
Tod Golding

Building
Multi-Tenant SaaS
 Architectures
Principles, Practices, and
Patterns Using AWS

SOF T WARE ENGINEERING

Building Multi-Tenant
SaaS Architectures

linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Software as a service (SaaS) is on the path to becoming
the de facto model for building, delivering, and operating
software solutions. Adopting a multi-tenant SaaS model
requires builders to take on a broad range of new architecture,
implementation, and operational challenges. How data
is partitioned, how resources are isolated, how tenants are
authenticated, how microservices are built—these are just
a few of the many areas that need to be on your radar when
you’re designing and creating SaaS offerings.

In this book, Tod Golding, a global SaaS technical lead
at AWS, provides an end-to-end view of the SaaS architectural
landscape, outlining the practical techniques, strategies,
and patterns that every architect must navigate as part
of building a SaaS environment.

• Describe, classify, and characterize core
SaaS patterns and strategies

• Identify the key building blocks, trade-offs,
and considerations that will shape the design
and implementation of your multi-tenant solution

• Examine essential multi-tenant architecture strategies,
including tenant isolation, noisy neighbor, data partitioning,
onboarding, identity, and multi-tenant DevOps

• Explore how multi-tenancy influences the design
and implementation of microservices

• Learn how multi-tenancy shapes the operational
footprint of your SaaS environment

Tod Golding is a cloud applications
architect who has spent the last
10 years immersed in cloud-optimized
application design and architecture.
As a global SaaS lead at AWS, he’s
been a SaaS technology thought
leader, publishing and providing
SaaS best practices guidance through
speaking, writing, and working
directly with a wide range of SaaS
companies. Tod has over 20 years
of experience as a technical leader,
architect, and developer.

9 7 8 1 0 9 8 1 4 0 6 4 9

5 7 9 9 9

US $79.99 CAN $99.99
ISBN: 978-1-098-14064-9

“Whether you’re new
to SaaS or a seasoned
pro, Tod’s real-world
insights and hard-won
best practices will help
you architect robust
and scalable SaaS
solutions. This book
is an indispensable
guidebook for anyone
looking to successfully
deliver their SaaS
software on AWS.”

—Toby Buckley
Sr. Solutions Architect, AWS

Praise for Building Multi-Tenant SaaS Architectures

For anyone looking to build, sustain, and thrive in the software-as-a-service business, the
guidance in this book is invaluable. Not only is it grounded in real-world solutions for

common challenges, but the patterns and practices will stand the test of time.
—Adrian De Luca, Director of Cloud Acceleration, AWS

A complete reference of SaaS concepts that goes deep detailing real-world architecture
patterns that address security, tenant isolation, scalability, and more. A must-have

companion for anyone building multi-tenant SaaS solutions.
—Tony Pallas, Chief Commercial and Technology Officer,

ShyTouch Technology

This book focuses brilliantly on the crucial domain concepts and levers that you need to
master to put together a successful SaaS, or PaaS, product.

—Russ Miles, Platform Engineer, Clear.Bank

Tod’s many years of real-world experience working with a wide variety of customers really
shines through in this book. It will be a great resource for those who want to build

scalable and secure SaaS solutions, particularly on AWS.
—Anubhav Sharma, Principal Solutions Architect, AWS

With his conversational style and practical examples, Tod Golding demystifies the
complex world of building SaaS applications on AWS. He breaks down complicated

technical concepts into easy-to-grasp explanations that builders of all levels can
understand. Whether you’re new to SaaS or a seasoned pro, Tod’s real-world insights and

hard-won best practices will help you architect robust and scalable SaaS solutions.
This book is an indispensable guidebook for anyone looking

to successfully deliver their SaaS software on AWS.
—Toby Buckley, Sr. Solutions Architect, AWS

Tod is the mastermind behind the multi-tenant architecture we’ve implemented at Stedi.
He is years ahead of the market, and we have realized tremendous advantages

by adopting his framework early. This book is a goldmine.
—Zack Kanter, Founder and CEO, Stedi

Tod Golding

Building Multi-Tenant
SaaS Architectures

Principles, Practices, and Patterns Using AWS

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14064-9

[LSI]

Building Multi-Tenant SaaS Architectures
by Tod Golding

Copyright © 2024 Tod Golding. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Louise Corrigan
Development Editor: Melissa Potter
Production Editor: Gregory Hyman
Copyeditor: Charles Roumeliotis
Proofreader: Tove Innis

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

May 2024: First Edition

Revision History for the First Edition
2024-04-24: First Release
2024-06-07: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098140649 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Multi-Tenant SaaS Architec‐
tures, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098140649

Table of Contents

Preface. xiii

1. The SaaS Mindset. 1
Where We Started 2
The Move to a Unified Model 5
Redefining Multi-Tenancy 9

Where Are the Boundaries of SaaS? 13
The Managed Service Provider Model 14

At Its Core, SaaS Is a Business Model 16
Building a Service—Not a Product 19
Defining SaaS 20
Conclusion 21

2. Multi-Tenant Architecture Fundamentals. 23
Adding Tenancy to Your Architecture 24
The Two Halves of Every SaaS Architecture 27
Inside the Control Plane 29

Onboarding 29
Identity 30
Metrics 32
Billing 32
Tenant Management 33

Inside the Application Plane 33
Tenant Context 34
Tenant Isolation 35
Data Partitioning 36
Tenant Routing 37
Multi-Tenant Application Deployment 39

iii

The Gray Area 40
Tiering 40
Tenant, Tenant Admin, and System Admin Users 41
Tenant Provisioning 42

Integrating the Control and Application Planes 44
Picking Technologies for Your Planes 45
Avoiding the Absolutes 45
Conclusion 46

3. Multi-Tenant Deployment Models. 47
What’s a Deployment Model? 48
Picking a Deployment Model 50
Introducing the Silo and Pool Models 51
Full Stack Silo Deployment 53

Where Full Stack Silo Fits 54
Full Stack Silo Considerations 56
Full Stack Silo in Action 59
Remaining Aligned on a Full Stack Silo Mindset 66

The Full Stack Pool Model 67
Full Stack Pool Considerations 69
A Sample Architecture 72

A Hybrid Full Stack Deployment Model 74
The Mixed Mode Deployment Model 75
The Pod Deployment Model 77
Conclusion 80

4. Onboarding and Identity. 81
Creating a Baseline Environment 82

Creating Your Baseline Environment 83
Creating and Managing System Admin Identities 86
Triggering Onboarding from the Admin Console 86
Control Plane Provisioning Options 87

The Onboarding Experience 88
Onboarding Is Part of Your Service 88
Self-Service Versus Internal Onboarding 89
The Fundamental Parts of Onboarding 90
Tracking and Surfacing Onboarding States 93
Tier-Based Onboarding 94
Tracking Onboarded Resources 97
Handling Onboarding Failures 98
Testing Your Onboarding Experience 99

Creating a SaaS Identity 100

iv | Table of Contents

Attaching a Tenant Identity 102
Populating Custom Claims During Onboarding 105
Using Custom Claims Judiciously 105
No Centralized Services for Resolving Tenant Context 106
Federated SaaS Identity 107
Tenant Grouping/Mapping Constructs 109
Sharing User IDs Across Tenants 111
Tenant Authentication Is Not Tenant Isolation 111

Conclusion 112

5. Tenant Management. 115
Tenant Management Fundamentals 116

Building a Tenant Management Service 118
Generating a Tenant Identifier 119
Storing Infrastructure Configuration 120

Managing Tenant Configuration 121
Managing Tenant Lifecycle 124

Activating and Deactivating a Tenant 125
Decommissioning a Tenant 127
Changing Tenant Tiers 130

Conclusion 134

6. Tenant Authentication and Routing. 137
Entering the Front Door 138

Access via a Tenant Domain 138
Access via a Single Domain 143
The Man in the Middle Challenge 145

The Multi-Tenant Authentication Flow 146
A Sample Authentication Flow 147
Federated Authentication 148
No One-Size-Fits-All Authentication 148

Routing Authenticated Tenants 149
Routing with Different Technology Stacks 150

Serverless Tenant Routing 151
Container Tenant Routing 153

Conclusion 155

7. Building Multi-Tenant Services. 157
Designing Multi-Tenant Services 158

Services in Classic Software Environments 158
Services in Pooled Multi-Tenant Environments 159
Extending Existing Best Practices 161

Table of Contents | v

Addressing Noisy Neighbor 162
Identifying Siloed Services 164
The Influence of Compute Technologies 167
The Influence of Storage Considerations 168
Using Metrics to Analyze Your Design 169
One Theme, Many Lenses 170

Inside Multi-Tenant Services 170
Extracting Tenant Context 172
Logging and Metrics with Tenant Context 173
Accessing Data with Tenant Context 176
Supporting Tenant Isolation 178

Hiding Away and Centralizing Multi-Tenant Details 181
Interception Tools and Strategies 183

Aspects 184
Sidecars 185
Middleware 185
AWS Lambda Layers/Extensions 186

Conclusion 186

8. Data Partitioning. 189
Data Partitioning Fundamentals 190

Workloads, SLAs, and Experience 192
Blast Radius 193
The Influence of Isolation 193
Management and Operations 194
The Right Tool for the Job 195
Defaulting to a Pooled Model 195
Supporting Multiple Environments 196

The Rightsizing Challenge 196
Throughput and Throttling 198
Serverless Storage 198

Relational Database Partitioning 199
Pooled Relational Data Partitioning 200
Siloed Relational Data Partitioning 201

NoSQL Data Partitioning 202
Pooled NoSQL Data Partitioning 203
Siloed NoSQL Data Partitioning 204
NoSQL Tuning Options 205

Object Data Partitioning 206
Pooled Object Data Partitioning 206
Siloed Object Data Partitioning 207
Database Managed Access 208

vi | Table of Contents

OpenSearch Data Partitioning 210
Pooled OpenSearch Data Partitioning 211
Siloed OpenSearch Data Partitioning 212
A Mixed Mode Partitioning Model 214

Sharding Tenant Data 215
Data Lifecycle Considerations 216
Multi-Tenant Data Security 217
Conclusion 217

9. Tenant Isolation. 219
Core Concepts 220

Categorizing Isolation Models 223
Application-Enforced Isolation 225
RBAC, Authorization, and Isolation 225
Application Isolation Versus Infrastructure Isolation 226

The Layers of the Isolation Model 227
Deployment-Time Versus Runtime Isolation 228

Isolation Through Interception 232
Scaling Considerations 234

Real-World Examples 235
Full Stack Isolation 235
Resource-Level Isolation 237
Item-Level Isolation 239

Managing Isolation Policies 240
Conclusion 242

10. EKS (Kubernetes) SaaS: Architecture Patterns and Strategies. 245
The EKS–SaaS Fit 246
Deployment Patterns 248

Pooled Deployment 250
Siloed Deployments 251
Mixing Pooled and Siloed Deployments 254
The Control Plane 255

Routing Considerations 256
Onboarding and Deployment Automation 259

Configuring Onboarding with Helm 260
Automating with Argo Workflows and Flux 262
Tenant-Aware Service Deployments 264

Tenant Isolation 265
Node Type Selection 271
Mixing Serverless Compute with EKS 274
Conclusion 275

Table of Contents | vii

11. Serverless SaaS: Architecture Patterns and Strategies. 277
The SaaS and Serverless Fit 278
Deployment Models 282

Pooled and Siloed Deployments 283
Mixed Mode Deployments 284
More Deployment Considerations 285
Control Plane Deployment 286
Operations Implications 288

Routing Strategies 288
Onboarding and Deployment Automation 291
Tenant Isolation 296

Pooled Isolation with Dynamic Injection 296
Deployment-Time Isolation 298
Simultaneously Supporting Silo and Pool Isolation 299
Route-Based Isolation 301

Concurrency and Noisy Neighbor 302
Beyond Serverless Compute 304
Conclusion 305

12. Tenant-Aware Operations. 307
The SaaS Operations Mindset 308
Multi-Tenant Operational Metrics 310

Tenant Activity Metrics 311
Agility Metrics 313
Consumption Metrics 315
Cost-per-Tenant Metrics 318
Business Health Metrics 321
Composite Metrics 322
Baseline Metrics 322
Metrics Instrumentation and Aggregation 323

Building a Tenant-Aware Operations Console 324
Combining Experience and Technical Metrics 328
Tenant-Aware Logs 329
Creating Proactive Strategies 329
Persona-Specific Dashboards 329

Multi-Tenant Deployment Automation 330
Scoping Deployments 332
Targeted Releases 332

Conclusion 334

viii | Table of Contents

13. SaaS Migration Strategies. 337
The Migration Balancing Act 338

Timing Considerations 339
What Kind of Fish Are You? 342
Thinking Beyond Technology Transformation 343

Migration Patterns 344
The Foundation 344
Silo Lift-and-Shift 346
Layered Migration 348
Service-by-Service Migration 351
Comparing Patterns 356
A Phased Approach 357

Where You Start Matters 358
Conclusion 361

14. Tiering Strategies. 363
Tiering Patterns 364

Consumption-Focused Tiering 365
Value-Focused Tiering 367
Deployment-Focused Tiering 368
Free Tiers 370
Composite Tiering Strategies 370
Billing and Tiering 371
Tiering and Product-Led Growth 372

Implementing Tiering 372
API Tiering 373
Compute Tiering 375
Storage Tiering 377
Deployment Models and Tiering 380
Throttling and Tenant Experience 381
Tier Management 382

Operations and Tiering 382
Conclusion 383

15. SaaS Anywhere. 385
The Fundamental Concepts 386

Ownership 387
Limiting Drift 389
Multiple Flavors of Remote Environments 390
Regional Deployments Versus Remote Resources 391

Table of Contents | ix

Architecture Patterns 391
Remote Data 393
Remote Application Services 394
Remote Application Plane 396
Staying in the Same Cloud 397
Integration Strategies 397

Operations Impacts and Considerations 398
Provisioning and Onboarding 398
Access to Remote Resources 399
Scale and Availability 400
Operational Insights 400
Deploying Updates 400

Conclusion 401

16. GenAI and Multi-Tenancy. 403
Core Concepts 404

The Influence of Multi-Tenancy 406
Creating Custom Tenant AI Experiences 409
A Broad Range of Possibilities 410
SaaS and AI/ML 411

Introducing Tenant Refinements 412
Supporting Tenant-Level Refinement with RAG 412
Supporting Tenant Refinement with Fine-Tuning 416
Combining RAG and Fine-Tuning 420

Applying General Multi-Tenant Principles 421
Onboarding 421
Noisy Neighbor 422
Tenant Isolation 423

GenAI Pricing and Tiering Considerations 424
Developing a Pricing Model 424
Creating Tiered Tenant Experiences 427

Conclusion 428

17. Guiding Principles. 431
Vision, Strategy, and Structure 432

Build a Business Model and Strategy 432
A Clear Focus on Efficiency 433
Avoiding the Tech-First Trap 434
Thinking Beyond Cost Savings 435
Be All-In with SaaS 435
Adopt a Service-Centric Mindset 436
Think Beyond Existing Tenant Personas 437

x | Table of Contents

Core Technical Considerations 438
No One-Size-Fits-All Model 438
Protect the Multi-Tenant Principles 439
Build Your Multi-Tenant Foundation on Day One 440
Avoid One-Off Customization 441
Measure Your Multi-Tenant Architecture 442
Streamline the Developer Experience 442

Operations Mindset 443
Thinking Beyond System Health 443
Introducing Proactive Constructs 445
Validating Your Multi-Tenant Strategies 445
You’re Part of the Team 447

Conclusion 447

Index. 449

Table of Contents | xi

Preface

When I first started digging into the software-as-a-service (SaaS) domain, I expected
to find plenty of existing best practices guidance. After all, SaaS certainly wasn’t a new
concept. There were multiple examples of successful SaaS companies and a general
sentiment that SaaS was establishing itself as the preferred mode of delivery for many
companies. To me, this meant I’d mostly be absorbing and applying an existing set of
patterns and strategies. Surprisingly, it didn’t go that way.

The more I wandered into customers’ solutions and the more I scanned the industry
for guidance, the more I began to realize just how little clarity there was around what
it meant to design, build, and operate SaaS environments. I think part of this was the
byproduct of the natural ambiguity that comes with attaching a label to any technol‐
ogy. The lack of absolutes has created lots of room for competing definitions and
opinions about what SaaS is meant to look like. This has opened the door for compa‐
nies with fundamentally different implementations and approaches to brand them‐
selves as SaaS. In fact, I continue to see a number of companies setting off on their
journey to SaaS with wildly different, misaligned views about what it means for them
to adopt a SaaS delivery model.

There’s nothing inherently wrong with this. It’s fine to have different ideas about what
it means to be SaaS. This, however, becomes a bigger problem when you need to
work with customers that are looking to you as the SaaS expert. As the expert, you
can’t just tell customers to build whatever they want. Vagueness doesn’t work for
teams that are relying on you to point them at proven best practices strategies and
patterns. To do my job, I really needed to be able to enter our discussion with a clear
point of view around what it means to build a best practices SaaS architecture and
business. I needed to be able to bring more definition to the SaaS landscape in a way
that would help teams understand the trade-offs, architecture patterns, and opera‐
tional considerations that would directly shape their multi-tenant architecture. Get‐
ting there meant I would need to create a clear taxonomy of SaaS principles and
strategies that could span a range of domains, workloads, customer profiles, and so
on. In many respects, this was also about intentionally moving away from wide-open

xiii

notions of what it meant to be a SaaS solution, defining a more specific set of guard‐
rails that could help organizations plot their path forward.

It was this fundamental need that set me off on a multiyear path to better define the
SaaS architecture landscape. What started with a few blog posts was followed by a
stream of whitepapers, webinars, podcasts, training videos, and conference presenta‐
tions. Along the way, I noticed that the concepts and principles that I was advocating
were grabbing hold in more settings and being applied more widely. This had me
thinking that it may be time to write a book that could assemble all of the key ele‐
ments of this guidance into one end-to-end experience.

With this book, I’m hoping I can bring more definition to the SaaS discussion, estab‐
lishing a framework for how to think about SaaS and how to connect these concepts
to real-world constructs. The goal is to be sure we have alignment on the founda‐
tional principles and then illustrate how those principles are realized across different
use cases and technology stacks. By connecting these concepts to specific technolo‐
gies (Kubernetes, serverless, and so on), you’ll be able to see how the nuances of indi‐
vidual technologies can have a significant influence on the overall footprint of your
multi-tenant architecture.

Along the way, I’ll create a clear taxonomy of the core elements of any SaaS environ‐
ment, defining a vocabulary for SaaS that allows us to have a more universal
approach to how we categorize and describe the moving parts of a SaaS architecture.
I’ll look at the full range of SaaS-specific architecture mechanisms, including tenant
isolation, onboarding, tiering, identity, metrics, billing, and data partitioning. For
each of these areas, we’ll look at examples of how they might be applied in different
settings.

The book would also be incomplete without exploring the operational elements of
SaaS. As you’ll discover, the architecture of SaaS environments is directly shaped by
core operational business goals (agility, innovation, cost efficiency). We’ll look at this
strong correlation throughout the book, outlining the operational considerations that
will influence the footprint of your SaaS environment.

Overall, I see this book representing a good starting point for the SaaS architecture
discussion. It sets out to create a clearer view of how we define what it means to be
SaaS, highlighting key principles, constructs, and strategies that are core to shaping
how you’ll approach building a best practices SaaS architecture.

An Evolving Landscape
The early multi-tenant solutions I worked on had a very simple notion of what it
meant to be SaaS. These environments typically employed a model where customers
shared one compute cluster and stored each customer’s data in a separate database. I

xiv | Preface

suspect there are still plenty of systems that are using this model today—especially in
environments where teams are hosting and managing their own SaaS infrastructure.

Now, when the cloud came along, it brought an all-new dimension of possibilities to
the SaaS picture. The managed services, dynamic scaling, and pay-as-you-go nature
of the cloud equipped SaaS teams with tools and mechanisms that aligned naturally
with their needs. Organizations could piggyback on all the goodness of the cloud to
enrich the cost, operational, and agility profile of their SaaS environments. In some
cases, the appeal of the cloud was so compelling that some companies equated being
in the cloud with being SaaS (which it’s not).

You can imagine how the emergence of the cloud opened up an entirely new realm
for SaaS architects. It provided architects with a much bigger set of tools, services,
and operational mechanisms that could streamline their development of their multi-
tenant environments. The cloud also allowed SaaS teams to push even more opera‐
tional complexity to the cloud, reducing the friction and overhead that came with
supporting and operating a SaaS business. It also provided native mechanisms that
promoted scale, high availability, and cost/operational efficiency.

This natural fit between SaaS and the cloud contributed significantly to the broader
overall appeal and rapid adoption of the SaaS delivery model. New SaaS companies
have been able to leverage the strengths of the cloud to accelerate the development of
SaaS offerings, enabling them to disrupt existing domains and market segments.
Cloud-based SaaS businesses could move faster, achieve better margins, capture new
markets, and innovate at a much faster pace. This, as you can imagine, motivated
existing software companies to accelerate their path to SaaS, some of whom saw mov‐
ing to SaaS as fundamental to their survival. It also directly shaped the behavior of
software customers who began to expect and embrace the low-friction, value-focused
nature of the SaaS model.

All of this activity has created an avalanche of SaaS adoption. It also created a signifi‐
cant need for additional insights and guidance around how these cloud constructs
could be applied in a multi-tenant architecture. The convergence of these factors—
the need for much broader and deeper architecture guidance, the general SaaS adop‐
tion momentum, and the influence of the cloud—drove demand for greater clarity
around how SaaS solutions are designed, built, and operated.

So, what’s this mean for this book? The main point is that the domain of SaaS best
practices continues to be a moving target. The rapid evolution of SaaS companies and
the emergence of new technologies continue to introduce new strategies, mecha‐
nisms, and constructs that may influence future guidance. It’s fair to assume that SaaS
best practices and strategies will continue to morph based on the shifting technology
landscape.

Preface | xv

Who’s This Book For?
This book is targeted at builder, architect, and operations teams who are creating,
migrating, or optimizing SaaS solutions. You might be brand new to SaaS and looking
for the foundational concepts that can get you started with SaaS, or you might already
be immersed in SaaS and are looking at how you might want to apply the principles
outlined here to enhance an existing solution. You’ll notice that I’ve also included
operations in this list. While significant parts of this book will be more focused on the
builders and architects, there is a clear need for operations teams to be equally
immersed in shaping the trade-offs and strategies that will be used to define the foot‐
print of your as-a-service experience. There’s also a corresponding need for builders
and architects to be more immersed in the operations experience.

I intentionally start by establishing a clear set of foundational concepts that span the
entire book. Even if you have experience with SaaS, I would strongly encourage you
to invest in starting with these foundational concepts. The ideas that are established
in the early stages of the book challenge some of the classic notions of what it means
to be SaaS, introducing terminology and mindsets that influence every aspect of how
you design and build a SaaS environment. The examples that show up later in this
book illustrate how these design choices and patterns are realized and applied. Hav‐
ing this foundation in place and having good alignment around these core principles
will directly influence how you approach the decomposition of microservices, the
deployment model of your solution, the identity model you adopt, and so on. My
point is that, as you move more into the details of implementation, you’ll see a strong
connection between the core principles and the underlying implementation strategies
that you might adopt. Being grounded in a common set of guiding principles will
allow you and your teams to apply a common set of values throughout the design,
development, and operation of your SaaS environment.

There is also a level at which this SaaS content will have value for SaaS leaders and
stakeholders. While they may be less interested in the technical details, they are likely
to lean on the foundational elements of the book to refine and crystalize their SaaS
vision. There are cultural, metric, and team dynamic considerations that come with
adopting SaaS, and the success of your organization’s SaaS strategy will rely heavily on
having leaders that are rooted in a common set of values. This is often one of the
most overlooked aspects of building a best-of-breed SaaS business. For the same rea‐
sons, you can imagine how product owners and others connected to the SaaS vision
will extract value out of having a firm grasp of these fundamental SaaS principles.

xvi | Preface

A Foundation—Not a Bible
The principles that I will be covering in this book are the byproduct of my experien‐
ces working with a large number of SaaS providers, spanning a number of domains,
target experiences, industries, and so on. This book represents the themes, patterns,
and guidance that emerged from those projects. I’ve also been fortunate to be sur‐
rounded by teams and people that have helped mature this vision.

What’s important to note, though, is that this book is not meant to serve as the de
facto bible of all things SaaS. The strategies and patterns for building SaaS architec‐
tures covered here were created as a starting point to bring more clarity and defini‐
tion to the universe of multitenant design and architecture. In many respects, I’ve
seen myself as filling a void, finding a way to better describe and characterize the
nature of SaaS solutions, knowing that alternate strategies may exist or might emerge
in the future.

My hope is that this will bring more visibility to these concepts, drawing more build‐
ers and architects into a broader discussion that better align others around these
principles.

Much of my experience in the SaaS domain has come through my
direct work and experience with the AWS stack of services and
tools. This means that, as we get more into the specifics, I’ll natu‐
rally gravitate to AWS tools and strategies. However, the majority of
the principles and strategies are not unique to the AWS stack. In
fact, they should map well to most environments. I should also
note that the strategies and principles I’ll be covering represent my
own perspectives, opinions, and views. Much of what we’ll be
exploring is certainly influenced by the knowledge and practices
that I’ve been developing during my time at AWS. However, what
finally landed in this book should not be viewed as AWS-endorsed
guidance.

What’s Not in This Book
SaaS is a broad topic that has lots of threads. As you look at the table of contents for
this book, you’ll see that I cover a significant span of the SaaS universe, exploring a
pretty wide spectrum of design, development, and implementation perspectives—
including business topics. In fact, you’ll see example after example where I emphasize
the connection between SaaS business and technology strategies. I make it clear that
builders and architects must have a vested interest in using SaaS business parameters
to shape the footprint of their solution.

Preface | xvii

While these business elements are a core part of the SaaS story, you’ll also notice that
I’ve intentionally avoided going deeper into specific aspects of the business space.
There are entire books that explore SaaS sales, marketing, go-to-market, business
modeling, journey mapping, metrics, and so on. To me, these topics stand on their
own and apply more generally to the SaaS domain. While I have moderate exposure
to these areas, I feel like they are better addressed as separate standalone topics. I’d
certainly suggest that organizations get ramped on the SaaS concepts as part of build‐
ing out a robust SaaS business; I just won’t be covering them here.

It’s also worth noting that this book is not trying to include every permutation of
SaaS. There are many business-to-consumer (B2C) commercial solutions that people
think of when they think of SaaS. While they may be most familiar to the everyday
person, they are also designed and built around a model that, for most, is atypical.
Most SaaS builders aren’t trying to support millions of users. Generally, B2C environ‐
ments will employ their own unique design strategies that are often hyper-optimized
around a specialized set of scaling challenges. In contrast, a business-to-business
(B2B) SaaS company that’s supporting hundreds to thousands of businesses is likely
to take a different approach to how they design and architect their multi-tenant envi‐
ronment. I think the B2C space is interesting, and I think the concepts of B2C will
have plenty of overlap with the core set of principles I’ll be covering. At the same
time, I also need to acknowledge that there are areas where B2B and B2C strategies
can diverge significantly. Offering tenants dedicated infrastructure, for example, is a
completely valid option in a B2B setting. That same approach is unlikely to be viable
in most B2C environments.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a general note.

xviii | Preface

Using Code Examples
Code examples from Chapters 10 and 11 are available for download at https://oreil.ly/
saas-ch10-code and https://oreil.ly/saas-ch11-code, respectively. Links are also pro‐
vided in those chapters.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Building Multi-Tenant
SaaS Architectures by Tod Golding (O’Reilly). Copyright 2024 Tod Golding,
978-1-098-14064-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

Preface | xix

https://oreil.ly/saas-ch10-code
https://oreil.ly/saas-ch10-code
https://oreil.ly/saas-ch11-code
mailto:support@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/bldg-multitenant-saas.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
I’ve had the good fortune of being surrounded, influenced, supported, and inspired
by a great number of people that have contributed directly and indirectly to the cre‐
ation of this book. The best place to start is probably at the beginning, looking at my
earliest days at AWS when I was the new SaaS solutions architect hired to try to
define and shape a vision for what it meant to build SaaS offerings in the cloud. It’s in
this time that I was lucky enough to be guided by Matt Yanchyshyn, who pushed me
to dig in, move fast, and deliver results. Matt has this ability to ask a lot, give you
room to operate, and inspire you to think big. His early encouragement set me off on
this path and I’m not sure how or if I would have made the early progress I did
without his words of wisdom.

My ability to go deep and develop my SaaS insights has also been directly connected
to the experiences I’ve had working with SaaS companies. Being able to get in the
room with organizations and go deep on their SaaS solutions exposed me to a broad
range of industries, domains, business cases, and adoption scenarios. The data, pat‐
terns, and code that came out of these engagements was and continues to be priceless.
I’ve also been fortunate to be surrounded by an amazing team of SaaS architects and
business leads that have played a key role in advancing the state of SaaS and helping
me continually reevaluate best practices strategies and patterns. There’s too many to
mention here, but I’d like to call out Craig Wicks, Seth Fox, Emily Tyack, and Michael

xx | Preface

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/bldg-multitenant-saas
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

Schmidt for their early leadership and collaboration. Adrian De Luca was also a con‐
stant source of inspiration, providing ongoing guidance and encouragement.

Writing a book also relies heavily on a team of behind-the-scenes contributors that go
down this path with you. The team at O’Reilly has been amazing throughout all pha‐
ses of this book’s creation. At the center of so much of my day-to-day O’Reilly interac‐
tions was Melissa Potter. Melissa was key to every bit of the book’s evolution, helping
me navigate the process, reviewing my first drafts, answering questions, and always
being there with encouraging words of guidance. O’Reilly’s Louise Corrigan was also
there from the outset, guiding me during the early stages of shaping the book’s struc‐
ture and leaning into key decisions all along the way. I also want to thank the book’s
technical reviewers, Anubhav Sharma, Russell Miles, and Toby Buckley. Thanks for
investing the time and sharing your insights. Your perspectives helped me refine this
story and made this a better book.

Of course, at the core of every journey I take is my family. Even though they’ve never
quite understood what it is I do, they’ve always been right there in my corner encour‐
aging me along the way. My wife, Janine, has been supportive of everything I do, and
this effort was no exception. Her words of encouragement always make it easier for
me to keep pushing forward. Then there’s my kids, Chelsea and Ryan. While they’re
grown now and are on their own paths, they still find ways to brighten my day and
remind me just how fortunate I am.

Preface | xxi

CHAPTER 1

The SaaS Mindset

I’ve worked with a number of teams that were building software-as-a-service (SaaS)
solutions. When I sit down with them to map out their path to SaaS, they tend to start
out with what seems like a reasonable, high-level view of what it means to be SaaS.
However, as I go a layer deeper and get into the details of their solution, I often dis‐
cover significant variations in their vision. Imagine, for example, someone telling you
they want to construct a building. While we all have some notion of a building having
walls, windows, and doors, the actual nature of these structures can vary wildly. Some
teams might be envisioning a skyscraper, and others might be building a house.

It’s kind of natural for there to be confusion around what SaaS looks like. As is the
case in all technology realms, the SaaS universe is continually evolving. The emer‐
gence of the cloud, shifting customer needs, and the economics of the software
domain are in constant motion. How we defined SaaS yesterday may not be the way
we’ll define it today. The other part of the challenge here is that the scope of SaaS goes
well beyond the technical. It is, in many respects, a mindset that spans all the dimen‐
sions of a SaaS provider’s organization.

With that in mind, the natural place to start this journey is by clarifying how I define
SaaS and how I think this definition shapes our approach to architecting, designing,
and building a SaaS solution. The goal in this chapter is to build a foundational men‐
tal model that will reduce some of the confusion about what it means to be SaaS. We’ll
move beyond some of the vague notions of SaaS and, at least for the scope of this
book, attach more concrete guiding principles to the definition of SaaS that will shape
the strategies that we’ll explore in the coming chapters.

To get there, we’ll need to look at the forces that motivated the move to SaaS and see
how these forces directly influenced the resulting architectural models. Following this
evolution will provide a more concrete view into the foundational principles that are
used to create a SaaS solution that realizes the full value proposition of SaaS, blending

1

the technical and business parameters that are at the core of developing modern SaaS
environments. It’s essential for SaaS architects to understand that SaaS is not a
technology-first mindset. A SaaS architect doesn’t design a multi-tenant architecture
first, then figure out how the business strategy layers on top of that. Instead, the busi‐
ness and technology work together to find the best intersection of business goals and
multi-tenant solutions that will realize those strategies. This theme will be with us
throughout this book.

While you may feel comfortable with what SaaS means to you, it’s possible that the
foundational concepts we’ll explore here might challenge your view of SaaS and the
terminology we use to describe SaaS environments. So, while it may be tempting to
treat this chapter as optional, it may be one of the most important chapters in the
book. It’s not just an introduction; it’s about creating a common vocabulary and men‐
tal model that will be woven into the architecture, coding, and implementation strate‐
gies that we’ll be covering throughout this book.

Where We Started
Before we can dig into defining SaaS, we need to understand where this journey
started and the factors that have driven the momentum of the SaaS delivery model.
Let’s start by looking at how software has been traditionally built, operated, and man‐
aged. Generally, pre-SaaS systems were typically delivered in an “installed software”
model where customers played a role in installation and setup of their software. The
customer’s IT team might install it on some vendor-provided environment or they
might run it on their own infrastructure. In this mode, the management and opera‐
tion of these environments, to some degree, could be pushed to the customer’s IT
team. A professional services team could also play some role during the installation,
customization, and configuration of the customer’s environment.

In this model, software development teams tended to be more removed from these
delivery and setup details. They were more focused on continually building out the
functional capabilities of their solutions. Delivery and operations were often on the
side of the wall and handled somewhat downstream of the day-to-day development
efforts.

Figure 1-1 provides a conceptual view of the footprint of the traditional software
delivery model.

2 | Chapter 1: The SaaS Mindset

Figure 1-1. The installed software model

In the top left of Figure 1-1, you’ll see I have introduced an independent software
vendor (ISV) that represents the entity selling software to its customers. I’ve also
shown two customers that currently own the ISV’s software, Customers 1 and 2. Each
of these customers is running specific versions of the ISV’s product. As part of their
onboarding, they also required one-off customizations to the product that were
addressed by the ISV’s professional services team. We also have other customers that
may be running different versions of our product that may or may not have any
customizations.

As each new customer is onboarded, the provider’s operations organization may need
to create focused teams that can support the day-to-day needs of these customer envi‐
ronments. These teams might be dedicated to an individual customer or support a
cross-section of customers.

This classic mode of software delivery is a much more sales-driven model, where the
business focuses on acquiring customers and handing them off to technology teams
to address the specific needs of each incoming customer. You can imagine how this
dynamic shapes the overall culture and development cycle of the experience. How
your product is built, how new features are rolled out, how you think about customi‐
zation—these are all areas influenced by the nature of this approach. The mindset
here is one where landing a deal can take precedence over the need for agility, scale,
and operational efficiency. These solutions are also frequently sold with long-term
contracts that limit a customer’s ability to easily move to any other vendor’s offering.

Where We Started | 3

The distributed and varying nature of these customer environments often slows the
release and adoption of new features. Customers tend to have control in these set‐
tings, often dictating how and when they might upgrade to a new version. The com‐
plexity of testing and deploying these environments could become unwieldy, pushing
vendors toward quarterly or semi-annual releases.

To be fair, building and delivering software using this model is and will continue to be
a perfectly valid approach for some businesses. The legacy, compliance, and business
realities of any given domain might align well to this model. However, for many, this
mode of software delivery introduces a number of challenges. At its core, this
approach focuses more on being able to sell customers whatever they need in
exchange for trade-offs around scale, agility, and cost/operational efficiency.

On the surface, these trade-offs may not seem all that significant. If you have a limi‐
ted number of customers and you’re only landing a few a year, this model could be
entirely adequate. You would still have inefficiencies, but they would be far less prom‐
inent. Consider, however, a scenario where you have a significant installed base and
are looking to grow your business rapidly. In that mode, the pain points of this
approach begin to represent a real problem for many software vendors.

Operational and cost efficiencies are often amongst the first areas where companies
using this model start to feel the pain. The incremental overhead of supporting each
new customer begins to have real impacts on the business, eroding margins and con‐
tinually adding complexity to the operational profile of the business. Each new cus‐
tomer could require more support teams, more infrastructure, and more effort to
manage the one-off variations that accompany each customer installation. In some
cases, companies actually reach a point where they’ll intentionally slow their growth
because of the operational burdens of this model.

The bigger issue here, though, is how this model impacts agility, competition, growth,
and innovation. By its very nature, this model is anything but nimble. Allowing cus‐
tomers to manage their own environments, supporting separate versions for each
customer, enabling one-off customization—these are all areas that undermine speed
and agility. Imagine what it would mean to roll out a new feature in these environ‐
ments. The time between having the idea for a feature, iterating on its development,
and getting it in front of all your customers is often a slow and deliberate process. By
the time a new feature arrives, customer and market needs may have already shifted.
This also can impact the competitive footprint of these companies, limiting their abil‐
ity to rapidly react to emerging solutions that are built around a lower friction model.

4 | Chapter 1: The SaaS Mindset

While the operational and development footprint was becoming harder to scale, the
needs and expectations of customers were also shifting. Customers have become less
focused on retaining the ability to manage or control their environments. Instead,
they’re more interested in maximizing the value they can extract from their software.
They are increasingly demanding lower friction experiences that can continually
innovate to meet their needs, giving them more freedom to move between solutions
based on the evolving needs of their businesses.

Customers are also more drawn to pricing models that better align with their value
and consumption profile. In some cases, they’re looking for the flexibility of subscrip‐
tion and/or pay-as-you-go pricing models.

You can see the natural tension that’s at play here. For many, the classic delivery
model simply doesn’t align well with their ability to scale or grow their business and
meet the evolving needs of their customers. The emergence of the cloud also played a
key role here. The cloud model fundamentally altered the way companies looked at
hosting, managing, and operating their software. The pay-as-you-go nature and
operational model of the cloud shifted the mindset of the industry, placing a greater
emphasis on agility and economies of scale. Together, these forces motivated software
providers to rethink how they build, deliver, operate, and sell their solutions.

The Move to a Unified Model
By now, the basic challenges of the traditional model should be clear. While some
organizations were struggling with this model, others already understood this
approach would simply not scale economically or operationally. If you are a B2B ISV
with thousands of customers, for example, it’s unlikely that your business would be
able to support a model where each customer had to be separately supported, man‐
aged, and operated.

The answer, for many, was to move to a model that unified more of the experience,
reducing the complexity and cost that naturally came with supporting the per-
customer model. This is where we saw teams adopting a shared infrastructure model
that would allow them to scale their business and streamline their operational model
more effectively.

This shift to a more unified, shared model opened a range of new opportunities for
software providers. Figure 1-2 provides a conceptual view of a simplified shared
infrastructure SaaS environment.

The Move to a Unified Model | 5

Figure 1-2. A shared infrastructure SaaS model

In Figure 1-2, you’ll see a simplified view of the traditional notion of SaaS. You’ll
notice that we’ve completely moved away from the distributed, one-off, custom
nature of the classic model we saw in Figure 1-1. Instead, we’ve shifted to a unified
strategy where all the system’s application services and infrastructure are shared by
the customers. You’ll also see that I have replaced the term “customer” with “tenant.”
We’ll get deeper into the notion of tenancy in Chapter 2. The fundamental idea is
that, as we move to this unified mindset, we look at our environment differently. It is
now one set of resources that is shared and occupied by one or more consumers. The
idea is that these consumers represent temporary occupants of your environment,
consuming only those resources they need—hence the term “tenant.”

Moving an application into a shared infrastructure model removes many of the
downsides that come with having separate customer environments. Now, with every‐
thing being shared, we have one set of resources that can be collectively scaled, man‐
aged, and operated. On the righthand side of Figure 1-2, you’ll see that I’ve added a
box to represent the management, operations, and deployment of this environment.
Imagine how this would simplify the deployment of updates. With shared infrastruc‐
ture, your deployment automation would simply deploy the update to this unified
SaaS environment, and all of your tenants would immediately have access to the
changes. Gone is the idea of separately deployed, versioned, managed, and operated
customer environments.

6 | Chapter 1: The SaaS Mindset

The upside of shared infrastructure extends into nearly every aspect of a software
business. It can streamline the aggregation and collection of operational telemetry. It
can simplify the complexity of your DevOps automation. It certainly makes onboard‐
ing new tenants easier. Perhaps the biggest upside is the cost efficiencies that could
come with shared infrastructure. Being able to correlate consumption of infrastruc‐
ture with actual tenant activity enables teams to maximize margins and achieve
economies of scale.

You can see how this model had massive appeal to those organizations that were
struggling with the cost and operational challenges of the classic model. In addition
to unifying the experience, it also brought a new level of agility to these environ‐
ments. Built right, these environments create opportunities to release new features
and capabilities at a much faster pace, allowing organizations to be more nimble in
reacting and responding to customer/market needs. The nature of this model also
creates new growth opportunities for some ISVs, allowing them to add new tenants at
a faster pace without eroding their margins and absorbing added operational over‐
head. The elastic, pay-as-you-go nature of cloud infrastructure also aligns nicely with
this model, supporting the pricing and scaling models that fit naturally with the elas‐
ticity of the cloud.

It’s worth noting that this move to shared infrastructure also introduces a range of
new challenges. As you move through this book, you’ll see all the nuances and com‐
plexity that come with having shared infrastructure. Supporting shared infrastructure
will directly influence the security, performance, scale, availability, and resilience pro‐
file of your SaaS environment. These factors will have a distinct impact on how you
approach the design and implementation of your SaaS environment.

This notion of having all tenants running the same version of your
offering represents a common litmus test for SaaS environments. It
is foundational to enabling many of the business benefits that are at
the core of adopting a SaaS delivery model.

To create a unified experience, we must also introduce a new set of cross-cutting
components that provide all the functionality that’s needed to centrally manage, oper‐
ate, and deploy a SaaS application. Carving out these separate components is essential
to building a successful and scalable SaaS business—even if your application doesn’t
have shared infrastructure. In reality, these components are at the core of driving the
agility, innovation, and efficiency goals of SaaS companies. To better understand this
point, let’s look at a slightly different view of a SaaS environment (shown in
Figure 1-3).

The Move to a Unified Model | 7

Figure 1-3. Building cross-cutting SaaS capabilities

At the center of Figure 1-3, you’ll see a placeholder for your SaaS application experi‐
ence. This is where the various components of your SaaS application are deployed. It’s
here that you would find the infrastructure of your application. Around the applica‐
tion are a set of components that are needed to support the broader needs of your
SaaS environment. At the top, for example, I’ve highlighted onboarding and identity,
which provide all the functionality to introduce a new tenant into your system. On
the left, you’ll see the placeholders for the SaaS deployment and management func‐
tionality. And, on the right, you’ll see fundamental concepts like billing, metering,
metrics, and analytics.

Now, for many SaaS builders, it’s tempting to view these surrounding components as
secondary, less critical elements of their SaaS architecture. In fact, I’ve worked with
teams that have chosen to defer the introduction of these components/services,
putting all their initial energy and effort into creating their multi-tenant applications.

While getting the application architecture right is certainly an important part of your
SaaS model, the success of your SaaS business will be heavily influenced by the capa‐
bilities of these surrounding components. These capabilities are at the core of ena‐
bling much of the operational efficiency, growth, innovation, and agility goals that are
motivating companies to adopt a SaaS model. So, these components—which are com‐
mon to all SaaS environments—must be put front and center when you are building
your SaaS solution. This is why I have always encouraged SaaS teams to start their
SaaS development with them. It’s these building blocks—which have nothing to do
with the functionality of your application—that are going to have a significant influ‐
ence on the SaaS footprint of your architecture, design, code, and business.

8 | Chapter 1: The SaaS Mindset

This should highlight the fact that there are multiple dimensions to the SaaS effi‐
ciency and agility story. Part of our efficiency is realized through the services that are
shown here, and part of it achieved through the strategies you apply to your applica‐
tion architecture. If your application architecture shares infrastructure, it can add
more efficiency and economies of scale to your environment. The key is that we must
have these surrounding services represent the foundational elements of our unified
model. Then, from there, we can think about how/if the application architecture can
also be optimized to maximize efficiency and agility.

Redefining Multi-Tenancy
Up to this point, I’ve avoided introducing the idea of multi-tenancy. It’s a term that is
used heavily in the SaaS space and will appear throughout the remainder of this book.
However, it’s a term that we must approach gracefully. The idea of multi-tenancy
comes with lots of attached baggage and, before sorting it out, I wanted to create
some foundation for the fundamentals that have driven companies toward the adop‐
tion of the SaaS delivery model. The other part of the challenge here is that the notion
of multi-tenancy—as we’ll define it in this book—will move beyond some of the tra‐
ditional definitions that are typically attached to this term.

For years, in many circles, the term “multi-tenant” was used to convey the idea that
some resource was being shared by multiple tenants. This could apply in many con‐
texts. We could say that some piece of cloud infrastructure, for example, could be
deemed multi-tenant because it allows tenants to share bits of its underlying infra‐
structure. Many services running in the cloud may be running in a multi-tenant
model to achieve their economies of scale. As a cloud consumer, this may be happen‐
ing entirely outside of your view. Even in self-hosted environments, teams can build
solutions where their compute, databases, and other resources are shared by tenants.
This creates a very tight connection between multi-tenancy and the idea of a shared
resource. In fact, in this context, this is a perfectly valid notion of multi-tenancy.

Now, as we start thinking about SaaS environments, it’s entirely natural for us to bring
the mapping of multi-tenancy with us. After all, SaaS environments do share infra‐
structure, and that sharing of infrastructure is certainly valid to label as being multi-
tenant.

To better illustrate this point, let’s look at a sample SaaS model that brings together
the concepts that we’ve been discussing in this chapter. The image in Figure 1-4 pro‐
vides a view of a sample multi-tenant SaaS environment.

Redefining Multi-Tenancy | 9

Figure 1-4. A sample multi-tenant environment

For this example, we’ve landed the shared infrastructure of our application services
inside a surrounding set of microservices that are used to manage and operate all the
moving parts of our SaaS environment. Assuming that all of our tenants are sharing
their infrastructure (compute, storage, and so on), this would still fit with the classic
definition of multi-tenancy, and it’s not uncommon for SaaS providers to define and
deliver their solution following this pattern.

The challenge is that SaaS environments don’t exclusively conform to this model.
Suppose, for example, I create a SaaS environment that looks like Figure 1-5.

Figure 1-5. Multi-tenancy with shared and dedicated resources

10 | Chapter 1: The SaaS Mindset

Notice that we’ve morphed the footprint of some of our application microservices.
The Product microservice is unchanged. Its compute and storage infrastructure are
still shared by all tenants. However, as we move to the Order microservice, you’ll see
that we’ve mixed things up a bit. Our domain, performance, and/or security require‐
ments may have required us to separate out the storage for each tenant. So, the com‐
pute of our Order microservice is still shared, but we have separate databases for each
tenant.

Finally, our Fulfillment microservice has also shifted. Our requirements pushed us
toward a model where each tenant is running dedicated compute resources. In this
case, though, the database is still shared by all tenants.

This architecture has certainly added a new wrinkle to our notion of multi-tenancy. If
we’re sticking to the purest definition of multi-tenancy, we wouldn’t really be able to
say everything running here conforms to the original definition of multi-tenancy. The
storage of the Order service, for example, is not sharing any infrastructure between
tenants. The compute of our Fulfillment microservices is also not shared, but the
database for this service is shared by all tenants.

Blurring these multi-tenant lines is common in the SaaS universe. When you’re com‐
posing a SaaS environment, you’re not sticking to any one absolute definition of
multi-tenancy; you’re picking the combinations of shared and dedicated resources
that best align with the business and technical requirements of your system. This is all
part of optimizing the footprint of your SaaS architecture around the needs of the
business.

Even though the resources here are not shared by all tenants, the fundamentals of the
SaaS principles we outlined earlier are still valid. For example, this environment
would not change our application deployment approach. All tenants in this environ‐
ment would still be running the same version of the product. Also, the environment
would still be onboarded, operated, and managed by the same set of shared services
we relied on in our prior example. This means that we’re still extracting much of the
operational efficiency and agility from this environment that would have been
achieved in a fully shared infrastructure (with some caveats).

To drive this point home, let’s look at a more extreme example. Suppose we have a
SaaS architecture that resembles the model shown in Figure 1-6. In this example, the
domain, market, and/or legacy requirements have required us to have all compute
and storage running in a dedicated model where each tenant has a completely sepa‐
rate set of infrastructure resources.

Redefining Multi-Tenancy | 11

Figure 1-6. A multi-tenant environment with fully dedicated resources

While our tenants aren’t sharing infrastructure in this model, you’ll see that they con‐
tinue to be onboarded, managed, and operated through the same set of shared capa‐
bilities that have spanned all of our examples. That means that all tenants are still
running the same version of the software and they are still being managed and oper‐
ated collectively.

This may seem like an unlikely scenario. However, in the wild, SaaS providers may
have any number of different factors that might require them to operate in this
model. Migrating SaaS providers often employ this model as a first stepping stone to
SaaS. Other industries may have such extreme isolation requirements that they’re not
allowed to share infrastructure. There’s a long list of factors that could legitimately
land a SaaS provider in this model.

So, given this backdrop, it seems fair to ask ourselves how we want to define multi-
tenancy in the context of a SaaS environment. Using the literal shared infrastructure
definition of multi-tenancy doesn’t seem to map well to the various models that can
be used to deploy tenant infrastructure. Instead, these variations in SaaS models seem
to demand that we evolve our definition of what it means to be multi-tenant.

For the scope of this book, at least, the term “multi-tenant” will definitely be extended
to accommodate the realities outlined here. As we move forward, multi-tenant will
refer to any environment that onboards, deploys, manages, and operates tenants
through a single, unified experience. The sharedness of any infrastructure will have
no correlation to the term “multi-tenancy.”

In the ensuing chapters, we’ll introduce new terminology that will help us overcome
some of the ambiguity that is attached to multi-tenancy.

12 | Chapter 1: The SaaS Mindset

Avoiding the “Single-Tenant” Term
Generally, whenever architects and builders refer to something as multi-tenant,
there’s a natural tendency to assume there must be some corresponding notion of
what it means to be single-tenant. The idea of single tenancy seems to get mapped to
those environments where no infrastructure is shared by tenants.

While I follow the logic of this mindset, the term doesn’t really seem to fit anywhere
in the model of SaaS outlined here. If you look back to Figure 1-6, where our solution
had no shared infrastructure, I noted that we would still label this a multi-tenant envi‐
ronment since all tenants were still running the same version and being managed or
operated collectively. Labeling this a single-tenant environment would undermine the
idea that we aren’t somehow realizing the benefits of the SaaS model.

With this in mind, the term “single-tenant” will not be used at any point beyond this
chapter. Every design and architecture we discuss will be deemed a multi-tenant
architecture, and we’ll attach new terms to describe the various deployment models
that will still allow us to convey if and how infrastructure is being shared within a
given SaaS environment. The general goal here is to disconnect the concept of multi-
tenancy from the sharing of infrastructure and use it as a broader term to characterize
any environment that is built, deployed, managed, and operated in a SaaS model.

This is less about what SaaS is or is not and more about establishing a vocabulary that
aligns better with the concepts we’ll be exploring throughout this book.

Where Are the Boundaries of SaaS?
We’ve laid a foundation for what it means to be SaaS, but there are lots of nuances
that we haven’t really talked about. For example, suppose your SaaS application
requires portions of the system to be deployed in some external location, or imagine
scenarios where your application has dependencies on other vendors’ solutions.
Maybe you are using a third-party billing system, or your data must reside in another
environment. There are any number of different reasons why you may need to have
parts of your overall SaaS environment hosted somewhere that may not be entirely
under your control.

So, how would this more distributed footprint fit with the idea of having a single, uni‐
fied experience for all of your tenants? After all, having full control over all the mov‐
ing parts of your system certainly maximizes your ability to innovate and move
quickly. At the same time, it’s impractical to think that some SaaS providers won’t face
domain and technology realities that require them to support externally hosted com‐
ponents, tools, or technologies.

Redefining Multi-Tenancy | 13

This is where we don’t want to be too extreme with our definition of SaaS. To me, the
boundary is more around how these external dependencies are configured, managed,
and operated. If their presence is entirely hidden from your tenants and they are still
managed and operated through your centralized experience, this is still SaaS to me. It
may introduce new complexities, but it doesn’t change the spirit of the SaaS model
we’re trying to build.

Where this gets more interesting is when SaaS providers rely on external resources
that are in direct view of their tenants. If, for example, my SaaS solution stores data in
some tenant-hosted database, that’s where things get more dicey. Now, you may have
a dependency on infrastructure that is not entirely under your control. Updating this
database, changing its schema, managing its health—these get more complicated in
this model. This is where we start to ask questions about whether this external
resource is breaking the third wall of SaaS, exposing tenants to infrastructure and cre‐
ating expectations or dependencies that undermine the agility, operations, and inno‐
vation of your SaaS environment.

My general rule of thumb here (with some exceptions) is that we’re providing a ser‐
vice experience. In a service model, our tenants’ view is limited to the surface of our
service. The tools, technologies, and resources that are used to bring that service to
life should be entirely hidden from our tenants. In many respects, this is the hard bar‐
rier that prevents our system from falling back into patterns that might lead to one-
off dependencies and variations.

The Managed Service Provider Model
There’s one last wrinkle that we need to address as we try to refine our view of what it
means to be a multi-tenant SaaS environment. Some organizations have opted into
what’s referred to as a Managed Service Provider (MSP) model. In some cases, they’ll
categorize MSP as a variant of SaaS. This has created some confusion in the SaaS
domain. To better understand the challenges here, let’s start by looking at an MSP
environment and see how and where it fits in this discussion. Figure 1-7 provides a
conceptual view of an MSP environment.

This model resembles the classic installed software model that we outlined earlier. At
the bottom of this diagram, you’ll see a collection of customers that are running vari‐
ous versions of a software vendor’s product. Each one of these customers will be run‐
ning in its own infrastructure or environment.

With MSP, though, we’ll try to get efficiencies and economies of scale out of moving
the operations to a centralized team or entity. This is the service that these MSPs pro‐
vide. They often own responsibility for installing, managing, and supporting each of
these customers, attempting to extract some scale and efficiency out of tooling and
mechanisms that they use to operate these customer environments.

14 | Chapter 1: The SaaS Mindset

Figure 1-7. A Managed Service Provider (MSP) model

I’ve also represented the software vendor at the top of the diagram. This is here to
convey the idea that the software provider may have third-party relationships with
one or more MSPs that are managing their customer environments.

You can see how some might equate the MSP model to SaaS. After all, it does seem to
be trying to provide a unified managed and operations experience for all customers.
However, if you look back at the principles that we used to describe SaaS, you can see
where there are substantial gaps between the MSP model and SaaS. One of the biggest
differences is that customers are being allowed to run separate versions. So, while
there may be some attempts to centralize management and operations, the MSP is
going to have to have one-off variations in their operational experience to support the
different footprints of each customer environment. This may require dedicated
teams; at a minimum, it will mean having teams that can deal with the complexities of
supporting the unique needs of each customer. Again, the MSP model adds lots of
value and certainly creates efficiencies, but it’s definitely different than having a single
pane of glass that gets its efficiencies from having customers run a single version of a
product and, in many cases, realizing economies of scale from sharing some or all of
their infrastructure. At some level in the MSP model, you’re likely to still inherit
aspects of the pain that comes with one-off customer variations. MSPs can introduce
some measures to offset some of the challenges, but they’ll still face the operational
and agility complexities that come with supporting unique, one-off needs of separate
customer environments.

The other difference relates more to how SaaS teams are structured and operated.
Generally, in a SaaS organization, we’re attempting to avoid drawing hard lines
between operations teams and the rest of the organization. We want operations,

Redefining Multi-Tenancy | 15

architects, product owners, and the various roles of our team working closely
together to continually evaluate and refine the service experience of their offering.

This typically means that these teams are tightly connected. They’re equally invested
in understanding how their tenants are consuming their systems, how they’re impos‐
ing load, how they’re onboarding, and a host of other key insights. SaaS businesses
want and need to have their fingers on the pulse of their systems. This is core to driv‐
ing the success of the business and being connected more directly to the overall ten‐
ant experience. So, while this is a less concrete boundary, it still represents an
important difference between SaaS and MSP.

Now, it’s important to note that MSP is an entirely valid model. It often represents a
good fit for some software providers. MSP can even be a stepping stone for some
SaaS providers, providing access to some efficiencies while the team continues to
push forward toward its SaaS delivery model. The key is that we have a clear under‐
standing of the boundaries between SaaS and MSP and avoid viewing SaaS and MSP
as somehow being synonymous.

At Its Core, SaaS Is a Business Model
By now you should have a better sense of how we characterize what it means to be
SaaS. It should be clear that SaaS is very much about creating a technology, business,
and operational culture that is focused squarely on driving a distinct set of business
outcomes. So, while it’s tempting to think about SaaS through the lens of technology
patterns and strategies, you should really be viewing SaaS more as a business model.

To better understand this mindset, think about how adopting SaaS impacts the busi‐
ness of a SaaS provider. It directly influences and shapes how teams build, manage,
operate, market, support, and sell their offerings. The principles of SaaS are ulti‐
mately woven into the culture of SaaS companies, blurring the line between the busi‐
ness and technology domains. With SaaS, the business strategy is focused on creating
a service that can enable the business to react to current and emerging market needs
without losing momentum or compromising growth.

Yes, features and functions are still important to SaaS companies. However, in a SaaS
company, the features and functions are rarely introduced at the expense of agility
and operational efficiency. When you’re offering a multi-tenant SaaS solution, the
needs of the many should always outweigh the needs of the few. Gone are the days of
chasing one-off opportunities that require dedicated, one-off support at the expense
of long-term success of the service.

This shift in mindset influences almost every role in a SaaS company. The role of a
product owner, for example, changes significantly. Product owners must expand their
view and consider operational attributes as part of constructing their backlog.

16 | Chapter 1: The SaaS Mindset

Onboarding experience, time to value, agility—these are all examples of items that
must be on the radar of the product owner. They must prioritize and value these
operational attributes that are essential to creating a successful SaaS business. Archi‐
tects, engineers, and QA members are equally influenced by this shift. They must
now think more about how the solution they’re designing, building, and testing will
achieve the more dynamic needs of their service experience. How your SaaS offering
is marketed, priced, sold, and supported also changes. This theme of new and over‐
lapping responsibilities is common to most SaaS organizations.

So, the question is: what are the core principles that shape and guide the business
model of SaaS companies? While there might be some debate about the answer to the
question, there are some key themes that seem to drive SaaS business strategies. The
following outlines these key SaaS business objectives:

Agility
This term is often overloaded in the software domain. At the same time, in the
SaaS universe, it is often viewed as one of the core pillars and motivating factors
of a SaaS business. So many organizations that are moving to SaaS are doing so
because they’ve become operationally crippled by their current model. Adopting
SaaS is about moving to a culture and mindset that puts emphasis on speed and
efficiency. Releasing new versions, reacting to market dynamics, targeting new
customer segments, changing pricing models—these are amongst a long list of
benefits that companies expect to extract from adopting a SaaS model. How your
service is designed, how it’s operated, and how it’s sold are all shaped by a desire
to maximize agility. A multi-tenant offering that reduced costs without realizing
agility would certainly miss the broader value proposition of SaaS.

Operational efficiency
SaaS, in many respects, is about scale. In a multi-tenant environment, we’re
highly focused on continually growing our base of customers without requiring
any specialized resources or teams to support the addition of these new custom‐
ers. With SaaS, you’re essentially building an operational and technological foot‐
print that can support continual and, ideally, rapid growth. Supporting this
growth means investing in building an efficient operational footprint for your
entire organization. I’ll often ask SaaS companies what would happen if 1,000
new customers signed up for their service tomorrow. Some would welcome this,
and others cringe. This question often surfaces key questions about the opera‐
tional efficiency of a SaaS company. It’s important to note that operational effi‐
ciency is also about reacting and responding to customer needs. How quickly
new features are released, how fast customers onboard, how quickly issues are
addressed—these are all part of the operational efficiency story. Every part of the
organization may play a part in building out an operationally efficient offering.

At Its Core, SaaS Is a Business Model | 17

Innovation
The ability to move faster has lots of benefits for SaaS organizations. It frees them
up and lets them be more open to experimenting and shifting their strategy. The
investments in agility and operational efficiency allow organizations to be much
more fluid and flexible. This allows them to embrace new opportunities, new
market segments, new packaging/pricing strategies, and a host of other possibili‐
ties. The overall goal is to use the underlying strengths of your operational and
cost model as the fuel of your innovation engine. It’s this innovation that can play
a big role in the broader success of your SaaS business.

Frictionless onboarding
SaaS businesses must give careful consideration to how customers get introduced
into their environments. If you are trying to remain as agile and operationally
efficient as possible, you must also think about how customer onboarding can be
streamlined. For some SaaS businesses, this will be achieved through a classic
sign-up page where customers can complete the onboarding process in an
entirely self-service manner. In other environments, organizations may rely on
an internal process to drive onboarding. The key is that every SaaS business must
be focused on creating an onboarding experience that removes friction and ena‐
bles agility and operational efficiency. For some, this will be straightforward. For
others, it may take more effort to rethink how the team builds, operates, and
automates its onboarding experience.

Growth
Every organization is about growth. However, SaaS organizations typically have a
different notion of growth. They are investing in a model and an organizational
footprint that is built to thrive on growth. Imagine building a highly efficient car
factory that optimized and automated every step in the construction process.
Then, imagine only asking it to produce two cars a day. Sort of pointless. With
SaaS, we’re building out a business footprint that streamlines the entire process of
acquiring, onboarding, supporting, and managing customers. A SaaS company
makes this investment with the expectation that it will help support and fuel the
growth machine that ultimately influences the margins and broader success of
the business. So, when we talk about growth here, we’re talking about achieving a
level of acceleration that couldn’t be achieved without the agility, operational effi‐
ciency, and innovation that‘s part of SaaS. How much growth you achieve is rela‐
tive. For some, growth may be adding 100 new customers, and for others it could
mean adding 50,000. While the nature of your scale may vary, the goal of being
growth-focused is equally essential to all SaaS businesses.

The items outlined here represent some of the core SaaS business principles. These
are concepts that should be driven from the top down in a SaaS company where the
leadership places clear emphasis on driving a business strategy that is focused on cre‐
ating growth through investment in agility, operational efficiency, and growth goals.

18 | Chapter 1: The SaaS Mindset

Almost every dimension of your SaaS architecture and strategy is going to be derived
from your business vision. The target tenant personas, the packaging, the pricing, the
cost model, and a host of other factors are going to shape the architecture, operations,
and management footprint of the solution you ultimately build. If you don’t have
clarity and alignment with the business around these points, you’re unlikely to be in a
position to build a SaaS offering that fully realizes your business goals.

Building a Service—Not a Product
Many software providers would view themselves as being in the business of creating
products. And, in many respects, this aligns well with their business model. The
mindset here is focused on a pattern where we build something, the customer
acquires it, and it’s, for the most part, theirs to use. There are plenty of permutations
and nuances within this product-centric model, but they all gravitate toward a model
that is focused on creating something more static and having customers buy it.

In this product-focused mindset, the emphasis is generally on defining the features
and functions that will allow a software provider to close gaps and land new opportu‐
nities. Now, with SaaS, we shift from creating a product to creating a service. So, is
this just terminology, or does it have a meaningful impact on how we approach build‐
ing a SaaS offering? It turns out this is certainly more than a terminology shift.

When you offer software as a service, you think differently about what success looks
like. Yes, your solution needs to meet the functional needs of your customers. That
dimension of the problem doesn’t go away. As a service, though, you are much more
focused on the broader customer experience across all dimensions of your business.

Let’s look at an example that better highlights the differences between a service and a
product. A restaurant provides a good backdrop for exploring these differences.
When you go out to dinner, you’re certainly looking forward to the food (the prod‐
uct). However, the service is also a part of your experience. How fast you’re greeted at
the door, how soon the waiter comes to your table, how soon you get water, and how
quickly your food arrives are all measures of your service experience. No matter how
good the food is, your quality of service will have a lot to do with your overall impres‐
sion of the restaurant.

Now, think about this through the lens of a SaaS offering. Your SaaS tenants will have
similar service expectations. How easily they can onboard your solution, how long it
takes to realize value, how quickly new features are released, how easily they can pro‐
vide feedback, how frequently the system is down—these are all dimensions of a ser‐
vice that must be front and center for SaaS teams. Having a great product won’t
matter if the overall experience for customers does not meet their expectations.

This takes on extra meaning when software is delivered in a SaaS model, where the
tenant’s only view of your system is the surface of your SaaS solution. SaaS tenants

Building a Service—Not a Product | 19

have no visibility into the underlying elements of your system. They don’t think about
patches, updates, and infrastructure configuration. They only care that the service is
providing an experience that lets them maximize the value of your solution.

In this service model, we also often see SaaS companies leveraging their operational
agility to drive greater customer loyalty. These SaaS providers will get into a mode
where they release new capabilities, respond to feedback, and morph their systems at
a rapid pace. Seeing this constant and rapid innovation gives customers confidence
that they will be benefactors of this constant evolution. In fact, this is often the tool
that allows emerging SaaS companies to take business away from traditional non-
SaaS market leaders. While some massive, established market leaders may have a
much deeper feature set, their inability to rapidly react to market and customer needs
can steer customers to nimbler SaaS-based offerings.

So, while this product versus service comparison may seem a bit pedantic, I view it as
an essential part of the SaaS mental model. It connects directly to this idea that SaaS is
very much a mindset that shapes how entire SaaS organizations approach their jobs
and their customers. In fact, many SaaS organizations will adopt a series of metrics
that measure their ability to meet their service-centric goals. It may be tempting to
view this as something that can be bolted onto your service at some future date. How‐
ever, many successful SaaS organizations rely on these metrics as a key pillar of their
SaaS business.

The B2B and B2C SaaS Story
As teams talk about SaaS, they’ll often map strategies and patterns to the business-to-
consumer (B2C) and business-to-business (B2B) models. As I discussed in the pref‐
ace, it’s important to understand that there are clear differences in how you might
approach architecting for these two models. The scale of B2C, for example, will often
require highly specialized strategies that can accommodate the workload profile and
cost models of these environments. At the same time, at the conceptual level, lots of
topics and mechanisms discussed here could apply to B2C and BCB environments. I
won’t try to highlight every instance where these models might require different
approaches. There are too many variables here to make absolute statements about
what fits for B2C and what fits for B2B. So, for the scope of this book, let’s acknowl‐
edge that being B2C or B2B can certainly influence the overall architectural model of
your solution.

Defining SaaS
I’ve devoted the bulk of this chapter to bringing more clarity to the boundaries,
scope, and nature of what it means to be SaaS. It only seems fair to take all the infor‐
mation we discussed here and attempt to provide an explicit definition of SaaS that,

20 | Chapter 1: The SaaS Mindset

ideally, incorporates the concepts and principles that we have covered. This is the def‐
inition I think best summarizes the view of SaaS I’ll be using across the rest of this
book:

SaaS is a business and software delivery model that enables organizations to offer their
solutions in a low-friction, service-centric model that maximizes value for customers
and providers. It relies on agility and operational efficiency as pillars of a business
strategy that promotes growth, reach, and innovation.

You’ll see that this definition sticks to the theme of SaaS being a business model.
There’s no mention of any technologies or architecture considerations. It’s your job as
a SaaS architect and builder to create the underlying patterns and strategies that
enable the business to realize its objectives. While that may seem like the job of any
architect, it should be clear that the unique blend of business and technology
demands for SaaS environments will be infused directly into the design, architecture,
and implementation of your SaaS solution.

Conclusion
This chapter was all about establishing the foundational elements of the SaaS mind‐
set, providing you with a core set of concepts and terms that will be critical as we dig
deeper into SaaS architecture patterns and strategies. A key part of our discussion was
focused on understanding the fundamental goals of SaaS, highlighting the key ele‐
ments that have motivated so many organizations to adopt a SaaS delivery model.
This required us to look more closely at classic software delivery models, highlighting
some of the traditional challenges associated with these models. Then, I shifted to
exploring how SaaS is used to overcome these challenges, delivering efficiencies,
economies of scale, and agility that can enable greater levels of growth and innova‐
tion. A key point is that SaaS architects and builders can’t just be focused on creating
a solid SaaS application—they must also be thinking about how their solution will
solve the organization’s broader operational, agility, and efficiency goals.

A big part of this chapter was also focused on aligning on some core concepts. I intro‐
duced the idea of tenants, highlighting some of the key nuances with building envi‐
ronments where infrastructure can be consumed in a shared model. Our discussion
on shared infrastructure also highlighted some of the key differences between SaaS
and traditional installed, per-customer models. At the core of this theme was the idea
of creating a unified experience that would enable you to collectively manage, deploy,
and operate your SaaS tenants.

It was also essential to create clearer boundaries around what’s SaaS and what’s not (at
least for the scope of this book). It’s here that I started looking at multi-tenancy and
the historical baggage that’s attached to this term. The goal was to create a new SaaS-
aware view of multi-tenancy that moved away from the narrow, infrastructure-centric
idea of multi-tenancy. I reviewed a series of SaaS deployment strategies to highlight

Conclusion | 21

the need for a broader definition of multi-tenancy that wasn’t connected to whether
we were sharing infrastructure. Having clarity around when and how the multi-
tenant term is used is fundamental to how we talk about SaaS and how we describe
SaaS architectures.

Finally, toward the back of the chapter, I started trying to further refine the bound‐
aries of SaaS. I looked at the MSP model, for example, and reviewed some of the key
factors that separate the MSP and SaaS models. I also looked at some of the core prin‐
ciples that I thought should be applied when shaping the vision for building a SaaS
organization and offering. This included reviewing some of the key differences that
are associated with building a service (instead of a product).

The hope is that this chapter equipped you with a better sense of how we’ll be viewing
SaaS throughout this book. Alignment on these principles will allow us to move
through additional, more concrete concepts with a common view of what forces are
shaping and guiding our architectural choices. Ideally, it also removes some of the
confusion that, historically, has surrounded this topic.

Now that we have these SaaS mindset basics in place, we can start thinking about how
these principles are mapped to more specific architectural patterns and constructs. In
the next chapter, I’ll make an end-to-end pass through all of the key SaaS architecture
mechanisms and strategies without bringing in the specifics of any one solution or
technology stack. This will expose a full range of the considerations that should be
part of defining any SaaS architecture. Defining tenant context, discussing what com‐
mon services and capabilities we need, explaining data partitioning—these are all on
a much longer list of more detailed insights that we’ll be covering. The goal of this
chapter is to review many of the higher-level SaaS architecture constructs, explaining
their role, their nuances, and where they fit into the overall SaaS architecture
landscape.

22 | Chapter 1: The SaaS Mindset

CHAPTER 2

Multi-Tenant Architecture Fundamentals

As you progress through this book, you’ll realize that SaaS architecture comes in
many shapes and sizes. There are countless permutations of multi-tenant architecture
patterns and strategies that are composed to create the SaaS architecture that best
aligns with the domain, compliance, and business realities of a SaaS company.

There are, however, some core themes that span all SaaS architectures. The goal of
this chapter is to explore a set of architecture constructs and concepts as the most
fundamental starting point for building a multi-tenant SaaS architecture. The idea is
to outline the details of the core building blocks to set the table for a much deeper
review of how these concepts are brought to life with specific technologies. I’ve inten‐
tionally tried to keep this coverage very focused on just those architectural constructs
that need to be top of mind as each builder begins to define the moving parts of their
SaaS environment.

We’ll start this review by looking at the notion of tenancy and how tenant context is
introduced into your architecture. The goal is to highlight the role tenancy plays
across your entire architecture, outlining how and where it touches the different lay‐
ers of a multi-tenant architecture. From there, we can then shift into looking at how
we group and organize the different elements of your multi-tenant architecture. The
focus will be on identifying the common moving parts of any SaaS architecture, out‐
lining the fundamental services you’ll need to support the core, horizontal services
that are needed to onboard, authenticate, operate, and manage your tenants and your
overall environment.

As part of this review, I’ll also explore some of the core multi-tenant constructs that
will show up within the implementation of your application. While each application
has its own nuances, there are still a set of cross-cutting strategies that are used to
implement the multi-tenant security, storage, deployment, and routing models of
your SaaS implementation. The topics we’ll cover will give you a better sense of how

23

multi-tenancy influences how you design and build the moving parts of your applica‐
tion. To top things off, I’ll explore a few of the outliers that need to be included as
part of the foundation of your SaaS model. These include creating a tiered experience,
provisioning and configuration of tenant resources, and building a system admin
view into your environment.

Getting a firm grasp on these core SaaS architecture constructs is key to developing a
solid understanding of the elements that are typically part of a multi-tenant architec‐
ture. My goal will be to give a better sense of the building blocks that should be on
your radar as you begin defining the footprint of your SaaS architecture. You already
likely have strong notions of what it means to scale, secure, design, and operate a
robust architecture. With SaaS, our goal is to figure out how and where multi-tenancy
influences and overlays these key concepts, altering how we might approach building
out a multi-tenant environment.

Adding Tenancy to Your Architecture
Let’s start our exploration of SaaS architecture concepts by looking at a traditional
non-SaaS application. In classic applications, the environment is constructed from
the ground up with the assumption that it will be installed and run by individual cus‐
tomers. Each customer essentially has its own dedicated footprint. Figure 2-1 pro‐
vides a conceptual view of how one of these applications might be designed and built.

Figure 2-1. Traditional non-SaaS environments

On the left, we have a simplified view of an application. Here, this application is built
and then sold to individual customers. These customers might install the software in

24 | Chapter 2: Multi-Tenant Architecture Fundamentals

their own environment or it might run in the cloud. This approach simplifies the
entire architectural model of this environment. The choices about how customers
enter the environment, how they access our resources, and how they consume the
services of our environment are much simpler when we know that they will be run‐
ning in an environment that is dedicated to each customer. The general mindset here
is that you have a piece of software and you’re just stamping out copies of it for each
new customer.

Now, let’s think about what it means to deliver this same application in a multi-tenant
SaaS environment. Figure 2-2 provides a conceptual view of what this might look like.
You see that our customers, which are now tenants, are all consuming the same
application.

Figure 2-2. The shift to a tenant-centric experience

This shift may seem fairly simple in the diagram. However, it has a profound impact
on how we design, build, secure, and manage this environment. We’ve essentially
made the transition from a per customer dedicated model to a multi-tenant architec‐
ture. Supporting this model reaches into every dimension of the underlying imple‐
mentation of your system. It affects how you implement authentication, routing,
scaling, performance, storage, and, in targeted areas, how you code the application
logic of your system.

Adding Tenancy to Your Architecture | 25

You’ll also notice a key shift in terminology in this figure. At the top of this diagram,
you’ll see that I no longer refer to the consumers of my system as customers. Instead,
they are now—and will be for the entire scope of this book—referred to as tenants.
Why the shift? To better understand this core concept, let’s take a runtime peek inside
one of our application services to see how tenants land in our environment at run‐
time. If I were to take separate snapshots of the product microservice at three differ‐
ent time intervals, I might see something resembling the image in Figure 2-3.

Figure 2-3. Runtime snapshot of tenancy

In snapshot 1, our product microservice has two tenants consuming our service (T1
and T3). The next snapshot has three entirely different tenants. The point is that the
resource no longer belongs to any one consumer; it is a shared infrastructure that is
consumed by any tenant of our system. And, in many cases, it can be consumed
simultaneously by multiple tenants.

This shift to using shared infrastructure required a new way to describe how a system
is being consumed. Before, when every consumer had its own dedicated infrastruc‐
ture, it was easy to continue to use the term “customer.” However, in a multi-tenant
setting, you’ll see that we describe the consumers of our environment as “tenants.”

It’s essential that you have a solid understanding of this concept. The notion of ten‐
ancy maps very well to the idea of an apartment complex, where you own a building
and rent it out to different tenants. In this mindset, the building correlates to the
shared infrastructure of your solution, and the tenants represent the different occu‐
pants of your apartments. These tenants of your building consume shared building
resources (power, water, and so on). As the building owner, you manage and operate
the overall building, and different tenants will come and go. The level of occupancy
can vary from moment to moment.

You can see how this term better fits the SaaS model, where we are building a service
that runs on shared infrastructure that can accommodate any number of tenants. Yes,
tenants are still customers, but the term “tenant” lets us better characterize how they
land in a SaaS environment.

As we move forward, we’ll get a better sense of how and where tenancy ends up influ‐
encing the implementation of our SaaS architecture. For now, though, just know that

26 | Chapter 2: Multi-Tenant Architecture Fundamentals

each consumer of our environment will be referred to as a tenant. We’ll use this ten‐
ant information across multiple layers of our SaaS architecture discussions. It repre‐
sents one of the most fundamental elements of any SaaS architecture.

The Two Halves of Every SaaS Architecture
If we step back from the details of SaaS, we typically find that every SaaS
environment—independent of its domain or design—can be broken down into two
very distinct halves. In fact, across our entire discussion of SaaS across this book, we’ll
use these two halves as the lens through which we’ll look at how a multi-tenant sys‐
tem is built, deployed, and operated.

Figure 2-4 provides a conceptual representation of the two halves of SaaS. On the
righthand side of the diagram, you’ll see what is labeled as the control plane. The con‐
trol plane is where we’ll place all of the cross-cutting constructs, services, and capabil‐
ities that support the foundational needs of a multi-tenant SaaS environment.

Figure 2-4. SaaS application and control planes

We often describe the control plane as the single pane of glass that is used to orches‐
trate and operate all the moving parts of your SaaS solution. It is at the core of ena‐
bling many of the principles that are essential to the success of your SaaS business.
Concepts like tenant onboarding, billing, metrics, and a host of other services live in
this control plane. You’ll also see that our control plane includes an administration
application. This represents the console or administration experience that is used by a
SaaS provider to configure, manage, and operate their SaaS environment. This con‐
trol plane correlates to the concept we saw in Chapter 1 where we had a series of
components that surrounded our application.

The Two Halves of Every SaaS Architecture | 27

One interesting caveat here is that the services running in the control plane are not
built or designed as multi-tenant services. If you think about it, there’s actually noth‐
ing multi-tenant about the capabilities of the control plane. It doesn’t have functional‐
ity that supports the needs of individual tenants. Instead, it provides the services and
functionality that spans all tenants.

While architects and builders are often tempted to start the SaaS discussion with the
multi-tenant aspects of their application, the foundations of your SaaS architecture
often start with the control plane. In many respects, the control plane serves as a forc‐
ing function, requiring engineers to inject and support the nuances of tenancy from
the outset of their development.

In contrast, the application plane is where the features and functionality of your SaaS
service are brought to life. This is where we see the manifestation of all the multi-
tenant principles that are classically associated with SaaS environments. It’s here that
we focus more of our attention on how multi-tenancy will shape the design, function‐
ality, security, and performance of our service and its underlying resources. Our time
and energy in the application plane is focused squarely on identifying and choosing
the technologies, application services, and architecture patterns that best align with
the parameters of your environment, timelines, and business. This is where you pour
your energy into building out an application footprint that embraces agility and ena‐
bles the business to support a range of personas and consumption models.

It’s important to note that there is no single design, architecture, or blueprint for the
application plane. I tend to view the application plane as a blank canvas that gets
painted based on the unique composition of services and capabilities that my SaaS
service requires. Yes, there are themes and patterns we’ll see that span SaaS applica‐
tion architectures. Still, there will always be business, domain, and legacy considera‐
tions that impose specific requirements on the footprint of your SaaS application.

This view of the two halves of SaaS aligns with the mental model of multi-tenancy
that we discussed in Chapter 1. Our application plane could share all tenant infra‐
structure, or it could have completely dedicated infrastructure, and it wouldn’t matter.
As long as we have a control plane that manages and operates these tenant environ‐
ments through a unified experience, then we’re considering this a multi-tenant
environment.

This separation of concerns also influences our mental model for how the elements of
our SaaS environment are updated and evolved. The services and capabilities of the
control plane typically have their own processes for versioning, updates, and deploy‐
ment. They can be used across the entire lifecycle of your system, supporting a mix of
operational and functional needs. Meanwhile, our application plane is being driven
more by the needs and experience of the system’s tenants. Here, updates and deploy‐
ments are introduced to provide new features, enhance tenant performance, support
new tiering strategies, and so on.

28 | Chapter 2: Multi-Tenant Architecture Fundamentals

Together, these two halves of SaaS represent the most fundamental building blocks of
any SaaS environment. Understanding the roles of these planes will have a significant
influence on how you’ll approach the architecture, design, and decomposition of your
SaaS offering.

Inside the Control Plane
Now that we have a better sense of the roles of the control and application planes, let’s
take a high-level pass at exploring the core concepts that commonly live within the
scope of the control plane. We’ll dig into each of these topics in much greater detail
later in this book, exploring real-world implementation and architecture strategies. At
this stage, though, we need to start a level up and develop an understanding of the
different components that are part of any control plane you might build. Having a
higher-level grasp of these components, the roles they play, and how they are related
will allow us to explore these building blocks of multi-tenancy without getting dis‐
tracted by the different nuances that show up when we pivot to the specific influences
of technologies, languages, and domain considerations. Having this foundational
view will allow you to see the landscape of options and begin to see the different com‐
ponents that span all SaaS architecture models.

The following is a breakdown of the different services and capabilities that are likely
to show up in the control plane of your SaaS architecture, including onboarding,
identity, metrics, billing, and tenant management.

Onboarding
The control plane is responsible for managing and orchestrating all the steps needed
to get a new tenant introduced into your SaaS environment. On the surface, this may
seem like a simple concept. However, as you’ll see in Chapter 4, there are lots of mov‐
ing parts to the onboarding experience. The choices you make here, in many respects,
are at the core of enabling many of the multi-tenant business and design elements of
your SaaS environment.

At this stage, let’s stick with a high-level view of the key elements of the onboarding
experience. In Figure 2-5 you’ll see a conceptualized representation of the compo‐
nents that play a role in the onboarding experience. I show a tenant signing up for
our SaaS service and triggering the onboarding process via the control plane. After
this initial request, the control plane owns the rest of the onboarding flow, creating
and configuring our tenant and its corresponding identity footprint. This includes
assigning a unique identifier to our tenant that will be leveraged across most of the
moving parts of our multi-tenant architecture.

Inside the Control Plane | 29

Figure 2-5. Onboarding tenants

You’ll also notice that we show the control plane interacting with the application
plane, provisioning and configuring any application-specific resources that may be
needed for each tenant. When we get into more detailed views of sample onboarding
principles, we’ll see how this part of the onboarding experience can get quite
involved.

While there are common themes in the onboarding experience, the actual implemen‐
tation of onboarding can vary significantly based on the domain you’re in, the busi‐
ness goals of your solution, and the footprint of your application architecture. The
key, though, is that onboarding represents a foundational concept that sits at the front
door of your SaaS experience. Business teams can and should take great interest in
shaping and influencing how you approach building out this aspect of your system.

The higher-level takeaway is that onboarding is at the center of creating and connect‐
ing the most basic elements of a multi-tenant environment: tenants, users, identity,
and tenant application resources. Onboarding weaves these concepts together and
establishes the foundation for introducing tenancy to all the moving parts of your
SaaS environment.

Identity
At first glance, you might wonder why identity belongs in the SaaS story. It’s true that
there are any number of different identity solutions that you can use to construct
your SaaS solution. You could even suggest that your identity provider belongs some‐
how outside the scope of our control plane discussion. However, it turns out that
multi-tenancy and the control plane often have a pretty tight binding to your SaaS

30 | Chapter 2: Multi-Tenant Architecture Fundamentals

architecture. Figure 2-6 provides a simplified view of how identity is applied in multi-
tenant environments.

Figure 2-6. Binding users to a tenant identity

On the left, you’ll see the classic notion of user identity that is typically associated
with authentication and authorization. It’s true that our SaaS user will authenticate
against our SaaS system. However, in a multi-tenant environment, being able to
authenticate a user is not enough. A SaaS system must know who you are as a user
and it must also be able to bind that user to a tenant. In fact, every user that is logged
into our system must be attached in some way to a tenant. I often refer to this user/
tenant binding as your SaaS identity.

This notion of mapping users to tenants fits more naturally in envi‐
ronments where an individual is binding to a service as part of an
entity. In a B2B setting, my business is the tenant and I am one of
possibly many users at that business. In a B2C model, the user itself
could be the tenant. There is no need for a separate mapping to a
tenant.

This user/tenant binding ends up adding a wrinkle to our system’s overall identity
experience, requiring architects and builders to develop strategies for binding these
two concepts in a way that still conforms to the requirements of your overall authen‐
tication model. This gets even more complicated when we start thinking about how
we might support federated identity models in multi-tenant environments. We’ll see
that, the more the identity experience moves outside of our control, the more com‐
plex and challenging it becomes to support this binding between users and tenants.
In some cases, you may find yourself introducing constructs to stitch these two con‐
cepts together.

When we dig into onboarding and identity in Chapter 4, you’ll get a better sense of
the key role identity plays in the broader multi-tenant story. Getting identity right is
essential to building out a crisp and efficient strategy for introducing tenants into

Inside the Control Plane | 31

your SaaS architecture. The policies and patterns you apply here will have a cascading
impact across many of the moving parts of your design and implementation.

Metrics
When your application is running in a multi-tenant model, it becomes more difficult
to create a clear picture of how your tenants are using your system. If you’re sharing
infrastructure, for example, it’s very hard to know which tenants are currently con‐
suming that infrastructure and how the activity of individual tenants might be
impacting the scale, performance, and availability of your solution. The population of
tenants that are using your system may also be constantly changing. New tenants may
be added. Existing tenants might be leaving. This can make operating and supporting
multi-tenant environments particularly challenging.

These factors make it especially important for SaaS companies to invest in building
out a rich metrics and analytics experience as part of their control plane. The goal is
to create a centralized hub for capturing and aggregating tenant activity that allows
teams to monitor and analyze the usage and consumption profile of individual
tenants.

The role of metrics is very wide. The data collected will be used in an operational
context, allowing teams to measure and troubleshoot the health of the system. Prod‐
uct owners might use this data to assess the consumption of specific features. Cus‐
tomer success teams might use this data to measure a new customer’s time to value.
The idea is that successful SaaS teams will use this data to drive the business, opera‐
tional, and technology success of their SaaS offering.

You can imagine how metrics will impact the architecture and implementation of
many of the moving parts of your multi-tenant system. Microservice developers will
need to think about how and where they’ll add metrics instrumentation. Infrastruc‐
ture teams will need to decide how and where they’ll surface infrastructure activity.
The business will need to weigh in and help capture the metrics that can measure the
customer experience. These are just a few examples from a long list of areas where
metrics might influence your implementation.

The tenant must be at the center of this metrics strategy. Having data on consumption
and activity has significantly less value if it cannot be filtered, analyzed, and viewed
through the lens of individual tenants.

Billing
Most SaaS systems have some dependency on a billing system. This could be a home‐
grown billing system, or it could be any one of the commercial SaaS billing systems
that are available from different billing providers. Regardless of the approach, billing
is a core concept that has a natural home within the control plane.

32 | Chapter 2: Multi-Tenant Architecture Fundamentals

Billing has a couple of touch points within the control plane. It’s typically connected
to the onboarding experience, where each new tenant must be created as a “customer”
within your billing system. This might include configuring the tenant’s billing plan
and setting up other attributes of the tenant’s billing profile.

Many SaaS solutions have billing strategies that meter and measure tenant activity as
part of generating a bill. This could be bandwidth consumption, number of requests,
storage consumption, or any other activity-related events that are associated with a
given tenant. In these models, the control plane and your billing system must provide
a way for this activity data to be ingested, processed, and submitted to your billing
system. This could be a direct integration with the billing system, or you could intro‐
duce your own services that process this data and send it to the billing system.

We’ll get more into the details of billing integration in Chapter 14. The key here is to
realize that billing will likely be part of your control plane services, and you’ll likely be
introducing dedicated services to orchestrate this integration.

Tenant Management
Every tenant in our SaaS system needs to be centrally managed and configured. In
our control plane, this is represented by our tenant management service. Typically,
this is a pretty basic service that provides all the operations needed to create and
manage the state of tenants (for B2C environments, these would correlate to users).
This includes tracking key attributes that associate tenants with a unique identifier,
billing plans, security policies, identity configuration, and an active/inactive status.

In some cases, teams may overlook this service or combine it with other concepts
(identity, for example). It’s important for multi-tenant environments to have a cen‐
tralized service that manages all of this tenant state. This provides a single point of
tenant configuration that enables tenants to be easily managed through a centralized
experience.

We’ll explore the elements and permutations of implementing tenant management
more in Chapter 5.

Inside the Application Plane
Now that we have a better sense of the core concepts with the control plane, let’s start
looking at the common areas where multi-tenancy shows up in the application plane.
While the control plane typically has a consistent set of common services, the appli‐
cation plane is a bit more abstract. How and where multi-tenancy is applied within
the application plane can vary significantly based on a wide range of factors. That
being said, there are still a range of themes that will surface, albeit in different forms,
within your application plane. So, even though there is variation here, every SaaS

Inside the Application Plane | 33

architect will need to consider how and where they will introduce these themes into
the application plane of their solution.

As you dig into the application pane, you’ll find that your technology stack and
deployment footprint will have a significant influence on how these concepts are
applied. In some cases, there may be ready-made solutions that fit your use case pre‐
cisely. In other cases, you may find yourself inventing solutions to fill gaps in your
technology stack. While building out something to fill these gaps may add complexity
and overhead to the build of your solution, in most cases you’ll want to take on this
added work to ensure that your SaaS solution is not compromising on important ele‐
ments of your multi-tenant architecture.

In subsequent chapters we’ll look at real-world working examples that provide a more
concrete view of how these constructs are realized within your application plane. For
now, though, let’s come up a level and establish a core set of application plane princi‐
ples that should span every SaaS architecture.

Tenant Context
One of the most fundamental concepts in our application plane is the notion of ten‐
ant context. Tenant context does not map to any one specific strategy or mechanism.
Instead, it’s a broader concept that is meant to convey the idea that our application
plane is always functioning in the context of specific tenants. This context is often
represented as a token or some other construct that packages all the attributes of your
tenant. A common example is a JSON Web Token (JWT), which combines your user
and tenant information into one construct that is shared across all the moving parts
of your multi-tenant architecture. This JWT becomes our passport for sharing tenant
information (context) with any service or code that relies on this context. It’s this
token that is referred to as your tenant context.

Now, you’ll see that this tenant context has a direct influence on how your application
architecture processes tenant requests. This may affect routing, logging, metrics, data
access, and a host of other constructs live within the application plane. Figure 2-7
provides a conceptual view of tenant context in action.

The flow in Figure 2-7 shows tenant context being applied across the different serv‐
ices and resources that are part of a multi-tenant environment. This starts on the left‐
hand side of the diagram where tenants authenticate against the identity that was
created during onboarding and acquire their tenant context. This context is then
injected into a service of the application. This same context flows into each down‐
stream interaction of the system, enabling you to acquire and apply that context
across a range of different use cases.

34 | Chapter 2: Multi-Tenant Architecture Fundamentals

Figure 2-7. Applying tenant context

This represents one of the most fundamental differences of a SaaS environment. Our
services don’t just work with users—they must incorporate tenant context as part of
the implementation of all the moving parts of our SaaS application. Every microser‐
vice you write will use this tenant context. It will become your job to figure out how
to apply this context effectively without adding too much complexity to the imple‐
mentation of your system. This, in fact, is a key theme that we’ll address when we dig
into SaaS microservices in Chapter 7.

As a SaaS architect, this means that you must be always thinking about how tenant
context will be conveyed across your system. You’ll also have to be thinking about the
specific technology strategies that will be used to package and apply this tenant con‐
text in ways that limit complexity and promote agility. This is a continual balancing
act for SaaS architects and builders.

Tenant Isolation
Multi-tenancy, by its very nature, focuses squarely on placing our customers and their
resources into environments where resources may be shared or at least reside side by
side in common infrastructure environments. This reality means that multi-tenant
solutions are often required to apply and implement creative measures to ensure that
tenant resources are protected against any potential cross-tenant access.

To better understand the fundamentals of this concept, let’s look at a simple concep‐
tual view of a solution running in our application plane (shown in Figure 2-8).

Inside the Application Plane | 35

Figure 2-8. Implementing tenant isolation

You’ll see we have the simplest of application planes running a single microservice.
For this example, our microservice is managing two different sets of data. On the
right there is an example where tenant data is stored in two separate databases. On
the left, the same microservice has data that commingled in the same table. At the
same time, our microservice is sharing its compute with all tenants. This means that
our microservice can process requests from Tenants 1 and 2 simultaneously.

While the data for our tenants is stored in separate storage constructs, there is noth‐
ing in our solution that ensures that Tenant 1 can’t access the data of Tenant 2. This
holds true even with my separate databases. Nothing about putting the data in a sepa‐
rate database guarantees that tenants can’t cross this boundary. Generally, deploying a
resource in a dedicated model doesn’t equate to achieving tenant isolation. It can
make it easier to implement, though.

To prevent any access to another tenant’s resources, our application plane must intro‐
duce a construct to prevent this cross-tenant access. The mechanisms to implement
this will vary wildly based on a number of different considerations. However, the
basic concept of tenant isolation spans all possible solutions. The idea is that every
application plane must introduce targeted constructs that strictly enforce the isolation
of individual tenant resources—even when they may be running in a shared
construct.

We’ll dig into this concept in great detail in Chapter 9. It goes without saying that ten‐
ant isolation represents one of the most fundamental building blocks of SaaS archi‐
tecture. As you build out your application plane, you’ll need to find the flavor and
approach that allows you to enforce isolation at the various levels of your SaaS
architecture.

Data Partitioning
The services and capabilities within our application plane often need to store data for
tenants. Of course, how and where you choose to store that data can vary significantly
based on the multi-tenant profile of your SaaS application. Any number of factors

36 | Chapter 2: Multi-Tenant Architecture Fundamentals

might influence your approach to storing data. The type of data, your compliance
requirements, your usage patterns, the size of the data, the technology you’re using—
these are all pieces of the multi-tenant storage puzzle.

In the world of multi-tenant storage, we refer to the design of these different storage
models as data partitioning. The key idea is that you are picking a storage strategy
that partitions tenant data based on the multi-tenant profile of that data. This could
mean the data is stored in some dedicated construct, or it could mean it lands in
some shared construct. These partitioning strategies are influenced by a wide range of
variables. The storage technology you’re using (object, relational, NoSQL, etc.) obvi‐
ously has a significant impact on the options you’ll have for representing and storing
tenant data. The business and use cases of your application can also influence the
strategy you select. The list of variables and options here is extensive.

As a SaaS architect, it will be your job to look at the range of different data that’s
stored by your system and figure out which partitioning strategy best aligns with your
needs. You’ll also want to consider how these strategies might impact the agility of
your solution. How data impacts the deployment of new features, the uptime of your
solution, and the complexity of your operational footprint requires careful considera‐
tion when selecting a data partitioning strategy. It’s also important to note that, when
picking a strategy, this is often a fine-grained decision. How you partition data can
vary across the different services within your application plane.

This is a much deeper topic that we’ll cover more extensively in Chapter 8. By the end
of that chapter, you’ll have a much better sense of what it means to bring a range of
different strategies to life using a variety of different storage technologies.

Tenant Routing
In this simplest of SaaS architecture models, you may find that all tenants are sharing
their resources. However, in most cases, your architecture is going to have variations
where some or all of your tenant’s infrastructure may be dedicated. In fact, it would
not be uncommon to have microservices that are deployed on a per tenant basis.

The main point is that SaaS application architectures are often required to support a
distributed footprint that has any number of resources running in a combination of
shared and dedicated models. Figure 2-9 provides a simplified sample of a SaaS archi‐
tecture that supports a mix of shared and dedicated tenant resources.

In this example, we have three tenants that will be making requests to invoke opera‐
tions on our application services. In this particular example, we have some resources
that are shared and some that are dedicated. On the left, Tenant 1 has an entirely
dedicated set of services. Meanwhile, on the righthand side, you’ll see that we have the
services that are being used by Tenants 2 and 3. Note that we have the product and

Inside the Application Plane | 37

rating services that are being shared by both of these tenants. However, these tenants
each have dedicated instances of the order service.

Figure 2-9. Routing on tenant context

Now, as you step back and look at the overall configuration of these services, you can
see where our multi-tenant architecture would need to include strategies and con‐
structs that would correctly route tenant requests to the appropriate services. This
happens at two levels within this example. Starting at the top, you’ll see where our
application plane is receiving requests from three separate tenants. It’s here that I’ve
introduced a conceptual placeholder for a router. This router must accept requests
from all tenants and use the injected tenant context (that we discussed earlier) to
determine how and where to route each request. Also, within the Tenant 2/3 box on
the right, you’ll see that there is another placeholder for routing that will determine
which instance of the order service will receive requests (based on tenant context).

Let’s look at a couple concrete examples to sort this out. Suppose we get a request
from Tenant 1 to look up a product. When the router receives this request, it will
examine the tenant context and route the traffic to the product service on the left (for
Tenant 1). Now, let’s say we get a request from Tenant 2 to update a product that must
also update an order. In this scenario, the top-level router would send the request to
the shared product service on the right (based on the Tenant 2 context). Then, the

38 | Chapter 2: Multi-Tenant Architecture Fundamentals

product service would send a request to the order service via the service-to-service
router. This router would look at the tenant context, resolve it to Tenant 2, and send a
request to the order service that’s dedicated to Tenant 2.

This example is meant to highlight the need for multi-tenant-aware routing con‐
structs that can handle the various deployments we might have in a SaaS environ‐
ment. Naturally, the technology and strategy that you apply here will vary based on a
number of parameters. There’s also a rich collection of routing tools and technologies,
each of which might approach this differently. Often, this comes down to finding a
tool that provides flexible and efficient ways to acquire and dynamically route traffic
based on tenant context.

We’ll see these routing constructs applied in specific solutions later in this book. At
this stage, it’s just important to understand that routing in multi-tenant environments
often adds a new wrinkle to our infrastructure routing model.

Multi-Tenant Application Deployment
Deployment is a pretty well understood topic. Every application you build will
require some DevOps technology and tooling that can deploy the initial version of
your application and any subsequent updates. While these same concepts apply to the
application plane of our multi-tenant environment, you’ll also discover that different
flavors of tenant application models will add new considerations to your application
deployment model.

We’ve already noted that tenants may have a mix of dedicated and shared resources.
Some may have fully dedicated resources, some may have fully shared, and others
may have some mix of dedicated and shared. Knowing this, we have to now consider
how this will influence the DevOps implementation of our application deployment.

Imagine deploying an application with two dedicated microservices and three shared
microservices. In this model, our deployment automation code will have to have
some visibility into the multi-tenant configuration of our SaaS application. It won’t
just deploy updated services like you would in a classic environment. It will need to
consult the tenant deployment profile and determine which tenants might need a
separate deployment of a microservice for each dedicated microservice. So, microser‐
vices within our application plane might be deployed multiple times. Our infrastruc‐
ture automation code may also need to apply tenant context to the configuration and
security profile of each of these microservices.

Technically, this is not directly part of the application plane. However, it has a tight
connection to the design and strategies we apply within the application plane. In gen‐
eral, you’ll find that the application plane and the provisioning of tenant environ‐
ments will end up being very interconnected.

Inside the Application Plane | 39

The Gray Area
While the control and application planes cover most of the fundamental multi-tenant
architecture constructs, there are still some concepts that don’t fit cleanly into either
of these planes. At the same time, these areas still belong in the discussion of founda‐
tional SaaS topics. While there are arguments that could be made for landing these in
specific planes, to steer clear of the debate, I’m going to handle these few items sepa‐
rately and address the factors that might push them into one plane or the other.

Tiering
Tiering is a strategy most architects have encountered as part of consuming various
third-party offerings. The basic idea here is that SaaS companies use tiers to create
different variations of an offering with separate price points. As an example, a SaaS
provider could offer their customers basic, advanced, and premium tiers where each
tier progressively adds additional value. Basic tier tenants might have constraints on
performance, number of users, features, and so on. Premium tier tenants might have
better service-level agreements (SLAs), a higher number of users, and access to addi‐
tional features.

The mistake some SaaS architects and builders make is that they assume that these
tiers are mostly pricing and packaging strategies. In reality, tiering can have a signifi‐
cant impact on many of the dimensions of your multi-tenant architecture. Tiering is
enabled by building a more pliable SaaS architecture that offers the business more
opportunities to create value boundaries that they may not have otherwise been able
to offer.

Tiering naturally layers onto our discussion of tenant context, since the context that
gets shared across our architecture often includes a reference to a given tenant’s tier.
This tier is applied across the architecture and can influence routing, security, and a
host of other aspects of the underlying implementation of your system.

In some implementations of tiering, we’ll see teams place this within their control
plane as a first-class concept. It’s true that onboarding often includes some need to
map a tenant’s profile to a given tier. Tiers are also often correlated to a billing plan,
which would seem natural to maintain within the scope of the control plane. At the
same time, tiers are also used heavily within the application plane. They can be used
to configure routing strategies or they could also be referenced as part of the configu‐
ration of throttling policies. The real answer is that tiering has a home in both planes.
However, I would probably lean toward placing it in the control plane since the tier
can be managed and returned by interactions with the control plane (authentication,
for example). The returned tier can be attached to the tenant context and applied
through that mechanism within the application plane.

40 | Chapter 2: Multi-Tenant Architecture Fundamentals

Tenant, Tenant Admin, and System Admin Users
The term “user” can easily get overloaded when we’re talking about SaaS architecture.
In a multi-tenant environment, we have multiple notions of what it means to be a
user—each of which plays a distinct role. Figure 2-10 provides a conceptual view of
the different flavors of users that you will need to support in your multi-tenant
solution.

Figure 2-10. Multi-tenant user roles

On the lefthand side of the diagram, you’ll see that we have the typical tenant-related
roles. There are two distinct types of roles here: tenant administrators and tenant
users. A tenant administrator represents the initial user from your tenant that is
onboarded to the system. This user is typically given admin privileges. This allows
them to access the unique application administration functionality that is used to
configure, manage, and maintain application-level constructs. This includes being
able to create new tenant users. A tenant user represents users that are utilizing the
application without any administrative capabilities. These users may also be assigned
different application-based roles that influence their application experience.

On the righthand side of the diagram, you’ll see that we also have system administra‐
tors. These users are connected to the SaaS provider and have access to the control
plane of your environment to manage, operate, and analyze the health and activity of
a SaaS environment. These admins may also have varying roles that are used to char‐
acterize their administrative privileges. Some may have full access, while others may
have limits on their ability to access or configure different views and settings.

You’ll notice that I’ve also shown an administration console as part of the control
plane. This represents an often overlooked part of the system admin role. It’s here to
highlight the need for a targeted SaaS administration console that is used to manage,
configure, and operate your tenants. It is typically something your team needs to
build to support the unique needs of your SaaS environment (separate from other
tooling that might be used to manage the health of your system). Your system admin
users will need an authentication experience to be able to access this SaaS admin
console.

