chapter 7: Written Communication

https://oreil.ly/a8Uiq

Table 7-1 shows some options for simplifying your writing. Domain-driven design
(DDD), a software development approach, creates a ubiquitous vocabulary that can
be used within the domain you are modeling. As the ubiquitous language originates
from the business, and not your technical team, you have only so much control over
it. Create your own glossary to add to as needed.

Table 7-1. Examples of simplified vocabulary and phrases

Complex/less used Simple/regularly used
acquire buy

toward to

adopt use

dispatch send

locate find

patron customer

a majority of most

as a result of because of/due to

is able to can

determine the location of find

for the purpose of for

have a tendency to tend to

on two occasions twice

make decisions about decide on

is of the opinion thinks/believes

in order to to

When speaking or presenting to an audience who is not familiar with your domain
vocabulary, you should explain the terms that your audience needs to understand.
You can do this by specifically defining a term, or by providing a synonym they may
understand (for example, a nonnative speaker of English may not understand locate
but may understand find).

Keep your language simple and define any necessary complex and
domain vocabulary to smooth the learning curve for your
audience.

Simple Language | 89

3 Notice how I define acronyms I use.

Acronym Hell
You enter the state of acronym hell when a diagram, table, or any accompanying text
contains acronyms that are not defined for the audience. You cannot expect your
audience to understand an acronym as you intend. Acronyms can mean different
things to different people, even if your audience is aware of the context you are
describing.

It’s easy to assume that others share your understanding. This is often called the curse
of knowledge. Your brain has a lot of information that you reference without realizing
it, and this information is not necessarily in the brains of your audience.

The Curse of Knowledge
The more of an expert you become on a subject, the harder it is to remember what it
is like to be inexperienced, making communication with nonexperts more difficult.

Here is an example of the curse of knowledge: you mention a concept to someone and
they ask you to explain, but when you try to explain, you realize that they don’t know
other things you mention in your explanation, and a tree of missing knowledge
branches out. Explaining your original concept is going to take more than a few
minutes of conversation.

Using idioms without realizing that some of your audience may not understand them
is another example of the curse of knowledge.

Not defining your acronyms leaves them open to interpretation, which is not going to
help you communicate successfully. You are aiming for your audience to have the
same understanding as you, which they can’t if they don’t understand an acronym at
all or believe it have an alternate definition. Every industry or domain has its own
versions of acronyms, and the difference between business and technical people’s
understanding of the same acronym can vary widely even in the same domain.

Some words have become so ubiquitous that people have forgotten
they were originally acronyms. Examples include RADAR (radio
detection and ranging), LASER (light amplification by stimulated
emission of radiation), and self-contained underwater breathing
apparatus (SCUBA). The acronyms Joseph Cyril Bamford (JCB)
and Bayerische Motoren Werke (BMW) are ubiquitous in Europe.3

90 | Chapter 7: Written Communication

DDD provides a way of creating a ubiquitous language, which can be used to enable
successful communication. Even if you don’t employ DDD, you can still help create a
ubiquitous language by defining all the acronyms you use.

The main way to avoid the acronym hell antipattern is to ensure that your acronyms
are defined, and you can do that in many ways. When speaking, say the acronym and
the full version (this helps people learn the acronym for when others don’t include the
definition). In text, you should typically include the acronym in parentheses after the
definition the first time you use it, or vice versa (and, if needed, again after the first
use in each section or chapter).

Wherever you include definitions of your acronyms, make sure
that they are easily accessible to your audience.

Acronyms can be spelled out in a legend or footnote if they are used in a diagram or
other visual. You can also include them in a glossary in your document, slide deck, or
documentation, along with definitions of other words (your ubiquitous language).

Many Possible Meanings
If you think an acronym has only one possible information technology meaning, con‐
sider these:

DFD
Data flow diagram, deployment flow diagram, Document Freedom Day, disk fail‐
ure diagnostic, Development Finance Division, decision feedback detection,
detailed functional design, design for discard, design for development…

SPA
Single-page application, single point of access, special protocol assessment, serial
port adapter, smart process application, sales and purchase agreement, solution
provider agreement, software process assessment, systems and process assurance,
scalable processing architecture, service provider architecture, simple processing
application, system performance analysis…

BLT
Business leadership team, basic language translator, bulk loading tool, business
liaison team, bottom line technology, build load test, binary large object, bit-level
tracing…and even bacon, lettuce, and tomato!

Acronym Hell | 91

Structured Writing
Many forms of writing work best when they are planned and structured, including
technical writing. You often need to communicate complex concepts or show how
various concepts fit together, and this cannot be done effectively without considering
the structure of your writing.

It can help to think about structuring technical writing as you would think about
structuring a computer program. Program structures often take the form of a tree, or
pyramid.

Graph data is now much more commonplace, but navigating a graph with many pos‐
sible routes and navigating a pyramid structure are very different. In technical writ‐
ing, the pyramid structure, is much more efficient (graph structures are more
efficient for other scenarios, such as searching highly related data).

The Minto pyramid principle, developed by Barbara Minto in the 1960s as a method
for ordering and structuring information, is a useful tool for technical writing. The
principle became a standard at McKinsey & Company, where Minto worked when
she developed the principle.

The overall concept of the Minto pyramid principle is to start with what you have
identified as the key idea or message, break that into logical arguments, and order
those ideas logically, then break down each of those ideas and order them logically
until you have broken down all the elements of what you need to say. In her own
words:

The easiest order for a reader is to receive the major, more abstract ideas before he is
required to take in the minor supporting ones. And since the major ideas are always
derived from the minor ones, the ideal structure of the ideas will always be a pyramid
of groups of ideas tied together by a single overall thought.

In this way, each idea or element of your writing is linked vertically to an idea before
it, which will always be a summary of the ideas that follow it, and horizontally linked
to other ideas making up the logical argument.

As you move down the pyramid, you end up with a pattern of stating a major idea
and then answering the reader’s questions about that idea as you progress. Figure 7-1
is an example of this structure: traversing the pyramid begins with the key message,
followed by the first supporting arguments, and then the supporting data or argu‐
ments for the first argument. The next step in the traversal is supporting argument 2.

92 | Chapter 7: Written Communication

Figure 7-1. Minto pyramid principle example structure

A pyramid structure is useful for your everyday communication as well as your tech‐
nical writing. In Example 7-1, an email is structured as the information came into the
author’s head. Example 7-2 shows the same information, but structured as a pyramid.

Example 7-1. Email structured as the ideas came into the author’s head

Dear all,

Our 3rd-party supplier has informed me that they can no longer make the planned
kick-off meeting and also cannot make Friday or before 3 p.m. on Monday. I have
checked the diary, and it seems that some development team members are on leave
from Wednesday.

What with school pick-up and drop-off affecting several of us, Tuesday at 10 a.m.
looks like the best time at the moment. Does that work for you? Please let me know
ASAP.

Kind regards,

Example 7-2. Email structured as a pyramid

Dear all,

We need to reschedule the project kick-off meeting. Can you let me know ASAP if
Tuesday at 10 a.m. works for you?

The team from our 3rd-party supplier can no longer make the original date and time,
and two of our developers are on leave from Wednesday until Friday. I also want to
avoid school drop-off and collection times as I know this affects several people
involved.

Kind regards,

This comparison shows the power of the pyramid structure. In Example 7-2, the
intention of the email is clear from the start, as well as the desired response of the

Structured Writing | 93

reader, and further explanation follows. Some readers might ignore the information
after the first paragraph if they didn’t need it, and simply follow the request.

Example 7-2 shows how you can apply this pyramid structure to a simple email.
Applying it to your technical writing (and the structure of slide decks) will take prac‐
tice but will pay dividends in the improvement of your communication.

Consider Example 7-3, which introduces a project. Compare it to Example 7-4 to see
how applying the pyramid structure enhances the readability and understandability
of the introduction. Would you structure this any differently to further improve its
readability?

Example 7-3. Unstructured program introduction

To identify any problem areas or bottlenecks in the systems and processes within
Polyglot Media, collaborative modeling, such as EventStorming, will be used to map
current systems and processes.

An initial cross-functional working group will create this map, with further
cross-functional groups assigned to break down problems identified and design
optimizations in an ongoing and iterative process.

This will all lead to better-optimized systems and processes to better meet the
needs of a rapidly growing customer base (including internal customers), with
Polyglot Media having seen better-than-expected growth in the last financial year.

Example 7-4. Pyramid structured program introduction

Polyglot Media has seen better-than-expected growth in the last financial year,
leading to the need to optimize systems and processes to better meet the needs of a
rapidly growing customer base.

To meet these needs, there is a requirement for a map of the current systems and
processes as they are, with any problem areas or bottlenecks identified. This will
be the output of an initial cross-functional working group, which will assess the
current situation using techniques such as EventStorming and other types of
collaborative modeling.

The optimization process is expected to be ongoing and iterative, finding solutions
to the current problem areas identified and continually optimizing for both
internal and external customers.

This section has given a very high-level overview of the pyramid structure, which you
can begin to apply to your writing, documentation, and presentations. For more
information, see The Minto Pyramid Principle by Barbara Minto (Prentice Hall, 2010)
and Barbara Minto’s official website.

94 | Chapter 7: Written Communication

https://www.barbaraminto.com

The pyramid principle can be compared to headlines and the struc‐
ture of articles in a newspaper. The headline gives you an under‐
standing of the whole story. Each sentence and paragraph you read
gives you more detail, but you can stop at any time and still know
the key points of the story.

Syntax of Technical Writing
Technical writing differs from creative types of writing. Technical writing is intended
for a specific audience (such as developers or customers of the product), whereas cre‐
ative writing usually has no particular audience in mind, except possibly an age range
or genre preference. The purpose of technical writing is to inform or instruct,
whereas creative writing exists to entertain.

Because of these two main differences, technical and creative writing differ signifi‐
cantly in format, style, and structure. The syntax of technical writing is important to
ensure that your writing is clear and informative. Clarity is the most fundamental
rule of technical writing.

Strong Verbs
Choose strong, precise, active verbs (words that describe actions, states, or occur‐
rences). Verbs such as be, was, and happen are examples of weak, or inactive, verbs.
Limiting these in your technical writing and using carefully chosen strong verbs
means your content is more specific and clear.

Balance the use of strong verbs with your audience’s familiarity with the verbs you are
choosing. Weaker verbs are appropriate when your audience may not understand a
stronger verb, and you do not need to eliminate all weak verbs from your writing.

Here are some examples of changing a verb to create a more precise and concise
sentence:

The error notification happens when…
The service generates the notification when…

There are three things that have made us decide to…
Three issues convinced us to decide to…

I am very careful to ensure…
I carefully ensure…

Once the vector is entered, it is changed…
Once the service receives the vector, it transforms…

Examples of strong verbs include govern, amend, extract, realize, notify, convince,
inspect, guide, scan, serve, transform, raise, generate, and ensure.

Syntax of Technical Writing | 95

Avoid the phrases there is or there are. These can often be deleted
with minor additional changes to the sentence. Consider how You
should know three critical things about cloud computing is a lot
clearer and more persuasive than There are three critical things you
should know about cloud computing.

Short Sentences
We read short sentences faster. Removing superfluous words reduces the length of
sentences and the document as a whole. Short documents are also faster to read.

Just as with code, it is easier to maintain and avoid bugs (mistakes) in shorter
documentation.

Short sentences are also easier to read and deliver a more powerful message. This is
another application of the single responsibility principle. Your sentences should have
only one reason to exist.

Precise Paragraphs
The opening sentence of your paragraph is the most important. Your audience may
scan your content and choose which parts to read based on the first sentence. The
first sentence, therefore, needs to grab the reader’s attention either by covering the
central point of the paragraph (as discussed in “Structured Writing” on page 92) or by
using a tool such as a rhetorical question.

Paragraphs are another opportunity to apply the single responsibility principle. Their
content typically includes more than a single sentence, but each paragraph should
exist for one overall reason. You can compare a sentence to a method, and a para‐
graph to a class, in code.

Your paragraphs should cover one topic and include what you are telling the reader,
why what you are saying is important, and how the reader can use that knowledge or
know it to be true. Sometimes these details may be covered across more than one
paragraph.

Whereas sentences should generally be short, paragraphs should not be too short or
too long. The sweet spot is at around three to five sentences. Go over seven sentences,
and your paragraph becomes a wall of text that your audience is likely to avoid. Rear‐
range and split up longer paragraphs to avoid reader fatigue. If you find that you have
many short paragraphs in your writing, you should consider reorganizing the content
into coherent three-to-five-sentence paragraphs or changing your paragraphs into a
list.

96 | Chapter 7: Written Communication

Consistent Vocabulary
Use vocabulary consistently throughout the piece that you are writing. Switching
between different words when you have the same intended meaning is the same as
changing the name of a variable in the middle of a method. Your code will not com‐
pile and, in writing, nor will your audience’s understanding.

Many words are used interchangeably in technical writing (even if they don’t really
share the exact same definition: application, program, or software; engineer or devel‐
oper; user, client, or customer). Pick one and stick to it when you mean the same
thing, and explicitly call out the difference if you use a similar word to refer to some‐
thing different.

When you first mention a name for something quite long, you can also introduce a
shortened version or acronym and then continue to use the shorter version. Once
you have begun using the shorter version, do not cycle back and forth between the
long and short versions. Consistently use one or the other.

If you will use the longer version only a few times, you may not want to bother defin‐
ing and then using the shorter version. You should consider whether your audience
would appreciate you using the opportunity to teach them the connection between
the long name and short or acronym version.

Make sure to always define any acronyms you use (see “Acronym
Hell” on page 90).

Audience Empathy
Defining your audience is one of the fundamentals of communication (as discussed
in “Know Your Audience” on page 3). Your audience affects how you write and how
you structure your writing. Asking yourself these questions about your audience’s
knowledge will help you set a baseline that you will build on in your writing:

How much does your audience know about what you are writing about?
Your audience may have some knowledge that you can build on. Stating basic
facts that your audience knows may put them off reading.

Does your audience know of something similar?
If your audience already knows something similar, you can make comparisons to
help them understand your topic.

Syntax of Technical Writing | 97

Does your audience have knowledge they haven’t used in a long time?
If your audience hasn’t used knowledge in a long time (maybe they learned it at
college over 10 years ago), you should provide an overview with more detailed
information that they can choose to consume as needed.

Does your audience have out-of-date knowledge?
Technology moves incredibly fast. If information has changed, provide compari‐
sons of new and old and explain the advantages and disadvantages of these
changes.

In addition, asking yourself questions about what your audience needs will help you
plan and structure your article or documentation:

What is your audience trying to accomplish?
This is what you will enable them to do through your writing. Are they develop‐
ers needing to know how to implement your architecture? Customers wanting to
learn to use a new feature in your software? You can structure your answer to this
question by completing this sentence: After reading, the audience will be able to…

What does your audience need to learn to accomplish their goal?
This is the difference between their current knowledge and what they need to
know to accomplish their goal (the answer to the previous question). The answer
to this question is what you must teach in your writing. You can structure your
answer by completing this sentence: After reading, the audience will have
learned…

Does your audience need to do this in a certain order?
Your answer will determine how you structure your writing. If your audience
needs to follow steps in a certain order, you will need to use a numbered list and
put instructions in that order. If your audience needs to know one step before
they can be taught another, you should sequence your writing with that in mind.

With these answers, you can decide what information to include in your writing and
how to structure it to meet the needs of your audience.

Tips for Technical Documents
Besides all the tips and techniques in this chapter that you can apply to the writing of
your documents, here are some tips about the content to include in a technical
document:

Begin with the key points
Put your key points or takeaways up front. Readers may read only the first page
or first few paragraphs but should still leave knowing the most important
information.

98 | Chapter 7: Written Communication

State the scope
By stating the scope of the technical document, you set the reader’s expectations
of what will be included if they read on. This can save the reader time by helping
them to find the document with the information they want and to avoid reading
a document that they are not interested in.

State the nonscope
If the reader might expect a topic to be included, but it isn’t, telling them so right
from the start will save them time or disappointment later. If the topic not cov‐
ered is available somewhere else, you can link to it for reference.

State the intended audience
This information helps the reader decide whether they should be reading the
document. Without this, some intended readers may skip the document, and
other readers may waste time reading something that doesn’t meet their needs.

State required prerequisite knowledge or reading
Tell the reader anything that is out of this document’s scope that they will need to
know or understand before reading the document. Link to resources and
required reading if possible.

Summary
The techniques you have learned in this chapter can be applied to all your writing,
including emails and other communications, documentation, and the labels and
other text in your diagrams. Improving your writing affects a lot more of your com‐
munication than you might think.

The other main ways that you communicate are verbally and nonverbally, which
complement each other and your written skills. In the next chapter, you will discover
techniques to improve verbal and nonverbal communication, both in your under‐
standing of others and others’ understanding of you.

Summary | 99

CHAPTER 8

Verbal and Nonverbal Communication

Verbal and nonverbal communication are important aspects of any technical profes‐
sional’s job, whether you are working onsite or remotely. Nonverbal communication
covers not just body language, gestures, and facial expressions, but also eye contact,
tone of voice, personal space, touch, appearance, and the use of tools and props.

Communication is essentially encoding a message to send and decoding a message
received. Just like in a software system, the decoded message needs to match the
encoded one for communication to be considered successful. The patterns in this
chapter will improve your encoding and decoding skills, along with your skills of per‐
suasion and influence, which are often the goals of your communication.

Encoding Messages
Communication can be one-way, when a response is not required, or two-way, when
the recipient responds to the initial message. In both cases, that message must always
be encoded, or packaged, so that the recipient can then decode it. The trick is getting
the encoding right so that your message is understood as you want it to be.

Using the Acceptance Prophecy
Start thinking about how your message will be packaged up for your recipient to
understand before you begin communicating. The acceptance prophecy is one of the
first patterns you can put into practice. It states that when you think others will like
you, you behave more warmly toward them and, therefore, they like you more. The
opposite is also true: if you think someone won’t like you, you will behave more
coldly toward them, making them less inclined to like you.

It’s a self-fulfilling prophecy, and it makes a lot of sense if you think about how
friends or enemies act toward each other. Some people care more about others’

101

1 Ambady et al. “Toward a Histology of Social Behavior: Judgmental Accuracy from Thin Slices of the Behavio‐
ral Stream,” Advances in Experimental Social Psychology 32 (2000): 201–71, https://doi.org/10.1016/
S0065-2601(00)80006-4.

2 Danu Stinson et al., “Deconstructing the Reign of Error: Interpersonal Warmth Explains the Serl-Fulfilling
prophecy of Anticipated Acceptance,” Personality and Social Psychology Bulletin 35, no. 9 (July 2009), https://
doi.org/10.1177/0146167209338629.

acceptance of them, and some are naturally more accepting, but research has shown
both that people respond better to others who are genuinely warm toward them and
that people anticipating others’ acceptance act more warmly toward them.1,2

Becoming a social optimist, as opposed to a social pessimist, is a technique that can
boost your credibility and the likelihood of you succeeding in your communication
goals. When presenting your architecture designs to stakeholders, you should start by
convincing yourself that the people in your audience are your friends and will
approve of your design (of course, it is also important to plan for questions or misgiv‐
ings they may have). If you are talking to a customer in presales, you can follow the
same pattern, convincing yourself that they will like the product and want to buy it.

This won’t come naturally to many and won’t happen overnight, but you can keep
practicing until this self-fulfilling prophecy regularly comes true.

Giving Your Full Attention
Another way to connect with the person or people you are talking to is to ensure you
are giving your full attention. This has many benefits, including making them feel
more respected and appreciated, which boosts the likelihood that they’ll agree with
you, or do what you want them to. Your audience is also more likely to reciprocate
and give their full attention back to you and what you are saying, making them more
likely to understand your message. You boost your credibility and build an emotional
connection with them. You can also benefit by picking up more of their body lan‐
guage and other signals, and what they are saying themselves.

When you have a 1:1 meeting with your manager or direct report, this technique is
particularly useful. The goals of a 1:1 meeting may be to give or receive support, or to
convince your manager of the promotion you think you are due. To show that you
are giving someone your full attention, try the following:

• Give eye contact (unless it’s not appreciated, in which case, focus on something
like notes instead), and don’t let your gaze wander into the distance.

• Don’t use your phone or laptop while they are talking.
• Take notes using a pen and paper.

102 | Chapter 8: Verbal and Nonverbal Communication

https://doi.org/10.1016/S0065-2601(00)80006-4
https://doi.org/10.1016/S0065-2601(00)80006-4
https://doi.org/10.1177/0146167209338629
https://doi.org/10.1177/0146167209338629

• If you have to take notes on a device such as a tablet or laptop, tell them that this
is what you are doing so they don’t think your attention is elsewhere

• Turn off notifications on your devices.
• Don’t interrupt when they are speaking.
• Ask clarifying questions when needed.
• Repeat your understanding back to them to ensure you have understood.

Other situations when these techniques are particularly useful include talking to
stakeholders or customers about their requirements, to potential investors, or to cus‐
tomers about potential sales.

Using Body Language and Gestures
Body language plays a large part in communication when you are visible to your
audience. This includes facial expressions, posture, and gestures. Keeping this in
mind, you can use deliberate body language to add to the message you are
communicating.

Gestures, which are mostly made with your hands, are one of the easiest aspects of
body language to control and use to your advantage. Hand gestures come naturally
and are used even by blind people talking to other blind people. Gestures can help
you remember what you say and encourage others to listen to you.

Besides using body language to express yourself, you should be
monitoring others’ body language and adapting to it. For example,
if you see a nervous reaction, you can provide reassurances and
explain further.

Explanatory gestures (such as holding your hands out wide when communicating that
something is large) can help people better understand what you say, whereas power
gestures (such as stabbing a finger forward for emphasis) express dominance and
authority. It is important to use all gestures carefully so that they work toward your
goals and not against them. Here are some tips for doing so:

• Keep gestures within the rectangular space from the top of your chest to your
hips and about half your body width to either side of you (see Figure 8-1). Ges‐
tures outside of this can be seen as over-the-top, aggressive, or out of control.

• Match your gestures to what you are saying and make them purposeful.
• Be wary of different cultural meanings of hand gestures.
• Find a balance between being stiff and being too fast or gesturing too often.

Encoding Messages | 103

• When using gestures remotely, consider the framing of your camera. Make your
gestures even smaller than you would in person; they can look more exaggerated
on a screen.

Figure 8-1. Keep gestures within the rectangular space from the top of your chest to your
hips and about half your body width to either side of you

Here are some gestures you can use and examples of when you might want to use
them. The first three are illustrated in Figure 8-2:

• A clenched fist shows intensity. You may want to use this when communicating
the success of a project or pleasure at something going well. Be careful to not use
it when sounding irritated; that would signify anger or aggression.

• Using your index finger and thumb to indicate a small gap is a great way to
emphasize that something is small, has little effect, or was “so close.” Use this to
emphasize small problems or trade-offs, or when a goal was nearly met or a dis‐
aster was close but averted.

• As you are listing things, you can use your fingers to count them off. This is par‐
ticularly appropriate when you have said something like “We found three impor‐
tant benefits…”

• A sweeping motion with both hands, from one side of your body to the other,
can be used to indicate wiping the slate clean to start again. You might want to use
this when communicating the need to rearchitect a product when moving to the
cloud, for example.

• Putting both your hands up can indicate concession or apology. This is useful
when you want to emphasize the sincerity of your verbal concession or apology.
When you are saying something sarcastically, you can pair this gesture with wide
eyes.

104 | Chapter 8: Verbal and Nonverbal Communication

3 The two-system model is an abstraction of the more complex and nuanced human cognition system.

Figure 8-2. Examples of hand gestures

Use gestures even when others cannot see you, such as in a phone
call or audio-only meeting. Your body movement impacts the
sound of your voice, so using gestures will make you sound more
natural and better convey your meaning.

Aim to implement these encoding techniques one or two at a time, and they will
become natural as you practice them more and more.

Decoding Messages
Receiving a message is not enough. To understand it, you need to decode it. And to
do that, you will use your senses and your brain.

In Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011), Daniel Kahneman
explains that the brain has two systems, which he calls system 1 and system 2.3 Your
system 1 does most of your thinking subconsciously, driven by your experiences and
instinct, and will act on and decode the messages you receive and pass the results to
your system 2. System 2 is the rational and logical part of your brain, but it is influ‐
enced by the decisions made in system 1.

You can end up acting on the decisions of system 1 without engaging system 2 much,
which happens more often when you are communicating in real time and need to
decode messages faster and respond. When you are not communicating in real time,
you have more time to engage system 2 and make a more reasoned response.

Overreliance on system 1 can lead to biases and errors in judg‐
ment, while overuse of system 2 can lead to analysis paralysis (over‐
analyzing or overthinking). We need both systems to function well.

Decoding Messages | 105

4 I recommend reading these books on cognitive bias: Thinking, Fast and Slow by Daniel Kahneman, The Art of
Thinking Clearly by Rolf Dobelli (Harper Collins, 2013), and Nudge: The Final Edition by Richard H. Thaler
and Cass R. Sunstein (Penguin, 2021).

5 ADRs are a type of documentation for recording architectural decisions, which I will cover more in Chap‐
ter 12. See “ADRs” on page 169 for templates and examples.

Battling Bias
Cognitive bias can affect your decision making and reasoning even if you do engage
your system 2, but it can have a profound effect if you use only your system 1. Cogni‐
tive biases are unconscious errors in thinking, essentially simplification errors, in the
same way that you may find early optimization of your code causes errors later. These
biases can affect your interactions with others, your judgments, and even your own
safety.

It is unlikely you can ever be free of cognitive bias, but being aware of your biases is
the first step toward lessening their effects on your decision making. You can train
yourself to use new patterns of thinking by doing the following:

• Recognize and learn about your biases. Research the types of cognitive bias and
how they affect people.4

• Slow down your decision making. For example, document important decisions
by using architecture decision records (ADRs) so that the template forces you to
think carefully and not make a rushed decision.5

• Consider when biases might affect you and create prompts to remind yourself to
pause and consider how you are being affected (for example, you could add
prompts to an ADR template or interview feedback form).

• Minimize distractions when you are making decisions or decoding messages; for
example, don’t read an email while listening to a podcast.

• Ask for feedback and advice from others so that you can take other perspectives
into account.

When considering feedback or advice from others, remember that
they also have cognitive biases. If they are the same as yours, you
can both fall prey to confirmation bias!

I encourage you to learn more about all the types of cognitive biases, but let’s briefly
look at three of the most common ones.

106 | Chapter 8: Verbal and Nonverbal Communication

Confirmation bias
In confirmation bias, you interpret new information as confirmation of your existing
beliefs and opinions. Your brain is more likely to process information that supports
your beliefs and label it as true. You should be very aware of this when you’re online
because many search and social media algorithms have developed to show you
exactly what you want to see, creating a search bubble or echo chamber in which you
rarely, if ever, see anything that challenges what you already believe. It is easy to see
how people can be fooled by misinformation when it is echoed back at them from all
sides.

Be aware of confirmation bias when researching new technology,
creating an ADR, or attending a conference. Just being aware that a
conference could become an echo chamber can help you to be
more discerning about the information you take in. Look for per‐
spectives that you don’t agree with and make a note of them. They
may turn into an interesting new avenue for you.

Hindsight bias
Hindsight bias is the tendency to perceive past events as more predictable than they
were. This bias can affect you at the following different intensities:

• Predictability is a low-intensity hindsight bias. If you’re thinking “I knew that
upgrade would make things worse,” you might be exhibiting this bias.

• Inevitability is a mid-intensity hindsight bias. It could manifest in thoughts like
“That upgrade just had to make things worse.”

• Memory distortion is a high-intensity hindsight bias. For example, “I said apply‐
ing that upgrade would make things worse” when no one said anything of the
sort indicates a distorted memory.

It can be easy to fall prey to this bias when things go horribly wrong or incredibly
well, or when a client changes their mind about something.

Groupthink
Groupthink occurs among a group of people in which the desire for harmony or con‐
formity results in a flawed or irrational decision making. Members of the group may
not express dissenting viewpoints, fail to critically analyze alternatives, or ignore out‐
side perspectives to reach a consensus. Groupthink can hinder creativity and innova‐
tion and is often associated with poor decision making.

Decoding Messages | 107

The training of large language models can be easily affected by bias.
Consider that these models know only what they have been trained
on, and so any bias in the training data will lead to bias in outputs
from the model.

EXAMPLE

Gino Embraces Disagreement
When creating ADRs at Polyglot Media, Gino always adds the heading “Consultation”
and asks for input from a range of people on the rest of the content of the ADR.

He selects a diverse group of people in hopes of recognizing more biases, but who he
selects varies depending on the type of decision. The diversity covers role (such as
architects, product owners, or developers) but also demographic differences such as
age, gender, experience, and tenure in the organization.

Gino has seen how these factors, and others, can lead to new perspectives on a tech‐
nology or a decision that will affect a downstream team. He says the worst thing that
can happen is everyone agreeing with him.

Being Present
To give yourself the best chance of decoding a message, stay present in the moment
and put your own views and biases aside (such as dislike of an architectural style or
cognitive biases). This is a skill you will need to practice but is incredibly useful when
you need to understand someone (such as a customer, internal user, your report, or a
colleague).

To be present in a situation, follow these tips:

• Don’t assume you know what someone is going to say. This can mean you miss
what they actually say and figuratively “put words in their mouth.”

• Put aside any ideas about their intentions or judgments about them. This can
help avoid confirmation bias.

• Use listening noises such as mmm and body language such as nodding, smiling,
or putting your head to one side to emphasize you are listening closely.

• Let go of your own viewpoint and ego to better focus on them and their message.
• Don’t interrupt or seek to challenge what they say, and instead use clarification

questions once they have finished to clear up anything you don’t understand or
think is missing. Asking questions and fully exploring a person’s ideas can be a
way of taking them through the thought processes that support your own
argument.

108 | Chapter 8: Verbal and Nonverbal Communication

• Pay attention to their body language to understand their message more clearly.
Look for mismatches between body language and their words to identify any‐
thing that may not be true or the whole truth. This could warn you when some‐
one is being manipulative or when they are scared of telling you something.

• When they have finished, and you have asked any clarifying questions, summa‐
rize what they have said to you to make sure you have understood correctly.

• Finally, decide the next steps to take, depending on the message you have been
given.

Many of these techniques fall under the heading of active listening,
where you go beyond just hearing what is said. You become an
active participant and seek to understand what is said. Active lis‐
tening can improve the comprehension of all participants, not only
your own.

Awareness of Cultural Differences
Cultural differences can disrupt the accurate decoding of verbal and nonverbal com‐
munication. It can be hard to remember that not everyone is like you and that even
people from the same country can have very different cultural backgrounds. Age,
gender, gender identity, sexuality, and race are among the factors that make us differ‐
ent from one another. Our backgrounds influence how we communicate—how we
encode and decode messages. Differences in the interpretation of a word or gesture
can make a huge difference in whether communication is successful.

When you are communicating with people whose background differs from yours,
which is more and more likely as workforces become more distributed and diverse,
find out about important differences and things that may inadvertently offend. You
can do this by researching, but asking questions of the people you are communicating
with will often get you there faster.

In some cultures, confrontation or expressing disagreement in public is seen as rude
or aggressive, whereas in others it is perfectly normal. Another cultural business dif‐
ference revolves around the boss; some people support their manager at every step
and never contradict them, whereas other cultures support a much flatter hierarchy
that encourages speaking your view.

From this, you may think that diversity negatively affects a team or its output, but
research and analysis has shown that “contextual diversity can positively affect task

Decoding Messages | 109

6 Vasyl Taras et al. “Research: How Cultural Differences Can Impact Global Teams,” Harvard Business Review,
June 9, 2021, https://oreil.ly/5y22b.

performance.”6 Taras et al. found that teams with members who had been exposed to
a diversity of institutions, politics, and economics (termed contextual diversity) had
advantages in problem solving, decision making, and creativity.

In contrast, the same research showed that “personal diversity”—differing character‐
istics like age, culture, and language—“can negatively affect team climate.” This shows
that culture and other personal diversity must be taken into account for communica‐
tion to be successful, but diversity of experience is overall positive.

Aim to create relationships with offshore teams, colleagues in other countries, and
colleagues who differ from you to foster an environment of understanding. Keep in
mind that differences in culture can affect a team’s success. Learning about each other
and each other’s cultures will help to mitigate this.

Diversity has been shown to improve creativity and even a company’s bottom line, so
avoiding miscommunication with others who have a different personal background
from you will help your company in the long run by making it a place where diversity
can thrive.

Influence and Persuasion
The art of influence and persuasion is useful not only to sales and marketing. When
you communicate with stakeholders, customers, and colleagues, you are often trying
to influence them or persuade them of something. Maybe you think that something
needs to be changed, that your designs meet their requirements, or that their require‐
ments need to change. You need to persuade and influence others to gain support,
implement your ideas, and achieve your goals. You will also have others aiming to
persuade and influence you.

Although many techniques of persuasion exist, it is important to realize that they
must be used with a foundation of demonstrating value, listening to people’s needs
and feedback, and coming up with useful ideas and compromises. Your ideas and sol‐
utions need to be aligned with your audience’s goals to be persuasive. Aligning the
goals of the project, program, and so on to others’ goals will incline people to agree
without the need for many (if any) persuasive tactics.

Ideally, you should do as much discovery work in advance as possi‐
ble so that you can develop your ideas before being in a live situa‐
tion with your audience.

110 | Chapter 8: Verbal and Nonverbal Communication

https://oreil.ly/5y22b

People will generally resist your proposals and suggestions if they think you haven’t
understood their problems and needs. You must understand their needs and con‐
cerns as well as communicate that you have this understanding. Ask open-ended
questions to get this information and be explicit about how you will solve their prob‐
lems. You need to show them what they will gain (for example, a reduction in techni‐
cal debt).

Remember that persuasion is a process rather than an event. Listening, generating
ideas, and demonstrating alignment of goals and value to your audience all happen
across conversations, meetings, presentations, and other communications. Apply
influence and persuasion techniques throughout your communications with your
audience to improve the likelihood of gaining their approval or agreement.

Stating the most important message first in the form of a headline statement is a good
technique. You can think of it like a newspaper headline, and it should be a similar
length. Use this statement to begin your conversation or meeting, or directly after the
title slide of a talk or presentation. You can also do this in writing—for example, as
the subject of an email or at the top of an agenda.

A startling statistic or fact can be used to create impact, such as
“Every year our software saves thousands of lives” or “This release
increased transaction throughput by 150%.”

Another technique is to use bold words and statements. You need to make an explicit
commitment and demonstrate self-belief to get your audience to also invest in that
belief. To strengthen your language:

• Begin statements with phrases like The plan is… and We will… that contain
strong verbs like influence and optimize. (See “Strong Verbs” on page 95.)

• Avoid words such as try, maybe, and hopefully.
• Use concise sentences and deliberate pauses while avoiding thinking noises such

as um and er.

To put these techniques into practice, say, “The plan is to see results by Q2 next year”
rather than “We will hopefully see results by Q2 next year” when explaining your
designs to stakeholders.

Boost your credibility to gain your audience’s trust. One tool to do this is a credibility
statement or position, which is generally used to introduce yourself and establish
authority from the start. You can see written examples in people’s profiles on sites

Influence and Persuasion | 111

7 Credibility statements are generally overkill in internal meetings or presentations, but a short version may be
useful when in meetings with senior people who don’t know you (such as C-suite executives).

such as LinkedIn or Mastodon. You can also use a verbal credibility statement when
networking or in an external meeting or presentation.7

Include your name and role and then highlight your expertise. Use strong words like
specialist, experienced, or internationally recognized (see Example 8-1). Aim for
around 10 seconds in length when you are speaking at a networking event or in a
meeting and around 60 seconds for an event or conference introduction.

Example 8-1. Start of a credibility statement

My name is Jacqui Read, and I am an internationally recognized consultant, software
architect, and O'Reilly author with over 15 years of experience in software
architecture and development across a range of domains.

When you are communicating to persuade, it is good practice to identify some likely
audience questions or pushback and to plan responses. You will inevitably get ques‐
tions that you haven’t anticipated, so it is important to plan for when that happens.
Here are some things you can do to give yourself time to think:

• Pause and take a breath to give everyone time to process the question.
• Show appreciation that the question was asked. “Thank you, that is an important

topic…” (but don’t overdo this if there are lots of questions—rehearse a few ways
of saying this; for example, “I’m glad you brought that up…”).

• Repeat the question to make sure that you and the rest of the audience heard it.
• Ask a clarifying question if you need to, such as “What recovery time objective

were you looking to achieve?” You can use the answer to improve your response.

You can then give a concise answer, making sure not to show annoyance or defen‐
siveness. If you don’t have the answer, say that you will find out and get back to them
at a later time. Don’t forget to follow through on this promise.

Here are some further techniques for influencing and persuading peers, stakeholders,
and customers:

Reciprocity
People often feel an internal need to reciprocate generous gestures as well as an
external need to be seen repaying a debt. You can take advantage of the expecta‐
tion of reciprocity by being generous; for example, if you offer a free trial of your
software product, your customers might feel like they should give something in

112 | Chapter 8: Verbal and Nonverbal Communication

8 Cognitive reframing is also a technique used by some therapists.

return (subscribe or pay). If you offer to help your peer or manager review their
presentation, you give them reason to do you a favor in the future.

Thoughtful pauses
Many people feel uncomfortable with silence and will try to fill it. Pause and you
may find that silence filled either with useful information or agreement with what
you have said. Silence also gives your audience time to digest what you have said.
You can also use it to emphasize a point.

Give options
Instead of a yes or no (all or nothing) question, give options that will all benefit
you so that you do not mind which option is chosen. Many software licensing
models offer several tiers, giving options to customers. When getting buy-in
from stakeholders on your designs, you could offer two options instead of one.
This gives a sense of control to your audience or recipient. Give only a few
options; the more options someone has, the less satisfied they are by their choice.

Repetition
The more someone hears or thinks something, the more they believe it to be true.
This is related to confirmation bias. Keep repeating what you want others to
believe—for example, about your abilities (to boost your credibility) or the bene‐
fits of your software (to persuade customers). You can build your position itera‐
tively by introducing your position gently and coming back to it again and again.

Cognitive reframing
Cognitive reframing means altering your mindset to look at something from a
different perspective in order to shift thinking and behavior.8 Use cognitive
reframing to take an event or situation (that might be unpleasant or unsatisfac‐
tory) and guide others to think about it differently to move forward or generate
new ideas. For example, “We’ve found that serverless doesn’t meet our needs, and
it’s taken a long time to come to this conclusion, but what have we learned that
will help us to identify what does meet our requirements?” Summarize the situa‐
tion and encourage your audience to think about potential next steps.

