

O’Reilly Books

Other related books from O’Reilly

Fundamentals of Software Architecture

Software Architecture: The Hard Parts

Other books in O’Reilly’s Head First series

Head First Android Development

Head First C#

Head First Design Patterns

Head First Git

Head First Go

Head First iPhone and iPad Development

Head First Java

Head First JavaScript Programming

Head First Learn to Code

Head First Object-Oriented Analysis and Design

Head First Programming

Head First Python

Head First Software Development

Head First Web Design

Head First Software Architecture

Raju Gandhi, Mark Richards, and Neal Ford

 Head First Software Architecture

by Raju Gandhi, Mark Richards & Neal Ford

Copyright © 2024 Defmacro Software L.L.C., Mark Richards and Neal Ford. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

	Series Creators:

	Kathy Sierra, Bert Bates

	Series Advisors:

	Eric Freeman, Elisabeth Robson

	Acquisitions Editor:

	Melissa Duffield

	Development Editor:

	Sarah Grey

	Cover Designer:

	Susan Thompson, based on a series design by Ellie Volckhausen

	Cover/Interior Illustrations:

	José Marzan Jr.

	Production Editor:

	Christopher Faucher

	Proofreader:

	Rachel Head

	Indexer:

	nSight, Inc.

	Page Viewers:

	Buddy and Skye (“the dogs”), Princess Zara, baby Delphine, Sparks, Fauci, Linda Ruth, and Amadeus (“the cats”)

Printing History:

March 2024: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First Software Architecture, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No dogs, cats, or chefs were harmed in the making of this book.

ISBN: 978-1-098-13435-8

[LSI]

[2024-03-04]

DEDICATION

From Mark and Neal

To all the conference attendees who patiently sat through many drafts of this material

(2004-2024)

From Raju

To my Dad

[image: Image]

Authors of Head First Software Architecture

[image: Image]

Raju Gandhi

Raju is an architect, consultant, author, and teacher and a regularly invited speaker at conferences around the world. He believes in keeping things simple, and his approach is always to understand and explain the “why,” as opposed to the “how.” He lives in Columbus, Ohio, with his wonderful wife, Michelle; their sons, Mason and Micah; their daughter, Delphine; and three furry family members, Buddy, Skye, and Princess Zara. You can find his contact information at RajuGandhi.com.

Mark Richards

Mark is an experienced hands-on software architect and the founder of DeveloperToArchitect.com, a free website devoted to helping developers in their journeys to becoming software architects. He has been in the software industry since 1983 and has significant experience and expertise in application, integration, and enterprise architecture. Mark has authored numerous technical books and videos, including Fundamentals of Software Architecture and Software Architecture: The Hard Parts (O’Reilly), co-authored with Neal Ford. Mark also does training and has spoken at hundreds of conferences and user groups around the world.

Neal Ford

Neal Ford is director, software architect, and meme wrangler at ThoughtWorks, a global IT consultancy with a focus on end-to-end software development and delivery. He is also the designer and developer of many applications, articles, and video presentations and the author and/or editor of an increasingly large number of books, spanning a variety of subjects and technologies. His professional focus is designing and building large-scale enterprise applications. He is also an internationally acclaimed speaker who has spoken at more than 300 developer conferences worldwide and has delivered more than 2,000 presentations.

Table of Contents (the real thing)

	How to use this Book: Intro

Because software architecture is hard, your brain will trick you into thinking you can’t learn it. Your brain’s thinking, ”Better to focus on more important things, like what to eat for lunch and whether pigs have wings.” The good news is that you CAN trick your brain into thinking software architecture is an important skill to learn, and in this chapter we’re going to show you just how to do that.

	“Who is this book for?”

	“We know what you’re thinking”

	“We know what your brain is thinking”

	“Metacognition: Thinking about thinking”

	“Here’s what WE did”

	“Here’s what YOU can do to bend your brain into submission”

	“Read me”

	“Do it yourself chapters”

	“The technical review team”

	“Joint acknowledgments”

	“Individual acknowledgments”

	Chapter 1

Software architecture is fundamental to the success of your system. This chapter demystifies software architecture. You’ll gain an understanding of architectural dimensions and the differences between architecture and design. Why is this important? Because understanding and applying architectural practices helps you build more effective and correct software systems—systems that not only function better, but also meet the needs and concerns of the business and continue to operate as your business and technical environments undergo constant change. So, without further delay, let’s get started.

	“Building your understanding of software architecture”

	“Building plans and software architecture”

	“The dimensions of software architecture”

	“Puzzling out the dimensions”

	“The first dimension: Architectural characteristics”

	“The second dimension: Architectural decisions”

	“The third dimension: Logical components”

	“The fourth dimension: Architectural styles”

	“A design perspective”

	“An architectural perspective”

	“The spectrum between architecture and design”

	“Where along the spectrum does your decision fall?”

	“Strategic versus tactical”

	“High versus low levels of effort”

	“Significant versus less-significant trade-offs”

	“Putting it all together”

	“You made it!”

	Chapter 2

What does your architecture need to support? Architectural characteristics (the capabilities of an architecture) are the fundamental building blocks of any system. Without them, you cannot make architectural decisions, select an architectural style, or in many cases even create a logical architecture. In this chapter you’ll learn how to define some of the more common characteristics (like scalability, reliability, and testability), how they influence a software architecture, how they help you make architectural decisions, and how to identify which ones are important for your particular situation. Ready to add some capabilities to your software architecture?

	“Causing Lafter”

	“Cubicle conversation”

	“What are architectural characteristics?”

	“Defining architectural characteristics”

	“Characteristics are nondomain design considerations”

	“Characteristics influence architectural structure”

	“Limit characteristics to prevent overengineering”

	“Consider explicit and implicit capabilities”

	“The International Zoo of “-ilities””

	“Process architectural characteristics”

	“Structural architectural characteristics”

	“Operational architectural characteristics”

	“Cross-cutting architectural characteristics”

	“Sourcing architectural characteristics from the problem domain”

	“Sourcing architectural characteristics from environmental awareness”

	“Sourcing architectural characteristics from holistic domain knowledge”

	“Composite architectural characteristics”

	“Priorities are contextual”

	“Lost in translation”

	“Architectural characteristics and logical components”

	“Balancing domain considerations and architectural characteristics”

	“Limiting architectural characteristics”

	Chapter 3

What happens when there are no “best practices”? The nice thing about best practices is that they’re relatively risk-free ways to achieve certain goals. They’re called “best” (not “better” or “good”) for a reason—you know they work, so why not just use them? But one thing you’ll quickly learn about software architecture is that it has no best practices. You’ll have to analyze every situation carefully to make a decision, and you’ll need to communicate not just the “what” of the decision, but the “why.”

So, how do you navigate this new frontier? Fortunately, you have the laws of software architecture to guide you. This chapter shows you how to analyze trade-offs as you make decisions. We’ll also show you how to create architectural decision records to capture the “hows” and “whys” of decisions. By the end of this chapter, you’ll have the tools to navigate the uncertain territory that is software architecture.

	“It starts with a sneaker app”

	“What do we know so far?”

	“Communicating with downstream services”

	“Analyzing trade-offs”

	“Trade-off analysis: Queue edition”

	“Trade-off analysis: Topic edition”

	“The first law of software architecture”

	“It always comes back to trade-offs”

	“Making an architectural decision”

	“What else makes a decision architectural?”

	“The second law of software architecture”

	“Architectural decision records (ADRs)”

	“Writing ADRs: Getting the title right”

	“Writing ADRs: What’s your status?”

	“Writing ADRs: Establishing the context”

	“Writing ADRs: Communicating the decision”

	“Writing ADRs: Considering the consequences”

	“Writing ADRs: Ensuring governance”

	“Writing ADRs: Closing notes”

	“The benefits of ADRs”

	“Two Many Sneakers is a success”

	Chapter 4

Ready to start creating an architecture? It’s not as easy as it sounds—and if you don’t do it correctly, your software system could come crumbling to the ground, just like a poorly designed skyscraper or bridge.

In this chapter we’ll show you several approaches for identifying and creating logical components, the functional building blocks of a system that describe how its pieces all fit together. Using the techniques described in this chapter will help you to create a solid architecture—a foundation upon which you can build a successful software system.

Put on your hard hat and gloves, get your tools ready, and let’s get started.

	“Logical components revisited”

	???

	“Adventurous Auctions goes online”

	“Logical versus physical architecture”

	“Creating a logical architecture”

	“Step 1: Identifying initial core components”

	“Workflow approach”

	“Actor/action approach”

	“The entity trap”

	“Step 2: Assign requirements”

	“Step 3: Analyze roles and responsibilities”

	“Sticking to cohesion”

	“Step 4: Analyze characteristics”

	“The Bid Capture component”

	“Component coupling”

	“Afferent coupling”

	“Efferent coupling”

	“Measuring coupling”

	“A tightly coupled system”

	“Applying the Law of Demeter”

	“A balancing act”

	“Some final words about components”

	???

	Chapter 5

There are lots of different architectural styles out there. Each one exists for a reason and has its own philosophy about how and when it should be used. Understanding a style’s philosophy will help you judge whether it’s the right one for your domain. This chapter gives you a framework for the different kinds of architectural styles (which we’ll be diving into for the remainder of this book), to help you make sense of these and all the other architectural styles you’ll encounter as a software architect.

Let’s fill in that final piece of the puzzle, shall we?

	“There are lots of architectural styles”

	“The world of architectural styles”

	“Partitioning: Technical versus domain”

	“Deployment model: Monolithic versus distributed”

	“Monolithic deployment models: The pros”

	“Monolithic: The cons”

	“Distributed deployment models: The pros”

	“Distributed deployment models: The cons”

	“And that’s a wrap!”

	Chapter 6

What if your problem is simple and time is of the essence? Should you even bother with architecture? It depends on how long you want to keep what you build. If it’s disposable, throw caution to the wind. If not, then choose the simplest architecture that still provides some measurable organization and benefit, without imposing many constraints on speed of delivery. The layered architecture has become that architecture because it’s easy to understand and implement, leveraging design patterns developers already know. Let’s peel back the layers of this architecture.

	“Naan & Pop: Gathering requirements”

	“Design patterns redux”

	“Layering MVC”

	“Layering it on”

	“Translating layers into code”

	“Domains, components, and layers”

	“Drivers for layered architecture”

	“Layers, meet the real world: Physical architectures”

	“Physical architecture trade-offs”

	“One final caveat about domain changes”

	“Layered architecture superpowers”

	“Layered architecture kryptonite”

	“Layered architecture star ratings”

	“Wrapping it up”

	Chapter 7

There’s more than one way to build a monolith. So far, you’ve encountered the layered architecture, which aligns things technically. You can go a long way with a layered monolith, but when changes begin to involve lots of communication and coordination between different teams, you might need a little more horsepower under the hood—and perhaps even a different architectural style.

This chapter looks at the modular monolith architectural style, which divides applications up by business concerns as opposed to technical concerns. You’ll learn what this means, what to look out for, and all the trade-offs associated with this style. Let’s take the modular monolith for a spin, shall we?

	“Modular monolith?”

	“Domain pains changes”

	“Why modular monoliths?”

	“Show me the code!”

	“Keeping modules modular”

	“Taking modularity all the way to the database”

	“Beware of joins”

	“Modular monolith superpowers”

	“Modular monolith kryptonite”

	“Modular monolith star ratings”

	“Naan & Pop is delivering pizza!”

	Chapter 8

You can craft custom experiences, one capability at a time. Some architecture styles are particularly well suited for some capabilities, and the microkernel architecture is the world champion at customization. But it’s also useful for a bewildering range of applications. Once you understand this architectural style, you’ll start seeing it everywhere!

Let’s dig into an architecture that lets your users have it their way.

	“The benefits of Going Green”

	“The two parts of microkernel architectures”

	“The spectrum of “microkern-ality””

	“Device assessment service core”

	“Encapsulated versus distributed plugins”

	“Plugin communication”

	“Plugin contracts”

	“Going Green goes green”

	“Microkernel superpowers”

	“Microkernel kryptonite”

	“Microkernel star ratings”

	“Wrapping it up”

	Chapter 9

Ready to extend your journey into software architecture? In this chapter, you’re the software architect. You’ll be determining architectural characteristics, building a logical architecture, making architectural decisions, and deciding whether to use a layered, modular, or microkernel architecture. The exercises in this chapter will give you an end-to-end view of what a software architect does and show you how much you’ve learned. Get ready to create an architecture for a startup company building a travel integration convenience site. Bon voyage—we hope you have a good trip building your architecture.

	“Making travel easier”

	“TripEZ’s user workflow”

	“Planning the architecture”

	“The architects’ roadmap”

	“Step 1: Identify architectural characteristics”

	“Step 2: Identify logical components”

	“Step 3: Choose an architectural style”

	“Step 4: Document your decision”

	“Step 5: Diagram your architecture”

	“There are no right (or wrong) answers”

	Chapter 10

How do you make an architecture easier to change? Business is changing faster than ever, and software architectures need to keep up. In this chapter you’ll learn how to create a flexible architecture that can change as your business changes, scale as your business grows, and remain operational even when system failures occur. Intrigued? We hope so, because in this chapter we’re going to show you microservices—an architectural style that solves all of these problems and more. Let’s get started on our journey through microservices, bit by bit.

	“Are you feeling okay?”

	“What’s a microservice?”

	“It’s my data, not yours”

	“How micro is “micro”?”

	“Granularity disintegrators”

	“Why should you make microservices smaller?”

	“Granularity integrators”

	“Why should you make microservices bigger?”

	“It’s all about balance”

	“Sharing functionality”

	“Code reuse with a shared service”

	“Code reuse with a shared library”

	“Managing workflows”

	“Orchestration: Conducting microservices”

	“Choreography: Let’s dance”

	“Microservices architecture superpowers”

	“Microservices architecture kryptonite”

	“Microservices star ratings”

	“Wrapping it up”

	Chapter 11

What if your architecture could do lots of things at the same time? As businesses grow and become more successful, they need to be able to handle more and more users, without slowing down or crashing systems. In this chapter, you’ll learn how to design high-performance systems that can scale as a business grows. Get ready for event-driven architecture, a highly popular distributed architecture style. It’s very fast, highly scalable, and easy to extend—but it’s also quite complex. You’ll be learning about lots of new concepts in this chapter, including things like events, messages, and asynchronous communication, so you can create an architectural that can do many things at once. Fasten your seatbelt, and let’s go on an asynchronous adventure through event-driven architecture.

	“Too slow”

	“Speeding things up”

	“Der Nile flows faster than ever”

	“What is an event?”

	“Events versus messages”

	“Initiating and derived events”

	“Is anyone listening?”

	“Asynchronous communication”

	“Fire-and-forget”

	“Asynchronous for the win”

	“Synchronous for the win”

	“Database topologies”

	“Monolithic database”

	“Domain-partitioned databases”

	“Database-per-service”

	“EDA versus microservices”

	“Hybrids: Event-driven microservices”

	“Event-driven architecture superpowers”

	“Event-driven architecture kryptonite”

	“Event-driven architecture star ratings”

	“Putting it all together”

	“Wrapping up”

	Chapter 12

Ready to test your skills in creating a distributed architecture? In this chapter, you’re the software architect. You’ll be determining architectural characteristics, building a logical architecture, making architectural decisions, and deciding whether to use microservices or event-driven architecture. The exercises in this chapter will give you an end-to-end view of what a software architect does and show you how much you’ve learned. Get ready to create an architecture for a student standardized test–taking system called Make the Grade. Good luck—we hope you get an A on your architecture!

	“Welcome to Make the Grade”

	“Student testing workflow”

	“Planning the architecture”

	“The architects’ roadmap”

	“Step 1: Identify architectural characteristics”

	“Step 2: Identify logical components”

	“Step 3: Choose an architectural style”

	“Step 4: Document your decision”

	“Step 5: Diagram your architecture”

	“There are no right (or wrong) answers!”

	Appendix A

There’s a lot more to be said about software architecture. We promise you’re done with this book. But reading this book is just the first step in your journey to thinking architecturally, and we couldn’t in good conscience let you go without a little more preparation. So, we’ve gathered a few additional juicy bits into this appendix. Each of the topics that follow deserves as much attention as the other topics we’ve covered. However, our goal here is just to give you a high-level idea of what they’re all about. And yes, this really is the end of the book. Except for the index, of course—it’s a real page-turner!

	“#1 The coding architect”

	“#2 Expectations for architects”

	“#3 The soft skills of architecture”

	“#4 Diagramming techniques”

	“#5 Knowledge depth versus breadth”

	“#6 Practicing architecture with katas”

How to use this Book: Intro

[image: Image]

Note

In this section we answer the burning question: “So why DID they put that in a software architecture book?”

Who is this book for?

If you can answer “yes” to both of these:

	[image: Image] Do you want to learn what software architecture is all about?

	[image: Image] Do you prefer stimulating dinner-party conversation to dry, dull academic lectures?

This book is for you.

Who should probably back away from this book?

If you can answer “yes” to any of these:

	[image: Image] Are you completely new to the tech industry?

(While we firmly believe that software developers should understand the basics of software architecture, you might want to get a bit of experience developing software before diving into this book.)

	[image: Image] Are you a seasoned software architect looking for a reference book?

	[image: Image] Are you afraid to try something new? Would you rather sit in a corner licking 9-volt batteries than advance your career? Do you believe that a technical book can’t be serious if it uses zoo animals to explain architectural characteristics like scalability and fault tolerance?

This book is not for you.

[image: Image]

Note

[Note from marketing: This book is for anyone with a credit card.]

We know what you’re thinking

[image: Image]

“How can this be a serious book on software architecture?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what your brain is thinking

Your brain craves novelty. It’s always searching, scanning, waiting for something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you encounter? Everything it can to stop them from interfering with the brain’s real job—recording things that matter. It doesn’t bother saving the boring things; they never make it past the “this is obviously not important” filter.

How does your brain know what’s important? Suppose you’re out for a day hike and a tiger jumps in front of you. What happens inside your head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!

[image: Image]

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. You’re studying. Getting ready for an exam. Or trying to learn some tough technical topic your boss thinks will take a week, 10 days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make sure that this obviously unimportant content doesn’t clutter up scarce resources. Resources that are better spent storing the really big things. Like tigers. Like the danger of fire. Like how you should never have posted those “party” photos on your Facebook page. And there’s no simple way to tell your brain, “Hey brain, thank you very much, but no matter how dull this book is and how little I’m registering on the emotional Richter scale right now, I really do want you to keep this stuff around.”

We think of a “Head First” reader as a learner.

So what does it take to learn something? First you have to get it, then make sure you don’t forget it. It’s not about pushing facts into your head. Based on the latest research in cognitive science, neurobiology, and educational psychology, learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone and make learning much more effective (up to 89% improvement in recall and transfer studies). They also make things more understandable. Put the words within or near the graphics they relate to, rather than on the bottom or on another page, and learners will be up to twice as likely to be able to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person, conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. Unless you actively flex your neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges, exercises, and thought-provoking questions, and activities that involve both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but I can’t stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent on its emotional content. You remember what you care about. You remember when you feel something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like surprise, curiosity, fun, “what the...?” and the feeling of “I rule!” that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize you know something that “I’m more technical than thou” Bob from engineering doesn’t.

Metacognition: Thinking about thinking

[image: Image]

If you really want to learn, and you want to learn more quickly and more deeply, pay attention to how you pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn what software architecture is all about. And you probably don’t want to spend a lot of time on it. If you want to use what you read in this book, you need to remember what you read. And for that, you’ve got to understand it. To get the most from this book, or any book or learning experience, take responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as Really Important. Crucial to your well-being. As important as a tiger. Otherwise, you’re in for a constant battle, with your brain doing its best to keep the new content from sticking.

So just how DO you get your brain to treat software architecture like it’s a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow way is about sheer repetition. You obviously know that you are able to learn and remember even the dullest of topics if you keep pounding the same thing into your brain. With enough repetition, your brain says, “This doesn’t feel important, but they keep looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different types of brain activity. The things on the previous page are a big part of the solution, and they’re all things that have been proven to help your brain work in your favor. For example, studies show that putting words within the pictures they describe (as opposed to somewhere else on the page, like a caption or in the body text) causes your brain to try to make sense of how the words and picture relate, and this causes more neurons to fire. More neurons firing = more chances for your brain to get that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they perceive that they’re in a conversation, since they’re expected to follow along and hold up their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation” is between you and a book! On the other hand, if the writing style is formal and dry, your brain perceives it the same way you experience being lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

Here’s what WE did

We used visuals, because your brain is tuned for visuals, not text. As far as your brain’s concerned, a visual really is worth a thousand words. And when text and visuals work together, we embedded the text in the visuals because your brain works more effectively when the text is within the thing the text refers to, as opposed to in a caption or buried in a paragraph somewhere.

We used redundancy, saying the same thing in different ways and with different media types, and multiple senses, to increase the chance that the content gets coded into more than one area of your brain.

We used concepts and visuals in unexpected ways because your brain is tuned for novelty, and we used visuals and ideas with at least some emotional content, because your brain is tuned to pay attention to the biochemistry of emotions. That which causes you to feel something is more likely to be remembered, even if that feeling is nothing more than a little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more attention when it believes you’re in a conversation than if it thinks you’re passively listening to a presentation. Your brain does this even when you’re reading.

We included dozens of activities, because your brain is tuned to learn and remember more when you do things than when you read about things. And we made the exercises challenging yet doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while someone else wants to understand the big picture first, and someone else just wants to see an example. But regardless of your own learning preference, everyone benefits from seeing the same content represented in multiple ways.

We included content for both sides of your brain, because the more of your brain you engage, the more likely you are to learn and remember, and the longer you can stay focused. Since working one side of the brain often means giving the other side a chance to rest, you can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because your brain is tuned to learn more deeply when it’s forced to make evaluations and judgments.

We included challenges, with exercises, and we asked questions that don’t always have a straight answer, because your brain is tuned to learn and remember when it has to work at something. Think about it—you can’t get your body in shape just by watching people at the gym. But we did our best to make sure that when you’re working hard, it’s on the right things. That you’re not spending one extra dendrite processing a hard-to-understand example or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, visuals, etc., because, well, because you’re a person. And your brain pays more attention to people than it does to things.

Here’s what YOU can do to bend your brain into submission

So, we did our part. The rest is up to you. These tips are a starting point; listen to your brain and figure out what works for you and what doesn’t. Try new things.

[image: Image]

Note

Cut this out and stick it on your refrigerator.

	[image: Image] Slow down. The more you understand, the less you have to memorize.

Don’t just read. Stop and think. When the book asks you a question, don’t just skip to the answer. Imagine that someone really is asking the question. The more deeply you force your brain to think, the better chance you have of learning and remembering.

	[image: Image] Do the exercises. Write your own notes.

We put them in, but if we did them for you, that would be like having someone else do your workouts for you. And don’t just look at the exercises. Use a pencil. There’s plenty of evidence that physical activity while learning can increase the learning.

	[image: Image] Read the “There Are No Dumb Questions.”

That means all of them. They’re not optional sidebars, they’re part of the core content! Don’t skip them.

	[image: Image] Make this the last thing you read before bed. Or at least the last challenging thing.

Part of learning (especially the transfer to long-term memory) happens after you put the book down. Your brain needs time on its own, to do more processing. If you put in something new during that processing time, some of what you just learned will be lost.

	[image: Image] Talk about it. Out loud.

Speaking activates a different part of the brain. If you’re trying to understand something, or increase your chance of remembering it later, say it out loud. Better still, try to explain it out loud to someone else. You’ll learn more quickly, and you might uncover ideas you hadn’t known were there when you were reading about it.

	[image: Image] Drink water. Lots of it.

Your brain works best in a nice bath of fluid. Dehydration (which can happen before you ever feel thirsty) decreases cognitive function.

	[image: Image] Listen to your brain.

Pay attention to whether your brain is getting overloaded. If you find yourself starting to skim the surface or forget what you just read, it’s time for a break. Once you go past a certain point, you won’t learn faster by trying to shove more in, and you might even hurt the process.

	[image: Image] Feel something.

Your brain needs to know that this matters. Get involved with the stories. Make up your own captions for the photos. Groaning over a bad joke is still better than feeling nothing at all.

	[image: Image] Apply it every day!

There’s only one way to learn how to really understand software architecture: apply it every day. You are going to be doing software architecture a lot in this book, and like with any other skill, the only way to get good at it is to practice. We’re going to give you a lot of practice: every chapter has exercises that pose problems for you to solve. Don’t just skip over them—a lot of the learning happens when you solve the exercises. We included a solution to each exercise—don’t be afraid to peek at the solution if you get stuck! (It’s easy to get snagged on something small.) But try to solve the problem before you look at the solution. And definitely get it working before you move on to the next part of the book.

Read me

This is a learning experience, not a reference book. We deliberately stripped out everything that might get in the way of learning whatever it is we’re working on at that point in the book. And the first time through, you need to begin at the beginning, because the book makes assumptions about what you’ve already seen and learned.

We break things down, then build them back again.

We are fans of teasing things apart. This gives us the chance to focus on one aspect of software architecture at a time. We use a lot of visuals to explain various aspects of software architecture. We make sure you have a deep understanding of each aspect, and have the confidence to know when and how to use them. Only then do we start to bring things together, to explain the more complex ideas in software architecture.

We don’t exhaustively cover everything.

We use the 80/20 approach. We assume that if you are going for a PhD in software architecture, this isn’t going to be your only book. So, we don’t talk about everything—just the stuff that you’ll actually use, and that you need to hit the ground running. We want to hit the ground running.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book. Some of them are to help with memory, some are for understanding, and some will help you apply what you’ve learned. Don’t skip the exercises. The crossword puzzles are the only thing you don’t have to do, but they’re good for giving your brain a chance to think about the words and terms you’ve been learning in a different context.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want you to finish the book remembering what you’ve learned. Most reference books don’t have retention and recall as a goal, but this book is about learning, so you’ll see some of the same concepts come up more than once.

The examples are as generic as possible.

To teach you software architecture, we have to use business problems—otherwise, the concepts we introduce in this book would be too abstract and hard to follow. We’ve deliberately made the examples in this book generic, yet also interesting, fascinating, and downright fun. No matter your background, we are certain you will be able to relate to them when practicing software architecture, whatever kind of work you do.

The Brain Power exercises don’t always have answers.

For some of them, there is no right answer, and for others, part of the learning experience is for you to decide if and when your answers are right. In some of the Brain Power exercises, you will find hints to point you in the right direction.

O’Reilly online learning

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

Do it yourself chapters

A unique aspect of this particular Head First book is what we call “do it yourself” chapters. These chapters (there are two of them) are entirely exercise-based and give you a chance to create an architecture from beginning to end, applying all the concepts you’ve learned up to that point.

In these chapters, you’re the software architect. You’ll determine architectural characteristics, build a logical architecture, and make architectural decisions, including what kind of architectural style to use. Doing the exercises in these chapters gives you an end-to-end view of what a software architect does and shows you how much you’ve learned.

[image: Image]

In Chapter 9, the first “do it yourself” chapter, you’ll create an architecture for a trip-management system called TripEZ (pronounced like “trapeze”) that aims to make travel easier, especially for road warriors. This new online trip-management dashboard app will allow travelers to see and manage all of their travel reservations, organized by trip, through a browser or on their mobile devices.

[image: Image]

In Chapter 12, the second “do it yourself” chapter, you’ll create an architecture for a standardized-testing system called Make the Grade. All Dataville Public School students in specific grade levels take the same test to determine how well students, teachers, and the school are doing. This chapter will be a great way for you to test your knowledge (so to speak).

[image: Image]

The technical review team

Meet our review team!

We were lucky enough to round up a powerhouse team of people to review this book, including senior developers, software architects, renowned public speakers, and prolific book authors.

These experts read every chapter, did the exercises, corrected our mistakes, and provided detailed commentary on every single page of this book. They also acted as our sounding board, letting us work through ideas, analogies, and narratives. They even helped us think through how this book should be organized.

Every single reviewer here made huge contributions to this book and vastly improved its quality. We deeply appreciate the countless hours they spent poring over the manuscript. We remain indebted to them.

Note

Special thanks also to Moataz Sanad for finding lots of our typos!

Note

 Despite our (and our reviewers’) best efforts, any and all errors and omissions are ours and ours alone.

Thank you!

[image: Image]

Joint acknowledgments

This book would not have been possible without the help, guidance, and support from a number of great individuals. We have a lot of people to thank, so let’s get started!

Our editor:

Our first and foremost acknowledgment goes, along with our utmost thanks, to our brilliant editor Sarah Grey. Writing a book like Head First Software Architecture presented a number of unique challenges for us, and Sarah was there to guide us the entire time. She helped keep us on track when we deviated from the Head First style of writing (which was quite often) and made constant suggestions about every page’s layout (really, we mean every page). Sarah took on the role of crossword expert and helped us out quite a bit with the Make It Stick poetry. We frequently referred to Sarah as our “fourth author,” and in reality, she deserves much of the credit for the outcome of this book.

[image: Image]

The O’Reilly team:

A big thanks to the entire O’Reilly Media team, including Kristen Brown and Chris Faucher for making sure that our book was production-worthy, and to Rachel Head for her keen and astute copyediting eye. And if, like us, you routinely use book indexes, you have Tom Dinse to thank for this one.

We’d also like to thank Melissa Duffield for her continued support and patience throughout this process, and for considering us for this long project.

Much appreciation to the O’Reilly online training team, especially Yasmina Greco, Lindsay Ventimiglia, and all the producers, for giving us a platform to teach software architecture to thousands of developers and architects around the world.

A shoutout to the Early Release team, who put out raw and unedited chapters as they were written for the audience on the O’Reilly platform to review. This gave many of our readers a chance to submit errata and feedback that made this book just that much better.

Finally, we would be remiss if we did not mention series editors Elisabeth Robson and Eric Freeman, who took the time to review our work and ensure that it aligned with the vision that is the Head First series—not to mention giving us some really useful InDesign tips. Thank you!

Individual acknowledgments

From Raju Gandhi:

It’s hard for me to express how much of a privilege it has been to work on this project, and to be able to work with Mark and Neal—two of the smartest and most wonderful human beings, who not only were kind enough to consider me as a coauthor, but who since have spent countless hours teaching me the nuances of software architecture. Someday I hope I can repay that debt. For now, they have my deepest appreciation. A shoutout to so many friends, colleagues, unwitting mentors and teachers, and fellow speakers who’ve been a source of inspiration for me—you all know you who are. And finally, to my wife Michelle. We had baby Delphine while I was working on this project, and Michelle has certainly taken on more than her share as I spent many an hour working on this book. Thank you. I love you both.

[image: Image]

From Mark Richards:

In addition to the joint acknowledgments, I would like to thank my friends and coauthors Raju and Neal. Raju brought prior Head First experience to the table from his great book Head First Git, and helped teach us the Head First style of writing and the ins and outs of InDesign. This is my third book with Neal, and as usual, working and collaborating with him was a very rewarding and enjoyable experience. I would also like to thank my lovely wife Rebecca for her patience and understanding while I was hidden away in my office for so many evenings writing this book instead of enjoying her company.

[image: Image]

From Neal Ford:

I would like to thank first and foremost my coauthors, Mark and Raju, both of whom were a delight to work with and made this book possible. Mark is as always a fantastic collaborative juggernaut with a good sense of humor, both vital when writing is not our day job. I’d also like to thank our editor Sarah, who has an outsized role in this book series, for helping keep us in check. Thanks also to my extended families, both genetic and chosen, for their support and respite. That includes our weekly neighborhood cocktail club that moved to the parking lot during the pandemic and stayed there; it’s great to catch up with what is happening nearby. And finally and primarily, I’d like to thank my wonderful wife Candy, who endures many long hours with me away from her and our cats, working on stuff like what you hold in your hand.

Note

Good thing we only had three authors, or these acknowledgments would go on and on and on...

[image: Image]

And finally, you, the readers. Your attention is a scarce resource, and we deeply appreciate the time you’ll spend with this book. Happy learning.

Chapter 1. Software Architecture Demystified: Let’s Get Started!

[image: Image]

Software architecture is fundamental to the success of your system. This chapter demystifies software architecture. You’ll gain an understanding of architectural dimensions and the differences between architecture and design. Why is this important? Because understanding and applying architectural practices helps you build more effective and correct software systems—systems that not only function better, but also meet the needs and concerns of the business and continue to operate as your business and technical environments undergo constant change. So, without further delay, let’s get started.

Building your understanding of software architecture

To better understand software architecture, think about a typical home in your neighborhood. The structure of the home is its architecture —things like its shape, how many rooms and floors it has, its dimensions, and so on. A house is usually represented through a building plan, which contains all the lines and boxes necessary to know how to build the house. Structural things like those shown below are hard and expensive to change later and are the important stuff about the house.

Note

The building metaphor is a very popular one for understanding software architecture.

[image: Image]

[image: Image]

Architecture is essential for building a house. Can you imagine building one without an architecture? It might turn out looking something like the house on the right.

Architecture is also essential for building software systems. Have you ever come across a system that doesn’t scale, or is unreliable or difficult to maintain? It’s likely not enough emphasis was placed on that system’s architecture.

Exercise

[image: Image]

Gardening is another useful metaphor for describing software architecture. Using the space below, can you describe how planning a garden might relate to software architecture? You can see what we came up with at the end of this chapter.

[image: Images] Solution in “Exercise Solution”

Building plans and software architecture

You might be wondering how the building plans of your home relate to software architecture. Each is a representation of the thing being built. So what does the “building plan” of a software system look like? Lines and boxes, of course.

A building plan specifies the structure of your home—the rooms, walls, stairs, and so on—in the same way a software architecture diagram specifies its structure (user interfaces, services, databases, and communication protocols). Both artifacts provide guidelines and constraints, as well as a vision of the final result.

[image: Image]

Sharpen your pencil

[image: Image]

What features of your home can you list that are structural and related to its architecture? You can find our thoughts at the end of this chapter.

Note

Use this space to write down your ideas.

[image: Images] Solution in “Sharpen your pencil Solution”

Did you notice that the floor plan for the house above doesn’t specify the details of the rooms—things like the type of flooring (carpet or hardwood), the color of the walls, and where a bed might go in a bedroom? That’s because those things aren’t structural. In other words, they don’t specify something about the architecture of the house, but rather about its design.

Note

Don’t worry—you’ll learn a lot more about this distinction later in this chapter. Right now, just focus on the structure of something—in other words, its architecture.

The dimensions of software architecture

[image: Image]

Most things around us are multidimensional. For example, you might describe a particular room in your home by saying it is 5 meters long and 4 meters wide, with a ceiling height of 2.5 meters. Notice that to properly describe the room you needed to specify all three dimensions—its height, length, and width.

You can describe software architecture by its dimensions, too. The difference is that software architecture has four dimensions.

	[image: Images] Architectural characteristics

This dimension describes what aspects of the system the architecture needs to support—things like scalability, testability, availability, and so on.

	[image: Images] Architectural decisions

This dimension includes important decisions that have long-term or significant implications for the system—for example, the kind of database it uses, the number of services it has, and how those services communicate with each other.

	[image: Images] Logical components

This dimension describes the building blocks of the system’s functionality and how they interact with each other. For example, an ecommerce system might have components for inventory management, payment processing, and so on.

	[image: Images] Architectural style

This dimension defines the overall physical shape and structure of a software system in the same way a building plan defines the overall shape and structure of your home.

Note

You’ll learn about five of the most common architectural styles later in this book.

[image: Image]

Puzzling out the dimensions

You can think of software architecture as a puzzle, with each dimension representing a separate puzzle piece. While each piece has its own unique shape and properties, they must all fit together and interact to build a complete picture.

[image: Image]

Everything is interconnected.

Did you notice how the pieces of this puzzle are joined in the middle? That’s exactly how software architecture works: each dimension must align.

The architectural style must align with the architectural characteristics you choose as well as the architectural decisions you make. Similarly, the logical components you define must align with the characteristics and the architectural style as well as the decisions you make.

there are no Dumb Questions

Q: Do you need all four dimensions when creating an architecture, or can you skip some if you don’t have time?

A: Unfortunately, you can’t skip any of these dimensions—they are all required to create and describe an architecture. One common mistake software architects make is using only one or two of these dimensions when describing their architecture. “Our architecture is microservices” describes a single dimension—the architectural style—but leaves too many unanswered questions. For example, what architectural characteristics are critical to the success of the system? What are its logical components (functional building blocks)? What major decisions have you made about how you’ll implement the architecture?

The first dimension: Architectural characteristics

Architectural characteristics form the foundation of the architecture in a software system. Without them, you cannot make architectural decisions or analyze important trade-offs.

[image: Image]

Imagine you’re trying to choose between two homes. One home is roomy but is next to a busy, noisy motorway. The other home is in a nice, quiet neighborhood, but is much smaller. Which characteristic is more important to you—home size or the level of noise and traffic? Without knowing that, you can’t make the right choice.

The same is true with software architecture. Let’s say you need to decide what kind of database to use for your new system. Should it be a relational database, a simple key/value database, or a complex graph database? The answer will be based on what architectural characteristics are critical to you. For example, you might choose a graph database if you need high-speed search capability (we’ll call that performance), whereas a traditional relational database might be better if you need to preserve data relationships (we’ll call that data integrity).