The Gray Area | 41

SaaS architects need to consider each of these roles when building out a multi-tenant
environment. While the tenant roles are typically better understood, many teams
invest less energy in the system admin roles. The process for introducing and manag‐
ing the lifecycle of these users should be addressed as part of your overall design and
implementation. You’ll want to have a repeatable, secure mechanism for managing
these users.

The control plane versus application plane debate is particularly sticky when it comes
to managing users. There’s little doubt that the system admin users should be man‐
aged via the control plane. In fact, the initial diagram of the two planes shown at the
outset of this chapter (Figure 2-4) actually includes an admin user management ser‐
vice as part of its control plane. It’s when you start discussing the placement of tenant
users that things can get fuzzier. Some would argue that the application should own
the tenant user management experience and, therefore, management of these users
should happen within the scope of the application plane. At the same time, our tenant
onboarding process needs to be able to create the identities for these users during the
onboarding process, which suggests this should remain in the control plane. You can
see how this can get circular in a hurry.

My general preference here, with caveats, is that identity belongs in the control
plane—especially since this is where tenant context gets connected to user identities.
This aspect of the identity would never be managed in the scope of the application
plane.

You could make a compromise in this scenario, having the control plane manage the
identity and authentication experience while still allowing the application to manage
the non-identity attributes of the tenant outside of the identity experience. The other
option would be to have a tenant user management service in your control plane that
supports any additional user management functionality that may be needed by your
application. You could also have instances where you have separate identities for your
admin and tenant experiences. That would add another wrinkle.

The key takeaway is that you’ll need to give careful consideration to determining how
and where identity fits into your environment.

Tenant Provisioning
So far, we’ve highlighted the role of onboarding within the control plane. We also
looked at how the onboarding process may need to provision and configure applica‐
tion infrastructure as part of the onboarding experience. This raises an important
question: should tenant provisioning live within the control plane or the application
plane?

42 | Chapter 2: Multi-Tenant Architecture Fundamentals

Figure 2-11 provides a conceptual view of the two options. On the left, you’ll see the
model where tenant provisioning runs within the application plane. In this scenario,
all the elements of onboarding (tenant creation, billing configuration, and identity
setup) still happen within the scope of the control plane. The provisioning step is
triggered and orchestrated by the onboarding service but runs within the application
plane.

Figure 2-11. Placing the tenant provisioning process

The alternate approach is shown on the right side of this diagram. Here, tenant provi‐
sioning is executed from within the control plane. This means that the tenant provi‐
sioning would execute infrastructure configuration scripts that are applied within the
application plane. This puts all the moving parts of onboarding within the control
plane.

The trade-offs center around the encapsulation and abstraction of the application
plane. If you believe the structure and footprint of application infrastructure should
be unknown to the control plane, then you’ll favor the model on the left. If you feel
strongly that onboarding is already owned by the control plane, you could argue that
it’s natural for it to also own the application provisioning and configuration process.

My bias leans toward keeping provisioning closest to the resources that are being
described and configured. I’d prefer not to make updates to the control plane based
on changes in the architecture of the application plane. The trade-off is that the con‐
trol plane must support a more distributed onboarding experience and rely on mes‐
saging between the control and application planes to track the provisioning status.
Both models have their merits. The key is that provisioning should be a standalone
part of the onboarding experience. So, if at some point you choose to move it, it
would be somewhat encapsulated and could move without significant rethink.

The Gray Area | 43

Integrating the Control and Application Planes
Some organizations will create very specific boundaries between the control and
application planes. This might be a network boundary or some other architectural
construct that separates these two planes. This has advantages for some organizations
in that it allows these planes to be configured, managed, and operated based on the
unique needs of each plane. It also introduces opportunities to design more secure
interactions between these planes.

With this in mind, we can then start to consider different approaches to integrating
the control and application planes. The integration strategy you choose here will be
heavily influenced by the nature of the interactions between the planes, the geo‐
graphic footprint of your solution, and the security profile of your environment.

Some teams may opt for a more loosely coupled model that is more event or message
driven while others may require a more native integration that enables more direct
control of the application plane resources. There are few absolutes here, and there are
a wide range of technologies that bring different possibilities to this discussion. The
key is to be thoughtful in picking an integration model that enables the level of con‐
trol that fits the needs of your particular domain, application, and environment.

Much of the discussion here leans toward a model where the appli‐
cation and control planes are deployed and managed in separate
infrastructures. While the merits of separating these planes are
compelling, it’s important to note that there is no rule that suggests
that these planes must be divided along some hard boundary.
There are valid scenarios where a SaaS provider may choose to
deploy the control and application planes into a shared environ‐
ment. The needs of your environment, the nature of your technol‐
ogy, and a range of other considerations will determine how you
deploy these planes with more concrete architectural boundaries.
The key is to ensure that you divide your system into these distinct
planes—regardless of how and where they are deployed.

As we dig into the specifics of the control plane, we can look at the common touch
points between these two planes and get into the specific integration use cases and
their potential solutions. For now, though, just know that integration is a key piece of
the overall control plane and application plane model.

44 | Chapter 2: Multi-Tenant Architecture Fundamentals

Picking Technologies for Your Planes
SaaS teams pick the technologies for implementing their SaaS solutions based on any
number of different variables. Skill sets, cloud providers, domain needs, legacy
considerations—these are just a few of the many parameters that go into selecting a
technology for your multi-tenant SaaS offering.

Now, as we look at SaaS through the lens of our control and application planes, it’s
also natural to think about how the needs of these two planes might influence your
choice of technologies. If you choose an entirely container-based model for your
application plane, should that mean your control plane must also be implemented
with containers? The reality is that the planes will support different needs and differ‐
ent consumption profiles. There is nothing that suggests that the technologies they
use must somehow match.

Consider, for example, the cost and consumption profile of your control plane. Many
of these services may be consumed on a more limited basis than services running in
our application plane. We might favor choosing a different technology for our control
plane that yields a more cost-efficient model. Some teams might choose to use server‐
less technologies to implement their control plane.

The decisions can also be much more granular. I might choose one technology for
some types of services and different technologies for other services. The key is that
you should not assume that the profile, consumption, and performance profile of
your control and application planes will be the same. As part of architecting your
SaaS environment, you want to consider the technology needs of these two planes
independently.

Avoiding the Absolutes
This discussion of SaaS architecture concepts devoted lots of attention to defining
SaaS architecture through the lens of the control and application planes. The planes
equip us with a natural way to think about the different components of a multi-tenant
architecture and they give us a good mental model for thinking about how the differ‐
ent features of a multi-tenant architecture should land in your SaaS environment.

While these constructs are useful, I would also be careful about attaching absolutes to
this model. Yes, it’s a good way to think about SaaS and it provides us with a frame‐
work for talking about how we can approach building multi-tenant solutions. It’s cer‐
tainly provided me with a powerful construct for engaging teams that are trying to
design and architect their SaaS systems. It has also put emphasis on the need for a set
of shared services that are outside the scope of the multi-tenant architecture of your
application.

Avoiding the Absolutes | 45

The key here, though, is to use these concepts to shape how you approach your SaaS
architecture, allowing for the fact that there may be nuances of your environment that
may require variations in your approach. It’s less about being absolute about what’s in
each plane and more about creating an architecture that creates a clear division of
responsibility and aligns with the security, management, and operational profile of
your SaaS offering.

Conclusion
This chapter was all about building a foundation of SaaS architecture concepts. We
looked at the core elements of SaaS architecture with the goal of framing multi-tenant
architecture patterns and strategies without getting into the specifics of any particular
technology or domain. The concepts covered here should apply to any SaaS environ‐
ment and provide any team with any technology a mental model for approaching
SaaS architecture.

We’ve really only touched the surface of multi-tenant architecture here. As we move
forward, we’ll start mapping these concepts to concrete examples that tease out all the
underlying details and add another layer of design considerations to the mental
model that we’ve created. This added layer of detail will start to illustrate the web of
possibilities you’ll need to navigate as you consider how best to connect the needs of
your SaaS business with the realities that come with realizing these principles with
languages, technology stacks, and tools that bring their own set of variables to your
multi-tenant equation.

Our next step is to start looking at SaaS deployment models. This will shift us from
thinking about concepts, to mapping these concepts, to seeing those concepts landed
in different patterns of deployment. The goal is to start thinking about and bringing
more clarity to the strategies that are used to support the various SaaS models that
you’ll need to consider as you shape your SaaS architecture.

46 | Chapter 2: Multi-Tenant Architecture Fundamentals

CHAPTER 3

Multi-Tenant Deployment Models

Selecting your multi-tenant deployment model is one of the first things you’ll do as a
SaaS architect. It’s here that you step back from the details of the multi-tenant imple‐
mentation and ask yourself broader questions about the fundamental footprint of
your SaaS environment. The choices you make around the deployment model of your
application will have a profound influence on the cost, operations, tiering, and a host
of other attributes that will have a direct impact on the success of your SaaS business.

In this chapter, I’ll be walking through a range of different multi-tenant deployment
models, exploring how each of these models can be used to address a variety of differ‐
ent technology and business requirements. Along the way, I’ll highlight the pros and
cons of the various models and give you a good sense of how the model you select
can shape the complexity, scalability, performance, and agility of your SaaS offering.
Understanding these models and their core values and trade-offs is essential to arriv‐
ing at an architecture strategy that balances the realities of your business, customers,
time pressures, and long-term SaaS objectives. While there are themes in these mod‐
els that are common to many SaaS teams, there is no one blueprint that everyone will
follow. Instead, it will be your job to navigate these deployment models, weigh the
options, and select a model or combination of models that address your current and
emerging needs.

We’ll also use this chapter to continue to expand our SaaS vocabulary, attaching ter‐
minology to these models and their supporting constructs that will be referenced
throughout the remainder of this book. These new terms will give you more precise
ways to describe the nature of SaaS environments and enable you to be crisper and
more granular about how you describe the moving parts of a multi-tenant architec‐
ture. These terms and concepts allow you to describe and classify SaaS architectures
in a way that better accommodates the range of multi-tenant permutations that you
will find in the wild.

47

As we begin to deploy models, you’ll start to see hints of specific technology finding
its way into our exploration of these patterns. While the deployment models patterns
have no direct mapping to a specific technology, you’ll begin to see how they take
shape as I start connecting them to more concrete constructs. This is where you’ll
start to see more native Amazon Web Services (AWS) services and mechanisms sur‐
facing. Generally, though, you are likely to find equivalents to these AWS constructs
in whatever tools and technologies you’re using.

The broader goal is to get you exposed to the language and mindset that surround
selecting a deployment model. By the end of this chapter, you should have a better
sense of the options and the forces that might shape the deployment model you
choose for your application.

What’s a Deployment Model?
Part of the challenge of describing SaaS architectures is that there is no single archi‐
tecture strategy that somehow applies to all SaaS solutions. Instead, we find that SaaS
architectures come in a range of shapes, sizes, and footprints, each of which has its
own unique set of values and principles. It’s your job to figure out which permuta‐
tions of these strategies best fits the needs of your solution. Will some tenants require
entirely dedicated infrastructure? Will others need to share their infrastructure? Or
will you need a mix of these options? It’s these higher-level, fundamental questions
that you’ll need to ask yourself as you begin defining the deployment footprint of
your SaaS architecture.

The first hurdle I faced in this space was the absence of any precise terminology that
accurately categorized the different patterns of multi-tenant deployments. The
domain needed a better way to characterize how resources could be landed in your
environment to support the varying requirements of tenants. This is where the notion
of deployment models originated. The goal with defining deployment models was to
give builders a way to describe the higher-level architecture strategies that are used to
describe the deployment signatures of different tenant environments. A deployment
model indicates how you’ll be deploying resources and infrastructure within the
application plane of your multi-tenant solution.

Let’s look at a couple of conceptual deployment models to help clarify this concept.
Figure 3-1 provides examples of two sample deployment models.

48 | Chapter 3: Multi-Tenant Deployment Models

Figure 3-1. Conceptual deployment models

On the left, you’ll see a deployment model that has all of its tenant resources being
shared across the compute layers of our multi-tenant environment. However, the
storage resources are dedicated to individual tenants. In contrast, the righthand side
of the diagram provides another variation of a deployment model where all of a ten‐
ant’s infrastructure (compute, storage, etc.) is deployed in a dedicated model. These
are just a small sample of two deployment models, but they give you a more concrete
view of what we’re talking about when we’re describing the fundamental aspects of a
SaaS deployment model. The key takeaway here is that your deployment model rep‐
resents the strategy that you’re using to determine how tenant workloads will be map‐
ped to their corresponding infrastructure resources. It expresses which resources will
be shared and which will be dedicated.

At this level, a deployment model is a relatively straightforward concept. As you
move forward and start to look at how these deployment models come to life, you’ll
get a better sense of the nuances that come with defining a deployment model. This
becomes especially relevant as you start thinking about the workloads, compliance,
isolation, and tiering needs of your multi-tenant solution. These factors end up play‐
ing a big role in shaping the overall footprint of your deployment model. The deploy‐
ment model you choose can reach across your architecture, influencing the routing,
authorization, cost efficiency, and operational profile of your environment. The
choices you make when selecting a deployment model will have a profound influence
on nearly every dimension of our SaaS offering.

What’s a Deployment Model? | 49

Picking a Deployment Model
Understanding the value proposition of each deployment model is helpful. However,
selecting a deployment model goes beyond evaluating the characteristics of any one
model. When you sit down to figure out which deployment model is going to be best
for your application and business, you’ll often have to weigh a wide spectrum of
parameters.

In some cases, the state of your current solution might have a huge impact on the
deployment model you choose. A SaaS migration, for example, can often be more
about finding a target deployment model that lets you get to SaaS without rebuilding
your entire solution. Time to market, competitive pressures, legacy technology con‐
siderations, and team makeup are also factors that could represent significant vari‐
ables in a SaaS migration story. Each of these factors would likely shape the selection
of a deployment model.

Obviously, teams that are building a new SaaS solution have more of a blank canvas
to work with. Here, the deployment model that you choose is probably more driven
by the target personas and experience that you’re hoping to achieve with your multi-
tenant offering. The challenge is selecting a deployment model that balances the near-
and long-term goals of the business. Selecting a model that is too narrowly focused
on a near-term experience could limit growth as your business hits critical mass. At
the same time, over-rotating to a deployment model that reaches too far beyond the
needs of current customers may represent pre-optimization. Finding the right blend
of flexibility and focus can be challenging.

No matter where you start your path to SaaS, there are certainly some broader global
factors that will influence your deployment model selection. Packaging, tiering, and
pricing goals, for example, often play a key role in determining which deployment
model(s) might best fit with your business goals. Cost and operational efficiency are
also part of the deployment model puzzle. While every solution would like to be as
cost and operationally efficient as possible, your domain or business realities may
require you to make compromises that will influence how you approach selecting a
deployment model. If your business has very tight margins, you might lean more
toward deployment models that squeeze every last bit of cost efficiency out of your
deployment model. Others may be facing challenging compliance or performance
considerations that might lead to deployment models that strike a balance between
cost and customer demands.

These are just some simple examples that are part of the fundamental thought pro‐
cess you’ll go through as part of figuring out which deployment model will address
the core needs of your business. As I get deeper into the details of multi-tenant

50 | Chapter 3: Multi-Tenant Deployment Models

architecture patterns, you’ll see more and more places where the nuances of multi-
tenant architecture strategies will end up adding more dimensions to the deploy‐
ment model picture. This will also give you a better sense of how the differences
in these models might influence the complexity of your underlying solution. The
nature of each deployment model can move the complexity from one area of our
system to another.

The key here is that you should not be looking for a one-size-fits-all deployment
model for your application. Instead, you should start with the needs of your domain,
customers, and business and work backward to the combination of requirements that
will point you toward the deployment model that fits with your current and aspira‐
tional goals.

It’s also important to note that the deployment model of your SaaS environment is
expected to evolve over time. Yes, you’ll likely have some core aspects of your archi‐
tecture that will remain fairly constant. However, you should also expect and be look‐
ing for ways to refine your deployment model based on the changing/emerging needs
of customers, shifts in the market, and new business strategies. Worry less about get‐
ting it right on day one and just expect that you’ll be using data from your environ‐
ment to find opportunities to refactor your deployment model. A resource that
started out as a dedicated resource might end up switched to a shared resource based
on consumption, scaling, and cost considerations. A new tier might have you offering
some parts of your system in a dedicated model. Being data driven and adaptable are
all part of the multi-tenant technical experience.

Introducing the Silo and Pool Models
As we look at deployment models, we’re going to discover that these models will
require the introduction of new terminology that can add precision to how we char‐
acterize SaaS architecture constructs. This relates to our earlier exploration of how
the term “multi-tenant” had to take on a broader meaning to fit the realities of SaaS
businesses. Now, as we start to look at deployment models, you’ll notice that we still
need terminology that can better capture and accurately convey how the resources in
our multi-tenant architecture are consumed by tenants.

There are two terms that I’m going to introduce here to give us a more granular way
to think about classifying dedicated and shared resources. Across the rest of this
book, you’ll see that I will use the term “silo” to refer to any model where a resource is
dedicated to a given tenant. I’ll use the term “pool” to reference any model where a
tenant resource is shared by one or more tenants.

Introducing the Silo and Pool Models | 51

This may seem like a subtle nuance in language. In reality, it has significant implica‐
tions on how we describe multi-tenant architecture. It allows us to describe the
behavior and scope of our SaaS architecture resources without the ambiguity and leg‐
acy baggage that comes with labeling resources as multi-tenant. As we look more at
deployment models and the full range of SaaS architecture concepts that span this
book, I will be using silo and pool as the foundational terms that characterize the
usage, deployment, and consumption of the resources in our multi-tenant
architecture.

To help crystallize this concept, let’s look at a conceptual architecture that includes
resources that are being consumed in a combination of dedicated and shared models.
Figure 3-2 provides a view of a series of microservices that have been deployed into a
SaaS architecture. In this image, I’ve created a hypothetical environment where we
have a series of microservices that are using different strategies for dedicating and
sharing tenant resources.

Figure 3-2. Siloed and pooled resource models

At the top of Figure 3-2, you’ll see that I’ve put two tenants to illustrate how the ten‐
ants in our environment are landing in and consuming resources. These tenants are
running an ecommerce application that is implemented via Product, Order, and
Invoice microservices. Now, if we follow a path through these microservices from left
to right, you’ll see how we’ve applied different deployment strategies for each of these
microservices.

52 | Chapter 3: Multi-Tenant Deployment Models

Let’s start with the Product microservice. With this service, I’ve chosen a strategy
where the compute and storage for all of our tenants will be deployed in a pooled
model. For this scenario, I have decided that the isolation and performance profile of
this service fits best with the values of a pooled approach. As we move to the Order
microservice, you’ll see that I’ve chosen a very different model. In this case, the ser‐
vice has siloed compute and storage for every tenant. Again, this was done based on
the specific needs of my environment. This could have been driven by some SLA
requirement or, perhaps, a compliance need.

From the Order service, you’ll then see that our system sends a message to a queue
that prepares these orders for billing. This scenario is included to highlight the fact
that our siloed and pooled concepts are extended beyond our microservices and
applied to any resource that might be part of our environment. For this solution, I’ve
opted to have siloed queues for each tenant. Finally, I have an Invoice service on the
righthand side that pulls messages from these queues and generates invoices. To meet
the requirements of our solution, I’ve used a mix of siloed and pooled models in this
microservice. Here, the compute is pooled and the storage is siloed.

The key takeaway is that the terms “silo” and “pool” are used to generally characterize
the architecture footprint of one or more resources. These terms can be applied in a
very granular fashion, highlighting how tenancy is mapped to very specific elements
of your architecture. These same terms can also be used more broadly to describe
how a collection of resources are deployed for a tenant, so don’t try to map silo and
pool to specific constructs. Instead, think of them as describing the tenancy of a sin‐
gle resource or a group of resources.

This caveat will be especially important as we look at deployment models throughout
this chapter, allowing us to apply silo and pool concepts at varying scopes across our
multi-tenant architecture.

Full Stack Silo Deployment
Now that you have a high-level sense of the scope and role of deployment models, it’s
time to dig in a bit more and start looking at defining specific types of deployment
models. Let’s start by looking at what I’ll label as a full stack silo deployment model.

As its name suggests, the full stack silo model places each tenant into an environment
where all of their resources are completely siloed. Figure 3-3 provides an example of a
full stack silo environment. Here you’ll see that we have an environment where our
application plane is running workloads for two tenants. These two tenants are run‐
ning in silos where the compute, storage, and every resource that’s needed for the ten‐
ant is deployed into some logical construct that creates a clear boundary between our
tenants.

Full Stack Silo Deployment | 53

Figure 3-3. Full stack silo deployment model

In this particular example, I simplified the contents of the silo, showing a range of
microservices that are running in each tenant environment. In reality, what’s in the
silo could be represented by any number of different technologies and design strate‐
gies. This could have been an n-tier environment with separate web, application, and
storage tiers. I could have included any number of different compute models and
other services as well (queues, object storage, messaging, and so on). The emphasis, at
this stage, is less on what’s in each of these tenant environments and more on the
nature of how they are deployed.

Where Full Stack Silo Fits
The full stack silo model can feel like a bit of a SaaS antipattern. After all, so much of
our discussion of SaaS is centered around agility and efficiency. Here, where we have
fully siloed tenant resources, it can appear as though we’ve compromised on some of
the fundamental goals of SaaS. However, if you think back to the definition of SaaS in
Chapter 1, you’ll recall that SaaS isn’t exclusively about sharing infrastructure for
economies of scale. SaaS is about operating in a model where all of our tenants are
operated, managed, and deployed collectively. This is the key thing to keep in mind

54 | Chapter 3: Multi-Tenant Deployment Models

when you’re looking at the full stack silo model. Yes, it has efficiency challenges. We’ll
get into those. At the same time, as long as every one of these environments is the
same and as long as these are running the same version of our application, then we
can still realize much of the value proposition of SaaS.

So, knowing that full stack silo meets our criteria for SaaS, the real question is more
about when it might make sense for you to employ this model. Which factors typi‐
cally steer organizations toward a full stack silo experience? When might it be a fit for
the business and technology realities of your environment? While there are no abso‐
lutes here, there are common themes and environmental factors that have teams
selecting the full stack silo model. Compliance and legacy considerations are two of
the typical reasons teams will end up opting for a full stack silo footprint. In some
heavily regulated domains, teams may choose a full stack silo model to simplify their
architecture and make it easier for them to address specific compliance criteria. Cus‐
tomers in these domains might also have some influence on the adoption of a full
stack silo, insisting on having siloed resources as part of selecting a SaaS solution.

The full stack silo model can also represent a good fit for organizations that are
migrating a legacy solution to SaaS. The fully siloed nature of this model allows these
organizations to move their existing code into a SaaS model without major refactor‐
ing. This gets them to SaaS faster and reduces their need to more immediately take on
adding tenancy to all the moving parts of their architecture. Migrating teams will still
be required to retrofit your legacy environment to align with the SaaS control plane,
its identity model, and a host of other multi-tenant considerations. However, the
scope and reach of these impacts can be less pronounced if your solution is moving
into a full stack silo environment that doesn’t need to consider scenarios where any of
a tenant’s resources are pooled.

Full stack silo can also be a tiering strategy. For example, some organizations may
offer a premium version of their solution that, for the right price, will offer tenants a
fully dedicated experience. It’s important to note that this dedicated experience is not
created as a one-off environment for these tenants. It’s still running the same version
of the application and is centrally managed alongside all the other tiers of the system.

In some cases, the full stack model simply represents a lower barrier of entry for
teams—especially those that may not be targeting a large number of tenants. For
these organizations, full stack silo allows them to get to SaaS without tackling some of
the added complexities that come with building, isolating, and operating a pooled
environment. Of course, these teams also have to consider how adoption of a full
stack silo model might impact their ability to rapidly scale the business. In this case,
the advantages of starting with a full stack could be offset by the inefficiencies and
margin impacts of being in a full stack silo model.

Full Stack Silo Deployment | 55

Full Stack Silo Considerations
Teams that opt for a full stack silo model will need to consider some of the nuances
that come with this model. There are definitely pros and cons to this approach that
you’ll want to add to your mental model when selecting this type of deployment. The
sections that follow provide a breakdown of some of the key design, build, and
deployment considerations that are associated with the full stack silo deployment
model.

Control plane complexity
As you may recall, I have described all SaaS architectures as having control and appli‐
cation planes where our tenant environments live in the application plane and are
centrally managed by the control plane. Now, with the full stack silo model, you have
to consider how the distributed nature of the full stack model will influence the com‐
plexity of your control plane.

In Figure 3-4, you can see an example of a full stack silo deployment that highlights
some of the elements that come with building and managing this model. Since our
solution is running in a silo per tenant model, the application plane must support
completely separate environments for each tenant. Instead of interacting with a sin‐
gle, shared resource, our control plane must have some awareness of each of these
tenant silos. This inherently adds complexity to our control plane, which now must
be able to operate each of these separate environments.

Figure 3-4. Managing and operating a full stack silo

56 | Chapter 3: Multi-Tenant Deployment Models

Imagine implementing tenant onboarding in this example. The addition of each new
tenant to this environment must fully provision and configure each siloed tenant
environment. This also complicates any tooling that may need to monitor and man‐
age the health of tenant environments. Your control plane code must know where
each tenant environment can be found and be authorized to access each tenant silo.
Any operational tooling that you have that is used to manage infrastructure resources
will also need to deal with the larger, more distributed footprint of these tenant envi‐
ronments, which could make troubleshooting and managing infrastructure resources
unwieldy. Any tooling you’ve created to centralized metrics, logs, and analytics for
your tenants will also need to be able to aggregate the data from these separate tenant
environments. Deployment of application updates is also more complicated in this
model. Your DevOps code will have to roll out updates to each tenant silo.

There are likely more complexities to cover here. However, the theme is that the dis‐
tributed nature of the full stack silo model touches many of the moving parts of your
control plane experience, adding complexity that may not be as pronounced in other
deployment models. While the challenges here are all manageable, it definitely will
take extra effort to create a fully unified view of management and operations for any
full stack silo environment.

Scaling impacts
Scale is another important consideration for the full stack silo deployment model.
Whenever you’re provisioning separate infrastructure for each tenant, you need to
think about how this model will scale as you add more tenants. While the full stack
silo model can be appealing when you have 10 tenants, its value can begin to erode as
you consider supporting hundreds or thousands of tenants. The full stack silo model
would not be practical for any B2C environment where the scale and number of ten‐
ants would be massive. Naturally, the nature of your architecture would also have
some influence on this. If you’re running Kubernetes, for example, it might come
down to how effectively the silo constructs of Kubernetes would scale here (clusters,
namespaces, etc.). If you’re using separate cloud networking or account constructs for
each siloed tenant, you’ll have to consider any limits and constraints that might be
applied by your cloud provider.

The broader theme is that full stack siloed deployments are not for everyone. As I get
into specific full stack silo architectures, you’ll see how this model can run into
important scaling limits. More importantly, even if your environment can scale in a
full stack silo model, you may find that there’s a point at which the full stack silo can
become difficult to manage. This could undermine your broader agility and innova‐
tion goals.

Full Stack Silo Deployment | 57

Cost considerations
Costs are also a key area to explore if you’re looking at using a full stack silo model.
While there are measures you can take to limit overprovisioning of siloed environ‐
ments, this model does put limits on your ability to maximize the economies of scale
of your SaaS environment. Typically, these environments will require lots of dedicated
infrastructure to support each tenant and, in some cases, this infrastructure may not
have an idle state where it’s not incurring costs. For each tenant, then, you will have
some baseline set of costs for tenants that you’ll incur—even if there is no load on the
system. Also, because these environments aren’t shared, we don’t get the efficiencies
that would come with distributing the load of many tenants across shared infrastruc‐
ture that scales based on the load of all tenants. Compute, for example, can scale
dynamically in a silo, but it will only do so based on the load and activity of a single
tenant. This may lead to some overprovisioning within each silo to prepare for the
spikes that may come from individual tenants.

Generally, organizations offering full stack silo models are required to create cost
models that help overcome the added infrastructure costs that come with this model.
That can be a mix of consumption and some additional fixed fees. It could just be a
higher subscription price. The key here is that, while the full stack silo may be the
right fit for some tiers or business scenarios, you’ll still need to consider how the
siloed nature of this model will influence the pricing model of your SaaS
environment.

As part of the cost formulas, we must also consider how the full stack silo model
impacts the operational efficiency of your organization. If you’ve built a robust con‐
trol plane and you’ve automated all the bits of your onboarding, deployment, and so
on, you can still surround your full stack silo model with a rich operational experi‐
ence. However, there is some inherent complexity that comes with this model that
will likely add some overhead to your operational experience. This might mean that
you will be required to invest more in the staff and tooling that’s needed to support
this model, which will add additional costs to your SaaS business.

Routing considerations
In Figure 3-4, I also included a conceptual placeholder for the routing of traffic
within our application plane. With a full stack silo, you’ll need to consider how the
traffic will be routed to each silo based on tenant context. While there are any num‐
ber of different networking constructs that we can use to route this load, you’ll still
need to consider how this will be configured. Are you using subdomains for each ten‐
ant? Will you have a shared domain with the tenant context embedded in each
request? Each strategy you choose will require some way for your system to extract
that context and route your tenants to the appropriate silo.

58 | Chapter 3: Multi-Tenant Deployment Models

The configuration of this routing construct must be entirely dynamic. As each new
tenant is onboarded to your system, you’ll need to update the routing configuration
to support routing this new tenant to its corresponding silo. None of this is wildly
hard, but this is an area that will need careful consideration as you design your full
stack siloed environment. Each technology stack will bring its own set of considera‐
tions to the routing problem.

Availability and blast radius
The full stack silo model does offer some advantages when it comes to the overall
availability and durability of your solution. Here, with each tenant in its own environ‐
ment, there is potential to limit the blast radius of any potential operational issue. The
dedicated nature of the silo model gives you the opportunity to contain some issues
to individual tenant environments. This can certainly have an overall positive effect
on the availability profiles of your service.

Rolling out new releases also behaves a bit differently in siloed environments. Instead
of having your release pushed to all customers at the same time, the full stack silo
model may release to customers in waves. This can allow you to detect and recover
from issues related to a deployment before it is released to the entire population. It, of
course, also complicates the availability profile. Having to deploy to each silo sepa‐
rately requires you to have a more complicated rollout process that can, in some
cases, undermine the availability of your solution.

Simpler cost attribution
One significant upside to the full stack silo model is its ability to attribute costs to
individual tenants. Calculating cost per tenant for multi-tenant environments, as
you’ll see in Chapter 14, can be tricky in SaaS environments where some or all of a
tenant’s resources may be shared. Knowing just how much of a shared database or
compute resource was consumed by a given tenant is not so easy to infer in pooled
environments. However, in a full stack silo model, you won’t face these complexities.
Since each tenant has its own dedicated infrastructure, it becomes relatively easy to
aggregate and map costs to individual tenants. Cloud providers and third-party tools
are generally good at mapping costs to individual infrastructure resources and calcu‐
lating a cost for each tenant.

Full Stack Silo in Action
Now that we have a good sense of the full stack silo model, let’s look at some working
examples of how this model is brought to life in real-world architectures. As you can
imagine, there are any number of ways to implement this model across the various
cloud providers, technology stacks, and so on. The nuances of each technology stack
adds their own set of considerations to your design and implementation.

Full Stack Silo Deployment | 59

The technology and strategy you use to implement your full stack silo model will
likely be influenced by some of the factors that were outlined above. They might also
be shaped by attributes of your technology stack and your domain realities.

The examples are pulled from my experience building SaaS solutions at AWS. While
specific to AWS, these patterns have corresponding constructs that have mappings to
other cloud providers. And, in some instances, these full stack silo models could also
be built in an on-premises model.

The account-per-tenant model
If you’re running in a cloud environment—which is where many SaaS applications
often land—you’ll find that these cloud providers have some notion of an account.
These accounts represent a binding between an entity (an organization or individual)
and the infrastructure that they are consuming. And while there’s a billing and secu‐
rity dimension to these accounts, our focus is on how these accounts are used to
group infrastructure resources.

In this model, accounts are often viewed as the strictest of boundaries that can be cre‐
ated between tenants. This, for some, makes an account a natural home for each ten‐
ant in your full stack silo model. The account allows each silo of your tenant
environments to be surrounded and protected by all the isolation mechanisms that
cloud providers use to isolate their customer accounts. This limits the effort and
energy you’ll have to expend to implement tenant isolation in your SaaS environ‐
ment. Here, it’s almost a natural side effect of using an account per tenant in your full
stack silo model.

Attributing infrastructure costs to individual tenants also becomes a much simpler
process in an account-per-tenant model. Generally, your cloud provider already has
all the built-in mechanisms needed to track costs at the account level, so with an
account-per-tenant model, you can just rely on these ready-made solutions to
attribute infrastructure costs to each of your tenants. You might have to do a bit of
extra work to aggregate these costs into a unified experience, but the effort to assem‐
ble this cost data should be relatively straightforward.

In Figure 3-5, I’ve provided a view of an account-per-tenant architecture. You’ll see
that I’ve shown two full stack siloed tenant environments. These environments are
mirror images, configured as clones that are running the exact same infrastructure
and application services. When any updates are applied, they are applied universally
to all tenant accounts.

Within each account, you’ll see examples of the infrastructure and services that might
be deployed to support the needs of your SaaS application. There are placeholders to
represent the services that support the functionality of your solution. To the right of
these services, I also included some additional infrastructure resources that are used

60 | Chapter 3: Multi-Tenant Deployment Models

within our tenant environments. Specifically, I put an object store (Amazon Simple
Storage Service) and a managed queue service (Amazon Simple Queue Service). The
object store might hold some global assets, and the queue is here to support asyn‐
chronous messaging between our services. I included these to drive home the point
that our account-per-tenant silo model will typically encapsulate all of the infrastruc‐
ture that is needed to support the needs of a given tenant.

Figure 3-5. The account-per-tenant full stack silo model

Now, the question is: does this model mean that infrastructure resources cannot be
shared between our tenant accounts? For example, could these two tenants be run‐
ning all of their microservices in separate accounts and share access to a centralized
identity provider? This wouldn’t be unnatural. The choices you make here are driven
by a combination of business/tenant requirements as well as the complexities associ‐
ated with accessing resources that are outside the scope of a given account.

Let’s be clear—the application functionality of your solution is running completely in
its own account. The only area here where we might allow something to be outside of
the account is when it plays some more global role in our system. Let’s imagine the
object store represents a globally managed construct that holds information that is
centrally managed for all tenants. In some cases, you may find one-off reasons to have
some bits of your infrastructure running in some shared model. However, anything
that is shared cannot have an impact on the performance, compliance, and isolation
requirements of our full stack silo experience. Essentially, if you create some central‐
ized, shared resource that impacts the rationale for adopting a full stack silo model,
then you’ve probably violated the spirit of using this model.

Full Stack Silo Deployment | 61

The choices you make here should start with assessing the intent of your full stack
silo model. Did you choose this model based on an expectation that customers would
want all of their infrastructure to be completely separated from other tenants, or was
it more based on a desire to avoid noisy neighbor and data isolation requirements?
Your answers to these questions will have a significant influence on how you choose
to share parts of your infrastructure in this model.

If your code needs to access any resources that are outside of your account, this can
introduce new challenges. Any externally accessed resource would need to be run‐
ning within the scope of some other account, and as a rule of thumb, accounts have
very intentional and hard boundaries to secure the resources in each account. So,
then, you’d have to delve into authorizing cross-account access to enable your system
to interact with any resource that lives outside of a tenant account.

Generally, I would stick with the assumption that, in a full stack silo model, your goal
is to have all of a tenant’s resources in the same account. Only when there’s a compel‐
ling reason that still meets the spirit of your full stack silo should you consider how
you might support any centralized resources.

Onboarding automation. The account-per-tenant silo model adds some additional
twists to the onboarding of new tenants. As each new tenant is onboarded (as we’ll
see in Chapter 4), you will have to consider how you’ll automate all the provisioning
and configuration that comes with introducing a new tenant. For the account-per-
tenant model, our provisioning goes beyond the creation of tenant infrastructure—it
also includes the creation of new accounts.

While there are definitely ways to automate the creation of accounts, there are aspects
that can’t always be fully automated. In cloud environments, there are some inten‐
tional constraints that may restrict your ability to automate the configuration or pro‐
visioning of resources that may exceed the default limits for those resources. For
example, your system may rely on a certain number of load balancers for each new
tenant account, but the number you require for each tenant may exceed the default
limits of your cloud provider. Now, you’ll need to go through the processes, some of
which may not be automated, to increase the limits to meet the requirements of each
new tenant account. This is where your onboarding process may not be able to fully
automate every step in a tenant onboarding. Instead, you may need to absorb some of
the friction that comes with using the processes that are supported by your cloud pro‐
vider. In general, the default limits for many resources could be well below what
you’ll need to effectively scale your environment.

While teams do their best to create clear mechanisms for creating each new tenant
account, you may just need to allow for the fact that, as part of adopting an account-
per-tenant model, you’ll need to consider how these potential limit issues might
influence your onboarding experience. This might mean creating different

62 | Chapter 3: Multi-Tenant Deployment Models

expectations around onboarding SLAs and better managing tenant expectations
around this process.

Scaling considerations. I’ve already highlighted some of the scaling challenges that are
typically associated with the full stack silo model. However, with the account-per-
tenant model, there’s another layer to the full stack silo scaling story.

Generally speaking, mapping accounts to tenants could be viewed as a bit of an anti‐
pattern. Accounts, for many cloud providers, were not necessarily intended to be
used as the home for tenants in multi-tenant SaaS environments. Instead, SaaS pro‐
viders just gravitated toward them because they seemed to align well with their goals.
And, to a degree, this makes perfect sense.

Now, if you have an environment with tens of tenants, you may not feel much of the
pain as part of your account-per-tenant model. However, if you have plans to scale to
a large number of tenants, you may begin to hit a wall with this model. The most
basic issue you can face here is that you may exceed the maximum number of
accounts supported by your cloud provider. The more subtle challenge shows up over
time. The proliferation of accounts can end up undermining the agility and efficiency
of your SaaS business. Imagine having hundreds or thousands of tenants running in
this model. This will translate into a massive footprint of infrastructure that you’ll
need to manage. While you can take measures to try to streamline and automate the
management and operation of all these accounts, there could be points at which this
may no longer be practical.

So, where is the point of no return? I can’t say there’s an absolute data point at which
the diminishing returns kick in. So much depends on the nature of your tenant infra‐
structure footprint. I mention this mostly to ensure that you’re factoring this into
your thinking when you take on an account-per-tenant model.

The VPC-per-tenant model
The account-per-tenant model relies on a pretty coarse-grained boundary. Let’s shift
our focus to constructs that realize a full stack silo within the scope of a single
account. This will allow us to overcome some of the challenges of creating accounts
for individual tenants. The model we’ll look at now, the Virtual Private Cloud (VPC)-
per-tenant model, is one that relies more on networking constructs to house the
infrastructure that belongs to each of our siloed tenants.

Within most cloud environments you’re given access to a rich collection of virtualized
networking constructs that can be used to build, control, and secure the footprint of
your application environments. These networking constructs provide natural mecha‐
nisms for implementing a full stack siloed implementation. The very nature of net‐
works and their ability to describe and control access to their resources provides SaaS
builders with a powerful collection of tools that can be used to silo tenant resources.

Full Stack Silo Deployment | 63

Let’s look at an example of how a sample networking construct can be used to realize
a full stack silo model. Figure 3-6 provides a look at a sample network environment
that uses Amazon’s VPC to silo tenant environments.

Figure 3-6. The VPC-per-tenant full stack silo model

64 | Chapter 3: Multi-Tenant Deployment Models

At first glance, there are many moving parts in this diagram. While it’s a tad busy, I
wanted to bring in enough of the networking infrastructure to give you a better sense
of the elements that are part of this model.

In Figure 3-6, we have two tenants who are accessing siloed application services that
are running in separate VPCs. The VPC is the box that is at the outer edge of our
tenant environments. I also wanted to illustrate the high availability footprint of our
VPC by having it include two separate Availability Zones (AZs). We won’t get into
AZs, but just know that AZs represent distinct locations within an AWS Region that
are engineered to be isolated from failures in other AZs. We also have separate sub‐
nets to separate the public and private subnets of our solution. Finally, you’ll see the
application services of our solution deployed into private subnets within our two
AZs. These are surrounded by what AWS labels an Auto Scaling group, which allows
services to dynamically scale based on tenant load.

I’ve included all these network details to highlight the idea that we’re running our ten‐
ants in network silos that offer each of them an isolated and resilient networking
environment that leans on all the virtualized networking goodness that comes with
building and deploying your solution in a VPC-per-tenant siloed model.

While this model may seem less rigid than the account-per-tenant model, it actually
provides you with a solid set of constructs for preventing any cross-tenant access. As
part of their very nature, these networking tools allow you to create very carefully
controlled ingress and egress for your tenant environments. We won’t get into the
specifics, but the list of access and flow control mechanisms that are available is
extensive. More details can be found online.

Another model that shows up occasionally is the subnet-per-tenant model. While I
rarely see this model, there are some instances where teams will put each tenant silo
in a given subnet. This, of course, can also become unwieldy and difficult to manage
as you scale.

It’s worth noting that the VPC-per-tenant model doesn’t map to every AWS technol‐
ogy stack. A serverless environment, for example, doesn’t use VPCs to group its com‐
pute services. In fact, in general, the full stack silo model for serverless would simply
deploy a completely standalone set of functions. You’ll see more on this approach
when we look at serverless SaaS architecture patterns in Chapter 11.

Onboarding automation. With the account-per-tenant model, I dug into some of the
challenges it could create as part of automating your onboarding experience. With
the VPC-per-tenant model, the onboarding experience changes some. The good news
is that since you’re not provisioning individual accounts, you won’t run into the same
account limits automation issues. Instead, the assumption is that the single account
that is running our VPCs will be sized to handle the addition of new tenants. This

Full Stack Silo Deployment | 65

https://oreil.ly/NKNBW

may still require some specialized processes, but they can be applied outside the scope
of onboarding.

In the VPC-per-tenant model, the focus is more on provisioning your VPC con‐
structs and deploying your application services. That will likely still be a heavy pro‐
cess, but most of what you need to create and configure can be achieved through a
fully automated process.

Scaling considerations. As with accounts, VPCs also face some scaling considerations.
Just as there are limits on the number of accounts you can have, there can be limits
on the number of VPCs that you can have. The management and operation of VPCs
can also get complicated as you begin to scale this model. Having tenant infrastruc‐
ture sprawling across hundreds of VPCs may impact the agility and efficiency of your
SaaS experience. So, while VPC has some upsides, you’ll want to think about how
many tenants you’ll be supporting and whether the VPC-per-tenant model is practi‐
cal for your environment.

Remaining Aligned on a Full Stack Silo Mindset
Before I move on to any new deployment models, it’s essential that we align on some
key principles in the full stack silo. For some, the full stack silo model can be appeal‐
ing because it can feel like it opens (or reopens) the door for SaaS providers to offer
one-off customization to their tenants. While it’s true that the full stack silo model
offers dedicated resources, this should never be viewed as an opportunity to fall back
into per-tenant customization. The full stack silo only exists to accommodate
domain, compliance, tiering, and any other business realities that might warrant the
use of a full stack silo model.

In all respects, a full stack silo environment is treated the same as a pooled environ‐
ment. Whenever new features are released, they are deployed to all customers. If your
infrastructure configuration needs to be changed, that change should be applied to all
of your siloed environments. If you have policies for scaling or other runtime behav‐
iors, they are applied based on tenant tiers. You should never have a policy that
applies to an individual tenant. The whole point of SaaS is that we are trying to
achieve agility, innovation, scale, and efficiency through our ability to manage and
operate our tenants collectively. Any drift toward a one-off model will take you away
from those SaaS goals. In some cases, organizations that move to SaaS to maximize
efficiency will end up regressing through one-off customizations that undermine
much of the value they hoped to get out of a true SaaS model.

66 | Chapter 3: Multi-Tenant Deployment Models

The guidance I always offer to drive this point home centers around how you arrive
at a full stack silo model. I tell teams that even if you’re targeting a full stack silo as
your starting point, you should build your solution as if it were going to be a full
stack pool model. Then, treat each full stack silo as an instance of your pooled envi‐
ronment that happens to have a single tenant. This serves as a forcing function that
allows full stack siloed environments to inherit the same values that are applied to a
full stack pool (which we’re covering next).

The Full Stack Pool Model
The full stack pool model, as its name suggests, represents a complete shift from the
full stack silo mindset and mechanisms we’ve been exploring. With the full stack pool
model, we’ll now look at SaaS environments where all of the application plane
resources for our tenants are running in a shared infrastructure model.

For many, the profile of a fully pooled environment maps to their classic notion of
multi-tenancy. It’s here where the focus is squarely on achieving economies of scale,
operational efficiencies, cost benefits, and a simpler management profile that are the
natural byproducts of a shared infrastructure model. The more we can share infra‐
structure resources, the more opportunities we have to align the consumption of
those resources with the activity of our tenants. At the same time, these added effi‐
ciencies also introduce a range of new challenges.

Figure 3-7 provides a conceptual view of the full stack silo model. You’ll see that I’ve
still included the control plane to make it clear that it is a constant across any SaaS
model. On the left of the diagram is the application plane, which now has a collection
of application services that are shared by all tenants. The tenants shown at the top of
the application plane are all accessing and invoking operations on the application
microservices and infrastructure.

Now, within this pool model, tenant context plays a much bigger role. In the full stack
silo model, tenant context was primarily used to route tenants to their dedicated
stack. Once a tenant lands in a silo, that silo knows that all operations within that silo
are associated with a single tenant. With our full stack pool, however, this context is
essential to every operation that is performed. Accessing data, logging messages,
recording metrics—all of these operations will need to resolve the current tenant con‐
text at runtime to successfully complete their task.

The Full Stack Pool Model | 67

Figure 3-7. A full stack pool model

Figure 3-8 gives you a better sense of how tenant context touches every dimension of
our infrastructure, operations, and implementation in a pooled model. This concep‐
tual diagram highlights how each microservice must acquire tenant context and apply
it as part of its interactions with data, the control plane, and other microservices.
You’ll see tenant context being acquired and applied as we send billing events and
metrics data to the control plane. You’ll see it injected in your call to downstream
microservices. It also shows up in our interaction with data.

The fundamental idea is that when we have a pooled resource, that resource belongs
to multiple tenants. As a result, tenant context is needed to apply scope and context to
each operation at runtime.

Now, to be fair, tenant context is valid across all SaaS deployment models. A silo still
needs tenant context as well. What’s different here is that the silo model knows its
binding to the tenant at the moment it’s provisioned and deployed. So, for example, I
could associate an environment variable as the tenant context for a siloed resource
(since its relationship to the tenant does not change at runtime). However, a pooled
resource is provisioned and deployed for all tenants and must resolve its tenant con‐
text based on the nature of each request it processes.

68 | Chapter 3: Multi-Tenant Deployment Models

Figure 3-8. Tenant context in the full stack pooled environment

As we dig deeper into more multi-tenant implementation details, we’ll discover that
these differences between silo and pool models can have a profound impact on how
we architect, deploy, manage, and build the elements of our SaaS environment.

Full Stack Pool Considerations
The full stack pool model also comes with a set of considerations that might influence
whether you choose to adopt this model. In many respects, the considerations for the
full stack pool model are the natural inverse of the full stack silo model. The full stack
pool model certainly has strengths that are appealing to many SaaS providers. It also
presents a set of challenges that come with having shared infrastructure. The sections
that follow highlight these considerations.

Scale
Our goal in multi-tenant environments is to do everything we can to align infrastruc‐
ture consumption with tenant activity. In an ideal scenario, your system would, at a
given moment in time, only have enough resources allocated to accommodate the
current load being imposed by tenants. There would be zero overprovisioned
resources, which would let the business optimize margins and ensure that the addi‐
tion of new tenants would not drive a spike in costs that could undermine the bottom
line of the business.

This is the dream of the full stack pool model. If your design is somehow able to fully
optimize the scaling policies of your underlying infrastructure in a full stack pool,
you have achieved multi-tenant nirvana. This is not practical or realistic, but it is the
mindset that often surrounds the full stack pool model. The reality is that creating a
solid scaling strategy for a full stack pool environment is very challenging. The loads
of tenants are often constantly changing, and new tenants may be arriving every day,
so the scaling strategy that worked yesterday may not work today. What typically

The Full Stack Pool Model | 69

happens here is teams will accept some degree of overprovisioning to account for this
continually shifting target.

The technology stack you choose can also have a significant impact on the scaling
dynamics of your full stack pool environment. In Chapter 11 we’ll look at a serverless
SaaS architecture and get a closer look at how using serverless technologies can sim‐
plify your scale story and achieve better alignment between infrastructure consump‐
tion and tenant activity.

While there are significant scaling advantages to be had in a full stack pool model, the
effort to make this scaling a reality can be challenging to fully realize. You’ll need to
work hard to craft a scaling strategy that can optimize resource utilization without
impacting tenant experience.

Isolation
In a full stack silo model, isolation is a very straightforward process. When resources
run in a dedicated model, you have a natural set of constructs that allow you to
ensure that one tenant cannot access the resources of another tenant. However, when
you start using pooled resources, your isolation story tends to get more complicated.
How do you isolate a resource that is shared by multiple tenants? How is isolation
realized and applied across all the different resource types and infrastructure services
that are part of your multi-tenant architecture? In Chapter 9, we’ll dig into the strate‐
gies that are used to address these isolation nuances. However, it’s important to note
that as part of adopting a full stack pool model, you will be faced with a range of new
isolation considerations that may influence your design and architecture. The
assumption is that the economies of scale and efficiencies of the pooled model offset
any of the added overhead and complexity associated with isolating pooled resources.

Availability and blast radius
In many respects, a full stack pool model represents an all-in commitment to a model
that places all the tenants of your business into a shared experience. Any outage or
issue that shows up in a full stack pool environment is likely to impact all of your cus‐
tomers and could potentially damage the reputation of your SaaS business. There are
examples across the industry of SaaS service outages that created a flurry of social
media outcry and negative press that had a lasting impact on these businesses.

As you consider adopting a full stack pool model, you need to understand that you’re
committing to a higher DevOps, testing, and availability bar that makes every effort
to ensure that your system can prevent, detect, and rapidly recover from any potential
outage. It’s true that every team should have a high bar for availability. However, the
risk and impact of any outage in a full stack pool environment demands a greater
focus on ensuring that your team can deliver a zero downtime experience. This
includes adopting best-of-breed continuous integration/continuous deployment

70 | Chapter 3: Multi-Tenant Deployment Models

(CI/CD) strategies that allow you to release and roll back new features on a regular
basis without impacting the stability of your solution.

Generally, you’ll see full stack pool teams leaning into fault-tolerant strategies that
allow their microservices and components to limit the blast radius of localized issues.
Here, you’ll see greater application of asynchronous interactions between services,
fallback strategies, and bulkhead patterns being used to localize and manage potential
microservice outages. Operational tooling that can proactively identify and apply pol‐
icies is also essential in a full stack pool environment.

It’s worth noting that these strategies apply to any and all SaaS deployment models.
However, the impact of getting this wrong in a full stack pool environment can be
much more significant for a SaaS business.

Noisy neighbor
Full stack pool environments rely on carefully orchestrated scaling policies that
ensure that your system will effectively add and remove capacity based on the con‐
sumption activity of your tenants. The shifting needs of tenants along with the poten‐
tial influx of new tenants means that the scaling policies you have today may not
apply tomorrow. While teams can take measures to try and anticipate these tenant
activity trends, many teams find themselves overprovisioning resources to create the
cushion needed to handle the spikes that may not be effectively addressed through
scaling strategies.

Every multi-tenant system must employ strategies that will allow them to anticipate
spikes and address what is referred to as noisy neighbor conditions. However, noisy
neighbor takes on added weight in full stack pool environments. When everything is
shared, the potential for noisy neighbor conditions is much higher. You must be espe‐
cially careful with the sizing and scaling profile of your resources since everything
must be able to react successfully to shifts in tenant consumption activity. This means
accounting for and using defensive tactics to ensure that one tenant isn’t saturating
your system and impacting the experience of other tenants.

Cost attribution
Associating and tracking costs at the tenant level is a much more challenging propo‐
sition in a full stack pool environment. While many environments give you tools to
map tenants to specific infrastructure resources, they don’t typically support mecha‐
nisms that allow you to attribute consumption to the individual tenants that are con‐
suming a shared resource. For example, if three tenants are consuming a compute
resource in a multi-tenant setting, I won’t typically have access to tools or mecha‐
nisms that would let me determine what percentage of that resource was consumed
by each tenant at a given moment in time. We’ll get into this challenge in more detail

The Full Stack Pool Model | 71

in Chapter 14. The efficiency of a full stack pool model also comes with new chal‐
lenges around understanding the cost footprint of individual tenants.

Operational simplification
I’ve talked about this need for a single pane of glass that provides a unified opera‐
tional and management view of your multi-tenant environment. Building this opera‐
tional experience requires teams to ingest metrics, logs, and other data that can be
surfaced in this centralized experience. Creating these operational experiences in a
full stack pool environment tends to be a simpler experience. Here, where all tenants
are running in shared infrastructure, I can more easily assemble an aggregate view of
my multi-tenant environment. There’s no need to connect with one-off tenant infra‐
structure and create paths for each of those tenant-specific resources to publish data
to some aggregation mechanism.

Deployment is also simpler in the full stack pool environment. Releasing a new ver‐
sion of a microservice simply means deploying one instance of that service to the
pooled environment. Once it’s deployed, all tenants are now running on the new
version.

A Sample Architecture
The architecture of a full stack pool environment is pretty straightforward. In fact, on
the surface, it doesn’t look all that unlike any classic application architecture.
Figure 3-9 provides an example of a fully pooled architecture deployed in an AWS
architecture.

I’ve included many of the same constructs that were part of our full stack silo envi‐
ronment. There’s a VPC for the network of our environment, and it includes two
Availability Zones for high availability. Within the VPC there are separate private and
public subnets that separate the external and internal view of our resources. And
finally, within the private subnet you’ll see placeholders for the various microservices
that deliver the server-side functionality of our application. These services have stor‐
age that is deployed in a pooled model and their compute is scaled horizontally using
an Auto Scaling group. At the top, of course, we also illustrate that this environment
is being consumed by multiple tenants.

Now, in looking at this at this level of detail, you’d be hard-pressed to find anything
distinctly multi-tenant about this architecture. In reality, this could be the architec‐
ture of almost any flavor of application. Multi-tenancy doesn’t really show up in a full
stack pool model as some concrete construct; it is only seen if you look inside the
runtime activity that’s happening within this environment. Every request that is being
sent through this architecture is accompanied by tenant context. The infrastructure
and the services must acquire and apply this context as part of every request that is
sent through this experience.

72 | Chapter 3: Multi-Tenant Deployment Models

Figure 3-9. A full stack pool architecture

Imagine, for example, a scenario where Tenant 1 makes a request to fetch an item
from storage. To process that request, your multi-tenant services will need to extract
the tenant context and use it to determine which items within the pooled storage are
associated with Tenant 1. As I move through the upcoming chapters, you’ll see how
this context ends up having a profound influence on the implementation and deploy‐
ment of these services. For now, though, the key is to understand that a full stack pool
model relies more on its runtime ability to share resources and apply tenant context
where needed.

This architecture represents just one flavor of a full stack pool model. Each technol‐
ogy stack (containers, serverless, relational storage, NoSQL storage, queues) can
influence the footprint of the full stack pool environment. The spirit of full stack pool
remains the same across most of these experiences. Whether you’re in a Kubernetes
cluster or a VPC, the resources in that environment will be pooled and will need to
scale based on the collective load of all tenants.

The Full Stack Pool Model | 73

A Hybrid Full Stack Deployment Model
So far, I’ve mostly presented full stack silo and full stack pool deployment models as
two separate approaches to the full stack problem. It’s fair to think of these two
models as addressing a somewhat opposing set of needs and almost view them as
being mutually exclusive. However, if you step back and overlay market and business
realities on the problem, you’ll see how some organizations might see value in sup‐
porting both of these models.

Figure 3-10 provides a view of a sample hybrid full stack deployment model. Here we
have the same concepts we covered with full stack silo and pool deployment models
sitting side by side.

Figure 3-10. A hybrid deployment model

So, why both models? What would motivate adopting this approach? Well, imagine
you’ve built your SaaS business and started out offering all customers a full stack pool
model (shown on the left). Then, somewhere along the way, you ran into a customer
that was uncomfortable running in a pooled model. They may have noisy neighbor
concerns or be worried about compliance issues. Now, you’re not necessarily going to
cave to every customer that has this pushback. That would undermine much of what
you’re trying to achieve as a SaaS business. Instead, you’re going to make efforts to
help customers understand the security, isolation, and strategies you’ve adopted to
address their needs. This is always part of the job of selling a SaaS solution. At the
same time, there may be rare conditions when you might be open to offering a cus‐
tomer their own full stack siloed environment. This could be driven by a strategic

74 | Chapter 3: Multi-Tenant Deployment Models

opportunity or it may be that some customer is willing to write a large check that
could justify offering a full stack silo option.

In Figure 3-10, you can see how the hybrid full stack deployment model lets you cre‐
ate a blended approach to this problem. On the lefthand side of this diagram is an
instance of a full stack pool environment. This environment supports the bulk of
your customers, and we label these tenants, in this example, as belonging to the basic
tier experience.

Now, for the tenants that demanded a more siloed experience, I have created a new
premium tier that allows tenants to have a full stack silo environment. Here we have
two full stack siloed tenants that are running their own stacks. The assumption (for
this example) is that these tenants are connected to a premium tier strategy that has a
separate pricing model.

For this model to be viable, you must apply constraints to the number of tenants that
are allowed to operate in a full stack silo model. If the ratio of siloed tenants becomes
too high, this can undermine your entire SaaS experience.

The Mixed Mode Deployment Model
So far, I’ve focused heavily on the full stack models. While it’s tempting to view multi-
tenant deployments through these more coarse-grained models, the reality is that
many systems rely on a much more fine-grained approach to multi-tenancy, making
silo and pool choices across the entire surface of their SaaS environment. This is
where we look more at what I refer to as a mixed mode deployment model.

With mixed mode deployments, you’re not dealing with the heavy absolutes that
come with full stack models. Instead, mixed mode allows us to look at the workloads
within our SaaS environment and determine how each of the different services and
resources should be deployed to meet the specific requirements of a given use case.

Let’s take a simple example. Imagine I have two services in my ecommerce solution. I
have an order service that has challenging throughput requirements that are prone to
noisy neighbor problems. This same service also stores data that is going to grow sig‐
nificantly and has strict compliance requirements that are hard to support in a pooled
model. I also have a ratings service that is used to manage product ratings. It doesn’t
really face any significant throughput challenges and can easily scale to handle the
needs of tenants—even when a single tenant might be putting a disproportionate load
on the service. Its storage is also relatively small and contains data that isn’t part of the
system’s compliance profile.

In this scenario, I can step back and consider these specific parameters to arrive at a
deployment strategy that best serves the needs of these services. Here, I might choose
to make both the compute and the storage of my order service siloed and the com‐

The Mixed Mode Deployment Model | 75

pute and storage of my rating service pooled. There might even be cases where the
individual layers of a service could have separate silo/pool strategies. This is the basic
point I was making when I was first introducing the notion of silo and pool at the
outset of this chapter.

Equipped with this more granular approach to silo and pool strategies, you can now
imagine how this might yield much more diverse deployment models. Consider a
scenario where you might use this strategy in combination with a tiering model to
define your multi-tenant deployment footprint.

Figure 3-11 provides a conceptual view of how you might employ a mixed mode
deployment model in your SaaS environment. I’ve shown a variety of different
deployment experiences spanning the basic and premium tier tenants.

Figure 3-11. A mixed mode deployment model

On the lefthand side of this image, we have our basic tier services. These services
cover all the functionality that is needed for our SaaS environment. However, you’ll
note that they are deployed in different silo/pool configurations. Service 1, for exam‐
ple, has siloed compute and pooled storage. Meanwhile, Service 2 has siloed compute
and siloed storage. Services 3 to 6 are all pooled compute and pooled storage. The
idea is that I’ve looked across the needs of my pooled tenants and identified, on a
service-by-service basis, which silo/pool strategy will best fit the needs of that service.

76 | Chapter 3: Multi-Tenant Deployment Models

The optimizations that have been introduced here were created as baseline strategies
that were core to the experience of any tenant using the system.

Now, where tiers do come into play is when you look at what I’ve done with the pre‐
mium tier tenants. You’ll notice that Services 5 and 6 are deployed in the basic tier
and they’re also deployed separately for a premium tier tenant. The thought was that,
for these services, the business determined that offering these services in a dedicated
model would represent value that could distinguish the experience of the system’s
premium tier. So, for each premium tier tenant, we’ll create new deployments of Ser‐
vice 5 and 6 to support the tiering requirements of our tenants. In this particular
example, Tenant 3 is a premium tier tenant that consumes a mix of the services on the
left and these dedicated instances of Services 5 and 6 on the right.

Approaching your deployment model in this more granular fashion provides a much
higher degree of flexibility to you as the architect and to the business. By supporting
silo and pool models at all layers, you have the option to compose the right blend of
experiences to meet tenant, operational, and other needs that might emerge through‐
out the life of your solution. If you have a pooled microservice with performance
issues that are creating noisy neighbor challenges, you could silo the compute and/or
storage of the service to address this problem. If your business wants to offer some
parts of your system in a dedicated model to enable new tiering strategies, you are
better positioned to make this shift.

This mixed mode deployment model often represents a compelling option for many
multi-tenant builders. It allows them to move away from having to approach prob‐
lems purely through the lens of full stack solutions that don’t always align with the
needs of the business. Yes, there will always be solutions that use the full stack model.
For some SaaS providers, this will be the only way to meet the demands of their mar‐
ket and customers. However, there are also cases where you can use the strengths of
the mixed mode deployment model to address this need without moving everything
into a full stack silo. If you can just move specific services into the silo and keep some
lower profile services in the pool, that could still represent a solid win for the
business.

The Pod Deployment Model
So far, I’ve mostly looked at deployment models through the lens of how you can rep‐
resent the application of siloed and pooled concepts. We’ve explored coarse- and fine-
grained ways to apply the silo and pool models across your SaaS environment. I also
need to step out of the silo/pool focus and think about how an application might need
to support a deployment variation that is shaped more by where it needs to land, how
it deals with environmental constraints, and how it might need to morph to support
the scale and reach of your SaaS business. This is where the pod deployment model
comes into the picture. It’s also worth highlighting the terminology collision that

The Pod Deployment Model | 77

comes with the model. Kubernetes also has its own view of pods, which is entirely
separate from this concept.

When I talk about pods here, I’m talking about how you might group a collection of
tenants into some unit of deployment. I may have some technical, operational, com‐
pliance, scale, or business motivation that pushes me toward a model where I put
tenants into individual pods, and these pods become a unit of deployment, manage‐
ment, and operation for my SaaS business. Figure 3-12 provides a conceptual view of
a pod deployment.

Figure 3-12. A pod deployment model

In this pod deployment model, you’ll notice that we have the same centralized control
plane on the lefthand side of this experience. On the righthand side, I have included
individual pods that are used to represent self-contained environments that support
the workload of one or more tenants. In this example, I have Tenants 1–3 in pod 1
and Tenants 4–6 in pod 2.

These separate pods bring a degree of complexity to a SaaS environment, requiring
your control to build in the mechanisms to support this distribution model. How

78 | Chapter 3: Multi-Tenant Deployment Models

tenants are onboarded, for example, must account for which pod a given tenant will
land in. Your management and operations must also become pod aware, providing
insights into the health and activity of each pod.

There are a number of factors that could drive the adoption of a pod-based delivery
model. Imagine, for example, having a full stack pool model running in the cloud
that, at a certain number of tenants, begins to exceed the infrastructure limits of spe‐
cific services. In this scenario, your only option to work around these constraints
might be to create separate cloud accounts that host different groups of tenants. This
could also be driven by a need to deploy a SaaS product into multiple geographies;
geography requirements or performance considerations could tip you toward a pod-
based deployment model, where different geographies might be running different
pods.

Some teams may also use pods as an isolation strategy to reduce cross-tenant
impacts. This can be motivated by a need for greater protections from noisy
neighbor conditions, or it might play a role in the security and availability story of
a SaaS provider.

If you choose to adopt a pod model, you’ll want to consider how this will influence
the agility of your business. Adopting a pod model means committing to absorbing
the extra complexity and automation that allows you to support and manage pods
without having any one-off mechanisms for individual pods. To scale successfully, the
configuration and deployment of these pods must all be automated through your
control plane. If some change is required, that change is applied universally to all
pods. This is the mirror of the mindset I outlined with full stack silo environments.
The pod cannot be viewed as an opportunity to enable targeted customization for
individual tenants.

One dynamic that comes with pods is this idea of viewing membership within a pod
as something that can be shifted during the life of a tenant. Some organizations may
have distinct pod configurations optimized around the profile of a tenant, so that if a
tenant’s profile somehow changes and their sizing or consumption patterns aren’t
aligned with those of a given pod, they can consider moving that tenant to another
pod. However, this would come with some heavy lifting to get the entire footprint of
the tenant transferred to another pod. This would not be a daily exercise but is some‐
thing that some SaaS teams support—especially those that have pods that are tuned to
a specific experience.

While pods have a clear place in the deployment model discussion, it’s important not
to see pods as a shortcut for dealing with multi-tenant challenges. Yes, the pod model
can simplify some aspects of scale, deployment, and isolation, but pods also add com‐
plexity and inefficiencies that can undermine the broader value proposition of SaaS.
You may not, for example, be able to maximize the alignment between tenant con‐
sumption and infrastructure resources in this model. Instead, you may end up with

The Pod Deployment Model | 79

more instances of idle or overprovisioned resources distributed across the collection
of pods that your system supports, which could have a significant impact on the over‐
all infrastructure cost profile and margins of your SaaS business.

Conclusion
This chapter focused on identifying the range of SaaS deployment models that archi‐
tects must consider when designing a multi-tenant architecture. While some of these
models have very different footprints, they all fit within the definition of what it
means to be SaaS. This aligns with the fundamental mindset I outlined in Chapter 1,
identifying SaaS as a business model that can be realized through multiple architec‐
ture models. You should see that even though I outlined multiple deployment models,
they all shared the idea of having a single control plane that enables each environ‐
ment and its tenant to be deployed, managed, operated, onboarded, and billed
through a unified experience. Full stack silo, full stack pool, mixed mode—they all
conform with the notion of having all tenants running the same version of a solution
and being operated through a single pane of glass.

From looking at these deployment models, it should be clear that there are a number
of factors that might push you toward one model or another. Legacy, domain, compli‐
ance, scale, cost efficiency, and a host of other business and technical parameters are
used to find the deployment model (or combination of deployment models) that best
align with the needs of your team and business. It’s important to note that the models
I covered represent the core themes while still allowing for the fact that you might
adopt some variation of one of these models based on the needs of your organization.
As you saw with the hybrid full stack model, it’s also possible that your tiering or
other considerations might have you supporting multiple models based on the profile
of your tenants.

Now that you have a better sense of these foundational models, we can start to dig
into the more detailed aspects of building a multi-tenant SaaS solution. I’ll start cov‐
ering the under-the-hood moving parts of the application and control planes, high‐
lighting the services and code needed to bring these concepts to life. The first step in
that process is to look at multi-tenant identity and onboarding. Identity and onboard‐
ing often represent the starting point of any SaaS architecture discussion. They lay the
foundation for how we associate tenancy with users and how that tenancy flows
through the moving parts of your multi-tenant architecture. As part of looking at
identity, I’ll also explore tenant onboarding, which is directly connected to this iden‐
tity concept. As each new tenant is onboarded to a system, you must consider how
that tenant will be configured and connected to its corresponding identity. Starting
here will allow us to explore the path to a SaaS architecture from the outside in.

80 | Chapter 3: Multi-Tenant Deployment Models

CHAPTER 4

Onboarding and Identity

Now that you have a sense of the broader multi-tenant terminology and landscape,
let’s look at what it means to bring these concepts to life in a working solution. The
question is: where do you start? So many teams ask me this question. Fortunately, this
is an area where I think there’s a pretty uniform answer. Whether you’re migrating or
greenfield, I’d always point you at onboarding, identity, and the control plane as the
starting point for building most multi-tenant architectures. Each of these elements
forces important, foundational constructs into your environment, defining how ten‐
ants will be introduced and how users will be created and bound to tenants. These
first steps will begin to establish the building blocks of our control plane.

By starting here, you’ll put tenancy front and center. This means that all the layers of
your architecture are now forced to be multi-tenant aware. Each component of your
system will now have to consider how tenancy might shape its design and implemen‐
tation. While this may seem like a subtle nuance, its impact is quite profound. The
mere presence of tenancy touches how you isolate tenants, how you represent their
data, how you support multiple personas, how you bill tenants, and a host of other
aspects of your solution. It also begins to establish the clear boundary between the
control and application planes. The goal is to avoid falling into the trap of starting
with the application and bolting on tenancy after the fact. This never works well and
typically leads to significant refactoring and compromises that undermine the design
of your SaaS architecture.

I’ll start the chapter by looking at what it takes to get the basics of our control plane
up and running. This is where we’ll look at the provisioning of the infrastructure and
resources that are needed to host the various services that will be used to manage and
operate your SaaS architecture. While this control plane will ultimately host many
services, I’ll keep this chapter mostly focused on the onboarding and identity func‐
tionality. Then, later, we can see how we build out more aspects of the control plane.

81

As we dig into onboarding, you’ll get a much better sense of all the moving parts that
are part of this process. For some environments, the orchestration of this process can
be quite complex. While the nature of onboarding can vary for each SaaS environ‐
ment, there are still some common themes that span many implementations. I’ll dig
into some of these themes as I walk you through a sample onboarding flow. This
should surface some of the considerations that go into building your own onboarding
service. It should also highlight the critical role onboarding plays within your SaaS
architecture.

The next area I’ll review is identity. I’ll look more into the details of how we bind
individual users to tenants to arrive at the notion of tenant context that was discussed
in Chapter 1. This will include going deeper into the specific identity mechanisms
that allow us to shape how tenants are authenticated, injecting tenant context into the
requests that flow through all the backend services of your SaaS application. We’ll see
how this context ends up shaping and influencing how teams build and manage the
multi-tenant features of their SaaS architecture.

Looking at all these foundational concepts together should give you a clearer view
into just how essential it is to address these concepts up front. The goal is to expose
you to the key strategies, patterns, and considerations without getting too close to the
specifics of any one technology. Understanding these core concepts will equip you
with the insights that will shape how you approach many of the multi-tenant topics
we’ll be covering in subsequent chapters.

Creating a Baseline Environment
To get started on this journey, I want to approach onboarding and identity as if we are
starting from scratch. This should give you a better sense of how you might approach
implementing these strategies from the ground up. That means we have to take a step
back from the specifics of onboarding and identity and first think about what founda‐
tional pieces we have to put in place before we can start onboarding tenants. The
services that support onboarding run inside of the control plane, so we need to start
by putting in place all the bits that are needed to run all the control plane microser‐
vices that support onboarding and identity.

Creation of infrastructure, its dependent resources, and the control plane is what I
refer to as creating a baseline environment. We essentially need to create the scripts
and the automation that will allow us to spin up all of the constructs that are needed
to host our SaaS environment. While our goal is to get onboarding and identity up
and running, the scope of the baseline environment includes all the resources that
would be one-time provisioned to set up our multi-tenant environment before we
start onboarding. This means we’ll be setting up some resources that go beyond the

82 | Chapter 4: Onboarding and Identity

scope of tenant onboarding and identity. We won’t focus on those other bits right
now, but it’s important to note that a baseline environment is inclusive of all of these
concepts.

The actual creation of our baseline environment is achieved through a classic DevOps
model, using infrastructure automation tooling to create, configure, and deploy all
the assets that are required by our baseline environment. Figure 4-1 provides a highly
conceptualized view of this experience.

Figure 4-1. Automating creation of a baseline environment

The basic idea is that you’ll pick the DevOps tool(s) that fits your environment and
create a single, repeatable automation model that can configure everything you need
to get your environment moved to a state where it can begin onboarding tenants.

Of course, what’s actually in your baseline environment will vary wildly based on the
nature of the specific technology stack you’re using for your SaaS solution. A Kuber‐
netes stack, for example, could look very different from a serverless stack. The nuan‐
ces of different cloud providers would also influence the provisioning process. We’ll
look at more specific examples to see how they land, but for now we want to come up
a level and just focus on what needs to get provisioned in this step to prepare our
system to begin onboarding tenants.

Creating Your Baseline Environment
To get a better sense of what’s in this baseline environment, let’s look at a sample of
what might get provisioned, configured, and deployed to bring your baseline envi‐
ronment to life. In Figure 4-2 you’ll see that I’ve assembled a conceptual view of the
components and infrastructure that might get created in a baseline environment. The
goal was to represent some of the core baseline infrastructure concepts without get‐
ting too lost in the details of any specific technology.

Creating a Baseline Environment | 83

Figure 4-2. Provisioning a baseline environment

In the middle of Figure 4-2, you’ll see that I’ve created the foundational networking
infrastructure that’s needed to host my multi-tenant SaaS environment. For this
example, I’ve just grabbed some common AWS networking constructs (a VPC, Avail‐
ability Zones, and some subnets) to represent the high availability network that will
host my SaaS environment. These same networking constructs could be mapped to
any number of different technologies. The key at this stage is just to focus on the fact
that the configuration and setup of this baseline environment will require you to pro‐
vision and configure all the core networking constructs that will be used by your con‐
trol plane and, potentially, your tenants.

Within this network, I’ve also shown the deployment of the control plane. Since the
control plane is shared by all tenants, it can be configured and deployed as part of the
provisioning of your baseline environment. The control plane must also be in place
for us to begin onboarding tenants and establishing their identity. Here, to simplify
matters, I included a sampling of a few services. In reality the list of control plane
services would include a much broader range. We’ll see those services in more detail
when we start digging into more concrete solutions.

On the bottom righthand side of Figure 4-2, you’ll also see a collection of pooled
resources. The items here represent the conceptual placeholders for any resources
that might be shared by tenants. Generally, if you have pooled resources that will be
shared by all tenants, you can provision them during the setup of your baseline envi‐
ronment (since they won’t need to be created during the onboarding process). Storage
often provides a good example here. Imagine having a pooled database for some

84 | Chapter 4: Onboarding and Identity

microservice in your solution. If it’s pooled, it could be created when the baseline
environment is provisioned. You’ll also see the setup of a shared identity construct
and a pooled message queue. Again, these are just here to highlight the fact that you’ll
want to consider whether these should be provisioned during the setup of your base‐
line environment. I’ll get into some of the trade-offs when we go deeper into the ten‐
ant onboarding experience later in this chapter.

Finally, on the top right, I’ve shown placeholders for the system admin identity and
administration console. This represents the users that are logging into the specific
tooling that you’ve created to support, update, configure, and generally manage the
state of your multi-tenant architecture. I refer to this targeted tooling as your system
admin console. It’s this console that serves as the single plane of glass for your SaaS
environment, providing your team with a purpose-built collection of features and
capabilities that are essential to operating your multi-tenant environment; it will be
used in combination with other off-the-shelf solutions that provide more generalized
functionality. Even with these other tools, most SaaS teams require their own custom
admin application that can address the specific multi-tenant needs of their
environment.

Figure 4-3 provides a snapshot of a simple SaaS administration console application to
help make this concept more concrete. It’s through this application that you’ll have
access to all core information about your SaaS solution. You’ll be able to monitor the
status of onboarding tenants, activate/deactivate tenants, manage tenant policies,
view tenant/tier metrics, and any other functionality that’s needed to manage and
operate your SaaS solution. This application must be configured and deployed as part
of the setup of your baseline environment.

Figure 4-3. Creating and deploying a system admin console

It’s worth noting that some teams tend to underinvest in their admin consoles, defer‐
ring to ready-made solutions in favor of building something themselves. Generally,
this trade-off rarely seems worth it. While you might be able to use third-party solu‐
tions to compose a console experience, there are specific operations, insights, and

Creating a Baseline Environment | 85

configuration options that can only be addressed effectively through the creation of a
targeted experience.

Creating and Managing System Admin Identities
As part of setting up your baseline environment and configuring your administration
application, you’ll see that your provisioning process must also set up your system
admin identity model. Each time you trigger the creation of a baseline environment,
you’ll be required to provide the profile of the initial administrative user that will be
able to log into your admin console. Creation of this identity is entirely separate from
the creation of a tenant identity. This also means you’ll need to have a completely sep‐
arate authentication experience to allow these system admin users to access the
admin console or any command-line tooling you might be using to manage your
multi-tenant environment.

To support this system admin identity, you’ll need to have some identity provider that
owns and authenticates these users. The identity provider you use here could be the
same identity provider that will be used for your tenant identities. Or, it could be a
separate identity provider that is used as part of a more global enterprise administra‐
tion strategy. Regardless of which identity provider you use, the basic mechanics of
introducing a system admin identity are going to be very similar.

The key takeaway is that you’ll need some steps on your baseline provisioning auto‐
mation to create and configure your system administration identity model. This auto‐
mation will include the creation and configuration of the identity provider along with
the creation of the initial system admin users. Once that user is set up, you should be
able to use this identity to access your system admin console. Once you’re made it
into the system admin console, you’ll be able to manage and create more system
admin users.

The example in Figure 4-3 happens to show a view of system admin user manage‐
ment. Here, I’ve accessed and authenticated into the console after provisioning my
environment. I can now use this same page to create and manage other system admin
users.

Triggering Onboarding from the Admin Console
Once you’ve established your system admin user and you have your admin console
up and running, you have all the pieces in place to create and onboard tenants. Now,
in the final version of your offering, your onboarding could be invoked as part of
some self-service experience, or it could be driven by some internal process. Obvi‐
ously, if this is an internally driven process, then you’ll want to use your system
admin console to manage onboarding. This would mean having some operation
within your console that collects all the data needed for a new tenant before invoking
the onboarding operation.

86 | Chapter 4: Onboarding and Identity

Some teams find lots of value in being able to onboard tenants from within the sys‐
tem admin console. Even if onboarding were to eventually be a self-service model,
you could still have the ability to test and validate your onboarding experience from
the admin console. This can be especially helpful to teams that are validating and
testing the onboarding experience of your application.

Control Plane Provisioning Options
In Figure 4-2, I showed the control plane being deployed into the same baseline infra‐
structure where your tenants would also land. This is a perfectly valid option. How‐
ever, it’s worth noting that how and where this control plane is placed can vary based
on the needs of your environment and the technology stack that’s being used for your
multi-tenant architecture. In Kubernetes, for example, I could have a separate name‐
space for the control plane, placing my tenant environments alongside the control
plane within the same cluster and networking infrastructure. I could also choose to
land the control plane in a completely separate infrastructure that is dedicated to the
control plane.

Figure 4-4 provides a conceptual view of these two options. On the left, you’ll see the
shared control plane model where the control plane is deployed into the same envi‐
ronment with your tenant infrastructure. And, on the right, you’ll see an approach
where the control plane gets its own dedicated environment. Here the tenants are
running in a completely separate network or cluster that draws a harder line between
the control and application planes.

Figure 4-4. Picking a control plane deployment model

The trade-offs of these two choices are pretty straightforward. You might choose to
have a dedicated control plane environment if you want to scale, manage, and operate
these environments completely independently. Compliance could also factor in here;
those requirements or your domain may be better addressed by placing stronger
boundaries between your control and application panes. Of course, putting the con‐
trol plane in the same environment with the application plane does simplify things a

Creating a Baseline Environment | 87

bit. It reduces the number of moving parts you have to manage, configure, and provi‐
sion. It might also reduce your cost footprint. If you do opt for the dedicated model,
you’ll need to decide how you’ll integrate these separate constructs to allow the con‐
trol plane to interact with your application plane.

Your technology stack choices might also influence how you deploy your control
plane. Some teams, for example, might opt for different technology stacks for the
control and application planes. I might, for example, choose serverless for the control
plane and containers for the application plane. This might steer you more toward a
dedicated control plane model.

The Onboarding Experience
Now that our baseline environment is provisioned and configured, we can turn our
attention to the onboarding of tenants. It’s through onboarding that you’ll find that
you’re establishing and exercising some of the most foundational elements of a multi-
tenant architecture. In fact, when working with greenfield or migrating SaaS custom‐
ers, I always suggest that they focus their initial attention on the onboarding process.

Starting here forces teams to answer many of the hard questions that will influence
and shape the rest of their SaaS architecture. Onboarding isn’t just about creating a
tenant. It’s about creating and configuring all the moving parts of your infrastructure
that are needed to support that new tenant. In some cases, that might be a lightweight
exercise and, in others, it might require a significant amount of code to orchestrate
each step in the onboarding process. How your tenants are tiered, how they authenti‐
cate, how their policies are managed, how their isolation is configured, how they’re
routed—these are all areas that are touched by the onboarding experience of your
multi-tenant environment.

Onboarding Is Part of Your Service
Many teams fall into the trap of viewing onboarding as something that gets bolted
onto their system after it’s built. They’ll create placeholders and workarounds to sim‐
ulate the onboarding experience with the idea that they can “make it real” later in the
process. This comes back to the discussion of comparing a service to a product. In a
SaaS environment, onboarding isn’t viewed as some script or automation that’s some‐
how outside of the scope of your offering. Instead, it is one of the most fundamental
components of your SaaS experience and getting it right should be key to any team
that is building a multi-tenant solution.

Onboarding sits right in the middle of both your business and technical priorities.
The experience each customer has with onboarding can have a profound impact on
the broader success of the business. How seamless, efficient, and reliable this process
is will have a direct impact on the experience and perception of the customers

88 | Chapter 4: Onboarding and Identity

consuming your product. It is your chance to make a positive first impression. The
onboarding experience is also directly connected to the notion of time to value,
which looks at how long it takes a customer to move from sign-up to actual produc‐
tivity and value within your SaaS offering. Any added friction that shows up here is
going to impact the impression you make as a service and could, potentially, influ‐
ence your ability to move customers from adopters to promoters.

Onboarding is also where the deployment, identity, routing, and tiering strategies are
put into action. How tenants are siloed and pooled, for example, will need to be
expressed and realized directly through your onboarding experience. How and where
you authenticate tenants will be configured and applied as part of onboarding. How
your tenants are contextually routed based on their tier and deployment model will
be configured within the scope of onboarding. So many of these key multi-tenant
design choices that you make in your SaaS architecture are ultimately expressed and
brought to life through the onboarding process of your system. In many respects,
your onboarding configuration, automation, and deployment code will be at the epi‐
center of realizing the multi-tenant strategies that you adopt for your SaaS
environment.

The amount of effort and code that goes into automating onboarding may come as a
surprise to some teams. It’s not uncommon for SaaS teams to underestimate the level
of effort and investment that comes with building a robust onboarding experience. In
reality, onboarding represents one of the most fundamental elements of a multi-
tenant environment. It’s through onboarding that you can achieve the operational and
agility goals that are essential to a SaaS business.

Self-Service Versus Internal Onboarding
So far, this discussion of onboarding may seem like it’s mostly describing mechanisms
that are used by organizations that rely on a self-service tenant registration experi‐
ence. Many of us have signed up for countless B2C SaaS offerings where we filled out
some form, submitted our information, and started using some SaaS service. While
this classic mode of onboarding is within our scope, we must also consider scenarios
where our onboarding process may not support a self-service model. Imagine, for
example, some B2B SaaS provider that only onboards after you’ve reached a deal and
agreed to onboard them to your system. These SaaS vendors may only have some
internally managed onboarding experience.

My point is that onboarding has no binding to a particular experience. You might
have self-service onboarding or you might use internal onboarding. Every SaaS solu‐
tion, regardless of how it presents its onboarding experience, must still lean into the
same set of values. To me, the bar for self-service and internally managed onboarding
processes is the same. Both of these approaches should be creating a fully automated,
repeatable, low-friction onboarding process that focuses on maximizing a customer’s

The Onboarding Experience | 89

time to value. Yes, someone in operations might run your internal process. This, how‐
ever, does not mean that you’d expect less automation, scale, or durability from that
onboarding process.

For any SaaS system that I build, I want to be sure that I’m treating this onboarding
experience as a key part of my system. It is at the center of ensuring that I have a con‐
sistent, repeatable, automated onboarding mechanism that ensures that each new ten‐
ant will be introduced without requiring any manual processes or one-off
configuration.

The Fundamental Parts of Onboarding
Now that you have a better sense of the onboarding importance, let’s shift our focus
more toward the details of the underlying components of an onboarding experience.
While there are lots of details within the implementation of the onboarding process,
my goal at this stage is to give you a top-level view of the core components of this
process and outline the guiding principles that typically shape this experience.

Figure 4-5 provides a conceptual view of the moving parts of a multi-tenant onboard‐
ing experience.

Figure 4-5. The fundamentals of tenant onboarding

On the left you’ll see the illustration of the two common patterns that could be used
to drive an onboarding process. First, I’ve shown a tenant administrator that is
onboarding through some self-service sign-up process, presumably a web application
that allows the tenant to submit their information, select a plan, and provide what‐
ever configuration information is needed to establish themselves as a new tenant in
the system. I’ve also shown a second onboarding flow that, in this example, is initi‐
ated by a system administrator. This represents some internal role at the SaaS

90 | Chapter 4: Onboarding and Identity

provider using an administration console (or some other tooling) to enter the
onboarding data for a new tenant and triggering the onboarding process. For this
example, I included both of these onboarding paths. However, in most instances, a
SaaS organization will support one of these two approaches. I only showed both here
to drive home the idea that onboarding, regardless of its entry point, is meant to be a
fully automated process for either of these two use cases.

For these onboarding paths, you’ll see that they both send an onboarding request to
the Onboarding service (step 1). For onboarding, I generally prefer to have a single
onboarding service that can own all the orchestration of onboarding. This service
owns the full lifecycle of the onboarding process, managing and ensuring that all
steps in the process are completed successfully. This is especially important since
some aspects of onboarding may run asynchronously or have dependencies on third-
party integrations that could have availability issues.

The onboarding process then calls a series of distributed services that are used to cre‐
ate and configure the tenant’s settings and supporting infrastructure. The sequencing
of this onboarding flow can vary based on the nature of your SaaS application. Gen‐
erally, the goal is to create and configure all of the required tenant assets before mak‐
ing the tenant active and/or notifying the tenant admin user that their account is
active.

While there are multiple ways to implement this onboarding flow, you’ll need to start
with creating a tenant identifier. In our example, this tenant identifier will be created
by sending a create tenant request to the Tenant Management service (step 2), passing
in all the information about our tenant (company name, identity configuration, tier,
and so on). It will also generate the unique identifier that will be associated with our
tenant. Teams will often use a globally unique identifier (GUID) as the value for their
tenant identifier, avoiding the inclusion of any attributes that might be connected to
the name or other identifying information about the tenant. This prevents anyone
from being able to connect a tenant with a given identifier. This tenant also is created
with some notion of an “active” status that manages the current state of a tenant. In
this case, where we’re onboarding, the active state will initially be set to false. Once
the system creates this tenant, you’ll have a tenant identifier that can be used across
the rest of the onboarding experience. I’ll get into more detail about the Tenant Man‐
agement service and its role within the control plane in Chapter 5.

The next step in our tenant onboarding example will involve the provisioning of any
tenant resources that are required (step 3). This provisioning step can, for some
multi-tenant architectures, represent one of the most significant pieces of your
onboarding implementation. For a full stack silo deployment, for example, this could
mean provisioning a completely new collection of infrastructure and application
services. In contrast, a full stack pool environment might require minimal infrastruc‐
ture provisioning and configuration.

The Onboarding Experience | 91

As we dig into more working examples, you may be surprised to find out how much
code and automation is devoted to this onboarding experience. In fact, this is often
an area where SaaS systems blur the DevOps boundaries. While, in traditional envi‐
ronments, much of the DevOps lifecycle is focused on provisioning and updating
your baseline infrastructure, SaaS environments may rely on the execution of DevOps
code during the onboarding of each individual tenant. Your system may be provision‐
ing and configuring new infrastructure at runtime to process the creation of a siloed
tenant infrastructure. As you can imagine, this brings new considerations and mind‐
sets to how you organize and build the overall DevOps footprint of your multi-tenant
solution. For some, this represents a new mindset and new approaches to the tooling
used to provision tenant environments.

At this stage, we have a tenant created and our tenant resources are provisioned. Now
we can add this new tenant to the billing system (step 4). This is essentially where
you’ll provide information to the billing system that identifies the new tenant and any
information that’s needed to characterize the billing model that should be applied to
this particular tenant. The assumption here is that, in advance of onboarding a new
tenant, you’ve configured and set up the different tiers or billing plans that determine
the overall pricing model of your solution. Then, during onboarding, your Billing
service will correlate the tenant’s onboarding profile with the appropriate (pre-
configured) billing plan.

You’ll notice that Figure 4-5 calls out a separate billing provider. The idea is that your
Billing service will manage and orchestrate any integration you might have with your
billing system. In many instances, this billing provider may be supported by a third-
party system. It’s in these cases where you may see value in putting a separate Billing
service between your onboarding process and the billing provider, allowing you to
manage any unique considerations that might be required to support a given billing
provider. In other instances, you might directly integrate with the billing provider
from your Onboarding service. It’s also worth noting that some SaaS companies will
use an internal billing system. Even in this scenario, you’d still want your onboarding
process to follow a similar pattern of integration. There’s lots more about billing to
consider (outside the scope of onboarding). I’ll get more into those details in
Chapter 14.

For the final piece of the onboarding experience, we need to create the tenant admin
user (step 5). If you recall, the tenant admin role represents the first user that is cre‐
ated for a given tenant. This tenant will have the ability to create any additional users
that will be able to access the system. At this stage, though, our main goal is to create
this initial user within our identity provider to enable our tenant to authenticate and
access their provisioned environment. Here, you’ll need to rely on the features of
your identity provider to orchestrate the notification and validation of this new ten‐
ant. Most identity providers will support the generation of an email message that
includes a URL and temporary password for accessing the system. This process then

92 | Chapter 4: Onboarding and Identity

triggers the authenticating user to enter a new password as part of the login flow. The
goal is to push much of the automation of this sign-up process to your identity pro‐
vider. Rely on these providers to send email invites and temporary passwords and
handle password resets.

There is one last bit to this onboarding flow that you’ll need to consider. Earlier, when
the tenant was created (step 2), I set the active status of the tenant to false. It’s the job
of your Onboarding service to track the state of all of these different onboarding
states. Only after it determines that each process has completed successfully will it set
the tenant’s active status to true. This may include process retries and other fallback
strategies to address any failure that may have happened during the provisioning and
configuration of the tenant environment. Assuming the onboarding succeeds, the
Onboarding service can now call the Tenant Management service and update the
active status to true. This is especially important to the administration console of
your SaaS environment, which provides the functionality that is used to view and
manage the state of tenants. During this onboarding process, the view of tenants
should show the state of any tenant that is being onboarded and highlight the active
status of your tenants.

Tracking and Surfacing Onboarding States
From looking at this process, it should be clear that your onboarding process includes
lots of moving parts and dependencies. The more complex this process becomes, the
more important it is to have useful, detailed operational insights into the various
states of your onboarding flow. This is essential to analyzing progress, identifying
issues, and profiling the overall behavior and trends of your onboarding automation.
It also means identifying the right design and tooling to effectively capture and sur‐
face the onboarding profile of your solution.

At a minimum, you could imagine having a distinct set of states mapped to each of
the steps in our onboarding flow. So, you might have separate states for TENANT
_CREATED, TENANT_PROVISIONED, BILLING_INITIALIZED, USER_CREATED, and TENANT
_ACTIVATED. Each of these states could be surfaced through the tenant view in your
administration console, allowing you to inspect the onboarding of any tenant at a
given moment in time.

The real value of assigning and surfacing onboarding states is to provide richer
operational insights into the status of your onboarding progress. This will be essential
to troubleshooting any unexpected onboarding issues. Knowing precisely where your
onboarding process is failing is of prime importance to your operational teams. This
is especially important when your onboarding process includes a significant amount
of infrastructure provisioning and configuration. In these cases, you might track
more granular states that give you insights into the various stages that are within the
moving parts of your provisioning process.

The Onboarding Experience | 93

Tier-Based Onboarding
As part of looking at the onboarding flow, I outlined the role of the Provisioning ser‐
vice and its role in creating and configuring tenant environments. This provisioning
process gets a bit more interesting when you consider how different tenant tiers could
influence how you implement your provisioning lifecycle. If you recall, we use tiers to
present different tenant profiles with different experiences. These different experien‐
ces often translate into a need for separate infrastructure and configurations based on
the tier of your system.

To better understand this, let’s look at a conceptual example of a tier-based onboard‐
ing example. Figure 4-6 provides a view of an environment that supports two separate
tiers (basic and premium).

Figure 4-6. An example of tier-based onboarding

I’ve narrowed the view down to focus exclusively on the Provisioning service within
our control plane. Whenever the Onboarding service triggers this Provisioning ser‐
vice, it provides the tenant contextual information that includes the tier that will be
associated with the new tenant. When the Provisioning service receives this request,
it will evaluate the tier and determine how the selected tier will influence the configu‐
ration and infrastructure that will be needed to support your tenant environment. In
this example, our SaaS solution offers premium tier tenants a full stack silo deploy‐
ment mode with fully dedicated resources for each tenant. This means each onboard‐
ing event will need to automate the provisioning of these full tenant stacks. Basic tier
tenants, however, are onboarded into a full stack pool model where all the

94 | Chapter 4: Onboarding and Identity

infrastructure is shared by tenants. Here, the onboarding will be a lighter weight
experience, simply augmenting the configuration to add support for this new tenant.

These full stack deployment models have pretty distinct onboarding experiences that
are relatively easy to digest. Where this gets more interesting is when you have a
mixed deployment model. With a mixed mode deployment, your resources are siloed
and pooled with finer granularity. This means that your onboarding process will need
to apply the tier-based onboarding policies to each resource based on its silo or pool
configuration. Figure 4-7 provides an example of how mixed mode deployment influ‐
ences your provisioning process.

Figure 4-7. Tier-based onboarding with mixed mode deployments

I’ve intentionally made this architecture a bit busy. Our same Provisioning service is
shown here, but now it has much more to consider as each tenant onboards. Let’s
start on the left of Figure 4-7 where you’ll see that I have two services that are
deployed separately for Tenant 1 and Tenant 2. So, for every premium tier tenant,
your Provisioning service will need to configure and deploy Fulfillment and Order
services in a fully siloed model. The storage and compute of these two microservices
are fully siloed.

Now, even though these two microservices are deployed separately for premium tier
tenants, these same services are also consumed by your Basic tier tenants. This is rep‐
resented in the middle of the diagram where I’ve identified pooled versions of the
Fulfillment and Order microservices that are shared by all non-premium tier tenants
(in this case, Tenants 3..N). This means the Provisioning service must perform a one-
time configuration and deployment of these services to support the pooled tenants.
Once these services are up and running, the job of the Provisioning service for each

The Onboarding Experience | 95

new tenant will require fewer moving parts. You may need to configure routing or set
up some policies, but most of the heavy lifting will be done after the initial provision‐
ing and deployment of these services.

Finally, on the righthand side of the environment in Figure 4-7, you’ll see a range of
services that are deployed in varying models to support the needs of both premium
and basic tier tenants. The silo and pool choices that you make here are driven more
by the universal needs of your multi-tenant architecture (instead of tiers). The idea is
that you’re selecting silo and pool options based on a set of global needs (noisy neigh‐
bor, compliance, and so on).

In this example, I’ve intentionally created some variation in these services to highlight
the use cases you may need to support as part of tenant onboarding. The Product
microservice, for example, uses siloed compute for all tenants; that’s why you see a
separate instance of the service for Tenants 1–3. However, you’ll also see that this
same service uses pooled storage. This adds a new wrinkle to the onboarding story.
Now, your Provisioning service must handle this variation, provisioning the storage a
single time for all tenants while still provisioning and deploying separate instances of
the Product microservice as each tenant is onboarded.

The other services (Ratings and Cart) are just here to highlight additional patterns
you could see when implementing your Provisioning service. Ratings is entirely
pooled for compute and storage, while the Cart microservice has pooled compute
and siloed storage. Supporting onboarding for these services is about knowing what’s
siloed and what’s pooled and contextually triggering the creation and configuration of
these resources. This mirrors the discussion we had (in Chapter 3) around mixed
mode deployment. However, here we’re looking at how that mixed mode can influ‐
ence the onboarding experience of your multi-tenant environment.

One key question often comes up around the general timing of provisioning pooled
resources during the onboarding process. Since these resources are configured and
deployed once, many may prefer to pre-provision these resources as part of the initial
setup of your entire multi-tenant environment. So, if you’re setting up a brand-new
baseline environment, you could choose to provision all the pooled resources at this
time. To me, this seems like the more natural approach. This could mean that your
Provisioning service would support a separate path that is invoked by your DevOps
tooling to perform the one-time creation of these resources. Then, as each new tenant
onboards, this shared infrastructure would already be in place.

The other option could be to delay the creation of these pooled resources and trigger
their creation during the onboarding of your first tenant (almost like the Lazy loading
pattern). While this could slow your onboarding process, the overhead of this process
would only be absorbed by your first tenant. My general bias is to pre-provision these
resources. However, there could be other factors that steer you toward either one of
these strategies.

96 | Chapter 4: Onboarding and Identity

While it can be interesting and powerful to support these different tier-based deploy‐
ment models, it’s also essential to consider how your onboarding complexity might
impact the complexity of our overall SaaS environment. Yes, you want to give the
business lots of tools to be able to support different tenant profiles. At the same time,
you don’t want to over-rotate here. Also, it is important to emphasize that this is still a
tier level of customization. You should never view this mechanism as a way to sup‐
port any notion of one-off customization for individual tenants.

Tracking Onboarded Resources
If your onboarding process needs to provision dedicated tenant resources, then you’ll
also have to consider how your multi-tenant environment will track and identify
these resources. What you’ll find here is that other aspects of your system will end up
needing to locate and target these tenant-specific resources.

To really understand what I’m getting at, let’s consider a more concrete example.
Imagine you’ve onboarded a tenant in the mixed model deployment model in
Figure 4-7. This model includes plenty of examples of siloed and pooled resources.
Now, imagine you just onboarded a premium tier tenant into this environment and
created the individual resources that were needed to support that tenant.

Once onboarding is done and our tenant is up and running, you’ll still be deploying
updates to this environment. Patches, new features, and other changes will certainly
need to get deployed through the lifecycle of your application. This is where things
get a bit interesting. With the mixed mode deployment we have here, we can’t simply
deploy to one static location to update our system. Imagine, for example, rolling out a
new version of the Order service. To get the new code deployed, your DevOps experi‐
ence will need to find the separate deployments of the Order service that span all the
different resources that were provisioned by the onboarding experience. Here, that
would mean deploying the Order service to the Tenant 1 and Tenant 2 premium tier
silos and to the basic tier pooled instance that is shared by the other tenants.

So, that begs the question: how would your deployment process know how to handle
this? How would it know which resources are siloed for each tenant? The only way
for this to work is to have your onboarding experience capture and record the loca‐
tion and identity of these per-tenant resources. While the need for this tracking infor‐
mation is clear, there’s no clear or standard strategy that is commonly applied to
address this. Some place the data in a table as new tenants are onboarded and refer‐
ence this table during their deployment process. Others might use pieces of their
DevOps tool chain to address this challenge. The main takeaway is that if your
onboarding process provisions dedicated tenant resources, you’ll need to capture and
record the information about these resources so they can be referenced by other parts
of your deployment and operational experience. You’ll see more concrete examples of

The Onboarding Experience | 97

this when we start looking at orchestrating onboarding in EKS (Chapter 10) and ser‐
verless (Chapter 11) examples.

Handling Onboarding Failures
Any failure in the onboarding process can represent a significant issue for SaaS pro‐
viders. However, these failures take on added importance in any multi-tenant envi‐
ronment that has a self-service onboarding experience. Onboarding represents the
first impression you’re making with a tenant and any failure in this process could
translate into lost business.

While some of your reliability here will be extracted from applying solid engineering
practices, there are also areas within onboarding where your dependencies on exter‐
nal systems can impact the durability of your onboarding process. To get a better
sense of the options, let’s look at a specific example of a potential external dependency
that could be part of your onboarding experience. Figure 4-8 provides a conceptual
view of the billing integration that could be part of your onboarding flow.

Figure 4-8. Fault-tolerant integration with a billing provider

In this example, let’s presume you are reliant on an integration with a third-party bill‐
ing provider. By including a third-party billing solution in your onboarding (which is
common), you’ve made the reliability of your onboarding experience directly depen‐
dent on the availability of the billing provider. If the billing system is down, so is your
tenant onboarding.

Now, you might just presume that this is just the risk associated with using third-
party solutions. However, in this scenario, your system may very likely be able to con‐
tinue to operate—even when the billing system is down. While it’s true that you need
to get the billing account created, your system could still finish its onboarding process
and complete the billing configuration when the system is back online.

In Figure 4-8, I’ve highlighted a potential approach to this problem: making the bill‐
ing integration completely asynchronous. In this model, your onboarding process
would request the addition of a new tenant through a queue. The Billing service then
picks up the request and attempts to create an account in the billing system using an
asynchronous request. If this request fails, the Billing service will capture the failure

98 | Chapter 4: Onboarding and Identity

and schedule a retry. There are lots of different strategies for implementing a
fault-tolerant integration. Don’t get lost in the details. The key takeaway is that I’ve
created an integration model with the billing provider that enables my onboarding
flow to continue without waiting for the creation of the billing account. For some, it
may simply be preferable to have this always be an asynchronous integration purely
for the benefit of expediting the onboarding experience.

I’ve focused on billing just because it provides a natural illustration of the importance
of having a fault-tolerant onboarding experience. In reality, you should look at all the
moving parts of your onboarding automation and look for points of failure or bottle‐
necks that might require new strategies that can expedite or add durability to your
onboarding process. The cost of a failed onboarding is generally high and you want to
do whatever you can to make this mechanism as robust as possible.

Testing Your Onboarding Experience
At this point, the role and importance of onboarding should be clear. The potential
complexity and the number of moving parts in this process can make it particularly
prone to errors. With this in mind, it should also be clear that you’ll want to take
extra measures to validate the efficiency and repeatability of your onboarding pro‐
cess. Too many teams build an onboarding process and simply rely on the activity of
customers to uncover any bottlenecks or design flaws that might be impacting their
onboarding experience. To get around this, I always suggest that teams invest in
building a rich collection of onboarding tests that can be used to exercise and push on
all the dimensions of the onboarding experience.

There’s a range of potential test types you might consider here. You might, for exam‐
ple, create load tests for onboarding that simulate different onboarding workloads.
Or, you might create tests that validate your ability to recover from failures. Some
teams will introduce performance tests that measure the time it takes to onboard ten‐
ants. Each of these tests could be executed with a mix of different tenant tiers where a
tenant’s tier might exercise different paths of your onboarding experience.