Redefining
This is similar to reframing but leads your audience from what they are con‐
cerned with to what you want them to focus on. For example, a stakeholder may
say, “That option will take a huge chunk of our budget,” and you can counter
with, “Yes, this option is costly, but that’s not the priority in this situation. Our
security and compliance requirements are not fully met by the other options and
would leave us open to attack and possibly legal prosecution.”

Influence and Persuasion | 113

Sometimes your efforts to influence and persuade won’t work
because of underlying reasons that you cannot control. A marking
scheme when bidding for a contract may mean you don’t get the
highest score, despite your efforts. The decision maker may have
set end-of-year objectives that conflict with your position. You may
be suggesting the right thing but at the wrong time.

It is possible to combine many of the techniques in this section to become a more
convincing and highly regarded communicator, enhancing your scope of influence in
your organization and beyond. The next chapter discusses more patterns for increas‐
ing your influence in the context of Aristotle’s rhetoric triangle.

Summary
Both verbal and nonverbal communication are important even in individual contribu‐
tor roles (those without management duties). Enhancing these skills with the tech‐
niques in this chapter will help set you apart from others when it comes to
recruitment, promotion, and avoiding redundancy.

You should have a formidable tool set for written, verbal, and nonverbal communica‐
tion from Chapters 7 and 8. Chapter 9 adds further techniques that apply to all of
your communication.

114 | Chapter 8: Verbal and Nonverbal Communication

CHAPTER 9

The Rhetoric Triangle

You may have heard of Aristotle’s rhetoric triangle or its constituent terms ethos,
pathos, and logos. The rhetoric triangle was central to Aristotle’s teachings on the art
of persuasion and was a fundamental tool for effective communication in ancient
Greece. But how is it relevant to an architect or developer today?

At its core, the rhetoric triangle is a framework for understanding the three key ele‐
ments of persuasive communication: ethos, logos, and pathos (see Figure 9-1). Ethos
refers to the credibility and trustworthiness of the speaker, pathos to the emotional
appeal used to engage the audience, and logos to the logical and rational argument
presented. By mastering the balance and interplay between these three elements, you
effectively engage your audience and achieve your desired outcome. Studying the
rhetoric triangle was considered essential for ancient Greek students and remains a
valuable tool nearly 2,500 years later for anyone looking to improve their ability to
communicate persuasively.

Figure 9-1. Aristotle’s rhetoric triangle

115

Ethos
Ethos refers to the credibility, reliability, and trustworthiness of the speaker or author.
In verbal and written communication, ethos can play a significant role in how the
audience perceives the speaker or author and the message they are communicating.

Establish Your Credentials
One way to use ethos in your speaking and writing is to communicate your credibility
to your audience. This can be done in various ways but will involve highlighting your
relevant qualifications, experience, awards, publications, and so forth.

Within your company, you typically do not need to communicate your credibility
directly—for example, with a credibility statement (as discussed in “Influence and
Persuasion” on page 110). Your job title communicates much of what your coworkers
need to know. Building credibility internally is more about the actions you take and
the more subtle things that you say, such as the outcomes of projects you have
worked on or the technologies or techniques you have read about or seen at a
conference.

It is important to avoid coming across as bragging or name-dropping. Talking about
approaches and outcomes is much more subtle than direct statements about work on
a product or at a company. The result of subtle statements should be that colleagues
form good opinions of you.

EXAMPLE

Establishing Credentials at Polyglot Media
When Nikki starts working at Polyglot Media as a software architect, she doesn’t
know any of her coworkers. Only her line manager knows anything about her experi‐
ence from her interview.

As she absorbs information from meetings and conversations, Nikki makes relevant
comments about her previous experience. For example, in a meeting where a col‐
league mentions issues with scaling data stores, Nikki shares a particular method she
used to resolve something similar in a previous role and offers to chat more. She also
posts reading recommendations in a virtual chat channel on other relevant topics.

As Nikki shares information, her new colleagues build a good impression of her expe‐
rience and knowledge. Nikki never has to express her credibility formally.

When giving a presentation, you can establish your credentials with a biography that
you can deliver yourself or have someone use to introduce you. If presenting at a con‐
ference or formal talk, the event’s website and literature would likely also include this

116 | Chapter 9: The Rhetoric Triangle

1 You may want to disassociate any nonprofessional social media accounts from professional ones. For example,
add a professional biography to your LinkedIn account, but give your Mastodon account (where you post
about personal topics) a completely different biography.

biography. You may want to repeat some of this information when introducing your‐
self during the talk, if someone else introduced you.

Whether you present publicly or not, it is a good idea to have a short biography to use
in your social media.1 This can be a headline about yourself and a paragraph of infor‐
mation, a list of the things you do (separated by pipes), and so on.

Credentials aren’t limited to academic qualifications. As a life-long learner in the
technology arena, you might also include the following credentials in a biography:

• Professional qualifications
• Blog posts you have authored
• User groups, meet-ups, or conferences you have spoken at
• Mentorships you have participated in (as mentor or mentee)
• Groups or events you run or organize
• Open source projects you contribute to
• Volunteer work you do
• Recommendations and testimonials from others
• Honors, awards, and competition wins
• Publications you have contributed to

If you are networking, either 1:1 or in a small group, you can estab‐
lish your credentials with a short introduction you prepare and
rehearse in advance. What impression do you want to make? The
answer will help you design an effective introduction.

You can also communicate credibility in some forms of writing. A blog post or article
typically has a short author biography. A book usually has an author biography inside
and on the back cover, establishing ethos as it is perused in a bookshop. When brows‐
ing books online, the buyer is often greeted by a short biography or introduction
along with a description of the book.

Ethos | 117

Use Trustworthy Sources
Another way to establish credibility is to use trustworthy sources for your informa‐
tion and to cite those sources. This has the added benefit of enabling your audience to
find out more. Giving them more value can also improve their impression of you.

When citing sources, it is easy to come across as saying, “I have
read and interpreted these sources for you so you don’t need to
bother,” which can sound patronizing. To avoid this, you can tie in
personal experiences or anecdotes with a sprinkling of quotes, sta‐
tistics, or references. You can also title your citations “Further
Reading” rather than “References.” Show you are open to challenge
and collaboration.

Trustworthy sources include academic journals, reputable experts in the field, gov‐
ernment agencies, and more; for example:

• Books (physical or ebooks) written by respected authors and published by repu‐
table publishers

• News articles from well-established newspapers or news websites
• Professional organizations, such as trade associations or professional societies
• Online databases of academic and scholarly articles, as well as historical docu‐

ments and data, such as ProQuest or JSTOR
• Government agencies that publish reports and whitepapers, such as the Office of

National Statistics in the UK
• Papers or slide presentations presented at conferences or academic events
• Blogs or articles written by reputable people
• Your own experiences and those of credible people you know

Using a variety of sources to back up your message is another way
to add credibility. If more than one trustworthy source supports
your message or argument, your audience will have more confi‐
dence in what you say or write.

To cite your sources in presentations, you can add footnotes to the appropriate slides
and name your sources as you speak. This is preferable to an appendix in a slide deck
because you want your audience to sense your credibility as you speak, not afterward
(and they might not read slide handouts).

118 | Chapter 9: The Rhetoric Triangle

https://proquest.com
https://jstor.org
https://ons.gov.uk
https://ons.gov.uk

2 See Chapter 4 for more on narrative.

In writing, you can also make citations in footnotes or, as with speaking, in the text
itself (whether in the main text or parentheses like these). If your writing appears
online, it is good practice to link directly to any online sources.

When citing online sources, you are referencing content that can
change, whereas a published book or scientific paper will remain
the same. To avoid outdated citations, you can use tools such as the
Wayback Machine. To cite a preserved version of your source (as
long as it allows crawlers), visit the Wayback Machine and enter the
address under Save Page Now. Update your citation with the
address to your preserved web page in the archive. Archive.is is a
similar alternative service.

Anecdotes and real-life stories are effective ways to demonstrate your ideas, designs,
and warnings. People accept narratives much more easily than facts and bullet points,
so use stories as examples when you can to create a bigger impact than you would
with references to studies, books, and so on.2

Be Transparent
Being transparent about your motivations, biases, and conflicts of interest can help
build trust with the audience. You may think that you would need to declare an inter‐
est only if you stand to gain from it, but transparency is also about explaining your
perspective to your audience so that they understand where you are coming from.
Transparency can enhance credibility by, for example, revealing how you or someone
close to you has been affected by the subject you are talking about.

Transparency is more applicable when communicating with those outside your com‐
pany but can still be important within your company. For example, you should make
it clear if you worked for a company that you are now recommending or marking in a
procurement process.

When speaking or writing, you should communicate your motivations to your audi‐
ence. Once they know why you are trying to communicate something to them, they
can use this information to determine the amount of trust to put in you and the cred‐
ibility of your message.

Citations can also improve transparency. In addition to citing sources that back up
your views, cite sources that do not. Doing so communicates that you think your
audience is intelligent enough to form their own opinion and reinforces your confi‐
dence in your position; you think the audience will still agree with you even if they
consume an opposing opinion.

Ethos | 119

http://web.archive.org
http://web.archive.org
https://archive.is

Whether spoken or written, stating your motivations may be a good introduction or
attention-getter. They might also impress or further engage your audience later as a
dramatic reveal. Imagine revealing that the protagonist or villain of your narrative is
yourself or someone close to you. That would dramatically reveal your motivations.

It is highly important to communicate any biases or conflicts of interest to your audi‐
ence. If they know or find out later that you have an incentive, financial or otherwise,
to argue a certain way, then they will lose trust in you.

Declaring a conflict of interest is often a legal requirement in busi‐
ness, finance, and politics, so be very careful to abide by the law.

One way to declare a bias or conflict of interest is up front in your introduction or
early on. This is a good way to make sure that your audience doesn’t get any incorrect
ideas about how you fit in with your message or argument before revealing your con‐
nection. Otherwise, they may feel they have already been misled, and you will lose
their trust.

Avoiding a conflict of interest may be better than having to declare
it. The audience may decide that you are too biased for them to
accept what you say. Would someone else be better placed to write
this blog post or give this presentation?

If you have several topics or subsections in your writing or speaking, but your bias or
conflict of interest applies to only one or a group, you may want to reveal this just
before you speak or write about the relevant topic. Your audience will then know
exactly what your bias or conflict of interest applies to. It is especially important in a
written piece, as your audience might skip to the topic and miss your declaration if it
were at the beginning.

You could also communicate bias via a disclaimer or in your biography. A disclaimer
could appear in your content (such as a statement about earning commission from
clicks on product links in your blog posts) or in your biography (for example, declar‐
ing who you or a close family member works for).

Bias and Conflict of Interest
You may need to declare a bias or conflict of interest about a wide range of things,
including the following:

120 | Chapter 9: The Rhetoric Triangle

Employment or employment relationship
If you have a current or former employment relationship with an organization,
company, or individual that is relevant to the topic you are discussing, you need
to declare it. For example, if you are promoting a product and work for the com‐
pany that makes it, you need to declare your employment relationship.

Financial interests
If you have financial interests that could be impacted by the topic you are discus‐
sing, you need to declare them. For example, if you own stocks in a company that
is involved in a bid you are working on, you need to declare it.

Personal relationships
If you have a personal relationship with someone or an organization that is rele‐
vant to the topic you are discussing, you need to declare it. For example, if you
are presenting a topic that is relevant to a friend’s business, you need to declare
your relationship with them.

Ideological or political bias
If you have a strong ideological or political bias that could impact the impartiality
of your presentation or writing, you need to declare it. For example, if you are
discussing a political topic and have a strong partisan bias, you need to declare it.

Professional association
If you belong to a professional association that could be relevant to the topic you
are discussing, you need to declare it. For example, if you are a member of an
association such as Sherwood Applied Business Security Architecture (SABSA)
and you are discussing security frameworks, you need to declare it.

Demonstrate Your Knowledge
Demonstrating a deep understanding of the topic can help establish credibility and
show that you are an expert in the field. One way to demonstrate knowledge is to use
specific examples or case studies to support your message or argument, showing how
you have applied your knowledge in practice. It is one thing to quote your theories to
your audience but quite another to show your theories working in the real world.

When using technical terms, make sure to use them correctly. A technical review of
your writing or slide deck could help make sure you haven’t mixed up your frame‐
works and your libraries or written the wrong abbreviation or acronym.

Explaining complex concepts on a level that your audience can understand demon‐
strates your ability to translate technical information and shows that you understand
the topic deeply enough to break it into easy-to-understand terms. Trying to make
yourself look clever by bamboozling your audience with technical terminology and
concepts will only lead to miscommunication, which could in turn lead to making the
wrong decisions.

Ethos | 121

As a technical professional, you know the importance of keeping your skills and
knowledge up-to-date to do your job well. Demonstrate that knowledge to your audi‐
ence by discussing developments in the field and the impacts on your work. Showing
a commitment to ongoing learning and professional development reveals the type of
person you are. Dropping references to, and examples of, up-to-date information into
your conversations, talks, slide decks, and writing will show that you are keeping
abreast of current topics.

If you have only a superficial knowledge of a topic, it will likely
come across. When you don’t have much knowledge of a subject,
asking questions and making comparisons may be better than try‐
ing to look like you know more.

Conferences and user groups aren’t just ways to keep your knowledge up-to-date;
they also improve your ethos and demonstrate knowledge. By participating in rele‐
vant events and networking with others, you will absorb more knowledge of new
developments and trends and build your personal brand. Other people who attend
will see that you are improving yourself. You can also refer to and cite talks you’ve
attended or conversations you’ve had. Events, both in person and online, can be a
good source of anecdotes for your speaking and writing. Online conferences and
meetups are examples (and can be great places to start presenting), as are sites such as
LinkedIn and Dribbble.

Pathos
Pathos refers to an emotional appeal, which can be used to connect with the audience.
In verbal and written communication, pathos can play a significant role in making a
message more memorable, relatable, and persuasive.

Tell a Story
Telling a story can be an effective way to make a message more relatable and memo‐
rable, while also connecting with the audience emotionally. You may think that sto‐
ries don’t fit in with your technical writing or speaking, but they can capture your
audience’s attention, keep that attention, communicate concepts, and more (see
Chapter 4 for more on narrative). User stories often include personas, which provide
a background story.

You can use stories to provide real-world examples that support your message. Tell
how another company has used the technology you are proposing to create a success‐
ful product or improve its deployment pipelines. Use the story to illustrate the bene‐
fits and show how shortcomings have been overcome.

122 | Chapter 9: The Rhetoric Triangle

https://linkedin.com
https://dribbble.com

Stories can also help explain complex concepts. Like a longer version of an analogy, a
story can clarify and simplify an idea. A well-crafted story can help the audience bet‐
ter understand the technical concepts by putting them in a relatable and memorable
context.

For good examples of using storytelling in presentations, watch
some TED Talks. They cover a huge variety of topics, including
technical and software topics. Many are short and easy to fit into a
small gap in your busy day.

You can also use stories to give context and background to your message. By setting
the stage for the technical details with a narrative, the audience is better able to
understand the significance and relevance of those details. Why are you communicat‐
ing with your audience? Are you solving a problem? How did that problem present
itself? How does it affect your audience or others? Once you have given your audi‐
ence context, move on to the technical details and how you will solve the problem.

Storytelling builds empathy. Share stories that highlight the challenges and struggles
of users, developers, and other stakeholders. In this way, you humanize your technical
information and make it more relatable to the audience.

Your stories should engage and inspire. Illustrate your message’s affect on the world
and the business to motivate your audience to take the action that you want them to
take (such as signing off on a decision, approving a request for funding, or buying
your product). Stories are a valuable tool in getting what you need from your
audience.

Here are a few types of stories you can use:

• Success stories can demonstrate how a particular solution or technology was suc‐
cessfully implemented by another team or company. These stories can build cred‐
ibility by showing that your recommendations are based on experience and a
track record.

• Failure stories might discuss how a project or solution failed and offer lessons
learned from the experience. You can use this type of story to steer your audience
away from a solution, or as the basis for a lessons-learned session. Communicate
why the failure happened so that your audience is clear on this. See “Lessons
Learned at Polyglot Media” on page 124 for an example of a failure story.

• Use case scenarios describe a typical situation in which the technology or solution
would be used. You can use a use case scenario to help your audience visualize
how the technology would be applied in a real-world situation (preferably the sit‐
uation you want to apply it to, such as within your business).

Pathos | 123

https://ted.com/talks

3 See Team Topologies for further information.

• Clarity stories explain why a decision was made. You can structure these in four
parts:

1. What happened in the past
2. The turning point where change was needed
3. What will be done now
4. What will happen in the future

EXAMPLE

Lessons Learned at Polyglot Media
The main software system at Polyglot Media was once a big ball of mud: one mono‐
lithic system that had grown organically and sat on top of one huge relational data‐
base. The Polyglot Media system was prone to bottlenecks, and responsiveness was
becoming an issue for customers. Development teams struggled to squash all the bugs
and get new features into production within a reasonable time window.

The architects at the time, Vlad and Libby, had learned from reading and conferences
that jumping to a microservices architecture was not a silver bullet. After a lot of
research and prototyping, they decided serverless would meet their needs, along with
polyglot persistence (multiple types of databases). It was a huge undertaking, but the
monolith was broken into many small functions, and the relational database became
eight smaller data stores of varying types.

To avoid having to pause the development of new functionality, they used the stran‐
gler fig methodology to migrate to the new system. At first, the development process
seemed a lot easier; developers could quickly identify where they needed to make
changes and deploy only code that had been changed. But teams started having prob‐
lems coordinating changes with one another, causing merge problems and breaking
changes between functions.

Although serverless yielded cost savings on resources, it turned out that functions
were talking to many other functions, creating a spiderweb of dependencies (an anti‐
pattern known as serverless pinball). The system was distributed, but still tightly cou‐
pled, and the problem with responsiveness had not been solved either. Polyglot Media
now had a distributed ball of mud.

Libby and Vlad were already working on solving the new and preexisting problems
when Nikki joined Polyglot Media to bolster the architecture team. She brought new
ideas about team topologies and agreed that reducing coupling as much as possible
was a good idea.3

124 | Chapter 9: The Rhetoric Triangle

https://teamtopologies.com

4 Conway’s law states that “any organization that designs a system (defined broadly) will produce a design
whose structure is a copy of the organization’s communication structure.” The idea of the inverse Conway
maneuver is to create your team and communication structure in the way you want to design your system so
that the system the teams produce will be as designed.

5 See Figure 12-3 for the ADR for this decision.

The transition is still an ongoing process, but the architecture team realized that, like
microservices, serverless was not a silver bullet. Functions were too small and needed
to talk to too many other functions for it to work for the whole Polyglot Media sys‐
tem. The development teams have become a prototype for applying team topologies
in Polyglot Media, and the inverse Conway maneuver has been applied to support the
composing of functions into larger services that are maintained by one cross-
functional team per service.4 Services and data stores are being composed based on
dependencies, the need for scaling, and other integrators and disintegrators.

An event-based architecture using queues is being rolled out, to reduce the level of
coupling between services and increase responsiveness.5 The first responsiveness bot‐
tleneck tackled using this approach was media activity logging, which was hogging
required resources in the media service.

Speak from the Heart
In verbal or written communication speaking from the heart means being authentic
and sincere. It involves connecting with your audience on an emotional level and
conveying your message with passion and conviction.

An effective method of connecting with your audience emotionally is one we’ve
already discussed: telling personal stories. Stories are important to humans, and shar‐
ing one that is personal to you but also relevant to your message will demonstrate
your authenticity while connecting emotionally. The story doesn’t need to have
involved you directly but should have a connection to you. Do not make something
up and pass it off as true. That is a sure way to lose credibility with your audience.

You can use your voice, body language, and writing to show emotion and communi‐
cate vulnerability. By showing your audience how you feel about your message or
argument, or showing them how you have been affected, they will feel a stronger con‐
nection to both you and your views. The strongest messages are those that show a
personal vulnerability or failure, as opposed to those that make you feel or look good.

Some people put on a pretense and try to be someone they are not
in an attempt to convey their message. Audiences are likely to see
through this and question your authenticity. Be yourself, speak in
your own voice, and avoid using scripted or rehearsed lines that are
not natural to you to make that connection with your audience.

Pathos | 125

Another method is to use concrete examples or anecdotes such as case studies or
interesting use cases. These bring your message to life and make it easier for your
audience to relate to what you are saying or writing. Use this technique along with a
display of emotion to really pack a punch.

You can practice active listening to help connect with your audience emotionally dur‐
ing a conversation, meeting, or talk in front of an audience. You must be fully present,
not daydreaming, glancing at your phone, or checking email on your laptop. When
you show that you are actively listening, you convey the sincerity of your message
and show that you care about what they are saying.

To show you are actively listening, try the following:

1. Listen in full, without interrupting.
2. Ask clarifying questions once they have finished.
3. Summarize their view to them, and let them correct anything you have

misunderstood.
4. Decide what you need to do and how to respond.

Consider implementing these additional active listening tips:

• Make listening noises (uh huh, mmm, and so forth) and use listening body lan‐
guage (head nods, eye contact, and so on).

• Don’t fill their silence; wait for them to continue.
• Read their body language.
• Mirror (copy) their body language.
• Spot inconsistencies, such as saying “yes” while frowning.

Use Vivid Language and Strong Imagery
Using vivid language and strong imagery can help paint a picture in the audience’s
mind and evoke emotions, adding to the emotional appeal of your message or argu‐
ment and also making it more memorable.

One technique is to use sensory language—language that appeals to the five senses
(sight, sound, smell, touch, and taste). As your audience experiences your message
through each of their senses, it becomes more real and far more memorable. When
presenting, you can use sound and visuals along with sensory language.

Metaphors, similes, and analogies, which compare one thing to something else, are
also useful tools. When communicating with stakeholders, you may wish to convey a
strong idea, feeling, or complex concept, and using a metaphor, simile, or analogy is

126 | Chapter 9: The Rhetoric Triangle

an effective approach. Consider the context and audience to make sure that your
comparison makes sense and communicates the idea that you intend.

Metaphors, Similes, and Analogies
Metaphors compare something the audience doesn’t know with something they do
know by saying that something is something else. For example, the development team
is a well-oiled machine.

Similes compare two dissimilar things by saying that something is like something else.
For example, the connections between microservices are like a spiderweb or are as tan‐
gled as a spiderweb.

Analogies compare two things to make a point, but also explain the comparison. For
example, maintaining software is like taking care of a car. You need to keep up with reg‐
ular maintenance tasks to keep the software running smoothly and fix any problems that
arise before they become bigger issues.

Visual aids are another method you can employ. When speaking, you can use visuals
on slides, including videos and animations, but also physical props to demonstrate a
concept. Humans remember visuals better than spoken or verbal ones, so using pho‐
tos, videos, GIFs, or other visuals is more effective than just words.

Physical props can be even more effective than animations or vid‐
eos when presenting to an audience. One of the most memorable
talks I can think of, by Jules May, used physical balls and sticks to
explain how a quantum computer works.

Other useful tools for creating vivid language and strong imagery include the
following:

Personification
Giving human characteristics to nonhuman things can increase empathy with
your audience: the server was so overloaded that it was begging for a break.

Hyperbole
Exaggerated language can evoke strong emotions in your audience: this code is
older than the internet!

Strong action words
Strong active verbs engage your audience in many ways, keeping attention but
also communicating what you really mean (for example, implement, build, test,
debug, optimize, integrate…) instead of weak action verbs (for example, work,
make, show, try…). See “Strong Verbs” on page 95.

Pathos | 127

https://julesmay.co.uk

Emotional words
Words that have strong emotional connotations can elicit emotions in the audi‐
ence and make them more likely to rise to your call to action (such as life-
changing, transformative, innovative, cutting-edge, phenomenal, unmatched, and
unrivaled).

Logos
Logos refers to an appeal to reason and logic that makes a message more convincing.
In verbal and written communication, logos can play a significant role in building a
strong argument and making a message more persuasive.

Use Data and Facts
When presenting your message or argument, you should use data or facts to support
your views. You could include concrete data from reliable research studies, statistics
published by trustworthy sources, or historical facts and figures.

Make sure that any data or facts that you base your views on are
from credible and reliable sources, or that you state any biases, lim‐
itations, or problems with your sources (see “Establish Your Cre‐
dentials” on page 116).

When stating facts or data, cite your sources. When speaking, you may want to just
state the facts or data, but showing the statement or an illustration of the statement at
the same time as stating it can add a huge impact when using visuals such as slides.

In writing, you can state facts and data within text or slides, add data or citations in
footnotes (see Example 9-1), or refer to them in examples, illustrations, or appen‐
dixes. If the amount of data is large, including an appendix is a good way to avoid
breaking the flow of the main text.

Example 9-1. Using footnotes to cite the source of data in the main text

A journal article published in 2020 proposes the creation of a "Phish Scale" to
rate the difficulty of phishing training exercises.¹ As a company, we can...

[1] Michelle Steves et. al, "Categorizing Human Phishing Difficulty: A Phish
Scale," Journal of Cybersecurity, 6, no. 1. 2020,
https://doi.org/10.1093/cybsec/tyaa009

Presenting data and facts can help support your argument and increase the validity of
your message.

128 | Chapter 9: The Rhetoric Triangle

Make Logical Connections
Making logical connections between points can help build a strong argument and
show that your message is reasoned. Besides using varied sources of reliable informa‐
tion as a basis for your message or argument, you should make connections between
them, and between the topics or points you’re describing. This is a similar concept to
connecting data points on a graph to show a pattern.

By making these connections, you show your thought processes and that the basis for
your message or argument is not just disparate data points, but a network of support‐
ing information. It’s like completing a dot-to-dot puzzle for the audience so that they
don’t have to.

The connections you offer must make logical sense to your audience; otherwise, they
will lose faith in your message or even in you. You can do this in several ways:

• Organize your content in a structured and logical manner to help your audience
understand the connection between ideas and how they relate to each other.

• Use transition words and phrases to connect ideas and show relationships. For
example, therefore, consequently, and in conclusion can be used to show the logical
connections between ideas.

• Give examples to illustrate the logical connections between ideas and make con‐
tent more relatable. Narrative and storytelling can be employed here.

• Use visuals such as diagrams and flowcharts to illustrate logical connections
between ideas and make content easier to understand. In a slide deck, you can
add animations and transitions to show connections, alongside other visuals.

Use Reasoning and Argumentation
Using clear reasoning and argumentation can show that your message is rational. It is
one thing to present your audience with the data to support your views, but that data
also requires explanation. Your audience needs to understand your reasoning.

When justifying important choices such as architectural decisions, your reasoning is
important. A couple of techniques are particularly useful here:

Trade-off analysis
When comparing options for a solution, each always has pros and con. By com‐
municating these to your audience, you can show the benefits of the choice made
and the trade-offs that have been accepted as a consequence. You also show how
the other options considered were not the best option.

ADRs
ADRs can be a good place to document your trade-off analysis but also commu‐
nicate more of your reasoning and argumentation. ADRs allow you to document

Logos | 129

a decision with its options and consequences and can be a method for getting
input before a decision is made. In writing, you can include a link to the full
ADR, and in speaking, you can talk about the ADR or show it in parts in a slide
deck. Example 9-2 shows how to structure an ADR, created from personal expe‐
rience and the experiences of others passed on to me (for a full example of an
ADR, see “ADRs” on page 169).

Example 9-2. ADR structure

Identifier & Title - a statement of the decision made

Status
Draft/Decided/Superseded by ADR-XXX

Context
Why you need to make the decision. Assumptions, constraints, and decision drivers.

Evaluation Criteria
What is important to you in making this decision?
Which of your architectural characteristics apply to making this decision?
Should any constraints or decision drivers become a criterion?

Options
Outlines of the options considered against the evaluation criteria (usually using a
score or rating), and trade-offs outside of the evaluation criteria.

Decision
The choice that was made and why.

Implications
The positive and negative consequences of the decision made.

Consultation
If taking input from others, they should document it here. Details of those invited
to give input can be recorded, whether they provide input or not. Although
consultation takes place before a decision is made, it is documented at the end
because it can become long and obscure the decision itself.

These techniques are also useful for addressing counterarguments and responding to
objections. By explaining your reasoning, you demonstrate a thorough understanding
of the topic and increase the credibility of your message.

Consider objections and counterarguments that your audience may
have and be prepared to respond using reasoning and argumenta‐
tion. You will not be able to predict all the issues that are brought
up, but being prepared for most of them will give you the thinking
space for any surprises.

130 | Chapter 9: The Rhetoric Triangle

ADRs and trade-off analyses highlight counterarguments or issues to your audience
before someone else can bring them up. Preempting counterarguments strengthens
your arguments by showing why alternative solutions were discounted. ADRs have
value long after the decision in question is made. They are the story of the decision,
which can be retold however many times and to whoever needs to understand it.

In writing, you could respond to counterarguments by using the previously men‐
tioned trade-off analyses and ADRs. Another option is to include a frequently asked
questions (FAQ) list with your own counterarguments to questions and objections
that you predict. This has the added advantage of not having readers ask the same
question of you over and over again.

When speaking, you should script and rehearse answers to the objections that you
predict. How much preparation you put into this will depend on how important the
outcome is to you.

Objections can be subjective. An objection such as “it is too slow to
implement” may prompt you to revisit your decision criteria, but it
could also represent a difference of opinion.

Summary
You now have techniques to increase your trustworthiness and the value of what you
communicate. Did you think, before you read this chapter, that knowledge from over
two thousand years ago could be so helpful to you today? Recording and sharing
knowledge has been key to developing human civilization, and yet it is not given pri‐
ority when it comes to architecting and writing software.

The word documentation often causes people to involuntarily shudder or show some
similar form of body language (which you may pick up on better now that you’ve
read Part II). Part III will help you feel differently, reduce this reaction in others, and
curb anxiety over how to document, what to document, and how to create a reserve
of knowledge that is useful and accessible.

Summary | 131

PART III

Communicating Knowledge

Most people think that knowledge management in organizations and technical teams
means documentation, but that is only part of what you need to communicate knowl‐
edge. Your team and organization’s collective knowledge, including knowledge about
your product or project, must be managed and guided to remain up-to-date, avail‐
able, and accessible to the right people.

In Part III, you will learn the overarching principles of good knowledge development
and management. Properly capturing and maintaining knowledge, and leveraging
people, will enable you to get the best return on your investment in knowledge and
documentation.

Chapter 10 will take you through some high-level patterns and principles to enhance
your knowledge management and documentation. Chapter 11 gives you patterns and
techniques to leverage people to improve knowledge development and management.
Chapter 12 has patterns and methods for making the architecture practices that you
use for knowledge management more effective so that you aren’t just going through
the motions without reaping the benefits.

Apply the patterns, principles, and practices in Part III to your team, department, and
organization to optimize your collective knowledge and improve productivity and
innovation.

1 The frameworks from Azure, AWS, and GCP allow you to consistently evaluate your architectures against
cloud best practices and are maintained by cloud providers.

CHAPTER 10

Knowledge Management Principles

When creating software architecture, you adhere to principles both explicitly and
implicitly. Your company may have explicit principles that you need to comply with,
such as security and architecture principles or coding patterns and principles, or you
may be following a well-architected framework such as those from Azure, Amazon
Web Services (AWS), or Google Cloud Platform (GCP).1 Other principles are implicit
and may not be adhered to uniformly or even well-known. These tend to be individu‐
als’ lessons learned.

This chapter discusses principles for improving your knowledge management and
documentation, which I hope you will make explicit in your work.

Products over Projects
You have probably noticed that many companies organize their people and work
around projects. Budgets are allocated to projects, and knowledge management is
based on projects as well. But projects are transitory—a lot more transitory than
products, which often have contributions from more than one project.

What happens to all the knowledge associated with your project when it ends? If doc‐
umentation is organized by project, that knowledge is likely difficult to find and easily
forgotten or even lost. But if your documentation is organized by product, you should
be able to find the knowledge easily and reference or reuse it in other projects. This is
a major difference between a project mindset and a product mindset.

135

https://oreil.ly/DfBrq
https://oreil.ly/-1k0j
https://oreil.ly/V3tY3

Project Mindset
During the initial development of a product or capability, you will collect many arti‐
facts that contain key information, including high-level requirements, domain analy‐
sis, ADRs, and other important knowledge.

Now imagine a new project is created for a new iteration of this product. Then after
that, another project. If your knowledge is stored by project, you will have several
problems:

Finding the documentation
At the very least, you will need to find the documentation for the previous
project(s). Depending on how documentation is stored at your company, this
could take anywhere from a few minutes to several weeks.

Knowing whether prior documentation exists
The team working on the new project may not know if documentation exists
from the past project(s) or even if a previous project existed. This is particularly
common beyond the second iteration of the product. How do you know there is
knowledge to be found?

Imagine your new project is changing your product, but the team has no information
as to why certain decisions were made, what the original requirements were, how the
CI/CD pipeline works, and so on. Because of this lack of information, the new project
will likely break something without the team realizing, be that code- or requirement-
based.

Some knowledge and documentation are pertinent to only a partic‐
ular project. This type of information should still be stored in line
with the product; you never know when it may be relevant. You
don’t want to be hunting around for it when needed.

Product Mindset
Switching to a product mindset and organizing knowledge by product improves the
discoverability of documentation. Teams working on new projects can find all prior
documentation about the product they are working on.

Besides improved discoverability, organizing knowledge by product has other
advantages:

Long-term focus
A product-centric approach encourages thinking beyond the immediate project
and focusing on a long-term view. This can mean the software is designed to bet‐
ter meet changing needs. In a project mindset, the focus is more on meeting

136 | Chapter 10: Knowledge Management Principles

deadlines. You may end up working on the next project, so you can thank your‐
self later for planning for the long term.

Collaboration and reusability
Collaboration and reusability improve with a product mindset, especially when
there is more than one project or team working concurrently on a product, but
also across sequential projects and product portfolios. People working on other
products or in other parts of the business can more easily reference knowledge
that is organized by product rather than multiple projects.

Consistency across products and projects
Templates and standards can emerge from best practices when everyone has visi‐
bility into products, including those they are not directly working on. This leads
to consistency across products and projects, reducing both the learning curve
when people move between them and the costs through solution and tool reuse.

Visibility
Organizing knowledge by product gives a holistic view of a product, rather than
blinkered snapshots (or duplication of artifacts), which is what you get from a
project-centered approach. With a holistic view, you can better see the impact of
changes and identify areas for improvement.

Customer focus
Focusing on the product also lends focus to the customer who uses the product.
Knowledge of customer needs does not get lost when a project ends; it gets
picked up by all projects or teams working on the product.

Continuous improvement
A product-centric approach encourages continuous improvement and evolution
of software over time because of the holistic nature of the information. It is easier
to identify areas for improvement and make incremental changes over time.

The way you go about organizing knowledge by product will depend on the tools
available to you, the size of your company, and other factors, but the key is to have a
consistent and easily accessible method so that all relevant information is available,
up-to-date, and easy to maintain.

Organizing knowledge artifacts by product doesn’t mean you lose the link to projects.
Take a look at Figure 10-1 to see some artifacts organized by product. They are also
referenced by projects and can be referenced by more than one project where
required to create a constellation of artifacts. “Abstractions over Text” on page 140
will go further into referencing and reuse.

Products over Projects | 137

2 This might include a knowledge base, documentation of code that is stored in a repository, or user documen‐
tation published online.

Figure 10-1. Knowledge artifacts organized by product and referenced by projects

When considering the structure and classification of documenta‐
tion, you should integrate relevant concepts and standards used
across your organization, such as internal product IDs or terminol‐
ogy from an ISO accreditation.

Here are some suggestions for methods of organizing knowledge by product:

Centralize documentation
Create a centralized documentation portal to ensure that all knowledge is stored
together, and organize this by product. If any knowledge cannot be stored there,2

ensure that the documentation portal links to it, and link to the portal from the
external documentation too, if possible.

Tag
Folders are an outdated system because they force an artifact to belong in only
one place. An artifact can have multiple categories and therefore can have multi‐
ple tags. You can add tags to group artifacts by product. You can then add other
tags, such as the project name or the artifact type, to group artifacts in other
ways. Tags can be used in many knowledge management systems available at the
moment. Avoid systems that allow only folders and hierarchies.

138 | Chapter 10: Knowledge Management Principles

Use folders and hierarchies strategically
If you are using folders, or don’t have the option to use tags, organize by product
at the highest level possible to gain the most holistic view of your products. If you
have to organize your products under another level of folders, such as by depart‐
ment, you lose that overview.

Use metadata
Metadata is information that describes other data, such as the content of a web
page, a document, or image. Tags are a common type of metadata, but should be
used along with other types where possible. If you use tags to describe every
aspect related to your artifact (products, projects, type of artifact, author, and so
forth), it can become a big mess. If you have metadata that specifically states
these pieces of information as keys and values, the information is much clearer.
Many knowledge management applications, wikis, or file systems, such as Con‐
fluence, Microsoft SharePoint, and Obsidian, either use metadata behind the
scenes or allow you to add and edit it. (See Example 10-1.)

Use a perspective-driven approach
Organize documentation into perspectives that address a stakeholder concern
(see “Perspective-Driven Documentation” on page 146 for more on perspectives).

Example 10-1. YAML metadata

product: "My Cool Product"
author: "Kate"
project: "Project Trilby"
type: "requirements"
tags:
 - tag1
 - tag2

If you are working on a project that spans products, you can still
apply product over project by using tags and/or a perspective-driven
approach. At a basic level, you can create a project dashboard that
links to knowledge in each product involved. This could be a page
in Confluence, links in a Markdown document, a SharePoint page,
or links to files in a folder.

Products over Projects | 139

Abstractions over Text
When communicating about software architecture, presenting information visually
while abstracting some of the detail is usually more effective than presenting para‐
graphs of text. Even if all your information could be text, it isn’t the most effective
way to communicate. Visuals cannot, and should not, replace all textual information,
but humans process visuals and text very differently.

Accommodating all of your audience’s needs in documentation can
be hard. Even when your audience is quite narrow, individuals can
have different objectives (such as learning from scratch or refresh‐
ing their knowledge). Making detailed content optional, along with
abstractions, can help. See “Tips for Technical Documents” on page
98 for more tips on documentation content.

Lists
Some information is most effectively presented in bullet points or an ordered (num‐
bered) list. List items are useful for summarizing information. They can be short and
to the point, pushing important ideas to the forefront.

Readers will often read lists even if they scan the rest of the content. Lists can also
persuade the reader to read the paragraphs around them. The space around list items
also provides readers with a visual break, encouraging them to read on, which can be
useful if you need to communicate a lot of information (such as in a whitepaper) and
keep your reader interested.