[image: Image]

Exercise

[image: Image]

Check the things you think might be considered architectural characteristics—something that the structure of the software system supports.

	[image: Images] Changing the font size in a window on the user interface screen

	[image: Images] Making changes quickly

	[image: Images] Handling thousands of concurrent users

	[image: Images] Encrypting user passwords stored in the database

	[image: Images] Interacting with many external systems to complete a business request

[image: Images] Solution in “Exercise Solution”

The term architectural characteristics might not be familiar to you, but that doesn’t mean you haven’t heard of them before. Collectively, things like performance, scalability, reliability, and availability are also known as nonfunctional requirements, system quality attributes, and simply “the -ilities” because most end with the suffix -ility. We like the term architectural characteristics because these qualities help define the character of the architecture and what it needs to support.

Note

Architectural characteristics are capabilities that are critical or important to the success of the system.

Make it Stick

[image: Image]

To architect software you must first address:

	Capabilities key to the new app’s success

Who Does What?

Here’s your chance to see how much you already know about many common architectural characteristics. Can you match up each architectural characteristic on the left with its definition on the right? You’ll notice there are more definitions than characteristics, so be careful—not all of the definitions have matches.

[image: Image]

The second dimension: Architectural decisions

[image: Image]

Architectural decisions are choices you make about structural aspects of the system that have long-term or significant implications. As constraints, they’ll guide your development team in planning and building the system.

Should your new home have one floor or two? Should the roof be flat or peaked? Should you build a big, sprawling ranch house? These are good examples of architectural decisions because they involve the structural aspect of your home.

[image: Image]

You might decide that your system’s user interface should not communicate directly with the database, but instead must go through the underlying services to retrieve and update data. This architectural decision places a particular constraint on the development of the user interface, and also guides the development team about how other components should access and update data in the database.

[image: Image]

It’s not uncommon to have several dozen or more documented architectural decisions within any system. Generally, the larger and more complicated the system, the more architectural decisions it will have.

Make it Stick

[image: Image]

Decisions are structural guides for dev teams.

They often focus on significant themes.

BE the architect

[image: Image]

Your job is to be the architect and identify as many architectural decisions as you can in the diagram below. Draw a circle around anything that you think might be an architectural decision and write what that decision might be.

[image: Image]

[image: Images] Solution in “BE the architect Solution”

The third dimension: Logical components

Logical components are the building blocks of a system, much in the same way rooms are the building blocks of your home. A logical component performs some sort of function, such as processing the payment for an order, managing item inventory, or tracking orders.

[image: Image]

Logical components in a system are usually represented through a directory or namespace. For example, the directory app/order/payment with the corresponding namespace app.order.payment identifies a logical component named Payment Processing. The source code that allows users to pay for an order is stored in this directory and uses this namespace.

[image: Image]

[image: Image]

Sharpen your pencil

[image: Image]

You’ve just created the following two components for a new system, and your development team wants to start writing class files to implement them. Can you create a directory structure for them so they can start coding? Flip to the end of the chapter for our solution.

[image: Image]

[image: Images] Solution in “Sharpen your pencil Solution”

A logical component should always have a well-defined role and responsibility in the system—in other words, a clear definition of what it does.

[image: Image]

Make it Stick

[image: Image]

Logical components are blocks in conjunction.

They hold the source code for each business function.

there are no Dumb Questions

Q: What is the difference between the system functionality and the domain?

A: The domain is the problem you are trying to solve, and the system functionality is how you are solving that problem. In other words, the domain is the “what,” and the system’s functionality is the “how.”

The fourth dimension: Architectural styles

Homes come in all shapes, sizes, and styles. While there are some wild-looking houses out there, most conform to a particular style, such as Victorian, ranch, or Tudor. The style of a home says a lot about its overall structure. For example, ranch homes typically have only one floor; colonial and Tudor homes typically have chimneys; contemporary homes typically have flat roofs.

[image: Image]

[image: Image]

Architectural styles define the overall shape and structure of a software system, each with its own unique set of characteristics. For example, the microservices architectural style scales very well and provides a high level of agility—the ability to respond quickly to change—whereas the layered architectural style is less complex and less costly. The event-driven architectural style provides high levels of scalability and is very fast and responsive.

Note

Don’t worry—you’ll be learning all about these architectural styles later in the book. We’ve devoted chapters to each of them.

[image: Image]

Because the architectural style defines the overall shape and characteristics of the system, it’s important to get it right the first time. Why? Can you imagine starting construction on a one-story ranch home, and in the middle of construction changing your mind and deciding you’re going to build a three-story Victorian house instead? That would be a major undertaking, and likely exceed your budget and affect when you can move into the house.

Software architecture is no different. It’s not easy changing from a monolithic layered architecture to microservices. Like the house example, this would be quite an undertaking.

Make it Stick

[image: Image]

Styles shape the system and help serve its purposes.

You might choose a monolith or microservices.

[image: Image]

Later in the book, we’ll show you how to properly select an architectural style based on characteristics that are important to you.

Which brings us back to an earlier point—all of the dimensions of software architecture are interconnected. You can’t select an architectural style without knowing what’s important to you.

Brain Power

[image: Image]

The tightly wound tendons and muscles in a lion’s legs enable it to reach speeds as fast as reach speeds as fast as 50 miles (80 kilometers) per hour and leap up to 36 feet (11 meters) in a single bound. This characteristic allows lions to survive by catching fast prey.

Look around you—what else has a structure or shape that defines its characteristics and capabilities?

[image: Image]

Who Does What?

We were trying to describe our architecture, but all the puzzle pieces got mixed up. Can you help us figure out which dimension does what by matching the statements on the left with the software architecture dimensions on the right? Be careful—some of the statements don’t have a match because they are not related to architecture.

[image: Image]

[image: Images] Solution in “Who Does What? Solution”

[image: Image]

No, architecture and design are different.

You see, architecture is less about appearance and more about structure, while design is less about structure and more about appearance.

The color of a room’s walls, the placement of furniture, and the type of flooring (carpet or wood) are all aspects of design, whereas the physical size of the room and the placement of doors and windows are part of architecture—in other words, the structure of the room.

Think about a typical business application. The architecture, or structure, is all about how the web pages communicate with backend services and databases to retrieve and save data, whereas the design is all about what each page looks like: the colors, the placement of the fields, which design patterns you use, and so on. Again, it becomes a matter of structure versus appearance.

Your question is a good one, because sometimes it gets confusing trying to tell what is considered architecture and what is considered design. Let’s investigate these differences.

A design perspective

Suppose your company wants to replace its outdated order processing system with a new custom-built one that better suits its specific needs. Customers can place orders and can view or cancel orders once they have been placed. They can pay for an order using a credit card, a gift card, or both payment methods.

[image: Image]

From a design perspective, you might build a Unified Modeling Language (UML) class diagram like the one below to show how the classes interact with each other to implement the payment functionality. While you could write source code to implement these class files, this design says nothing about the physical structure of the source code—in other words, how these class files would be organized and deployed.

[image: Image]

An architectural perspective

Unlike design, architecture is about the structure of the system—things like services, databases, and how services communicate with each other and the user interface.

Let’s think about that new order processing system again. What would the system look like? From an architectural perspective, you might decide to create separate services for each payment type within the order payment process and have an orchestrator service to manage the payment processing part of the system, like in the diagram below.

[image: Image]

Exercise

[image: Image]

Check all of the things that should be included in a diagram from an architectural perspective.

	[image: Images] How services communicate with each other

	[image: Images] The platform and language in which the services are implemented

	[image: Images] Which services can access which databases

	[image: Images] How many services and databases there are

[image: Images] Solution in “Exercise Solution”

The spectrum between architecture and design

Some decisions are certainly architectural (such as deciding which architectural style to use), and others are clearly design-related (such as changing the position of a field on a screen or changing the type of a field within a class). In reality, most decisions you encounter will fall between these two examples, within a spectrum of architecture and design.

[image: Image]

Sharpen your pencil

[image: Image]

Circle all of the things that you think fall somewhere in the middle of the spectrum between architecture and design.

[image: Image]

[image: Images] Solution in “Sharpen your pencil Solution”

[image: Image]

Yes, it matters a lot. You see, knowing where along the spectrum between architecture and design your decision lies helps determine who should be responsible for ultimately making that decision. There are some decisions that the development team should make (such as designing the classes to implement a certain feature), some decisions that an architect should make (such as choosing the most appropriate architectural style for a system), and others that should be made together (such as breaking apart services or putting them back together).

Where along the spectrum does your decision fall?

[image: Image]

Is it strategic or tactical?

Strategic decisions are long term and influence future actions or decisions. Tactical decisions are short term and generally stand independent of other actions or decisions (but may be made in the context of a particular strategy). For example, deciding how big your new home will be influences the number of rooms and the sizes of those rooms, whereas deciding on a particular lighting fixture won’t affect decisions about the size of your dining room table. The more strategic the decision, the more it sits toward the architecture side of the spectrum.

How much effort will it take to construct or change?

Architectural decisions require more effort to construct or change, while design decisions require relatively less. For example, building an addition to your home generally requires a high level of effort and would therefore be more on the architecture side of the spectrum, whereas adding an area rug to a room requires much less effort and would therefore be more on the design side.

[image: Image]

Note

Sometimes waking up in the morning requires a lot of effort—we’ll call those “architecture” mornings.

Does it have significant trade-offs?

[image: Image]

Trade-offs are the pros and cons you evaluate as you are making a decision. Decisions that involve significant trade-offs require much more time and analysis to make and tend to be more architectural in nature. Decisions that have less-significant trade-offs can be made quicker, with less analysis, and therefore tend to be more on the design side.

Note

We’re going to walk you through the details of all three of these factors in the next several pages.

Brain Power

[image: Image]

Can you think of a decision that doesn’t involve a trade-off, no matter how small or insignificant? Here’s a hint: if you think you’ve found a decision that doesn’t involve a trade-off, keep looking.

Strategic versus tactical

The more strategic a decision is, the more architectural it becomes. This is an important distinction, because decisions that are strategic require more thought and planning and are generally long term.

[image: Image]

[image: Image]

Good question. You can use these three questions to help determine if something is more strategic or tactical. Remember, the more strategic something is, the more it’s about architecture.

	How much thought and planning do you need to put into the decision?

If making the decision takes a couple of minutes to an hour, it’s more tactical in nature. If thought and planning require several days or weeks, it’s likely more strategic (hence more architectural).

	How many people are involved in the decision?

The more people involved, the more strategic the decision. A decision you can make by yourself or with a colleague is likely to be tactical. A decision that requires many meetings with lots of stakeholders is probably more strategic.

	Does your decision involve a long-term vision or a short-term action?

If you are making a quick decision about something that is temporary or likely to change soon, it’s more tactical and hence more about design. Conversely, if this is a decision you’ll be living with for a very long time, it’s more strategic and more about architecture.

Sharpen your pencil

[image: Image]

Oh dear. We’ve lost all of our marbles and we need your help collecting them and putting them back in the right spot. Using the three questions on the previous page as a guide, can you figure out which jar each marble should go in?

[image: Image]

[image: Images] Solution in “Sharpen your pencil Solution”

High versus low levels of effort

Renowned software architect and author Martin Fowler once wrote that “software architecture is the stuff that’s hard to change.” You can use Martin’s definition to help determine where along the spectrum your decision lies. The harder something is to change later, the further it falls toward the architecture side of the spectrum. Conversely, the easier it is to change later, the more it’s probably related to design.

Note

Martin Fowler’s website (https://martinfowler.com/architecture) has lots of useful stuff about architecture.

[image: Image]

Suppose you are planning on moving from one architectural style to another; say, from a traditional n-tiered layered architecture to microservices. This migration effort is rather difficult and will take a lot of time. Because the level of effort is high, this would be on the far end of the architecture side of the spectrum.

[image: Image]

Now suppose you’re rearranging fields on a user interface screen. This task takes relatively less effort, so it resides on the far end of the design side of the spectrum.

[image: Image]

Code Magnets

[image: Image]

We had all of these magnets from our to-do list arranged from high effort to low effort, and somehow they all fell on the floor and got mixed up. Can you help us put them back in the right order based on the amount of effort it would take to make each change?

[image: Image]

[image: Images] Solution in “Code Magnets Solution”

Significant versus less-significant trade-offs

Some decisions you make might involve significant trade-offs, such as choosing which city to live in. Others might involve less significant trade-offs, like deciding on the color of your living room rug. You can use the level of significance of the trade-offs in a particular decision to help determine whether that decision is more about architecture or design. The more significant the trade-offs, the more it’s about architecture; the less significant the trade-offs, the more it’s about design.

[image: Image]

[image: Image]

Exercise

[image: Image]

Decisions, decisions, decisions. How can we ever tackle all of these decisions? One thing we think might help is to identify the decisions that involve significant trade-offs, since those will require more thinking and will take longer. Can you help us by identifying which decisions have significant trade-offs and which don’t?

Is this a significant trade-off?

	[image: Images] Yes
	[image: Images] No
	Picking out what clothes to wear to work today

	[image: Images] Yes
	[image: Images] No
	Choosing to deploy in the cloud or on premises

	[image: Images] Yes
	[image: Images] No
	Selecting a user interface framework

	[image: Images] Yes
	[image: Images] No
	Naming a variable in a class file

	[image: Images] Yes
	[image: Images] No
	Choosing between vanilla and chocolate ice cream

	[image: Images] Yes
	[image: Images] No
	Deciding which architectural style to use

	[image: Images] Yes
	[image: Images] No
	Choosing between REST and messaging

	[image: Images] Yes
	[image: Images] No
	Using full data or only keys for the message payload

	[image: Images] Yes
	[image: Images] No
	Selecting an XML parsing library

	[image: Images] Yes
	[image: Images] No
	Deciding whether or not to break apart a service

	[image: Images] Yes
	[image: Images] No
	Choosing between atomic or distributed transactions

	[image: Images] Yes
	[image: Images] No
	Deciding whether or not to go out to dinner tonight

[image: Images] Solution in “Exercise Solution”

Putting it all together

Now it’s time to put all three of these factors to use to figure out whether a decision is more about architecture or more about design. This tells development teams when to collaborate with an architect and when to make a decision on their own.

Let’s say you decide to use asynchronous messaging between the Order Placement service and the Inventory Management service to increase the system’s responsiveness when customers place orders. After all, why should the customer have to wait for the business to adjust and process inventory? Let’s see if we can determine where in the spectrum this decision lies.

[image: Image]

[image: Image]

You made it!

Congratulations—you made it through the first part of your journey to understanding software architecture. But before you roll up your sleeves to dig into further chapters, here’s a little quiz for you to test your knowledge so far. For each of the statements below, circle whether it is true or false.

True or False

	True
	False
	Design is like the structure of a house (walls, roof, layout, and so on), and software architecture is like the furniture and decoration.

	True
	False
	Most decisions are purely about architecture or design. Very few exist along a spectrum between architecture and design.

	True
	False
	The more strategic your decision, the more it’s about architecture; the more tactical, the more it’s about design.

	True
	False
	The more effort it takes to implement or change your decision, the more it’s about design; the less effort, the more it’s about architecture.

	True
	False
	Trade-offs are the pros and cons of a given decision or task. The more significant the trade-offs become, the more it’s about architecture.

[image: Images] Solution in “True or False Solution”

Bullet Points

	Software architecture is less about appearance and more about structure, whereas design is more about appearance and less about structure.

	You need to use four dimensions to understand and describe software architecture: architectural characteristics, architectural decisions, logical components, and architectural style.

	Architectural characteristics form the foundational aspects of software architecture. You must know which architectural characteristics are most important to your specific system, so you can analyze trade-offs and make the right architectural decisions.

	Architectural decisions serve as guideposts to help development teams understand the constraints and conditions of the architecture.

	The logical components of a software architecture solution make up the building blocks of the system. They represent things the system does and are implemented through class files or source code.

	Like with houses, with software there are many different architectural styles you can use. Each style supports a specific set of architectural characteristics, so it’s important to make sure you select the right one (or combination of them) for your system.

	It’s important to know if a decision is about architecture or design, because that helps determine who should be responsible for the decision and how important it is.

Software Architecture Crossword

[image: Image]

Congratulations! You made it through the first chapter and learned about what software architecture is (and isn’t). Now, why don’t you try architecting the solution to this crossword?

[image: Image]

Across

2. An architectural style determings the system’s overall _____

4. _____-driven is an architectural style

5. Architectural characteristics are sometimes called this

10. Architectural decisions are usually _____ term

12. If something takes a lot of _____ to implement, it’s probably architectural

13. You’re learning about software _____

15. You’ll make lots of architectural _____

16. A system’s _____ components are its building blocks

18. The number of rooms in your home is part of its _____

19. Architecture and design exist on a _____

Down

1. Strategic decisions typically involve a lot of these

3. Building this can be a great metaphor

6. Decisions can be strategic of _____

7. How many dimensions it takes to describe a software architecture

8. A website’s user _____ involves lots of design decisions

9. The overall shape of a house or a system, like Victorian or microservices

11. It’s important to know whether a decision is about architecture or this

13. You might want to become one after reading this book

14. You analyze these when making an architectural decision

17. Trade-offs are about the _____ and cons

[image: Images] Solution in “Software Architecture Crossword Solution”

From “Exercise”

Exercise Solution

[image: Image]

Gardening is another useful metaphor for describing software architecture. Using the space below, can you describe how a garden might relate to software architecture?

The overall layout of a garden can be compared to the architectural style, whereas each grouping of like plants (either by type or color) can represent the architectural components. Individual plants within a group represent the class files implementing those components.

Gardens are influenced by weather in the same way a software architecture is influenced by changes in technology, platforms, the deploymnent environment, and so on. Also, if you don’t pay attention to the garden, weeds grow-just like structural decay within your architecture.

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

What features of your home can you list that are structural and related to its architecture?

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Check the things you think might be considered architectural characteristics—something that the structure of the software system supports.

[image: Image]

From “Who Does What?”

Who Does What? Solution

Here’s your chance to see how much you already know about many common architectural characteristics. Can you match up each architectural characteristic on the left with its definition on the right? You’ll notice there are more definitions than characteristics, so be careful—not all of the definitions have matches.

[image: Image]

From “BE the architect”

BE the architect Solution

[image: Image]

Your job is to be the architect and identify as many architectural decisions as you can in the diagram below. Draw a circle around anything that you think might be an architectural decision and write what that decision might be.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

You’ve just created the following two components for a new system, and your development team wants to start writing class files to implement them. Can you create a directory structure for them so they can start coding?

[image: Image]

[image: Images] Solution in “Exercise Solution”

From “Who Does What?”

Who Does What? Solution

We were trying to describe our architecture, but all the puzzle pieces got mixed up. Can you help us figure out which dimension does what by matching the statements on the left with the software architecture dimensions on the right? Be careful—some of the statements don’t have a match because they are not related to architecture.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Check all of the things that should be included in a diagram from an architectural perspective.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Circle all of the things that you think fall somewhere in the middle of the spectrum between architecture and design.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Oh dear. We’ve lost all of our marbles and we need your help collecting them and putting them back in the right spot. Using the three questions in “Sharpen your pencil” as a guide, can you figure out which jar each marble should go in?

[image: Image]

From “Code Magnets”

Code Magnets Solution

[image: Image]

We had all of these magnets from our to-do list arranged from high effort to low effort, and somehow they all fell on the floor and got mixed up. Can you help us put them back in the right order based on the amount of effort it would take to make each change?

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Decisions, decisions, decisions. How can we ever tackle all of these decisions? One thing we think might help is to identify the decisions that involve significant trade-offs, since those will require more thinking and will take longer. Can you help us by identifying which decisions have significant trade-offs and which ones don’t?

[image: Image]

From “True or False”

True or False Solution

[image: Image]

Software Architecture Crossword Solution

[image: Image]

From “Code Magnets”

[image: Image]

Chapter 2. Architectural Characteristics: Know Your Capabilities

[image: Image]

What does your architecture need to support? Architectural characteristics (the capabilities of an architecture) are the fundamental building blocks of any system. Without them, you cannot make architectural decisions, select an architectural style, or in many cases even create a logical architecture. In this chapter you’ll learn how to define some of the more common characteristics (like scalability, reliability, and testability), how they influence a software architecture, how they help you make architectural decisions, and how to identify which ones are important for your particular situation. Ready to add some capabilities to your software architecture?

Causing Lafter

Sillycon Symposia is a startup with a Bay Area feel whose business plan combines technology-themed conferences with comedy. By gathering like minds, Sillycon provides unique offerings for each group and keeps them engaged by keeping them laughing.

Note

How hard could it be to start a social networking site?!

Part of the business plan includes building Lafter, a social media network related to (but not limited to) the conferences Sillycon hosts. The business stakeholders put together a requirements document for it:

[image: Image]

Sillycon Symposia is hosting a social media network of like-minded technologists named Lafter.

Users: Hundreds of speakers, thousands of users

Requirements:

Note

A pretty standard level of detail for a requirements document

	Users can register for usernames and approve the privacy policy

	Users can add new content on Lafter as a “Joke” (long-form post) or 	 “Pun” (short-form post)

	Followers can “HaHa” (indicating strong approval) or “Giggle” (a 	 milder approval message) content they like

	Speakers at Sillycon Symposia events have a special icon

	Speakers can host forums on the platform related to their content

	Users can post messages of up to 281 characters

	Users can also post links to external content

Additional Context:

	International support

	Very small support staff

	“Bursty” traffic: extremely busy during live conferences

Cubicle conversation

[image: Image]

Alex: Look what just landed in my inbox—the Powers That Be want me to be the architect for the Sillycon Symposia social media app, Lafter.

Sam: You have the requirements? You should jump right into the design of the system—it seems really straightforward.

Mara: Well, you can really only do that for the simplest of applications, and I don’t think this one qualifies. Remember the diagram I drew on the whiteboard the other day?

[image: Image]

You need to analyze both architectural characteristics and logical components before you can choose an architectural style as a starting point.

You can implement just about any application in any architectural style, but some are more suitable than others. Choosing the style before performing this type of analysis is a classic case of putting the cart before the horse.

Sam: Can’t we just be super-agile, start with something tiny, and then keep iterating on it until we have the entire system?

Mara: The iterative approach you talk about doesn’t quite work like that for architectural characteristics analysis. For example, it’s difficult to make a system highly scalable if it wasn’t designed for that.

Alex: That makes sense. I guess I need to roll up my sleeves and analyze some architectural characteristics—thanks!

What are architectural characteristics?

You have a problem. You decide, “I’m going to write some software to solve this problem!” The thing you’re writing software about is called the domain, and designing for it will occupy much of your effort—that is, after all, why you’re writing software. However, it’s not the only thing an architect must consider—they must also analyze architectural characteristics. Here are a few examples of architectural characteristics that show how different domains have different, but often overlapping, architectural characteristics.

Note

These make up one of the dimensions that help describe your architecture.

[image: Image]

Defining architectural characteristics

Part of your job as an architect is structural design for software systems, for which there are two parts: logical components and architectural characteristics. Logical components represent the domain of the application—the motivation for writing the software system (we cover these in Chapter 4). If you combine architectural characteristics with logical components, you have the structural considerations for an architecture.

Architectural characteristics are the important parts of the construction process of a software system or application, irrespective of the problem domain. They represent its operational capabilities, internal structure decisions, and other necessary characteristics.

We’ll show you lots of examples of architectural characteristics in the upcoming pages, but first we want to cover the concept itself.

We define architectural characteristics in three parts, as shown here.

[image: Image]

Let’s look at each of these edges one at a time.

Characteristics are nondomain design considerations

To define architectural characteristics, we first need to look at what they are not. The requirements specify what the application should do; architectural characteristics specify operational and design criteria for success, how to implement the requirements, and why certain choices were made. For example, an application’s level of performance is an important architectural characteristic that often doesn’t appear in requirements documents.

Structural design in architecture can be divided into domain and non-domain considerations. Architectural characteristics represent your design effort to create the capabilities necessary for the project to succeed.

[image: Image]

[image: Image]

Mara: OK, the business analysts and subject matter experts have toiled away to create both a requirements document and the beginning of a domain design. But we need to work with them to figure out what architectural characteristics we need to support.

Sam: Isn’t that part of the domain design? Why does an architect need to get involved at this point?

Alex: Well, our business analysts have never worked on a software porject, so they probably won’t understand the impact of one decision versus another.

Mara: That’s correct—often what seems like a minor difference to a business person makes a big difference for an architect! What they want may turn out to be difficult to support in architecture. That’s why it’s important for architects to be involved early and often in the design process.

Sam: What kinds of things are we looking for?

Alex: Part of the definition of architectural characteristics is “nondomain design considerations.” Let’s look at what they’ve designed and see if they’ve considered things like performance and scalability.

Characteristics influence architectural structure

The primary reason architects try to describe architectural characteristics has to do with architectural considerations: does this characteristic require special structural support to succeed? For example, security is a concern in virtually every project, and all systems must take baseline precautions during design and coding. However, security becomes an architectural characteristic when the architect needs to make a special effort to accommodate it.

Consider the following potential architecture diagrams for Lafter, which include functionality for marketing upcoming promotions and rules for when each promotion applies. An architect could design this as a monolithic architecture—one with a single deployable unit and matching database—or as a series of independent services.

[image: Image]

For the monolithic architecture, the entire application would have to be redeployed when the promotion rules change, because monoliths are built and deployed as a single unit. However, in a distributed architecture, only the Promotions service would be affected, and it could be redeployed independently.

[image: Image]

You must consider many trade-offs when making architectural decisions, such as whether to use a monolithic versus distributed physical architecture.

Limit characteristics to prevent overengineering

Applications could support a huge number of architectural characteristics…but they shouldn’t. Every architectural characteristic the system must support adds complexity.

The sheer number and variety of architectural characteristics means there are many tempting choices. But as architects, we should try to pick as few architectural characteristics as possible, rather than as many as possible. This is because architectural characteristics are:

[image: Image]

	Impossible to standardize

Different organizations use different terms for the same architectural characteristics. For example, performance and responsiveness might indicate the same behavior.

Note

It’s a good idea to create a “ubiquitous language” (shared vocabulary) for architectural characteristics within your organization—this gives you a fighting chance at creating a usable standard list.

	Synergistic

Architectural characteristics affect other architectural characteristics and domain concerns. For example, if you want to make an application more secure, the required changes will almost certainly affect performance negatively (more on-the-fly encryption and other similar changes will lead to performance overhead).

Note

Your takeaway? You often cannot choose one architectural characteristic without considering how it may affect others.

	Overabundant

Possible architectural characteristics are extraordinarily abundant, and new ones appear all the time. For example, a few years ago there was no such thing as on-demand elasticity via a cloud provider.

Note

Even the number of categories of architectural characteristics has increased over the last few years, with additions such as cloud constraints and capabilities.

Note

We’ll be discussing some categories of architectural characteristics soon.

A common hazard for architects is overengineering: supporting too many architectural characteristics and complicating the overall design to little or no benefit. Knowing which architectural characteristics are critical or important to application success acts as a filtering tool. It help us eliminate features that would be nice to have but just end up adding needless complexity to the system.

Beware of resume-driven development (RDD)! It’s fun to play with new stuff, and we should keep learning, but trying to support too many architectural characteristics in our systems will not align with larger priorities or help the application succeed.

Watch it!

[image: Image]

Synergy can be dangerous!

Architects would love to design for architectural characteristics irrespective of the domain design. Unfortunately, the real world refuses to cooperate. When we say that architectural characteristics are synergistic, we mean that changes to one might require changes to other architectural characteristics and/or the domain. No matter how clever you are, no architect can make every single architecture scalable. Some architectures can’t scale as successfully as others because of physical constraints such as memory and bandwidth.

Be careful when you change one architectural characteristic; consider how that change may affect other parts of your architecture. The same applies to making changes to domain design, such as component boundaries and distribution—changes to the domain may synergistically affect your architectural characteristics. For example, if you change your application to begin storing users’ payment information, the security and data integrity architectural characteristics will also change.

Brain Power

[image: Image]

Many things in the the real world are synergistic—that is, combining them yields something different than the sum of the parts. See if you can think of some real-world examples of synergy. Hint: These might include things that are still identifiable (like peanut butter and chocolate) or things that merge (such as emulsions like oil and vinegar).

Note

Use this space to jot down your ideas.

Consider explicit and implicit capabilities

Some things are explicit—stated clearly—whereas others are implicit—assumed based on context or other knowledge. Imagine if you saw a bunch of mail and packages piling up outside the door of a home—what conclusions would you draw?

[image: Image]

Explicit architectural characteristics are specified in the requirements for the application.

Implicit architectural characteristics are factors that influence an architect’s decisions but aren’t explicitly called out in the requirements. Security is often an implicit architectural characteristic: even if it isn’t mentioned in the requirements, architects know that we shouldn’t design an insecure system.

You must use your knowledge of the problem domain to uncover these architectural characteristics during the analysis phase. For example, a high-frequency trading firm may not specify how critical it is for transactions to complete within milliseconds, but the architects in that problem domain know how important this is.

[image: Image]

there are no Dumb Questions

Q: What about important things like good internal structure that no one thinks to ask for?

A: Some implicit architectural characteristics are more subtle, but just as important. For example, architects should pay attention to the application’s internal structure as developers create it, to ensure that sloppy coding and other deficiencies don’t degrade the longevity of the application. However, virtually no requirements list will specify “Don’t mess up the internal modularity of the system as you build it!” or “Make sure the software is maintainable!”

The International Zoo of “-ilities”

Like the animals in a zoo, architectural characteristics exist along a broad spectrum. Just as animals range from primates to reptiles, architectural characteristics range from low-level code characteristics, such as modularity, to sophisticated operational concerns, such as scalability and elasticity. Unfortunately, there is no “universal list” of architectural characteristics, nor are there any real standards for what many of these terms mean (although people have tried). Instead, each organization interprets these terms for itself.

Additionally, the software ecosystem is constantly adding new concepts, terms, measures, and verifications, providing new opportunities to define even more architectural characteristics.

[image: Image]

[image: Image]

Sam: We’re supposed to define architectural characteristics for Lafter, but I can’t seem to find a standard list anywhere.

Alex: Gosh, there are so many possibilities...

Mara: That’s why I like to categorize them. Remember the old zoo maps that broke the zoo into “houses” and “enclosures” for each type of animal? That same kind of categorization can work here. It’s sort of like the genus and species of architectural characteristics.

[image: Image]

Process architectural characteristics

Process architectural characteristics are where the software development process intersects with software architecture. They reflect the decisions about the mechanics of building software.

[image: Image]

[image: Image]

Structural architectural characteristics

Structural architectural characteristics affect the internal structure of the software system, including factors like the degree of coupling between components and the relationships between different integration points.

[image: Image]

[image: Image]

Operational architectural characteristics

Operational architectural characteristics represent how architectural decisions influence what operational team members can do.

[image: Image]

[image: Image]

Cross-cutting architectural characteristics

As much as we’d like a nice, orderly zoo of architectural characteristics, platypuses still show up! Lots of important characteristics defy categorization.

[image: Image]

[image: Image]

Who Does What?

So many architectural characteristics! We had a nice database that listed the ones that are most important for Lafter, along with their definitions, but somehow the index became corrupted and we lost the linkage. Can you help restore them by drawing a line from each architectural characteristic to its definition?

	scalability
	Describes how well the components in the system create well-defined groupings and boundaries between components.

	deployability
	The system’s ability to recover from problems such as a power, internet connection, or hardware failure.

	modularity
	How easy is it for all users to access the system, including those with disabilities like colorblindness or hearing loss.

	robustness
	How easy it is for architects and developers to apply changes to enhance the system and/or fix bugs.

	accessibility
	Describes how well the system handles a large number of concurrent users while maintaining reasonable performance.

	maintainability
	Describes the cadence, efficiency, and reproducibility of deployments.

[image: Images] Solution in “Who Does What? Solution”

there are no Dumb Questions

Q: Where can I find a standard list of architectural characteristics?

A: No standard list really exists (despite several futile efforts) because the software development ecosystem constantly shifts and changes. Anyone trying to create a standard list is trying to hit a moving target.

Q: Isn’t security required for every application?

A: It depends! While it’s a common concern, if you design a free intra-office lunch-ordering system, the only security concern lies with others finding out that you order an egg salad sandwich every day.

Q: Doesn’t every application require availabilty?

A: You guessed it—it depends! Again, availability is a common concern for most applications, but if the mythical sandwich-ordering system mentioned above fails, the only real downside is that everyone has to get their own lunch.

Q: Can I choose any combination of architectural characteristics for my application?

A: Some architectural characteristics oppose one another. For example, architects find it challenging to design for both high performance and scalability. Determining the most important architectural characteristics for a system is only part of the design process. Combining them with logical component design will point you to an appropriate architectural style.

Q: What does it mean if you don’t choose an architectural characteristic like availability in your requirements?

A: The architectural characteristics you choose provide a guideline for the appropriate architectural style. If an architect doesn’t choose availability, it doesn’t mean they will purposefully design the system to have poor availability. Rather, it’s an indication of priority: trading off one architectural characteristic for another.

Exercise

[image: Image]

Welcome to “Take It or Leave It!” The rules of this game are simple—we’ll give you a business requirement that might come up for the Lafter application, and two architectural characteristics. As you know, everything in architecture is a trade-off, so if you attempt to optimize one, you probably won’t do as well with the other. Your job is to tell us which characteristic you rate as a higher priority for that requirement. You’ll find our thoughts at the end of the chapter.

	“We need to get this to market ASAP!”
	fault tolerance
	agility

	“Money’s tight, folks!”
	scalability
	simplicity

	“Oh, wow, this conference is going to be our biggest yet.”
	high availability
	maintainability

	“We want to start storing users’ credit card information.”
	security
	recoverability

	“This site is going to be very popular upon launch.”
	agility
	elasticity

[image: Images] Solution in “Exercise Solution”

Geek Note

[image: Image]

The software architecture world lacks a standard term for what we call architectural characteristics. Here are some of the terms people often use, and why we don’t care for them.

Most teams still call them nonfunctional requirements, which is misleading because architectural characteristics are indeed functional—they just don’t concern the domain. Calling them nonfunctional downplays their importance. Other teams call them system quality attributes, which implies an activity that happens at the end of the project rather than the beginning. Another common name is cross-cutting requirements, which is the one we dislike the least—but it contains the word requirement, which entangles it with domain behaviors, which come from requirements, as opposed to capabilities, which are defined by architectural characteristics.

[image: Image]

Architectural characteristics don’t just appear out of thin air. In fact, there are three different sources from which you should look to derive them.

	[image: Images] The problem domain

Part of your job is analyzing a problem to determine what architectural characteristics the system requires. Many structural design decisions come directly from the problem domain.

	[image: Images] Environmental awareness

Many requirements come from having a good understanding of the environment in which you’re operating. For example, are you working for a fast-moving startup, or a large enterprise with a lot at stake?

Note

Recall that some architectural characteristics are “implicit.” Many implicit characteristics emerge from these two sources.

	[image: Images] Holistic domain knowledge

Sure, you’re working with a particular problem domain—but we can assure you that the domain is a lot bigger than your particular focus. Let’s say you’re building out a payment system. While understanding what’s required of you is important, you’ll reveal architectural characteristics if you understand the financial world, finance industry regulations, and customers’ habits.

Let’s look at each of these sources in turn.

Sourcing architectural characteristics from the problem domain

Architects derive many of the necessary architectural characteristics from the problem domain—it is, after all, the motivation for writing the software in the first place. That means you must translate the items stated in requirements documents into their corresponding architectural characteristics. For example, the Lafter requirements specify “thousands of users.” As an architect, you must dig deeper to more accurately determine how many users are expected (scalability), how many of them will be there at the same time (concurrency), and how rapidly they’ll show up (elasticity).

Exercise

[image: Image]

Domain requirements are often a rich source of architectural characteristics. For example, our Lafter application needs to support large numbers of users, so scalability will be one necessary characteristic. Can you uncover more? Here are the requirements again:

Users: hundreds of speakers, thousands of users

	Requirements:
	Architectural characteristics

	
	Users can register for usernames and approve the privacy policy

	Scalability

	
	Users can add new content on Lafter as a “Joke” (long-form 	 post) or “Pun” (short-form post)

	Followers can “HaHa” (indicating strong approval) or “Giggle” 	 (a milder approval message) content they like

	Speakers at Sillycon Symposia events have a special icon

	Speakers can host forums on the platform related to their content

	Users can post messages of up to 281 characters

	Users can also post links to external content

	Additional Context:
	

	
	International support

	Very small support staff

	“Bursty” traffic: extremely busy during live conferences

[image: Images] Solution in “Exercise Solution”

Sourcing architectural characteristics from environmental awareness

You know a lot about where you work (maybe too much, in some cases!), and that will naturally drive your architectural characteristics analysis. For example, an architect working for a fast-moving startup will prioritize agility whether it is specified or not.

Note

Sorry, but this means you’re going to have to start paying attention in those business prioritization meetings!

It is important to understand organizational priorities so we can make more durable decisions. For example, let’s say we must decide how to integrate two subsystems. The choices are a customized but highly suited protocol or an industry-standard protocol that will require a little more effort. In a vacuum, we might choose the first. However, if we know that the organization’s goal is to engage heavily in mergers with other companies, that fact could tip our decision toward the more open solution.