The goal is to ensure that the design, architecture, and automation assumptions of
your onboarding experience are being fully realized in your working solution. That
means pushing scale by simulating a full range of use cases that will push your
onboarding design and implementation. It will also allow you to verify that your envi‐
ronment is correctly surfacing any key metrics that are used to measure your ability
to meet any SLAs you’ve defined. The emphasis here is not just on ensuring that the
happy path works—it’s about ensuring that onboarding meets the scale and availabil‐
ity requirements and delivers the service experience that meets the expectations of
your customers.

The Onboarding Experience | 99

Creating a SaaS Identity
So far, I’ve touched briefly on the role of identity as part of the onboarding process.
However, there are lots of pieces to the identity puzzle that need exploring. Yes,
onboarding sets up identity, but what does that mean? How does identity get config‐
ured, and how does multi-tenancy affect the overall experience of our SaaS environ‐
ment? Here, we’ll dig more deeply into how tenancy shapes the authentication,
authorization, and general multi-tenant footprint of a SaaS environment.

With multi-tenant identity, you’ll have to go beyond thinking about identity purely as
a tool for authenticating users. You must broaden your view of identity to include the
idea that each authenticated user must always be authenticated in the context of a ten‐
ant. It’s true that users are connected to this experience, but much of the underlying
implementation of your multi-tenant architecture is primarily focused on the tenant
associated with that user. So, this means our identity model must be expanded to
cover both users and tenants. The basic goal is to create a tighter binding between
users and tenants that allows them to be accessed, shared, and managed as a single
unit.

In Figure 4-9 you’ll see a conceptual view of how a SaaS identity is composed. On the
left, I have the classic view of what I’ve labeled as a user identity. This identity is
focused squarely on describing and capturing the attributes of an individual. Names,
phone number, email—these are all typical descriptors that would be used to charac‐
terize the user of a system. On the righthand side, however, I have also introduced the
idea of a tenant identity. A tenant is more of an entity than an individual. A company,
for example, subscribes to your SaaS service as a tenant, and that tenant often has
many users.

Figure 4-9. Creating a logical SaaS identity

100 | Chapter 4: Onboarding and Identity

For multi-tenant environments, these two distinct notions of identity are joined
together to create what I refer to as a SaaS identity. This SaaS identity must be intro‐
duced in a way that allows it to become a first-class identity construct that is passed
through all the layers of your system. It becomes the vehicle for conveying your ten‐
ant context to all the parts of your system that need access to these user and tenant
attributes. This SaaS identity maps directly to the tenant context concept that I
described in Chapter 1.

The key is that this SaaS identity needs to be introduced without somehow impacting
or complicating the traditional authentication experience. Your SaaS authentication
experience must retain the freedom to follow a classic authentication flow while still
enabling the merging of the user and tenant identities. Figure 4-10 provides a view of
this concept in action.

Figure 4-10. SaaS identity authentication flow

In the flow you see here, a tenant user attempts to access a SaaS web application (step
1). The application detects that the user is not authenticated and redirects them to an
identity provider that has awareness of both the user and tenant identities (step 2).
When the user is authenticated, the identity provider will own responsibility for
returning the SaaS identity (step 3). Then, this SaaS identity is passed downstream to
all the rest of the moving parts of our system (step 4). This identity includes all of the
tenant and user attributes that are needed to support the needs of the remaining ele‐
ments of your SaaS application.

While this flow might vary based on the nature of your identity technology, the spirit
of this experience should remain similar across different identity models. It also
might be influenced by how tenants flow into your system and get routed to an iden‐
tity provider. Subdomains, email addresses, or lookup tables, for example, could
shape how you resolve a tenant’s path to the corresponding identity provider. In the
end, your goal is to resolve and create this SaaS identity at the front of this process
and avoid pushing this responsibility further into the details of your design and
implementation.

Creating a SaaS Identity | 101

Attaching a Tenant Identity
At this stage, I’ve talked about joining user and tenant identities. While this may
make sense conceptually, we still haven’t talked about how you can combine these
two concepts into a true, first-class SaaS identity construct. Naturally, how you do this
will vary from one identity provider to the next.

For this discussion, I’m going to focus on how the Open Authorization (OAuth) and
OpenID Connect (OIDC) specifications can be used to create and configure a SaaS
identity. These specifications are used widely by a number of modern identity provid‐
ers, serving as an open standard for decentralized authentication and authorization.
As such, you should find that the techniques I’ve covered here should have some nat‐
ural mapping to your application’s identity model.

To get tenants attached to users, we first need to understand how the OIDC speci‐
fication packages and conveys a user’s authentication information. Generally, when
authenticating against an OIDC-compliant identity provider, you’ll find that each
authentication returns identity and access tokens. These are represented as JSON
Web Tokens (JWTs) that hold all the authentication context to be used for down‐
stream authorization. The identity token is meant to convey information about a
user, while the access token is used to authorize that user’s access to different
resources.

Within these JWTs, you’ll find a set of properties and values that provide more
detailed information about a user. This data is referred to as claims. There is a default
set of claims that are generally included with each token to ensure a standardized rep‐
resentation of common attributes. It’s these JWTs that become the universal currency
of our multi-tenant identity model.

The good news with JWTs is that they allow for the introduction of custom claims.
These custom claims are essentially the equivalent of user-defined fields that can
be used to attach your own property/value pairs to JWTs. This creates the oppor‐
tunity for you to attach tenant contextual data to these tokens. Figure 4-11 pro‐
vides an illustration of how these custom tenant claims would get added to your
JWTs.

On the left is a sample JWT populated with the example claims that are part of the
OIDC specification. I won’t go through all of these, but it is worth calling out the spe‐
cific user attributes that show up here. You’ll see that name, given_name, family_name,
gender, birthdate, and email are all in this list. On the right, however, are the
attributes of our tenant that need to be merged into the JWT. These simply get added
as property/value pairs to standardized representation.

102 | Chapter 4: Onboarding and Identity

Figure 4-11. Adding tenant custom claims to a JWT

While there’s nothing magical or elegant about this model, being able to introduce
these custom claims as first-class citizens provides a significant upside. Imagine how
having these attributes embedded as claims ends up shaping your multi-tenant
authentication and authorization experience. Figure 4-12 highlights how this seem‐
ingly simple construct ends up having a cascading impact across your multi-tenant
architecture.

Figure 4-12. Authenticating with embedded tenant context

Creating a SaaS Identity | 103

In this example, the flow starts at the web application. The user hits this page and is
not authenticated, which sends them off to the identity provider for authentication
(step 1). This represents a very familiar and vanilla flow that you’ve likely built multi‐
ple times. What’s different is that the data comes back from this authentication expe‐
rience. When you authenticate here, the identity provider is going to return its
standard tokens (step 2). However, because I’ve configured the identity provider with
tenant-specific custom claims, the tokens that are returned now align with the SaaS
identity that was discussed earlier. The tokens participate and behave like any other
token, but are enriched with the added tenant context that we need to create a SaaS
identity.

Now, these tokens can be injected as bearer tokens and sent downstream to your
backend services, inheriting all the security, lifecycle, and other mechanisms that are
built into the OIDC and OAuth specifications (step 3). This strategy is particularly
powerful when you look at how it impacts the broader experience of your backend
services. Figure 4-13 provides an example of how these tokens could flow through the
different multi-tenant microservices of your application.

Figure 4-13. Passing tokens to downstream microservices

I have three different microservices, each of which requires access to tenant context.
When you authenticate and receive a tenant-aware token, this token is passed into
whichever microservice you’re initially calling. In this case, the call comes into the
Order microservice (step 1). Then, imagine that this service needs to invoke another
backend service (Product) to complete its task. It can then pass this same token along
to the Product service (step 2). This pattern can then continue to cascade through
additional downstream service invocations (step 3). In this example, I’ve assumed I
can insert the JWT into an HTTP request as a bearer token. However, even if you’re

104 | Chapter 4: Onboarding and Identity

using another protocol here, there are likely ways you can inject this JWT as part of
your context.

You can imagine how this very simple mechanism ends up having a rather profound
impact on your overall multi-tenant architecture. This single JWT will touch so many
of the moving parts within the implementation of your multi-tenant environment.
Microservices will use it for logging, metrics, billing, tenant isolation, data partition‐
ing, and a host of other areas. Your broader SaaS architecture will use it for tiering,
throttling, routing, and other global mechanisms that require tenant context. So, yes,
it’s a simple concept, but the importance of its role within your SaaS architecture can‐
not be understated.

Populating Custom Claims During Onboarding
We’ve now seen how custom claims give us a way to connect users to tenants. What
may be less clear is how and when these claims are actually introduced. There are two
pretty straightforward steps associated with adding and populating these custom
claims. First, before you onboard any tenant, you’ll typically need to configure your
identity provider, identifying each of the custom attributes that you’d like to have
added to your authentication experience. Here, you’ll define each property and type
that you’ll want to end up in your custom claims. This prepares your identity pro‐
vider to accept new tenants that can store and configure their tenants with the addi‐
tional attributes.

The second half of this process is executed during onboarding. Earlier, I discussed the
creation of the tenant administration user as part of the overall onboarding flow.
However, what I didn’t mention was the population of the custom claims for your
newly created tenant. As you’re adding the information about your user (name, email,
etc.), you’ll also populate all the tenant context fields for that user (tenant ID, role,
tier). This data must be populated for each user within the identity provider, so even
after onboarding has been completed, the introduction of additional users must
include the population of these custom attributes.

Using Custom Claims Judiciously
Custom claims are a useful construct for attaching tenant context to your tokens. In
some cases, teams will get attached to this mechanism and expand its role, using it to
capture and convey application security context. While there are no hard and fast
rules here, I generally assume that if something is a custom claim, it’s playing an
essential role in shaping tenant context and influencing your global authorization
story.

Many applications rely on access control constructs to enable or disable access to spe‐
cific application functionality. These controls should be managed outside the scope of
your identity provider. Generally, I’d view it as a mistake to bloat your tokens with

Creating a SaaS Identity | 105

custom claims that are part of your traditional application access control strategy.
Instead, these kinds of controls should be implemented with any one of the language
or technology stack mechanisms built exclusively for this purpose.

There may be times where it’s unclear whether an attribute belongs in a custom claim
or your application access control model. To me, this is often resolved based on the
lifecycle and role of the attribute. If the attribute tends to be evolving with the intro‐
duction of application features, functions, and capabilities, then it should be managed
more through application access controls. Generally, attributes that land in your cus‐
tom claims are unlikely to be changing as your application changes. The content of
your tokens, for example, should not be shifting on a weekly basis based on the addi‐
tion of new application features or configuration options.

No Centralized Services for Resolving Tenant Context
Some teams try to draw a harder line between tenant identity and user identity. In
these environments, the identity provider is only used to authenticate users. Here,
when a user is authenticated, the tokens returned from this process do not include
any tenant contextual information. In this model, these systems must rely on some
downstream mechanisms to resolve tenancy. Figure 4-14 provides an example of how
this might be implemented.

Figure 4-14. Using a separate user/tenant mapping service

In this example, the web application authenticates against an identity provider that
has no awareness of tenant context (step 1). A successful authentication here will still
return the JWTs we discussed. However, these tokens will not include any of the

106 | Chapter 4: Onboarding and Identity

tenant-specific custom claims that were outlined earlier (step 2). Instead, the only
data here is user data. This token is then passed along to the Order microservice (step
3). Now, when this order service needs to access data for a specific tenant, it needs to
identify which tenant is associated with the current request. Since the JWT doesn’t
include this information, your code would need to acquire the context from another
service (step 4). In this example, I’ve introduced a Tenant Mapping service that takes
the JWT, extracts the user information, resolves the user to a tenant, and returns the
tenant identifier (step 5). This identifier is then used to get an order for this specific
tenant (step 6).

On the surface this may seem like a perfectly valid strategy. However, it actually
presents real challenges for many SaaS environments. The lesser of the issues here is
that it creates a hard separation between the user and the tenant, requiring teams to
manage the coupled state of the user and the tenant independently. The bigger issue,
though, is that every service in the system must go through this centralized mapping
mechanism to resolve tenant context. Imagine this step being performed across hun‐
dreds of services and thousands of requests. Many who adopt this approach quickly
discover that this Tenant Mapping service ends up creating a significant bottleneck in
their system, which then leads teams down a path of trying to optimize a service that
is actually providing no business value.

This is another reason why it’s so essential that the user and tenant contexts are
bound together and shared universally across the entire surface of your multi-tenant
architecture. As a rule of thumb, my goal is to never have a service need to invoke
some external mechanism to resolve and acquire tenant context. You want to have
most everything you need to know about the tenant shared through the JWT that
includes your SaaS identity information. Yes, there may be exceptions, but this should
be the general mindset you take when thinking about how you’re mapping users to
tenants.

Federated SaaS Identity
Most of what I’ve described so far assumes that your SaaS system will be able to run
with a single identity provider that is under your control. While this represents the
ideal scenario and maximizes your options, it’s also not practical to assume that every
SaaS solution is built with this model. Some SaaS providers face business, domain, or
customer needs that require them to support a customer or third-party hosted iden‐
tity provider.

One common case I’ve seen is a scenario where a SaaS customer has some enterprise
dependency on an existing, internal identity provider. Some of these customers may,
as a condition of their purchase, require a SaaS provider to support authentication
from these internal identity providers. These cases often come down to weighing the
value of acquiring this customer against adding complexity to your environment that

Creating a SaaS Identity | 107

could impact the agility and operational efficiency of your overall SaaS experience.
Still, when the right opportunity presents itself, the business parameters can push
teams toward strategies that allow them to support this model.

Typically, this is achieved through some added level of tenant configuration where
your tenant onboarding will add additional support for configuring this externally
hosted identity provider. The goal would be to make this as seamless as possible, lim‐
iting the introduction of any invasive or one-off code that would include tenant-
centric customization. The other challenge is that, in some cases, you’ll need to
provide side-by-side support for the external and internal identity providers. The
reality is that most of your customers are likely to expect your solution to include
built-in identity support. Figure 4-15 provides a view of the moving parts of this
identity pattern.

Figure 4-15. Supporting externally hosted identity providers

At the center of this example, you’ll see that I have an authentication manager. This is
a conceptual placeholder for introducing some service into your authentication flow
that can support a more distributed set of identity providers. To make this work, your
system will need to always determine how an identity provider is hosted. Each time a
user needs to authenticate, you’ll need to examine that user and retrieve the identity
configuration, which will include data that describes the location and configuration
of a given tenant.

On the lefthand side of Figure 4-15, I’ve included a mix of internally and externally
hosted identity providers that need to be supported by a single SaaS experience. Two

108 | Chapter 4: Onboarding and Identity

tenants are using their own identity provider. The remaining tenants are using your
internally hosted identity provider.

This model seems pretty straightforward. However, the twist is that your system has
no control over these external identity providers. As such, you can’t configure the
claims of these providers or have your onboarding process add additional tenant con‐
text to the identity data that’s managed by these providers. This means that the JWTs
returned from your authentication requests will not include any of the tenant context
that is essential to your multi-tenant environment. To resolve this, your solution will
need to introduce new functionality that can enrich the tokens returned from these
external identity providers, assuming responsibility for enriching these tokens with
tenant context that is managed within your SaaS environment. This allows all down‐
stream services to continue to rely on tenant-aware JWT tokens regardless of which
identity provider was used to authenticate your user. How these tokens are enriched
will depend on the nature of our solution. There are strategies that will provide hooks
that allow you to dynamically inject the added tenant context. In other instances, you
may need a more custom solution. Generally, though, the federation models of the
identity space often offer you different techniques to deal with this use case.

I’ve included this model because it represents an inevitable pattern that appears in the
wild. It’s worth noting that there are clear downsides to this approach. Any time you
have to insert yourself into the authentication flow, you are taking on an added role
within the security footprint of your multi-tenant architecture. You may also be
required to address scale and single point of failure requirements that come with sit‐
ting in the authentication flow. So, while this may be necessary, it comes with real
baggage that you’ll want to consider carefully.

Tenant Grouping/Mapping Constructs
While identity providers often conform to well established specifications (OIDC,
OAuth2), the constructs that are used to organize and manage identities can vary
from one identity provider to the next. These providers offer a range of different con‐
structs to group and organize users. This is especially important in multi-tenant envi‐
ronments where you may want to group all the users that belong to a tenant together.
These group constructs can have implications that will influence how you land ten‐
ants within your identity provider. In some cases, you might also be able to use these
groups to apply tiering policies to tenants to shape their authentication and authori‐
zation experience.

If we look at Amazon Cognito, for example, you’ll see that it offers multiple ways to
organize tenants. Cognito introduces the idea of a User Pool. These User Pools are
used to hold a collection of users, and they can be individually configured, allowing

Creating a SaaS Identity | 109

pools to offer separate authentication experiences. This might lead to a User Pool per
tenant model where each tenant would be given its own pool. The alternative would
be to put all tenants in a single User Pool and use other mechanisms (groups, for
example) to associate users with tenants. You’d also want to consider how any limits
from your identity provider might factor into choosing a strategy.

There are trade-offs you’ll want to consider as you pick between these different iden‐
tity constructs. The number of tenants you have, for example, might make it imprac‐
tical to have separate User Pools for every tenant. Or you may not need much
variation between tenants and prefer to have all tenants configured and managed col‐
lectively. You might also be thinking about how the choices you make here could
impact the authentication flow of your SaaS solution. If you have separate User Pools
for each tenant, you need to think about how to map tenants to their designated pools
during the authentication process. This may add a level of indirection that you may
not want to absorb as part of your solution.

Scale, identity requirements, and a host of other considerations are going to shape
how you choose to map tenants to whichever constructs are supported by your iden‐
tity provider. The key is that as you start to lay out your SaaS identity strategy, you’ll
want to identify the different units of organization that can be used to group your
tenants and determine how those will shape the scale, authentication, and configura‐
tion of your multi-tenant authentication experience.

With different organizational constructs also come different identity configuration
options. Identity providers generally provide a range of options that can be used to
configure your authentication experience. Multi-factor authentication (MFA), for
example, is offered as an identity feature that can be enabled or disabled. You can also
configure password formatting requirements and expiration policies.

The settings for these different configuration options do not have to be globally
applied to all of your tenants. You may want to make different identity features avail‐
able to different tenant tiers. Maybe you’ll only make MFA available to your premium
tier tenants, or you might decide to surface these configuration options within the
tenant administration experience of your SaaS application and allow each tenant to
configure these different identity settings. This can be a differentiating feature that
can add value for your tenants and allow them to create the identity experience that
best fits the needs of their business.

How or if you can offer this identity customization will depend on how your specific
identity provider organizes and surfaces these options. Some providers will allow you
to configure this separately for individual tenants, and others will only allow this to
be configured globally. You’ll need to dig into the constructs of your specific identity
provider to figure out whether you can associate these identity policies with individ‐
ual tenants.

110 | Chapter 4: Onboarding and Identity

Sharing User IDs Across Tenants
Each user of your SaaS system has some user ID that identifies that user to a tenant.
This user identifier is often represented by an email address. In many cases, a single
user will be associated with a single SaaS tenant. However, there are times when SaaS
providers have interest in associating a single email address with many tenants. This,
of course, adds a level of indirection to your authentication. Somewhere in your login
flow, your SaaS system will need to determine which tenant you’re accessing.

While I’ve seen requests for supporting this mode, I have yet to uncover any out-of-
the-box strategy for handling this use case. That being said, there are some patterns
that I have seen applied here. The most brute force way I’ve seen is one that pushes
the tenant resolution to the end user; during sign-in, the system will detect that a user
belongs to multiple tenants and will prompt the user to select a target tenant. This is
anything but elegant and it does create an information leak in that anyone can use an
email address to see which tenants you belong to (if and only if you belong to more
than one). In the model, you’d have a mapping table that connected users to tenants
and you would use this as a lookup in advance of starting the authentication flow.

A cleaner approach to this would be to rely on an authentication experience that sup‐
plied context more explicitly. The best example is probably domains and subdomains.
If each of your tenants is assigned a subdomain (tenant1.saasprovider.com), your
authentication process can use this subdomain to acquire the tenant context. Then
the system would authenticate you against the specified tenant. This would allow the
user to authenticate without any intermediate process to identify the target tenant.

There are other complications in this scenario. Imagine, for example, all of your users
are running in a shared identity provider construct. In that mode, the identity pro‐
vider is going to require each user to be unique. This would make it impossible to
support having a single user ID associated with multiple tenants. Instead, you may
want to consider relying on a more granular construct to hold each tenant’s data (like
the User Pool mentioned earlier).

Tenant Authentication Is Not Tenant Isolation
As part of this discussion of authentication and JWTs, I sometimes find that teams
will equate authentication to tenant isolation. The assumption here is that authentica‐
tion is the barrier to entry for tenants and that, once you’ve made it beyond that chal‐
lenge, you have met the criteria for tenant isolation in multi-tenant environments.

This is definitely an area of disconnect. Yes, authentication starts the isolation story
by issuing a JWT with tenant context. However, the code in your microservices can
still include implementation that—even when working on behalf of an authenticated
user—can access the resources of another tenant. Tenant isolation builds upon the
tenant context that you get from an authenticated user, implementing a completely

Creating a SaaS Identity | 111

separate layer of controls and measures to ensure that your code is not allowed to
cross a tenant boundary. You’ll get a deeper look at these strategies in Chapter 9.

Conclusion
This chapter was all about describing the foundational elements that represent the
starting point for creating a multi-tenant architecture. My focus was on introducing
the core constructs that are used to inject the notion of tenancy into your architec‐
ture. You’ll notice that nothing about these first steps includes any effort to define the
application experience. Instead, it’s putting tenancy front and center in your architec‐
ture. Putting these fundamental pieces in place early will require your team to design,
build, test, and operate in a multi-tenant context across all the stages of your develop‐
ment process. From day one, your architecture will need to account for all the
dynamics that come with supporting multiple tenants. The overall goal is to avoid the
trap of viewing multi-tenancy as a bolt-on that can be added after you’ve built your
application. That mode rarely works and usually leads to painful compromises and
refactoring.

We started the chapter at the most basic level, exploring the process of creating your
baseline environment and deploying the first bits of your control plane. Getting the
shell of the control plane in place allows you to carve out the space that will eventu‐
ally house all the services that will be part of it. It also forces you to begin thinking
about the overall deployment, versioning, and general lifecycle of your control plane.

From there, we shifted our attention to the onboarding experience, highlighting the
complexity, challenges, and considerations that come with introducing tenants into
your environment. We walked through a conceptual view of an onboarding flow to
give you a better sense of the moving parts that are part of this experience. A big part
of this discussion also surrounded the mindset that comes with automating your
onboarding flow. It’s here that we saw how automating this onboarding automation
brings new DevOps nuances to your environment, stretching how you might think
about where and when tenant environments are provisioned and configured. Our
look at onboarding also emphasized the broader role it plays in supporting and ena‐
bling the scale, agility, and innovation goals of your business.

With onboarding, we talked about how tenants get introduced into your environ‐
ment. The natural progression was to look at how the setup of these tenants influ‐
ences the authentication experience of your environment. It’s through authentication
that we see some of the payoff of the work that was done during onboarding. Our
review of authentication shifted our focus to the role identity plays in a SaaS environ‐
ment. We examined how our identity provider creates a connection between users
and tenants, establishing what I referred to as a SaaS identity. This makes SaaS iden‐
tity a first-class concept in our architecture. We explored how the authentication of
tenants yields tokens that include all the context we need to inject into all the

112 | Chapter 4: Onboarding and Identity

downstream bits of our SaaS architecture. This should have highlighted just how
essential it is to have this SaaS identity woven into your experience from the outset of
building a multi-tenant environment.

While I’ve only touched on the conceptual elements of onboarding and identity, this
should give you a better sense of the moving parts and considerations that come with
creating these foundational constructs. As we move forward, we’ll see more concrete
versions of these mechanisms and see how different deployment models and technol‐
ogy stacks can influence the design and implementation of onboarding and identity.
We’ll also see this notion of tenant context showing up in our review of other dimen‐
sions of your architecture, including data partitioning, tenant isolation, multi-tenant
microservices, and so on.

First, though, we’re going to look a little deeper inside the control plane and examine
the Tenant Management component. This chapter already hinted at how Tenant
Management surfaces as part of the onboarding experience. Now, I want to look more
exclusively at the role of this service within your control plane. While not exotic or
overly complex, it often sits at the middle of our multi-tenant story. I’ll look at what it
means to create this service and outline some of the key considerations that can influ‐
ence its implementation.

Conclusion | 113

CHAPTER 5

Tenant Management

In the previous chapter, we started our foray into the control plane, looking at the
broader role that onboarding and identity play in bringing your multi-tenant archi‐
tecture to life. As part of that process, I touched on how the Tenant Management ser‐
vice is used to introduce new tenants into the system. Now, it’s time to dig more into
this service, getting a better sense of its inner workings and examining the full scope
of its responsibility. This will give you a better sense of the data, operations, and con‐
structs that put tenant management at the center of configuring aspects of your ten‐
ant architecture and managing the lifecycle of key tenant events.

We’ll start by looking at the fundamentals of what it means to build your Tenant
Management service, exploring the elements of its core design and implementation.
As part of this, I’ll get into some of the common tenant attributes that are managed
by this service. You’ll see that storing and managing these attributes is mostly
straightforward. However, what you choose to store here can have other downstream
implications, expanding its role and usage across the overall footprint of your SaaS
architecture.

To better understand the broader role and experience of tenant management, we also
have to look at how you will enable management of your tenants. We’ll look at how
this can surface through APIs or a system administration console. It’s here that you’ll
get another view into how your Tenant Management service fits into the control
plane experience. We’ll look at how you can use the Tenant Management service to
create operational views into your environment, enabling you to manage the state of
your system’s tenants.

The other dimension of tenant management we’ll review is tenant lifecycle manage‐
ment. The goal is to look beyond the initial configuration of a tenant and examine the
different events that can happen that will impact the state of a tenant. What does it
mean for tenants to change from an active to an inactive state? How does your system

115

manage and apply a tenant’s move from one tier to another? How does the state of
other systems (billing, for example) get conveyed to your Tenant Management ser‐
vice? These are all areas that can have some interaction with tenant management and,
potentially, have some cascading impact across different layers of your SaaS
architecture.

The focus of this chapter is to highlight all these nuances of tenant management and
equip you with a better sense of the considerations that can influence the multi-
tenant strategies and patterns that are applied within your solution.

Tenant Management Fundamentals
To get a better understanding of the scope and nature of tenant management, let’s
start by looking at the core moving parts of the tenant management universe.
Figure 5-1 provides a conceptual view of the various elements that are often part of
the overall tenant management footprint.

Figure 5-1. Tenant management’s influence

You’ll see that I have placed tenant management in the center of the diagram and
identified the areas that are commonly configured or managed through their connec‐
tion to a tenant. At the top I’ve represented a few areas that might commonly interact
with the Tenant Management service. A key player here is onboarding (discussed in
Chapter 4), which has a significant influence on tenant management. Each time a ten‐
ant is created, this will trigger the configuration and setup of a number of different

116 | Chapter 5: Tenant Management

resources that are related to your new tenant. I’ve shown some specific examples here.
You’ll also see that I’ve put offboarding and billing, both of which will have touch
points with tenant management as tenants go through different stages of their life‐
cycle (changing tiers, being decommissioned, and so on).

On the righthand side of Figure 5-1, you’ll see two different flavors of data are man‐
aged and configured through the Tenant Management service. In this grouping, you’ll
see what I’ve labeled as core tenant attributes. This represents the core, baseline data
that is needed for most tenants: tenant identifier, status (enabled/disabled), tier, com‐
pany name, onboarding status, date last active, and so on. I’ve also shown a separate
placeholder for Identity settings. These settings hold the different tenant authentica‐
tion properties that could be configured through the Tenant Management service.
Here’s where MFA, password policies, identity provider mappings, and other identity
related settings live. Routing policy configuration is also here. The configuration data
stored here captures any tenant-specific settings that are used to determine how ten‐
ants might be routed to different parts of your infrastructure. URLs, for example,
might appear here.

On the left of Figure 5-1, I’ve shown the configuration of keys and secrets. These set‐
tings are used to configure different security aspects of your environment. You might,
for example, have per-tenant secrets or encryption keys that are managed by this
experience. For some environments, management of these settings can play a bigger
role in the overall isolation and security profile of your SaaS solution.

Finally, at the bottom of Figure 5-1 is a representation of the different users that can
be associated with a tenant. I’ve shown a tenant administrator and a few tenant users
to illustrate the relationship between a tenant and the various users that may be asso‐
ciated with that tenant. The tenant administrator is created when the tenant is first
introduced. However, after onboarding, the tenant can also create additional users for
their system, including other tenant administrators. These users are all logically con‐
nected to a tenant. Any change in tenant configuration will be applied to all of these
users.

There is a tendency for some to want to equate tenants to users.
Now, in a B2C setting, it’s true that tenants are likely to have a one-
to-one mapping to users. However, even in this case, you still have
a tenant, and there are still attributes and policies that may need to
be configured for that tenant. I still want to draw a line between
managing users and managing tenants, and I would generally keep
a user’s role and its other application-related settings separate from
its tenant settings. This isn’t a hard-and-fast rule, but I see teams
folding these two into one construct when, in many cases, they
should be separately managed.

Tenant Management Fundamentals | 117

As I get into the details of specific multi-tenant architectures later in this book, you’ll
see how tenant management interacts with these different services. You’ll also see
more examples of how tenant management is used to shape the per-tenant configura‐
tion options of your multi-tenant infrastructure and identity experience.

Building a Tenant Management Service
Let’s shift from the conceptual view of tenant management and its role and look more
at what it actually means to implement a Tenant Management service. The interface
of this service is typically broken down into two logical categories. First, you’ll have a
range of operations that are focused on the basic management of configuration data.
These operations are typically exposed via a create, read, update, and delete (CRUD)
interface. The other category of operations that land here are centered around
broader tenant management operations (tenant deactivation, tenant decommission‐
ing, and so on). These operations tend to contribute the most to the overall complex‐
ity of your Tenant Management service.

Figure 5-2 provides a simple view of the moving parts of a sample Tenant Manage‐
ment service. What I’ve tried to do here is provide a conceptual view into the com‐
mon interfaces and experience that could be included in this service. On the left,
you’ll see all the entry points that mirror the summary I provided earlier. The top set
of functions manages configuration, and the bottom entry points support the differ‐
ent management-related operations.

Figure 5-2. A sample tenant management implementation

The righthand side of this diagram highlights the various backend resources and inte‐
grations that would be part of your tenant management experience. At the top right,
I’ve shown some storage. For this example, I chose to use NoSQL storage

118 | Chapter 5: Tenant Management

(DynamoDB) to hold my tenant configuration information. Generally, the size and
consumption patterns for this data tends to fit well with a schemaless storage model.
This also makes it easy to apply changes to the tenant configuration structure without
needing to update schemas or migrate data.

I’ve also put placeholders here to represent some of the tenant lifecycle components
that may be part of your tenant management service. I’ll be covering these lifecycle
concepts in more detail later, but I wanted to show them here to make it clear that
this service may need to support decommissioning of tenants, tier migration, and
other tenant lifecycle events. Each of these may require some level of infrastructure
configuration, provisioning, or removal depending on the nature of the operation.
This often means invoking infrastructure automation scripts or code associated with
these operational events. I’ve shown these concepts as being integrated via a queue
only to highlight the idea that the actual work of processing these events might be
triggered by an event and executed as part of some asynchronous job.

The last piece that I included was billing. Your service may have multiple integrations
with your control plane’s billing service (or directly with your billing provider). Your
billing system may trigger events that make updates to the state of tenants. Or, your
tenant management service might trigger events that end up sending requests to the
billing service.

You can see that the Tenant Management service, on its own, doesn’t introduce a sig‐
nificant amount of complexity into your control plane. At the same time, it sits at the
center of managing key elements of your tenant state that directly influence the
implementation and behavior of your multi-tenant architecture. It also provides a
centralized home for processing tenant lifecycle events.

Generating a Tenant Identifier
Within the implementation of your Tenant Management service, you’ll be responsible
for generating the tenant identifier that represents the universal unique identity of
any tenant in your system. The most common mechanism that is used for tenant
identifiers is a GUID. It provides a natural way to have a globally unique value that
has no dependency on other attributes of the tenant. The goals here are twofold. First,
you just need to have some separate immutable value that can universally represent
your tenant across your multi-tenant environment. Second, you want to ensure that
any other consumer of this identity cannot map it back to a specific tenant or entity
in your system. This identifier provides a way to represent tenants without surfacing
anything specific about the tenant.

It’s important to note that some multi-tenant environments may include alter‐
nate, more friendly ways to identify a tenant. For example, If the system uses a sub‐
domain or vanity domain for individual tenants, then you’ll need some way to map
from that entity name to the tenant identifier. In this case, I might have

Tenant Management Fundamentals | 119

mycompany.saasprovider.com where the “mycompany” subdomain represents an
externally facing name that would then get mapped to an internal tenant identifier.
Even when you have some other name you’re using as part of the entry into your sys‐
tem, these entity names or references should not be viewed as your tenant identifier.
There are good reasons to keep these separate. The most obvious of these is the need
to ensure that you can change these friendly names without having any impact on the
rest of the system. This goes back to the basics of data management that led to the use
of GUIDs to identify the different items in a database.

Storing Infrastructure Configuration
In addition to storing basic tenant attributes, tenant management can also be used to
store tenant-specific infrastructure configuration information. Depending on the
deployment model of your multi-tenant application, you might have identity configu‐
ration, routing patterns, and other infrastructure options stored and managed by
your tenant management service. This data is not typically managed directly by your
administration experience. Instead, it’s stored here during the configuration of your
multi-tenant infrastructure then referenced by different parts of your experience that
need this information to configure or resolve tenant mappings that are part of your
environment.

The data that you end up putting here is shaped by the specifics of your SaaS archi‐
tecture. If, for example, you have separate identity constructs for each of your tenants,
you may need to use tenant management to store a tenant’s mapping to its identity
construct. If you have siloed tenant environments and you have mapping to tenant
specific entry points or URLs, those could be stored by the tenant management ser‐
vice. These are just a few examples. The key is that tenant management may manage
data that goes beyond the scope of basic tenant attributes.

While the tenant management service makes a good, centralized home for tenant
state and configuration, you always need to ensure that this service does not become
a bottleneck of your system. If the data that’s stored here is being frequently accessed
by all the moving parts of your system, you’ll need to consider alternate strategies for
managing and accessing this data. Ideally, the state that’s here will not be used heavily
by the application services of your application. This is part of why we put the critical
tenant attributes into the JWT, limiting your need to continually return to any single,
centralized service to continually acquire this context.

120 | Chapter 5: Tenant Management

Managing Tenant Configuration
Much of the initial focus of tenant management is on its role in creating and con‐
figuring tenants as part of the onboarding experience. It’s important to note that
tenant management has a life beyond onboarding. This service is also used to sup‐
port different operations and use cases throughout the lifetime of a tenant. To bet‐
ter understand this, let’s return to the system admin console that we discussed in
Chapter 4. This console provides an administrative view into your multi-tenant
environment, allowing you to inspect, configure, and manage your tenants (see
Figure 5-3).

Figure 5-3. Managing tenants from the admin console

This is a very straightforward experience that essentially grabs a list of tenants and
lists them on the screen. This list, of course, is acquired from your Tenant Manage‐
ment service, which fetches all the tenants that are stored by your service and lists
them on this page. With each tenant, you’ll see its identifier, name, status, and any
other attributes that you might deem worthy of including in this view.

At a minimum, this view would be used to look up and resolve the status of ten‐
ants. It’s also commonly used to locate the unique identifier when you’re searching
logs or doing any other troubleshooting that might rely on the tenant information.

Managing Tenant Configuration | 121

In addition to surfacing information about the tenant, the console is also where
you would edit and manage any policies for a given tenant. Perhaps the most com‐
mon functionality that’s configured here is the tier or status of the tenant. In this
particular example, you can see additional configuration details by selecting the
link to the tenant identifier. Figure 5-4 provides an example of a detailed view of a
specific tenant.

Figure 5-4. Managing tenant details from the console

Again, this is just an example, but it highlights some of the additional options you
might attach to your tenant management view. Here you see the next level of detail
associated with your tenants, including subdomain, onboarding status, and so on.
You can imagine how this screen would be filled with more detail based on the pres‐
ence of any additional tenant configuration options that are part of your multi-tenant
environment.

There are two key things to note here as conceptual placeholders. First, in the top
portion of Figure 5-4, you’ll see additional details that provide more data on the state
of a single tenant. Then, at the bottom of the image, you’ll see a section that includes
hyperlinks that take you to key infrastructure resources that are associated with the
current tenant. These links take you directly to the admin or cloud provider infra‐
structure page for each resource, allowing you to rapidly access resources in the

122 | Chapter 5: Tenant Management

context of a specific tenant. This can streamline your operational experience, allow‐
ing you to rapidly navigate (with tenant context) to any specific tenant infrastructure
resources.

It’s important to note that you may or may not choose to include these links. They are
especially valuable if you are running full stack silo environments. However, the more
pooled your environment is, the less likely that you’ll get lots of value out of provid‐
ing this tenant contextual access to infrastructure resources.

Finally, you’ll also see that there’s an Actions pulldown button in the top right of
Figure 5-4. This is where you’ll perform specific operations on your tenant. At a min‐
imum, your system will likely include functionality to update the active status of a
tenant. To perform this operation, an operator would access the administrator con‐
sole and temporarily deactivate a tenant. There may be additional options here to
decommission a tenant or move them between tiers (these options are explored more
in the section that follows).

This particular example focuses more on managing tenants through a console. How‐
ever, all functionality enabled here typically is enabled through operations that are
performed on the API of the Tenant Management service. In reality, you could create
an experience where these operations and insights were performed directly through
the API. How you approach this will vary based on the nature of the tenant manage‐
ment experience you need to support. You can do everything through a console,
everything through an API, or a mix of the two.

In our discussion of onboarding in Chapter 4, I talked about the different models for
triggering the onboarding of a tenant. I emphasized the point that onboarding of new
tenants could be executed by tenants as part of a self-service experience or through
some internal onboarding tooling developed by your team. In fact, the internal mech‐
anism could be surfaced as part of the admin console.

The self-service flavor of onboarding is pretty straightforward. You land on the
sign-up page, fill in the data, and submit your request. The question is, though,
where should you surface an internally managed onboarding experience? There is
no one answer to this. You might have your own command-line interface (CLI) or
other tools that allow you to onboard tenants. However, one common approach
would be to manage this onboarding through your tenant management console
experience.

You could achieve this by adding an “Onboarding Tenant” action to your console.
Triggering that action would open a form where you would fill in all the data needed
to onboard a new tenant. Figure 5-5 provides an example of what this form might
look like.

Managing Tenant Configuration | 123

Figure 5-5. Internally onboarding a tenant

This is a basic form that just collects and submits your data. Every multi-tenant
onboarding process will likely include a tenant entity name, an email address for the
tenant admin user, and the plan or tier they’re signing up for. From there, the rest
would depend on the configuration options and nature of your multi-tenant environ‐
ment. You might need to collect a subdomain here, for example. Or, you might have a
more elaborate process that allows you to bring in a full vanity domain for a tenant.
The key at this point is just to highlight the fact that the tenant management experi‐
ence may provide a good home for surfacing your internal process via the admin
console.

Managing Tenant Lifecycle
Up to this point, the focus of tenant management has largely been on the mechanics
of the front of the tenant management process where you’re onboarding and config‐
uring tenants. Now, I want to shift gears and look at the role tenant management
plays beyond this initial phase. The focus now transitions to thinking about the vari‐
ous states that a tenant might go through during its time within your system.

124 | Chapter 5: Tenant Management

Teams often overlook the entire notion of managing a tenant’s lifecycle. They focus
squarely on what it means to get a tenant introduced or configured and view that as
the one and only role of their Tenant Management service. It’s true that, for some ten‐
ants, you’ll create them once and that will be it for them. However, there will also be
tenants in your system that will need to go through changes in state that are more
involved than just changing the value of some attribute in your tenant database.

When you set out to build your multi-tenant environment, you have to consider all
the phases that a tenant could go through within your system. How will these state
changes be conveyed to you? Will they be in response to some external event or
driven directly from your Tenant Management service? What are the policies associ‐
ated with these state changes? These are amongst the questions you’ll want to ask
yourself as you assemble the tenant management elements of your SaaS solution.

While there are any number of phases that could be part of your tenant lifecycle,
there are a few common states that you’ll want to consider when building any multi-
tenant SaaS environment. The sections that follow will enumerate these lifecycle
changes.

Activating and Deactivating a Tenant
The first and most obvious state you’ll want to focus on is activation/deactivation. In
general, your SaaS environment should include some ability to enable and disable
tenants. Generally, this setting is used to manage a tenant’s ability to access your sys‐
tem. In this mindset, we’re not removing tenants from the system. We’re only flipping
a switch to turn their access on or off. When a tenant is deactivated, your Tenant
Management service will need to own responsibility for figuring out what actions
may need to be orchestrated to ensure that a tenant is blocked from accessing the sys‐
tem. This could be as simple as making a call to the User Management service to dis‐
able authentication for all users for that tenant or it could be more involved.

Managing a tenant’s active state can also be connected to the billing experience of
your application. It’s the billing system that can, in some cases, be at the front line of
managing your tenant’s active state. Imagine a scenario where a tenant has stopped
making payments. In this case, this information might surface first within your bill‐
ing system, which identifies delinquent tenants. When this event is triggered by the
billing system, you have to determine how your system will respond to these events.
You might have policies that send messages during some grace period that allow ten‐
ants to continue using the system while the billing issues are being resolved. At some
point, though, you can reach a point where you’ve determined that a tenant needs to
be deactivated. In this case, if the billing system originates this event, you’ll need
some way for this to be conveyed to your Tenant Management service.

Figure 5-6 provides a view of how billing might be connected with other services
within the control plane of your SaaS environment.

Managing Tenant Lifecycle | 125

Figure 5-6. Deactivation triggered by the Billing service

In this example, I’ve pulled in the various services that could be used to deactivate a
tenant based on an event that originates from your billing provider. I also have a
third-party billing system that’s being used to manage the billing state of my tenants.
For this scenario let’s assume that a customer success manager or some automation
policies within the billing provider has deactivated a tenant. Now, the Billing service
within your control plane needs some way to acquire and react to this event. How this
is achieved will depend largely on the nature of the billing provider’s API and integra‐
tion model. Ideally, the billing provider will generate an event when a tenant is deacti‐
vated. If not, your Billing service may need to have some process that periodically
looks for these changes in state. In this scenario, I’ve presumed the billing provider is
sending a message to my Billing service (step 1).

Once the billing system detects this event, it will call your Tenant Management ser‐
vice with a deactivate tenant request (step 2). The service will update the state of the
tenant to inactive and convey this new state change to any part of your system that
might be impacted by this change in status. In this diagram, I’ve presumed that deac‐
tivation is achieved by preventing tenants from authenticating. This is represented by
a call to your control plane’s User Management service, which updates the active sta‐
tus of all users associated with your tenant (step 3). Ideally, if your identity provider
supports a group construct for your tenants, you may be able to apply this change at
the group level. This would certainly be much simpler than toggling the states of indi‐
vidual users.

As part of deactivation, you also have to determine how this impacts the state of any
users currently logged into the system. Do you allow them to continue or do you
immediately terminate their active session? Many SaaS providers tend to lean toward
a model that is more passive, allowing tenant users to finish any active sessions.

Of course, whatever can be deactivated may also be reactivated, so you’ll want to con‐
sider that path as well. This is likely just a matter of reversing whatever was done to

126 | Chapter 5: Tenant Management

deactivate a tenant. In our example, this would just update the status of the tenant to
active and re-enable authentication for your tenant.

In some cases, deactivation may be initiated by your own services (instead of via a
billing system). This would mean that your admin console would provide a specific
operation that would be used to trigger tenant deactivation. Here, your Tenant Man‐
agement service would originate the deactivation event and update any downstream
services that would be impacted by this deactivation event.

The key takeaway is that tenant status must be centrally managed by your Tenant
Management service. It should be viewed as the single source of truth for managing
the state of tenants, ensuring that any impacts of changes in status are synchronized
with dependent parts of your system.

Decommissioning a Tenant
Now let’s look at what it means to decommission a tenant. You might be wondering
where the line is between deactivation and decommissioning. Deactivation is only
meant to suspend a tenant’s account. It does not impact the existing footprint of the
tenant’s environment. Essentially, it’s just disabling access, allowing for the fact that
the tenant may be reactivated at some point.

Decommissioning would typically come after deactivation. Imagine a scenario where
a tenant decides not to renew its subscription. When they reach the last day of the
subscription period, your system might choose to deactivate the tenant and leave
them in a deactivated state for some window of time. This strategy allows a tenant to
return, reactivate, and continue to resume using their system with no impact. It’s as if
they never left the system. This certainly creates a better customer experience. How‐
ever, after a certain amount of time, the unused resources of this tenant may be con‐
tributing to costs and complexity that are not adding any value for the business. Now,
you have to consider how you move from a deactivated state to decommissioning the
tenant’s resources.

There is no one-size-fits-all approach to choosing your system’s decommissioning
policies. The strategy you choose will be influenced by a variety of factors. How much
overhead is a deactivated tenant adding to your system? How frequently are tenants
deactivating? How are these deactivated tenants impacting the complexity of your
management and operations experience? There are a wide range of factors you’ll need
to consider to determine how, when, and if you choose to decommission tenants.

Now, let’s assume you’ve reached a point where you’ve decided tenants do need to be
decommissioned. You have a few choices when it comes to picking a decommission‐
ing strategy. You could choose to simply delete any resources that are associated with
the tenant, essentially removing them completely from the system, or you could
choose to archive the tenant’s state before decommissioning its resources. As part of

Managing Tenant Lifecycle | 127

this, you’ll want to reconsider what it means to rehydrate a tenant that has been
decommissioned. You might, for example, leave elements of the tenant in place that
have minimal impact on your system (the tenant, its users, and so on). This could
make bringing the tenant back to life a somewhat simpler process without adding
much cost or complexity to your environment. Ultimately, this is all part of the bal‐
ancing act that comes with creating your decommissioning strategy.

Figure 5-7 provides a conceptual view of some of the moving parts that might be
included in your decommissioning model.

Figure 5-7. Decommissioning tenant resources

In this example, I’ve shown a scenario where a system administrator starts the
decommissioning process, which sends a decommission request to the Tenant Man‐
agement service (step 1). At this point, you could have decommissioning imple‐
mented within the scope of the Tenant Management service. Instead, I’ve shown
decommissioning as a completely separate service that owns orchestration of all the
steps needed to remove a tenant from your system. This service is then called by the
Tenant Management service to begin the decommissioning process (step 3).

To me, it feels more natural to carve this out and allow decommissioning to exist as
its own process that would be deployed, managed, and executed outside the context
of the Tenant Management service. The Decommissioning service has the job of iter‐
ating over all the different tenant constructs and removing each one. This will be
achieved through a combination of infrastructure automation tooling and scripts as
well as API calls. The nature of each tenant resource may require a different decom‐
missioning strategy.

128 | Chapter 5: Tenant Management

While each SaaS solution will have its own unique blend of tenant resources, I did
include a few examples in the diagram to highlight the kinds of resources that might
be touched by your Decommissioning service. Naturally, if we have any siloed tenant
infrastructure here, those siloed resources will be removed from your system. This
may be about removing all the pieces of a full stack silo deployment or just the indi‐
vidual resources that might be deployed in a siloed model. Tenant configuration and
tenant users are also listed here as examples of resources that would get touched as
part of this process.

Tenant data can certainly be one of the more challenging areas to address when you’re
decommissioning a tenant. Imagine all the places where you might have pooled stor‐
age in your system. When you have pooled data, that means that your decommission‐
ing process will need to be able to locate and selectively remove the data that sits
alongside the data of other tenants. Figure 5-8 provides a conceptual view of the
nature of this decommissioning challenge.

Figure 5-8. Decommissioning tenant data

I’ve provided an example of the data that might be associated with our product ser‐
vice. Within this table, I have a TenantId column that includes the GUIDs that asso‐
ciate each product with a tenant. Now, let’s assume we want to decommission the
tenant with the ID efaf7680-21cf-4f39-a1e8-3481ff0495ef. Our decommissioning pro‐
cess must locate and remove all the items in this table that are associated with this
tenant.

On the surface, this may not seem all that challenging. However, consider that this
table is one of many in our system that may hold data in a pooled model. Each micro‐
service in our system could manage pooled tenant data and each of these services
may rely on different storage technologies. This means that your decommissioning
process may need separate code to remove data from each of these sources.

Managing Tenant Lifecycle | 129

In some instances, decommissioning can be more involved than your onboarding
process. The nuances of identifying and gracefully removing these tenant resources
can be quite involved. Automating this process can be daunting, requiring teams to
be hypervigilant about ensuring that their decommissioning strategy doesn’t impact
existing tenants. This includes ensuring that the load of your decommissioning pro‐
cess avoids creating bottlenecks or performance issues for your existing tenants. Gen‐
erally, if you can run this as an asynchronous process that has a very conservative
consumption profile, you’ll be better positioned to limit tenant impacts. This falls
very much into the old school batch mentality, where we try to run processes of this
nature after hours to limit impacts. For some SaaS providers, that will work; others
may not have this luxury.

The last piece around decommissioning focuses on archiving tenant state and data.
For some SaaS providers, this can allow them to continue to preserve existing tenant
state without retaining all the other moving parts of a tenant’s environment. This is
especially valuable when you have high-profile tenants or tenants with a significant
investment in their data.

While the concept of archiving decommissioned tenant state and data is not all that
complex, the variations in multi-tenant architecture models make it difficult to pre‐
scribe any one approach for this problem. There is no standard “take a snapshot” of
my tenant environment model—especially if you rely on pooled resources. Instead,
this is usually more about taking on the heavy lifting of building your own tools and
strategies that can navigate the nuances of your tenant environment.

Ultimately, how or if you choose to decommission data will vary based on the nature
of your SaaS offering. This is often about weighing the business, cost, and complexity
trade-offs. For some businesses, the value of being able to reactivate with minimal
friction could be essential to reacquiring key customers. For others, the nature of
their data and the tendencies of their customers may suggest that there’s not enough
upside in investing in the build out of this capability.

Changing Tenant Tiers
The last piece of our tenant lifecycle management story looks at what it means to
move from a tenant from one tier to another. For many, this change represents one of
the more challenging dimensions of managing tenant state.

For simple use cases, the move from one tier to another may not be all that exotic.
Let’s consider a scenario where you have basic and premium tier tenants where the
primary difference between these tiers is throughput and features. Essentially, the
premium tier tenants have better overall throughput and are granted access to addi‐
tional features based on their move from the basic tier. Figure 5-9 provides a view of
how these concepts might land in a multi-tenant architecture.

130 | Chapter 5: Tenant Management

Figure 5-9. Switching tiers in a full stack pool model

Moving between basic and premium tiers in this example is limited to a few very iso‐
lated areas of this multi-tenant environment. Here, feature flags are used within our
application to enable paths, features, and workflows that are available to the premium
tier tenant. Also, the tier-based throttling policies that are configured as part of our
API gateway will simply apply the throttling policies of the premium tier tenant to
our requests (instead of the basic tier policies). This will prevent the tenant from
being throttled based on the more restrictive constraints of the basic tier and, gener‐
ally, ensure this tenant will have better SLAs.

You can see how moving between tiers is a pretty straightforward model. With all of
your tenant resources running in a pooled model, your system will simply update the
tenant configuration to reflect the new tier. From there, the system will just use the
existing feature flag and throttling policies to apply the new tier to your tenant’s expe‐
rience. This is the upside of having a pooled experience. You can apply changes of this
nature with minimal complexity and overhead.

Now, let’s consider what it would mean to move between tiers in an environment that
has a more complex footprint. Figure 5-10 looks at what it would mean to migrate
between tiers that are using the full stack pool and full stack silo deployment models
that we talked about in Chapter 3.

Managing Tenant Lifecycle | 131

Figure 5-10. Migrating from full stack pool to full stack silo

In this example, Tenant 2 is migrating from the basic tier where it is running in a full
stack pool model sharing all of its resources with other tenants. Now, when this ten‐
ant migrates to the premium tier, they are essentially moving into the full stack silo
deployment model on the right. This migration starts by provisioning a full stack of
resources for Tenant 2 and configuring any routing that’s needed to send traffic to
this silo. If you think about it, parts of this migration will very much simulate your
onboarding experience of any premium tier tenant. In fact, it would not be unheard
of to leverage parts of your onboarding code to facilitate this migration.

Where this gets a bit trickier is when you have to move the existing state of the tenant
to the full stack silo environment. Now you must think about whether this will be a
zero-downtime migration or whether you’ll require tenants to deactivate to move to
the new tier. You’ll also have to write the new code that moves all the data and state
from the pooled environment to your new full stack silo. This is where lifting gets
heavy. In many respects, you’re taking on lots of the classic challenges that come with
any environment migration. Many of the principles and strategies that are commonly
used to migrate any software environment apply here—they’re just being scoped at
the tenant level.

While this migration to a full stack silo model has lots of moving parts, the logic and
path forward is relatively straightforward. The data movement is the biggest piece of

132 | Chapter 5: Tenant Management

this effort. Now, let’s add another wrinkle here. Let’s look at what it would mean to
change tiers in an environment that uses a mixed mode deployment model where
each microservice in our environment may have more granular implementations of
silo and pool based on the tier of a given tenant.

Consider what it might mean to migrate from a basic to premium tier in an environ‐
ment that might look something like the model shown in Figure 5-11.

Figure 5-11. Mixed mode tier migration

I’ve made this a bit more convoluted to highlight some of the complexities that come
into the picture when you’re migrating in a mixed mode deployment environment. If
you look across these microservices, you’ll see that they have much more granular
mappings to tiers. On the left, you’ll see services that are for our basic tier tenants.
One interesting twist here is that the Order microservice is siloed for all tiers. In the
middle, fulfillment supports pooled compute for both basic and premium tiers. How‐
ever, it has pooled storage for the basic tier and siloed storage for premium tiers.
Then, the premium tier tenant gets fully siloed compute and storage for the Product
microservice.

This very much mimics the patterns we looked at when we were examining the basics
of the mixed mode deployment model. Now, though, we need to consider the impact
of a tenant migrating from the basic to the premium tier. Let’s say, for example, Ten‐
ant 3 (T3) is moving to the premium tier. The steps here are less obvious. You must
now think about how each service is applying the tiering model and figure out which
new resources might be needed to make this transition.

There would be no changes to the Order microservice to achieve this migration. For
fulfillment, you’d need to migrate the storage from the shared model to the siloed
storage model. And, finally, for the Product microservice, you’d need to provision
new compute and storage for Tenant 3 and migrate the data from the pooled database
to this new siloed Product footprint.

Lots of the same challenges that we saw with the migration to a full stack silo deploy‐
ment follow us to this mixed mode deployment environment. Movement of the data
remains a challenge. However, you will have a more interesting web of changes that
are influenced based on how you’ve mapped tiering to the various layers of your

Managing Tenant Lifecycle | 133

environment. The good news is that, like the full stack silo deployment migration,
this migration can also lean on some of the tooling and mechanics that are connected
to your onboarding experience. The complexities associated with migration often
overlap with the nuances of your onboarding experience.

For any flavor of tier migration that you consider, you’ll also have to consider how
this migration could impact tenants that are currently using your system. You’ll want
to be sure that the extraction of tenant data and state doesn’t have any adverse impact
on existing workloads. If this migration is at all disruptive to your environment, it can
undermine the overall stability and availability of your environment.

While all the focus here has been migrating to a higher-level tier, your environment
must also support a model where tenants can downgrade to a lower-level tier. In this
mode, we’re essentially looking at a model that is basically the inverse of what was
done for upgrading tiers. It might just be about updating configuration to reflect your
new tier or it could be more about migrating your infrastructure and data to the new
tier.

If you’re moving from premium to the basic tier and this move has some parts of
your system moving from siloed to pooled infrastructure, then your migration now
will look at how to move compute and data into their pooled constructs.

Conclusion
For this chapter, I looked at the core parts of managing all the moving parts of a ten‐
ant. This included looking at the overall role that tenant management plays as a
microservice within the control plane of your SaaS architecture, examining the data
and state that is typically managed by this service. The goal was to highlight the role
this service plays in your broader multi-tenant environment, providing the single
home and source of truth for key tenant information that is used across all the mov‐
ing parts of your SaaS architecture.

As part of this topic, I also looked at how tenants are surfaced and managed through
your admin console experience. The emphasis here was on outlining how this con‐
sole connects to your Tenant Management service and is used by the administrators
to manage, configure, and update your tenant information. Creating this centralized
console for managing tenants often represents an essential component of your overall
administration experience.

The last bits of this chapter looked at managing your tenant’s lifecycle. This had us
exploring the different events that can happen across the entire lifetime of your ten‐
ants, reviewing how your Tenant Management service would support key events that
alter the state of a tenant. Some of these events are as simple as activating and deacti‐
vating tenants. Other events (like tier migration) often require a much more intensive
effort to orchestrate these transitions.

134 | Chapter 5: Tenant Management

Now that we’ve looked at how tenants are introduced and managed, we have all the
elements in place for representing and managing tenants. The next logical area to
explore is tenant authentication and routing. Chapter 6 will look at how tenants enter
through the front door of our application and leverage the bits we’ve put in place in
your control plane to authenticate users. The authentication and routing story will
consider all the steps that are needed for a tenant to access your application, route to
the appropriate resources, and inject tenant context into that experience. This will set
up our ability to continue to push deeper into the underlying implementation of your
SaaS application services.

Conclusion | 135

CHAPTER 6

Tenant Authentication and Routing

At this stage, our focus on the control plane has been squarely on building a founda‐
tion that allows us to introduce multi-tenancy into our architecture. Onboarding,
user management, and tenant management all allow us to configure, capture, and
prepare our tenant for entry into a SaaS environment. Now it’s time to start thinking
about how a tenant uses these constructs (and others) to enter the front door of our
multi-tenant environment.

It’s at this point where you authenticate a user that all the pieces of your onboarding
and tenant management come together. Here you’ll see how the configuration infor‐
mation that was stored in tenant management can play a role in the flow and imple‐
mentation of your authentication experience. We’ll also see how the work that was
done to connect our users to tenants will yield the tenant context that becomes essen‐
tial to the downstream services that are part of your multi-tenant architecture.

For this chapter, I’ll begin by looking at the fundamentals of how you expose the
entry point to your multi-tenant solution. There are multiple strategies that can be
used to access a SaaS environment, some of which explicitly identify the tenant that is
entering the system and others that rely on internal mechanisms to determine which
tenant is accessing the system. Each of these have implications on how your tenant is
authenticated and connected with the appropriate identity provider.

We’ll also look at how your path through the front door influences the authentication
model of your multi-tenant environment. As part of this, I’ll also examine how you
might use different identity provider constructs to support various tenant authentica‐
tion experiences. You’ll see how the identity strategies we discussed in Chapter 4 will
come into play as you begin to authenticate individual tenants.

The last bit of the chapter will look at how this authentication experience projects
into the downstream elements of your multi-tenant architecture. This includes

137

examining how JWTs are injected into your application’s services and how the context
of authentication can be used to route your tenant requests to specific elements of
your multi-tenant environment. This routing context often ends up tightly connected
to how you access your SaaS application.

The basic goal is to go to the next level of bringing your SaaS environment to life,
building on the foundation established in Chapters 1 through 5. It’s here that we see
how an actual tenant enters a SaaS environment and how the constructs we put in
place allow us to authenticate tenants and acquire the context that’s needed to shape
the rest of the downstream multi-tenant footprint of your SaaS architecture.

Entering the Front Door
Now that we have a sense of the scope of this authentication topic, let’s start our dis‐
covery at its most natural point—the front door. The core elements of your authenti‐
cation always begin with determining how tenants will access your application. While
these access patterns seem trivial, you’ll begin to see how the strategy you choose here
goes beyond the URL that’s used to expose your application to tenants.

There are multiple options available to you when thinking about how you might have
tenants access your system. You may want the domain of your system, for example, to
include a tenant name and rely on this domain as part of your tenant-mapping and
routing strategy. Or you might just allow tenants to have their own unique domains
based on branding or other considerations. In either case, the domain still typically
ends up playing some role in identifying the tenant that is accessing your system.
Some SaaS solutions, however, have no dependency on the domain, using a single
domain for all tenants. In this approach, you’ll need the authentication flow of your
environment to inject the tenant context into the system.

The key is that—even as you’re selecting a path into your application—you’re making
choices that can have a cascading impact across other dimensions of your SaaS archi‐
tecture. This access strategy may even have impacts on the technologies and services
that are used to implement specific elements of your solution.

In the sections that follow, we’ll look at some of the common patterns that are used
when selecting an access model for your SaaS environment. With each of these pat‐
terns, we’ll review some of the considerations that are associated with each approach.

Access via a Tenant Domain
One of the common ways that tenants enter the front door of your application is
through a domain. More specifically, tenants can enter with a domain that includes
information used to identify a tenant. Figure 6-1 provides a conceptual view of how
the context of this domain influences the downstream footprint of your multi-tenant
architecture.

138 | Chapter 6: Tenant Authentication and Routing

Figure 6-1. A domain-driven access model

Figure 6-1 shows a range of different tenants that are accessing a SaaS environment
using a domain. In this model, each tenant’s domain is configured during the
onboarding process. Once the domain is configured, the URL is shared with the ten‐
ant as their entry point into your SaaS service.

With this approach, all inbound tenant requests from these different domains are
routed through what I’ve labeled as tenant mapping. This box represents a conceptual
placeholder for the different technologies, infrastructure, and services that would be
used to map a tenant’s domain to the appropriate backend services. This mapping
service is usually needed to extract the incoming tenant context from the domain and
use that context to resolve any mappings to dedicated tenant resources.

There are at least two common places this mapping may be applied. The first of these
is authentication. When the system is authenticating a tenant user, it may need to
map an incoming authentication request to its corresponding identity construct. This
applies primarily to tenant environments that don’t have a single, shared identity pro‐
vider. In these cases, a separate identity provider may support your authentication or
there may be distinct identity constructs within a single identity provider (groups,
user pools, etc.) that are bound to individual tenants to provide specific features or
experiences.

Entering the Front Door | 139

In Figure 6-1 you can see how this authentication mapping unfolds. In this example,
the tenant accesses your system with a tenant-specific domain, then that domain goes
through the Tenant Mapping service, which extracts the tenant information from the
origin of the incoming request. This information is used to look up the tenant iden‐
tity setting in tenant management, which is then used to authenticate the tenant user
against the target identity provider or construct.

The other area where tenant mapping is applied is related to the routing of applica‐
tion requests. In instances where your architecture is using one or more siloed tenant
resources, your incoming tenant requests will need to be routed to each of these spe‐
cific resources. Here, the mapping service must use the tenant context to identify that
route that will be taken for a given request. We’ll cover this use case later in this
chapter.

While the technologies used to support the unique tenant domains can vary, the fun‐
damentals are typically not all that different. How, where, and when it is applied will
vary based on what you need to do with the context of this domain. It might be used
to look up a tenant identifier, map your tenant user to an identity provider, configure
routing, or perform any other operation that may need tenant context to process a
request.

It’s also worth noting that the domain name (or subdomain) represents a friendly,
publicly visible name that you’ve exposed as the URL entry of a tenant. This name
may change over the life of the tenant and, as such, is maintained entirely separate
from the internal notion of a tenant identifier, which will not change over the life of
the tenant.

The subdomain-per-tenant model
At this point, the fundamentals of the domain-per-tenant model should be clear. Of
course, even though I’ve talked about domains generically, the reality is there are
multiple ways to associate domains with tenants. In many SaaS environments, there’s
a desire to use domains to identify tenants without requiring each tenant to have a
completely unique domain. In this scenario, you might have a SaaS company (ABC
Software, for example) that owns the abc-software.com domain, and they want to use
that domain as part of the presence and branding of their SaaS experience. Their cus‐
tomers, in this example, also don’t see value in having their own domains.

In this scenario, it’s very natural to use subdomains as a way to identify tenants
without creating an entirely new domain for each tenant. So, with our abc-
software.com example, you would prepend a friendly tenant name to the existing
domain. The end result would yield domains like tenant1.abc-software.com and
tenant2.abc-software.com. You’ve likely seen this pattern implemented across existing
SaaS solutions that you consume today.

140 | Chapter 6: Tenant Authentication and Routing

This approach is often very appealing to SaaS providers, enabling them to provide a
unique access point for each tenant without absorbing the complexity and overhead
of creating a unique domain for each tenant.

The vanity domain-per-tenant model
The other option here is to use a vanity domain for each tenant. This approach is
often used in scenarios where a tenant is presenting a branded experience to its cus‐
tomers. In fact, in these scenarios, the tenant’s users may have no awareness of the
underlying SaaS system that they are running.

To better understand this model, consider an example where a SaaS provider offers
an ecommerce solution. With this offering, tenants use the SaaS environment to con‐
figure and host their own, privately branded stores. In this scenario, tenants would
have their own unique domains that are used to access your multi-tenant
environment.

In most respects, this vanity domain model looks very much like the subdomain
model that we outlined. It still uses the origin to extract the tenant name and then
map it to tenant context for downstream consumption. It’s worth noting that this
same model could be used as part of a white-labeling strategy where tenants are
allowed to apply their own branding. For example, imagine an ecommerce SaaS plat‐
form where each store on the platform uses a vanity domain and applies its own
brand to the entire experience.

Onboarding with tenant domains
When you use a domain to identify tenants, you have to consider how this will influ‐
ence the design of your tenant onboarding model. Now, as each new tenant is created,
you’ll need to configure the setup of these domains and create any mappings that will
be needed to support a tenant’s entry into your environment.

The subdomain-per-tenant model has a lighter weight impact on your onboarding
flow. Here, your effort is primarily focused on setting up the various DNS configura‐
tion options that are part of your environment. Figure 6-2 provides an example of
some of the elements that could be configured as part of onboarding a new tenant in
a subdomain-per-tenant model.

I’ve outlined a specific AWS example that shows how you’ll need to configure the
moving parts of your network routing to support the subdomain-per-tenant model.
At the top of the diagram I have shown the configuration of the content delivery net‐
work (CDN) that will be processing our tenant requests. It uses Amazon’s CloudFront
service. The table shown here illustrates how you’ll configure the CDN to support
tenant subdomains. The first row in this CDN table includes the settings that are con‐
figured when you initially provision your baseline SaaS environment. In this example,
the general domain was assigned the alternate name of app.sassco.com, where “saasco”

Entering the Front Door | 141

represents the branded domain name of our fictitious SaaS company. Now, when a
new tenant is onboarded to the system, you must add a new row to this CDN table. In
this case, I’ve added one new tenant that gets configured as tenant1.sassco.com.

Figure 6-2. Configuring tenant subdomains during onboarding

In addition to configuring the CDN, we must also set up the DNS routing for this
new tenant subdomain. The table at the bottom of Figure 6-2 provides an example of
how you might configure your DNS service. For this example, we’re looking at how
this is achieved with the Amazon Route 53 service. The table shows two entries. The
first row contains the baseline set of values that are populated when you first set up
your environment. The second row gets populated when you onboard tenant1. This
creates the A record that points the tenant1.saasco.com subdomain to the general
domain of your SaaS environment.

While many of the steps to make this work are mirrored in the vanity domain model,
there is one key difference you’ll need to factor into your domain onboarding story.
When a tenant requires a vanity domain, your onboarding process will need to sup‐
port a way to bring that domain to life within your multi-tenant environment. If the
domain exists and is being migrated to your environment, your onboarding flow will
need to include the steps required to make this migration happen. However, there
may also be instances where the tenant creates their domain as part of their onboard‐
ing process. As you can imagine, this would be a much more involved process. The
complexity is often centered around the various steps required to validate and regis‐
ter a new domain. Choosing to support automation of this entire experience can rep‐
resent a significant investment for some teams.

142 | Chapter 6: Tenant Authentication and Routing

While I used AWS services to illustrate the onboarding experience, the fundamentals
of configuring this experience would likely be similar with other tools and services.
The key is that you’ll need to consider how you will automate the configuration of
these domain settings as part of onboarding new tenants.

Access via a Single Domain
So far, I’ve focused mostly on strategies that rely on domains to identify tenants
that are entering the front door of your application. However, some SaaS
providers—especially those using a B2C model—will use a single domain for all
tenants. In these instances, all tenants will use the same domain to access your
SaaS environment. Figure 6-3 provides a conceptual view of an environment with
a single domain.

Figure 6-3. Single domain with a shared identity provider

In this example, I have two tenants that are accessing my system via a single,
shared domain (www.saasco.com). Now, as these tenants attempt to authenticate an
existing tenant user, they are directed to the identity provider hosted within our
control plane. Since this model uses a global identity construct to house all of our
tenant users, it can authenticate all tenants against this single endpoint without any
real challenges. Of course, having all of your users in a single identity provider
construct will also mean that each user of your system can be associated with one
and only one tenant.

Where this gets more interesting is when your architecture supports more flavors of
your authentication experience. If you recall, in Chapter 4 I talked about how identity
providers may offer different grouping constructs for users that allow you to have
separate authentication policies for each tenant. If your identity provider supports
these grouping constructs, this can enable you to offer authentication options for the
different tiers of your solution.

Figure 6-4 provides an updated view of the single domain strategy that employs sepa‐
rate identity constructs for your tenant.

Entering the Front Door | 143

Figure 6-4. Single domain with separate identity constructs

This is mostly a mirror of the diagram in Figure 6-3. However, the one change is that
we now have separate identity constructs for each of our two tenants. This is where
things get a bit more complicated with the single domain model. Without a domain
to identify tenants as they enter the environment, you have no context that will allow
you to determine which identity construct should be used to authenticate your users.
Each tenant request looks the same to your environment regardless of which tenant
initiated the request.

There are a few ways you might approach resolving tenant context for your authenti‐
cation flow. One strategy is to use the domain of your user email address to associate
the user with a given tenant. In this model, you’d presume that tenants coming from a
specific domain/customer would be mapped to the tenant for that customer. This can
work if you can presume that all tenants from a domain belong to a specific tenant.
However, this does impose limits on your ability to support a broader range of users
with various email domains. Another possibility here is to consider mapping individ‐
ual user identifiers to specific tenants. The diagram in Figure 6-5 provides a concep‐
tual view of this approach.

Figure 6-5. Authentication mapping based on tenant identifiers

In this example, we inherit the same single domain model I’ve used throughout this
section, using www.saasco.com as the single entry point for all tenants. I’ve also added

144 | Chapter 6: Tenant Authentication and Routing

two sample user identifiers that represent the different values used during the authen‐
tication experience. To be able to authenticate in this model, you’ll need to first
resolve the user identifier to its corresponding tenant. This is represented with the
table associated with the Tenant Management service, mapping individual users to
tenants. In reality, this mapping is likely a mapping from the user to a tenant’s identity
construct. Once you have that identity construct, you can authenticate the user
against the target identity construct. This model still relies on having a one-to-one
relationship between a user ID and a tenant. However, it does let you have separately
configured identity policies for tenant tiers.

The Man in the Middle Challenge
In looking at the solution in Figure 6-5, you’ll notice that this strategy relies on a level
of indirection to successfully map tenants to their identity providers. This does
present some challenges if you’re trying to precisely conform to standard authentica‐
tion models. To better understand this, let’s step back and consider a more traditional
web application authentication implementation.

Figure 6-6 provides a conceptual view of a classic authentication experience that you
may have implemented multiple times. This flow starts with a tenant user attempting
to access your web application (step 1) is redirected to an identity provider to be
authenticated (step 2). When the user successfully authenticates, the identity provider
returns tokens that will provide identity and authorization information (step 3). The
identity provider then directs you back to the web application as an authenticated
user (step 4) before calling one or more downstream microservices with this authen‐
tication context (step 5).

Figure 6-6. A classic web application authentication flow

Entering the Front Door | 145

The beauty of this flow is that it is orchestrated entirely by the identity constructs of
your environment. The path to the identity provider and back into your web applica‐
tion is mostly outside of the control of your code and conforms to the standard
authentication flows that are supported by identity providers.

Ideally, you’d be able to implement your SaaS solution without straying too far from
this flow. At the same time, I’ve also talked about how different identity configura‐
tions and access patterns may rely on code that can map a tenant to its corresponding
identity construct. These strategies often require the injection of additional mapping
constructs that reside within the flow of your authentication experience.

In Figure 6-5, for example, you saw an instance where the tenant management service
was used to look up and map a user to an identity construct. This approach means
that your authentication flow cannot go directly to the identity provider to process
your authentication. Instead, it must first determine the target identity construct and
then drive the redirection to the appropriate identity model.

Any time you add this layer of indirection to your authentication flow, you’re essen‐
tially adding a point of scale and failure to the authentication model of your environ‐
ment. While this may be exactly what you need to do, you want to be sure you
consider the trade-offs associated with injecting yourself into the authentication flow.

The Multi-Tenant Authentication Flow
It should be clear at this point that there’s a strong connection between how you enter
the front door of your application and how that influences the overall authentication
experience of your multi-tenant architecture. Now, let’s assume you have a path into
your environment that enables you to direct authentication requests to the appropri‐
ate identity provider construct. Assuming those bits are lined up, we can look more
closely at the remaining steps in the authentication process.

It’s important to note that this process is squarely focused on authenticating a tenant
user and returning the SaaS identity that was described in Chapter 4. Much of the
onboarding experience that was covered in that chapter was setting the stage for this
moment of authentication, configuring our identity model with all the pieces needed
to authenticate a user and return the tokens that will represent the tenant context that
we’ll need for all the downstream elements of our multi-tenant implementation.

Generally, the moving parts of this experience align with the OAuth and OIDC speci‐
fications that are implemented by most identity providers. Still, it’s helpful to see the
end-to-end flow of this experience to give you a better sense of what’s happening. It
also connects key dots in illustrating the injection of tenant context that’s been refer‐
enced across several dimensions of our multi-tenant architecture discussion.

146 | Chapter 6: Tenant Authentication and Routing

A Sample Authentication Flow
While we’ve poked around elements of authentication concepts, let’s look at a sample
flow to see all the moving parts in one end-to-end flow (shown in Figure 6-7).

Figure 6-7. A sample multi-tenant authentication flow

In this example, I have used a subdomain-per-tenant model as part of this authentica‐
tion flow. Tenants that are authenticating into this environment enter via their
assigned subdomain, in this case tenant1.saasco.com. The tenant user hits our web
application (step 1) and our application determines that the user is not authenticated.
Since the user is not authenticated, your web application will redirect your user to the
application login experience where the user will enter their credentials. This is a bit
different from the classic authentication flow in that we’ll rely on the web application
to detect and direct the user to the login form.

Now, before you can authenticate the user, you’ll need to determine the specific iden‐
tity provider construct that is associated with this tenant. This is achieved by calling
the Tenant Management service (step 2) and requesting the information for the target
identity constructs that will be used to authenticate the user. The Tenant Management
service will inspect the origin (subdomain) of the tenant, look up its mapping to the
identity provider, and return this information to the web application (step 3). Now,
you have everything you need to authenticate the tenant user. The next steps in this
process follow the classic bits of an OAuth flow. First, we call the identity provider,
passing along the tenant user credentials (step 4). The identity provider will then
return a code (step 5) before exchanging this code for a JWT (step 6). Finally, now
that you have the JWT with our tenant context, this token can be injected into the
calls to our microservices (step 7).

The tokens that come out of this process, as discussed in Chapter 4, are injected into
the downstream services as bearer tokens where the authorization header of your
HTTP request is set to be a “bearer” token and assigned the value of the access token

The Multi-Tenant Authentication Flow | 147

that comes back from your authentication flow. Then, your downstream services can
use this token to implement the authorization of your microservices and provide
access to a request’s tenant context.

Federated Authentication
Where the federated authentication story gets more complicated is when we start to
consider scenarios where your identity footprint might be more distributed. If your
solution, for example, needs to authenticate against some externally hosted identity
provider that’s outside of your control, this can add a layer of complexity to your
overall multi-tenant authentication model.

When you control all aspects of the identity experience, you can control the custom
claims and policies through your identity provider. However, when a third party is
authenticating your user in some federated model, it’s less clear how these essential
moving parts of the multi-tenant identity experience can be supported. You can’t
really require that third party to include the custom claims that provide tenant con‐
text. At the same time, our multi-tenant design relies heavily on its ability to issue
JWTs that include this tenant context.

The good news is that there are federated identity solutions that can fill in bits of the
multi-tenant experience. With Amazon Cognito, for example, you can have custom
claims configured within Cognito for users that will be authenticated from a third-
party provider. In this model, when you authenticate against the federated provider,
Cognito can seamlessly stitch its custom claims into the JWTs that are returned from
this authentication. This gives you the ability to support a third-party provider while
still retaining the ability to manage custom claims for each user.

There are any number of different federated identity models that you may need to
support in your SaaS environment. Each identity provider also tends to have its own
unique approach to federating these users. Some may allow you to inject the custom
claims and others may not. The key here is that if you’re federating to a third-party
provider, you’ll have to determine which strategy you’ll be using to acquire tenant
context. In some cases, this may require you to manipulate or inject JWTs to achieve
the desired experience.

No One-Size-Fits-All Authentication
As you can see, there are many approaches to authenticating a user in a multi-tenant
environment. This is part of the general challenge for SaaS solutions. The path into
your application, the identity constructs you’re using, and other factors may require
you to consider a variety of different approaches to connect the dots of your identity
flow.

148 | Chapter 6: Tenant Authentication and Routing

The key is that this is rarely as simple as hitting an identity provider and following
any one of the typical authentication flows that are outlined by various identity pro‐
viders. Instead, you have to wrap your multi-tenant requirements around these iden‐
tity flows to align them with the multi-tenant patterns that are implemented in your
environment. In the end, you’re definitely conforming to the OAuth and OIDC speci‐
fications that are supported by identity providers, but your path into those flows is
shaped by how tenants are mapped into the overall identity scheme of your multi-
tenant environment.

Routing Authenticated Tenants
After you’ve made it through the front door of your application and you’re ready to
invoke backend services, you still need to consider how tenant context can influence
the routing of these requests. Now, you could argue that this is not part of authentica‐
tion and, technically, you’d be correct. However, the context that comes out of the
authentication process has a direct impact on the downstream routing story of your
application. So, it seems natural to make routing part of this discussion. You’ll also see
that, in some cases, your routing strategy might also influence the authentication
model that you select.

When I talk about routing here, I’m generally referring to how tenants are mapped to
their corresponding resources on a request-by-request basis. Figure 6-8 provides a
conceptual view of the routing mental model.

You’ll see that I have a tenant entering the front door of our SaaS environment and
authenticating with any one of the models discussed earlier. Once you’ve authentica‐
ted, your application will begin consuming the microservices and functionality of
your SaaS application. Now, if all of your application services are running in a pooled
model, you can just make these calls directly. However, it would not be uncommon
for you to have a more diverse architecture footprint for your application services,
some of which are running in a siloed model and some of which are running in a
pooled model.

When you have a mix of tenant deployment models, you’ll now have to consider
how you’ll route requests to the appropriate tenant resources. In Figure 6-8, I’ve
shown a simple conceptual model where we have Tenants 1 and 2 running with
siloed resources and the remaining tenants running with pooled resources. With
this split of siloed and pooled resources, you’ll be required to introduce some
notion of routing in your multi-tenant architecture to determine how this routing
will be achieved.

Routing Authenticated Tenants | 149

Figure 6-8. Tenant routing basics

As you can imagine, the approach you take will vary based on the technology stack
you’re using, the front door entry point of your application, and the deployment
model of your application. Certainly, though, the approach you choose for users to
enter and authenticate will have a significant impact on the options you’ll have avail‐
able when you’re looking at routing strategies. A tenant-specific domain, for example,
might be able to be combined with other networking tools/services to implement
your routing strategy. As you’re thinking about the entry into your application, you
should also be thinking about how it will align with the routing requirements of your
SaaS environment.

The routing model of your application also has implications for the onboarding expe‐
rience of your SaaS solution. As each new tenant is onboarded to your system, you
may need to update the configuration of your routing infrastructure to provision and
configure the constructs that will be needed to route the workloads of this new
tenant.

Routing with Different Technology Stacks
I mentioned that the technology stack you’re using can have an influence on the
routing model of your environment. While there’s far too many permutations to
cover all the possibilities, I thought I’d review a few examples of different

150 | Chapter 6: Tenant Authentication and Routing

multi-tenant technology stacks and look at how you might implement routing in
these different models.

For this discussion, I’m going to look at two of the more common SaaS technology
models: serverless and containers. The sections that follow will examine some of the
nuances associated with routing for each of these stacks to give you a better sense of
some of the variables that come into play as part of developing a tenant-aware routing
model.

To get into the details of any routing strategy, I’ll have to discuss specific technologies.
The tools and mechanisms available for serverless on AWS for example might look
somewhat different when realized on Azure or GCP. The routing models for Kuber‐
netes, however, are likely to be more similar (with caveats).

Serverless Tenant Routing
Let’s start by looking at how you might implement a routing strategy that uses server‐
less technology to implement its multi-tenant application. In a serverless environ‐
ment, you will have a set of functions that are composed to create the various
microservices that represent the functionality of your application.

With AWS Lambda, these functions are typically accessed through an API Gate‐
way. This gateway describes and exposes the HTTP entry points into your services,
mapping requests to their corresponding functions. In this respect, you can view
the API Gateway as an essential path through which all activity flows to your
application services. In fact, as we look more at a detailed serverless SaaS imple‐
mentation in Chapter 11, you’ll see how this gateway plays multiple roles in your
overall multi-tenant architecture. For now, though, let’s just focus on how the gate‐
way(s) are provisioned and configured to support the basic routing needs of your
SaaS environment.

Figure 6-9 provides a conceptual view of a basic serverless SaaS environment con‐
structed with AWS Lambda. Here, we have a web application that’s hosted in an Ama‐
zon S3 bucket. This application makes requests through the Amazon API Gateway
that are then routed to the Lambda functions that are composed as part of the various
microservices that are part of your application.

Now, if the functions of our serverless application are all pooled, then the role of the
gateway is pretty straightforward. All requests are simply directed to their target
function without regard for tenant context. However, imagine a scenario where some
or all of your microservices (and functions) are running in a siloed model. This is
where you’ll need to evaluate the tenant context and route requests to the correct ten‐
ant functions. Figure 6-10 provides an example of a scenario where we have a mix of
siloed and pooled compute resources that require targeted routing.

Routing with Different Technology Stacks | 151

Figure 6-9. API Gateway routing in serverless environments

Figure 6-10. Routing to tenant-specific gateways

152 | Chapter 6: Tenant Authentication and Routing

In Figure 6-10, I’ve opted for an API Gateway-per-tenant model where I provision
and configure separate gateways for the different tiers of my application. I have two
premium tier tenants (Tenants 1 and 2) that have siloed Lambda functions that
implement their microservices. I also have basic tier tenants running in a pooled
model where their functions are shared by all tenants. If you have a mixed mode
deployment (some silo and some pool), then your routing will be a bit more contex‐
tual. Based on the nature of the request, you could be sending some traffic to a dedi‐
cated API Gateway URL and some traffic to a shared API Gateway URL.

As each request is processed in this model, I need to use tenant context to identify the
tenant and route these requests to the appropriate gateway URL. There are multiple
ways you might achieve this mapping. If, for example, your tenants used a subdomain
to access your system, you could use the origin of the HTTP request header to map
the tenant to a specific gateway URL. In Figure 6-10, I presumed that I had a single
domain for all tenants, which required the use of the Tenant Management service (in
the top right of the diagram) to look up the API Gateway URL for each tenant.

The downside of this particular model is that it requires the client to play a role in
this mapping exercise. The client must acquire the URL from the Tenant Manage‐
ment service and apply that URL as part of making requests.

There are certainly downsides that you’ll need to consider with this mapping model.
Performing these mappings on every request may add overhead and latency that
impacts the performance of your solution. Some address this by resolving this map‐
ping on the client side, but it feels unnatural to distribute this problem to the client.
The more typical approach here is to introduce a caching strategy at the mapping or
gateway levels to hold recently mapped tenants. The key is to be sure that you’re fac‐
toring the performance impacts of this mapping into the overall strategy.

Scale is also an area that deserves attention here. Having a gateway-per-tenant may
not scale well in environments with a large number of tenants. This is where limiting
the number of siloed tenant resources becomes an important piece of the puzzle. If
you have a few premium tier tenants and the rest are basic, you’ll likely be fine. How‐
ever, if the number of premium tier tenants is expected to grow substantially, you’ll
want to reevaluate your options.

Container Tenant Routing
While the serverless routing example was more focused on mapping tenants to spe‐
cific API Gateway entry points, this next strategy is more driven by the fundamental
nature of how serverless applications are built and deployed with AWS Lambda. For
contrast, let’s look at how you might implement tenant-aware routing in an environ‐
ment where your application plane is primarily built with Kubernetes.

Routing with Different Technology Stacks | 153

Within a Kubernetes multi-tenant architecture, you have lots of native constructs that
can be used to shape the routing footprint of your SaaS application. The list of
options is pretty extensive, but, for now, I want to illustrate how you might use a ser‐
vice mesh to build out this routing experience. If you’re new to the idea of a service
mesh, you can think of it as a Kubernetes platform mechanism that lets you config‐
ure/implement different security and observability aspects of your system (outside of
your application). There are multiple service mesh implementations. For this solu‐
tion, I’ve chosen to use Istio to implement our routing model.

Figure 6-11 provides a conceptual view of a multi-tenant Kubernetes environment
that uses a service mesh to control the flow of both your authentication and routing
to tenant environments.

Figure 6-11. Routing tenant requests with a service mesh

You’ll see that our tenants enter through the front door using the subdomain-per-
tenant model described earlier in this chapter (step 1). Requests from your web appli‐
cation are, for this example, sent through a network load balancer that provides a
durable endpoint that can be easily referenced from the web application (step 2). The
request then passes through the network load balancer and arrives at the Istio ingress
gateway that runs in its own namespace within your Kubernetes cluster. It’s this gate‐
way that orchestrates and applies all the policies that are required to route to our
identity providers as well as our application microservices.

Let’s presume that, in this example, the tenant is not authenticated. In this scenario,
the gateway will send the requisition off through an Envoy reverse proxy (step 4),

154 | Chapter 6: Tenant Authentication and Routing

which will use the incoming origin subdomain to route authentication requests to the
tenant-specific OIDC proxy that is also running in a separate Kubernetes namespace.
Each of these OIDC proxies forwards authentication requests along to the corre‐
sponding tenant identity construct. This could be separate identity providers. It could
be separate grouping constructs within a provider.

Once your tenant user has been authenticated, the gateway can send your request to
the services of your application (step 5). In this example, you’ll see that I have two
tenants running in separate Kubernetes namespaces. This means our gateway must
examine the origin and route each request to the appropriate tenant namespace.

While there are a lot of moving parts to this solution, to me it still feels a bit more
graceful than those strategies that rely on your service’s lookup and map tenants.
Here, we’re able to lean on the natural routing and proxy mechanisms of the gateway
to redirect requests, moving much of the heavy lifting out of the code of our micro‐
services. Generally, if you can offload these routing responsibilities to other bits of
infrastructure that already manage routing, this often represents a cleaner, more
manageable routing experience.

Considering Scale
The nuances of the authentication and routing mechanisms that I’ve covered here are
clearly influenced by how/if you have siloed resources in your multi-tenant architec‐
ture. I discussed scenarios where you might have separate identity constructs for ten‐
ants. I also talked about how the siloed resources in your application plane can impact
your routing model. While these are entirely valid strategies, you must also consider
how the scale of your environment will shape your approach to authentication and
routing. The more you introduce separate tenant constructs to support tenant-
specific identity models or siloed deployment patterns, the more you must think
about how effectively these will scale based on the number of tenants you have in
your system. If you’re dealing with large numbers of tenants, some of the concepts
may not align well with your cost, scale, or operational goals.

Conclusion
In this chapter, we continued our path into bringing up the foundational bits of our
SaaS architecture, looking into how onboarded tenants enter the front door of a
multi-tenant application. The goal was to examine the different considerations that
are associated with getting a tenant authenticated, acquiring their tenant context, and
injecting that tenant context into the downstream services of our environment.

We explored some of the key elements that go into designing and shaping the authen‐
tication experience. This included looking at how something as simple as how the

Conclusion | 155

path into your SaaS environment influences the broader architectural footprint of
your multi-tenant architecture. The use of subdomains, vanity domains, and a single
shared domain all have implications on how you will identify tenants during your
authentication flow. As we got further into the elements of authentication, we also
saw how supporting different per-tenant identity constructs shaped the overall
authentication flow of your environment.

Once we got beyond the front door, we moved more into examining how the authen‐
tication context could be used as part of routing tenant requests. More specifically, we
looked into how this routing was applied in different technology stacks. It was here
that we got a better sense of the connection between authentication and the different
deployment models and technology stacks employed by your system.

Now that we have the foundational bits in place and we’re authenticated tenants, we
can start to look into the landscape of multi-tenant microservices and see how this
tenant context influences how we decompose and construct the services of our appli‐
cation. In the next chapter, we’ll look at how multi-tenancy influences your approach
to designing and building microservices, getting more into the details of how you can
realize the benefits of multi-tenancy while still limiting complexity for developers.

156 | Chapter 6: Tenant Authentication and Routing

CHAPTER 7

Building Multi-Tenant Services

Much of our focus up to this point has been centered around building out all the
foundational elements of our multi-tenant architecture. This meant digging into the
control plane and figuring out how to put a core set of services in place that would
allow us to introduce the notion of tenants into a SaaS environment. We looked at
how tenants are onboarded, how their identity is established, how they are authenti‐
cated, and—most importantly—how all of this ends up injecting tenant context into
the services of our application. This should have given you a healthy respect for the
role that the control plane plays in a SaaS environment and illustrated just how criti‐
cal it is to invest in creating a seamless strategy for introducing foundational tenant
constructs into your multi-tenant architecture.

Now, we can start to shift our attention to the application plane. It is here where we
can start to think about how we will apply multi-tenancy to the design and imple‐
mentation of the services that will bring our application to life. In this chapter, we will
begin to look at how the nuances of multi-tenant workloads will influence the way we
approach the design and decomposition of services. Isolation, noisy neighbor, data
partitioning—these all represent new parameters that you’ll need to factor into the
design of your services. You’ll see that multi-tenancy adds new wrinkles to the classic
services design discussion, forcing you to take new approaches to the size, deploy‐
ment, and footprint of your services.

The introduction of tenancy also has a direct impact on how you implement your
services. We’ll look closely at how and where multi-tenancy will weave its way into
the code of your services, highlighting different strategies that can be used to prevent
tenancy from adding complexity and/or bloat to the overall footprint of your services.
I’ll explore a few sample service implementations and outline tools and strategies that
can be used to push multi-tenant constructs into helpers and libraries that simplify
the overall developer experience.

157

The broader goal is to give you a better sense of the landscape of considerations that
should be on your list when you’re starting to build out the multi-tenant services.
Making this a priority from the outset can have a significant impact on the efficiency,
complexity, and maintainability of your SaaS solution.

Throughout this chapter, you’ll find that I have used the more
generic term “services” when describing the components of your
SaaS application. I intentionally avoided mapping these examples
to any specific service implementation strategy. Yes, you could
presume that this concept correlates to microservices. However, I
didn’t want to presume that your solution used microservices.

Designing Multi-Tenant Services
Before we can talk about how we build multi-tenant services, we need to come up
a level and look at the size, shape, and general decomposition strategies that you
need to think about as you identify the different services that will be part of your
system. The boundaries of your services and how you distribute load/responsibili‐
ties to those services adds a dimension of complexity and forethought in a multi-
tenant model.

Services in Classic Software Environments
To better understand this dynamic, let’s start by looking at a classic application where
the entire footprint of an application is installed, deployed, and managed separately.
Figure 7-1 provides a simplified example of how services land in one of these classic,
installed software environments.

You’ll see that services are entirely dedicated to individual customers. When you’re
designing services for these environments, your focus is mostly on finding a good
collection of services that can meet the scaling, performance, and fault tolerance
needs of a single customer. Yes, there may be some variation in how customers use
your system, but the general focus is often on creating an experience that is limited to
the behaviors and profile of a single customer.

This narrower focus makes it somewhat simpler to find the boundaries of your serv‐
ices. Much of the focus is often more on the single responsibility design principle
where you attempt to ensure that you have decomposed the services in a way that
ensures that each service has a clear, well-defined scope and functional role. The idea
is that these services have one well-defined job.

158 | Chapter 7: Building Multi-Tenant Services

Figure 7-1. Services in a classic software environment

Services in Pooled Multi-Tenant Environments
Now, let’s look at a full stack pooled multi-tenant environment. Figure 7-2 provides
an example of a SaaS architecture that is supporting the needs of multiple tenants that
are sharing their infrastructure resources in a pooled model.

Figure 7-2. Services in a pooled multi-tenant environment

Designing Multi-Tenant Services | 159

On the surface, it may seem like all that has changed here is the number of ten‐
ants that are consuming these services. However, the fact that these tenants are all
exercising these services at the same time as shared resources has significant impli‐
cations for how you approach the size, decomposition, and footprint of each of
these services.

The first thing you’ll see is that, at the top of Figure 7-2, I’ve intentionally intro‐
duced tenants of varying sizes. This was done to illustrate the fact that there can
be huge variation in how tenants put load on your system. One tenant may satu‐
rate part of your system. Another tenant may consume the entire surface of your
solution but place minimal load on the environment. The permutations can be all
over the map.

On the left, I’ve also shown the onboarding of new tenants. This is here to convey the
idea that new tenants may be introduced into your environment at any time. There is
little you can do to anticipate the workload and profiles of these new tenants. I’ve also
highlighted the fact these new, incoming tenants may belong to different tiers with
different experience and performance expectations.

Now step back and think about what we really have here. The services in this envi‐
ronment, which are shared by all of the tenants, must somehow anticipate all the scal‐
ing, performance, and consumption needs of each of the tenant personas. You’ll need
to be hyper-focused on ensuring that these tenants are not creating noisy neighbor
conditions where one tenant is impacting the experience of another tenant. These
services will also need to dynamically scale based on what could be a fairly elusive set
of parameters. The scaling strategy you use today may not align with how your serv‐
ices need to scale tomorrow (or in the next hour). SLAs, tiering profiles, compliance,
and other considerations may also be in this equation.

This is essentially where the benefits of shared infrastructure collide with the realities
of supporting a constantly shifting landscape of customer consumption profiles. For
some, this leads to overprovisioning of resources to account for shifting needs and
load profiles, which is exactly counter to the efficiency and economies of scale goals
that are associated with the SaaS business model.

In some respects, this is all part of having a multi-tenant pooled architecture. Even if
your services are overprovisioned, the collective value of sharing these resources is
likely much higher than having dedicated, per-tenant infrastructure. The design of
your services, however, can play a big role in giving you more tools and strategies for
addressing the shifting needs of tenant workloads and profiles. Generally, our
approach to designing services is focused on giving yourself more knobs and dials to
address the diverse range of dynamics that your tenants are imposing on your
environment.

160 | Chapter 7: Building Multi-Tenant Services

Extending Existing Best Practices
The process of arriving at your multi-tenant services will still mirror many of the
accepted methodologies and strategies that are typically used to identify candidate
services. The theme is that, as part of applying those concepts, you’ll also want to add
additional multi-tenant design considerations to the list of factors that shape your
service design, blending foundational best practices with a collection of multi-tenant
considerations (as shown in Figure 7-3).

Figure 7-3. Blending service design methodologies

Figure 7-3 provides a clearer mental model of the approach that I’m advocating. Here
you’ll see examples of some of the common service design methodologies that teams
often use to identify the different candidate services. While these methodologies have
clear value, they don’t always include discussion of the multi-tenant realities that
must be factored into the design of multi-tenant services. Yes, I know I will end up
with services that map to many of the logical entities and operations that are part of
my domain. The challenge, though, is that the multi-tenant profile of my environ‐
ment might end up leading me to introduce services and deployment patterns that
wouldn’t naturally be uncovered if you’re just looking at domain objects, operations,
and spheres of interaction.

To acknowledge this, I’ve put SaaS as a placeholder at the center of Figure 7-3. The
idea was that you’d take all the design considerations that come with multi-tenancy
and overlay them with other methodologies, ensuring that these concepts are front
and center as you are beginning to model your application’s services.

To drive this point home, let’s dig into some of the common areas where multi-
tenancy could have an influence on the design of your services.

Designing Multi-Tenant Services | 161

Addressing Noisy Neighbor
Noisy neighbor is a concept that is not unique to multi-tenancy. Builders generally
have to consider how and where users might impose load on your system that could
saturate your system or degrade performance. While this is a general area of concern,
you can imagine how the nature of multi-tenancy and shared infrastructure put more
focus, weight, and complexity on the noisy neighbor problem. A noisy neighbor in a
SaaS environment has the potential to bring your whole system down or, minimally,
degrade the experience of the other tenants in your multi-tenant environment. So, as
you sit down to design the services of your multi-tenant environment, you’ll want to
be sure that you’re testing assumptions about how/if your services address potential
noisy neighbor conditions.

Noisy neighbor can show up in multiple forms in a multi-tenant environment. There
may be specific operations in your environment that have high latency or consume
resources in patterns that have a high potential to create bottlenecks. You may have
areas where certain tenant personas are prone to saturating a particular set of services
that are part of your system.

The basic challenge is often all about scaling. Certainly, if a service can scale effec‐
tively enough to address the multitude of personas and workloads without overprovi‐
sioning or impacting other tenants, then you probably have a reasonable scope for
your service. Our focus is on those scenarios where horizontal scale alone may not be
effective or efficient enough to deal with the multi-tenant realities of your environ‐
ment. Consider the sample service shown in Figure 7-4.

Figure 7-4. A noisy neighbor bottleneck

162 | Chapter 7: Building Multi-Tenant Services

You’ll see that I’ve created a catalog management service that manages all the prod‐
ucts in my ecommerce SaaS solution. This service exposes an API that includes a
pretty basic set of operations that might be used to manage catalog data. However, if
you look at the far left, I’ve also highlighted the operational profile of each of the serv‐
ice’s API entry points, using colors to convey their current status. You’ll notice most
of the operations are healthy or healthy enough. However, the uploadThumbnail()
operation appears to be suffering from some kind of performance issue that, in this
case, is yielding a noisy neighbor condition.

It turns out that this particular function happens to do some heavy lifting that is cre‐
ating bottlenecks for this service. Callers are uploading images and triggering an
image scaling mechanism to generate different sized thumbnails that are used in mul‐
tiple contexts across the application. Left as is, your primary approach to solving for
this might be to simply scale the service out, potentially overprovisioning, and hoping
that this will limit any cascading impacts on your tenants. Essentially, you may be
scaling this entire service when only one operation of the service needs better
throughput. The better option might be to think about whether this operation could
be extracted and moved to a separate service where it can scale more proportionately
to tenant activity without absorbing the inefficiencies of scaling out the entire catalog
management service to address your performance issues.

The general mindset is that you’ll want to think differently about the scope of your
service’s responsibility and consider how these services will scale to meet the varying
loads of a multi-tenant environment. As you’re identifying your services, look for
those areas that stand out as potential noisy neighbor candidates. Figure 7-5 provides
a conceptual view of the overall theme here.

Figure 7-5. The noisy neighbor decomposition mindset

I’ve just illustrated how a given service could be further decomposed into smaller
services that give you more targeted scaling options that, ideally, would limit noisy
neighbor conditions and limit overprovisioning. The Product service separates out a
Thumbnail service to better distribute the load and the Order service breaks out a
standalone Tax service. The core idea is that we must incorporate these noisy

Designing Multi-Tenant Services | 163

neighbor and scaling efficiency considerations into our service design, using this
information to identify areas where a more granular decomposition strategy might
yield a better result.

It’s fair to ask if this approach is really unique to SaaS. The answer is no. As a rule of
thumb, any environment should be looking at ways to better address performance
and scale through more granular services. What’s different, though, is the diversity of
tenant personas and workloads that end up requiring SaaS architects to be much
more diligent about addressing these kinds of challenges. An inefficiently scaled, bot‐
tlenecked, or overprovisioned service is likely to show up more in a multi-tenant
environment, which can have profound impacts on your tenants and the operational
profile of your SaaS environment. So, while this is a good general approach, it
deserves much greater focus and attention when you’re designing services for a multi-
tenant environment.

It’s worth noting that it’s fully expected that your noisy neighbor strategy is going to
evolve over time. The services you pick on day one should be expected to morph as
your system evolves and you have richer insights into how and where you’re observ‐
ing noisy neighbor conditions. Start with the services that make sense, and then use
the strategies outlined here based on the operational profile of your environment.

Identifying Siloed Services
In Chapter 3, we talked about different deployment models and how these models
might require you to have some or all of a tenant’s resources deployed in a siloed
(dedicated) model. On the surface, it may seem as though there’s no real connection
between siloing resources and the design of your services. However, there can
actually be a strong correlation here between the services you choose and how/
when/if those services get deployed in a siloed experience.

Whenever you choose to silo a service, you’re often doing so to support a specific sys‐
tem or tenant need. You might, for example, need to silo some service to support a
compliance requirement that’s part of your domain. Tiering, performance, and isola‐
tion may also have some influence on which services that you opt to deploy in a
siloed model.

Of course, any time you’re siloing a resource, you’re making a compromise that can
impact the operational, cost, deployment, and management complexity of your envi‐
ronment. So, if you are going to have siloed resources, it’s ideal to limit the number of
services that need to be deployed in silos. Figure 7-6 provides an example of how the
isolation requirements of your environment might influence the footprint of your
services.

164 | Chapter 7: Building Multi-Tenant Services

Figure 7-6. Designing services based on isolation needs

This diagram includes two different approaches to designing an Order Management
service that address all the order processing and fulfillment needs of your solution.
On the left, you’ll see this service deployed in a pooled model that shares compute
and storage for all tenants. Now, let’s presume that our tenants have expressed a con‐
cern about having this service running in a pooled model. Your first instinct might be
to move this service to a fully siloed deployment model to ensure that each tenant
would run a dedicated copy of this service. However, after probing further, you find
that your tenants are actually only concerned about having dedicated compute and
storage for the order processing portion of the service.

Instead of fully siloing this service as is, you may be able to break the service down
into one or more services to address the isolation needs of your customer. This is pre‐
cisely what I’ve done in this example, breaking the original service into two separate
services. Here, our new Order Processing service is deployed in a siloed model where
each tenant gets access to a dedicated service, directly addressing our tenant’s isola‐
tion requirement. As part of this move, I also introduced a new Order Fulfillment ser‐
vice that continues to run in a pooled configuration.

You can imagine how this same approach could be applied to any number of scenar‐
ios where a customer may require siloed resources. You might, for example, apply
some variation of this same mindset for compliance, noisy neighbor, or general per‐
formance reasons, breaking up larger services to give yourself more granular control
over what is siloed and what is not.