Here are some tips for using lists:

• Start with your most important point. If your reader doesn’t finish reading your
list or is scanning it, they should still consume your most important statement.

• Begin each list item with the same part of speech for smooth reading (such as all
nouns, verbs, or adjectives). It doesn’t really matter which part of speech as long
as it is the same.

• Use numbers only when order is important—for example, to indicate steps in a
process or recipe, or to count. The reader will ascribe meaning to numbers even
if there is none.

• Aim for each list item to be around the same length as the others in the list. Var‐
iation stands out as a distraction.

• Emphasize the first statement or sentence when a list item is a few sentences long
or when the first statement is being expanded upon (for example, by italicizing it)
so it stands out for a reader who is scanning.

140 | Chapter 10: Knowledge Management Principles

• Limit each list item to a few sentences. Any more than that and you should con‐
sider either summarizing to make it shorter or using paragraphs instead.

• Add extra space around list items if you have more than two. Negative space is a
visual break, which readers need more when a list is long.

• Use consistent capitalization, punctuation, and grammar for list items. Failure to
do so will make it harder for your reader to consume the information.

• Use sublists carefully because they can become visually confusing. Sublists should
do the following:
— Abide by the same rules as the main list
— Use a different symbol or numbering system than the main list, and/or be

obviously indented

You may be thinking that it would be nice to see some examples of
these tips on lists. Look more carefully at the preceding list; it fol‐
lows all the advice given, except for emphasizing the first statement
(which is done using italics with indentation elsewhere in this book
when the list items are more than a couple of sentences long).

Tables
Tables are a useful way to present information that would take a lot of paragraph text
to explain, isn’t appropriate to make into a diagram, or is relational. They are also an
alternative to including a chart or graph. You may not be restricted to using a simple
table with text and could highlight data by using color and/or pattern to add to or
emphasize your message.

Tables are inappropriate when the information could be quickly
summarized or when the table would require too much explana‐
tion in accompanying text to be efficient. Tables are good for dis‐
playing repeated information; use paragraphs for irregular
(nonrepetitive) content.

Tables are efficient in the following situations:

• Presenting data with details that would be lost in a chart or graph
• Showing exact values, which would not be seen on a chart or graph
• Comparing data points, because your reader can do a side-by-side analysis
• Considering accessibility, when graphs and charts may not be readable by some

of your audience

Abstractions over Text | 141

Here are some examples of appropriate table use in software architecture:

Requirements traceability matrix
Connecting requirements to the component that satisfies them

Component interface specification
Documenting the interfaces between design components

Performance metrics report
Showing data such as response time, resource utilization, and so on

Testing matrix
Documenting testing scenarios and results for each component or subsystem

Stakeholder analysis matrix
Documenting stakeholders along with their interests, concerns, and so on

Communicating metrics
Displaying metrics in groups or multiple units

Here are some tips for creating tables:

• Introduce the table with a sentence that gives the audience context, ending with a
colon.

• Give columns meaningful and concise headers that visually contrast with the
table content (such as using bold or a larger font). Apply this to row headers
where needed.

• Restrict each column to one type of data (such as price or country).
• Limit table cells to two sentences (consider using a list instead if you need to

include more information).

Remember that your audience may access your documentation in
different ways. A table that is easy to consume on a typical com‐
puter monitor may not work well on a tablet, phone, or even
laptop.

Visual Abstractions
One reason for using visuals is to abstract away information to make your message
easier to consume. You might use a star rating alongside a numerical score, for
example.

Stars are usually used to show an integer score of 0 to 5 (as in Figure 10-2) but can be
adapted to show a floating-point score (for example, 3.6/5) by showing partial stars,

142 | Chapter 10: Knowledge Management Principles

or show a score out of 10 by representing each number as half a star. Showing more
than five stars isn’t effective as it is hard to see the numerical meaning at a glance.

Figure 10-2. Star rating of four out of five

The stars in Figure 10-2 are designed to meet WCAG guidelines for
nontext contrast. Notice that the border on the colored stars is
thicker than on the empty (white) star. This is to ensure that any‐
one who cannot see the difference between yellow (or gray) and
white can still see that four stars are highlighted. For more infor‐
mation, see the WCAG Non-text Contrast guidelines.

Harvey balls (shown in Figure 10-3) are another method of visually abstracting a
score or five-point scale. They are commonly used to show the degree to which some‐
thing meets a criterion, so they can be a useful tool when evaluating options (for
example, in an ADR). An important benefit to Harvey balls is that you use only one
to communicate a value. This makes them much easier to fit into a table or restricted
space than five stars. Bear in mind that determining which color is representing
which data can be confusing. To make the meaning less ambiguous, fill the ball in a
clockwise direction (as shown in Figure 10-3) and make sure that Harvey balls are
used consistently across your organization.

Figure 10-3. Harvey balls

Traffic lights are a common way of representing negative, neutral, and positive infor‐
mation. When using red, amber, and green, ensure that you either place them in the
same position as an actual traffic light (in the UK and US, this is red at the top and
green at the bottom) or use another symbol along with the color (such as a + on the
green and a – on the red) so that the meaning is still communicated if the reader is
color vision deficient or the colors are represented in grayscale.

Word Clouds
Word clouds are another method for presenting text and can be more efficient at
communicating your message than paragraphs of text or tables of data. A word cloud
is a collection of words drawn from a particular source and depicted in different sizes

Abstractions over Text | 143

https://oreil.ly/Cs_9V

3 Search for word cloud generator online to find a selection.

(and usually colors). The larger (and possibly bolder) the word, the more often it
appears in the source text. The source text is typically free text, such as open
questions from market research, but could also be answers to a multiple-choice ques‐
tion (in which case a word’s prominence signifies the number of times an answer was
chosen).

In software architecture, the most common way to use word clouds is in a presenta‐
tion, but they can be embedded in other documents too. One example might be to
illustrate your chosen architectural characteristics and emphasize the most important
ones (see “Architecture Characteristics” on page 183 for more on these). Some inter‐
active presentation software even allows for creating word clouds on the fly, with
your audience typing in answers and seeing them almost instantly on your presenta‐
tion screen. This can be highly engaging, whether creating them spontaneously or
beforehand. It is easy to see trends and important words, and they are useful to a
reader who is scanning a document too.

Figure 10-4 was created using text from the Wikipedia entry on tag (word) clouds. It
is general practice to remove common words (such as the, a, as, and if). Many genera‐
tors offer display options like color, shape, and spacing.3

Figure 10-4. A word cloud, generated at https://simplewordcloud.com

144 | Chapter 10: Knowledge Management Principles

https://oreil.ly/9qWFy
https://simplewordcloud.com

An interactive word cloud is a good way to make requirements
solicitation more engaging or to present open-ended data collected
from users or stakeholders. If you were aiming to get stakeholder
buy-in for a change to a product, a word cloud that illustrates
rationale for the change (such as a summary of customer com‐
plaints) would be a good persuasive tool.

Charts, Graphs, and Diagrams
You have likely heard the phrase a picture is worth a thousand words. Charts, graphs,
and diagrams are great ways to summarize information and can often communicate a
message without accompanying text at all (except labels and titles). For example, a
graph with an obvious trend and a headline stating what you want your audience to
take from the graph can speak for itself. Although tables of data are useful for show‐
ing precise figures, a chart or graph can give clarity quickly to patterns and trends.

Charts and graphs are also good choices for comparing data, particularly if you are
including all the comparative data in one chart, such as a line graph or a bar chart.
They are also more engaging and generally quicker to read and understand than a
table of data.

Other Abstractions
Other ways to create engaging content that communicates efficiently include the
following:

Infographics
These are often used in reports, marketing, and digital documentation for sum‐
marizing complex information in an easy-to-consume format. Infographics can
be particularly useful for making user documentation more interesting and con‐
sumable, but they should be accompanied by an accessible text version.

Images, illustrations, and animations
Memes, comic strips, and cartoons are often used to illustrate or emphasize a
point or just create a visual break.

Video and audio
These can be used in digital content to present information in a different way
from text. Some in your audience may absorb information better from a video
than from reading, and these formats can be good ways to communicate emotion
when needed.

Using a variety of methods to communicate generally improves communication with
your audience. It makes your message more memorable and engaging and easier to
understand.

Abstractions over Text | 145

When creating graphical, video, and audio content, beware of
accessibility. You may need to create an alternative format or alter‐
native text so that the information is accessible to those with vision
impairments, those who may need to translate the text, those who
may not be able to access content because of audio or firewall
restrictions, and so on. Ensure that the content is legible and
understandable to all.

Perspective-Driven Documentation
Perspective-driven documentation is a pattern that focuses on who you are communi‐
cating with and why. The word perspective, in the general sense, can be defined as a
particular way of looking at something. You put things in perspective. In perspective-
driven documentation, a perspective is a collection of one or more artifacts that
address one or more (typically related) concerns of a particular stakeholder. Those
perspectives could be web pages, diagrams, or tables (more on this in “Implementing
Perspectives” on page 149).

How to Define a Perspective
The process of defining a perspective is a collaboration between the stakeholder and
the perspective author (such as an architect or developer). The perspective must
address the stakeholder’s concerns, but the stakeholder likely doesn’t know which
artifacts or information will address those concerns.

The perspective author should work with the stakeholder to identify the artifacts
(text, diagrams, tables, and so on) that must be created and curated into a perspective
to address a concern.

The definition process can be refined into templates, checklists, or forms, which
become an anticorruption layer between the stakeholder and the documentation or
artifact author, and the basis for creating perspectives in documentation across the
company.

Documentation exists for stakeholders (developers, architects, product owners,
project managers, a security team, DevOps, customers, and so forth) to find the
information they need when they need it. Stakeholders’ needs and concerns vary
widely. A developer is going to need completely different information (and likely
need it at a different time) than a product owner, who will also need completely dif‐
ferent information than a customer will.

Traditional documentation, which is stored in long word processing documents and
spreadsheets (or something similar), does not allow stakeholders to easily access or
maintain the information they need. It is either hard to find the information or hard

146 | Chapter 10: Knowledge Management Principles

4 Andrew Hunt and David Thomas, The Pragmatic Programmer, 1st edition (Reading, MA: Addison-Wesley,
1999).

to maintain duplicated artifacts. A wiki or other knowledge management application
is an improvement on traditional documentation but can be enhanced immensely
using perspectives.

DRY Perspectives
One of the key principles of perspective-driven documentation is don’t repeat your‐
self (DRY). Although a particular artifact may be useful to more than one
stakeholder, and therefore used in multiple perspectives, you do not want to duplicate
artifacts because that impacts the maintainability of the documentation.

This principle affects how you implement perspective-driven documentation and
which tools can be used. The tools and applications must allow you to embed an arti‐
fact in more than one perspective and for that artifact to automatically update every‐
where when the original is updated.

Andy Hunt and Dave Thomas define the DRY principle in terms of
knowledge even though its application is for code: “every piece of
knowledge must have a single, unambiguous, authoritative repre‐
sentation within a system.”4 This principle discourages duplication
of information, for example, defining a commonly used string as a
variable and then referencing that variable when needed, instead of
duplicating the string.

In documentation and knowledge management, you can avoid duplicating any arti‐
fact (diagram, table of data, paragraphs of text, and so on) by embedding it into a
page or document (or referencing it, for example, using a hyperlink, but this is less
accessible).

When linking to an artifact, be aware that some systems and appli‐
cations can create dynamic links but many create brittle links. A
brittle link will break if the artifact you have linked to is moved or
the name is changed. A dynamic link will still work if the artifact is
updated within the system that created the link. Check whether
your links are brittle or dynamic and take this into account, espe‐
cially when choosing a new knowledge management system.

The trade-off to the DRY principle is that you do not always want all the instances of
your artifact to update automatically. You may want your artifact to represent a frozen
point in time, or you may need to make small changes for a particular instance. Be

Perspective-Driven Documentation | 147

aware of whether you prefer a static or altered version of an artifact; then create an
explicit copy, named in a way that the reasons for its creation are obvious. Some
examples include an artifact related to a specific software release or a particular ver‐
sion of a standard or license.

Fractal Perspectives
Another key principle of perspective-driven documentation is that perspectives are
fractal. This means that one perspective can be embedded into another perspective, in
the same way that an artifact (such as a diagram) can be. Because of this, you can cre‐
ate a reusable grouping of artifacts as a perspective, embed that perspective in
another perspective, and then embed that perspective in yet another perspective (see
Figure 10-5). Further, an artifact or perspective can be embedded in multiple other
perspectives. The DRY principle is adhered to because all the perspectives and arti‐
facts are not copies, but the same instance embedded in multiple perspectives.

Figure 10-5. Fractal perspectives illustrated: multiple artifacts and two other perspectives
embedded in a perspective

Creating templates or checklists for perspectives is a good idea once you have identi‐
fied patterns and arrangements that work for you. Once you know which artifacts are
generally needed to address a particular concern (for example, that a system be
responsive) or that generally apply to a particular stakeholder, you can document that

148 | Chapter 10: Knowledge Management Principles

knowledge in templates or checklists. Those tools will speed up the creation of per‐
spectives the next time you need them.

Templates may be applicable across projects, products, programs, or even across
departments or organizational units within the larger company. They can also be use‐
ful in determining which artifacts to create once you know the stakeholders and
concerns.

Layering Diagrams
When creating diagrams, it is good practice to split the information into layers. Many
applications that are used to create diagrams, such as draw.io or Visio, support layers.

Layers are useful for following the DRY and single responsibility principles. You can
create several artifacts from one layered master diagram, with different combinations
of layers visible in each. If you need documentation to be available in more than one
language, you can create a layer for labels and other text in each language. This is
good practice and creates less-cluttered diagrams that follow the single responsibility
principle.

The single responsibility principle introduced in Chapter 5 states that a class, in code,
should have one (and only one) reason to change. When your code needs modifica‐
tion, only the parts of the code that need to be changed will be changed, and unrela‐
ted code will stay the same. Following this principle reduces the risk of inadvertently
introducing a bug or regression into an unrelated part of the code, and testing can
focus on the code that has changed.

This principle can also be applied to the artifacts you create for documentation. If the
security of your architecture changes, you need to find and update only security-
related artifacts. That will save you a lot of time, both for finding and updating those
artifacts.

Implementing Perspectives
Now let’s discuss the practice of implementing these principles and ideas. Support
varies widely among knowledge management applications (such as wikis, Notion,
SharePoint, Confluence, Obsidian, Logseq, and so on), but you can look out for a few
key features in these and other supporting applications (or a custom knowledge man‐
agement app):

Tags and metadata
These are key features for organizing your artifacts, especially when using one
artifact in many perspectives. Tags are also useful for maintaining artifacts, allow‐
ing you to easily find a particular type of artifact, or artifacts belonging to a par‐
ticular product or project. Add metadata and/or tags to artifacts to define them,

Perspective-Driven Documentation | 149

5 Using Obsidian with the DataView plug-in would allow you to add metadata to pages to automate building of
perspectives.

the product they belong to, and so on. Some applications may allow you to add
metadata to perspectives themselves (such as pages) to define which artifacts
should be shown and in what order, rather than manually adding artifacts and
perspectives to the page.5

Embedding and referencing
To keep knowledge DRY and create perspectives, you need to be able to embed
artifacts. You could embed them into a wiki or web page, or use a proprietary
tool like Confluence or SharePoint to create a page and then embed the artifact.
Ideally, you want the type of embedding that won’t require your audience to leave
the current page or context to view the embedded artifact, rather than a link to
click. If embedding is not possible, linking to the artifact is a good backup.
Ideally, the link should be durable, but at a bare minimum, the reference should
allow the reader to find and view that artifact.

Flat structure
When organizing artifacts, most people create some sort of folder hierarchy, but
in truth, many artifacts need to sit in more than one folder. By using tags, you
can use a flat structure for your files. Everything is in one place, so you always
know where to find things. Tags should enable you to find what you need, and
when they don’t, you know where to look.

Templates and checklists
At the very minimum, most tools should allow you to create a page or something
similar that contains definitions and checklists for creating types of perspectives;
the items in a checklist or template would be artifacts (or perspectives) included
to address a concern of a particular stakeholder. Some tools may allow you to
create a template for a layout of a perspective.

Layers
The tool you use to create diagrams or other visuals should support layers so that
you can separate different concerns into different layers—for example, security
protocols on one layer and communication patterns, such as sync and async, on
another. This arrangement enables you to create several assets from one diagram
file and helps keep them in sync.

150 | Chapter 10: Knowledge Management Principles

Knowledge graphs improve the discoverability of information by
linking it together. Whereas storing information in folders creates a
hierarchy, a graph allows a piece of information to be linked to one
or many other pieces of information. Backlinks make it easy to tra‐
verse links in either direction. Obsidian is a fantastic tool for exper‐
imenting with knowledge graphs.

Perspectives and Views in Architecture
You may have heard the term perspective or view in other areas of architecture. Here
are some places you may have heard these terms:

• The Open Group Architecture Framework (TOGAF), an enterprise architecture
framework, contains the concept of viewpoints and views, which are similar but
more limited concepts compared to perspective-driven documentation.

• Both the SABSA and Zachman frameworks also contain the concept of levels or
perspectives, creating a matrix of models or assets within each perspective across
classifications of what, why, how, who, where, and when. This is a much more
rigid idea compared to perspective-driven documentation.

• The Diátaxis framework divides documentation into four quadrants (tutorials,
how-to guides, explanation, and reference) based on the needs of the audience.
These quadrants can be considered higher-level perspectives.

• The 4+1 Model also contains the concept of views—in this case, the logical, pro‐
cess, development, physical, and scenarios views. These views combine the con‐
cepts of addressing the needs of a particular audience and levels of abstraction.
The 4+1 views could be considered high-level perspectives.

• The perspectives in Software Systems Architecture, 2nd edition, by Nick Rozanski
and Eoin Woods (Addison-Wesley, 2011) are more like architecture characteris‐
tics, such as security, performance and scalability, and availability and resilience.

I chose the term perspective rather than view to name perspective-driven documenta‐
tion because the term view is overloaded with multiple meanings in software develop‐
ment and architecture. Perspective also fits better with its intention; to address a
stakeholder’s wants and needs. A perspective is personal.

Perspective-Driven Documentation | 151

https://obsidian.md
https://oreil.ly/IXn62
https://oreil.ly/agq_6
https://oreil.ly/S6A42
https://diataxis.fr
https://oreil.ly/IStQP

Summary
You now have a set of higher-level principles for recording, communicating, and stor‐
ing knowledge that you can apply to your company’s knowledge and your personal
knowledge. But applying these principles to your knowledge processes and documen‐
tation is just one aspect of knowledge management.

What underlies everything in software is people. You will discover in the next chapter
that people are a huge part of knowledge management and can be an incredible aid to
improving the development, communication, and recording of your knowledge.

152 | Chapter 10: Knowledge Management Principles

CHAPTER 11

Knowledge and People

Software and architecture ultimately come down to people. People use software, soft‐
ware helps people, and people architect, design, and code software. You should there‐
fore not be surprised that some of these knowledge patterns revolve around people.

Your peers, team members, and other colleagues are assets not just to the company
but also to you. Utilize them wisely, and they can help improve your knowledge man‐
agement, documentation, and software architecture overall.

Get Feedback Early and Often
One mistake that many people make is putting a lot of time and effort into their work
before they get any feedback on it. This can waste effort and money as well as impact
the architectural design of a system. This applies both to individuals and teams.

If you have experience with Agile and the reasons behind it, you probably know that
Agile is all about getting feedback early with the fastest feedback loop you can get.
Iterative and incremental changes. Fail fast or fail hard. You should follow these same
principles when creating artifacts and documentation.

If you are not getting feedback on your ideas and designs, you are missing out on
changing requirements and that second pair of eyes to help you with a sanity check.
Consider the butterfly effect: one incorrect assumption early on could steer the archi‐
tecture in a completely wrong direction.

Not getting feedback can mean you play into the hands of your own personal sunk
cost fallacy: the longer you work on something, the less you want to make changes to
it. It’s your baby. If you haven’t gotten feedback early on, you are less likely to seek it
and may miss out on key input to your design, diagram, and so on.

153

1 ADRs are a good technique to help identify issues before a big decision is made.

The Sunk Cost Fallacy
The sunk cost fallacy is a cognitive bias in which individuals continue to invest
resources (such as time, money, and effort) in a project or decision, despite evidence
that the investment is no longer justified or that the project is unlikely to succeed.
This bias is rooted in the belief that, because resources have already been invested,
continued investment is necessary to ensure that the initial investment was not for
nothing. You have invested too much to quit.

In technical projects, the sunk cost fallacy can manifest in several ways. For example,
a company may continue to push forward with a project that has already exceeded its
original budget or timeline, even if evidence indicates that the project is no longer
feasible or that it will not deliver the intended value. Alternatively, a team may con‐
tinue (or be forced) to use a technology or tool that is no longer effective or efficient,
simply because resources have already been invested in it.

Get feedback on small parts of your architecture design and the overall design. Some‐
times creating a diagram or set of diagrams for part of an architecture can take a long
time, maybe days. Imagine putting three days of your effort into diagrams only to
find out that an assumption you made was wrong or an understanding you had was
false. In the worst case, you may have to start again from scratch, or even tell a devel‐
opment team to stop work that is based on your diagrams. Even the best case means
you have to put more time and effort into changing your diagrams.

Consider these additional benefits to individuals and teams that get feedback early
and often:

Identify issues and errors early
The more time between a decision or action and the time it is challenged, the
higher the cost to make the change. You want to identify issues before they
become more costly to fix.1 Figure 11-1 illustrates a situation that you can avoid
by getting feedback.

Identify potential improvements and optimizations
Involving more people with different backgrounds and experiences means you
get a more holistic and diverse analysis of your designs, making it more likely
that you spot room for improvement with feedback than without.

Ensure alignment with business needs
Business stakeholders or others closer to the business can provide you with feed‐
back on the business needs to be met by your design.

154 | Chapter 11: Knowledge and People

Establish a dialogue
Stakeholders will appreciate being involved and alerted to to trade-offs and nega‐
tives that result from their requirements. They may even change their require‐
ments based on your feedback, which you would want to happen earlier rather
than later.

Identify risks and challenges and take appropriate action
The earlier risks are identified, the better. These risks or challenges can be proac‐
tively mitigated, and further feedback can be sought to accept any residual risk
(that couldn’t be mitigated).

Getting feedback from peers who are not involved in your project
is a good idea. They can give you an outside perspective to help you
avoid the curse of knowledge and break down the walls of any echo
chamber you may be stuck in.

Figure 11-1. Not getting feedback on decision 1 leads to costly changes later

So when should you get feedback? The overall answer is early and often, but when
exactly will depend on the situation. One key time to get feedback is while document‐
ing assumptions (to make sure you do document all assumptions).

You need to get sign-off (confirmation) on your assumptions as soon as possible,
before those assumptions affect the design of your system or product. This is not
always possible, so if you cannot get sign-off on an assumption, state that clearly in
your documentation. Give your assumptions IDs in your documentation to reference
effectively so you will know where changes may be needed if an assumption is found
to be false.

If you are new to a product or role, I advise you to get feedback from technical and
business colleagues as often as you can. This will save you time and improve your
reputation in the long run. Consider any frustration at your requests for input to be
short-term, whereas the cost to your reputation of producing something that is ulti‐
mately “wrong” or costly will be more lasting.

Get Feedback Early and Often | 155

2 See “ADRs” on page 169 for more information on ADRs.

But don’t think just because you are senior, or even in charge, that you should not be
seeking feedback from your peers, subordinates, and business colleagues. Even the
most junior member of your team is likely to know something you do not or have a
different perspective than you. Never let rank get in the way of receiving wisdom.

Playing back assumptions and your understanding of stakeholders’
needs builds confidence in your designs and solutions by showing
that you have been listening. Rarely will a design become reality if
there is a lack of confidence in it.

Now that you know why and when to get feedback, you also want to know how. Keep
in mind that you don’t explicitly have to ask for feedback. You can just show people
what you have been working on to allow them to give feedback if they want to. Be
aware that more junior members of the team, or those junior to yourself, may need
encouragement to give their opinion, so it is best to explicitly ask for their input.

Lots of methods are available for getting feedback. Here are a few examples:

• The easiest approach is to simply ask or to show your work without applying any
pressure to provide feedback.

• Feedback can be incorporated into formal processes, such as pull requests or at
checkpoints in your personal or team workflow.

• ADRs are a great tool for getting feedback on proposed draft decisions.2 Includ‐
ing a feedback or consultation section where others can share advice and setting
a deadline for input will enable others to view the decision and reasoning and
give their feedback.

• Your existing meetings, stand-ups, and reviews are good opportunities to bring
up what you have been working on to get informal or formal feedback.

• If you have a request for change (RFC) process at your company, this may be the
expected method for getting feedback on your ideas for changes to a product or
system.

156 | Chapter 11: Knowledge and People

EXAMPLE

Feedback Is Part of the Process
In the development, architecture, and technical writing teams at Polyglot Media, feed‐
back is built into the workflows. Design and documentation tasks are split into small
and logical chunks, in the same way that coding tasks or user stories are. As a result,
the publishing and feedback cycle for artifacts and documentation is quick and agile.

Each team member can ask for a review via a dedicated review channel in their mes‐
saging system, and feedback is expected within a short time frame. All are encouraged
to seek feedback in this way before the task is deemed finished.

Formal feedback is sought at the following checkpoints:

• When a pull request is made for documentation in a repository, or when an arti‐
fact is deemed to be ready, feedback is sought from peers, and technical feedback
is sought from developers and architects if needed.

• When documentation is in preview (for example, the documentation website is
published in a nonproduction environment), feedback is sought from stakehold‐
ers, such as a product owner.

• Once documentation and artifacts have been published, feedback comes from
customers, the support team, and other colleagues.

At Polyglot Media, feedback is considered an ongoing and agile process.

Share the Load
The creation and maintenance of documentation (and the general communication of
software architecture itself) should never fall to one person alone (unless you truly
are a one-person band). No role is solely responsible; each role is usually responsible
for different types or elements of documentation. Both the creation and maintenance
of documentation must be shared for it to be effective and up-to-date. Let’s look at
how you can share the load.

Nonproprietary Formats
Using nonproprietary applications and file formats is a great way to expand the num‐
ber of people who can create and update (and even view) your documentation. Using
nonproprietary formats and applications results in the following:

Fewer license woes
You don’t need to worry about licenses (as much)—for example, who on the team
needs a full Visio license or who needs an Atlassian account and what

Share the Load | 157

3 For more on Markdown, see “All Documentation as Code” on page 187.

permissions they need (both of these licenses are very costly and come with fur‐
ther costs for managing the licenses). But do make sure to check the license of
any product that is being used.

Higher editor accessability
It is easier to gain permission to use one of the many possible editors, for anyone
who needs to create or edit the documentation. Many nonproprietary applica‐
tions are free to use, even commercially. There are often several options for apps
that can read and write a nonproprietary file format. Some apps even work in the
browser, like draw.io, so they don’t need to be installed by the user.

Higher interoperability
As the file format is not owned by a company or person, and is open and publicly
documented, anyone can develop an app that can read and write the format,
meaning you can use your artifacts in more than just one app.

Reduced vendor lock-in
Having all your documentation in Markdown (or another plain-text format)3

means that anyone with a text editor can create, read, and update it. Anyone who
needs to has many application options to read and write the nonproprietary for‐
mat. This is not true of documentation in Word, Notion, or another proprietary
format.

You do not need to avoid all proprietary software, and probably can’t, but it should be
a consideration for anything durable (for example, documentation you will need in
the future). Nonproprietary software is likely more future-proof than proprietary
would be. As with anything, trade-offs exist, such as a lack of support for many non‐
proprietary and open source applications. You need to weigh all the trade-offs when
selecting your tools.

Nonproprietary Formats
Nonproprietary software and file formats are not owned or controlled by a specific
company or individual. Nonproprietary software is typically developed and dis‐
tributed under an open source license.

Nonproprietary file formats are open and publicly documented, allowing anyone to
create software that can read and write the format. Some examples of nonproprietary
software and file formats include the following:

Markdown
A plain-text format supported by many editors and build tools

158 | Chapter 11: Knowledge and People

4 You will find the same problem when adopting a proprietary tool or standard for most situations, not just for
diagramming.

AsciiDoc
A plain-text format that can be built by tools such as Asciidoctor and Antora into
formatted documents

Git
A free and open source distributed version control system

ODF (Open Document Format)
An open format for word processing documents, spreadsheets, presentations,
and graphics

draw.io
An open source application and file format for graphics

PNG (Portable Network Graphics)
An open raster graphics alternative to GIF (Graphics Interchange Format)

PDF (Portable Document Format)
A file format for presenting text and graphics independent of software and hard‐
ware

YAML (YAML Ain’t Markup Language)
An open human-readable data serialization language often used for metadata and
configuration files

HTML (Hypertext Markup Language)
The standard markup language for documents designed to be viewed in a web
browser

Accessibility
When choosing a format or notation for your documentation, you need to take into
account whether it can be used by all the people who need to read, create, and update
your artifacts. As well as selecting a nonproprietary format, you should consider both
the audience and the author’s understanding.

A standard such as UML or ArchiMate may end up reducing access. The number of
people with a full understanding or qualification in these standards is small.4 You
would need to invest time and money into training to increase the pool of people who
can maintain your documentation and repeat this every time someone new joins the
team (see Figure 11-2).

Share the Load | 159

5 If you have ever been in a situation where one person is using Microsoft Word and another is using an appli‐
cation such as LibreOffice Writer to edit the same document, you will understand that the Word format docx
does not have high compatibility.

Figure 11-2. Choosing a notation or format affects who can understand or maintain
your documentation

Paying for proprietary tools, such as Microsoft Word and Google
Docs, can easily melt into the background in the same way as filling
your vehicle with fuel. It’s the price of utility, but it all adds up.
Moving to a nonproprietary format that is widely supported, like
Markdown, means that you can stop paying and start using the
myriad of free tools available. You save money and gain many more
benefits, such as better compatibility.5

A simple custom notation that you develop in-house would be simpler for anyone to
pick up. Some standards, such as the C4 Model, also are far easier to understand
without prior knowledge and are easy to learn to create and update documentation.
Using standards that are simple, such as flow diagrams or simplified sequence dia‐
grams, will increase your pool of maintainers.

This selection of formats and standards applies to all your documentation. Imagine if
everyone who creates and maintains documentation had to be able to write HTML
and Cascading Style Sheets (CSS). That would be a tall order, involving a lot of syntax

160 | Chapter 11: Knowledge and People

6 The notification could be manual, but you want to automate everything you can.

and logic. Now consider writing your documentation in Markdown or Asciidoc. Both
formats allow a lot of control over the appearance of text on-screen but are far sim‐
pler to understand and learn how to use.

Email is not a knowledge repository. It is accessible to only its
sender and recipient. It is hard to search. Email is usually deleted
when someone leaves an organization, and many organizations
purge old email regularly. Move knowledge from email to a loca‐
tion it will be safe, searchable, secure, and accessible to all who
need it.

Collaboration
Another way to enhance the maintenance of documentation is to use collaboration
tools. Tools such as Google Docs, Microsoft Teams, Slack, and online whiteboards
allow you to easily share the creation and maintenance of artifacts and documenta‐
tion. Collaboration with tools like these might be done synchronously (at the same
time) or asynchronously (at varying times). Both methods are useful in different
circumstances.

By working together on creating or maintaining an artifact, you can lighten the load
by getting input from more than one person at a time and even change who is driving
(in control of the keyboard, mouse, or other input device) in the same way developers
do when pair or ensemble programming. If no one wants to do a particular task, do it
together.

Working together also means that you can coach or teach one another, which can be
especially useful for newer team members. If you are looking to delegate a task that
only you currently understand, using a collaborative tool is an excellent option—
especially if any participants are working remotely.

Collaboration tools such as Slack and Microsoft Teams are also excellent ways to
notify or prompt people. It may be useful to have an automatic notification for a
channel or team when documentation has been updated or created.6 If nothing else,
this helps create expectations around maintaining documentation. You may also want
an automatic notification of changes (whether for code, such as a new release, or a
part of the documentation, such as the requirements) that prompts the team to check
for downstream effects (for example, does a business analyst’s change to requirements
require changes to the architecture by an architect or developer?).

Share the Load | 161

7 Gardening leave is a widely used term in the UK meaning a time period where an employee is suspended from
work on full pay until the end of their notice period. A company typically does this when it thinks the
employee may negatively influence the organization or aid a competitor.

Roles and Responsibilities
Assigning specific documentation and communication roles to each individual on
your team can be useful, but don’t fall into the trap of creating bottlenecks (for exam‐
ple, a few people being responsible for most of the work), or single points of failure
(for example, a team member is ill or leaves). Ensure that you at least have an under‐
study for each role so that someone could step in to take over or help when needed.
Consider the workload of any particular role and assign the appropriate number of
people to it.

One way to consider creating roles around documentation is by the type of documen‐
tation, such as recording requirements or the output from an EventStorming session.
Another way is to assign the role of creating a type of documentation to one person
and the role of reviewing that type of documentation to someone else. Some types of
documentation will naturally align to a role on your team, but some may be more
aligned to who has the skills or time.

Never assume you will have a handover period with any of the
members of your team. Ensure you do not have a single point of
failure (one person responsible for something) when it comes to
documentation and communication. You never know when some‐
one might go on long-term sick leave, be made redundant, or be
put on gardening leave.7

Further Techniques
Knowledge sharing, or lunch-and-learn, sessions are a great way to spread knowledge
throughout the team or organization and should be based around (or the preparation
of such sessions should involve the creation of) documentation or other resources
from which the same information can be learned. These sessions can be live or recor‐
ded, but if live, they should create artifacts for future team members or employees to
learn from. The amount of preparation that goes into one of these sessions should not
be wasted by making it a one-off learning opportunity. Sessions such as these don’t
just share knowledge but also contribute to a culture of sharing and learning.

It makes sense to use a template for a particular artifact that is created multiple times
for a product or project, or across multiple projects and products. Templates are simi‐
lar to patterns: a template is a reusable solution that has been shown to be effective.

162 | Chapter 11: Knowledge and People

8 YAGNI is not an excuse not to follow best practices, though.

Using templates has many advantages. One is to make sharing the load easier. Even
someone new to a project has somewhere to start when a template is available, and, if
templates are shared across products or projects, anyone switching products or
projects will be off to a flying start because of their prior experience with the
template.

Whether you work in an Agile system or not, a documentation sprint or simply a
dedicated time block is another way to share the work of documentation and com‐
munication. This dedicated time means that people who may normally be too busy
have no excuse to not be creating or maintaining documentation. You can combine
techniques such as knowledge-sharing or collaboration sessions with dedicated time
for extra impact, especially if these sessions don’t typically happen outside of this
dedicated space.

If you ever hope to allow members of your team to share and dele‐
gate communicating and documenting your software architecture
and product, you need to be proactive in your approach to docu‐
mentation. Share the load and make documentation and communi‐
cation a collaborative effort.

Just-in-Time Architecture
You aren’t gonna need it (YAGNI) is a principle in coding that encourages developing
only functionality that is needed now and does not try to predict future needs.8 This
is another coding principle that should be applied to knowledge management and
documentation.

YAGNI is based on the idea that predictions may not come true
and you are therefore wasting effort now and possibly creating
problems in the future when changes need to be made.

Another principle (of software architecture this time) that also fits in nicely with
YAGNI is that of deferring architectural decisions for as long as possible. Combining
this with YAGNI, you get just-in-time architecture and documentation: don’t decide
and document what you think you will need in the future but only what you know
you need now.

Following the just-in-time pattern has the following benefits, whether you are work‐
ing in a waterfall, Agile, or somewhere-in-between environment:

Just-in-Time Architecture | 163

Reduction of waste
When you produce architecture or documentation just in time, you are produc‐
ing it for a reason and with all the knowledge available at the time. If you produce
an artifact ahead of time, something will likely change that requires you to revise
it. If another decision, artifact, or actual coding/designing is based on that revised
artifact, you’ll have a chain of artifacts, decisions, and code that needs to change
as well. That is a lot of wasted effort that becomes costly.

Greater agility and flexibility
Requirements change, and by using the just-in-time architecture pattern, you can
be highly responsive to these changes. When doing the work, you have the latest
information on requirements and decisions. Also, having a just-in-time system in
place puts you in a good position to respond to changes that may require updates
to previous artifacts because your planning is based on need rather than predic‐
tion. You reduce the number of artifacts that will need to be changed and are
therefore more likely to have the resources and ability to adapt.

Efficient use of resources
By focusing on what is needed now, not tomorrow, you prioritize your team’s
activities. All team members, technical and business, are focused on the current
most important aspect of the product or project. Less time and effort are wasted
by all when artifacts are as up-to-date as they can be. And because everyone’s
time is used more efficiently, more flexibility exists for research, proof-of-concept
work, and unexpected work.

Up-to-date information
Not only will you have the most up-to-date information and feedback to make a
decision or create an artifact, but your artifact will also be used as soon as you
produce it and therefore be up-to-date when it is used. By deferring the creation
of an artifact or the making of a decision, you know more than you did before. In
general, you will be in a good position to maintain any artifacts that do require
change with your just-in-time processes in place.

Improved time-to-market
Just-in-time means that all effort is being put into what is most important right
now, rather than what might be important in the future. Therefore, the changes
or features that are important now can be tested and released more quickly than
if focus were diluted across other changes that don’t matter now.

Improved fit with Agile practices
Although just-in-time architecture can be used in a waterfall environment, it
molds your architecture processes into something a lot more Agile. It allows
those involved in the architecture and documentation to fit into the Agile pro‐
cesses of the development team and improves the overall Agile feedback cycle

164 | Chapter 11: Knowledge and People

because the architecture is more responsive to change. Just-in-time architecture
even lends itself to adding architecture tasks to a Kanban or Scrum board.

Improved clarity
The phrase can’t see the forest for the trees could be applied to many sets of docu‐
mentation. When only what is important now (or before now) is included in the
documentation, you have less to search through to find what you need.

When documentation is incorrect, or its maintenance costs much
more than it delivers, the net overall value of the documentation
will be negative.

If you are working in a waterfall environment, or an environment that is not suited to
regular incremental changes, it is possible and beneficial to apply just-in-time archi‐
tecture. You may be in the position of needing to architect the whole system before
any code is written, but you can still prioritize and order the decisions that need to be
made and the artifacts that need to be created. These can be interspersed with
research or proof-of-concept activities to get more up-to-date information. Defer as
much as you can and you may find everyone’s processes becoming a little more agile.