Note

Architects can’t make decisions in a vacuum—context is always important.

Sourcing architectural characteristics from holistic domain knowledge

Note

Some architects stay within particular domains exactly because they have the advantage of domain knowledge.

You have also no doubt absorbed a lot of domain knowledge: information that isn’t explicitly spelled out in the requirements but that you implicitly understand about important aspects of the domain.

Suppose Lafter has decided to run a promotion at a local university to entice students to sign up (they go to a lot of conferences, and some of them have a sense of humor). We need to design an application that handles sign-ups for the promotion day. To make the math easy, assume that the school has 1,000 students and they have 10 hours to sign up. Should we design the system using a consistent scale, implicitly assuming that the students will distribute themselves evenly during the sign-up process? (Have we met any university students?)

Based on real-world experience, we can guess that this won’t work. Think about what you know about the target demographic. Some students are hyperdiligent; some tend to procrastinate. Thus, the actual design must handle an elastic burst of students in the first hour (as the Type A individuals rush to get in line), stay mostly idle for the bulk of the day, and then handle another elastic burst just before the sign-up window closes, to accommodate all the stragglers.

Note

Never underestimate some university students’ ability to procrastinate.

Note

One of the most dangerous discoveries in life is how much you can procrastinate and still (mostly) get the job done.

Architects must make use of all available information sources to understand the full range of trade-offs inherent in our architectural decisions.

Watch it!

[image: Image]

Solutions versus requirements

Customers often come to architects with solutions rather than requirements. For example, back in the 1970s, the US Air Force commissioned a fighter jet and included a requirement that it be capable of achieving speeds up to Mach 2.5. The designers tried, but the technology of the time just wasn’t sufficient to meet the requirement. They went back to the Air Force and asked: “Why does it need to go Mach 2.5?” The answer was, “Well, these things are expensive, so we want it to be able to flee a fight if necessary.” With that knowledge in mind, they went back and designed the F-16 fighter jet. It had a maximum speed of Mach 2.1, but it was the most maneuverable and fastest-accelerating jet ever created.

When users bring us solutions rather than requirements, it’s architects’ job to imitate an annoying toddler and keep asking “But why?!?” enough times to uncover the actual requirements hidden within the solutions.

Exercise

[image: Image]

It’s sometimes difficult to distinguish requirements from solutions. Here are some responses you might get when you ask “why?” that could indicate something might be one or the other. Can you identify which indicate requirements and which solutions?

“We need a system to track user preferences and customizations, then save them between sessions.”

	[image: Images] requirement
	[image: Images] solution

“Do we really need to build our own survey service? Surely we can find one that does what we need.”

	[image: Images] requirement
	[image: Images] solution

“An enterprise service bus would solve some of our current problems (albeit with some changes and work-arounds) and it offers extreme extensibility.”

	[image: Images] requirement
	[image: Images] solution

“According to the friendly sales rep, this software package does all the things accounting needs, now and in the near future.”

	[image: Images] requirement
	[image: Images] solution

[image: Images] Solution in “Exercise Solution”

Composite architectural characteristics

[image: Image]

Alex: The business analyst asked if we can make sure the system is “reliable.” What do they mean?

Sam: Wow, I can think of a lot of ways to define “reliable” for a piece of software.

Mara: This happens a lot. A composite is a combination of two or more things, and often architectural characteristics combine with each other to create (seemingly) new ones. We call these composite architectural characteristics.

What does reliable mean? We can measure many different aspects of reliability, like how available the system is, how consistent the user interface workflows are, and how well it handles data integrity.

Alex: How do I identify these?

Mara: To identify composites, ask: “Can I objectively measure this architectural characteristic?” While we often discuss performance as a single value, it’s actually a composite—because we have to be more specific to get to something measurable. An example of a measurable architectural characteristic is first contentful paint, which measures the time it takes for a web page to load on a mobile device.

[image: Image]

Priorities are contextual

It’s impossible to choose the same set of architectural characteristics for every project. The set of architectural characteristics you choose for a particular application, and how you prioritize each one, will differ based on context.

Sharpen your pencil

[image: Image]

Context matters. At the top, we’ve listed several architectural characteristics. Below that are three application scenarios. For each scenario, rank each characteristic based on how important it is for that type of application. Hint: Some applications won’t need all of them.

[image: Image]

[image: Images] Solution in “Exercise Solution”

[image: Image]

Congratulations, you have yet another job. You’re right to be skeptical about how sophisticated an understanding your coworkers have of architectural concepts. That means you have one more job as an architect: translation!

As much as it would be nice for our colleagues to learn our language, architects are generally the ones who have to translate the business’s goals into identifiable and measurable architectural characteristics.

Lost in translation

It’s not unusual for business experts and analysts to state (or subtly suggest) a requirement without realizing it, hidden in plain English. It’s your job, as a software architect, to read between the lines, find the requirements, and translate them into architectural characteristics. Here are a few examples.

[image: Image]

[image: Image]

More requirements are NOT better.

What happens when an architect takes a list of possible architectural characteristics for Lafter to a group of business users and asks them, “Which of these do you want for the system?”

They invariably answer: “All of them!”

As nice as it would be to be able to accommodate that request, it’s not a good idea to try.

Remember, architectural characteristics are synergistic with each other and with the problem domain. That means the more architectural characteristics the system must support, the more complex its design must be.

When undertaking structural design for a system, architects must find a balance between domain priorities and the architectural characteristics necessary for success.

Architectural characteristics and logical components

Before we tell you how to go about trying to balance architectural characteristics with each other and the domain, we want to show you how architectural characteristics and logical components are two sides of the same coin. You see, both of them aim to support the problem domain (also known as the reason you are writing software to begin with).

Architectural characteristics ≈ capabilities

Architectural characteristics describe the kinds of capabilities your solution will support, rather than the behavior of the application, which is based on requirements.

[image: Image]

Logical components = behavior

Logical components, covered in depth in Chapter 4, represent the design of the system you are attempting to implement in software in order to solve the fundamental problem at hand.

Balancing domain considerations and architectural characteristics

Architects use architectural characteristics and logical component analysis to determine the appropriate architectural style, and the Lafter application is no exception. You need to strike a balance between the two.

No architectural characteristics

Sometimes we don’t take the time to analyze architectural characteristics before designing the system, leading to expensive and time-consuming rework as we discover that our system fails to exhibit the necessary architectural characteristics.

[image: Image]

Good balance between…

In this scenario, we have achieved a balance in our design decisions between architectural characteristics and domain considerations.

[image: Image]

…architectural characteristics and domain considerations

This allows us to achieve operational and structural goals without overengineering.

Too many architectural characteristics

Unfortunately, architects sometimes retreat to an ivory tower and spend too much time analyzing architectural characteristics, or identifying too many of them to be useful. This leads to overengineering, wasting time and effort that could be spent on implementation and ongoing maintenance.

[image: Image]

Limiting architectural characteristics

When the business stakeholders want all of the possible architectural characteristics, how can you limit their enthusiasm?

The magical number 7

One useful guideline for the conversation between architects and business analysts is to limit the number of architectural characteristics they can choose to seven. Why seven? Psychological research indicates that people remember items in chunks of seven (one of the reasons that early phone numbers were seven digits). It’s also large enough to provide some variety without creating a paradox of choice by offering too many.

Note

“The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information” is a famous paper from 1956 by psychologist George Miller.

We created a worksheet to help architects work with other stakeholders to arrive at a reasonable number. This is a demo; you’ll get to use it on the next page.

[image: Image]

Sharpen your pencil

[image: Image]

in “Exercise”, you identified architectural characteristics for Sillycon Symposia’s social media application, Lafter. To make sure you’ve achieved a good balance, limit your list to seven characteristics. Then, check the boxes next to the top three most important.

[image: Image]

Possible Candidate Architectural Characteristics

	performance
	data integrity
	deployability

	responsiveness
	data consistency
	testability

	availability
	adaptability
	configurability

	fault tolerance
	extensibility
	customizability

	scalability
	interoperability
	recoverability

	elasticity
	concurrency
	auditability

[image: Images] Solution in “Exercise Solution”

Bullet Points

	Architectural characteristics represent one part of the structural analysis that architects use to design software systems. (We’ll talk abou the other part, logical components, in Chapter 4.)

	Architectural characteristics describe a system’s capabilities.

	Some architectural characteristics overlap with operational concerns (such as availability, scalability, and so on).

	There are many catagories of architectural characteristics. No one can make a comprehensive list, because the software development ecosystem is constantly changing.

	When identifying architectural characteristics, architects look for factors that influence structural design.

	Architects should be careful not to specify too many architectural characteristics, because they are synergistic—changing one requires other parts of the system to change.

	Some architectural characteristics are implicit: not explicitly stated in requirements, yet part of an architect’s design considerations.

	Some architectural characteristics may appear in multiple categories.

	Many architectural characteristics are cross-cutting: they interact with other parts of (and decisions in) the organization.

	Architects must derive many architectural characteristics from requirements and other domain design considerations.

	Some architectural characteristics come from domain and/or environmental knowledge, outside of the requirements of a specific application.

	Some architectural characteristics are composites: they consist of a combination of other architectural characteristics.

	Architects must learn to translate “business speak” into architectural characteristics.

	Architects should limit the number of architectural characteristics they consider to some small number, such as seven.

Characteristics Crossword

[image: Image]

Ready to have some fun and test your knowledge about what you’ve learned? Try this crossword puzzle about architectural characteristics.

[image: Image]

Across

3. An architectural characteristic that might be implicit

4. _____ engineering is an architectural problem

8. Choosing architectural characteristics means assigning each one a _____

9. Magic number of characteristics to ask for

11. A nonfunctional requirement is also called an architectural _____

15. Some architectural characteristics are _____-cutting

17. What architects should ask when users suggest solutions instead of requirements

18. A system might need to _____ up and down to meet demand

19. _____ tolerance is an architectural demand

Down

1. Uneven traffic often comes in _____

2. A Lafter post can be a “joke” or a “_____”

3. Architectural characteristics influence the system’s _____

5. Architectural characteristics can be explicit or _____

6. _____ integrity is an architectural characteristic

7. A site with large numbers of _____ users might need to be scalable

10. Many governments regulate data _____

12. An architectural characteristic is critical or important to the system’s _____

13. Combining architectural characteristics and logical components gives you an architectural _____

14. The thing you’re writing software about

16. Web page loading time is often called “first contentful _____”

[image: Images] Solution in “Characteristics Crossword Solution”

From “Who Does What?”

Who Does What? Solution

So many architectural characteristics! We had a nice database that listed the ones that are most important for Lafter, along with their definitions, but somehow the index became corrupted and we lost the linkage. Can you help restore them by drawing a line from each architectural characteristic to its definition?

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Welcome to “Take It or Leave It!” The rules of this game are simple—we’ll give you a business requirement that might come up for the Lafter application, and two architectural characteristics. As you know, everything in architecture is a trade-off, so if you attempt to optimize one, you probably won’t do as well with the other. Your job is to tell us which characteristic you rate as a higher priority for that requirement.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Domain requirements are often a rich source of architectural characteristics. For example, our Lafter application needs to support large numbers of users, so scalability will be one necessary characteristic. Can you uncover more? Here’s what we came up with.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

It’s sometimes difficult to distinguish requirements from solutions. Here are some responses you might get when you ask “why?” that indicate something might be one or the other. Can you identify which indicate requirements and which solutions?

[image: Image]

From “Sharpen your pencil”

Exercise Solution

[image: Image]

Context matters. At the top, we’ve listed several architectural characteristics. Below that are three application scenarios. For each scenario, rank each characteristic based on how important it is for that type of application. Hint: Some applications won’t need all of them. Here are our rankings.

[image: Image]

[image: Image]

From “Sharpen your pencil”

Exercise Solution

[image: Image]

in “Exercise”, you identified architectural characteristics for the Sillycon Symposia Lafter social media application. To make sure you have achieved a good balance, limit the number to seven. Then, check the boxes next to the top three most important.

[image: Image]

Possible Candidate Architectural Characteristics

	performance
	data integrity
	deployability

	responsiveness
	data consistency
	testability

	availability
	adaptability
	configurability

	fault tolerance
	extensibility
	customizability

	scalability
	interoperability
	recoverability

	elasticity
	concurrency
	auditability

Characteristics Crossword Solution

[image: Image]

From “Characteristics Crossword”

[image: Image]

Chapter 3. The Two Laws of Software Architecture: Everything’s a Trade-Off

[image: Image]

What happens when there are no “best practices”? The nice thing about best practices is that they’re relatively risk-free ways to achieve certain goals. They’re called “best” (not “better” or “good”) for a reason—you know they work, so why not just use them? But one thing you’ll quickly learn about software architecture is that it has no best practices. You’ll have to analyze every situation carefully to make a decision, and you’ll need to communicate not just the “what” of the decision, but the “why.”

So, how do you navigate this new frontier? Fortunately, you have the laws of software architecture to guide you. This chapter shows you how to analyze trade-offs as you make decisions. We’ll also show you how to create architectural decision records to capture the “hows” and “whys” of decisions. By the end of this chapter, you’ll have the tools to navigate the uncertain territory that is software architecture.

It starts with a sneaker app

Archana works for Two Many Sneakers, a company with a very successful mobile app where shoe collectors (“sneakerheads”) can buy, sell, and trade collectible sneakers. With millions of shoes listed, customers can find the shoes they really want or upload photos to help sell the ones they don’t.

[image: Image]

The app’s initial architecture was a single service as shown below:

[image: Image]

The Two Many Sneakers app knows to talk to the trading service to fetch and update data (like a photo of a mint-condition pair of Nikes). The trading service, in turn, fetches data and updates the database.

Business is booming. Sneakerheads are always willing to change up their collections, and Two Many Sneakers’ customer base has grown quickly. Now customers are demanding real-time notifications, so they’ll know whenever someone lists a pristine pair of those Air Jordans they’ve been pining for.

Security is always a concern in online sales. Nobody wants knockoffs, and credit card numbers need to be protected. To stay a few steps ahead of any scammers, Two Many Sneakers’ management team wants to prioritize improving the app’s fraud detection capabilities. They plan to use data analytics to help detect fraud by spotting anomalies in user behavior and filtering out bots.

[image: Image]

Work has already begun—all the team needs to do now is set up the trading service to notify the new notification and analytics services anytime something of interest happens in the app.

[image: Image]

What do we know so far?

We need to figure out how these services will communicate with one another. Let’s recap what we know (and don’t know) so far:

	The current architecture is rather simple—the trading service talks to its own database, and that’s that. We need the trading service to send information to the notification service and the analytics service.

[image: Image]

	Word in the office is that there’s a chance that the finance department (which is responsible for compliance) will want updates from the trading service. In other words, whatever architecture we come up with will need to be extensible.

[image: Image]

	We don’t know what data to send the notification and analytics services—do the two services get the same kind of data, or wildly different data? And we don’t know where things stand with finance, so that’s another unknown.

[image: Image]

To be clear, there are some things we know and plenty we don’t. Welcome to the world of software architecture.

Note

As the system’s architects, we need to identify its architectural characteristics. (You learned about those in Chapter 2.)

Speaking of architecture, we’ll be done, say, next Thursday—right?

Exercise

[image: Image]

Which of the following architectural characteristics stand out as important for this particular problem? Hint: There are no right answers here, because there is a lot we don’t know or aren’t sure of yet. Take your best guess—we’ve provided our solution at the end of this chapter. We’ll get you started:

[image: Image]

[image: Images] Solution in “Exercise Solution”

Brain Power

[image: Image]

All the characteristics in the previous exercise sound pretty good, right? Seriously, who’d say no to upgradability?

But for each one, ask yourself—is this characteristic critical to the project’s success? Or is it a nice-to-have?

What’s more, some characteristics conflict. A highly secure application with loads of encryption and secure connections probably won’t be highly performant. Go back and see if any of your choices are at odds. If so, you can only pick one.

Note

Flashback to Chapter 2? You bet it is!

there are no Dumb Questions

Q: Even this simple exercise seems to have a lot of moving parts. We know some things, we think we know some other things, and there’s a lot that we certainly don’t know. How do we go about thinking about architecture?

A: You’re right. In almost all real-life scenarios, your list of architectural characteristics will probably contain a healthy mix of “this is what we want” and “this is something we might want.” Even your customers can’t answer the question of what they will eventually want. (Wouldn’t that be nice?) This is the “stuff you don’t know you don’t know,” also known as the “unknown unknowns.”

It’s not unusual for an “unknown unknown” to rear its head midway through a project and derail even the best-laid plans. The solution? Embrace agility and its iterative nature. Realize that nothing, particularly software architecture, remains static. What worked today might prove to be the biggest hurdle to success tomorrow. That’s the nature of software architecture: it constantly evolves and changes as you discover more about the problem and as your customers demand more of you.

Communicating with downstream services

Our goal is to get the trading system to notify the reporting and analytics systems automatically. For now, let’s assume we decide to use messaging. But that presents a dilemma—should our messaging use queues or topics?

Note

It’s OK if you don’t know much about messaging, queues, or topics. We’ll tell you what you need to know.

Before we go further, let’s make sure we’re on the same page about the differences between queues and topics. Most messaging platforms offer two models for a publisher of a message (in this case, that’s the trading service) to communicate with one or more consumers (the downstream services).

The first option is a queue, or a point-to-point communication protocol. Here, the publisher knows who is receiving the message. To reach multiple consumers, the publisher needs to send a message to one queue for each consumer. If the trading service wants to use queues to tell the analytics service and the reporting service about trades, this is what the setup will look like:

Note

If it helps, think of queues as being like a group text—you pick everyone you want to inform, type your message, and hit “send.”

[image: Image]

When using the second option, topics, you are signing on for a broadcasting model. The publisher simply produces and sends a message. If another service downstream wants to hear from the publisher, it can subscribe to the topic to receive messages. The publisher doesn’t know (or care) how many services are listening.

Note

Topics are similar to posting a picture on your go-to social networking site. Anyone following you will see that picture, since they’ve “subscribed” to your timeline.

[image: Image]

Both options sound good—so how do we pick? Let’s find out.

Analyzing trade-offs

You can’t have your cake and eat it too. The world is full of compromises—we often optimize for one thing at the cost of another. Want to take and store lots of pictures on your phone? Either get more storage, which costs more, or compress them, which lowers the image quality.

[image: Image]

Software architecture is no different. Every choice you make involves significant compromises or, as we like to call them, trade-offs. So what exactly does this mean for you?

Note

If this sounds familiar, it should be! It was part of our discussion of significant versus less-significant trade-offs in Chapter 1.

If you know which architectural characteristics are most important to your project, you can start thinking of solutions that will maximize some of those attributes. But if a solution lets you maximize one characteristic (or more), it will come at the cost of other characteristics. For example, a solution that allows for great scalability might also make deployability or reliability harder.

No matter what solution you come up with, it will come with trade-offs—upsides and downsides.

Your job is twofold: know the trade-offs associated with every solution you come up with, and then pick the solution that best serves the most important architectural characteristics.

Note

Rich Hickey, creator of the Clojure programming language, once said, “Programmers know the benefits of everything and the trade-offs of nothing.” We’d like to add: “Architects need to understand both.”

You can’t have it all. You’ll have to decide which architectural characteristics are most important, and choose the solution that best allows for those characteristics.

Trade-off analysis: Queue edition

Trade-off analysis isn’t just about finding the benefits of a particular approach. It’s also about seeking out the negatives to get the full picture. Let’s look at each option in turn, starting with queues.

With queues, for every service that the trading service needs to notify, we need a separate queue. If the notification service and the analytics service need different information, we can send different messages to each queue. The trading service is keenly aware of every system to which it communicates, which makes it harder for another (potentially rogue) service to “listen in.” (That’s useful if security is high on our priority list, right?) Oh, and since each queue is independent, we can monitor them separately and even scale them independently if needed.

[image: Image]

The trading service is tightly coupled to its consumers—it knows exactly how many there are. But we’re not sure if we’ll need to send messages to the compliance service, too. If that happens, we’ll have to rework the trading service to start sending messages to a third queue. In short, if we choose queues, we’re giving up on extensibility.

[image: Image]

See what we mean when we say “trade-off analysis”?

Trade-off analysis: Topic edition

What about using topics? Well, the upside is clear—the trading service only delivers messages to a topic, and anyone interested in listening for a message from the trading service simply subscribes to that topic. Compliance wants in? They can simply subscribe: no need to make any changes to the trading service. Low coupling for the win.

[image: Image]

But topics have a few downsides, too. For one thing, you can’t customize the message for any particular service—it’s a one-size-fits-all, take-it-or-leave-it proposition. Scaling, too, is one-size-fits-all, since you have only one thing to scale. And anyone can subscribe to the topic without the trading service knowing—which, in some circumstances, is a potential security risk.

Back to the whiteboard!

[image: Image]

Sharpen your pencil

[image: Image]

Spend a few minutes comparing the results of our trade-off analysis. Notice how both options support some characteristics but trade off on others? Now we’re going to present you with some requirements—see if you can decide if you’d pick queues or topics to support each one.

	Requirements
	

	“Security is important to us.”
	Queues / Topics

	“Different downstream services need different kinds of information.”
	Queues / Topics

	“We’ll be adding other downstream services in the future.”
	Queues / Topics

[image: Images] Solution in “Exercise Solution”

The first law of software architecture

Queues or topics? Enough with the suspense already. The answer is—it depends!

What’s important to the business? If security is paramount, we should probably go with queues. Two Many Sneakers is growing by leaps and bounds and has loads of other services interested in its sneaker trades, so extensibility is its biggest priority. That means we should pick the topic option.

Time is also a factor: if we need to get to market quickly, we might pick a simpler architecture (simplicity) over one that offers high availability. (Having an application that guarantees three “nines” of uptime only matters if you have customers, right?)

[image: Image]

The key takeaway is that in software architecture, you’ll always be balancing trade-offs. That leads us to the First Law of Software Architecture.

[image: Image]

In software architecture, nice, clean lines are rare and there are no “best practices.” Every choice you make will involve many factors—often conflicting ones. The First Law is an important lesson, so take it to heart. Write it down on a sticky note and put it on your monitor. Get a backwards tattoo of it on your forehead so you’ll see it in the mirror! Whatever it takes.

Note

If you find a decision in software architecture that doesn’t have a trade-off, you haven’t looked at it hard enough.

Sharpen your pencil

[image: Image]

This time, we’d like you to do some trade-off analysis on your own. We chose messaging as the communication protocol between our trading service and its consumers. Messaging is asynchronous. Choosing between asynchronous and synchronous forms of communication comes with its own set of trade-offs! We’ve given you two whiteboards, one for each form of communication, and we’ve listed a bunch of “-ilities.” We’d like you to consider how each architectural characteristic would work in both contexts. Is this characteristic a pro or a con (or neither) in synchronous communications? What about in asynchronous communications? Place each “-ility” in the appropriate column. Hint: Not all of them apply to this decision. We put the first pro on the whiteboard for you. When you’re done, you can see our answers at the end of the chapter.

[image: Image]

[image: Image]

[image: Images] Solution in “Sharpen your pencil Solution”

there are no Dumb Questions

Q: I’ve heard of the Architecture Tradeoff Analysis Method (ATAM). Is that what you’re talking about?

A: ATAM is a popular method of trade-off analysis. With ATAM, you start by considering the business drivers, the “-ilities,” and the proposed architecture, which you present to the stakeholders. Then, as a group, you run through a bunch of scenarios to produce a “validated architecture.” While ATAM offers a good approach, we believe it comes with certain limitations—one being that it assumes the architecture is static and doesn’t change.

Rather than focusing on the process of ATAM, we prefer to focus on results. The objective of any trade-off analysis should be to arrive at an architecture that best serves your needs. You’ll probably go through the process several times as you discover more and more about the problem and come up with different scenarios.

Another popular approach is the Cost Benefit Analysis Method (CBAM). In contrast to ATAM, CBAM focuses on the cost of achieving a particular “-ility.”

We recommend you look at both methods and perhaps consider combining them—ATAM can help with trade-off analysis, while CBAM can help you get the best return on investment (ROI).

Just remember—the process is not as important as the goal, which is to arrive at an architecture that satisfies the business’s needs.

It always comes back to trade-offs

Some people always pick a particular technique, approach, or tool regardless of the problem at hand. Often they choose something they’ve had a lot of success with in the past. Sometimes they have what we affectionately call “shiny object syndrome,” where they think that some new technology or method will solve all their problems.

Regardless of past achievements or future promises, just remember—for every upside, there’s a downside. The only questions you need to answer are “Will the upsides help you implement a successful application?” and “Can you live with the downsides?”

Whenever someone sings the praises of a certain approach, your response should be: “What are the trade-offs?”

Note

To be clear, we aren’t saying you shouldn’t use new tools and techniques. That’s progress, right? Just don’t forget to consider the trade-offs as you decide.

Making an architectural decision

Debating the pros and cons with your team in front of a whiteboard is fun and all, but at some point, you must make an architectural decision.

We mentioned architectural decisions in Chapter 1, but let’s dive a little deeper. As you architect and design systems, you will be making lots of decisions, about everything from the system’s overall structure to what tools and technologies to use. So what makes a decision an architectural decision?

[image: Image]

In most cases, any choice you make that affects the structure of your system is an architectural decision. Here are a couple of example decisions:

Note

To jog your memory, picking whether you’d like a one- or two-story house would be an architectural decision.

[image: Image]

[image: Image]

[image: Image]

Notice how these decisions act as guides rather than rules. They aid teams in making choices, without being too specific. Most (but not all) of the architectural decisions you’ll make will revolve around the structure of your systems.

Note

As we put it in Chapter 1: “Architectural decisions serve as guideposts to help development teams understand the constraints and conditions of the architecture.”

What else makes a decision architectural?

Usually, architectural decisions affect the structure of an architecture—are we going with a monolith, or will we leverage microservices? But every so often, you might decide to maintain a particular architectural characteristic. If security is paramount, for example, Two Many Sneakers might make a decision like this:

[image: Image]

At other times, you might decide on a specific tool, technology, or process if it affects the architecture or indirectly helps you achieve a particular architectural characteristic. For example:

[image: Image]

Everything in this chapter so far has led to this important moment—making an architectural decision. You start with a trade-off analysis. Then you consider the pros and cons of each option in light of other constraints, like business and end user needs, architectural characteristics, technical feasibility, time and budgetary constraints, and even development concerns. Then, finally, you can make a decision.

Geek Note

[image: Image]

Michael Nygard, author of the book Release It! (Pragmatic Programmer), defines an architecturally significant decision as “something that has an effect on how the rest of the project will run” or that can “affect the structure, non-functional characteristics, dependencies, interfaces, or construction techniques” of the architecture. To learn more, we recommend reading his blog post, “Documenting Architecture Decisions” (https://www.cognitect.com/blog/2011/11/15/documenting-architecture-decisions).

[image: Image]

You bring up several good points. It’s important to record our decisions in a more permanent way. In addition, trade-off analysis is an involved process. It’d be a real waste if we lost all that work just because someone got a little hasty with the eraser.

But you make another key observation: while the decision itself is important, why we made that decision might be even more important. Which leads us to...

The second law of software architecture

Making decisions is one of the most important things software architects do.

Let’s say you and your team do a trade-off analysis and conclude that you’re going to use a cache to improve your application’s performance. The result of your analysis is that your system starts using a cache somewhere. The what is easy to spot.

That decision is important, but so are the circumstances in which you made the decision, its impact on the team implementing it, and why, of all the options available to you, you chose what you did.

This leads us to the Second Law of Software Architecture.

[image: Image]

You see, future architects (or even “future you”) might be able to discern what you did and even how you did it—but it’ll be very hard for them to tell why you did it that way. Without knowing that, they might waste time exploring solutions you’ve already rejected for good reasons, or miss a key factor that swayed your decision.

This is why we have the Second Law. You need to understand and record the “why” of each decision so it doesn’t get lost in the sands of time.

So how do we go about capturing architectural decisions? We’ll dive into that next.

Architectural decision records (ADRs)

Do you remember everything you did last week? No? Neither do we. This is why it’s important to document stuff—especially the important stuff.

Thanks to the Second Law of Software Architecture, we know we need a way to capture not just the decision, but the reason we made it. Architects use architectural decision records (ADRs) to record such decisions because it gives us a specific template to work with.

Note

We cannot emphasize enough how important keeping these records is.

An ADR is a document that describes a specific architectural decision. You write one for every architectural decision you make. Over time, they’ll build up into an architectural decision log. Remember that architectural decisions form the second dimension to describe your architecture. ADRs are the documentation that supports this dimension.

[image: Image]

An ADR has seven sections: Title, Status, Context, Decision, Consequences, Governance, and finally Notes. Every aspect of an architectural decision, including the decision itself, is captured in one of these sections. Let’s take a look, shall we?

Cubicle conversation

[image: Image]

Alex: Doing the trade-off analysis between queues and topics took it out of me.

Mara: Me too. Trade-off analysis can be arduous, but I’m glad we got it done. This is a big architectural decision. It’s crucial that we understand the pros and cons of every choice.

Sam: Yeah, yeah. So we decided to use queues, right? Now can we get back to programming?

Mara: Slow down a second. You’re right—we’ve made a decision. Now we should record our decision in an ADR.

Note

Guess what? You’re going to be helping the team write their ADR. Keep an eye out for those exercises

Sam: But why? We already know what we’re going to do. That seems like a lot of work.

Alex: Look, we know why we chose to go with queues. It’s the option that best supports the architectural characteristics we want to maximize in the system, right?

Mara: Correct. But while we know why we made that decision, what about anyone else who might come along and wonder why we chose queues over topics, like future employees? That’s why we should record our thinking.

Sam: I can see that being useful.

Alex: Great! So can we start drafting our ADR?

Writing ADRs: Getting the title right

Every ADR starts with a title that describes the decision. Craft this title carefully. It should be meaningful, yet concise. A good title makes it easy to figure out what the ADR is about, which is especially handy when you’re frantically searching for an answer!

[image: Image]

Let’s dive deeper into what a good ADR title looks like. Imagine a team is writing a service that provides surveys to customers. They’ve done a trade-off analysis and have decided to use a relational database to store survey results. Here’s what their ADR title might look like:

[image: Image]

The title should consist mostly of nouns. Keep it terse: you’ll have plenty of opportunities to go into detail later. It should describe what the ADR is about, much like the headline of a news article or blog post. Get that right, and the rest will follow.

The title should start with a number—we suggest using three digits, with leading zeros where needed. This allows you to number your ADRs sequentially, starting with 001 for your first ADR, all the way to 999. Every time you add a new ADR, you increment the number. This makes it easy for anyone reading your records to know which decisions came before others.

there are no Dumb Questions

Q: What happens if we end up writing more than 999 ADRs?

A: That’s a lot of ADRs! If that were to happen, you’d need to revise a bunch of titles (and potentially filenames). In our experience, a three-digit prefix is plenty.

Q: Can I reuse an ADR number?

A: Every ADR should get a unique identifier. This makes it easier to reference them without confusion.

Note

More about this when we discuss the Status section.

Exercise

[image: Image]

In the following exercises, you’re going to help the team at Two Many Sneakers write an ADR. They’ve decided to use asynchronous messaging, with queues between the trading service and downstream services. Assume this is the 12th ADR the team is writing. What title would you give this ADR? Don’t forget to number it! Use this space to jot down your thoughts. You can see what we came up with at the end of this chapter.

[image: Images] Solution in “Exercise Solution”

Writing ADRs: What’s your status?

Great! You’ve settled on a descriptive title. Next, you’ll need to decide on the status of your ADR. The status communicates where the team stands on the decision itself.

But wait—isn’t the point of the ADR to record a decision? Well, kinda. But making decisions is a process.

ADRs do record architectural decisions, but they also act as documentation, making it easier to share and collaborate. Others might need to look at or even sign off on an ADR. Let’s start by considering the different statuses an ADR can have.

[image: Image]

	[image: Images] Request for Comment (RFC)

Use this status for ADRs that need additional input—perhaps from other teams or some sort of advisory board. Usually, these ADRs affect multiple teams or address a cross-cutting concern like security. An ADR in RFC status is typically a draft, open for commentary and critique from anyone invited to do so. An ADR in RFC status should always have a “respond by” deadline.

Note

This is like planning an evening out. You know you’d like to go out and which friends you want to invite, but you hope they’ll suggest a restaurant.

Note

You ask everyone to respond by Tuesday so you can make reservations. (The deadline is important, since Ted can never make up his mind about anything.)

	[image: Images] Proposed

After everyone has a chance to comment, the ADR’s status moves to Proposed. This means the ADR is waiting for approvals. You might edit it or even overhaul the decision if you discover a limitation that makes it a no-go. In other words, you still haven’t made a decision, but you’re getting there.

Note

You have a plan for the evening, but you haven’t hit “send” on the invite yet—just in case the weather turns.

	[image: Images] Accepted

Does exactly what it says on the tin. A decision has been made, and everyone is on board who needs to be. An Accepted status also tells the team tasked with implementing this decision that they can get started.

Note

Oh yeah. Everyone has RSVP’d. Time to find a cool outfit!

If there’s no need for feedback from others, you can set the ADR’s status to Accepted as soon as the decision is made. Most ADRs stay at Accepted, but there is one more status to be aware of: Superseded.

You’ve arrived at a decision, which you diligently record in an ADR. Signed, sealed, delivered—you’re done.

But then things change.

Maybe the business is growing and the board decides to focus more on scalability than on time to market. Maybe the company is entering international markets and needs to comply with EU data privacy and retention regulations. Whatever the reason, the decision you made is no longer appropriate. What now?

Well, you write another ADR. The old ADR is superseded by the new one, and you record it as such. Suppose the customer survey team realizes that a relational database is no longer fulfilling their needs, so they do another trade-off analysis and decide to switch to a document store. Here are the titles and statuses of the old and new ADRs:

[image: Image]

An accepted ADR can move into Superseded status if a future ADR changes the decision it documents. It’s important for both ADRs to highlight which ADR did the superseding and which ADR has been superseded. This bidirectional linking allows anyone looking at a superseded ADR to quickly realize that it’s no longer relevant, and tells them exactly where to look for details on the new decision. Anyone looking at the superseding ADR can follow the link back to the superseded ADR to understand everything involved in solving that particular problem.

Note

Linking ADRs is an important part of a project’s “memory.” It helps everyone remember what has already been tried.

there are no Dumb Questions

Q: All this superseding and numbering seems overly complicated. Why not just edit the original ADR?

A: We use a three-digit prefix in the ADR title because it helps sequence things. Let’s say ADR 007 no longer applies to your situation, but you’ve made a bunch of architectural decisions in the meantime. The last ADR in your architectural decision log is ADR 013.

Now you need to reevaluate ADR 007. Say you choose to edit it, as opposed to superseding it with ADR 014. What would happen?

Chronologically speaking, you amend ADR 007 after accepting ADR 013. But if someone tried to follow the decision process by reading the ADRs, they’d be seeing them in the wrong order! Readers might think that the new decision came first. It wouldn’t convey that you made one decision and then had to change it for some reason. Giving it a new number makes it clear that the old ADR 007 was no longer relevant after ADR 013. Confused yet?

Q: So you’re telling me that an Accepted ADR is immutable: once accepted, it is not permitted to change. Is that right?

A: Look at you! That’s exactly it. Except for when the status of an ADR goes from Accepted to Superseded, a decision recorded in an ADR is immutable. Sure, you might edit the ADR to include additional information, but for the most part, other than the status, things shouldn’t change much.

Exercise

[image: Image]

In the previous exercise, you hashed out the title of Two Many Sneakers’ ADR about using queues for messaging. Let’s say you get the green light. Write down the title you chose in the space below and give your ADR a status:

	Title: ___

	Status: ___

Three months later:

Whoops! The requirements have changed. Your latest trade-off analysis reveals that topics would be a better fit. Everyone has signed off on this, so you need to supersede your ADR with a new ADR. This is the 21st ADR your team has worked on. Write down the title and the new status of the old ADR:

	Title: ___

	Status: ___

Now write down the title and status of the newly introduced ADR:

	Title: ___

	Status: ___

[image: Images] Solution in “Exercise Solution”

Writing ADRs: What’s your status? (recap)

There’s a lot going on with ADR statuses, so we’ve created a handy visualization to help you out.

[image: Image]

Writing ADRs: Establishing the context

Context matters. Every decision you’ve ever made, you made within a certain context and with certain constraints. When you chose what to have for breakfast this morning, the context might have included how hungry you were, how your body felt, your lunch plans, and whether you’re trying to increase your fiber intake. It’s no different for software architecture.

[image: Image]

The Context section in the ADR template is your place to explain the circumstances that drove you to make the decision the ADR is capturing. It should also capture any and all factors that influenced your decision. While technological reasons will usually find their way onto this list, it’s not unusual to include cultural or political factors to help the reader understand where you’re coming from.

[image: Image]

Sharpen your pencil

[image: Image]

Continue building out the ADR for Two Many Sneakers. Use the space below to write a Context section for the team’s decision to use queues for communication between the trading service and other services. (Then compare it with our take at the end of this chapter.)

[image: Images] Solution in “Sharpen your pencil Solution”

there are no Dumb Questions

Q: What about all that time and effort I spent on the whiteboard? Is that part of the context?