This approach of picking what’s pooled and what’s siloed doesn’t have to be about
breaking services into more services. It might just be about grouping services based
on their need to be siloed. Figure 7-7 provides a conceptual view of how you might
align the boundaries of your services based on their silo versus pool requirements.

Designing Multi-Tenant Services | 165

Figure 7-7. Aligning services with silo/pool requirements

For this scenario, my tenants have indicated that they need specific functionality to be
deployed in a siloed model. In Figure 7-7, you’ll see that the Product, Order, and Cart
services are all deployed in a siloed model where each tenant has a dedicated instance
of these services. Then, on the righthand side, I have a set of services that are running
in a pooled model.

You could just view this purely through the lens of deployment and say some services
are siloed and some are pooled, and that would be accurate. However, the idea is that
you want to be as thoughtful as possible about which services land in the siloed side
of this experience. So, if you’re designing services that you know are going to have to
support this mix of silo and pool, you should be thinking about how you can decom‐
pose these services in a way that will allow you to land as much as you can in the
pooled model.

This siloing strategy is something you should make a core part of your service design
mindset, identifying the use cases and requirements that might justify deploying a
service in a siloed model. This list typically includes compliance, isolation, security,
tiering, and performance. It’s also important to note that you may silo services
entirely based on your own internal operational needs. For example, you may have
some services that simply can’t meet the demands of tenants in a pooled model. In
this case, you might opt to carve that piece of functionality out and deploy it in a
siloed model purely based on the operational realities of your environment.

In some instances, the siloed boundaries of your services may stand out early in your
design process. In other instances, however, you may need to collect data and iterate
some to arrive at a set of services that balance this siloed/pooled universe. For me, the
main thing I’m trying to avoid is just moving services into a silo without challenging
myself to see if there are more creative ways to decompose my service. Again, as I
mentioned earlier, you may not discover these boundaries until after you’ve collected
more operational insights from the working system.

166 | Chapter 7: Building Multi-Tenant Services

It’s important to note that this silo strategy should be adopted with caution. It’s not
exactly operationally or cost efficient. So, you’ll want to be selective about how and
when you consider this approach. For systems with a smaller population of tenants,
this could be a good strategy. However, for systems with a larger pool of tenants, this
would become challenging to scale and support.

The Influence of Compute Technologies
While it may be less obvious, there are also scenarios where the compute technology
you’re using can have some influence on the footprint of your services. Containers,
serverless, and other compute constructs can introduce their own set of considera‐
tions to your multi-tenant design. Suppose, for example, you are considering having
some services that run in a serverless compute model and others that run in a con‐
tainer compute model. It turns out that the nature of these different compute models
can play a direct role in defining the size, scope, and boundaries of your services. To
better understand this, let’s look at Figure 7-8.

Figure 7-8. Compute and service design

In this example, I have included two mostly identical instances of an Order service.
On the left, the service is running in a container compute model. Meanwhile, on the
righthand side, this same service is running in a serverless model (in this case using
AWS Lambda). I’ve highlighted the different operations that are part of this service
and sized the box of each operation based on the load associated with these opera‐
tions. In this case, it should be clear that the createOrder() operation is receiving the
bulk of the requests. So much so that you might ask whether this service will be able
to scale efficiently or whether it’s essentially going to scale based on this one operation
—even though the other operations are not really being pushed.

Designing Multi-Tenant Services | 167

Now, when we look at the container-based deployment, we might consider how to
refactor this service to improve the overall scaling efficiency of our environment.
With containers, all of this functionality is packaged, scaled, and deployed collectively
so that the container becomes our unit of scale.

With the serverless model on the right, though, each of the operations that are
deployed as part of our service represents a separate function that can be deployed,
managed, and scaled independently. So, if createOrder() or any other operation is
receiving a disproportionate level of load, that function will scale on its own. This
represents one of the significant advantages of the serverless model where the scaling
is more granular and becomes someone else’s problem to manage. The better news is
that if the load profile shifts tomorrow and another operation starts taking all the
load, there’s nothing I need to do to adjust the scaling policies or profile of my service.
This makes it much easier to accommodate and optimize for the continually shifting
workloads of multi-tenant environments.

The key takeaway is that the compute model you’re using may have some influence
on your service decomposition model. It’s not the primary factor, but it does add
another wrinkle to your design mindset.

The Influence of Storage Considerations
When we’re designing services, we’re also often thinking about the scope and the
nature of the data that will be accessed and managed by these services. Since each ser‐
vice is expected to encapsulate the data that it manages, you must consider how this
data will be consumed. Splitting a service along the wrong data boundary could end
up leading to extremely chatty services that are constantly in need of data that lives in
the scope of some other service.

These are all general considerations that are associated with designing any service.
Now, as we look at multi-tenant services, we have some new factors to add to our
design considerations. Our multi-tenant data can be stored in a siloed model where
each tenant has its own dedicated storage structure, or it could be stored in a pooled
model where tenants data is commingled within a shared storage construct. You may
also need to think about how the different operations on your data will scale effec‐
tively when customers are competing for a shared storage resource. Imagine thou‐
sands of tenants all querying some relational database that has stored all of its tenant
data in a shared table. Will these tenants saturate the compute of the storage technol‐
ogy? Will you end up creating another flavor of a noisy neighbor condition? These
are all just examples of how the footprint of your storage might influence the scope
and granularity of your services. In some cases, a more coarse-grained service might
be your preferred model. In others, there may be compelling reasons to break your
services into smaller bits to support different data profiles.

168 | Chapter 7: Building Multi-Tenant Services

In many respects, the storage needs of your service must also look at many of the fac‐
tors that shaped the noisy neighbor and siloing discussion outlined earlier. With stor‐
age, we’re going inside the service and thinking about how multi-tenant
requirements, tenant personas, and workloads might shape the footprint of your ser‐
vice. This is essentially a mirror of the compute considerations that we discussed ear‐
lier. Storage has its own compute and data footprint that must also address noisy
neighbor, compliance, tiering, and isolation considerations.

The key takeaway is that storage can and often does play a significant role in the
decomposition of your services, so as you’re sitting down to identify your services
and their scope and granularity, you’ll want to be sure to give storage the attention it
deserves. In some instances, this will be straightforward, and in others the storage
profile of your services may be the driving force that shapes a service’s design.

Using Metrics to Analyze Your Design
The design of your services will be continually evolving. New features, new tenants,
new tiers, and new workloads will have your team continually evaluating the perfor‐
mance, scale, and efficiency of your multi-tenant architecture. Of course, in a multi-
tenant environment, it can be more challenging to get a handle on whether the design
of your services is delivering the experience you intend. You might be able to use
some basic monitoring data to draw some high-level conclusions about how your sys‐
tem is behaving, but this data won’t typically allow you to evaluate the consumption
and activity patterns of individual tenants and tiers. This makes it difficult to perform
any kind of deeper analysis of the factors that are shaping the operational profile of
your SaaS environment. Is the consumption profile of a particular tenant or tier
impacting the scaling profile of a given service? Are basic tier tenants pushing your
services in ways that are impacting your premium tier tenants? These are just exam‐
ples of insights you really need to assess the efficacy of your service design.

It’s only when you have these richer insights that you can really begin to evaluate
whether the design of your services is successfully addressing the various factors that
we’ve been exploring (noisy neighbor, tiering, performance, and so on). Getting these
metrics means adding instrumentation to your services that will surface the data you
need to analyze the operational profile of your services. Figure 7-9 provides a concep‐
tual illustration of this instrumentation model.

Designing Multi-Tenant Services | 169

Figure 7-9. Surfacing tenant-aware service metrics

On the left is a sample service that includes instrumentation that publishes the data
that is used to assess the performance, scale, and operational profile of your service.
In the middle there are some examples of data that you might capture for a service.
What you choose to instrument here will depend on the nature of the services and the
nature of the data that would best characterize its activity. All the data that’s recorded
will minimally include tenant context and tenant tier (if you’re using tiers).

Finally, on the right is a placeholder for the aggregation and analysis of this data. It’s
here that you’ll use the tool of your choice to analyze this metric data and evaluate the
runtime profile of your services. We’ll dig into the whole area of multi-tenant opera‐
tions and metrics in Chapter 12. The key is that in a multi-tenant environment, you
really need to invest in capturing the metrics and analytics that can tell you how your
design is performing. Without this data, you’ll have limited ability to examine how
the variations in tenant workload and activity are exercising your architecture.

One Theme, Many Lenses
Across this entire discussion of services design, I focused on finding the granularity
and deployment model that best addresses the compliance, isolation, storage model,
noisy neighbor, tiering, and performance requirements of your environment. While
each of these factors brings its own nuances to the services design discussion, you can
also see that the strategies used to address these needs definitely overlap.

There were two basic themes that were sprinkled throughout our design discussion.
In some cases, your design strategies will focus on creating more granular services
that can better respond to your multi-tenant scaling and performance needs. In other
situations, you may look at using siloed deployments to create a profile that addresses
your system’s requirements. The key is to add these possibilities to your design mind‐
set and look for opportunities to support the realities of your multi-tenant workloads.

Inside Multi-Tenant Services
With this backdrop of multi-tenant service design in place, we can now start looking
at what it actually means to build a multi-tenant service. As a rule of thumb, I tell

170 | Chapter 7: Building Multi-Tenant Services

teams that they should make every effort to limit a developer’s awareness of multi-
tenancy when they are coding the business capabilities of their SaaS application. Our
focus, then, is on the strategies and techniques you can introduce that will limit the
overhead builders will absorb when they’re implementing multi-tenant services.

To get a better sense of how multi-tenancy lands in your services, let’s start with a
basic service that has no support for any notion of tenancy. The following code pro‐
vides a snippet of an Order service that is responsible for fetching all orders matching
a given status:

def query_orders(self, status):
 # get database client (DynamoDB)
 ddb = boto3.client('dynamodb')

query for orders with a specific status
 logger.info("Querying orders with the status of %s", status)
 try:
 response = ddb.query(
 TableName = "order_table",
 KeyConditionExpression = Key('status').eq(status))
 except ClientError as err:
 logger.error(
 "Find order error, status: %s. Info: %s: %s",
 status,
 err.response['Error']['Code'],
 err.response['Error']['Message'])
 raise
 else:
 return response['Items']

For this service, I happened to choose an AWS NoSQL storage service (Amazon
DynamoDB) to store my orders. I’ve coded this example in Python and Boto3, a
library that’s used to integrate with AWS services. The order data will land in Dyna‐
moDB with a “status” key that will be used to access the orders in our system.

Overall, the code represents a relatively vanilla service that essentially takes an
incoming status as a parameter and queries a database for orders that match that sta‐
tus. You’ve likely seen or written some variation of this function at some point along
the way.

For our purposes, we’re more interested in what’s not here. Since this code is not run‐
ning in a multi-tenant environment, there’s nothing in the code that has to concern
itself with multi-tenancy. The logging data it emits, the data it’s accessing—none of it
has to consider which tenant is actually invoking these operations.

As a multi-tenant architect, it should be your goal to have this code remain as
straightforward and familiar as it is here. You must find a way to introduce tenant
context and support for multi-tenant constructs without adding bloat and overhead

Inside Multi-Tenant Services | 171

to the builder experience. The more you can move tenant context outside the view of
builders, the more opportunities you will give yourself to centralize these strategies
and policies for all of your services.

Extracting Tenant Context
Now we can start to look at how our service code will begin to morph as tenancy is
injected into our code. Before we can even think about applying tenant context, we
have to think about how that tenant context lands in our services. This starts by first
looking back at the identity and authentication topics that were discussed in Chapters
4 and 6, respectively. In these chapters, we looked at how tenant context was bound to
an individual tenant user and injected as a JWT that flowed into the services of our
solution. We can now get into what we do to leverage this token as it arrives in the
context of our services.

If you recall, the JWT gets embedded as a header within each HTTP request that is
sent to your services. This token is passed as what is known as a “bearer token.” The
term “bearer” maps to the idea that you are granting access to the bearer of this
token. For your service, it indicates that you’re authorizing the system to perform an
operation on behalf of the tenant associated with that bearer token.

If you were to crack open one of these HTTP requests, you’d see the bearer token rep‐
resented as part of the request’s authorization header. The request would resemble the
following format:

GET /api/orders HTTP/1.1
Authorization: Bearer <JWT>

You can see this is a basic GET request to the /api/orders URL with an authorization
header that has the value of “Bearer” followed by the contents of your JWT. Let’s look
at the code we need to add to our service to access the tenant context that’s embedded
in this token. It’s important to note that this token is encoded and signed, so we’ll
need to unpack it to get access to the claims that we’re interested in. The following
example adds code to the prior example, introducing the steps needed to extract the
tenant context from the incoming JWT:

def query_orders(self, status):
 # get tenant context
 auth_header = request.headers.get('Authorization')
 token = auth_header.split(" ")
 if (token[0] != "Bearer")
 raise Exception('No bearer token in request')
 bearer_token = token[1]
 decoded_jwt = jwt.decode(bearer_token, "secret",
 algorithms=["HS256"])
 tenant_id = decoded_jwt['tenantId']
 tenant_tier = decoded_jwt['tenantTier']

172 | Chapter 7: Building Multi-Tenant Services

 # query for orders with a specific status
 logger.info("Finding orders with the status of %s", status)
 ...

I’ve trimmed out the actual query execution code since it is, at the moment,
unchanged. The code we want to focus is the snippet where I’m accessing and extract‐
ing the tenant context from the incoming request. This block of code first pulls the
authorization header out of the overall HTTP request, setting the auth_header equal
to "Bearer <JWT>" where the JWT represents your encoded token. The next bit of
code performs the basic string operations needed to get the contents of the JWT
copied into a separate string. This string is then decoded using a JWT library. The
end result is that the decoded JWT ends up in the decoded_jwt variable. The last step
is to acquire the tenant ID from the JWT’s custom claims. You might also be access‐
ing other claims here (role, tier, etc.) based on the nature of your solution.

In this particular example, I’m assuming that your service would own responsibility
for decoding each token. However, there are other options. You could, for example,
have an API gateway that would sit in front of all your services, processing each
inbound request. This gateway could crack open these JWTs, access the tenant con‐
text, and inject that into each service. This could allow you to implement more inter‐
esting strategies to deal with the latency that comes with accessing tenant context on
each request. This is just one of the alternate strategies you might consider. The key is
that somewhere at the front of these requests, you’ll need code that can go through
the motions of acquiring this tenant context for every request (whether it’s cached or
extracted from the JWT each time).

Once this code is executed—wherever it resides—your service will now have access to
the tenant context it needs for other downstream operations. This processing of ten‐
ant context illustrates the payoff of the onboarding and authentication flows we dis‐
cussed in earlier chapters, illustrating how services can begin to address multi-
tenancy without calling other services or mechanisms to get their tenant context.

Logging and Metrics with Tenant Context
At this stage, our code now has access to tenant context. However, it’s not doing any‐
thing with that context. Let’s start by looking at one of the areas where you can apply
context in your multi-tenant services: logging. Logging represents one of those foun‐
dational mechanisms every service is going to use, emitting messages that create an
informational and debugging audit trail that is essential to troubleshooting and ana‐
lyzing the activity in your system.

Now, imagine using these logs in a SaaS environment where multiple tenants are
exercising your service at the same time. By default, if you did nothing to your logs,
they would contain a mixed collection of insights that had no correlation to any spe‐
cific tenant. This would make it nearly impossible to piece together a view of the

Inside Multi-Tenant Services | 173

activity of any one tenant. If you’re on the operations team and you’re told that Ten‐
ant 1 is having issues that nobody else is reporting, you would have a very difficult
time using your logs to identify the log messages and events that were contributing to
that tenant’s specific problem. Even if you found an error message, it’s unlikely you’d
be able to explicitly associate that error with a specific tenant.

The good news is that now that we have tenant context at our fingertips, we can inject
this context to our log messages. This will introduce the tenant context that will allow
your operations team to analyze logs through the lens of individual tenants, tiers, and
so on. Let’s look at what our code would look like with the addition of this tenant-
aware logging:

def query_orders(self, status):
 # get tenant context
 auth_header = request.headers.get('Authorization')
 token = auth_header.split(" ")
 if (token[0] != "Bearer")
 raise Exception('No bearer token in request')
 bearer_token = token[1]
 decoded_jwt = jwt.decode(bearer_token, "secret",
 algorithms=["HS256"])
 tenant_id = decoded_jwt['tenantId']
 tenant_tier = decoded_jwt['tenantTier']

 # query for orders with a specific status
 logger.info("Tenant: %s, Tier: %s, Find orders with status %s",
 tenant_id, tenant_tier, status);
 ...

I’ve just changed one of the logging messages that is part of the Order service. Our
message simply prepends the tenant context to the front of our logging message. This
context would be added to all of the logging messages within your services, introduc‐
ing the data that equips teams with much richer insights into the specific behavior of
their tenants. If you’re querying logs, you can now filter by a specific tenant’s context
and assemble a more complete view of how individual tenants are interacting with
your system. There’s no magic to this, but it’s one of those small changes that can have
a huge impact on the operational profile of your environment.

The same logging mindset should also be applied to the metrics instrumentation of
your multi-tenant architecture. Yes, we want logs to build a forensic view of tenant
activity, but we also need data used by the business to profile the consumption and
activity of tenants that doesn’t quite fit into the operational profile of log messages.

The mental model is that the metrics emitted from our services represent insights
that are focused on providing the data that can be used to analyze and answer ques‐
tions that shape your business, operational, and architecture strategy. Here you’re
profiling how your service is influencing the tenant experience and tracking your
ability to measure a range of key metrics that business and technical teams can use to

174 | Chapter 7: Building Multi-Tenant Services

evaluate the system’s efficacy, agility, efficiency, and so on. We’ll cover the use of these
metrics more in Chapter 12. For now, though, we need to consider how the publish‐
ing of these metrics fits into the footprint of our multi-tenant services.

Let go back to the Order service and add a metrics call just to provide a more con‐
crete example of publishing a metric event:

def query_orders(self, status):
 # get tenant context
 ...
 tenant_id = decoded_jwt['tenantId']
 tenant_tier = decoded_jwt['tenantTier']

 # query for orders with a specific status
 logger.info("Tenant: %s, Role: %s, Finding orders with status: %s",
 tenant_id, tenant_role, status);
 try:
 start_time = time.time()
 response = ddb.query(
 TableName = "order_table",
 KeyConditionExpression = Key(status).eq(status))
 duration = (time.time() - start_time)
 message = {
 "tenantId": tenant_id,
 "tier": tenant_tier,
 "service": "order",
 "operation": "query_orders",
 "duration": duration
 }
 firehose = boto3.client('firehose')
 firehose.put_record(
 DeliveryStreamName = "saas_metrics",
 Record = message
)
 except ClientError as err:
 logger.error(
 "Tenant: %s, Find order error, status: %s. Info: %s: %s",
 tenant_id, status,
 err.response['Error']['Code'],
 err.response['Error']['Message'])
 raise
 else:
 return response['Items']

For this example, I’ve added the recording of a metric to the Order service query. To
keep it simple, I just added something to track the duration of the query. Then, I cre‐
ated a JSON object that included all the data about the tenant context and the opera‐
tion being performed. Now I need to publish this metric to some service that can
ingest and aggregate these metric events. For this example, I used an AWS streaming
data pipeline (Amazon Kinesis Data Firehose) to ingest my metrics data, constructing

Inside Multi-Tenant Services | 175

the Firehose client and calling the put_record() method to send the metrics event
into the service.

Again, you can see that the instrumentation of metrics, on its own, doesn’t really rep‐
resent a particularly complex process. The majority of the effort will go into deter‐
mining what you want to capture and how you’ll introduce the code that publishes
your metric data. The investment is small if it’s adopted widely by your teams, but the
return can be substantial.

The challenge of telling the metrics story is that there is no single, universal metrics
approach that everyone should apply to their services. The value is clear, but the
specifics are hard to nail down. This often needs to be driven by your own desire to
identify the metrics that will add the most value for your business. At the same time, I
will also say that some of the most effective SaaS companies are those that prioritize
metrics and work to identify the insights that will best inform their ability to assess
the internal and external experience of their systems.

Accessing Data with Tenant Context
Logging and metrics are relatively straightforward and are more focused on capturing
insights about the activity of your services. Let’s shift to looking at how tenant context
will influence how data is accessed for individual tenants.

At the moment, the data returned by our Order service hasn’t really done anything to
account for tenant context. In fact, without any further modification, this service
would return the same data for every tenant that requested orders. This, of course, is
not the intended behavior of our system. To address this, we need to apply the incom‐
ing tenant context to our query, limiting the view of orders to those that are associ‐
ated with the calling tenant.

The natural and simplest way to apply tenant context is to add the tenant to the
parameters that are part of your search. We already have our tenant identifier and
simply need to decide how to use this tenant identifier to access our data. You have
multiple options here. Let’s presume, for the moment, that you have a pooled data‐
base model where your tenant data is commingled in the same table. When the data is
pooled, we can simply add a TenantId key to our order table that will associate each
order with a specific tenant. This tenant identifier will become the key of our table.
This means that the status we were using will now become a secondary search param‐
eter that returns all orders for a tenant that match the supplied status.

The code to apply this tenant context to your query is pretty straightforward. In the
following example, I’ve augmented the query portion of the service, using the tenant
identifier as the key and the status as a filter:

response = ddb.query(
 TableName = "order_table",

176 | Chapter 7: Building Multi-Tenant Services

 KeyConditionExpression = Key('TenantId').eq(tenant_id),
 FilterExpression=Attr('status').eq(status))

This slight tweak to your database search is all that’s needed to ensure that the orders
that are returned here are limited to just those that are associated with the current
tenant.

In this scenario, I started with the simplest of use cases. Where data access discussion
gets more interesting is when we start thinking about the various combinations of
storage strategies your service might need to support. Suppose, for example, your sys‐
tem offered different storage for different tiers as shown in Figure 7-10.

Figure 7-10. Supporting tiered storage models

In this scenario, our Order service is processing requests from basic and premium
tier tenants. The compute is completely shared by these tenants. However, on the
righthand side of Figure 7-10, you’ll see that the service employs different storage
strategies for each of these tiers. The basic tier tenants are all stored in a single table
that’s indexed by tenant ID (as was the case in our prior example). However, the pre‐
mium tier tenants store their data in a siloed model where each tenant has its own
dedicated storage. In this example, each of these dedicated tables are assigned a name
that conveys their binding to a specific tenant.

Now, with this new wrinkle in the mix, let’s think about what this means for the
implementation of your service. Somewhere within the code of our service, you must
have logic that examines the tier of each tenant to determine which table will be used
to process their requests. And, depending on how their data is stored, you may need
multiple paths of execution within your service to support identifying and interacting
with the tenant’s order data.

Let’s start with a brute force approach to this, knowing that we’ll need to refine to
make this simpler. To make this work, we’ll essentially need to add some mapping
operation to our query to resolve the name of the table that will be used (based on a

Inside Multi-Tenant Services | 177

tenant’s tier). I’ve revisited the query we had within our service above, adding a new
getTenantOrderTable() function that examines a tenant’s tier and returns the name
that will be used for a given tenant request. Here’s the snippets of code that add this
functionality:

response = ddb.query(
 TableName = getTenantOrderTable(tenant_id, tenant_tier),
 KeyConditionExpression = Key('TenantId').eq(tenant_id),
 FilterExpression=Attr('status').eq(status))

helper function to get generate tier-based table name
def getTenantOrderTableName(tenant_id, tenant_tier):
 if tenant_tier == BASIC_TIER:
 table_name = "pooled_order_table"
 elif tenant_tier == PREMIUM_TIER:
 table_name = "order_table_" + tenantId
 return table_name

This approach, however, presumes that the tables for basic and premium tier tenants
will be identical. For the most part, they would be the same; however, our pooled ten‐
ants rely on a TenantId key that is used to access the orders for individual tenants.
This key has no value or meaning in the siloed tables. Many teams will keep this key
in their siloed tables simply to avoid having to support additional one-off behavior. If
you choose to remove this key from the siloed resources, you’ll need to have more
specialized code to compose your interaction with the data to account for the pres‐
ence or absence of this key.

Naturally, the type of data that your service stores and the technologies it uses are
going to vary significantly. The example we covered here represents just one of many
ways that multi-tenant data might shape how you implement your service.

Supporting Tenant Isolation
The data access example we just covered relies on inserting tenant context into our
query to scope the data to a given tenant. It’s easy to assume that, if we’re filtering
these queries by tenant, then you’ve put all the measures in place to ensure that one
tenant can’t access the data of another tenant. And, in theory, it’s not an unreasonable
expectation. However, in multi-tenant environments—where tenant isolation is
essential to the trust of your tenants—filtering data access by tenant isn’t really
enough.

It’s critical that we draw a clear line between the strategies that are used to partition
and access data and the strategies that are used to enforce tenant isolation. How data
is stored and accessed is what we would consider your “data partitioning” strategy,
which is covered in depth in Chapter 8. How we protect resources (including data)
from cross-tenant access is referred to as “tenant isolation,” which is covered in detail
in Chapter 9. When we’re talking about isolating tenant resources, we’re talking about

178 | Chapter 7: Building Multi-Tenant Services

the measures that we use to surround the code within our services to ensure that
developers don’t intentionally or unintentionally cross tenant boundaries. So, regard‐
less of what tenant parameter might be in your query, for example, the tenant isola‐
tion policies that surround that query will prevent that code from accessing the
resources of another tenant.

This, of course, means that we need to introduce new constructs and mechanisms
into the implementation of our services to apply tenant isolation strategies. The goal
is to have your code somehow acquire an isolation context before it accesses any
resource and use that context to scope your resource access to the current tenant.
With this context applied, any attempt to interact with a resource will be constrained
to just those resources that belong to the current tenant.

Now, let’s look at how we can take this theory and turn it into something more con‐
crete to give you a better idea of how this might land in your multi-tenant services.
For this particular example where we’re accessing DynamoDB, we can achieve our
isolation goals by configuring our session with a set of credentials that will scope data
access based on tenant context. If you look back to the starting point for our Order
service, you’ll see where the Boto3 client was initialized as the client library that
would be used to access our order data. The initialization code is as follows:

def query_orders(self, status):
 # get database client (DynamoDB)
 ddb = boto3.client('dynamodb')
 ...

This initialization of the Boto3 library used a broader, default set of credentials to ini‐
tialize the client. In this state, your client is initialized with a much wider scope,
allowing it to access any item in your order table. That means any query here could
access data for any tenant, regardless of what tenant context was passed into our
service.

Our goal, then, is to scope down the access of this client for each request that is
attempting to get orders, initializing the client with a scope that includes the context
of the calling tenant. To achieve this, we’d need to change the way our client is initial‐
ized. The code that would apply this scope would resemble the following:

def query_orders(self, status):
 # get database client (DynamoDB) with tenant scoped credentials
 sts = boto3.client('sts')

 # get credentials based on tenant scope policy
 tenant_credentials = sts.assume_role(
 RoleArn = os.environ.get('IDENTITY_ROLE'),
 RoleSessionName = tenant_id,
 Policy = scoped_policy,
 DurationSeconds = 1000
)

Inside Multi-Tenant Services | 179

 # get a scoped session using assumed role credentials
 tenant_scoped_session = boto3.Session(
 aws_access_key_id =
 tenant_credentials['Credentials']['AccessKeyId'],
 aws_secret_access_key =
 tenant_credentials['Credentials']['SecretAccessKey'],
 aws_session_token =
 tenant_credentials['Credentials']['SessionToken']
)
 # get database client with tenant scoped credentials
 ddb = tenant_scoped_session.client('dynamodb')
 ...

There are a few moving parts to this solution. First, note that our first block of code
focuses on getting a narrower set of credentials that are scoped based on the current
tenant identifier. In this particular example, we’re staying within the family of AWS
services, relying on the AWS Security Token Service (STS) to facilitate this scoping
exercise. With STS, I can define a policy that restricts access to my order table. We
won’t dig into the details of this policy here, but just know that it essentially restricts
access to just those items in the database that match a given tenant ID. So, when I call
the assume_role() function and supply my policy and tenant identifier (extracted
from the JWT), this service will return a set of credentials that will limit access to just
those items that belong to the current tenant. These credentials are stored in the
tenant_credentials variable.

Once we have these credentials, we can declare and initialize a session with the spe‐
cific credential values that were returned from our assume_role() call. Here you’ll
see the typical credential values that are used by AWS services when accessing
resources.

All that remains now is to declare our DynamoDB client (as we did before). However,
the client is now created using the tenant_scoped_session variable. This essentially
tells Boto3 to initialize the client with the credential values that we set up in the prior
steps. Now, when we invoke the query command using this client, it will inherit the
scoping policies and apply these to any call made with this client.

This mechanism creates a true tenant isolation experience, providing a tenant-scoped
context for any call to the database. Now, no matter what value or configuration a
developer puts into their query, the system will prevent the service from accessing
data that’s not valid for the current tenant.

This example should give you a better sense of how tenant isolation can influence the
footprint of your multi-tenant services. Getting this right is essential to building a
robust isolation story for your solution. The challenge, though, is that there are a
number of factors that make it difficult to have a one-size-fits-all approach to isola‐
tion. The technology you’re using, the cloud you’re on, the services you’re consuming,

180 | Chapter 7: Building Multi-Tenant Services

the silo or pool footprint of your resources—each of these elements may all require a
different strategy to describe and enforce tenant isolation within your service. The
spirit and mindset of what we’ve done here is still valid for any service. It’s really in
the implementation and realization of these concepts where you’ll run into significant
variation.

It’s also important to note that your services are likely to interact with a range of dif‐
ferent types of resources. The isolation policies and approach we’ve covered are
meant to be applied across any resource that might be managing or touching tenant-
specific constructs. If you have queues, for example, those queues may require some
form of isolation.

As you look at these tenant isolation mechanisms, you must con‐
sider whether these constructs will undermine the scale and perfor‐
mance of our solution. Will this added overhead create bottlenecks
in your experience? Is there something more you can do to make
application of these policies more efficient (caching, etc.)? These
are the kinds of questions you’ll want to ask yourself as you’re
introducing these constructs.

Hiding Away and Centralizing Multi-Tenant Details
When I kicked off our discussion of building multi-tenant services, I put great
emphasis on being able to introduce these constructs without bloating or adding
complexity to your developer experience. My goal was to hide away and centralize
many of the multi-tenant constructs and keep your service code focused squarely on
implementing the business logic of your application.

Up to this point, I really haven’t achieved this goal. In fact, if I were to put all the con‐
cepts we discussed into one final version of my Order service, it would likely have
tripled in size and complexity. You can also imagine how having this code in each ser‐
vice would be inefficient, distributing common concepts and constructs to every ser‐
vice in my system. At a minimum, this would represent a bad bit of programming. It
would also limit my ability to centrally manage my multi-tenant strategies and
policies.

This is where we put our basic builder skills to work and look for the natural oppor‐
tunities to move these concepts out of our services and into libraries that can hide
away much of the detail that we have been covering. There’s nothing uniquely multi-
tenant to this approach. It’s more that, as a multi-tenant architect, I want to be sure
I’m doing what I can to streamline the service developer’s experience.

If you look back to our example, you can see where there is code that could easily be
moved into helper libraries. Consider, for example, how the code that we added to
acquire tenant context from the JWT could be moved into a separate function. The

Hiding Away and Centralizing Multi-Tenant Details | 181

code would simply be lifted out of our service and turned into a function that resem‐
bled the following:

def get_tenant_context(request):
 auth_header = request.headers.get('Authorization')
 token = auth_header.split(" ")
 if (token[0] != "Bearer")
 raise Exception('No bearer token in request')
 bearer_token = token[1]
 decoded_jwt = jwt.decode(bearer_token, "secret",
 algorithms=["HS256"])
 tenant_context = {
 "TenantId": decoded_jwt['tenantId'],
 "Tier": decoded_jwt['tenantTier']
 }
 return tenant_context

This new get_tenant_context() function takes an HTTP request and does all the
work we described earlier to extract the JWT, decode it, and pull out the custom
claims that have our tenant context. I tweaked the function some, putting all the cus‐
tom claims into a JSON object. How and what you chose to return here will depend
on what’s in your custom claims. You might have separate functions to get specific
custom claims (get_tenant_id(), for example). This is more a matter of style and
what works best for your particular environment.

The key, though, is that this library now means that any service needed to extract ten‐
ant context can make a single call to this library and shrink the amount of code that
lands in your services. It also allows you to alter JWT policies without having these
changes cascade across your solution. Imagine choosing a different approach to
encoding or signing your JWT. With this in a centralized function, you can now make
these alterations outside the view of service developers.

This same theme can also be applied to the logging, metrics, data access, and tenant
isolation code that we covered earlier. Each one of these areas can be addressed
through the introduction of libraries that standardize the handling of these multi-
tenant concepts.

With logging and metrics, the key is really just removing the added overhead of
injecting tenant context every time you log a message or record a metric. Now you
can simply share the request context with each of these calls and let some external
function determine how to acquire tenant context and inject it into your message and
events.

Data access is one area that may be a bit less generic and may require helpers that are
local to a specific service. If you recall, we discussed a use case in which our Order
service might need to support a tier-based storage model where each tier might need
to route its requests to a different order table. In this scenario, you might lean on the

182 | Chapter 7: Building Multi-Tenant Services

traditional data access library (DAL) or repository pattern to create a targeted con‐
struct that abstracts away the details of interacting with our service’s storage. Here,
this DAL could encapsulate all the multi-tenant requirements, including applying iso‐
lation within that layer (completely outside the view of service developers).

Now, let’s assume we moved all of this multi-tenant code into a library. The code of
our service would be streamlined substantially, returning it to the version that resem‐
bles the copy that we had before multi-tenancy was introduced. The following code
introduces a new function to get tenant context, introduces a logging wrapper that
injects tenant context, adds a function to get a tenant-scoped database client, and
employs an order DAL to hide away the details of mapping tiers to specific tables:

def query_orders(request, status):
 # get tenant context from request
 tenant_context = get_tenant_context(request)

 # get scoped database client
 ddb = get_scoped_client(tenant_context, policy)

 # query for orders with a specific status
 log_helper.info(request, "Find order with the status of %s", status)
 Try:
 response = get_orders(ddb, tenant_context, status)
 except ClientError as err:
 log_helper.error(
 request,
 "Find order error, status: %s. Info: %s: %s",
 status,
 err.response['Error']['Code'],
 err.response['Error']['Message'])
 raise
 else:
 return response['Items']

While there are lots of nuances in how this concept could end up getting applied in
your services, this example gives you a sense of just how this approach can influence
the implementation of your services. In many respects, this comes down to following
fundamental programming best practices. The elegance here is less in the detail of
what’s in these libraries and more about the value they bring to service builders.

Interception Tools and Strategies
At this point, you can see how simply moving these shared multi-tenant concepts into
libraries makes sense. However, in addition to moving this code outside of your serv‐
ices, you should also consider the different technology and language constructs you
can use to streamline your developer experience and centralize your multi-tenant
strategies.

Interception Tools and Strategies | 183

The basic idea is that we want to look at how we might leverage the built-in capabili‐
ties of a given technology construct to support these horizontal multi-tenant needs,
allowing you to introduce and configure multi-tenant operations and policies with
minimal cooperation of your service builders.

Consider, for example, our approach to tenant isolation. If my language and tools
provide me with a mechanism that allows me to insert processing between my service
and the resources I am accessing, this might enable me to enforce aspects of my isola‐
tion model completely outside the view of my services.

The hard part of providing guidance here is that the list of possible strategies that
enable this approach is quite long. Each language and its supporting frameworks, for
example, will bring its own unique blend of options to this discussion. Also, the dif‐
ferent technology stacks and cloud services that are part of your architecture may
include their own constructs that can be applied in this scenario. How and where
these constructs are applied will vary significantly based on the specifics of each of
these different options. While it would be counterproductive to review the spectrum
of possibilities, I do want to highlight a few sample strategies to give you a better
sense of the different types of mechanisms that could fit with this mindset.

Aspects
Aspects are generally introduced as a language or framework construct. They allow
you to weave cross-cutting mechanisms into your code that enable you to inject pre-
and post-processing logic into the footprint of your services. This allows you to intro‐
duce global policies and strategies into your services that may align well with some of
the multi-tenant mechanisms that are part of your environment. Figure 7-11 provides
a conceptual view of the aspects model.

Figure 7-11. Using aspects to apply tenant context

At the center of this diagram is the code of your service. Much of the development of
your services has no awareness of the policies that surround it. With aspect-oriented
programming, I can bolt extra handling logic into my service that will be executed as
tenant requests enter and exit. This code is woven into my services with whatever
aspect tooling or technology I’ve chosen.

184 | Chapter 7: Building Multi-Tenant Services

You can imagine how this could represent a great fit for handling, processing, and
applying tenant contextual operations. For example, you could use an aspect to inter‐
cept each request that comes into your service, adding pre-processing that would
extract the JWT from the HTTP header, decode it, and initialize the tenant context
for the rest of your request. You could also consider implementing elements of your
tenant isolation model, acquiring and injecting the tenant-scoped credentials that are
needed to enforce your isolation policies.

The key is that this becomes a standard mechanism for all of your services that is
woven into them as part of a global strategy (instead of relying on developers to call
the appropriate helper functions in their code).

Sidecars
If your multi-tenant architecture is built with Kubernetes, you may want to consider
whether sidecars could be used to apply multi-tenant strategies to your services. A
sidecar runs in a separate container within your Kubernetes environment and has the
ability to sit between your service and other resources and services. The nice part of
these sidecars is that they are entirely outside the view of your service. This allows
you to apply any global multi-tenant policies in a way that may not require the coop‐
eration of your service. Figure 7-12 provides a conceptual view of the sidecar model.

Figure 7-12. Using sidecars for horizontal concepts

On the left of Figure 7-12, you’ll see my application service that has my business logic.
And on the far right is some resource that my service will interact with. This could be
another service, a database, or any number of different constructs. The key here is
that the sidecar sits between me and that resource. This allows the sidecar to intercept
and apply tenant context outside the view of my service, extracting context and
applying any policies that are associated with my service and the resource it’s con‐
suming. Being able to separately deploy and configure this sidecar allows me to create
a much more robust multi-tenant enforcement story, allowing me to have greater
control over my service’s interactions with other resources.

Middleware
Some development frameworks support the notion of middleware. The idea is that
you can introduce code that sits between your inbound request and your target

Interception Tools and Strategies | 185

operation. This allows you to intercept and apply any global policies that would be
applied across your service.

This middleware mechanism is commonly used in the Node.js Express framework.
The framework provides all the built-in constructs that are needed to implement
many of the multi-tenant service strategies that we’ve covered here (tenant context,
isolation, etc.).

AWS Lambda Layers/Extensions
I mentioned that different cloud providers and their services may include constructs
that could be a good fit for realizing some of these cross-cutting multi-tenant strate‐
gies. I thought it would be worth highlighting one example here. If you’re building a
serverless SaaS environment on AWS, you have the opportunity to use Lambda Lay‐
ers or Lambda Extensions to move your shared libraries into a standalone
mechanism.

With Lambda Layers, you can essentially move all of your helpers into a shared
library that is then deployed independently. Each of the Lambda functions that are
part of your service can reference the code in this shared library, allowing them to
access the different helper functions you have without having that code being part of
each service. This allows you to manage, version, and deploy these globally shared
constructs entirely separately. Now, when you want to update your isolation mecha‐
nism, for example, you could update the code in your Lambda Layer, deploy it, and
have each of your services get updated with this new capability.

Lambda Extensions, on the other hand, fit more into the aspect pattern that we dis‐
cussed earlier, allowing you to associate custom code with the lifecycle of a Lambda
function. For example, you could use a Lambda Extension to pre-process a request
upon entry to a function of your service. The code for a Lambda Extension can also
live within a Lambda Layer.

Conclusion
At this point, you should have a much better sense of what it means to design and
build a multi-tenant service. In this chapter, we started by looking at how the needs of
multi-tenant environments directly influences the shape, size, and footprint of the
services that support the core functionality of your SaaS offering. This required us to
examine the various factors that must be added to your mental model when identify‐
ing the boundaries of your services.

Much of our design discussion was focused on the continually shifting workloads and
consumption profiles of your tenants and how this influences your approach to pick‐
ing the combinations of services that will allow you to best address these realities—
especially in environments that have pooled resources. This led to a much deeper dive

186 | Chapter 7: Building Multi-Tenant Services

into the different ways that noisy neighbor possibilities might impact the design of
your services, potentially driving new service decomposition strategies that can better
address the tendencies of a given service or workload. We also looked at how you
might apply siloing strategies across your system’s services to address targeted perfor‐
mance, experience, and tiering requirements.

As part of looking at design, I also highlighted the importance and value of investing
in metrics that can continually inform the design of your services. The key was to
acknowledge that you should expect your design to evolve based on the operational
insights that will come once it’s alive and running under real workloads. It’s only with
solid multi-tenant metrics and insights that you can understand how your service
design is meeting the current and emerging needs of your tenants.

Once we had a grasp of the design considerations, we shifted our attention to looking
inside our services to better understand how multi-tenant shapes the actual imple‐
mentation of these services. The focus here was first on determining how and where
multi-tenancy needs to land within the implementation of your service. I highlighted
how your service would acquire tenant context and then apply it across logging, met‐
rics, data access, and tenant isolation. A key point of emphasis here was on making
every effort to ensure that the introduction of these multi-tenant strategies/policies
would not come at the cost of adding complexity or bloat to your services. We looked
at specific ways to address this goal, outlining different ways to move these multi-
tenant constructs outside the view of developers and to a more centrally developed
and managed model.

Overall, the broader theme is that multi-tenancy can have a significant impact on
both the design and implementation of your services. At the design level, it’s all about
anticipating the dynamic, shifting, and elusive profile of your tenant consumption
tendencies and multi-tenant requirements. Within the services, it’s more about focus‐
ing on thinking about how you can ensure that your services are implementing the
core best practices without undermining the experience or productivity of your
builders.

Now that we have a sense of how multi-tenant is implemented in our services, we can
start digging into the various strategies that are used to represent the data used by
these services. While I’ve provided glimpses of how you might store data in multi-
tenant environments, we mostly looked at this through the lens of other concepts.
Now, in the next chapter, we’ll focus exclusively on the different approaches and con‐
siderations that are associated with representing, operating, and managing multi-
tenant data. This will give you a more complete view of the different factors you
should consider when working with multi-tenant data and highlight key points of
inflection that will influence how/where you store the data that’s part of your multi-
tenant environment.

Conclusion | 187

CHAPTER 8

Data Partitioning

As we wander deeper into the multi-tenant services of a SaaS environment, we must
also begin to look at how these services represent, access, and manage data in a multi-
tenant model. While the fundamentals of multi-tenant data are relatively easy to wrap
your mind around, there are lots of nuances that come with selecting a multi-tenant
storage strategy that aligns with the requirements of your environment.

There are multiple factors that can have a direct influence on how you store data for a
given workload in your SaaS environment. Compliance, noisy neighbor, isolation,
performance, cost—any of these might have a significant influence on how you
choose to represent your data in a multi-tenant setting. Technology also plays a big
part in this story. Each storage technology has its own set of constraints, constructs,
and mechanisms that will need to be considered as part of your data partitioning
strategy.

In this chapter, we’ll cover the full range of data partitioning considerations, high‐
lighting the different factors that are typically going to shape your data partitioning
model. We’ll start by looking at some of the fundamentals of data partitioning,
reviewing the common themes and considerations that apply regardless of the storage
technology you may be using. We’ll also look at the natural connections between data
partitioning and tenant isolation to help you understand how isolation might play a
larger role in determining the data partitioning model you ultimately select.

Once we have a sense of the core concepts, the emphasis will shift to looking at the
specifics of how data partitioning is realized across a range of different storage tech‐
nologies and services. Here, the goal will be to dig into each of these technologies and
understand how the nature of each storage service influences your data partitioning
design. This will also give you a clearer view into how different storage technologies
are able to address key multi-tenant storage challenges (noisy neighbor, tenant isola‐
tion, compliance, and so on). We’ll also look at the trade-offs associated with

189

multi-tenant data models, identifying key areas you’ll want to focus on when storing
different types of data (object, relational, NoSQL, and so on).

Data Partitioning Fundamentals
Before we can start looking at concrete multi-tenant storage constructs, we need to
first review some of the foundational data partitioning concepts. Let’s start by being
clear about what I mean when I refer to data partitioning. To me, when I think about
storing data in a multi-tenant environment, I’m always thinking about how an indi‐
vidual tenant’s data will be partitioned based on the type of data being stored, the
technology that I’ll be using to store and manage it, how the tenant will consume it,
and so on.

The partitioning of data does not presume that each tenant’s data must somehow land
in a complete standalone storage construct. This, in fact, is where the silo and pool
concepts end up playing a key role again. The terms come forward with us as we look
at how we describe the representation of tenant data. To help clarify this point, let’s
look at how siloed and pooled models are applied to storage. Figure 8-1 provides a
basic conceptual view of how siloed and pooled strategies are mapped to the realm of
multi-tenant data partitioning.

Figure 8-1. Siloed and pooled data partitioning models

In this example, I have shown Product and Order services that are both running with
pooled compute that is shared by all tenants. However, you’ll also notice that each of

190 | Chapter 8: Data Partitioning

these services employs different data partitioning models. On the left, the Product
service uses a separate, dedicated storage construct for each tenant. Given this foot‐
print, we would refer to this storage as being siloed.

On the righthand side, you’ll see that I have an Order service that uses a different data
partitioning model. Here there’s only one shared storage construct that is used to
store and manage all tenant orders. This is what we would refer to as a pooled storage
model.

You’ll also see that how I mapped tenants to their data is different for each of these
data partitioning schemes. For silo, the tenants are generally associated with their
siloed storage construct based on some naming model. In this instance, I prepended a
tenant identifier to the name of each storage construct. You’ll also note that there’s
nothing in the actual product data that references or connects each item to a tenant.
It’s not needed. The order table, on the other hand, has data for all tenants and, as
such, it needs some way to associate individual items with each tenant. For this exam‐
ple, I introduced a TenantId column to identify the items that belong to each tenant.

The key is that regardless of which technology you’re using to store your data, you
still would use these silo and pool terms to characterize how the data is represented.
While these concepts are universal, how they are actually brought to life across differ‐
ent technologies can vary significantly. These variations can play a key role in influ‐
encing whether your data ends up being stored in a silo or pool model.

It’s also worth noting that both of these strategies have different scaling considera‐
tions. A siloed strategy, for example, can introduce scaling and management chal‐
lenges as you attempt to add separate storage constructs for each tenant. Meanwhile,
depending on the size of your data, commingling all of your tenant data in a single
construct can also introduce scaling limits if you store excessive or poorly distributed
data.

Throughout this chapter, I’ll be talking about siloed and pooled
data partitioning strategies. It is essential to understand the trade-
offs, design considerations, and operational impact of adopting
each of the models across different storage technologies. It’s also
important to understand that these two models should not be
viewed as mutually exclusive. You may, for example, choose a pool
model for your basic tier tenants and a siloed model for your pre‐
mium tier tenants. This approach allows you to offer two experien‐
ces to your tenants, enabling a broader range of pricing and
packaging options for your service.

Before we get into how these storage models land on specific storage technologies,
let’s consider some of the cross-cutting concerns that you should be thinking about as
you design your multi-tenant storage strategy.

Data Partitioning Fundamentals | 191

Workloads, SLAs, and Experience
Every multi-tenant storage strategy must be hyper-focused on scale and performance.
The nature of multi-tenant data consumption can vary significantly across the serv‐
ices of your solution, requiring creative approaches to supporting the shifting work‐
loads and consumption patterns of your tenants. Finding a storage strategy that
effectively addresses these needs can be challenging. The workloads and patterns you
see today may not be the same tomorrow. New tenants may also be onboarding,
adding all-new wrinkles to the storage profile of your system.

As you sit down to design your data partitioning strategy, you’ll want to be sure you
are thinking about how each storage experience is going to perform in a multi-tenant
model. How will you meet any SLAs that may be required for a given tenant tier?
How will you detect and handle scenarios where a tenant saturates your storage? How
will you efficiently size the compute that is running your storage service? These are
just a few examples of performance and scale questions you’ll need to consider when
you’re picking a data partitioning model.

Part of this exercise is also about estimating the footprint of your data. Having some
sense of the amount of data your tenants will be storing across the different services
of your system will allow you to project how your system might be able to scale to
meet the SLAs of your tenants. This will also be essential to understanding how your
data might be pushing the limits of the storage technologies you’re using. For some
services, you might find that the tenants with disproportionately large data could end
up undermining your data partitioning strategy and degrading the performance key
areas of your system. Knowing this might tip you toward a different partitioning
approach that will allow you to effectively scale your multi-tenant data.

Noisy neighbor is another area you’ll want to focus on as you’re building out your
multi-tenant storage strategy. We’ve already discussed this as a more global concern,
but noisy neighbor brings its own unique set of nuances to the multi-tenant storage
puzzle. It’s here that you’ll have to develop workload profiles and understand how
tenants will consume your system’s multi-tenant data, identifying areas where you
may need to introduce partitioning, siloing, or throttling mechanisms that can pre‐
vent tenants from imposing loads that might impact the experience of other tenants.
These same policies will also be essential to managing the availability of your envi‐
ronment—especially if you’re encountering noisy neighbor conditions with your
pooled storage.

Sizing the compute of your storage is also part of this story. It can be challenging to
determine what level of compute resources is needed to support the workloads and
SLAs of your solutions. It’s often challenging to find a balance that doesn’t end up
requiring an overprovisioning of storage resources to meet your throughput
requirements.

192 | Chapter 8: Data Partitioning

Blast Radius
While the goal of any architecture is to ensure that we’ve done all that we can to pre‐
vent outages, there are still scenarios where teams take additional measures to ensure
that one tenant can’t impact the experience of another tenant. This is, of course, espe‐
cially significant in a multi-tenant environment where an outage could impact every
customer in your system.

Now, as you’re picking a storage model, some teams may factor blast radius into their
overall strategy, leaning toward siloing data to reduce the scope of potential outages.
This might translate into siloing a particularly critical family of data. In this approach,
if a siloed database, for example, were to suffer from some fatal condition, the impact
of that failure could be limited to a single tenant. This would also allow the operations
team to work on this issue in isolation.

This can be especially powerful when you look at the deployment footprint of your
SaaS environment. As new versions and capabilities are rolled out, the siloed data for
each tenant could be updated separately, creating opportunities to gracefully deploy
and update the data constructs without impacting all of your tenants.

While there are merits to siloing your data to limit blast radius issues, this is still
something I would consider carefully. This may fit for some environments, but it also
can be a crutch that impacts the overall agility, cost efficiency, and operational profile
of your environment.

The Influence of Isolation
Isolation touches every dimension of multi-tenant architecture, and it certainly plays
a role in shaping the data partitioning model you select. In fact, this is often where the
lines between data partitioning and isolation can get blurry. For example, I might
choose a partitioning strategy based, at least partly, on its isolation requirements.

Where this gets a bit confusing, though, is that teams will sometimes equate their
data partitioning strategy with tenant isolation. So, if they’ve chosen to use a siloed
model for a particular family of data, they will describe that data as being “isolated.”
While you may have chosen a silo model to enable isolation, siloing the data alone
does not mean the data is isolated. Isolation, as we’ll see in Chapter 9, represents a
layer of enforcement that goes beyond how the data is stored. It enforces and scopes
access to data regardless of whether it is siloed or pooled.

I prefer to view isolation as influencing the data partitioning model I select while
acknowledging that implementing that isolation will still be achieved separately. This
influence of isolation on data partitioning is especially important as you look at dif‐
ferent storage technologies. If you’re at least partially selecting a data partitioning
strategy based on its potential to support a level of isolation, then you must also con‐
sider how the storage technology you’re selecting will support enforcement of

Data Partitioning Fundamentals | 193

isolation at the level you require. For example, I might silo tenant data in a separate
database to enable isolation, only to find out that the database doesn’t allow me to
define per-tenant isolation policies at the database level. That might persuade me to
consider another option.

This is even more pronounced when you’re thinking about pooled data partitioning
strategies and isolation. Here, as you can imagine, strategies that let you enforce your
isolation are even less frequently supported.

Management and Operations
As architects and builders, it’s natural to focus on performance and isolation when
picking a data partitioning strategy. However, it’s equally important to consider how
your data partitioning strategy will influence the management and operational foot‐
print of the SaaS environment. When you’re weighing your silo or pool partitioning
options, for example, you should be thinking about how the footprint of your data
might impact the experience and agility of your operations team (backup, deploy‐
ment, migration, telemetry, and so on).

The pooled data partitioning model, for obvious reasons, typically offers the greatest
level of operational efficiency. When you have data represented in a pooled model,
you have a much cleaner management and operations story. Any updates to data, for
example, would be applied to all tenants with a single operation in a pooled model.
Also, the effort required to assemble operational views into the performance and
health of your storage services is made simpler when all of your tenants are using
shared constructs.

With siloed data partitioning, you have a more distributed model that adds a degree
of complexity to your management and operations experience. Here, your DevOps
tooling must take on the challenge of applying any data changes or migrations to each
tenant individually. Synchronizing these changes across a large collection of siloed
data constructs certainly adds a level of complexity and timing to this process. Your
operational tooling will also take on an added burden in a siloed data partitioning
scheme. Your tooling will now be required to assemble a collective view of health and
activity from the various siloed tenant databases that are part of your environment.

Backup and restore should also be part of the discussion. How will your partitioning
model influence your ability to back up and restore tenant data? With siloed data, this
is simpler. However, with pooled data you need to think about how you’d take a snap‐
shot of a tenant’s data from a shared storage service (and consider how you’d restore
tenant data without impacting other tenants). There are lots of variables that would
shape your approach here. The key is that you have this on your radar as you’re
selecting a data partitioning strategy.

194 | Chapter 8: Data Partitioning

Ultimately, this often comes down to balancing efficiency and manageability. Just
know that where you land could have a significant impact on your ability to meet the
scale and agility goals of the business.

The Right Tool for the Job
Some teams look at data partitioning as an all-or-nothing moment where they’re
picking a technology that meets the requirements of their solution. For example,
teams will do their analysis and then go all-in with the one database technology that
seems to best suit the needs of their solution. This may even be driven by developer
experience, where teams will pick a storage strategy based on their general familiarity
with the technology.

It’s likely already clear why this is a less than ideal approach to selecting a multi-
tenant storage approach. The reality is, there are so many variables that can influence
your selection of a storage technology, and—more importantly—these variables may
be different for each part of your system.

If you look at your system as a composed collection of services that encapsulate their
underlying storage, then you should be evaluating your storage technology options
on a service-by-service basis. The storage technology that fits well with the require‐
ments of one service may not fit well with the requirements of another service. The
goal is to consider each service in isolation, allowing the service to deliver the best
experience it can based on the workload it supports, its isolation needs, its compli‐
ance considerations, its management profile, and all the other factors that might
shape its footprint. This includes picking siloed and pooled data partitioning strate‐
gies on a service-by-service basis. Yes, you’ll likely find storage patterns that apply
universally to many services. However, you still want to ask these questions for each
service you build.

Defaulting to a Pooled Model
In some cases, it may not be entirely clear which data partitioning model—silo or
pool—fits best for a given workload. You may need to wait until you’ve been able to
observe and profile the scale, performance, and operational behavior of tenant work‐
load to have a better sense of the preferred approach.

Generally, in these cases, my recommendation is to default to a pooled model for all
the storage in your system. The cost, operational, and agility advantages of pooled
storage are often so compelling that teams will cling to the model as long as they can.
In this mode, you’re essentially forcing any siloed data to earn its way out based on a
set of clear requirements that justify taking on the trade-offs that come with manag‐
ing, operating, and deploying data in a siloed model.

Data Partitioning Fundamentals | 195

It’s true that some workloads and data types will be clear candidates for being siloed
on day one of your system. The trap you want to avoid, though, is over-rotating to a
siloed model for elements of your system that may not demand a siloed experience.
Each time you choose to silo any resource in a SaaS environment, you should be chal‐
lenging your assumptions and ensuring that you have scoped the silo at the appropri‐
ate boundary.

Supporting Multiple Environments
As we dig into the specifics of data partitioning with different technologies and serv‐
ices, you’ll see scenarios within the siloed model where we create per-tenant con‐
structs (tables, databases, clusters, etc.). Each time we create one of these tenant-
specific constructs, we have to assign them a name that associates the construct with a
tenant.

Solving for this usually means coming up with some naming convention that ensures
that the resource is uniquely identified. Where this gets more interesting is when you
start thinking about supporting multiple environments (QA, staging, production).
Now, you have to figure out whether your naming convention may need to include a
reference to the environment that is hosting your siloed storage resource.

For some services and strategies, you may have a siloing construct that doesn’t create
a conflict between names. For example, for some cloud storage services, you might
have separate accounts for each environment. In this mode, your resource names may
be scoped at the account level, ensuring that they are only accessed from within that
account. However, there are also instances where names can be global to all accounts.
In this scenario, you’d still need a naming convention that would include support for
your different environments.

This isn’t generally a significant issue. However, it is worth considering as you’re
defining your data partitioning model.

The Rightsizing Challenge
One theme that you’ll find spanning this book is the notion of aligning infrastructure
consumption with the activity of tenants. This is all part of the quest for efficiency
that’s fundamental to every SaaS business. One dimension of this scaling challenge
that can get overlooked is the efficiency of your storage compute consumption. It’s
here that teams have difficulty finding a data partitioning and storage strategy that
allows them to optimize their compute consumption footprint.

The sizing of storage compute is trickier in a multi-tenant environment. With our
services, we can scale our compute horizontally based on load, which makes it easier
to expand and contract their compute footprint based on tenant workloads. However,

196 | Chapter 8: Data Partitioning

with storage, you typically don’t have this option. Instead, a storage service will often
require you to select a particular compute profile when you are initially configuring
your environment. This means your storage compute remains fixed for all tenant
workloads.

This presents a particularly challenging problem for multi-tenant environments.
Figure 8-2 provides a clearer view of the storage sizing issues that come with multi-
tenant environments.

Figure 8-2. Sizing the compute of your storage

In this example, I have two tenants that are consuming a service in a pooled model.
This service scales out horizontally based on the workloads of the tenants. All of the
instances of this service are pointed at some pooled storage service that manages its
data. In this example, let’s say that my storage service is some relational database ser‐
vice running in the cloud and that this service, as part of its setup, required us to
select a compute size.

The question is: what size should you choose for the compute of this storage service?
In the diagram, you’ll see that I’ve highlighted the dilemma, illustrating how the com‐
pute sizing changes throughout the day. At 4 p.m., for example, the compute needs
are minimal while at 7 p.m. load increases substantially. To top it off, you have new
tenants and new workloads coming into your multi-tenant environment that are con‐
tinually changing these consumption patterns.

Tackling this problem looks a bit different for siloed and pooled data partitioning
models. In the pooled model, it’s very difficult to rightsize the compute of your stor‐
age service. Generally, to accommodate the shifting workloads and spikes of multiple
tenants consuming your pooled storage, you’ll need to overprovision the compute
and just accept that this will negatively impact the cost efficiency strategies of your
overall environment.

The Rightsizing Challenge | 197

If you’re using a siloed model for your data, there are fewer variables to consider,
which should make sizing somewhat easier. The nature of individual tenant loads is
likely to be somewhat more predictable and, as such, you may be able to select a com‐
pute size that better fits the needs of your siloed tenants. Even in this model, though,
you’ll accept some degree of overprovisioning. There will likely be times during the
day where a siloed tenant’s storage is idle or very lightly consumed.

Certainly, profiling your storage consumption will give you more data to better size
the compute for your siloed and pooled models. In some cases, teams will use this
data to continually size the compute of their storage in an attempt to limit overprovi‐
sioning. This constant juggling, however, can also add significant operational com‐
plexity and inefficiency.

Overall, there’s no magic solution to this challenge. If your storage service requires
you to bind to a fixed compute profile, you’ll have to accept the challenges that come
with it. Ideally, the costs associated with the overprovisioning of your resources will
not have a significant impact on the overall margins of your SaaS business.

Throughput and Throttling
One way to deal with rightsizing issues is the use of storage throughput and throttling
strategies. These mechanisms allow you to introduce policies that can better manage
the consumption of your storage resources, including supporting separate experien‐
ces based on tenant tiers and personas. The idea is that you would use the built-in
performance configuration options of your storage technology to find the mix of set‐
tings that best support the general performance and sizing challenges of your storage
workloads.

The key is that, as part of your data partitioning model, you’ll want to consider how
you will apply these policies. This includes thinking about how these policies might
differ for pooled and siloed storage models. These two partitioning schemes may
require different approaches to configuring the throughput and throttling profile of
each storage experience.

Serverless Storage
As we look at this sizing problem, it’s entirely concentrated on those storage technol‐
ogies that rely on pre-sizing their compute footprint. The good news is, though, there
are more and more storage technologies that are embracing a serverless model that
removes any binding to a specific compute profile. With serverless storage, these
services hide away the details of the storage compute profile, sizing the underlying
compute based on the current level of tenant activity. The compute is essentially auto-
sized based on the load of your system, which fits perfectly with the needs of a multi-
tenant environment.

198 | Chapter 8: Data Partitioning

The serverless storage model has surfaced across a range of different storage technol‐
ogies. At AWS, for example, you’ll find Amazon Aurora Serverless, which is a server‐
less relational database storage service that employs this serverless model. Amazon
DynamoDB is also serverless, providing a managed NoSQL storage service that
requires no compute sizing. I suspect that the majority of cloud-based storage tech‐
nologies will eventually offer some degree of support for the serverless model.

As we look at the different storage technologies in the remainder of this chapter,
you’ll want to keep this serverless model on your radar. Anywhere you’re using the
pooled data partitioning model, for example, you’ll find that a serverless model could
represent a compelling option. The key is that, given the unpredictable nature of
multi-tenant storage consumption, you’ll likely find yourself leaning toward server‐
less as the preferred approach to aligning your storage consumption and costs with
your tenant’s activity. This serverless model also simplifies the operation and manage‐
ment of your storage services, eliminating the need to constantly chase shifting com‐
pute sizing requirements.

With these foundational data partitioning concepts in place, we can now start looking
at how these principles are realized through different storage technologies. In the sec‐
tions that follow, I’ll map the general concepts we reviewed here to more concrete
implementation strategies, highlighting the different nuances that come with each
storage technology. There are far too many storage options available to cover them
all, but I’ve selected a sampling of common storage technologies that should give a
good sense of how variations within these individual technologies influence your data
partitioning strategies.

Relational Database Partitioning
Now that we have a sense of the data partitioning fundamentals, let’s start by looking
at how these concepts would land in a relational database. When we look at how you
can implement data partitioning in a relational database, much of the discussion
focuses on the sizing, scale, and operational efficiency.

Relational databases generally support a range of different constructs that can be used
to partition our data. One constant is the dependency on a schema. This means,
regardless of which data partitioning model we chose, our data is going to be repre‐
sented in an environment that has a binding to schema. This can present challenges
in multi-tenant environments where we may need to gracefully migrate tenants from
one schema representation to the next. This can add complexity to the overall agility
story of your storage model.

This doesn’t mean that relational databases and SaaS are not a fit. In fact, there are
compelling use cases where a relational model might better align with a given

Relational Database Partitioning | 199

workload in your environment. At the same time, you should be sure to weigh the
migration and agility impacts of a relational model when selecting a storage strategy.

Pooled Relational Data Partitioning
Let’s start by looking at what it would take to implement a pooled model with a rela‐
tional database. The mechanics of storing data in a pooled model with a relational
database are pretty straightforward. Here, you’re simply taking your existing database
design and introducing a tenant identifier to associate the items in a table with a spe‐
cific tenant. The end result, shown in Figure 8-3, is exactly what you would expect.

Figure 8-3. Pooled relational database

I’ve shown a customer table that stores multi-tenant data in a pooled model. A new
TenantId column has been introduced as the foreign key of this table, serving as the
primary index for accessing data. The tenant identifier GUIDs in this column repre‐
sent the ID of each tenant that is associated with a given row.

The basic idea of any pooled storage model is that we are commingling the data of all
tenants within some shared construct. Then, the data that would have previously
been the foreign key for this table becomes a secondary index or a filter. In this case,
our CustomerId column has become the secondary key for this table. This means that
our interactions with this table must now introduce this tenant identifier into the
queries that are accessing data from this table.

For this example, I wanted to include a table with rows that were associated with sep‐
arate tenants. Rows 1 and 3 are associated with Tenant 1 (as shown on the lefthand
side of the diagram). Rows 2 and 6 are associated with Tenant 2. This pattern would
be repeated across all the pooled tables in your system that are holding tenant data.

Introducing a TenantId column also gives us a way to potentially apply policies that
will be part of our tenant isolation story. These policies (described in Chapter 9) will
illustrate how we can filter the view of a table and prevent cross-tenant access to data.
Each database technology may have its own unique approach to defining these poli‐
cies. The key is that, in some instances, the partitioning model of your pooled data
may influence the isolation strategies that can be applied to your data.

200 | Chapter 8: Data Partitioning

Siloed Relational Data Partitioning
While the pooled relational model is straightforward, there are often more options to
consider when you silo data in a relational database. A relational database technology
may offer you multiple constructs to define the siloed boundaries of your data.
Figure 8-4 provides a conceptual view of some of the different constructs that can be
used when siloing data in a relational database.

Figure 8-4. Picking a relational siloed storage construct

On the left of this diagram, I’ve shown a database instance per tenant model. With the
Amazon Relational Database Service (RDS), for example, this would essentially
equate to spinning up entirely separate infrastructure for every tenant. The compute
and all the infrastructure resources of the instance would be dedicated to a single
tenant.

In the middle, I’ve shown the concept of a database. Here, you have a dedicated data‐
base for each tenant running within a database instance. While each database is
entirely separate, they all share the underlying compute of their parent database
instance. Finally, on the righthand side, you’ll see a model where separate tables are
used to silo each tenant’s data. These tables would all be created within a shared
database.

With any of these models, it would become the responsibility of your environment to
associate names or tags with these siloed relational storage constructs. Then, at run‐
time, your code would need to map a given tenant request to its corresponding data‐
base instance, database, or table.

For each of these different silo constructs, you’ll need to consider whether the con‐
struct can scale to meet your needs. Within RDS, for example, there are limits that
will shape the options you have here. You can only have so many databases within a
database instance. The same applies to tables. The technology you choose to use may
impose other flavors of constraints that should be part of your scaling math. The gen‐
eral guidance is to be sure you’re giving careful consideration to the range of limits
that come with your relational technology. Doing some basic modeling of your

Relational Database Partitioning | 201

potential growth will give a better sense of whether you’re safely within the scaling
constraints of your relational database environment.

Your choice to silo might also be driven by a need to achieve isolation based on the
security and compliance considerations of your domain. Certainly, the more coarse-
grained nature of siloed relational constructs often represents an appealing way to
address these needs. However, as you examine different relational technologies, you
may find that siloing the storage may still not fully address your isolation needs. In
some instances, these siloed relational constructs may not support defining policies
that can prevent cross-tenant access. So, even though your data is siloed, there are no
mechanisms available to implement a robust isolation policy. The key is that your
choice of siloing construct may also be influenced by whether that construct enables
you to prevent cross-tenant access through isolation policies (more on this in
Chapter 9).

With Amazon RDS, you also have a wide array of database engines to choose from:
MySQL, PostgreSQL, MariaDB, SQL Server, Oracle, and so on. There are nuances
within each of these engines that could add new dimensions to your siloed partition‐
ing model. While each cloud and/or relational database vendor may add their own
twist to this story, the mindset and approach generally maps well to the patterns and
considerations that I outlined here.

NoSQL Data Partitioning
The next area we’ll look at is NoSQL storage. There are a number of different NoSQL
options to choose from, each of which may introduce new constructs that could alter
your approach to implementing pooled and siloed data partitioning strategies. To
make this a bit more concrete, I’m going to focus on Amazon DynamoDB, which
provides builders with a managed NoSQL storage service.

The schemaless nature of NoSQL storage presents multi-tenant builders with some
significant advantages. Imagine running a large pooled environment and deploying a
change that includes new data structures. With a relational setup, you might need to
orchestrate a series of complex migration steps to update your schema as part of roll‐
ing out a new feature. That same change is generally much easier to apply in a NoSQL
environment. The absence of a schema often removes the need to navigate a series of
complex migration scripts, allowing teams to introduce features at a faster pace with
fewer deployments. This fits well with the broader SaaS value proposition, promoting
operational agility, innovation, and efficiency.

With DynamoDB, you’ll also see that we have a pretty limited collection of storage
constructs that can be used to partition our data. There’s no notion of databases or

202 | Chapter 8: Data Partitioning

instances as part of the DynamoDB landscape. DynamoDB also has the advantage of
not inheriting all the baggage that comes with supporting different, existing relational
database engines. This also means that DynamoDB offers tighter integration with
other AWS cloud constructs, providing more granular integration with the identity
and access management (IAM) mechanisms that can be used to define isolation poli‐
cies (covered in Chapter 9).

I do get lots of questions about how teams might choose between NoSQL and rela‐
tional databases for a SaaS solution. This, to me, is driven mostly by a combination of
application and consumption use cases—isolation requirements, agility impacts, and
performance considerations. Generally, I tend to tell teams to start with NoSQL and
let real-world business drivers steer you toward relational where it makes sense.

Pooled NoSQL Data Partitioning
Pooling data in NoSQL looks very much like it does in a relational database. With
DynamoDB, all of our data is stored in tables. The data in these tables will include
information for all of the tenants in our system. They are commingled based on a
tenant identifier that associates each item in the table with its corresponding tenant.
Figure 8-5 provides a simple view of a NoSQL table that is indexed by tenant
identifiers.

Figure 8-5. Pooled NoSQL data partitioning

NoSQL Data Partitioning | 203

This is a mirror image of the pooled relational storage example we looked at earlier.
We have a DynamoDB table that is populated with items, each of which has a JSON
document that holds the data for a given item.

The items listed in this example happen to represent employees. I’ve inserted the
TenantId attribute into each of these items to associate it with a tenant. I have two
tenants that have data in this table. Tenant 1 is associated with the first and third
items and Tenant 2 is associated with the second item.

I’ve denoted that each of the tenant identifiers in my table are what DynamoDB refers
to as partition keys. This essentially identifies the attribute as the primary key of the
table, improving performance when accessing data for individual tenants. The
EmployeeId was the primary key before we introduced tenancy into these tables. It
would now be treated as a sort key within DynamoDB.

Siloed NoSQL Data Partitioning
With many siloed models, we tend to look for some logical mapping to a database
instance that will hold our siloed data. However, with DynamoDB (and other man‐
aged storage services), these constructs don’t really exist. Instead, our only silo option
here is to use a table-per-tenant model to silo our data. Figure 8-6 provides a concep‐
tual view of this siloed DynamoDB model.

Figure 8-6. NoSQL siloed data partitioning

204 | Chapter 8: Data Partitioning

There’s nothing exotic about the siloed approach with DynamoDB. We’ve essentially
created a separate table for each tenant. Then, within the implementation of our ser‐
vice we map each incoming request to the appropriate table.

In this example, I prepended a tenant identifier to the table name to associate the
table to a specific tenant. The naming strategy you adopt must be chosen carefully.
Table names in DynamoDB are managed globally which means you’ll need to identify
a naming scheme that ensures that your table is assigned a unique name. Some teams
opt for a mix of a generated identifier and a “friendly” name.

Whenever we consider a siloed storage model, we must also consider whether our
siloing strategy will support the scaling requirements of our solution. Just as we did
with relational databases, we must also consider the limits of DynamoDB (or
whichever NoSQL solution you’re using). You’ll also want to think about how the
table-per-tenant model will affect the deployment and operational profile of your
environment.

NoSQL Tuning Options
In general, the data partitioning options for DynamoDB are pretty straightforward.
There are, however, some additional factors that can come into play when storing
multi-tenant data with DynamoDB. For example, DynamoDB offers you options to
configure the capacity modes for a table. For each table, you can choose between on-
demand or provisioned capacity modes. With on-demand, you’re essentially able to
have DynamoDB scale based on the actual load of your tenants. This, as you can
imagine, fits very well with the unpredictability of tenant consumption that comes
with multi-tenant workloads. This would be especially valuable for instances where
you’re running in a pooled partitioning model.

The provisioned model is a much better fit for environments where you have a better
sense of the levels of activity you’ll need to support. Here, you configure the mini‐
mum capacity, maximum capacity, and target utilization based on the profile of your
workload. Now, the system will have a steady, target level it will maintain while still
limiting a tenant’s ability to exceed a maximum. You might be able to apply this strat‐
egy to tables that are in key bottlenecks of the system to ensure that you’re maximiz‐
ing throughput (at the cost of potentially being somewhat overprovisioned). You can
also see how, in some cases, this might be aligned with a siloed table where the con‐
sumption profile is more predictable.

NoSQL Data Partitioning | 205

Obviously, as you look at other NoSQL solutions, you may have other partitioning
and configuration options available. Fundamentally, though, this basically comes
down to figuring out which constructs you might be able to use to represent your
siloed experience. The pooled model will likely employ a similar implementation
across different NoSQL offerings.

Object Data Partitioning
Data partitioning with relational and NoSQL storage services is an area that builders
easily relate to. For these storage technologies, you have relatively natural mappings
to the pooled and siloed models. However, as we move into other storage technology,
the mappings are not quite as straightforward. To make this clearer, let’s look at how
we land these multi-tenant data partitioning models in an object storage service.

With object storage, we’re not looking at data through the lens of databases and
tables. Instead, we view the assets we’re managing as a series of objects that essentially
equate to files that are stored and retrieved across a number of different contexts.

For the purposes of our discussion, I’ll focus on Amazon’s Simple Storage Service
(S3), exploring the different mechanisms that S3 provides to partition multi-tenant
data. The techniques we’ll look at here are specific to S3 and may or may not have
good mappings to the other object storage services that are part of other cloud envi‐
ronments. Still, the hope is that this review of S3 strategies will give you a better sense
of how your data partitioning approach changes as you move into different storage
technologies. The principles stay the same, but the mechanics of implementing these
principles often require you to consider a more diverse menu of possibilities.

Pooled Object Data Partitioning
With object storage, we’re mostly looking at using a classic hierarchical folder struc‐
ture to organize and access our objects. For example, in S3 all objects are stored in
buckets as a top-level construct. These buckets can also use prefix keys to group and
access objects. The net effect is something that looks like a traditional file/folder
structure.

With the pooled model, we must start by deciding where our tenant objects will land
within S3. Since our tenant objects will all be commingled, we don’t necessarily have
to worry about creating separate buckets or prefix keys for each tenant. At the same
time, it’s likely that your application services may want to operate on tenant objects in
groups. This suggests that we likely want to use the prefix keys to determine where we
place each tenant’s objects.

Let’s look at an example of how you might represent a pooled data partitioning model
within S3. Figure 8-7 provides a conceptual view of a series of buckets that are using
prefix keys to store tenant objects in a pooled model.

206 | Chapter 8: Data Partitioning

Figure 8-7. S3 pooled data partitioning

On the left you’ll see the simple bucket hierarchy that I’ve created. At the top level of
the tree, I have buckets for each of my environments (prod, dev, and staging). Then,
within each bucket, I’ve included prefix keys. For this example, I presumed that my
prefix keys corresponded to individual services that are managing their own S3
objects.

On the right of the diagram, we have a pooled storage representation of a series of
objects from the saasco-dev-objects bucket that are associated with the catalog-
service prefix key. Since this is a pooled model, we named our objects with a pre‐
pended tenant identifier that associates each object with its corresponding tenants.
Accessing one of these objects would require a caller to prepend the tenant identifier
to the name of each object to successfully retrieve a specific tenant object.

While this approach represents a more purist view of the pooled model and S3, it
does seem to add unnecessary complexity. The prepending of tenant identifiers seems
difficult to manage and adds friction to any calling client. As we shift now to silo,
you’ll see how the advantages of silo provide builders with a slight variation of the
pooled model that eliminates some of the naming overhead and mapping that comes
with this pooled model.

Siloed Object Data Partitioning
There are two approaches that you can take with siloing objects with S3. The simplest
path to choose is a bucket-per-tenant model. This model would essentially require a
new bucket to be created for each new tenant and store all of their objects within that
bucket.

Now, if your total number of tenants is less than the upper bucket limit of the S3 ser‐
vice (currently 1,000 buckets), then you could consider this option. It does mean that

Object Data Partitioning | 207

your onboarding will need to dynamically create new buckets that conform to the
naming conventions and uniqueness requirements of S3. You’d also need some part of
your system to include a mechanism that maps tenants to their designated buckets.

If these limits are a problem or you’d like to worry less about naming collisions, you
could just add a slight twist to the pooled strategy (discussed earlier) and rely on a
prefix key as a way to implement your siloed model. Figure 8-8 provides an example
of how you’d alter your prefix key structure to silo your tenant objects.

Figure 8-8. S3 siloed data partitioning

You’ll notice that there’s a subtle difference between this and the pooled model. I’ve
essentially used the prefix key as the boundary of my silo, placing all tenant data
under the heading of a single key.

In most of our prior discussions of siloed versus pooled storage, we talked a lot about
the added complexity and overhead that comes with siloing data. With the S3 model,
you’re not really absorbing a great deal of added friction. In the pool setup, if I truly
commingle the objects, I have to somehow augment object names to achieve my ten‐
ant binding. Here, by simply refining the key, I get a model that is easier to use, con‐
sume, and manage without really taking on any significant downside.

There are instances where the siloed story might create better opportunities for
implementing isolation via IAM. However, that has little influence on this S3 siloed
story. I can configure IAM policies at the bucket or down to the prefix level, enabling
me to prevent cross-tenant access across any of these strategies.

Database Managed Access
While S3 does provide APIs for accessing your objects, some use cases demand a
more dynamic approach to locating your tenant objects. There are instances where
you may need to support more exotic, metadata-driven ways to locate a tenant’s S3

208 | Chapter 8: Data Partitioning

object. Imagine, for example, wanting to find all the objects that match a user-
specified set of criteria. Here, the metadata you want to search would likely live some‐
where outside of your object storage.

It’s here that you may want to introduce a layer between your objects and the database
that holds all the metadata and attributes that you want to query on. Figure 8-9 pro‐
vides a conceptual view of this use case.

Figure 8-9. Using a database to manage access to objects

At the top of Figure 8-9, I have a catalog service. This service manages a range of
attributes (Active, Category, and so on) for the products that are in a catalog. One of
the attributes managed by our catalog is the image associated with each catalog item.
The actual objects for these images are stored in S3.

Now, suppose your service needs to request a collection of objects that have a specific
set of product attributes. To support this experience, you’ll see that I have introduced
a table that is indexed by tenant identifiers and has other metadata about the items in
the catalog. In a complete version of this table, we’d have more attributes. However,
for this example, I constrained this to a few attributes that seemed like they might
make good search criteria (Active and Category). I’ve also added columns to refer‐
ence the prefix key and the object filename that maps to the object as it’s stored in S3.

At the bottom Figure 8-9 is the bucket that holds our catalog image objects (and
potentially other service data). With all the pieces in place, my catalog service can
now query the table to find a tenant’s objects that match a set of specified criteria. In

Object Data Partitioning | 209

fact, you’ll notice that the first and last rows of this table are associated with the same
tenant. My query could ask for all active catalog items in the clothing category for a
tenant and the results would return the prefix and object names that could be used to
reference each of the items stored in S3.

I confess that this represents a bit of a corner case. At the same time, it’s an espe‐
cially useful way to provide an alternate way to think about how you might parti‐
tion objects. Here, the partitioning is all done in the table, removing any tenant
mapping from the object database. I can use this table to introduce metadata for
my objects that can be applied as part of filtering access to the objects I need for a
given use case.

OpenSearch Data Partitioning
As you can see by now, the multi-tenant data partitioning story can look quite differ‐
ent as we move between different storage services. To round things out, I thought it
would be helpful to look at how data partitioning is applied in the search and analyt‐
ics domain. For this example, we’ll look at Amazon’s OpenSearch service, which is
derived from ElasticSearch.

With OpenSearch, we are now working with new flavors of storage constructs and
mechanisms to partition our tenant data. How data lands in OpenSearch, how we
maximize cost and operational efficiency, and how we isolate data all look a bit differ‐
ent when we’re mapping siloed and pooled models to the moving parts of an Open‐
Search cluster.

To better understand our OpenSearch data partitioning options, let’s start by looking
at the different mechanisms that would be used to store and manage our tenant data
in an OpenSearch environment (shown in Figure 8-10).

Figure 8-10 provides a high-level view of the core moving parts of the OpenSearch
service. At the outermost edge, we have the domains that represent the most
coarse-grained units of data partitioning. These are essentially the clusters that are
part of our search and analytics experience. This is where you’ll configure the size
and footprint of the nodes that will shape the scaling profile of your experience.
Then, on the right, are a series of indexes that are associated with a given domain.
These indexes store the documents that will be indexed for our search and analyt‐
ics experience.

210 | Chapter 8: Data Partitioning

Figure 8-10. OpenSearch data partitioning constructs

Pooled OpenSearch Data Partitioning
If we look at how we land data in a pooled model in OpenSearch, we’ll need to adopt
a model where our tenant documents are commingled within a single index. This
approach, in many respects, follows the pattern we’ve observed across all the pooled
constructs. Any time we have commingled data, we need to have some way to identify
the data that is associated with a given tenant.

If we look inside the various documents that are stored in an index, we’ll see that we
must insert a tenant identifier into each tenant document. This identifier will be
included in any search that we perform to scope access to a specific tenant’s data.
Figure 8-11 provides an example of an OpenSearch pooled model.

In this example, our pooled storage is running all tenants in a single domain and, for
this product sample data, all tenant documents are stored in a shared index. Each of
the documents in this index includes a TenantId attribute that, in this example, is
represented by a GUID. The individual products in each of these documents are also
assigned a ProductId that uniquely identifies individual products. I’ve essentially
taken the document that would normally represent a product and added a TenantId
attribute.

OpenSearch Data Partitioning | 211

Figure 8-11. Pooled OpenSearch data partitioning

With this experience, you get all the upside and downside that comes with a pooled
data partitioning model. The economies of scale and operational profile both benefit
from the use of shared infrastructure. However, the sizing of the domain can be diffi‐
cult and may lead to overprovisioning. This represents yet another scenario where
leaning on serverless technologies can bring real value and steer you more toward the
OpenSearch Serverless service, which can simplify the sizing and scaling profile of
your solution.

You’ll also want to think about how data is being sharded by OpenSearch and deter‐
mine whether the footprint and distribution of your tenant data is impacting the per‐
formance of your environment.

Siloed OpenSearch Data Partitioning
You have two options when it comes to implementing a siloed OpenSearch data parti‐
tioning model. The first option we’ll look at is the domain-per-tenant model. With
this approach you’ll need to create a completely separate cluster for every tenant. An
example of this model is shown in Figure 8-12.

212 | Chapter 8: Data Partitioning

Figure 8-12. Domain-per-tenant OpenSearch siloed data partitioning

This is a very straightforward model that relies on the most coarse-grained Open‐
Search construct to store each tenant’s data. This will appease those tenants that have
concerns about compliance, isolation, noisy neighbor, and so on. At the same time, it
will also add operational complexity and impact the cost efficiency of your
environment.

The other way to implement siloed data partitioning with OpenSearch is through an
index-per-tenant model. This is illustrated in Figure 8-13.

Figure 8-13. Index-per-tenant siloed OpenSearch data partitioning

With this approach, we now have a single domain that is shared by all of our siloed
tenants. However, each tenant is given its own index. This allows you to achieve isola‐
tion without provisioning an entire cluster for every new tenant. It also means that
you’re agreeing to share the compute of the domain across these tenant requests. For
some, this represents a good compromise in that you’re getting some economies of
scale for your compute while still offering tenants a unit of isolation that ensures that

OpenSearch Data Partitioning | 213

their data is not commingled and may benefit from more concrete boundaries of
isolation.

This siloed model does come with its downsides, though. While this model is more
manageable, we now face a rightsizing problem. The shared compute of the domain
must now be sized based on the workloads and activity profiles of multiple tenants.
This can lead to noisy neighbor conditions or other performance issues that come
with the sharing of your storage compute. Also, as is the case for any siloed resources,
you’ll want to consider the scalability of the model. There may be limits on how many
siloed indexes your service will allow.

A Mixed Mode Partitioning Model
In addition to the siloed and pooled models shown above, you may also consider
implementing a mixed mode model that offers another approach to balancing the
requirements of your tenants. With this mixed mode, you’re essentially looking at
supporting both siloed and pooled models within a shared domain (shown in
Figure 8-14).

Figure 8-14. Mixed mode OpenSearch data partitioning

On the left, we are still using a shared domain and eliminating the need to provision a
separate cluster for our tenants. What’s different here is that we’re supporting siloed
and pooled indexes with this domain. At the top, I have shown two premium tier

214 | Chapter 8: Data Partitioning

tenants that have dedicated indexes. Then, at the bottom, I have a pooled index that
commingles all the basic tier data in a single construct.

This approach certainly allows us to limit the complexity and footprint of our Open‐
Search infrastructure while still supporting siloed and pooled models. At the same
time, this strategy can present real challenges when it comes to sizing and configuring
your domain. You could also consider a model where a separate domain would be
used for all your basic tier tenants. This would eliminate scenarios where basic tier
tenants impact the scale of your premium tier tenants.

Sharding Tenant Data
So far, I’ve mostly concentrated on siloed and pooled data partitioning strategies that
rely on the different storage constructs that are part of your environment. In general,
it tends to make things simpler if you can stay within the built-in capabilities of your
storage service. However, there are times when the scale and performance of your
storage model cannot meet the needs of your solution. In these instances, you may
have to consider introducing your own mechanisms to shard tenant storage. Shard‐
ing generally refers to the idea of splitting a resource into multiple parts to address
scale, size, and so on.

One pattern that I’ve seen applied is the idea of custom partitioning where your code
owns responsibility for mapping tenants to different storage constructs. Imagine, for
example, a scenario where you have a relational database that is using a pooled
model. However, you’re finding that the scaling and performance of your tenants are
exceeding your ability to adequately address their workload. You prefer to keep your
tenants pooled, but it’s impractical to have them all in one storage database.

In these cases, some teams will consider implementing their own sharding strategy
where they distribute pools of tenants to separate constructs. Figure 8-15 provides a
conceptual view of the sharding model.

Figure 8-15. Sharding groups of tenants

Sharding Tenant Data | 215

In this example, I have two separate shards of tenants running in a pooled model on
the righthand side of the diagram. You’ll all notice that I’ve distributed these tenants
across separate databases. So, I basically have two sets of pooled tenants. Now, if the
service on the lefthand side wants to make a request to a database, its data access
library would have to look up the shard that is associated with a given tenant request.

This is very much like the pod deployment model we discussed in Chapter 3 where
we deployed groups of tenants together in pods. Here we have a similar concept, but
it’s being applied exclusively at the storage layer of our environment. This allows you
to limit the blast radius of tenants and potentially overcome pooled noisy neighbor
issues by distributing the workload of these tenants to separate shards. As new ten‐
ants are onboarded, you may add new shards to continue distributing the load.

This is a far from ideal model and certainly adds complexity and friction to your SaaS
environment. However, I include it here because some workloads or business require‐
ments may view this as a reasonable trade-off.

Data Lifecycle Considerations
As part of looking at how data is partitioned and represented, we also have to con‐
sider the broader lifecycle of this data. There are different changes in state that your
tenant may go through that could impact how their data is represented.

To better understand the implications, let’s look at a specific scenario where you have
a tiered environment that uses different storage strategies for your tenant tiers. Your
basic tier tenants are using entirely pooled data, while your premium tier tenants have
some storage constructs that are siloed. Now, imagine what it will mean if we have a
tenant that needs to upgrade from the basic to the premium tier. In this instance, we’d
have to have automation in place that could gracefully migrate the data from the
pooled environment to a siloed model. The automation would also need to consider
how moving this data could impact the overall load on the system. If this adds excess
load, it could also impact the availability of your environment. This is a hard problem
for which there are few elegant solutions. Still, you need to have this on your radar.

Decommissioning is another area that can impact your data partitioning strategy. The
biggest part of decommissioning a tenant usually centers around what you plan to do
with a tenant’s data. Will you traverse the entire system and remove the tenant data?
Will you archive the data, allowing the tenant to restore data when they return? These
are all factors that you’ll need to consider when you’re thinking about how tenant
data will be represented in your environment. This is yet another area where you’ll
have to carefully construct the automation tooling that can execute your decommis‐
sioning policies, applying them without degrading the performance of your
environment.

216 | Chapter 8: Data Partitioning

Backup and restore is also part of this tenant lifecycle discussion. This can be particu‐
larly tricky if you have pooled data. Also, you’re likely to have tenant data spread
across multiple storage constructs in your environment, potentially using a variety of
siloed and pooled models. This, as you can imagine, requires a carefully orchestrated
mechanism that can successfully acquire and back up tenant data. For some, there is
no concept of per-tenant backup and restore. Instead, the state of data is seen as a
global construct. Which mode will work best for your environment will depend on
the nature of your domain, tenants, and a host of other factors.

Multi-Tenant Data Security
Protection of tenant data is a given for any SaaS environment and your architecture
should already take strong measures to ensure that one tenant can’t access the
resources of another tenant. In fact, Chapter 9 will dig squarely into this topic,
exploring a range of strategies that can be used to ensure that your resources (includ‐
ing data) are protected from cross-tenant access.

There are, however, domains that may impose additional security requirements on
the storage of their data. For some, this may be more about encrypting the data to be
certain it is protected at rest and in transit. Your ability to encrypt data is very much
driven by the encryption capabilities of the storage services you’re consuming. Gen‐
erally, though, many of the AWS storage services offer support for different encryp‐
tion strategies.

The encryption of data, for some, may still not be enough. You may have tenants that
will require encryption and ownership of the keys that are used to manage access to
their data. In these scenarios, you’ll need to introduce constructs to create and deliver
these keys to individual tenants. These keys may also have a lifecycle that will need to
be managed as part of the operational footprint of your SaaS environment.

This per-tenant key strategy will also have clear impacts on your siloed versus pooled
model considerations. If the tenants want their own keys, you’re most likely to be
storing their data in a siloed model.

Conclusion
After going through this chapter, you should have a better sense of the different pat‐
terns, strategies, and influencing factors that shape your approach to storing data in a
multi-tenant environment. We started the chapter by looking at a range of fundamen‐
tal multi-tenant storage concepts. These models and partitioning terms apply to any
technology that might be used to store tenant data.

Conclusion | 217

We started by revisiting the notion of siloed and pooled resources, reviewing how
these multi-tenant models are mapped to data partitioning. As part of this, I
highlighted some of the general pros and cons of these two models. I emphasized the
fact that these two options weren’t mutually exclusive and could be combined to
address the compliance, performance, and isolation needs of your SaaS environment.

This core concepts section also identified specific factors that should be weighed
across any storage strategy. For example, I talked about scaling and noisy neighbor
considerations and how the nature of multi-tenant workloads can impact your ten‐
ant’s impact on storage services. I also looked at how blast radius, isolation models,
sizing, and operational experience can influence your data partitioning choices. The
key is to look beyond the technical profile of your storage and consider how business
and operational factors can influence how you choose to represent tenant data. The
choices you make here can have a significant impact on the agility and operational
and cost efficiency of your SaaS business.

Once the foundation was established, I shifted to looking at how these concepts land
in specific storage services. The goal was to give you a better sense of how the siloed
and pooled models are expressed when they are being delivered in the context of a
specific storage service. I covered relational, NoSQL, object, and search storage mod‐
els, highlighting the nuances that come with partitioning data with each of these serv‐
ices. Here, you saw how the different storage constructs of these services could
influence the design of your data partitioning model. Each service adds its own twist
to the story.

It would be impractical to look at every type of storage technology. However, my hope
is that the concepts and examples we reviewed will give you a mental model that you
can use as you consider how to implement data partitioning with the various storage
technologies that are part of your architecture. The chapter should have also high‐
lighted the idea that data partitioning is not an all-or-nothing decision. The partition‐
ing choices you make and the technologies you choose should be driven by the
specific needs of your application’s services.

While the design of your storage might be related to your isolation strategy, it’s
important to note that siloing storage does not isolate that resource. In the next chap‐
ter, we’ll start to dig into the details of isolation and review the constructs and mecha‐
nisms that are used to ensure that tenant resources (including storage) are protected
from cross-tenant access. The isolation strategies and patterns we’ll cover are founda‐
tional to SaaS and critical to providing a multi-tenant experience that secures each
tenant’s environment—regardless of how it’s deployed, designed, and realized.

218 | Chapter 8: Data Partitioning

CHAPTER 9

Tenant Isolation

I’ve referred to the concept of tenant isolation throughout my coverage of the differ‐
ent multi-tenant architecture constructs, patterns, and strategies. Our prior glimpses
of this topic stayed mostly high level and conceptual, highlighting how isolation is
used to ensure that one tenant can’t access the resources of another tenant. Now,
however, it’s time to dig squarely into the details of tenant isolation and look at con‐
crete mechanisms that are used to apply isolation across the different layers of your
SaaS architecture.

In this chapter, my goal is to distill the nuances of tenant isolation into a set of terms,
patterns, and practices that will provide you with a better framework for thinking
about how and when you should be introducing tenant isolation mechanisms into
your architecture. I’ll start out by establishing a clear view of the role of tenant isola‐
tion and the foundational concepts that shape your approach to building a tenant iso‐
lation strategy.

From there, we can then start to look at the layered nature of tenant isolation, identi‐
fying the different areas within your architecture where you would consider intro‐
ducing mechanisms that will prevent cross-tenant access. This will give you a better
sense of the nuances and considerations that come with creating an isolation model
for the different technologies and infrastructure constructs that are part of your
multi-tenant environment. This will also highlight some of the challenges and advan‐
tages that come with different resource deployment models, giving you more data
that can shape the choices you make around microservice decomposition, data parti‐
tioning, and the other topics we’ve been exploring.

Our isolation journey will include a deeper look at the role your microservices and
application code might play in the enforcement of your isolation policies. We’ll look
at the different runtime techniques that use the tenant context of individual requests

219

to scope and control tenant access on a request-by-request basis. This will include
highlighting some of the design considerations associated with applying isolation pol‐
icies at runtime.

The overall goal is to ensure that you’re making tenant isolation a priority in your
SaaS solutions, reviewing the range of different approaches that come with building a
robust, non-invasive multi-tenant isolation model.

Core Concepts
Throughout the chapters so far, I devoted a significant amount of time to describing
the different patterns and deployment models that could be used to compose a multi-
tenant SaaS architecture. For microservices and storage, for example, I talked about
all the different ways you might use siloed or pooled models as part of the design and
implementation of these concepts.

Each time I touched on siloed and pooled deployment strategies, I highlighted the
potential linkage between deployment models and your tenant isolation strategy. At
the same time, I also went out of my way to make it clear that there was a clear line
between defining how a resource is deployed and how a resource is isolated. It’s
essential that you don’t treat these two concepts as synonymous. Yes, you might
choose a deployment model to enable a specific isolation experience, but actual reali‐
zation and enforcement of that isolation is still achieved through an entirely separate
mechanism that examines each attempt to access a tenant resource and prevents any
cross-tenant isolation violations.

To better illustrate this point, imagine a scenario where you choose to silo tenant
databases as part of your isolation strategy. Figure 9-1 provides a conceptual view of
this scenario.

Figure 9-1. Siloed databases with no isolation policies

220 | Chapter 9: Tenant Isolation

In this example, we have a Product service that has chosen to silo each tenant’s prod‐
uct data. Let’s assume that the siloed data model here was chosen based on some cus‐
tomer or domain need that indicated that this data needed to be isolated and could
not be commingled with other tenant data. This all fits with the examples of data par‐
titioning and service design that we discussed in earlier chapters.

At first glance, many may look at this diagram and assume that we’ve already
achieved and implemented isolation by putting the tenant data in separate databases.
However, being in separate databases just ensured that the data was not commingled.
It didn’t necessarily do anything to isolate the data.

Consider a scenario where Tenant 1 in this diagram requests a list of products. It will
be the job of the Product service to acquire the tenant context and process the
request, routing the request to the Tenant 1 siloed database. That all makes sense. At
this point, it might feel like you’re achieved tenant isolation. However, imagine a sce‐
nario where I am processing this same request from Tenant 1, and within the code of
my service, I replace Tenant 1 with Tenant 2. What would happen? Well, it turns out
that my request from Tenant 1 is still allowed to access the Tenant 2 database. Even
though I have separate databases for each tenant, there’s nothing here that would pre‐
vent our service from crossing a tenant boundary. Merely separating the databases
did nothing to ensure the data was actually isolated. This brings us back to the
boundary between deployment and isolation.

This is where we need to introduce a separate tenant isolation mechanism that will
enforce isolation—regardless of how our resources are deployed. The idea is that we
need to add some construct that sits between code and the resources being accessed
by that code. This construct becomes the gatekeeper, using tenant context to limit the
scope of access of any resource. Figure 9-2 provides a slightly modified version of the
prior example that illustrates the addition of a tenant isolation layer.

Figure 9-2. Siloed databases with tenant isolation

Core Concepts | 221

The only change is the wrapper around my Product service that represents a concep‐
tual view of tenant isolation. In this mode, whenever the code of the Product service
attempts to access data, the isolation layer will ensure that the resources you’re access‐
ing are valid based on the current tenant context. So, no matter what a developer does
in their code, the isolation mechanism will prevent any effort to access another ten‐
ant’s resources.

When I outline this to other teams, I often get pushback. Developers will often want
to view their code as “trusted” and assume that their teams would never write code
that would violate a tenant boundary. It’s not a good policy to presume your code
won’t break your isolation rules. Even the most careful and well-intended developers
can unintentionally introduce changes that could end up crossing a tenant boundary.
The industry is littered with examples of solutions that somehow exposed one ten‐
ant’s data to another tenant. Even a single instance of cross-tenant access could repre‐
sent a significant setback for a SaaS business.

The key point is that your multi-tenant environment will be required to isolate tenant
resources regardless of their deployment model or technology. From a tenant’s per‐
spective, there really shouldn’t be any notion of siloed and pooled resources. Tenants
should expect that every resource in their system is isolated and protected from any
cross-tenant access. Figure 9-3 provides a visual view of this model in action.

Figure 9-3. The tenant view of isolation

222 | Chapter 9: Tenant Isolation

We have two tenants that are using a combination of siloed and pooled resources. To
keep it simple, I just showed these as databases, but imagine this projected across
every type of resource in your system. Under the hood of this solution, our imple‐
mentation is owning responsibility for ensuring that its isolation policies are protect‐
ing each tenant’s resources. The basic message here is that from the tenant’s point of
view, none of their resources are shared—even when they are running on pooled
infrastructure.

For some, this reality often represents a key point of tension within their multi-tenant
architecture. You want to design the preferred footprint of your environment that
best matches your operational, scale, cost, performance, and tiering profile. At the
same time, you have to consider how that solution is also going to be able to meet its
isolation requirements. Finding the right balance can be challenging for some solu‐
tions and domains.

It should also be clear that isolation is created as a very intentional part of your archi‐
tecture. It is explicitly implemented as a core element of your design that expects to
capture any intentional or unintentional attempt to cross tenant boundaries.

Categorizing Isolation Models
Before we get into the specifics of different isolation strategies, I wanted to first take a
step back and define some isolation concepts that will be used to characterize the dif‐
ferent flavors of isolation that can be implemented in a SaaS environment. For each of
these categories, you’ll see how they generally map to different patterns for realizing
and applying isolation policies. Figure 9-4 provides a view of the three primary types
of isolation I typically see (allowing for the fact that others may exist).

Figure 9-4. Categorizing isolation models

Core Concepts | 223

If we work this diagram from left to right, it starts with more coarse-grained isolation
and progressively becomes narrower. For each type of isolation, I’ve drawn a dashed
line that represents the boundary of isolation for each model.

The first flavor on the left is what I’ve labeled full stack isolation. This correlates
directly to multi-tenant environments that leverage a full stack deployment model
where every tenant is given a dedicated stack of resources. Here, isolating resources is
generally a pretty straightforward process that has access to a well-defined set of
mechanisms that can isolate your tenant resources.

As we move to the middle, you’ll notice that we now have what I’ve labeled resource-
level isolation. In this example, we have a shared compute layer for the service that is
consuming resources for multiple tenants. In this model, the unit of isolation is an
entire “resource.” For example, Tenant 1 has a dedicated database and Tenant 2 has a
dedicated bucket (Amazon S3) and a dedicated queue. The fundamental idea is that
the boundary of isolation is an entire resource where the definition of resource could
vary based on the services in your environment. With this flavor of isolation, you’re
still likely to have some isolation construct that can control access to a resource.
There are scenarios where that mapping may be more challenging, but those are less
common.

Finally, on the right is the item-level isolation model. With this model, you’ll see that
we’ve gone inside a resource where we have items from different tenants that are
commingled within the resource. The simplest example of this is a database (the
resource) that has a shared table that commingles the data from multiple tenants (a
pooled model). While a database represents a simple way to think about this, the
same idea can be mapped to other resources. For example, you could have messages
in a queue resource that are associated with multiple tenants. The fundamental,
defining trait is that tenant data sits alongside other tenant data within some shared
infrastructure resource.

Item-level isolation is clearly the most challenging of all the isolation schemes. Once
you move within a resource, the list of available isolation constructs starts to get quite
small. Some technologies will give you tools to enforce isolation at this level and oth‐
ers will not. With AWS, for example, there are instances where its identity and access
management (IAM) construct can be used to implement item-level isolation. How‐
ever, there are services where IAM won’t allow you to be granular enough for item-
level isolation. This is where you have to get creative with building or introducing
one-off tools to apply isolation at the item level.

So, now, as you design your multi-tenant architecture, you’ll likely find yourself look‐
ing at one of these three types of tenant isolation. As you’re figuring out how you
want to represent tenant resources in your environment, you’ll have to determine
which of these three models you’ll be adopting. You’ll also need to consider whether

224 | Chapter 9: Tenant Isolation

your technology stack gives you the tools you need to apply isolation at the level
you’re targeting.

Application-Enforced Isolation
In an ideal world, the technology you’re using would have clear mappings to security
constructs that could be used to enforce your isolation strategy. For example, most
cloud environments provide some built-in notion of IAM controls to configure the
policies that builders use to control access to the various resources that are part of
their environment. Leaning on these mechanisms to implement your tenant isolation
represents a natural fit. These security mechanisms sit directly between you and your
resources and allow you to define policies that can limit the scope of your access to
infrastructure resources, which fits naturally with the spirit of the isolation models
you’re introducing into your architecture.

The challenge, however, is that these tools don’t always offer you the level of control
that you need to express your isolation policies. There are a number of factors that
shape the IAM profile of each technology or service. Native services that are built
from the ground up by a cloud provider, for example, typically have more granular
isolation controls than services that are built around pre-existing technologies.