You can combine just-in-time architecture with just-long-enough
architecture: retire documentation and artifacts that have served
their purpose and make it obvious that they’re no longer up-to-
date. Just-long-enough architecture saves time you would have
spent maintaining content that is no longer useful and prevents
readers from consuming out-of-date information.

Of course, trade-offs always exist. Here are some to take into account when produc‐
ing just-in-time architecture:

People who want the information now
There will always be someone who wants all the information as soon as possible.
These are the people you need to convince by doing. Tell them as well, but show
them the benefits by practicing just-in-time architecture as much as possible. If
they insist, you can give them an artifact that is very obviously marked as a draft
or pending and let them decide whether to base any of their own work on draft or
pending information.

People who want you to predict the future
You are probably asked to make predictions all the time. How long will this take?
Will we have the information we need by this date? Rally, an Agile software

Just-in-Time Architecture | 165

9 Jeff Sutherland, inventor and cocreator of Scrum, says “estimating tasks will slow you down. Don’t do it. We
gave it up over 10 years ago. Today we have good data from Rally on 60,000 teams. The slowest estimate tasks
in hours. No estimation at all will improve team performance over hour estimation.”

provider, has shown that the teams who estimate the least produce the most.9

Your project manager needs to create their budget and report on their mile‐
stones, but it is all just guesswork. Just-in-time architecture can help with things
like resource management in the long run because, in general, everyone is more
flexible to be able to take on unexpected work. Aim to break down milestones
into decisions and tasks to create artifacts to help you determine if things are on
track.

Losing important information because it isn’t relevant now
If you are focusing on making decisions and creating artifacts that are needed
now, you could easily lose important ideas and information that could be relevant
later. Create a place to record information that could be relevant in the future
(such as a page in a wiki). This should be checked when working on subsequent
artifacts and decisions.

Why Defer Decisions?
Deferring architecture decisions for as long as possible is good practice for a few
reasons:

Increased flexibility
By putting off a decision, you can more easily adapt to changing requirements
and circumstances.

Improved learning
Delaying a decision means more time for learning and experimentation.

Reduced risk
You reduce the risk of making incorrect or suboptimal decisions based on
incomplete or inaccurate information.

Improved collaboration
Having more time to collect information and advice means you are more likely
to gain input from a diverse set of people, and from people critical to the
decision.

Reduced complexity
Deferring decisions generally reduces complexity because you focus on only what
is currently needed and don’t have to rewrite things that need to be changed after
decisions have been made. Refactoring to add something is easier than rewriting
to remove or make a change.

166 | Chapter 11: Knowledge and People

https://oreil.ly/43kV2

Increased efficiency
Deferring decisions leads to a more streamlined process and less wasted effort.
When a decision is made earlier than needed, it is more likely that changes will
affect that decision, meaning updates to code or designs based on that decision.
You may avoid needing to make some decisions all together, when requirements
or information change.

Summary
Your colleagues and peers are essential resources when it comes to managing knowl‐
edge and documentation, and the techniques and patterns you have learned in this
chapter will enable you to utilize one another.

Now that you have higher-level principles in your toolbox and can leverage people to
support you, it is time to look at some common practices for knowledge management
and documentation and how you can make them effective practices in your work.

Summary | 167

CHAPTER 12

Effective Practices

Many methods, techniques, and practices for architecting and designing software
exist, but it is not enough to just follow them, create the outputs, and move on. The
artifacts you create must be constructed and used effectively to be of any use in the
overall architecture. The patterns in this chapter will enable you to put the techniques
discussed into effective practice.

ADRs
An architecture decision record (ADR) is a record of an architectural decision and the
reasoning behind it that can be used in the decision-making process itself. ADRs are
key to communicating architectural decisions made and the outcome of the decision,
not only to architects but to all stakeholders. Many decisions are made throughout the
life of a product or project, but without documenting these decisions, they (and the
reasoning that supports them) are easily lost and forgotten.

ADRs were originally envisioned by Michael Nygard in 2011, and
his introductory blog post is structured as an ADR. His original
ADR template is now often extended to record the decision-
making process as well as the decision made.

Here are some situations that ADRs help you avoid:

• A decision is made early in the life of a product. Later, an individual or team
decides to change that decision. Without knowing how and why the initial deci‐
sion was made, the change may cause huge problems. Maybe a particular tech‐
nology was chosen to meet one or more requirements, and overriding that choice

169

https://oreil.ly/ZTjcC

means those requirements are no longer met. You may not realize this until a lot
of time and money have been wasted.

• What Birgitta Böckeler of Thoughtworks calls “whack-a-mole” decisions: a deci‐
sion is regularly brought up again and again, wasting time reinvestigating only to
discover that the original decision was made for good reasons.

• When onboarding, a new team member should have lots of questions about how
your team has done things and why. Current team members likely do not have all
the answers in their heads or want to spend their time explaining things over and
over again.

• Someone leaves the company and takes all the architectural decision knowledge
and reasoning with them because it’s all in their head.

Which Decisions Need an ADR?
Write an ADR for the decision you are making in the following situations:

• The decision will impact the way developers write the software.
• The decision will be hard or expensive to change; therefore, it is important to get

the best option (and for everyone to understand why it was made before it is pos‐
sibly overturned in the future).

• The decision keeps being revisited, wasting time working out that there were
good reasons for the original decision.

• The decision keeps coming up in questions from new team members.
• You are adopting a decision made by another team or company (yes, you should

create your own ADR and reference the original ADR).
• The decision will have a long-lasting impact and/or affect multiple components

or systems.
• The decision will have an effect outside of your team (in this case, it is wise to use

the Consultation section to gather advice—see ADR Stucture).
• The decision is complex or hard to understand.
• You are proposing a change informally or using a request for change (RFC). An

ADR can be used to collect feedback (in the Consultation section) and either
replace a formal RFC or document the decision made in an RFC (if the RFC is
rejected, you can use rejected as your status).

170 | Chapter 12: Effective Practices

ADR Structure
A quick internet search will show you many opinions on how an ADR should be
structured. They are usually structured as individual files for each decision and writ‐
ten in Markdown or Asciidoc, although you can use other methods (such as a list in
SharePoint or pages in a wiki). Adjust the style of your ADR template to the storage
method you are using.

My suggested structure for an ADR is shown in Example 12-1 (and was also shown in
Example 9-2 from “Use Reasoning and Argumentation” on page 129). The headings
in this structure are expanded upon in the following pages. You can see examples of
ADRs from Polyglot Media in “ADR Content” on page 174.

Example 12-1. ADR structure

Identifier and Title (a statement of the decision made)

Status
Draft/Decided/Superseded by ADR-XXX

Context
Why you need to make the decision. Assumptions, constraints, and decision drivers.

Evaluation Criteria
What is important to you in making this decision?
Which of your architectural characteristics apply to making this decision?
Should any constraints or decision drivers become a criterion?

Options
Outlines of the options considered against the evaluation criteria (usually using a
score or rating), and trade-offs outside of the evaluation criteria.

Decision
The choice that was made and why.

Implications
The positive and negative consequences of the decision made.

Consultation
If taking input from others, they should document it here. Details of those invited
to give input can be recorded, whether they provide input or not. Although
consultation takes place before a decision is made, it is documented at the end
because it can become long and obscure the decision itself.

Title and filename
The title and filename should start with an identifier and then the decision made (for
example, 001 Use event-driven architecture). Naming the file and top header with the

ADRs | 171

actual decision means that someone can read through the list of ADRs and know
what decisions were made, then read the file if they need more information.

Status
This section tells the reader the current condition of the decision. You can define a set
of statuses to fit your workflow, but I recommend keeping the workflow simple (as in
Figure 12-1). Figure 12-2 is not recommended; it is unnecessarily complex.

Figure 12-1. A simple (recommended) set of statuses for ADRs

Figure 12-2. A complex (not recommended) set of statuses for ADRs

Use the Draft status when the decision has not been finalized. Decided is the next sta‐
tus, once the decision has been finalized.

A decision can also be changed. The original ADR should be immutable (not
changed) except for the status because maintaining a history of the decision-making
process is important. If, for example, ADR 021 is given a status like Decided, Super‐
sedes ADR 001, then the status of ADR 001 should be changed to something like
Superseded by ADR 021. You may also want to include a date the status was last
changed.

I recommend using Decided instead of Accepted and Rejected sta‐
tuses for ADRs. The decision is always made and, most of the time,
it is about selecting one of multiple options rather than a yes/no
decision. Decided simplifies the set of statuses and can be used for
all types of decisions. The actual decision will be reflected in the
name of the ADR and under the Decision heading.

172 | Chapter 12: Effective Practices

Context
This section is where many other templates expect you to add things like the options
considered and any criteria. Example 12-1 breaks those out into their own sections
explicitly to make sure they are not left out. I have seen many ADRs missing this key
information. So the Context section should answer: why does this decision need to be
made, and in what environment is it being made? You should include any assump‐
tions, constraints, or decision drivers here as further context.

Evaluation Criteria
This section is often left out of ADRs, but this is important so the reader understands
how the options were analyzed and compared. What is important to consider in this
decision?

If you have selected architecture characteristics (and if you haven’t, see “Architecture
Characteristics” on page 183), the ones applicable to this decision can be used here to
help you and your stakeholders make the decision. Your architecture characteristics
are your priorities, so they are a sensible place to start.

Other criteria you might consider are as follows:

• Enterprise (or business) considerations (such as technological alignment)
• Constraints (such as applicable laws, General Data Protection Regulation

[GDPR], licenses, cost, and so on)
• Particular security considerations or requirements (for example, data residency

and encryption at rest)
• Other applicable functional requirements

Options
This section is fairly self-explanatory: which options are you considering when mak‐
ing this decision? If this were a decision about the overall architecture style, you
might include modular monolith, event-driven, and pure microservices as options.
State these options and evaluate them using the evaluation criteria (see “ADR Con‐
tent” on page 174 for an example of how to do this with a table). Visual scoring, such
as a star rating or Harvey balls, is a useful abstraction of your decision-making pro‐
cess for quick reference later on (see “Visual Abstractions” on page 142).

You should also state the trade-offs of each option and their pros and cons. All trade-
offs should be stated and considered, whether they apply to your evaluation criteria
or not. You may find something important that influences the evaluation criteria dur‐
ing the decision-making process or affects a revisit to this decision in the future.

ADRs | 173

Decision
A simple statement of the decision made and why should be included in the Decision
section. This doesn’t need to be long and complicated because most details about the
decision are included under the other headings.

Implications
This section is important; you will state here both the positive and negative conse‐
quences of your decision. There are no silver bullets in software architecture, so there
will always be a downside to your decision. The negatives are warnings to the reader
about what to look out for, and they show that you took negative consequences into
account. The positives will tell the reader why you are accepting the negative conse‐
quences. Trade-offs will always be necessary.

Consultation
This section is optional, but architecture decisions are rarely made in isolation. This
is the place to note advice (not opinions). Either you or your contributors can add it
here. You can also add research and references here, such as a blog post or article on
the subject and the conclusion you drew from it.

Having this record of consultation keeps you accountable for making an informed
decision. You do not have to follow all the advice you receive (of course, some of it
may be conflicting), but you should have reasons (and state them in the Decision
section).

The Consultation section is used during the decision process
despite it being last in the template. It comes last because it can
become quite long and would obscure other information if placed
earlier in the template.

ADR Content
When creating your ADR, it is important to remember what your teachers always
told you about showing your work. Don’t just state costs that you have calculated, but
include the figures you entered into the calculation and how you calculated them (for
example, the calculations themselves, or a link to an online calculator and the date
you used it—prices change).

The reader should not have to simply accept your calculated answer, and you do not
want to have to field questions about how you came to your answers if you aren’t pre‐
pared. Remember that things can change over time, so it is important that calcula‐
tions can be repeated with new inputs or changes in prices.

174 | Chapter 12: Effective Practices

1 Templates for ADRs are available in the Appendix and on the book’s website, where text versions of Figures
12-3, 12-4, and 12-5 are also available.

The trade-off to showing your work is that your ADR can become
long and noisy. Mitigate this by linking to external data or calcula‐
tions, or by using methods in the ADR file format you have chosen
to hide extra information (such as <details> and <summary> tags
in HTML or Markdown).

The amount of detail included in your ADR should match the ramifications of the
decision. More important decisions should require more effort, but make sure that all
ADRs contain the necessary information to understand why an option was chosen.
The amount of detail in your ADR also depends on the purpose of the record. Is it
being used simply as a record or as a living document for collaboration, persuasion,
and decision making?

You should reference ADRs from your code and other documenta‐
tion, including diagrams. Make it easy for someone reading your
documentation or diagram to find the ADR you reference. Use
links or references to ADRs to explain the reasoning behind the
design or code choices you have made.

Figures 12-3 and 12-4 show an example of an ADR used to influence stakeholders
and make a decision. The ADR is detailed, showing the reasoning behind the scoring,
and contains input from people involved in the consultation.

Figure 12-5 shows how the same decision might be recorded if the purpose were to
record the decision for future reference. You will need to decide what to include
based on the purpose of your ADR.1

Not all decisions are made openly, although they should be in most
cases. If you have a problem with individuals or groups making
decisions without consulting others, ADRs can help. You will need
to ensure ADRs are part of a process, such as not signing off on a
budget until an ADR with suitable consultation has been decided.
But beware of adding too much red tape to the process or it will be
circumnavigated.

ADRs | 175

https://communicationpatternsbook.com

Figure 12-3. ADR-044 Use an Event-Driven Distributed Architecture, part 1

176 | Chapter 12: Effective Practices

Figure 12-4. ADR-044 Use an Event-Driven Distributed Architecture, part 2

ADRs | 177

Figure 12-5. ADR-044 Change to Event-Driven Architecture

178 | Chapter 12: Effective Practices

2 RAID, sometimes called DAIR, can stand for different things depending on who is using the log. R is usually
risks, A can be actions or assumptions, I is usually issues, and D can be decisions or dependencies. To include all
of these, some people use a RAAIDD log.

ADR Storage
The storage location of your ADRs is important because all stakeholders need to have
access, whether they are contributing to ADRs or reading them. This access isn’t just
for developers and architects.

Access needs to be permitted and easy. You may find it useful to have a central place
for all ADRs in the company. This approach allows everyone access to learn from
others’ decisions.

Your ADRs are related to, but should be kept separate from, any
RAID log used for a project or product.2 If D in your RAID log
stands for decisions, you should link to where ADRs are recorded
from this part of your log. If D in your RAID log stands for depen‐
dencies, I recommend adding a further D for decisions (turning it
into a RAIDD log) and linking to your ADRs. Keeping ADRs sepa‐
rate means they are easier to find and access.

The storage location and mechanism (for example, written in Markdown in a wiki)
must fit within the workflow of those who need to write, edit, and read ADRs. For
those who normally access a code repository, consider linking to the ADR storage
space in the Readme file and referencing specific ADRs from documentation stored
with the code when appropriate. Some people will never touch a code repository or
documentation stored there, and it should also be easy for them find and edit ADRs.

The other consideration for storing ADRs is maintaining the data. If you are hyper‐
linking between ADRs or to ADRs from other documentation and assets, these links
should never be broken. Ensure that you have a process in place to find and fix bro‐
ken links if ADRs are moved or renamed. Better still, use a tool that does this for you.

Don’t lose your ADRs when a project ends. ADRs are specific to
the product or system they are made for, not a project that works
on a product. Store ADRs against the product, not a project (see
“Products over Projects” on page 135).

ADRs | 179

ADR Culture
The final part of ADR creation and maintenance is to create a culture and expectation
of creating and reading ADRs. How do you get your team or colleagues to start creat‐
ing ADRs? As with everything in software, it always comes down to people. The
answer to this question has two parts: educate them and make it easy.

The first part is education: show them the benefits by creating ADRs for past and new
decisions. Telling people is one thing; showing them is quite another. It is important
to show them that ADRs apply to them, even if they are not architects themselves:

• When others ask a question, you can direct them to an ADR you have written to
find the answer.

• If a discussion starts about making a change, you can mention an ADR of the
original decision to support the discussion.

The second part is making it easy: create ADRs using the systems and applications
your colleagues are already using. If your colleagues are using Visual Studio Code or
another IDE, use that to create the ADRs. If everyone uses Notion, use that. You need
to make it as effortless as possible for people to add writing, contributing, and refer‐
ring to ADRs to their usual processes. The ADR template should be easy to fill in and
understand, and everyone should understand which parts are mandatory and which
are not.

To help ADRs become part of your team and company culture, try these approaches:

• Add discussion of decisions to your weekly review meeting so that an ADR can
be created for a decision if required.

• Make reviewing ADRs related to the product part of the onboarding process to
bring new team members up to speed quickly.

• When someone asks a question that isn’t answered by an existing ADR, consider
whether a new ADR is needed. (See “Which Decisions Need an ADR?” on page
170.)

Bear in mind that behavior change takes time. Don’t give up early when introducing
ADRs to your team and company.

180 | Chapter 12: Effective Practices

3 This is often referred to as the paradox of choice, which is also the name of a book by Barry Schwartz on the
subject (Harper Perennial, 2004).

Decision-Making Myths
Quashing some myths around decision making can lead to a clearer and faster
decision-making process.

Myth 1: Decision making is linear
Decision making should be an agile process, iterating over the ADR or proposal
until it is decided and revisiting past decisions as needed.

The longer you put off a decision, the more information you have to base that
decision on, but decisions cannot be put off forever. New information arises and
circumstances change, which may affect decisions in progress or that have
already been decided. This is a very good reason to record decisions using ADRs.
You want to be able to revisit ADRs and reuse the information and analysis in
them, saving effort on new decisions.

Myth 2: Giving more choices is better for making decisions
Although you might think that presenting or gathering more options improves
your chances of finding the best one, research shows that people are less likely to
make a decision when given lots of options and less likely to be happy with the
result.3 All options have pros and cons, and evaluating many options, each with
its own pros and cons, is a much higher mental load than fewer options.

Where possible, create an ADR or proposal with no more than three options and
use abstractions such as star ratings and tables to help readers compare them.

Myth 3: The decision should be made by the most senior person
The most senior person, or person with the most authority, is not necessarily the
best person to have the final say. The person with the most expertise, or who will
be affected the most by the outcome, should be the decision owner and own the
decision and the process of making it.

The decision owner should understand the problem space and possible solutions
and use research and contributions from others to bolster their knowledge. They
will take the decision process through to a conclusion.

Myth 4: All stakeholders should be involved in the feedback process
Each stakeholder will be affected differently by the decision. The decision owner
should ensure that stakeholders who are important to the success of implement‐
ing the decision have the chance to give input and commit to whatever the out‐
come is.

Some stakeholders are useful to consult as you draft the ADR, helping to identify
concerns or holes in the proposed options. You will find that some stakeholders

ADRs | 181

do not need to be involved in the decision-making process but will need to be
informed of the outcome.

Myth 5: You should ask for all kinds of feedback
Be specific and tailor your requests for feedback to each stakeholder. Generic
feedback is often not useful for making a decision and can mean relevant feed‐
back is harder to find and use. Ask involved stakeholders to do the following:

• Let you know if anything in your ADR or proposal is unclear.
• Ask clarifying questions if they need to.
• Provide feedback only when they are sure they understand fully.

You can update the ADR (before it is decided) to answer questions from stake‐
holders or to improve clarity. Once the decision is made, communicate it to all
stakeholders.

Myth 6: All stakeholders must agree on the outcome
Stakeholders need to commit to the outcome to make it successful but do not all
need to agree that the outcome is the best solution.

Once all relevant stakeholders have been consulted, it is the decision owner who
will make the decision. The decision owner must then ask all relevant stakehold‐
ers to either commit or not. Any stakeholder who thinks the outcome is unsafe
needs to explain why, and the decision owner must work with them to address
their concerns. Stakeholders can also indicate if they agree or disagree with the
decision, but commitment is key to success.

When all relevant stakeholders have committed to the outcome, the decision can
be finalized. Then the decision will not be revisited unless new information
emerges, at which point a new decision process will start, the outcome of which
will override the original decision. In this case, your original ADR’s status would
change from Decided to Superseded.

Myth 7: The decision owner can make a rational decision
In “Battling Bias” on page 106, I covered some of the biases that everyone is sub‐
ject to. The decision owner gets input from relevant stakeholders in an attempt to
mitigate at least some of these biases. You must be aware of the biases you and
others involved hold. Keeping these in mind will help, but you can never totally
eliminate bias.

As mentioned, requiring that the stakeholders involved commit rather than agree
is a way to mitigate groupthink. When members of the group are not expecting
full group consensus, they are more likely to express dissenting viewpoints and
critically analyze the options in front of them.

182 | Chapter 12: Effective Practices

Architecture Characteristics
Architecture characteristics, also known as system quality attributes or quality charac‐
teristics, are the priorities for your system or product. Taking the time to pull these
characteristics out of your analysis can enable you to design your architecture to meet
your stakeholders’ priorities. Recording them so they can be used effectively will put
you on the road to actually meeting these priorities.

This section looks at how to create and record effective architecture
characteristics. For a deeper dive into architecture characteristics
themselves, I recommend Chapter 4 of Fundamentals of Software
Architecture by Mark Richards and Neal Ford (O’Reilly, 2020).

Architecture characteristics can be created and applied whether you are practicing an
approach such as DDD or another formal or informal method for analyzing the
problem space and creating an architecture that solves that problem. The docu‐
mented requirements are a good place to start drawing out the architectural charac‐
teristics, and this includes functional and nonfunctional requirements. Architecture
characteristics are often associated with nonfunctional requirements (requirements for
the operation of a system rather than the behavior) and are like high-level forms of
nonfunctional requirements.

Nonfunctional requirements can cause confusion and headaches for even the most
seasoned architect, business analyst, or project manager. They can seem intangible,
and it is hard to know where to start. Effective architecture characteristics will
become a compass when making project, architecture, and design decisions. They
communicate the priorities of the system or product to all stakeholders and become
the cornerstone of decision making.

Defining one ultimate list of architecture characteristics is impossible because every
situation is different; as with so many things in software architecture, it depends. But
although a definitive list doesn’t exist, you can create a good enough list that fits your
company and/or product. Here are some examples that you can take and develop into
a custom list of characteristics for your situation:

Accessibility
The ability of users of all abilities to successfully use the system

Availability
The ability of the system to be usable by users when they need it

Configurability
The ability of the end user to make easy changes to elements of the software

Architecture Characteristics | 183

https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://learning.oreilly.com/library/view/fundamentals-of-software/9781492043447/

Continuity
The ability to recover from disaster

Extensibility
The ease of adding new functionality

Portability
The ability of the system to run on multiple platforms

Privacy
The ability of the system to hide data from internal and external users

Scalability
The ability of the system to operate consistently as the number of users increases

Examples of Architecture Characteristic Lists
For more ideas on what to consider for your list of architecture characteristics, the
following define their own lists:

• Wikipedia defines a list of system quality attributes.
• ISO/IEC 25010 defines a list of quality characteristics.
• Mark Richards defines a list of architecture characteristics in his Architecture

Characteristics Worksheet online.
• Mark Richards and Neal Ford define a (partial) list of architecture characteristics

in Chapter 4 of Fundamentals of Software Architecture.

Mark Richards and Neal Ford recommend choosing no more than seven architecture
characteristics for your product or system. Your product owner would likely choose
everything from a list presented to them, but your design cannot meet every single
architecture characteristic, so you need to prioritize.

When you list architecture characteristics for your company, make
sure to define each one so that everyone has a clear understanding
of what each means.

The good news is that some architecture characteristics can be considered implicit
because they are always important. These do not need to be counted toward your
seven, but you can include them in your top seven if you think they are critical
enough to prioritize for your product or system.

Here are some architecture characteristics that you can consider implicit:

184 | Chapter 12: Effective Practices

https://oreil.ly/HGqaw
https://oreil.ly/Bbl4o
https://oreil.ly/wlYHL
https://oreil.ly/wlYHL

Feasibility
Whether the solution is possible given the constraints present (money, time,
resources, and so on)

Maintainability
The ability to efficiently maintain the system

Security
The ability of the system to remain inaccessible to those without authorization

Simplicity
Whether the system is simple and uncomplicated

Cost can also be considered separately from feasibility as an implicit
architecture characteristic. Most businesses aim to save money in
one way or another, so cost is always going to be an important con‐
sideration, especially if shareholders are in the equation.

Consider defining architecture characteristics to be an agile process. It is important to
note that they can change with time. Scalability may not make the top seven priorities
at the beginning of a product’s life, but it could become more important as the user
base grows. Security is not likely to become less important, but it may become more
important if the product starts to store personally identifiable information or new
legislation comes into effect. In that case, security may need to be bumped from the
implicit characteristics into the top seven for design changes to be prioritized and
effective.

As the product or system moves through the phases of initial product, growth, and
optimization, you should revisit the architectural characteristics and assess whether
their importance has changed (see Figure 12-6). Defined business milestones could
trigger this review, or a review could be set for every x months, depending on the
timescales you are working within.

Figure 12-6. Using architecture characteristics as the product lifecycle progresses

Architecture Characteristics | 185

Once you have defined architecture characteristics for the product
or system, you should use them to develop and back up the rest of
your design for the system’s architecture. One example of this is
using architecture characteristics as criteria in decision making in
ADRs.

How you record your architecture characteristics, and the analysis that got you there,
will impact their effectiveness. Writing a list of your top seven characteristics and any
implicit characteristics is the bare minimum. Table 12-1 shows an example of how to
record effective architecture characteristics in a table.

Table 12-1. Effective architecture characteristics sample from Polyglot Media

ID Characteristic Applicable to Source
AC01 Auditability Media Service REQ 014 The system will record access and use of all media for

analysis

AC02 Fault-tolerance Payment Interface, External
Media Interface, Customer API,
Customer UI

REQ 025 and REQ 026

AC03 Extensibility External Media Interface REQ 029 It should be simple to add a new external media
source to the system

To record effective architecture characteristics, try the following:

Indicate which area(s) of the system the characteristics apply to
This might be all areas but is more likely a subset. This can be a general statement
initially and can be updated to specific services, data stores, or components when
these are identified.

Record the source(s) of the architecture characteristic
This may be a requirement (it is good practice for requirements to have an iden‐
tity and for you to reference this), or it might be a record of your analysis or ref‐
erence to the output of an EventStorming or domain storytelling session. You can
also document any reasoning for including this characteristic that is not included
in the sources you have indicated.

Give each characteristic an identity
The identity can be used to refer to the characteristic in other parts of your docu‐
mentation. This includes ADRs, where characteristics can be used as decision cri‐
teria, and diagrams.

State all characteristics that were considered
List all the characteristics that were considered and/or link to the master list of
architecture characteristics. It is good practice to document any characteristics

186 | Chapter 12: Effective Practices

4 See “ADRs” on page 169.

that nearly entered the top seven so that they can be considered easily when
reviewing the characteristics at a later date.

Record a history using dates
Include the original date, last updated date, and next review date so that anyone
referencing the characteristics knows whether they are up-to-date and still valid.

Identify the top three priorities
It can help to identify a top three from your selected architecture characteristics
(not necessarily in order) to help prioritize decisions made based on these char‐
acteristics. If you do this, work with stakeholders to discuss and choose the top
three and document the chosen priorities and reasoning.

An ADR is an effective structure for recording your decisions
about architecture characteristics.4 If you are using ADRs to record
decisions, you could use one to record your architecture character‐
istic selection. When reviewing your architectural characteristics,
you can supersede the original ADR with a new one if changes are
made.

All Documentation as Code
Documentation as code as a set of principles can be applied to all documentation, not
just technical documentation. The standard definition of documentation as code is to
create your documentation in the same environment or IDE that you use to create
your code, using a markup language such as Markdown, and store it in version con‐
trol, automating most processes. Documentation as code can also mean that your
documentation is automatically generated.

Technical Documentation
For documentation that naturally sits near the code, such as documentation of the
code that is written by the same people who write the code, using documentation-as-
code processes has many benefits:

A documentation culture
When documentation is easy and part of the standard workflow, it is much more
likely to be created and kept up-to-date.

Improved accuracy
If you subject documentation to the same quality control processes as code, such
as pull requests, code reviews, and tests, you reduce the risk of errors.

All Documentation as Code | 187

More efficient workflows
Integrating documentation as code into your workflows streamlines your techni‐
cal documentation process, compared to writing it separately.

Easier maintenance
As long as you don’t add too much red tape to your documentation process, such
as over-the-top approvals, it is easier to maintain technical documentation as
code because of simpler formats, like Markdown, and not having to change tools.

Increased flexibility
Formats such as Markdown and Asciidoc can be easily and automatically con‐
verted (either using a specialist tool or a pipeline) into a range of formats (such as
HTML or PDF) if you need to publish the documentation.

Better documentation discoverability
When documentation is stored in the same place as the code, or in a known
repository, it is easy to find what you need.

Better collaboration
Storing documentation in version control makes it simple for multiple people to
make changes to a single file and merge all the changes. An approval process
adds more automated collaboration.

Why should you produce technical documentation? In addition to
making upskilling any developer on a part of your codebase much
easier and more efficient, external users or customers often need it.
How well a software product or API is documented can be a huge
factor for those choosing vendors, even outweighing cost and per‐
formance factors.

The documentation process generally follows the steps shown in Figure 12-7: author‐
ing, conversion, and publishing. Authoring is done using your IDE and the review
process in your version control system. Verification can be a part of the review pro‐
cess or be performed separately in your pipeline. Conversion (for example, from
Markdown to HTML) is performed either automatically by your pipeline or man‐
ually, usually using a third-party tool. Publishing is then handled, either automatically
or manually, by your pipeline.

188 | Chapter 12: Effective Practices

Figure 12-7. Documentation-as-code overview

Consider whether you need to draft a version of the documentation
for review before deployment. The choice will depend on how rig‐
orous your review and verification process is, how well your con‐
version process works (for instance, does something look bad or
break if not formatted in a certain way?), and whether your docu‐
mentation is public. A static site generator, such as Hugo, can be
useful for conversion and deployment in this situation because you
can take advantage of its draft status for pages and the ability for a
test build to include draft pages.

You can put documentation as code into practice in a way that suits your processes
and environment based on the following principles:

• Documentation source files (like Markdown) are stored in a version control sys‐
tem (like Git).

• Documentation is reviewed by a trusted set of reviewers (such as developers and
technical writers).

• Documentation is verified both by reviewers (for accuracy and sense) and auto‐
matically (for syntax and similar), for example, using tests.

• Documentation artifacts are built automatically (for example, an HTML version
of the documentation).

• Artifacts are published without much human intervention.

Automate a documentation-as-code process with the same system(s) that automate
the testing, building, and deployment of code. This means that you are not duplicat‐
ing anything and are therefore saving time and effort. Reviews should be handled in
the same way as a code review for the same reason.

All Documentation as Code | 189

https://gohugo.io

5 Some diagramming applications also save data in a text-based format (for example, draw.io).
6 For example, PlantUML has its own domain-specific language whereas Mermaid uses “Markdown-inspired

text definitions.”

The simplest form of documentation as code is to include documentation as Mark‐
down files in the same repository as the code. The documentation is then available to
anyone who clones the repository and can be viewed in a text editor, browser, or any
application that supports Markdown. If you use GitHub to manage your Git reposi‐
tory, you can take advantage of GitHub Pages, which displays your documentation in
your chosen theme and makes it easily accessible.

Treating your documentation as code means that you can write tests that will run
automatically in the same way as for your code (and you can include these tests in the
same place as your code tests for extra efficiency and easier determination of build
success). Two tests useful in most documentation are checking for broken links and
readability issues.

When adding diagrams in documentation as code, use a text-based diagram tool,
such as Mermaid or PlantUML. Creating diagrams using a text-based tool makes it
easier to use version control because the diagrams can be compared in the same way
as plain text.5 When deciding which tool to use, bear in mind the types of output that
can be produced, whether your conversion and publishing tools support it, and how
easy it is to write the language required by the diagram tool.6

When generating and deploying documentation along with code,
consider the automation you need to make it practical. If you sup‐
port five versions of your product, do you need to maintain five
versions of documentation? Should a pull request involving only
documentation be automatically approved if it blocks the deploy‐
ment pipeline? Consider your unique situation to find the balance.

Automatically Generated Documentation
For code that changes regularly (and any documentation that refers to the details of
the code, like variable or method names), automatic generation is the best way to
handle documentation. Depending on your code language and environment, you
have many options for automatically generating code documentation.

When deploying an API with automatically generated documentation, the whole
deployment process is much faster because the documentation doesn’t have to be
manually updated for end users, whether those are customers or internal users. Auto‐
generation can also help developers understand a part of the codebase that they are
not familiar with (and maybe no one currently on the team is familiar with).

190 | Chapter 12: Effective Practices

https://pages.github.com
https://mermaid.js.org
https://plantuml.com

7 This quote is often attributed to Kevlin Henney, but the origin is unclear, and it may have been said or written
by others as well.

Documentation generators do have trade-offs and limitations. They can tell you only
about the code. A documentation generator cannot tell you about business require‐
ments or why something was or wasn’t implemented in a certain way. It cannot tell
you why. Important code will be given the same precedence as unimportant or boiler‐
plate code. Depending on the generator, some of these limitations can be minimized
by using appropriate comments or settings, but in general, you will need more than
automatically generated code for your technical documentation.

Some generators use static analysis of the code (examining the source code without
executing the program), and some require comments or inline documentation in the
code to generate the documentation. This is something to bear in mind when select‐
ing a tool. If you can find a tool that meets your documentation needs and doesn’t
require you to add anything to your code, that is likely preferable to one that requires
you to annotate all your current and future code. If an annotation is missing, that
code will be missing from the documentation. Add checks to code reviews or pull
requests to ensure the annotations are present or write automatic fitness functions to
catch this.

When choosing a tool, keep your audience in mind. What do they need? Why are you
creating this documentation? Your audience for automatically generated code is going
to be technical. If it isn’t, consider another way to create documentation because auto‐
matically generated documentation is all about the code. It will be optimized for
developers who need to work with the code or API that is being documented.

As Kevlin Henney supposedly put it, “Six hours of debugging can
save you five minutes of reading documentation.”7 Let’s optimize
that documentation and make it accessible so that those hours are
not wasted.

AI is one of the newest ways of generating documentation. If you use tools such as
Visual Studio Code, you can find extensions that use AI to add documentation to
code. GitHub Copilot is another tool that can generate comment documentation in
code.

When using AI to generate documentation or anything else, you
should check the output carefully. AI tools are still in their infancy,
even compared to standard automatic documentation generation
tools, and confidently produce convincing outputs that are com‐
pletely wrong.

All Documentation as Code | 191

Other Documentation
Much documentation is business related, or technical but not related directly to the
code, including requirements, architecture characteristics, and ADRs. These types of
documentation have many trade-offs when it comes to documentation as code, but
you can still get the benefits if you apply the principles and bear these trade-offs in
mind.

The people who write business-related documentation and artifacts don’t necessarily
know how to use the IDE the developers use and are unlikely to know the ins and
outs of version control. You want to make documentation an easy process so it
becomes part of the culture of your team and company, and forcing people to upskill
in areas not particularly connected to their job does not accomplish that goal. You
need to apply the principles without forcing nondevelopers into the developer world.

Don’t treat all documentation the same. It has different audiences,
different authors, and different reasons for existing. You can still
apply the documentation-as-code principles, but don’t make the
documentation process harder for anyone.

All documentation can be written using plain text, and Markdown is an excellent
option for nontechnical writers to pick up easily. Many what you see is what you get
(WYSIWYG) editor options are available for Markdown, giving a more Microsoft
Word–like experience.

Nontechnical writers can be introduced to concepts such as writing in small chunks,
getting feedback, and then integrating the new work into their current work. These
processes can be applied even without version control to content that is not plain text.
If using Google Docs or Microsoft Word, you can use comments to get feedback and
accept or reject changes to a document.

You can apply version control to all documentation if you use the appropriate tools.
Nontechnical authors won’t want to use the command line, but it would likely not
take much training to get them to use a tool such as GitHub Desktop or a tool with
Git or another form of versioning built in, such as GitBook. Developers or technical
writers could easily create meta documentation on how to use a version control tool
and your documentation-as-code process.

Behind the scenes, without intervention from nontechnical authors, you can apply
the principle of building and publishing documentation. If version control is used, it
can be a pipeline similar to the one used for technical documentation. If version con‐
trol is not used, you can, for example, design a batch process that runs on the files in a
folder.

192 | Chapter 12: Effective Practices

https://desktop.github.com
https://gitbook.com

Diagrams in technical documentation-as-code would normally be created using Mer‐
maid or a similar text-to-diagram tool. Although text-based diagrams lend them‐
selves better to being stored in version control, they are not the only way to version
diagrams. For nontechnical writers, learning to write diagrams as text is likely a step
too far. Instead, you can include the original diagram files with any generated files,
such as PNGs, and the documentation text files. Anyone with access to the files (be
they in a repository or just a folder) will be able to maintain those diagrams. Some
formats, such as draw.io, are stored as text so can even be compared in a similar way
to plain text.

You should be able to integrate technical writers into the same sys‐
tem that your developers are using if they are authoring documen‐
tation. Learning version control, Asciidoc or Markdown, and
Mermaid or a similar tool, has a smaller learning curve and is
much more relevant to a technical writer’s role than to a business
analyst or project manager, for example.

Open Source Tools for Docs as Code
I recommend the following open source tools for generating documentation:

Docusaurus
Creates documentation sites from Markdown files.

MkDocs
Builds project documentation.

Docsify
Generates your documentation website on the fly from Markdown files.

Backstage
Builds developer portals and was originally developed at Spotify.

docToolchain
A collection of scripts that makes it easy to create and maintain powerful techni‐
cal documentation.

The following are automatic documentation generators:

Doxygen
Generates documentation from various popular coding languages.

Swagger
An open source (and professional) tool set for developing and documenting
APIs.

All Documentation as Code | 193

https://mermaid.js.org
https://mermaid.js.org
https://docusaurus.io
http://www.mkdocs.org
https://docsify.js.org
https://backstage.io
http://doctoolchain.org
https://doxygen.nl
https://swagger.io

docfx
Converts .Net assembly, XML code comments, REST API Swagger files, and
Markdown into HTML, JSON, or PDF files.

phpDocumentor
Generates documentation automatically for PHP projects, including UML class
diagrams.

Slate
Generates responsive API documentation.

Magidoc
A static documentation website generator for GraphQL.

And these tools help you write diagrams as code:

Mermaid
A JavaScript-based diagramming and charting tool.

PlantUML
Creates UML diagrams with support for many non-UML diagrams too.