A: If you need to document your trade-off analysis, we suggest you introduce a new section called “Alternatives.” In it, list all the alternatives you considered, followed by your lists of pros and cons.

Using a separate section to detail the trade-off analysis delineates it cleanly and avoids cluttering the Context section.

Writing ADRs: Communicating the decision

We’ve finally arrived at the actual decision. Let’s start by looking at the customer survey team’s completed Decision section:

[image: Image]

[image: Image]

If this ADR’s status is RFC or Proposed, the decision hasn’t been made (yet). Even so, the Decision section starts by clearly expressing the decision being made. The tone of the writing should reflect that. It’s best to use an authoritative voice when stating the decision, with active phrases like “we will use” (as opposed to “we believe” or “we think”).

The Decision section is also the place to explain why you’re making this decision, paying tribute to the Second Law of Software Architecture: “Why is more important than how.” Future you, or anyone else who reads the ADR, will then understand not just the decision but the justification for it.

Note

In the Context section, you explained why this decision was on the table. The Decision section, which immediately follows it, explains the decision itself. Together, they allow the reader to frame the decision correctly.

Note

This is also a great place to list others who signed off on this decision. For example, “The marketing department requires...” is an example of CYA.

Note

“Cover Your Assets”! :)

Watch it!

[image: Image]

The ADR is not an opinion piece

Remember that the ADR is not a place for anyone’s opinions on the state of things. It’s easy to slip into that mode, especially when justifying a decision. Even when explaining context, it can sometimes be hard to stay objective.

Treat an ADR like a journalist treats a news article—stick to the facts and keep your tone neutral.

Exercise

[image: Image]

It’s time for you to write the Decision section of the ADR for Two Many Sneakers. Here are the main factors the team considered when making their decision:

	Queues allow for heterogeneous messages.

	Security is an important architectural characteristic for the stakeholders.

We’ve given you some space to write out a Decision section, including the corresponding justification. This section should answer the question, “Why queues?” Hint: Be sure to focus on the decision and the “why.” See the solution at the end of the chapter for our own take.

Note

Feel free to glance back at the trade-off analysis we did earlier in the chapter to refresh your memory.

[image: Images] Solution in “Sharpen your pencil Solution”

there are no Dumb Questions

Q: I’m not entirely clear on the difference between the context and the “justification” we provide in the Decision section. Aren’t those the same thing?

A: Maybe an example will help. Say it’s your best friend’s birthday, and you and a few others decide to go out to a fancy dinner to celebrate. That’s the context—the circumstances surrounding the decision you have to make.

Before you decide on the details, you might make a list of possible restaurants (the alternatives available to you), thinking about how well the cuisines they offer match everyone’s preferences. This would be akin to a trade-off analysis.

You pick a pan-Asian bistro: that’s the decision. You choose that particular restaurant because its menu has vegetarian and gluten-free options, and it allows anyone with dietary restrictions to make substitutions. That’s the justification for your decision.

Writing ADRs: Considering the consequences

Every decision has consequences. Did you work out extra hard yesterday? If so, you might be sore this morning. (But maybe a little bit proud of yourself, too!)

[image: Image]

It’s important to realize the consequences—good and bad—of architectural decisions and document them. This increases transparency by ensuring that everyone understands what the decision entails, including the team(s) affected by it. Most importantly, it allows everyone to assess whether the decision’s positive consequences will outweigh its negative consequences.

The consequences of an ADR can be limited in scope or have huge ramifications. Architectural decisions can affect all kinds of things—teams, infrastructure, budgets, even the implementation of the ADR itself. Here’s an incomplete list of questions to ask:

	How does this ADR affect the implementing team? For instance, does it change the algorithms? Does it make testing harder or easier? How will we know when we’re “done” implementing it?

	Does this ADR introduce or decommission infrastructure? What does that entail?

	Are cross-cutting concerns like security or observability affected? If so, what effects will that have across the organization?

	How will the decision affect your time and budget? Does it introduce costs or save money? Will it take arduous effort to implement or make things easier?

Note

Time and money are big—be sure to think this one through!

Note

Of course, the ADR might make things simpler and more cost-effective. If so, that’s definitely worth highlighting.

	Does the ADR introduce any one-way paths? (For example, using queues means we can’t control the order of messages.) If so, elaborate on this.

Collaborating with others is a great way to make sure your assessment is thorough. No matter how hard you think through the consequences of the ADR, you’re likely to miss a few things; multiple perspectives will reveal more potential consequences. Here’s a sample Consequences section:

[image: Image]

Sharpen your pencil

[image: Image]

Help the Two Many Sneakers team iron out the Consequences section of their ADR. Here are a few things to think about:

	[image: Images] A queue introduces a new piece of infrastructure.

	[image: Images] The queues themselves will probably need to be highly available.

Note

There are no right or wrong answers, but if you’d like to see how we approached this, glance at the solution at the end of the chapter.

	[image: Images] Queues mean a higher degree of coupling between services.

[image: Images] Solution in “Sharpen your pencil Solution”

Brain Power

[image: Image]

Think about an architectural decision made in your current project, or one you’ve worked on in the past. It might be programming language used, the application’s structure, or even the choice of database. Can you think of at least two intended consequences and two unintended consequences of that decision?

Writing ADRs: Ensuring governance

Have you ever made a New Year’s resolution that fizzled out before the end of February? Maybe you joined a gym, only to end up paying but never working out? Us too. A decision is only good if you act on it, and if you don’t accidentally stray away from it in the future.

[image: Image]

Sure, you and your team spent a bunch of time analyzing trade-offs and writing an ADR to record the decision. Now what? How do you ensure that the decision is correctly implemented—and that it stays that way?

This is the role of the Governance section, which is vital in any ADR. Here, you outline how you’ll ensure that your organization doesn’t deviate from the decision—now or in the future. You could use manual techniques like pair programming or code reviews, or automated means like specialized testing frameworks.

Note

These two sections aren’t part of the standard ADR template, but we think they add a lot of value.

Note

If the word “governance” conjures up ideas of regulatory compliance, well, this isn’t that.

Note

One of your authors has written a book called “Building Evolutionary Architectures” that shows you how to use “fitness functions” for architectural governance. Be sure to pick up a copy. (After you’re done with this book, of course!)

[image: Image]

Writing ADRs: Closing notes

The Notes section contains metadata about the ADR itself. Here’s a list of fields we like to include in our ADRs:

	Original author

	Approval date

	Approved by

	Superseded date

	Last modified date

	Modified by

	Last modification

Note

This section is handy even if the tool you use to store your ADRs automatically records things like creation and modification dates. Yes, including this information may be repetitive, but making it part of the ADR makes it easier to discover.

Exercise

[image: Image]

Let’s bring it all together! You’ve been working piecemeal on the ADR for the Two Many Sneakers team. We’d like you to flip back to the past few exercises and copy your ADR sections onto this page to create a full ADR. We’ve given you the section titles—all you have to do is fill ’em out. (Assume the status to be “Accepted.”) You can find our version at the end of the chapter.

[image: Image]

[image: Images] Solution in “Exercise Solution”

there are no Dumb Questions

Q: I really like the ADR template. But where am I supposed to store my ADRs?

A: There are lots of options—it all depends on what you and your team are comfortable with, and who else might be interested in reading or contributing to the ADRs.

One option is to store ADRs in plain-text files (or maybe Markdown or AsciiDoc files) in a version-control system like Git. This way, there’s a commit history showing any changes to the ADRs. The downside is that nondevelopers don’t always know how to access version-controlled documents. If you do choose to store your ADRs this way, we recommend keeping them in a separate repository (as opposed to stuffing them in with your source code). You’ll thank us later.

Alternatively, you could use a wiki. Most wikis use a WYSIWYG (“what you see is what you get”) editor, so they’re accessible to more people. Just be sure that your choice of wiki can track changes. You wouldn’t want someone to edit an ADR accidentally without everyone knowing.

Whatever you choose, make sure it’s easy to add, edit, and search for ADRs. We’ve seen too many honest efforts at recording ADRs die just because no one could find the ADRs again if their lives depended on it.

Q: My whole team loves Markdown. (Plain text for the win!) Any advice on file naming conventions?

A: Recall that ADR titles have a three-digit prefix, followed by a very succinct description of the ADR. If you store your ADRs as plain-text files, we recommend using the title as your filename, including the prefix. For example, an ADR with the title “042: Use queues between the trading and downstream services” should be stored in a file named 042-use-queues-between-the-trading-and-downstream-services.md. We like using all lowercase letters, which avoids any confusion between different operating systems. Replace spaces with hyphens to avoid whitespace.

This forces you to come up with good titles! And the three-digit prefix means you can simply sort the files in a folder by name to put them in the right order.

Q: Can you recommend any tools that make it easier to write and manage ADRs?

A: Oh, sure! There are many options, from command-line tools to language-specific tools that allow you to record ADRs directly in your source code. You can see a list of available tools at https://adr.github.io/#decision-capturing-tools.

Most third-party tools make assumptions about the format of the ADR—perhaps they generate Markdown files or store the files in a specific directory structure. Test-drive a tool a few times to get a feel for it.

Finally, some age-old advice: keep it simple, silly. We suggest you start by writing out ADRs without any complicated tooling or automation. Get a sense of what works best for your team. Then, as your needs grow, go find a tool that fits those needs.

Q: Do ADRs always belong to a single project, or can they affect multiple projects and teams? How about the whole organization?

A: Yes, yes, and yes. ADRs can be as narrow or as broad as you’d like them to be. Some ADRs are project-specific, affecting only one team. Other ADRs affect many or all teams in an organization. At the online retailer Amazon, there’s an ADR affectionately referred to as “the Jeff Bezos API mandate.” It records a decision that company founder Jeff Bezos once made: that all services within Amazon can only talk to other services via an API. Naturally, this affected the entire organization—no small feat, given Amazon’s size.

Most cross-project or cross-team ADRs require a lot of collaboration, and often the blessing of a central architecture review board. Such ADRs tend to affect cross-cutting concerns, like how services should communicate with one another or which data transfer protocol to use. ADRs related to security or regulatory compliance often cut across multiple teams or a whole organization.

The benefits of ADRs

We hope we’ve convinced you by now that recording your decisions in ADRs need not be a long, arduous process. We really like the format we’ve shown you in this chapter, but feel free to tweak or modify it.

Is recording architectural decisions really that important? We certainly think so! There are tons of benefits to recording these decisions—not just for you and your team, but for your entire organization. Let’s quickly recap.

[image: Image]

Watch it!

[image: Image]

Keep the ADR process as frictionless as possible

It’s tempting to add sections to the ADR template in the hope of being comprehensive. While that’s a noble goal, it adds work. If you keep “feeding the beast,” the documentation process gets harder. That can discourage people, and some might stop writing ADRs altogether.

Focus on concision and brevity. Keep it simple. You’ll thank us later.

Two Many Sneakers is a success

The team at Two Many Sneakers is ecstatic. Their customers love getting real-time notifications about new offerings in the app, and the improved analytics are giving the security team the information they need to sniff out any and all sneaker scams from a mile away.

[image: Image]

Grokking the two laws of software architecture will serve you well. Now you know that there are no “best practices” in software architecture—just trade-offs. It’s up to you (and your team) to find the most viable and best-fitting option. And don’t forget to record your decision in an ADR!

Onward and upward.

Bullet Points

	There is nothing “static” about architecture. It’s constantly changing and evolving.

	Requirements and circumstances change. It’s up to you to modify your architecture to meet new goals.

	For every decision, you will be faced with multiple solutions. To find the best (or least worst), do a trade-off analysis. This collaborative exercise helps you identify the pros and cons of every possible option.

	The First Law of Software Architecture is: Everything in software architecture is a trade-off.

	The answer to every question in software architecture is “it depends.” To learn which solutions are best for your situation, you’ll need to identify the top priorities and goals. What are the requirements? What’s most important to your stakeholders and customers? Are you in a rush to get to market, or hoping to get things stable in growth mode?

	The product of a trade-off analysis is an architectural decision: one of the four dimensions needed to describe any architecture.

	An architectural decision involves looking at the pros and cons of every choice in light of other constraints—such as cultural, technical, business, and customer needs—and choosing the option that serves these constraints best.

	Making an architectural decision isn’t just about choosing; it’s also about why you’re choosing that particular option.

	The Second Law of Software Architecture is: Why is more important than how.

	To formalize the process of capturing architectural decisions, use architectural decision records (ADRs). These documents have seven sections: Title, Status, Context, Decision, Consequences, Governance, and Notes.

	Over time, your ADRs will build into a log of architectural decisions that will serve as the memory store of your project.

	An ADR’s title should consist of a three-digit numerical prefix and a noun-heavy, succinct description of the decision being made.

	An ADR can be assigned one of many statuses, depending on the kind of ADR and its place in the decision workflow.

	Once all parties involved in the decision sign off on the ADR, its status becomes Accepted.

	If a future decision supplants an Accepted ADR, you should write a new ADR. The supplanted ADR’s status is marked as Superseded and the new ADR becomes Accepted.

	The Context section of an ADR explains why the decision needed to be made to begin with.

	The Decision section documents and justifies the actual decision being made. It always includes the “why.”

	The Consequences section describes the decision’s expected impact, good and bad. This helps ensure that the good outweighs the bad, and aids the team(s) implementing the ADR.

	The Governance section lists ways to ensure that the decision is implemented correctly and that future actions do not stray away from the decision.

	The final section is Notes, which mostly records metadata about the the ADR itself—like its author and when it was created, approved, and last modified.

	ADRs are important tools for abiding by the Second Law of Software Architecture, because they capture the “why” along with the “what.”

	ADRs are necessary for building institutional knowledge and helping teams learn from one another.

“Two Laws” Crossword

[image: Image]

Think you’ve mastered the two laws of software architecture? Why don’t you document your knowledge by completing this crossword?

[image: Image]

Across

2. Two Many _____

4. Topics use a fire-and-_____ system

5. A new ADR can _____ an old one

7. You can list pros and cons on a _____board

8. You should record every architectural _____ you make

10. Documents made up of seven sections (abbr.)

11. Heterogeneous

13. Important architectural characteristic for a fast-growing business

15. “Everything in software architecture is a trade-off” is the _____ _____ of software architecture (two words)

18. Examples of messaging mechanisms include queues and _____

19. Best tone to use when writing an ADR

20. If you’re too excited about a new tool, you might have _____ Object Syndrome

Down

1. Topics can be independently _____

3. An architectural characteristic that’s especially important for financial transactions

5. Architects are responsible for making architecturally _____ decisions

6. ADR section that tells you why a decision needed to be made

9. High or low interdependence

12. Short way to say “not at the same time”

14. Two Many Sneakers’ mobile app communicates with the trading _____

16. More important than how, according to the Second Law

17. The _____ of an ADR might be Accepted

[image: Images] Solution in ““Two Laws” Crossword Solution”

From “Exercise”

Exercise Solution

[image: Image]

Which of the following architectural characteristics stand out as important for this particular problem? Hint: There are no right answers here, because there is a lot we don’t know or aren’t sure of yet. Take your best guess—here are our thoughts:

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil

[image: Image]

Spend a few minutes comparing the results of our trade-off analysis. Notice how both options support some characteristics but trade off on others? Now we’re going to present you with some requirements—see if you can decide if you’d pick queues or topics to support each one. Here are our answers:

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

This time, we’d like you to do some trade-off analysis on your own. We chose messaging as the communication protocol between our trading service and its consumers. Messaging is asynchronous. Choosing between asynchronous and synchronous forms of communication comes with its own set of trade-offs! We’ve given you two whiteboards, one for each form of communication, and we’ve listed a bunch of “-ilities.” We’d like you to consider how each architectural characteristic would work in both contexts. Is this characteristic a pro or a con (or neither) in synchronous communications? What about in asynchronous communications? Place each “-ility” in the appropriate column. Hint: Not all of them apply to this decision. You’ll find our answers below:

[image: Image]

[image: Image]

From “there are no Dumb Questions”

Exercise Solution

[image: Image]

In the following exercises, you’re going to help the team at Two Many Sneakers write an ADR. They’ve decided to use asynchronous messaging, with queues between the trading service and downstream services. Assume this is the 12th ADR the team is writing. What title would you give this ADR? Don’t forget to number it! Here’s what we came up with:

	012: Use of queues for asynchronous messaging between order and downstream services

From “there are no Dumb Questions”

Exercise Solution

[image: Image]

In the previous exercise, you hashed out the title of Two Many Sneakers’ ADR about using queues for messaging. Let’s say you get the green light. Write down the title you chose in the space below and give it a status. Here’s ours:

[image: Image]

Three months later:

Whoops! The requirements have changed. Your latest trade-off analysis reveals that topics would be a better fit. Everyone has signed off on this, so you need to supersede your ADR with a new ADR. This is the 21st ADR your team has worked on. Write down the title and the new status of the old ADR:

[image: Image]

Now write down the title and status of the newly introduced ADR. Here’s ours:

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Continue building out the ADR for Two Many Sneakers. Use the space below to write a Context section for the team’s decision to use queues for communication between the trading service and other services. Here’s our take:

The trading service must inform downstream services (namely the notification and analytics services, for now) about new items available for sale and about all transactions. This can be done through synchronous messaging (using REST) or asynchronous messaging (using queues or topics).

From “Exercise”

Exercise Solution

[image: Image]

It’s time for you to write the Decision section of the ADR for Two Many Sneakers. Here are the main factors the team considered when making their decision:

	Queues allow for heterogeneous messages.

	Security is an important architectural characteristic for the stakeholders.

We’ve given you some space to write out a Decision section, including the corresponding justification. This section should answer the question, “Why queues?” Hint: Be sure to focus on the decision and the “why.” There are no right answers, but here’s what we came up with:

We will use queues for asynchronous messaging between the trading and downstream services.

Using queues makes the system more extensible, since each queue can deliver a different kind of message. Furthermore, since the trading service is acutely aware of any and all subscribers, adding a new consumer involves modifying it—which improves the security of the system.

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Help the Two Many Sneakers team iron out the Consequences section of their ADR. Here are a few things to think about:

	[image: Images] A queue introduces a new piece of infrastructure.

	[image: Images] The queues themselves will probably need to be highly available.

	[image: Images] How do queues affect coupling between components?

Queues mean a higher degree of coupling between services.

We will need to provision queuing infrastructure. It will require clustering to provide for high availability.

If additional downstream services (in addition to the ones we know about) need to be notified, we will have to make modifications to the trading service.

Note

Here’s our take.

From “Exercise”

Exercise Solution

[image: Image]

Let’s bring it all together! You’ve been working piecemeal on the ADR for the Two Many Sneakers team. We’d like you to flip back over the past few exercises and copy your ADR sections onto this page to create a full ADR. We’ve given you the section titles—all you have to do is fill ’em out. (Assume the status to be “Accepted.”) Here’s our version:

[image: Image]

“Two Laws” Crossword Solution

[image: Image]

From ““Two Laws” Crossword”

[image: Image]

Chapter 4. Logical Components: The Building Blocks

[image: Image]

Ready to start creating an architecture? It’s not as easy as it sounds—and if you don’t do it correctly, your software system could come crumbling to the ground, just like a poorly designed skyscraper or bridge.

In this chapter we’ll show you several approaches for identifying and creating logical components, the functional building blocks of a system that describe how its pieces all fit together. Using the techniques described in this chapter will help you to create a solid architecture—a foundation upon which you can build a successful software system.

Put on your hard hat and gloves, get your tools ready, and let’s get started.

Logical components revisited

Logical components are one of the dimensions of software architecture. They are the functional building blocks of a system that make up what is known as the problem domain. In Chapter 1 you learned a bit about them, and in this chapter we’ll dive deep into what logical components are and how to create them.

[image: Image]

[image: Image]

Remember that, in most programming languages, logical components are represented through the directory structure of your source code repository. For example, source code located in the app/order/tracking directory would be contained within a logical component named Order Tracking.

[image: Image]

Exercise

[image: Image]

Name that component

It’s your first week on the job as the new architect, and you’ve been assigned to an existing project to build a trouble ticket system. You want to understand the logical components of the architecture, but your team doesn’t know anything about logical components—they just started coding. To determine the logical architecture, you have to look at the existing directory structure. How many individual logical components can you identify from the codebase below?

[image: Image]

[image: Image] Solution in “Exercise Solution”

Adventurous Auctions goes online

Want to go on a safari in Tanzania? Observe wildlife in the Galapagos Islands? Hike to the base camp of Mount Everest? Adventurous Auctions is here to help!

You’ve probably seen our ads or attended some of our live auctions around the country. These kinds of adventures are hard to come by and can take years to reserve; our company auctions them off at a significant cost savings.

We want more people around the world to be able to access these great trips, so we’re taking our adventurous auctions online (in addition to our in-person auctions).

That’s where you come in: we need a new system to support the online auctions of our adventurous trips.

[image: Image]

[image: Image]

Here’s what the new system needs to do:

	Include both in-person and online bids in every auction.

	Scale up to meet demand, so hundreds or even thousands of people can participate in each auction.

	Allow online users to register with Adventurous Auctions and provide us with their credit card details so they can pay if they win a trip.

	Allow online users to view live video streams of in-person auctions, as well as all bids placed so far, both in person and online.

	Allow online users to bid on trips, just like the people in the room.

	Determine which online bidder bids the asking price first (this is called “winning the bid”). If an online bidder bids at the same time as an in-person bidder, the auctioneer then determines who bid first.

	When the auctioneer announces an online user as the winner, the system charges the winner’s credit card, notifies the winner, then moves on to the next trip in the auction.

Note

Pay attention, because we’re going to show you how to create a logical architecture for this system.

Logical versus physical architecture

A logical architecture shows all of the logical building blocks of a system and how they interact with each other (known as coupling). A physical architecture, on the other hand, shows things like the architectural style, services, protocols, databases, user interfaces, API gateways, and so on.

Note

We’re going to be talking a lot about component coupling later in this chapter.

The logical architecture of a system is independent of the physical architecture—meaning the logical architecture doesn’t care about databases, services, protocols, and so on. Let’s look at an example of what we mean by a logical architecture.

As you remember, Adventurous Auctions needs to create and schedule online auctions and allow bidders to register, search for auctions, and view the trips that are up for bid. Here are some of the components—the functional building blocks—that will help make that happen.

[image: Image]

See how the logical architecture doesn’t include the various components of physical architecture mentioned above? It’s a different view of the system. To see what we mean, compare the diagram above with the following physical architecture diagram. Notice how the physical architecture associates services with components from the logical architecture, and also shows the services and databases for the system.

[image: Image]

Who Does What?

We had our logical and physical architecture responsibilities all figured out, but somehow they got all mixed up. Can you help us figure out who does what? Be careful—some responsibilities may not have a match (they aren’t part of a logical or physical architecture).

Be sure to check the answers (located at the end of this chapter) before moving on.

[image: Image]

[image: Image] Solution in “Who Does What? Solution”

Creating a logical architecture

Identifying logical components isn’t as easy as it sounds. To help, we’ve created this flowchart. Don’t worry—we’ll be covering all of these steps in detail in the following pages.

[image: Image]

This flow continues as long as the system is alive.

[image: Image]

This flowchart shows a series of steps to begin greenfield applications (new systems created from scratch) and perform ongoing maintenance on existing ones.

Ever wonder why it’s so common for a well-designed system to end up as an unmaintainable mess in no time? It’s because teams don’t pay enough attention to the logical architecture of their systems.

Anytime you make a change or add a new feature to the system, you should always go through each of these steps to ensure that the logical components are the right size and are doing what they are meant to do.

[image: Image]

Step 1: Identifying initial core components

The first step in creating a logical architecture is identifying the initial core components. Many times this is purely a guessing game, and you’ll likely refactor the components you initially identify into others. So don’t spend a lot of time worrying about how big or small your components are—we’ll get to that. First, let’s show you what we mean by a “guessing game.”

[image: Image]

[image: Image]

Given this simple description, you can start out by creating three logical components, one for each of the three major things the system does.

[image: Image]

These components aren’t really doing anything yet. You see, we’ve identified the initial components, but we haven’t assigned them any responsibility yet. You could think of them as empty jars. They represent our initial best guess, based on a major action that takes place in the system. That’s why we call them initial core components.

[image: Image]

[image: Image]

Yes, there is! In fact, you can use several approaches to remove some of the guesswork.

You don’t know a lot of details about the system or its requirements yet, and the components you initially identify are likely to change as you learn more. That’s why we say it’s a guessing game at this stage—and that’s perfectly okay!

We’ll show you two common approaches for identifying initial core components: the workflow approach and the actor/action approach.

There are other approaches that may seem like good ideas initially but that can lead you down a very bad path. We’ll discuss those after we show you the good stuff.

Workflow approach

The workflow approach is an effective way to identify an initial set of core components by thinking about the major workflows of the system—in other words, the journey a user might take through the system. Don’t worry about capturing every step; start out with the major processing steps, and then work your way down to more details.

Note

You can model different workflows to create even more initial components.

Let’s use the workflow approach to identify some initial core components for the Adventurous Auctions architecture.

[image: Image]

there are no Dumb Questions

Q: You identified “Video Streamer” as a logical component, but what if our team decides to use a third-party library or service to stream the auction?

A: Great question! Even though you might not develop the functionality yourself, it’s still part of the logical architecture.

Q: Is each step in a workflow always mapped to a single logical component?

A: Not always. You might have several steps in a workflow that point to the same logical component, particularly if their functionalities are closely related.

Names matter.

Pay close attention to how you name your initial core components. A good name should succinctly describe what that component does.

[image: Image]

Sharpen your pencil

[image: Image]

Your company wants a new system to assign workers to construction sites, and it’s your job as the software architect to identify its initial core components. Using the workflow approach, identify as many core components as you can, matching each to its associated workflow step. Remember, a workflow step can have multiple components, and not every workflow step has to have a unique component.

[image: Image]

	Step 1: Maintain a list of all construction workers, their skills, and their locations

	Step 2: Create a new construction project and specify the work site

	Step 3: Create a schedule for when various construction projects start and end

	Step 4: When a new project starts, assign workers based on their skills and locations

	Step 5: When the project completes, free up workers so they can be reassigned

Note

Draw your logical components in this space. Remember to give them good descriptive names.

[image: Image] Solution in “Sharpen your pencil Solution”

Actor/action approach

The actor/action approach is particularly helpful if you have multiple actors (users) in the system. You start by identifying the various actors. Then, you identify some of the primary actions they might take and assign each action to a new or existing component.

Returning to our Adventurous Auctions example, let’s use the actor/action approach to identify some initial core components.

[image: Image]

Exercise

[image: Image]

You have a bakery that is ready to expand operations, and you would like a new system that lets customers view, order, and pay for bakery items online for pickup. Orders are sent to the bakery coordinator, who purchases ingredients and schedules orders. The baker receives the schedule of items to bake each morning and tells the system when the items are baked. The system then emails the customers to let them know their items are ready for pickup.

Using the actor/action approach, identify what actions each actor might take. Then draw as many logical components as you can for the new bakery system, matching the actions you identified to the components.

[image: Image]

[image: Image] Solution in “Exercise Solution”

The entity trap

[image: Image]

Welcome to the entity trap.

We call this approach the entity trap because it’s very easy to fall into it when identifying the initial core logical components, and you’ll run into lots of issues if you do this.

First of all, the name “Bid Manager” is too vague. Can you tell what the component does just by looking at the name? Neither can we. A name like this doesn’t tell us enough about the component’s role and responsibilities.

Second, the component has too many responsibilities. All too often, components in the entity trap become convenient dumping grounds for all functionality related to those entities. As a result, they take on too much responsibility and become too big and difficult to maintain, scale, and make fault tolerant.

[image: Image]

Note

Pro Tip

[image: Image]

Watch out for words like manager or supervisor when naming your logical components—those are good indicators that you might be in the entity trap.

Sharpen your pencil

[image: Image]

What other words besides manager can you list that, if they appeared in a component name, might indicate that you’ve fallen into the entity trap?

supervisor

Note

We did this one for you.

[image: Image] Solution in “Sharpen your pencil Solution”

Exercise

[image: Image]

Can you select the most appropriate approach to identifying initial core components in the following scenarios? In some cases, more than one approach may be appropriate.

	The system has only one type of user
	[image: Image] Workflow
	[image: Image] Actor/Action

	The system has well-defined entities
	[image: Image] Workflow
	[image: Image] Actor/Action

	You have minimal functional requirements
	[image: Image] Workflow
	[image: Image] Actor/Action

	The system has many complex user journeys
	[image: Image] Workflow
	[image: Image] Actor/Action

	The system has many types of users
	[image: Image] Workflow
	[image: Image] Actor/Action

[image: Image] Solution in “Sharpen your pencil Solution”

there are no Dumb Questions

Q: The actor/action approach reminds me a lot of event storming. Are they the same thing?

A: Great observation, and we’re glad you saw the similarities. Event storming is a workshop-based approach that is part of domain-driven design (DDD). With this approach, you analyze the business domain to identify domain events. While both approaches have the final goal of identifying actions performed within the system, event storming takes identifying components much further than the actor/action approach does. You could say that the actor/action approach identifies the domain event and actor elements of event storming, but doesn’t continue with other elements such as command, aggregate, and view. You can learn more about event storming at https://en.wikipedia.org/wiki/Event_storming.

Q: Can you combine the workflow approach and actor/action approach, or do you have to choose between them?

A: You can combine them, and in most cases this is a good idea. If you start with the actor/action approach to identify actions, you can then use the workflow approach to arrange them in the order in which they are likely to occur.

Q: Are you telling me I should never use the words manager, supervisor, and so on as part of my component names?

A: Not necessarily—there is no hard and fast rule to the entity trap. Sometimes it’s hard to come up with a name for something that does a general task. Take, for example, a component that manages all of the reference data in your application—name/value pairs like country codes, store codes, color codes, and so on. A good name for such a component would be “Reference Data Manager.” However, names like “Order Manager” or “Response Handler” are too broad and don’t describe what those components actually do.

Q: When using the actor/action approach, how many actions should you identify for each actor?

A: That’s a tough question. The purpose of identifying actions is to tease out likely logical components and what they might be responsible for. We usually look at the primary actions an actor might take, rather than diving into too many details.

Step 2: Assign requirements

Once you’ve identified some initial core components, it’s time to move on to the next step: assigning requirements to those logical components.

In this step, you’ll take functional user stories or requirements and figure out which component should be responsible for each one. Remember, each component is represented by a directory structure. Your source code resides in that directory, so it contains that requirement.

[image: Image]

Let’s go back to the initial set of components we defined based on what Frank (the CIO) said about the basic workflow of Adventurous Auctions. Now it’s time to assign some responsibilities to these components.

[image: Image]

Sharpen your pencil

[image: Image]

Your company, Going Green Corporation, wants a system to support its new electronics recycling program, where customers can send in their old electronic devices (like cell phones) and get money. We’ve already identified some of the initial core components. Your job is to figure out which component should be responsible for each of the functionalities listed below, or if a new component is needed. You’ll also need to come up with names for any new components.

[image: Image]

[image: Image] Solution in “Sharpen your pencil Solution”

Step 3: Analyze roles and responsibilities

As you start assigning functionality (in other words, user stories or requirements) to logical components, the roles and responsibilities of each component will start to naturally grow. The purpose of this step is to make sure that the component to which you are assigning functionality should actually be responsible for that functionality and that it doesn’t end up doing too much.

[image: Image]

Let’s say we create a component called Live Auction Session that has the following responsibilities during a live auction:

[image: Image]

With this added functionality, this component is now taking on too much responsibility. This is a common situation, so don’t be surprised if it happens to you. When it does, don’t panic—that’s what this step is here for. Let’s see if we can fix this situation by moving some of the responsibility of the Live Auction Session component to other components.

Note

If you’ve ever had too much on your plate at work, you likely gave some of that work to others. Do the same with components—offload some of the responsibility to someone else.

Geek Note

[image: Image]

Have you ever created a class file called Utility? What did it do? Chances are it contained a bunch of unrelated functions that you’d had a hard time placing. The same thing can happen with logical components within software architecture. Try to avoid components that contain lots of unrelated functions.

Sticking to cohesion

When you analyze a component’s role and responsibility statement or set of operations, check to see if the functionality is closely related. This is known as cohesion: the degree and manner to which the operations of a component are interrelated. Cohesion is a useful tool for making sure a component has the right responsibilities.

When analyzing the role and responsibilities of a component, it’s common to find an outlier (an odd piece of functionality) or a component that is doing too much. In these cases, it’s usually a good idea to shift some of the responsibility to other components.

Now it’s your turn to fix the Live Auction Session component.

Make it Stick

[image: Image]

Component functions should all be related— but if they’re not, don’t get frustrated. Just start to break the component apart, and you’ll be considered very smart.

Exercise

[image: Image]

See if you can offload some of the responsibility of the Live Auction Session component to others by creating new components to handle the additional functionality. Keep the first three original requirements associated with the Live Auction Session.

[image: Image]

[image: Image] Solution in “Exercise Solution”

Step 4: Analyze characteristics

The final step in identifying initial core components is to verify that each component aligns with the driving architectural characteristics that are critical for success. In most cases this involves breaking apart a component for better scalability, elasticity, or availability, but it could also involve putting components together if their functionalities are tightly coupled.

[image: Image]

Let’s look once again at our Adventurous Auctions example. We previously identified a Bid Capture component that is responsible for accepting bids, storing all bids in a Bid Tracker database, and forwarding the highest bid to the auctioneer. Here is the overall flow for the Bid Capture component:

[image: Image]

This architecture looks good, but just to be sure, we should make sure the Bid Capture component supports the system’s critical architectural characteristics (those that are important for success).

We know the system has to support thousands of bidders per second—that’s scalability. We also know the system must be up and running while auctions are taking place—that’s availability. Finally, the system must accept a bid and get it to the auctioneer as fast as possible—that’s performance.

Note

These are all important to the success of Adventurous Auctions.

Now it’s your turn to analyze the Bid Capture component against these critical architectural characteristics.

BE the architect

[image: Image]

Your job is to play architect and analyze the Bid Capture component on the previous page to see if it should be modified based on the critical architectural characteristics we identified. Our solution is on the next page.

These are the critical architectural characteristics for Adventurous Auctions:

	Scalability: The system has to support thousands of bidders per second

	Availability: The system must be up and running while the auctions are taking place

	Performance: The system must accept a bid and get it to the auctioneer as fast as possible.

Hints (things to consider):

	What if the database goes down?

	Can the database keep up with the volume of inserts based on the bids coming in?

	Will inserts into the database be fast enough to get the bids to the auctioneer?

	Consider the actions the Bid Capture component has to take upon receiving a bid.

Note

Use this area to draw how you might change the Bid Capture component based on the critical architectural characteristics and considerations above.

The Bid Capture component

Let’s work through this exercise by reviewing the current responsibilities of the Bid Capture component:

	Accept bids from online bidders and from the auctioneer for live bidders.

	Determine which online bid is the highest.

	Write all bids to a Bid Tracker database for tracking purposes.

	Notify the auctioneer of the highest bid.

It makes sense for the Bid Capture component to write the bids to the database, since it has them. But database connections and throughput are limited, so having Bid Capture do this significantly impacts scalability. It also impacts performance by adding wait time for writing the data to the database, as well as availability if the database were ever to go down.

Note

This is what we mean by analyzing characteristics.

If we assign the last requirement to a new component called Bid Tracker, we can significantly increase the scalability, performance, and availability of the Bid Capture component. That lets the system process more bids faster and get the highest bid to the auctioneer as quickly as possible. The Bid Capture component can send the bids to the Bid Tracker and won’t have to wait for the bid to be written to the database.

Note

You might break apart or combine components in this step, based on the architectural characteristics needed.

[image: Image]

Component coupling

[image: Image]

Yes, and this is the right time to do it.

As you identify the initial core components, it’s important to determine how they interact. This is known as component coupling: the degree to which components know about and rely on each other. The more the components interact, the more tightly coupled the system is and the harder it will be to maintain.

[image: Image]

Remember this diagram from several pages ago? It’s called a “big ball of mud” because there are so many component interactions and dependencies that the diagram starts to look like a ball of mud (or maybe like a bowl of spaghetti).

That’s why it’s so important to pay attention to how components interact and what dependencies exist between them.

You need to be concerned about two types of coupling when creating logical components: afferent coupling and efferent coupling. Don’t be concerned if you’ve never heard these formal terms before—we’re going to explain them in the following pages.

Afferent coupling

Children depend on their parents for a lot of things, like making sure they have plenty of food to eat and a safe place to live, driving them to soccer practice, or even giving them an allowance so they can buy candy or a really cool comic book. As it turns out, parents are afferently coupled to their children, and even to the family dog, because all of them depend on the parents for something.

Afferent coupling is the degree and manner to which other components are dependent on some target component (in this case, Mom). It’s sometimes referred to as fan-in, or incoming, coupling. In most code analysis tools, it’s simply denoted as CA.

[image: Image]

[image: Image]

To see how afferent coupling works, look at the interaction between three of the logical components within the Adventurous Auctions logical architecture on the left.

Both the Auction Registration component and the Automatic Payment component depend on the Bidder Profile component to return bidder profile information. In this scenario, the Bidder Profile component has an afferent coupling level of 2, because two components depend on it to complete their work.