At some point, you’re likely to face a scenario where the multi-tenant model you pre‐
fer for a resource does not support the level of isolation control you require. This is
where you may need to consider introducing your own application-enforced isolation
mechanisms to prevent cross-tenant access. I won’t go into too much detail, since the
range of possibilities and nuances here is quite long. Generally, though, you’ll need to
look at the different policy and access control frameworks, libraries, or tools that
allow you to introduce your own layer of controls for these instances where built-in
mechanisms don’t support your needs. This is where you might see mechanisms like
attribute-based access control (ABAC) or Open Policy Agent (OPA) as part of your
isolation model. Which tool fits is highly dependent on what you’re isolating, what
tool chain you’re using, and what flavor of isolation you’re implementing. The key
takeaway is that your solution should isolate all resources—even if you need to build
the isolation tooling yourself.

RBAC, Authorization, and Isolation
There are lots of security mechanisms that can be applied across an application’s
architecture. Teams, for example, will often use role-based access control (RBAC) and
authorization constructs to scope and control access to functionality within their
applications. In some instances, I will see teams using these same RBAC tools to
implement their tenant isolation policies.

Let’s look at an example to better understand how this blurs the lines between appli‐
cation access controls and tenant isolation. Suppose we had a scenario where a tenant

Core Concepts | 225

authenticates into a SaaS application with a tenant administrator role. Now, within
your application, let’s say you’re using an RBAC framework to enable or disable this
user’s access to specific application features or capabilities. RBAC might also be used
across other contexts where it authorizes access to infrastructure.

For some, it’s natural to want to map RBAC to isolation in this example. However,
with RBAC, we’re generally controlling access based on some notion of an individual
user’s role within the environment. In fact, I could have many users within a single
tenant that would have different roles. RBAC would then offer different experiences
to these users based on their role.

With isolation, the scoping is not associated with individual user roles—it is based
exclusively on the tenant context of a user. So, with a multi-tenant environment, we
may have multiple users with multiple roles within a tenant, and our isolation story
would be the same for all of these users. Isolation’s only job is to ensure that, for the
current tenant, you are restricting access to those resources to that tenant. Any other
restrictions that may need to be applied based on a role or some other application
construct would be addressed outside of the isolation model.

The main point is that we want to have clear separation between the strategies that
are used to isolate tenant resources and the strategies that are used to control access
to specific application features and functions. Now, it could be that you have some
shared tooling that can cover both of these patterns. That’s fine. However, even if the
tool you use is universal, the mindset of isolation and controlling application access
are very different beasts.

Application Isolation Versus Infrastructure Isolation
There’s lots of baggage that comes with the term “tenant isolation.” When I work with
security-focused teams and I mention tenant isolation, they typically gravitate to a
more infrastructure-centric notion of isolation (which makes sense). In their uni‐
verse, they’re often inside the inner workings of some infrastructure technology or
service that needs to prevent users or accounts from crossing some foundational
boundary of your security model. This is an entirely valid notion of tenant isolation.

However, with multi-tenant isolation, the boundaries and nature of the isolation is
really an application-defined construct. When you build your SaaS application, it’s up
to you to define where these boundaries live and introduce the mechanisms at the
application level that will ensure that tenant resources are protected. I view this as
another flavor of a shared responsibility model. At the core infrastructure level, I
want the technology or service I’m consuming to enforce its notion of tenant isola‐
tion. Then, on top of that foundational security model, I am building an application
where only my application knows where tenant boundaries exist. Yes, some of these
boundaries might correlate to infrastructure boundaries. However, in a multi-tenant

226 | Chapter 9: Tenant Isolation

setting, your application may also be defining its own set of isolation boundaries on
top of that infrastructure.

The key is that, for the scope of our discussion, I view tenant isolation as something
that is defined and enforced by my application’s design and architecture. In some
cases, I may be able to leverage existing isolation constructs to implement isolation
and, in others, I may have to design and implement my own mechanisms to enforce
my application’s isolation policies. It’s also important to note that these application-
defined boundaries can and will count on code and application libraries as part of
their tenant isolation story. This is a foundational reality of building systems where
applications will share resources in ways that can’t be protected through classic, native
security constructs.

The Layers of the Isolation Model
With the core isolation concepts behind us, we can turn our attention to more con‐
crete isolation constructs. Let’s start by looking at how isolation is implemented
across the various layers of your multi-tenant architecture. Figure 9-5 provides a con‐
ceptual view of how layering fits into the isolation story.

Figure 9-5. A layered view of isolation

The Layers of the Isolation Model | 227

In Figure 9-5, you’ll see an example of the various isolation layers that could exist
within a multi-tenant architecture. At the top is the entry or the “front door” of the
application services that will need to be isolated. Each request that comes through this
API will include the tenant context that the system will use to apply tenant isolation.
Here, at the API layer of this experience, you can begin applying the first bits of isola‐
tion. Your API could extract the tenant context on each request and determine which
downstream paths are valid for the current tenant, and in some cases, the tenant’s
role. This can prevent tenants from invoking requests to resources that are not valid
for a given tenant context. For this example, an API request that’s accessing the siloed
microservice for Tenant 1 should not be able to send requests to the other siloed
microservice associated with Tenant 2. At this layer, we’re not really preventing access
to a tenant’s data, but we are isolating access to a tenant’s compute resources. This is
all part of the layered isolation model where we apply isolation at the outermost layer,
which introduces an added level of protection before any microservice attempts to
access tenant data or some other downstream tenant resources.

Once you’re into the compute layer, our next level of isolation is applied as the micro‐
service attempts to access other dependent resources (databases, queues, file systems,
etc.). Now, we’ll need isolation policies at this level to ensure that each microservice
can only access the resources that are dedicated to that tenant. For the two siloed
resources, these policies will be relatively straightforward. However, you’ll notice our
pooled microservice will need to implement item-level isolation to control access to
the tenant rows within its share table. Your isolation policies will need to ensure that
each request from your pooled microservice is constrained to just those items associ‐
ated with the current tenant context.

This layered model gives you a better sense of how isolation is applied across multiple
dimensions of your multi-tenant architecture. In many respects, this is borrowing
from the traditional notion of security at every layer. Here, though, we’re building on
top of that concept by adding isolation protections as you move between the different
layers of your environment. While the layers of your architecture might vary from the
model presented here, the notion of layered isolation should still apply universally.

Deployment-Time Versus Runtime Isolation
In addition to layering your isolation model, you also have to consider when isolation
will be applied to your environment. For some scenarios, you’ll find that you can
apply your isolation policies when your resources are deployed and configured. In
other instances, your isolation will need to be configured and applied at runtime. The
choice between these options is very much driven by a combination of the silo or
pool footprint of a resource and the isolation mechanisms that are available for those
resources.

228 | Chapter 9: Tenant Isolation

Let’s start by taking a conceptual look at the differences between the deployment-time
and runtime isolation models. We’ll start with the key elements of the deployment-
time model (shown in Figure 9-6).

Figure 9-6. Deployment-time isolation model

Figure 9-6 illustrates the use of a microservice deployed in a siloed model for two ten‐
ants. Each of these microservices is represented on the righthand side of the diagram.
These microservices both have siloed databases associated with them that are also
deployed in a siloed model.

You’ll notice that the solution’s microservices are also running in a siloed mode. This
means that for the lifetime of these deployed microservices, they will be bound to a
specific tenant. This binding creates an opportunity to simplify our isolation story for
these microservices, allowing us to attach a tenant-scoped policy to the compute of
each microservice that prevents that microservice from accessing any resources that
belong to other tenants.

This is where the notion of deployment-time isolation comes in. On the left of the
diagram, I have a microservice and a templatized isolation policy that will be used to
scope access for our microservices. Now, when my DevOps process provisions the
compute resources for each microservice, it can insert the tenant context into the iso‐
lation policy template and attach that policy to the compute infrastructure. This is
repeated for each microservice, injecting the tenant context into the policy for each
tenant microservice deployment.

Deployment-Time Versus Runtime Isolation | 229

The side effect of this is shown on the far right of Figure 9-6. As our microservices
attempt to access their associated siloed databases, their access will be limited to those
databases that are appropriate for the current tenant context. As an example, an
attempt by Tenant 1 to access Tenant 2’s database is blocked by these deployment-
time attached policies.

There’s lots of power in this deployment-time model. Since the policy is attached at
deployment time, the isolation has no dependency on any code in your microservice
to comply with the isolation strategy. If your code attempts to cross a tenant bound‐
ary, it will be stopped. This, in fact, takes compliance out of the view of your micro‐
service developers and makes it more a part of your DevOps and provisioning
process. While this makes for a great isolation story, it also relies on a siloed model to
work, and we certainly don’t want to silo every resource simply to realize this benefit.

So, let’s shift our focus now to those environments where we have pooled resources.
This is typically where the runtime isolation model is used. With runtime isolation,
we now start looking at strategies that rely on the cooperation of your application
code or other constructs to dynamically acquire and apply your isolation policies.
Figure 9-7 provides a conceptual view of the moving parts of the runtime isolation
model.

Figure 9-7. Runtime isolation model

230 | Chapter 9: Tenant Isolation

With this example, we have compute that is shared amongst all of our tenants. Since
this compute must be able to process requests from all tenants, it must be deployed
with a policy that covers all tenants (step 1). This means that, at runtime, my micro‐
service must be able to access any of the tenant databases associated with this service
(shown at the bottom). In this mode, it becomes the job of our microservice code to
use the current tenant context to dynamically scope and control access to these tenant
resources.

The flow of this process starts at the top where my tenants are accessing the microser‐
vice, passing in their tenant context (step 2). Now, somewhere in my microservices
compute environment, I’ll need to use the tenant context to populate a policy and
acquire the tenant-scoped credentials that will be used to access downstream
resources. For this conceptual view I included an isolation manager that performs
this process (step 3). In reality, how these tenant-scoped credentials are acquired
could vary significantly for each technology and language stack. You might put a
wrapper around your microservice, you might use a sidecar, you could use aspects—
the list of options here is quite long. However, the key is that some mechanism
acquires these tenant-scoped credentials from your dynamically populated policy and
provides those credentials to your microservice (step 4).

Once your microservice has these tenant-scoped credentials, it will use them to access
its associated tenant resources. In this case, I’ve stuck with a separate database for
each tenant and used the credentials to contextually access each database (step 5). In
this scenario, I’ve assumed that Tenant 2 made a request and that request inserted
Tenant 2 into the policy. Then, with this scope, my access to resources was con‐
strained to the Tenant 2 database. Even if my code attempted to insert another tenant
identifier into its database access request, that request would not return another ten‐
ant’s data.

You can see that this approach relies heavily on the code and libraries of my solution.
This does leave room for microservices to make choices that go around your isolation
mechanisms. However, the more work you put into injecting this isolation context
into your code outside the view of developers, the better chances you have of enforc‐
ing compliance with your overall isolation strategy.

It’s also worth noting that there are alternate strategies that you can apply here that
move the runtime resolution outside the scope of your microservice. Figure 9-8 pro‐
vides an example of a scenario where credentials are injected from outside of your
microservice.

Deployment-Time Versus Runtime Isolation | 231

Figure 9-8. Injecting runtime scoped credentials

In the example, you’ll see that I’ve put an API Gateway in front of my microservice.
This gateway will pre-process requests, sending tenant context to the isolation man‐
ager code that will use the context with an isolation policy to acquire tenant-scoped
credentials. This is very similar to the process described in our prior example. I’ve
just moved the resolution of the scoped credentials out to the API Gateway. Once the
gateway has the credentials, it passes them into your microservice where they are
used to scope access to tenant resources.

This model has some advantages in that it moves resolution of the credentials outside
the view of microservice developers. It also creates more natural opportunities to
cache scoped credentials to address potential latency issues. The downside of this
model, though, is that the isolation policies move outside the microservice. Generally,
the scoping of policies is seen as part of the microservice and is closely connected to
its implementation. This strategy breaks that mental model (at least somewhat). This
is especially true if the gateway is used by multiple microservices.

Isolation Through Interception
One of our goals with runtime isolation is to remove developers from the isolation
equation as much as possible. The more you need to rely on developers as part of the
isolation story, the more cumbersome and fragile your isolation becomes. This is
where teams will often look for opportunities to introduce interception mechanisms
that can enforce isolation without relying heavily on developers applying specific
conventions and constructs within the body of their microservice code.

232 | Chapter 9: Tenant Isolation

There are a number of different technology and language constructs available that
could be used as part of your runtime isolation interception policy. The challenge is
that there are simply too many permutations of options to cover them all. That being
said, there are some themes that are worth noting. Figure 9-9 provides a conceptual
view of two general interception strategies.

Figure 9-9. Isolation through interception strategies

On the left, you’ll see a more language- or framework-based approach to intercep‐
tion. The tools you apply here tend to insert themselves into the execution path of
your code, intercepting and pre-processing requests outside the view of your
microservice code. Aspects, middleware, and wrapper libraries are amongst a list
of possible options that you could use. With this approach, you’re essentially inter‐
cepting inbound requests and using the tenant context to acquire scoped creden‐
tials to access tenant resources. This still fits the same runtime applied model I
described earlier, but it relies less on the cooperation of developers to apply your
isolation conventions.

The other model, shown on the right, takes a slightly different approach. Here, you
put a mechanism between your resource and your microservice that intercepts each
attempt to access a tenant resource (like a proxy). This mechanism resolves the tenant
context and applies it as each resource is being accessed, which is where you’ll see sys‐
tems using concepts like sidecars to implement this interception scheme.

This is an evolving area where new constructs and mechanisms are showing up regu‐
larly. The broader value proposition is that these strategies—even in a runtime
enforced model—yield a more robust and more centrally managed isolation scheme.
Whether they fit your particular needs, though, will depend on the isolation require‐
ments of your solution, the technology stack you’re using, and, in some cases, the lan‐
guages or frameworks that are part of your environment.

Deployment-Time Versus Runtime Isolation | 233

Scaling Considerations
Runtime-applied isolation, while effective, can introduce scaling issues within your
environment. If you have a pooled service that is processing a high volume of
requests and each request is acquiring tenant-scoped credentials, there is a chance
that this may introduce an unreasonable level of latency within your environment.
This can impact the broader scale of your system.

In these instances, you may have to consider refining or altering your runtime-
applied isolation model to meet the needs of your system. There are caching strate‐
gies that you can introduce to hold your scoped credentials. With this approach,
some will employ a time-to-live (TTL) setting to manage the lifecycle of these creden‐
tials. Figure 9-10 provides an example of how you might introduce this caching
scheme.

Figure 9-10. Caching isolation credentials

In Figure 9-10, we see the full lifecycle acquiring and applying cached isolation cre‐
dentials. On the top left, I have a series of tenants that are entering the SaaS applica‐
tion services through an API Gateway. In this particular scenario, let’s say that Tenant
3 is making its first request to a service. When that request comes in, the gateway
invokes a credentials manager to get the scoped credentials for Tenant 3 (step 1). This
credentials manager would attempt to look up the credential in the cache (step 2). In
this case, let’s presume Tenant 3 is not found. Now, the credentials manager acquires
the tenant-scoped credentials from the policy manager (steps 3 and 4). The scoped

234 | Chapter 9: Tenant Isolation

credentials are then put into the cache (step 5), returned to the API Gateway (step 6),
and injected into our downstream interactions with our services (step 7). At this time,
it would also be assigned a TTL when it is placed in the cache. On our next call from
Tenant 3, the system calls the credentials manager (step 8) and finds the credentials
we stored in the cache (step 9). The cached credentials are returned to the API Gate‐
way (step 10) and injected into our downstream service interactions (step 11).

In this model, the credentials manager and helpers are not separate services. They are
all running within the same process. Some teams will attempt to centralize all of these
isolation mechanisms in standalone services. Generally, the overhead of crossing a
boundary to another service can add yet another layer of latency to your experience
that creates additional performance problems. You can still move these concepts to
libraries and other shared constructs, but I lean toward trying to keep the handling of
these isolation management requests within the same process.

Finally, you’ll also need to consider the scaling limits of the services you might be
using. If, for example, you’re using IAM policies to implement isolation on AWS,
you’ll need to consider whether the number of policies you need could exceed the
service limits. This is why you’ll see heavy use of policy templates in my examples
where a single policy can be used across multiple tenant contexts.

Real-World Examples
At this point, you should have a good handle on the core principles that shape the
design of your isolation strategy. Let’s shift now to concrete examples that illustrate
how isolation can be applied to environments with isolation constructs. The sections
that follow will provide a sampling of implementation strategies that span the differ‐
ent flavors of isolation we covered in the preceding sections, connecting concepts to
working solutions.

Full Stack Isolation
Let’s start by looking at the more coarse-grained constructs used to isolate your ten‐
ant resource. Figure 9-11 provides a few examples of different isolation constructs
utilized to implement a full stack silo deployment model in the AWS cloud.

In the figure, I have represented a series of full stack silo environments. The basic idea
is that each tenant shown here has fully dedicated infrastructure resources. This
model, as you might expect, has a natural mapping to the tools and technologies that
are already used to place boundaries between resources. For these same reasons, it’s
also an area where builders see an easy and clear path to building out their isolation
story.

Real-World Examples | 235

Figure 9-11. Coarse-grained isolation constructs

For this particular example, I showed three distinct isolation constructs. At the top
left, you’ll see an account-per-tenant isolation model where each account in my cloud
provider (AWS) is used to define the isolation boundary. Since accounts prevent
cross-account access by default, this represents one of the simplest constructs for
achieving isolation in a full stack silo setting.

At the top right, I have shown how a networking construct can be used to isolate my
tenant silos. In this case, I used an Amazon Virtual Private Cloud (VPC) to isolate my

236 | Chapter 9: Tenant Isolation

tenant resources. The VPC, like most networking constructs, gives me lots of built-in
options to configure the flow of traffic in and out of my network. So, again, we have a
relatively basic unit of isolation for each tenant’s resources.

Finally, at the bottom of the diagram, I’ve shown an example that uses Amazon Elas‐
tic Kubernetes Service (EKS) to implement a full stack isolation model. Generally, as
we move into container environments, you’ll see that you have lots of options when it
comes to implementing isolation strategies (we’ll dig into those more in Chapter 10).
For this scenario, though, I’ve opted to go to the extreme of having a separate cluster
for each tenant. This means that you’re essentially provisioning an entirely separate
EKS environment for each tenant and relying on the natural cluster boundaries to
enforce your isolation.

Resource-Level Isolation
Resource-level isolation tends to have good constructs that map well to isolation
mechanisms. When we’re working with dedicated resources, our isolation only needs
to find a mechanism that can control access to that resource. Figure 9-12 provides an
example of a resource-level implementation.

Figure 9-12. Resource-level isolation with Amazon Redshift

This example outlines a scenario where I’m using Amazon Redshift (a columnar
database) in a siloed model where each tenant is assigned its own cluster (shown on
the righthand side of the diagram). Within these clusters, I have data that is managed
and accessed separately for each tenant. While we have a cluster as our unit of isola‐
tion, this cluster still maps conceptually to a resource. The boundaries of a resource
in this model could take on multiple forms. A database, a queue, an analytics cluster

Real-World Examples | 237

—these are amongst the different constructs that I would classify as a resource in this
scenario.

On the left of the diagram, you’ll see a microservice that is accessing my tenant
resources. The microservice uses a data access library (DAL) to manage its interac‐
tions with its associated Redshift clusters. The DAL will, as part of processing each
request, use the current tenant context and its isolation policy to acquire tenant-
scoped credentials that will limit your access to a specific tenant’s cluster.

This example of resource-level isolation happens to use pooled compute for its
microservice and, as such, it relies on a runtime-applied isolation strategy. For con‐
trast, you can see how this shifts when the solution has siloed compute resources
(shown in Figure 9-13).

Figure 9-13. A deployment-time view of resource-level isolation

In Figure 9-13, we have most of the same moving parts as in the prior example.
What’s different now is that we have separate siloed microservices that are dedicated
to each tenant. The siloed nature of this model allows me to alter my isolation
approach. Instead of acquiring and resolving the isolation scope at runtime, this solu‐
tion can attach a specific isolation strategy during the provisioning and configuration
of the compute that’s running our microservices. Now, there’s no need for the DAL to

238 | Chapter 9: Tenant Isolation

absorb any extra overhead or complexity to apply our isolation policies—they are
already applied by the policy attached to the compute during deployment.

Item-Level Isolation
Item-level isolation represents one of the most challenging isolation models mostly
because it requires a level of granularity that is not often supported by many technol‐
ogies. At the same time, in multi-tenant environments where there’s a significant push
for pooled infrastructure, you’ll find lots of scenarios where you’ll need to improvise
strategies that will let you implement policies that can isolate individual items run‐
ning in shared infrastructure.

The good news is that there are scenarios—especially in the cloud—where some serv‐
ices include built-in support for item-level isolation. To give you a better sense of
what this might look like in a working solution, let’s look at the item-level isolation
model shown in Figure 9-14.

Figure 9-14. Item-level isolation with DynamoDB

On the righthand side of this diagram, you’ll see I have a DynamoDB table that’s
populated with a few items. It also has a partition key that holds the tenant identifiers
that associate each item in the table with a specific tenant (to simplify things, I
showed these as Tenant1, Tenant2, etc.). Now, to apply isolation to this table, I need to
restrict requests to just those items that are associated with a given tenant.

The policy that enforces this isolation is shown on the left. This uses AWS’s IAM
mechanism to define the scope of access for a DynamoDB table. I’ve highlighted the
“Condition” portion of this policy because it declares the scope of access that will be

Real-World Examples | 239

granted for anyone using this policy. I bolded "dynamodb:LeadingKeys", which, for
this scenario, is being used to scope access to Tenant1.

If we put all the pieces together, the flow would go as follows: (1) your microservice
populates the policy based on the current tenant context (Tenant1 in this case); (2)
your code assumes an IAM role using this policy and gets back a set of credentials;
and (3) the credentials are used by your code to access the table, limiting its access to
only items that are associated with Tenant1. If another request came through for Ten‐
ant2, we’d plug that into the policy, assume the role, and get a set of credentials for
Tenant2.

This is the basic theme you’d need to apply across any item-level isolation. You may,
however, not have something as straightforward as this IAM policy to implement
your isolation. The tools you use here might introduce some new wrinkles into your
item-level isolation strategy. Mainly, we’re trying to avoid having a model that is
entirely dependent on assuming our code simply won’t cross any tenant boundaries.

Managing Isolation Policies
Once you have settled on an isolation strategy, you still have to think about the lifecy‐
cle of the policies that are typically part of this story. Where your policies are stored,
who owns and manages them, when and how are they deployed, how they are ver‐
sioned—these are all questions you’ll need to consider as part of creating and build‐
ing a deployment experience for the infrastructure and microservices of your
application. Figure 9-15 provides a view of two potential approaches to managing
your isolation policies.

Figure 9-15. The deployment, managing, and versioning of your isolation policies

The model on the left of Figure 9-15 represents an approach that is more centered
around the development of individual microservices. Here, developers view their iso‐
lation policies as an extension of their microservice, applying strategies that are
directly bound to the implementation of their solution. With this mindset, any
change to a microservice’s implementation or infrastructure will directly shape the
scope and nature of the isolation policies associated with that microservice.

240 | Chapter 9: Tenant Isolation

This approach most resonates with me. I tend to fall into the camp that views an iso‐
lation policy as one of the deliverables that is bound to my microservice. As the
owner of a microservice, my team also owns the maintenance and definition of the
policies that are needed to ensure that the microservice is complying with its isolation
requirements. That means I’ll version, manage, and check in my policy configuration
somewhere in the scope of the microservice’s repository. In this mode, ownership and
management of your policies is distributed to the various services of your system.

The other school of thought (shown on the righthand side of the diagram) prefers a
model that has all of these policies managed and versioned through a centralized
mechanism. With this approach, teams would still own the update of their policies,
but they would all be versioned and managed outside the scope of any microservices.
They would get deployed to some centralized location that would be referenced by all
microservices. This gives a common home and standalone deployment model to pol‐
icies that makes them easier to manage and provides a uniform scheme for referenc‐
ing the services from each part of your architecture.

Both models are valid, and you could consider using a mix of these strategies. The
key is that you need to look beyond how these isolation policies are being applied and
evaluate how and where they fit into your broader build, versioning, and deployment
lifecycle.

As you think about operationalizing isolation management and deployment, you also
need to think about how you’ll introduce tests that will validate that your isolation is
actually working. This, surprisingly, has been one of the more challenging aspects of
isolation. It turns out that there aren’t natural mechanisms that allow you to simulate
a tenant crossing a boundary. If you’ve done everything you can to prevent cross-
tenant access, you may find it especially challenging to identify strategies that allow
you to effectively mimic real-world, cross-tenant access.

While testing for these conditions can be difficult, not testing this doesn’t seem like
an option. Having isolation tests in place allows you to potentially detect an uninten‐
ded leak in your policies or isolation implementation. They also confirm that the
principles, when combined, are delivering the desired effect. Generally, given the
business impact of any cross-tenant event, it’s hard to justify not investing in this area.

The real question is: what can you do to simulate a cross-tenant event within your
environment? This really has to happen somewhere within the internals of your
application services. There’s a point at which your code will be accessing a tenant
resource based on a provided tenant context and it’s here that you’ll need to somehow
inject an invalid tenant context. This will likely mean creating special paths or cases in
your code to allow for this injection of an invalid tenant. It’s also an area where you
might consider using classic chaos engineering strategies to generate isolation
exceptions.

Managing Isolation Policies | 241

A simple example might be a scenario where you’re fetching a collection of items
from a database for Tenant 1. This means that your surrounding isolation constructs
are limiting the view of data to resources that belong to Tenant 1. However, in your
test, you replace the tenant identifier in your request with the ID that belongs to Ten‐
ant 2. This should return no data or an error indicating that you’ve crossed a bound‐
ary. You may also add logs and operational policies that trigger alerts within your
operations console, indicating that an attempt was made to cross the tenant
boundary.

This may feel a bit artificial, and you may find more creative ways to simulate these
cross-tenant conditions. However, even if this feels a bit unnatural, it’s still essential to
validating the isolation model of your environment.

Conclusion
Isolation is one of the most foundational topics that every multi-tenant developer will
need to address. It is essential to creating any environment where tenants will be run‐
ning their systems and storing their resources alongside other tenants. It becomes
your job to ensure that your architecture takes every measure necessary to protect
your system’s resources from any cross-tenant access.

Implementing these isolation strategies, as you’ve seen in this chapter, can prove to be
challenging. To help navigate the isolation landscape, I introduced a series of patterns
and terminology that provided a mental model for the various flavors of isolation you
might need to address in a multi-tenant environment. I separated isolation into three
distinct categories: full-stack, resource-level, and item-level isolation, highlighting the
nuances of each of these models. As part of reviewing these core isolation principles, I
also highlighted some of the nuances that come with adopting each of these isolation
strategies. This included a review of the misconceptions that are commonly associ‐
ated with the notion of tenant isolation.

Once the foundation was in place, I looked at different approaches to applying these
isolation patterns to your multi-tenant architecture. I started with a general look at
how isolation is applied in a solution, illustrating the various layers that could play a
role in your isolation model. I also looked at different approaches to introducing iso‐
lation policies. This included examining the implications of applying isolation at
deployment time and runtime. From there, I started bringing all these concepts
together and illustrating how they could be realized with specific technologies or
services.

Based on this review, it should be clear that there’s no one-size-fits-all approach to
isolation. For many environments, you’ll need to evaluate the mix of business and
technology considerations that will inform the isolation strategies that are applied to
the different components of your system. The strategy you apply for one area of the

242 | Chapter 9: Tenant Isolation

system may not apply to another. It’s also important to note that, in some cases, you
may not be able to identify a ready-made tool or mechanism that can support your
isolation needs. This is where you’ll need to be creative and introduce your own
mechanisms to implement parts of your isolation model.

At this point, I’ve carved the multi-tenant landscape up into targeted topics that out‐
line the overall principles and landscape of the multi-tenant SaaS architecture. Now,
in the next chapter, I want to start looking at how these principles are realized with
specific technology stacks. This will give you a better sense of how the realities and
constructs of a given stack will directly impact how you design and build a SaaS envi‐
ronment. The first stack we’re going to look at is the container-based model of Ama‐
zon Elastic Kubernetes Service (EKS). I’ll review the key areas where EKS can
influence the deployment, isolation, routing, and other dimensions of your multi-
tenant environment.

Conclusion | 243

CHAPTER 10

EKS (Kubernetes) SaaS:
Architecture Patterns

and Strategies

Up to this point, most of the topics we’ve covered have been focused on building a
foundation of core concepts that would apply to any multi-tenant SaaS architecture.
This information should have equipped you with a clear view of the multi-tenant
landscape. Now it’s time to shift gears a bit and move from best practices strategies to
looking more at how these concepts are influenced by the realities of different tech‐
nology stacks. More specifically, in this chapter I’ll be focusing on how multi-tenant
principles are landed within a Kubernetes environment. For our scope, I’ll actually be
looking at Kubernetes through the lens of the Amazon Elastic Kubernetes Service
(EKS). Much of what’s here will be applicable to any Kubernetes environment. How‐
ever, there are areas where the managed nature of EKS influences our options.

I’ll start this chapter off by reviewing some of the key areas where I see good align‐
ment between the EKS stack and SaaS architecture principles. The goal is to better
illuminate some of the key factors that have teams selecting EKS as their preferred
technology for building and developing their SaaS solutions. With that foundation in
place, we’ll shift to exploring the different EKS deployment patterns that SaaS envi‐
ronments use to address their tiering, noisy neighbor, and isolation needs. We’ll look
at a range of possibilities here, highlighting the different constructs you can use to
define the footprint of the tenant environments that are hosted within an EKS cluster.
This will be followed by a look at some of the key tools and mechanisms you can use
to add tenant-contextual routing to your architecture, allowing you to support differ‐
ent deployment models, authentication strategies, and so on.

245

Next, I’ll dig into EKS onboarding and deployment automation. This is where we’ll
see how EKS directly shapes your approach to provisioning, configuring, and updat‐
ing tenant environments. I’ll look at how tools like Helm, Argo Workflows, and Flux
can be combined to describe and automate all the moving parts of your provisioning
and deployment lifecycle. This sampling of the DevOps toolchain will give you a taste
of some of the possibilities that come with creating a single automation experience
that can address the unique tiering and deployment models that you may need to
support your SaaS environment.

I’ll then shift to looking at how tenant isolation is realized in EKS architecture. I’ll
start by looking at how the different EKS deployment strategies can influence your
approach to preventing cross-tenant access. As part of this, we’ll explore the different
EKS constructs that are used to implement deployment- and runtime isolation strate‐
gies. Finally, I’ll wrap the chapter with a look at how you can optimize the different
compute nodes that are running in your underlying EKS cluster, introducing new
techniques you can use to align the profile of your compute instance types with the
demands of your multi-tenant workloads.

This look at multi-tenancy and EKS should give you a better sense of just how your
technology choices can directly shape the design of your overall architecture. It
should also highlight the range of possibilities that come with building SaaS solutions
with EKS. The current and emerging list of tools, strategies, and patterns can be
daunting. At the same time, these tools also introduce you to new and creative ways
to address multi-tenant architecture problems.

The EKS–SaaS Fit
It’s probably fair to start by asking ourselves why EKS and SaaS represent such a good
pairing. I think there are a broad range of factors that, collectively, make EKS a com‐
pelling model for teams that are migrating or building SaaS solutions. For some, the
appeal starts with the programming model. While EKS brings in a diverse range of
new concepts and constructs, how you write and build the services of your applica‐
tion remains mostly unchanged. In most cases, the languages, tools, and libraries you
use can come with you. This may seem like an awfully basic advantage, but it can rep‐
resent a significant upside for many teams. This is especially valuable to organizations
that are migrating solutions to a SaaS delivery model. It allows them to lift bits of
their system directly into EKS, focusing more of their energy on how to get the core
elements of multi-tenancy put into place.

The scaling model of EKS also represents another area where we see solid alignment
between SaaS and EKS. Throughout this book I’ve highlighted some of the complexi‐
ties that come with supporting the unpredictable needs of tenants and how, for some
environments, this can lead to overprovisioning of compute resources. In some cases,

246 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

this overprovisioning is needed to offset the possibility of rapid spikes in tenant activ‐
ity. With EKS, new compute resources can be scaled up rapidly to support spiky
workloads. It can also scale down efficiently. This can enable some teams to get closer
to their goal of achieving greater alignment between tenant activity and compute
consumption. Beyond the basics of EKS scale, you’ll also discover a rich and evolving
set of mechanisms and tools that will allow you to optimize how tenant workloads are
mapped to different instance types within your cluster. The number of knobs and
dials open up a broad range of possibilities. It’s worth noting that there are some legit‐
imate overprovisioning realities that can still surface in an EKS environment since an
EKS cluster still needs to add and remove compute nodes to meet the demands of
your multi-tenant workloads. Still, overall, I do see EKS offering scaling advantages
that might not be found with other compute stacks.

With SaaS architectures, we’ve also seen how important it is to support a variety of
deployment models, enabling resources to be run in siloed and pooled models. This
represents another area where EKS fits well with the profile of SaaS environments. As
you’ll see in the sections that follow, EKS includes grouping constructs that let you
determine how the compute resources of your solution are managed, deployed, and
landed in your SaaS environment. These grouping constructs fit nicely with our need
to selectively group the different compute resources in a multi-tenant architecture.

The EKS deployment tooling is also very appealing to SaaS builders, with a vibrant
and continually growing list of tools that address the often complex deployment auto‐
mation requirements of SaaS environments. These tools, many of which are commu‐
nity driven, enable powerful and highly configurable mechanisms that fit nicely with
much of the heavy lifting associated with provisioning and updating a multi-tenant
setting. These tools and libraries are able to more naturally support the sometimes
complex combinations of tier-based onboarding and deployment, limiting the need
to create custom, one-off solutions. This represents a huge advantage to many SaaS
teams and enables them to connect their SaaS deployment automation needs with a
set of tools that are better suited to the challenges imposed by provisioning and
deploying the elements of SaaS environments.

Isolation is another area where EKS introduces another layer of mechanisms that
enable you to define your isolation policies. This equips builders with a new set of
tools and strategies that are used to prevent cross-tenant access. Sidecars, service
meshes, and other EKS constructs give builders a range of new options when think‐
ing about how and where they want to inject and enforce their isolation policies. It’s
also here that we often see greater opportunities to push isolation to more centralized
mechanisms. This can simplify the lives of service developers, removing much of the
isolation detail from their view. It can also lead to a stronger isolation profile for your
overall system.

The EKS–SaaS Fit | 247

Much of the SaaS goodness of EKS (and Kubernetes in general) is rooted in the
strength and depth of its community. So many of the mechanisms you’ll find to sup‐
port multi-tenancy are byproducts of community-driven solutions that are continu‐
ally enriching the multi-tenant possibilities within EKS. AWS is also adding new
wrinkles that add new dimensions to the EKS story. This means you’ll want to pay
close attention to the community to figure out which new options are emerging.
Every time I talk about SaaS and EKS, some new tool or mechanism has been added
to my multi-tenant toolbag. In some respects, this could be considered both the bless‐
ing and the curse of adopting EKS; the architecture strategy you picked might be
superseded by the introduction of some Kubernetes tool or construct that didn’t exist
when you started.

For the scope of this chapter, the line between EKS and Kubernetes
will be blurry. In many cases, the architecture strategies and mech‐
anisms that I’ve outlined here are part of the native capabilities of
Kubernetes. There are, however, some areas where EKS adds a set
of considerations and tools to the menu of options. To simplify
matters, I’ll be referencing everything as EKS in this chapter know‐
ing that significant parts of what I’m covering would apply to any
Kubernetes setting.

Deployment Patterns
Whenever I look at a technology stack, the first area I tend to focus on is deployment
patterns. For me, once the business has defined a target deployment model, I can start
figuring out how this model will be realized within my architecture. It also directly
shapes the different strategies and constructs that I’ll use to bring this deployment
model to life with my chosen technology stack. In this case, where we’re focused on
EKS, we want to understand what options we have to implement the different siloed
and pooled deployments of our SaaS application’s compute resources. Typically, this
list of options is pretty limited. However, with EKS, we have a slightly more diverse
set of strategies that enable you to determine how our compute resources are
deployed.

Before we start exploring these models, though, let’s start by labeling some of the core
EKS constructs to get a better sense of the moving parts of the puzzle. Figure 10-1
provides a conceptual view of some of the key EKS concepts that will be part of our
broader deployment patterns discussion.

248 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

Figure 10-1. Core deployment pattern concepts

At the outer edge of Figure 10-1, you’ll notice that I have a cluster that groups and
scales all the underlying compute resources of our EKS environment. At the bottom
of the diagram, I’ve also included a reference to the nodes that will be running within
this cluster. Each node corresponds to an EC2 instance. These nodes will scale elasti‐
cally within our cluster based on the load that’s being placed on our EKS
environment.

The pods that you see here are the EKS units of compute that will be running the
services of our solution. EKS will do all the heavy lifting of scheduling how these pods
get mapped onto the nodes that are in the cluster. These pods represent the smallest
unit of execution within an EKS environment.

Finally, you’ll also see that I’ve created sets of these pods using namespaces. A name‐
space enables EKS to isolate and group the resources that are in a cluster. Some might
think of a namespace as a sub-cluster within an EKS cluster. For our purposes, we’ll
focus on how this namespace grouping construct is used to support the deployment
needs of our SaaS environment.

This is a very high-level view of some basic EKS constructs. As you can imagine,
there’s far more detail here than I can afford to cover in the scope of this book. For
our purposes, though, this will give us enough room to start looking at how these
concepts can be connected to deployment patterns. The sections that follow will out‐
line how these different EKS mechanisms are used to group, isolate, and scale the
compute layer of your multi-tenant environment.

Deployment Patterns | 249

Pooled Deployment
Pooled represents the most straightforward of the EKS SaaS deployment models. In
this mode, you’re essentially adopting an approach where all tenants will share all the
compute resources that are running within your EKS cluster, relying on the collective
scaling capabilities of EKS to support the varying compute workloads of your tenants.
Figure 10-2 provides a view of a fully pooled multi-tenant compute footprint realized
with EKS.

Figure 10-2. Pooled deployment pattern

At the top of Figure 10-2, I’ve shown a set of tenants that are consuming a single EKS
cluster, indicating that all the compute resources are shared by all tenants. The pods
in this cluster are also running a single, shared namespace. There are no other group‐
ing constructs that are being applied to separate the workloads that are running in
this environment.

250 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

At the bottom of the diagram, you’ll see where nodes come into play. Our cluster, as
noted earlier, is running across a dynamically scaling set of nodes. EKS will be
responsible for creating the pods that will execute on these nodes. As more load is
placed on the system, more nodes will be added to support these evolving demands.
In many respects, the cluster is essentially applying classic cloud elasticity mecha‐
nisms to grow and shrink the cluster size to align consumption with tenant activity.
It’s here that you could see some overprovisioning of the nodes to ensure that you
have enough capacity to support spikes in tenant activity. It may take some work to
refine your scaling policy to optimize the consumption and sizing of your EKS
cluster.

Within EKS you do have lots of knobs and dials that could influence how this pooled
environment scales to meet the distinct needs of your system and its services. You
might, for example, configure the number of replicas for a pod based on its scale and
availability profile. Or you might align the memory settings of a pod to meet the
needs of a specific service. My point is that, within the pooled model, it becomes
especially important to leverage the different EKS configuration options to ensure
that your environment will respond effectively to the realities that come with sup‐
porting the continually shifting needs of a fully pooled compute model.

Siloed Deployments
EKS provides builders with a growing list of options when it comes to siloing its com‐
pute resources. Many of these strategies can be achieved through the application of
EKS grouping constructs, leveraging the natural built-in mechanism of EKS to draw
boundaries between your compute resources and enabling them to operate in a per-
tenant model. Other silo strategies align more to traditional models where tenants are
assigned dedicated infrastructure (cluster per tenant, for example). Let’s go through
some of the common EKS techniques that are used to implement a siloed deployment
model.

As you might suspect, the namespaces grouping model I mentioned earlier represents
one of the more commonly used siloing constructs. Figure 10-3 provides a concep‐
tual view of a namespace-per-tenant silo model.

Deployment Patterns | 251

Figure 10-3. Namespace-per-tenant siloed deployments

In this example, I’ve used the basic grouping capabilities that are provided by name‐
spaces to associate the pods and computing services of my application with specific
tenant loads. This means that we’ll essentially deploy separate copies of our applica‐
tion’s microservices into each tenant namespace. It also means that the pods in these
tenant namespaces will only process requests for their assigned tenant. There are
multiple advantages to placing our tenant compute resources in a namespace. First, it
gives you a mechanism that allows you to collectively manage, configure, and operate
an individual tenant’s compute environment. It also gives you a construct for attach‐
ing policies that can control and limit access between the namespaces. You can imag‐
ine how these policies would play a role in defining your overall tenant isolation
model.

For this deployment strategy, you’ll notice that our cluster’s nodes (shown at the bot‐
tom of Figure 10-3) are scaled up and down based on the load placed on the name‐
spaces. There’s no real correlation between the namespaces and the nodes that are
part of our cluster. The nodes will scale collectively to meet the loads that are being
placed on the namespaces.

There is an alternate approach that creates more of a binding between the namespace
pods and the underlying compute nodes. Figure 10-4 provides a conceptual view of
the node-per-tenant model.

252 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

Figure 10-4. Node-per-tenant siloed deployments

In Figure 10-4, we have a series of separate siloed pod collections that are associated
with specific tenants. Each of the tenants are also configured to run on a given com‐
pute node that’s running in the cluster. Now, the silo tenant boundary includes both
the namespace, its pods, and the nodes that are running each of these pods. This
adds, for some, another layer to your siloed deployment story, ensuring that tenants
aren’t sharing any compute resources. For some scenarios, this could help address
some specific concerns about compliance and the nature of the boundaries between
your compute resources.

Now, there is another approach to siloing EKS compute resources that’s a bit more
heavy-handed. Instead of attempting to silo resources with a common cluster, you
could also consider having separate EKS clusters for each tenant. While this might be
appealing and applicable for some environments, I generally prefer avoiding this
path. To me, the more distributed nature of this approach can introduce operational
and cost efficiency challenges. If you’re anticipating supporting a large collection of
tenants, this approach could also present scaling challenges. Again, it’s not invalid, it
just feels a bit like overkill given the other options you may have. One variation of
this approach would be to employ a pod-based deployment where you distribute
groups of tenants across a collection of clusters (the term “pod” gets a bit overloaded
here). You might, for example, have a separate cluster for a handful of premium tier
tenants and place your remaining basic tier tenants into a shared cluster. You could
imagine multiple variations of this theme.

Deployment Patterns | 253

Another variation of siloed that’s been on my radar is the notion of virtual clusters.
The mental model is one where you get all the isolation that comes with a cluster
without needing to actually use physical clusters for each tenant. In this model, you’d
have some siloed constructs within the cluster but your workloads would still run on
shared nodes. This may represent a compelling option for some teams.

Mixing Pooled and Siloed Deployments
As noted throughout this book, there is no one-size-fits-all to choosing deployment
models. So, as we think about how we might map these different deployment models
to EKS, we must also consider what it would mean to support a mixture of siloed and
pooled models within a single EKS architecture. Figure 10-5 provides an example of
how you might implement a mixed mode deployment model.

Figure 10-5. Mixed mode deployments

There are no major surprises here. You’ll see that I’ve essentially used the same name‐
space model to create individual groupings for each flavor of deployment. The siloed
tenants (Tenants 1 and 2) are deployed into their own namespaces and our remaining
tenants are deployed into a separate “pooled” namespace.

As you can imagine, supporting these models side by side doesn’t add a ton of com‐
plexity to your overall architecture. Yes, there are other factors (deployment,
onboarding, isolation) that will influence the footprint of these namespaces, but,

254 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

overall, the ability to simply use the namespace construct to create different deploy‐
ment patterns ends up being relatively straightforward. Much of what is used to
describe one namespace can be reused to describe the next (with caveats).

The Control Plane
So far this discussion of multi-tenant EKS deployment patterns has focused primarily
on how the various services of your application plane could be grouped and landed in
an EKS cluster to support the silo and pool requirements of your workloads. There is
one more piece of the puzzle. Somewhere within our EKS environment, we must also
place the control plane of our SaaS architecture (assuming our entire environment is
EKS-based).

There are few absolutes about how the control plane should be deployed. We do
know, however, that its services should be managed, versioned, and deployed sepa‐
rately from the application plane—even if it’s running in the same EKS cluster as your
application plane. We basically need to select from amongst the different EKS group‐
ing mechanisms, identifying the construct that best aligns with the needs of our SaaS
environment. Figure 10-6 provides a view of two different approaches you might use
for landing the control plane in your EKS architecture.

Figure 10-6. Control plane deployment strategies

Deployment Patterns | 255

On the righthand side of Figure 10-6, you’ll see a cluster that is meant to host our
application plane. The application plane supports both siloed and pooled deploy‐
ments, using namespaces to group the compute resources that are needed for each of
these tenant profiles. Now, the question is: where do we place the control plane?

The first example is shown on the far left where all the services of the control plane
are deployed into a completely separate cluster. In this model, the interactions
between the control plane and the application plane would need to be allowed to
cross cluster boundaries. Some may like having these services deployed entirely on
their own. This certainly allows the configuration, deployment, scaling profile, and
other attributes of the control plane to be managed and operated exclusively based on
the needs of the control plane services.

In contrast, I’ve also shown (on the far right) an example of a control plane that is
hosted within the same cluster as our application plane namespaces. Here I’ve intro‐
duced another namespace that would be used to group all the services that would be
associated with the control plane. Placing the control plane within the same cluster
would certainly simplify things a bit, reusing many of the mechanisms and automa‐
tion strategies that are used to deploy and configure the other namespaces that are
within the cluster. Some may like that these control plane resources would get scaled
within the same cluster, enabling them to use the scale of one shared cluster to maxi‐
mize operational and cost efficiency. Others might prefer to keep the needs of the
control plane more separate. Again, there are no absolutes here. You’ll have to sort
through the trade-offs and find a good balance that works well with your architecture
goals and requirements.

Routing Considerations
As you introduce different per-tenant resources into your deployments, you’ll also
need to consider how this distribution of tenant compute resources will impact the
routing experience of your multi-tenant environment. We explored this concept in
some detail in Chapter 6, looking at how different technology stacks might employ
different tools and strategies to route tenant-specific traffic to the appropriate com‐
pute resources.

This happens to be an area where EKS offers a myriad of mechanisms that can influ‐
ence how tenant traffic flows within your architecture. There’s a long list of vendor
and open source tools that are able to proxy your EKS compute services, adding cus‐
tom handling functionality that can be quite useful in a multi-tenant environment.
Ingress controllers (NGINX, Contour, Kong), for example, are used as inbound load
balancers that can route activity to your tenant-specific resources. A service mesh
(Istio, Linkerd, AWS App Mesh) can also be used to introduce a range of highly con‐
figurable routing controls. The key concept is that you’re essentially placing some

256 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

layer of tenant-contextual processing at the front of your environment that can be
applied to routing, authentication, and a host of other possibilities.

How you apply these routing technologies will depend heavily on the nature of your
solution. This, to me, is one the areas that highlights the multi-tenant strengths of the
EKS experience. There are so many existing and emerging tools that you can apply
here that it can be difficult to identify which tool best addresses the needs of your
environment. Figure 10-7 provides one example of how these different constructs
could shape the flow of tenant traffic within your SaaS architecture.

Figure 10-7. Applying EKS routing tools

In this particular example, I’ve shown two tenants that are interacting with the
resources that are in my EKS environment. These tenants both use a subdomain to
convey their tenant context as part of the URL that’s used to access the environment
via Amazon’s Route 53 service. Now, as they flow into the environment, this is where
you would introduce one of the tenant-aware routing constructs that we’ve been dis‐
cussing. These tools would extract and apply the context of individual tenants.

The diagram highlights two specific examples of how you might apply these routing
mechanisms. First, I used tenant-contextual routing as part of my authentication
model. The idea is that I could extract the subdomain and use it to determine which
tenant identity provider would be used to authenticate a given tenant. This is espe‐
cially powerful when you have a mix of siloed and pooled identity resources. For
example, imagine having a dedicated Amazon Cognito User Pool for each siloed, pre‐
mium tier tenant. Meanwhile, all of our basic tier tenants would share a common
User Pool. In this instance, your authentication flow would need to map incoming
requests to the appropriate identity provider. Instead of handling this in my applica‐
tion services, I’ve offloaded these routing policies to one of these proxy tools.

Routing Considerations | 257

If you move further down the path of our inbound requests, you’ll also see that
tenant-aware routing is applied here to direct traffic to the appropriate namespace.
Figure 10-8 provides an example of how this might be configured using an NGINX
ingress controller.

Figure 10-8. Routing tenants to namespaces

At the top of Figure 10-8, you’ll see two different tenants coming into our SaaS envi‐
ronment with per-tenant subdomains. As each request flows in from these tenants,
they will be routed through the NGINX ingress controller, sending requests to indi‐
vidual tenant microservices based on their ingress resource configuration.

This routing process actually sends requests to the specific tenant microservices that
are running in each namespace. For example, on the bottom left, you’ll see that I have
a namespace that groups the microservices for Tenant 1. Each of these microservices
is configured with an ingress resource that includes the paths that connect a given
microservice to the appropriate inbound request. For example, you’ll see that there is
an /tenant1/order path on the lefthand side of the diagram that illustrates the routing
of order requests for the Tenant 1 namespace.

These examples only represent a small sampling of the routing possibilities. Each tool
you use brings its own unique set of considerations and mechanisms that can impact
the footprint of your architecture. The list of available configuration options and pat‐
terns goes well beyond the scope of this chapter. That being said, I do feel like this is
an area where, as a SaaS architect, you need to lean into the tooling community and
determine which of these technologies best supports the specific needs of your multi-
tenant architecture.

258 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

Onboarding and Deployment Automation
The provisioning, configuration, and deployment of your multi-tenant resources can
be heavily influenced by the technologies that you’re using. Tiering requirements,
deployment models, and a host of other factors will directly shape how you build the
onboarding and deployment elements of your SaaS solution. This, again, is another
area where EKS offers a long list of tools that can address the potentially complex
set of automation requirements that are typically associated with multi-tenant
environments.

To get a sense of the challenge, let’s start by looking at the moving parts that could be
part of your onboarding and deployment processes. Figure 10-9 highlights some of
the key conceptual elements that could be included in your overall automation
strategy.

Figure 10-9. The onboarding and deployment challenge

On the righthand side of the diagram you’ll see the application plane of a sample
multi-tenant environment. It includes two namespaces, one that is for siloed, pre‐
mium tier tenants and another that is pooled for basic tier tenants. I’ve added a
bit more detail to these tenant configurations, showing the different microservices
and their associated storage. The Order service, for example, has dependencies on
DynamoDB and Amazon S3. The Product service stores its data in an RDS instance.
For the siloed environments, I’m presuming these storage constructs are also siloed
(per-tenant) resources—even though they don’t have to be. Then, for the pooled

Onboarding and Deployment Automation | 259

namespace, the Order service shares storage for all tenants while the Product service
siloes its storage, providing a separate RDS instance for each tenant.

Now, we need to look at how the footprint of the application plane will influence the
onboarding and deployment of our environment. At the top left (step 1), I’ve shown a
tenant onboarding via the control plane. While there’s no detail included here, you
can imagine all the underlying automation and tooling that is needed to contextually
provision and configure each new tenant environment. Your tenant onboarding code
will need to know which new resources are needed for each tenant based on their tier.
For example, the siloed onboarding will need to create a namespace, deploy services,
and provision the associated storage. For the pool, we’ll mostly be configuring the
environment and only creating one-off infrastructure where it’s needed. In this case,
since the basic tier Product service requires a separate RDS instance for each tenant,
your automation will need to create and configure this instance for each newly
onboarded tenant.

The other piece of the puzzle is the development CI/CD pipeline, which will need to
deploy service updates to the application plane (step 2). Here, the focus is more on
the day-to-day developer experience where builders are updating and releasing new
versions of services that need to go through their build and deployment pipeline.
What’s different with this approach is that our CI/CD pipeline must be able to deploy
an updated microservice to each tenant namespace. This is where you’ll need to
assemble a process that can automate deployments across these environments, sup‐
porting the various siloed and pooled tenant configurations.

Configuring Onboarding with Helm
With this as our backdrop, we can now turn our attention to figuring out which com‐
bination of tools might best support the needs of this particular environment. We cer‐
tainly have the option of simply using AWS CodePipeline, Terraform, AWS Cloud
Development Kit (CDK), and a host of other classic DevOps tooling to automate
these processes. This would be entirely valid. At the same time, there’s a rich collec‐
tion of build and deployment tooling that’s purpose-built for the EKS and Kubernetes
universe that can target these requirements in a way that pushes more of the com‐
plexity to the tooling.

To support the various configuration options that are required by our environment,
we’ll need to start by figuring out how we can best capture and characterize the nuan‐
ces of the different onboarding configurations. A tool that could be a good fit here is
Helm, which enables you to create “charts” that outline all the different attributes of a
Kubernetes environment. These charts provide us with a mechanism that naturally
addresses our need to define our different tiered configurations. Figure 10-10 pro‐
vides an example of how these charts could be used to describe the onboarding con‐
figuration characteristics of our application plane.

260 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

Figure 10-10. Using Helm to describe tenant environments

The design I’ve settled on here is one where I create a baseline Helm template that
describes the core elements that are part of any tenant environment. Here you’ll find
the bits of configuration that describe all the services and their default settings
without any notion of silo or pool being added to the mix. With this baseline template
in place, we then generate tier-specific Helm charts that apply the parameters that are
associated with each tier. For this example, I’ve included basic and premium tier
parameters that are used to create their corresponding Helm charts.

The beauty of this model is that we’re essentially expressing the attributes of our tier‐
ing and deployment models through tooling that lets us characterize the attributes of
each environment. We’re also getting the goodness out of having everything that’s
common here captured in one baseline template. This lets us maintain, manage, and
version all the common settings in one place. The other upside is that we’re leaning
into tooling that can be woven somewhat seamlessly into our onboarding experience,
automating these provisioning and configuration steps through tools that have built-
in constructs that allow them to shape and mold the footprint of our multi-tenant
EKS environment.

There is one twist you’ll need to factor into your approach. While Helm is great at
describing our EKS environment, there are typically non-EKS constructs or services
that are part of our environment that can’t be configured with Helm. For example, the
onboarding experience outlined in Figure 10-10 will need to provision and configure
S3, DynamoDB, and RDS resources. It’s here that you’ll likely have to leverage a com‐
bination of tools, mixing in CDK, Terraform, or other infrastructure automation

Onboarding and Deployment Automation | 261

tooling to target these non-Kubernetes assets. The net of this is that the full automa‐
tion and characterization of our environments will end up being packaged as Helm
plus whatever other assets are needed to support the other elements of our infrastruc‐
ture configuration and provisioning model.

Automating with Argo Workflows and Flux
So far, I’ve mostly talked about how we package and describe the onboarding profiles
of our basic and premium tier tenants. Now, we still need to consider what it would
mean to automate all the moving parts of the onboarding experience. This is where
we can fold in more tools from the DevOps universe, introducing Argo Workflows
and Flux into our onboarding flow to orchestrate and reconcile the application of our
onboarding configurations. It’s the application of these tools that help connect all the
dots in this process and deal with the nuances of automating the deployments to
these per-tenant environments.

Let’s look at a specific example of how you might use Helm, Argo Workflows, and
Flux together. Figure 10-11 provides a sample view of how these tools can handle the
complexities that come with supporting a tier-based onboarding experience.

Figure 10-11. Orchestrating onboarding with Argo Workflows and Flux

At the bottom-left corner of the diagram, you’ll see the initiation of the onboarding
experience (step 1). Here a tenant (or some internal process) triggers the onboarding
process, supplying the tier and other attributes of the tenant. This request is

262 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

processed by the onboarding service that’s part of the control plane. At some point in
your onboarding flow, the service will invoke the Tenant Provisioning service, which
owns responsibility for creating and configuring any infrastructure that’s needed for
the new tenant. For this example, we have basic and premium tier tenants, each of
which require different infrastructure footprints.

This is where Helm and Argo Workflow come into the picture. Our Tenant Provi‐
sioning service will invoke a workflow that will be responsible for executing all the
steps to complete the tier-aware provisioning of tenant resources (step 2). The work‐
flow has two distinct toolchains it must use to get our tenant environment created.
For one half of the process, it must use classic infrastructure automation tooling (Ter‐
raform, CDK, CloudFormation) to provision the non-EKS infrastructure resources.
In this particular case, this means provisioning the different storage resources that are
needed for our microservices. To achieve this, the workflow invokes an infrastructure
automation tool, say Terraform, to execute this part of the process (step 3). The auto‐
mation scripts and code employed here will invoke all the tier-contextual operations
needed to create the siloed storage for any new premium tier tenant or it will provi‐
sion just the one siloed RDS instance for any new basic tier tenant (step 4). If you
recall, basic tier tenants are mostly pooled but offer siloed storage for the product
services (shown at the bottom right).

Up to this point, we’ve mostly just executed a classic infrastructure automation pro‐
cess that happens to be triggered as part of an Argo Workflow. For the second half of
this process, though, we’re more focused on how to get the EKS cluster and tenant
constructs configured. Here we’ll rely heavily on the Helm charts to drive the config‐
uration and creation of our tenant’s EKS assets. First, we’ll clone the baseline template
that we used for all of our tenants (step 5). Then our Argo Workflow will generate a
tenant-specific Helm release configuration, merging in the configuration settings for
each individual tier (step 6). The end result is a tier-specific Helm release configura‐
tion that contains all the information/settings needed to onboard tenants for a given
tier.

At this point, we have a Helm chart that represents the configuration we want for our
tenant, but it has not been applied to our EKS cluster. This is where Flux comes into
the picture. Once our Helm chart is ready, we can commit to our repository (step 7).
Flux will be listening to that repository to detect any updates. When it sees the new
Helm chart, it will use this configuration to create the EKS resources that are needed
for my new tenant (step 8). This is where you’ll see the creation and configuration of
your namespace, microservices, and other EKS-specific constructs.

In reviewing this approach, you should be able to see how this moves much of the
complexity of our tenant provisioning process into a set of tools that fit well with the
needs of our tier-based onboarding experience.

Onboarding and Deployment Automation | 263

Tenant-Aware Service Deployments
Getting tenants onboarded is only half of this story. Once we have these tenant-
specific environments and resources, we still have to think about how the developer
pipelines will incorporate support for these different deployment configurations. The
release of an update to a microservice, for example, must include some ability to
deploy that new microservice to multiple namespaces within your EKS cluster. It’s
here that you need to find a way to accommodate these multi-tenant deployment
requirements without adding any burden to the developer experience. Developers
should be able to simply build and release a new microservice without needing to be
aware of these deployment complexities.

With EKS tooling you do have access to constructs that can help automate these
deployments. Figure 10-12 provides a conceptual view of how Helm and Flux can
support your deployment of services.

Figure 10-12. Deployment with Helm and Flux

Let’s start by looking at the righthand side of this diagram where we have a cluster
with multiple tenants onboarded. There are two premium tier tenants that are run‐
ning in separate namespaces (Tenants 1 and 2). And we have a pooled namespace
that’s running all the basic tier tenants. Each of these namespaces are all running the
same Order and Product microservices that have specific versions (shown at the top
right above each microservice).

264 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

Now, imagine you’re a builder who’s rolling out a new version of the Order service,
moving it from v3.1 to v4.0. As a developer, I just want to build it, test, and release it.
However, something needs to deploy this updated service to each of the three name‐
spaces on the right. This is where Flux can deal with 1-to-many mapping and address
the rollout of the new version of the Order service.

Making this work first starts with the Helm charts illustrated in the top left. Within
these charts, there are references to the microservices that need to be deployed. My
build process can clone the current chart, update the product microservice version,
and update the version of the Helm chart to indicate that there are changes that need
to be applied. When this updated Helm chart (v1.6) is packaged and checked into the
repository, our Flux process will detect the presence of this new version. It will then
determine how to apply this updated chart to all of the environments that are running
the previous version, moving all of them to the v1.6 configuration. The end result will
be that my new v4.0 Order service will be deployed to all namespaces.

For this particular example, I focused on updating the microservice. However,
there are other settings that can be configured with Helm charts. This same mech‐
anism can change any number of different settings that are part of the EKS
environment.

The challenge of digging into this EKS DevOps space is that there
are simply too many tools and options to consider. For this chapter,
I tried to give a sense of the multi-tenant DevOps challenges, pro‐
viding a glimpse into how some of the common tools can address
your multi-tenant deployment requirements. However, I would
encourage you to dig more deeply into the options and assess
which tools and strategies are going to best fit the profile of your
team and solution. The broader takeaway here is that the tiering,
deployment models, and general nature of multi-tenant environ‐
ments may require targeted approaches to automate the onboard‐
ing and deployment of your SaaS environment.

Tenant Isolation
In a multi-tenant EKS environment, we have lots of new constructs and mechanisms
that describe how our compute is deployed. Now we need to think about what it
means to layer tenant isolation on top of these constructs. How and where do we
insert policies into an EKS cluster to ensure that one tenant can’t access the resources
of another tenant?

Tenant Isolation | 265

As you might suspect, there are multiple dimensions to the EKS isolation story. To get
a better sense of the fundamentals of the EKS SaaS isolation strategy, let’s start by
looking at a more conceptual view of the fundamental isolation boundaries of the
environment (shown in Figure 10-13).

Figure 10-13. EKS SaaS isolation boundaries

In this diagram, there are essentially three flavors of isolation. At the top, where I
have the different siloed tenant namespaces, I need some isolation construct that can
ensure that microservices running in one tenant namespace can’t access the microser‐
vices running in another tenant namespace. Isolating at this level can be achieved
fairly easily through the use of natural Kubernetes constructs. When each namespace
is provisioned for a new tenant, the onboarding process will configure a network pol‐
icy for the namespace that limits its ability to access other namespaces. Here’s a sam‐
ple policy that can be applied when provisioning tenant namespaces:

tenant-service-policy.yaml
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 namespace: TENANT_NAME
 name: TENANT_NAME-policy-deny-other-namespace
spec:
 podSelector:
 matchLabels:
 ingress:
 - from:
 - podSelector: {}

266 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

The area to focus on here is the metadata, which has placeholders for the name of the
tenant namespace and the policy name. This policy essentially prevents any tenant
from another tenant namespace from accessing the namespace we’re creating for this
new tenant.

In Figure 10-13 we have also introduced policies to isolate the storage being accessed
by our microservices. In this scenario, you’ll see that I have introduced two microser‐
vices, one that uses pooled storage (product) and one that uses siloed storage (order).
These siloed and pooled storage models require different isolation constructs to pre‐
vent cross-tenant access.

Let’s start by looking at how we’ll isolate the order table. For this data, we know that
each tenant will have its own dedicated table. This means that we can use a
deployment-time isolation approach that configures our isolation when each tenant
namespace is provisioned. To get a better sense of how this isolation works, we need
to start with the policy that will enforce the siloed isolation of our order tables. The
following policy represents the template that is populated with tenant context and
applied as each order table is provisioned for a new tenant:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TENANT_NAME",
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource":
 "arn:aws:dynamodb:us-east-1:ACCOUNT_ID:table/Order-TENANT_NAME"
 }
]
}

This represents an AWS Identity and Access Management (IAM) policy that declares
the privileges for a resource, in this case a DynamoDB table. Here, we’re essentially
allowing our tenant’s Order microservice to have access to its corresponding order
table. Again, this file represents the template. The TENANT_NAME placeholders will be
replaced with specific tenant values when the tenant provisioning process creates a
tenant namespace.

This policy is applied to our tenant namespaces using what is labeled as IAM Roles
for Service Accounts (IRSA). The idea is that the populated IAM policy will be
attached to the service account associated with its target tenant namespace (as shown
in Figure 10-14).

Tenant Isolation | 267

Figure 10-14. Order table isolation with IRSA

At the top of this diagram, you’ll see Tenant 1 and Tenant 2 namespaces, each run‐
ning the Order microservice. Within each namespace, there are references to service
accounts. These service accounts are configured with the tenant-specific order IAM
policies that were defined earlier. The configuration of these policies is applied when
these namespaces are provisioned as part of tenant onboarding.

Now, when an Order microservice attempts to access the Order table, the tenant-
scoping of our namespace’s service account will automatically enforce the policies
that are associated with that namespace. This means that Tenant 1 can only access the
Order table associated with Tenant 1. Any attempt to access Tenant 2’s Order table
will be prevented. Here, we’re getting the full benefits of deployment-time isolation,
which means our isolation policies are applied entirely outside the view of the Order
microservice builder.

This strategy works well for our siloed order tables. However, for our pooled Product
table, we have to look at how we can implement item-level isolation since our tenant
data is commingled within the same DynamoDB table. It’s here that we have to adopt
a runtime enforced isolation model that examines the tenant context of each request,
using this context to determine which policies must be applied to prevent cross-
tenant access to the tenant items within the Product table. Figure 10-15 provides an
example of the moving parts of the Product table isolation that could be applied as
part of your multi-tenant EKS architecture.

268 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

Figure 10-15. Item-level isolation with the Product table

On the top left of this diagram, I’ve shown our Product microservices running in sep‐
arate, siloed namespaces. The compute may be siloed, but the diagram also shows a
shared Product table that stores data for all tenants. Because this data is pooled, we
cannot use the IRSA mechanism that was used to isolate our order tables. Instead, the
code in our Product microservice is required to examine the tenant context of each
request and acquire tenant-scoped credentials for that tenant that constrain its view
to just those items in the table that belong to the current tenant.

Acquiring these credentials is achieved by assuming a role based on the policy you see
on the righthand side of this diagram. Here, we have another IAM policy for our
DynamoDB table, but this version has a "Condition" section that limits access to
items based on a leading key. This leading key is populated, contextually, based on the
current tenant (in this example, it’s populated with Tenant 1).

As you can imagine, there are multiple ways that you can implement your runtime
isolation. You might, for example, use shared libraries that will capture the tenant
context, map to the appropriate policies, and assume a role that is valid for the cur‐
rent tenant. Generally, for any runtime isolation model, we’d like to find some way to
move this resolution of the isolation policy outside the view of developers.

Tenant Isolation | 269

EKS includes another construct that can be used as part of a runtime isolation strat‐
egy: sidecars, which are separate processes that can run alongside our services within
the EKS network. The mental model is that of a motorcycle that has a sidecar
attached. For our discussion, the value of the sidecar is that it sits between our micro‐
services as a proxy, allowing us to collect telemetry, apply policies, and so on.
Figure 10-16 provides an example of a sidecar applied to our tenant isolation
problem.

Figure 10-16. Runtime isolation with a sidecar

In this diagram we have the same Product microservice (for Tenant 1) that consumes
the same pooled table that holds all product data for all tenants. What’s different is
that I’ve introduced a sidecar into the equation. It sits next to my Product service and
intercepts all the traffic flowing from it. Now, when my Product service requests data,
the sidecar can assume a role using the appropriate IAM policies to restrict access to
just those items in the table that belong to Tenant 1.

The beauty of this approach is that it sits in the middle of all the interactions with our
microservice, serving as the perfect traffic isolation cop. For many, having isolation sit
at this level can be very appealing. Now, what’s less obvious is how the sidecar inter‐
acts with the storage. In the model I proposed, the calls to the Product table would
have to originate from the sidecar since it needs to apply the scoped credential to the
request. This would essentially mean that you would need to put a data access library
in the sidecar to make this work. That may not be the best division of labor or how
you want your microservice code distributed.

An alternate approach would be to have the sidecar acquire the scoped credentials
and return them back to the microservice. Then, the microservice would use the cre‐
dentials. With that approach, though, the sidecar is more of a glorified library. So,
while I think sidecars have a place here there’s more work to be done to figure out
how best to apply them to this isolation problem.

The examples we reviewed here provide a sampling of the various isolation tech‐
niques that are available with EKS. You’ll likely find yourself applying a mix of these
strategies to cover the varying needs of your solution.

270 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

When we talk about isolation in any multi-tenant container envi‐
ronment, it’s natural for teams to have questions about whether the
“escapability” of containers will impact your overall isolation story.
This is a basic security concern for any container-based solution.
The focus is on the impact of malicious code escaping the con‐
tainer and gaining access to resources and operations that should
not be accessible. The technologies and strategies used to mitigate
this risk go beyond the scope of this chapter. To me, it’s something
to be aware of as you assess the overall security footprint of your
environment.

Node Type Selection
Within our EKS cluster, our pods are always running on compute nodes that must
scale to meet the needs of your multi-tenant workloads. The nature and configuration
of these nodes is part of what you configure with your EKS cluster. Do you need
CPU- or memory-intensive nodes? Do you need GPUs? This notion of selecting a
node type represents yet another variable in our overall multi-tenant compute strat‐
egy. If you’re landing in an EKS environment, it will be your job to figure out which
combination of node types best align with the workloads imposed by your tenants.

One approach to this could be to hand-pick different nodes for the different services
that are part of your application. You could look across the services of your applica‐
tion and decide certain services might map better to a specific node type. If you take
this approach, you’d need to configure your cluster to launch multiple node types and
then associate these services to their target node type (as shown in Figure 10-17).

Figure 10-17. Mapping workloads to node types

Node Type Selection | 271

For this example, I’ve created three separate managed node groups. The grouping
construct lets me configure the profile of a set of nodes within my cluster, which
includes defining the EC2 instance type that will be associated with each group. To
illustrate the extremes, I’ve selected a range of different AWS instance types for each
of these node groups. One group is using an R5 instance type that is optimized for
memory. The next uses C5 nodes, which are optimized for compute. Finally, the last
group is using a GPU instance type (G5).

The assumption here is that the workloads running on the pods within these node
groups are aligned well with the capabilities of each instance type. While I think this
is a strategy that has some merit, I’d also be careful to be sure that you have a clear set
of requirements that justify the extra complexity that comes with adopting this
model. It may be that you’ll have a handful of key services that happen to need a tar‐
geted instance type. Then, the rest of your services can run with one common
instance type that can effectively support your remaining workloads.

There are, however, other more creative ways to determine which instance types are
needed to support your system’s workloads. In an ideal scenario, you could have this
whole notion of node type selection be a more dynamic process that examined real-
time activity and determined node types on the fly. This is where Karpenter comes
into the picture. With Karpenter, I can configure a set of node types that are available
to my cluster without connecting them to any specific node or managed node group.
Figure 10-18 provides a view of how Karpenter can optimize the alignment between
my cluster and the activity of my tenants.

In Figure 10-18, I have two running nodes, both of which were launched with a C5
instance type. Now, as part of setting up my environment, I also configured
Karpenter, providing it with a list of candidate node types that I’ve deemed as being
valid for my cluster (shown at the top right). This means that Karpenter can assign
any of these instance types to a node; which instance types get assigned becomes the
job of Karpenter. It will evaluate and profile the current activity in the system and
decide which instance types should be assigned to individual nodes.

272 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

Figure 10-18. Optimizing node types with Karpenter

This is a powerful construct on its own and can be especially useful in a multi-tenant
context where the activity of your cluster can vary wildly. Being able to push the node
selection to Karpenter frees you up from trying to define your own strategies that
associate workloads with instance types. It can also yield optimizations that could
bring greater efficiencies to your SaaS environment.

The node selection and optimization strategies are powerful, but this approach still
requires you to define the policies that will determine how your cluster will scale
these nodes. This adds a layer of complexity to your EKS architecture and, in some
cases, can lead teams to overprovision the nodes in their cluster. This can impact the
cost efficiency of your environment and undermine your economies of scale.

Node Type Selection | 273

Mixing Serverless Compute with EKS
Most of the strategies we’ve looked at here are centered around a model where the
nodes in your cluster are very much in your view. Node selection, for example, was
very much focused on optimizing node and workload alignment. Across all these
models, you must still have policies and strategies that determine how these nodes
will scale to meet the overall needs of your environment.

There is, however, another compute strategy that you can pick for your EKS cluster.
EKS gives you the option of choosing AWS Fargate as the compute model for your
EKS environment. Fargate allows you to adopt a serverless compute strategy, remov‐
ing any awareness of the nodes in your cluster. This simplifies the scaling compute
model of your EKS environment, allowing you to lean on Fargate’s managed compute
model to deliver the compute resources required for your environment. It can also
limit overprovisioning concerns, allowing you to only pay for the compute you
consume.

The real challenge is figuring out which of these compute strategies will best support
the needs of your environment. For some, Fargate may be a perfect fit. For others, the
ability to have more control over the nodes and instance types could represent a more
compelling option. In reality, you’ll have to weigh the cost and other considerations
to figure out which option is best for your architecture and operational model.

An EKS SaaS Reference Solution
This chapter looked more broadly at the general patterns and considerations that you
can apply when architecting your own EKS SaaS solution. The team I work with at
AWS, the SaaS Factory, has also produced an EKS SaaS reference architecture that
grants access to the code of an end-to-end working multi-tenant EKS environment. It
provides you with a more concrete view of some of these strategies in action.

I’ve placed the code in a GitHub repository. The strategies and techniques that are
referenced in this repository represent a single example that doesn’t cover the full
spectrum of topics we’ve explored in this chapter. The nature of the solution also con‐
tinues to evolve to support new approaches. So, some of what’s in the solution might
be a bit behind the curve. Still, overall, you may find the resource valuable if you’re
interested in getting into the next level of detail. Just know that what we covered here
is meant to expose you more to patterns, while the reference architecture represents a
sample implementation that provides a view of one specific approach.

274 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

https://oreil.ly/s9qDg

Conclusion
This chapter provides you with your first look at the intersection between some of the
core SaaS principles we’ve been discussing and the possibilities introduced by the EKS
technology stack. By looking at SaaS through an EKS lens, I was able to highlight
some of the key areas where the features of EKS could be used to describe, configure,
and deploy a multi-tenant environment. This process should have also surfaced some
of the power and elegance that EKS enables for SaaS builders, equipping them with a
diverse set of tools and constructs that give them a broad palette of options. This
review of EKS and SaaS should also make it abundantly clear why there is simply no
one blueprint for building SaaS on EKS.

Our exploration of the EKS SaaS strategies started with a high-level look at the funda‐
mental alignment between SaaS and EKS. I included this to emphasize the strengths
of EKS and outline some of the areas that make it particularly compelling for some
SaaS teams. From there, I picked a few key areas where I thought EKS surfaced new
possibilities and considerations that could shape how you approached fundamental
aspects of your SaaS architecture. This started with a look at deployment models
where I went through a range of different strategies that could be used to describe
how tenant workloads could be deployed using various siloed and pooled models and
constructs. This also included a brief look at tenant-contextual routing, reviewing
some of the tools and mechanisms that could be used to route tenants within clusters.

A big part of the chapter focused on deployment and onboarding automation. To me,
this is an area where EKS shines. By looking at one flavor of the EKS DevOps tool
experience, I was able to provide a glimpse into the rich set of mechanisms that can
address some of the key challenges that come with automating onboarding and
deployment in a multi-tenant environment. I really only scratched the surface here,
but my hope is that the insights we covered will inspire you to dig deeper into the
EKS community and tools that can be applied to the SaaS DevOps domain.

The last bits of the chapter looked at tenant isolation and node selection. For tenant
isolation, I focused on the nuances of how EKS can influence the isolation model of
your SaaS architecture. This meant looking at how we could isolate EKS compute
resources, limiting any cross-tenant access between dedicated tenant namespaces.
This also included a look into how you could introduce dynamic policies via classic
techniques as well as sidecars. Finally, I wrapped up by looking at how node selection
could better align your EKS cluster’s node types with your tenant tiers and workloads.
This mechanism provides a view into how you might tune and optimize the compute
profile of your architecture.

Conclusion | 275

EKS tools and constructs allow me to move up a level from the underlying infrastruc‐
ture, equipping me with logical grouping, management, and deployment mechanisms
that seem to be well-positioned to address many of the needs I have in a multi-tenant
environment. Namespaces, service meshes, ingress controllers, sidecars—the list of
options seems to be long and continually growing. This depth and diversity paired
with a vibrant community is likely to continue to represent a compelling option for
many SaaS builders.

Now that you have a sense of the EKS possibilities, I want to look at how these same
concepts might be applied with a different technology stack. In the next chapter, we’ll
explore the nuances associated with building SaaS solutions with serverless technolo‐
gies. The serverless model brings new tools, strategies, and considerations to the
table. Seeing the influence of serverless will broaden your perspective and equip you
with a view of how core multi-tenant SaaS principles are realized through the con‐
structs and mechanisms enabled by a different technology stack.

276 | Chapter 10: EKS (Kubernetes) SaaS: Architecture Patterns and Strategies

CHAPTER 11

Serverless SaaS:
Architecture Patterns

and Strategies

The serverless computing model has become quite popular with builders. Consuming
compute in an entirely managed model where there are no servers enables SaaS
builders and architects to shift their mindset away from chasing elusive scaling and
cost optimization strategies. The function-centric nature of serverless compute can
also influence how you approach the design and implementation of your multi-tenant
SaaS architecture. For these reasons, I thought it made sense to devote a chapter to
looking at how multi-tenant strategies are realized within a serverless compute
model. The goal here is to dig into the specific nuances and implications that come
with building a SaaS environment that delivers its application services via a serverless
compute. To make this more concrete, I’ll map these strategies to the AWS Lambda
service, which provides the managed compute capabilities that will configure, host,
and scale the functions of our environment.

At the outset of this chapter, I will start by outlining the natural alignment between
the profile of SaaS environments and the serverless model. We won’t spend too much
time here, but I think it’s essential for SaaS architects, builders, operations, and busi‐
ness stakeholders to understand the broader value proposition that serverless repre‐
sents for SaaS providers. I touched on this briefly in Chapter 8 as part of looking at
how serverless can influence storage. Now, though, I’ll go deeper and examine some
of the dynamics and efficiencies that can be achieved through the adoption of a ser‐
verless compute model.

Once I’ve established the value proposition, I’ll start looking at how the function-
based nature of serverless compute influences our approach to creating tier-based
deployments. The focus will be on exploring what it means to create pooled and

277

siloed tenant environments with serverless functions. This will include an
examination of the different patterns and approaches that can determine how and
when you might silo tenant functions. From there, we can then start looking at what
it means to contextually route tenants in a serverless compute model. This will build
on the deployment model discussion, highlighting the mechanisms that can be used
to map tenant requests to the functions that are part of their environment.

I’ll also use this chapter to review the onboarding and deployment automation nuan‐
ces that come with the serverless model. Here you’ll see the unique set of challenges
that come with building a tier-aware onboarding and deployment automation. While
there are good tools available to help bring this to life, you’ll also see that you may
need to introduce your own constructs to address the realities of a multi-tenant
environment.

The next part of the chapter will look at some of the twists that come with introduc‐
ing tenant isolation in a serverless environment. Here you’ll see some of the
serverless-specific techniques and constructs that are used to prevent cross-tenant
access.

I’ll close the chapter out with some higher-level serverless design considerations. I’ll
look at how we can configure the scale profile of our managed functions, using
reserved concurrency to configure how workloads will be scaled across the different
Lambda functions that are part of a multi-tenant environment. Finally, to close
things out, I’ll also touch briefly on the bigger picture implications of serverless,
exploring what it means to apply serverless across all the layers of your architecture.

This chapter intentionally sits alongside the Chapter 10 discussion of EKS. The goal is
to illustrate how serverless and EKS achieve similar goals with, in some cases, very
different approaches and tool chains.

The SaaS and Serverless Fit
For many organizations, adopting a SaaS model is all about achieving economies of
scale that can fuel their growth, efficiency, and innovation. At the core of this mindset
is the underlying need to build a SaaS environment that aligns the profile of tenant
activity with the consumption of infrastructure resources. While it’s our goal to
achieve this alignment with whichever technology we’re using, there are some tech‐
nologies that can simplify the level of effort that’s required to achieve this goal. This is
precisely where serverless compute strategies shine. To better understand why, let’s
start by considering the dynamics that teams face as they’re building out their SaaS
environment (shown in Figure 11-1).

278 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

Figure 11-1. Serverless SaaS: aligning activity and consumption

In this diagram, I’ve tried to represent a conceptual view of how you might profile the
activity within a SaaS architecture. This graph is meant to represent an operational
view into tenant infrastructure consumption (the dashed line) and tenant activity (the
solid line). The tenant activity attempts to convey just how unpredictable tenant
activity can be. This unpredictability is driven by a number of different factors. The
number of active tenants, the variable nature of tenant workloads, and a host of other
factors can make it quite difficult to anticipate how much compute infrastructure is
needed to meet the continually evolving needs of your tenants. This is further compli‐
cated by the fact that tenants may be onboarding and exiting throughout the life of
your system.

Even though it can be difficult to precisely anticipate tenant activity, we still have a
clear goal of minimizing the overprovisioning of resources. In the diagram, I’ve rep‐
resented the fantasy version of how infrastructure consumption would ideally track
tenant activity within our environment. In this example, the infrastructure consump‐
tion graph mirrors the tenant activity, delivering just enough infrastructure to meet
the demands of tenants at any given moment in time. While this may not be entirely
practical for every solution, it is still the mental model that SaaS architects are trying
to follow when designing their systems. They want the system to respond as

The SaaS and Serverless Fit | 279

dynamically as possible, optimizing the infrastructure costs and enabling the econo‐
mies of scale that are essential to building a successful SaaS business.

Now, this might be where you would view cloud elasticity and the idea of horizontal
scale as the answer to this problem. And, for the most part, that’s a perfectly reason‐
able expectation. However, most horizontal scaling technologies are implemented via
scaling policies that determine how and when your environment should scale. This is
where things get challenging. Even though compute can be dynamically scaled, some‐
one (you) still has to define how and when the system will need to scale up and down.
You have to write and apply these scaling policies and hope that you’ve identified a
strategy that will be both efficient and reliable. If your environment has somewhat
predictable workloads, this approach can work well. However, in a multi-tenant envi‐
ronment (as discussed earlier), it can be quite difficult to build a set of policies that
can universally address the unpredictable nature of tenant workloads. This generally
leads to scenarios where teams will opt to overprovision resources and adopt more
pessimistic scaling policies to limit their exposure to noisy neighbor, performance,
and resilience issues.

These challenges are all rooted in the idea that the compute resources of your envi‐
ronment are your responsibility. Yes, they can come and go based on your policies,
but you still have to ensure that the right level of compute resources is available when
needed. With serverless computing, as the name implies, you’re completely taking
away any notion of servers. Your code is simply executed by a managed service that
assumes responsibility for delivering the compute resources your system demands.
This allows you to push all the responsibility for scaling to the managed service (in
this case, AWS Lambda). To me, this is a game changer for SaaS architects.

In this model, you are no longer responsible for chasing the elusive set of scaling poli‐
cies. This frees SaaS teams up to focus more of their time on features and functions,
removing so much of the heavy lifting that comes with building an effective and effi‐
cient scaling strategy. The other piece of the puzzle here is cost. In a serverless model,
you’ll typically only pay for actual execution of your code. There’s no need for any
overprovisioning or idle capacity that’s waiting for spikes that may or may not hap‐
pen. With serverless, you only pay for actual invocation of individual managed func‐
tions. If a function is never called, it incurs zero costs.

Imagine how these dynamics influence the graph that we started out with
(Figure 11-1). If we’re focused purely on compute and are trying to align consump‐
tion with activity, serverless now makes this a much more achievable goal. In the pay-
as-you-go model of serverless, your compute infrastructure consumption in the
graph should match the activity of your tenants. And, to top it off, you’ll be realizing
this efficiency without any real dependency on policies. The managed service, by its
very nature, will ensure that compute consumption and costs are optimized.

280 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

The function-centric nature of the serverless computing model also brings some
potential additional value that goes beyond efficiency. Generally, with functions being
the unit of deployment, your environment will have a much more granular deploy‐
ment model. This allows you to push out changes and updates that have a much
smaller blast radius. This can be especially useful in a multi-tenant environment
where there’s added emphasis on achieving zero downtime. The smaller deployment
units of a serverless model give you a better opportunity to minimize the scope and
impact of newly released code.

The serverless computing model can also open up simpler paths for attributing con‐
sumption to individual tenants. Since each function can only be invoked and con‐
sumed by one tenant at a time, it becomes much easier to attribute compute
consumption to individual tenants. This same dynamic also creates new opportuni‐
ties to capture and profile compute telemetry data on a tenant-by-tenant basis. Over‐
all, these factors can make it easier to build out a tenant-aware operational experience
for the compute layer of your multi-tenant architecture.

While most of my focus will be on the use of managed functions to scale your appli‐
cation’s services, the alignment between SaaS and serverless goes well beyond man‐
aged functions. Serverless has found its way into a growing list of additional
infrastructure services. Messaging, analytics, storage, and a host of other managed
infrastructure services have begun to incorporate serverless capabilities into their
compute models. This allows you to bring the value proposition of serverless to more
layers of your SaaS architecture. This has been particularly significant for designing
multi-tenant storage strategies where teams are constantly struggling with how to
rightsize the compute footprint of their databases. In Chapter 10, we also saw how the
AWS Fargate compute model allowed organizations to realize the benefits of server‐
less computing in a container-based environment. In general, this move to more and
more serverless-based computing models is going to enable builders to further maxi‐
mize the efficiency of their SaaS environments.

While this chapter focuses on designing and building solutions
with serverless computing, it’s important to recognize that server‐
less may not be a fit for every part of your system. Certain work‐
loads may still be better suited for containers or other computing
technologies. If, for example, you have parts of your system that
can and must use long-running tasks, then you may choose to
adopt a different compute model for these use cases. In general, we
don’t want to view any compute strategy as an all-or-nothing
choice. Instead, you should be finding the mix of compute models
that best align with the workloads and goals of your system.

The SaaS and Serverless Fit | 281

Deployment Models
Let’s shift to looking at what it means to actually build a multi-tenant environment
using AWS Lambda as our managed compute service. The logical place to start is
with deployment models. We generally need to get a good handle on what it looks
like to use Lambda to deploy the different services of our tenant environments in
siloed, pooled, and mixed mode models.

Before we can dig in, though, we need to have a common understanding of how our
application’s microservices will be represented in a Lambda environment where all of
our code is written and deployed as individual functions. To help with this, I’ve pro‐
vided a view of the basic moving parts of a Lambda microservice (Figure 11-2).

Figure 11-2. Logical microservices

This diagram includes two simple examples of Order and Product microservices,
each of which supports a handful of operations. The services expose an entry point
(typically an API) that represents their contract with the system. The underlying
implementation of a service is allowed to change freely as long as it doesn’t break this
contract. These services often reference, encapsulate, and own storage resources.
These are just the basic principles of microservices, where we create autonomous
services that can be built and deployed independently.

Now, this gets more interesting when we look inside these services. Each of the opera‐
tions within these microservices is associated with a separate Lambda function that is
responsible for implementing the functionality for that operation. Together, these
functions are responsible for implementing the contract of the service. At the same
time, the Lambda managed service has no real awareness of any relationships
between these functions. This is why I’ll often refer to these services as logical micro‐
services. While Lambda makes no binding between these functions, our teams will
still view them as a grouped set of functions that are mapped to the contract and
implementation of our overall microservice.

282 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

The builders that work on these services will typically work on them collectively.
They will version, deploy, and test them as one unit. We’re essentially bringing all the
value systems that come with the microservice model and assembling a view of our
functions that is consistent with these fundamental microservice principles. Even
though your microservices are often likely to be represented as a collection of func‐
tions, It is possible that you could have a service that is represented by a single func‐
tion. The key is that you do not need to view microservices as having a one-to-one
mapping with functions.

Of course, this whole discussion of logical microservices has a direct mapping to how
we think about our multi-tenant deployment models. As we start describing the sig‐
nature of our deployments, they won’t just be functions—they’ll be represented as
logical microservices that are deployed as a group of functions that implement the
microservice’s contract/functionality.

Pooled and Siloed Deployments
The idea of implementing siloed and pooled deployments looks a little bit different
when you’re using serverless functions. With other stacks (like EKS), you are often
given grouping constructs that can define how compute resources are deployed,
drawing boundaries around compute resources. However, with Lambda, there really
aren’t mechanisms that allow you to place functions into specific groups (other than
tags, which don’t really fit well with the multi-tenant grouping we’re trying to create).

This means that our deployment models are really implemented by deploying sepa‐
rate function groupings for tenants and using routing mechanisms to connect tenants
with their functions. This makes the deployment part of this story relatively straight‐
forward. Figure 11-3 illustrates what it might look like to have your application’s ser‐
verless services deployed into pooled and siloed models.

Figure 11-3. Supporting serverless siloed and pooled deployments

On the left and in the center of this diagram are two premium tier tenants that have
siloed serverless compute resources. This basically means that I have provisioned and

Deployment Models | 283

deployed separate copies of the Order and Product functions for each of these siloed
tenants. The functions that are in these silos are entirely dedicated to these premium
tier tenants. On the righthand side are our basic tier tenants running in a pooled
model. These functions will be shared by all of the basic tier tenants. It’s important to
note that, even though we have separate deployments for each of these experiences,
the functions for each of these tenants are all running the same version of your code.
In fact, if you were to update a function, a separate copy of that function would need
to be deployed for each of these tenants.

In looking at these deployment models you might be wondering if supporting siloed
Lambda functions really adds any value. Lambda functions, by definition, are never
shared. If a tenant invokes a function, the scope and life of the functional call will be
dedicated to that one tenant. If multiple tenants are calling that same function,
Lambda will add more instances of that function to meet your demands. This means
that Lambda functions are inherently siloed already. So, what value do we get from
supporting separate siloed deployments?

There are multiple advantages that can still come with deploying siloed tenant func‐
tions. Noisy neighbor is certainly a big part of this story. Even though Lambda scales
our functions it still has concurrency limits that can impact how many simultaneous
executions are allowed for a function. If I simply have one function that is deployed
and shared by all tenants, there is the potential for me to exceed Lambda’s concur‐
rency limits. This could trigger throttling and lead to noisy neighbor conditions. By
deploying separate, dedicated functions for my siloed tenants, I can ensure that only
one tenant will be invoking its functions. This enables me to apply separate concur‐
rency policies for my siloed and pooled deployments. It also gives me greater control
over how tenants are allowed to consume these functions.

Siloing functions can also influence the tenant isolation model of our environment,
enabling you to attach isolation policies at deployment time. This can simplify how
isolation is applied, reducing the effort and complexity that comes with defining your
serverless tenant isolation model. I’ll go deeper into the trade-offs when we review
different serverless tenant isolation strategies later in this chapter.

Mixed Mode Deployments
As we’ve seen throughout our discussion of deployments, siloing and pooling
resources does not have to be an all-or-nothing proposition. With serverless, we cer‐
tainly have options to selectively silo a subset of tenant functions (microservices) to
address noisy neighbor, tiering, isolation, and other requirements. With serverless,
this really just means we can take a more fine-grained approach to determining how
our functions are deployed. Figure 11-4 provides one example of how you might
apply mixed mode serverless deployments in a multi-tenant architecture.

284 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

Figure 11-4. Serverless and mixed mode deployment

In this example, I have selected a set of serverless microservices that will run in a
siloed model (shown on the left). The idea is that the Order and Product services rep‐
resent key areas where the business determined that there’s value offering this func‐
tionality in a siloed model. Meanwhile the rest of our services (shown on the right)
are able to be run in a pooled model.

We’ve talked about this mixed mode before. Serverless adds a bit of a new wrinkle,
though. With traditional compute, you’d need to be weighing the value, cost, and
complexity that would come with provisioning per-tenant resources for each of these
siloed tenant environments. You might also need to consider how the pooled com‐
pute resources would be effectively scaled to meet the multi-tenant demands of your
tenants. The factors are less relevant when you’re using serverless compute. Regard‐
less of what’s siloed and what’s pooled, for example, you’ll only end up paying for
what you consume. There’s also less effort that will go into determining how these
siloed and pooled functions will need to scale. Instead, you can lean more on the
Lambda service to efficiently scale your compute.

The simpler cost and scaling story of serverless computing can make this more invit‐
ing for some teams. At a minimum, serverless reduces some of the friction and chal‐
lenges that can be associated with supporting a mixed mode deployment model.

More Deployment Considerations
There are a few nuances of serverless deployment models that might influence your
approach to selecting which compute resources are siloed or pooled. To understand
your options, we have to start by looking at the lifecycle of the functions being

Deployment Models | 285

managed by the Lambda service. Each time you invoke a function, Lambda has two
possible paths. If you’re invoking a function for the first time, Lambda will need to
create the first instance of that function. Then, after your request is completed, a sub‐
sequent request can reuse that function. The idea is that Lambda is getting efficiency
out of reusing the instances that have been recently executed.

There are two specific dimensions of this lifecycle that we want to focus on. The first
of these is cold starts. A cold start describes the invocation of a function that has not
been recently executed. In these instances, you may see some slight added latency
associated with processing this request. The impact of this latency will vary based on
the technology stack you’re using, the nature of your function’s code and dependen‐
cies, and other factors. For a pooled environment, the impact of cold starts is likely to
be negligible since there will be many tenants exercising the system, which should
limit the frequency of hitting any cold start conditions. However, for a siloed environ‐
ment that’s only being exercised by a single tenant, you may see more instances where
cold start could impact your tenant’s experience. This could influence what you
choose to silo and it could lead to the introduction of targeted warming strategies that
reduce the impacts of cold starts.

The other lifecycle issue relates to state residue. Each time Lambda processes a func‐
tion invocation for a tenant, that function will be executed for that tenant only.
Lambda will scale to meet the needs of multiple tenants by spinning up more instan‐
ces of a given function. While there may be multiple copies of a function running,
each invocation is still mapped to a single tenant. This is mostly a good thing. How‐
ever, once a function has completed processing a tenant request, the system can then
reuse that instance to process a request for another tenant. For the most part, this all
works fine and the reuse of a previously executed function shouldn’t cause any issues.
However, if the implementation of your function somehow holds or references state
information that is not released upon completion, that state could be accessed by a
subsequent tenant request. This is especially essential to pooled environments where
your functions will be heavily shared between tenants. Ideally, your code should not
be employing any constructs that would allow state to be carried over from one
request to the next. However, given the potential exposure here, your functions
should leverage policies/libraries that will ensure that state is cleared when they are
done executing.

Control Plane Deployment
With serverless (and all of our SaaS deployment models) we have to decide how and
where we want to land the control plane elements of our multi-tenant architecture.
The options you have are really dictated by the different constructs that are part of
your broader environment. In a Lambda environment, our choices are mostly limited
to the higher level, coarse-grained mechanisms that are used to group and isolate any

286 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

cloud resources. In Figure 11-5 I’ve shown two possible strategies for deploying a
control plane in a serverless model.

Figure 11-5. Deploying a serverless control plane

For the most part, your options come down to determining which AWS account will
house your control plane. At the top of this diagram, the control and application
planes are deployed into separate accounts. You might choose this option if you have
security, compliance, or other factors that require a more absolute boundary between
your control and application planes. There may also be performance and security
requirements that lead you to land your control functionality in another account,
limiting your control plane’s ability to impact any concurrency requirements that are
associated with your application plane. This, of course, is a bit of a heavier lift and
would require cross-account access to be configured to enable interactions between
the control and application planes.

At the bottom of Figure 11-5, we see the simpler version of this where the control
plane lives in the same AWS account as your application plane. This model essentially
has you deploying your control plane functions and supporting infrastructure along‐
side the functions and infrastructure that are running your application plane. This
certainly simplifies the deployment and configuration of the control plane. However,

Deployment Models | 287

with this approach, you would have to be comfortable with the security, concurrency,
and isolation model considerations that come with this deployment pattern.

As you might imagine, I’ve really just scratched the surface here. There are other
AWS technologies that can influence how you might choose to deploy your serverless
control plane. The main takeaway is that this needs to be on your radar as you think
about the overall deployment footprint of your serverless architecture.

Operations Implications
Any time we distribute the footprint of our SaaS architecture, we must also consider
how this more distributed signature can impact the overall operational complexity of
our SaaS environment. This idea of having multiple copies of our functions deployed
in these siloed and pooled configurations can certainly raise questions about how this
impacts the operational footprint of your solution. For some, a propagation of per-
tenant copies of functions could be seen as adding complexity to the management
and deployment of your environment.

This is a general problem that applies universally to any environment where we have
distributed deployments. However, I feel like serverless magnifies the potential
impacts of this problem. With serverless, we can have much more fine-grained units
of deployment and management. As an example, in a traditional compute model, my
unit of management and operational visibility tends to be more at the microservice
level where the microservice represents the composite of all the operations that are
supported by that service. With serverless, each of those operations could correspond
to individual functions. Now, layer on that the need to support for multiple tenant
environments and you can imagine how this could rapidly grow the operational com‐
plexity of your environment.

These factors don’t suggest that serverless is a bad idea. They do, however, suggest
that you may need to expend more energy to arrive at an operational experience that
accounts for this more granular view. You’ll want your operational telemetry to allow
you to focus on the individual functions of your system. Being able to pinpoint
health, availability, and scale issues means having richer insights into how these indi‐
vidual functions (not just services) are performing. The mechanisms and tools are
there to make this work, but it’s something that should be on your radar as you archi‐
tect your system. This is especially true if you’re expecting to support a large popula‐
tion of tenant environments.

Routing Strategies
If you’re planning to support a range of deployment models, you must also consider
how you will contextually route traffic to the functions that are associated with differ‐
ent tiers and deployment profiles. The mechanics of enabling your serverless routing

288 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

model are relatively straightforward. There are, however, different routing patterns
you might adopt based on the needs of your solution. Figure 11-6 provides a concep‐
tual view of the simplest routing model.

Figure 11-6. Routing to tenant deployments

At the bottom of this diagram I’ve introduced a range of tenant environments that are
using different deployment models. There is one universal set of functions that repre‐
sent the implementation of our application plane service. Here, I needed to create
three separate copies of these functions to support the deployment requirements of
my tenants. Now, as requests flow into my system, I need to be able to use tenant con‐
text to route these requests to the appropriate Lambda function. For this example,
you’ll see that this function mapping is defined by the API Gateway.

For this particular solution, I’ve shown a single instance of the API Gateway that
serves as the entry point to all of my functions. That means that I’ll have to define
separate routes for each of the functions that are part of my tenant deployments.
While it’s handy to have all of this routing resolved via a single instance of the API
Gateway, there could be a point at which this could get unwieldy. The number of ten‐
ants you need to support, the number of routes you’re mapping—there are multiple
factors that might suggest you may need another approach.

One way around this would be to consider supporting separate instances of the API
Gateway for each of the tenant deployments. Figure 11-7 provides a conceptual view
of the moving parts that would come with introducing separate API Gateways.

Routing Strategies | 289

Figure 11-7. Separate API Gateway instances for each tenant

In this model, I have separate API Gateways instances that are scoped to each tenant.
This means that each API Gateway will only be responsible for processing and rout‐
ing requests to a single set of functions for a given tenant silo or the pooled tenants.
This creates a bit more of a logical binding between each API Gateway and the indi‐
vidual functions that belong to each deployment. It also enables more granular con‐
trol over the policies that might be implemented at the API Gateway level for each
deployment.

While this model has its upsides, it does require you to create some mapping between
tenants and their corresponding API Gateway URL. As each tenant submits a request,
you’ll need to use the tenant context and tenant tier to determine which API Gateway
should process the request. This added level of indirection, for some, can feel
unnatural.

Cost should also be a factor when choosing your routing strategy. It’s true, for exam‐
ple, that we could add separate API Gateways for each tenant. This may be a perfectly
reasonable strategy if you have a smaller number of siloed tenants that have their own
API Gateway. However, if you attempt to scale this to hundreds or thousands of ten‐
ants, it could impact cost, operations, deployment, and a host of other dimensions of
your SaaS environment.

290 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

Onboarding and Deployment Automation
The onboarding, provisioning, and deployment strategy for serverless environments
typically rely on the traditional tools that provision and configure your per-tenant
infrastructure. If you’re running AWS, which is where I’ll be focused, this usually is
achieved through a combination of DevOps tools, including the CDK, CloudForma‐
tion, Terraform, and so on. AWS also provides a variety of build and deployment
orchestration tools that can automate these processes (CodeBuild, CodePipeline, and
CodeDeploy). In addition to these tools, there’s also the Serverless Application Model
(SAM) that is targeted specifically at the serverless configuration and deployment
experience.

Let’s start by looking at onboarding. As you can imagine, the nature and complexity
of your onboarding experience is directly influenced by the deployment and tiering
strategies you’ve selected for your system. If everything is pooled, this is pretty
straightforward. However, if you support a tiered model, you have significantly more
moving parts in your deployment. This, of course, is true for any SaaS architecture.
What I want to focus on is the bits of automation that relate more to the serverless
dimensions of this automation problem.

While we have multiple tools available to implement onboarding, I’m going to focus
on SAM since it’s purpose-built for configuring, provisioning, and updating server‐
less architecture. Figure 11-8 provides a view of how we can use SAM to describe the
configuration of each of our tenant tiers.

Figure 11-8. Defining serverless tiered environments

Onboarding and Deployment Automation | 291

At the right of the diagram, you’ll see a tenant deployment. This is a conceptual place‐
holder that is meant to represent the universal template for the infrastructure and
resources that are needed to support tenant deployments (as part of the application
plane). For this example, each deployment includes an API Gateway, a set of func‐
tions that implement our application plane microservices, and storage (in this case,
an RDS database). Our basic and premium tier tenants will each have deployments
that match this architecture. They may be configured differently, but they share a
common footprint. The key takeaway is that, as we onboard tenants, we’ll need to
either provision a new deployment (premium tier) or configure tenants to be added
to an existing deployment (basic tier).

Provisioning and configuring these jobs will be handled by the SAM template you see
at the center of the diagram. This baseline template describes all of the infrastructure
that will be included in each tenant deployment. In this case, it will be responsible for
configuring and deploying all the infrastructure shown on the right (in the tenant
deployment). It will set up the API Gateway, deploy the Lambda functions, configure
the routes, and provision the RDS database used by our system. It’s worth noting that
a more realistic example would have multiple microservices, each of which could
have its own storage infrastructure.

On the left, you’ll see where I’ve created separate tier configuration files that supply
all the parameters that are used to define the variations associated with each tier. For
this example, I’ve included basic and premium tiers. This somewhat simplified model
focuses on setting specific performance and scaling parameters for each tier. You’ll
see that each set of parameters reference provisioned and reserved concurrency set‐
tings, both of which will influence the scale and performance profile of each tier. The
provisioned concurrency setting is used to control the number of pre-initialized exe‐
cution environments you want in your Lambda environment (tier). For basic tier ten‐
ants, I’ve set this to zero with the assumption that the concurrent activity across
multiple tenants will keep most functions warm, reducing the need to pre-warm any
of the basic tier functions. Meanwhile, for premium tier tenants, I’ve opted into using
some level of provisioned concurrency to overcome the cold starts that could show
up more frequently in a siloed environment. The data in these configuration files is
used as input to your SAM template, feeding in and configuring the parameter place‐
holders that exist in the template. It’s fair to say that there would likely be more mov‐
ing parts to this in a fully formed environment where your tier configurations might
require more elaborate constructs to define more complex siloed and pooled
deployments.

While Figure 11-8 provides us with a view of the key components of this onboarding
experience, it doesn’t explain how you would introduce the tools and processes that
would apply these constructs as part of a fully automated onboarding experience. In
Figure 11-9 I’ve provided an example of how you might incorporate these concepts
into your onboarding flow.