GraphViz
Represents structural information as diagrams of abstract graphs and networks.

Kroki
Creates diagrams from text descriptions.

Summary
You may have already used the practices in this chapter, but now you know how to
use them effectively and get the best return on investment for your time and energy.
Others may be reticent to try what you have learned, especially in this area of knowl‐
edge management and documentation, which many people seem to dislike. Show
(rather than tell) how things can be better, and they should come around to this bet‐
ter way of working.

What you have learned about knowledge management in Part III applies to in-
person, hybrid, and fully remote methods of working. In Part IV, you will find many
patterns, antipatterns, and techniques that will enhance your hybrid, fully remote,
and in-person communication.

194 | Chapter 12: Effective Practices

https://dotnet.github.io/docfx
https://phpdoc.org
https://github.com/slatedocs/slate
https://magidoc.js.org/introduction/welcome
https://mermaid.js.org
https://plantuml.com
https://graphviz.org
https://kroki.io

1 By completes, I mean that the message is received and understood, and any needed response is sent, received,
and understood.

PART IV

Communicating Remotely

Many modern teams are distributed in nature, either fully remote or hybrid, and can
be spread across the globe. Creating software products in this environment requires
different communication patterns than for a group of people sharing the same room
and whiteboard. Whether you are communicating with colleagues, customers, or
other businesses, you need to consider many factors, including time, work patterns,
culture, inclusivity, and the channels you use to communicate.

Distributed communication has advantages and disadvantages compared to in-
person. You can exploit or mitigate these to get the best outcomes for your teams and
organization by applying the patterns and techniques presented in Part IV.

Before you dive in, I want to define synchronous and asynchronous communication,
which are covered in depth throughout the following chapters:

• Asynchronous communication does not assume or expect the recipient to pick up
or respond to the message as soon as it is received. This type of communication
usually completes within hours or days, as opposed to seconds or minutes.1

• Synchronous communication relies on all parties being available at the same time
and responding in real time. This type of communication completes within sec‐
onds or minutes.

CHAPTER 13

Remote Time

Taking both time and energy into consideration is necessary when communicating
with colleagues, other businesses, and customers. Whether you are working remotely
or in an office, you likely need to communicate with someone in another time zone
or who works different hours.

Working across time zones and with multiple working patterns has benefits and
downsides. For example, you could hand over work to a team in a time zone behind
yours at the end of your working day so that it does not sit idle until you start work
again. You will also find that you end up with a more diverse set of ideas and practices
from a more diverse group of colleagues, escaping from local echo chambers to see
things differently. On the other hand, you may get frustrated when someone you need
a response from has already finished work for the day, or expend a lot of effort find‐
ing a time that all required meeting attendees are available for a meeting, due to lack
of overlapping working hours.

Whether you are communicating asynchronously or synchro‐
nously, you should aim to communicate regularly to keep everyone
updated.

This chapter explores patterns that will help you overcome hurdles with time, work‐
ing patterns, and your and others’ energy and productivity so that your remote and
hybrid communication becomes more efficient.

197

1 See Wikipedia for a breakdown of date format by country.
2 The format year-day-month is not used anywhere, so if you see the year first, you can be sure it is supposed to

be year-month-day.

Synchronize Time
For those who live in a country that falls completely within one time zone, it is easy to
forget that some countries have many time zones, and it is therefore more common
to need to consider time zones than you might think. Companies are increasingly
taking advantage of a global talent pool, which results in ever-increasing differences
in start and end times for people working at the same company or on the same team.

Besides time-zone confusion, consider date confusion. In the US, it
is most common to specify dates as month-day-year, whereas the
most common format globally is day-month-year.1 Depending on
your location, the date 10-11-2023 could be read as November 10,
2023 or October 11, 2023. To avoid confusion, use a word or abbre‐
viation for the month (10-Nov 2023) or use the ISO 8601 year-
month-day (2023-11-10).2

Time Zone
If multiple time zones are involved, communicating clearly about time-zone and
working-hour boundaries becomes critical. These boundaries must be respected for
everyone, including the need for breaks. Encourage everyone to communicate about
issues with scheduling so that these can be addressed. When everyone feels respected
and listened to, you will have a happier and more productive team.

When scheduling or discussing deadlines, all parties must understand exactly when
you are talking about. If you don’t specify a time zone, you may end up with various
assumptions. One person may think you mean their time zone, another might think
you mean the time zone you are currently in, and another might think you mean
UTC (coordinated universal time).

In some countries, it is far less common to use the 24-hour clock.
To avoid confusion, specify a.m. and p.m. and only the hours 1–12
(for example, 1 p.m. UTC rather than 13:00 UTC).

198 | Chapter 13: Remote Time

https://oreil.ly/cRv64

For an idea of how much confusion not specifying a time zone could cause, look at
Figure 13-1. The world has many time zones, and the implementation of zone bor‐
ders varies immensely (a person’s longitude can’t necessarily be used to work out
which time zone they are in).

Figure 13-1. Map of current de facto time zones, courtesy of Wikimedia

Make sure you specify the time zone (and, conversely, ask for clarification if someone
else doesn’t specify the time zone). It is good practice to do this even if you know
everyone involved is in the same time zone as you. It creates an expectation and
means you are less likely to forget to do it when needed. You also never know when
someone in another time zone might become involved in the discussion.

To improve communication across time zones, specify the recipient’s time zone rather
than your own (or include both). When communicating with a group covering more
than one time zone, you can either specify each time zone (for example, 9 a.m.
PST/12 p.m. EST/5 p.m. GMT) or use one reference time zone (such as 5 p.m. UTC).

You and your company should consider which reference time zone
is the best standard to use and review that decision as needed. UTC
is a good option; it doesn’t change, and other time zones are often
expressed in terms of UTC (such as EST: UTC-5:00 and IST: UTC
+5:30). Some time zones observe summer time or daylight saving
time, and don’t necessarily switch over at the same time, adding to
possible miscommunication twice per year.

Keeping time zones in mind helps avoid accidents like scheduling a stand-up meeting
at 6:30 a.m. for your colleague that seems to be perfectly reasonable at 9:30 a.m. in

Synchronize Time | 199

https://oreil.ly/YtkMs

your time zone. Or scheduling a video call with a colleague when it is 10 p.m. for
them.

Identify your colleagues’ availability. You may think that 6:30 a.m.
is not appropriate for your colleague in another time zone, but they
may have shifted their working hours and therefore be working
then and happy to meet. Don’t make assumptions.

Here are some useful techniques and tools for keeping time zones front-of-mind:

• Add others’ time zones to your calendar application. Google Calendar allows you
to add a secondary time zone and edit the labels of your primary and secondary
time zones. Outlook Calendar allows you to add up to two additional time zones
and change their labels.

• World Time Buddy is a website and mobile app that allows you to add multiple
time zones and easily compare times or periods of time between them. You can
view specific dates, which is useful for scheduling around times of the year when
time zones are switching to summer or back to standard time. You can add your
Google Calendar to see your events alongside time zones and use tabs to create
groups of time zones for easy reference.

• World Clock Meeting Planner is a website with lots of features to help you orga‐
nize events across multiple time zones. It uses colors to show morning, daytime,
evening, and nighttime in each time zone, including red to indicate weekends
and public holidays. You can create calendar invitations and polls so attendees
can vote on their preference from the times you select.

• To avoid putting unintended pressure on colleagues to reply to emails or accept
meetings during nonworking hours, add a statement to your email signature and
the bottom of your meeting request indicating you do not expect them to reply
or accept the meeting outside of their normal working hours. Ask for suggested
times if they need to reject a meeting.

• Add your time zone(s), along with your working hours, to your email signature
so that others can use this information when communicating and setting up
meetings with you.

• Set up office hours in any applications you use, such as Outlook, Google Calen‐
dar, and Slack. Encourage colleagues to do the same. This will make it less likely
that you will try to schedule something outside their working hours.

• When looking for free time in a colleague’s calendar, check to make sure it is an
acceptable time in their time zone, in case they haven’t set up office hours in their
calendar, before sending the meeting request.

200 | Chapter 13: Remote Time

https://worldtimebuddy.com
https://oreil.ly/KEy72

• Instant messaging tools such as Teams or Slack show the status of each user. Pay
attention to these when sending messages to manage your expectations, and state
that you don’t expect a response outside of their office hours if they are not
online (as they still may be notified). Many apps allow you to customize the
status or message shown, so you can help others manage their expectations when
communicating with you.

• Embrace and coordinate virtual tools for project management, processes, and
communication. Those working together should use the same tools in these cases
as far as possible. It is OK to use a different IDE to code in, or a different app to
draw diagrams, but for communication and ticket or task management, it is criti‐
cal to use the same apps to coordinate.

When setting up automatic alerts or other notifications from appli‐
cations or cloud infrastructure, you can take both time zone and
urgency of the notification into account. If the notification doesn’t
need immediate attention, it could be scheduled to be sent during
the receiver’s working hours to avoid unnecessary disturbance.
Email notifications could be sent to a shared mailbox so that those
who are online at the time can deal with the message.

If you commonly have meetings or calls in a particular time zone or group of time
zones, make a note of the best times to have those meetings. This can be a reference
for all those involved in scheduling and can prompt negotiations if scheduling the
meeting within everyone’s working hours is not possible.

If time zones are far apart, communicate asynchronously as much as possible, but
bear in mind the pitfalls: this type of communication is not a silver bullet (see “Async
to Think” on page 223).

Empathy and Compromise
Empathy is hugely important when it comes to coordinating across time zones. If a
synchronous meeting is required and one or more people will be inconvenienced,
you can show empathy and increase fairness in the following ways:

• Compromise by taking turns. If one person or team ends up working late for one
meeting, another person or team could work early for the next meeting.

• Inconvenience should be compensated, especially for company-wide or
company-mandated meetings, but also for regular meetings. This could be paid

Synchronize Time | 201

3 Time off in lieu and comp time refer to taking overtime accrued as extra holiday or vacation time.

overtime, time off in lieu/comp time,3 expensed meal, or another type of com‐
pensation. Giving people more than one option for compensation is another way
to show empathy and create goodwill.

• Record the meeting so that those who cannot attend can catch up during their
working hours.

• If one or more people cannot attend, make sure that they have input into any
decisions that come out of the meeting.

• Use asynchronous communication before and after the meeting to keep everyone
in the loop.

Plan ahead for meetings that involve two or more time zones, par‐
ticularly if the time zones are far apart. Take extra care to make
sure everyone has the authorization to access any documents, tools,
or other resources. If someone can’t gain access, they may have to
wait a long time for you to be available to fix the problem, possibly
delaying the meeting itself.

To show respect for others’ working hours, and to also protect your own, automate
messages and emails so that they arrive during the receivers’ office hours. This way
you do not accidentally disturb your colleagues if they have left their notifications on,
or put pressure on them to reply outside of their working hours.

Protect your own time by not logging in outside of your working hours to send a
message at a good time for your colleague, and set an example of how others should
respect your working hours. Outlook and Gmail both offer a scheduling feature for
email. Teams, Slack, Telegram, and Signal allow you to schedule messages.

Split Shifts
Split shifts are an option to help with time-zone coverage. If you need someone to be
available for at least some of the time that others are working in another time zone, a
standard 9 a.m.–5 p.m. schedule may not work.

For some employees, a split shift for either some or all workdays could help overcome
time-zone challenges. It is important to be inclusive and remember that some people
have other commitments, such as children. A split shift might work well for someone
with a commitment within standard office hours for their time zone. For example, a
parent may benefit from working in the morning, then caring for children until their

202 | Chapter 13: Remote Time

bedtime, and then working their remaining hours in the evening, at the same time as
colleagues in another time zone.

A manager living and working on the US East Coast may have a team in India, for
example. Because of the 10.5-hour time difference, 5:30 p.m. for the team in India is
7 a.m. for the manager in the US. Although most communication could take place
asynchronously, in this case, the manager might choose to work one or two days per
week beginning at 6 a.m. and schedule meetings with the team in India from 6 to
7 a.m. US Eastern time.

When working a split shift, it is important to block out your nonworking hours in
your calendar on any split or shifted days. Then you won’t get booked into meetings
during your nonworking hours (which are working hours for others in your time
zone).

If you need a quick reply from someone in another time zone, aim
to contact them as early in their working hours as possible so that
they have more opportunity to see your message and respond. It is
also a good idea to mark the urgency in the subject line if sending
an email, or early in the message if instant messaging.

Regardless of time zone, showing respect, empathy, and inclusiveness when commu‐
nicating with others is important. A lack of work-life balance impairs health and risks
burnout, potentially affecting your own work and that of your colleagues. To get the
best contribution from all, create boundaries and establish etiquette. Your teams will
be welcoming and more diverse, and you and your company will benefit.

Daylight Saving Time/Summer Time
Some countries observe daylight saving time (DST), also known as summer time,
which means that relative time differences change when these observances come into
effect. The switch can be especially confusing because some countries, such as Canada
and the US, don’t uniformly observe DST; some states or provinces remain in the
same time zone year-round. Increasing the complexity, different countries switch
over on different dates.

The best way to avoid confusion is to check the regions that you work with to identify
any times of the year that might become confusing and add a recurring event to your
calendar (like “US DST starts”) that will serve as a reminder to you. Ensure that
reminder does not mark you as unavailable or out of office. Adding time zones to
your calendar and using time-zone comparison tools will also help.

Suppose you have teams working in the US and European Union (EU). Most US
states observe DST from the second Sunday in March at 2 a.m. until the first Sunday
in November at 2 a.m. The EU, UK, Norway, and Switzerland observe DST from the

Synchronize Time | 203

last Sunday in March at 1 a.m. UTC until the last Sunday in October at 1 a.m. UTC.
Therefore, for several weeks each year, the time difference between multiple time
zones in the US and multiple time zones in the EU varies.

For example, the Eastern US is four hours behind the UK when the UK is not yet
observing DST in March, but the Eastern US is five hours behind when the UK starts
observing DST as well. The time difference between the two time zones changes by
one hour for the week spanning from the end of October to the beginning of Novem‐
ber also.

And remember that you can’t just rely on the time zone to work out whose time will
change relative to yours. If your team in London works with one team in Salt Lake
City, Utah, and one team in Phoenix, Arizona, the two US teams will have an hour’s
time difference for roughly half the year beacuse Arizona does not observe DST
(Figure 13-2).

Many countries that have observed DST in the past have since abolished the observ‐
ance, either settling for permanent standard time or permanent DST. Countries that
observe DST now could stop doing so in the future too.

All these factors underscore why it is best practice to include the time zone when
storing time and date in a data store.

Figure 13-2. Relative time differences between London, Phoenix, and Salt Lake City
when London and Salt Lake City are observing DST (World Time Buddy)

Respect Working Patterns
Your colleagues, whatever time zone they work in, may have a different working pat‐
tern than you. This may be their preference, to fit around family commitments, to
align with colleagues working in another time zone, or to accommodate business and
customer needs. Working patterns can change daily and are affected by leave and
public holidays. Resist assuming that others are available at the same times as you.

You and your colleagues have various commitments outside of work that may mean
planned or unplanned changes to working hours. Picking up children from school
could mean a regular break in afternoon hours, or an occasional need to take that
break if a partner or regular childcare is not available. Plan for schedules to change
and you will not be disappointed.

204 | Chapter 13: Remote Time

Communicate Availability
As discussed earlier in this section, you should encourage everyone to block out time
in their calendars when they are not available and set office hours in calendar and
messaging apps. Simply marking the time as “Not Available” rather than giving full
details is perfectly acceptable and will make everyone more comfortable.

Stating your working hours and days in the signature of your email, as recom‐
mended, is extremely helpful if your working hours differ from the norm.
Example 13-1 shows how you can do this. Noting that you do not expect replies out‐
side of the recipient’s working hours implicitly communicates that they should not
expect a reply from you outside of your working hours.

Example 13-1. Email signature indicating working hours

I understand that your working hours may differ from mine and I
do not expect a reply outside of your working hours.

My working hours (GMT/BST):
Mon-Thu 9 a.m. to 3 p.m. and 4.30 p.m. to 6.30 p.m.
Fri 10 a.m. to 2 p.m.

Think about key times in the day that could be hot spots for conflict and try to avoid
these for important synchronous meetings and events. Consider when your collea‐
gues might be dropping off or picking up from school, when they may need to pre‐
pare lunch or dinner for a dependent, or when religious activities may be happening
(especially around religious holidays). This reduces the likelihood that someone will
decline a meeting because of a time conflict.

Defend Part-Time Hours
You, or some of your colleagues, may work part-time hours. Part-time workers can
feel left out if important meetings and decisions happen when they are not working
or feel pressured to attend and work more hours than they are paid for. Diversity (as
well as nondiscrimination) is key to a successful business. You need the input of part-
time workers and must plan to accommodate this.

Aim to schedule most, or at least important, events and meetings within the working
hours of part-time employees. When you need to schedule events and meetings out‐
side of this time, try the following:

• Make it clear they are not expected to attend during nonworking hours.
• If they are happy to attend and want to do so, give time-in-lieu (comp time),

overtime payments, or similar compensation without the part-time worker hav‐
ing to ask.

Respect Working Patterns | 205

• Record the meeting so they can catch up during their working hours. If recording
is not possible, carefully document important points and decisions and send
them to nonattendees.

• If a decision is being made or feedback sought, ensure that nonattendees are
informed and have time, within their working hours, to respond.

Plan for Holidays
National holidays and observances vary from country to country, and even between
areas within a country. Knowing when your colleagues will not be working, and
informing them when you will not be working, will mean less rescheduling and fewer
no-shows at meetings and events. Encourage everyone to put these days off into their
calendar and consider having a shared calendar with all holidays blocked out.

Don’t assume that people won’t be working on their national holi‐
days or weekends. Contractors in another country might work all
or some of their national holidays to line up with the national holi‐
days of the main business. It is also common for customer-facing
or site reliability teams to supply some level of service during
national holidays or weekends. Check with your colleagues.

Remember, others may be working when you are not, so make sure they have what
they need from you as well as notice of your availability. You do not want a develop‐
ment team in another country to be short of work or to have unanswered questions,
and then discover that their manager or an architect in another country is not
working.

Public Holidays and Observances
Some holidays are celebrated internationally, and others are national or even regional.
Here are a few examples of differences you may come across:

• Some regions within countries have extra or different holidays:
— In the UK holidays may differ across regions. For example, Scotland has a

summer bank holiday on the first Monday in August, which the rest of the
UK observes on the last Monday in August. Northern Ireland observes St.
Patrick’s Day and the Battle of the Boyne as public holidays.

— In Spain many holidays are specific to autonomous communities. For exam‐
ple, Shrove Tuesday is celebrated only in Extremadura, and each autonomous
community observes its national day at different times of the year.

206 | Chapter 13: Remote Time

— In Canada public holidays vary among provinces and territories. For example,
Good Friday is observed across Canada, but Easter Monday is observed only
in Quebec and the Northwest Territories.

• When a holiday lands on a weekend, the observance day is often, but not always,
moved to the Monday or Friday.

• Some holidays are on set dates (such as December 25), some on set days (for
example, the last Monday in May), and some change based on the moon or other
calendars (including Good Friday and Eid al-Fitr).

Plan ahead with all your colleagues so you know when everyone will be available.

Besides public holidays, you and your colleagues are likely entitled to personal leave
or statutory leave. Some workers are entitled to a certain amount of leave by law, and
many companies contractually give more time off. A total of 20 to 30 days of personal
leave is typical in the EU, for example.

Some companies specify unlimited leave but require the worker to put in enough
days to do their job. Some workers are entitled to statutory leave such as maternity/
paternity or adoption leave, which can last for more than a year.

Block out any leave you are taking in your calendar as soon as you
plan to take it. You can mark it as pending or to be confirmed (TBC)
if you need approval or are unsure for some reason, but put in the
dates to give your colleagues advance notice of your unavailability.

Be aware of and plan around hot spots in the year where more people will be taking
leave (for example, around public holidays, school holidays, and better weather). Also
bear in mind regional patterns; for example, most leave in Spain is typically taken in
August.

Encourage everyone to put their leave into their calendar as far in advance as possible
and to discuss future plans openly, so that milestones, deadlines, meetings, and events
can be planned or adjusted.

Turn on out-of-office replies in your email, and set your status in
chat applications to let colleagues know you are unavailable, when
you will be back, and who to contact in your absence. You may also
want to turn on this feature for people outside your organization if
you are customer-facing or work closely with business partners.

Respect Working Patterns | 207

4 Working hours should not be reduced to avoid legislation, such as employee benefit requirements. Don’t take
advantage; give the better work-life balance along with the full-time benefits, and you will have happier and
more productive employees.

Account for Geography and Culture
Colleagues working in other countries or areas may also have different standard
working hours, which may also vary by industry. The actual times worked and the
number of hours worked per week may vary a little or a lot. Although the number of
working hours in a week may be specified by law, the actual expectation of working
hours may be different. In the EU, workers are protected by the working time direc‐
tive, which says they cannot work more than 48 hours per week, although individuals
can choose to opt out.

In many parts of the world, a typical full-time work week is 40 hours (8 hours per day
over five days), but many employers now see the benefit of a good work-life balance
to their business and expect 37.5 or even a 35-hour week or less.4 In some areas, a
four-day week is becoming popular. This can look different depending on the com‐
pany but is another factor to take into account when considering others’ availability.

Start and finish times are another element of schedules that can vary by country or
region. In many places, the standard day is 9 a.m. to 5 p.m. But in Spain, for example,
a typical workday can be from 8:30 a.m. to 1:30 p.m., and then from 4:30 p.m. to 8
p.m., with a siesta break in between to avoid the hottest part of the day. Those who
work from home often vary their hours more than those who work in an office.

Understanding the working patterns of your colleagues is key to effective scheduling
and to setting appropriate expectations around asynchronous communication. Take
the time to develop this understanding—in part, by learning about cultural differ‐
ences—and use that knowledge to save time and reduce frustration (even increase
happiness) in the long run. You may discover that you have more working hours in
common than you thought.

Working with Other Cultures
You should be very clear on expectations and processes when working with teams or
individuals from other countries and cultures. Besides different working practices,
cultural differences may affect the implementation of these practices and techniques.

If you expect to use test-driven development (TDD) or have a certain level of code cov‐
erage for tests, make this explicit from the beginning. Make clear any other practices
or patterns you expect to be adhered to, such as factory methods, DRY, and so on.

208 | Chapter 13: Remote Time

If your local colleagues are expected to automatically adhere to laws and standards,
communicate this to remote colleagues who may not be aware of the same regula‐
tions, such as GDPR, HIPPA, OWASP, and NIST.

In some cultures, people will follow designs to the letter, which might or might not be
what you want. If you have included example or prototype code, specify whether it
should be followed exactly. People in other cultures may use designs as a starting
point and then do their own thing. You need to communicate how much they need to
stick to the designs they have been given.

Make sure to document your practices and expectations and share these with local
and remote colleagues. Having to redo work or to work around problems later can be
costly.

Recognize Real Working Capacity
It is important to know how much time each person you work with is available and to
take into account that the entire workday will not be spent on meaningful work (tasks
like meetings, emailing, and filling in time sheets have a larger impact on capacity
than you might think).

If you estimate tasks in hours for your sprints, you need to know how many produc‐
tive hours are available from developers working in that sprint. Don’t assume an 8-
hour working day. Communicate to work out productive hours per day and use that
in your calculations.

Book Meetings Efficiently
When working with customers or partner businesses, use a service that allows them
to book a meeting with you based on your availability. This eliminates the back-and-
forth of trying to find a mutually convenient time.

Many versions of this type of service are available—including Cal.com, Easy!Appoint‐
ments, and Microsoft Bookings—that allow you to customize the meeting length,
minimum buffer time before and after the meeting, how far into the future they can
book, and the time periods they can book (for example, any time in your standard
office hours, or just Thursday mornings).

Give a link to the tech lead of a partner so that they can book up to an hour with you
to discuss an architecture query, or to a customer so they can book an hour’s training
session on your software or a 30-minute initial consultation on a project.

Respect Working Patterns | 209

https://cal.com
https://easyappointments.org
https://easyappointments.org
https://oreil.ly/7oWj3

5 Circadian rhythms are the cycles of your internal body clock and run over a period of around 24 hours (such
as the sleep-wake cycle). Not everyone’s rhythm is the same (for example, some people prefer to work earlier
in the day than others).

To protect everyone’s personal time and mental health, you can set the expectation
that everyone will have notifications turned off outside of their work hours (unless
they’re on call or under a contractual requirement). This expectation sets a precedent
for a more healthy work-life balance and respects everyone’s boundaries—including
for breaks, such as lunchtime.

When you’re communicating with others who may not share the
same first language as you, being clear and concise is even more
important than usual. Use plain language and avoid idioms and
cultural references to avoid misunderstandings and back-and-forth
clarifications (see “Simple Language” on page 87 for more details).

Improve Energy and Productivity
In addition to considering time zones and working hours in your communications,
you should take energy and productivity into account. These vary with a person’s cir‐
cadian rhythm but are also affected by the amount of time they have been working,
work-life balance, and the interruptions they receive.5

Control Notifications
Notifications are probably the most common form of communication because you
receive them to tell you about most other forms of communication. But they are not
necessarily useful or productive; they can distract you.

Turning off notifications could be one of your most effective productivity improve‐
ments. You may be worried you will miss something important, but you can put pro‐
cesses in place to avoid this. Instead of switching your attention to every email
notification, schedule times throughout the day to check for important emails and
times to process and respond.

You can combine switching off notifications with listening to your circadian rhythm
and energy levels. Email is a relatively low-energy task, so scheduling it for a time
when you have low energy will mean you can do high-energy tasks when you have
higher levels of energy.

You can apply the same pattern to instant messages and other forms of communica‐
tion, such as tasks being assigned to you. If you do have specific communications that
need instant responses, most tools will allow you to apply a filter to notifications.
Microsoft Teams, for example, allows you to still receive notifications from specific

210 | Chapter 13: Remote Time

people when other notifications are turned off, and it also lets you mute specific chats
or teams.

Turning off and customizing notifications allows you to take control of your commu‐
nication tools rather than letting the tools control you.

Reducing the number of tools you use for communication and
understanding which tools to use for which type of communication
will decrease the mental load of your team. See “Remote Tools and
Governance” on page 248 for more on governing tools.

Automate Tasks
Automating repetitive communication tasks is another way to make your communi‐
cation more productive. Here are some ways to save time and reduce distractions
when communicating:

• Set up auto-replies for common emails or messages (and for times that you are
out of the office or otherwise unavailable). Use the auto-reply to direct people to
other sources; for example, a FAQ page or point of contact. Automating these
replies enables people to help themselves or at least stay informed of when you
will be able to help them.

• Many email programs allow you to set rules that can be applied to emails when
they arrive. Set these rules to make your life easier, such as flagging emails that
are important or moving newsletters to another folder to look at later (making
processing your inbox faster).

• You may be able to automate many communication tasks by using a service like
IFTTT, Zapier, or Microsoft Power Automate. Examples include being assigned a
task in one app and automatically adding it to your list of to-dos in another app,
or automatically emailing a reminder to colleagues who have yet to add their
update to a team status page.

• Messaging apps such as Teams and Slack allow you to set up bots to automati‐
cally manage aspects of messaging. A bot could remind everyone in a chat of an
upcoming deadline or meeting. A bot could also answer a query typed into the
chat, such as “What is the app ID of the service named Widget?”

• Unsubscribe from all the emails that you don’t read. You’ve probably signed up
for many newsletters in good faith but never read them. You may also end up on
many email lists that you never really wanted to be subscribed to. Unsubscribe
via the link that should be in every email. If you have trouble unsubscribing, set
up a filter to send those emails straight to junk or trash.

Improve Energy and Productivity | 211

https://ifttt.com
https://zapier.com
https://oreil.ly/pp-_o

Don’t be tempted to sort all your read email into folders. This
makes it harder to find what you need in the future. Most read
emails can be sent straight to Archive, where you know they will be
if you need them. You might have a few types of important emails
that warrant their own folder, but this should be the rare exception.
Also, bear in mind that you should not use email as a storage sys‐
tem. If your company purges old email, you will lose it all. Move
important information to a wiki or personal notes.

Work with Others’ Rhythms
It can be hard to be patient when waiting on someone in another time zone or with a
working pattern different from yours. It can be even more frustrating when waiting
for a response from a person who works the same hours as you. Keeping energy and
productive times in mind can help. Many people are most productive in the late
morning, least productive around 3 p.m., and increasingly productive again until
about 6 p.m.

If you know that the response you need will require a higher amount of energy from
your colleague, allow them to respond during their more productive times or prompt
them just before these times. Conversely, if the response won’t take much thought,
you can prompt them at a lower energy time of day.

Synchronous remote communication requires more energy than
asynchronous, so replace meetings with asynchronous updates as
much as possible. See Chapter 14 for more on synchronous and
asynchronous approaches.

Schedule for Energy
Another way you can use circadian rhythm to your advantage is when scheduling
meetings. Picking a low-energy time of day to discuss a problem or generate ideas is
going to be a disaster.

Time zones can put pressure on when you can schedule a meeting, but you can focus
on meeting at a higher energy time for key people or the majority of people to
improve your synchronous communication time.

Your and your colleagues’ energy levels are also affected by the amount of time you
have been doing a certain task. Consider this when planning effective meetings and
events. You should plan for a break if the meeting is more than 60 minutes, ideally at
least every 45 minutes. Breaking up the time with different activities, a change in vis‐
ual focus (for example, a blank slide or something funny like a meme in a presenta‐
tion), or some type of movement will also improve your meeting outcomes.

212 | Chapter 13: Remote Time

As people approach the end of a meeting or the end of the day, they have less energy.
Plan to take this into account. Higher-energy activities should be scheduled earlier in
the agenda, or after a break, as much as possible.

Ensure that your agenda prioritizes time for eating (enough time for healthy food
rather than rushed fast food) and that your scheduling is not detrimental to attendees’
sleep. All of these considerations put together maximize your synchronous commu‐
nication.

In addition, you can improve attendees’ concentration by providing a comfortable
and appropriately lit environment when meeting in-person. Provide good equipment
and encourage your colleagues to set up their desks ergonomically and to move
around during remote meetings.

Communicating Focus Time
Focus time, time that you’ve blocked out in your calendar for uninterrupted work, is
an excellent tool for productivity. The best times to block out are your most produc‐
tive, high-energy times, but if that isn’t possible, go for your least busy times. A two-
hour block two or three times per week is usually more doable than you think.

If you struggle to find time slots, block out one definite slot and others that are
marked as tentative and labeled “book over if necessary.” You are then more available
if need be, but most people will not book this time. You can always swap your definite
and tentative slots if something urgent comes up.

Turn off all notifications during this time. Your computer’s operating system may
have a focus setting that does this automatically for you, or you may be able to install
an app to manage this (at the very least, you can mute your computer). You should
also close tabs and apps that you aren’t using.

To communicate your focus time to others, try the following:

• Block out the time in your calendar and mark it as busy or working elsewhere.
• Having your time blocked out as busy should mean that messaging apps such as

Teams show your status as busy as well, but if not, set your status at the begin‐
ning of a focus session.

• Communicate the reasons for your focus time (actually getting the things done
that others want from you) so that they understand why you are unavailable.

Improve Energy and Productivity | 213

Summary
Time is highly important to coordinating remote and hybrid work, and even to peo‐
ple’s happiness. When you consider that time is the one resource you can never get
back or make more of, you can start to appreciate how valuable it is.

These techniques around time lead neatly into the principles of communication. In
the next chapter, you will discover the appropriate use of asynchronous and synchro‐
nous communications and how making the correct choice can determine success.

214 | Chapter 13: Remote Time

CHAPTER 14

Remote Principles

Knowing when to use different types of communication is essential to achieve your
goals efficiently and with the best chance of success. To increase the effectiveness of
remote communication in fully remote and hybrid environments, you can apply
some overarching principles and the patterns within them.

This chapter explores how and when to use the various types of synchronous and
asynchronous communication to synchronize your expectations and workflows and
put all workers on an equal footing, wherever you are working.

Meetings to Sync
Meetings are often seen as a time-sink, taking time away from your actual work. The
act of synchronously coming together can be extremely productive for some types of
work, but when the wrong people are attending or the focus is on activities that could
be done much better asynchronously, it’s time to make changes to meetings.

If you struggle to optimize the number of people invited to a meet‐
ing, think about how much an hour of their time is worth and how
much you want to spend on the meeting.

Synchronous Versus Asynchronous
Remote synchronous communication takes more energy than in-person. You have
probably felt this yourself, but it is also backed up by research from Stanford Univer‐
sity (see “Why Do You Get Zoom Fatigue?” on page 222).

215

1 Heuristics are practical methods that are not guaranteed to be optimal.

When you are in the same room with colleagues, you can more easily hear their tones
of voice and see their body language and facial expressions. You subconsciously read
all these cues without thinking and use them to understand what others are saying (or
not saying).

Remote meetings disrupt the normal flow of conversation and prevent you from
reading body language and facial expressions as easily, or at all. You have to work
much harder to understand one another.

In Thinking, Fast and Slow, Daniel Kahneman explores the idea that your brain is
split into system 1, which does 98% of your thinking and is involved in reading body
language and facial expressions, and system 2, which does just 2% of your thinking
and is used to make rational decisions. In person, your system 1 makes fast and cheap
decisions about body language, tone of voice, and facial expressions (using heuris‐
tics).1 In a remote situation, at least some decoding has to be done by your system 2,
which requires much more energy.

Synchronous meetings and events should occur only when needed, communicating
asynchronously as much as possible (see “Async to Think” on page 223). This
improves communication and productivity in several ways:

• Finding a good time for everyone to meet can be difficult, especially when
attendees are in more than one time zone. With asynchronous communication,
everyone can process the message at a good time for them.

• A lot of time is wasted in meetings because not everyone is engaged or needed
for the whole session. Ten people in a meeting for one hour is 10 hours of work
time used in just one hour.

• Meetings and other synchronous events are interruptions in your workday,
meaning you waste time switching context at the beginning of each meeting and
when you go back to your other work.

• It is harder to keep in-person and remote attendees of a hybrid synchronous
meeting on an equal footing, with in-person attendees likely to dominate.

• Unless a synchronous meeting is recorded, everything that is said can be heard
only once. Some discussion might be missed by all or some attendees and is gone
forever unless someone takes minutes. Asynchronous communications are there
for reference afterward.

216 | Chapter 14: Remote Principles

Both synchronous and asynchronous approaches have benefits and drawbacks, but
which is best depends on the reason for your communication (and to a degree, your
team’s location).

It is a commonly held misconception that communication needs to
be either synchronous or asynchronous. Mixing both can be effi‐
cient. You may decide that a synchronous meeting is the best way
to make a final decision, but use asynchronous communication to
brief people on the context and the need to make the decision, to
brainstorm ideas, and to vote to narrow choices before the meeting
starts. You are also likely to use asynchronous communication after
the meeting to document and communicate the decision made.

Synchronous communication is typically better when communication aims to do the
following:

• Build rapport, such as team-building or a project kickoff
• Generate ideas, such as coming up with solutions to a problem, or new ideas for a

product

Asynchronous communication is typically better when communication aims to
accomplish one of these:

• Report progress, such as a stand-up or project progress
• Gather feedback, such as on a draft ADR
• Disseminate information, such as announcing a change to team structure

EXAMPLE

Synchronous Interruptions at Polyglot Media
Sander, a product owner at Polyglot Media, has problems balancing the expectations
of the development team for his product with their actual output. The development
team responds that their working time is constantly being interrupted and taken up
by meetings. How are they supposed to get any coding done?

When he looks at the team’s calendar, Sander can see they are right. Synchronous
meetings are dotted throughout their week, so they are constantly switching between
tasks and wasting time refocusing. Many of these meetings are set by Sander and the
project manager (PM). So Sander and the PM remove, combine, or change nearly all
the synchronous meetings to asynchronous. They leave the Monday morning stand-
up meeting as synchronous, but change all other progress reports to asynchronous

Meetings to Sync | 217

2 The car park or parking lot technique is an efficient tool to keep meetings on track, placing topics that are not
on the agenda aside so that they can be discussed later. Participants interested in the topics should be content
to go back to the meeting agenda, knowing their topic will not be forgotten.

updates in the team’s project management software. The team is also given the power
to schedule a synchronous meeting if needed.

Retrospective meetings are changed to an asynchronous collection that the team can
add to as things arise and a shorter synchronous meeting. Sander and the PM are
notified when items are added so they can take action if needed. If something urgent
requires the team to come together to discuss or fix, the team can schedule a synchro‐
nous meeting.

After a few weeks, the development team is a lot happier and a lot more productive.
Sander is happier because of their improved results and starts to spread the word to
other product owners and PMs at Polyglot Media.

Enhance Meetings
Getting the most out of a meeting and improving the outcomes starts before the
meeting even begins. Here are some ways to organize and structure a remote or
hybrid meeting for the best experience for all attendees:

• Choose and state the goal(s) for the meeting carefully to get the outcomes you
desire. The goals for a stand-up are to remove roadblocks, receive help with
issues, and understand if you are on track. It is not just to hear everyone’s pro‐
gress report, which is one of the most common outcomes and could be done
more easily asynchronously.

• Ensure that all meeting activities connect with these goals. You can explain or
point out the link between each activity and the goal(s) to encourage interest and
participation; for example, hearing everyone’s input at a postmortem meeting
connects to the goals of gaining a full understanding of what went wrong,
whether the event can be prevented from happening again, and how disaster
recovery from the event can be improved.

• Set an agenda, including timings, and keep to it as much as possible. Your agenda
will help you define how to accomplish the meeting goal(s) and bring tangents to
a close quickly. Use a method to put aside items that need attention but aren’t rel‐
evant to the meeting goal(s) for a later time, such as a car park or parking lot.2

• Set expectations to support the meeting and create a safe space. Send these out
with the agenda so everyone is forewarned. If attendees aren’t normally expected
to have their video on, you may want to specify that you would like everyone to
turn on their video to support goals like team-building or onboarding new

218 | Chapter 14: Remote Principles

members. Other expectations could include not interrupting and keeping infor‐
mation discussed confidential.

• Make sure you invite only the correct attendees to achieve the meeting goal(s). If
a decision needs to be made in the meeting, a person with authority to make it
needs to be there. If a technical opinion is required, someone with the
appropriate technical background should be there. Don’t invite people just in
case; it is a waste of their time. Instead, ask if they can be available to be called
into the meeting on short notice or to answer a question via messaging.