Geek Note

[image: Image]

Did you know that the odd-sounding word afferent means “carrying toward”? It gets its roots from the Latin words ad (meaning “to” or “toward”) and ferre (“to carry”). In the medical field, the word afferent refers to nerves that carry impulses to the brain (your afferent nerves).

Efferent coupling

Now let’s look at things from a young child’s point of view. As a child, you might have been dependent not only on your parents, but also your teachers, friends, classmates, and so on. Being dependent on others is known as efferent coupling.

Efferent coupling is exactly the opposite of afferent coupling, and it’s measured by the number of components on which a target component depends. It’s also known as fan-out coupling or outgoing coupling. In static source code analysis tools, it’s usually denoted as CE.

[image: Image]

So, what does efferent coupling look like with logical components? Let’s take a look at Adventurous Auctions again, this time considering the process of accepting a bid from Kate for a trip.

[image: Image]

Because the Bid Capture component depends on the Bid Streamer and Bid Tracker components to process a bid, it is efferently coupled to these components. It has an efferent coupling level of 2 (in other words, it’s dependent on two other components).

Measuring coupling

You can measure a particular component’s amount of coupling in three ways: by considering its total afferent coupling (CA), its total efferent coupling (CE), and its total coupling (CT), or the sum of the total afferent and efferent coupling. These measurements tell you which components have the highest and lowest coupling, as well as the entire system’s overall coupling level.

[image: Image]

Sharpen your pencil

[image: Image]

Given the components below, can you identify the total afferent coupling (CA), total efferent coupling (CE), and total coupling (CT) for each component? Also, what is the total coupling level for this logical architecture? Does the CT for this architecture seem high or low to you?

[image: Image]

[image: Image] Solution in “Sharpen your pencil Solution”

[image: Image]

Great question. Developers are taught to strive for loosely coupled systems, but not how to do it. We’ll show you how by introducing a technique called the Law of Demeter.

The Law of Demeter, also known as the Principle of Least Knowledge, is named after Demeter, the Greek goddess of agriculture. She produced all grain for mortals to use, but she had no knowledge of what they did with the grain. Because of this, Demeter was loosely coupled to the mortal world.

Logical components work in the same way. The more knowledge a component has about other components and what needs to happen in the system, the more coupled it is to those components. By reducing its knowledge of other components, we reduce that component’s level of coupling.

On the next few pages, we’ll show you more about the Law of Demeter and how it can be used to decouple systems.

A tightly coupled system

Let’s see how the Law of Demeter can be used to decouple systems by taking a look at the logical architecture of a typical order entry system.

[image: Image]

Brain Power

[image: Image]

What possible issues do you see with the logical architecture above? We’ve provided some (but not all) potential problems. Check off the ones you think might be an issue, and write down any other possible issues you see with this logical architecture.

	[image: Image] The customer might not be available to get their email when it’s sent.

	[image: Image] The supplier might not have stock on hand.

	[image: Image] The Order Placement component knows too much about the steps involved in placing an order.

	[image: Image] ___

	[image: Image] ___

	[image: Image] ___

Applying the Law of Demeter

The total system coupling level didn’t bother us that much. What does bother us is how tightly coupled the Order Placement component is (CT=5), how unbalanced the component coupling is, and how much knowledge the Order Placement component has about the order placement process.

Note

The Order Placement component is taking charge.

Let’s apply the Law of Demeter to fix these problems by moving the “low stock” knowledge to the Inventory Management component.

[image: Image]

By moving the knowledge of actions to take for a “low stock” condition to Inventory Management, we reduced the amount of knowledge about the system, and hence the coupling, of the Order Placement component However, we increased the knowledge of the Inventory Management component, and thus increased its coupling. This is what the Law of Demeter is all about—less knowledge, less coupling; more knowledge, more coupling.

Note

Coupling is all about how much knowledge components have about the rest of the system.

Geek Note

[image: Image]

Did you notice that while we reduced the coupling of the Order Placement component, the total system coupling level remained the same? That’s because we didn’t remove the knowledge from the system, we just moved it to another component—Inventory Management.

Test Drive

[image: Image]

Now it’s time to take the Law of Demeter for a test drive to see if you can decouple a logical architecture. Below is a logical architecture for a system where customers who have purchased a support plan with an electronic item can submit a trouble ticket and have an expert come out to fix the item. Here’s how it currently works:

	[image: Image] A customer creates a ticket.

	[image: Image] The ticket gets assigned to an available expert in the field.

	[image: Image] The ticket is uploaded to an app on the expert’s mobile device (that’s Ticket Routing).

	[image: Image] The customer is notified that the expert is on their way to fix the problem.

	[image: Image] Once the expert fixes the problem, they mark the ticket as completed.

Keeping the components the same, how can you make this architecture more loosely coupled?

[image: Image]

[image: Image] Solution in “Test Drive Solution”

A balancing act

Do you remember the First Law of Software Architecture? Here it is again (because it’s so important):

Everything in software architecture is a trade-off.

Loose coupling is no exception. Let’s compare the two architectures we’ve just seen and analyze their trade-offs.

[image: Image]

[image: Image]

With the tightly coupled architecture, if you want to know what happens when a customer places an order, you only have to look at the Order Placement component to understand the workflow.

However, changing the Item Pricing and Supplier Ordering components will no longer affect the Order Placement component.

With loose coupling, you distribute the knowledge about what needs to happen, so that no one component knows all the steps. If you want to understand the workflow of placing an order, you have to go to multiple components to get the full picture.

However, in this case, the Order Placement component is dependent on four other components. If any one of those components changes, it could break the Order Placement component.

[image: Image]

Two components are coupled if a change in one component might cause a change in the other component.

Note

This is a good rule to remember.

Some final words about components

Congratulations! Now that you can identify logical components and the dependencies between them, you’re on your way to creating a software architecture. We know this was a long chapter, but it’s also an important one. Thinking about a system as a collection of logical components helps you, as an architect, better understand its overall structure and how it works.

In the next part of your software architectural journey, you’ll be focusing on the technical details of the system—things like architecture styles, services, databases, and communication protocols. But before you go, review the following bullet points to make sure you fully understand everything about logical components.

Bullet Points

	Logical components are the functional building blocks of a system.

	A logical component is represented by a directory structure—the folder where you put your source code.

	When naming a component, be sure to provide a descriptive name to clearly identify what the component does.

	Creating a logical architecture involves four continuous steps: identify components, assign requirements, analyze component responsibilities, and analyze architectural characteristics.

	You can use the workflow approach to identify initial core logical components by assigning the steps in a primary customer journey to components.

	You can use the actor/action approach to identify initial core logical components by identifying the actors in the system and assigning their actions to components.

	The entity trap is an approach that models components after major entities in the system. Avoid using this approach, because it creates ambiguous components that are too large and have too much responsibility.

	When assigning requirements to components, review each component’s role and responsibilities to make sure it should be performing that function.

	Coupling happens when components depend on one other to perform a business function.

	Afferent coupling, also known as incoming coupling, occurs when other components are dependent on a target component.

	Efferent coupling, also known as outgoing coupling, occurs when a target component is dependent on other components.

	Components having too much knowledge about what needs to happen in the system increases component coupling.

	The Law of Demeter states that services or components should have limited knowledge of other services or components. This law is useful for creating loosely coupled systems.

	While loose coupling reduces dependencies between components, it also distributes workflow knowledge, making it harder to manage and control that knowledge.

	Determining the total coupling (CT) of a logical architecture involves adding the afferent and efferent coupling levels for each component (CA + CE).

Logical Components Crossword

[image: Image]

Now’s your chance to have a little fun and see how much knowledge you’ve gained. See if you can fill in this crossword puzzle with clues about logical components.

[image: Image]

Across

3. Each component performs a _____

4. _____ gateways appear in a physical architecture but not a logical one

6. A physical architecture associates _____ with components

7. One system component might be a live video _____

9. Avoid building a big ball of _____

11. Be sure to avoid the _____ trap

12. Coupling might be _____ or efferent

13. Logical _____ are the functional building blocks of a system

16. Early on, you’ll identify _____ core components

19. A user’s journey through the system is called their _____

20. Each logical component has a _____ and a responsibility

Down

1. A component’s _____ is about how interrelated its operations are

2. Give each component a descriptive _____

5. Afferent and efferent coupling are both forms of _____ coupling

8. The Principle of Least Knowledge is also called the Law of _____

10. A good place to look for components is the codebase’s _____ structure

12. Step 2 is to _____ requirements to logical components

14. An architecture diagram can show the logical or _____ architecture

15. Adventurous Auctions lets users _____ on trips

17. You can identify components with an _____/action approach

18. Identifying logical components may involve taking your best _____

[image: Image] Solution in “Logical Components Crossword Solution”

From “Exercise”

Exercise Solution

[image: Image]

Name that component

It’s your first week on the job as the new architect, and you’ve been assigned to an existing project to build a trouble ticket system. You want to understand the logical components of the architecture, but your team doesn’t know anything about logical components—they just started coding. To determine the logical architecture, you have to look at the existing directory structure. How many individual logical components can you identify from the codebase below? Here are our answers.

[image: Image]

From “Who Does What?”

Who Does What? Solution

We had our logical and physical architecture responsibilities all figured out, but somehow they got all mixed up. Can you help us figure out who does what? Be careful—some responsibilities may not have a match (they aren’t part of a logical or physical architecture).

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Your company wants a new system to assign workers to construction sites, and it’s your job as the software architect to identify its initial core components. Using the workflow approach, identify as many core components as you can, matching each to its associated workflow step. Remember, a workflow step can have multiple components, and not every workflow step has to have a unique component.

[image: Image]

	Step 1: Maintain a list of all construction workers, their skills, and their locations

	Step 2: Create a new construction project and specify the work site

	Step 3: Create a schedule for when various construction projects start and end

	Step 4: When a new project starts, assign workers based on their skills and locations

	Step 5: When the project completes, free up workers so they can be reassigned

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

You have a bakery that is ready to expand operations, and you would like a new system that lets customers view, order, and pay for bakery items online for pickup. Orders are sent to the bakery coordinator, who purchases ingredients and schedules orders. The baker receives the schedule of items to bake each morning, and tells the system when the items are baked. The system then emails the customers to let them know their items are ready for pickup.

Using the actor/action approach, identify what actions each actor might take, then draw as many logical components as you can for the new bakery system, matching the actions you identified to the components.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

What other words besides manager can you list that, if they appeared in a component name, might indicate that you’ve fallen into the entity trap?

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Can you select the most appropriate approach to identifying initial core components in the following scenarios? In some cases, more than one approach may be appropriate.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Your company, Going Green Corporation, wants a system to support its new electronics recycling program, where customers can send in their old electronic devices (like cell phones) and get money. We’ve already identified some of the initial core components. Your job is to figure out which component should be responsible for each of the functionalities listed below, or if a new component is needed. You’ll also need to come up with names for any new components.

[image: Image]

From “Make it Stick”

Exercise Solution

[image: Image]

See if you can offload some of the responsibility of the Live Auction Session component to others by creating new components to handle the additional functionality. Keep the first three original requirements associated with the Live Auction Session.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Given the components below, can you identify the total afferent coupling (CA), total efferent coupling (CE), and total coupling (CT) for each component? Also, what is the total coupling level for this logical architecture? Does the CT for this architecture seem high or low to you?

[image: Image]

From “Test Drive”

Test Drive Solution

[image: Image]

It’s time to take the Law of Demeter for a test drive to see if you can decouple a logical architecture. Below is a logical architecture for a system where customers who have purchased a support plan with an electronic item can submit a trouble ticket and have an expert come out to fix the item. Here’s how it currently works:

	[image: Image] A customer creates a ticket.

	[image: Image] The ticket gets assigned to an available expert in the field.

	[image: Image] The ticket is uploaded to an app on the expert’s mobile device (that’s Ticket Routing).

	[image: Image] The customer is notified that the expert is on their way to fix the problem.

	[image: Image] Once the expert fixes the problem, they mark the ticket as completed.

Keeping the components the same, how can you make this architecture more loosely coupled?

[image: Image]

Logical Components Crossword Solution

[image: Image]

From “Logical Components Crossword”

[image: Image]

Chapter 5. Architectural Styles: Categorization and Philosophies

[image: Image]

There are lots of different architectural styles out there. Each one exists for a reason and has its own philosophy about how and when it should be used. Understanding a style’s philosophy will help you judge whether it’s the right one for your domain. This chapter gives you a framework for the different kinds of architectural styles (which we’ll be diving into for the remainder of this book), to help you make sense of these and all the other architectural styles you’ll encounter as a software architect.

Let’s fill in that final piece of the puzzle, shall we?

There are lots of architectural styles

You’ve learned a lot about software architecture so far, but there’s one thing we still haven’t talked about: architectural styles. That’s what we’ll do in this chapter—in fact, the rest of this book is dedicated to architectural styles!

[image: Image]

Before we get started: look around your neighborhood, then watch a show or movie set in a different part of the world. How many styles of homes do you see? There are literally hundreds—all influenced by the locale, weather, and the owners’ personal preferences. New styles are created every day.

[image: Image]

That’s true for architectural styles in software, too. There are so many out there that even in a book this big, try as we might, we’ll barely scratch the surface of all the available styles.

This chapter will give you a framework for thinking about architecture and architectural styles in general. Then, in the chapters that follow, we’ll dive deep into a handful of specific architectural styles and examine their philosophies, using what you learn in this chapter. Understanding a few crucial styles will leave you with a good foundation to understand others as you encounter them.

[image: Image]

Let’s do this.

The world of architectural styles

If you’ve done software development for any length of time, you may have heard about different architectural styles, like monoliths and microservices. To help us think systematically about them, we place them into two categories. The first deals with how the code is divided: either by technical concerns or by domain (business) concerns. The second category is about how the system is deployed: is all the code in the system delivered as one unit, or as multiple units?

Note

Recall from Chapter 2 that the domain is “the thing you’re writing software about.”

[image: Image]

As you can see, there are multiple ways to slice and dice architectural styles. This doesn’t cover everything, of course—there are domain-specific architectures that are built explictly for certain problems—but a book can only be so long.

Note

We won’t spend time on domain-specific architectures in this book. Let’s just say they don’t appeal to a broad audience.

Each category reveals some of the architectural characteristics of its styles. For example, architectural styles delivered as one unit are easier to understand, but those delivered as multiple units tend to scale better.

Let’s examine each category.

Partitioning: Technical versus domain

Think back to the last time you had dinner at a fancy restaurant. When you walked in, a host probably greeted you and escorted you to a table. A server offered you drinks and menus and explained the specials. The chef and other cooks prepared your food for you. When you finished your meal, a busser cleaned and reset the table.

These restaurant workers’ duties are separated by technical concern. A busser’s role isn’t to welcome you, and you probably don’t want the server cooking your food.

Now, think back to the last application you worked on. Did it have a controller layer? Did it have services? How about a persistence tier? If so, congratulations: you’ve already worked on a technically partitioned architecture.

In a technically partitioned architecture, code is divvied up by technical concerns—there might be a presentation tier, a business (services) layer, and so on. The principle at play here is separation by concern—which most people think about in horizontal layers.

Note

Another analogy that might help is a burger, with two halves of a bun, condiments, veggies, and a patty—each layer has a distinct and separate role.

[image: Image]

On the other hand, imagine a food court. It has lots of restaurants, each specializing in a particular kind of food: pizza, salads, stir-fry, burgers. In other words, each restaurant has a specific domain.

Note

Each of these restaurants might have servers and bussers. But at a high level, the restaurant specializes in a particular kind of food.

Note

We’ll dive into a lot of these details in future chapters.

In domain-partitioned architectures, the structure of the system is aligned with the domain. Rather than by roles, the code (and systems) are separated in ways that align with the problem you’re attempting to solve.

[image: Image]

there are no Dumb Questions

Q: In a domain-partitioned architecture, where do the presentation and services layers reside?

A: In a domain-partitioned architecture, you are making the domain the “first-class citizen,” leaving the technical implementation as just that: implementation. The logical components that make up your architecture are organized around the domain, as opposed to the role they perform.

A technically partitioned architecture’s components might be organized in namespaces like app.presentation.customer or app.services.customer. Note how the customer domain appears within the technical partition. However, in a domain-partitioned architecture, you’ll have namespaces like app.customer.presentation and app.customer.services.

Q: Domain partitioning is pretty logical. Frankly, it sounds better. So why would anyone use technical partitioning?

A: We prefer not to use value judgments such as “better” and “best” when discussing architectural styles. (You’re going to get tired of us saying this!) Your choice of architectural style will always be driven by a variety of factors, as you know, including the domain and the required architectural characteristics.

Technical partitioning is great if your teams tend to specialize—say, if you have teams of frontend experts, backend developers, and database administrators. But domain partitioning better aligns your system with the actual problem at hand.

Exercise

[image: Image]

A short-order cook pretty much does everything. They can cook everything on the menu, from fries to sandwiches, as well as blending smoothies and plating desserts. Often, they also serve food, take payments, and even clean tables after customers leave. Would you categorize a short-order cook’s work as partitioned technically or by domain? Why? Jot down your thoughts here.

[image: Image] Solution in “Exercise Solution”

Deployment model: Monolithic versus distributed

Let’s play a game—we say a word, and you respond with the first thing that pops into your mind. Ready? Monolith.

We don’t know about you, but this word makes us think of something like a boulder or a glacier—something big. That’s exactly what monolithic architectures represent.

In a monolithic architecture, you deploy all the logical components that make up your application as one unit. This also means that your entire applications runs as one process.

Note

This would be like packaging and deploying your entire application as a single WAR or JAR file in the Java ecosystem, or as an executable in the .NET world.

[image: Image]

In a distributed architecture, by contrast, you split up the logical components that make up the application across many (usually smaller) units. These units each run in their own process and communicate with each other over the network.

There’s a lot to this distinction, so let’s talk about the pros and cons of both types.

Exercise

[image: Image]

Take a moment and consider your smartphone. It does it all—it lets you take pictures and videos, browse the web, post to your favorite social networking site, track your fitness activity, and navigate via GPS. And somewhere, embedded deep within the settings, there’s even a phone! As you can see, your phone is a monolithic system. We’d like you to jot down the pros and cons of such a system. Think in terms of architectural characteristics, like availability, upgradability, cost, and ease of use.

[image: Image]

Just a few years ago, people used separate devices for all those functions your phone performs today. Phones were, well, just phones, maybe with text messaging. We used laptop or desktop computers to browse the web and post to social networking sites; we could buy fitness trackers to help track workouts and GPS devices to install in cars for navigation help. Each of these “services” was deployed separately.

Just like you did above, jot down the pros and cons of such a system. Again, think in terms of architectural characteristics.

[image: Image]

[image: Image] Solution in “Exercise Solution”

Monolithic deployment models: The pros

In Chapter 2, you learned that architectural characteristics always influence some structural aspect of the design. Monoliths support some characteristics better than distributed systems, and knowing where they shine can help you decide when to use them.

Because monolithic systems run in one process, they make development easier—at least initially. And since they’re deployed as one unit, tracing errors is a lot easier.

Let’s take a look at the pros and cons of both deployment models, starting with monoliths. Here are the pros:

[image: Image]

Now for the cons...

Monolithic: The cons

Some of monoliths’ strengths can become problematic as an application grows. Many of the operational characteristics we discussed in Chapter 2, like scalability and reliability, suffer as a monolithic application grows bigger and more complex.

[image: Image]

Next, we’ll look at the pros and cons of distributed architectures.

Brain Power

[image: Image]

Spend a few minutes thinking about your industry. Does your organization have any special regulatory, security, or compliance needs? How might using a monolithic architecture help or hurt its ability to achieve the architectural characteristics that address those needs? List any ways you can think of here:

[image: Image]

Distributed deployment models: The pros

With distributed architectures, you deploy your logical components as separate units. This makes it easy to scale some parts of your application separately from others. And since logical components are physically separate, distributed architectures encourage low coupling.

So, what architectural characteristics are distributed architectures good for? Here’s a sampling:

[image: Image]

As you might have noticed, distributed architectures do better on many of monolithic architectures’ weak points. But is the opposite true? Let’s find out.

Distributed deployment models: The cons

Can’t have pros without cons. Trade-offs, right? It’s all about trade-offs.

[image: Image]

Distributed architectures make some things easy, while making others very hard.

Watch it!

[image: Image]

It’s easy to underestimate how hard distributed computing is!

For all their benefits, distributed architectures depend on the network. Software architects often underestimate the complexities that arise from this dependency. Look up “The Fallacies of Distributed Computing,” a list compiled in the 1990s by L. Peter Deutsch and others at Sun Microsystems, to get a sense of what to watch out for.

Brain Power

[image: Image]

Let’s repeat the exercise you did earlier, this time for distributed architecture. Does your organization have any special regulatory, security, or compliance needs? How might using a distributed architecture help or hurt your organization’s ability to achieve the architectural characteristics that address those needs? List any ways you can think of here:

[image: Image]

Fireside Chats

[image: Image]

Tonight’s talk: Monolithic and distributed architectures answer the question: “Who’s more relevant?”

	Monolithic Architecture
	Distributed Architecture

	It’s a good thing I’m still around. Boy, do you make things complicated.
	

	
	I don’t like that attitude. Sure, you might be “simpler” to develop, but you can’t keep up. Businesses need to move fast, and you just don’t deliver the goods.

	I might be simple, but I’m also faster to develop. I can’t imagine anyone building a minimum viable product with you—they’d never launch!
	

	
	I might give you that—but I’ll make sure they make it to the finish line. And if their product is a smash hit, will you help or just get in the way? I can ensure success even at scale.

	Oh! And I’m way cheaper. You realize that most businesses don’t want to waste money, right? I can’t imagine anyone using you to create a proof of concept.
	

	
	Businesses also like making money. Once their applications grow, you’re just a money pit. I personify agility—I help teams and organizations scale as they grow.

I also make testing easier, while you just rack up the technical debt.

	It’s a good thing you can be tested easily—ever seen a useful error stack trace? Of course you haven’t. You’re all over the place. Good luck trying to trace why and where an error actually happened.

At least when I get an error, you get a nice, clear stack trace.

	

	
	Riiiight. And when you fail, you just topple over. I provide a high degree of fault tolerance. Need a service to scale? Just scale that service. Scaling you is arduous.

	At least I’m just one process. No unnecessary network traffic here. You’re all talk, man—so much chatter. All your services are constantly talking to one another.

And that’s only if the network is always reliable, because without it, you have nothing! Heaven help you if the network should fail.

Plus, with me, you don’t need a whole bunch of network infrastructure. Do you know how expensive that stuff is to maintain?!

	

	
	Hey, that’s the cost of doing business at scale. Teams might start with you, but if they want to keep growing, they’ll come to me—and leave you in the rearview mirror.

	What? Are you saying I’m old news? Well, the next time a team needs to get to market quickly, don’t call me—and then we’ll see how tough you really are.
	

	
	Feeling’s mutual, bud. Don’t call me when your team’s minimum viable product is a success and their architecture can’t handle all the attention.

And that’s a wrap!

Now you know how to categorize the tons of architectural styles out there. Having a framework can help you make sense of them. And remember—each quadrant of the framework represents both the pros and cons of those architectural styles.

In the next chapter, we’ll start our deep dive into individual styles.

Bullet Points

	There are a lot of architectural styles—in fact, too many to count.

	There are multiple ways to categorize architectural styles. One is by their partitioning style. Architectural styles can be either technically partitioned or domain partitioned.

	In technically partitioned architectural styles, the code is split up by technical concern. For example, there might be a presentation layer and a services layer.

	In domain-partitioned architectural styles, the code is instead split up by problem domain.

	Another way to categorize architectural styles is by their deployment model. Monolithic architectural styles deploy all the logical components that make up an application as a single unit. Distributed architectural styles deploy the logical components separately from one another, as multiple units.

	Monolithic architectures are easier to understand and debug and are often cheaper to build (at least initially). This makes them great candidates if there is a rush to bring a product to market.

	As monolithic applications grow, scaling them up can become arduous. It’s an all-or-nothing scenario: you either scale up the whole application or nothing at all.

	Monolithic applications can also be unreliable—a bug can make the entire application unusable.

	Distributed architectures are highly scalable since their logical components are deployed separately, allowing different parts of the application to scale independently of one another.

	Distributed architectures encourage a high degree of modularity, which means testing them is easier.

	Distributed architectures are extremely expensive to develop, maintain, and debug.

	Distributed architectures use the network so that different services can talk to one another to complete work. This introduces even more complexity.

Stylin’ Architectures Crossword

[image: Image]

Now that you can make sense of architectural styles, see if you can make sense of this crossword.

[image: Image]

Across

2. You can _____ systems technically or by domain

3. L. Peter _____ helped compile “The Fallacies of Distributed Computing”

7. Monoliths are good for creating a _____

10. Regardless of the physical architecture, a _____ system provides more confidence in correct outcomes

14. Distributed and monolithic are both deployment _____

15. Minimum viable _____

17. Monolithic systems are easier to _____

18. Monolithic architectures have _____ deployment units

Down

1. Layers are separated by _____

2. Each architectural style has its own _____

4. Monolithic architectures tend to have a fast _____ to market

5. A system deployed as one big unit

6. If you change anything in a monolith, you’ll need to _____

8. An architecture’s organization is reflected in its _____ spaces

9. Services in a distributed architecture use this to communicate

11. Distributed systems consist of many _____ deployment units

12. Nothing about distributed deployment models is _____

13. Architectures often have more than one _____

16. Distributed systems usually _____ more than monolithic ones do

[image: Image] Solution in “Stylin’ Architectures Crossword Solution”

From “Exercise”

Exercise Solution

[image: Image]

A short-order cook pretty much does everything. They can cook everything on the menu, from fries to sandwiches, as well as blending smoothies and plating desserts. Often, they also serve food, take payments, and even clean tables after customers leave. Would you categorize a short-order cook’s work as partitioned technically or by domain? Why? Jot down your thoughts here.

Note

Because a short-order cook does everything needed to get customers their meals, from setting the tables to prepping and cooking to cleaning up, they own the whole “domain” of food preparation. This makes their job domain-partitioned.

From “Exercise”

Exercise Solution

[image: Image]

Take a moment and consider your smartphone. It does it all—it lets you take pictures and videos, browse the web, post to your favorite social networking site, track your fitness activity, and navigate via GPS. And somewhere, embedded deep within the settings, there’s even a phone! As you can see, your phone is a monolithic system. We’d like you to jot down the pros and cons of such a system. Think in terms of architectural characteristics, like availability, upgradability, cost, and ease of use.

[image: Image]

Just a few years ago, people used separate devices for all those functions your phone performs today. Phones were, well, just phones, maybe with text messaging. We used laptop or desktop computers to browse the web and post to social networking sites; we could buy fitness trackers to help track workouts and GPS devices to install in cars for navigation help. Each of these “services” was deployed separately.

Just like you did above, jot down the pros and cons of such a system. Again, think in terms of architectural characteristics.

[image: Image]

Stylin’ Architectures Crossword Solution

[image: Image]

From “Stylin’ Architectures Crossword”

[image: Image]

Chapter 6. Layered Architecture: Separating Concerns

[image: Image]

What if your problem is simple and time is of the essence? Should you even bother with architecture? It depends on how long you want to keep what you build. If it’s disposable, throw caution to the wind. If not, then choose the simplest architecture that still provides some measurable organization and benefit, without imposing many constraints on speed of delivery. The layered architecture has become that architecture because it’s easy to understand and implement, leveraging design patterns developers already know. Let’s peel back the layers of this architecture.

Naan & Pop: Gathering requirements

Sangita likes simple meals, so she created an Indian-inspired mom-and-pop restaurant called Naan & Pop, specializing in flatbread sandwiches and sodas.

The restaurant needs a website where customers can place orders online. Since Naan & Pop is a startup with a small budget, it needs to be simple and created quickly.

Sangita has some specific requirements.

[image: Image]

Time to market

The restaurant is already open. The faster they can get the site online, the faster they can start making money. The site should be simple.

[image: Image]

Separation of responsibilities

The company has part-time help with specialized skills, such as user interface (UI) specialists and database administrators (DBAs). Thus, it would help to keep each part of the system separate.

[image: Image]

Simple, yet extensible

While this is Sangita’s first foray into software architecture, she would like to keep building on the company’s online presence and find ways to extend and reuse parts of the system.

[image: Image]

Sangita has some software development experience and realizes that many of these goals require a good separation of responsibilities. She passes these requirements to the development team she’s hired for this project. You’re a part of that team, so pay close attention.

Cubicle conversation

[image: Image]

Alex: Our project manager just sent the requirements and goals for Naan & Pop’s web application. It’s so simple. Couldn’t we just find an existing framework or library to handle most of it?

Mara: That would solve the simplicity goal. But Sangita also wants extensibility, and existing frameworks tend to be a bit rigid.

Sam: What kind of extensibility does she want?

Mara: If the restaurant is a success, we might want the site to support different kinds of user interfaces, or we could build integration points for delivery services.

Alex: Yeah—existing simple applications might not handle the separation of responsibilities Sangita would need for that kind of extensibility.

Sam: But we don’t have time to build a fancy architecture!

Alex: This seems impossible—how can we build a proper architecture with specializations under these time constraints?

Sam: Fortunately, we’ve already worked with other team members to define the architectural characteristics (for the application’s capabilities) and domain design (for its behavior). We just need to choose the appropriate architecture.

Mara: Those are some serious trade-offs and conflicting goals. We need a simple architectural style that lets us separate responsibilities around technical areas, such as user interface, data, business logic, and so on. That way, adding a new user interface will only affect one layer.

Alex: “Separate responsibilities...” I just read that phrase in the book Head First Design Patterns! I was reading about the Model-View-Controller design pattern.

Sam: Yeah, but that’s a design pattern—how would you translate that to architecture?

Mara: Lots of design patterns end up in architecture, because often their goals overlap. But, while design patterns can focus just on design elements, architecture has to account for real-world constraints. Let’s crack open the book and see if we can map Model-View-Controller into architecture.

Design patterns redux

To illustrate the concept of design patterns, the influential book Head First Design Patterns uses the Model-View-Controller (MVC) design pattern, which separates capabilities based on their purpose.

Note

A “design pattern” is a contextualized solution to a common problem in software design.

[image: Image]

In MVC, the model represents business logic and entities in the application; the view represents the user interface; and the controller handles the workflow, stitching model elements together to provide the application’s functionality, as shown here:

[image: Image]

Brain Power

[image: Image]

The MVC design pattern separates logical responsibilities, but software architecture must also deal with physical systems, like browsers and databases. How would you split the responsibilities covered by MVC within the constraints of software architecture, while maintaining the overall goal of separating responsibilities and concerns?

Layering MVC

Design patterns represent logical solutions to problems, but architecture must deal with real-world constraints like databases, user interfaces, and other implementation details.

[image: Image]

Today’s lnterview

[image: Image]

Layering it on with an architecture star: the Layer

Head First: Welcome, Layer, to our luxurious studio. I know you have a busy schedule, so thanks for making the time.

Layer: You’re welcome. As you say, I’m a pretty big deal. They even named an architecture after me!

Head First: Let’s dig into that, Layer. Why base a whole architecture on you?

Layer: Great question. I make everything nice and understandable in an application’s architecture, since each layer has a specific responsibility.

Head First: So, this architecture is just for neat freaks?

Layer: No! Putting all the similar functionality in separate layers makes it easier to find it again to make changes. For example, if the team needs to add a different database, they only have to change the persistence layer.

Head First: Ah. So organizing everything allows for easier discovery and updating. Seems like a good reason for an architecture.

Layer: While unified organization is nice, it’s not the only reason to base an architecture on me.

Head First: What do you mean?

Layer: I hate to brag, but us layers are quite flexible—we can be used for all sorts of things!

Head First: Well, I know you often show up for user interfaces and provide a place to put all the business logic.

Layer: Sure, we do the heavy lifting for those. But teams can mold us into all kinds of UIs. For instance, a services layer can provide an interface to other applications that need to interact with this one.

Head First: Do you have a good example of how teams have leveraged you, Layer?

Layer: You bet! I worked with a team that handled loyalty programs for a hotel. Every purchase a user made could qualify for bonus points, depending on their membership status, years of membership, and a bunch of other complicated stuff. The team successfully used a bonus layer to keep all the calculations in a single place.

Head First: OK, that sounds useful. Can you address the recent controversy about your chilly relationship with Domain-Driven Design?

Layer: What kind of interview is this? There’s no credence to those rumors that we can’t get along. Well, as you know, I specialize in technical separation. My friend DDD focuses more on domain or business separation. I’m happy to host a domain in my architecture, but it’ll likely have to split across the layers.

Head First: Isn’t it true that you’re older than other architectural styles?

Layer: The idea of layers in architecture predates just about any other concept. And is that really surprising? When architects start thinking about how to organize things, I just make sense.

Head First: We’re nearly out of time, but can you tell us about your cozy relationship with the monolith? You seem to be hosted by it a lot.

Layer: No comment.

[image: Image]

Great question. Requests and responses flow through the layers.

In a layered monolithic architecture, when a user asks the system to do something, the user interface initiates the request. Then that request flows through each layer in the architecture. If the database is involved in persisting something, then the request goes from top to bottom and back.

[image: Image]

Layering it on

For an application like the Naan & Pop site, your team will build logical components to match the problem. But how will you implement those components?

Layers, in this type of architecture, are created with packages or namespaces, just like domain components. However, to maintain the separation of concerns, the layers’ package structures typically reflect their place within the partitioning:

com.naanpop.orderapp.presentation
com.naanpop.orderapp.workflow
com.naanpop.orderapp.model
com.naanpop.orderapp.persistence

Note

The fully qualified names of these layers will appear as packages in Java, namespaces in .NET, or whatever namespacing mechanism your language of choice uses.

Like the logical components, the architectural layers use the component implementation of the underlying platform, which often maps to the underlying filesystem:

[image: Image]

Translating layers into code

Once your team has built the component packages (or namespaces), you’ll need to assist the developers in implementing the architecture. Here’s an example in Python-like pseudocode to illustrate how the layers translate to code.

	[image: Images] The user interface layer, or presentation layer, is the topmost layer. It’s responsible for interacting with the user, serving the same purpose as the view part of MVC.

[image: Image]

	[image: Images] The workflow layer (sometimes called the business rules layer) is responsible for processing each request from the UI layer and returning a response.

[image: Image]

	[image: Images] The persistence layer (or data access layer) is responsible for accessing the data from the database and returning it to the workflow layer.

[image: Image]

there are no Dumb Questions

Q: You said in Chapter 5 that every architectural style has a category and a philosophy. Where does the layered architecture fit in?

A: We’re glad you’re thinking about that. As we said in Chapter 5, understanding the categories reveals a lot about what characteristics a particular architectural style will support.

The layered architecture is a technically partitioned architectural style, typically deployed as a monolith. (We say typically because we’ll discuss some variations on this model soon.)

[image: Image]

This is an important point—the domain behavior lives across the layers in this architecture.

The domain, as you’ll recall, represents logical components based on the problem you’re trying to solve. However, the layers in this architecture represent technical capabilities—user interface, business logic, and so on.

The domain maps onto the layered architecture, sometimes spreading between layers.

there are no Dumb Questions

Q: Why these particular layers—presentation, workflow, and persistence?

A: These are common layers, but they are by no means required. Most applications have at least some of this separation: for instance, the UI is often distinct from the core logic of the system, which in turn is separate from the database development.

Q: Was the layered architecture inspired by the Model-View-Controller design pattern?

A: The opposite is likely true. Layered architectures, which have existed as long as people have been building software from different parts, may well have inspired the design pattern. Design patterns are often harvested from observations of common occurrences, and the layered architecture has been around for quite some time in many forms.

Domains, components, and layers

In a simple restaurant ordering system like Naan & Pop’s, we might come up with the following components based on the problem domain:

[image: Image]

But there’s a problem. These components are based on the logical behavior of the domain, but the layered architecture splits things by capabilities. So, we need to separate the logical components (which include workflows and entities) into components that match what we need for the layered architecture:

[image: Image]

Once we’ve split the logical components into workflow and entities, we can overlay the components over the layers in this architecture:

[image: Image]

Sharpen your pencil

[image: Image]

Naan & Pop’s lead architects have designed a layered architecture. Today, though, they’re off at a daylong breadmaking seminar to learn more about their problem domain, leaving you to sort out which components go where. Can you decide in which layer (or layers) each component should reside? Draw the components below on the layer(s) to which they should map.

[image: Image]

[image: Image]

[image: Image] Solution in “Sharpen your pencil Solution”

[image: Image]

there are no Dumb Questions

Q: Why go to the trouble of identifying logical components if we have to break them apart to fit them into this architecture?

A: The logical components represent the problem you’re trying to solve. Mapping that to any architecture means applying real-world constraints (and trade-offs). We’ll show you a more direct domain-to-architecture mapping in the next chapter, but it has trade-offs, too.

Q: Why is the layered architecture so popular?

A: This architecture shows up a lot. First, it’s simple, without many moving parts. Second, as you’ve seen, it maps closely to the MVC design pattern, making it easy to understand. Third, it’s so common that teams can build simple projects quickly in this style. Fourth, many companies separate their employees by skill set, which facilitates an architecture with similar partitions.