292 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

Figure 11-9. Onboarding orchestration

Clearly, there are lots of moving parts to this experience. Let’s work from left to right,
starting with our tenant triggering the onboarding process (step 1). The control
plane’s onboarding service will handle all the basics associated with creating a new
tenant, identity, and so on. It will also invoke the Tenant Provisioning service, which
is responsible for creating and configuring any per-tenant resources.

Now, at the bottom left of the diagram, I’ve introduced a new table to support the
onboarding experience. This table is essential to this particular serverless onboarding
process. It is used to keep track of the different tenant deployments that are part of
our serverless environment. It is the mechanism that associates a tenant with its cor‐
responding infrastructure stack and Lambda function. Tenant provisioning consults
this table during the onboarding (step 2). If the tenant being onboarded is a basic tier
tenant and that tenant is the first basic tier tenant to be added to our environment,
the provisioning service will insert a new row into this table (shown here as the first
row). For this example, I’ve shown the table in a state where the first basic tier has
already onboarded, leaving behind the first row shown in the table. The deployment
column for this row also indicates that this stack is using a pooled model. Since a
pooled model will apply to multiple tenants, the column has no specific tenant ID.
Instead, the tenant ID column has a value of “pooled” indicating that this entry corre‐
sponds to all basic tier tenants.

Onboarding and Deployment Automation | 293

After this entry is created, the Tenant Provisioning service will invoke our onboard‐
ing pipeline, which uses AWS CodePipeline to automate the onboarding flow (step 3).
This code pipeline uses AWS CodeBuild to retrieve and process the universal SAM
template that describes our tenant environments. For this example, the template is
retrieved from an AWS CodeCommit repo (step 4). Our build process will then pack‐
age our template and deploy it to an S3 bucket so it can be referenced from a stan‐
dard, accessible location going forward (step 5).

The last step in this process is to actually execute our packaged SAM template. This is
achieved by invoking a Lambda step function (step 6). This step function retrieves the
tier configuration settings that we discussed earlier, sending them as parameters into
a SAM deployment request that references the packaged S3 template (step 7). Execut‐
ing this deployment will result in the creation of our first basic tier, pooled tenant
environment (step 8).

I did want to highlight one last dimension of this process. At the bottom right of the
diagram, you’ll see that I’ve shown a table with tenant API Gateway entry points. For
this solution, I’ve opted to use a separate API Gateway for each deployment. For this
to work, I’ll need to keep track of which API Gateway URL maps to each tenant or
tier. This data will be used to route tenant requests to each tenant’s function. To make
this work, we need to track and store this mapping information. Our onboarding
automation must include a process that stores this data in the mapping table (step 9).
Basic tier tenants will share an API Gateway entry point and premium tier tenants
will each get a separate entry in this table.

At this point all the infrastructure that’s needed for our basic tier tenants is in place.
However, what would it mean to onboard another basic tier tenant (since these ten‐
ants are running pooled infrastructure)? When the process executes for the next basic
tier tenant, the Tenant Provisioning service will see that a basic tier entry already
exists in the tenant stack mapping table. So, instead of redeploying the infrastructure
again, it will only introduce the incremental configuration entries that are needed for
this new tenant.

Now, let’s consider how onboarding siloed, premium tier tenants would fit into
this flow. Most of the end-to-end process is very much the same. The key differ‐
ence here is that a siloed tenant will end up with its own unique entry in the ten‐
ant stack mapping table. This allows us to have a completely separate stack that
can be tracked and updated for the tenants that have dedicated infrastructure and
Lambda functions.

This covers the basic moving parts of onboarding automation in a serverless environ‐
ment. The other piece of the puzzle is the deployment of updates. Once these envi‐
ronments are all up and running, we’ll still need some way to push out changes to our

294 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

serverless architecture that has awareness of the different tiers and deployment mod‐
els. Figure 11-10 provides a view of how you can automate the rollout of new features
and updates.

Figure 11-10. Applying tier-aware updates

This diagram is focused on the developer update experience. On the left you’ll see a
developer that’s introducing a new microservice into an environment where we’ve
already deployed a number of tenants with different tiers. For this to work well, the
developer should be able to simply build and check in their microservice code
without worrying about how this code will get deployed to all the tenant environ‐
ments. We’ll also need to update the SAM template to reflect the presence of the new
microservice. I’ve shown both being checked into a CodeCommit repository.

From here, we’ll use CodeBuild to package our updated template. Then, our step
function will iterate over all the entries in the tenant stack mapping table to apply this
updated template to each of our tenant environments. This, to me, is one of the essen‐
tial and often overlooked pieces of the serverless deployment automation puzzle.
There are no built-in constructs or tools that can directly support this need to keep
track of tenant stacks and apply the updates across all of your different environments.
Is a step function and a table the right way to implement this? Maybe. This happens
to be how I’ve shown it here, but there may be other options that might better fit your
overall automation experience. Ultimately, though, something will have to track this
tenant stack mapping information and weave it into your deployment strategy.

It’s also worth noting that this same mechanism could be used to stage rollout of fixes
or new functionality. You could augment this tenant stack mapping table, adding
additional flags that could indicate how and when tenants would have updates
applied. This could become part of a canary or wave deployment strategy.

Onboarding and Deployment Automation | 295

Tenant Isolation
While the principles and general sentiment of tenant isolation remain unchanged in a
serverless environment, there are specific serverless isolation nuances that need
exploring. With serverless environments, isolation strategies can be applied at multi‐
ple layers in your multi-tenant architecture. For example, you can introduce isolation
policies at the API Gateway layer, observing inbound tenant requests and controlling
the functions and operations that can be invoked by each tenant. There are also
opportunities to attach isolation policies directly to functions. The point is that you’ll
want to evaluate each of these options and figure out which flavors of isolation might
best fit the needs of your serverless SaaS architecture. The sections that follow will
outline the moving parts of each of these serverless isolation models.

Pooled Isolation with Dynamic Injection
Isolating tenant resources in a pooled environment is always more challenging. Gen‐
erally, with any pooled model, you’ll need to leverage some form of runtime-applied
policies as part of your isolation model. With runtime policies, this means that your
developers will need to introduce bits of code that will apply your isolation policies to
each tenant request. Of course, we’d like this process to be as simple and as straight‐
forward as possible, limiting our dependencies on teams to comply with complex iso‐
lation mechanisms. We also want our policies to be centrally managed outside of the
developer’s view.

One way to approach this problem is through isolation credential injection. This
strategy moves most key parts of the pooled isolation implementation out to the API
Gateway as a preprocessing step that is applied to each inbound request. We talked
about injecting credentials as a general technique in Chapter 9. However, I want to
look more closely at the specifics of how this strategy could be applied in a serverless
environment. Figure 11-11 provides a high-level view of the serverless credential
injection model.

For this example, we have an Order service that relies on a DynamoDB table to store
its order information. This Order table uses a pooled storage model that commingles
the data for all tenants within the same table. The table puts tenant identifiers in its
partition key to associate items in the table with individual tenants. With injection,
our goal is to generate the isolation credentials before the request makes its way into
the Order microservice. The microservice would just receive the credentials and
apply them to its Order table interactions, limiting its access based on the tenant con‐
text of the injected credentials.

296 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

Figure 11-11. Serverless isolation with credential injection

All of the moving parts of this injection mechanism are implemented at the API
Gateway layer of your architecture. In Figure 11-11 you’ll see that I’ve attached a
Lambda authorizer to the API Gateway. This authorizer function extracts the tenant
context from the request, determines the nature of the operation being performed,
and identifies the isolation policy that will be used to scope access. Here, I’ve shown a
sample policy at the bottom right of the diagram that scopes access to the Order table
based on the current tenant context. This policy is populated with the tenant context
and sent into the identity and access management (IAM) service via an assumeRole()
call. The role takes the policy/tenant context and generates a set of credentials that
constrain access to the scope defined in the policy.

Tenant Isolation | 297

The credentials returned by this process are then injected into the header of the
request being sent into the microservice. The service will still have some responsibil‐
ity for applying these credentials. For this example, the credentials would be used
when initializing the database (DynamoDB) client and applied to each request that
attempts to access the data in the Order table. This places minimal effort on the
microservice developer, allowing them to simply acquire and apply the injected
credentials.

This approach also creates the opportunity to cache your credentials at the API Gate‐
way, helping teams overcome some of the latency and overhead that comes with
acquiring credentials for every tenant request. This is especially relevant in a server‐
less environment where your functions are not meant to hold state across different
tenant requests.

The particular approach to isolation moves your policies away from your microser‐
vice. They’re now centrally managed and processed at the API Gateway level. This
also creates opportunities for optimizing your isolation model. Here, you can now
cache the acquired tenant credentials and reduce the overhead associated with run‐
ning assumeRole() on every request. You could also leverage the time-to-live (TTL)
of the gateway to control the caching lifecycle of your credentials. The performance
gains that come with this could be critical for some environments.

While there is a lot of upside to this approach, it does come with some downside.
Some teams prefer to see these isolation policies owned, versioned, and managed by
each microservice—especially since the policies are often tightly connected to the
individual microservices. The alternate approach, one we discussed in Chapter 9, is
having each microservice own responsibility for defining policies and generating its
credentials. You could certainly argue that the policies should be encapsulated by the
service and viewed as part of its underlying implementation. With this approach,
your implementation would flow the tenant context into the serverless functions, and
each function would include the code needed to acquire the tenant-scoped
credentials.

Deployment-Time Isolation
Applying isolation to siloed functions is a much more straightforward story. If you’ve
opted for a siloed model, this means that these siloed tenants will have dedicated
functions that can only be executed by one tenant. Given this reality, we can take a
much simpler approach to defining our functional isolation model, attaching isola‐
tion policies to your dedicated tenant functions when they are deployed. Here, your
DevOps tooling would assume responsibility for configuring a function’s isolation
policies during the onboarding of a siloed tenant. Figure 11-12 illustrates how this
deployment-time isolation model works in a serverless architecture.

298 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

Figure 11-12. Deployment-time siloed isolation with Lambda functions

Figure 11-12 includes the same Order microservice that was in the prior example.
The only difference now is that it is deployed in a siloed model. When the provi‐
sioning process creates this microservice, it attaches a Lambda execution role to
each of the functions in that microservice. This execution role references the pol‐
icy that you see at the bottom right of the diagram. This policy restricts this func‐
tion’s access to the Order_Tenant1 table. Any attempt to access another tenant’s
table will be denied.

This, as you can see, has genuine advantages over any runtime isolation strategies.
Gone are all the injected credentials and special handling that was required for our
pooled tenants. Now, everything happens during deployment and, for the life of these
deployed functions, the microservice is constrained to Tenant 1’s order table. This is
simpler to build and has less runtime overhead. Another upside is that your isolation
policies can be scoped at the function level, meaning they can be more fine-grained
and focused exclusively on implementing the isolation needs of individual functions.
In other compute models, your policies may span all the operations that are part of a
microservice. This isn’t a huge advantage, but it does give you another level of control
over the scoping and management of your isolation model.

Simultaneously Supporting Silo and Pool Isolation
We’ve seen two different approaches that are quite different for siloed and pooled
deployment models. What may be less obvious is the fact that a single function may
be deployed into both pooled and siloed environments. This function could be
accessing a pooled DynamoDB table for basic tier tenants and a siloed Order table for
premium tier tenants.

Tenant Isolation | 299

The challenge is that each tier could employ different isolation schemes. This means
that the common code in your functions would need to contextually support different
approaches to accessing data and applying isolation policies. To better understand
how this might work, let’s look at a snippet of code that is used to access order data
that may be siloed or pooled (depending on the context of the tenant’s tier):

def __get_dynamodb_table(event, dynamodb):
 if (is_pooled_deploy=='true’):
 accesskey = event['requestContext']['authorizer']['accesskey’]
 secretkey = event['requestContext']['authorizer']['secretkey’]
 sessiontoken =
 event['requestContext']['authorizer']['sessiontoken’]
 dynamodb = boto3.resource('dynamodb’,
 aws_access_key_id=accesskey,
 aws_secret_access_key=secretkey,
 aws_session_token=sessiontoken
)
 else:
 if not dynamodb:
 dynamodb = boto3.resource('dynamodb’)
 return dynamodb.Table(table_name)

This code represents a helper function that’s part of the Order microservice. Its job is
to determine which flavor of Order table is being accessed. If this is a pooled tenant,
then the database (DynamoDB) client will need to be initialized with the credentials
that were injected by the API Gateway. However, if this is a premium tier tenant
(siloed), there is no need to use these injected credentials.

If you look at the helper function, it’s doing precisely what I’ve described here. It has
two distinct branches, both of which return a table object that is used to access data.
At the top of the function, the code checks to see if this is a pooled tenant. If it is
pooled, it will use the credentials that were injected to initialize the database client. If
it is siloed, the database client is constructed with the default credentials, which
means it is not scoped down to a specific tenant. It doesn’t need to be scoped in the
code since the execution role that was attached at deployment time will ensure that
the function is scoped to the appropriate tenant. Essentially, the scoping has already
been applied during the deployment of the function. The database client that was ini‐
tialized on either of these two paths is then used to create the table object on the final
line of the function.

While I’m covering this in the context of our serverless isolation patterns, it’s worth
noting that this code would look similar in other non-serverless environments. I
mostly included it here to give you a better sense of how you’d use deployment- and
runtime isolation policies within the same serverless function.

300 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

Route-Based Isolation
Any time you’re trying to secure an environment, you should be thinking about the
various layers at which you can limit control access. This mindset also applies to our
serverless tenant isolation model. Yes, we can and should be using the deployment-
and runtime isolation models I described earlier. At the same time, you can also
introduce more traditional protections at the API Gateway level of your serverless
SaaS architecture. Figure 11-13 provides one example of how you might introduce
controls at the API Gateway level as an extension of your isolation model.

Figure 11-13. Controlling access at the API Gateway level

For this example, I’ve shown some of the different mechanisms that can be used at
the API Gateway level of our architecture. If we work this diagram from left to right,
you’ll see that this starts with the inbound request that includes a JWT with tenant
context (step 1). This JWT enters the API Gateway and is processed by an authorizer.
This authorizer will extract the tenant context from the JWT and use this context to
configure an authorizer policy (step 2). This policy can configure the behavior and
enable API Gateway routes.

To better understand how this could be used, imagine we have a series of REST paths
being managed by our API Gateway. These paths are routing our tenant requests to
the appropriate tenant functions (services). For this example, I’ve shown three differ‐
ent deployments of the Order service for different tenant tiers or profiles. When a
request comes in from Tenant 1, I’d like to ensure that this request is only routed to
valid Tenant 1 functions. It’s here that my authorizer policy is configured to block
access to the routes that are accessing the paths that belong to other tenants (step 3).

Tenant Isolation | 301

You could also consider applying another variation of this model to serverless envi‐
ronments where you have separate instances of the API Gateway for each of your
function groups (siloed and pooled deployments). Figure 11-14 highlights how you
might use the presence of these separate API Gateways to control tenant access with a
more coarse-grained approach.

Figure 11-14. Limiting access via separate API Gateways

In this diagram, we have two siloed tenants. Each tenant has its own set of dedicated
functions that are accessed via a dedicated API Gateway. Now, with this model, you
can apply isolation policies directly to the API Gateway, attaching tenant-specific pol‐
icies to prevent cross-tenant access. It’s important to note that you’d want to apply the
API Gateway per tenant with some caution.

The main takeaway is that there can be more nuances to the isolation story. While we
know you need to protect resources at the point they’re being accessed, you can also
introduce controls at different layers of our multi-tenant architecture that can
enhance the overall isolation profile of your SaaS environment.

Concurrency and Noisy Neighbor
With every compute model you must consider how it will control the load that ten‐
ants can place on your system. The serverless model is no exception. It might be
tempting to assume that the managed nature of Lambda functions means that there’s
no need to worry about tenants saturating your functions or creating noisy neighbor
conditions. Of course, we know that’s not practical. Every compute model must
impose constraints to ensure its scale, health, and resilience. The real question, then,
is what constructs and mechanisms does Lambda give us to configure and control the
consumption of functions?

302 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

To better understand how Lambda addresses this topic, let’s start by looking at how
Lambda scales its functions. Figure 11-15 provides a conceptual view of Lambda scal‐
ing for the getOrder() function.

Figure 11-15. Managing the concurrency and scale of serverless functions

On the left of this diagram, you’ll see that I have a group of tenants that are consum‐
ing the getOrder() function. Each time a request is made to this function, Lambda
will execute a unique instance of that function. This means that, at any given moment
in time, there could be multiple instances of this function running. For this example,
six instances of the function are running concurrently; in a real-world scenario, you
could imagine there being a much larger population of concurrent instances of this
function.

Since Lambda can’t infinitely scale the number of instances concurrently, we need to
think about how we could limit the number of concurrent instances that would be
allowed for this function. This is where Lambda’s notion of reserved concurrency
comes into the picture. In this example, I’ve set that reserved concurrency to 100,
indicating that there can be no more than 100 concurrent instances of that function
running at a moment in time. You can imagine how this mechanism introduces a
range of configuration options in your serverless SaaS environment. It could, for
example, be applied strategically across the microservices of your solution, allocating
greater levels of concurrency to key, high-volume parts of your system. It could also
be connected to SLAs, ensuring that elements of your system are able to provide the
throughput that’s required.

Concurrency and Noisy Neighbor | 303

This same mechanism can be used to shape the tiering strategy of your application.
You could, for example, assign different reserved concurrency settings to each of the
tiered function deployments in your multi-tenant environment. You might, for exam‐
ple, put greater reserved concurrency constraints on Basic tier tenants to prevent
them from imposing load that would impact premium tier tenants. This is covered in
more detail in Chapter 14.

The key takeaway is that reserved concurrency represents yet another tool in your
multi-tenant serverless tool bag. As you design your serverless SaaS architecture, you
should be developing a general concurrency strategy to determine how best to allo‐
cate the concurrency across functions that are part of your system.

Beyond Serverless Compute
Up to this point, the bulk of my focus has been squarely on building out your server‐
less application services. In reality, the scope of the serverless topic is much broader
than Lambda, extending into a wide range of services that are part of the AWS stack.
Storage, messaging, analytics, and a host of other services in the AWS stack have been
actively adding support for serverless functionality.

Traditionally, many of the services that run on AWS have required builders to select
and size the compute resources for the particular instance of that service. Some data‐
bases, for example, require you to predetermine the compute footprint of your data‐
base. This would typically lead teams to overprovision their database to ensure that it
could meet the shifting database consumption patterns of their tenants. This repre‐
sents a real challenge for SaaS organizations and generally undermines the cost and
operational profile of your system. Now, with a serverless option, these same services
can reduce the need to bind to any specific compute size or profile. Instead, the com‐
pute becomes a managed layer of the service, scaling and sizing based on the actual
workloads being placed on the service. The goal is to bring the value of the serverless
model to a broader range of services, enabling you to bring the advantages of server‐
less to more dimensions of your SaaS architecture.

A Serverless SaaS Reference Solution
This chapter looked more broadly at the general patterns and considerations that you
can apply when architecting your own serverless SaaS solution. The team I work with
at AWS, the SaaS Factory, has also produced a serverless SaaS reference architecture
that lets you have access to the code of an end-to-end working multi-tenant serverless
environment. It provides you with a more concrete view of some of these strategies in
action.

I’ve placed the code in a GitHub repository. The strategies and techniques that are
referenced in this repository represent a single example that doesn’t cover the full

304 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

https://oreil.ly/jo0u6

spectrum of topics we’ve explored in this chapter. The nature of the solution also con‐
tinues to evolve to support new approaches, so some of what’s in the solution might
be a bit behind the curve. Still, overall, you may find the resource valuable if you’re
interested in getting into the next level of detail. Just know that what we covered here
is meant to expose you to patterns, while the reference architecture represents a sam‐
ple implementation that provides a view of one specific approach.

Conclusion
This chapter allowed us to dig into the patterns and strategies associated with using
serverless compute in a multi-tenant environment. My goal was to try and identify
the specific areas where serverless compute influences how you approach the deploy‐
ment, onboarding, isolation, and noisy neighbor footprint of your solution. High‐
lighting these nuances should equip you with a better sense of the constructs and
mechanisms that come into play when you’re building your architecture based on a
serverless compute model.

I started the chapter by looking at the fundamental value proposition of the serverless
compute model, highlighting the natural intersection between the profile of serverless
compute and the efficiencies you’re trying to achieve as a SaaS business. I highlighted
the natural intersection between serverless and the scaling and workload challenges
that surface in multi-tenant environments. As part of this, I also looked at how ser‐
verless removes some of the typical challenges that come with defining scaling poli‐
cies in a traditional environment.

Deployment models were next up in our exploration. This part of the chapter focused
mostly on how you could use serverless deployment models to support a range of
tiered experiences. This included exploring patterns for deploying serverless func‐
tions into different tenant environments that supported pooled and siloed deploy‐
ments. A key here was to highlight some of the scale and isolation considerations that
could be enabled through siloing serverless functions.

The next part of the chapter shifted to the onboarding and deployment automation
aspects of serverless environments. To me, this represents an area that can easily get
overlooked when building out your environment. The goal was to examine how ser‐
verless shapes the automation of onboarding strategies of your SaaS architecture. This
was followed up by a review of serverless tenant isolation models where I reviewed
some of the unique aspects of implementing isolation in a serverless multi-tenant
architecture.

The last bits of the chapter focused on some of the broader serverless considerations.
I wanted to be sure we took time to explore some of the configuration strategies you
can use to manage the consumption of serverless functions. We looked at how the use
of reserved concurrency could influence the tiering, availability, and general footprint

Conclusion | 305

of your multi-tenant architecture. I also discussed what it means to extend the reach
of serverless into more layers of your architecture, leveraging its strengths as part of
storage, messaging, and other aspects of your SaaS environment.

My broader hope is that I’ve made it clear how and why serverless technologies can
simplify aspects of your multi-tenant architecture. Serverless moves parts of your sys‐
tem to more of a managed experience where the footprint of the infrastructure is less
complex and the scaling options become much more manageable. It also gives you
new ways to think about how you compose a system and how you can use the
strengths of serverless to enrich your impact on the business, potentially enhancing
the margins, agility, and efficiency of your offering.

Now that we’ve covered the core concepts and reviewed working examples, we can
start thinking about the operational side of SaaS. In the next chapter, we’ll dig into
how you build out a multi-tenant operational experience that deals with the specific
challenges that come with supporting, managing, and operating a SaaS environment.
The goal will be to highlight some of the strategies and considerations that go into
creating a best-of-breed SaaS operations experience.

306 | Chapter 11: Serverless SaaS: Architecture Patterns and Strategies

CHAPTER 12

Tenant-Aware Operations

When you create a multi-tenant environment, a big part of your focus is on creating a
unified experience that allows you to manage, operate, and deploy your environment
through a single pane of glass. You want and need efficient, automated, repeatable
mechanisms that are purpose-built to address the unique profile of multi-tenant envi‐
ronments. You want to be that SaaS company that takes pride in its ability to manage
and operate your environment with a small, focused operational team. In many
respects, this operational view of a multi-tenant solution provides the greatest insight
into whether you’ve built a system that achieves the agility, innovation, and efficiency
payoff of the SaaS model.

The goal of this chapter, then, is to go deeper into the SaaS operations space and look
at the mindset, strategies, and considerations that go into building a best practices
operational experience. This means challenging and expanding on the traditional
notions of operations, looking more closely at how multi-tenancy influences the
operational profile of the entire business.

I’ll start by laying a foundation that explores the fundamentals of the SaaS operations
mindset. The goal will be to examine the operations landscape and outline the mental
model that teams often adopt when designing and building their operational tooling
and experience. You’ll see the intersection between the zero-downtime nature of SaaS
and the broader needs for data that can drive current and long-term strategy for the
business.

From here, we’ll shift into exploring the metrics data that is at the core of delivering
the business and technical insights that are used to analyze every aspect of a SaaS
business. We’ll look beyond the traditional infrastructure metrics, highlighting the
wider-reaching set of metrics that are used to measure and analyze every dimension
of tenant activity, business health, operational health, agility, and so on. Exploring
these different types of metrics will give you better insights into the overall analytics

307

profile that SaaS teams rely on to assess the state of the SaaS business. As part of this,
we’ll also look at cost modeling strategies that enable you to associate consumption
and cost with individual tenants.

We’ll also use this chapter to review different strategies that you can leverage to
implement this operational model, outlining different tools, techniques, and technol‐
ogies that are used to capture, publish, and aggregate metrics. This will transition nat‐
urally into exploring how these metrics and insights are surfaced through your
operational console. Here, I’ll focus heavily on the nuances of building out your own
tenant-aware console that supports specific multi-tenant capabilities that are essential
to managing and operating a SaaS environment.

To wrap up, we’ll examine how the build and deployment aspects of your environ‐
ment are influenced by the various multi-tenant deployment models you may be
required to support.

The SaaS Operations Mindset
Operations tends to have a pretty well understood scope for many software organiza‐
tions. However, in SaaS environments, I believe that successful teams are better off
when they adopt a broader view of the scope of their operational model. This is all
part of the shift from a product to a service mental model that requires organizations
to focus more heavily on the entire end-to-end customer experience as part of their
operational model. In this mode, you’re thinking about every step in the customer
journey and continually monitoring, measuring, and analyzing the quality of the cus‐
tomer’s service experience wherever they may have a touchpoint with your system.
This may already be the case for some teams. However, as we dig into the details of
this operational mindset, you’ll see how this model has a distinct impact on how
teams apply the concepts within an organization. It’s not about giving people new
titles—it’s a mindset that should have a cross-cutting impact on how the different
roles in your organization incorporate SaaS operations principles into their overall
approach.

To better understand this broader operations model, let’s look at how SaaS influences
the mindset of different parts of the organization. The easiest place to start is with the
“classic” view of operations, where a tech-focused team is on the frontlines of moni‐
toring and measuring the activity, scale, and health of your SaaS application. This
team faces a set of new challenges in a SaaS environment, where any outage or perfor‐
mance degradation could have a cascading impact across all the tenants that are part
of your system. Instead of operating a series of standalone customer environments,
these teams will be working with infrastructure that is shared by some or all of your
tenants. This dynamic adds a new dimension to the operational experience, requiring
new tooling, instrumentation, and constructs that can analyze system activity and
health. Fundamentally, teams need much more tenant-aware views into their

308 | Chapter 12: Tenant-Aware Operations

environments that allow them to effectively identify, react, and respond to opera‐
tional events.

Where this gets more interesting is when we look at operational considerations that
are outside of the traditional view. Here, we shift away from the urgency of creating a
zero-downtime environment, focusing more on the customer’s experience. The idea
is that we must identify and surface data that can tell us more about the overall expe‐
rience of tenants. For example, tenant onboarding represents a significant operational
moment for a SaaS provider. We want to be able to have customers move through the
onboarding process with as little friction as possible, moving them from onboarding
to extracting actual value in a timely manner. This is part of the operations experi‐
ence of your SaaS environment. Your teams and multiple roles in your organization
should have insights into this onboarding experience that allow them to assess the
quality of the tenant experience as they begin exercising the moving parts of your sys‐
tem. Multiple customers struggling to get traction would represent a significant
operational event that would need attention.

This same mindset can be extended to the other aspects of your organization. Your
Customer Success team, for example, should have access to insights that allow them
to monitor the customer’s ongoing activity, which features they’re using, where they
might be getting stuck, and so on. These insights enable teams to create a better over‐
all service experience for the customer, using data to profile and identify tenant pat‐
terns that may need to be addressed by the engineering teams. Product management
teams are also connected to this operational story. They may, for example, need
access to data on tenant consumption trends that could shape the tiering and pricing
experience of your environment. They may want to employ canary releases to test
features out on specific tenant populations or assess interaction patterns to find
points of friction in the user experience.

A big part of this mindset is focused on creating a proactive model where the opera‐
tional mechanisms and culture put greater emphasis on identifying trends and issues
before they might be impacting tenants. This is easy to understand when we’re talking
about system health, where the value of proactively detecting and resolving issues has
a clear impact on your SaaS business. This same proactivity, however, is also impor‐
tant to the other operational views of the business we’ve talked about here. Identifying
a tenant that’s having a bad onboarding experience is also essential to your opera‐
tional success. The same applies to customer success, product management, and
other parts of the business that may need to proactively identify trends that need
addressing.

The key takeaway is that SaaS operations should be viewed as a more holistic experi‐
ence that spans multiple roles in an organization. This, of course, relies on a fairly
significant shift in the culture of some organizations. In many environments, opera‐
tions has often existed in a bit of a silo where it’s treated purely as a technical domain.

The SaaS Operations Mindset | 309

Now, with this extended model, we’re asking other parts of the business to have a
more vested interest in the service experience of the business. That means asking
people to think somewhat differently about the scope of their roles and how they con‐
tribute to the overall operational profile of the business.

For some, taking on the added operational perspective may not be natural. This is
where leadership needs to play its part in setting the right operational tone for the
organization. In some instances, I’ve seen leadership assign teams shared operational
goals. This can help teams better prioritize their investment in operational tools,
mechanisms, and deliverables. Having a top-down, leadership-driven view of shared
goals can better emphasize the commitment the business is making in driving this
service-focused operational model.

All of this discussion of operations and new mindset may seem relatively straight‐
forward. Generally, it’s not hard to get teams to agree on the importance and value of
taking this broader view of operations. Despite having the philosophical alignment, a
number of the organizations I’ve worked with haven’t fully adopted these concepts.
The rush to build features and capabilities seems to continually push these opera‐
tional needs to the background. They become “we’re planning to get to it” areas that
never get the full attention they need. To me, if you’re really focused on building a
rich SaaS service experience, your business should give priority to building the opera‐
tional foundation and culture that can drive the growth and success of your SaaS
business. Your teams and your organization should be leaning into the operational
capabilities of your service—even at the expense of features and functions.

It’s important to note that operations should not be viewed as a static, one-time
investment. As your tenant requirements, architecture, market, and teams evolve, you
should be continually reevaluating the operational tooling, mechanisms, and metrics
that are used to manage and analyze the operational state of your business.

Multi-Tenant Operational Metrics
As a SaaS business, it’s essential for you to have your finger on the pulse of your ser‐
vice. SaaS teams are generally hungry for data and insights that span the full spectrum
of business and technical insights. Product owners, architects, builders, marketing,
CEOs—they should all have a vested interest in being metrics driven, using data to
continually evaluate how the business is performing and meeting the needs of ten‐
ants. This data is used to shape architecture decisions, product backlogs, tiering mod‐
els, onboarding, architecture strategies, and a host of other aspects of the business.

I’ve classified all of this data as “metric” data. I put any data that is used to analyze
infrastructure, tenant, and financial activity into this bucket. This data, which could
come from application and business sources, is used to drive operational and strategic
decisions across a broad range of roles and use cases. I distinguish this from

310 | Chapter 12: Tenant-Aware Operations

“metering” data, which is used to track the data that’s needed to generate a tenant’s
bill. These two areas can overlap in that the metrics data could also be used in a
metering context. The key is that metrics and metering are driving two separate use
cases.

To better understand this, let’s start looking at some of the different types of data that
could be collected as part of your solution’s metrics model.

Tenant Activity Metrics
Within a SaaS environment, your team will need insights into the specific activities of
individual tenants. This data will help you construct a more complete view of how
tenants are exercising the elements of your environment and, in some cases, correlate
that activity with other metrics that might uncover interesting patterns and trends.
Figure 12-1 provides a view of some of the metrics that fit into this category.

Figure 12-1. Examples of tenant activity metrics

You’ll see that I’ve broken tenant activity metrics into three separate categories to give
you a better sense of the scope that’s covered by tenant activity. At the top left, you’ll
see tenant onboarding. The metrics captured here are used to profile the tenant’s
overall onboarding experience, identifying potential bottlenecks within the flow that
might be impacting the tenant’s ability to get their environment up and running.
While the importance of having a robust, efficient onboarding experience is recog‐
nized by most teams, many do not expend the effort to capture metrics in this area.
Measuring the repeatability, stability, and scalability of onboarding is critical to
assessing the state of your SaaS business. It also represents the first impression you
might be making with the new tenant.

Onboarding metrics have added importance in any self-service onboarding flow.
Even with an internally managed process, you’re going to be interested in introducing
metrics that capture key data about the tenant’s onboarding experience. This is often
where you’ll see lots of focus on measuring each tenant’s time to value. This is a mea‐
sure of the time between initiating the onboarding flow and actually beginning to
realize the value proposition of your solution. If the steps in your solution make this
process too cumbersome, it could degrade tenant adoption or even lead to tenants
abandoning the service.

Multi-Tenant Operational Metrics | 311

The next category of tenant activity metrics, tenant app analytics, is shown in the
middle of the diagram. This represents the classic metrics that are used to track a ten‐
ant’s interaction with the actual application (think web analytics). Here we’re assess‐
ing how individual tenants are navigating through the application, identifying
potential areas where the user experience might be impacting a tenant’s productivity
or overall experience. This is a well understood area, but the idea of capturing this on
a per-tier or per-tenant basis adds a new layer of considerations.

Finally, on the far right of the diagram, you’ll see tenant lifecycle metrics or events.
Here, the system is capturing data about tenants that may be approaching or going
through different state transitions. Imagine, for example, having a metric that told
you that a tenant’s overall usage of the system was slowing. This, connected to the fact
that they’re approaching renewal, would help your team identify tenants that are con‐
sidering leaving the system.

Used together and in combination with other metrics, this data can provide insights
into key, actionable moments in the life of a tenant. Figure 12-2 illustrates one exam‐
ple of how this data could be used.

Figure 12-2. Correlating tenant activity to business events

Across the top of this diagram, I’ve shown examples of the two tenant states. On the
left is the onboarding state, which represents newly onboarded tenants. Under this
heading, you’ll see a series of metrics that are used to classify the success of their
onboarding experience. The level of activity of each tenant and the features they’re
accessing would be used to profile their progression through the onboarding experi‐
ence, assigning red (square), yellow (triangle), and green (diamond) states to tenants
that are in different stages of their onboarding experience. Those tenants that are get‐
ting value and exercising the system’s functionality are assigned a “green” state and
others who are making less progress might be yellow or red. These indicators let us
identify tenants that may need some outreach.

On the right, I have tenants that have been in the system for some time and I’m using
tenant activity to profile their ongoing use of the system. This is where tracking

312 | Chapter 12: Tenant-Aware Operations

activity takes on a different role, providing insights into tenants that may be reducing
their level of activity. This could be related to new challenges or it could be that the
team is reducing its dependency on our solution. Either way, this state also identifies
tenants that could be candidates for additional outreach.

Agility Metrics
Agility may not feel like something that can be measured. However, when you look at
the spectrum of operational activity, you’ll find that there are opportunities to surface
data that you can use to characterize the agility of your environment. If, as an organi‐
zation, you are making investments in mechanisms that are focused on maximizing
agility, then you should also be equally invested in identifying the metrics that will be
used to measure your progress toward that goal. SaaS business and technical leaders
should be using this data to continually assess agility trends and patterns, identifying
any emerging or persistent challenges that might be undermining the operational effi‐
ciency of the business.

Agility is used to pose any number of operational questions. How poised are you to
take on a burst of new tenants? How effectively are you rolling new features and capa‐
bilities? How quickly and proactively can the team respond to performance, scale, or
functional issues? These are all areas where the mechanisms and tools of your opera‐
tional experience are meant to shine. Now, you just need to add the metrics that
equip the business with data that can measure how these constructs are performing.
The following is a list of some of the key metrics you can use to measure your opera‐
tional agility:

Availability
Measuring operational agility starts with the most fundamental of metrics: avail‐
ability. Issues with uptime will undermine every other aspect of your agility story.
Teams with availability or stability challenges are more prone to limit releases out
of fear that introducing any new functionality might also translate into more out‐
ages. Availability, in some instances, is also a measure of the multi-tenant scaling
policies that you’ve adopted. Your architecture will need to employ policies and
strategies that can withstand the introduction of new tenants, noisy neighbor
conditions, and a variety of shifting tenant consumption patterns without miss‐
ing a beat. Tracking this data and measuring the system’s response will allow you
to assess your system’s ability to detect and respond to challenges before they dis‐
rupt tenants.

Deployment/release frequency
In a multi-tenant environment, build and deployment often present new chal‐
lenges. The siloed and pooled footprint of your tenant resources means that your
deployment tooling will need to consider how to contextually deploy updates
based on the unique infrastructure profile of each tenant’s environment. This can

Multi-Tenant Operational Metrics | 313

be tricky and can introduce issues if there are weaknesses in your deployment
automation. This includes considering how you might apply configuration or
schema changes to tenants in a zero-downtime environment. The more confident
you are in your release tooling, the more likely it is that you’ll embrace the con‐
tinual release of new features without fear of impacting the stability of your envi‐
ronment. This is where you’ll see overlap with the DevOps Research and
Assessment (DORA) metrics that many refer to when measuring the efficacy of
your DevOps footprint.

Failed deployments
There may be instances where you attempt a deployment and something within
your deployment tooling or automation fails. This may or may not be directly
visible to tenants, but it still represents an important agility metric for your SaaS
organization. It provides you with a more concrete assessment of the stability of
your deployment automation, potentially highlighting issues that can or are
impacting the overall availability of your environment.

Cycle time
If you’ve built an agile operational environment and you’re able to release fre‐
quently, then you should also be able to operate in more of a fail fast mode. Cycle
time is the key measure of this dynamic, measuring the time between having an
idea for a new feature and the time when that feature lands in the hands of cus‐
tomers. The idea is to rely on your agility to experiment and try new ideas with
customers, knowing that you can pivot rapidly based on their feedback. This pro‐
motes innovation and, ultimately, can drive greater loyalty with customers who
see more immediate response to their feedback.

Mean time to detection/recovery
A key element of agility is also focused on your ability to rapidly detect and
recover from issues. If some issue finds its way into the system, you’d like your
tooling and mechanisms to detect these issues as fast as possible, employing con‐
structs that can rapidly repair the environment. This might be a rollback or it
might be the release of a patch. The key is: how quickly is your tooling and auto‐
mation able to effectively address the issue and return the system to a healthy
state? This is often a big ask for any environment and it can be especially chal‐
lenging to implement in a multi-tenant setting.

Defect escape rate
Testing plays a significant role in the overall agility story of your SaaS environ‐
ment. The all or nothing nature of a multi-tenant model can require a greater
level of investment in the overall testing footprint of your environment. By meas‐
uring the defect escape rate for your environment, your teams will have a much
clearer view into how effectively their testing constructs are capturing and

314 | Chapter 12: Tenant-Aware Operations

identifying issues before they find their way into the wild. With or without robust
testing in place, your teams will want to continually measure and evaluate trends
for your defect escape rate. Spikes in this rate may surface some broader issues
that need more immediate attention.

This is just a sampling of some of the common areas I see teams focusing on as part
of looking at measuring agility. This list mostly looks at the friction, stability, and reli‐
ability of your overall operational experience. Certainly, being agile in a SaaS environ‐
ment is heavily dependent on building confidence in your tools and mechanisms,
which allows teams to get comfortable pushing out new releases on a regular basis.
This can represent quite a shift for some teams and requires a willingness to work
through some of the natural challenges that show up when you’re bringing your envi‐
ronment to life. There’s no magic bullet to make it all perfect on day one. Instead, you
have to be committed to rapidly evolving your culture and tooling.

Consumption Metrics
For multi-tenant environments, operational teams must have insights into how ten‐
ants are consuming the resources that are part of their environment. Having visibility
into this consumption data will allow teams to assess the patterns of consumption
associated with individual tenants and tiers, enabling them to assess how the system
responds to different tenant profiles, workloads, and use cases. These metrics will be
essential to analyzing scaling policies, profiling infrastructure consumption efficiency.
It is also likely to influence your tiering and throttling models. In many respects, this
data gives you a view into how your architecture and deployment choices are meeting
the consumption needs of your tenants.

Consumption metrics are valid for any and all SaaS deployment models. However,
they have added importance for pooled resources. When you have siloed tenant
resources, you can more easily map consumption to individual resources. With
pooled resources, where tenants are sharing a resource, it’s much more difficult to
attribute a percentage of consumption to an individual tenant. There are typically no
ready-made tools that can provide a more granular, tenant-scoped view into how
much of a resource was consumed by a given tenant at a moment in time. Instead,
this is an area where you’ll need to introduce your own constructs that can capture
and attribute consumption to tenants. Figure 12-3 provides a conceptual view of the
challenges associated with profiling the consumption of pooled resources.

In the middle of this diagram, I have shown a simple example of some infrastructure
that could be part of your multi-tenant environment. I have pooled container com‐
pute resources presumably running the microservices of my application. These
microservices are interacting with a pooled relational database.

Multi-Tenant Operational Metrics | 315

Figure 12-3. Attributing consumption of pooled resources

Now, there are two ways we can look at consumption. On the left is the traditional
resource level view of this infrastructure consumption. Here, your environment can
tell you how much of a resource has been consumed over a given window of time.
This gives me access to the total consumption, but doesn’t associate any of this con‐
sumption with individual tenants. On the right is the tenant-level consumption view.
This is where I can, for a given resource, understand what percentage of a resource
was consumed by individual tenants. This includes breaking out consumption for the
compute and storage of the relational database.

There is a wide array of different strategies that you can use to capture this data. Your
approach will certainly vary based on the nature of your solution. It’s often easiest to
start by thinking about the different layers of your architecture and where you might
want to introduce the instrumentation that would capture and publish your con‐
sumption metrics data. Figure 12-4 provides an example of this layered model.

316 | Chapter 12: Tenant-Aware Operations

Figure 12-4. A layered approach to gathering consumption metrics

On the left of Figure 12-4, I’ve shown a sample SaaS application architecture that has
a web application that calls the application’s microservices via an API Gateway. These
microservices then call various AWS services. On the right is the metrics and analyt‐
ics service within the control plane that is responsible for ingesting and aggregating
consumption metric data.

With these fundamentals in place, we can now look at how you might capture con‐
sumption metrics at the different layers of our architecture. The first layer you might
look at could be the API entry point into your microservices. Here, you’ll see that I’ve
shown API events being published as consumption metrics. This definitely represents
the simplest and most lightweight place to capture this data. However, API requests
may not offer enough detail or insights to accurately breakdown tenant consumption.
Number of requests, for example, could be useful. However, it may be that some
aspects of your tenant workloads could require fewer requests but consume more
resources.

Multi-Tenant Operational Metrics | 317

The next layer is at the microservices level. Here, you can look at consumption
through the lens of individual microservices and publish consumption based on the
profile and workloads being processed by a given microservice. This gives you a way
to be more contextual and precise with your consumption metrics. Now, you have the
option to introduce different patterns for capturing consumption based on the work‐
loads and profile of individual microservices.

In the last layer, we go a level deeper, profiling the consumption of specific infrastruc‐
ture services. So, if my microservice works with a database, a queue, or other infra‐
structure resources, I can capture and publish tenant consumption data at this level.
Again, this is about getting access to more granular data that allows you to attribute
tenant consumption for an individual infrastructure service. Here again, we have the
option to decide how best to attribute consumption based on the nature of the work‐
load and the infrastructure resource being consumed.

These layers are not mutually exclusive. They highlight different areas within your
architecture that could represent good candidates for capturing different types of
consumption metrics. It’s really your job to develop a strategy that best addresses the
realities of your environment. It’s also important to note that you may choose to limit
your consumption metrics to specific high-value areas of your system as a starting
point, then add more detail as you begin to better understand where you might need
more precise insights.

Overall, this may feel like a bit of a heavy lift. However, having this data is essential to
building and evolving the footprint of your SaaS environment. It has far-reaching
value and impact that can shape operational efficiency, cost efficiency, scaling, and
tiering considerations.

Cost-per-Tenant Metrics
As part of looking at consumption, we must also consider how a tenant’s consump‐
tion might correlate to costs. The goal is to essentially associate a cost with each ten‐
ant and tier and use that data to better understand how the infrastructure costs of
tenants map to the pricing and tiering strategies of the architecture, giving you a bet‐
ter view into the real margins of your SaaS environment.

This data is what I refer to as cost-per-tenant metrics. We’ll build on the consumption
metric data discussed earlier, connecting each tenant’s consumption data with the
infrastructure costs that are associated with that consumption to arrive at a cost-per-
tenant allocation that gives you a sense of how a tenant’s consumption is influencing
the cost profile of your SaaS environment.

There are multiple areas where cost per tenant can add value. Let’s look at one sce‐
nario that highlights how cost per tenant can impact a SaaS business (visualized in
Figure 12-5).

318 | Chapter 12: Tenant-Aware Operations

Figure 12-5. An example of the impact of cost per tenant

In this example, you’ll see a graph that provides a profile of the three different tenant
tiers that are part of an ecommerce SaaS environment. For each tier, I’ve broken out
three different metrics that are mapped to the tenant tiers: infrastructure costs, tenant
revenue, and catalog size (number of products being sold). The proportion of each of
these metrics is represented by the size of the stacked bars for each tier.

Now, if we start with the basic tier tenants, you’ll see that they have very large catalogs
and generate very little revenue for the business. Meanwhile, the standard tier tenants
are more of a 50/50 split between catalog size and revenue. The advanced tier, how‐
ever, has very small catalogs, but is selling those products very successfully and gener‐
ating a much larger proportion of revenue.

The key takeaway is that the standard and advanced tier tenants are clearly contribu‐
ting way more revenue to the business. However, when we look at cost-per-tenant
data for the tenant infrastructure, it turns out that our basic tier tenants are contribu‐
ting the most to the infrastructure costs of our environments. This presents a real
problem for the business. Essentially, our lowest tier tenants are paying us the least
while generating the greatest infrastructure costs for our business. There’s essentially
nothing in our tiering and pricing strategy that ensures that our basic tier tenants
don’t end up adversely impacting the margins of our business.

This example provides just one simple illustration of how cost-per-tenant data could
have a significant impact on the strategy of your business. It’s this data that helps the
team figure out how and where their tiering and pricing policies align with the overall
infrastructure costs of their environment. More broadly, teams need access to this
data to continually profile the costs as new features and capabilities are introduced to

Multi-Tenant Operational Metrics | 319

the environment. Product owners, for example, should be interested in assessing the
expected cost-per-tenant impacts of each new feature they might be considering and
weighing where this fits into their tiering strategy.

To calculate this cost-per-tenant data, you’ll need to add additional capabilities to
your system’s metrics and analytics service. Once you have the consumption data
(discussed earlier), you’ll need to have access to your infrastructure billing informa‐
tion. Where this data comes from will depend heavily on the nature of your environ‐
ment. However, even if you’re hosted on-premises, you should be able to assemble
some notion of costs that can be used as inputs to your cost-per-tenant calculation.
Figure 12-6 provides a conceptual view of the key moving parts of this experience.

Figure 12-6. Correlating consumption with costs

To make this more concrete, I’ve shown an example of an AWS-hosted SaaS environ‐
ment. On the left, you’ll see the raw tenant consumption metrics for the different
AWS infrastructure resources that are part of the environment. It shows how we’ve
attributed consumption to two tenants across these services. This data, as mentioned
earlier, has its own operational value—with or without cost correlation.

Now, to get to cost-per-tenant, we have to ingest the billing information (step 1). For
AWS, this could be done by accessing the raw billing information or it could be done
through one of the third-party cost tools. Once you have the aggregate of this cost
data, you can then use the consumption data to apportion these costs to individual
tenants to arrive at a net cost per tenant (step 2). You have many choices here. You
could break this down by service, sum it all up as an average across services, or some
mix of the two.

320 | Chapter 12: Tenant-Aware Operations

It’s important to note that the cost-per-tenant metric is meant to represent an approx‐
imation of costs. This is not an accounting function or a way to generate a bill for a
customer—it’s a way to provide an operational view into tenant costs that can inform
the architecture, pricing, and tiering profile of your environment. There will certainly
be a margin of error within this data, but it should still be useful to the business.

For many, the cost-per-tenant strategy can be directly influenced by the overall cost
profile of your infrastructure. If compute represents 80% of your bill, for example,
then it’s easy to justify investing heavily in capturing cost-per-tenant details for the
compute portion of your bill. However, if object storage and messaging only repre‐
sent 2% of your bill, you may opt to avoid investing in detailed cost profiling for these
elements of your infrastructure.

Business Health Metrics
The most commonly discussed metrics in the SaaS space are more centered around
profiling what I’ve loosely labeled as business health. These metrics look more at rev‐
enue, marketing, and macro tenant information that can evaluate trends that impact
overall business health. Since these numbers often have the greatest immediate corre‐
lation to profitability and sustained growth, they deserve lots of attention. At the
same time, they have little direct correlation to the technical strategies that we’re cov‐
ering here. Still, I think it’s worth highlighting some of these key data points to round
out our view of metrics.

Many of the metrics in this space have a stronger mapping to the B2C SaaS domain
where there is huge marketing spend and lots of activity with tenants entering and
leaving the environment. Still, even in B2B settings, teams will focus on these num‐
bers as well. The following provides a quick review of a few of the key metrics that I
thought might be worth surfacing here:

Monthly recurring revenue (MRR)
Most SaaS businesses focus on MRR as a key measure of financial health. It rep‐
resents the clearest view into how revenue is trending for the organization.

Churn
In environments where tenants are onboarding and, potentially, leaving on a
somewhat regular basis, you’ll want to track your overall churn rate to continu‐
ally assess the rate at which tenants are turning over within your environment.

Customer acquisition costs (CAC)
This is a classic business measurement metric that evaluates the cost associated
with acquiring new customers. In an environment where you’re investing heavily
in marketing your SaaS offering, you’ll want to have some sense of the average
cost associated with acquiring each customer.

Multi-Tenant Operational Metrics | 321

Customer lifetime value (CLTV)
This metric is used to measure the average amount of income you’ll get from a
customer over their lifetime using your system.

CLTV/CAC ratio
Here you’re evaluating the mix of the cost of acquiring a customer with the over‐
all value they deliver to the business. A 1:1 ratio, for example, would suggest that
money you spend to acquire one customer is equal to the amount you will make
from that customer. Obviously, that’s not the goal. It’s your job to figure out what
ratio makes sense for your business. Some say 3:1, but there’s certainly debate
about what this target should be.

The interesting aspect of this data is that much of it doesn’t actually come from your
application, your architecture, or any profile of the runtime activity of your tenants.
Instead, the data might come from accounting systems, customer relationship man‐
agement (CRM) tools, and so on. How you choose to aggregate and surface this data
will depend heavily on how you source the information. There are systems that
directly target this space, and in some cases, you may need to build your own
solution.

Composite Metrics
Many of the metrics we’ve covered represent baseline, foundational data that is used
to profile a SaaS environment. While these metrics can be valuable, it’s also likely that
you’ll need to develop and introduce your own metrics that map to the specifics of
your solution or domain. These metrics may exist entirely on their own, or they may
be created as a composite of other metrics. You might, for example, have some for‐
mula that takes in a tenant activity metric and a resource consumption metric to cal‐
culate some new derived metric that has specific meaning or value for your domain.

The key takeaway is that metrics don’t always correlate directly to some tenant activ‐
ity or infrastructure consumption. Some of the best metrics you might introduce will
come from the mechanisms you create to profile workloads, logical business events,
or other higher-level activities that are part of your environment.

Baseline Metrics
The metrics we’ve been discussing are intentionally focused on areas that have spe‐
cific meaning and value to a SaaS operational experience. There is, however, a collec‐
tion of more general metrics that are also part of this experience. Your infrastructure
will naturally emit metrics that provide fundamental insights into how the moving
parts of your architecture are performing. The compute of your environment, for
example, would naturally emit data about CPU activity, memory consumption, and
so on.

322 | Chapter 12: Tenant-Aware Operations

This data should still be considered part of the scope of this metrics story. You’ll still
want to ingest it and set it alongside your other metrics data, using it to correlate ten‐
ant patterns with these other metrics (where it makes sense). The challenge of these
baseline metrics is that they can’t always be connected to individual tenants. Still, the
data does have a clear role in this broader metrics story.

Metrics Instrumentation and Aggregation
Introducing the metrics I’ve outlined requires you to touch two distinct areas of your
SaaS environment. First, you’ll need to introduce instrumentation into your applica‐
tion services that will publish the metrics to your control plane. How and where you
do instrument will vary based on the nature of your technology stack and where
you’ve chosen to capture metrics data. We looked at aspects of this instrumentation
process in more detail in Chapter 7.

The other half of the metrics story is the ingestion and aggregation of metric data. It’s
here that you’ll identify the tools and technologies that will be used to process and
house this metric data. As you can imagine, the list of tools that are used to build out
this ingestion and aggregation is quite long. Data warehouses, search technologies,
object storage, analytics tools—the options are extensive. Figuring out which flavor of
these tools best fits the profile of your target experience may include considering the
different personas that may be analyzing this data. Figure 12-7 provides a sample of
two ways you might implement your ingestion and aggregation.

Figure 12-7. Metric event ingestion and aggregation

On the left of this diagram, I’ve shown the various sources of metric data. At the bot‐
tom left are the different categories of metric data that you’d instrument into your
SaaS application. I’ve also represented what I’ve labeled as “system” events to fold in
the other built-in events that will be generated by your infrastructure services. This is

Multi-Tenant Operational Metrics | 323

where common, baseline metric concepts (CPU, memory, etc.) are captured and pub‐
lished along with your other metrics.

This data will be published to your control plane’s metrics and analytics service,
which will include tools and services that are used to ingest and aggregate this data
(shown in the middle of the diagram). Here, I showed two different tool chains that
could be used to implement this service. At the top, I’ve shown Amazon Kinesis Fire‐
hose as the ingestion mechanism. This service ingests the data at scale and moves it
into Amazon Redshift, a columnar database that’s well suited for this use case. Then,
Amazon QuickSight’s analytics dashboards could be used to construct the operational
views of the metrics (on the far right).

At the bottom, I’ve shown how Logstash could be used to ingest the data and publish
it to Elasticsearch, a search engine that can be used to analyze your metrics data. This
set of tools is combined with Kibana, which would be used to construct the different
dashboards that enable you to analyze the data (on the far right).

It’s important to note that the data that’s aggregated here could be used in multiple
contexts and by multiple roles in your organization. Product owners, architects, oper‐
ations teams, and leadership may all be interested in creating their own views of the
data to answer the questions that are most important to their respective roles. The
key is that you should not view this metrics data as being exclusively owned by the
technical teams.

As part of this model, you’ll also want to decide how long this data should be
retained. The lifespan of the data will be driven by the specific needs of your business.

Building a Tenant-Aware Operations Console
I’ve talked a lot about what goes into creating a rich SaaS operations model. More
specifically, I’ve talked at length about the metrics that are used to continually evalu‐
ate the operational state of a multi-tenant environment. However, I haven’t really
touched on what it means to put these concepts into action. Now, I want to look at
how you might bring these metrics and data to the surface, creating the tooling that
will allow teams to create a management experience that addresses the unique
demands of a multi-tenant solution.

When I talk to teams about building SaaS operations consoles, many assume they
already have tools that will fill this gap. There are myriad ready-made tools that allow
operational teams to view logs and get insights into core metrics for their system.
While these tools can absolutely provide value in a SaaS setting, they typically don’t
include any notion of tenant context of tiering as part of their solution. This is gener‐
ally where I see teams needing to customize existing tools, build their own console, or
use some combination of these options to create a true, tenant-aware operations
experience.

324 | Chapter 12: Tenant-Aware Operations

To help clarify this point, let’s consider the day-to-day experience of the operations
team that’s charged with proactively managing the health and state of your SaaS envi‐
ronment. Yes, this team would need some global view into the overall state of the sys‐
tem in order to identify any potential global health or activity issues. Where this gets
more interesting is when you consider how you might deal with more tenant- or tier-
focused challenges.

Imagine a scenario where the global view of your system health is showing “green.”
On the surface, all the key health indicators suggest that the system is not experienc‐
ing any performance, scale, or failure conditions that require your attention. At the
same time, you get word that a single tenant is reporting performance problems.
Now, let’s assume this same tenant is running with pooled infrastructure that seems to
be working well for other tenants. What tool or mechanism do we use to figure out
what might be causing issues for this particular tenant?

To effectively support this and other tenant-aware operations scenarios, you’ll need
tooling and mechanisms that allow you to interact with our operational data through
the lens of individual tenants and tiers. There’s any number of tooling experiences
you may need within your console to enable these tenant-contextual operational
views. Figure 12-8 provides a conceptual example of one way you might see this ten‐
ant awareness injected into your operational tooling.

Figure 12-8. Adding tenant context to your operations console

This example provides a microservice-centric view of your operations experience,
using a heatmap on the right side of the diagram to illustrate the health of individual
services. The idea is that these boxes will change colors based on their health, with

Building a Tenant-Aware Operations Console | 325

colors spanning shades from green to yellow to red to reflect the current health of the
service.

On the left are a highly simplified set of toggles that are used to select the scope of the
health that’s showing for these services. At the top left, you’ll see that I’ve selected the
“most active services” option to narrow in on services that may be experiencing the
heaviest activity. Then, below that, you can see where I have various options for refin‐
ing the scope of tenants that are included. I can select all tenants, a specific tier, or an
individual tenant to change the scope of the data being evaluated. Here, I have
selected tenant1 as my filter and the view is showing me the state for this specific ten‐
ant. From here, I could identify any services that are red for this tenant and drill into
each service to get more context on how or why this tenant might be experiencing
problems.

This is a highly simplified example, but it’s meant to illustrate the importance of hav‐
ing tenant and tier awareness baked into your operations experience. Without this
ability to view operational data with a tenant context, it would be very challenging to
easily pinpoint any tenant-specific issues. This, in a multi-tenant operational setting,
is where you need tools that will let you detect and resolve these issues in a timely
manner, heading off challenges that could have a cascading effect across multiple
tenants.

As you think about building out (or configuring) a tenant-aware console experience,
you’ll likely identify plenty of areas where tenant context can be surfaced as a first-
class view within your operational experience. Figure 12-9 provides a small sampling
of how tenancy could surface in your multi-tenant operational dashboards.

This view includes three examples of multi-tenant operational data that could add
value in a SaaS environment. In the top left, you’ll see a list of tenants that repre‐
sent the most active tenants in the system. These are the tenants that are generat‐
ing the most load and activity and, as such, may also be most prone to experience
technical issues. Knowing this, I’ve added this view as a top-level construct in my
console that lets me quickly identify tenants that may need more immediate atten‐
tion. There’s a status showing the state of each tenant, indicating whether a tenant
may be experiencing any degradation or issues. A more sophisticated version of
this console might even allow me to click on one of these tenants and immediately
drop into a view that gives me a quick, contextual look at the current activity and
status of the tenant.

326 | Chapter 12: Tenant-Aware Operations

Figure 12-9. Surfacing tenant-aware operational insights

On the top right I have another view that shows me how tenants are consuming indi‐
vidual infrastructure services. The idea is that I can easily see how the load for tenants
is being distributed across the key infrastructure services that are part of my environ‐
ment. This would allow me to easily identify scenarios where a tenant may be con‐
suming a disproportionate amount of a given service. This could point out a potential
near- or long-term issue with how this particular infrastructure is scaling, highlight‐
ing our need to dig into the tenant workloads and trends that might be triggering the
excess consumption of a given service.

Finally, at the bottom, we have a diagram that illustrates tenant activity across some
of the high-profile microservices that are part of my solution. The horizontal bars
show the levels of microservice consumption for specific tenants. This might help you
evaluate how tenants are consuming microservices and identify scenarios where a
microservice is not scaling effectively to meet the SLAs of your tenants or tiers.

Building a Tenant-Aware Operations Console | 327

As part of this discussion, you’ll notice that I’ve included tiers as part of the opera‐
tions story. Tiers are not just a billing construct. They have operational implications,
and our environment is often configured to offer distinct experiences to different
tiers. This means that, for some part of our operational experience, we may need to
view system activity and health through the lens of individual tiers. I might, for
example, want to view microservice health and activity for the advanced tier to see if
my architecture is effectively preventing these tenants from being affected by noisy
neighbor conditions.

The examples we’ve reviewed here are just beginning to scratch the surface of possi‐
bilities. The goal was to emphasize the need to create tenant-aware operational tool‐
ing that supports the unique needs of multi-tenant environments. Trying to piece
together operational insights by sifting through piles of data simply won’t cut it in a
SaaS environment. You need a dashboard and analytics tools that put tenant and tier
context front and center, providing carefully crafted views that allow you to rapidly
evaluate and traverse operational data with tenant awareness. The more you invest
here, the more likely it is that you’ll be able to proactively identify challenges before
they might surface to your tenants.

Combining Experience and Technical Metrics
When you’re creating a SaaS operations console, you need to make choices about
which data belongs in this experience. In a multi-tenant environment, there’s a pretty
wide spectrum of data that could be used to enrich the operations experience. The
question is: do I fold more general technical data into my console that surfaces data
that doesn’t necessarily correlate directly to tenant activity? CPU, memory, latency—
there’s a whole list of general system performance and consumption data that could
be candidates for your operations console. There are also business metrics that you
might be measuring (agility, time-to-value, etc.). Do you bring all these metrics into
your console or leave them in other tools you might be using?

I do see value in selectively incorporating some of these metrics to a broader opera‐
tional view of your environment. Bringing this data into your console may allow you
to make natural correlations between business and technical events. A new feature,
for example, could introduce a performance issue that is impacting onboarding times.
Being able to see these broader SaaS metrics alongside your classic health and activity
metrics could allow you identify patterns that might otherwise go undetected. It also
helps reinforce the idea that your operations team is doing more than monitoring
health. Surfacing and having access to these metrics puts greater emphasis on the
need for operations to extend its view of health to include analysis of these broader
SaaS operational considerations.

328 | Chapter 12: Tenant-Aware Operations

Tenant-Aware Logs
I haven’t really mentioned logs yet. They are an essential part of the overall opera‐
tional tooling model, and this represents yet another area where you’ll want to be able
to easily access logs with tenant and tier context. There are two dimensions to the
problem. First, your microservices need to ensure that they are generating logs that
include all the tenant context that’s needed by your system. We explored how these
logs might be introduced into your multi-tenant microservices in Chapter 7.

If your logs include tenant context, then the other half of this challenge is figuring out
how you want to support access to these logs. Some teams will build log views directly
into their console, providing users with the ability to easily filter and view log activity
based on tenant- or tier-specific criteria. Others will defer to existing, ready-made
tooling that’s purpose-built for log analytics. Both approaches are valid. The key is to
be sure your tooling provides an easy way to apply tenant and tier context.

Creating Proactive Strategies
In a multi-tenant environment where we’re taking every measure we can to avoid out‐
ages, teams will often put greater emphasis on implementing proactive operations
strategies that attempt to detect and resolve issues through automation and policies.
This might come in the form of alerts that bring more immediate attention to condi‐
tions that require human intervention, or it might come in the form of proactive
detection of performance degradation that proactively adjusts the scaling of your
environment to limit any impact to tenants.

Where and how these policies are introduced can vary significantly from one envi‐
ronment to the next. The nature of the technology stack, the deployment model
you’re using, and the nature of your solution could all influence your approach to
building out your proactive strategies.

Persona-Specific Dashboards
This discussion of metrics and the operations console may make it seem like the
operations team and this console provide the one and only view into metrics. In
reality, there may be multiple views into this data for the different roles that are
part of the business. I prefer for teams to view all of this metric data as landing in
a shared warehouse that can be consumed in multiple contexts (as shown in
Figure 12-10).

Building a Tenant-Aware Operations Console | 329

Figure 12-10. Metrics for multiple personas

You can see the mental model I’m suggesting for the scope and role of your metrics
data. In an ideal world, you’d see various roles across the business leaning into the
metrics data of your system, using it to develop their own dashboards with their own
views into the trends and patterns that add strategic value and insights into their spe‐
cific area. This plays a big part in promoting the shared operational responsibilities of
the various roles in a SaaS organization. As more teams lean into this, you’ll likely see
greater demand for adding new metrics and insights to your solution.

Multi-Tenant Deployment Automation
Automating the configuration and deployment of multi-tenant environments is a key
part of the overall SaaS operations story. It’s this automation that plays a pivotal role
in ensuring that your environment can onboard new tenants and release new features
that support the specific needs of a multi-tenant model. Your approach to implement‐
ing this automation will inevitably have a significant impact on the agility, innovation,
and availability profile of your SaaS business.

The nature, scope, and role of infrastructure automation in a multi-tenant setting
often requires teams to evolve their thinking to support the unique blend of SaaS
configuration and deployment models. Multi-tenancy may require you to decompose
your automation differently, separating out parts of the automation to align with the
flows and patterns that make up your overall SaaS DevOps experience.

To get a better understanding of the nuances here, let’s consider a few pieces of auto‐
mation that could be needed in a multi-tenant setting (shown in Figure 12-11).

330 | Chapter 12: Tenant-Aware Operations

Figure 12-11. Multi-tenant configuration and deployment automation

I’ve shown an example where your operational tooling would need to support tenant-
specific provisioning and deployment requirements. There are basically three distinct
elements of the infrastructure provisioning lifecycle. First, there is the initial setup of
your environment, where you provision any baseline infrastructure and any pooled
tenant resources (step 1). If you’re running a fully pooled model, all the tenant infra‐
structure could be provisioned at this point.

Once the environment is set up, our provisioning must then look at what automation
and configuration would be applied during the onboarding of tenants (step 2). As
we’ve seen in other examples, onboarding is triggered as a runtime process that takes
a tenant’s parameters and provisions and configures resources based on the tenant’s
configuration. During this process, the system executes any automation required to
provision and configure each tenant’s infrastructure.

There’s one last part of the DevOps story here. We still have to think about how the
presence of per-tenant infrastructure will influence the deployment of application
updates (step 3). This is less about provisioning infrastructure and more about having
a process that knows how to map deployment of updates to each tenant’s resources.
Your deployment process may deploy services multiple times to cover all the different
pooled and siloed tenant infrastructure.

We saw bits of this in the serverless SaaS architecture. However, I wanted to call this
out as a key piece of a multi-tenant operations footprint. Having per-tenant infra‐
structure that is being added dynamically at runtime represents a new twist for many
teams. This, given our uptime and resiliency goals, means our infrastructure automa‐
tion code will need to meet a very high quality and reliability bar to ensure that

Multi-Tenant Deployment Automation | 331

onboarding and updates aren’t somehow compromising the health and performance
of our overall environment.

Scoping Deployments
In SaaS environments, teams are often looking for creative ways to control how fea‐
tures and capabilities are rolled out to tenants. This is where concepts like feature
flags and canary releases come into play. Feature flags let us enable or disable individ‐
ual features within a release and canary releases let us roll out versions of a service to
a select set of tenants.

You can imagine the value these concepts can offer in a SaaS setting. With feature
flags, a team can selectively turn on features for specific tiers of tenants, for example.
This allows you to avoid any one-off deployments for tenants and continue to man‐
age and operate your solution through a single pane of glass.

Feature flags can represent a point of tension for some organizations. Some teams will
view them as a way to create one-off features for individual tenants. This can be a
slippery slope. If you think of our broader multi-tenant SaaS goals, we’re intentionally
trying to move away from any notion of per-tenant customization. If you end up with
100 different tenants, each with their own custom feature flags, this could undermine
the agility and efficiency goals of your organization. You want to avoid the temptation
of viewing feature flags as a way to work around the tenets of SaaS, doing what you
can to have one system that’s available to all users and doesn’t require one-off support
to handle each tenant’s customizations. Regardless of where you land on this, you
need to be sure that your feature flags are implemented as a global mechanism that is
available to all tenants. This will allow you to continue to have one deployment for all
tenants. In an ideal case, feature flags would be assigned at the tier level to distinguish
different experiences, and any one-off, per-tenant flags would be the exception
instead of the rule.

Targeted Releases
By default, when you’re rolling out new releases in a SaaS environment, you’re essen‐
tially pushing your updates out to all tenants in one move. For some organizations,
this can be a bit scary. If you’ve modified some feature or added some new flow into
the system, you could easily upset your entire tenant community if they are unhappy
with the changes you’ve introduced. If there are issues with a release, you may be col‐
lectively exposing all of your tenants to this issue at the same time. Both of these sce‐
narios can represent tough moments for the operations side of your SaaS
organization. They can also undermine the trust and loyalty of your tenant
community.

This is where teams look at ways to roll out targeted releases where updates are
released to a subset of tenants to gauge the response and impact of a new release. In

332 | Chapter 12: Tenant-Aware Operations

the DevOps world, this has been achieved through canary releases, where you iden‐
tify a select group of tenants and deploy to them as a way to collect feedback or assess
system impacts without impacting all tenants. This technique has existed in the
DevOps world for some time, and it represents an especially powerful construct for
SaaS environments where the scope and potential of a deployment can have such a
profound impact on the business.

The idea of canary releases gets more interesting when you think about siloed and
pooled environments. What does it mean to do a canary release to a pool environ‐
ment where tenants are running in shared infrastructure? Does this mean you need
to spin up a parallel pooled environment for the canary release? Or, if this is just
about code and features, could some tenants in the pool be running the new branch
of code while others are running the current version? The answer, as you might sus‐
pect, is that it depends. The nature of any given release could impose different
requirements on your canary release, and if the effort here is too high or too complex,
it could undermine the value of the canary release. This is also an area where you
might fold in feature flags, turning on specific functionality for the tenants in your
canary release.

The moving parts of this are pretty straightforward and conform to the typical targe‐
ted release strategies that are employed by some teams. Figure 12-12 provides a
conceptual view of how targeted deployments might surface in a multi-tenant
environment.

Figure 12-12. Targeted deployment in multi-tenant environments

On the right of this diagram, you’ll see a multi-tenant environment that has a tiered
model, deploying tenants in a mix of siloed and pooled models. On the left are

Multi-Tenant Deployment Automation | 333

placeholders for my deployment automation. Here’s where we could find any number
of different DevOps tools and mechanisms that deploy updates to our tenants. There’s
a configuration represented as part of this experience. It describes the structure of the
deployment strategy, outlining the details of how our releases will roll out to our
tenants.

For this example, I’ve created some tenant groupings (on the right). The groupings
represent the different sets of tenants that are referenced in the deployment configu‐
ration. The groupings were presumably picked based on some specific operational
and release goals. I might say that Group 1 represents our “friendly” tenants that are
good candidates for getting the first rollout of updates. Or, it could be that we’ll roll
out to Groups 2 and 3 first to avoid impacting our pooled tenants, which could have a
bigger business impact if we uncover issues. The main idea is that you will create a
strategy for grouping releases based on the profile and needs of your business.

You can imagine how this model maps to the various targeted release strategies that
I’ve been outlining. It fits nicely with the idea of selectively deploying your updates to
a subset of tenants. These groupings, for example, would be used to implement a can‐
ary or wave release strategy, staging the rollout of changes and limiting the scope of
potential operational impacts.

The key takeaway is that DevOps gives us a number of different tools and strategies
that can fit nicely with the needs of your SaaS deployment model. How or if this fits
will depend on the size and profile of your tenants and the deployment model of your
SaaS environment.

Conclusion
After reading this chapter, I’m hoping that you have a clearer view of the broader role
that operations plays in a SaaS business. SaaS companies are built around the idea of
moving fast and being efficient. This means creating an operational footprint that
enables frequent releases, zero downtime, and the flexibility that allows the business
to grow and pivot based on the shifting needs of tenants and the market. That foot‐
print is often the engine at the core of building a service that realizes the full promise
of the SaaS delivery model.

To bring this into better focus, this chapter started by reviewing the general SaaS
operations mindset, highlighting the foundational principles associated with creating
an operational culture and approach that reaches across the different roles within a
SaaS business. The idea is to move operations away from being a purely technical,
siloed model. With SaaS, operations needs to consider every dimension of the experi‐
ence, creating more collaboration between the different parts of your organization.
The service experience of your tenants should be of interest to most roles in the orga‐
nization. How efficiently they onboard, the throughput they see, the efficacy of their

334 | Chapter 12: Tenant-Aware Operations

tiering strategy—these are just examples of tenant experience that should be of inter‐
est to product owners, strategic leaders, and so on.

With these core principles in place, I turned my attention to the metrics of SaaS. This
goal was to draw attention to just how vital it is to be data driven in a multi-tenant
setting. Generally, when you’re operating and managing these tenants collectively,
you need access to data that gives you rich insights into how tenants are exercising
the moving parts of your service. It’s this information that will provide the full spec‐
trum of data that can support the more immediate needs of operations teams while
also providing the broader insights that are essential to shaping the overall strategic
footprint of the business.

The next step was to consider how these concepts come to life in a working SaaS
environment. This is where I started looking at what it means to create a tenant-
aware operations console that supports the unique needs of a multi-tenant solution.
Here, I reviewed how multi-tenancy can end up directly impacting the features and
capabilities that operations teams may need to identify, analyze, and troubleshoot
tenant or tier issues. As part of this, I also looked at some examples of custom, multi-
tenant operational views that provided examples of how you might surface tenant
trends and patterns that could provide more direct insight into how tenants are
imposing load on your system. The overall emphasis was on highlighting the unique
set of multi-tenant operations challenges that require a more targeted, more tenant-
aware approach to creating the operational experience that your SaaS environment
demands.

Finally, I wrapped up the chapter with a brief look into the infrastructure automation
elements of SaaS operations. This was more about reviewing the key role that provi‐
sioning, configuration, and deployment plays in creating an operational model that
supports the specific needs of a SaaS environment. The unique deployment require‐
ments of SaaS environments and the onboarding automation both play a big role in
creating an operational foundation that can support the agility, efficiency, and inno‐
vation needs of the business and its tenants.

When working with SaaS architects and builders, my biggest concern is that they’ll
de-prioritize their investment in these operations constructs. I prefer to see teams
going after operations and application architecture design in parallel, viewing them as
one combined deliverable that, together, enables the business to grow and thrive.
Generally, deferring the investment in operational tooling and instruments tends to
have a significant impact on the success of a SaaS business. It takes tools out of your
organization’s hands that are essential to shaping the technical and business strategy.
SaaS, as a rule of thumb, is a metrics-driven universe and that starts with having
teams and leadership committed to making metrics a priority—in some cases ahead
of features and functions. You are building a service and you need rich operational

Conclusion | 335

insights to be able to have insights into whether you’re delivering on the promise of
your service experience.

This coverage of SaaS operations connected the architecture principles to the opera‐
tions mindset and experience. Up to this point, the concepts we’ve covered could
mostly apply to customers in any stage of adopting a SaaS delivery model. Now I
want to begin to look more specifically at what it means for a company to migrate an
existing solution to SaaS. The goal is to give you a better sense of the strategies and
patterns that can be implemented to move your solution to a multi-tenant model.
This will be the focus of the next chapter, where I’ll explore the technical and business
considerations associated with migrating to SaaS. This should provide you with a
range of options that can be factored into developing your own migration strategy.

336 | Chapter 12: Tenant-Aware Operations

CHAPTER 13

SaaS Migration Strategies

The path to SaaS doesn’t always start with a blank canvas. The reality is, there are
many instances where organizations have existing solutions that they want to move to
a SaaS delivery model. A number of factors may motivate this move. For some,
adopting SaaS may be focused exclusively on overcoming cost, operational, and scal‐
ing efficiency challenges. Others might be feeling pressure from emerging SaaS com‐
petitors. In other instances, this could be driven by a desire to use the economies of
scale of SaaS to grow their business and reach new market segments. Customers
might be in this mix as well, pushing companies to make their solution available in a
SaaS model.

While the appeal of getting to SaaS is well understood, determining how best to make
this move can be more challenging. When you have an existing offering with custom‐
ers and revenue, making this move comes with natural concerns. It will mean striking
a balance between the old and the new and finding a path that blazes a new trail
without entirely disrupting the business. For publicly traded companies that face
quarterly earnings reports and revenue expectations, this can be especially tricky to
navigate. The nature of your domain, the profile of your tenants, and potential com‐
pliance considerations could also be imposing constraints that will complicate a move
to SaaS. This is precisely why there is no one universal path to SaaS. SaaS migration is
about finding the path that best balances the realities of your business.

In this chapter, I’ll review the factors, patterns, and strategies that you’ll want to con‐
sider as part of picking a migration path. We’ll start by discussing some of the bigger
picture dynamics that are part of the migration puzzle, looking at the tensions that
teams face as they seek to strike a balance between near-term pressures, market fac‐
tors, operational challenges, cost efficiency, team skills, and a host of other variables
that are part of the migration puzzle.

337

With those strategic considerations out of the way, the chapter will shift to reviewing
common migration patterns. The goal is to highlight the specific migration models
that can address the different migration priorities and business implications. These
patterns will expose you to a range of migration possibilities, highlighting the merits
of each of these options. While these are just samples of the possible patterns, they
should give sense of the trade-offs and provide insights that will guide your migration
roadmap. This will include strategies that offer different approaches to incrementally
modernizing your SaaS offering as part of the overall migration process.

In the last part of the chapter, I’ll get into the details of how you’ll sequence the steps
of this migration journey. To me, the initial choices you make as you head down this
path set a tone for the values and principles that are going to shape the foundations of
your multi-tenant model. This is where we’ll look at how to start introducing the
foundational multi-tenant constructs that will be essential to achieving your architec‐
ture and operational goals—regardless of which migration patterns you adopt. This is
also about establishing some of the core values of your SaaS culture that will be essen‐
tial to transitioning your entire organization to a SaaS mindset.

While there’s no one-size-fits-all model for migration, the strategies that I’ll be cover‐
ing should expose you to a spectrum of possibilities and should allow you to assemble
a migration approach that best aligns with the business and technical realities of your
environment.

The Migration Balancing Act
It’s tempting for many organizations to view migration through the lens of technol‐
ogy. To me, this represents the big trap of migration. While we’ll certainly focus the
bulk of our energy on the technical nuances of migration, the migration strategy you
select should be directly shaped by an evaluation of the business, market, and opera‐
tional parameters that are motivating your move to SaaS. Time frames, market fac‐
tors, operational costs, and other considerations should all directly shape your
approach to migration.

For many, this is a classic software problem where we’re fighting between the compet‐
ing forces of business and technology. Figure 13-1 provides a conceptual view of the
balancing act that comes with picking a migration strategy.

On the left of this diagram are some of the attributes that are drawing us into the SaaS
model. Teams want to immediately begin to realize the agility, cost efficiency, opera‐
tional benefits, and general value that comes with building a modernized, multi-
tenant version of their solution. It’s natural for teams to want to go after all the shiny
objects of this new model and focus on erasing the technical debt that’s been hanging
over their heads for years.

338 | Chapter 13: SaaS Migration Strategies

Figure 13-1. The migration balancing act

The right side of the diagram represents the business migration motivators. Here,
there could be a wide range of pressures that are driving the move to SaaS. There may
be new SaaS offerings showing up in your domain that are beginning to take market
share. Operational costs could also represent a significant motivating factor. It’s not
rare to find software businesses that have reached a point where the operational over‐
head of each new customer is so high that it’s eroding their margins and limiting the
growth of the business. The move to SaaS could also be inspired by a desire to accel‐
erate growth by reaching new market segments. These are just a few examples of the
business factors that you may need to evaluate when you’re determining your migra‐
tion strategy.

Ultimately, a good migration strategy ends up requiring a mix of business and techni‐
cal trade-offs. In fact, the process of selecting your migration strategy can represent
the first step in an organization’s SaaS cultural migration, bringing product, opera‐
tional, and technical teams together to play a more collaborative role in defining the
overall migration model. Done right, this will make it clearer to technical teams that
they need to have a more business-focused approach to aspects of their technical
strategy. At this same time, this process will likely have a transformative effect on
business leads, exposing them to the potential business impacts and possibilities that
could be enabled through different technology models.

Timing Considerations
As you think about how to balance these competing forces, you have to think more
holistically about how the transformation will play out over a longer time horizon. To
better understand this, imagine two migration extremes: one where you move to SaaS
as quickly as possible and one where you take more time to create a more modern‐
ized SaaS offering before going to market. Both of these strategies have distinct merits
and trade-offs that could affect the business and the success of your SaaS offering.
Figure 13-2 provides a view of how these two approaches might influence your over‐
all transformation.

The Migration Balancing Act | 339

Figure 13-2. Migration timing trade-offs

I’ve shown two paths that a company might take as part of its SaaS migration. At the
top is a model where we delay our release, putting more energy into rewriting and
refactoring bits of our system to achieve some of the broader benefits of SaaS (econo‐
mies of scale, higher availability, better agility, and so on). This path doesn’t presume
that you’re completely rewriting the solution, just investing more time and energy to
move the modernization needle before bringing a SaaS offering to market. This
approach puts a higher premium on getting to a modernized version sooner instead
of later.

The second path (at the bottom) is more of a “SaaS now” model where the team
makes modernization compromises to bring their solution to market as soon as pos‐
sible. This doesn’t presume that you won’t be investing in new code and foundational
multi-tenant constructs to get this up and running. It just means that—for your initial
rollout—you’re avoiding refactoring your application’s code as much as possible.
Here, we’re trading speed to market for some of the efficiencies we might get out hav‐
ing a fully modernized SaaS offering.

The pros and cons of these two approaches should be pretty clear. With the top
model, you are modernizing without the extra burden of making these changes
against a released version of the product. This provides greater freedom, mobility,
and less need to carefully consider how each step toward modernization can be intro‐
duced into a deployed version of your working solution. The second model gets you
to SaaS sooner, but does so at the expense of making future incremental moderniza‐
tion slower and more complex.

What gets missed in weighing these trade-offs, though, is the value of customer feed‐
back. With the top model, you will have some long stretch where you’re not getting
feedback from your customers. You’re assuming the choices you’re making during
this time will meet their needs and that the needs of the market won’t be evolving sig‐
nificantly in that window. This could work, but it certainly comes with real risks that
can be easily overlooked.

340 | Chapter 13: SaaS Migration Strategies

It’s also important to note that migration isn’t just about migrating your technology.
When teams choose to make the move to SaaS, they’re often choosing to fundamen‐
tally change how they approach their jobs. Support, operations, sales, product man‐
agement—all of these roles may, in some way, be reshaped based on the move to a
SaaS delivery model. The outward-facing view of your business will also go through
changes, altering how you engage your customers.

You can imagine how these changes to your team’s roles, interactions, and responsi‐
bilities could influence the structure of your organization. You’ll need to factor these
transformation considerations into your migration model. Each of the models shown
in Figure 13-2 would likely yield different transformation paths. Generally, when
teams take the “modernize now” approach, this tends to put the broader business
transformation on the back burner. The rest of the organization will essentially wait
until much later in the process to begin thinking about how they will transform the
nature of their roles. In contrast, the “SaaS now” model provides a bit of forcing func‐
tion, requiring the organization to begin to tackle all the aspects of transformation
much earlier in the process.

While both of these models are valid, you might guess where I lean. As a general rule
of thumb, I prefer migration strategies that put more emphasis on operating as a SaaS
business as soon as possible. The combination of getting feedback sooner and trans‐
forming the entire business sooner seems to offer more value than focusing on mod‐
ernization up front. For many, this is about not missing a window of opportunity.
From some, though, the technical debt and other limitations could tip the scales
toward an incremental modernization-first strategy.

Again, this is just one more example of the balancing act that’s part of migration. I’ve
presented these two extremes to give you a better sense of how this mix of business
and technical considerations might shape the trajectory of your migration. The reality
is, your path might be somewhere else along this continuum. Your business parame‐
ters might allow you to modernize more or require you to get to SaaS faster. The key
is to avoid weighing these options purely as technical trade-offs. If I’m an architect
and I’m asked to develop a migration strategy, I’m going to ask lots of business and
product questions to help the company determine which option best suits the
broader needs of the organization. As part of that, I’m going to think about the over‐
all transformation of the business, considering how delays could impact my ability to
get feedback and exercise all the moving parts of our SaaS business.

The Migration Balancing Act | 341

What Kind of Fish Are You?
As part of migrating, you’ll want to have a clear notion of how this move could influ‐
ence both cost and revenue streams for the business. These are both areas businesses
classically consider with any strategy. The move to SaaS can have a profound impact
on the fundamentals of the business, causing shifts in key economic dynamics. The
initial investment in transforming to SaaS, moving customers to new monetization
strategies, and the economies of scale of SaaS can all influence the financial trajectory
of a SaaS business. There are plenty of examples of organizations that navigated this
economic shift, and they highlight the financial dynamics associated with moving
from classic long-term contracts to subscription or other flavors of SaaS pricing
strategies.

For many, the economics of this migration effort can be challenging. Imagine you’re a
publicly traded company and you’re making the move to SaaS. How will you explain
to stockholders that your costs may go up and your revenue might go down during
your transition to SaaS delivery? That message is not likely to go over well.

The Technology-as-a-Service Playbook (Baker & Taylor), authored by Thomas Lah and
J.B. Wood, describes this dynamic with a diagram that brings these migration eco‐
nomics into better focus (Figure 13-3).

Figure 13-3. The migration fish model

This diagram, based on its shape, is referred to as the fish model. It juxtaposes reve‐
nue and costs, showing how they can trend over the life of your transformation to a
SaaS delivery model. The dashed line at the top of the fish correlates to costs. When
you’re migrating, your teams will be responsible for building out new constructs to
achieve the operational, agility, and cost efficiency goals of your offering. This effort,

342 | Chapter 13: SaaS Migration Strategies

for some, could translate into additional incremental costs. These costs might be
related to new people, new tools, new technologies, and so on.

The solid line at the bottom of our fish corresponds to revenue. As part of transition‐
ing to new pricing and monetization models, you could see a dip in the revenue for
your business. This could be the side effect of shifting to a pay-as-you-go pricing
model or some other pricing strategy that, in the near term, could cause your revenue
to decrease. The general idea here is that there is likely some added overhead associ‐
ated with building all the plumbing that’s needed to support your SaaS offering.

This is naturally intimidating to many companies that are migrating. They generally
want this fish to be as skinny as possible. The good news shows up on the right side of
the diagram. The expectation is that as you build out all the efficiencies and mecha‐
nisms that will create a highly agile multi-tenant environment, you’ll eventually see
your costs trending downward. At the same time, as you transition customers over to
your new pricing model, you’ll be able to lean on the efficiencies and agility of SaaS to
take advantage of these economies of scale. Ideally, you’ll also be able to reach new
customers and market segments, accelerating the growth of your business.

It’s at this point of inflection where you see revenues spiking back up and your costs
trending downward, yielding the true payoff of this transformation. This is where the
sweet spot of the SaaS model thrives, enabling organizations to leverage the strengths
of SaaS to maximize margins and efficiently grow the business.

So, as I sit down with businesses that are beginning their SaaS journey, I often refer‐
ence this fish model. It’s not that I expect every business to fit the fish model. In fact,
there are plenty that don’t. The key, though, is to use this model to ask them what
kind of fish they want to be. This helps frame the overall migration discussion and
certainly impacts the overall mindset of the transformation effort.

Thinking Beyond Technology Transformation
I’ve made it clear that SaaS migration is very much about transforming from a
product-centric experience to more of a business and service-focused mindset. For
the scope of this book, however, I’m not going to dig into the weeds of how the trans‐
formation affects these other parts of the business. In reality, that’s likely an entire
book on its own and we’re here mostly to consider how the business bits influence the
technical approach.

At the same time, I think it’s worth noting that your migration strategy should be
looking at how it impacts all the other disciplines within your organization. Sales and
marketing teams, for example, will definitely need to consider how the fundamentals
of marketing and selling a product will change with a SaaS model. Customer support
typically undergoes a transformation, adopting more of a Customer Success model
that shifts the mindset from addressing customer issues to proactively engaging

The Migration Balancing Act | 343

customers and shaping their experience. Pricing and billing will also be part of the
transformation process, requiring you to consider how SaaS will influence the overall
monetization model of your business.

These are just examples of how the business changes during your transformation.
The key takeaway is that this organizational and cultural transformation of your busi‐
ness needs to be woven into your overall migration story. These are not areas where
you build a SaaS offering first, then think about how these other parts of the organi‐
zation will be folded into the SaaS model. Instead, these parts of the organization
should be active participants in the overall migration journey.

Migration Patterns
Once you’ve established the basic parameters of your migration strategy, you can then
start looking at specific architecture patterns that you can use to move an existing sol‐
ution to a multi-tenant model. The patterns we’re going to explore are meant to rep‐
resent different approaches that could be executed in isolation or as part of a phased
modernization strategy.

Each pattern has a distinct strategy that targets a specific migration use case with its
own set of pros and cons. You’ll see that these patterns can also be correlated to the
different migration strategies discussed earlier. Some are clearly better for rapid
migration and others fit better with a model that puts more early emphasis on mov‐
ing to a modernized SaaS architecture.

It’s important to note that none of the patterns advocate a big bang migration where
you go away and rewrite most of your solution. That would not be consistent with a
migration mindset. It’s also not a strategy that I would advocate. The move to SaaS
has lots of moving parts and taking a more incremental approach allows teams to
evolve their strategy based on the data they get from seeing bits of their solution
come to life in a working environment. The incremental approach also allows you to
see the operational and application elements of your environment emerging in paral‐
lel, enabling you to see how your strategies are addressing the functional and opera‐
tional needs of the service. The key is to get immersed within the details of the
different patterns then figure out which aspects of these patterns best align with your
migration strategy.

The Foundation
Before we get into the details of individual patterns, I want to start with one core
foundational concept that spans all of the patterns. Every migration—regardless of
the strategy you choose—includes the introduction of a control plane. The control
plane, as you’ve seen throughout this book, provides all the shared services that

344 | Chapter 13: SaaS Migration Strategies

support the centralized functionality that enables you to manage and operate your
solution in a multi-tenant model.

This is especially important in a migration scenario since the control plane represents
a completely new and separate area that the business must build as part of moving to
a multi-tenant architecture. This control plane is what allows us to introduce the fun‐
damental notion of tenancy into your environment, providing the constructs that
allow you to manage and operate your tenants through a single pane of glass.

So, the first step in your process is to determine which control plane capabilities
you’ll need to support the initial requirements of your SaaS offering. In a migration
mindset, this likely will start as a narrower set of services that give you baseline sup‐
port for multi-tenancy without building out all the depth that you’ll ultimately want
to live in the control plane. The idea is to get the fundamentals up and running and
have the shell of your control plane experience in place. Then, you can allow the con‐
trol plane to evolve incrementally as your solution matures. This is all part of the bal‐
ancing act that comes with migration. You want to build just enough to establish the
principles and key placeholders, then add depth as you go. Figure 13-4 provides a
familiar snapshot of the spectrum of control plane services that you’ll want to con‐
sider as part of scoping out your initial control plane functionality.

Figure 13-4. Initial control plane services

The services illustrated in Figure 13-4 have mostly been part of our broader control
plane discussion. If you look at these services through the lens of migration, you can
imagine what an initial, lighter weight version of these might look like. The services
that are focused on orchestrating onboarding and creating tenants are big focal
points, supporting the provisioning of tenant resources, creation of tenants, and
establishing the core elements of your SaaS identity model. This is also laying the
foundation for tenant authentication and the injection of tenant context into your
application request. Having all this in place will require your application to handle the
introduction of multiple tenants. It will also support tenant context to drive routing,
logging, and so on.

Migration Patterns | 345

The migration of your identity model can require a bit more thought. The legacy sol‐
ution that you’re migrating is likely to already include support for some notion of
authentication. So, do you move identity into the control plane and make the com‐
mitment to potentially reworking part of your migration story? Or, are there more
obstacles and challenges in your current environment that may have you deferring
moving this to a new model? Timing, complexity, and long-term requirements will all
play a role in how you might approach the identity migration of your experience. The
key, though, is that even if you stick with your current identity model, you’ll have to
determine how your authentication experience will be expanded to support tenant
context.

Other services (metrics and analytics, tenant-aware logging, and billing) may be key
to the long-term needs of your multi-tenant environment. However, you might put
simplified versions of these in place to establish the concept, then enhance them as
the system and your needs evolve. Even if these have minimal use at first, I prefer to
see them show up and offer some points of integration to begin to establish the com‐
mitment to capturing and surfacing tenant-aware operational insights.

Finally, you’ll see an admin experience on the right of the diagram. This is meant to
serve as a placeholder for whatever management and configuration experience you’re
going to expose for your control plane. I’ve shown two flavors of administration here.
One is achieved through an administration console, and the other is delivered
through API calls. How this is implemented is less important than simply making
some level of commitment to putting this in place as part of the foundation of your
operational experience. It’s essential that you have some aspects of this in place at the
front of your migration path. This will force you to exercise the system admin
authentication experience and allow you to surface key multi-tenant insights that will
help during your migration. Specifically, being able to access tenant state here and
view logs and metrics with tenant context will be especially useful to teams that are
testing and building out a multi-tenant environment.

As we move forward and start looking at patterns, I’ll include a placeholder for this
control plane in each of the migration strategies. This control plane is conceptually
the same for all of the patterns that I’ll cover.

Silo Lift-and-Shift
The first pattern we’re going to look at is what I’ve labeled silo lift-and-shift. This pat‐
tern, as its name suggests, is focused squarely on getting an existing workload moved
into a SaaS delivery model with as little refactoring as possible. In this mode, you are
lifting your existing code and shifting into an environment where you can begin to
operate your solution in a multi-tenant model (using our expanded definition of
multi-tenancy). Figure 13-5 provides a conceptual view of the moving parts of this
model.

346 | Chapter 13: SaaS Migration Strategies

Figure 13-5. Silo lift-and-shift migration

With silo lift-and-shift, we’re essentially adopting a full stack tenant deployment
model where each tenant runs an entirely separate, siloed stack of infrastructure. The
idea is to take a single stack that is not multi-tenant today and drop it into a multi-
tenant environment that provides all the surrounding constructs to manage and
operate these tenants collectively.

Let’s look at how this lands in the diagram. You’ll see that I’ve shown the application
plane in the middle. This is where each of the full stack silos of our legacy environ‐
ment will land for each tenant. I’ve represented this at the bottom of the application
plane, showing stacks where Tenants 1 and 2 deployed to the environment. For the
purpose of this discussion, I’ve shown these as n-tier apps. However, the legacy stack
you’re bringing in could come in many shapes and sizes. The key is that each tenant
stack be created by a fully automated onboarding process that essentially provisions,
configures, and deploys these tenant silos into your application plane. This experi‐
ence is shown on the left of the diagram, where a newly onboarded tenant uses the
onboarding capabilities of your control plane to automate this process.

This deployment automation represents an essential aspect of your SaaS migration. It
is, in some respects, what enables your migrated solution to realize some of the key
benefits of what it means to be SaaS. It also sets the stage for future evolution of the
stack, demonstrating your commitment to having a single, unified onboarding expe‐
rience for all tenants.

Migration Patterns | 347

One key caveat that may be less obvious is that every tenant in this silo lift-and-shift
pattern is running the same version of your application. This, in fact, can be a signifi‐
cant point of tension in your shift from a per-tenant installed legacy model to a full
multi-tenant environment. Resisting one-off variation and requiring every tenant to
run this same version is foundational to achieving the efficiencies and agility that
have been emphasized throughout this book.

As you move these tenants into full stack silos, you must think about how you’ll man‐
age tenant access to these environments. I’ve represented this conceptually at the top
of the application plane. Here, I have tenants that are authenticated just as they would
be in any SaaS environment. Then, as they make requests with tenant context, this
context will be used to direct tenants to the appropriate tenant stack. The routing
could be implemented with subdomains or through context that’s embedded in each
request.

The good news of this model is that it often represents the fastest, least-invasive path
to SaaS for some organizations. Once completed, you’ll be in a position to begin real‐
izing many of the benefits of a SaaS model. It also positions you to begin thinking
about how you can start incrementally advancing the environment to achieve greater
cost and operational efficiencies. This can all happen while you’re functioning and
operating as a SaaS business.

While this can be a somewhat low-impact move, it’s important to note that your cur‐
rent environment will require changes to participate in this multi-tenant model. Min‐
imally, you’ll want your existing design to add support for sharing tenant context
across the code in your environment. This context should be added to logging and
other operational insights to help teams centralize tenant insights and provide a uni‐
versal approach to troubleshooting issues with tenant context.

Layered Migration
The next variation of migration begins to shift toward introducing hints of multi-
tenant optimization into your overall migration process. The key difference here is
that, as part of migrating, you’re choosing to dig a bit more into the code to introduce
targeted bits of optimization that will allow you to realize some cost and operational
efficiencies during the migration. In this mode, you’re still not attempting to go after
a full modernization. You’re just identifying candidate areas within your existing
architecture where you might be able to get some upside from sharing layers of your
architecture, achieving better alignment between tenant activity and infrastructure
consumption.

How or if you can use the layered migration model really depends heavily on the
architecture that you’re migrating from. Some architecture patterns fit better with the
layered model than others. Figure 13-6 provides an example of how you might apply
layered migration in a classic n-tier architecture.

348 | Chapter 13: SaaS Migration Strategies

Figure 13-6. A layered migration of the web tier

The themes here should look familiar. We’re still creating a control plane and auto‐
mating all the onboarding of tenants via that control plane. All the values and princi‐
ples that I outlined around silo lift-and-shift come forward with us. We still want to
have a single process for introducing tenants and the expectation is that all tenants
are running the same version of the product.

What’s different is that I have moved some layers of my application stack into silos.
However, you’ll also see that the web tier of our n-tier architecture is not included in
the silo or as part of onboarding. Instead, with this layered approach, I have migrated
the web-tier layer to a shared, multi-tenant model (shown in the upper part of the
diagram).

Here, I determined that the implementation of my web tier did not include lots of
binding to tenant context. It was mostly processing requests and redirecting to my
application tier, where the bulk of the business logic resides. Knowing this, I decided I
could move the web tier of my application to a pooled model where it would be
shared by all tenants. What made this possible (for this example) was that the move
to a pooled model could be achieved without any significant refactoring. If more sig‐
nificant changes are required, the layer may not represent a good candidate for
migration.

By moving the web tier to a shared layer, it can now scale based on the actual load of
tenants, allowing the business to take advantage of the dynamically scaling infrastruc‐
ture concepts across the entire multi-tenant workload. This could reduce cost, sim‐
plify deployment, and achieve some additional degree of operational efficiency. We
still haven’t modernized our architecture, and this layer still represents a significant

Migration Patterns | 349

point of failure, but the benefits could be compelling enough to make this intermedi‐
ate optimization. This move also means that my onboarding gets moderately simpler.
It no longer needs to configure the web tier as each tenant is onboarded.

Now, imagine continuing down this layered path, migrating more layers of our stack
to a shared model. Figure 13-7 provides an example of how you might extend migra‐
tion to an additional layer of your stack.

Figure 13-7. Migrating the application layer

For this example, I’ve moved the application layer into a pooled model alongside our
web tier. This essentially moves all the business logic of our application services into a
shared infrastructure model that scales dynamically based on the workloads of our
tenants. This allows the application tier to take advantage of the efficiencies that we
discussed with the web tier. It also inherits the same challenges.

Now, for some, making this move could be much more extensive than moving a web
tier. There could be dependencies and logic in your existing app tier that may not
easily convert to a multi-tenant model where the code would be able to access and
apply tenant context to each request. This could mean that the level of effort here
would be too high, making it impractical to migrate this layer of your architecture.
However, if it is possible and the investment and effort math makes sense, this could
represent another valuable step in your migration path.

350 | Chapter 13: SaaS Migration Strategies

Assuming this did fit your environment, your onboarding would now only be
required to provision new storage for each tenant. Your app tier would now use the
incoming tenant context of each request to connect the application call with the
appropriate tenant storage resources.

While this is clearly not a path to a modernized SaaS architecture, the layered model
could represent a good starting point for some SaaS vendors. Yes, there are clear
weaknesses to this model that could, eventually, be overcome by further decomposing
your system into smaller services. Still, the economies of scale with this approach
could be acceptable for some teams (if your scaling policies are dialed in). At a mini‐
mum, this can be a reasonable compromise that lets you achieve some initial efficien‐
cies without a major rewrite, giving you a solid first evolutionary step in migrating
your SaaS environment.

Service-by-Service Migration
Some teams have a greater focus on migrating to a modernized architecture. These
teams are looking for a more direct and immediate path to an architecture that maxi‐
mizes cost efficiency, agility, innovation, and the operational profile that represents a
best-of-breed multi-tenant environment. The expectation is that teams can absorb a
bit more complexity in exchange for being on a path that lets them step more
squarely into a modernized environment. Any number of factors could be motivating
this approach. Teams may feel they have more time, or they may be facing challenges
with their current design that demand a more immediate rewrite.

Even in this mindset, though, it’s important to note that we’re not really targeting a
full modernization of the system. Any path to modernization should still have
some degree of urgency that steers teams toward finding ways to incrementally
modernize their solutions as part of the journey instead of a one-time rewrite.
This goes back to some of the thinking outlined at the outset of this chapter where
I highlighted the importance of focusing on time-to-market (for any migration
strategy).

A commonly used pattern to support this modernization-focused model is referred to
as the service-by-service migration strategy. This pattern takes the approach of incre‐
mentally modernizing individual services of your architecture, running the existing
code alongside new, modernized microservices. Figure 13-8 provides an example of
this service-by-service model in action.

Migration Patterns | 351

Figure 13-8. Service-by-service migration

For this example, I’m sticking with the same siloed stack starting point that was dis‐
cussed with the other patterns, moving an n-tier application into our migrated SaaS
environment. I did take one shortcut, extracting the web tier and moving it to a
pooled model (like you saw in the layered example). I did this to put more of the
migration focus on the application tier. Here, instead of moving the application tier
into one shared layer, I’m going to start by modernizing the functionality that lives in
that application tier, incrementally extracting functionality from these siloed applica‐
tion tiers and moving this functionality into pooled multi-tenant microservices.

Often, the hardest part of this model is identifying the first service(s) that can be
extracted from the application tier. You might pick an area of the system that has the
least potential for disrupting the business or an area that represents a key bottleneck
that needs more immediate attention. There are no absolutes here.

Regardless of where you start, teams generally find it quite challenging to identify
functionality that can be easily removed from the application tier. You can imagine
how the application tier code has evolved over the years and how tightly coupled the
different bits of functionality might be. Without hard boundaries, builders may have
taken advantage of having open access to any part of the application tier. These envi‐
ronments will often include a single monolithic database that is shared across any and
all parts of the application tier.

You can see how these factors can make it really difficult to find a good starting point.
While this can be challenging, it’s also part of the natural tension that comes with get‐
ting your migration off the ground. For some, this will mean making compromises

352 | Chapter 13: SaaS Migration Strategies

around these first services to start pulling your application tier apart. That could
require you to start with services that are more coarse-grained than you’d like. The
idea is that we need to begin to extract services to get the foundations in place, know‐
ing that you’re finding a balance that lets you move forward. It’s about creating
momentum. As you begin to move more bits out of the application tier, this will get
easier. Then, once you have these services in place, you can use real workloads to find
the best places to further decompose your system. In some cases, you may find that
not every service needs to be decomposed into a smaller representation.

These first few services you build should be implemented as first-class multi-tenant
microservices that will run alongside your existing app tier. I’ve shown this in
Figure 13-8, with two tenants having app tier and storage deployments. Then, in the
middle, I’ve shown two microservices that represent functionality that I’ve extracted
from the application tier and deployed as microservices. A big part of creating these
services is also focused on pulling the data out of your tenant silos, creating new
multi-tenant storage models. With your new microservices, you will be moving your
data into multi-tenant pooled or siloed storage based on the needs of your service.
The key here is that this moves compute and storage to microservices that encapsu‐
late the data that they manage. This gives our microservice the autonomy it needs and
lets us manage all access to the data through the contract of the service. Pulling this
data out can, in some instances, be even more difficult than the efforts to extract the
code.