• If someone is presenting or facilitating a part of the meeting, brief them before‐
hand on how much time they have. Don’t rely on them to check the timing in the
agenda; specify the time period clearly so they can prepare appropriately.

• Plan and put in place any asynchronous communications needed for before or
after the meeting. If supporting documents are needed, send links to these with
the agenda and specify whether they should be consumed before the meeting
starts. Make sure that all attendees have access to any documents or other refer‐
ence material you link to by asking them to check.

• Document decisions and actions from the meeting and send them out to all rele‐
vant stakeholders as well as attendees after the meeting. This is a useful way to
keep anyone who couldn’t attend in the loop, and it makes sure everyone is aware
of actions they need to take and any other outcomes.

• Manage attendees’ energy by planning breaks every 45–60 minutes and planning
tasks that require more energy early on or soon after a break.

Reducing Synchronous Meetings
If you have too many synchronous meetings right now, you may be thinking it will be
impossible to get people to cancel their precious meetings and change completely or
partially to asynchronous communication. Reducing synchronous and increasing
asynchronous communication is about behavior change. Don’t give up quickly; it will
take time.

Here are some ideas to help you convince others:

• Meetings are often called because someone feels they don’t know enough about
what is happening. Put in place asynchronous methods, such as status updates in
a project or knowledge management app or a dashboard for a project, and give
the person access. That person can then likely be persuaded to cancel or reduce
the duration of the meeting once they have the information they want by other
means.

• Meetings are waterfall. If you hold a stand-up at 9 a.m. each day, by 10 a.m. the
situation could have changed. Introduce a place for new updates, such as a

Meetings to Sync | 219

project or knowledge management app. Once this is being used, you can tackle
reducing the stand-up meetings themselves. The asynchronous updates fit much
better with Agile and happen as and when you have the information. Your
remaining meetings can then be used for what they are more optimal for: bidir‐
ectional communication. You will likely need more bidirectional communication
in a team with less-experienced members.

• Asynchronous communication enables those who can’t attend a synchronous
meeting to add their update or information when they are available. For example,
when someone is going on leave, they can make sure to contribute before they
go. If updates and information are added as and when they occur, it is more likely
that someone who has fallen sick has still contributed.

• Trialing or implementing no-meeting blocks or days is a good way to allow peo‐
ple to focus on their work. When the overall time available for meetings is
reduced, people are more likely to push back on meetings they don’t think are
productive and to reduce the time a meeting runs. There will be enough time for
the meetings that are required. Block out nonmeeting periods on everyone’s cal‐
endar to help everyone respect this focus time.

• Even necessary meetings can be redesigned. The duration of the meeting can
often be shortened without other changes, or some of the meeting content can be
shifted to asynchronous communication before or after the meeting. Try ending
the meeting early and telling attendees that this is the aim. When this works, you
can change the meeting length in everyone’s calendars to make it official. You
may find you can reduce the meeting length even further.

• Stress that the content is still important but that the synchronous meeting format
is not the best approach. Once people have been shown they can get the same or
better results from asynchronous communication, they will be happier to move
away from meetings.

You can employ the following practices during a remote or hybrid meeting to
improve it and its outcomes:

Prompt those who have not contributed as much by asking them open-ended questions
This can help even up participation so that people who are colocated (in the same
room) don’t dominate the meeting, and can result in a diversity of input from
those who otherwise may not feel they can speak up.

Encourage use of the chat feature
This is another way to foster equal contribution because those who may not feel
they can speak (or get a word in!) can use the chat to give their input. Be aware
that the chat feature can also replace the side conversations that would naturally
happen if everyone were in the same room, which may become a distraction.

220 | Chapter 14: Remote Principles

Monitor the chat and Q&A
You, or someone on your behalf, should be monitoring the chat and Q&A fea‐
tures to make sure that nothing pertinent is missed.

Encourage everyone to interrupt if they cannot hear something
Set this expectation at the beginning of the meeting so that everyone can hear all
contributions and have their contributions heard.

Use breakout rooms in larger meetings so that attendees can participate in activities in
smaller groups

In one large online group, some people’s opinions likely won’t be heard. Break-
out rooms could be used to simultaneously work on the same task or different
tasks before coming back together to consolidate or report back on outputs.

Use interactivity tools
Polls, votes, whiteboard activities, and other exercises will encourage contribu‐
tion and keep participants’ attention.

Keep to time as much as possible
Monitor time against your agenda and use tools such as a parking lot to stop tan‐
gents before they go too far and without upsetting anyone. On-screen countdown
times are another useful tool for managing time.

The time of day can affect how well an activity goes in your meet‐
ing. Because of different time zones, you may not be able to opti‐
mize the time for everyone, but thinking and decision-based
activities are usually done best early in the day.

In addition, the following are ways you can improve your contribution to a remote
meeting while also boosting your credibility:

• Put energy into your voice and make it bright. You are not trying to go as far as a
children’s TV presenter, but the way you speak will affect the amount of attention
your colleagues give you.

• Turn on your camera and use purposeful and exaggerated gestures and facial
expressions. Make it as easy as possible for others to understand you by empha‐
sizing your body language, which is harder to understand remotely compared to
in person.

Meetings to Sync | 221

3 See “Nonverbal Overload: A Theoretical Argument for the Causes of Zoom Fatigue” by Jeremy Bailenson.

Why Do You Get Zoom Fatigue?
Professor Jeremy Bailenson, founding director of the Stanford Virtual Human Inter‐
action Lab (VHIL), has been studying the effects of spending hours on platforms like
Zoom.3 Rather than say you shouldn’t use video conferencing, he hopes his research
will enable video conferencing organizations to improve workflows and interfaces.

Bailenson summarizes four main reasons video conferencing drains your energy
more than in-person interaction:

The amount of close-up eye contact is intense and unnatural
Everyone is looking at everyone all the time, and a close and large face is like
having someone in your immediate personal space.

Seeing yourself constantly is fatiguing
He cites a study that concludes that you are more critical of yourself when you
see your reflection.

Video calls drastically reduce your mobility
In person and on the phone, you move around, but the narrow camera view lim‐
its your movement.

Cognitive load is much higher
Nonverbal communication is picked up easily and subconsciously in person, but
you have to work hard to both send and receive signals online.

To counteract these challenges, Bailenson suggests the following:

• Reducing the size of others’ faces by coming out of full-screen.
• Increasing the space between you and the screen by, for example, using an exter‐

nal keyboard and mouse when using a laptop.
• Turning off the self-view after you have checked you are centered and in focus.
• Using an external camera, farther away when possible, to increase the field of

view and then aiming to move around.
• Turning away from the screen for a break from sending and receiving visual cues.

222 | Chapter 14: Remote Principles

https://doi.org/10.1037/tmb0000030

4 For more on deep work, see Cal Newport’s Deep Work: Rules for Focused Success in a Distracted World (Grand
Central Publishing, 2016).

Async to Think
Asynchronous communication has many benefits, but you should also look out for its
pitfalls. Every type of communication has trade-offs.

Whether communication is asynchronous does not depend on the tool used but
rather on the expectations of the way the tool is used. Instant messaging can be asyn‐
chronous, but if people are chatting back and forth or expect that messages will be
replied to right away, then it is synchronous.

Async Advantages
The most obvious benefit of asynchronous communication is that the recipient choo‐
ses when to consume the message (and respond if required). Related to this is the
built-in silence, or time to think, before responding. This can lead to a higher caliber
of response, likely better thought through or more researched.

Because the recipient chooses when to consume the message, they are not interrupted
at the time the message is received. This leads to higher levels of focus on work and
means the recipient can focus better on the response to the message as well. During
this focus time, the recipient can put all their effort and attention into what they are
working on, and focus can lead to deep work.4

In addition, communicating with a colleague in a different time zone is much easier
with asynchronous communication. You do not need to worry about what time it is
for them or find mutual free time. However, it is important to bear in mind time dif‐
ferences so that you don’t have unreasonable expectations of when the recipient will
act on your message.

When sending asynchronous communications, make it clear that
you do not expect a response right away, or outside of the recipi‐
ent’s working hours. This can be done with shared expectations or
communication agreements (for example, notifications expected to
be off out of work hours), and via specific notices (such as a note in
your email signature).

Async Obstacles
Beware of jumping into asynchronous communication without knowing the prob‐
lems that can occur. Many people blame synchronous meetings for all their produc‐
tivity problems, but the cost of bad asynchronous communication is harder to see.

Async to Think | 223

As with synchronous communication, make sure that you are communicating with
the right people. It is still possible to include people who should not be included in
asynchronous communications, which can add confusion and waste their time (and
yours when they ask you questions). Make sure to include the people required for the
goal of your communication.

Online tools can cause more friction than in-person communication. You and your
colleagues may now all be conversant in your choice of online whiteboard, project
management software, and instant messaging, but bear in mind that these tools often
take more mental energy than the equivalent in-person communication.

A remote conversation in Slack or Teams would likely be a face-to-face conversation
in an office. In person, it is much simpler to speak and to read each other’s body lan‐
guage. Over chat, you need to type (which can be much more cumbersome than
speech), and all the body language and tone of voice are lost. It is easy to misunder‐
stand a typed message, which requires a lot more mental energy to decode.

The internet and instant messaging have been flooded with emojis for a long time,
but remote work has made emojis first-class citizens in business communications too.
One reason is the loss of body language and tone of voice in written communication.
Although emojis can help communicate, be aware that not everyone will interpret
them in the same way. If you encounter problems with this, you may want to develop
an emoji dictionary together as a team. This will help avoid miscommunication and
is also a good team-building activity that can be done asynchronously.

Direction Matters
Communication can be classified into two general categories: one-way (unidirec‐
tional) and two-way (bidirectional). Both of these can be from one person or system
to many, from one to one, from many to one, or from many to many (see
Figure 14-1).

Unidirectional communication includes personal or progress updates, announce‐
ments, and other information sharing. Unidirectional communication typically works
well asynchronously and has problems when done synchronously. A positive or neu‐
tral company-wide announcement, for example, works well asynchronously. Bringing
everyone together at the same time to make this type of announcement can have huge
downsides, including people not having time to digest the information.

Progress updates from your team are often also best done asynchronously to avoid
interrupting everyone and trying to find time. Dedicate synchronous time for getting
instant feedback (bidirectional), like help with the task you are working on.

224 | Chapter 14: Remote Principles

Figure 14-1. Communication relationships

In bidirectional communication, you expect a response to a message, whether that is
a quick confirmation, a long-form answer, or an artifact. Bidirectional communica‐
tion varies more as to whether asynchronous, synchronous, or a mixture works best.
Here are some examples:

• When you need feedback or comments on something, such as an ADR or docu‐
mentation, asynchronous works well. Many tools, such as Google Docs, Micro‐
soft Word, and wikis have a built-in commenting features. Linking to the
document and asking for feedback is easy. Make sure contributors have access,
the ability to comment or edit, and reasonable deadlines based on working hours
to ensure you get the widest and most diverse set of feedback.

• Getting an answer to a question is usually not a planned activity that can be put
off until later. If the person or people you need information from are in another
time zone or have a working pattern different from your own, asynchronous is
likely the best way to communicate. But sometimes quick questions can balloon
into many messages back and forth, whereas a simple synchronous audio or
video call would have been much quicker.

• Discussions are another form of bidirectional communication that can get out of
hand if not managed well asynchronously. When team members cannot all be
present at the same time, you may have no choice, but consider whether a syn‐
chronous discussion, such as a meeting, could work better for the goal and the

Async to Think | 225

content. A mixture of gathering information and ideas asynchronously and then
meeting synchronously to discuss may work best.

• Synchronous communication is the better option for a project kick-off meeting if
its goal is for team members to become familiar with one another. That doesn’t
mean that some of the communication involved can’t be done asynchronously
before or after the meeting. Creating templates and standards that support the
planning processes you use can enable more of your planning activities to be
done asynchronously. Prework, such as adding ideas to an online whiteboard or
reading a document or spreadsheet, can be asynchronous so that time in the
meeting is not used waiting for people to complete these tasks.

When using purely asynchronous communication, make sure to
give everyone time to contribute and encourage those who have
not contributed as any deadline approaches. It is easy to end up
with the same people dominating asynchronous communication,
which lowers diversity and innovation. The highest paid person’s
opinion (HiPPO) or the loudest person’s opinion is not the only
thing you want to hear.

Async Methods
You can communicate asynchronously in many ways. Here are some examples:

Email
This is one of the most-used communication methods, often used within compa‐
nies and for business to business (B2B) and business to customer (B2C) transac‐
tions. Use email when you don’t have an alternative method for messages of any
length with suppliers or external teams. To communicate with colleagues, it is
generally best to use email only for longer text-based messages. Meeting invites
are usually sent via email. See “Symmetrical Email” on page 239 for more on
using email effectively.

Instant messaging
This comes in two main forms: walled-garden options, such as Slack and Teams
(which are often extensible and integratable with other apps), and messaging
apps based on phone numbers, such as WhatsApp, Signal, and plain old text mes‐
sages (which are limited to—or started life as apps on—mobile devices, used to
contact anyone with the app or a mobile phone number). Professionally, you are
much more likely to use a walled-garden option, which is useful for communica‐
tion within specific teams or on a 1:1 basis with colleagues. Many also have the
option of adding external users, which is useful for adding external development
teams or other partners. The ability to create a channel or team to communicate
with multiple people makes it easy to include only those who need to be

226 | Chapter 14: Remote Principles

5 I know of one organization that had a greater number of Microsoft Teams teams than people working in the
whole organization.

included, but this feature should be managed so that you don’t end up with an
endless proliferation of what are essentially multiple inboxes.5

Prerecorded video and audio
These can capture a live event, such as a meeting or training session, and then be
shared afterward, or created specifically for sharing asynchronously. Podcasts,
vlogs, and prerecorded videos on platforms such as Vimeo and YouTube are all
asynchronous. These are great for sharing an update or making an announce‐
ment, especially when you want to convey things via your body language and
tone of voice in an asynchronous way. You can also create videos or training
material for colleagues or customers.

Forums and Q&A platforms
These can be internal and private to the company, external with controlled
access, or public. One of the most common uses of forums is to ask for help or
share tips on a particular topic. Internally, you can use a tool like Microsoft Viva
Engage (formerly Yammer). This tool is often used as a more informal method of
communication within organizations, usually on nonwork-related topics. These
types of environments help create a sense of belonging and alleviate loneliness,
which can be a problem with remote work. An example of a Q&A platform is
Stack Overflow, a public platform for people to ask and answer technical ques‐
tions. You can also set up a private Q&A platform for your company (other
options are available, but Stack Overflow offers a software as a service [SaaS] ver‐
sion), for content including company and product-specific information, or sensi‐
tive private information. The main advantage of these platforms is that
knowledge is preserved and searchable, whereas the answer to a question in an
email or chat is easily lost.

Project management tools
These tools come in many forms, including open source options like Redmine,
Taiga, and WeKan, and proprietary options like Asana and Jira. The best use for
these tools is managing communication of status updates, assignment of tasks,
and other project- or product-related communications. If you use a Kanban or
Scrum board, your team can update items on these boards so that everyone can
see the status of each item at a time that suits them.

Wikis and knowledge management systems
Information needs to be accessible and searchable to those with authority to read
it and editable to those with permission to add to or update it. Storing informa‐
tion in digital documents (such as slide decks or word processor documents) is

Async to Think | 227

https://oreil.ly/CVsXc
https://oreil.ly/CVsXc
https://stackoverflow.com
https://redmine.org
https://taiga.io
https://wekan.github.io
https://oreil.ly/uAmm8
https://oreil.ly/_OH49

not an efficient way to do this, but wikis and knowledge management systems
can provide the required access and permissions. Policies and a technology radar
(discussed further in “Remote Tools and Governance” on page 248) can be com‐
municated in this way, so they are always accessible when needed. Open source
options include AppFlowy, MediaWiki, XWiki, and BookStack. Proprietary
options include Notion, Confluence, and Nuclino. These tools are good options
for asynchronous status and progress updates. Besides adding your update, often
you can comment on or react to an update, such as with an emoji.

Surveys and polls
An often overlooked form of communication, surveys and polls are good for
gaining information in a more structured way. You can include open-ended ques‐
tions (the answer will be free-form text) as well as closed questions (the answer
will be a score, single choice, multiple choices, and so on). These are particularly
good for eliciting information from those who may not speak up or contribute in
a synchronous discussion or even in an asynchronous chat, especially if the
answers are anonymous. You can use surveys and polls to collect information
from stakeholders or to ask customers for feedback on an existing or proposed
product.

Whiteboards and collaborative drawing tools
Digital versions of office whiteboards have benefits compared to their physical
counterparts: the digital versions have effectively infinite space, allow many more
people to view them at the same time, and enable items to be moved around
easily. Once everyone is familiar with using the tool, it can be used either syn‐
chronously or asynchronously. Drawing tools such as draw.io and Excalidraw can
be shared and used similarly. These tools can be employed in many ways, with
the most common being to collect ideas or information, create and get feedback
on diagrams, and allow voting and other interaction (such as collaborative mod‐
eling).

Files, feedback, and comments
Collecting feedback and comments on a document or diagram lends itself well to
asynchronous communication. The document or diagram itself can also be cre‐
ated collaboratively, either synchronously or asynchronously. Both Google and
Microsoft provide these features in their document tools and similar products.

To avoid wasting time on asynchronous communication that is
going nowhere fast, develop rules for switching to synchronous
communication and then use these as a team. For example, if an
email or instant message has gone back and forth four or more
times, switch to a video or audio call to clarify.

228 | Chapter 14: Remote Principles

https://appflowy.io
https://oreil.ly/XaiXK
https://xwiki.org
https://bookstackapp.com
https://notion.so
https://oreil.ly/Wj8Fz
https://nuclino.com
https://drawio.com
https://excalidraw.com

6 This is similar to the async-sync-async sandwich in coding, but the second async element in code is processing
the response to the first async element, which may not be the case for meetings and pre- and postwork.

Enhance Async
Asynchronous communication can be improved by automating as much as possible.
There are many ways to do this, including:

• Automate access to documents and resources by using single-sign-on options,
security groups, or built-in permissions models in the software you use.

• Prepopulate a person’s status update with information from their last update so
that they can make changes rather than having to write it from scratch.

• Use tools such as Power Automate, Zapier, and IFTTT to automatically populate
information among your tools.

Many activities that need to be done synchronously can be improved by moving
some of the communication to asynchronous options before and after the synchro‐
nous event. This creates an asynchronous sandwich: the asynchronous activities are
like the bread, and the synchronous activity is the filling.6

Setting and Handling Expectations for Async Communication
To avoid or minimize problems that occur with asynchronous communication, it is
important to set expectations. In their book Remote Works (Berrett-Koehler, 2023),
Ali Greene and Tamara Sanderson describe a useful model to help with this: the 4 Ws.
Here is an overview of their 4 Ws:

Who?
• Who should and shouldn’t be included in the communication? Don’t overburden

people with unnecessary information or leave out the person who has the author‐
ity to make the decision.

• Who is responsible for responding? Is a response needed, and if so, from whom?
Explicitly state what you need from each person involved.

• Ensure that the discussion or decision doesn’t move forward until the person or
people you need a response from have responded.

What?
• What are you expecting in return? If you are expecting a response, what form are

you expecting that response to take? Explicitly state this in your communication.
• What tool and workflow should be used? Do you have a communication agree‐

ment that specifies this? Ensure that the tool and workflow meet the goals of the
communication.

Async to Think | 229

https://oreil.ly/5StrA
https://zapier.com
https://ifttt.com
https://learning.oreilly.com/library/view/remote-works/9781523003334/

When?
• Specify the date, time, and time zone every time. Using statements such as end of

day tomorrow or asap is meaningless, especially when people have different work
hours or are in different time zones.

• Set a deadline for responses that takes into account recipients’ working hours and
time zones. Hold people accountable and make sure the communication doesn’t
stall.

Wah-wah!
• What happens if you receive no response? State what will happen if the deadline

is missed.
• Make the reasons for response clear. State the impact on the team/solution/

project, so that everyone knows why they are putting effort into the response. For
example: “If I don’t hear back from you by the date and time above, I will assume
no changes need to be made and send the document to the client as is.”

To these 4 Ws, I will add a 5th: Why? Why are you sending the communication? What
are the goals? Understanding why will help you answer the other 4 Ws. Why will help
you to do the following:

• Select the people who are needed to meet the goals (who).
• Work out what response you need (what).
• Decide on an appropriate deadline (when).
• Understand the effects of missing the deadline (wah-wah).

Remote-First Working
In this section, you’ll learn all about remote-first working, but first let’s untangle
some of the terminology. Although the terms remote-first and remote-friendly are
often used interchangeably, the outcomes of these approaches differ significantly.

Remote-First Versus Remote-Friendly
Both remote-first and remote-friendly are hybrid approaches to working, meaning an
organization’s workforce may be working remotely or in the organization’s offices. In
a remote-first approach, processes and decisions are based on optimizing remote
work, and all workers are given the same chance of success. It doesn’t mean remote-
only or fully distributed but has the same principles.

In a remote-friendly approach, the business allows remote work but does not opti‐
mize for it. The organization is office-centric and sees remote working as a benefit to
workers.

230 | Chapter 14: Remote Principles

One of the key differences is that remote-first values outcomes over
hours worked, and remote-friendly values hours worked over
outcomes.

The remote-first model is characterized by the following:

• Remote work is not just supported but encouraged, with managers also encour‐
aged to work remotely.

• Organizational processes and decisions are based on optimizing for remote work,
such as taking different time zones into account, with everything designed
around supporting remote working.

• Asynchronous communication is emphasized, and key decisions are made and
communicated this way.

• Synchronous meetings are kept to a minimum and recorded, with attendance
being optional (based on the assumption that some people cannot attend).

• Virtual team-building is given a high priority. The difficulty of bonding virtually
is taken into account, and more effort is put into this activity to compensate.

• All employee voices are equal, regardless of where they are working; for example,
all attendees of synchronous meetings are expected to attend virtually, whether
they are working remotely or happen to be colocated in an office.

• All employees have the same flexibility of schedule, whether working remotely or
in an office, which is supported by asynchronous communication.

• Praise and promotions are awarded based on contribution and not on proximity
to the office.

• People, information, and resources are equally accessible whether someone is
working remotely or in an office.

• Recruitment does not focus on where a potential employee lives, but whether
they are right for the role and company.

• Output is valued over hours worked. Employees do not gain points with manage‐
ment for being seen working late in the office. The output of their work is what
matters.

Employees’ work-life balance must be maintained via explicit
expectations from the organization and managers, such as that
notifications will be turned off outside working hours. It is easy for
work and home to blur when your office is in your home. Remote
workers need to be protected from burnout.

Remote-First Working | 231

The remote-friendly model is quite different, being more of a supplement to tradi‐
tional office-based work, and brings with it more collaboration challenges when it
comes to remote workers:

• Remote work is allowed, such as for certain roles or a specified number of days
per week, and is seen as an employee benefit rather than the organization actively
seeking to employ remote workers.

• The organization is office-centric, with managers typically working in the office
full-time or rarely remotely.

• The business relies heavily on synchronous communication, such as team or
project meetings, and attendance is expected.

• When synchronous meetings take place, those who are colocated attend together
in a meeting room, while remote workers attend virtually.

• Key decisions are made synchronously and in person, without taking remote
working into account much, if at all.

• The business usually provides little to no support for remote workers in other
time zones.

• Remote workers end up on a lower tier than office-based employees, with office-
based employees praised and promoted over remote employees.

• Hours worked are valued over output. Value is given to those seen to work over‐
time, whether they are recompensed for this or not.

Remote-First Benefits
Remote-first has many benefits, even to organizations that have a minority of
employees working remotely, with some benefits coming from the ability to employ a
workforce that is not dependent on the availability of office space or location. Bene‐
fits of remote-first include the following:

Long-term flexibility
The organization can scale up or down without worrying about having to also
scale office space or physical infrastructure.

Business continuity planning
A distributed workforce decreases the likelihood that a large percentage of
employees would be affected by an issue that would stop them from working,
such as a power cut, lost internet access, weather conditions, or public transport
strikes.

232 | Chapter 14: Remote Principles

7 Legal or other restrictions might limit where employees of a company can live.

People and productivity are put first
Irrespective of location, time zone, or work pattern, people are enabled to do
their best work via processes, tools, and so on. Everyone is enabled to work effec‐
tively, without wasting the potential of remote employees.

A larger talent pool is available
The organization is not restricted to people who live within commuting distance
of an office and can find the best person for the job regardless of location.7 Many
companies now employ people who don’t live in a fixed location or country, com‐
monly known as digital nomads.

Costs are reduced
Less office space is needed, along with less lighting, heating, and cooling. There is
less need for a travel subsidy for commuters, and employees also reduce or elimi‐
nate their commuting costs.

A reduced carbon footprint
Less commuting, office space, lighting, heating, and cooling mean lower
emissions.

Increased employee productivity and engagement
All employees feel valued, enjoy a better work-life balance, and experience fewer
interruptions because they have less synchronous communication and are not in
an office environment.

More and better documentation
Asynchronous communication promotes documentation by default, which sup‐
ports onboarding new people and enables everyone to find the information they
need independently.

Improved personal management skills
Because employees know they might not receive a response to their asynchro‐
nous communication within a few minutes, they become better at managing their
work and planning ahead.

Some of the benefits of remote-first are similar to the benefits of
moving from on-premises servers to the cloud. Not having to
worry about scaling office space up or down is similar to moving
servers and services onto the cloud provider. A distributed work‐
force is similar to using multiregion or zonal options in the cloud
for high availability and business continuity.

Remote-First Working | 233

In person work has some advantages over remote working, although these benefits
are only fully realized in a remote-first or fully in-person environment. Some of the
benefits of in person working can be adjusted for remote working:

• Building rapport or team-building is much easier in person. Remote-first and
fully remote organizations need to focus on virtual team-building and/or fund
retreats to support these activities.

• Social accountability is built in when working in person. It needs to be planned
and built remotely.

• Chance encounters and conversations can lead to new ideas or fixing problems
when working in person. This is very hard to replicate remotely.

• Some employees need or want to work in an office environment. Remote-first or
fully remote companies would need to have flexible workspace near the employee
or offer a stipend for coworking.

• When working in person, collaborating and communicating requires less reli‐
ance on technology. Coworkers can still communicate face-to-face if there were a
technology issue in an office (although they might not be able to do their jobs
without it).

Personal user manuals, or readme files, are an effective tool for
remote team-building. Each team member’s user manual, based on
a template, is shared asynchronously among the team and other
colleagues. It should include how you like to work, a bit about
yourself, your goals, and so on.

Evolving to Remote-First
Becoming a remote-first organization (also known as an anywhere organization)
makes sense. It supports short- and long-term business goals, such as scalability, busi‐
ness continuity, and reducing costs, while supporting employee wellness and produc‐
tivity. As with many adoptions, the hardest part is often culture change and
convincing people of the need for change.

The change required will be a mixture of business and technical aspects. From your
perspective as a technical professional, enterprise architecture (EA) will play a key
role (even if you don’t have anyone with the role of enterprise architect). Approach the
change from an enterprise architecture perspective, considering both business and
technology. Here are some ways EA will support you in evolving to remote-first:

234 | Chapter 14: Remote Principles

8 Note this is a remote-first bias, not a bias toward remote workers.

Impact analysis
Identifies potential impacts on the wide-ranging aspects of the organization (for
example, data, systems, HR, and finance). You can use it to analyze the benefits
and risks to enable or mitigate them.

Business process modeling
Models the current processes to help identify the changes needed and design the
future state of these processes.

Gap analysis
Works out what needs to be implemented, migrated, and deprecated when mov‐
ing from the current state to the planned future state or milestone.

Capability mapping
Helps you identify the capabilities that need to change or be created to support
remote working as a priority.

EventStorming
Facilitates assessing your current state, planning, and moving toward remote-
first using the process-modeling level.

Domain storytelling
Elicits the high-level current state of processes and systems and to design how
these need to change.

The following are some business- and process-centered ways to implement remote-
first in your organization or team and can be applied to the architecture techniques:

Consider every employee to be a remote worker
Those working in an office just happen to be colocated.

Plan and create support systems for remote work
You need to understand the challenges faced by remote workers. Work with them
(and their office-based colleagues) to identify challenges and compensate for
them. This might involve changing expectations or providing software or hard‐
ware tools.

Adopt asynchronous communication
Put in place expectations and agreements on how communication will happen
and the tools that will be used (see “Async to Think” on page 223).

Make key decisions asynchronously
Allow time for everyone involved to contribute on an equal footing. Underlay
these decisions with a remote-first bias.8

Remote-First Working | 235

9 A head-of-remote role was originally suggested by Andreas Klinger, who was Head of Remote at AngelList.

Encourage those who work in offices to work remotely
When everyone works remotely, at least occasionally, empathy is built for those
who usually work remotely.

Give the same flexibility to all
Those working in an office should be given the same flexibility as remote work‐
ers; for example, if remote workers can choose their start and finish time, so
should office workers.

Treat all employees equally, but not the same
Take into account time zones, personal circumstances, disabilities, and so forth,
to put everyone on an equal footing.

Tailor remuneration to whether the role is remote or not
Benefits offered to employees who work in an office are often useless to a remote
employee, such as free lunch, on-site gym, or travel subsidies. Remote benefits
could include a stipend for coworking space, a gym membership, or a certain
amount of expensed groceries. Where it is difficult to offer benefits such as
healthcare and pensions to employees in other countries, a stipend toward these
can work well.

Embrace documentation by default and invest time and money into knowledge
management

Asynchronous communication means that many things are documented auto‐
matically, but this documentation needs to be managed so that it is accessible and
efficient. See Part III for more on knowledge management.

Consider creating a head of remote9

A head of remote or similar position within the company can improve internal
adoption of remote-first and/or promote the practice outside of your company
(marketing and promotion).

Move away from traditional KPIs and OKRs
Key performance indicators (KPIs) and objectives and key results (OKRs) typi‐
cally measure performance over time and value hours worked over output.
Change to managing by output and productivity.

Plan for and put into action digital team- and rapport-building activities
Those joining these activities from an office should join in the same way as those
joining remotely.

236 | Chapter 14: Remote Principles

Remember that remote working can increase loneliness
Remind remote employees that camaraderie does not have to come from collea‐
gues alone and that they should take social opportunities. You can help by paying
for remote employees to visit offices or each other, to attend retreats for all
employees, or to go to in-person conferences and training.

SaaS tools support remote work well, as they can be accessed from
anywhere and usually via single sign-on (SSO). This simplifies
access management and removes the need to allow external access
to an on-prem or cloud-based resource (reducing attack vectors on
your systems).

In Remote Works, Greene and Sanderson write, “In the future, we believe the lines we
draw today—in person, remote, or hybrid—will blur, and all knowledge work will be
digital-first.” The future does look to be moving toward a digital-first, asynchronous,
and global business world.

Summary
You have now seen that successful communication is, in part, about accessibility and
inclusion. Leveling the playing field for all colleagues, and diagrams that don’t shut
out part of your audience (see Chapter 3), contribute to a better working environ‐
ment and better communication overall.

In this chapter, you saw how using asynchronous or synchronous communication
appropriately can make your colleagues happier by improving their work life and
helping them to communicate. In the previous chapter, you saw how respecting peo‐
ple’s time also improves contentment and work-life balance. I bet you didn’t think this
was a book about happiness.

To round out Part IV, you will now learn how to more effectively use email and pre‐
sentations (some of the most common channels of communication), as well as govern
remote communication and the tools your company uses.

Summary | 237

CHAPTER 15

Remote Channels

Methods of communication can be classified as asynchronous, synchronous, or a
combination of both. Identifying the best method in a particular situation can be
hard, especially if you don’t know the pros and cons of each.

This chapter explores how to get the best out of email communication, presenting
and screen-sharing online, and communication tools you can use with remote and
hybrid teams.

Symmetrical Email
Many see email as a necessary evil, but it doesn’t have to be that way. Symmetrical
email is a pattern to help govern the process of sending and responding to emails and
address the problems and inequalities email can cause. Here are the three main prob‐
lems with email that this pattern addresses:

• Different people deal with and respond to emails in different ways.
• When to use email and when to use another form of communication, such as

instant messaging, isn’t always clear.
• Expectations and clarity are usually missing from the emails themselves.

Your company or team may or may not have set expectations for email, but some of
your colleagues likely check their email constantly, while others check it once a day or
less. You also receive many types of communications in email form: newsletters, noti‐
fications, requests, tasks, and so on.

Without shared and respected expectations and processes around email, no one can
reliably communicate. You need to know when to use email over another method of

239

communication, how quickly you are expected to respond to different types of email,
and how to communicate effectively via email using shared standards.

You can solve these problems by structuring and augmenting email based around the
reasons for sending emails, setting expectations for how email is used, and improving
clarity in email messages and subjects.

Email Reasons
A shared communication agreement within your team, department, or company is a
good way to enact shared standards. You may find it useful to set up agreements at all
these levels. You can even share the agreement with other businesses you work with
so that they are aware and can hopefully reciprocate, or create formal internal or
external service level agreements.

Decide what email should be used for. Some uses might include sending updates
about projects to stakeholders or communicating with people outside of your busi‐
ness. Your communication agreement should state which types of communication
should be emailed and which types should be conveyed in another way.

To decide which types of communication to email, it is useful to
first create a list of all the typical types of (and reasons for) commu‐
nication within your team, department, or company. Then work
out which are better suited to synchronous or asynchronous meth‐
ods and use that to help decide which channel of communication
to use, such as email, instant message, wiki page update, and so
forth.

Email Expectations
Once you have decided the reasons for using email, create a shared standard for effi‐
ciently communicating the urgency of a message and the response you expect. The
subject line of the email is the best place to communicate this information so that it is
front and center for the receiver.

For an urgent email, a subject line might be “[URGENT, response required by 1 p.m.
CET today, 24th July] Request for telemetry data.” If an email requires no response
and is only for information, you might use “[FYI] Minor update to project budget,”
and if a response is required by one recipient only you might include something like
“[Response required - Libby] Architecture meeting update.”

Don’t overuse phrases like urgent. If messages are marked urgent
that are not urgent, people will stop reacting quickly to messages
that really are urgent. This is the same advice as the fable “The Boy
Who Cried Wolf ”.

240 | Chapter 15: Remote Channels

https://oreil.ly/hXzgg
https://oreil.ly/hXzgg

Add examples to your communication agreement and ensure that the agreement is
part of onboarding so that new team members understand emails sent to them and
can use the standard themselves. The examples just mentioned are clear to anyone
who reads them and so can be sent to people outside of your communication agree‐
ment too.

It is a good idea to review your communication agreement around 2 to 4 weeks after
it is first created, when issues arise, and regularly, for example, every 6 to 12 months.

Email Clarity
Problems arise in email communication in part because email is easy to send (even to
multiple recipients) but is not always quick to read and respond to.

The symmetrical email pattern can be applied to automated emails
and notifications to ensure that recipients are clear about the
urgency and response required from them.

If it is not clear what is required of the recipient, they need to spend time and mental
energy working out what they need to do and on what time scale. This happens every
time there is a reply to the email thread, which may happen many times, especially if
more than two people are involved. Part of this can be solved with the subject line
examples mentioned earlier in this chapter, but you can go further. Spending a little
more time and thought on the creation of an email can save hours for everyone
involved, including the original author.

It is good practice to include any specifics from the subject line in the email body also,
such as the time and date a response is required. Then the recipient doesn’t need to
refer back to the subject line at the top when they finish reading, and you have made
the response requirement obvious.

When you send an email to multiple recipients, explicitly state your expectations for
each one. Don’t expect recipients to work this out based on whether they are in the
To, Cc, or Bcc field. Indicate who you expect a response from and who you don’t, and
what you expect in the response, as shown in Example 15-1.

Example 15-1. Email with clear expectations for all recipients

from: kim@polyglotmedia.com
to: gino@polyglotmedia.com
cc: sander@polyglotmedia.com, elissa@glidani.com
subject: [Response required by Friday - Gino] Change of plan for kick-off meeting

Hi Gino, Elissa, and Sander,

Symmetrical Email | 241

The kick-off meeting arranged for next Thursday needs to be moved. Elissa has
suggested Friday at 10 a.m.-12 p.m. CET or 2 p.m.-4 p.m. CET.

@Gino, can you please let me know by 4 p.m. (CET) this Friday which one of
Elissa's suggestions is preferred by you and your team, or any days and times your
team can make it the following Monday or Tuesday if Friday is not possible.

@Sander, this is FYI but please let me know if you have any concerns.

@Elissa please let me know if the availability you gave me for the following Monday
and Tuesday changes.

Kind regards,
Kim

Making your expectations of recipients clear is useful for helping you decide who
should be included and who shouldn’t be. Excluding people who would not benefit
from receiving the email will save you both time.

When you ask someone to spend time on something, you should specify the amount
of time or at least an estimate:

• If you ask someone to meet with you, specify a duration. For example, “Can we
please meet for 30 minutes?”

• If you are asking them to complete a survey or similar task, give them an esti‐
mate. For example, “The form should take no longer than 5–7 mins to complete.”

• Or when asking for a review of a document or something similar, specify a limit
on their time. For example, “Please spend no longer than 30 minutes reviewing
the draft architecture decision.”

Email is not the only option for communicating with customers
and people outside of your company. Many tools have B2B options
for inviting external users, such as adding them to a chat or team in
a messaging app. Online forums and web-based chat are other
options for communicating with customers. Pick the communica‐
tion channel that best fits the purpose of your message.

Email Tips
Here are some extra tips to improve your email communication:

Start with your main point
This makes sure that all recipients see the most important point, even if they
don’t read the whole email (see “Structured Writing” on page 92 for more
details).

242 | Chapter 15: Remote Channels

Stick to one topic per email
Send separate emails for separate reasons or requirements to avoid miscommuni‐
cation.

Use hyperlinks
Link to any documents, web pages, or other resources you reference; otherwise,
your recipients will waste time trying to find the content you are referring to.

Link to documents rather than attach copies
Every time you attach a document to an email, it creates a copy for every recipi‐
ent. Linking to a document as your single source of truth can help avoid confu‐
sion and having to merge copies with updates.

Default to Reply instead of Reply All
Change the default in your email program to Reply so that you have to make a
conscious effort to reply to everyone included in an email. Typically, you need to
reply only to the sender.

Turn on Undo Send
Many email programs, including Gmail and Outlook, have a feature that delays
sending the email for 10 to 20 seconds so that you can cancel the send and make
changes if you change your mind in that time frame.

Be polite and assume good intent
When writing an email to others, be polite. If an email you receive seems to be
impolite, assume that it was sent with good intent and has come across wrong. It
is easy to seem brash or impolite in writing.