Drivers for layered architecture

We’ve put together a list of the things the layered architecture is really good at—that is, the things that might drive us toward picking this particular architectural style.

[image: Image]

Specialization

Using a layered architecture allows organizations to split teams into specialists, sharing their capabilities between different projects.

Note

The ability to specialize makes this architecture popular in organizations that need to share special skills across multiple projects.

[image: Image]

Matches physical separation

The layered architecture typically separates the logical components to match the physical separation. For example, it’s common for teams to implement different layers in different technology stacks (such as JavaScript, Java, and MySQL).

Note

Often, the real world prevents architects from designing what they want, instead forcing them to design with what they have.

[image: Image]

Ease of (technical) reuse

Splitting the architecture by technical capabilities allows better opportunities to reuse code. For example, if all persistence code resides in a single layer, it’s easier for developers to find, update, and reuse it.

Note

The ability to reuse components within a layer is one of the key advantages of this architecture for many organizations.

[image: Image]

Conceptual twin of MVC

Simplicity and concerns about feasibility are driving forces in many architectures. Developers find it easier to understand and work within an architecture that matches familiar design patterns, such as MVC.

Note

Feasibility and simplicity for the win!

Layers, meet the real world: Physical architectures

The layered monolith describes a logical architecture, but architects may implement that logical architecture in a variety of physical architectures.

[image: Image]

[image: Image]

Physical architecture trade-offs

Which physical architecture should you choose? Well, they all have trade-offs, like everything in software architecture.

[image: Image]

[image: Image]

Exercise

[image: Image]

Generic trade-offs are one thing, but software architecture is always based on a real system. The architects at Naan & Pop need some help evaluating the trade-offs for each physical architecture as they decide which one to use. Can you help them figure out which specific trade-offs the Naan & Pop application will face for each physical architecture?

[image: Image]

[image: Images] Solution in “Exercise Solution”

Cubicle conversation

[image: Image]

Alex: Is Naan & Pop generic enough to only use the standard layers? When do teams add layers?

Sam: Why add layers to the architecture?

Mara: Each layer in a layered architecture has a specific responsibility within the system, so when they’re needed, we add layers.

Sam: What kinds of layers?

Alex: It’s common to add a services layer, which provides access for business-to-business integration, or integration layers for other internal systems. Each request goes through each layer, so layers need to be things that happen to every request.

[image: Image]

Mara: That’s right—architects can add whatever layers we need to support some new behavior. For example, the site needs integration with third-party delivery services, so maybe we should add an integration layer. Here, let me draw what I have in mind for our layered architecture on the whiteboard...

[image: Image]

Alex: Adding an integration layer for our delivery hooks would make things easier, wouldn’t it? It looks like all the code pertaining to that integration lives in the same place, which would make it easy to find and update.

Mara: Yes, and that’s true for the user interface layer, too. In fact, one of the next requirements we have to implement is an additional UI to support mobile.

Sam: So, if we add a separate mobile UI, we’d only have to change one layer?

Mara: That’s one of the best things about layered architecture!

[image: Image]

One final caveat about domain changes

One of the primary advantages of a layered architecture is that it lets us group similar technical things together. For example, in the Naan & Pop application, separating the UI into its own set of components allows the team to add new UI types without affecting the other layers.

Let’s pause for a second and think about this—what about changes to the problem domain? If Naan & Pop wanted to add something other than sandwiches to the menu, like pizza, would every layer have to change?

The power to change things in isolation is the layered architecture’s superpower, but it’s not a silver bullet. This architectural style’s big trade-off is that the problem domain is smeared across the layers in the architecture. For example, the Place Order logical component in the Naan & Pop architecture requires a UI (presentation), code to implement the workflow (workflow), and a data schema (persistence).

That means that technical capabilities are easy to change and enhance, but domain changes can create side effects that ripple through the layers.

Note

We alluded to this earlier in the chapter.

Layered architectures facilitate technical changes but make domain changes more difficult.

So, what to do? Well, there’s a reason why we started this book by showing you how to identify the architectural characteristics your application needs to support. If continual, significant domain changes are expected or suddenly become a higher priority, there are other architectural styles to consider.

Note

Take a deep breath. The next chapter will introduce you to an architectural style that is better suited to accommodating domain changes. Oh, the suspense!

All that said, let’s quickly summarize the good and bad of the layered architecture.

there are no Dumb Questions

Q: That’s a rather large caveat. Why would I even consider the layered architectural style?

A: Remember the First Law of Software Architecture—everything’s a trade-off. Sure, other architectural styles might allow for easier changes to the domain, but they have their own caveats. Align the strengths and weaknesses of every architectural style with your requirements, and then choose. There’s no one right choice, just the choice that works best for your particular set of circumstances.

Layered architecture superpowers

Layered architectures have been demonstrating their powers for many, many years—this is one of the oldest recognizable architectural styles.

[image: Image]

[image: Image]

Feasibility

If time and budget are overwhelmingly important, the simplicity of this architecture is quite appealing.

Note

If your whole company runs on investment dollars, feasibility is especially important.

[image: Image]

Technical partitioning

Architects design components around technical capabilities, making it easier for them to reuse common capabilities. For example, if several teams need the same data functionality, they could implement it once in a persistence layer and then share it across teams.

Data-intensive

Systems that do a lot of data-level processing may benefit from a layered architecture because it isolates data processing in a single database that’s optimized for the task.

Note

In general, the less a system needs to access data over the network, the more efficient it can be.

Performance

Well-designed layered monoliths can demonstrate high performance—making no network calls and processing data in a single place (the monolithic database) means there’s no need for network calls that could decrease performance.

Quick to build

Simplicity plus a single work/deployment unit means that teams can build small systems quite rapidly.

Lean and mean

Keeping these systems small helps avoid some of the kryptonite on the next page.

[image: Image]

Layered architecture kryptonite

This architecture is pervasive and popular, but it can be overused and even abused. While feasibility may be a superpower, many teams default to this architecture because of its simplicity, long history, and widespread use, without considering if it’s really the most suitable option.

[image: Image]

Deployability

As monolithic systems get bigger, deployments tend to become more complex—especially when developers keep adding behavior.

Big ball of mud

Because everything is connected to everything else, this architecture can become a highly coupled mess without careful governance.

Scalability

Probably the biggest problem with monoliths is that when you only have one bucket and you keep adding things to it, it will eventually fill up. The same is true for monoliths generally, which eventually become constrained by some resource (memory bandwidth, and so on).

Elasticity

A single process has a harder time dealing with sudden bursts of users.

[image: Image]

Testability

High coupling and a large codebase make testing harder and harder over time.

[image: Image]

Layered architecture star ratings

The Naan & Pop architecture team decides to use a rating chart they found in the book Fundamentals of Software Architecture (O’Reilly), written by two of your authors, that describes the layered architecture in a convenient way. One star means that the architectural characteristic is not well supported; five stars means the architectural characteristic is very well supported.

Note

Just like movie reviews.

[image: Image]

Exercise

[image: Image]

Which of the following systems might be well suited for the layered monolithic architectural style, and why? Hint: Take into account its superpowers, its kryptonite, and the nature of the system.

[image: Image]

[image: Image] Solution in “Exercise Solution”

Wrapping it up

Congratulations! The Naan & Pop team looked at several architectural styles, but after considering the business’s priorities, you chose a layered architecture. This paid off handsomely, allowing the business to grow without any problems.

Bullet Points

	A layered architecture is monolithic: the entire system (code and database) is deployed as a single unit.

	The layers are separated by technical capabilities. Typical layers in this architecture include presentation (for the user interface), business rules (for the workflow and logic of the application), and persistence (facilities to support databases for systems that need persistent data).

	The layered architecture supports feasibility well; it is easy to understand and it lets you build simple systems fast.

	The layered architecture supports excellent separation of technical concerns, making it easy to add new capabilities like user interfaces or databases.

	The layered architecture mimics some of the same concerns as the Model-View-Controller design pattern, but translated into physical layers and subject to real-world constraints.

	User requests flow through the user interface and through each layer before a response is returned to the user.

	Each request in this architecture goes through each layer.

	A layered architecture’s capabilities degrade over time if teams continue to add functionality due to eventual resource limits (for example, they run out of capacity).

	The layered architecture provides excellent support for specialization (user interface designers, coders, database experts, and so on).

	Logical components represent the problem domain, yet layers focus on technical capabilities, requiring translation between the domain and architecture layers.

	A layered architecture may manifest in several physical architectures, including two-tier (also known as client/server), three-tier (web), and embedded/mobile.

	Changing and adding to the technical capabilities represented in layers is easy; the layered architecture facilitates this.

	Changing the problem domain requires coordination across the layers of the architecture, making domain changes more difficult.

Layered Architecture Crossword

[image: Image]

Ready to add learning on top of learning by solving the layers of this crossword?

[image: Image]

Across

3. Layered architectures use familiar design _____

5. Kind of layered architecture often found in smartphone apps

6. Type of architecture covered in this chapter

8. _____ can be confined to one layer

9. Namespaces and packages correspond to the directory _____

11. Too much coupling can lead to a big ball of _____

14. Layer that maps object models to relational models for databases

17. Depending on the network for data access makes an architecture _____ reliable

19. Kind of database often used for persistence

21. Layered architectures might have two or more _____

Down

1. The integration layer lets the system _____ with third parties

2. Layered architectures facilitate _____

4. The _____ domain spreads across all of the layers

7. Logical and _____ components are usually separated in the same way

10. Logical _____ reside in layers

12. Domain-driven _____

13. Layer that applies business rules

15. The user _____ is part of the presentation layer

16. The MVC pattern and layered architecture both _____ responsibilities

18. A user’s request and its response _____ through the layers

20. Model-_____-Controller design pattern

[image: Image] Solution in “Layered Architecture Crossword Solution”

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Naan & Pop’s lead architects have designed a layered architecture. Today, though, they’re off at a daylong breadmaking seminar to learn more about their problem domain, leaving you to sort out which components go where. Can you decide in which layer (or layers) each component should reside? Draw the components below on the layer(s) to which they should map.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Generic trade-offs are one thing, but software architecture is always based on a real system. The architects at Naan & Pop need some help evaluating the trade-offs for each physical architecture as they decide which one to use. Can you help them figure out which specific trade-offs the Naan & Pop application will face for each physical architecture?

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Which of the following systems might be well suited for the layered monolithic architectural style, and why? Hint: Take into account its superpowers, its kryptonite, and the nature of the system.

[image: Image]

Layered Architecture Crossword Solution

[image: Image]

From “Layered Architecture Crossword”

[image: Image]

Chapter 7. Modular Monoliths: Driven by the Domain

[image: Image]

There’s more than one way to build a monolith. So far, you’ve encountered the layered architecture, which aligns things technically. You can go a long way with a layered monolith, but when changes begin to involve lots of communication and coordination between different teams, you might need a little more horsepower under the hood—and perhaps even a different architectural style.

This chapter looks at the modular monolith architectural style, which divides applications up by business concerns as opposed to technical concerns. You’ll learn what this means, what to look out for, and all the trade-offs associated with this style. Let’s take the modular monolith for a spin, shall we?

[image: Image]

As a reminder, Naan & Pop’s sandwich shop has a small development team, and its requirements haven’t changed a whole lot since the team built their layered application in Chapter 6. The competition is stiff, and time to market remains a concern. The system should remain simple.

Note

Be sure to review Chapter 6 if you need to refresh your memory.

Exercise

[image: Image]

Cast your mind back to the layered architecture we built for Naan & Pop in Chapter 6. The following diagram shows its layers and logical components. Adding a new category to the menu (say, pizza) means changing a bunch of moving parts. Grab a marker and put a triangle ([image: Images]) next to everything this new requirement will affect.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Cubicle conversation

[image: Image]

Alex: Pfft! This is easy. We’ve already delivered a working and extensible system. Let’s get to it.

Mara: Hold your horses. This might be our first rodeo with such a change, but I doubt it’ll be our last.

Sam: So what? We’ve built an extensible system. Why are you being so reticent?

Mara: Let’s think this through—we have to add pizzas to the menu. Not only will we have to add new recipes and ingredients, but we’ll also need to allow patrons to order pizzas online. So where will we have to make changes?

Sam: Lots of places! It’ll at least affect ordering and recipe management. I still don’t see a concern.

Alex: I think I do. We’ve built a layered architecture, and we have specialists working on each layer. A change like this means coordinating changes across all of those folks.

Mara: Bingo! The layered architecture smears the domain across all the layers. So, implementing anything that changes the domain can be arduous.

Alex: You’re telling me that choosing the layered architecture was a mistake?

Mara: The layered architecture was simple and quick to build. It allowed us to launch quickly. But now we need to think about maturing the architecture to support modularity, so changes like these will be easier in the future.

Alex: So where do we start?

Mara: Allow me to introduce you to the modular monolith. Rather than partitioning by technical concern, we’ll partition by business domain, using modules—hence the word modular. I’ll show you what this looks like as I explain it.

Sam: Ooh, I’m so excited. Let’s do it!

Modular monolith?

A modular monolithic architecture, like a layered architecture, is deployed as a single unit, usually with its own database.

Note

Think back to Chapter 5. Architectural styles can be separated by how the code is partitioned and by deployment model.

[image: Image]

That’s where the similarity ends. In a modular monolith, rather than partitioning your application by technical concerns, you partition it by functionality. Every business operates within a certain domain—like banking, education, or retail. Online stores usually have several subdomains, like Order Placement, Payment, and Inventory Management. Together, they make up the Online Store domain. You organize your application according to these subdomains, separating them into modules.

Note

Heads up—you’ll find the terms domain and subdomain used interchangeably. As long as you understand that both terms represent business concerns, you’re good.

[image: Image]

What is a module? At a high level, it’s just how you organize your code. In some languages, you might have support like packages or namespaces. But it doesn’t start or stop there.

Partitioning your code using modules has implications for how you’ll go about separating concerns between modules and how modules will interact with each other. We have a lot more to say about this, so stay tuned. For now, we just want you to be able to distinguish between the layered and modular monolith architectural styles.

there are no Dumb Questions

Q: Can you explain more about what you mean when you say module?

A: A module is a software design element representing an independent unit that fulfills one piece of functionality. Technically, every layer in a layered architecture is a module—these modules just happen to be divided by technical concern.

In a modular monolith, on the other hand, each module represents a particular piece of the domain—that is, a subdomain. Each module contains all the business functionality needed for that particular subdomain.

Who Does What?

Identifying which components should belong to a particular module can be tricky. In this game of “Who Does What?”—or rather, “What Goes Where?”—we’d like you to match each component to the module where it fits best. Multiple components can belong to one module.

[image: Image]

[image: Images] Solution in “Who Does What? Solution”

Domain pains changes

Naan & Pop wants to add a new food category (pizza) to the menu. Which parts of the architecture need to change to make this happen? Let’s take a look.

[image: Image]

Introducing a new menu category primarily affects the Order domain. The menu needs to allow customers to order pizzas and customize their toppings. That might require changing or adding new business rules to support customization and perhaps delivery, since pizzas need to be delivered hot. It could also change how the system stores orders (since customers may ask for customizations.)

As you can see, introducing new menu items can affect multiple components across multiple layers. This is because, as mentioned in the previous chapter, in a technically partitioned architecture the business domain gets “smeared” across multiple layers. This is great if you’re implementing a technical change, like changing the view technology or swapping out the database. But it’s not so great if the change affects the domain—you’ll have to round up folks from multiple teams to figure out how to implement it.

Note

No one ever woke up and said, “How can I add yet another meeting to my calendar?”

This is where modular monoliths can really help.

Geek Note

[image: Image]

It’s not unusual for teams to start with a layered architecture, then refactor it into a modular monolith over time as the application grows.

Why modular monoliths?

When you eat a burger (or a veggie burger!), do you take a bite of the top bun first, then bite into the gooey cheese, then take a bite of the patty? Or do you take one bite that slices vertically through every layer of the burger? The latter, right?

Note

Every layer in a burger serves a specific purpose—so it tastes best if you bite through all the layers together.

Note

Yum!

That’s exactly how you can think of a modular monolith. You don’t organize the application in horizontal layers separated by technical concern, but in vertical slices scoped by business concern. Each vertical slice aligns with a piece of the domain and is encapsulated in a module. Every module contains a set of business functions—for example, order placement, order completion, and order delivery would all be part of the Order Placement module.

[image: Image]

What does this mean? Changes to the domain that affect many or all layers require lots of coordination between different teams. You’ll need to ensure that everybody’s changes work with everybody else’s.

Now, rather than having teams that specialize in the presentation layer or the persistence layer, you have cross-functional teams, each specializing in a domain. The result? It’s far easier to coordinate domain changes when one team takes full ownership.

Note

This isn’t business-word bingo! It’s not always easy to build out cross-functional teams that work in multiple different technical stacks.

[image: Image]

How astute of you! You’re absolutely right that each module here still consists of layers—but they don’t have to. The important thing is that your application is organized by domain.

Your system still needs to process and respond to each request, though. So you’ll need an entry point (presentation layer), some business processing (workflow layer), and maybe a data store to write to (persistence layer). Even within a modular architecture, it makes sense to separate those responsibilities, much like the layered architecture does.

However, if you zoom out and look at the whole architecture, you’ll see that the application is carved up into subdomains. The fact that each module is composed of a bunch of technically partioned layers becomes an implementation detail, as opposed to an architectural concern. In other words, how a module is laid out internally isn’t how the architecture is partitioned. Modular monoliths are domain-partitioned.

Let’s get a bit more concrete by seeing what this looks like in code.

Show me the code!

You’ve probably recognized that modular monoliths solve the problem you are working on differently from a layered architecture, by organizing applications by domain rather than technical concern. But how does this translate to your code?

Let’s first talk about the modules themselves. They represent parts of the domain. Naan & Pop’s namespaces look like this:

[image: Image]

Remember, we’re still working with a monolith—that is, it’s still one deployment. Typically, one deployment would translate to one codebase, with the code organized in different namespaces. Each namespace represents a separate module, like so:

[image: Image]

[image: Image]

Exercise

[image: Image]

A critical piece of successfully developing modular monoliths is understanding the domain well enough that you can break it into individual modules. One way to do that (and there are many) is to really listen to your business experts.

Say you are working for a startup that’s creating an expense-tracking app for small to medium-sized businesses. Here are the business requirements:

	There are users and auditors. Users add expenses, and auditors review expense reports to ensure they align with policy guidelines.

	When a user adds an expense, it is recorded in the database for that user.

	The app creates an audit trail that the auditors can use to ensure that everything is in order.

Can you identify the subdomains that should make up this application? Hint: Not everything your business users say will translate into a module.

[image: Images] Solution in “Exercise Solution”

Cubicle conversation, continued...

[image: Image]

Alex: I get it. We’re increasing the modularity of the codebase because our application is divided up by modules.

Sam: That sounds great in theory, but it’s not like they can all work independently of each other. Doesn’t the ordering side of things need to know what ingredients we have in our inventory? God forbid the kitchen should run out of mushrooms!

Mara: You’re both right. Splitting the application up by business concern means we’re increasing its modularity. But on the flip side, different parts of the application might also need to talk to each other.

Alex: But it’s one codebase. I can just have the ordering side make an API call to the inventory module, right?

Sam: Oh, brilliant. I can already see the big ball of mud forming! Soon every module will be talking to every other module, and then there goes our modularity.

Mara: Right. If you just start making calls between modules willy-nilly, soon enough there won’t be any boundaries left. Everything will just start referencing everything else. And that would be, well, a big ball of mud.

Alex: So how do we maintain separate modules, but still have them talk to one another?

Mara: Let me show you.

Keeping modules modular

Modular monoliths are, well, monoliths, so they’re generally contained in one codebase. That makes it easy for someone working in one module to inadvertently reach into another module and end up coupling the two modules together.

Note

The auto-import feature in your IDE is not your friend here! It’s way too easy to accidentally reference another module without realizing it.

[image: Image]

The philosophy of the modular monolith centers on partitioning by domain within a monolithic deployment model. Your objective should be to create loosely coupled modules so that changing one doesn’t affect others. So how do you avoid the big ball of mud? Read on.

Note

You got it! Callback to Chapter 5.

Brain Power

[image: Image]

Can you think of any mechanisms to help you ensure that one part of your application won’t accidentally access another? For example, does your favorite programming language provide any support at compile time to keep modules separate? Jot down any ideas that come to mind here. You can see some of our ideas at the end of the chapter.

[image: Images] Solution in “Exercise Solution”

From a code design perspective, it’s best to think of each module as a separate service. Just to be clear, though, they aren’t really separate—they all still constitute one monolithic deployment. Each “service” exposes a public API while shielding its internal implementation from the other modules.

[image: Image]

As long as modules only talk to one another through their public APIs, you can safely change one module without affecting others—thereby reducing their coupling.

Of course, this sounds like a great idea in theory. But how can you maintain module boundaries so well that you can sleep peacefully at night? Let’s look at a few possibilities.

there are no Dumb Questions

Q: Dividing my application into modules sure seems like a lot of trouble. Are modular monoliths really the better option?

A: We’ve said this before, and we’ll say it again—we don’t like words like better. It’s always about trade-offs. So far, we’ve tried to highlight some of the benefits of modular monoliths (and we aren’t done yet), while also pointing out some of the challenges.

Do modular monoliths require more thought and discipline, and maybe even more tooling (as we’ll see in a minute)? Absolutely.

But the trade-off is a much more modular architecture that allows cross-functional teams to work independently and thus move faster.

Keeping modules modular (last time!)

Keeping your modules modular isn’t as easy as it seems, but don’t lose hope just yet. You have options, depending on your technical stack—especially if you apply some creative thinking and elbow grease.

[image: Image]

Some languages, like Java, have built-in support to build modules. The Java Platform Module System (JPMS) allows you to build modules that are isolated from one another. The .NET platform, meanwhile, offers namespaces that use the internal keyword for this purpose.

[image: Image]

Another approach is to break up your project code so that each module is a separate folder in your repository. These subprojects (or, as many build systems call them, multimodule projects) force isolation by virtue of being different projects. You might even consider creating different repositories to contain individual modules, then stitching the complete application together at build time.

Note

Gradle, the Java build tool, supports subprojects.

Of course, you are still deploying a monolith, so you’ll probably need to bring all the modules together using your build tool of choice. A monolithic deployment model doesn’t have to mean a monolithic codebase!

[image: Image]

Architectural governance tools, like ArchUnit for Java projects and ArchUnitNET for the .NET platform, can help maintain module boundaries as a project grows.

Note

Check out ts-arch for TypeScript and JavaScript projects!

And none of these options needs to stand alone: you can use one or more together.

there are no Dumb Questions

Q: Am I way off base here, or could these techniques be useful even for layered architectures?

A: Give us a moment to wipe away the tears—you’ve grown up so fast! Absolutely; they can be useful whether your project is partitioned technically or by domain. It’s a great idea to use tools (like ArchUnit) and language features (like JPMS) to enforce module boundaries, regardless of architectural style.

[image: Image]

That would be the logical end of modularization, wouldn’t it? Modularizing the code may not be enough. If all your data is still intertwined, then you’ve just moved your ball of mud into the database!

Before we go further, a caveat: most developers are not used to thinking vertically along business concern lines or breaking up their code into separate modules. Extending that modularity all the way to the database sounds like a great idea—it is—but it may be too much to take on all at once. Feel free to evolve your architecture over time when needed, rather than trying to get it all right the first time around.

Put all the lessons you’ve learned in this book at work. Do your architectural characteristics push you to pick the modular monolith architecture? If so, start by modularizing your code first. Once your team gets the hang of thinking modularly, then see if it helps to take that approach all the way into the database.

Next, let’s see what modularizing your database might look like.

Taking modularity all the way to the database

The modular monolith is still a monolithic deployment, typically with a monolithic database backing it. There is a lot of power here: having a single database can make things a lot simpler. You don’t have to worry about transactions or eventual consistency, and most developers are very comfortable working with just one database. However, if you intend to maintain modularity at all levels, then you should consider modularizing your data.

The rule is simple: every module should access only its own tables. Here’s how you’d accomplish this for Naan & Pop:

[image: Image]

For every module in your application, you define a schema and a set of tables. Any and all data that belongs to a particular module will reside only in the tables for that module.

As you can see, you can extend modularity all the way to the database by separating data that belongs to different modules into different tables (and maybe even different schemas).

Brain Power

[image: Image]

Take a few moments and think about the implications of modularizing your database. What pros and cons can you think of?

Sharpen your pencil

[image: Image]

Take a look at the following table names and see if you can identify which tables belong to the schemas we’ve identified for the Naan & Pop database. Draw an arrow from each table to its schema.

[image: Image]

[image: Images] Solution in “Sharpen your pencil Solution”

Beware of joins

Keeping different tables, perhaps even in different schemas, does partition the data belonging to different modules—but it’s easy to slip up and accidentally perform a SQL join across tables that belong to different modules. Then you’re back to tight coupling!

It’s OK to store the IDs of records that belong to one module in another module’s tables. For example, the Naan & Pop Order domain is allowed to store “recipe item” IDs in its tables within the order_schema. If it ever needs more information about a particular item, it calls the Recipe module’s API and provides it with the recipe item’s ID.

Note

Read that again! This is not a foreign key reference.

[image: Image]

And there you have it. Now, as we’ve done before, we’ll show you some of the strengths and weaknesses of modular monoliths, followed by our star rating chart.

Modular monolith superpowers

Here are some good reasons to use modular monoliths:

[image: Image]

[image: Image]

Domain partitioning

Architects can design components around domain concerns, then build teams that specialize in one or more of these domains (as opposed to a technical specialization). Domain partitioning is the key superpower of this architectural style.

Domain-based alignment

Modular monoliths encourage crossfunctional teams, which are better aligned with the domain than the technically partitioned teams used in layered architectures.

[image: Image]

Performance

Performance is usually very good, like for most monolithic architectures. There are no network calls between modules, and all data processing happens in a single place.

Maintainability

Modular monoliths separate business concerns from one another, with crossfunctional teams each specializing in a subdomain. This makes it easier to maintain the code, as long as changes don’t cross into other domains.

Testability

Since the scope of changes is limited to one module, testing is much easier. And since a cross-functional team’s members understand their subdomain really well, they can build out an entire testing suite, including integration, smoke, and end-to-end tests.

[image: Image]

Modular monolith kryptonite

Of course, there are always trade-offs. Here are some reasons not to use a modular monolith architecture:

[image: Image]

Hard to reuse

Modular organization makes it hard to reuse logic and utilities across modules. For example, you can’t share common functionality between modules without extracting it as a dependency, increasing the coupling between the modules.

[image: Image]

(Still) a single set of architectural characteristics

Even though modular monoliths are organized by modules, you still get a single set of architectural characteristics for the entire application—even if one business concern has a different set of needs than others.

[image: Image]

Modularity can be fragile

It’s easy to dilute module boundaries accidentally. Avoiding the big ball of mud takes a lot of governance—and the database is even harder to govern.

Note

It’s particularly hard to avoid joins in SQL via tooling.

Operational characteristics

Despite its focus on business concerns, a modular monolith is still, well, a monolith. And as with any monolith, operational characteristics like elasticity and fault tolerance tend to be hard to attain.

[image: Image]

Modular monolith star ratings

We’ve created a star rating chart for modular monoliths, just like the one we showed you for layered architectures in the previous chapter. One star means that the architectural characteristic is not well supported; five stars means it’s very well supported.

Note

Just like movie reviews.

[image: Image]

You’ll notice that our ratings for modular monoliths’ operational characteristics aren’t all that different from those for layered architectures. From a process perspective (that is, in terms of maintainability, testability, and deployability), however, the modular monolith does a lot better than the layered architecture. That’s because changes to a particular module only affect that module and can be tested in isolation, which reduces the risks involved in deploying software.

Modular monoliths cost a little more than layered architectures because they require the team to be vigilant. They also involve additional governance and tooling to maintain module boundaries.

Exercise

[image: Image]

Which of the following systems might be well suited for the modular monolith architectural style, and why? Hint: Take into account its superpowers, its kryptonite, and the problem domain.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Naan & Pop is delivering pizza!

The development team has finally grokked modular monoliths! With a modular codebase and a modular database, they now feel ready for any other big changes to Naan & Pop’s menu. Rumor has it that the owners plan to introduce a full Mediterranean menu next. We can’t wait, and we wish them a lot of luck!

[image: Image]

Bullet Points

	A modular monolith is a monolithic architectural style that is partitioned by domains and subdomains that reflect business concerns, not technical concerns.

	Each subdomain makes up one module of the application. Each module can contain multiple business use cases.

	Each module can be made up of layers to provide better organization. A module may be technically partitioned as a means to organize its functionality.

	Avoid having code in one module directly access any functionality in other modules. Allowing this can reduce or eliminate the boundaries between modules.

	Each module should have a public API that communicates with other modules while shielding the module’s internal implementation from the rest of the world.

	Avoiding intermodule communication allows modules to change internally without affecting other modules.

	It takes time and effort to ensure that the modules in a modular monolith remain separate and distinct.

	You can govern a modular monolith using a variety of techniques. Some languages have built-in support for building modules.

	Another approach is to physically break up the codebase into separate subprojects or even different repositories. This usually involves using a build tool to bring all the modules back together when you build the monolith.

	Third-party tools can also help with architectural governance.

	You may choose to use several techniques in combination to ensure the boundaries of individual modules are maintained.

	You can extend modularity all the way to the database, keeping the data for each module separate.

	Watch that you don’t accidentally couple modules when inserting or fetching data (for example, when using a SQL join statement across tables that belong to different modules).

Modular Monolith Crossword

[image: Image]

Modular monoliths are about separating business concerns. Take a look at these separate clues and test your knowledge about this architectural style.

[image: Image]

Across

1. Java _____ Module System

6. _____ to one module don’t require _____ to the others

8. The Recipes _____ interface is part of the Recipes domain

9. Each module exposes a public _____

10. Modular monoliths are good when many teams need to _____ their work

13. Monoliths generally have one big _____base

15. Highly rated characteristic in most monolithic architectures

18. Each domain in this style represents a _____ concern

19. With a modular monolith, _____ are often cross-functional

20. Smaller bits of functionality can reside in their own _____ domains

21. It’s important to maintain _____ between modules

22. Style of monolithic architecture first used in this system

23. Databases can show modularity by representing an entity via a _____

Down

1. The latest addition to Naan and Pop’s menu

2. In a domain-partitioned architecture, each domain gets its own _____

3. If something is an implementation _____, it’s not an architectural concern

4. If technical concerns are like horizontal “slices” of a monolith, business concerns are ____ slices

5. “Spaghetti code” is too closely ____

7. This system is for ____ & Pop

11. A challenging kind of architectural characteristic for monoliths

12. Modules use ID references in ____ to look things up

14. Monolithic and distributed are two kinds of deployment ____

16. Example of a language that supports creating modules

17. Modules communicate indirectly, through their ____ APIs

19. Databases build schemas from related ____

[image: Images] Solution in “Exercise Solution”

From “Exercise”

Exercise Solution

[image: Image]

Cast your mind back to the layered architecture we built for Naan & Pop in Chapter 6. The following diagram shows its layers and logical components. Adding a new category to the menu (say, pizza) means changing a bunch of moving parts. Grab a marker and put a triangle ([image: Images]) next to everything this new requirement will affect.

[image: Image]

Here’s some space for you to explain your thought process:

Offering pizzas probably means the menu will need a new listing. We might need to allow for customized toppings, which would affect the presentation layer and the associated pricing and could introduce new rules. There might be time constraints on deliveries (no one wants a cold pizza). The customizations might also affect how we persist pizza orders (as opposed to other kinds of orders).

However, the recipe and inventory domains won’t be affected. A recipe is a recipe is a recipe—a list of ingredients with a set of steps to follow. And while there may be new ingredients, the inventory domain will manage them just like it would any other ingredients.

From “there are no Dumb Questions”

Who Does What? Solution

Identifying which components should belong to a particular module can be tricky. In this game of “Who Does What?”—or rather, “What Goes Where?”—we’d like you to match each component to the module where it fits best. Multiple components can belong to one module.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

A critical piece of successfully developing modular monoliths is understanding the domain well enough that you can break it into individual modules. One way to do that (and there are many) is to really listen to your business experts.

Say you are working for a startup that’s creating an expense-tracking app for small to medium-sized businesses. Here are the business requirements:

	There are users and auditors. Users add expenses, and auditors review expense reports to ensure they align with policy guidelines.

	When a user adds an expense, it is recorded in the database for that user.

	The app creates an audit trail that the auditors can use to ensure that everything is in order.

Can you identify the subdomains that should make up this application? Hint: Not everything your business users say will translate into a module.

[image: Image]

From “Brain Power”

Brain Power

[image: Image]

Can you think of any mechanisms to help you ensure that one part of your application won’t accidentally access another? For example, does your favorite programming language provide any support at compile time to keep modules separate? Jot down any ideas that come to mind here.

	• <insert your favorite programming language> feature

	• Repository structure

	• Build tool capabilities

	• Third-party libraries and governance frameworks

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Take a look at the following table names and see if you can identify which tables belong to the schemas we’ve identified for the Naan & Pop database. Draw an arrow from each table to its schema.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Which of the following systems might be well suited for the modular monolith architectural style, and why? Hint: Take into account its superpowers, its kryptonite, and the problem domain.

[image: Image]

Modular Monolith Crossword Solution

[image: Image]

From “Modular Monolith Crossword”

[image: Image]

Chapter 8. Microkernel Architecture: Crafting Customizations

[image: Image]

You can craft custom experiences, one capability at a time. Some architectural styles are particularly well suited for some capabilities, and the microkernel architecture is the world champion at customization. But it’s also useful for a bewildering range of applications. Once you understand this architectural style, you’ll start seeing it everywhere!

Let’s dig into an architecture that lets your users have it their way.

The benefits of Going Green

What does everyone have lying around? Old electronics! Going Green is a fast-moving startup that plans to capitalize on the market for buying and recycling old cell phones, music players, and other small electronics.

After analyzing the architectural characteristics required, the architects have designed a three-part system, and each part of which needs different capabilities. They’d like your help. Ready? Here’s the system so far:

[image: Image]

Brain Power

[image: Image]

Based on what we know about Going Green’s business model and the corresponding separation of responsibilities in its system, would it be easier for this company to build a monolithic or a distributed architecture? Why?

BE the architect

[image: Image]

Architects just can’t stop analyzing stuff. Can you determine three important architectural characteristics for each of the three services in the new Going Green architecture?

[image: Image]

[image: Images] Solution in “BE the architect Solution”

Cubicle conversation

[image: Image]

Mara: We need to split up the architecture work for the Going Green application. Mara, you and Alex should work on the device assessment service.

Alex: Great! That’s the service that assesses the devices users send us to determine value, right? Seems like one of the more interesting parts of the application.

Sam: How often will we need to add new device configurations to the assessment service?

Mara: At least a few times a month, sometimes even a few times a week. This is especially important, because how fast we can update the device assessment service directly affects the company’s profitability.

Sam: Why such a direct connection?

Mara: Going Green makes a profit when it resells the highest-value electronics it receives. Generally, newer devices are in better shape and are worth more. The faster we can add new device assessments, the more money the company makes.

Alex: Wow, so rapid change is a BIG deal for this service.

Mara: It is! And don’t forget, we have to make sure that supporting new devices won’t affect the system’s support for the existing ones. Are y’all up for it?

Sam and Alex: You bet!

Mara: I think we should consider using a microkernel architecture. That style makes it easier to design and add new capabilities using plugins.

The two parts of microkernel architectures

The microkernel architecture derives its name from operating system design. The kernel, or core, of an operating system is very small, offering only the most basic capabilities. A microkernel architecture consists of two primary parts: its core and its plugins (any number of them).

[image: Image]

there are no Dumb Questions

Q: Is the microkernel architecture technically or domain-partitioned?

A: Flashback to Chapter 5! Most microkernel architectures are technically partitioned. You could divide the core into layers—perhaps one for presentation, another for business or workflow logic, and so on. However, microkernel is one of those strange architectural styles that can also be domain-partitioned, depending on how you design your plugins.

As for deployment models, microkernel architectures are usually monolithic. As you’ll see in this chapter, however, in some scenarios a distributed model might make more sense.

[image: Image]

Not quite. Every microkernel has plugins, but not all plugins belong to microkernels. Unfortunately, there is no definitive dividing line between microkernel systems and systems that support plugins. Mostly, we evaluate how “microkernel-y” an architecture is (let’s call that “microkern-ality”) by how functional its core is without any plugins and how volatile its core is (how often it needs to change).

The spectrum of “microkern-ality”

Lots of software supports plugins: IDEs, web browsers, build tools, you name it. But simply supporting plugins doesn’t make a system a microkernel—it’s all about the core. In extreme microkernels, the core can do very little useful work without plugins installed.

[image: Image]

there are no Dumb Questions

Q: Is every system that supports plugins a microkernel?

A: Not at all. Lots of systems support plugins. How much of a microkernel it is (and no one is actually grading you on this) depends on the volatility and functionality of its core.

Q: Is this architectural style only useful for software development tools?

A: A lot of development tools use this architecture because it lets them offer programmatic customization, but many business and other applications use it too. It works for any problem domain that requires customization and in which each change acts in isolation.

Q: Are microkernel and microservices the same thing?