In addition to carving out microservices, you also have to consider how migration
will influence the tenant routing strategy of your application. There are two dimen‐
sions to this problem. One is shown in Figure 13-8, where you’ll see a routing layer
that uses tenant context and the nature of a request to determine how the request will
be routed. Some requests will go straight to the old app tier and some will go to the
new microservices. The other layer of routing and integration that happens here is a
bit less obvious. As you’re carving out your new microservices, you’ll discover that
you need to support some interim interaction directly between the application tier
and your new microservices. Figure 13-9 provides a conceptual view of these
interactions.

Figure 13-9. Integrating the app tier with new microservices

Migration Patterns | 353

I’ve shown two different tenants, each with their own app tiers. The app tier may,
as part of processing requests, need to call one or more of your new microservices,
or your microservice may need to call the app tier as part of processing one of its
requests. The key point is that while you’d like to minimize these dependencies,
they will happen. Ideally, you’ll be able to limit the effort needed to support these
interactions to prevent old dependencies from finding their way into your new
code.

After you’ve got the fundamentals of this model in place, much of the focus will be on
spinning up the next set of microservices. The nice part of this approach is that it
puts you on the path to modernization and forces you to begin tackling your multi-
tenant realities sooner instead of later. Also, once you’re done, you’ll find that the
remnants of your legacy architecture will fade away and you’ll be left with a fully
modernized architecture footprint. I’ve shown a conceptual view of this end state in
Figure 13-10.

Figure 13-10. A fully modernized end state

You’ll see that I’ve completely removed the app tier from the architecture. What’s left
are all the successfully migrated multi-tenant microservices. I’ve also presumed a nat‐
ural next step, eliminating the web tier and moving the client to a single page web
application that’s hosted outside of the application plane. This would be a big step for
many, but would represent a natural evolution, leveraging modern web application
patterns to streamline the signature of your application plane.

Overall, you can see how this strategy sets you on a direct path to modernization
while still allowing you to make this move in an incremental fashion. This model puts
greater emphasis on addressing key multi-tenant architecture considerations earlier
in your process and sets the stage for introducing your next-generation architecture
alongside your existing design.

354 | Chapter 13: SaaS Migration Strategies

Don’t compromise on new microservices
The new microservices you introduce during your migration are meant to be built as
fully modernized services. These services should not make compromises that could
undermine your modernization goals. This can seem like a high bar, but it’s essential
to getting the payoff that comes with going down this more modernization-focused
path.

So, what does this mean? Well, the guidance I give is to build these microservices as if
they were being created for a greenfield environment. I would design, implement, and
deploy these microservices using the best practices strategies and patterns that will
enable the longer-term efficiency, scale, and agility goals you have for your environ‐
ment. There will be some areas where you may need to support slight, temporary var‐
iations to run alongside your legacy environment, but don’t let those trade-offs creep
too heavily into your design.

This is especially important for the first few microservices. These initial services are
the blueprint for the next wave of services that you’ll create, so you want to demand a
lot of them. They should look to establish the foundational libraries that can be used
by other microservices. You should be looking at how shared constructs and integra‐
tion like token management, tenant-aware logging, billing, and metrics can be turned
into reusable mechanisms (as covered in Chapter 7).

Ultimately, you don’t want to find yourself returning to your new microservices to
apply another round of refactoring to achieve your modernization goals.

Integrating legacy code with the control plane
In this service-by-service integration model, you’ll have new and old code running
side by side. The new code will have full multi-tenant support. This means that it will
emit tenant-aware logs, integrate with billing, publish metrics, and so on. These new
services will rely heavily on the cross-cutting capabilities of your control plane.

While these new services are built with these multi-tenant capabilities, they only rep‐
resent part of the functionality of your system (while you’re migrating). That means
that your control plane will only get data and operational visibility into a subset of the
overall system. The legacy bits of the application tier have no awareness of the control
plane and, as built, don’t have any notion of tenancy. This could mean that, during
migration, the team would need to construct operational views from these two differ‐
ent elements of the architecture. This would place a significant extra burden on oper‐
ations teams and make it generally difficult to monitor the state of your system.

This may lead teams to invest in creating new control plane integrations into their
existing application tier code, knowing that this code will eventually be cycled out.
You need to find a reasonable balance of investment and near-term value here. You’ll
certainly need to add extra instrumentation to your existing app tier code. Ideally,

Migration Patterns | 355

though, you can surface enough operational data to your control plane to make this
work and not have it represent a huge diversion. A lot depends on where your techni‐
cal stack will allow you to add this instrumentation without it being a huge diversion.

Comparing Patterns
There are clear strengths and weaknesses for each of the migration patterns that I’ve
outlined. I’ve tried to highlight the business and technical factors that come with each
of these patterns. However, I thought I’d provide a high-level summary of the pros
and cons of these patterns, bringing more clarity to the trade-offs associated with
each approach (Figure 13-11).

Figure 13-11. Migration pattern pros and cons

Clearly, the strengths of the silo lift-and-shift model are its speed and simplicity. The
less invasive nature of this pattern makes it easier to get your system up and running
without digging into your application code. Of course, this comes at the price of
operational complexity, agility, efficiency, and cost. It will limit your ability to achieve
some of the economies of scale that come with SaaS environments that pool
resources. Still, if your target end state is a fully siloed model, this may not be so
important.

The layered model represents a bit of a compromise. It’s about letting you get some
targeted efficiencies without leaning heavily into significant refactoring or rewrite.
The upside is that it is only moderately invasive and it does put you on a path to some
early successes. Naturally, any investment in refactoring will introduce some delay
into your time to market. Also, while you’ll get some efficiencies, they’ll be somewhat
constrained. You’ll still face cost issues and management challenges with this model.
The pooling of these layers can also introduce more single points of failure in your
environment.

356 | Chapter 13: SaaS Migration Strategies

Finally, the service-by-service (strangler) pattern places a greater emphasis on achiev‐
ing modernization sooner. It’s still an incremental model, but the efforts and invest‐
ment associated with cutting over to new microservices will be somewhat invasive.
This will impact time to market and add layers of complexity to the overall migration
process. The good news is that this is still an incremental model, so once the founda‐
tional bits are in place, you should be able to slowly move your environment to a fully
modernized experience.

A Phased Approach
The patterns that I outlined in the previous sections are not meant to be viewed as
mutually exclusive, and they are not meant to represent an exhaustive list of every fla‐
vor of migration. It’s also worth noting that these patterns might be applied together
as part of a phased approach where you move from one pattern to the next.
Figure 13-12 demonstrates how you might combine these patterns in a phased
approach.

Figure 13-12. Combining migration strategies

Migration Patterns | 357

For this example, the business started its migration journey with a clear need to get its
SaaS solution to market as soon as possible. Knowing this, they opted to use the silo
lift-and-shift pattern since it required the least effort to get their environment up and
running (step 1).

Once the business was running in this new model and selling its offering to custom‐
ers in a SaaS delivery model, they wanted to begin getting more cost and operational
efficiency out of their solution. Here, within the patterns we’ve discussed, they could
consider a layered model as their first wave of modernization or they could consider
going straight to a service-by-service migration that put them more directly on a path
to full modernization (both options shown as step 2).

Now, if the business chooses to start modernization with the layered approach, this
could get them some immediate multi-tenant benefits as a first step in their moderni‐
zation process. Then, after this, they could consider moving on to a service-by-
service migration to begin fully modernizing their environment (step 3).

The key is not to view your migration process as a static, one-time migration. All of
these strategies are about making some incremental step toward a modernized SaaS
offering where there may be multiple phases to that journey. It’s up to you to find the
mix of business and technical considerations that can help you formulate a plan that
best meets your needs. It’s also worth noting that not every migration ends with a
fully modernized experience. The level of modernization you are targeting might vary
based on the parameters of your business. The deployment model of your tenants
could also influence the path you follow. If your tenants will need siloed infrastruc‐
ture, for example, you might stop at silo lift-and-shift. Modernization is always a
good goal, but the nuances of the destination can be different for every SaaS business.

Where You Start Matters
I’ve laid out some patterns, but I still haven’t said much about how this migration
might unfold. Once you’ve picked your path and strategy, you still have options about
how you might sequence the steps in your migration. My bias is toward having a
migration strategy that begins with a clear focus on injecting tenancy and establishing
the elements of the overall operational experience. I want teams focused on figuring
out how tenants will get introduced into their environment, how they authenticate,
and how they manage and operate these tenants once they’re in the system.

To me, this always starts with creating the control plane. That doesn’t mean building
every element of the control plane. It’s more about building in support for founda‐
tional constructs that will get your system running in a multi-tenant model from day
one. This puts multi-tenancy front and center on day one and has a cascading effect
across all the remaining steps in your migration process. Figure 13-13 provides an
example of this approach.

358 | Chapter 13: SaaS Migration Strategies

Figure 13-13. SaaS building blocks

Figure 13-13 provides insights into how these core multi-tenant principles land in
your architecture from the outset of your migration. First, at the top right, you’ll see
the idea of establishing a SaaS identity. Your new environment must start by support‐
ing some clear way for tenants to onboard to your solution, create a tenant, create a
tenant user, and bind that user to the tenant (step 1). These are all fundamental con‐
trol plane concepts that I’ve covered in detail throughout this book. There are not
many corners you can cut when you’re starting out your migration. There may be
some scenarios that you may not initially cover, but you’ll still need to be committed
to creating a significant amount of your onboarding experience.

The other bit of onboarding I’ve shown is connected to the idea of provisioning and
configuring infrastructure as each new tenant onboards (step 2). I’ve presented this as
optional since some environments may not require per-tenant resource provisioning.
However, if your solution is going to need per-tenant provisioning, you should be
focused on wiring up this process from the start, providing a clear home for the pro‐
cess and a mechanism that will get exercised as your migration takes shape. The goal
is to avoid having one-off runbooks or scripts that provision tenant environments
while you’re ramping by having provisioning woven into your onboarding all along
the way.

Where You Start Matters | 359

In the top left of the diagram you’ll see tenant authentication (step 3). This is also a
foundational element that needs to be addressed at the front of your migration build.
This connects to the onboarding work we’ve discussed, authenticating a user and get‐
ting their SaaS identity, which can then be passed into the application plane. Having
this in place early forces teams to consider how they will process and apply tenant
context as it flows into the backend services and architecture of your application
plane (step 4).

Finally, at the center of our diagram are the services that we are migrating into this
multi-tenant model. Some of these will be legacy services and some may be new,
modern multi-tenant services (depending on which migration pattern you’re follow‐
ing). Either way, these services will now receive tenant context and use this context to
surface data and insights to your control plane. The data may be minimal at first, but
you want to establish this end-to-end experience to lay the foundation for more com‐
prehensive control plane interactions. Here, I’ve shown a simple example of applying
tenant context in your application services. First, we see an illustration of logs being
published with tenant context (step 5). This is key to ensuring that your environment,
from the outset, includes support for surfacing system activity with tenant context.
More importantly, it also exposes teams to this tenant context at the service level,
driving home their need to think more in a multi-tenant mindset as they’re imple‐
menting/migrating elements of the system.

The other example highlights the use of tenant context to publish metrics and analyt‐
ics data (step 6). This is the data that provides business and operational insights into
the health and activity of tenants. I’ve also presented this step as optional. However, I
included it here because I believe that seeing teams integrating with the control plane
and publishing some data (even if it’s minimal) drives home the value and impor‐
tance of investing in surfacing metrics that will have technical and business value.

Hopefully, you can see that my emphasis is on giving priority to those parts of the
system that are less about the application and more about the constructs that allow
the environment to function as a multi-tenant offering. The mere presence of these
mechanisms will drive questions that need to be surfaced early in the migration of
your solution. This prevents teams from viewing tenancy, tenant logging, metrics,
and other key multi-tenant concepts as something you bolt on after your application
is up and running. Delaying introduction of these core concepts will undermine your
overall migration, causing you to undo and rework bits of your system to add support
for tenancy.

Automation is also an essential part of this migration story. You want to be thinking
about the tenant lifecycle from the beginning, introducing and exercising mecha‐
nisms that let you (and your QA team) experiment with the steps needed to create,
validate, and authenticate tenants. Focusing on efficiencies and repeatability up front
is core to making the shift to the SaaS mindset.

360 | Chapter 13: SaaS Migration Strategies

Conclusion
The appeal of SaaS has many organizations looking for strategies they can use to
migrate their offerings to a multi-tenant model. While there is often a common set of
factors that drive this need to migrate, it should be clear that there is no single, uni‐
versal playbook for making the move to SaaS. The goal of this chapter was to high‐
light the different variables that might shape your migration strategy and outline the
business and technical considerations that are often part of this exercise.

I started this chapter by focusing on the business dimensions of migration. There are
a range of business parameters that can have a significant influence on the path and
priorities of your SaaS journey. Time to market, competitive pressures, operational
challenges, and cost concerns are all part of the migration business story. As an archi‐
tect or builder, it’s your job to lean into this business discussion and figure out how
the strategy you land on will drive your technical migration strategy. The key take‐
away was that SaaS migration represents a holistic transformation that touches all
areas of the business. The teams that market, sell, operate, and support your offering
will need to rethink and evolve their roles, adapting their approach to align with the
core values of the SaaS delivery model.

With these foundational concepts and motivations laid out, I started digging more
into the technical aspects of migration. Here, the goal was to outline a set of migra‐
tion patterns, each of which took somewhat different approaches to migration. Some
patterns leaned purely toward speed and others were a blend of speed and moderni‐
zation. The idea was to expose you to a range of possibilities that have slightly differ‐
ent priorities and strategies. In some cases, your migration might map precisely to
one of these patterns. However, you may find a blend of these patterns enables you to
implement a migration model that balances the business and technical needs of your
offering. Sometimes, the state of the stack you’re migrating from can have a signifi‐
cant impact on the strategy you select. You may be facing performance, scale, or
operational challenges that might put greater emphasis on getting parts of your sys‐
tem modernized. Or, your system and target state might favor a lift-and-shift model
that gives less priority to more immediate modernization. The list of possibilities is
quite long. Still, the themes that are covered by the different patterns we looked at do
a reasonable job of covering this spectrum.

Finally, I wrapped up the chapter by looking at how you should start your migration.
The choices you make at the outset of your migration can have a significant impact
on the success of your migration. Putting core concepts like SaaS identity/ authen‐
tication, tenant context, and tenant-aware operations up front forces teams to tackle
fundamental multi-tenant challenges that will cascade across all layers of your archi‐
tecture. In many respects, this serves as a forcing function that requires all moving
parts of your SaaS environment to consider the impacts of building, deploying, and

Conclusion | 361

operating in a multi-tenant model. This may appear to slow your migration initially,
but the investments will pay great dividends as your environment begins to mature.

I’ve seen teams go down a migration path where they defer taking on these core
multi-tenant concepts. They’ll create a system that targets a single first customer that
has zero support for the horizontal multi-tenant concepts that are part of the control
plane. Then, they attempt to add multi-tenant support later as new tenants are intro‐
duced. Inevitably, this exposes challenges that didn’t show up in the single customer
version and typically starts a painful path of retrofitting to try and bolt multi-tenancy
onto an environment that was not built to support multi-tenant from the ground up.

Overall, my hope is that the spectrum of concepts that I covered here will provide you
with a broader mental model that has you thinking about the full range of factors that
go into building a successful migration strategy. It should also be clear that any notion
of viewing migration as a tech-centric strategy would be a mistake. You’re building a
new service and transforming your solution to meet the as-a-service goals of that
business.

For the next chapter, I’m going to shift gears a bit and look at how tiering and billing
end up shaping the architecture of your solution. While I’ve referenced tiering
throughout the book, I haven’t really dug into the nuances of how tiering and billing
directly influence your multi-tenant architecture. The key will be to provide a more
holistic view of these concepts and highlight the strategies that are commonly used to
support a tiered experience without undermining the efficiency and agility of your
environment. This will give you a clearer picture of the different areas where tiering
and billing need to be woven into your multi-tenant architecture.

362 | Chapter 13: SaaS Migration Strategies

CHAPTER 14

Tiering Strategies

For architects and builders, the mention of concepts like tiering and billing may elicit
a less than enthusiastic response. The technical brain often assumes that anything
related to how a product is priced or sold is outside of their realm. It’s a natural reac‐
tion. Technical teams are often used to having a hard line between how a system is
designed and how that offering is presented to customers.

In a SaaS environment—where we’re constantly blurring the lines between business
and technical domains—technical teams usually have a vested interest in understand‐
ing how the personas, packaging, tiering, and pricing of a service will shape the scale,
performance, and experience delivered by the underlying architecture. In reality, part
of the multi-tenant story is to create a range of experiences for different customer
personas that enable the business to reach new segments that will give them the flexi‐
bility that will fuel the growth of the business. The ultimate goal is to create what I’ll
refer to as a “tiered” experience that makes an overt attempt to segregate your solu‐
tion into different experiences that offer different levels of value at different price
points.

You can imagine how this notion of tiering has specific mappings into the multi-
tenant strategies that are applied to your solution. Deployment, throughput, isolation,
noisy neighbor—the topics we’ve been talking about all throughout this book—all
represent different knobs and dials that can be used to create different tiered experi‐
ences. This is where you, as the architect, can bring added value to your SaaS busi‐
ness. As a SaaS architect, you have unique insights into the various technical
strategies and boundaries in your architecture that can be combined to stratify your
SaaS experience. In reality, you may be in the best position to help the team under‐
stand which tiering models best support their needs. This includes helping them
weigh and consider the trade-offs associated with the various strategies.

363

The business will also look to you to understand how these tiering models might
impact the infrastructure costs and margins for your offering. Tiering can play a key
role in maximizing margins, allowing the business to scale its reach without fear of
the cost and operational impacts associated with this growth. It’s here that we see tier‐
ing connecting to the broader economies of scale story, as it is one of the tools that is
used to align operational and infrastructure costs with the load of your tenants.

For this chapter, I’m going to focus on some of the common areas where tiering will
touch your architecture. We’ll start by looking at some of the different tiering patterns
that can shape and differentiate tenant experiences. I’ll identify some of the common
categories of tiering, outlining the general goals, value, and intent of each of these
types of tiering. Then, with these concepts in place, I’ll pivot to looking at how you
implement these strategies, providing insights into the nuances that come with bring‐
ing tiering to life across different layers of your architecture and different technolo‐
gies. Finally, I’ll wrap up the chapter by looking at how tiering influences the
operational footprint of your environment.

Overall, this chapter should provide you with a good sense of the options that you
need to consider when thinking about how, where, and when tiering can be applied to
your solution. It should also provide more insights into the value that tiering can play,
offering the business new ways to package, price, and offer their SaaS solution.

Tiering Patterns
Before we get into how you can apply tiering in your solutions, let’s come up a level
and review some of the common techniques that are used to introduce tiering into a
multi-tenant environment. I thought it would be useful to start by identifying and
categorizing some of these tiering models, highlighting the different motives that are
often behind the adoption of different tiering strategies. The goal is to find points of
inflection in your offering where there are real value boundaries for the business and
your tenants. These points of inflection might be connected to performance, cost, fea‐
tures, isolation, and other key parts of the service.

A big part of your job (as a team) is to identify these points of inflection and deter‐
mine which combinations of these factors map best to the business and technical
realities of your domain. Putting tiers in place purely to drive different price points
isn’t enough. Your tiering models should be defining boundaries that make sense to
the business and its tenants. This is where the patterns I’ll cover come in. The areas
I’m outlining represent some of the typical areas where teams will find these bound‐
aries. It’s important to note that there may be tiering strategies that are more directly
connected to the nature of your domain. If your SaaS service does video encoding, for
example, you may have tiers that are very much focused on domain-specific models
that are well understood by the customers in your domain.

364 | Chapter 14: Tiering Strategies

While this chapter focuses on tiering strategies, it’s important to
note that tiering does not apply universally to every SaaS solution.
There are definitely environments where the domain, pricing, or
other attributes of your solution may not be presented to custom‐
ers in a tiered model. At the same time, it’s also worth noting teams
often overlook the value and importance of tiering and the role it
can play in shaping a business and technical strategy. Also, in some
instances, the strategies I’ve outlined here might be employed as
internal-only mechanisms that are simply used to control and opti‐
mize the operational and availability profile of your SaaS
environment.

The sections that follow will look at how you can use different tiering patterns to
define the tiering model of your solution.

Consumption-Focused Tiering
At this point, it should be clear that a big part of the SaaS value proposition is focused
on aligning tenant activity with resource consumption. While this is a general effi‐
ciency goal for multi-tenant architecture, it also represents a natural place to think
about how you might introduce a tiered consumption model. The graph in
Figure 14-1 provides a view of how tiering can shape the consumption experience of
your tenant personas.

Figure 14-1. Aligning consumption with revenue

In this chart, you’ll see consumption and revenue bars for three separate tiers. The
goal of the chart is to illustrate the connection between the revenue generated by each
tier and the costs associated with the tenants in that tier. If our tiering strategy is
structured correctly, you should see a pattern that mimics what’s shown in this graph.

Tiering Patterns | 365

The outcome we’re looking for is one where the costs imposed by tenants, on average,
do not exceed the revenue generated by those tenants.

Our consumption tiering policies, in this example, are presumed to be placing con‐
straints on each tier to control or limit their consumption. For example, if we have a
basic tier tenant that’s paying $50/month, that tenant should not be able to consume
resources at the same rate as our platinum tier tenants that are paying $5,000/month.
This, again, is all part of creating a tiering model that can accommodate the varying
tenant personas, using these price points and value boundaries to grow the business
without eroding margins.

There are scenarios where you might intentionally allow tenants to consume
resources in excess of their revenue. If you have a free tier, for example, that tier often
provides a low friction path into your solution that will ultimately convert to a paying
customer. This case represents an even stronger argument for consumption-based
tiering. It’s here that you’ll absolutely need to associate consumption policies with this
free tier to ensure that these tenants aren’t consuming excess resources and inflating
your costs (beyond what’s anticipated).

With consumption-based tiering, the overall goal is to define a range of tiers that have
clearly defined consumption policies that put constraints on the consumption activity
of tenants. Where you decided to insert these policies and how they limit consump‐
tion will depend heavily on the nature of your domain and solution. As a multi-
tenant architect, it’s your job to work with the product owner(s) to figure out where
there are specific points of inflection in your architecture that represent areas where
the activity of tenants will create significant shifts in the infrastructure costs of your
environment. It will be your job to find the data around these inflection points and
surface them to the pricing teams, giving them a range of options that can create nat‐
ural consumption boundaries that will drive the right cost and consumption dynam‐
ics for the different tenant personas that you’ll be targeting. In many instances, there
will be clear areas in your system that will stand out as candidates for controlling
consumption.

You should also expect your consumption policies to evolve over time. This is where
you’ll really want to use the operational metrics and insights that we discussed in
Chapter 12 to analyze the consumption trends of tenants and tiers. This data will
allow you to assemble a richer profile of the consumption and infrastructure cost
trends that are showing up in your environment. This data can be used to shape and
evolve your consumption tiering model. Of course, you won’t have all this data on
day one. Instead, you’ll have to work with estimates initially, then morph your tiering
(if needed) based on the availability of insights that are extracted from your running
environment.

Now, some teams that have a heavy emphasis on consumption-based pricing will pre‐
sume they have no need for tiering. Instead, they will simply meter consumption and

366 | Chapter 14: Tiering Strategies

use this data to generate a bill, eliminating any need for tiering. In this mode, every
tenant is treated the same. This is not uncommon and can work. However, it can also
be a trap. If you have a purely consumption-based pricing model with no tiers, you’re
essentially saying that all tenants can impose whatever load they’d like on the system.
So, for example, a tenant could make 10,000 API calls that are looking up configura‐
tion data and these API calls don’t happen to be included as part of the consumption-
based pricing model. In this model, I could still create noisy neighbor conditions and
impact the experience of other tenants based purely on the bursting of API calls that
are not metered or managed as part of your consumption-based pricing model. This
is where you have to think beyond resource consumption of targeted resources and
think more broadly about how tenants can impose load on your environment. If
there are no constraints on their activity, you may also find yourself overprovisioning
to accommodate sudden spikes of load.

The key with consumption-based tiering, from my perspective, is that we need ways
to manage consumption that allow us to offer a range of experiences. So, even if I
have consumption-based metering, I also want tiers attached to that experience that
offer different levels of consumption based on the level of your tier. Without this, it
can be difficult to distinguish the value proposition of your higher-level tenants. This
circles back to the importance of connecting tiering to the business strategy, equip‐
ping the business with more tools that allow them to reach a broader range of mar‐
kets and tenant personas.

Value-Focused Tiering
In many respects, everything we do with tiering is connected to value. However, for
this discussion, what I’m labeling as valued-focused tiering is specifically targeting the
way tiering is used to offer tenants experiences that translate into concrete value.
When I say value, I’m talking about the kind of items you find on a list of direct bene‐
fits that are offered to each tier. This could be features, new capabilities, performance
SLAs, and so on. The idea is that we’re enabling access to functionality and experien‐
ces that allow tenants to have an enriched experience and extract more value out of
your SaaS service.

This is a pretty broad area that includes a number of different mechanisms that can
be correlated to direct tenant value. Performance represents one of the most common
manifestations of value-focused tiering. Here, you’re essentially indicating that ten‐
ants will get different levels of response and throughput for each of the tiers of your
system. You can imagine how, for certain workloads, your system might offer better
performance for a price. If, for example, you’re running a video encoding service, you
might provide a batch experience for basic tier tenants where their encoding jobs go
into a queue and may have longer processing times. Meanwhile, that same system
could offer more immediate processing and faster turnaround for platinum tier

Tiering Patterns | 367

tenants. This provides tenants with a clear connection between value and the higher
tier experience.

Value could also be connected to the functional capabilities of your solution. Specific
features might be enabled based on your tier, providing higher tier tenants with
access to additional functionality that is not available at lower tiers. You can also use
other, more basic mechanisms to define tiers. For example, you could use the number
of active users as part of your tiering configuration. You can imagine how the nature
of your solution and the realities of your domain could play a big role in determining
which flavors of value-based tiering might be applied to your multi-tenant
architecture.

To support tiered access to different features, teams will often employ role-based
access control (RBAC) or feature flags. A user’s role (or tier in this case) might be
used to selectively enable access to application features. In fact, the lines can get blur‐
red here where a user’s role within a tenant might control access to features and, in
parallel, the tenant’s tier will enable or disable access to specific features. The
approach you take will be heavily influenced by the technology stack of your
environment.

Deployment-Focused Tiering
While every SaaS solution must ensure that it isolates tenant resources, there are also
domains and tenant personas that may impose specific deployment and isolation
requirements on your solution. This may be driven by compliance and regulatory
requirements or other domain factors that require elements of your system to be
deployed in a dedicated model. You may find yourself using tier-based deployment to
address specific performance and noisy neighbor conditions that are addressed
through tier-based deployment strategies. There may also be certain high-value oper‐
ations, for example, that some tiers expect to be fully isolated from any other tenant
activity. Your goal is to find the specific areas where these deployment strategies
might represent natural tiering boundaries for your offering. You can imagine, for
example, offering dedicated resources for some or all of your offering as part of a pre‐
mium tier that allows you to better correlate the added costs of dedicated resources to
a higher price point.

The key is that you shouldn’t view isolation as an all-or-nothing proposition that is
applied equally to all tenants. Instead, you want to create an architecture that sup‐
ports a range of isolation models that best aligns the pricing model of a solution with
the different tenant personas that you’ll need to support. Here, you can create unique
tiers that mirror the needs of these different personas.

Figure 14-2 provides an example of how you might apply tiering to the different iso‐
lation and deployment models of your solution.

368 | Chapter 14: Tiering Strategies

Figure 14-2. Tiered isolation and deployment models

I’ve included three tiers in this example, each of which employs a different deploy‐
ment model. On the left I’ve shown the basic tier tenants. You’ll notice that all the
solution’s resources are pooled for this tier. This means that tenants will be more
exposed to noisy neighbor considerations and will rely on more complex isolation
strategies. The advanced tier, shown in the middle of the diagram, takes a slightly dif‐
ferent approach, carving out a specific service for each tenant in this tier. The idea is
that you’ve picked some specific services that can offer tenants a different noisy
neighbor and isolation profile for the functionality and data that’s managed by these
services. This can represent a good compromise, bringing the upside of siloed serv‐
ices to just those parts of the system where it has specific, targeted value that warrants
a separate tier.

Finally, on the far right, you’ll see the premium tier tenants. These tenants presuma‐
bly have an even stricter set of siloed resource demands, requiring the entire stack for
each tenant to be deployed in a full stack silo model where nothing is shared between
tenants. Naturally, this tier would demand a much higher price tag and be viewed as a
special case that enables the business to target these tenants that are willing to pay a
premium to have access to a fully isolated environment. As I noted before, there are
true scaling challenges that come with the full stack silo model, so you’ll want to think
carefully about how many tenants you’ll allow to run in this model.

The primary point is that the deployment footprint of your application can play a key
role in shaping the tiering experience of your solution. Again, this demands a more
in-depth exploration between the product and technical teams, working together to
identify the combinations of deployment models and tiers that are going to best meet
the needs of your customer personas.

Tiering Patterns | 369

Free Tiers
No discussion of SaaS and tiering would be complete without some mention of free
tiers. The free tier has traditionally represented a powerful construct for SaaS organi‐
zations, serving almost as a marketing and customer acquisition channel where ten‐
ants can take your system out for a spin without making any initial commitment.
This is especially prevalent in B2C settings, but shows up across many SaaS
experiences.

The free tier has both business and technical implications. Teams must give careful
consideration to the operational, cost, and business impacts that come with support‐
ing a free tier model. For many, the goal is to balance enabling a reasonable experi‐
ence that will draw tenants without absorbing significant incremental costs or
impacting the operational footprint of the environment. Some teams will carve out a
free tier as a standalone experience. Others will have it behave as a first-class citizen,
placing constraints on these tenants to limit their ability to consume excess resources.
These are all the nuances that come with the free tier model. There are few absolutes
here and how or whether your team uses this model depends heavily on the nature of
your domain and the expectations of your customers.

If you do choose to support this tier, you’ll need to figure out how this could impact
the broader customer journey story for your solution. For example, will your tenants
expect to have their data and configuration follow them if they move to a paid tier? If
they’re running in the same environment with paid tier tenants, this should be a natu‐
ral transition. However, if you’ve carved out a separate environment for your free tier
tenants, you’ll need to figure out what it would mean to support a move to a paid tier.
There’s nothing particularly complex about supporting this transition; you just need
to figure out what journey you’re supporting for free tier tenants and include this as
part of the overall lifecycle. As part of this, you may also need to have policies that
will remove free tier tenants that are no longer active.

Composite Tiering Strategies
I’ve tried to categorize some of the different types of tiering that could surface in SaaS
environments. However, this list is neither exhaustive nor mutually exclusive. In real‐
ity, organizations may choose to use a mix of strategies to arrive at an approach that
best supports the consumption, value, and deployment requirements of their
customers.

Generally, this is about finding the intersection between the factors that drive costs,
the capabilities that can add incremental value, and the domain and market realities
that could shape the deployment model of your environment. The goal is to weigh all
of these options, lay them alongside the personas you’ll be targeting, and find the
combinations of tiering strategies that will make sense to your customers and allow

370 | Chapter 14: Tiering Strategies

the business to engage in a range of customer experiences that will enable both reach
and growth. Finding the intersection of these needs and opportunities will allow you
to identify the attributes that will drive the overall design and footprint of your SaaS
architecture.

In some instances, teams may decide that there is no composite tiering model that
meets their needs. Instead, they might opt to create a build-your-own tiering experi‐
ence. With this approach tenants are presented with a menu of options when
onboarding, selecting the combination of features that best map to their target experi‐
ence. This option is powerful but it can also add complexity to the operational and
implementation profile of your architecture. You’ll want to carefully consider the
trade-offs that come with adopting this model.

Billing and Tiering
The tiering strategies that we’re discussing in this chapter are mostly focused on the
architecture aspects of tiering. However, if you think about tiering, it’s also very much
part of the pricing story of a SaaS environment. A more complete look at tiering
would also look at how you might connect tiers with specific billable units. For exam‐
ple, if you have a consumption-based tiering strategy, your system would need to
measure and publish billable consumption units to your billing system. The bill will
then be calculated using this information. This consumption price could be lowered
as you move to higher tiers (where you’re also consuming more resources). The real‐
ity is that there are any number of different ways that you might correlate tiers to
your broader billing strategy, and this will influence how your architecture publishes
and consumes this billing data. However, for the scope of this chapter, I’m intention‐
ally steering away from going deep on the billing aspects of tiering. Instead, I’ve
focused more on the builder and operational view of tiering, looking at how tiering
strategies influence the shape of your architecture. This may overlap with the meter‐
ing and metrics discussion that was part of Chapter 12.

It’s also worth noting that tiering is often managed, in part, by your billing system.
When you’re setting up your billing system and defining the billing model, it’s here
that you may set up plans, tiers, or some construct that identifies the different billing
models that are available. This notion of a plan or tier will be mapped back to your
control plane and applied across your multi-tenant architecture. It may be used to
throttle tenants, it may be used to measure and publish consumption, or it might be
used to turn features on or off. This is an important dimension of the overall tiering
story. However, the options vary significantly based on the tiering model you choose
and the nature of your billing system. So, for this discussion, I’m going to focus more
on how these tiers are defined and applied within your architecture and just assume
that you’ll also look into how these concepts get connected to your billing experience.

Tiering Patterns | 371

Tiering and Product-Led Growth
There’s been quite a bit of attention centered around the idea of product-led growth
(PLG) and SaaS. There are lots of dimensions to the PLG discussion that go beyond
the scope of this book, but it does have some intersections with the notion of tiering
and, as such, is worthy of discussing briefly.

In a traditional model, growth of a SaaS business would be driven by a combination
of factors. Marketing, sales, acquisition, and a host of other mechanisms are used to
engage potential customers and drive adoption. With the PLG methodology, there is
a significant shift to placing the product itself at the center of customer expansion,
conversion, retention, and acquisition. This puts a much greater emphasis on the
overall experience supported by a SaaS application, requiring teams to think more
about the surface of their experience, how frictionless and intuitive it is, and how suc‐
cessfully it connects tenants to the value of your offering. The product itself becomes
the conduit for marketing and acquiring customers.

I’ve really just skimmed the surface, but you can see how this could end up at least
partially influencing your tiering model. As you’re choosing your tiering model, you
may also need to consider how the pricing and packaging of your offering will sup‐
port your overall PLG goals.

Implementing Tiering
At this point, you should have a good sense of the importance and role that tiering
can play in a SaaS environment. It should also be clear that tiering can have a signifi‐
cant influence on the footprint of your multi-tenant architecture. Now, I want to start
looking at how these tiering concepts end up being applied to the architecture of your
system.

While the core principles of tiering apply to any technology, the specifics of imple‐
menting these strategies can be different for every environment. Your compute stack,
your storage services, your API Gateway—these are all examples of areas where you’ll
see variation in how tiering is realized across different technologies and services. In
some instances, you might implement tiering as a collection of different policies and
techniques that span the layers of your multi-tenant architecture.

This list of options is too long to cover every possibility. Still, I thought it might help
to connect some of these concepts to concrete technologies to give you a feel for what
it means to bring these concepts to life within the different layers of your multi-
tenant architecture. In the sections that follow, I will highlight some of the key ways
that tiering is implemented across a range of infrastructure and application
constructs.

372 | Chapter 14: Tiering Strategies

API Tiering
In many instances, the services of your applications are going to support an API that’s
used to invoke different operations from your client or some developer SDK. This
API often represents a natural place to introduce tiering constructs into your multi-
tenant architecture. It’s here that you have the opportunity to introduce policies that
can shape, limit, and generally control how tenants interact with the services of your
application.

The implementation model for these APIs can vary significantly. A common
approach I see is one where teams use API management tools that provide a rich set
of options for configuring and describing how traffic will flow into your services.
Adopting these tools allows you to have a distinct entry point into your environment
where you can introduce policies and other constructs that can be applied more uni‐
versally to your SaaS environment.

There is a fairly broad set of tools that can be used to implement tiering at the API
level. AWS has an API Gateway, Microsoft has API Management, and Google has
Apigee. There’s also open source tools in this space. Each one of these solutions adds
its own twist to the tiering story. Still, most of these API management tools include
mechanisms that allow you to define throttling policies that can be applied to each
request.

Figure 14-3 provides an example of how tiers would be used to manage and control
access to the services of your application.

This solution employs Amazon’s API Gateway as the front door to our solution’s serv‐
ices. All requests from your application will be passed through this gateway. Each ten‐
ant making a request will be associated with a tier, which will be used to apply your
throttling policies.

On the righthand side of the diagram you’ll see all the different usage plans (throt‐
tling policies) that are configured as part of the API Gateway. Each tier of this SaaS
environment is assigned a unique policy that defines the throughput that will be sup‐
ported in that tier. In this case, where we’re using the API Gateway, we can configure
the requests per second, the burst rate, and the overall request quota for the day.
While this example illustrates API Gateway concepts, the strategies and mechanisms
that are part of this experience typically map to similar constructs that are supported
by other API management tools. Some offer more options and others have different
ways of injecting the policies. The net effect, though, is usually similar to what I’ve
shown.

Implementing Tiering | 373

Figure 14-3. Tiering applied to your API

As part of defining your API tiering model, you’ll also have to think about how you’ll
connect each request to a specific tiering policy. With the API Gateway, this is done
with API keys. Each usage plan is associated with an API key. Then, as requests are
made using a given API key, that key will be used to determine which tiering policy is
applied. The question is: do you have to assign each tenant its own API key for this to
work? This is certainly one way to make this work. However, this means that the cli‐
ents of my API will need to use this key with every request that is made, which pushes
more moving parts to my client. There is a more efficient way you can achieve this
with the API Gateway, attaching a function (custom authorizer) to your API Gateway
that is called each time a request is made. This function can extract the tenant’s tier
from the incoming request, determine which API key is associated with that tier, and
process the request using the API key assigned by the function. This means that your
client won’t need to know anything about the API key. It also means you only need
one API key for each tier.

This is just one approach to applying policies. Each API management solution has its
own set of nuances to create the mapping between tiers and policies. Generally, I’m
always going to be looking for strategies that allow me to configure these policies in
one place and limit the client’s need to inject or apply any throttling context.

374 | Chapter 14: Tiering Strategies

Compute Tiering
Compute represents another layer where you can implement tiering. At the compute
layer, you can introduce different scaling, throughput, noisy neighbor, and isolation
strategies based on the tiering requirements of your solution. The options you have
will vary based on the compute stack you’re using, the deployment model of your sol‐
ution, and a host of other factors. The key is that compute is often at the center of
much of your solution’s activity and, as such, it also represents a natural place to
introduce tiering mechanisms.

Let’s start by looking at how tiering could be applied in a serverless model. Generally,
with serverless, our unit of scale is a function. These functions will need to scale out
to support the varying workloads of our tenants. With the AWS Lambda serverless
model, this scale is configured through its concurrency settings, which determine
how many concurrent executions of a function are allowed.

Imagine, for example, you have a pooled environment where all of your tenants are
sharing all of the serverless functions that implement your solution. In this scenario,
there would be no way to offer your tenants any kind of compute-based tiering
model. All tenants would be vying for the same collections of functions. If a basic tier
tenant decided to submit a burst of requests that saturated the function concurrency,
this would end up having adverse effects on premium tier tenants.

To address this, you need to create separate deployments of your functions with dif‐
ferent concurrency configurations. Figure 14-4 provides a conceptual example of how
you could address this by supporting different concurrency options for each tenant
tier.

Figure 14-4. Serverless tiering with concurrency

Implementing Tiering | 375

Here we have three separate tier configurations where I’ve assigned separate concur‐
rency values to each tier. With this approach, I have to deploy three separate copies of
my solution’s functions and, during deployment, I would configure them with differ‐
ent concurrency settings.

The basic tier tenants, on the left, have a concurrency setting of 100, which indicates
that there can only be 100 concurrent function executions for all tenants in this tier.
In the middle, the advanced tier is set to 300 concurrent executions. Finally, for the
premium tier, you’ll notice there is no concurrency value. This essentially means that
any of the remaining concurrency that is available will be allocated to this tier. So,
assuming there’s a default upper concurrency limit of 1,000, my premium tier tenants
would be able to have a concurrency of 600.

This, of course, is entirely focused on the serverless model. What would this look like
if you were using containers to host your application’s services? With containers, we
have other constructs that can be used to manage the tiered scaling and consumption
of our compute resources.

If we look at Kubernetes, for example, you’d see that we use a completely different set
of constructs to manage and configure the tiering of your compute layer. Figure 14-5
provides an example of how you might use the Kubernetes quotas mechanism to
implement a tiering strategy.

Figure 14-5. Tiering Kubernetes compute resources

In this example, I happen to have my tenants running in two separate namespaces.
The one at the top employs a pooled compute model where the compute resources
are shared by all tenants. The namespace at the bottom is using a siloed compute

376 | Chapter 14: Tiering Strategies

model where all the compute resources of a single tenant (Tenant 5) are running in a
dedicated namespace. These two namespaces are associated with different tiers. My
basic tier tenants are running in the pooled tier and the siloed namespace is associ‐
ated with the platinum tier.

These two tiers or namespaces could require very different scaling profiles based on
their tiering requirements. This is where resource quotas come into play. On the right
of the diagram, you’ll see that I have configured and associated two resource quota
configurations with each of the namespaces. Teams can configure these quotas with
different settings that will influence the scale and performance of the compute
resources within a namespace.

These are just two examples of how you might apply tiering policies to the com‐
pute layer of your architecture. These policies might be used to support the differ‐
ent consumption and value tiering strategies of your solution. Even if your
business hasn’t adopted a tiering model, I would still look at how you might want
to introduce policies that can prevent unexpected workloads from tipping over
your system.

Storage Tiering
Storage represents another area where you might introduce tiering into the experi‐
ence of your SaaS environment. Storage services—especially cloud-based managed
storage—tend to offer builders a number of different knobs and dials that allow
teams to configure the throughput and scale of your storage experience. This, of
course, also represents an area where you might use these storage settings to
define the different tiering models that are needed to support the requirements of
your tenant personas.

With storage, tiering tends to be realized through two distinct approaches. If your
storage is pooled, you’d be looking at how you might limit or constrain the read/write
activity of each tier. This would allow you to offer different levels of performance to
those tenants accessing a shared storage construct. The other storage tiering model is
more focused on offering tenants siloed storage. Figure 14-6 provides an example of
how these different strategies might land in your SaaS environment.

For this example, I have shown a range of multi-tenant storage scenarios. Along the
bottom of the diagram, I’ve defined different performance and scale policies that cor‐
respond to each of my solution’s tiers. These settings include read/write IOPS, CPU,
and memory as examples of the parameters that could be configured on a tier-by-tier
basis.

Implementing Tiering | 377

Figure 14-6. Applying tiering to storage

378 | Chapter 14: Tiering Strategies

Now, if we walk through this diagram from left to right, you’ll see that I have a basic
tier that supports a pooled storage model for Tenants 1–3. The storage I used here
will potentially be shared by a large collection of tenants and will need to be config‐
ured with settings that meet the requirements that you’ve agreed upon for the basic
tier. As you move across, you’ll notice that I have included an advanced tier that is
also using a pooled storage model (for Tenants 4 and 5). In most respects, this tier is
the same as the first tier we discussed; however, it is configured with settings that
would offer better performance, scale, and throughput to the tenants.

For Tenants 6 and 7 in this example, you’ll notice that they are using siloed storage.
These tenants are offered the same scaling/performance configuration. While the
data is stored separately for these tenants, they are still given the same performance
and scale settings. In some instances, I have seen teams offer these siloed tenants sep‐
arate policies. While this is possible, having one-off policies could, over time, under‐
mine your operational efficiency. Any time you have to consider per-tenant
configurations, it can add overhead to your operational footprint. Still, I have seen
some teams take this approach.

Some SaaS providers will presume that the silo versus pool tiering strategy needs to
be applied globally to a tenant’s data, siloing all the data associated with a tenant. This
is certainly a valid scenario, but it should represent the extreme case. In reality, you
should look at the families of data that are in your system and figure out which cate‐
gories of data may need to be siloed based on the nature of the data, the access pat‐
terns, and so on. You may find that you only need to silo a subset of the data. Taking
this more granular approach to the silo versus pool tiering model allows you to keep
some data in your system in a pooled model, which could reduce operational com‐
plexity and lower the cost footprint of your environment.

There are also other dimensions to the SaaS storage tiering story. Yes, performance
and throughput are top of mind when we’re thinking about how to partition and con‐
figure our multi-tenant data experience. However, you might also see SaaS organiza‐
tions looking at how they might use tiers as a way to control the storage capacity of
tenants. There are certainly domains and environments where the footprint of a ten‐
ant’s data could have a strong correlation to value. In these scenarios, you’d likely
impose capacity limits at different tiering levels. Storage retention represents another
candidate for tiering. Here you might use tiers to differentiate each of your retention
policies—especially for domains where retaining data could be impacting the cost
profile of your SaaS environment.

Implementing Tiering | 379

Deployment Models and Tiering
In general, when you’re thinking about tiering strategies, you may consider how the
deployment model of your application might correlate to your tiering strategy. This
already showed up in our discussion of compute and storage tiering models, where
we deployed separate infrastructure for tenants and attached distinct scaling and per‐
formance policies to these resources. This is a classic theme that can apply to any of
the infrastructure in your environment. You could, for example, have separate mes‐
saging infrastructure deployed and configured to support the message throughput
you want to offer as part of different tenant tiers. The idea is that you should be look‐
ing at each element of your system and asking yourself how tiering could influence its
deployment model.

This same mindset can also be applied to the microservices of your environment. For
example, your solution may need to deploy some services as siloed and others as
pooled. Figure 14-7 provides an example of how you might use tiering to shape the
deployment of your application’s microservices.

Figure 14-7. Applying tiering to microservice deployments

In this example, I have a set of six microservices that are used as part of an ecom‐
merce SaaS environment. As part of our tiering strategy, I’ve determined that our pre‐
mium tier tenants have requirements and workload expectations that have created the
need to offer the Product, Order, and Cart microservices in a siloed model where
each premium tier tenant would have its own deployment of these services (shown
on the righthand side of the diagram). Our basic tier tenants, however, are willing to
have these services run in a pooled model (shown on the lefthand side of the dia‐
gram). These resources are shared and scaled based on the combined consumption of
the tenants in the basic tier.

380 | Chapter 14: Tiering Strategies

Now, you should also notice that there are a group of services (ratings, tax, and ship‐
ping) that are not classified as belonging to any tier. These services are deployed in a
pooled model and shared by both the basic and premium tier tenants.

There are two key points I’m trying to illustrate. First, it should be clear from this
example that our tiering strategy does not have to correlate directly to some specific
infrastructure resources and set of performance policies. The microservices in
Figure 14-7 could be composed from compute, storage, messaging, and other infra‐
structure resources. Your tiering, in this mode, is a more coarse-grained model that
uses the deployment profile of services to define the tiering experience of your solu‐
tion. The other point is that the deployment model of these microservices is not an
all-or-nothing strategy. You can create a tiering model that defines groups of micro‐
services that are deployed based on your tiering requirements. Some may be pooled,
some may be siloed, and some may be shared.

Throttling and Tenant Experience
Some of the tiering strategies that we’ve been talking about may employ policies that
will impose limits on a tenant’s experience. A basic tier tenant, for example, might
intentionally have its experience degraded by these policies. It’s fair to question
whether limiting a tenant’s experience is a good idea. You could easily argue that this
approach is undermining the overall mission of delivering a great service experience
to your tenants.

This is why you need to be especially strategic when defining your tiering model.
Tiering is about finding that point of tension between giving all tenants a good expe‐
rience and still acknowledging that it’s impractical to allow tenants to impose load
and consume resources without some form of constraints or limits. You have to pre‐
sume that some tenants could put excess load on your solution and begin to impact
the experience of other tenants. In fact, they could stretch the scale of your system
and, potentially, create a scenario that brings down some or all of your system. So, in
some respects, tiering is also part of a global performance and availability strategy
that is used to prevent tenants from imposing loads that are deemed excessive and in
line with their revenue footprint.

The other part of this tension is more related to keeping costs in line with consump‐
tion. If I have a basic tier that has explicit constraints and a new tenant opts into this
model, it’s my job to make sure the limits of that experience are clear. At some point,
if you’re really going to commit to a tiered model, you must also commit to having a
model where tenants may encounter constraints based on the tier they’ve selected.
The key is to establish constraints that make sense to your tenants and align with the
experience that you’ve targeted for each tier.

Implementing Tiering | 381

Some SaaS providers rely purely on a consumption-based model that may only have
tiered pricing based on your level of consumption. For example, you might have your
tenants pay entirely based on bandwidth consumption. Here, though, you may still
need to think about applying tiering policies that support limits that offer different
levels of throughput. Generally, somewhere under the hood—even if customers can’t
see it—you may need to have policies in place that are more about maintaining
operational health. The policies, however, may have no mapping to tiers.

Tier Management
Tiers, on their own, are a really basic concept. Somewhere in your solution you’ll
have some representation of the list of tiers that are supported by your system. These
tiers may include some additional attributes, but there isn’t much complexity to stor‐
ing and managing this information.

The main question I get is: where should the management of these tiers live? In most
cases, I think it makes the most sense to have these tiers managed as part of the con‐
trol plane of your solution. This simply ends up surfacing as another microservice
that has a basic set of operations to maintain the list of tiers in your system.

While tiers will land and be managed in your environment, you’ll also have to con‐
sider how you’ll manage any linkage that may exist between your management of the
tiers and the representation of tiers within your billing system. Fortunately, this data
doesn’t change much. Still, you’ll need to decide how to manage the linkage between
these two and ensure that they remain in sync.

Operations and Tiering
I covered a lot of details about tenant-aware operations in Chapter 12. As part of that
story, I also highlighted the role of tiering as part of the overall operational story. Yes,
we certainly want to know what’s going on with individual tenants in our operational
view. However, there are also times where you’re going to want to analyze your activ‐
ity, scale, cost, and other attributes of your environment through a tier-based lens.

If you think about the role of tiering, it often has some mapping to the operational
behavior of your system. When you define these tiered boundaries, you also need to
have tooling and mechanisms that give you insights into how your tiering system is
performing. Is it throttling tenants at the right time, and are the throttling policies
effective? How often are tenants impacted by your tiering policies? Are your policies
too aggressive or too lenient? These are just a few of the areas where you’ll want to be
tracking the operational profile of your tiering model.

The reality is, you should expect your tiering model to be evolving based on the
insights and observations that surface through your operational experience. As new
tenants come in and you develop a richer profile of tenant personas and their

382 | Chapter 14: Tiering Strategies

consumption patterns, you’ll likely see opportunities to refine your tiering model.
This further emphasizes the need to have a strong commitment to instrumenting
your system with the operational metrics that will allow you to assess the tiering
behavior in your system. In some instances, I’ll see teams go the extra mile, introduc‐
ing alerts that allow them to have more immediate visibility to when tenants are
approaching or triggering tiering policies. In fact, some teams may use a phased tier‐
ing model where notifications are raised as tenants have reached the boundary
without actually applying the throttling. Then, they’ll have some internal level that’s
above this as the hard limit that actually applies the throttling. This allows you to
have a bit more of a controlled experience that lets you notify tenants they are reach‐
ing a boundary. This isn’t practical for all policies, but it’s another approach worth
considering. The key is adopting a more proactive approach that gives your opera‐
tions teams visibility into tiering trends.

As we’ve seen throughout this book, tiering can also have a significant impact on the
deployment footprint of your SaaS solution. As you offer dedicated resources to ten‐
ants as part of a tiering strategy, your deployment mechanisms will have to use these
tiering configurations to determine how/where resources will land in your architec‐
ture (based on their tiering profile). Tiering can also be used as part of a staged roll‐
out strategy. For example, you might choose to roll out a new version to a tier of
tenants as part of a canary release. Then, based on the success of that release, roll it
out to the remaining tiers. This might be used as a defensive tactic where you avoid
rolling out to premium tier tenants. Or, you could argue the inverse of this, rolling
out to premium tier tenants first as a way to avoid larger scale impacts that might be
associated with deploying to a large collection of pooled, basic tier tenants. Both
options are valid. The strategies here would vary significantly based on the needs of
your environment.

Conclusion
My goal with this chapter was to give a broader sense of the value and importance of
tiering, highlighting the role it can play in shaping the business and technical profile
of a multi-tenant architecture. While tiering may not be a fit for every SaaS environ‐
ment, for many it represents an essential tool that allows teams to construct an archi‐
tectural, cost, and packaging construct that enables the business to target multiple
tenant personas and market segments.

To drive this point home, I started the chapter by looking at broader tiering concepts
and how they can be used to shape and control the experience of tenants. I went
through some of the common tiering patterns and their nuances, exploring some of
the key factors that might determine how you would employ these tiering constructs.
Some of these strategies were more focused on defining value boundaries, whereas
others put more emphasis on consumption and scale. The goal was to give you a

Conclusion | 383

glimpse into a menu of options that might be used to help define where you might
consider introducing tiering into your environment.

From here, I moved into more concrete examples of how these tiering models might
get implemented across the different elements of your SaaS architecture. I hand-
picked a few core areas of the multi-tenant architecture (API, compute, and storage)
and provided more specific examples of how these elements of your system could be
configured to support tiering. I also looked at how you could come up a level from
the infrastructure and use targeted strategies to package and deploy parts of your sys‐
tem based on the tiering of your different tenant personas.

I also touched, briefly, on the role that tiering plays in your operational experience,
outlining the importance of having an explicit view into the tiering behavior of your
system. The goal was to emphasize the importance of having proactive visibility into
when tenants are nearing or triggering tiering boundaries.

I view tiering as one of the more valuable tools that architects can use to offer more
options to their business counterparts. Part of this is about giving the business the
flexibility it needs to address the current and emerging needs of tenant personas. Part
of it is also about introducing constructs that put tighter control around how tenants
can impose load on your environment. While we build a system to scale, we still want
it to scale efficiently based on the pricing and packaging profiles of the different ten‐
ant personas you need to support. Giving all tenants free reign to consume as much
of your system as they choose may sound appealing, but you can imagine the opera‐
tional and cost efficiency burdens this could impose on the business. Tiering is often
about striking a balance between the needs of tenants and the operational, perfor‐
mance, and availability profile of your overall environment. Even without tiering, you
would still want to consider introducing controls that ensure that tenants can’t con‐
sume resources at a rate that could bring down your system or impact the experience
of other tenants.

For the next chapter of the book, I want to test the boundaries of how and where ten‐
ant infrastructure might land. Most of our discussion of multi-tenant architecture has
been focused on environments where all of the components of your SaaS offering are
running within infrastructure that is entirely under your control. While this is still
the preferred model, we also need to consider what it means to support environments
where parts of your system might be running in other environments. Here I’ll look at
some alternate deployment patterns and discuss how this more distributed footprint
impacts the operational, agility, and architecture profile of your SaaS offering.

384 | Chapter 14: Tiering Strategies

CHAPTER 15

SaaS Anywhere

Up to this point, I’ve presented a view of SaaS architecture that presumes that all of
the system’s resources are managed and controlled by the SaaS provider. In fact, so
much of the value, scale, and efficiency of SaaS is achieved by hiding away the details
of the system’s underlying infrastructure. This is a cornerstone of the as-a-service
mindset where tenants can only touch the surface (application, API, etc.) of your sol‐
ution. Putting this wall in place allows teams to continually refine and optimize their
environments, moving between technologies and designs without fear of impacting
the tenants. At the same time, there are use cases where you may be required to
stretch these boundaries, allowing parts of your SaaS architecture to be hosted in
environments that may be controlled by your customer. This idea of having parts of
your system running in multiple settings (in the cloud, on-premises, in a customer’s
account) is what I have labeled as SaaS Anywhere.

In this chapter, we’ll start by looking at some of the fundamental factors that might
have teams creating these SaaS Anywhere experiences. We’ll explore some of the busi‐
ness and technical realities that drive this need to distribute resources to other envi‐
ronments, looking at how the choices you make here can influence the footprint of
your SaaS business. I’ll also review some of the core questions that you’ll want to be
asking yourself whenever you are considering adopting this model.

Next, I’ll move into looking at specific SaaS Anywhere architecture patterns, identify‐
ing different remote infrastructure deployment strategies. The goal will be to outline
the common models that are employed by SaaS providers and connect these models
to the business, operational, and technical considerations that will come with adopt‐
ing each pattern. You’ll see that there are specific merits and potential challenges
associated with these different configurations. As part of this, we’ll also look at differ‐
ent approaches to integrating with the remote elements of your SaaS environment.

385

SaaS Anywhere, as you might suspect, has a significant impact on the operations
experience of your solution. Deploying, provisioning, and operating resources that
run outside of your environment will present teams a range of new challenges. Some
of these challenges will have the potential to impact the agility, innovation, and effi‐
ciency of your SaaS business. The next part of this chapter will highlight some of the
key areas you’ll want to focus on and identify the complexities and trade-offs you’ll
need to weigh when enabling resources to run remotely.

I will regularly highlight the need to be cautious when considering a distributed SaaS
model. While it can be a reality for some organizations, supporting it should not be
taken lightly. The model and strategies you adopt here can have a significant impact
on your ability to fully realize your full SaaS potential.

The Fundamental Concepts
At a high level, the basics of the SaaS Anywhere architecture model are relatively
straightforward. The fundamental idea is that you’ll be creating a multi-tenant envi‐
ronment that supports the remote provisioning, deployment, and operation of parts
of your SaaS environment. For the purposes of our discussion, the idea of remote is
pretty wide open, allowing for any environment that could be used to host some part
of your system. Figure 15-1 provides a very simplified view of the most basic version
of this concept.

Figure 15-1. SaaS Anywhere conceptual view

While there’s not much to this diagram, it gives you a sense of the basic moving parts
of the SaaS Anywhere model. On the left is the environment where you host your
SaaS solution. In a typical model, everything would be hosted in this environment.
On the right are placeholders for the remote environments. Remote could be on-
premises, in a tenant’s cloud account, or running in the tenant’s data center. The key is

386 | Chapter 15: SaaS Anywhere

that these are per-tenant environments that are remote and generally tenant-owned.
Within each environment, we have remote resources. These resources can be infra‐
structure or they could be code or services that are running on remote infrastructure.
I’m generally going to refer to these as resources to be inclusive of whatever elements
you run in a remote environment.

In looking at this, it may not seem like this should represent a significant shift from
the strategies we’ve been discussing. The remoteness of a resource may not feel like it
would have a significant impact on how you would approach designing, building, or
operating your SaaS environment. However, as we get into the details, you’ll develop a
much healthier respect for the influence SaaS Anywhere can have on the design,
implementation, and operation of your SaaS solution.

The sections that follow highlight some of the core principles that you’ll need to con‐
sider as you set out to define the footprint and experience of any SaaS environment
with remote resources. We’ll get into more detailed examples later, but I want to start
by ensuring that we have a clear mental model and foundation for this approach.

Ownership
When you have remote resources in a SaaS environment, you’ll typically find yourself
asking questions about who “owns” control in a distributed model. With this flavor of
ownership, I’m less worried about who pays for these resources. I’m more focused on
ownership through the lens of who configures, controls, updates, and manages these
resources. To me, this is where all discussions about SaaS Anywhere must begin.

Part of the challenge with the idea of ownership originates from the fact that there are
separate views of how you might describe ownership. Figure 15-2 provides a concep‐
tual view of two distinct ways you could think about ownership.

Figure 15-2. Ownership in SaaS Anywhere environments

On the left, the view of ownership draws a hard line between the SaaS provider and
tenant environments. Here, the SaaS provider does not have control over the remote
resources. In this mode, ownership is defined by who pays the bill for the infrastruc‐
ture that is hosting the different resources that are part of your solution. If, for exam‐
ple, you have resources running in your tenant’s cloud account or running in a

The Fundamental Concepts | 387

tenant’s data center, then the tenant or customer technically owns any parts of the sys‐
tem running in these environments. However, you can also think about ownership as
being given to a SaaS provider. The SaaS provider is granted access and control to the
remote environment, allowing them to provision, deploy, configure, and operate
these resources—even though they’re hosted on the tenant’s infrastructure. This is
shown on the right side of the diagram, which suggests that ownership is given to the
SaaS provider who is then allowed to treat these resources as an extension of their
current environment (with some caveats).

These views of ownership are at the epicenter of some of the key points of tension
that you’ll need to be thinking about when considering a SaaS Anywhere model. Up
to this point, I’ve gone out of my way to describe an experience that put great empha‐
sis on creating an environment where tenants have no visibility into the infrastruc‐
ture used to implement that system. This foundational principle was at the core of
retaining full control over the shape, operation, and configuration of all the moving
parts of your SaaS environment.

So, what will it mean to adopt an architecture that has parts of your system dis‐
tributed to other environments? Is it practical or a good idea to support this model or
should this be considered a SaaS antipattern? To me, we can’t always be quite that
absolute. I think that you can best achieve the core values of SaaS when you are host‐
ing all the moving parts of your architecture. At the same time, we can’t ignore the
realities of customer domains and business strategies that may present compelling use
cases where parts of your system may need to be running in a remote model. This
means we can’t be so strict as to suggest that it’s invalid to have parts of our system
running in tenant-owned environments.

The more I looked at this problem, the more I realized that some flavors of SaaS Any‐
where were inevitable. There are current and emerging business cases where SaaS
providers will be required to adopt this approach. Latency, compliance, security, and
a host of other domain-specific needs could all have some influence on how you may
distribute the parts of your environment.

So, this brings us back to the fundamental ownership question we started with. I
think it’s fair to say that tenants might own these resources based on the purest defini‐
tion of ownership. The real question we need to answer is: who controls these
resources? That is at the heart of the ownership question, and it’s also where this gets
a bit sticky. In an ideal scenario, the SaaS provider would have complete and total
control over any remote resources with privileges that allow them to provision, con‐
figure, scale, and manage these resources as if they were in the SaaS provider’s envi‐
ronment. In this mode, the impacts of being remote would be much more
manageable. At the same time, you’re also right to be wondering if this is realistic.
Would tenants really allow you to have this much control over these resources? If not,
then you’re going to likely live in some variation of a joint custody relationship where

388 | Chapter 15: SaaS Anywhere

the tenant gives you selective control over the operations and accessibility of these
remote resources.

This shared ownership model will likely require you to tackle a whole new range of
challenges that will add complexity to the deployment, configuration, and operation
of your overall SaaS environment. Now, you’ll need to be thinking about how to
orchestrate and synchronize changes with remote environments where you may not
be able to dictate or control every aspect. You may find yourself working with tenant
administrators to ensure that the remote environment remains in sync with the
evolving needs of your architecture.

The more we drift down the path of distributed ownership, the more this can begin to
undermine your broader SaaS vision. This is where you must play a critical role in
helping the business understand how to navigate these challenging ownership ques‐
tions. It becomes your job to figure out where and when it makes sense for your busi‐
ness to embrace the idea of having parts of your system run in a remote tenant
environment. While you’ll certainly want to listen to your customers and support
their requirements, you also have to be protective of your SaaS environment. You
have to go out of your way to ensure that you’re surfacing and quantifying the poten‐
tial impacts associated with adopting this approach, exposing your business and
product leaders to the long-term trade-offs that could come with supporting this
model.

The overall point I’m trying to drive home is that ownership is a delicate topic that
requires careful analysis and consideration by business and technical teams. How you
approach ownership may have a great impact on the future profile of your SaaS
business.

Limiting Drift
My characterizations of what it means to be SaaS have included a heavy emphasis on
having a single pane of glass that allows SaaS providers to onboard, deploy, manage,
and operate all tenants through one experience—regardless of how tenants landed in
their underlying architecture. This principle takes on even greater significance in a
SaaS environment that must support distributed resources.

This, perhaps, could represent the biggest challenge of the SaaS Anywhere model.
What level of compromise or bending of your SaaS fundamentals is too much? If you
project this model out and consider its potential impact on your environment, you
could imagine ending up with a long list of complicated constraints that are tying
your hands. Ironically, the net effect of this could have you slowly drifting to a model
that is more managed service than SaaS. Each little trade you make to support these
resources could land you in a mode where you’re constrained by all the operational
complexity that is typically associated with non-SaaS environments.

The Fundamental Concepts | 389

So, how do you navigate this challenge? There are few absolutes. Foundationally, I
think I would always start by asking myself how the presence of these remote
resources is going to influence the success of the business. Will taking this approach
allow us to target a clear customer need that’s essential to landing and growing the
business? I’d also evaluate how this approach would influence our ability to scale our
operations, maintain our margins, and rapidly grow the business without feeling as
though we’ve been penalized by the complexities inherited by supporting this dis‐
tributed model. These are just examples of the parameters you have to evaluate as
part of wandering into the SaaS Anywhere model. Think beyond the next few cus‐
tomers that may want this feature and consider a future where you may have many
customers who are leveraging distributed resources.

Multiple Flavors of Remote Environments
I’m using remote as a general term here to describe any situation where some part of
your system is running in another environment. In reality, what it means to be
remote can still vary from one SaaS environment to the next. Each variation may
influence the design and implementation of your SaaS solution.

Let’s start with the simplest and most straightforward example of a remote model
where your remote resources are hosted on premises. In this model, you may be run‐
ning parts of your system in a tenant’s data center or some other environment where
the tenant has its own dedicated remote resources. In this model, your architecture
will be heavily influenced by the nature of the on-premises environment. Here you
might have to evaluate the available integration options and determine what level of
control you’ll have over the remote resources.

There’s also another flavor of on-premises. In this model, the infrastructure that runs
on-premises is provided by your cloud provider. This relies on remotely deployable
hardware that supports a subset of the cloud provider’s services, allowing tenants to
meet their on-premises needs while still having access to cloud capabilities. AWS, for
example, has AWS Outposts and Amazon EKS Anywhere that let you run versions of
AWS services on premises. This approach can represent a good compromise for SaaS
providers. This may also allow you to take advantage of cloud security and integra‐
tion constructs to build the integration between your control plane and the remote
services.

Finally, the last option we’ll look at is one where everything is hosted in the cloud.
The tenant’s environment is only considered remote because it is running in a tenant’s
cloud account. This simplifies the remote model significantly, allowing you to lever‐
age the built-in cloud constructs to integrate with remote resources. This tends to
simplify the overall footprint of your SaaS Anywhere implementation and create
more natural ways to control and manage the interactions between the control plane
and the tenant environments.

390 | Chapter 15: SaaS Anywhere

These three distinct notions of remote resources highlight another layer of the SaaS
Anywhere challenge. As you look at making any resource remote, you’ll have to also
think about how the nature of your remote environment might impact the integra‐
tion, security, and performance of your solution.

Regional Deployments Versus Remote Resources
Some SaaS providers have a global footprint where they’re hosting their offering in
multiple geographies. In this model, you’re essentially spinning up everything needed
to run a full self-contained deployment of your solution within a geography or
region. It might be tempting to think of this as a variant of SaaS Anywhere, but I don’t
equate these two models.

When your goal is to have multiple deployments of your solution, you’re more
focused on deploying entire copies of your application plane to each destination. The
application plane you’re deploying is meant to support all the tenants in that geogra‐
phy. This is quite different from hand-picking some specific resources of your appli‐
cation and selectively deploying them to a specific tenant’s environment.

This discussion of SaaS Anywhere is focused more on experiences
where your tenants would typically have no direct access to your
underlying infrastructure. SaaS CRM or accounting solutions, for
example, would not generally expose any of their underlying infra‐
structure to tenants. There are, however, scenarios where organiza‐
tions might be offering infrastructure capabilities in an as-a-service
model. In this mode, it might be less of a stretch for tenants to have
exposure to infrastructure resources. This is more the byproduct of
creating a service that is presented to builders, architects, and oper‐
ations teams. My point is that the principles that guide how and
when you might support remote resources could change based on
the nature of your solution. The lines can certainly get blurrier as
you factor in the realities of different domains and target personas.

Architecture Patterns
SaaS Anywhere is generally meant to characterize any environment where your SaaS
architecture relies on remote resources. This means that there are plenty of permuta‐
tions and configurations that fit into this model. At the same time, there are some dis‐
tinct flavors of remote resources, each of which come with their own set of
considerations. The goal is to highlight these fundamental SaaS Anywhere patterns
and identify some of the impacts and considerations that are associated with each
pattern.

Architecture Patterns | 391

Before we jump into these patterns, though, let’s start by taking a high-level look at
the core elements of the SaaS Anywhere model. Figure 15-3 provides a basic view of
the most fundamental elements of a SaaS Anywhere environment.

Figure 15-3. A centralized control plane

This diagram splits our SaaS architecture into two distinct halves. On the left, not
surprisingly, is our control plane. The control plane continues to play its same key
role, providing the central pane of glass that is used to manage and operate your SaaS
environment. So, even as you move resources into remote tenant environments, you’ll
still need a control plane that can unify your approach to provisioning, managing,
and configuring your remote resources. The goal is to require all the orchestration of
remote resources to continue to go through the control plane, allowing you to avoid
introducing one-off mechanisms to support any tenant-specific remote resource
requirements.

On the righthand side of this diagram are our remote tenant environments. Across all
these SaaS Anywhere patterns, you’ll see that we’re essentially landing services, data‐
bases, or other resources in a tenant owned environment. These tenant environments
all have some flavor of integration with the control plane. In reality, this is often a
two-way communication path where data is sent from the tenant environments and
operations are triggered from the control plane. Much of how this works would
depend on the nature of your technology stack and the types of resources that are
deployed in each tenant environment.

It’s important to note that all of these architecture patterns inherit a more complex
availability model. The availability of your system and a tenant’s experience is depen‐
dent on the availability of these remote resources. You’ll have to consider how you
might handle scenarios where these remote resources are unavailable. This could
require a greater investment in creating the constructs and mechanisms that can
gracefully detect and manage any failures that might occur in these remote
environments.

392 | Chapter 15: SaaS Anywhere

In the sections that follow, I’ll pick out some of the specific instances where teams see
customer and domain requirements pushing the need to support remotely deployed
resources. I’ll outline the basic characteristics of each pattern and highlight some of
the motivating factors that are driving adoption of each strategy.

Remote Data
Remote data is one of the most common SaaS Anywhere architecture patterns. There
seems to be more companies, use cases, and business drivers that have organizations
considering supporting a remote data model. Before we get into the details, though,
let’s start by looking at the SaaS architecture of environments that employ a remote
data strategy. Figure 15-4 provides an example of a multi-tenant solution that’s stor‐
ing some of its data in a remote environment.

Figure 15-4. Remote data

In this diagram, you’ll see that I’ve shown all the classic elements of a multi-tenant
architecture on the left. In most respects, this environment conforms to all the same
patterns and strategies that we’ve been discussing throughout this book. The one sub‐
tle difference is that one of my microservices is connected to remote storage (shown
on the right). You’ll notice that there is separate storage for each tenant in my system,
and that my microservice must map each request to the appropriate tenant storage
resource.

Moving storage out to the tenant’s environment is usually motivated by a range of
factors. Your domain could, for example, have some specific compliance or regulatory
requirement that indicates that this particular data must be stored remotely. Tenants
may also have specific security constraints that require portions of their data to be
managed and stored in the tenant’s environment. The source and size of a tenant’s

Architecture Patterns | 393

data might motivate some teams to have their data stored in a remote storage model.
Here, the sheer volume of the data could make it impractical to move it into a SaaS
provider’s environment. The broader idea is that any number of factors (technical,
performance, compliance, data size, etc.) could be at the root of steering teams
toward a remote data model.

It’s worth noting that supporting remote data does not mean that all of the system’s
data must be remote. Instead, you should try to identify the specific family of data
that needs to be remote and retain control over the rest of the system’s data. To high‐
light this point, the diagram in Figure 15-4 also includes a microservice that is storing
its data within the SaaS provider’s environment.

Whenever you’re looking at supporting remote data, you’ll also want to think about
how this could impact the performance and security model of your solution. Cer‐
tainly, with remote data, you’ll have to think about how accessing the data remotely
could impact the performance footprint of your solution. You’ll also have to deter‐
mine how you’ll authorize access to these remote data sources. This will include
applying tenant context to limit/control access to each tenant’s storage resources.

While this need to support remote data is going to be a reality for some environ‐
ments, I think you should be ready to challenge some of the thinking that might have
tenants pushing for this capability. In most cases, the native capabilities of your SaaS
environment should support most tenant’s security, regulatory, and domain consider‐
ations. The key is I don’t want to see teams supporting remote data without asking
hard questions and challenging business/customer assumptions.

Remote Application Services
When you’re thinking about remote environments, you shouldn’t view this purely as
accessing remote infrastructure. There may be instances where you move the serv‐
ices and code from your application plane to a remote environment. Figure 15-5
provides an example of how you might host your services in a remote tenant’s
environment.

On the left of this diagram, we have the foundations of our multi-tenant architec‐
ture hosted in the SaaS provider’s environment. What’s new here is that I’ve extrac‐
ted full microservices from the application plane and hosted them in a remote
environment. This means that my application plane now spans these two environ‐
ments. The tenant environment essentially behaves as a logical extension of your
application plane.

394 | Chapter 15: SaaS Anywhere

Figure 15-5. Running remote application services

Putting entire services in the remote environment is generally driven by a few factors.
You may need to put the compute in the remote environment for regulatory reasons
or you may have specific performance concerns that make it necessary to put these
services closer to other resources in the remote environment. For example, I’ve seen
stock trading solutions where the requirements for stock trade transactions made it
necessary to host part of the trading solution nearer to the infrastructure and systems
that were participating in the trade.

You could also see this approach applied in a scenario where you need the data to be
remote and, as a result, you also move the application services to the remote environ‐
ment to overcome latency or performance issues. Having the primary operations on
the data performed via a remote service could limit the amount of data that would
need to flow between the application plane and the remote services. How and when
you might do this would depend very much on the nature of workloads and interac‐
tions between the data and the consuming services.

When you cross the boundary and move services to the remote environment, you
take on yet another layer of operational, scale, and availability complexity. Your
onboarding and deployment tooling, for example, will have to support provisioning
and updating the services that are running in each tenant environment. Also, you’ll
have to determine how you’ll approach scaling these remote services. You may have
enough ownership of the remote environment to be able to configure the scaling pro‐
file of the services. If not, you may have to consider other strategies that will allow
you to manage and configure the scaling profile of these remote services.

Architecture Patterns | 395

Remote Application Plane
There are some rare instances where you may find that your entire application plane
needs to be hosted in a remote environment. In this mode, you’re essentially saying
that all of the tenant experience will be dependent on the scale and capabilities of the
remote environment. Figure 15-6 provides an example of this model.

Figure 15-6. Remote application plane

With this approach, the SaaS provider’s environment is trimmed down to a very small
footprint. All that’s here now is the control plane. Everything that was in our applica‐
tion plane is moved into the remote environment. When you take this approach,
you’re committing to a full stack silo model where each tenant is running their own
fully dedicated set of application resources. Everything about this conforms to the
same principles and considerations that come with adopting a full stack silo experi‐
ence. The only unique twist is that the tenant silos are running in remote
environments.

It’s important to note that even in this model, our goal is to have a single version of
the application that is run by all tenants. This may be more difficult to achieve when
the tenant environments are remote, but it should still be the goal. A big part of the
challenge here will be to identify a provisioning, configuration, and deployment strat‐
egy that can successfully span the two environments. You may find yourself introduc‐
ing more fault-tolerance mechanisms to help overcome issues that might show up in
individual tenant environments. For example, if you’re deploying and something is
down in a given tenant environment, can you create mechanisms that will handle
these situations gracefully?

396 | Chapter 15: SaaS Anywhere

Adopting this model would represent a huge compromise for a SaaS business. It
essentially eliminates any chance to achieve the economies of scale that come with
having shared infrastructure. It also means that the scale, availability, and perfor‐
mance of your tenant environment would be directly shaped by the capabilities of the
remote tenant environment. I’ve mostly included this to acknowledge that this can
and will happen for some organizations. However, the business, technical, and opera‐
tional trade-offs that come with this approach can be significant. So, if you’re going
down this path, you’ll want to understand what this will mean to the growth, effi‐
ciency, and scale of your business.

Staying in the Same Cloud
The complexity of implementing the patterns I’ve outlined can change dramatically
based on the nature of your remote environment. If you’re running a cloud-based sol‐
ution and the remote tenant environment is also running in that same cloud, the
overall friction of this experience will be reduced.

When you’re in the same cloud, your tenant environment will have access to all the
same architectural constructs and services that are in the SaaS provider’s environ‐
ment. This simplifies what it means to run a remote resource. If, for example, I run an
application service in the tenant environment that’s running in the same cloud, that
service can be scaled, built, and configured using the same strategies we would use if
we were running it in the SaaS provider’s environment.

To me, this is a critical nuance of the SaaS Anywhere story. Any time you’re moving
parts of your system to a remote environment, you’re now dependent on the capabili‐
ties of that environment. This is why I think the spirit of SaaS Anywhere is best
achieved when your remote services are running within the same cloud. The other
flavors of remote environments are valid, but they add layers of complexity that are
much more challenging to absorb.

Integration Strategies
As resources are made remote, you also have to consider how you will implement the
integration between the SaaS provider and remote environments. There is no single
solution that represents the preferred approach and the nature of your remote envi‐
ronment (on premises, cross-account, and so on) will certainly have some impact on
the tools and technologies you can use to implement your integration.

For me, this discussion often starts with figuring out what kinds of interactions will
flow between the two environments. Is this a chatty integration? Can the integration
be asynchronous? How much data will flow between the environments? How will you
secure the integrations? These are all just examples of questions you’ll need to ask
yourself as part of picking an integration strategy.

Architecture Patterns | 397

There’s also a range of different technologies that are available to implement your
integration. You might, for example, use a message-based integration model to con‐
nect the two environments or you might use a networking construct that allows the
remote environment to fit more naturally into your overall infrastructure footprint.
There’s no right or wrong here. The path you choose will be dictated more by the
realities of your remote environment and what it allows.

Operations Impacts and Considerations
If your solution is going to support remote resources, you should expect this to add a
layer of complexity to your operations experience. Everything about how you provi‐
sion, configure, onboard, and manage tenants can be impacted by the presence of
remote resources. In fact, this is an area where ownership can complicate your archi‐
tecture significantly. The fundamentals of how you access, configure, and manage
remote resources may end up being dependent on what level of control you have over
the remote environments.

Now that you have remote resources, you have to consider how this will influence the
overall operational profile of your SaaS environment. You now have a dependency on
a remote environment that has its own scale, availability, and performance footprint.
The health of your solutions and the experience of your customers is, in some
respects, dependent on this external entity over which you may have limited control.

The sections that follow highlight some of the key areas where supporting remote
resources could impact the design and implementation of your architecture.

Provisioning and Onboarding
I’ve put a great deal of emphasis on the importance of having a fully automated
onboarding experience. I’ve outlined sample architectures that had detailed onboard‐
ing flows that provisioned and configured all the resources needed to support each
new tenant that’s introduced into your environment. Now, as we look at the dis‐
tributed resource model, we have to think about how the need for remote resources
will impact the automation, efficiency, and durability of your onboarding experience.

There are lots of questions that come up here, most of which surround the ownership
and lifecycle of your remote resources. In an ideal case, my tenant onboarding and
provisioning process would have full control over its remote resources. This would
mean that the onboarding constructs running in my SaaS environment would be able
to directly provision, configure, and manage these resources. That would limit the
impact of the SaaS Anywhere model, allowing me to create, update, and manage these
resources as if they were part of my SaaS environment. There may still be perfor‐
mance and other concerns associated with the remote model, but having this level of

398 | Chapter 15: SaaS Anywhere

control would certainly mitigate a fair number of the challenges associated with the
remote resource model.

The issue is that it may be impractical for your tenant to allow you to fully control the
lifecycle of the resources hosted in their environment. They could be entrusting you
with a level of access and control that goes beyond what they’re willing to support. It’s
here that everything can get much more complicated. If, for example, I have to create
a remote database each time a tenant onboards, I’ll need to have a much more staged
onboarding experience that orchestrates the creation and configuration of that data‐
base. This could include requiring tenant administrators to run processing, scripts, or
tools that you provide to provision and configure the tenant’s new database.

Generally, the less control you have over a remote resource’s provisioning, the more
impact this will have on the agility and operational efficiency of your SaaS business.
This is all part of the compromise that you have to consider when thinking about
whether supporting remote resources is a good fit for your business. For some, the
challenges may be offset by clear customer or domain needs. For others, it could have
a stifling effect on your business and its ability to rapidly evolve based on its ability to
own and control all of the underlying implementation.

Access to Remote Resources
Any time we move resources to a remote environment—even if it’s in the same
cloud—you have to think about how you are going to manage access to these remote
resources from your SaaS environment. How this access is granted will vary based on
the nature of the integration that you’re performing. The key point is that, as part of
your design, you’ll need some mechanism or construct that grants you access to the
remote environment. How and when this is done varies based on the nature of the
integration and the resources you are accessing.

The security of your SaaS Anywhere model is also influenced by the type of remote
environment you’re accessing. If your remote resources are running on premises, for
example, this could require a more specialized or targeted approach. Also, the serv‐
ices and tools you’re using to integrate your environments (events, APIs, synchro‐
nous, asynchronous) will have a significant influence on how you secure the
interactions between your environments.

There’s one other consideration that may not be so obvious. There are scenarios
where your remote environment may need to interact with your control plane.
Remote services will likely need to send logs, billing events, and metrics and insights
data back to the centralized control plane running in your SaaS environment. This
means your remote services will need to be granted access to these aspects of your
control plane.

Operations Impacts and Considerations | 399

Scale and Availability
Multi-tenancy requires teams to focus heavily on the scale and resilience of their sol‐
utions. Any outage in a SaaS environment has the potential to impact all tenants.
Building a solid scaling and resilience strategy is hard enough when you have full
control over all the resources of your environment; now imagine how supporting
remote resources adds complexity to this story.

If your resources are running in a remote environment, you may now have less con‐
trol over how those resources address scale and promote high availability. With SaaS
Anywhere, you now have to put external dependencies into your overall scale and
availability model. What if there’s some outage in the remote environment? How will
your system respond gracefully to this outage without impacting other tenants? How
will you manage and detect these outages and surface them to your operations teams?
These are just examples of the questions you’ll need to take on when you consider
supporting remote resources as part of your model.

Operational Insights
No matter where your solution is running, your solution will still need to provide a
single, unified view of operational health and activity. This means that even if we have
remote resources, the consumption, health, and operational insights for these
resources must still surface alongside all the other operational data that we use to
manage and operate a SaaS solution.

To make this work, we need our remote resources to publish metrics, logs, and any
other operational data back to the control plane of our SaaS environment. If, for
example, you have a remote microservice, that service should still publish all the
operational data and insights that it would normally publish if it were running in the
SaaS provider’s environment. Having this data centrally accessible is essential to be
able to detect and troubleshoot issues associated with any remote resources.

In general, the added complexities and challenges that come with the SaaS Anywhere
strategy require a strong commitment to operational tooling that allows you to more
proactively deal with the potential issues that can surface in these environments.

Deploying Updates
The use of remote resources has a direct impact on the deployment footprint of your
SaaS offering. As you roll out updates, your infrastructure automation code will need
to include support for deploying services, updates, and other changes to each tenant’s
remote environment. Your implementation of these concepts will depend heavily on
how much control you have over the remote resources.

400 | Chapter 15: SaaS Anywhere

Imagine rolling out an update that requires an incremental change to your remote
database schema. If you have full control, you can apply this change directly. If you
don’t, then you need to figure out how you’ll coordinate this change with the owners
of the remote environment. You also have to consider how you might handle scenar‐
ios where some part of the remote update fails.

The key here is that you’re going to need to reevaluate the scope and nature of your
multi-tenant deployments, accounting for some of the challenges that might come
with deploying to any remote resource.

Conclusion
SaaS Anywhere is a topic that pulls me in two directions. The architect in me wants to
maintain full control over all the moving parts of my architecture so that I have few
constraints on how I construct a multi-tenant solution. On the other hand, I know
that businesses and domains can impose requirements that force me to test my
boundaries. The idea of introducing SaaS Anywhere in this chapter was to acknowl‐
edge these realities and begin to look at how you can build a distributed multi-tenant
environment without completely compromising on the foundations of your SaaS
architecture.

I started the chapter by outlining some of the core principles of the SaaS Anywhere
model. The goal was to provide a high-level view into the core concepts that come
with creating a multi-tenant architecture that supports a model where portions of
your solution are running in a remote environment. A key part of this discussion
centered around the role of ownership and how it influences the footprint of your
SaaS Anywhere strategy.

From there, I moved more into architecture patterns, looking at different types and
scopes of remote resources. The goal was to tease some of the typical patterns that
SaaS providers may need to support. I looked at remote databases, remote microser‐
vices, and a fully remote application plane and highlighted some of the considerations
that come with different types of remote resources. The idea was to expose you to
some of the possibilities, realities, and motivations that could come with deploying
parts of your system in a remote model.

I wrapped up the chapter by looking at operations, one of the most critical areas to
evaluate when you’re considering supporting remote resources. I highlighted a hand‐
ful of areas where I saw SaaS Anywhere adding new dimensions to your overall SaaS
operations story. We looked at its impact on scale, availability, deployment, opera‐
tional insights, and security.

I see SaaS Anywhere as a bit of a balancing act. Teams can and should embrace this
model where it makes sense. At the same time, adopting this approach should come
with a healthy dose of introspection. Any move down this path needs to be weighed

Conclusion | 401

against the overall growth, agility, and innovation profile of the business. The more
your business is counting on agility to fuel growth, the more you have to think about
how supporting a remote resource model is going to complicate that growth.

As we move to the next chapter, I want to begin looking at what it means to build
multi-tenant SaaS applications with generative AI (GenAI). With the emergence of
GenAI, we now have a range of strategies to consider when determining how we’ll
use the power of GenAI to create value and differentiation for tenants and SaaS busi‐
nesses. As part of this, we’ll also have to look at how GenAI influences core SaaS con‐
cepts (noisy neighbor, isolation, tiering, and so on). The goal will be to give a good
sense of the GenAI and SaaS landscape, highlighting some of the areas where multi-
tenancy influences your GenAI implementation.

402 | Chapter 15: SaaS Anywhere

CHAPTER 16

GenAI and Multi-Tenancy

The whole world of software development is asking itself how and where they can
introduce generative AI (GenAI) into their offerings. GenAI has opened an entire
new front of opportunity that has teams evaluating how and where they can intro‐
duce GenAI constructs into their architecture. If we look at the potential of GenAI,
you can imagine that it could have profound impacts across applications from a wide
range of domains and use cases. For our purposes, though, I wanted to identify areas
where SaaS providers could mix GenAI constructs with multi-tenancy to deliver new
experiences that could differentiate their offerings. With that in mind, I’ve focused
this chapter on outlining specific GenAI architecture strategies that enable SaaS pro‐
viders to introduce tenant contextual capabilities into their GenAI model. This added
context would allow SaaS providers to have a single, shared multi-tenant GenAI foot‐
print that applies tenant context to inference, yielding responses that are tailored to
the needs of individual tenants. This also opens an entirely new landscape of multi-
tenant considerations. Isolation, noisy neighbor, cost, and pricing are new territory
that will require new approaches to applying these principles in a multi-tenant
context.

To get started, though, we’ll need to establish a foundation, reviewing some of the
core concepts that come with building a multi-tenant solution that includes GenAI-
enabled capabilities. The goal here is to bring more clarity to the overall GenAI and
SaaS landscape by outlining the fundamental building blocks before considering what
it means to integrate multi-tenant realities into your overall GenAI strategy.

With the basics in place, the chapter then begins to examine specific GenAI con‐
structs and mechanisms that you can configure to support per-tenant GenAI func‐
tionality. The idea is to consider what it means to have a single large language model
(LLM) that is shared by all tenants while still supporting the ability to surround that
LLM with per-tenant configuration that enables unique tenant or domain

403

experiences. The two constructs we’ll examine are Retrieval-Augmented Generation
(RAG) and fine-tuning, highlighting the nuances that come with applying these
mechanisms to your multi-tenant architecture.

As I introduce these new GenAI capabilities, we’ll also have to consider what it means
to apply core multi-tenant principles to these constructs. For this part of the chapter,
we’ll look at how classic multi-tenant concepts like tenant isolation, noisy neighbor,
and onboarding can be applied to these new mechanisms. How do you isolate GenAI
requests? How do you ensure that tenants don’t saturate your system? These are some
of the new areas you’ll need to be thinking about as you introduce GenAI into your
environment. Finally, I’ll wrap the chapter up by exploring how these GenAI strate‐
gies might influence the footprint of your pricing, cost attribution, tiering, and throt‐
tling strategies.

The broader goal here is to simply start the multi-tenant GenAI discussion, identify‐
ing some of the potential areas where GenAI and multi-tenancy intersect. It’s essential
that as GenAI is emerging and begins finding its way into more SaaS solutions, we
continue to consider how and where it might influence the overall footprint of our
SaaS architecture. It’s also worth noting that this is a rapidly evolving space and the
guidance is a bit of a moving target in the near term.

Core Concepts
Before we get into the specifics of multi-tenant GenAI, it makes sense to establish a
bit of a foundation to better understand the landscape of technologies. Then, we can
look at what it means to add layers of multi-tenant constructs and principles on top
of these fundamental concepts. Figure 16-1 provides a highly simplified view of some
of the core building blocks that are part of GenAI experience.

For this diagram, I’ve tried to create a bit of a hierarchical view of some of the key
elements of the GenAI landscape, focusing on the elements that will play a bigger role
in our review of multi-tenant strategies.

If we explore this view from the bottom up, you’ll see that we start out with the most
essential aspect of any GenAI experience. This is where we see the LLMs that repre‐
sent the center of the GenAI universe. It’s these models that have been trained to take
all of our inputs, process them, and yield the responses that are needed to support the
different GenAI features and capabilities of our SaaS solution. These LLMs have gone
through significant training that allow them to take on a wide range of requests.

404 | Chapter 16: GenAI and Multi-Tenancy

Figure 16-1. Fundamental GenAI building blocks

There are, of course, multiple LLMs, each of which has its own nuances. Some may be
better suited for certain domains or types of requests. For example, some may be tar‐
geted at image generation and others may focus on language translation. I’ve listed a
handful here to give you a sense of the growing range of possibilities. Some of these
are tied to the AWS GenAI service and some are bound to the OpenAI service. The
key point is that, as part of bringing GenAI into your SaaS solution, you’ll have to
consider which LLM best suits your needs.

A level up from the LLMs are the GenAI services that sit on top of these LLMs. These
services provide the APIs and constructs that developers can use to configure and
invoke operations on the underlying LLMs. I’ve shown Amazon Bedrock and
OpenAI, both of which bring their own unique wrinkles to the GenAI builder experi‐
ence. For the simplest of use cases, this could represent the entry point for your SaaS
application. Your solution could simply invoke requests on these GenAI services, get
your responses, and be done. This would be a very simple scenario that doesn’t really
introduce many multi-tenant considerations. Still, for some solutions, this could be a
valid path.

Core Concepts | 405

As we move further up, though, this is where we see additional capabilities layered
onto the GenAI services. The first layer I’ve shown is fine-tuning. The basic idea is
that an LLM, on its own, may need some additional level of refinement to support the
needs of your solution. Think of this as extending the core capabilities of the LLM,
introducing domain or other layers of context that can be used to supplement the
LLM’s capability in ways that will allow it to better target the specific requirements of
your solution. I’ve shown this fine-tuning as a dashed box that sits on top of the LLM,
indicating that it optionally builds on the full GenAI scope and experience.

Above fine-tuning, you’ll also see a layer that represents Retrieval-Augmented Gener‐
ation (RAG). RAG represents yet another way that you can augment the capabilities
of your GenAI experience. It too is an optional construct that can refine and target
your overall GenAI experience. It sits outside the GenAI services, augmenting the
prompts that are fed into these services. We’ll get into fine-tuning and RAG in much
greater detail later in the chapter. At this point, I want to identify these basic building
blocks and outline the role they play in the overall footprint of the GenAI solution.

Finally, at the very top of this diagram, you’ll see a multi-tenant SaaS application. This
is more of a conceptual placeholder that represents the interaction between your
multi-tenant environment and its underlying GenAI constructs. This environment
might interact directly with GenAI services with no tuning or augmentation, or it
may rely on these tenant-focused refinements to target the needs of specific tenants
and domains.

The Influence of Multi-Tenancy
With the basic building blocks in place, let’s look at how the key moving parts of this
GenAI puzzle are introduced into the design of an application. Let’s start with the
simplest possible flavor of how you might introduce GenAI into any environment.
Figure 16-2 provides a conceptual view of the basic elements of a SaaS application
interacting with a GenAI service.

406 | Chapter 16: GenAI and Multi-Tenancy

Figure 16-2. A simple GenAI integration

This is as simple as it gets. Our SaaS application simply takes requests from tenants,
sends prompts to the GenAI service, and gets a response. In this mode, there’s noth‐
ing here that would offer any of these tenants a distinct experience. In fact, if they all
sent in the same request, they would all get the same response. There’s simply nothing
we’re doing to apply any tenant context in a way that would influence the output of
our GenAI interactions. In reality, the application that’s invoking the GenAI service
could be any application (multi-tenant or not). This could still be a valid model. It
just doesn’t connect to this idea of generating more contextual responses based on the
profile of your tenants.

How, then, do we alter this approach and make it more inclusive of tenant context?
What strategies can we introduce to inject tenant context into our overall GenAI
experience? To better understand our options, let’s look at another multi-tenant
GenAI approach that begins to apply tenant context to our overall experience (shown
in Figure 16-3).

Core Concepts | 407

Figure 16-3. GenAI with tenant context

You’ll see that I’ve extended the basic model shown in Figure 16-2, adding a few more
elements that apply tenant context to this experience. If we work the diagram from
left to right, you’ll notice a collection of tenants that are interacting with my SaaS
application (step 1). This part of the experience is no different than what you saw in
the prior example.

What’s new here is this notion of tenant-specific augmentation. This is where added a
new construct that sits between the SaaS application and the GenAI service. The idea
is that something sits between my application and the GenAI service that introduces
tenant-specific augmentation context into the process. So, tenant context will be part
of the GenAI invocation process (step 2), using tenant-specific data to augment the
request (step 3). Now, the requests that will go to your GenAI service will be altered
with our tenant context (step 4). In addition to augmenting our requests, you’ll also
see that we can add tenant-specific fine-tuning to the LLM (step 5), which may also
be refined based on tenant/domain data. This combination of augmentation and fine-
tuning will influence the output that is yielded for each tenant request (step 6).

There are two key dimensions of this model. First, and most obvious, is the idea that
we’re intentionally extracting and applying tenant context across our interactions
with the GenAI service. The aspect of this that’s easier to miss is the additional tenant
data represented here (with RAG and fine-tuning). The key is that we’re not just alter‐
ing and generating prompts based on some static parameters. Instead, we’re

408 | Chapter 16: GenAI and Multi-Tenancy

providing additional tenant data that provides a richer model for shaping the end-to-
end experience.

As you can imagine, introducing these tenant-specific constructs opens up all kinds
of questions. How these constructs are created, how they’re isolated, how they’re rep‐
resented, and even how they’re routed are all on the list of factors you’ll need to con‐
sider when you add tenant context to your GenAI experience. So, while the diagram
in Figure 16-3 is more conceptual, you can imagine how supporting multi-tenancy
could influence the design and implementation of your GenAI architecture. The
upside, though, is that this added complexity will also allow you to offer tenants
unique, targeted GenAI experiences that can differentiate and target your SaaS
solution.

Creating Custom Tenant AI Experiences
The idea of applying tenant context may still seem a bit abstract at this point. To help
make this a bit more concrete, let’s consider an example where we might use this
approach in a specific domain where you could use the power of this per-tenant cus‐
tomization to create a powerful and distinct experience for different tenants.
Figure 16-4 provides an example scenario that highlights how you might support per-
tenant GenAI customization in an ecommerce setting.

Figure 16-4. An example of per-tenant GenAI

For this solution, we have a general ecommerce platform that allows different tenants
to create their own custom stores on the platform. The nature of the stores that are
selling on this platform could span any number of different product categories. In
this example, I’ve included three different tenants that sell products from three very
different product categories (golf, tools, and clothes). Each of these tenants, as part of
their onboarding, supplied data to provide more context about the nature of the
products sold by their store.

Core Concepts | 409

Now, on the surface, it may seem as though these three stores are still just stores.
They list products, process orders, and so on. It’s true that there are core operations
and capabilities that span these different stores. However, you can also imagine that
the experience of shopping for golf clubs might be quite different from the experience
of buying tools or clothes. As a shopper, I could ask the system to find me golf clubs
that have attributes that are very specific to the type of club, the golfer’s capabilities,
and so on. Or, I might just ask it to recommend a club based on my preferences. It’s
here that I can introduce tenant-specific refinements into my GenAI experience that
allow it to generate a more targeted response for the golf domain. The same would be
true for the tools and clothes domains.

While this may be a bit oversimplified, you can see how a multi-tenant environment
could take advantage of these GenAI refinement mechanisms to enable our LLMs to
generate much more custom and tenant-contextual responses. The power of this
model enables SaaS providers to build on the core capabilities of existing LLMs while
still introducing constructs that allow them to create added dimensions of value and
differentiation for their customers.

A Broad Range of Possibilities
I’ve focused most of my attention on creating more tenant-contextual GenAI experi‐
ences. However, it’s important to note that there are a range of additional areas where
SaaS providers may apply GenAI to their environments. The challenge in outlining
these other applications of GenAI is that the solutions and strategies will vary signifi‐
cantly based on the nature of your environment and business model.

There are a few areas that are emerging as good candidates for applying GenAI to
your overall SaaS business. For example, some teams are looking at how they can
apply GenAI to their customer journey, using it to analyze, refine, and orchestrate the
movement of tenants through the various stages of their overall life as a tenant. This
can be applied to all phases of the customer lifecycle, touching everything from cus‐
tomer awareness to advocacy.

Operations is another area with GenAI potential. SaaS environments often track a
wide range of insights and metrics that can assess trends, health, and activity patterns
that can be valuable in both operations and business contexts. The assumption at this
stage is that this data and GenAI could be combined in a model that enables opera‐
tions teams to have richer, more dynamic, and more insightful views into the activity
of their SaaS environment. This could include asking questions that have broader
business implications. Why is time-to-value slowing down for customers? Is the agil‐
ity of our release process improving? How frequently are we successfully rolling out
updates? How did the most recent update impact performance? This is just a sam‐
pling of possibilities. In reality, I think the questions would eventually be more exotic,
allowing teams to ask more difficult questions. Imagine a SaaS GenAI experience that

410 | Chapter 16: GenAI and Multi-Tenancy

suggested optimizations, made load predictions, identified potential isolation chal‐
lenges, and so on.

The main takeaway is that the scope and role of GenAI in SaaS—like so many other
settings—could be broader than you might expect. As you begin to explore the
GenAI space, you should consider how and where it can be applied across more
dimensions of your business.

SaaS and AI/ML
While GenAI seems to get all the buzz, it would be wrong to presume that GenAI is
the one and only target for the experiences I’m outlining here. The reality is, there are
lots of solid multi-tenant strategies that are a natural fit for artificial intelligence/
machine learning (AI/ML) that should not get overshadowed by GenAI.

In the GenAI world, most of our multi-tenant energy is focused on augmenting the
LLM with tenant context (where it makes sense). With AI/ML, however, this dynamic
shifts. It’s more likely that you may be creating and training ML models to support
the needs of your SaaS solution. In that mindset, we open a whole new range of
opportunities and use cases. Now, as we’re deciding how and where we want to use
AI/ML, we can think about what it would mean to offer individual tenants entirely
custom ML models. The model itself and your ability to train and consume it for ten‐
ants can become a differentiating aspect of your SaaS offering.

This idea of having per-tenant AI/ML models ends up mapping pretty naturally to
the tiering and economies of scale strategies that we’ve discussed throughout this
book. I can, for example, have a single, pooled ML model that offers a baseline experi‐
ence to my basic tier tenants. These tenants all share some pre-packaged model with
no support for tenant specialization. Then, for my premium tier, I could offer a more
custom experience where they would upload their training data and create a tenant-
specific ML model.

You can see how this could represent a compelling strategy for some SaaS organiza‐
tions, using the power of ML to drive targeted tenant experiences. There are also
instances where organizations might build their own ML models and deliver them in
a model-as-a-service offering. With this approach, SaaS providers would build their
own models and monetize them as services that are consumed by their tenants.

This AI/ML space also introduces more knobs and dials that can control how your
inferencing is delivered to tenants. If you’re using Amazon SageMaker, for example,
you could configure the consumption profile of your AI/ML inference requests. The
service supports mechanisms that allow you to pool inferencing across tenants, using
economies of scale for your inferencing. It also offers mechanisms for dedicated
inferencing that can support the SLAs and noisy neighbor requirements of higher tier
tenants. In general, AI/ML tends to be less of the black box that you see with GenAI,

Core Concepts | 411

allowing you to have more influence over the configuration of your inference infra‐
structure.

The universe of SaaS AI/ML strategies is a bit better understood and maps more nat‐
urally to the general principles and strategies we’ve been exploring. I suggest that you
take a closer look at your options in this space to figure out whether AI/ML might be
better fit for aspects of your SaaS offering. For the scope of this chapter, though, I
wanted to focus more on GenAI nuances since I believe so much of the multi-tenant
GenAI landscape is undefined.

Introducing Tenant Refinements
I’ve highlighted the basic notion of tenant refinements. Now it’s time to go a bit
deeper and examine the mechanics and details that come with using these techniques
in a multi-tenant environment. The goal is to give a bit more definition to the con‐
cepts to help crystallize what it means to augment the GenAI experience with tenant
context, giving you a clearer mental model for where these constructs fit within the
overall GenAI experience. In the sections that follow, we’ll look at the two main tech‐
niques that can be used to introduce tenant-specific customizations. We’ll start with
Retrieval-Augmented Generation (RAG) before turning our attention to LLM fine-
tuning. Both of these mechanisms, as you will see, represent very different
approaches to creating a tenant-focused experience. I’ll look at how they work inde‐
pendently as well as how they might be combined to support different needs.

Supporting Tenant-Level Refinement with RAG
RAG is a generalized GenAI mechanism that allows developers to apply targeted aug‐
mentations to your prompts. It allows you to pre-process and refine the nature of the
inputs that are being sent into your GenAI service. To better understand the role of
RAG, let’s start by looking at a simplified SaaS environment that employs RAG to add
tenant context to GenAI prompts (Figure 16-5).