Be as concise as possible
Get to the point quickly.

Proofread before hitting Send
Get into the habit of at least scanning through your email before sending to avoid
the easy-to-spot errors.

Avoiding Robotic Language
Emails written by humans often contain robotic and unnatural language, which can
be jarring to the recipient. Consider the following when writing emails or crafting
templates for automatic notifications in emails and software:

Make it personal
Use you and I to make the message more personal and easy to understand. Write
“You should be proud of the effort you put into the design” rather than “The
design is an effort to be proud of.”

Symmetrical Email | 243

Write as you speak
Imagine you are talking to someone you know and think about the language you
would use to express your message: “Can you please give me feedback on the
context diagram by 4 p.m. IST?” rather than “Feedback on the context diagram
should be returned by 4 p.m. IST, please.”

A good way to check your message is to read it aloud before clicking Send.

Online Presentations
Presenting online, whether using a slide deck or sharing your screen, is different from
presenting in person and can be much harder. This section covers patterns and tech‐
niques to enhance online presenting and screensharing. It also shows how to update
in-person presentations for an online audience.

Audience Engagement
In a remote presentation, engaging with your audience is difficult. You don’t tend to
see them, which makes gauging their reactions and feelings tricky. You also get the
added complication of having to keep an eye on a chat or Q&A feature for questions
and possibly trying to spot a digitally raised hand. Your audience is much less likely
to call out a question than they would in person if you had missed their raised hand.

You can use a few techniques to help with these challenges. First, ask your audience to
offer questions in the way you want to receive them. If you want to control when you
answer questions, using the Q&A or chat is the best idea. If you are happy to answer
questions as they come, raising virtual hands may be more appropriate. If possible,
ask someone else to keep an eye out for questions and alert you or read them out so
you can focus on your presentation. Even if you ask your audience to use only the
Q&A, it’s a good idea to look for raised hands or other questions because someone
will miss or ignore your instruction.

You aren’t likely to impress or influence anyone as an icon on a
screen. Turn on your camera to better engage with your audience.

In addition to dealing with questions, you need to read audience reactions. Many pre‐
senting tools have a feature that allows your audience to react to you in real-time,
usually with emojis. Ask your audience to use these throughout and keep an eye out
for them so that you can respond to them as you would people’s facial expressions in
a room. You can also ask your audience to give a thumbs up or down, in answer to a
question you ask them, to gauge understanding or conduct a vote.

244 | Chapter 15: Remote Channels

Getting and keeping your audience’s attention is more difficult because online inter‐
actions take more of your audience’s energy and each audience member has their own
set of distractions. Here are some ways to help you gain and keep your audience’s
attention:

• If you are using a slide deck, use more slides than you would in person. Advanc‐
ing through slides more quickly helps keep attention. Spreading your informa‐
tion across more slides has other advantages as well, such as allowing you to
make content larger and clearer, and more negative space is easier for your audi‐
ence to look at (see Figure 15-1 for an overview). Slides are free, so add as many
as you need.

• Aim to split your message into shorter segments and add visual breaks. These
might be a blank slide or an image such as a photo, meme, or cartoon. It is hard
to sustain concentration on one subject for long (the average attention span is no
more than 20 minutes), so breaking up the content gives your audience a rest,
which they need for online interaction.

• Use a presenter mode (picture-in-picture), if available, when showing slides or
sharing your screen so that your audience can see you. Make sure to use exagger‐
ated facial expressions and gestures so they are easier to see in the small view you
will be providing. Seeing your facial expressions and gestures will make it much
easier for your audience to understand you.

• Besides visual breaks, give your audience actual breaks at least every 45 to 60
minutes. This will help them concentrate better afterward.

• Enable your audience to participate by using polls and similar tools such as creat‐
ing a word cloud using live responses. Many third-party options offer this func‐
tionality for a presentation, such as Claper and Mentimeter, and simple polls are
often built into the presentation tool, such as Microsoft Teams or Zoom.

• Try to minimize presentation time and maximize discussion, group activities,
and interactions. Asynchronous communication before the presentation can pro‐
vide some of the information to reduce the presentation time during the event.

Remember that your audience’s bandwidth and screen size will
probably vary. Keep this in mind if you are using media such as
video. When designing your slides, remember that many of your
audience may be viewing them on a small laptop screen.

Online Presentations | 245

https://claper.co
https://mentimeter.com

Figure 15-1. Improving a slide deck by splitting up slides

Presentation Content
A common fallacy of presenting is that an agenda slide is required. This comes from
the premise that you should tell your audience what you are going to tell them, tell
them, and then tell them what you told them. You can follow this premise, but telling
your audience what you are going to tell them rarely translates to an agenda slide,
which is usually boring and unnecessary. You may want to include an overview if you
are teaching a training course or workshop, but you should not spend much time on
this. In most cases, you should focus on the challenge or pain point you are address‐
ing and let your audience know that you are going to talk about solving this for them.

Good ways to begin your presentation include showing an image, bold statement or
statistic, or starting with a story. Use these techniques to frame your main message or
takeaway. You can also end with that same main message or takeaway for emphasis.

You may think that you don’t need to use techniques like this when
you are presenting to your architecture review board, but you will
find that you get your message across much better by getting and
keeping your audience’s attention and interest. An agenda slide will
not do that.

And finally, at the end of a presentation, consider the next steps or actions that you
want your audience to take. This is where a remote presentation has some benefits as
it is easy for you to share a link that you want the audience to click, or ask for feed‐
back or some sort of input via the chat or poll feature.

You can send asynchronous communication afterward with more information,
follow-up actions, and so forth. Use these techniques to meet the goals(s) of your
presentation.

246 | Chapter 15: Remote Channels

Infodecks Versus Slide Decks Versus Slideuments
When is a slide deck not a slide deck? When it contains all the information that the
presenter is going to say. This sort of slide deck, when delivered by a presenter, is
called a slideument. It is a cross between a slide deck and a document. The audience
spends most of the presentation reading the slides rather than listening to the pre‐
senter and not giving enough attention to either.

Slideuments often happen when the same deck is used for the slides and as a hand-
out to the audience, or when the presenter doesn’t know their material and needs to
read it off the slides. This never works as a presentation.

Infodecks are slide decks that are created specifically to communicate information and
not to use alongside a presenter. They are stand-alone. Infodecks can be more useful
than a document, allowing diagrams to be shown full-screen and in landscape and
giving you more control over layout. They also encourage a multimedia approach
with less text and so are easier to read than long paragraphs in a document. When
distributing an infodeck, it is best to convert it to a PDF document, or distribute it
within a web page, so that more people can easily access it.

The slide deck that you create to be used by a presenter should be considered the vis‐
ual element of your presentation. The presenter provides the audio element. One
doesn’t work without the other, and together they make the presentation. The pre‐
senter controls time during the presentation, using this to gain and keep attention,
emphasize, and allow the message to sink in.

Screen Shares
When collaborating with colleagues, you can share information visually by sharing
various applications on your screen, not just slides. For presenting finished work, you
will often share full-screen and in presentation mode so that everyone is focused on
your content and sees it at its largest.

When you want input and collaboration, a good technique is to share your content in
editing mode. This emphasizes that you are happy to make changes. To make sure
everyone can still see the content, you can hide toolbars and fit the content to the
window.

When sharing your screen, bear in mind that your audience may
find it hard to see your cursor. If you use your cursor to indicate
anything on your screen, move it slowly and keep it pointed at your
focus for at least 5 seconds to help anyone experiencing lag. You
can also set your cursor to be larger and a bright color.

Online Presentations | 247

Remote Tools and Governance
The tools needed for remote work differ from those needed in person. You must
compensate for the lack of proximity with the tools you use in a hybrid or remote
environment.

Physical in-person tools and resources such as sticky notes and whiteboards have
online counterparts that can offer more benefits (such as the ability to move an item
around a digital whiteboard). It is important to understand when tools for remote
work may be a better alternative for in-person working too.

In this section, you will find patterns and techniques to augment and strengthen your
use and governance of remote tools. By considering tool selection, data, security, and
efficiency, you can enhance your remote and hybrid working practices.

Selection Techniques
When it comes to selecting tools, you have so many options offering so many features
that the choice can be overwhelming. Requirements are generally used to assess
whether a tool meets the business, technical, and security needs (often using
MoSCoW prioritization: must, should, could, and won’t), along with initial and ongo‐
ing costs. Some software architecture techniques are also useful in this situation.

Architectural characteristics are useful to help prioritize functional requirements
(such as assigning must, should, or could) and for forming nonfunctional require‐
ments for the tool (see “Architecture Characteristics” on page 183). This prioritization
can make the difference between selecting one tool over another and getting the tool
that fits best with the company’s priorities.

Functional and nonfunctional requirements that support your
architectural characteristics should generally be prioritized higher
than those that don’t. If you have selected a top 3 architecture char‐
acteristics, the requirements supporting these should be given the
highest priority.

ADRs enable you to structure the process of choosing a software tool. Documenting
the context along with the reasons you need the software, the decision drivers, and
any assumptions or constraints, all contribute to the software requirements.

The Evaluation Criteria section of an ADR documents all the requirements for the
software, and the Options section contains each option’s scores against that evalua‐
tion criteria. Also note any other trade-offs, pros, or cons for each option that could
significantly affect the final decision.

248 | Chapter 15: Remote Channels

Some tools are like a Swiss army knife, offering lots of features. At the other end of
the spectrum, other tools do one thing (and hopefully do it well). There is no clear-
cut answer as to which will best fit your needs, but when choosing a tool, it is prudent
to consider all its features; some functions might either overlap with other tools you
use or fill a gap in your tool set. Follow the YAGNI rule of coding (you aren’t gonna
need it) for features that you don’t need, but tools with overlapping features might be
best consolidated.

Just as the style of your diagram can affect how your audience per‐
ceives it (see “Style Communicates” on page 74), so too can the tool
you choose affect what your audience thinks of the output. A
shared digital whiteboard would likely be perceived as containing
transitory material, and the more heavyweight tools (such as Enter‐
prise Architect) can put off a lot of people even though the content
may be valuable.

EXAMPLE

Selecting for Cultural Fit
One of Gino’s development teams maintains a custom documentation system (Poly‐
Docs), that all the development teams and the architects at Polyglot Media use. The
team pours a lot of effort into PolyDocs, but it causes a great deal of conflict. Other
teams feel that the team maintaining PolyDocs prioritizes its own needs for the tool
over other teams’ requests. It also takes more development time than Gino wants to
dedicate to it, with broken builds and deployment issues wasting further time.

Gino asks the architect team members for their thoughts and finds he and the team
agree that PolyDocs is not the right fit for the company. Overall it fulfilled its purpose,
but the trade-off is unhappy developers.

The problem is cultural conflict, not technical disagreement, and so Gino and the
architecture team work with the developers and others to define architectural charac‐
teristics for the documentation system. The architectural characteristics are then used
as evaluation criteria in an ADR to assess commercial off-the-shelf options, with
stakeholders supplying input.

The replacement for PolyDocs increases happiness among the development teams
and other users. An open source option is selected, and any developer can contribute
to the project if they want to make a change, subject to Gino’s approval for the time
spent.

The architecture team adds cultural fit to its list of architecture characteristics for
assessing software procurement.

Remote Tools and Governance | 249

https://oreil.ly/tZ2ed
https://oreil.ly/tZ2ed

Remote Tools
Developers and architects use many types of tools when working or collaborating
remotely, including instant messaging, documents, and wikis. Here is a fairly compre‐
hensive list (including some of the less obvious) of the types of tools and how they
can be useful to you and the people you work with:

Online diagramming
Digital diagramming tools have now moved toward a SaaS or online approach,
and offer collaboration options to fit with remote work. Some offer built-in col‐
laboration, and others utilize file-sharing services such as OneDrive and Google
Drive. These tools are essential for getting feedback on or collaboratively creating
diagrams and other visuals for your software architecture. Examples include
draw.io, Excalidraw, and Lucidchart.

Q&A platforms
Documentation is even more important when it comes to remote working, and
one version uses questions and answers. By using a specific Q&A platform, useful
answers don’t get lost in chat or email conversations. Public versions exist, but
you will want a private version for Q&A related to internal software and pro‐
cesses or containing sensitive information. Examples include Codidact, Ques‐
tion2Answer, and Stack Overflow.

Wikis and knowledge management
Wikis and similar forms of knowledge management are particularly important
for a distributed workforce. Asynchronous communication creates documenta‐
tion naturally because the information is sent in durable forms (unlike discus‐
sions in a synchronous meeting, unless minutes are taken). Use these tools to
organize the information from asynchronous communication and make it acces‐
sible. Document processes and synchronous meetings so that everything is easy
to find and in one place. Examples include AppFlowy, TiddlyWiki, Obsidian,
XWiki, Notion, and Confluence.

Forums and social tools
Private social networks and forums are good ways to encourage rapport building
among colleagues who might never see each other face-to-face. Topics are typi‐
cally not about work (such as sports, hobbies, and family), or focus on professio‐
nal subjects not necessarily related a work task or project (for example, cloud
technology, event sourcing, and DDD). Examples of these tools include Hum‐
Hub, Viva Engage, and Whaller.

Video conferencing
These tools are often used daily for virtual face-to-face conversations and meet‐
ings, presenting slides or sharing your screen, and interactivity in virtual meet‐
ings (for example, polls, and break-out rooms). Use these tools for synchronous

250 | Chapter 15: Remote Channels

https://drawio.com
https://excalidraw.com
https://lucidchart.co
https://codidact.org
https://question2answer.org
https://question2answer.org
https://stackoverflow.com
https://appflowy.io
https://tiddlywiki.com
https://obsidian.md
https://xwiki.org
https://notion.so
https://oreil.ly/sNb8P
https://humhub.com/en
https://humhub.com/en
https://oreil.ly/REUrA
https://whaller.com/en

communication. Examples include Jitsi Meet, Zoom, Google Meet, Skype, and
Teams.

Instant messaging
Chat applications usually allow other media as well as plain text, such as images
or links to files, to be shared among individuals and groups. Instant messaging
can be synchronous or asynchronous, so make sure to set and share expectations
for using these tools. Examples include Mattermost, Slack, Teams, and Google
Chat.

Email
Often used for external communication (with customers or other businesses),
long-form internal communication, and publishing newsletters, email is flexible
but also prone to creating time sinks. Follow the advice in “Symmetrical Email”
on page 239. Examples include Mozilla Thunderbird, Mailspring, Gmail, and
Microsoft Outlook.

Digital whiteboards
Online whiteboards aren’t often used for free-hand drawing (probably because
drawing with a mouse is hard), but they have many other features, including the
ability to add sticky notes, images, icons, and so on, and to move these about and
link them together with arrows or by drawing a box or other shape around them.
Another benefit compared to a standard whiteboard is the size of the online can‐
vas. It is much larger or effectively infinite, with benefits such as being able to
include multiple EventStorming perspectives on one canvas and show progres‐
sion. Outcomes are also automatically documented, rather than rubbed off a
standard whiteboard. Examples include OpenBoard, Mural, Miro, and Microsoft
Whiteboard.

Project management
Project management tools have come a long way since the first days of products
such as Microsoft Project. Waterfall planning has been largely superseded by
Agile methods, with many offerings now being SaaS. These tools are great for
asynchronous communication, including assigning tasks and project updates.
Examples include Redmine, Taiga, Basecamp, and Jira.

File sharing
Attaching a document to an email or other communication is well known to be
an antipattern, creating another version of the file every time for every recipient.
This makes updating everyone with any changes a nightmare. Sharing a link to
the file, with appropriate access rights, is the pattern to follow. Examples include
Seafile, Dropbox, Google Drive, and OneDrive.

Remote Tools and Governance | 251

https://meet.jit.si
https://zoom.us
https://meet.google.com
https://oreil.ly/1E5lu
https://oreil.ly/VAzAi
https://mattermost.com
https://slack.com/intl/en-gb
https://oreil.ly/VAzAi
https://chat.google.com
https://chat.google.com
https://thunderbird.net/en-GB
https://getmailspring.com
https://mail.google.com
https://www.outlook.com
https://oreil.ly/p8M_8
https://mural.co
https://miro.com
https://oreil.ly/qzbxA
https://oreil.ly/qzbxA
https://redmine.org
https://taiga.io
https://basecamp.com
https://oreil.ly/VemBL
https://seafile.com/en/home
https://dropbox.com
https://google.com/drive
https://onedrive.live.com

Collaborative documents
Those working remotely may need to collaborate, or ask for feedback, on docu‐
ments, spreadsheets, slide decks, and so on. Most online document applications
offer live collaboration features if you want to work synchronously on a docu‐
ment and comments for asynchronous collaboration. Examples include
ONLYOFFICE; Microsoft 365, which was formerly Office 365; and Google Drive,
which offers Docs, Sheets, and Slides.

Data Proliferation
For many, the move to remote working was sudden and unplanned. The need to
maintain business continuity, avoid working in silos, and give people the authority to
make purchasing decisions has led to a proliferation of software tools for remote
working. In addition, entropy has increased applications used within businesses.
Everything tends toward chaos if left uncontrolled, so the use of software must be
managed within a business to avoid the problems that chaos causes.

One thing often forgotten is that the proliferation of software tools also means the
proliferation of data. Each tool contains its own unique data, but also data that is
shared with other tools, and data that is a copy of or similar to data in other apps (for
example, user accounts and metadata like a list of departments in the business).

Figure 15-2 illustrates the proliferation of data as apps multiply. Some apps share
data, some store their own data, and some data may be duplicated. Read on for an
explanation of these situations and their advantages and trade-offs.

Data that is similar or replicated can cause several issues. For each software tool that
manages its own users’ authentication and authorization, a user has to create a new
user account and may not follow good practices for creating a password. This creates
a new attack vector.

If a user changes roles or leaves the company, the user accounts in all the tools they
use must be updated to remove or change their permissions. One or more accounts
can easily slip through the cracks in this process. One of these accounts with an inse‐
cure password is an excellent opportunity for hacking.

252 | Chapter 15: Remote Channels

https://onlyoffice.com
https://office.com
https://google.com/drive

Figure 15-2. Proliferation and sharing of data

Copies of data can easily go out of sync. A list of departments in the business could
end up out-of-date if a new department is added or departments merge. A list of cur‐
rent projects or tools would become out-of-date even quicker.

Tools needing to use the same data often lead to several versions of that data, which
may need to be kept in sync somehow. As the number of tools using data increases,
synchronization and maintaining a golden copy (a single authoritative source of truth,
or master copy) becomes harder and harder. Even when the synchronization of data
is automated, such as using APIs in the tools or a shared data store, more tools mean
more complexity and the likelihood of errors or other problems. Inconsistent or
unreliable data can cripple a company.

Then there is the consideration of security and compliance. Is the data transferred
securely? When and how is it encrypted? How is access to the data controlled? Where
is the data stored? These are all important questions for protecting business intellec‐
tual property but also for complying with laws and standards such as GDPR, HIPAA,
PCI, and ISO.

Remote Tools and Governance | 253

Any personally identifiable information contained in the data adds a huge amount of
complexity to data storage. You’ll need to figure out whether the storage of the data
(including geographical location and encryption) complies with laws around this type
of data, or even if you are allowed to use that data in a particular software tool at all.

Security
Remote teams need the ability to access tools and data from anywhere, meaning a
shift toward SaaS products (hosted by the vendor) and the need to control access to
on-premises or cloud-based resources. For all its benefits, remote working introduces
more attack vectors to an organization, which need to be mitigated by security poli‐
cies such as using SSO, approving vendors, and checking licenses and terms of ser‐
vice, among others.

Data security is not the only problem when managing software tools within a com‐
pany. An attacker could move laterally through company systems once they have
breached one software application. Organizations with 500 to 2,000 employees report
using on average just over 800 cloud apps each month, with 97% of those being
shadow IT apps, according to the July 2021 Netskope cloud and threat report.

Shadow IT is the software in use that the company is not aware of or in control of.
Even the software that is known poses a risk, but having around 780 unknown apps
that might be malware or have vulnerabilities is a security nightmare.

Tool Efficiency
The proliferation of software tools often leads to two or more tools that overlap or
even provide exactly the same features. Departments or teams that are working in
silos may invest in different software to meet their needs, when they could use some‐
thing already in use in the company.

If software capabilities don’t overlap, incompatabilities could arise when the systems
need to communicate at a later date. This lack of oversight of software tools leads to
wasting money on buying duplicate tools or migrating to another compatible system.

Costs can easily spiral with many SaaS and other remote working software tools
charging per user, per month. The cost looks innocent when viewed individually, but
having many users and many tools can easily lead to thousands of wasted dollars per
month.

254 | Chapter 15: Remote Channels

https://oreil.ly/WAoSI

When tools are underutilized, either because they aren’t needed or
because they are duplicates, the company also misses out on cost
savings from bulk discounts and cost-effectiveness across the
business.

The efficiency of users and processes is also hampered by having large numbers of
software tools. Employees need to know which software they should use for each task
or process and where to find information, but having too many options can be
confusing.

Each new tool an employee is exposed to also has a learning curve. If an employee is
used to using one whiteboard tool but joins a meeting to find a different one is being
used, they will need to learn this new tool and cope with switching between the two.

When you identify a need for new software but don’t know whether the business
already has other software that meets this need, the business could waste time and
effort in acquiring the new software and training employees. Identifying who is
responsible for the software is also difficult when there are so many software tools.
When responsibility is known, it is easy for that information to be lost as people leave
the company or change roles.

At a certain threshold, the number of tools slows employees down rather than helps
or streamlines their work. This threshold will vary, but it is probably lower than you
think.

Tool Governance
Remote work has accelerated the increase in software tools used by businesses, but
governance and stewardship can steer the situation back and away from chaos. Using
asynchronous options to both communicate and make decisions about this gover‐
nance is key for a distributed workforce.

An audit of the current tool landscape is an important place to begin the governance
of software tools. Ask what apps are being used, what they are being used for, who
uses them, how many people use them, how many licenses the company owns, what
the initial and ongoing costs are, and whether the ROI is known.

Then one important question remains, for which the answer is typically lost to time:
why is this particular tool being used? If you are lucky, the answer will have been
recorded. This information is useful when deciding whether a tool should be kept.

Retaining information about tools is also useful, like the renewal dates for licenses,
especially when the renewal period is long, so that you don’t need to make a rushed
decision on whether to renew. If you know when the vendor will stop supporting the
tool, the date should also be recorded so plans for a replacement or upgrade can be
made.

Remote Tools and Governance | 255

Information about each tool can be used to create an application portfolio. Tools in
the portfolio should be assessed against business policies to make sure they are com‐
pliant. This should include security and compliance, such as HIPAA or GDPR, or
with a policy such as all data being encrypted at rest and in transit. See Table 15-1 for
an extract from Polyglot Media’s application portfolio summary (which can link to
more detailed information).

Table 15-1. Extract from Polyglot Media’s application portfolio summary

App
name

Owner Users Licenses License
uptake

Renewal
date

Initial
outlay

Annual
cost

Rationale Compliance

Obsidian Gino (tech
lead)

Tech dept 50 98% (Q4
2023)

2024-07-01 $150 $2,500 [ADR link] COMPLIANT

draw.io Libby
(lead
architect)

Architects,
developers

Free/open
source

25 users
(Q3
2023)

N/A 0 0 [ADR link] Desktop:
COMPLIANT,
Browser:
NONCOMPLIANT

Matter
most

TBD (by
end Q4
2023)

Polyglot
Media

Enterprise 148
users
(Q4
2023)

2024-02-07 $200 $1,750 [ADR link] COMPLIANT

Inter-tool dependencies should also be added to the application portfolio. These are
important when working out which tools will be kept (creating an impact analysis)
and for determining data lineage and security. Business data flows should be mapped
for all tools, showing integrations and their implementation (for example, an API).

All tools should be evaluated against policies, business objectives, and their pros and
cons (for example, pricing and pricing model, effort to use and manage, training
availability and learning curve, and so on). The other criteria to evaluate against are
the requirements of the tool, bearing in mind that these may have changed over time
(such as a platform now needing to provide scalability for products built on top of it).

Once you have evaluated the tools in your portfolio, you can move on to consolida‐
tion. You’ll use the results of your analysis to identify tools with the following
characteristics:

Duplicate features without good reason
For these, a decision should be made about which tool to keep and which to
migrate away from.

Can be consolidated into another tool you already use
Doing this will mean reducing the number of tools and vendors, and therefore
reducing your attack surface. You may also save money and will have less man‐
agement overhead.

256 | Chapter 15: Remote Channels

Don’t meet the needs and goals of the business
These tools may have met business needs when they were originally licensed or
may have not taken some business needs into account. They should be marked
for replacement or phasing out.

Don’t comply with policies or laws
These tools should be marked for replacement or phasing out as a priority, unless
a change to the tool can be made so that it does comply, such as changing where
data is stored.

Have a negative ROI or are not used enough to justify managing
Mark these for phasing out and migrating users to other options if needed.

Have too many licenses for the number of users
Change the licensing levels on these tools as soon as possible to save money.

When making these decisions, you should also take the following into account:

The cost of increasing the number of licenses
If you are consolidating users to use one tool, you should take into account the
new license numbers for each tool to evaluate the price.

The license models for each tool
You may find that one tool is much more cost-effective overall, because of its
licensing model, or that using two tools with different models is more cost-
effective (for example, one repository hosting service charges per repository, and
another service charges per user).

How and whether migration of data is possible
For tools that are being considered for phasing out, find out how data can be
migrated. If it is not possible, the migration may need to be done manually.

The skill sets of your employees
Which tools do they know how to use already? What is the learning curve for
tools you are considering migrating users to? What training is available for tools,
and how much does it cost?

Compatibility and integration requirements
Does the tool need to integrate or be compatible with another tool? This could be
a deal breaker when it comes to selecting a new tool or choosing which tool to
keep.

Remote Tools and Governance | 257

Further analysis can then be done on the tools that you plan to keep, and tools avail‐
able on the market, to identify tools with these characteristics:

Have a cheaper option available
This may mean changing the licensing tier that you pay for or migrating to a new
tool.

Could be consolidated by replacing several tools with one new tool
As with consolidating to a tool you already use, this will reduce attack vectors,
management overhead, and probably costs as well.

Have a better option available
Assessing the current market may bring up options that better fit business needs
and goals, or are otherwise more efficient. These can be investigated as
replacements.

When it comes to implementing these changes, it is usually best to go for a phased
approach and something like the strangler fig pattern.

The strangler fig pattern (sometimes known as the Ship of Theseus)
is used to replace a legacy system by gradually replacing legacy
functionality with code in a new system. The new system eventu‐
ally replaces the legacy, which can then be decommissioned. Think
of the tools you are replacing or phasing out as features of the leg‐
acy system you are deciding whether to migrate.

Migrating users and data in phases allows you to iron out any issues before affecting
large numbers of people. Select the people who will be most happy to run into and
report issues as your early adopters.

With a plan for how your software tool landscape will look when you are done, you
can also consider optimizations such as integrating both upstream and downstream
services and tools. Many tools have APIs that you can exploit to get better value for
money and increase efficiency.

Implementing oversight and governance of your application portfolio is an important
step that will keep you from falling back toward chaos. Processes and policies need to
be put in place to manage the lifecycle of the software tools used in your company,
whether they are used for remote work or not. Training should complement these
processes so that everyone knows where to find information on the current tools and
the process for requesting that a new tool be added to the portfolio.

258 | Chapter 15: Remote Channels

The processes you implement will feed back into your application portfolio, reducing
the need to perform audits (although it is good to perform these to identify shadow
IT). Processes and policies should also have a lifecycle and be reviewed and updated
as needed.

Your application portfolio, processes, and policies can be communicated in various
ways, including by the following:

Technology radar
A technology radar describes tools and technologies and categorizes them for use
in your organization. A typical visualization looks like a target (or radar), with
technology near the center being targeted for use and technology at the edges
being on hold, banned, or retired. Technologies and tools are categorized into
quadrants on the target. It is good to provide a text-based or searchable version,
as well as the visual, for easy access. Figures 15-3 and 15-4 show some layouts
from the Thoughtworks technology radar.

Technical/technology reference model
A technical reference model (TRM) is similar to a technology radar but categori‐
zes and displays tools differently. You can implement your TRM as specified in
the TOGAF standard or in a way that better meets your needs. Technologies and
tools are classified into a taxonomy. This is a much heavier option than a technol‐
ogy radar.

Searchable and accessible application catalog
Make sure that all those who should have access do have access to the application
catalog. Tagging tools by their features and reasons for use will help those looking
for existing tools that meet their needs. Including feature information that may
not be currently used will allow you to identify an existing tool for another use.

Existing wiki and knowledge management tools
Define and describe processes and policies in the same place that other business
and technical information is documented. Link to any tools, such as a technology
radar, from here as well.

Bring your own device (BYOD) management
Use a tool like Microsoft Intune, so that company data and security are controlled
on devices that are not fully managed by the company.

Remote Tools and Governance | 259

https://thoughtworks.com/radar
https://opengroup.org/togaf

1 “Technology Radar,” Thoughtworks, volume 28, 2023, https://oreil.ly/lGru8.

Figure 15-3. Thoughtworks technology radar overview1

When creating policies and processes, it is important to communicate expectations
and exceptions for the lifecycle handling of tools. In general, when a new need is
identified that is fulfilled by an existing tool, you should expect existing tools to be
used, but exceptions will arise and a process should exist for granting these.

260 | Chapter 15: Remote Channels

https://oreil.ly/lGru8
https://oreil.ly/lGru8

2 Thoughtworks, “Technology Radar.”

Figure 15-4. Techniques quadrant of the Thoughtworks technology radar2

If you see a pattern of exceptions being granted, it may be time to
review the policies or the use of software that is causing the excep‐
tions to be requested.

When exceptions are granted, they should be documented as exceptions in your
application portfolio so that others know whether to use that tool or the existing
tool(s) that could not be used in the case of that exception. An exception may need to
be granted each time someone else wants to use any tools added to the portfolio as an
exception.

A balance needs to be reached between creating too much red tape and making it too
easy to add another tool to the application portfolio. Both extremes will negatively
affect the business. Make the process as quick and efficient as possible, while still

Remote Tools and Governance | 261

https://oreil.ly/lGru8

having checks for policy and process compliance. Automate as much as possible and
make everything else self-service.

If your processes for adding a new tool to the application portfolio
are too restrictive, you will find that shadow IT creeps in, with peo‐
ple circumnavigating the governance around software tools.

The application portfolio can be used to track application ownership, making one
person responsible for the software tool. To make the process of changing the owner
as smooth as possible (for example, if the owner leaves the company), assign the own‐
ership to a role, such as Owner of App X, and assign that role to a person. That way,
reassigning that role to any other person is easy, whatever their actual job role might
be.

The whole governance and management process of software tools should be agile.
Auditing, analysis, evaluating, consolidating, and managing are all ongoing processes
that need to be repeated and reviewed regularly. In addition to this ongoing loop, the
processes and governance around the application catalog need to feed back into the
application catalog, such as updating the number of licenses when it changes, or
adding a new tool with all the required information.

Overall, the processes you put in place should deliver pertinent information to the
people who are paying for the tools in the application portfolio. Only then can they
make the necessary informed decisions about the case for any tool in the portfolio.
Every tool should be proving itself, either directly or indirectly, to be granted space in
your portfolio and management processes.

Summary
Now that your email communication is improved (and will hopefully improve that of
others by example) and you are communicating more effectively via remote presenta‐
tions, you are well on your way to getting your point across in whatever medium you
are using.

The governance of your communication and other tools should be the glue that holds
together your new framework for communication in your team, company, and
beyond.

262 | Chapter 15: Remote Channels

Epilogue

Now we come to the end of this narrative. I hope that I have managed to “get the ball
over the net,” to borrow a phrase from Michel Thomas that I quoted in the Preface, in
conveying the true importance of successful communication in the technology arena
and beyond.

You have learned that communication is not simply about getting someone to under‐
stand you. Communication is building relationships, fostering trust, solving prob‐
lems, motivating people, promoting efficiency, and (possibly most important) making
people feel seen and respected.

In this book, I have brought together teachings from many diverse areas, mixed them
with my own ideas and experience, and applied them to software architecture and
business communication. I mentioned that diversity in people and teams has benefits.
Learning from diverse areas also has benefits, including finding new understanding
and making connections that others cannot see, and I have passed that on to you in
this book.

Communication is a part of every job, and in the technology arena, we have perhaps
the most diverse set of tools and methods for communication. This wide selection has
advantages and disadvantages, and what you have learned in this book will help you
maximize the advantages and mitigate the disadvantages.

As we close this book together, remember that communication is a dynamic, ever-
evolving process. Our journey here may be ending, but yours is just beginning. Take
the lessons from this book, apply them in your work, and observe the transformation
unfold in your professional and personal life.

Put into practice the communication patterns discussed, remain mindful of the anti‐
patterns, and most important, don’t be afraid to experiment and explore. Communi‐
cation has no one-size-fits-all approach—your unique experiences and context will
dictate your path.

263

Share your knowledge and your journey with others. You have a unique perspective
and experience that can benefit those around you, and in sharing, you strengthen
your understanding and create a positive ripple effect.

Remember to revisit the essentials in Chapter 1 whenever you need a refresher or find
yourself off track. The fundamentals are your guiding light in the realm of effective
communication.

I encourage you to reach out with your experiences, insights, and stories. Your jour‐
ney matters, and hearing about your progress and the changes you’re fostering is gen‐
uinely exciting. Be part of the conversation, contribute to the community, and let’s
continue learning together.

Wishing you successful communication,

—Jacqui Read

264 | Epilogue

APPENDIX

ADR Templates

Use these templates to structure your architecture decision records (ADRs). They are
also available on the companion website.

ADR Structure
See “ADR Structure” on page 171 for instructions on how to use each section. See Fig‐
ures 12-3, 12-4, and 12-5 for examples of how to use this template.

Identifier and Title: A Statement of the Decision Made

Status
Draft/Decided/Superseded by ADR-XXX

Context
Why you need to make the decision. Assumptions, constraints, and decision drivers.

Evaluation Criteria
What is important to you in making this decision? Which of your architectural char‐
acteristics apply to making this decision? Should any constraints or decision drivers
become a criterion?

Options
Outlines of the options considered against the evaluation criteria (usually using a
score or rating), and trade-offs outside of the evaluation criteria. See “ADR Options”
on page 266 for a template.

265

https://communicationpatternsbook.com

Decision
The choice that was made and why.

Implications
The positive and negative consequences of the decision made.

Consultation
If taking input from others, document it here. Although consultation takes place
before a decision is made, it is documented at the end because it can become long and
obscure the decision itself.

ADR Options
Use the ADR Options table (Table A-1) in the Options section of your ADR. For an
example of how this table can be used, see Figures 12-3 and 12-4. To use Table A-1:

• Create one table per option considered.
• Add a row for each of your evaluation criteria.
• Give a score out of 5 and represent this visually using stars or a Harvey ball.
• Place notes justifying the score given in the Rationale column.
• Total the score for comparison with other options.
• Add other trade-offs, outside of the evaluation criteria, in the “Other trade-offs”

section.