A: No, the similarity in the names is just a coincidence. Microkernel’s name comes from operating system design, whereas microservices is named for its relatively small and separate deployment units in a distributed architecture.

Exercise

[image: Image]

The microkernel architectural style shows up in lots of places. See if you can place the specific tools and categories below in the correct place on the spectrum, by determining how much of a microkernel each one is. Hint: Each system’s degree of “microkern-ality” depends on how useful it is without plugins.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Device assessment service core

You and your team all agree to use a microkernel architecture for the new device assessment service.

The core system includes the criteria needed to assess a device, like its age, condition, and model number. For each type of device, it defers to a device-specific plugin that executes the rules to determine how the system will assess the device’s resale value.

[image: Image]

You decide to use a distributed physical architecture for the plugins, for better scalability. This also gives Going Green the option to add plugins in other languages in the future.

Finally, you decide on synchronous communication, because the service is sufficiently responsive that there’s no need to add the complexity of asynchronous communication.

Let’s dig into those decisions a little further.

[image: Image]

Yes, we could! The architecture’s capabilities determine whether to encapsulate or distribute the plugins.

Some microkernel architectures include both the core system and the plugins in a single monolithic architecture; others are distributed, as you might recall from Chapter 5.

The microkernel style exists in the shadowy netherworld between monolithic and distributed architectures. Architects can implement it with either deployment model.

there are no Dumb Questions

Q: Does a microkernel architecture’s core system have to be a monolith?

A: Not necessarily—microkernels often feature in hybrid architectures. When it makes sense (such as for a desktop application), you might implement the core as a single system; other times, you might distribute parts of the core as well as the plugins.

Q: How do I implement plugins?

A: You can implement your own plugin designs using interfaces, but virtually all platforms and technology stacks have libraries and frameworks to help out.

Q: Can I implement plugins in different tech stacks than the stack in which the core is written?

A: One of the advantages of using distributed plugins is that you can write them using any platform you can call via a network connection.

Encapsulated versus distributed plugins

The core system in a microkernel is where the plugins, well, plug in. Generally, we implement that connection via an interface. The plugin implements the interface, while the core system supports that component via that interface.

If we design a microkernel as a monolithic architecture, we’ll implement each plugin as a component that connects to the core through the interface.

[image: Image]

In other implementations of microkernel architectures, plugins are distributed: web endpoints, event queues, and so on. In addition, we can decide whether to call the plugins synchronously or asynchronously. (We’ll cover this in much more depth in Chapter 11.)

[image: Image]

Exercise

[image: Image]

The assessment service team at Going Green must decide whether the microkernel’s physical architecture should be monolithic (core and plugins in the same deployment unit) or distributed (plugins deployed separately from the core). They need your help with the trade-off analysis. Can you list some pros and cons for each option? We’ll get you started. Hint: Consider how each option would affect things like architectural characteristics.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Plugin communication

To be useful, plugins must communicate with the core system. For example, the core will call a method (based on an interface) and utilize the results. This communication can be implemented in a couple of different ways, based on factors like physical architecture.

[image: Image]

How the actual call happens between the core and a plugin depends on the physical architecture you use to implement the plugins. In monolithic architectures, we implement plugins in the same technology stack as the core and deploy them as native components for the platform (like JAR files for Java, DLLs for .NET, or GEMs for Ruby).

As for distributed plugins, the core can call them with synchronous or asynchronous calls. Developers aren’t restricted to the core’s implementation platform, either—they can write plugins in a variety of languages.

[image: Image]

Today’s Interview

[image: Image]

Plugging into the star attraction of the microkernel: the Plugin

Head First: Let’s see... let me get my microphone plugged in. Testing, testing... OK, welcome, Plugin!

Plugin: How appropriate! All sorts of things use me to function. I’m happy to be here—and excited to clear up some controversies.

Head First: Everyone says you’re the star of the microkernel architecture, yet the core gets more press time and attention. Is that fair?

Plugin: Well, that may be true, but what good is the core without me? It may be bigger, but without me, the core is boring.

Head First: You certainly show up in lots of places. What about your controversial role in non-microkernel architectures? Lots of systems support plugins that aren’t microkernels...

Plugin: I’m happy wherever I appear. To be truthful, though, I prefer microkernels. For other architectures, plugins are just condiments—we’re not necessary, but we add some nice flavors. In a microkernel, though, I’m the main course! The whole architecture is based on me. I appreciate that level of importance.

Head First: Let’s dig into something that seems to appear in trade-off analyses all the time. Your distributed version has some performance issues, no?

Plugin: Hey, you can’t say bad things about all plugins just because we have some trade-offs! Yes, it’s true that when we use network calls to communicate, performance does take a hit. But you know what else? Those distributed plugins can scale better, and you can write them in a variety of languages. Different strokes for different folks, right? And different plugin physical architectures for different trade-offs.

Head First: OK, fair enough. But let’s talk about working with overly volatile cores.

Plugin: Alas, that’s one of the downsides to starring in a microkernel architecture—when the core decides to change all the time. Change is my job! The more the core changes, the more it’s likely to interfere with what I’m doing. I strive for professionalism, so I prefer to work with nice, stable cores with no drama.

Head First: You get a lot of press because of your ability to handle customization, but do you have other roles? What else you can handle?

Plugin: Thanks for asking, Head First. It’s always annoying to be pigeonholed into my best-known role. I can handle customizations without ugly, long switch statements, using an elegant architectural style, without even batting an eye. We plugins can be used for all kinds of things—really, anything that needs good isolation. For example, I show up all the time in A/B testing. The architects keep the old behavior in PluginA, add the new behavior in PluginB, and decide which to call. I also have starring roles in integration hubs, developer tools, and lots of other places.

Head First: Before we finish up, is there anything you’d like to plug?

Plugin: You bet! Look for me in an architecture near you, either as an integral part of a monolith or as an endpoint for a distributed microkernel.

Cubicle conversation

[image: Image]

Mara: Hi, all. Just stopping by to take a look at your trade-off analysis for the Going Green assessment service. Have you decided yet between a monolithic and a distributed physical architecture?

Sam: We’re working on it. I did the trade-off analysis for the distributed version, and personally, I’m a big fan. Here’s our summary:

[image: Image]

Mara: Can you explain how you arrived at these conclusions?

Alex: Sure. For the distributed version, we don’t have to restart the core system to add new devices. That gives us better availability than the monolithic version, since that requires a restart to load new device plugins. Also, it’s simpler to deploy a single plugin than to redeploy the whole assessment service. Since the plugins don’t run in the same process as the core, we can make the whole system more scalable. But that would take a toll on its performance—after all, network calls take a lot longer than in-process ones.

Mara: That sounds like a good trade-off. The business agrees that scalability is very important for the new system.

there are no Dumb Questions

Q: Where is the user interface in a microkernel architecture?

A: It depends! If the system is monolithic, architects commonly include the UI as part of the core system. However, when you design a service in a distributed architecture as a microkernel, other parts of the system typically handle the UI.

Q: Can the UI utilize a microkernel?

A: You bet it can. In fact, lots of UI patterns (like the BFF pattern we mentioned earlier) use the microkernel structure to handle customized UI endpoints such as iOS, Android, and web browsers.

Q: Isn’t a microkernel really just the Decorator design pattern?

A: Good catch! While their purposes are mostly the same, the microkernel architecture is one way to implement the Decorator design pattern. Compared to design patterns, architecture requires more thought about physical limitations and possibilities. For example, design patterns don’t account for capabilities like scalability.

Q: Is the microkernel style the only way to handle customization?

A: Not at all. It’s one of many ways. A microkernel architecture is useful when the structure of your system—its core capabilities that rarely change—requires discrete customization via plugins. For systems without that kind of structure, other architectural styles may be more appropriate.

Q: What’s the internal structure of the core system? Is it just one big logical component?

A: In the microkernel style, we design the core system based on how we want to organize the logical components in the system. For example, if we want to separate capabilities within the core, we might choose to implement the core via layers, as we would in the layered architectural style. On the other hand, we might follow DDD and design the core around a bounded context, as in the modular monolith style. The microkernel style is often used in hybrid architectures where customizability is a driving characteristic.

[image: Image]

Plugins can talk to one another in a microkernel through the core system. But should they?

Plugins typically communicate with the core system by implementing an interface that the core supports. That makes it possible for plugins to communicate with each other “through” the core system. For example, the Eclipse IDE, which supports multiple languages, allows language-based tools (like compilers and debuggers) to interact with each other in this way.

Be cautious about allowing inter-plugin communication, though! It has some serious negative trade-offs. First, it requires consistent contracts between the core and the plugins, which eventually involves versioning. (More about contracts on the next page.) For example, one thing that makes Eclipse complex is the transitive dependencies between its components, which can cause versioning headaches. Second, dependencies between plugins create availability issues, because you must guarantee that all necessary plugins are present at runtime.

To understand the problems with letting plugins chat amongst themselves, we have to look at the two ways the core communicates with plugins.

Plugin contracts

When architects implement microkernel architectures, we usually ensure that the core calls plugins using a contract (another word for interface). That communication is solely between the plugin and the core, not between plugins. If you allow communication between plugins, the core has to act as their intermediary.

In the example system below, PluginA doesn’t know or care about other plugins; it communicates only with the core. However, PluginX needs to communicate with PluginY, and that communication must be mediated by the core system.

[image: Image]

Brain Power

[image: Image]

You know you have to worry about intermediary communication through the core system, but consider this: what happens when you update PluginY in a way that changes the contract between PluginX and PluginY? If you don’t want to change PluginX when you change PluginY, how could you manage that communication?

Going Green goes green

After considering how best to implement the plugin interaction with the core, the team decides to define an interface (called DeviceInterface) for each plugin to implement. Now Going Green can add new devices just by implementing the interface and customizing the valuation process for that specific device.

[image: Image]

Your device assessment engine is a success. Well done!

To wrap up, let’s quickly summarize the strong and weak points of this style of architecture.

Microkernel superpowers

The microkernel is a common architectural style. It’s also one of the most common styles you’ll find within hybrid architectures that require customization.

[image: Image]

[image: Image]

Custom behavior

The microkernel is “shaped” in the best way to handle customizations.

Note

Who you gonna call to customize part of your application? Microkernel to the rescue!

[image: Image]

Evolvability

Evolvability, as an architectural characteristic, means that architects can make fundamental underlying changes that gradually evolve the system away from its old behaviors. Unlike adaptable architectures, evolvable architectures only support the old behaviors for a short time. Plugins offer an excellent way to implement this capability.

Partitioning

In a microkernel, you can handle customization with design or with architecture. However, if you use design, the developers must be very diligent about following the design correctly. If the system is structured around plugins, the distinction is clearer.

Note

The microkernel is a great example of an architectural approach to customization

Adaptability

Adaptability, as an architectural characteristic, implies the ability to keep existing functionalities and continue adding more. A microkernel supports this well; you can keep old plugins as you implement new ones.

Simple structure

A microkernel has two basic moving parts (the core and plugins), making it easy for developers to understand and implement.

Note

Simplicity for the win!

[image: Image]

Microkernel kryptonite

The microkernel architecture’s weaknesses mostly appear when architects use it improperly: for example, when the core changes too much or when plugins must communicate heavily with one another.

[image: Image]

Misaligned volatility

In a microkernel, the core system should change very little once it is implemented. If it changes a lot, that is likely a sign that this is not the ideal architectural solution or you have made the wrong things plugins.

Note

One of the most common mistakes in a microkernel is a too-volatile core, due to frequent domain changes.

[image: Image]

Sharing between plugins

While it’s often tempting, sharing dependencies (such as shared libraries) between plugins is generally a bad idea because it creates headaches around coupling and deployment.

Note

To keep a microkernel from devolving into a big ball of mud, keep an close eye on coupling via sharing.

Chatty plugins

Allowing plugins to interact may be tempting, but it comes with a host of difficult trade-offs. Successful systems that use this approach (for example, Eclipse) do so at the cost of high complexity.

Performance

When using distributed plugins for a physical architecture, you might notice an impact on performance, depending on the communication protocols and how much information passes between the core and the plugins.

[image: Image]

Microkernel star ratings

We’ve created a chart of star ratings, like the ones we showed you for layered and modular monolith architectures, to indicate how well microkernel architectures do with each of the architectural characteristics listed. One star means that the architectural characteristic is not well supported; five stars means it’s very well supported.

Note

Just like movie reviews.

[image: Image]

Exercise

[image: Image]

Which of the following systems might be well suited for the microkernel architectural style, and why? Hint: Take into account its superpowers, its kryptonite, and the nature of each system.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Wrapping it up

Thanks to your efforts, Going Green is assessing devices quickly and accurately, and profitability has never been better. This case shows just how useful microkernel architectures can be. For problems that need a customizable, stable system, a microkernel is hard to beat.

Bullet Points

	The microkernel architectural style provides a structured way to handle customizations via plugins.

	Microkernel architectures consist of two main parts: the core and one or more plugins.

	The core system in a microkernel contains minimal functionality and has low volatility.

	Architects design plugins to customize and/or add behaviors to a system.

	Generally, plugins only communicate with the core system, not with each other.

	If plugins do need to communicate with each other, the core must mediate the communication and handle issues like versions and dependencies. It essentially serves as an integration layer.

	Microkernel architectures can be monolithic architectures or can be implemented as services in a distributed architecture.

	When built as a monolithic architecture, the core and plugins must be written in the same language.

	Plugin calls may be synchronous (for example, using REST in a distributed architecture) or asynchronous (using threads in a monolithic architecture or messaging in a distributed one). Whether remote calls are synchronous or asynchronous, architects can implement the plugins in a variety of technology stacks.

	Monolithic plugins generally offer better performance because calls take place in the same process.

	Monolithic microkernels suffer from the typical limitations of all monoliths, including limited operational capabilities such as scalability and elasticity.

	Microkernels that use distributed plugins may offer better scalability, because they use multiple processes and offer scalable communications (events).

	Microkernel architectures are best suited for problems with distinct categories of volatility.

	If a microkernel’s core system changes often, its architects may have chosen the wrong architectural style or may have partitioned the work incorrectly.

	The microkernel style shows up in lots of places: IDEs, text processing tools, build and deployment tools, integrations, translation layers, insurance applications, and electronics recycling applications, just to name a few.

Microkernel Crossword

[image: Image]

Ready to see how much you’ve learned about microkernel architecture? Plug into this crossword puzzle!

[image: Image]

Across

3. Design pattern often used to implement microkernel architectures

6. With inter-plugin communication, the core serves as an integration _____

9. You can add new capabilities to a system by using these

10. Microkernel architectures can _____ to include new functionalities

11. Abbr. for a tool used to write code

13. Monolithic architectures _____ both plugins and core

14. Plugins are usually _____ independently from each other

16. A microkernel is great for creating systems with _____ rules and behaviors

17. You can use plugins written in more than one tech _____

Down

1. When plugins can talk to each other, their dependencies are _____

2. Example of an IDE that uses interacting plugins

4. _____ plugins provide better performance

5. Number of primary component types in a microkernel architecture

7. Constantly changing

8. Microkernel architectures often support several programming _____

12. When most monoliths load plugins

15. A tool that applies style and syntax rules to code

16. Plugins make _____ to talk to the core

18. What plugins are plugged into

[image: Images] Solution in “Microkernel Crossword Solution”

From “BE the architect”

BE the architect Solution

[image: Image]

Architects just can’t stop analyzing stuff. Can you determine a few important architectural characteristics for each of the three services in the new Going Green architecture?

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

The microkernel architectural style shows up in lots of places. See if you can place the specific tools and categories below in the correct place on the spectrum, by determining how much of a microkernel each one is. Hint: Each system’s degree of “microkern-ality” depends on how useful it is without plugins.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

The assessment service team at Going Green must decide whether the microkernel’s physical architecture should be monolithic (core and plugins in the same deployment unit) or distributed (plugins deployed separately from the core). They need your help with the trade-off analysis. Can you list some pros and cons for each option? Hint: Consider how each option would affect things like architectural characteristics.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Which of the following systems might be well suited for the microkernel architectural style, and why? Hint: Take into account its superpowers, its kryptonite, and the nature of each system.

[image: Image]

Microkernel Crossword Solution

[image: Image]

From “Microkernel Crossword”

[image: Image]

Chapter 9. Do It Yourself: The TripEZ Travel App

[image: Image]

Ready to extend your journey into software architecture? In this chapter, you’re the software architect. You’ll be determining architectural characteristics, building a logical architecture, making architectural decisions, and deciding whether to use a layered, modular, or microkernel architecture. The exercises in this chapter will give you an end-to-end view of what a software architect does and show you how much you’ve learned. Get ready to create an architecture for a startup company building a travel integration convenience site. Bon voyage—we hope you have a good trip building your architecture.

Making travel easier

You’ve just been hired as a software architect by an exciting new startup called TripEZ (pronounced like “trapeze”) that wants to make travel easier, especially for “road warriors” who travel frequently. The TripEZ app will be an online trip management dashboard that allows travelers to see all of their existing reservations organized by trip, through either a web browser or their mobile devices.

TripEZ requirements document

	□ The system should continually poll the user’s email account for travel-related emails.

	□ The system must interface with the systems of travel partners (like travel agencies, booking apps, airlines, hotels, and car rental companies) to update travel details. These include delays, cancellations, updates, and gate changes. To beat the competition, updates must appear in the app within five minutes.

	□ Users should be able to add, update, or delete existing reservations manually.

	□ Users should be able to group items in the dashboard by trip. Once the trip is complete, the items should automatically be removed from the dashboard.

	□ Users should be able to share their trip information by interfacing with standard social media sites and by sharing it with specific people.

	□ The system should have the richest user interface possible, across all deployment platforms.

	□ The system should provide end-of-year summary reports with a wide range of metrics about users’ travel that year.

	□ TripEZ should gather analytical data—such as travel trends, locations, airline and hotel vendor preferences, and cancellation and update frequency—from users’ trips for various purposes.

	□ The company would like to ship TripEZ in six months, to coincide with an important trade show.

[image: Image]

Pay attention, because these things are important.

Note

Meet Travis, former pilot and consultant to TripEZ. He has a few more important requirements for the system.

“TripEZ must integrate seamlessly with the existing standard interface systems used across the travel industry, including internationally.

It must integrate with the user’s preferred travel agency (if any) to resolve problems quickly.

Finally, users must be able to access the system at all times. Unplanned downtime should be limited to a maximum of five minutes per month.”

TripEZ’s user workflow

Now that we have the requirements, let’s get a better understanding of them by looking at the primary workflow for travelers using TripEZ.

[image: Image]

Sharpen your pencil

[image: Image]

Given the requirements for TripEZ, list some challenges that you will need to address when creating an architectural solution.

[image: Images] Solution in “Sharpen your pencil Solution”

Planning the architecture

[image: Image]

We have to create an architecture first.

As you’ve learned, architecture is a critical and necessary part of any software system. Without it, the system will likely fail to achieve any of its goals.

Before we start developing code, we have to create an architecture. This means going back to Chapter 1, where you learned about the four dimensions of software architecture.

Don’t worry—we’ll get the system done. But first, it’s important to know what we’re building.

The architects’ roadmap

Let’s get the TripEZ architecture started. You’ll use the steps you’ve learned in previous chapters to translate the requirements into an architecture.

[image: Image]

This diagram will serve as your roadmap as you make your way through each of the exercises, so get used to seeing it. The next few pages will walk you through each of these steps.

Good luck on your journey—TripEZ is counting on you.

Step 1: Identify architectural characteristics

[image: Image]

“TripEZ must integrate seamlessly with the existing standard interface systems used across the travel industry, including internationally.

It must integrate with the user’s preferred travel agency (if any) to resolve problems quickly.

Finally, users must be able to access the system at all times. Unplanned downtime should be limited to a maximum of five minutes per month.”

Note

We copied the requirements here to make it easier for you to use them to identify the driving architectural characteristics.

TripEZ requirements document

	□ The system should continually poll the user’s email account for travel-related emails.

	□ The system must interface with the interface systems of travel partners (like travel agencies, booking apps, airlines, hotels, and car rental companies) to update travel details. These include delays, cancellations, updates, and gate changes. To beat the competition, updates must appear in the app within five minutes.

	□ Users should be able to add, update, or delete existing reservations manually.

	□ Users should be able to group items in the dashboard by trip. Once the trip is complete, the items should automatically be removed from the dashboard.

	□ Users should be able to share their trip information by interfacing with standard social media sites and by sharing it with specific people.

	□ The system should have the richest user interface possible, across all deployment platforms.

	□ The system should provide end-of-year summary reports with a wide range of metrics about users’ travel that year.

	□ TripEZ should gather analytical data—such as travel trends, locations, airline and hotel vendor preferences, and cancellation and update frequency—from users’ trips for various purposes.

	□ The company would like to ship TripEZ in six months, to coincide with an important trade show.

Exercise

[image: Image]

In Chapter 2, we showed you how to use this template to limit the number of architectural characteristics. Flip back to “Limiting architectural characteristics” if you need a refresher on how to use it.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Step 2: Identify logical components

Good job! Now that you’ve identified the critical architectural characteristics for TripEZ, it’s time to apply what you’ve learned to create logical components.

Referring to the requirements and primary workflow on the previous pages, use the actor/action approach described in Chapter 4 to identify actors and their actions. Then identify as many logical components as you can on the next page.

[image: Image]

Here’s some additional information you might find useful for this exercise:

	• When users sign up for TripEZ, they provide credentials to allow the different travel services to provide up-to-date status reports on delays, cancellations, and so on.

	• If a travel partner’s integration point won’t supply updates within the required five-minute window, the system should query the vendor.

Note

This allows the system to work with travel partners that can’t meet its agreed-upon thresholds.

	• Updates, especially to the mobile application, should use as little data as possible to accommodate potentially spotty cell signals in remote places.

	• TripEZ can’t be held responsible for integration point availability; if the call fails, the system must return an error rather than failing silently (which would mislead the user into thinking no update was sent).

Sharpen your pencil

[image: Image]

Using the actor/action approach, identify actions for each of the actors below.

[image: Image]

[image: Images] Solution in “Sharpen your pencil Solution”

Exercise

[image: Image]

Using the space below, draw your logical components and their interactions.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Step 3: Choose an architectural style

Leveraging what you’ve learned about the layered, modular monolith, and microkernel architectural styles, use the next page to analyze their pros and cons with respect to the TripEZ system. You’ll also need to refer to the requirements, your logical architecture, and the star rating charts for each architectural style (we’ve added those below for you). Choose an architectural style based on your analysis.

[image: Image]

[image: Image]

Here are some considerations that might help you decide which architectural style would be better suited for TripEZ:

	• Go back to your logical architecture diagram and see if you can identify distinct technical or business concerns. If so, a layered or modular monolith architecture might be a good choice.

	• Think about different points of integration. If there are many, each with specific logic, then a microkernel architecture might be a good fit.

Exercise

[image: Image]

Outline the pros and cons of each architectural style to help you make a choice about which one might be most appropriate for TripEZ.

[image: Image]

List your winning choice here: _____________________

[image: Images] Solution in “Exercise Solution”

Step 4: Document your decision

Congratulations on choosing which architectural style to use for TripEZ. Now’s your chance to explain why you made the choice you did and document your architectural decision.

As you learned in Chapter 3, an architectural decision record, or ADR, is an effective way to document your architectural decisions. Use the ADR on the next page to document your architectural style decision. Assume this is your 11th architectural decision.

Note

Revisit Chapter 3 if you need a refresher on architectural decision records.

[image: Image]

[image: Image]

Every architectural decision has consequences.

Maybe it’s about cost, or maybe it’s sacrificing a little bit of performance to have better security. Regardless, every architectural decision has consequences.

Think about the trade-off analysis you just did. Each one of those trade-offs implies a consequence—something you were willing to give up (or accept) to get something better. The Consequences section of an ADR is a great place to document your trade-off analysis and the corresponding consequences of your decision.

If you can’t find any consequences in your architectural decision, keep looking, because they’re there.

Exercise

[image: Image]

Architectural Decision Record

[image: Image]

[image: Images] Solution in “Exercise Solution”

Step 5: Diagram your architecture

Now it’s time to combine all four dimensions of software architecture and show us your vision of the TripEZ architecture. In this last exercise, you’ll diagram your architecture on the following page using the key on this page.

We didn’t give you a lot of room to diagram your architecture, and that’s on purpose. While many architecture diagrams are very detailed, what we’re asking you to do here is to sketch out a high-level physical view of the user interfaces, databases, and components that make up your architecture and how they all connect to each other.

[image: Image]

Physical Architecture Key

[image: Image]

Exercise

[image: Image]

Use this space and refer to the key on the previous page to sketch your physical architecture for TripEZ.

[image: Images] Solution in “Exercise Solution”

There are no right (or wrong) answers

Congratulations—you’ve just created an architecture!

What we’re about to show you are the exercise “solutions.” We’ve used quotes there because the solutions we present here are just some of many possible solutions. You see, there are no right or wrong answers in software architecture: it’s all about analyzing trade-offs and being able to justify your decisions.

Compare your answers with the ones we’re about to show you to see how your solutions differ. You can think about what you might have done differently, or confirm that you made what seems to you to be the most appropriate choice. We’ll show you our TripEZ architectures for layered, modular monolith, and microkernel architectures, since all of these styles are viable options.

Software architecture is always a learning process. Each new problem brings a whole new set of conditions, constraints, and business and technical concerns. There is no one-size-fits-all architecture—it’s up to you, the architect, to come up with the most appropriate architecture for your situation.

Bullet Points

	When analyzing requirements for a business problem, always gather additional information from the business stakeholders or project sponsor.

	While there’s no “checklist” for creating an architecture, the four dimensions of software architecture (introduced in Chapter 1) provide a good roadmap.

	Identifying driving architectural characteristics requires you to analyze the business requirements and technical constraints.

	Implicit architectural characteristics become driving characteristics if they are critical or important to the success of the system.

	Make sure you can tie each driving characteristic back to some sort of requirement or business need.

	When identifying logical components and creating a corresponding logical architecture, try to avoid adding physical details such as services, databases, queues, and user interfaces—those artifacts go into the physical architecture.

	When choosing an architectural style, make sure you consider the characteristics of the architectural style, the problem domain, and the driving architectural characteristics you identified.

	Hybrid architectures (those combining two or more different architectural styles) are very common. If you use one, be sure to verify that it addresses your critical architectural characteristics.

	Architectural decision records (ADRs) are a great way to document your choices. They communicate the reasons for your architectural decisions as well as your trade-off analyses.

	When diagramming your physical architecture, be sure to include all the components you identified in your logical architecture.

	Remember, there are no right or wrong answers in software architecture. As long as you can provide a reasonable justification for your architectural decisions, you’re on the right track.

From “Exercise”

Exercise Solution

[image: Image]

In Chapter 2, we showed you how to use this template to limit the number of architectural characteristics. Flip back to “Limiting architectural characteristics” if you need a refresher on how to use it.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Given the requirements for TripEZ, list some challenges that you will need to address when creating an architectural solution.

	• Making sure that we can deliver alerts in time

	• Supporting a sufficient number of users

	• Finding a way to manage all the different integration points

	• Integrating with social media accounts

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Using the actor/action approach, identify actions for each of the actors below.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Using the space below, draw your logical components and their interactions.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Outline the pros and cons of each architectural style to help you make a choice about which one might be most appropriate for TripEZ.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Use this space and refer to the key in “Exercise” to sketch your physical architecture for TripEZ.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Use this space and refer to the key on the “Exercise” to sketch your physical architecture for TripEZ.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Use this space and refer to the key on the prior page to sketch your physical architecture for TripEZ.

[image: Image]

Chapter 10. Microservices Architecture: Bit by Bit

[image: Image]

How do you make an architecture easier to change? Business is changing faster than ever, and software architectures need to keep up. In this chapter you’ll learn how to create a flexible architecture that can change as your business changes, scale as your business grows, and remain operational even when system failures occur. Intrigued? We hope so, because in this chapter we’re going to show you microservices—an architectural style that solves all of these problems and more. Let’s get started on our journey through microservices, bit by bit.

Are you feeling okay?

StayHealthy, Inc., is a company that specializes in medical monitoring systems for patients in hospitals. Using its systems, doctors and nurses can monitor a patient’s heart rate, oxygen levels, body temperature, blood sugar levels, and more, and even determine whether the patient is sleeping or awake. If something goes wrong, a doctor or nurse is notified right away.

Recent advances in medicine have given rise to a new set of needs for medical monitoring. As a result, StayHealthy plans to leverage newer technology to replace its current patient medical monitoring software with a new system called MonitorMe. Guess what? You’re the architect they chose for the new project.

Below are the requirements for the new system. You’ll need to figure out what kind of architecture would be best suited for the job.

[image: Image]

StayHealthy MonitorMe requirements document

	□ The system reads inputs from StayHealthy’s patient monitoring equipment and sends the results to a single monitoring screen.

	□ MonitorMe must analyze each patient’s vital signs and alert a medical professional if it detects a change that reaches a preset threshold.

	□ For each vital sign, the system must record all readings and measurements for the past five minutes. A medical professional should be able to review this five-minute history.

	□ Medical professionals select how they’d like to be notified if something goes wrong. Notifications can be sent to an assigned nurse or doctor’s cell phone or to a central nurses’ station.

	□ MonitorMe reads inputs from eight different input sources. It is vital that if any of these fails, the other inputs will still be monitored and recorded.

	□ The vital signs monitored by the MonitorMe system include heart rate, blood pressure, oxygen level, blood sugar, respiration rate, electrocardiogram (ECG), body temperature, and sleep status (sleep or awake).

	□ The system can measure the vital signs of multiple patients (up to 500) within a single hospital, meaning each physical hospital location has its own copy of the complete system (including the data).

Sharpen your pencil

[image: Image]

Based on the problem domain and requirements document on the previous page, check off the top five architectural characteristics you think are critical to the MonitorMe architecture and indicate why you think they are critical.

	[image: Image]
	Testability (the ease and completeness of testing)

Reason: ___

	[image: Image]
	Responsiveness (the time it takes to get a response to the medical professional)

Reason: ___

	[image: Image]
	Deployability (the difficulty and ceremony involved in releasing changes)

Reason: ___

	[image: Image]
	Abstraction (the level of isolation and knowledge between parts of the system)

Reason: ___

	[image: Image]
	Scalability (the system’s ability to grow to accommodate more users or patients)

Reason: ___

	[image: Image]
	Fault tolerance (the system’s ability to continue operating when parts of the system fail)

Reason: ___

	[image: Image]
	Data integrity (the data is consistent and correct across the system and there is no data loss)

Reason: ___

	[image: Image]
	Workflow (the system’s ability to handle complex business workflows)

Reason: ___

	[image: Image]
	Concurrency (the system’s ability to process concurrent requests or operations)

Reason: ___

[image: Image] Solution in “Sharpen your pencil Solution”

Cubicle conversation

[image: Image]

Sam: I think we can all agree that microservices is a perfect fit for the new MonitorMe system.

Mara: Hold on—what brought you to that conclusion so quickly?

Sam: It’s obvious, isn’t it? From a domain perspective, we have independent monitoring functions, and we need high fault tolerance and comprehensive testability. Microservices does all this and more.

Note

Assumptions like this are a common trap. We’ll show you how to avoid it by better understanding the microservices architectural style and its trade-offs.

Alex: Slow down a second. I’m not familiar with microservices, and I have no idea how it supports all the things you say it does.

Mara: I agree with Alex. I know that we need a distributed architecture, so microservices might be a fit here. But let’s back up and take a closer look before we jump to any conclusions.

Sam: Okay, I see your point—what might seem obvious to me might not be obvious to you. It’s important that you both understand what microservices is all about, and then together we can decide if it’s the right fit for MonitorMe. So let’s get started.

What’s a microservice?

What’s in a name? When it comes to microservices, plenty. We’ll show you what a microservice is and how it differs from other types of services.

Generally, a service is a separately deployed unit of software that performs some business or infrastructure process. For example, a single Monitor All Vital Signs service in MonitorMe might perform a lot of functions, including monitoring the patient’s heart rate, blood pressure, temperature, and so on. This service does quite a bit, but we still call it a service.

[image: Image]

The prefix micro- in microservice refers not to physical size, but to what the service does. For example, a Monitor Heart Rate service is single-purpose and does one thing really well—it monitors a heart rate. That’s the idea behind microservices. By contrast, the larger Monitor All Vital Signs service performs many vital sign monitoring functions.

[image: Image]

A microservice is a single-purpose, separately deployed unit of software that does one thing really well.

Exercise

[image: Image]

We’re having trouble determining what single-purpose means. Can you help us by checking off all the functions below that you would consider single-purpose and therefore possible microservices?

	[image: Image] Add a movie to your personal “to watch” list

	[image: Image] Pay for an order using your credit card

	[image: Image] Generate sales-forecasting and financial-performance reports

	[image: Image] Submit and process a loan application to get that new car you’ve always wanted

	[image: Image] Determining the shipping cost for an online order

[image: Image] Solution in “Exercise Solution”

It’s my data, not yours

Another feature that makes microservices special is that they own their own data. In other words, each microservice is the only one that can directly access its data.

[image: Image]

Why? The primary reason is to manage change control. Say you have 50 microservices, all sharing the same data. If one microservice changes the structure of its data, which the other 49 microservices are also accessing, all of those other services will need to change at the same time. (Is your head exploding yet?)

Physically associating a microservice with its data is known as creating a physical bounded context. Physical bounded contexts help manage change and coupling. If other microservices need access to data they don’t own, they must ask the owning service for it.

Note

A physical bounded context includes the microservice and all of its data.

[image: Image]

In the example above, the Monitor Heart Rate microservice is asking for the data rather than directly accessing the data. This way, even if the Sleep Status data structures change, the Monitor Heart Rate microservice doesn’t have to. This is the whole idea behind physical bounded contexts.

Sharpen your pencil

[image: Image]

We created the following services for an ecommerce site, but we need your help in figuring out the data ownership and bounded contexts. Can you associate the database tables below with the corresponding microservices that should own the data?

[image: Image]

[image: Image] Solution in “Sharpen your pencil Solution”

How micro is “micro”?

Figuring out how big or small a microservice should be is hard. By now you know that a microservice is a single-purpose service that’s separately deployed. But how do you determine the scope of that single purpose?

As an example, let’s take a look at the MonitorMe functionality for blood pressure. Monitoring a vital sign involves capturing the input from the medical device attached to the patient, recording the input, analyzing the measurements, and alerting a nurse or doctor if something is wrong. We can model this functionality in one of three ways:

	• Option 1: Create a single monitoring microservice that performs all monitoring and alerting functions.

	• Option 2: Create two separate microservices—one that captures and records vital signs data, and one that analyzes the data and alerts staff if necessary.

	• Option 3: Create four separate microservices, each one performing a specific blood pressure monitoring function.

[image: Image]

[image: Image]

[image: Image]

Relax

[image: Image]

You don’t have to choose yet. At this point, we’re only showing you the different options you can choose from to create a microservice. Keep reading to find out how to make the right choice for your situation.

[image: Image]

No, granularity is not a guessing game.

Granularity—the scope of what a microservice does—is an important factor when identifying microservices. Microservices that are too fine-grained tend to communicate more with each other to complete business functions, leading to high levels of coupling, poor performance, and overall reliability issues. This is commonly referred to as the Grains of Sand antipattern, in which services are so small that they start to resemble sand on a beach. However, microservices that are too coarse-grained are harder and more expensive to maintain, test, and scale (which defeats the whole purpose of using microservices).

So how do you determine the most appropriate level of granularity for a microservice? By applying forces called granularity disintegrators and granularity integrators. Granularity disintegrators are forces that tell you to make your service smaller (meaning it’s doing less work), whereas granularity integrators are forces that tell you to make the service bigger (meaning it’s doing more work). Let’s see how these forces work.

[image: Image]

Granularity disintegrators

Granularity disintegrators are forces that help you decide whether you should break a service apart into several smaller ones. To show you how these forces can influence your decision to break a service apart, we’ll take a look at MonitorMe’s Monitor Basic Vital Signs functionality.

The three basic vital signs are blood pressure, temperature, and heart rate. Since they’re all related, we could put them all in the same microservice or create separate microservices, one for each basic vital sign.

[image: Image]

Let’s analyze each of these forces to see how it might help you decide whether to break the monitoring functionality into separate microservices.

Why should you make microservices smaller?

Cohesion

[image: Image]

A single-purpose microservice has functionality that is highly cohesive—meaning all the things it does are closely related to each other. If the functionalities of a microservice lack cohesion, then it might be a good idea to break that microservice apart.

Fault tolerance and availability

[image: Image]

Do certain functions in a microservice frequently produce fatal errors? In larger microservices, all functionalities become unavailable when a part of the microservice fails. However, if the faulty functionality is in its own separate microservice, it won’t affect other functions.

Access control

[image: Image]

The larger the service, the more difficult it is to control access to sensitive information. For example, a Patient Profile microservice containing functionality to access medical history might inadvertently allow unauthorized staff to access this sensitive (and protected) information.

Moving sensitive functionalities (like access to medical history) into their own microservices isolates them, making it easier to control access to that information.

Code volatility

Note

This is also referred to as “volatility-based decomposition.”