In looking at this diagram, you’ll notice this nebulous concept of tenant augmenta‐
tion at the bottom. Essentially, each of these images are meant to represent placehold‐
ers for the different tenant-specific constructs that you’d use to augment requests that
are sent to the GenAI service. I’ve presented them this way to make it clear that how
these RAG constructs are actually implemented can vary significantly based on the
nature and needs of your SaaS solution. There are some well-defined mechanisms
and tools that are often used in the RAG model. However, in reality, you could use
any number of different technologies here to implement your augmentation model.

412 | Chapter 16: GenAI and Multi-Tenancy

Figure 16-5. The basics of RAG and tenant context

It is tempting to think of these per-tenant refinements as somehow directly shaping
the LLM or configuring the GenAI service. Neither of these are true with RAG, which
is exclusively focused on augmenting the prompt that gets sent into the GenAI ser‐
vice. This means its impact is achieved purely through changing or refining the
nature of the request.

This means that much of your focus will be on determining which combination of
RAG mechanisms and tools best align with the multi-tenant needs of your solution.
Will you be using a vector database, a search index, a relational database, or some
other tool to define the shape of your multi-tenant RAG design? The list of options
and design considerations here is certainly beyond the scope of this chapter. How‐
ever, it will be an area you’ll want to dig into to better understand the nuances that are
associated with each of these different RAG approaches.

Given this backdrop, though, let’s look at a slightly more concrete view of what it
means to use a per-tenant RAG model in a SaaS setting. Figure 16-6 builds on our
prior ecommerce example (Figure 16-4), providing a view of how you might refine
the experience of individual stores within a SaaS ecommerce platform.

Introducing Tenant Refinements | 413

Figure 16-6. A SaaS ecommerce RAG example

In this diagram I have three different tenants, each of which is from a specific
domain. For simplicity, I’ve shown the RAG data represented in a relational database
that holds information about the nature of the different products that are available in
a tenant’s online store. Tenant 1, for example, represents a clothing store and includes
data about different clothing items. Tenant 2, on the other hand, has product data
about golf clubs.

While your actual RAG configuration and data would be much more exotic than this,
this should give you a sense of how we’re creating targeted, tenant-specific informa‐
tion that can determine how an LLM prompt will be augmented with parameters
derived from this tenant-contextual RAG data.

The basic flow would be that, for each prompt that is being sent to our GenAI service,
we’d have a mechanism that would use the current tenant context to augment a
GenAI prompt with tenant-contextual information that yields a custom response for
each tenant. The mechanics of how this would work would vary based on the tools
you’re using. There are libraries and helpers that connect all the moving parts of this
experience, creating a more natural and seamless way to generate and submit aug‐
mented prompts.

As I noted, I kept this example intentionally simple. However, as you move into more
complex RAG constructs, you’ll have to consider how your tenant’s specific RAG con‐
figuration will land in the different technologies that represent and store this RAG

414 | Chapter 16: GenAI and Multi-Tenancy

information. To highlight this point, I’ve included an example in Figure 16-7 that
illustrates how you might use Amazon OpenSearch indexes to hold per-tenant vector
information that can augment your GenAI prompts.

Figure 16-7. Create per-tenant OpenSearch indexes

For this example, you’ll see a process that brings in tenant-specific data and processes
it with extract, transform, load (ETL) tooling that extracts the data that will populate
our tenant-specific indexes (step 1). The new wrinkle here is that this process also
relies on the GenAI service and LLM to compute the vectors for each of the tokens
that are processed (step 2). Once these vectors have been determined, they are inser‐
ted into our vector storage (step 3), which happens to be Amazon OpenSearch
indexes. To get this to work, OpenSearch is configured with the k-nearest neighbor
(k-nn) plug-in, which enables it to search for points in a vector space and find the
“nearest neighbors” for those points.

Once these OpenSearch indexes are populated, our SaaS application can then use this
data to augment our prompts. In this case, it will use the GenAI service to tokenize
and get the embeddings. Then, it will use that data to execute a text-contextual simi‐
larity search against the tenant’s OpenSearch index. The data from this search will be
used to augment the prompt that is then sent into the GenAI service to get the final
output.

The key is to highlight yet another model where RAG could be applied in a multi-
tenant setting. You’ll see lots of references to vector databases as part of RAG use
cases, and I wanted to illustrate how tenancy can still be introduced into this model.
Most of what you’d do here is very much in line with general vector database strate‐
gies. The main difference is that we need separate OpenSearch constructs to hold
each tenant’s vector data. Naturally, the vector storage tool you choose to apply will
directly influence how you might partition each tenant’s vector data.

Introducing Tenant Refinements | 415

With the RAG model, you have the option to determine how your data is represented
for individual tenants. It’s here that we have options to determine whether and how
we want to have this data siloed or pooled for tenants. Figure 16-8 provides an exam‐
ple of a RAG configuration that uses a combination of silo and pool models for stor‐
ing RAG information.

Figure 16-8. Siloed and pooled RAG data

In this diagram, you’ll see RAG data for five different tenants. On the bottom right, I
have two tenants with siloed data. Tenant 4 has RAG information for the golf domain
and Tenant 5 has information for the tools domain. These tenants could be siloed for
a variety of reasons, including performance and isolation.

At the bottom left of the diagram is where you’ll see the pooled tenants. These tenants
are all from the clothing domain and are placed in a table that is partitioned by tenant
IDs. You could apply the pooling strategy here based on the specific operational or
efficiency needs of the clothing domain. How or if you choose to pool this data would
depend on the nature of your solution. The key is that the same data partitioning
considerations that were part of our general multi-tenant data partitioning discussion
can also come into play.

Supporting Tenant Refinement with Fine-Tuning
Fine-tuning provides you with yet another approach to refining and targeting the
experience of your tenants. While RAG was more about pre-processing our requests

416 | Chapter 16: GenAI and Multi-Tenancy

outside the LLM, fine-tuning is more focused on altering the behavior of the LLM.
This means that our fine-tuning is applied more directly to the LLM to extend and
shape the experience it delivers. Figure 16-9 provides a conceptual view of the fine-
tuning model that we’ll be covering.

Figure 16-9. Basic fine-tuning concepts

In Figure 16-9, you’ll see the fundamental concepts that are core to any GenAI expe‐
rience. We essentially have clients that are sending prompts into our GenAI service
and that service leveraging its underlying LLM to process your requests. What’s dif‐
ferent here is that we’ve also introduced fine-tuning into the environment, which will
directly influence how the LLM will process requests (at the bottom right of the dia‐
gram). The assumption is that we’re augmenting the behavior of the LLM, enabling it
to provide more targeted and contextual responses that better align with the needs of
our solution.

On the left of the diagram, you’ll see that I’ve introduced the idea of training data.
The idea is that as part of configuring and preparing your fine-tuning experience,
you’ll need to “train” your environment with this new contextual data. The nature
and mechanisms that are part of this “training” process can vary based on the GenAI
service you’re using and the type of training that is being applied. For this particular
example, I’ve shown a scenario that employs parameter efficient fine-tuning (PEFT),
which augments the experience without changing the core LLM. This is conveyed by
showing the tuning to be applied outside the scope of the LLM.

Once the training is done, the requests that are sent to our GenAI service will now
include the added context that is provided by the fine-tuning. This approach to refin‐
ing the LLM can be especially useful at creating a more targeted experience and
enriching the overall capabilities of your SaaS offering. It’s important to note that
there are other fine-tuning strategies that take different approaches to augmenting the
LLM. As you dig into fine-tuning, you’ll want to explore the full range of fine-tuning
options that are supported by your GenAI service.

Introducing Tenant Refinements | 417

Using global fine-tuning
Fine-tuning, as you can imagine, is a mechanism that you could apply with different
strategies to support the requirements of a multi-tenant architecture. The first option
I want to look at is the idea of using fine-tuning as a more global construct that can
apply to all tenants. In this mode, we’d use fine-tuning to shape the overall footprint
of the LLM without needing to handle or support any notion of tenant context. In
this respect, global fine-tuning will be applied exactly as it would be in non-SaaS envi‐
ronments. It’s just augmenting the LLM equally for all requests.

While this flavor of fine-tuning has few SaaS nuances, it still can represent a valuable
tool for SaaS providers. Imagine, for example, that you create a SaaS solution for the
healthcare domain and you want to refine the LLM, enabling it to more directly sup‐
port the context and needs of healthcare-related tasks. This is where you would apply
your global fine-tuning through PEFT or direct training of the LLM.

This can be an especially powerful construct for SaaS providers that are looking to
hone the overall capabilities of their GenAI experience, allowing them to refine the
core capabilities of the LLM and add the context of their specific domain. Yes, the
LLM may be able to support the basic needs of your solution without requiring this
global fine-tuning. However, for many, this level of fine-tuning could be seen as
essential to creating an LLM experience that can target the unique needs and value
proposition of their GenAI capabilities. In some cases, it could represent the core part
of a SaaS organization’s differentiating intellectual property.

Using tenant-level fine-tuning
Where fine-tuning gets more interesting is when we start thinking about how it can
support tenant-specific refinements. The idea is that you could selectively apply fine-
tuning on a tenant-by-tenant basis to enable custom LLM experiences for individual
tenants. Figure 16-10 provides a conceptual view of the per-tenant fine-tuning
strategy.

You can see how this move to per-tenant fine-tuning has influenced the design of the
GenAI experience. At the bottom of the diagram, you’ll now see that there are now
logical pairings of the LLM and each tenant’s fine-tuning configuration. There is still
a single LLM, but the combination of the LLM and each tenant’s fine-tuning repre‐
sents a logical construct that can now be referenced separately when processing ten‐
ant requests. For example, the pairing of Tenant 1 and the LLM yields a logical model
that is labeled ABC. Meanwhile the pairing of Tenant 2 and the LLM is now labeled
XYZ. These labels are just conceptual placeholders. Each GenAI service will have its
own way of representing and identifying these logical models.

418 | Chapter 16: GenAI and Multi-Tenancy

Figure 16-10. Enabling per-tenant fine-tuning

Of course, as part of introducing per-tenant fine-tuning, you’ll also need to sepa‐
rate training data for each tenant (shown on the left). As each new tenant is
onboarded to your environment, you’ll need to include support for configuring the
per-tenant fine-tuning and executing the training process. Naturally, there could be
limits that you might approach based on the number of tenants that your system
will need to support. You can also imagine scenarios where some tenants have per-
tenant fine-tuning and other tenants are using shared fine-tuning (or they may
have none). This comes back to how you might choose to package and tier the
experience you’re offering.

To use this strategy, you’ll also need to consider tenant context as part of each invoca‐
tion of the GenAI service. Somewhere within the code or libraries of your environ‐
ment, you’ll need to extract the tenant context for a given request and determine how
it maps to a tenant’s logical model identifier. Then, you’ll need to use this identifier to
invoke the GenAI service. This will allow your request to apply the appropriate,
tenant-specific fine-tuning. This concept is shown at the top of the diagram where
you’ll see that Tenants 1 and 2 supply a model reference as part of parameters that
would inject tenant context into their requests.

Introducing Tenant Refinements | 419

Combining RAG and Fine-Tuning
It should be clear at this point that RAG and fine-tuning take very different
approaches to introducing tenant and domain context into your GenAI experience.
While it’s true that they are different, they should not be viewed as mutually exclusive.
In reality, you could use both RAG and fine-tuning as part of your tenant-specific
refinement strategy. Figure 16-11 provides one view of how you might combine RAG
and fine-tuning to support the needs of your multi-tenant environment.

Figure 16-11. Combining RAG and fine-tuning

For this example, we are presuming there is some level of per-tenant customization
that is best introduced through RAG and some additional level of refinement that
would be best applied with fine-tuning. Combining them is about injecting and
applying both constructs at the appropriate stage in the invocation process.

As each request is submitted, your solution will need to augment the prompt, using
RAG to inject tenant-specific context into the request (step 1). Then, it will need to
determine which logical model it will invoke to apply tenant-specific fine-tuning
(step 2). This will send the augmented prompt to the appropriate per-tenant fine-
tuned model for processing, ideally yielding a more tenant-targeted response.

Of course, this represents just one approach that you can use to combine RAG and
fine-tuning. How you actually implement this would depend very much on the
requirements and nature of your SaaS offering. Ultimately, this comes down to deter‐
mining which flavor of tuning best targets the experience you need to support. There
are no rules that dictate which combinations of RAG and fine-tuning are considered
valid.

420 | Chapter 16: GenAI and Multi-Tenancy

Applying General Multi-Tenant Principles
As you begin to introduce multi-tenant constructs into your GenAI experience, you
should also consider how you will apply core SaaS principles to these new GenAI
constructs. GenAI doesn’t change any of the fundamentals, but it does open up some
new areas where it may influence your broader SaaS environment. You still need to be
thinking about how these GenAI elements will impact the scale, performance, agility,
and efficiency of your SaaS environment. The sections that follow outline some of the
key areas where GenAI can add new dimensions to your overall multi-tenant
architecture.

Onboarding
As you introduce tenant refinements and other GenAI mechanisms into your SaaS
environment, you are also introducing a range of new tenant-specific infrastructure
elements to enable these refinements. Training data, vector databases, and fine-tuning
add new elements to the footprint of your multi-tenant architecture. Of course,
whenever you introduce any dedicated tenant resource, you must also consider how it
will influence your overall onboarding automation. Figure 16-12 provides a glimpse
of how GenAI configuration could be woven into your onboarding experience.

Figure 16-12. Onboarding with tenant refinements

For this example, I brought in some basics from our standard onboarding process.
What’s new are some additional placeholders that are meant to provide a flow to con‐
figure the moving parts of your tenant-specific GenAI refinements. If we walk

Applying General Multi-Tenant Principles | 421

through the steps, you’ll see that we start with our tenant registering with our
Onboarding service (step 1). This then goes through all the traditional motions to
create a tenant, user, and configure billing (step 2).

The last bit of our onboarding flow invokes the Tenant Provisioning service to create
and configure any required tenant resources (step 3). This is where I’ve added on a
RAG Configuration service to capture the need to add support for creating the differ‐
ent GenAI tenant refinement elements (step 4). This would call the scripts and auto‐
mation tooling that would create the storage and any other infrastructure needed to
support and configure your tenant refinement model (step 5).

Now, once the tenant resources are provisioned, there’s still some question about
where the data for your refinements will come from. Is this data sourced from some
existing part of your system or will it be provided by the tenant? Both scenarios could
be valid. For this example, I included a scenario where the data would be provided by
the tenant (step 6). This, of course, adds another layer of complexity to the onboard‐
ing experience. Your process may need extra logic or tracking to determine when the
tenant can be considered active (based on when or whether they’ve uploaded their
refinement data).

This only represents a sample of how these new GenAI mechanisms could shape your
onboarding experience. The main point of emphasis here is that these GenAI refine‐
ment strategies come with new per-tenant resources that will certainly influence the
design and implementation of your onboarding process.

Noisy Neighbor
The notion of noisy neighbor is a bit interesting with GenAI. In many scenarios, we
naturally map being noisy to those tenants that are generating excess traffic. In a clas‐
sic example, we’d tend to associate noisy neighbor with scenarios where one or more
tenants are sending in a burst of requests that could be overloading your system and
impacting other tenants. This concept is still valid in our GenAI model. You can cer‐
tainly still have a tenant that is sending bursts of GenAI requests that are impacting
the experience of other tenants.

With GenAI, however, there are other factors that can influence the noisy neighbor
footprint of your environment. With GenAI workloads, the complexity of requests
and responses also have some correlation to the level of load that is being placed on
the service. This requires us to add another layer to our noisy neighbor model, intro‐
ducing constructs that can evaluate the number of tokens and complexity of individ‐
ual requests, ensuring that tenants aren’t saturating your service with a stream of
complex requests. This may also play into your overall tiering strategy, where tenants
might be offered different SLAs for the parts of your system that rely on GenAI
services.

422 | Chapter 16: GenAI and Multi-Tenancy

This adds a new noisy neighbor wrinkle to your overall architecture, which now
needs insights and tools that can track and assess the complexity load generated by
individual tenants. You’ll need visibility into this data to implement policies that can
proactively detect and manage these noisy neighbor conditions.

Tenant Isolation
Any time you add data to a multi-tenant environment, you’ll need to think about how
that data will be protected from any cross-tenant access (intentional or uninten‐
tional). If I create vector databases, RAG data, or tenant-focused fine-tuning, I must
also introduce the tenant isolation policies and strategies that can ensure that these
resources are adequately protected. Figure 16-13 provides a conceptual look at pro‐
tecting your tenant resources with isolation policies.

Figure 16-13. Isolating your multi-tenant refinement resources

This diagram includes examples of both RAG and fine-tuning tenant resources that
need to be isolated from cross-tenant access. In the middle sits a placeholder for any
code or mechanisms that might need to access the RAG and fine-tuning constructs.
I’ve also included boxes to convey the idea that isolation policies need to be applied to
any attempt to access these resources. These could be runtime-applied policies or
they could be applied when the infrastructure is deployed (depending on the nature
of the technology being used).

The challenge of this topic is that there are simply too many variations of technolo‐
gies and strategies to implement multi-tenant refinement mechanisms. There are vec‐
tor databases, search indexes, and a host of other technologies, each of which could
require its own unique approach to isolating its data at the tenant level.

Applying General Multi-Tenant Principles | 423

GenAI Pricing and Tiering Considerations
GenAI introduces a number of factors that can directly impact how you might choose
to price, package, and tier your offering. While there is some guidance in this area,
SaaS organizations are still searching for clear patterns and strategies that will help
them create pricing models that incorporate the nuances that come with embedding
GenAI into their SaaS environments.

The assumption is that pricing for GenAI capabilities will probably follow some pat‐
tern where the level of GenAI consumption will be woven into the overall pricing
model of your SaaS offering. It might just be blended in, or it could be called out as a
separate component of your billing model. There are simply too many permutations
to make any sweeping generalities about what a preferred approach might be. In fact,
while there are well understood pricing themes in the SaaS universe, the domain,
market, and other realities of any one solution will often yield a mix of different pric‐
ing models.

If we start by looking at how GenAI services are billing today, we can get a good sense
of how we might approach integrating these costs into our SaaS pricing strategy, Pric‐
ing for GenAI services tends to fit into a managed service model where the service
exposes an API and hides away the details of its underlying infrastructure, enabling
services to change in a pay-as-you-go model. The unit of cost for these services is
derived from the complexity of the prompts that are submitted and the output that is
returned. This complexity is metered based on the number of tokens in your prompt
and the number of tokens in your output. There will be specific price points and tiers
connected to these prompt and output token counts. You’ll also see that these token
price points can vary based on the LLM that you’re consuming. This pattern is a bit
atypical in that the cost is less about the volume of activity and more about the
resources that are needed to process a prompt and generate its corresponding output.

There are plenty of other nuances that are part of the GenAI cost puzzle, but this
notion of token complexity will likely be the primary influencer of cost in your sys‐
tem. You may also find that there are separate costs associated with fine-tuning your
model.

Developing a Pricing Model
Given these GenAI pricing dynamics, we now have to figure out what it would mean
to incorporate these costs into your overall SaaS pricing strategy. Your approach to
pricing will likely be heavily influenced by how GenAI is embedded into your experi‐
ence. Some may use GenAI in a model where its presence is entirely outside the view
of tenants. Others may be surfacing GenAI in a way that more directly exposes the
tenant to GenAI capabilities. Naturally, these two approaches could require very dif‐
ferent pricing strategies.

424 | Chapter 16: GenAI and Multi-Tenancy

Let’s look at the embedded model first. Figure 16-14 provides a view of a SaaS envi‐
ronment that relies on GenAI as part of supporting some internal elements of your
multi-tenant experience.

Figure 16-14. Pricing with a fixed set of GenAI interactions

In this diagram, you’ll see three microservices, each of which has some level of inter‐
action with the GenAI service. While the prompts and output for these interactions
could include some level of parameterization, they would likely have relatively pre‐
dictable tokenization profiles. This more controlled experience would likely allow
you to have enough data to develop some reasonable estimate of the cost that would
be associated with these different operations, enabling you to better predict how these
workloads will contribute to the overall cost profile of your solution.

Pricing gets much more complicated when the interactions with a GenAI service are
more open-ended. Consider, for example, a scenario where your SaaS environment
more directly exposes elements of the GenAI experience to tenants (via a chatbot, for
example). In this model, the nature and token complexity of the prompts and output
could vary wildly. This would make it almost impossible to have any kind of fixed
pricing since the variations in your tenant consumption patterns could cause signifi‐
cant swings in your infrastructure costs.

In these scenarios, you may choose to measure this consumption and integrate these
costs directly into your overall pricing model. The question is: how will you capture

GenAI Pricing and Tiering Considerations | 425

those consumption events and correlate them to specific tenants? To get here, you’ll
need to introduce mechanisms that will analyze prompt and output complexity, con‐
necting this consumption to individual tenants. Figure 16-15 provides a conceptual
view of how you might capture and publish your GenAI-related billing metrics.

Figure 16-15. Capturing and calculating token complexity

The key difference with this example is how it starts. You’ll see the tenant submitting
a prompt to your SaaS application (step 1). In reality, this might not be an actual
prompt. However, the idea is that the tenant is submitting something of unknown
complexity into our system (instead of the more fixed example we saw in
Figure 16-14).

When this request gets processed by the application, it is then ready to be sent to the
GenAI service for processing. However, before it’s processed, it is evaluated by a con‐
sumption billing library (step 2). This library is a conceptual placeholder that could
be introduced via a microservice or some other construct that can intercept and pro‐
cess inbound requests. In this example, it calculates the complexity and sends a
metering event to the billing service that resides in your control plane (step 3).

From here, the prompt is then sent to the GenAI service (step 4). When the output is
returned by the GenAI service (step 5), our library will also intercept the output, eval‐
uating its complexity and publishing a second metering message to the billing service
(step 6).

The prompt and output consumption data captured by this process would be aggre‐
gated by the billing system and incorporated as one piece of your overall billing
model. The key here is that, if the consumption is unpredictable, you’re likely to sur‐
face this as part of your overall billing model to prevent a tenant from imposing
unexpected infrastructure costs on your system.

It’s worth noting that this same construct could have value beyond pricing and bill‐
ing. I’ve outlined the general importance of having insights into per-tenant

426 | Chapter 16: GenAI and Multi-Tenancy

consumption activity and correlating that consumption to costs to arrive at a cost-
per-tenant metric. The data from this mechanism could also be used to surface
GenAI consumption that would contribute to analyzing the cost-per-tenant profile of
your environment.

Creating Tiered Tenant Experiences
Tiering has been a big theme throughout our discussion of SaaS. And, not surpris‐
ingly, tiering is also likely to be part of your GenAI story. It would not be unlikely for
SaaS providers to associate SLAs with their GenAI capabilities, using tiering to offer a
range of throughput levels at different price points. This would also enable you to
limit the level of consumption that is imposed by lower-tiered tenants, preventing
them from imposing excess infrastructure costs and, potentially, impacting the expe‐
rience of other tenants.

To make this a bit more concrete, let’s consider a scenario where you have basic and
premium tier tenants. Now, for the GenAI part of your system, you may want to
introduce a throttling mechanism that could control the consumption activity of each
of these tiers. Figure 16-16 provides a view of the moving parts of this strategy.

Figure 16-16. Tiering and throttling GenAI requests

This approach uses the same interception strategy that we used for pricing. In fact,
this could be a shared concept that supports your tiering and pricing requirements.
Essentially, we need some way to evaluate each inbound request to determine

GenAI Pricing and Tiering Considerations | 427

whether it may trigger a tiered throttling policy. On the left of the diagram, you’ll see
two different tenant tiers submitting requests (step 1). Now, to make this a bit more
concrete, I’ve shown this example using AWS services. Specifically, you’ll see that I’ve
put an API Gateway in front of my GenAI service (in this case, Amazon Bedrock).

Each request that is sent to the API Gateway will be processed by a Lambda author‐
izer (step 2). This serverless function will evaluate the complexity of the incoming
prompt (step 3). The output of this complexity analysis determines if the request
should be allowed to proceed, configuring the authorizer policy with the allow/deny
state (step 4). This configuration will then go back to the API Gateway (step 5) and, if
allowed, it will all be sent to Amazon Bedrock for processing (step 6).

Admittedly, this is a relatively simple model that attempts to use the existing mechan‐
ics of the API Gateway throttling to control access to the GenAI service. While there
may be more elegant ways to achieve this, the concepts are still valid. Essentially, this
is all about evaluating prompt complexity and using it as part of a tier-based throt‐
tling policy. In some instances, you may also consider combining complexity with
frequency data as part of your throttling model.

There is one additional approach to tiering that is less about the specific consumption
activity of tenants. Since GenAI services generally support multiple LLMs (each with
their own nuances), you could choose to offer access to different LLMs at different
tiers or price points, so a basic tier tenant could get the lower cost LLM, while a pre‐
mium tier tenant may have access to a presumably “better” and more costly LLM.

Overall, it’s tough to really know which of these strategies might fit with your envi‐
ronment. There are simply too many variables to map this to any absolutes. A lot also
depends on how the GenAI service is being used within your environment. If the ser‐
vice is entirely internal, this would have different dynamics than a solution that was
exposing the GenAI service more directly.

Conclusion
This chapter was meant to give SaaS builders a glimpse of some of the tools and tech‐
niques they can use to introduce GenAI capabilities into multi-tenant environments.
My goal was to identify some of the patterns and strategies that represent the inter‐
section between GenAI functionality and the realities of SaaS environments, which
included looking at how you could use targeted GenAI tenant refinements in a way
that would bring more value to your offering and to your overall tenant experience.

This started with a review of core GenAI concepts where I outlined the basic ele‐
ments of the GenAI architecture footprint. As part of this, I provided a view into how
multi-tenancy could be folded into the GenAI experience. I then shifted into more
concrete concepts, looking at how constructs like RAG and fine-tuning can create
tenant-specific refinements. Understanding how and where these constructs enable

428 | Chapter 16: GenAI and Multi-Tenancy

you to create custom tenant experiences is key to understanding the range of multi-
tenant possibilities within the GenAI landscape.

The chapter then shifted to exploring some of the broader implications that come
with employing these constructs in a multi-tenant environment. Here we looked at
how and where core SaaS concepts like tenant isolation, noisy neighbor, and
onboarding are influenced by the presence of these new constructs. Finally, the chap‐
ter finished up by exploring how GenAI can influence the tiering, pricing, throttling,
and cost model of your solutions.

It should be clear at this point that the notion of GenAI and SaaS is an emerging
topic. My goal was to do what I could to surface some of the current possibilities
knowing that this space is evolving rapidly and that new options will continue to sur‐
face new strategies and principles. It’s likely that some of the techniques I covered
here were not intended to be applied as per-tenant constructs. However, that’s how
most multi-tenant architecture finds its way into different tools, services, and envi‐
ronments. We have to begin to figure out what can be made to work with the tools we
have right now and expect that the needs of multi-tenant providers will ultimately
drive the evolution of these tools and services.

Now that we’ve covered GenAI and the broader SaaS strategies and architecture pat‐
terns, I want to use the final chapter of this book to explore some core guiding princi‐
ples. The goal is to bring together a collection of some of the essential themes that I’ve
touched on throughout this book. Bringing together and elaborating on these princi‐
ples will give you a parting set of insights that can help establish a set of common
values that will shape how you design and build your SaaS architecture and business.

Conclusion | 429

CHAPTER 17

Guiding Principles

Throughout this book, I’ve tried to surface a mix of SaaS technical and business prin‐
ciples, highlighting key concepts that have a direct influence on how you approach
designing, building, and operating a SaaS business. In some respects, having a firm
grasp of these foundational concepts is almost more important than knowing all the
nuances of how multi-tenancy might land in your underlying implementation. It’s
these concepts that guide and help you determine which strategies you should be
considering, which questions you should be asking the business, and which multi-
tenant patterns are going to best align with the needs of your business. Given the
importance of some of these principles, I thought it would be valuable to have one
dedicated chapter that would focus exclusively on this guidance.

I’ve picked three areas that represent a good grouping of these principles. The first
part of the chapter starts by looking at strategy, vision, and structure. So much of suc‐
ceeding with SaaS is driven by having a clear, unifying view of what your SaaS goals
are, what it means to be SaaS, and how you’re organizing and measuring teams
around a clear service-centric mindset and strategy. I outline a range of principles, all
focused on areas where I often see organizations struggle to achieve top-down
alignment.

The next part of the chapter focuses more on technical principles. Here, I’m looking
more at strategies and mental models that can influence how builders and architects
approach creating their multi-tenant environments. The last part of the chapter cov‐
ers operations considerations, identifying a few foundational guiding principles that
might help shape the footprint of your SaaS operational model. Getting operations
right is fundamental to creating a successful SaaS business and teams need to be
thinking about how they can give this area the priority it needs.

By no means is this chapter meant to represent some ultimate list of guiding princi‐
ples. Instead, my goal was to simply surface themes that represent some of the

431

common practices and approaches that play a big role in shaping the successful adop‐
tion of a SaaS delivery model.

Vision, Strategy, and Structure
When I engage SaaS companies and start helping them build their SaaS solution, I’m
most interested in understanding how the business is driving its strategy, vision, and
structure. I want to understand how the adoption of SaaS is influencing the way
teams operate, what they value, and how they view it driving the success and growth
of the business.

While having good alignment around SaaS principles seems like a pretty straightfor‐
ward concept, you might be surprised to discover just how many companies struggle
with this basic concept. I continue to find organizations where SaaS is viewed mostly
as a new technical strategy that will yield some efficiencies for the business. In these
instances, businesses tend to underestimate the importance of building a vision, strat‐
egy, and culture that weaves the as-a-service mindset into the fabric of the business.

Success with SaaS always starts at the top. You need executives that understand and
value how SaaS changes the build, operation, sales, marketing, and support of their
offering. Having leaders that know how to set the tone for your service will allow you
and the teams around you to feel comfortable leaning into and incorporating all the
nuances that come with adopting a SaaS mindset. This is essential to building a foun‐
dation that allows your organization to realize the agility, innovation, efficiency, and
growth that’s associated with the SaaS delivery model.

The sections that follow highlight some of the key areas that stand out as common
challenges and opportunities for organizations that are trying to establish their
vision, strategy, and structure.

Build a Business Model and Strategy
It’s well understood that strategy and vision are always at the core of building a suc‐
cessful business. However, I’ve seen many instances where SaaS companies—very
large companies—decide to adopt a SaaS delivery model without having a clear pic‐
ture of where they’re going, what values should shape their path forward, and what
guiding principles will inform downstream execution. These organizations buy into
the value of SaaS and set their teams off on a path without really asking themselves
the hard questions that will give definition and detail to their strategy.

You can imagine how problematic this would be for any team. Now, consider the
compounded impact this can have in a SaaS environment. There are too many varia‐
tions and pieces to the SaaS puzzle to be vague about the strategy. Good SaaS teams
will lean into vision and strategy, working hard to develop a clearer view of the flavor
of SaaS that’s going to be best aligned to the goals of the business. This requires a

432 | Chapter 17: Guiding Principles

much deeper dive into understanding current and future market segments, the profile
of the tenants, the workloads you need to support, the margins you’re targeting, and a
host of other insights that will have a profound impact on your SaaS strategy. This
also includes thinking about how you expect the business to grow. Are we expecting
to add 10 new tenants every year or 1,000? How do you expect to reach those tenants?
Will you offer a free tier as part of your marketing model? I could fill this entire page
with all of the different topics and data points that are needed to formulate a SaaS
business vision and plan.

It’s at this stage that you’re establishing the core values that are going to directly
impact your SaaS journey. Product, operations, architects, builders—they’re all going
to reference these goals and data points as they begin to turn this vision into reality.
Without this data, teams may not have a clear view of what success looks like for their
business. When the vision and strategy is vague, SaaS companies can end up with
very loose definitions of what kind of SaaS experience they’re trying to build, how it
will need to evolve, the scale it will need to support, and so on. All teams need a well-
defined North Star that defines what they’re targeting and, more importantly, what
they’re not targeting.

The broader theme here is that you need to develop a vision and strategy that goes
beyond traditional goals and metrics. For SaaS, that’s not enough. Your vision and
strategy must go further, developing a more complete profile of the tenants, segments,
growth strategy, and so on. Without this, teams will be left to fill in vital gaps on their
own.

A Clear Focus on Efficiency
The SaaS story is very much focused on economies of scale. This means that the over‐
all strategy and day-to-day execution should always be thinking about how it pro‐
motes efficiency across all the moving parts of your business. The mental model is
one where teams openly embrace opportunities to highlight their ability to scale and
pivot based on the emerging needs of customers and the business. Your goal as a
business is to leverage the efficiencies enabled by SaaS as the fuel that can drive
growth, agility, and innovation. A key pillar of the SaaS model is that it thrives in
environments that demand change. In fact, much of the effort and energy that goes
into building a robust SaaS business is squarely focused on investing in the people,
culture, constructs, and strategies that will enable efficiency.

So, given this broader goal, how should leaders approach achieving this efficiency? It’s
tempting to assume that efficiency is largely a technical problem. That, for some, is
the trap of SaaS. Far too often, teams will view efficiency purely through the lens of
infrastructure scale and costs. Technology is just one piece of the efficiency puzzle.
When I am looking at a SaaS organization’s efficiency, I take a much broader view of
efficiency. I look at how teams are organized, how they sell, how they onboard

Vision, Strategy, and Structure | 433

customers, how product teams work, how customer success is plugged in, and a host
of other areas. I want to know how efficiently the organization operates collectively,
assessing how the structure and culture of the company is contributing to the overall
efficiency of the business. I want to know if the company is set up to use this effi‐
ciency to scale. To stress this point, I’ll pose a hypothetical question to SaaS providers,
asking them how their business would be able to support the addition of 1,000 new
customers—tomorrow. While this may be entirely unrealistic, it raises interesting
questions about whether you’ve built your business to scale. It takes us beyond the
technical and asks us how the different parts of the organization can scale to meet this
load. How will this spike in load impact our operations team? Is our onboarding effi‐
cient enough to support this load? Will our customer success team be able to scale to
meet this need? These are all examples of the stress points that may or may not indi‐
cate that your business is ready to scale efficiently.

Notions of scale and efficiency should be core elements of your organization’s vision
and strategy. The leadership of your organization, the product owners, the architects,
and the operations teams should all be thinking about how they can achieve these
efficiencies as part of their overall strategy.

Avoiding the Tech-First Trap
As teams set out on their SaaS journey, they often have a tendency to want to dig
directly into the details of their multi-tenant architecture. These teams are hyper-
focused on figuring out which combination of technologies can best address the
requirements of their SaaS offering. Which identity model should we use? How can
we isolate tenant resources? How do we store multi-tenant data? These are all exam‐
ples of the kinds of questions these technology-centric organizations start with. In
many instances, these discussions are happening mostly outside the view of the busi‐
ness teams. In fact, the business teams may also be comfortable assuming that SaaS
belongs exclusively in the technical realm.

The challenge is that, with SaaS, there is a much tighter connection between the busi‐
ness and technology strategies. In many respects, the business and technical paths
need to proceed in parallel. The reality is, many of the architectural choices you’re
going to make are entirely dependent on the vision and strategy of the business.
Which markets are you trying to reach? What are the tenant personas? Will different
segments have different requirements? How will you tier and price the offering?
These aren’t just high-level business data points. The choices you make here can
impact the fundamental shape and strategies employed by your architecture. As a
SaaS architect, you can’t really move forward without some clear, jointly agreed upon
view of the multi-tenant profile and experience that you’re enabling. You can’t bolt
these concepts on after the fact.

434 | Chapter 17: Guiding Principles

Generally, formulating your technical footprint in a vacuum will often impose limits
and assumptions that could undermine the success and growth of your SaaS offering.
If you’re the lone technical person championing the move to SaaS at your company,
your first move needs to be focused on pulling in product, operational, and business
strategists and beginning to ask the hard questions about the service experience, per‐
sonas, and multi-tenant profile of your offering.

This may seem like a basic and even obvious point, but time and time again I come
across companies that don’t seem to see the strong connection between business and
technology strategies. Builders want to build, and their fascination with the technol‐
ogy often creates blind spots that have them missing out on the importance of leaning
into the full business view of what it means to be SaaS. I have dropped into countless
SaaS projects where the technical teams and technical leadership have been develop‐
ing their SaaS solution for months without having answered any of the key business
questions about their offering. It’s an easy trap to fall into. This is where you have to
continually make an extra effort to ensure that the technical and business strategies
remain aligned throughout the process.

Thinking Beyond Cost Savings
The move to SaaS, for some, is often influenced by a strong desire to reduce costs and
maximize operational efficiency. These are entirely valid goals and often very impor‐
tant to organizations that are seeing their margins eroded by operational complexity
and the burden of one-off customer installations.

The challenge is that this mindset suggests that the vision and strategy for your SaaS
solution is mostly focused on making a multi-tenant version of your existing offering
to get costs under control. It’s true that SaaS will achieve cost efficiencies, but making
this the focal point of your strategy and execution seems to miss the point.

Generally, the move to SaaS is a transformational event that goes well beyond cost
savings. Adopting SaaS, for many, is about rethinking how you build, operate, mar‐
ket, sell, and monetize your offering. It’s about using the economies of scale and agil‐
ity of SaaS to fuel innovation and growth. Cost is just one parameter of the broader
SaaS value proposition.

The point is that your vision and strategy for adopting SaaS should not be narrowed
to cost savings. I’d prefer this to be viewed more through the lens of economies of
scale where your multi-tenant architecture and operational model are built with cost
efficiency and optimization being top of mind.

Be All-In with SaaS
With some SaaS providers, there’s a real temptation to have it all. They see how SaaS
can enable them to grow their business faster and achieve the efficiencies, agility, and

Vision, Strategy, and Structure | 435

innovation that comes with SaaS. When you ask if they’re all-in with the fundamental
principles of SaaS, you get a resounding yes. They want the goodness that comes with
having one unified experience for all customers. They see the importance of having
all customers running the same version. At first glance, they seem to have a vision
and strategy that lines up with all the core SaaS principles.

Then, as I dig deeper into the vision, the caveats start to surface. Yes, these organiza‐
tions want to be all-in with SaaS, but they also have some customers that are given
exceptions to the rules. The needs of these few customers are viewed as being so vital
that they end up offering them one-off configurations and environments. It’s here
that companies are at the crossroads of SaaS. Is it feasible to support these one-off
exceptions without undermining the vision, strategy, and success of your SaaS busi‐
ness? Does supporting this approach slowly move you to a managed service provider
model, limiting your ability to fully realize the economies of scale that come with
having a single, unified environment for all customers?

I completely understand the business realities that teams are facing here. This can be
especially challenging for companies that are migrating to SaaS. You may have stock‐
holders, revenue expectations, and existing relationships that make it difficult to
make the full commitment to SaaS. Also, when large customers make demands, it’s
often challenging to say no. The allure of a near-term, lucrative deal can also sway
organizations.

To be fair, there are no absolute rights and wrongs here. Ultimately, the business is
going to make compromises based on any number of market, business, and customer
pressures. For me, this is more about having a clear vision of what it is that you’re
trying to achieve by adopting SaaS. If your goal is to maximize the value of SaaS to
scale and use the fundamentals of that scale to grow your business, then you’ll have to
weigh the longer-term impacts of supporting a model where you support one-off cus‐
tomer experiences. Each one-off customer that you take on can slowly move you
away from the core SaaS value proposition.

For some, there may be reasonable trade-offs that make this a viable option. For oth‐
ers, it could put you on an unintended path to lower margins, higher operational
costs, and reduced agility. The key is to be aware of these trade-offs and clear about
how the choices you’re making will influence your long-term ambitions.

Adopt a Service-Centric Mindset
The “service” part of software as a service can get lost in the shuffle. Many teams that
are moving to SaaS are rooted in the traditional product-centric mindset where their
focus was mostly on features and functions. This, for some, makes the transition to
an as-a-service model a bit more challenging. SaaS requires teams to think beyond
functional aspects of software, expanding their scope to consider the broader service
experience of their offering.

436 | Chapter 17: Guiding Principles

This shift reaches across all dimensions of the business. As a product owner, my
backlog is now populated with all kinds of new operationally focused deliverables.
How effectively are tenants onboarding? How are we measuring their time to value?
What data do I have that gives me insights into the tenant experience? These are just
a few examples of areas I’ll want to watch as a product owner. They also have implica‐
tions for builders that have to implement and measure this service experience.

You can imagine how this service mindset extends into all the roles in your organiza‐
tion. Customer success, sales, marketing, operations, and builders must alter their
approach and give priority to the different parts of the service that will impact the
customer experience. In some cases, organizations may even choose to adopt shared
goals around service metrics. The idea is that you will adopt service-focused goals
that span teams, encouraging them to come out of their silos, work more collabora‐
tively, and put greater emphasis on the importance of building a rich service
experience.

The key is that we’re expanding our view of the experience, thinking about how and
where the service footprint of our experience will impact the success of our business.
Don’t get caught in the trap of viewing SaaS as just another way to sell products.

Think Beyond Existing Tenant Personas
When you’re building a SaaS business, you have to have a firm grasp of the profile
and nature of the tenants that will be using your solution. Yes, with any system, you
have to develop customer personas. With SaaS, however, there’s another layer to this
discussion that goes beyond the traditional notion of tenant personas.

In a SaaS world, tenant personas can have far-reaching impacts on how you design
and build your system. We have explored different architecture patterns throughout
this book, using tiers, deployment models, isolation strategies, and other techniques
to create distinct experiences for your SaaS tenants. These are all tools you have in
your tool bag that you can offer to the business. However, it’s also the job of the busi‐
ness to think about how the market is segmented. Who are the customers you’re try‐
ing to reach today, and what other segments might you be able to target by creating
different experiences for your solution? Where might you introduce tiers and pricing
strategies that allow the business to address a range of market segments without
undermining the margins of the business? These are the kinds of questions that you
need to be asking as a business to understand how you can best position your offering
to maximize its reach, impact, and growth.

As part of shaping your vision and strategy, I want you to think beyond the customers
that might be your most natural target and consider how you might be able to reach
new segments of customers by offering a broader range of options. This exercise can
directly impact how you choose to package and offer your solution. The choices you

Vision, Strategy, and Structure | 437

make here are also likely to influence key elements of your architecture and opera‐
tions experience.

The nature of your tenant personas will also drive other key decisions. The number of
tenants you plan to have in the system, the workloads of these users, their compliance
requirements, and their performance requirements are all factors that can impact the
architecture choices you’ll make. The architecture I build to support 100 tenants
could be quite different from the architecture I build to support 1,000 tenants. Some
tenants may also value price over performance. There is a long list of variables you’d
have to weigh as part of developing a rich tenant profile.

SaaS businesses need to push hard on assembling this data, pushing themselves to
imagine a tiered experience that can support a more diverse range of tenant
experiences.

Core Technical Considerations
As a SaaS technologist, it’s your job to go beyond the basics and challenge yourself to
identify new and creative ways you might be able to enhance the cost efficiency, agil‐
ity, and operational profile of your solution. The organization will lean on you to
build an architecture that balances a complex combination of competing goals that
will test your ability to find technology strategies that align to a potentially shifting set
of business, market, and customer goals. As a SaaS architect, you are at the center of
creating the architecture, tools, and constructs that will enable the business to realize
its SaaS goals.

For this section I want to highlight some of the key principles that can play a signifi‐
cant role in shaping how technical teams approach designing and building a SaaS
environment. The objective is to simply focus on a few high-level areas that I believe
need to be top of mind when you’re creating a SaaS service.

No One-Size-Fits-All Model
Builders and architects often come to me looking for the blueprint for their SaaS
architecture. They want that one, gold-plated multi-tenant architecture that can be
universally applied to all domains, business problems, and use cases. That may be a
bit of an overstatement, but that’s often the sentiment behind the ask.

It should be clear at this point that there simply is no one blueprint for SaaS. In fact,
this is part of why I find SaaS so compelling. Whenever I’m looking at the customer’s
proposed architecture, it’s my job to find the mix of SaaS strategies that will best tar‐
get the specific business, operational, technical, and timing realities of their environ‐
ment. Yes, there are common themes and core principles that are global to all SaaS
solutions. However, the actual mapping of those principles to a working architecture
can vary significantly from one solution to the next. If you just look at the two

438 | Chapter 17: Guiding Principles

architecture stacks we reviewed in Chapters 10 and 11, you can see how each technol‐
ogy brings its own set of constructs and mechanisms to the SaaS story.

For me, arriving at a target architecture starts with a long list of questions that are
often targeted at the business stakeholders and product owners. Where you’re start‐
ing, the nature of your domain, market pressures, tenant personas, the technology
stack you’re using, and a number of other factors end up providing the insights that I
need to figure out which flavor of architecture is going to align your business, techni‐
cal, and customer needs. This all comes back to having a clear vision and strategy that
provides enough detail to help you make these choices. Without this data, I’m not
sure how you would be able to pick an architecture. This may require you to go back
to the business to get the data you need before you move forward. In some cases, you
may serve as the forcing function that pushes the business to ask itself to further
define its strategy.

Protect the Multi-Tenant Principles
Technical teams are directly immersed in the details of how the system is built, oper‐
ated, and deployed. These teams are on the front lines of ensuring that the core values
of SaaS are being applied in a way that supports the agility, innovation, and efficiency
that the business is targeting. It’s unlikely that other teams within your organization
are going to be able to detect whether you’ve made some compromise that could
impact the organization’s ability to achieve its SaaS goals.

This means that the technical teams take on some added responsibility. They must be
the ones to understand how the system can scale effectively, align to performance
requirements, support tiering needs, provide efficient tenant onboarding, ensure that
tenant resources are adequately isolated, and so on. Ultimately, the business is relying
on these teams to adopt the best practices strategies that allow them to release
quickly, achieve economies of scale, and provide a zero-downtime experience.

Delivering on this promise can be challenging in any environment. It’s especially
challenging when you are building a system that must support multi-tenant work‐
loads where tenants are coming and going and their workload profiles are continually
shifting. This is where I feel like SaaS architects must be especially diligent about pro‐
tecting their architecture. In many instances, the business may entertain opportuni‐
ties that will test your ability to adhere to the core values of your multi-tenant
architecture. It’s your job to be the ambassador and protector of these principles,
helping the business find creative ways to deal with customer needs without making
compromises that could slowly erode your ability to manage, operate, and deploy
your tenants through a single, unified experience.

Whenever the business is steering down a dangerous path, point them back to the
vision and strategy that is guiding your business. Highlight the slippery slopes that
might lead you further away from fully realizing the SaaS value proposition.

Core Technical Considerations | 439

Build Your Multi-Tenant Foundation on Day One
Across this book, I’ve outlined a number of multi-tenant strategies that I feel are core
to building a robust, best practices SaaS environment. Generally, I think these con‐
cepts resonate with builders. They see the value. They understand how important it
can be to apply these strategies in their solutions. While these core principles will res‐
onate with teams, they don’t always get the day one focus and priority they deserve.
Instead, I’ll see teams race off to start building their application services, focusing
their initial energy on getting their solution up and running. For some, there seems to
be this expectation that these core, cross-cutting concepts can be bolted on later in
the process without much penalty.

From my perspective, the first steps in your multi-tenant journey must start with cre‐
ating the shell of your control plane. The goal is to get the most fundamental bits of
tenancy put in place, introducing the onboarding process that provisions tenants, the
bits needed to establish tenant and admin identities, and the authentication of ten‐
ants, which will inject tenant context into your backend services. By starting here,
you’re creating the foundational building blocks of your SaaS environment, forcing
teams to begin dealing with the nuances of supporting multi-tenancy across all the
dimensions of your architecture. It also begins to surface the elements of your admin‐
istration experience, exposing the basic mechanisms that are used to track and man‐
age the lifecycle of your tenants. This may seem like a small step, but it creates a
cascading effect that will set the stage for the rest of your multi-tenant journey.

You’ll see this progression as you move into the application plane. Here, your applica‐
tion services now have access to tenant context. They are now forced to consider how
this context will influence the implementation of their service. Will tenant context
now be introduced into your logs and metrics? How will tenant context be used to
implement data partitioning and isolation for your service? These are all examples of
areas where the presence of tenant context forces teams to apply tenancy to the foot‐
print of their application code. It will also create opportunities to introduce libraries
and helpers that can be reused across your application services. Extracting tokens,
logging with tenant context, getting scoped isolation credentials—these are all areas
that become candidates for reusable code or libraries that can be shared across your
application services.

Of course, now that our application services are multi-tenant aware and publishing
logs, metrics, and billing data, we can consider how we might use this data to begin to
exercise the operational side of our environment. Teams can now troubleshoot their
code through tenant-aware logs that are centrally published and laced with tenant
context, allowing builders to narrow their view logs to individual tenants. You can see
how this begins to lay the early foundation for our operational tooling and experi‐
ence. Early on, you want builders to simulate and exercise the operational mecha‐
nisms that will eventually be an essential part of your production experience. You also

440 | Chapter 17: Guiding Principles

begin to open doors for the QA teams that want to validate the system’s ability to add
tenants and stress workloads. The ability to onboard multiple tenants means these
teams can begin thinking about how they can automate their testing and validation
based on different tenant profiles.

My hope is that this helps you see just how essential it is that you focus your initial
efforts on introducing tenancy and a control plane, putting the team in a position
where it’s building and operating in a multi-tenant mode from day one.

Avoid One-Off Customization
In a SaaS environment, many of your agility and efficiency goals are achieved through
your ability to have all customers running the same version of your software. Any
divergence from this begins to move you away from what it means to be SaaS. So,
with this in mind, it’s fair to question what role customization should play in the SaaS
universe. Is customization allowed? Is it prohibited? Where are the boundaries?

I think lots of this comes down to the intent and mindset behind how, where, and
when you are introducing customization into your SaaS offering. Some teams will
view customization as a tool to offer one-off capabilities to individual customers.
Depending on your approach, this could end up having negative consequences. Any
time we’re introducing something into our SaaS environment to meet the needs of a
single customer, we have to question whether it aligns with the overall goals of our
business. At the same time, it’s not wrong to expect that a SaaS system could have one
version of your offering that uses customization techniques to offer tenants different
experiences.

To better understand the nuances here, let’s consider two separate approaches to
introducing customization. For this discussion, let’s presume that we’re going to use
feature flags to enable or disable capabilities within our solution. Now, in one sce‐
nario, you could view feature flags as a way to create distinct experiences for individ‐
ual tenants. This often happens in organizations that are chasing deals and giving in
to old temptations to offer whatever is needed to land a customer. The challenge of
this approach is that it slowly erodes the fundamental goals of SaaS, often leading to a
complex maze of code and configurations that are challenging to support and man‐
age. The other scenario is one where we apply feature flags more selectively. Here,
instead of viewing customization as a per-tenant concept, you would view customiza‐
tion as a global, shared mechanism that can be applied to any tenant. The key idea is
that we use feature flags as a way to define distinct categories of experiences. A typical
example might center around tiers where we would use feature flags to configure the
different experiences of each tier. The fundamental difference is that we’re applying
customization to groups of tenants that fit a profile—not individual tenants.

There are no absolutes to this. The bigger takeaway is the mindset. Are you using fea‐
ture flags to create a complex web of one-off tenant customizations, or are you using

Core Technical Considerations | 441

it to land groups of tenants in a well-defined set of customization profiles? The idea
is to embrace feature flags as a way to offer customization without abusing the
construct.

Measure Your Multi-Tenant Architecture
As we’ve seen throughout this book, SaaS architectures come in many flavors. Within
one organization, you could be supporting a range of tenant workloads, deployment
models, performance profiles, tiering strategies, and so on. Given these diverse and
potentially competing needs, it can be difficult to assess how well your resulting
architecture is going to react and respond to real-world tenant workloads. Even if
your environment is working well today, there’s no guarantee that your system will
continue to perform as your mix of tenants and workloads shift over time.

This reality makes it especially important to have tools and mechanisms that can pro‐
vide ongoing insights into the performance, scale, and efficiency of your multi-tenant
environment. It’s true that your existing technology stack might already provide some
useful data that can help you profile the behavior of your architecture. However, it’s
likely that you’ll still need to instrument your environment with additional metrics
and analytics that will provide you with more targeted multi-tenant insights. You’ll
want to know more about how tenants and tiers are pushing your environment and
have specific metrics that can help you understand how your architecture needs tun‐
ing. This data may also uncover potential areas where you’re overprovisioned or
where your tenants are saturating resources in ways you hadn’t anticipated.

The key point is that multi-tenant architectures are in constant motion. This is to be
expected—especially for SaaS businesses that have populations of tenants that are
coming and going. The only way to stay ahead of the curve is to invest in surfacing
the data that will allow you to analyze and profile the behavior of your architecture,
correlating activity and consumption with specific tenants and tiers.

Streamline the Developer Experience
When you’re building a SaaS solution, you’re going find yourself introducing a variety
of policies to support concepts like tenant isolation, data partitioning, tiering, and so
on. As a SaaS architect, you’re going to want to do all that you can to ensure that these
mechanisms don’t somehow hinder the productivity of developers. In an ideal world,
you’d like to create an experience where builders can simply focus on the features
they’re building without being required to add traces of multi-tenant strategies all
throughout their code.

In addition to simplifying code, you also want to centralize the build, deployment,
and versioning of the multi-tenant constructs. The idea is that we’d move all the poli‐
cies and code into a set of reusable libraries. This is really just about following the
typical design best practices that are applied in anything you might build. However,

442 | Chapter 17: Guiding Principles

it’s also about having one place your teams turn to for any multi-tenant constructs
that can be used across multiple services.

So, as you’re building out the services of your SaaS application, you should be looking
for opportunities to move tenant details outside the view of your developers. There
are some obvious targets that you’ll likely go after on day one. For example, many sys‐
tems will introduce helpers to deal with token management, equipping builders with
mechanisms that allow them to easily extract tenant context from incoming tokens.
Logging is another area where you can add helpers that automatically inject tenant
context. Tenant isolation also represents another area where teams want to move
their isolation strategies and code into libraries. The goal is to make complying with
these strategies as simple as possible.

The true measure of success here is found directly in the code of your application
services. If you dive into some operation in one of your services and discover that it’s
laced with line after line of code to acquire, apply, and inject tenant context, then it
will be clear that more work should be done here to move these concepts into helper
libraries. It’s important to note that I’m not suggesting that this approach will entirely
remove any multi-tenant handling from your application code. It’s more that I want
to do what I can here to minimize complexity for developers.

Operations Mindset
SaaS businesses rely heavily on having rich, proactive operational tooling to drive the
success of their business. Addressing this need can be particularly challenging in
multi-tenant environments where you have a more fluid and potentially unpredicta‐
ble range of tenant personas that are exercising and pushing the limits of your archi‐
tecture. Multi-tenancy can also add new layers of operational risk to your
environment. As you rely more on pooled resources, you also face the reality of hav‐
ing outages that can impact all of your customers. These are the kinds of outages that
can make headlines and do lasting damage to your brand.

Supporting these sometimes challenging operational needs requires SaaS businesses
to have a clear commitment to making operations a priority. We talked about this in
detail in Chapter 12. However, in the sections that follow, I want to highlight some of
the core guiding principles that are part of the overall SaaS operations mindset.

Thinking Beyond System Health
In many organizations, operations is seen as the team that’s responsible for keeping
the lights on. Their job is to monitor and manage the health of the system. This is a
completely fair way to think about the role of operations in some organizations.
However, with SaaS, I believe operations teams take on a broader role that goes
beyond ensuring that the system is up and running. A SaaS operations team is, to me,

Operations Mindset | 443

at the epicenter of observing all the activities, trends, and experiences that are playing
out via your multi-tenant architecture. They are seeing the various multi-tenant poli‐
cies and architecture strategies being fully exercised by tenants with varying profiles
and consumption patterns.

SaaS operations teams are at the hub of observing and interpreting the health, activ‐
ity, and metrics data that provides a collective view into the overall operational health
of the business. To me, this is where I see a bit of the divide. I see operations extend‐
ing beyond bugs, outages, and failures, extending into insights that allow us to make
broader observations about the evolving state of our architecture and business.

To make this more concrete, let’s look at an example of an operations view into the
tenant onboarding experience. At one level, the operations team will be monitoring
and capturing any onboarding failures and working to troubleshoot any failures that
are happening in this area. That’s the more traditional role of operations. Now, in
another context, I’m also watching metrics and trends around the onboarding process
that give me insights into how onboarding is responding to load, whether it’s meeting
SLAs, and how efficiently tenants are moving through the process. In this mode,
there’s nothing broken. However, I still very much keep my finger on the pulse of
onboarding to see if there are issues or inefficiencies that could be impacting the ten‐
ant’s experience. The business would want to know this and be proactive about find‐
ing new ways to refine the onboarding process.

The main idea is that SaaS businesses ought to have an expanded view of the insights
that are surfaced and acted on via the operations experience. Multi-tenant environ‐
ments often have so many moving parts and strategies that are continually being
pushed based on an evolving set of needs. Your team is going to want to know that
the architecture and design strategies you’ve employed are successfully handling these
needs.

There are so many multi-tenant details that you’ll want observed and evaluated. For
example, I may want to have views into how my throttling policies are being applied
to my basic tier tenants. Or I might want to assess consumption trends for the siloed
resources of my platinum tier tenants to figure out if they might be overprovisioned.
Or I could want to see how tenants are imposing load on specific infrastructure
resources. The overarching theme is that I’m not just reacting to health events—I’m
assessing the runtime realization of the multi-tenant policies that are currently
employed by my architecture. I’m looking around corners to see how, where, and
when tenants may be testing my assumptions in ways I hadn’t anticipated.

To some, this may just seem like an extension of what you already do. When I discuss
this topic with teams, they’ll often indicate that they understand the need and have it
covered. However, when I dig into their operational tooling and approach, I often dis‐
cover that they’re mostly relying on some mix of off-the-shelf tools that have little or
no awareness of tenant context. Yes, the tools can still be a valuable part of your

444 | Chapter 17: Guiding Principles

environment. At the same time, it’s likely you’ll need to supplement these tools with
your own custom-built or configured mechanisms that allow you to analyze the
unique multi-tenant operational footprint of your system.

Overall, the real point of emphasis is that operations is at the epicenter of your service
experience. It is one of the most foundational elements of successful SaaS businesses,
equipping teams with the tools and mechanisms that allow them to anticipate emerg‐
ing issues, quickly target tenant challenges, and prevent outages. Investing in the right
tools here is critical to being able to deal with the challenging dynamics that come
with operating a multi-tenant business.

Introducing Proactive Constructs
SaaS is generally intended to be a zero-downtime experience. If you’re running an
entirely pooled environment, for example, any outage could ripple across all of your
tenants. The impact of any outage could have a significant impact on your business.
This naturally puts added pressure on SaaS operations teams. They’re continually
looking at how they can ensure that they’re maximizing their ability to head off issues
before they impact tenants. To me, this also places greater emphasis on the need for
proactive operational tooling that implements policies and mechanisms that can
detect and surface operational issues before they have a wider impact.

In many respects, the mindset here is mostly an extension of general operational
practices. Operations teams typically already have alerts and alarms in place that can
be used to fill this need. With SaaS operations, it’s more about figuring out how and
where you should introduce these constructs. I may, for example, have tier-focused
throttling policies that are preventing tenants from saturating some aspect of my sys‐
tem, or I might have metrics from my database that let me know when pooled tenants
might be overloading a shared database. The idea is that there are all these different
multi-tenant policies and mechanisms that span our architecture and you need to
find the key points of operational tension in your architecture where you’ll want to
monitor activity and, potentially, surface alerts and alarms.

Using this proactive approach may uncover new opportunities to introduce con‐
structs that will reduce the possibility for outages. The data that comes out of this
might lead to changes in policies, deployment, partitioning, sizing, and other aspects
of your architecture, allowing you to more proactively evolve the design of your
environment.

Validating Your Multi-Tenant Strategies
You never really know how your SaaS system is going to respond to the varying needs
of tenants. This unpredictability of workloads is a reality for SaaS teams. At the same
time, it’s also an obvious area of risk for the operational health of your system. What
new things might a tenant try that you hadn’t anticipated? How will their workloads

Operations Mindset | 445

shift and change over time? You do what you can to plan for this, but there are few
certainties here.

To address this need, teams can and should look at how they can stress their systems
and validate their ability to perform and respond as anticipated. Again, stress and
load testing is nothing new. However, in a multi-tenant setting, we have new dimen‐
sions and considerations that need to be factored into our validation approach.

This idea of stressing and validating your SaaS environment is partly connected to
some of the metrics discussions that we’ve had throughout this book. For example,
I’ve talked about measuring the onboarding efficiency of your system and attaching a
metric to this. The question: how do I know if my system will be able to achieve the
levels of efficiency that we’ve agreed to target? This is where your load and stress test‐
ing should include tests that exercise the onboarding performance of your system.
What happens if I add 100 tenants in a tight window of time? How will the system
scale to handle this? How will it handle onboarding of tenants with different profiles
(silo and pool, for example)? Could this degrade other aspects of the system? The
only way to answer these questions is to simulate this activity across multiple use
cases.

Onboarding is just one of many areas where you’ll want to validate your multi-tenant
strategies. You might simulate loads to test the tier-based throttling strategies of your
system. You might simulate pooled scaling strategies of microservices. You might
introduce tests to validate your tenant isolation strategies. The list of possibilities
could be quite long. You can imagine just how valuable this can be to the operational
profile of your organization. The more you can simulate these loads and validate your
policies, the more confidence you’ll have in your ability to limit the potential for these
issues to surface in production.

In some respects, you could see this approach wanders a bit into the chaos testing
realm, where you’re essentially attempting to throw lots of challenges at your multi-
tenant architecture and see how it responds to these challenges. As part of this, you
should also think about the mix of tenant personas/profiles that could be part of these
tests. You might have one load test that features a heavy dose of basic tier tenants con‐
suming some key aspect of your system to see if this creates noisy neighbor condi‐
tions for your premium tier tenants. The overall goal would be to create a suite of
tests that spanned a different mix of tenant profiles (tiers, workloads, etc.).

It’s fair to question whether this testing discussion fits more in the quality assurance
and development domains. Perhaps it does. However, I also see this as part of the
operations universe. It is here that, as part of running these tests, we’re also validating
our ability to analyze and surface the side effects of the tests through our tenant-
aware operational tooling. This validation isn’t just testing the architecture—it’s also
about testing the efficacy of your operations model.

446 | Chapter 17: Guiding Principles

You’re Part of the Team
Operations teams often view themselves as being downstream of the team’s vision,
strategy, design, and build. In some instances, operations teams might view them‐
selves in more of a support-focused role. I see operations teams needing to be woven
into all the moving parts of the development process. These teams bring a unique
perspective to your SaaS vision and execution, weighing in on how different models
or approaches might influence your ability to effectively manage and operate your
SaaS offering.

I think part of the challenge is that operations can be incorrectly viewed as being
somewhat static. In the mental model, there’s an assumption that we’re just applying a
known set of tools and mechanisms to our system to monitor its health. This
approach presumes that the operator requires minimal insights into the underlying
strategies and policies that were used to construct the environment.

I believe that operations—especially for SaaS environments—need to be tightly inte‐
grated into the overall development decision making, playing an active role in shap‐
ing and understanding how the choices being made will impact the overall
operational footprint of the service. This level of exposure and involvement will more
directly influence the tooling and strategies that are used to assemble an operational
experience that better aligns to the details of the underlying architecture. Teams will
be in a better position to develop the insights, metrics, and operational views that will
drive a richer operational experience.

As part of this, I’d also expect the product owners and architects to be looking at how
and when they may need to put operations deliverables on the backlog of your ser‐
vice. If there’s a change in the SaaS service that may also require changes to the opera‐
tions experience, then those changes should be added to and prioritized in the
backlog. Including these operations impacts in your backlog will better integrate the
operational perspective into ongoing development efforts.

Conclusion
The path to creating a successful SaaS offering is not always so clear. Well-intended
teams often struggle to find their way through the myriad of business and technical
challenges that come with creating a SaaS business. The biggest part of the challenge
is that SaaS is a business strategy that requires a high level of collaboration between
business and technical teams. It’s here that teams need a clear set of guiding principles
that can help them align around a shared vision that maps their target SaaS service
experience to a mental model that will cascade across all the moving parts of the
business.

For this chapter, I assembled a list of some of the core guiding principles that repre‐
sent areas where it’s important to have strong alignment on your SaaS vision and

Conclusion | 447

principles. The first area we looked at was strategy, vision, and structure. The goal
was to highlight some of the most common, cross-cutting themes that I see impacting
the success of SaaS organizations. I outlined a few of the foundational areas where
SaaS businesses need to have a unified value system and strategy that can cascade
across all the moving parts of the organization. I wanted to highlight key areas where
even small disconnects in the business could ultimately impact the growth, scale, and
efficiency of a SaaS service.

I also looked at these guiding principles through a technical lens, focusing on com‐
mon areas that can influence the direction and strategy of your SaaS architecture.
Here, I wanted to review some of the fundamental principles that may have the big‐
gest impact on how you approach your broader technical strategy. Finally, I finished
by exploring some of the principles that can influence your operations mindset. The
emphasis was on understanding the role that operations plays in a SaaS environment,
outlining the areas where SaaS operations teams need to augment their approach to
deal with the realities that come with operating a multi-tenant environment.

It’s important to note that the principles outlined here represent a sampling of some
of the key areas where I’ve seen organizations struggle. The hope was that, by assem‐
bling these core principles in one place, it would allow us to step away from the
details and look at the basic themes that surround the development of your SaaS solu‐
tion. Organizations that have good, top-to-bottom alignment around what it means
to be SaaS are often in the best position to maximize the success of their SaaS
offering.

448 | Chapter 17: Guiding Principles

Index

A
ABAC (attribute-based access control), 225
account-per-tenant full stack silo deployment,

60-63
onboarding and, 62
scaling and, 63

admin user, 92
administration console, 41

triggering onboarding, 86
agility metrics, 313

availability, 313
cycle time, 314
defect escape rate, 314
deployment/release frequency, 313
failed deployments, 314
mean time to detection/recovery, 314

AI/ML (artificial intelligence/machine learn‐
ing), 411

Amazon Cognito, 109
Amazon Simple Storage Service (S3), 206
API Gateway

API Gateway-per-tenant model, 153
isolation, 296
REST paths, 301
route-based isolation, 301
serverless routing, 289

API tiering, 373
API Gateway, 373

API keys, 374
throttling policies, 373

API Management, 373
Apigee, 373

application deployment, 39
application microservices footprint, 11

application plane, 27-29, 33
control plane integration, 44
control plane interaction, 30
data partitioning, 36
multi-tenant application deployment, 39
technology choices, 45
tenant context, 34-35

tiering and, 40
tenant isolation, 35-36
tenant provisioning, 42
tenant routing, 37-39

application-enforced isolation, 225
Argo Workflows, onboarding automation and,

262-263
artificial intelligence/machine learning (AI/

ML), 411
aspects, 184-185
attribute-based access control (ABAC), 225
authentication, 111

front door, 138-146
identity and, 101
man-in-the-middle challenge, 145-146
MFA (multi-factor authentication), 110
multi-tenant authentication flow, 146

federated, 148
one-size-fits-all, 148
sample, 147

routing authenticated tenants, 149-150
scale and, 155
single domain access, 143-145
tenant context and, 144
tenant domain access, 138-140

onboarding, 141
subdomain-per-tenant model, 140

449

vanity domain-per-tenant model, 141
authorization, tenant isolation and, 225-226
automation

deployment, 259-260
onboarding, 259-260

Argo Workflows and, 262-263
Flux and, 262-263
Helm and, 260-262

availability
full stack pool deployment models, 70
full stack silo deployment models, 59
remote resources and, 400
SaaS Anywhere and, 400

AWS CodePipeline, 260
AWS Lambda

deployment models, 282
mixed mode, 284-285
pooled, 283-284
siloed, 283-284

functions, lifecycle, 285-286
serverless routing, 151

AWS Outposts, 390

B
B2B (business-to-business) model, 20
B2C (business to consumer) model, 20

full stack silo deployment models, 57
backup and restore, 194
baseline environment, 82

control plane, 84
provisioning options, 87-88

creating, 83-86
DevOps and, 83
identities, system admin, 86
onboarding, triggering from admin console,

86
pooled resources, 84

baseline metrics, 322
bearer tokens, 172-173
billing

Billing service, 92, 98
control plane, 32-33
tenant activation/deactivation, 125-126
Tenant Management service, 119
tiering and, 371

blast radius
data partitioning and, 193
full stack pool deployment models, 70
full stack silo deployment models, 59

business health metrics, 321-322
business models, SaaS as, 16-19
business objectives

agility, 17
frictionless onboarding, 18
growth, 18
innovation, 18
operational efficiency, 17

business to consumer model (see B2C model)
business-to-business (B2B) model, 20

C
CAC (customer acquisition costs), 321
CDK (Cloud Development Kit), 260, 291
CDN (Content Delivery Network), tenant sub‐

domains, 141
Churn, 321
CI/CD (Continuous Integration/Continuous

Delivery), 70
automation and, 260

Cloud Development Kit (CDK), 260, 291
CloudFormation, 291
CloudFront service, 141
CLTV (customer lifetime value), 322
CLTV/CAC ratio, 322
CodeBuild, 291
composite metrics, 322
composite tiering, 370-371
compute technologies, service design and,

167-168
container compute model, 167
serverless compute services, 167

compute tiering, 375
concurrency, 376
scaling and, 377
serverless computing, 375

conceptual deployment models, 48
concurrency

compute tiering and, 376
serverless computing and, 302-304

configuration, tenants, 121-124
consumption metrics, 315

architecture layers, 317
microservices level, 318
resource level, 316

consumption policies, 366
consumption-based pricing, 366
consumption-focused tiering, 365-367
container compute model, 167

450 | Index

containers, routing and, 153-155
Content Delivery Network (CDN), tenant sub‐

domains, 141
Continuous Integration/Continuous Delivery

(see CI/CD)
control plane, 27-29

administration console, 41
application plane integration, 44
application plane interaction, 30
baseline environment, 84

provisioning options, 87-88
billing, 32-33
deployment, EKS and, 255-256
full stack pool deployment models, 67
full stack silo deployment models, 56-57
identity, 30-32
legacy code in migration, 355
metrics, 32
migration and, 344
onboarding and, 29-30
Provisioning service, 94
remote resources and, 392
SaaS Anywhere, 392
serverless computing and, 286-288
technology choices, 45
tenant management, 33
tenant provisioning, 42

core tenant attributes, 117
cost

full stack pool deployment models, 71
savings, guiding principles and, 435

cost-per-tenant metrics, 318-321
custom claims, 102

populating, 105
tenant context and, 105

customer acquisition costs (CAC), 321
customer lifetime value (CLTV), 322
customization, one-off, 441-442
cycle time, 314

D
dashboards, operations console, 329
data access, tenant context, 176-178
data partitioning, 36, 189, 190

(see also pooled data partitioning; siloed
data partitioning)

backup and restore and, 194
blast radius and, 193
data lifecycle and, 216-217

database partitioning, relational databases,
199-202

databases, object storage and, 208-210
isolation and, 193-194
management footprint and, 194
multi-environment support, 196
NoSQL data partitioning, 202

pooled data partitioning, 203
siloed data partitioning, 204
tuning, 205

object storage service and, 206
pooled data partitioning, 206-207
siloed data partitioning, 207

OpenSearch service and, 210
mixed mode data partitioning, 214
pooled data partitioning, 211-212
siloed data partitioning, 212-214

operational footprint and, 194
relational databases, 199

pooled models, 200
siloed models, 201-202

security, 217
storage

selecting, 195
SLAs and, 192
workloads, 192

data sharding, 215-216
decommissioning tenants, 127-130
deployment

applications, 39
automating, 259-260, 330-332

scoping, 332
targeted releases, 332-334

failed, 314
frequency, 313
tenant-aware, 264-265

deployment models
conceptual, 48
description, 48
full stack hybrid models, 74-75
full stack pool models, 67-73
full stack silo models, 53-66
full stack, onboarding and, 95
Lambda and, 282

mixed mode, 284-285
pooled, 283-284
siloed, 283-284

mixed mode deployment model, 75-77
pod deployment model, 77-80

Index | 451

pool models, 51-53
pooled deployment, 250-251
selecting, 50-51
siloed deployment, 51-53, 251-254
tiering and, 380-381

deployment patterns, 248
deployment-focused tiering, 368-369
deployment-time isolation, 228-235, 298-299
developer experience, 442-443
distributed ownership, 389
DynamoDB, 119

NoSQL data partitioning, 202

E
efficiency, guiding principles and, 433-434
EKS (Elastic Kubernetes Service), 237, 245

clusters, 251
virtual, 254

control plane deployment, 255-256
deployment patterns, 248
deployment tooling, 247
EKS Anywhere, 390
isolation and, 247
node types, 271-273
routing and, 256-258
SaaS (software as a service) and, 246-248
scaling model, 246
serverless compute and, 274
tenant isolation and, 265-271
tenant-aware deployment, 264-265

EKS Anywhere, 390
EKS SaaS reference architecture, 274

F
failed deployment, 314
federated identities, 107-109
fine-tuning, GenAI, 416-417

global fine-tuning, 418
RAG and, 420
tenant-level fine-tuning, 418

fish model of migration, 342-343
Flux, onboarding automation and, 262-263
free tier model, 370
frictionless onboarding, 18
full stack deployment, onboarding and, 95
full stack hybrid models, 74-75
full stack isolation, 224, 235-237
full stack pool deployment models, 67

availability, 70

blast radius, 70
control plane, 67
cost, 71
isolation, 70
sample architecture, 72-73
scale, 69
tenant context, 68

full stack silo deployment models, 53
account-per-tenant model, 60-63

onboarding and, 62
scaling and, 63

availability, 59
blast radius, 59
control plane complexity, 56-57
cost attribution, 59
costs, 58
routing and, 58
SaaS and, 54
scaling impacts, 57
subnet-per-tenant model, 65
use cases, 55
VPC-per-tenant model, 63-66

onboarding and, 65
scaling, 66

G
GenAI (generative AI), 403

custom experiences, 409-410
isolation and, 423
LLMs (large language models), 405
multi-tenancy and, 406-409
noisy neighbors and, 422
onboarding and, 421-422
operations and, 410
pricing, 424-427
tenant refinement

fine-tuning and, 416-420
RAG and, 412-416

tiering and, 424, 427-428
generative AI (see GenAI)
globally unique identifier (see GUID)
growth, 18
GUID (globally unique identifier), 119

as tenant identifier, 91

H
Helm, onboarding automation and, 260-262
hybrid models, full stack, 74-75

452 | Index

I
IAM (Identity and Access Management), 267
IAM Roles for Service Accounts (IRSA), 267
identity

authentication and, 101
creating, 100-112
federated, 107-109
OIDC and, 102
system admin, baseline environment, 86
tenant identity, 100

attaching, 102, 105
control plane, 30-32

Tenant Management service, 117
user identity, 100

identity model, migration, 346
innovation, 18
integration, SaaS Anywhere and, 397
interception, runtime isolation and, 232-233
internal onboarding, 89-90
IRSA (IAM Roles for Service Accounts), 267
isolation, 35-36, 111, 178-181, 184, 219-223

application isolation versus infrastructure
isolation, 226-227

application-enforced, 225
authorization and, 225-226
data partitioning and, 193-194
deployment-time, 228-235
EKS (Elastic Kubernetes Service) and, 247,

265-271
full stack, 224, 235-237
full stack pool deployment models, 70
GenAI and, 423
item-level, 224, 239-240
policy management, 240-242
RBAC (role-based access control) and,

225-226
resource-level, 224, 237-239
runtime, 228-235

interception and, 232-233
scaling and, 234-235

serverless computing, 296
deployment-time isolation, 298-299
pooled isolation, 296-298
route-based isolation, 301-302
silo isolation, 299-300

siloing functions and, 284
tiering and, 368

isolation credential injection, 296
isolation models

full stack isolation, 224
item-level isolation, 224
layers, 227-228
resource-level isolation, 224

item-level isolation, 224, 239-240

J
JWTs (JSON Web Tokens), 34, 102-105

bearer tokens, 172-173

L
Lambda Extensions, 186
Lambda functions, 284
Lambda Layers, 186
large language models (LLMs), 403, 405
layered migration, 348-351
legacy code, migration and, 355
LLMs (large language models), 403, 405
logging

operations console, 329
tenant aware, 174
tenant context, 173-174

M
man-in-the middle, 145-146
Managed Service Provider (MSP) model, 14
mean time to detection/recovery, 314
metrics

aggregation, 323-324
agility metrics, 313

availability, 313
cycle time, 314
defect escape rate, 314
deployment/release frequency, 313
failed deployments, 314
mean time to detection/recovery, 314

baseline metrics, 322
business health metrics, 321-322
composite metrics, 322
consumption metrics, 315

architecture layers, 317
microservices level, 318
resource level, 316

control plane, 32
cost-per-tenant metrics, 318-321
instrumentation, 323-324
operational metrics, 310

tenant activity, 311-313

Index | 453

operations console, 328
services design and, 169-170
tenant context, 174-176

MFA (multi-factor authentication), 110
migration, 337

control plane and, 344
cost stream, 342-343
fish model, 342-343
identity model, 346
legacy code, control plane and, 355
new microservices, 355
patterns, 344

comparisons, 356-357
foundational concepts, 344-346
layered, 348-351
phased approach, 357-358
service-by-service, 351-356
silo lift-and-shift, 346-348

revenue streams, 342-343
starting point, 358-360
timing, 339-341

mixed mode data partitioning, 214
mixed mode deployment models, 75-77

Lambda and, 284-285
MRR (monthly recurring revenue), 321
MSP (Managed Service Provider) model, 14
multi-factor authentication (MFA), 110
multi-tenancy, overview, 9-12
multi-tenant authentication flow, 146

federated, 148
one-size-fits-all, 148
sample, 147

multi-tenant services, 170-172
aspects, 184-185
centralization, 181-183
Lambda Extensions, 186
Lambda Layers, 186
middleware, 185
sidecars, 185
tenant context, 172-173

data access and, 176-178
logging, 173-174
metrics, 174-176

tenant isolation, 178-181
multi-tenant terminology, 9

N
namespaces, EKS and, 249
noisy neighbor, 162-164

GenAI and, 422
Lambda functions and, 284
serverless computing and, 302-304

NoSQL
data partitioning, 202

pooled data partitioning, 203
siloed data partitioning, 204
tuning, 205

DynamoDB, 119

O
OAuth (Open Authorization), 102
object storage

data partitioning and, 206
pooled data partitioning, 206-207
siloed data partitioning, 207

database managed access, 208-210
OIDC (OpenID Connect), 102
onboarding, 88-89

account-per-tenant full stack silo deploy‐
ment, 62

admin user, 92
automating, 259-260

Argo Workflows and, 262-263
Flux and, 262-263
Helm and, 260-262

control plane, 29-30
custom claims, populating, 105
distributed services, 91
failures, 98-99
full stack deployment models, 95
GenAI and, 421-422
metrics, 311
patterns, 90
pooled resources, provisioning, 96
remote resources and, 398-399
resource tracking, 97-98
serverless computing, 291

Tenant Provisioning service, 294
states, 93
tenant domains and, 141-143
tenant identifiers, 91
Tenant Management service, 116
testing, 99
tier-based, 94-97
triggering from admin console, 86
VPC-per-tenant model, 65

Onboarding service, 91
Onboarding Tenant action, 123

454 | Index

one-off customization, 441-442
one-size-fits-all model, 438-439
OPA (Open Policy Agent), 225
Open Authorization (OAuth), 102
Open Policy Agent (OPA), 225
OpenID Connect (OIDC), 102
OpenSearch

data partitioning and, 210
mixed mode data partitioning, 214
pooled data partitioning, 211-212
siloed data partitioning, 212-214

indexes, 415
operational complexity of SaaS environment,

288
operational efficiency, 17
operations

agility metrics, 313
availability, 313
cycle time, 314
defect escape rate, 314
failed deployment, 314
mean time to detection/recovery, 314
release frequency, 313

baseline metrics, 322
business health metrics, 321-322
composite metrics, 322
consumption metrics, 315

microservices level, 318
resource level, 316

cost-per-tenant metrics, 318-321
GenAI and, 410
metrics, 310

onboarding metrics, 311
tenant activity, 311
tenant app analytics, 312
tenant lifecycle metrics/events, 312

tiering and, 382-383
operations console, 324-328

dashboards, 329
logs, 329
proactive strategies, 329
technical metrics, experience and, 328

operations mindset, 308-310, 443
proactive constructs, 445
strategy validation, 445-446
system health, 443-445
teams, 447

ownership
distributed, 389

SaaS Anywhere and, 387-389

P
parameter efficient fine-tuning (PEFT), 417
partitioning, 36
PEFT (parameter efficient fine-tuning), 417
PLG (product-led growth), 372
pod deployment model, 77-80
pool deployment models, 51-53

full stack, 67
availability, 70
blast radius, 70
control plane, 67
cost, 71
isolation, 70
sample architecture, 72-73
scale, 69
tenant context, 68

Lambda and, 283-284
pooled data partitioning, 190

defaulting to, 195-196
NoSQL data partitioning, 203
object storage service and, 206-207
OpenSearch and, 211-212
operations and, 194
relational data partitioning, 200

pooled deployment models, 250-251
and siloed deployment, 254

pooled isolation, dynamic injection and,
296-298

pooled multi-tenant environments, services in,
159-160

pooled resources, 84
provisioning, 96

pooled storage, tiering and, 377
pricing model, GenAI and, 424-427
proactive constructs, 445
product-led growth (PLG), 372
products versus services, 19-20
provisioning, 42

pooled resources, 96
remote resources and, 398-399
serverless computing, 292

Provisioning service, 94, 95

R
RAG (Retrieval-Augmented Generation), 404,

406
combined with fine-tuning, 420

Index | 455

tenant-level refinement and, 412-416
Ratings service, 96
RBAC (role-based access control), 368

tenant isolation and, 225-226
relational data partitioning, 199

pooled models, 200
siloed models, 201-202

release frequency, 313
releases, targeted, 332-334
remote application plane, SaaS Anywhere,

396-397
remote application services, SaaS Anywhere,

394-395
remote data, SaaS Anywhere, 393-394
remote environments, 390-391
remote resources, 387

access, 399
availability and, 400
control plane and, 392
on premises, 390
onboarding and, 398-399
ownership and, 387-389
provisioning and, 398-399
scale, 400
unavailable, 392
updates deployment, 400
versus regional deployments, 391

resource-level isolation, 224, 237-239
resources

onboarding, tracking onboarded, 97-98
pooled, 84

role-based access control (see RBAC)
route-based isolation, 301-302
routing

API Gateway-per-tenant model, 153
authenticated tenants, 149-150
containers, 153-155
EKS (Elastic Kubernetes Service) and,

256-258
full stack silo deployment models, 58
ingress controllers, 256
load balancers, inbound, 256
serverless, 151-153
serverless computing, API Gateway, 289
serverless routing model, 288
service meshes, 256

runtime isolation, 228-235
interception and, 232-233
scaling and, 234-235

S
S3 (Amazon Simple Storage Service), 206
SaaS (software-as-a-service)

all-in mindset, 435-436
application plane (see application plane)
as business model, 16-19
boundaries, 13-14
control plane (see control plane)
defining, 1, 20
EKS (Elastic Kubernetes Service) and,

246-248
mindset, 1
multi-tenancy and, 9
operations, 308-310
serverless computing alignment, 278-281
team structure, 15

SaaS Anywhere, 385
architecture, 391

cloud computing, 397
control plane, 392
integration and, 397
remote application plane, 396-397
remote application services, 394-395
remote data, 393-394
remote tenant environments, 392

availability and, 400
conceptual view, 386
onboarding and, 398-399
ownership and, 387-389
provisioning and, 398-399
regional deployment, 391
remote environments, 390-391
remote resource access, 399
scale, 400
updates, deployment, 400

SAM (Serverless Application Model), 291
scaling

account-per-tenant full stack silo deploy‐
ment, 63

authentication and, 155
EKS (Elastic Kubernetes Service) and, 246
full stack pool deployment models, 69
full stack silo deployment models, 57
remote resources and, 400
runtime isolation and, 234-235
SaaS Anywhere and, 400
VPC-per-tenant model, 66

Security Token Service (STS), 180
self-service onboarding, 89-90

456 | Index

Serverless Application Model (SAM), 291
serverless compute services, EKS and, 274
serverless computing, 277

concurrency and, 302-304
deployment models, 282

control plane and, 286-288
mixed mode, 284-285
pooled, 283-284
siloed, 283-284

developer updates, 295
isolation and, 296

deployment-time isolation, 298-299
pooled isolation, 296-298, 299-300
route-based, 301-302

noisy neighbor and, 302-304
onboarding, 291
operational complexity, 288
provisioning, 292
routing, 288

API Gateway, 289
SaaS alignment, 278-281
tiering, 375

serverless routing, 151-153
serverless storage, 198
service experience, 14
service level agreements (see SLAs)
service metrics, 169-170
service-by-service migration, 351-356
service-centric mindset, 436-437
services

best practices, 161
Billing service, 92, 98
Cart service, 96
classic applications, 158
creating, 19-20
deployment, tenant-aware, 264-265
design

analyzing, 169-170
compute technologies, 167-168
metrics, 169-170
storage, 168

multi-tenant (see multi-tenant services)
noisy neighbor, 162-164
onboarding, 88-89

internal, 89-90
self-service, 89-90

Onboarding service, 91
pooled multi-tenant environments, 159-160
Provisioning service, 94, 95

Ratings service, 96
restaurant analogy, 19
siloed, 164-167
tenant context and, 106-107
Tenant Management, 91

(see also Tenant Management service)
Tenant Provisioning, 263

sharding data, 215
shared infrastructure model, 6, 26

apartment complex analogy, 26
sidecars, 185
silo deployment models, 51-53

full stack, 53
account-per-tenant model, 60-63
availability, 59
blast radius, 59
control plane complexity, 56-57
cost attribution, 59
costs, 58
routing and, 58
SaaS and, 54
scaling impacts, 57
subnet-per-tenant model, 65
use cases, 55
VPC-per-tenant model, 63-66

Lambda and, 283-284
silo isolation, serverless computing and,

299-300
silo lift-and-shift migration, 346-348
siloed data partitioning, 190

management and, 194
NoSQL data partitioning, 204
object storage service and, 207
OpenSearch and, 212-214
operations and, 194
relational data partitioning, 201-202

siloed deployment, 251-254
and pooled deployment, 254

siloed services, 164-167
siloed storage, tiering and, 377
Simple Storage Service (S3), 206
single-tenant terminology, 13-16
SLAs (service level agreements)

storage and, 192
tiering and, 40

snapshots, runtime tenancy, 26
software delivery

traditional model, 2-5
unified model, 5-9

Index | 457

software-as-a-service (see SaaS)
storage

blast radius and, 193
object, data partitioning and, 206-210
selecting, 195
serverless, 198
services design and, 168
SLAs (service-level agreements), 192
workloads and, 192

storage compute sizing, 196-198
serverless storage, 198
throttling, 198
throughput, 198

storage tiering, 377-379
strategy building, 432-433
strategy validation, 445-446
STS (Security Token Service), 180
subdomain-per-tenant model, 140
subnet-per-tenant full stack silo model, 65
system admin baseline environment, 86
system administrators, 41
system health, operations mindset and, 443-445

T
targeted releases, 332-334
teams

operations mindset and, 447
structure, 15

tech-first trap, guiding principles and, 434-435
technical considerations

developer experience, 442-443
measuring architecture, 442
multi-tenant foundation building, 440-441
multi-tenant principles protection, 439
one-off customization, 441-442
one-size-fits-all model, 438-439

tenancy, 23
adding to architecture, 24-27
apartment complex analogy, 26
runtime snapshot, 26

tenant activity metrics, 311
onboarding metrics, 311
tenant app analytics, 312
tenant lifecycle metrics/events, 312

tenant administrators, 41
tenant app analytics, 312
tenant context, 34-35

aspects and, 184
authentication flow and, 144

centralized services and, 106-107
custom claims and, 105
data access and, 176-178
full stack pool deployment models, 68
logging and, 173-174
metrics and, 174-176
multi-tenant services and, 172-173
tiering and, 40

tenant domain as entry point, 138-140, 143-145
onboarding and, 141-143
subdomain-per-tenant model, 140
tenant mapping and, 140
vanity domain-per-tenant model, 141

tenant identifiers
creating, 91
GUID as, 91
onboarding, 91

tenant identity (see identity)
tenant isolation (see isolation)
tenant lifecycle metrics/events, 312
tenant management, 33
Tenant Management service, 91, 115

billing, 119
building, 118-119
core tenant attributes, 117
Identity settings, 117
infrastructure, configuration storage, 120
NoSQL, 119
onboarding and, 116
routing policies, 117
tenant configuration, 121-124
tenant identifiers, 119
tenant lifecycle components, 119
tenant lifecycle management, 124

activation/deactivation, 125-127
decommission, 127-130
tiers, switching between, 130-134

users, 117
tenant personas, 437-438
tenant provisioning, 42
Tenant Provisioning service, 263

onboarding pipeline and, 294
tenant refinements, GenAI

fine-tuning and, 416-417
global fine-tuning, 418
RAG and, 420
tenant-level fine-tuning, 418

RAG and, 412-416
tenant resources, provisioning and, 91

458 | Index

tenant routing, 37-39
tenant users, 41
tenant-aware logging, 174
tenants, 6

authentication, 111
core tenant attributes, 117
dedicated compute resources, 11
grouping, 109-110
isolation, 111
lifecycle components, 119
lifecycle management, 124

activation/deactivation, 125-127
decommissioning, 127-130
tiers, switching, 130-134

managing tenants versus users, 117
mapping, 109-110
user ID sharing, 111
versus customers, 6

third-party billing, 98
throttling

storage computing sizing and, 198
tiering and, 381

throughput, storage computing sizing and, 198
tiering, 40, 363

API tiering, 373
API Gateway, 373-374
API Management, 373
Apigee, 373

billing and, 371
composite tiering, 370-371
compute tiering, 375, 376

scaling and, 377
serverless computing and, 375

consumption-focused, 365-367
deployment models and, 380-381
deployment-focused, 368-369
free tiers, 370
GenAI and, 424, 427-428
implementation, 372-382

isolation and, 368
onboarding and, 94-97
operations and, 382-383
patterns, 364-372
PLG (product-led growth) and, 372
points of inflection and, 364
serverless computing and, 292
storage tiering, 377-379
switching between tiers, 130-134
tenant experience and, 381
throttling and, 381
tier management, 382
value-focused, 367-368

TTL (time-to-live), 234

U
update deployment, remote resources and, 400
user identity, 100

sharing, 111
User Pools (Cognito), 109
users

admin user, 92
managing tenants versus users, 117
system administrators, 41
tenant administrators, 41
tenant users, 41

V
value-focused tiering, 367-368
vanity domain-per-tenant model, 141
VPC (Virtual Private Cloud), 63, 236
VPC-per-tenant full stack silo model, 63-66

onboarding and, 65
scaling, 66

W
workloads, storage and, 192

Index | 459

About the Author
Tod Golding is a cloud applications architect who has spent the last 10 years
immersed in cloud-optimized application design and architecture. As a global SaaS
lead within AWS, Tod has been a SaaS technology thought leader, publishing and pro‐
viding SaaS best practices guidance through a broad set of channels (speaking, writ‐
ing, and working directly with a wide range of SaaS companies). Tod has over 20
years of experience as a technical leader, architect, and developer, including time at
both startups and tech giants (AWS, eBay, Microsoft). In addition to speaking at tech‐
nical conferences, Tod also authored Professional .NET Generics and was a columnist
for Better Software magazine.

Colophon
The animal on the cover of Building Multi-Tenant SaaS Architectures is the bat-eared
fox (Otocyon megalotis). This small, friend-shaped creature is actually an ancient,
basal species of canid—one of the earliest dogs, having first appeared sometime in the
Middle Pleistocene age (between 126,000 and 770,000 years ago). It is the sole
remaining species of the genus Otocyon (from the Greek otus, for ear, and cyon, for
dog).

Bat-eared foxes are found in two distinct populations (subspecies canescens and meg‐
alotis) separated geographically by about 600 miles in eastern and southern Africa.
Here they live in pairs or small family groups in the open grasslands, shrublands, sav‐
anna, and woodland edges, raising their young in dens, which are also used as shelter
from the extreme temperatures of their arid and semi-arid environments.

Big ears are a fairly common adaptation among denizens of arid regions and often
play a role in thermoregulation—their surface area allowing for more heat loss to the
environment. Bat-eared foxes also leverage their large listeners to detect the under‐
ground movement of the termites, scorpions, and other bugs that make up the major‐
ity of their diet. Interestingly, bat-eared foxes are considered the only truly
insectivorous canid, and as an adaptation to their diet, they have smaller teeth than
those of other dogs.

Due to their stable populations, bat-eared foxes have been classified by the IUCN as
of least concern from a conservation standpoint. Many of the animals on O’Reilly
covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from The Natural History of Animals. The series design is by Edie Freedman, Ellie
Volckhausen, and Karen Montgomery. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://oreil.ly/qDLG4

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://oreilly.com

	Copyright
	Table of Contents
	Preface
	An Evolving Landscape
	Who’s This Book For?
	A Foundation—Not a Bible
	What’s Not in This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. The SaaS Mindset
	Where We Started
	The Move to a Unified Model
	Redefining Multi-Tenancy
	Where Are the Boundaries of SaaS?
	The Managed Service Provider Model

	At Its Core, SaaS Is a Business Model
	Building a Service—Not a Product
	Defining SaaS
	Conclusion

	Chapter 2. Multi-Tenant Architecture Fundamentals
	Adding Tenancy to Your Architecture
	The Two Halves of Every SaaS Architecture
	Inside the Control Plane
	Onboarding
	Identity
	Metrics
	Billing
	Tenant Management

	Inside the Application Plane
	Tenant Context
	Tenant Isolation
	Data Partitioning
	Tenant Routing
	Multi-Tenant Application Deployment

	The Gray Area
	Tiering
	Tenant, Tenant Admin, and System Admin Users
	Tenant Provisioning

	Integrating the Control and Application Planes
	Picking Technologies for Your Planes
	Avoiding the Absolutes
	Conclusion

	Chapter 3. Multi-Tenant Deployment Models
	What’s a Deployment Model?
	Picking a Deployment Model
	Introducing the Silo and Pool Models
	Full Stack Silo Deployment
	Where Full Stack Silo Fits
	Full Stack Silo Considerations
	Full Stack Silo in Action
	Remaining Aligned on a Full Stack Silo Mindset

	The Full Stack Pool Model
	Full Stack Pool Considerations
	A Sample Architecture

	A Hybrid Full Stack Deployment Model
	The Mixed Mode Deployment Model
	The Pod Deployment Model
	Conclusion

	Chapter 4. Onboarding and Identity
	Creating a Baseline Environment
	Creating Your Baseline Environment
	Creating and Managing System Admin Identities
	Triggering Onboarding from the Admin Console
	Control Plane Provisioning Options

	The Onboarding Experience
	Onboarding Is Part of Your Service
	Self-Service Versus Internal Onboarding
	The Fundamental Parts of Onboarding
	Tracking and Surfacing Onboarding States
	Tier-Based Onboarding
	Tracking Onboarded Resources
	Handling Onboarding Failures
	Testing Your Onboarding Experience

	Creating a SaaS Identity
	Attaching a Tenant Identity
	Populating Custom Claims During Onboarding
	Using Custom Claims Judiciously
	No Centralized Services for Resolving Tenant Context
	Federated SaaS Identity
	Tenant Grouping/Mapping Constructs
	Sharing User IDs Across Tenants
	Tenant Authentication Is Not Tenant Isolation

	Conclusion

	Chapter 5. Tenant Management
	Tenant Management Fundamentals
	Building a Tenant Management Service
	Generating a Tenant Identifier
	Storing Infrastructure Configuration

	Managing Tenant Configuration
	Managing Tenant Lifecycle
	Activating and Deactivating a Tenant
	Decommissioning a Tenant
	Changing Tenant Tiers

	Conclusion

	Chapter 6. Tenant Authentication and Routing
	Entering the Front Door
	Access via a Tenant Domain
	Access via a Single Domain
	The Man in the Middle Challenge

	The Multi-Tenant Authentication Flow
	A Sample Authentication Flow
	Federated Authentication
	No One-Size-Fits-All Authentication

	Routing Authenticated Tenants
	Routing with Different Technology Stacks
	Serverless Tenant Routing
	Container Tenant Routing

	Conclusion

	Chapter 7. Building Multi-Tenant Services
	Designing Multi-Tenant Services
	Services in Classic Software Environments
	Services in Pooled Multi-Tenant Environments
	Extending Existing Best Practices
	Addressing Noisy Neighbor
	Identifying Siloed Services
	The Influence of Compute Technologies
	The Influence of Storage Considerations
	Using Metrics to Analyze Your Design
	One Theme, Many Lenses

	Inside Multi-Tenant Services
	Extracting Tenant Context
	Logging and Metrics with Tenant Context
	Accessing Data with Tenant Context
	Supporting Tenant Isolation

	Hiding Away and Centralizing Multi-Tenant Details
	Interception Tools and Strategies
	Aspects
	Sidecars
	Middleware
	AWS Lambda Layers/Extensions

	Conclusion

	Chapter 8. Data Partitioning
	Data Partitioning Fundamentals
	Workloads, SLAs, and Experience
	Blast Radius
	The Influence of Isolation
	Management and Operations
	The Right Tool for the Job
	Defaulting to a Pooled Model
	Supporting Multiple Environments

	The Rightsizing Challenge
	Throughput and Throttling
	Serverless Storage

	Relational Database Partitioning
	Pooled Relational Data Partitioning
	Siloed Relational Data Partitioning

	NoSQL Data Partitioning
	Pooled NoSQL Data Partitioning
	Siloed NoSQL Data Partitioning
	NoSQL Tuning Options

	Object Data Partitioning
	Pooled Object Data Partitioning
	Siloed Object Data Partitioning
	Database Managed Access

	OpenSearch Data Partitioning
	Pooled OpenSearch Data Partitioning
	Siloed OpenSearch Data Partitioning
	A Mixed Mode Partitioning Model

	Sharding Tenant Data
	Data Lifecycle Considerations
	Multi-Tenant Data Security
	Conclusion

	Chapter 9. Tenant Isolation
	Core Concepts
	Categorizing Isolation Models
	Application-Enforced Isolation
	RBAC, Authorization, and Isolation
	Application Isolation Versus Infrastructure Isolation

	The Layers of the Isolation Model
	Deployment-Time Versus Runtime Isolation
	Isolation Through Interception
	Scaling Considerations

	Real-World Examples
	Full Stack Isolation
	Resource-Level Isolation
	Item-Level Isolation

	Managing Isolation Policies
	Conclusion

	Chapter 10. EKS (Kubernetes) SaaS: Architecture Patterns and Strategies
	The EKS–SaaS Fit
	Deployment Patterns
	Pooled Deployment
	Siloed Deployments
	Mixing Pooled and Siloed Deployments
	The Control Plane

	Routing Considerations
	Onboarding and Deployment Automation
	Configuring Onboarding with Helm
	Automating with Argo Workflows and Flux
	Tenant-Aware Service Deployments

	Tenant Isolation
	Node Type Selection
	Mixing Serverless Compute with EKS
	Conclusion

	Chapter 11. Serverless SaaS: Architecture Patterns and Strategies
	The SaaS and Serverless Fit
	Deployment Models
	Pooled and Siloed Deployments
	Mixed Mode Deployments
	More Deployment Considerations
	Control Plane Deployment
	Operations Implications

	Routing Strategies
	Onboarding and Deployment Automation
	Tenant Isolation
	Pooled Isolation with Dynamic Injection
	Deployment-Time Isolation
	Simultaneously Supporting Silo and Pool Isolation
	Route-Based Isolation

	Concurrency and Noisy Neighbor
	Beyond Serverless Compute
	Conclusion

	Chapter 12. Tenant-Aware Operations
	The SaaS Operations Mindset
	Multi-Tenant Operational Metrics
	Tenant Activity Metrics
	Agility Metrics
	Consumption Metrics
	Cost-per-Tenant Metrics
	Business Health Metrics
	Composite Metrics
	Baseline Metrics
	Metrics Instrumentation and Aggregation

	Building a Tenant-Aware Operations Console
	Combining Experience and Technical Metrics
	Tenant-Aware Logs
	Creating Proactive Strategies
	Persona-Specific Dashboards

	Multi-Tenant Deployment Automation
	Scoping Deployments
	Targeted Releases

	Conclusion

	Chapter 13. SaaS Migration Strategies
	The Migration Balancing Act
	Timing Considerations
	What Kind of Fish Are You?
	Thinking Beyond Technology Transformation

	Migration Patterns
	The Foundation
	Silo Lift-and-Shift
	Layered Migration
	Service-by-Service Migration
	Comparing Patterns
	A Phased Approach

	Where You Start Matters
	Conclusion

	Chapter 14. Tiering Strategies
	Tiering Patterns
	Consumption-Focused Tiering
	Value-Focused Tiering
	Deployment-Focused Tiering
	Free Tiers
	Composite Tiering Strategies
	Billing and Tiering
	Tiering and Product-Led Growth

	Implementing Tiering
	API Tiering
	Compute Tiering
	Storage Tiering
	Deployment Models and Tiering
	Throttling and Tenant Experience
	Tier Management

	Operations and Tiering
	Conclusion

	Chapter 15. SaaS Anywhere
	The Fundamental Concepts
	Ownership
	Limiting Drift
	Multiple Flavors of Remote Environments
	Regional Deployments Versus Remote Resources

	Architecture Patterns
	Remote Data
	Remote Application Services
	Remote Application Plane
	Staying in the Same Cloud
	Integration Strategies

	Operations Impacts and Considerations
	Provisioning and Onboarding
	Access to Remote Resources
	Scale and Availability
	Operational Insights
	Deploying Updates

	Conclusion

	Chapter 16. GenAI and Multi-Tenancy
	Core Concepts
	The Influence of Multi-Tenancy
	Creating Custom Tenant AI Experiences
	A Broad Range of Possibilities
	SaaS and AI/ML

	Introducing Tenant Refinements
	Supporting Tenant-Level Refinement with RAG
	Supporting Tenant Refinement with Fine-Tuning
	Combining RAG and Fine-Tuning

	Applying General Multi-Tenant Principles
	Onboarding
	Noisy Neighbor
	Tenant Isolation

	GenAI Pricing and Tiering Considerations
	Developing a Pricing Model
	Creating Tiered Tenant Experiences

	Conclusion

	Chapter 17. Guiding Principles
	Vision, Strategy, and Structure
	Build a Business Model and Strategy
	A Clear Focus on Efficiency
	Avoiding the Tech-First Trap
	Thinking Beyond Cost Savings
	Be All-In with SaaS
	Adopt a Service-Centric Mindset
	Think Beyond Existing Tenant Personas

	Core Technical Considerations
	No One-Size-Fits-All Model
	Protect the Multi-Tenant Principles
	Build Your Multi-Tenant Foundation on Day One
	Avoid One-Off Customization
	Measure Your Multi-Tenant Architecture
	Streamline the Developer Experience

	Operations Mindset
	Thinking Beyond System Health
	Introducing Proactive Constructs
	Validating Your Multi-Tenant Strategies
	You’re Part of the Team

	Conclusion

	Index
	About the Author
	Colophon