Table A-1. ADR Options

Criteria Score Rationale
☆☆☆☆☆ 0/5

☆☆☆☆☆ 0/5

☆☆☆☆☆ 0/5

☆☆☆☆☆ 0/5

Total: 0/20 Other trade-offs:

•
•
•

266 | ADR Templates

Index

A
abstraction

keeping levels in order, 43-45
mixing levels of, 7-10
prioritizing over text, 140-145

academic journals, 118
acceptance prophecy, 101-102
accessibility

ADR storage, 179
as architecture characteristic, 183
color, 31-36
labels, 39-41
legends, 37-38
limitations of graphs and charts, 141
providing textual information for icons, 56
sharing the load, 159-161
when creating visual abstractions, 146

acronyms, 88, 90-91, 97
active listening, 109, 126
active verbs, 127
ADHD (attention deficit hyperactivity disor‐

der), 87
adoption leave, 207
ADRs (architecture decision records), 169-180,

248
avoiding groupthink with, 108
communicating reasoning and argumenta‐

tion, 129-131
content of, 174-175
culture of, 180
identifying issues early, 154
including feedback section in, 156
preventing rushed decisions by using, 106
storing, 179

structure of, 171-174
templates for, 265-266

agenda slide, 246
aggression, 104
Agile

feedback, 153
fit of just-in-time architecture with, 164

agile
decision making as, 181
defining architecture characteristics as, 185
feedback, 155
governance of software tools as, 262
meetings clashing with, 220

agreements, communication, 240
AI (artificial intelligence), 191
aligning goals, 110
alternate text (alt text), 36
analogies, 126
analysis paralysis, 105
anecdotes, 119, 122, 126
anger, 104
animations, 145
annotations, 27
antipatterns

acronym hell, 90-91
balancing text, 26-29
boxes in boxes, 19-22
color overload, 17-19
conveying meaning through icons, 55-56
defined, 3
going against expectations, 64-66
illegible diagrams, 67-73
misleading composition, 75-81
mixing behavior and structure, 61-64

267

mixing levels of abstraction, 7-10
relationship spiderweb, 22-23
relying on color to communicate, 31-36
serverless pinball, 124
using UML for UML’s sake, 57-60

anywhere organizations, 234
aphorism, 78
APIs, 258
apologies, 104
appendix, 118, 128
AppFlowy, 228, 250
application catalog, 259
application portfolio, 256, 261-262
approximate symmetry, 83
ArchiMate notation, 52-53, 159
architecture characteristics, 183-187, 248
Architecture Characteristics Worksheet

(Richards), 184
Architecture decision records (see ADRs)
Archive.is, 119
arcs, 23
argumentation, 129-131
Aristotle (see rhetoric triangle)
arrows, 22

(see also relationships and connections)
describing relationship between compo‐

nents, 51
indicating starting point for diagrams, 47
orthogonal, 22

Art of Thinking Clearly, The (Dobelli), 106
artificial intelligence (AI), 191
Asana, 227
AsciiDoc, 159, 161
assumptions, documenting, 155
asymmetry, 84
asynchronous communication

advantages of, 223
after online presentations, 246
before online presentations, 245
for documentation, 161, 250
improving, 229
methods of, 226-228
obstacles to, 223-224
overcoming time zone barriers, 201
setting and handling expectations for,

229-230
synchronous communication versus,

215-217

unidirectional versus bidirectional commu‐
nication, 224-226

asynchronous sandwich, 229
attack vectors, 252
attention, 102-103
attention deficit hyperactivity disorder

(ADHD), 87
audience

accessibility considerations for, 31
empathy for, 97-98
engaging via online presentations, 244-245
knowing, 3-7

audio, 145
audio-only meetings, 105
prerecorded, 227

audit, of software tools used, 255, 259
authenticity, 125
authoring, 188
auto-replies, 211
automatically generated documentation,

190-191
automating tasks, 211-212
availability

as architecture characteristic, 183
communicating about, 205

Azure, 135

B
background, diagram, 21-22

contrast ratio for, 32
differing across mediums, 33

backlinks, 151
Backstage, 193
Basecamp, 251
baseline manipulation, 75
Battle of the Boyne, 206
behavioral diagrams, mixing structure into,

61-64
being present, 108
biases, 121

(see also cognitive biases)
decision owner mitigating, 182
ideological, declaring, 121
inevitability biases, 107
in language models, 108
political, declaring, 121
sunk cost fallacy, 154
transparency about, 119-121

bidirectional communication, 224-226

268 | Index

bidirectional relationships, 51-52
big picture, giving priority to, 43-46
bilateral symmetry, 83
biographies, 116-117, 120
black-and-white visuals, 18
blogs, 118
blue, 64
Böckeler, Birgitta, 170
body language

as nonverbal listening cue, 108, 126
overview, 103-104
during remote meetings, 216, 221

bold words and statements, 111
BookStack, 228
boxes

connecting diagrams with dashed-line
boxes, 12

decluttering, 19-22
BPMN (Business Process Model and Notation),

55, 58
breaks, during online presentations, 245
bring your own device (BYOD), managing, 259
brittle links, 147
BST (British Summer Time), 204
built-in silence, 223
bullet points, 140-141
business continuity planning, 232
Business Process Model and Notation (BPMN),

55, 58
business process modeling, 235
business-related documentation, 192
butterfly effect, 153
BYOD (bring your own device), managing, 259

C
C4 diagrams

context diagrams
balancing text and labels on, 40-41
versatility of, 4-5

levels of abstraction in, 12
overview, 8-10
relationship spiderweb antipattern in, 23-25
simplicity of, 160

Cal.com, 209
calculations, 174
calendar applications, 200
cameras, in online presentations, 244
canvas size, 67-68
capability mapping, 235

car park (parking lot) method, 218, 221
carbon footprint, 233
cartoons, 145
Cascading Style Sheets (CSS), 160
causal relationships, 53
cells, table, 142
centralized documentation portal, 138
charts, 145
chat, 251
checklists, 148, 150
checkpoints, 157
Chromatic Vision Simulator, 35
circadian rhythms, 210, 212
citing sources

improving transparency by, 119
using trustworthy sources, 118-119
when using data and facts, 128

Claper tool, 245
clarity stories, 124
clenched fist gesture, 104
cloud provider documentation, 55, 56
cloud provider icons, 56-55
cloud resources diagram, 20
clutter antipatterns, 38

balancing text, 26
boxes in boxes, 19-22
color overload, 17-19
relationship spiderweb, 22-23

Coblis, 35
code smell, 7
Codidact platform, 250
coding

example of levels of abstraction in, 8
single responsibility principle, 61, 149
writing code without comments, 39

cognitive biases
battling, 106-107
confirmation bias, 107, 113
curse of knowledge, 90, 155
groupthink, 107, 182
hindsight bias, 107
sunk cost fallacy, 154

cognitive load reduction
avoiding color overload, 17-19
avoiding relationship spiderweb, 22-23
balancing text, 26-29
decluttering boxes, 19-22

cognitive reframing, 113
collaboration

Index | 269

deferring decisions for, 166
improving with product mindset, 137
storing documentation in version control

for, 188
tools for, 161, 228

collaborative documents, 252
color

accessibility and, 31-36
cultural interpretation of, 64
overload of, 17-19

color blindness, 32, 36
Color Oracle, 34
columns, table, 142
comic strips, 145
comments, 39
communication, 3

(see also antipatterns; asynchronous com‐
munication; patterns; synchronous com‐
munication)

bidirectional, 224-226
controlling notifications, 210
deciding on channel of, 240
ess

representational consistency, 11-15
essentials of

knowing your audience, 3-7
successful, xiv
unidirectional, 224-226

communication agreement, 240
communication antipattern, 7
comp time, 201
comparison, misleading with, 77-78
compatibility, 160
composition

creating visual balance, 81-84
illegible diagrams, 67-73
metastyle, 74
misleading composition, 75-81
solid line, 20, 74

compromise, 201-202
conferences

becoming echo chamber, 107
improving ethos, 122
as trustworthy sources, 118

configurability, 183
confirmation bias, 107, 113
conflicts of interest, 120-121
Confluence, 139, 228, 250

connections (see relationships and connec‐
tions)

consistency, 137
consolidation, of software, 256-258
Consultation section, of ADRs, 174
context, 43-45
Context section, of ADRs, 173
contextual diversity, 109
continuity, 184
continuous improvement, 137
continuous learning, 122
contrast, 32-33, 143
conversion, 188
Conway’s law, 125
coordinated universal time (UTC), 198, 199
copies of data, 253
corporate color scheme, 36
cost

as architecture characteristic, 185
following just-in-time pattern, 164
of using nonproprietary formats, 157
showing method for, 174
sunk cost fallacy, 153-154

counterarguments, 130
creative writing, 95
credentials, establishing, 116-117
credibility, 102, 113, 116

(see also rhetoric triangle)
credibility statements, 111
cropping diagrams, 70-73
CSS (Cascading Style Sheets), 160
cultural differences, awareness of, 109
cultural diversity

interpretations of hand gestures, 103
knowing your audience, 7
sensitivity in symbol usage, 34, 64
significance of colors, 64

cultural fit, 249
culture, accounting for, 208
curse of knowledge, 90, 155
cursor, during screen sharing, 247
customer focus, 137

D
dashed lines, showing relationships with, 51
dashed-line boxes

as method of connecting diagrams, 12
avoiding boxes in boxes antipattern with, 20

data

270 | Index

citing sources of, 128
copies of, 243, 251
migration of, 257, 258
proliferation of, 252-254
relational, 26
synchronization of, 253
using to support views, 128
versions of, 253

data flow diagrams
behavioral data flow diagram, 62
boxes in boxes in, 20
levels of abstraction in, 10, 45
using numbers and letters to guide naviga‐

tion in, 14-15
databases, online, 118
dates

confusion with recording, 198
recording history of, 187

daylight saving time (DST), 203-204
DDD (domain-driven design), 89, 91
deadlines, 198
Decided status, of ADRs, 130, 172, 182
decisions

deferring, 163, 166
making, myths about, 181-182
whack-a-mole, 170

decoding messages
being present, 108
cognitive biases, 106-107
cultural differences, 109

demonstrating knowledge, 121-122
dependencies, inter-tool, 256
deuteranopia, 35-36
diagrams, 3

(see also visual communication)
adding to documentation as code, 190
cropping, 70-73
good practices for, 149
illustrating logical connections with, 129
linking ADRs to, 175
online tools for, 250
prioritizing abstraction over text, 145
in slides, 247
in technical documentation, 193

Diátaxis framework, 151
diffs, 32
digital nomads, 233
digital whiteboards, 161, 228, 249
disabilities, 31

disclaimers, 120
discussion time, in online presentations, 245
docfx, 194
Docs, 160, 161
Docsify, 193
docToolchain, 193
documentation, 146

(see also perspective-driven documentation)
of assumptions, 155
as code, 187-193

automatically generated documentation,
190-191

other documentation, 192-193
technical documentation, 187-190

creation and maintenance of, 157-163
by default, 233, 236
storing knowledge by product, 136-139
storing knowledge by project, 136
structure and classification of, 138-139

Docusaurus, 193
domain story diagrams, 5-6
domain storytelling, 235
domain-driven design (DDD), 89, 91
don’t repeat yourself (DRY) principle, 147-148
dotted lines, 51
Doxygen, 193
Draft status, of ADRs, 172
drafts, 165, 189
draw.io, 35, 159, 228, 250

canvas size on, 67-68
icon versions, 55
stored as text format, 193

Dribbble, 122
Dropbox, 251
DRY (don’t repeat yourself) principle, 147-148
DST (daylight saving time), 203-204
dynamic links, 147
dyslexia, 87

E
Easter Monday, 207
Easy!Appointments, 209
echo chamber, 107, 155
editing mode, for sharing content, 247
editor accessibility, 158
Eid al-Fitr, 207
email, 226, 239-243

applying pyramid structure to, 93-94
automating tasks for, 211-212

Index | 271

clarity in, 241-242
as low-energy task, 210
moving knowledge from, 161
sharing time zone and working hours in,

200, 205
standards for communicating expectations,

240
tips for, 242-243
uses for, 240

embedding, 150
emojis, 224, 244
emotional connection, 102
emotional words, 128
empathy, 97-98

storytelling building, 123
time considerations, 201-202

employment relationship, declaring, 121
encoding messages

acceptance prophecy, 101-102
body language and gestures, 103-104
giving full attention, 102-103

energy and productivity improvements,
210-213
automating tasks, 211-212
by balancing asynchronous and asynchro‐

nous, 216
controlling notifications, 210
remote-first, benefit of, 230-237
scheduling for energy, 212
working with rhythm of others, 212

Enterprise Architect, 234, 249
estimates

of tasks, 209
of time to complete requests, 242

ethos
defined, 115
demonstrating knowledge, 121-122
establishing credentials, 116-117
transparency, 119-120
trustworthy sources, 118-119

Evaluation Criteria section, of ADRs, 173
event-based architecture, 125
EventStorming, 32, 235
Excalidraw, 228, 250
expectations

going against, 64-66
matching flow to, 47-51
shared, regarding asynchronous communi‐

cation, 223, 229-230, 240

experts, reputable, 118
explanatory gestures, 103
explosion of unicorns (color overload), 17-19
extensibility, 184
eye contact, 102

F
facial expressions, 103, 245
facts, using to support views, 128
failure stories, 123, 125
feasibility, 185
feedback

collecting on documents or diagrams, 228
getting early and often, 153-156
shared biases in, 106

file sharing, 251
file systems, 139
filenames, 171
financial interests, declaring, 121
flagging emails, 211
flat structure, 150
flexibility, 188
flow

left-to-right, 47-50
right-to-left, 48-49
top-to-bottom, 47-50

flow diagrams, 26
focus time, 213, 223
focus, long-term, 136
folders, 139, 150
footnotes, 26, 119, 128
Ford, Neal, 184
foreground, 32
forums, 227, 250
4+1 Model, 151
fractal perspectives, 148
full-time benefits, 208
Fundamentals of Software Architecture

(Richards and Ford), 183, 184

G
gap analysis, 235
gardening leave, 162
GDPR, 209
geography, accounting for, 208
geometric shapes, 64
gestures, 103-104, 221, 245
Git, 159, 189
GitBook, 192

272 | Index

GitHub Copilot, 191
GitHub Desktop, 192
GitHub Pages, 190
GitHub, color accessibility in, 32
glaucoma, 32
global talent pool, 198
glossaries, 88-89
Good Friday, 207
Google Calendar, 200
Google Chat, 251
Google Docs, 160, 161
Google Drive, 251
Google Gmail, 202
Google Meet, 251
governance of tools, 255-262

agile, 262
as application portfolio, 256-259
as audit, 255
balancing, 261
communicating, 259-261
implementing, 259-259

government agencies, 118
graphs, 145
GraphViz, 194
grayscale, 18, 33
green, 32, 64
groupthink, 107, 182

H
hand gestures, 103
Harvey balls, 143
head of remote position, 236
headers

table, 142
headline statement, 111
Henney, Kevlin, 191
heuristics, 216
hexagonal architecture diagrams, 51
hierarchical relationships, 53, 139
high-level architecture, 45
hindsight bias, 107
HIPPA, 209
HiPPO (highest paid person’s opinion), 226
holidays, planning for, 206-207
HTML (Hypertext Markup Language), 159, 160
Hugo static site generator, 189
HumHub, 250
Hunt, Andy, 147
hyperbole, 127

hyperlinks
to artifacts, 150
for diagrams, 15
in email, 243
for external calculations, 175
to legends, 38
to supporting materials, 45

Hypertext Markup Language (HTML), 159, 160

I
icons, 55-56
identifiers

of ADRs, 130, 171, 265
for characteristics, 186
for dataflow diagram elements, 14
for requirements, 186
letter, 48

ideological bias, declaring, 121
idioms, 87, 90
IFTTT, 211
illegible diagrams, 67-73
illustrations, 145
images, 145
impact analysis, 235
Implications section, of ADRs, 174
implicit architecture characteristics, 184
improvement, continuous, 137
indentation, 141
inevitability bias, 107
influence, 110-114
infodecks, 247
infographics, 145
infrastructure elements, 50
instant messaging, 201, 210, 226, 251
inter-tool dependencies, 256
interactive word clouds, 145
internet browsers, adding color palette exten‐

sions to, 34
inverse Conway maneuver (see Conway’s law)
ISO/IEC 25010, 184

J
Jira, 227, 251
Jitsi Meet, 251
Jobs, Steve, 64
JSTOR, 118
just-in-time architecture, 163-166
just-long-enough architecture, 165

Index | 273

K
keratoconus, 32
key performance indicators (KPIs), 236
keys (see legends)
knowledge graphs, 151
knowledge management principles

abstractions over text, 140-145
perspective-driven documentation, 146-150
products over projects, 135-139

knowledge management systems, 227
knowledge management tools, 259
knowledge, communication of

demonstrating knowledge, 121-122
effective practices, 169-193
people and, 153-166
principles of knowledge management,

135-151
knowledge-sharing sessions, 162-163
KPIs (key performance indicators), 236
Kroki, 194

L
labels

for accessibility, 39-41
as alternative to boxes, 21
choosing between legends and, 38
for diagrams, 15
for icons, 56
indicating starting point for diagrams, 47
numbered, 47
standardized positions on relationships, 23

landscape orientation, 67, 69-70, 72
language, 88, 149, 210
language models, bias in, 108
layered architecture, 50, 149, 150
left-to-right flow, 47-50
legal obligations

communicating to remote colleagues, 209
declaring conflict of interest, 120

legends
for accessibility, 37-38
for ArchiMate relationships, 52-53
clarifying relationships in, 51
cropped diagrams including, 70
defining icons in, 56
for UML, 38
limitations of color, 33

legibility, 69
letter identifiers, 48

licenses, 157, 255, 257
lieu/comp time, 201
line jumps, 23
line types, 20

dashed lines, 12, 20, 51
dotted lines, 51

LinkedIn, 122
links (see hyperlinks)
listening, 108, 126
lists, 104, 140-141
logical connections, 129
logical diagrams, flow of information in, 50
logos

data and facts, 128
defined, 115
logical connections, 129
reasoning and argumentation, 129-131

long-term focus, 136
low contrast, 32
Lucidchart, 250
luminance, 32
luminosity, color, 19
lunch-and-learn sessions, 162-163

M
Magidoc, 194
maintainability, 185
Markdown, 158, 160, 192
maternity leave, 207
Mattermost, 251
MediaWiki, 228
meetings

using gestures in audio-only, 105
scheduling

accommodating part-time workers, 205
using booking services for, 209
during high-energy time, 212
showing empathy and compromise

when, 201-202
specifying time frame when, 242

synchronous versus asynchronous, 215-221
memes, 145
memory distortion, 107
mental health, 210
mental models, 64
Mentimeter tool, 245
Mermaid, 190, 193, 194
messaging apps, 226
metadata, 74, 139, 149

274 | Index

metaphors, 126
metastyle, 74
Microsoft 365, 252
Microsoft Azure, 135
Microsoft Bookings, 209
Microsoft Intune, 259
Microsoft OneDrive, 251
Microsoft Power Automate, 211, 229
Microsoft Teams, 161, 201, 202, 211, 251
Microsoft Visio, 67-68
Microsoft Visual Studio Code, 191
Microsoft Viva Engage, 227, 250
Microsoft Whiteboard, 251
Microsoft Word, 160
Microsoft Yammer, 250
migration, data, 257, 258
Minto pyramid principle, 92-95
Minto, Barbara, 92
Miro, 251
misleading composition, 75-81
MkDocs, 193
monitors, 33, 69
MoSCoW prioritization, 248
multimodal communication

acronyms, 90-91
decoding messages, 105-110
encoding messages, 101-105
influence and persuasion, 110-114
rhetoric triangle, 115-131
simple language, 87-89
structure of writing, 92-94
syntax of technical writing, 95-98

Mural, 251

N
narrative

big picture, 43-46
clear relationships, 51-54
illustrating logical connections with, 129
matching flow to expectations, 47-51

native speakers, 88
negative space (see whitespace)
nesting boxes, in diagrams, 22
networking, 117
neurodiversity, 88
neurotypicals, 88
news articles, 118
next steps, at end of online presentations, 246
NIST, 209

nonfunctional requirements, 183
nonnative speakers, 88
nonproprietary applications and file formats,

157
nontext contrast, 143
nonverbal communication (see verbal and non‐

verbal communication)
notations, 159

(see also BPMN; data flow diagrams)
ArchiMate, 52-53
C4, 53
considering accessibility of, 159-161
defined, 54
going against expectations, 64-66
icons, 55-56
mixing behavior and structure, 61-64
UML, 57-60

notes, in diagrams, 26, 27
notifications, 161

controlling, 103, 210
creating culture of expectation with, 161
time zone considerations for, 201

Notion, 228, 250
Nuclino, 228
Nudge (Thaler and Sunstein), 106
numbered labels, 47
numbered lists, 140
Nygard, Michael, 169

O
object-oriented coding, 61
objections, 130-131
Obsidian, 139, 150, 151
ODF (Open Document Format), 159
office hours, 200, 202
OKRs (objectives and key results), 236
onboarding, communication agreement as part

of, 241
one-direction relationships, 51
OneDrive, 251
online databases, 118
online presentations

audience engagement, 244-245
content of, 246
screen shares, 247

online sources, 119
online whiteboards, 161, 228, 249
ONLYOFFICE, 252
opacity, 72

Index | 275

Open Document Format (ODF), 159
open modeling language, 52
open source license, 158
open source tools, 193-194
OpenBoard, 251
Options section, of ADRs, 173
ordered lists, 140
orientation

landscape, 67, 69-70, 72
portrait, 67, 69

orthogonal arrows, 23
out-of-date documentation, 58, 60, 165
out-of-office, 207
Outlook Calendar, 200, 202
overtime, 201
OWASP, 209

P
palettes, accessible color, 34-36
Paradox of Choice, The (Schwartz), 181
paragraphs, precision in, 96
parking lot (car park) method, 218, 221
part-time hours, 205
paternity leave, 207
pathos

defined, 115
speaking from the heart, 125-126
storytelling, 122-123
vivid language and strong imagery, 126-128

patterns
abstractions over text, 140-145
appropriate labels, 39-41
architecture characteristics, 183-187
Architecture decision records, 169-180
asynchronous communication, 223-229
balancing text, 26-29
big picture comes first, 43-46
clear relationships, 51-54
contrasting colors with, 33-34
creating visual balance, 81-84
decoding messages, 105-110
defined, 3
documentation as code, 187-193
encoding messages, 101-105
getting feedback early and often, 153-156
improving energy and productivity, 210-213
including legends, 37-38
influence and persuasion, 110-114
just-in-time architecture, 163-166

knowing your audience, 3-7
matching flow to expectations, 47-51
online presentations, 244-247
perspective-driven documentation, 146-150
products over projects, 135-139
remote-first working approach, 230-237
representational consistency, 11-15
respecting working patterns, 204-210
rhetoric triangle, 115-131
sharing the load, 157-162
simple language, 87-89
strangler fig pattern (Ship of Theseus), 124,

258
structured writing, 92-94
style communicates (metastyle), 74
symmetrical email, 239-243
synchronizing time, 198-203
synchronous meetings, 215-221
syntax of technical writing, 95-98

pauses, 113
PDF (Portable Document Format), 159
pending information, 165
performance metrics report, 142
personableness, in email, 243
personal diversity, 110
personal leave, 207
personification, 127
perspective-driven documentation, 139,

146-150
DRY principle, 147-148
fractal perspectives, 148
implementing perspectives, 149-150

perspectives, defined, 146
persuasion, 110-114, 145
photophobia, 32
phpDocumentor, 194
physical props, 127
plain text format, 158, 192
PlantUML, 190, 194
PNG (Portable Network Graphics), 159
politeness, in email, 243
political bias, declaring, 121
polls, 228, 245
PolyDocs, 249
portability, 184
Portable Document Format (PDF), 159
Portable Network Graphics (PNG), 159
portrait orientation, 67, 69
posture, 103

276 | Index

Power Automate, 229
power gestures, 103
PR (pull request), 156, 157, 191
predictability, 107
predictions (see estimates)
prerecorded audio/video, 227
presentations, online (see online presentations)
presenter mode (picture-in-picture), 245
printed format, 33
priorities, 187
privacy, 184
productivity (see energy and productivity

improvement)
products

prioritizing over projects, 135-139
product mindset, 136
revisiting architecture characteristics of, 185
storing ADRS against, 179

professional association, declaring, 121
professional development, 122
project management tools, 227, 251
projectors, 33, 69
projects

prioritizing products over, 135-139
project mindset, 136

pronouns, using in email, 243
proofreading, of email, 243
proportional relationships, 53
ProQuest, 118
publishing, 188
pull request (PR), 156, 157, 191
pyramid structure, 92-95

Q
Q&A platforms, 227, 250
quality characteristics (see architecture charac‐

teristics)
Question2Answer platform, 250
questions

being present by asking, 108
Q&A platforms, 250
received during online presentations, 244
strategies for response preparation, 112

R
RAID/RAAIDD log, 179
ramps and steps metaphor, 37
ratings

Harvey balls for, 143

icons for, 56
stars for, 142-143

ratio (see viewing ratio)
readme files, 234
reasoning, 129-131
reciprocity, 112
recording meetings, 206
rectangles, 64
red, 32, 64
Redmine, 227, 251
referencing, 150
regulations, 209
relational data, 26
relationships and connections

avoiding spiderweb, 22-23
bidirectional, 51-52
clarity in, 51-54
communication of, 224
labeling of, 51
logical connections, 129
one-direction, 51
with people, 109
personal, 121
spatial, 54
as symbols, 60
types of, 53
unidirectional, 51

religious symbolism, 64
remote communication

adjusting gestures for, 104
asynchronous communication, 223-229
improving energy and productivity, 210-213
online presentations, 244-247
remote-first working approach, 230-237
respecting working patterns, 204-210
symmetrical email, 239-243
synchronizing time, 198-203
synchronous meetings, 215-221
tools for, 248-262

remote presentations (see online presentations)
remote work tools

data proliferation, 252-254
efficiency of, 254-255
governance and stewardship, 255-262
security, 254
selecting, 248-249
types of, 250-252

remote-first working approach
benefits of, 232-234

Index | 277

defined, 230
developing, 234-237
remote-friendly approach versus, 230-232

remote-friendly approach, 230-232
defined, 230
model, 232
remote-first working approach versus,

230-232
repetition

using tables for repetitive information, 141
as technique for influencing and persuad‐

ing, 113
of text in diagrams, 26-28

representational consistency, 11-15
request for change (RFC), 156, 170
requirements traceability matrix, 142
resource management, 165
respect, 102
responses

asynchronous, 223, 229-230
direction of flow, 48-50
email, expectations of, 240
not expecting outside of office hours, 202,

223
of live audience, 245
strategies for preparation of, 105-112

reusability, 137
RFC (request for change), 156, 170
rhetoric triangle, 115-131

ethos, 116-122
logos, 128-131
pathos, 122-128

Richards, Mark, 184
right-to-left flow, 48-49
risks, 155, 166
robotic language, 243
roles

creating and assigning, 162
that can view diagrams, 4

S
SaaS (Software as a Service) tools, 237, 254
SABSA framework, 151
sarcasm, 87, 104
saturation, 36
scalability, 184, 256
scaling, 78-81
scheduling, 198
Schwartz, Barry, 181

scope-creep, 29
scores (see ratings)
screen share, 247
screen size, 31, 245
Scrum board, 166
Seafile file sharing tool, 251
search bubble, 107
security, 185

as architecture characteristic, 185
as criteria for ADRs, 173
frameworks, 121
as policies in application portfolio, 256
of remote tools, 253
as requirement for selecting tools, 248

sensory language, 126
sentences, short, 96
sequence diagrams

boxes in boxes in, 20
flow of information in, 49-50
levels of abstraction in, 10
showing unidirectional relationships, 51-52

sequential relationships, 53
serverless pinball antipattern, 124
Shadow IT, 254, 262
shapes, 32, 64
SharePoint, 139
Ship of Theseus (see strangler fig pattern)
siesta break, 208
Signal, 202
Sim Daltonism, 35
similes, 126
simple language, 87-89
simplicity, 185
sincerity, 125
single points of failure, 162
single responsibility principle, 96

applying to diagrams, 62, 149
applying to paragraphs, 96
defined, 61

16:9 screen ratio, 68, 70
Skype, 251
Slack, 161, 201, 202, 211, 251
Slate, 194
sleep, 213
slides

citing sources in, 118
containing presenter's words, 247
adding disclaimers to, 120
as infodecks, 247

278 | Index

in online presentations, 245, 246
as slideuments, 247
technical review of, 121

SMEs (subject matter experts), 5
social media, 117
social optimist, 102
social pessimist, 102
social tools, 250
software

as abstraction, 7-8
nonproprietary versus proprietary, 158-159

software architecture, 169
(see also ADRs; documentation, as code)
abstractions to communicate, 140
architecture characteristics, 183-187, 248
benefits of tables in, 142
effectiveness of using visual communication

with, 140
getting feedback on, 153-157
just-in-time, 163-165
perspective-driven documentation to com‐

municate, 146
perspectives and views in, 151
using word clouds in, 144

Software as a Service (SaaS) tools, 237, 254
Software Systems Architecture (Rozanski and

Woods), 151
SOLID principles, 61
solid-line boxes, 20
spatial relationships, 54
speaking from the heart, 125-126
split shifts, 202-203
squares, 64
St. Patrick's Day, 206
Stack Overflow, 227, 250
stakeholders, 102

(see also audience)
ADR example used to influence, 175
effective communication in influencing,

110, 114
getting feedback from, 154, 155
using interactive word clouds with, 145
involvement in decision-making, 181-182
perspective-driven documentation for, 146

star ratings, 142-143
static analysis, 191
static site generator, 189
statuses

for ADRs, 172

on instant messaging tools, 201
statutory leave, 207
storing knowledge

by product, 136-139
by project, 136

storytelling, 119, 122-123
illustrating logical connections with, 129
sharing personal stories, 125

strangler fig pattern, 124, 258
strong and precise verbs, 95
strong imagery, 126-128
structural diagrams

boxes in boxes in, 20
flow of information in, 50
mixing behavior into, 61-64
relationship spiderweb antipattern in, 23

structure of writing, 92-94, 129
style

of ADRs, 171
communicates, 74
over substance, 75

subject line, of email, 240, 241
subject matter experts (SMEs), 5
sublists, 141
success stories, 123
sunk cost fallacy, 153-154
superseded status, of ADRs, 172, 182
surveys, 228
Sutherland, Jeff, 166
Swagger, 193
sweeping motion gesture, 104
symbols, 34

cultural sensitivity with, 64
indicating starting point for diagrams, 47

symmetry, 82-84
synchronization of data, 253
synchronous communication

asynchronous communication versus,
215-217

energy needed for, 212
for documentation, 161

synchronous meetings
improving organization and structure of

meetings, 218-221
interruptions caused by, 217-218
reducing, 219-220
tools for, 250
Zoom fatigue, 222

syntax of technical writing

Index | 279

audience empathy, 97-98
consistent vocabulary, 97
precise paragraphs, 96
short sentences, 96
strong verbs, 95

system 1 and system 2, 105, 216
system quality attributes (see architecture char‐

acteristics)

T
tables, 141-142
tags, 138, 149
Taiga, 227, 251
TDD (test-driven development), 208
team topologies, 124
Teams, 161, 201, 202, 211
technical documents, 98
technical jargon, 121
technical reference model (TRM), 259
technological conventions, 65
technology icons, 55
technology radar, 228, 259, 260-261
TED Talks, 123
Telegram, 202
templates, 148, 150, 162
testing documentation, 190
testing matrix, 142
text

balanced use of, 26-29, 39-41
legibility of, 69
prioritizing abstractions over, 140-145
reducing opacity of, 72

The Open Group Architecture Framework
(TOGAF), 151, 259

thinking noises, 111
Thinking, Fast and Slow (Kahneman), 105, 106
Thomas, Dave, 147
Thoughtworks technology radar, 170, 259,

260-261
Tiddly‐Wiki, 250
time considerations, 198-203

accessibility and, 31
empathy and compromise, 201-202
split shifts, 202-203
time zones, 198-201
time-off-in-lieu, 201

titles
ADR, 171

TOGAF (The Open Group Architecture
Framework), 151, 259

tools (see governance of tools)
top-left flow, 47
top-to-bottom flow, 47-50
trade-off analysis, 129
traffic lights, 143
training, 258
transition words and phrases, 129
translation software, 88
transparency, 119-120
triangles, 64
TRM (technical reference model), 259
trust, 119
trustworthy sources of information, 118-119
24-hour clock, 198

U
ubiquitous language, 89, 91
UML (Unified Modeling Language), 4

class diagram, 4
component diagram, 58
deciding whether to use, 57-60, 159
defined, 55
legend for, 38
using legends with, 38
open source tools for, 194
sequence diagram, 60
simplifying, 60
for UML’s sake antipattern, 57-61

understanding your customer (knowing your
audience), 3-7

unidirectional communication, 224-226
unidirectional relationships, 51
Unified Modeling Language (see UML)
unnatural language, in email, 243
unsubscribing from emails, 211
updates

cloud provider icons, 55
UML diagrams, 57

urgent email, 240
use case scenarios, 123
user accounts, 252
user manuals, 234
UTC (coordinated universal time), 198, 199

V
vendor lock-in, 158
verbal and nonverbal communication

280 | Index

decoding messages, 105-110
encoding messages, 101-105
influence and persuasion, 110-114

verbs, strong and precise, 95, 127
version control, 188, 189, 192
versions of data, 253
video, 145, 227
video conferencing (see synchronous meetings)
viewing ratios, 68
visibility, 137
Visio, 67-68
visual abstractions, 142-143
visual balance, creating, 81-84
visual communication, 17

avoiding color overload, 17-19
avoiding relationship spiderweb, 22-23
balanced use of text, 26-29
big picture, 43-46
clear relationships, 51-54
conveying meaning through icons, 55-56
creating visual balance, 81-84
deciding whether to use UML, 57-60
decluttering boxes, 19-22
going against expectations, 64-66
illegible diagrams, 67-73
knowing your audience, 3-7
labels, 39-41
legends, 37-38
matching flow to expectations, 47-51
metastyle, 74
misleading composition, 75-81
mixing behavior and structure, 61
mixing levels of abstraction, 7-10
prioritizing abstractions over text, 140-145
relying on color to communicate, 31-36
representational consistency, 11-15
using strong imagery, 127

Visual Studio Code, 191
Viva Engage, 227, 250
vivid language, 126
Viz Palette, 35
vocabulary

complex, problems with, 87-88
consistency in, 97
nonnative, 88
options to simplify, 89
variability of, 88

vulnerability, 125

W
walled-garden messaging options, 226
waterfall environment, 163-165
Wayback Machine, 119
WCAG (Web Content Accessibility Guide‐

lines), 33, 143
web pages

using different color palettes on, 33
preserving versions of, 119
showing and hiding legends on, 38

WebAIM website, 33
WeKan, 227
well-architected framework, 135
“whack-a-mole” decisions, 170
Whaller, 250
what you see is what you get (WYSIWYG), 192
white papers, 140
whiteboards, digital, 161, 228, 249
whitepapers, 118
whitespace, 19

balancing labels with, 39
bidirectional relationships reducing, 51
visual processing of text and, 87

WhoCanUse website, 33
Wikipedia, 184
wikis, 139, 147, 227, 250, 259
Word, 160
word clouds, 143-144, 245
word families, 88
work-life balance, 208
working capacity, 209-210
working patterns, 204-210

accounting for geography and culture, 208
communicating availability, 205
defending part-time hours, 205
planning for holidays, 206-207
recognizing real working capacity, 209-210

working time directive, 208
working-hour boundaries, 198, 200, 202
World Clock Meeting Planner, 200
World Time Buddy, 200
written communication

acronyms, 90-91
citing sources in, 119
simple language, 87-89
structure of writing, 92-94
syntax of technical writing, 95-98
technical review of, 121

WYSIWYG (what you see is what you get), 192

Index | 281

X
XWiki, 228, 250

Y
YAGNI (you aren’t gonna need it), 163, 249
YAML (YAML Ain’t Markup Language), 159

Z
Zachman framework, 151
Zapier, 211, 229
Zoom, 222, 251

282 | Index

About the Author
Jacqui Read is an internationally recognized solution and enterprise architect with
hands-on experience and expertise coding and architecting software systems. She
specializes in assisting businesses to create and enhance architecture practices, con‐
struct evolutionary architectures, and untangle and extract value from data and
knowledge. Alongside consulting, Jacqui teaches public and private workshops and
speaks at international conferences on topics such as architecture practices, technical
communication, and architecture decisions. Her professional interests include collab‐
orative modeling, knowledge management, domain driven design, sociotechnical
architecture, and modernizing enterprise architecture practices. Outside of work she
enjoys gardening and attempting to strum her ukulele and sing at the same time. Her
website is jacquiread.com.

Colophon
The animal on the cover of Communication Patterns is a cinnamon-headed green
pigeon (Treron fulvicollis). This rare bird can be found in subtropical and tropical
mangrove forests, swamps, and moist scrublands in Indonesia, Malaysia, Myanmar,
Singapore, and Thailand. You might also spot them in rural gardens.

The male cinnamon-headed green pigeon gives the bird its name, sporting green plu‐
mage with a pinkish-orange to chestnut colored head and breast. The females have
green heads and breasts. Both sexes have reddish and white bills and white-fringed
wing feathers.

The population of cinnamon-headed green pigeons is Vulnerable at the time of this
writing, according to the IUCN; their population is decreasing. Many of the animals
on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Shaw’s General Zoology. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

https://jacquiread.com

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://www.oreilly.com/

	Copyright
	Table of Contents
	Preface
	Why I Wrote This Book
	Who Should Read This Book
	How to Read This Book
	Images and Color
	Software Tools
	Polyglot Media
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Visual Communication
	Chapter 1. Communication Essentials
	Know Your Audience
	Mixing Levels of Abstraction
	Representational Consistency
	Summary

	Chapter 2. Clarify the Clutter
	Color Overload
	Boxes in Boxes in Boxes
	Relationship Spiderweb
	Balance Text
	Summary

	Chapter 3. Accessibility
	Relying on Color to Communicate
	Include a Legend
	Appropriate Labels
	Summary

	Chapter 4. Narrative
	The Big Picture Comes First
	Match Diagram Flow to Expectations
	Clear Relationships
	Summary

	Chapter 5. Notation
	Using Icons to Convey Meaning
	Using UML for UML’s Sake
	Mixing Behavior and Structure
	Going Against Expectations
	Summary

	Chapter 6. Composition
	Illegible Diagrams
	Style Communicates
	Misleading Composition
	Create a Visual Balance
	Summary

	Part II. Multimodal Communication
	Chapter 7. Written Communication
	Simple Language
	Acronym Hell
	Structured Writing
	Syntax of Technical Writing
	Strong Verbs
	Short Sentences
	Precise Paragraphs
	Consistent Vocabulary
	Audience Empathy

	Summary

	Chapter 8. Verbal and Nonverbal Communication
	Encoding Messages
	Using the Acceptance Prophecy
	Giving Your Full Attention
	Using Body Language and Gestures

	Decoding Messages
	Battling Bias
	Being Present
	Awareness of Cultural Differences

	Influence and Persuasion
	Summary

	Chapter 9. The Rhetoric Triangle
	Ethos
	Establish Your Credentials
	Use Trustworthy Sources
	Be Transparent
	Demonstrate Your Knowledge

	Pathos
	Tell a Story
	Speak from the Heart
	Use Vivid Language and Strong Imagery

	Logos
	Use Data and Facts
	Make Logical Connections
	Use Reasoning and Argumentation

	Summary

	Part III. Communicating Knowledge
	Chapter 10. Knowledge Management Principles
	Products over Projects
	Project Mindset
	Product Mindset

	Abstractions over Text
	Lists
	Tables
	Visual Abstractions
	Word Clouds
	Charts, Graphs, and Diagrams
	Other Abstractions

	Perspective-Driven Documentation
	DRY Perspectives
	Fractal Perspectives
	Implementing Perspectives

	Summary

	Chapter 11. Knowledge and People
	Get Feedback Early and Often
	Share the Load
	Nonproprietary Formats
	Accessibility
	Collaboration
	Roles and Responsibilities
	Further Techniques

	Just-in-Time Architecture
	Summary

	Chapter 12. Effective Practices
	ADRs
	ADR Structure
	ADR Content
	ADR Storage
	ADR Culture

	Architecture Characteristics
	All Documentation as Code
	Technical Documentation
	Automatically Generated Documentation
	Other Documentation

	Summary

	Part IV. Communicating Remotely
	Chapter 13. Remote Time
	Synchronize Time
	Time Zone
	Empathy and Compromise
	Split Shifts

	Respect Working Patterns
	Communicate Availability
	Defend Part-Time Hours
	Plan for Holidays
	Account for Geography and Culture
	Recognize Real Working Capacity

	Improve Energy and Productivity
	Control Notifications
	Automate Tasks
	Work with Others’ Rhythms
	Schedule for Energy

	Summary

	Chapter 14. Remote Principles
	Meetings to Sync
	Synchronous Versus Asynchronous
	Enhance Meetings

	Async to Think
	Async Advantages
	Async Obstacles
	Direction Matters
	Async Methods
	Enhance Async

	Remote-First Working
	Remote-First Versus Remote-Friendly
	Remote-First Benefits
	Evolving to Remote-First

	Summary

	Chapter 15. Remote Channels
	Symmetrical Email
	Email Reasons
	Email Expectations
	Email Clarity
	Email Tips

	Online Presentations
	Audience Engagement
	Presentation Content
	Screen Shares

	Remote Tools and Governance
	Selection Techniques
	Remote Tools
	Data Proliferation
	Security
	Tool Efficiency
	Tool Governance

	Summary

	Epilogue
	Appendix A. ADR Templates
	ADR Structure
	Identifier and Title: A Statement of the Decision Made

	ADR Options

	Index
	About the Author
	Colophon