[image: Image]

Does one part of the microservice change faster than others? Constant changes to one part of a large microservice mean you have to test the entire microservice, including functionalities you didn’t change. That’s a lot of extra work.

Moving a frequently changing function into its own separate microservice isolates those changes from other functions, making it much easier to maintain and test functionality.

Scalability and throughput

[image: Image]

Do some parts of the microservice need more scalability than others? If so, breaking the service apart allows better control over which portions need to scale and which do not.

For example, suppose the heart rate monitoring function accepts sensor readings every second, but the temperature monitoring function accepts sensor readings once every 5 minutes. Separating these monitoring functions into distinct services allows each one to accommodate a different throughput rate.

Note

Smaller microservices start up much faster than larger ones, making much-needed functionality available to the user sooner.

Granularity integrators

Granularity integrators work in the opposite direction from disintegrators—they help you decide when to make services bigger and combine their functionalities. We’ll use the same Monitor Basic Vital Signs microservice we broke apart earlier to illustrate why you might want to consider combining separate microservices into one larger microservice.

[image: Image]

Let’s analyze each of these forces to see how they might help you determine whether you should put all this monitoring functionality into a single larger microservice.

Why should you make microservices bigger?

Database transactions

[image: Image]

When requests involve multiple microservices, you can’t perform a single database commit or rollback for all updates. Since each microservice update is in its own separate transaction, it must instead be committed or rolled back separately.

If data consistency and integrity are more important than any of the disintegrator forces, then it makes sense to combine the functionality into a single microservice so that operations take place in a single database transaction.

Data dependencies

Note

Data dependencies are one of the most common integration drivers.

[image: Image]

When you break a microservice apart, you also have to break its data apart. However, if the data is highly coupled, it will be very difficult to break it apart and form new physical bounded contexts.

An example of data coupling is when one database table refers to the key of another database table (known as a foreign key constraint). Another example of data coupling is when an entity (like customer information) is spread across multiple tables.

If your data is highly coupled and functions in the microservice need to share that data, it makes sense to keep the microservice large and combine the functions.

Workflow and choreography

[image: Image]

If a single business request requires separate microservices to communicate with each other, that’s coupling. Too much coupling between microservices can have many negative effects on the system.

For example, performance is affected by network, security, and data latency. Scalability is affected because each microservice in the call chain must scale as the other microservices scale (something that is hard to coordinate). Fault tolerance is affected because if one of the microservices in the chain becomes unresponsive or unavailable, the request cannot be processed.

If your workflow involves a lot of coordination between your microservices and these characteristics are important to you, consider combining them.

[image: Image]

It’s all about balance

Determining the appropriate level of granularity for a microservice isn’t easy. You have to balance the trade-offs associated with each granularity disintegrator and integrator, and determine which trade-offs are more important. This usually involves collaborating with your product owner or business stakeholder, particularly if the trade-offs are significant.

Make it Stick

[image: Image]

How small should a microservice be?

Use this tip and you will see.

Keep them coarse-grained when you begin,

Then move to fine-grained for the win!

[image: Image]

Exercise

[image: Image]

Now it’s your turn to apply granularity disintegrators and granularity integrators to decide whether to implement the Monitor Basic Vital Signs functionality (which covers blood pressure, temperature, and heart rate) as a single microservice or three separate services. Here is some additional information:

	* A patient’s heart rate and blood pressure are the two most critical basic vital signs to monitor. If something should go wrong with temperature monitoring, heart rate and blood pressure monitoring must continue to work.

	* All three basic vital signs share an alert functionality to notify medical professionals if something goes wrong.

	* The heart rate monitoring functionality accepts sensor readings once a second, whereas the temperature and blood pressure monitoring functions only accept sensor readings once every 5 minutes.

	* Each basic vital sign’s data is recorded and stored separately, as simple JSON name/value pairs in a single document database. For example, the heart rate readings are stored as follows:

[image: Image]

[image: Image]

Which of the two options would you choose, and why? ____________________

[image: Image] Solution in “Exercise Solution”

[image: Image]

You can still share code in microservices.

Code reuse is a necessary part of software development. Without it, you would have duplicate functionality almost everywhere in your system. Functions like logging, metrics streaming, user authorization, and basic utilities like transforming date formats are common in most (if not all) systems.

In monolithic systems, this is easy—you write the common functionality once and use it everywhere in the system, because it’s all compiled together as one unit. But in distributed architectures like microservices, it’s not that easy. That’s because each microservice is a separately deployed unit of software.

So where does all that common functionality go in microservices? Usually into either a shared library or a shared service. In the following pages, we’ll show you the trade-offs between these choices.

Sharing functionality

All of MonitorMe’s vital-sign monitoring microservices have shared functionality to alert a medical professional if something is wrong with the patient. Let’s look at the code:

[image: Image]

Let’s say we create three separate microservices for monitoring blood pressure, temperature, and heart rate. Each one needs this common alert functionality.

[image: Image]

Where should the source code for the common alert functionality go? We could replicate the code in each microservice, but that would lead to issues if anyone changed it to fix a bug or add new functionality. That leaves us with two choices for where to put the code: in a shared service or in a shared library. Let’s look at both options.

Note

“Replication” means that each microservice has its own copy of the source code. This is only useful for truly static source code.

Sharpen your pencil

[image: Image]

Besides alerting a medical professional, can you list other common functionalities that the MonitorMe services might need?

[image: Image] Solution in “Sharpen your pencil Solution”

Code reuse with a shared service

A shared service is a separate microservice that contains a shared functionality that other microservices can call remotely.

If we put the MonitorMe alert functionality in its own separate shared service, each monitoring microservice will need to call that shared service if it detects something wrong with the patient.

[image: Image]

Like everything in software architecture, shared services have advantages and disadvantages.

[image: Image]

Code reuse with a shared library

A more common approach to shared functionality is to put it in a custom shared library. A shared library is an independent artifact (like a JAR file in Java or a DLL in C#) that is included with each microservice at compile time. This means that once the microservice is deployed, each microservice has all of the shared functionality available to it.

Note

Most platforms and programming languages have their own shared-library file formats.

Let’s see how the shared MonitorMe alerting functionality might look if we were to use a shared library rather than a shared service.

[image: Image]

Do you see how the shared alert functionality is included as part of each microservice’s deployment unit? This means each microservice can simply use the shared code to alert a medical professional, without having to make a remote call to a separate service.

[image: Image]

Fireside Chats

[image: Image]

Tonight’s talk: A shared service and a shared library answer the question: “Who’s cooler?

	Shared Service
	Shared Library

	Hey there, “old school.” You still around?
	

	
	“Old school?” Let me tell you something—not only am I still around, I’ll outlive you by a long shot.

	Not a chance, bud. Don’t you get it? In the distributed architecture world, I’m king. Everything is services— including me, the shared functionality. Need to reauthorize a user? Need to alert a nurse that the patient is having issues? Just call me. What could be easier?
	

	
	Right. And when you aren’t around, what then? You see, unlike you, I’m always around, right by each microservice’s side.

	Fine, you got me there. But when I have to change, I just do it. No one else has to be involved. When you change, every service you’re attached to has to retest and redeploy. How disruptive you are!
	

	
	Oh please! I can clone myself into multiple versions. That makes me a lot safer to change. You, on the other hand, are full of risk—you can break the entire system when you redeploy! You really like to live dangerously, don’t you?

	At least I’m not a conformist. Face it—for every programming language in your environment, you have to replicate yourself. I, on the other hand, am independent. I can be implemented in any language or platform because I don’t have the same attachment problem you have.
	

	
	Attachment problem? Really? Listen—my attachment to services means I’m faster, more available, more scalable, and more reliable than you.

	Whatever. Later, conformist—I’m gonna go find someone to hang out with who appreciates me.
	

	
	And... now you’re not available. See what I mean?

Sharpen your pencil

[image: Image]

Now that you’ve seen the two main options for sharing functionality in the microservices architectural style, it’s your turn to decide—should the alert functionality in MonitorMe be a shared library or a shared service? Make sure you consider external forces (like the problem domain) in addition to the pros and cons of each option, and justify your choice.

[image: Image]

Note

Put your decision and reasoning here.

[image: Image] Option 1: Shared service

[image: Image] Option 2: Shared library

Reason: __

__

__

__

__

__

[image: Image] Solution in “Sharpen your pencil Solution”

[image: Image]

Yes, you can! This is called workflow management.

A workflow is when fulfilling a single business request—a task request that comes from a user interface—needs more than one microservice. You can manage a workflow in microservices by using either of two techniques: orchestration or choreography. In the next couple of pages, we’ll show you how these work and discuss their pros and cons.

there are no Dumb Questions

Q: If I make a request involving a workflow that needs multiple microservices to give me an answer, why break those microservices apart? Wouldn’t it be better to make a single service and avoid workflows in the first place?

A: Great question. Remember the granularity disintegrators from several pages ago? Some of those factors—like scalability, fault tolerance, code volatility, and better, more secure access control—might be important enough to warrant keeping the microservices separate, even if it means you’ll have to add a bit of complexity later to tie those services together with a workflow.

Managing workflows

A workflow is required when two or more microservices are needed to complete a single business request. The request might be a nurse (say, Juan) asking “How is the patient doing today?” To answer, the system must gather information about the patient’s temperature, heart rate, and blood pressure. This means calling multiple microservices, one for each vital sign.

However, Juan doesn’t want to make three separate requests to the MonitorMe system. He would like to make a single request to get all the vital signs information. This means the three monitoring microservices need to be coordinated in a workflow.

Let’s look at how to make this happen in microservices by using either orchestration (centralized workflow management) or choreography (decentralized workflow management).

[image: Image]

Exercise

[image: Image]

Can you think of any workflows involving multiple microservices that might exist for the MonitorMe patient vital signs monitoring system? List them in the space below.

Get the status of a patient’s basic vital signs (temperature, blood pressure, and heart rate).

Note

We did this one for you.

[image: Image] Solution in “Exercise Solution”

Orchestration: Conducting microservices

When you go to a symphony concert, who do you see in the front, leading all the musicians? The conductor, of course. This is a great way to think about orchestration in microservices.

Orchestration is about coordinating all the microservices needed for a workflow. A centralized microservice—the orchestrator—does this, very much like a conductor coordinates all the musicians performing in a symphony orchestra.

An orchestration service is a separate microservice that is responsible for calling all the microservices involved in the workflow. It also handles errors and passes consolidated data back to the caller (usually the user interface).

[image: Image]

[image: Image]

Job Posting: Microservices Orchestrator

Looking for a microservices orchestrator to manage monitoring a patient’s basic vital signs. Duties and responsibilities include:

	Call the right microservices in the right order.

	Always know the current state of the workflow and what happens next.

	Consolidate all the data from each microservice.

	Handle errors if any of the microservices fails.

Note

That’s a lot to manage. I hope the job pays well.

Like everything, orchestration has trade-offs. Let’s be positive and start with the good.

The good...

[image: Image]

Centralized workflow

Request workflows are centralized and well understood. You only need to go to the orchestrator to understand the complete workflow.

Workflow state

Since the orchestrator always knows where the request is in the workflow, if there’s a failure, restarting the request where the workflow left off is much easier.

Note

Sort of like a GPS—it always knows where you are.

Error handling

Error handling is consolidated into the orchestrator, so each microservice doesn’t need to worry about what to do if an error occurs—the orchestrator handles it.

Workflow changes

It’s easy to change the workflow because all changes occur in one central place.

The bad...

[image: Image]

Performance

Orchestration tends to be slowed by communication between the orchestrator and the microservices, and because the orchestrator typically saves the workflow state to a database each time something changes.

Scalability

The central orchestrator can become a bottleneck as requests increase, because every request must go through it before reaching any microservices.

Tight coupling

Because the orchestrator and microservices need to communicate constantly, orchestration tends to be highly coupled.

Availability

If the conductor leaves the orchestra, the concert is over. Similarly, if the orchestration microservice is unavailable, the request cannot be processed. This single point of failure is usually addressed by creating multiple instances of the orchestrator.

Note

Sort of like having an understudy conductor backstage in case the conductor gets sick.

Choreography: Let’s dance

Whereas orchestras are conducted, dances are choreographed. Rarely do you see a conductor leading a group of classical or modern dancers—instead, the dancers learn their parts and then communicate with each other. This is a great way to think about choreography in microservices.

Let’s say the MonitorMe system’s blood pressure monitoring functionality is separated into four separate microservices, which communicate to complete the workflow of the monitoring operation.

[image: Image]

[image: Image]

Like dancers, the microservices communicate with each other. Each performs its function, then calls the next microservice to perform its function, until the workflow is complete.

Watch it!

[image: Image]

Don’t lead the dancers!

When using choreography, make sure you don’t fall into the trap of turning one of the microservices into an orchestrator. This is known as the Front Controller pattern. This pattern is useful for orchestration, but not for choreography.

[image: Image]

Guess what? Choreography has trade-offs as well.

The good...

[image: Image]

Responsiveness

Since there’s no central orchestrator to communicate with continually, responsiveness and performance tend to be better.

Loose coupling

Since microservices don’t depend on a central orchestration service to direct them, the system tends to be less coupled.

Scalability

Each microservice can scale to meet its throughput demands, independent of other microservices in the workflow.

Note

Fast, scalable systems usually use choreography. However, watch out for the trade-offs.

The bad...

[image: Image]

Error handling

Each microservice is responsible for managing the error workflow if an error occurs. This can lead to too much communication between services.

Recoverability

When a user retries a request that has failed or is still in progress, it’s really hard for the system to know where to restart. That’s because no single service is responsible for directing the request to a specific microservice in the workflow—each one only sends it to the next microservice in the call chain.

State management

It’s hard to know what state the workflow is in when using choreography, because there’s no central conductor controlling the workflow. Usually, one of the microservices (typically the first one in the call chain) is designated the state owner, and other microservices send it their state.

Note

Be careful—state management can lead to the Front Controller pattern, described in the “Watch it!” box on the previous page.

Exercise

[image: Image]

StayHealthy, Inc., stands behind MonitorMe and its monitoring devices and display screens. If a problem occurs with any software or physical hardware, someone from the medical facility can go online and create a trouble ticket. A field technician will receive the trouble ticket on their mobile phone, come to the medical facility, fix the problem, and mark the ticket as fixed.

It’s up to you: Would you manage the microservices for the trouble ticket system workflow using orchestration or choreography? Be sure to include the reasons for your choice.

[image: Image]

[image: Image] Solution in “Exercise Solution”

[image: Image]

You’re right—the microservices architectural style is complex. But it’s also powerful.

Using microservices helps us address complex business problems. Not only does this architectural style excel at supporting operational characteristics such as scalability, reliability, availability, and fault tolerance, but it also allows the system to respond quickly to changes in both business and technology (known as agility).

That said, the microservices architectural style may not be a fit for every system. In the next few pages we’ll show you some of the superpowers of microservices as well as its weaknesses.

Microservices architecture superpowers

Every architectural style has its superpowers. Here are some reasons to use the microservices architectural style.

[image: Image]

Maintainability

[image: Image]

Because microservices are single-purpose and separately deployed, you can more easily locate code that needs to change for a particular function.

Testability

A microservice’s testing scope is much smaller than that of a larger monolithic application or a system with large services. This limited scope makes it easier to fully test a microservice’s functionality.

Deployability

[image: Image]

Because microservices are deployed as separate units of software, there are fewer risks involved with releasing a microservice than with large monolithic systems. You can also deploy microservices more frequently—sometimes daily.

Evolvability

It’s relatively easy to add functionality to a microservices architecture: you create a new service, test it, and deploy it alongside other existing microservices in your system.

Scalability

Microservices scale at a function level rather than a system level. This means that you scale only the functionalities you need to meet increased user load and demand, saving resources and lowering costs.

Fault tolerance

If a particular microservice fails, it doesn’t bring down the entire system—only that function. Users can continue to use other functions.

[image: Image]

Microservices architecture kryptonite

Are there reasons not to use the microservices architectural style? You bet there are. Just like kryptonite diminishes a superhero’s powers, certain business and architectural characteristics diminish the case for using microservices. Watch out for them!

[image: Image]

[image: Image]

Complexity

Microservices is one of the most complex architectural styles. It involves so many hard decisions—about granularity, transactions, workflow, contracts, shared code, communication protocols, team topologies, and deployment strategies, just to name a few.

Performance

The more microservices communicate with each other, the worse their performance will be. They may have to wait for the network, undergo additional security checks, and make extra database calls.

[image: Image]

Complex workflows

Workflows occur when you need to call multiple microservices for a single business request. If the functionality of your system is too tightly coupled, breaking it into separately deployed services will only result in a big ball of distributed mud. Yuck!

Monolithic databases

Each microservice must own its own data and form a physical bounded context. If your data can’t be broken apart for whatever reason, stay away from this architectural style.

Note

Remember—a physical bounded context includes the microservice as well as all of its data.

[image: Image]

Technically partitioned teams

Does your organization consist of siloed teams of user interface developers, backend developers, and database people? If so, microservices won’t work for you (a reflection of Conway’s Law). Microservices architecture requires cross-functional teams. Each team owns its own group of microservices, all the way from the user interface to the database.

Microservices star ratings

Below is a useful chart for understanding what microservices architecture is good at and what it’s not so good at. One star means that the architectural characteristic is not well supported; five stars means the characteristic is very well supported.

Note

Just like movie reviews.

[image: Image]

As you can see, the microservices architectural style is pretty good in terms of agility (maintainability, testability, and deployability) and operational characteristics. However, it’s not so great when it comes to performance, simplicity, and cost.

You might be wondering about the low performance rating. This is because of latency as services communicate with each other. This latency takes on three forms: network latency (the time it takes the request to get to the service), security latency (the time it takes to reauthorize a user, for example), and data latency (since each microservice makes its own database calls).

Exercise

[image: Image]

Which of the following systems might be well suited for the microservices architectural style, and why? Hint: Take into account microservices’ superpowers, its kryptonite, and the problem domain.

[image: Image]

[image: Image] Solution in “Exercise Solution”

Wrapping it up

Congratulations! The MonitorMe system is up and running, and it’s a success. It’s all thanks to your understanding of microservices and what types of systems this approach is good for.

You’ve learned that while microservices can be a complicated architectural style, it also has superpowers that can help solve complex business problems (like the MonitorMe system we’ve been working on). Let’s close this chapter by reviewing some key points about microservices.

Bullet Points

	A microservice is a single-purpose, separately deployed unit of software that does one thing really well.

	A physical bounded context means that a microservice owns its own data and is the only microservice that can access that data. If a microservice needs data that is owned by another microservice, it must ask for it.

	The granularity of a microservice is a measure of its size—not physically, but the scope of what it does.

	Forces that guide you to make your microservices smaller are called granularity disintegrators.

	Forces that guide you to make your microservices bigger are called granularity integrators.

	Balance granularity disintegrators and integrators to find the most appropriate level of granularity for a microservice.

	You can make microservices coarse-grained to start with, then finer-grained as you learn more about them.

	Two techniques for sharing functionality in microservices are shared services and shared libraries.

	A shared service is a microservice that contains a functionality shared by multiple microservices. It’s deployed separately and each microservice calls it remotely. Shared services are more agile overall and are good for heterogeneous environments. However, they are not good for scalability, fault tolerance, or performance.

	A shared library is an independent artifact (like a JAR or DLL file) that is bound to a microservice at compile time. Shared libraries offer better operational characteristics, like scalability, performance, and fault tolerance, but make it harder to manage dependencies and control changes.

	A workflow is when multiple microservices are needed for a single business request or business process.

	Workflows that use orchestration require a central orchestrator microservice, which works like a conductor in a symphony orchestra.

	In workflows that use choreography, the services talk to each other, like dancers performing together.

	Scalability, fault tolerance, evolvability, and overall agility (maintainability, testability, and deployability) are the superpowers of the microservices architectural style.

	Performance, complexity, cost, monolithic databases that can’t be broken apart, and high semantic coupling are kryptonite to microservices.

	Microservices should be as independent as possible; too much communication between them will degrade the benefits of this architectural style.

Microservices Crossword

[image: Images]

Ready to have some fun and test your knowledge about what you’ve learned?

[image: Image]

Across

1. Microservices make it easier for a system to do this

5. When you make a service smaller, you make it more _____

7. Each microservice _____ its own data

11. Workflow where microservices communicate with each other

14. A _____service does one thing really well

15. Microservices is this type of architecture

17. _____ tolerance keeps a problem from bringing down the whole system

18. Microservices are _____-purpose

19. When you need more than one microservice to do the job, it’s a _____

Down

1. _____ handling is part of an orchestrator’s job

2. Kind of component found within a microservice

3. Kind of force that pushes you to make a microservice bigger

4. Watch out for the _____ Controller pattern

6. Each microservice is a separately deployed _____ of software

8. Code resource that’s often shared

9. A context that restricts data access

10. Workflow where one microservice rules all the others

12. Type of bounded context or architecture diagram

13. Good security includes restricting _____ to data

16. A bad design pattern is an _____pattern

[image: Image] Solution in “Microservices Crossword Solution”

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Based on the problem domain and requirements document in “StayHealthy MonitorMe requirements document”, check off the top five architectural characteristics you think are critical to the MonitorMe architecture and indicate why you think they are critical.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

We’re having trouble determining what single-purpose means. Can you help us by checking off all the functions below that you would consider single-purpose and therefore possible microservices?

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

We created the following services for an ecommerce site, but we need your help in figuring out the data ownership and bounded contexts. Can you associate the database tables below with the corresponding microservices that should own the data?

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Now it’s your turn to apply granularity disintegrators and granularity integrators to decide whether to implement the Monitor Basic Vital Signs functionality (which covers blood pressure, temperature, and heart rate) as a single microservice or three separate services. Here is some additional information:

	* A patient’s heart rate and blood pressure are the two most critical basic vital signs to monitor. If something should go wrong with temperature monitoring, heart rate and blood pressure monitoring must continue to work.

	* All three basic vital signs share an alert functionality to notify medical professionals if something goes wrong.

	* The heart rate monitoring functionality accepts sensor readings once a second, whereas the temperature and blood pressure monitoring functions only accept sensor readings once every 5 minutes.

Each basic vital sign’s data is recorded and stored separately, as simple JSON name/value pairs in a single document database. For example, the heart rate readings are stored as follows:

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Besides alerting a medical professional, can you list other common functionalities that the MonitorMe services might need?

Observability—streaming service response times, errors, uptime, and other metrics and measurements

Logging—reporting on errors and other service functionality alerts

Auditing—recording when an alert was sent and which medical professional received it

Security—restricting access to a monitoring service to authorized medical professionals only

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Now that you’ve seen the two main options for sharing functionality in the microservices architectural style, it’s your turn to decide—should the alert functionality in MonitorMe be a shared library or a shared service? Make sure you consider external forces (like the problem domain) in addition to the pros and cons of each option, and justify your choice.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Can you think of any workflows involving multiple microservices that might exist for the MonitorMe patient vital signs monitoring system? Here are our ideas.

Get the status of a patient’s basic vital signs (temperature, blood pressure, and heart rate)

Find out which vital signs are being monitored for a given patient (requires queries to multiple monitoring services)

Register a new patient to be monitored—lots of different information is gathered, like name, identity, demographics, medical history, and so on, all of which could be separate microservices

From “Exercise”

Exercise Solution

[image: Image]

StayHealthy, Inc., stands behind MonitorMe and its monitoring devices and display screens. If a problem occurs with any software or physical hardware, someone from the medical facility can go online and create a trouble ticket. A field technician will receive the trouble ticket on their mobile phone, come to the medical facility, fix the problem, and mark the ticket as fixed.

It’s up to you: would you manage the microservices for the trouble ticket system workflow using orchestration or choreography? Be sure to include the reasons for your choice.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Which of the following systems might be well suited for the microservices architectural style, and why? Hint: Take into account microservices’ superpowers, its kryptonite, and the problem domain. Here are our answers.

[image: Image]

Microservices Crossword Solution

[image: Image]

From “Microservices Crossword”

[image: Image]

Chapter 11. Event-Driven Architecture: Asynchronous Adventures

[image: Image]

What if your architecture could do lots of things at the same time? As businesses grow and become more successful, they need to be able to handle more and more users, without slowing down or crashing systems. In this chapter, you’ll learn how to design high-performance systems that can scale as a business grows. Get ready for event-driven architecture, a highly popular distributed architectural style. It’s very fast, highly scalable, and easy to extend—but it’s also quite complex. You’ll be learning about lots of new concepts in this chapter, including things like events, messages, and asynchronous communication, so you can create an architecture that can do many things at once. Fasten your seatbelt, and let’s go on an asynchronous adventure through event-driven architecture.

Too slow

Imagine going to your favorite diner to order their famous grilled cheese sandwich, crispy fries, and a chocolate milkshake. Sounds easy, right? But what if the person taking your order had to make all of those things one at a time, without any help? Not only would everything take longer, but the diner wouldn’t be able to serve as many customers. Let’s visualize that workflow:

[image: Image]

[image: Image]

This is no way to run a diner! Let’s see if we can make things go a little faster so they can serve more customers.

Brain Power

[image: Image]

Pretend you are a customer of this diner. How would you suggest they speed things up?

Note

Write your ideas here.

Speeding things up

If the diner hires three more workers (one to make the sandwiches, one to cook the french fries, and one to make milkshakes) and they prepare all parts of the meal at once, completing orders will take half as long. That effectively doubles the number of customers the diner can serve during the lunch hour.

[image: Image]

[image: Image]

Doing all three activities at the same time significantly reduces customers’ wait time (we’ll call that responsiveness). Because meals can be made faster, the server taking orders can now handle more customers (we’ll call that scalability).

Note

Note: we’ll be referring to event-driven architecture as EDA going forward, because we’re cool like that (and, thankfully, we don’t get paid by the word).

This is the fundamental concept behind event-driven architecture (EDA)—breaking up processing into separate services, with each of those services performing its function at the same time by responding to an event (something that just happened). In EDA, services communicate asynchronously through an event channel, meaning they don’t wait for responses from other services to complete their work.

Note

Don’t worry—we’ll cover all of these terms.

[image: Image]

We know this is a lot to take in at once, so we’ll take it step by step. But before we jump in, let us introduce you to Der Nile, a large German online-ordering company that is having growing pains and needs your help.

Der Nile flows faster than ever

Der Nile is Germany’s largest online retailer, selling everything from diapers to hair-growth supplements.

Business is booming—so much, as a matter of fact, that the company’s online ordering system is stressed to the breaking point. Der Nile’s customers demand fast systems and quick order fulfillment, and the current system simply can’t handle the volume of orders coming in. Processing orders takes too long, and fulfillment times are increasing.

Der Nile would like to create a new ordering system from scratch to handle this growth—and needs your help in designing it.

Here is the basic flow of the legacy online-ordering system currently in place:

[image: Image]

[image: Image]

Exercise

[image: Image]

As the architect, how can you modify the current workflow (shown on the previous page) to speed things up a bit? Draw your ideas for a new workflow in the space below. Hint: What can you do at the same time?

[image: Image]

[image: Image] Solution in “Exercise Solution”

What is an event?

Back in the late 1950s, a journalist asked Prime Minister Harold Macmillan of the United Kingdom what troubled him the most. “Events, my dear boy, events,” was his famous reply. Events may have troubled Harold Macmillan, but they can be a lot of help to us in solving complex business problems.

An event is something that happens, especially something of importance. Things like the World Cup, musical concerts, big promotions at work, weddings, and birthday celebrations are all important events.

Note

Publishing this book was an important event for the authors.

In software systems, certain user actions trigger events—things that happen, like placing a bid for an item up for auction, filing an insurance claim, or making a purchase.

[image: Image]

Events are a way for a service to let the rest of the system know that something important has just happened. In EDA, events are the means of passing information to other services.

Note

Friendly reminder: EDA is event-driven architecture.

An event usually contains data, like all the details of an online order. On occasion, it might only have key information (like the order ID). In the latter case, services that must do something when they receive the event will have go to a data store to get additional information about it.

Note

The data inside an event is referred to as its payload.

[image: Image]

[image: Image]

No, an event is not the same thing as a message. Although they both deliver information to other parts of the system, there are some important differences between them.

An event is used to broadcast some action that a service just performed to other services in the system. For example, a service might tell the rest of the system: A customer just placed an order. A service sending an event never waits for a response. The service generally has no knowledge about what other services (if any) are listening for that event, or what they’ll do with that information if they respond to it.

Note

This is often referred to as “fire-and-forget.”

Note

More on this soon.

A message, on the other hand, is a command, such as Apply the payment for this order, or a request, like Give me shipping options for this customer. Because messages are only meant to reach one other service, the other services in the system are unaware of the message. Services sometimes stop and wait for a response (for instance, if they are sending a request for information). Other times, the service might just issue a command and trust that the receiving service will do its job.

Turn the page to see more differences between an event and a message.

Events versus messages

Here are two really important differences between events and messages:

1. Events are broadcast to other services using topics, whereas messages are sent to a single service using queues.

[image: Image]

2. Events always broadcast something that has already happened, whereas messages request something that needs to be done.

[image: Image]

Sharpen your pencil

[image: Image]

It’s time to test your knowledge about events and messages. For each of the quotes below, mark whether it is more likely an event or a message, and indicate why.

[image: Image]

[image: Image] Solution in “Sharpen your pencil Solution”

Initiating and derived events

Events that originate from a customer or end user are called initiating events. These are a special type of event that kicks off a business process.

Once a service responds to an initiating event, it might in turn broadcast what it did to the rest of the system, within the scope of that initiating event. These events are called derived events because they are internal events generated in response to the initiating event.

[image: Image]

Did you notice that the Payment service generates two different derived events? This is typical in EDA. Anything a service generates or causes to happen can be a derived event.

Exercise

[image: Image]

Based on the Credit Card Charged initiating event and the corresponding processing below, can you identify what the derived events should be for each service? Think of as many possible outcomes as you can.

[image: Image]

[image: Image] Solution in “Exercise Solution”

Is anyone listening?

When you post something on social media, you often get a reaction—someone liking or commenting on your post. But how many times have you posted something only to get no reaction? Maybe you wondered: Did anyone see my post? Did anyone care?

In EDA, any action a service performs should trigger a derived event. However, there is a chance that no one cares about certain events. So why publish those events? Because this provides architectural extensibility—the ability to extend the system to add new functionality.

Note

Extensibility is one of the architectural characteristics you learned about in Chapter 2.

Let’s say customers in the Der Nile online ordering system get notified when an order is shipped and also when it has been delivered. The Email Notification service handles this by sending the customer an email. That event in turn triggers a Customer Notified derived event.

[image: Image]

Now let’s suppose Der Nile wants to do some analytics to learn what times of the day the system sends the most customer notification emails. Since the Customer Notified derived event is already being published, you can simply create a new Notification Analytics service and tell it to listen for that event. You don’t need to modify any other parts of the system.

[image: Image]

Asynchronous communication

[image: Image]

Event-driven architecture is fast because it uses mostly asynchronous (or “async” for short) communication.

You’re probably most familiar with communication styles such as REST or HTTP, particularly when you need to call an API or another service. These are forms of synchronous communication. With synchronous (or “sync”) communication, when a service sends information, it must sit and wait for a response from the receiving service before doing anything else (even if it’s just acknowledging receipt of the information). This slows systems down and makes them less scalable. It’s like calling a friend—you have to wait for your phone to make a connection to your friend’s phone, let it ring, and wait for your friend to answer before you can talk.

Asynchronous communication is a fancy way of saying that services don’t wait for a response or acknowledgment from other services when sending them information. This creates systems that are highly decoupled and very fast. It’s one of the unique features of event-driven architecture. It’s like sending your friend a text—you can do other things while you wait for their response.

[image: Image]

[image: Image]

Fireside Chats

[image: Image]

Tonight’s talk: Asynchronous and synchronous communication debate: Who’s more useful?

	Asynchronous Communication
	Synchronous Communication

	Well, it’s about time you showed up.
	

	
	Sorry I’m late. I can’t seem to multitask, so everything I do takes such a long time.

	Yeah, I’ve noticed. You’re as slow as a herd of snails traveling through peanut butter.
	

	
	Now, wait just one minute!

	Wait? You want me to wait? That’s your whole problem—you’re always waiting around for answers. No one has to wait when I’m around. And that makes me fast—really fast.
	

	
	That may be so, but your problem is that you never know what’s going on. You ask others to do things, but you never find out whether those things actually got done or not.

	I trust others to get the job done, unlike you. You need verification for everything, all the time.
	

	
	Yeah, right. Tell me: when an error occurs downstream, how do you deal with it?

	I don’t. I can’t be responsible for everyone, you know. I let others deal with their own issues.
	

	
	And what if you need information from someone else before you can finish your work? What do you do then?

	Oh, I’m sorry—did you say something? I wasn’t listening.
	

	
	That’s exactly my point! You never listen to anyone else. I may be slow, but at least I pay attention to what’s going on and communicate with others.

	Sorry—I wasn’t paying attention. What was that?
	

	
	Sigh...

Fire-and-forget

Asynchronous communication is one of the foundations of event-driven architecture. When a service broadcasts information to other services, it doesn’t wait for a response, nor does it care whether the services are available or not. This is known as fire-and-forget communication—the event is sent (that’s the fire part), and the service moves on to do other things (that’s the forget part). Architects usually use a dotted line to represent async communication between services.

[image: Image]

Synchronous communication, on the other hand, means that the sending service must stop and wait for a response from the service it’s calling before continuing its work. This means that the service being called must be available to respond, or an error occurs. Architects usually represent synchronous communication using a solid line.

[image: Image]

Event-driven architecture relies on asynchronous communication when sending and receiving events.

Sharpen your pencil

[image: Image]

For each of these tasks, would you use asynchronous or synchronous communication?

Give me the shipping options for this order.

	[image: Image] Asynchronous
	[image: Image] Synchronous
	[image: Image] Either one would work

Apply payment for this order and let me know if the payment goes through.

	[image: Image] Asynchronous
	[image: Image] Synchronous
	[image: Image] Either one would work

Fulfill this order for me by picking the items off the shelf and packing them in a box.

	[image: Image] Asynchronous
	[image: Image] Synchronous
	[image: Image] Either one would work

Give me the current status of this order.

	[image: Image] Asynchronous
	[image: Image] Synchronous
	[image: Image] Either one would work

Our inventory of this item is getting low—please order more stock.

	[image: Image] Asynchronous
	[image: Image] Synchronous
	[image: Image] Either one would work

Tell the customer that their order has been shipped and is on its way.

	[image: Image] Asynchronous
	[image: Image] Synchronous
	[image: Image] Either one would work

Update the customer’s profile picture.

	[image: Image] Asynchronous
	[image: Image] Synchronous
	[image: Image] Either one would work

Post a customer’s review on the product page.

	[image: Image] Asynchronous
	[image: Image] Synchronous
	[image: Image] Either one would work

[image: Image] Solution in “Sharpen your pencil Solution”

Asynchronous for the win

Communicating between services asynchronously has a lot of advantages. The first is better responsiveness—in async, it takes less time to complete a request.

Suppose a customer places an online order in Der Nile. It takes 600 milliseconds (ms), or just over half a second, for the Order Placement service to validate and place the order, and 1,200 ms for the Payment service to apply the payment. With async, the customer would wait 600 ms to get a response. With sync, however, they would have to wait 1,800 ms (just shy of 2 seconds). That’s a big difference in response times.

[image: Image]

The other big advantage of async is availability. Let’s see what happens with async and sync if the Payment service is unavailable or becomes unresponsive.

[image: Image]

Have we convinced you that asynchronous communication is great? Let’s take a look at its trade-offs next.

Note

Remember the First Law—everything in software architecture is a trade-off.

Synchronous for the win

The main disadvantage of async communication is error handling. With sync communication, if there’s a problem with the payment method, the customer knows right away and has a chance to fix it and resubmit the order. However, with async, the customer thinks everything is fine because the system hasn’t told them otherwise—but the Order Placement service can’t process the order until the customer corrects the payment problem. This makes error handling much more complex.

[image: Image]

Sharpen your pencil

[image: Image]

Now’s your chance to test what you’ve learned so far about event-driven architecture, events, and asynchronous processing. Der Nile’s inventory occasionally gets out of sync, as shown below. When this happens, the order cannot be fulfilled and goes into a back-order state. Der Nile never makes a customer pay for items that are back-ordered, and the customer can choose whether to wait or cancel the order.

As the architect for Der Nile, what additional events and services would you create to address this situation?

[image: Image]

[image: Image] Solution in “Sharpen your pencil Solution”

Database topologies

[image: Image]

We’re glad you brought that up.

Data can be a complex topic in EDA. Because EDA is so asynchronous, services are highly decoupled from one another. However, if all the services share a single database, then they end up being highly coupled to the database. On the other hand, if each service owns its own data, like with microservices (discussed in the previous chapter), then services become highly coupled to each other because they need to synchronously ask each other for the data. In either case, data forms a coupling point—something we try to avoid in EDA.

In the next couple of pages we’re going to show you various ways for dealing with databases in EDA: monolithic databases, domain-partitioned databases, and the database-per-service pattern. We’ll talk about their trade-offs to help you decide which one is most appropriate for your situation.

Monolithic database

In the monolithic database topology, all services share a single database. The main advantage is that when services need data they don’t own, they can go directly to the database. This means they don’t have to make synchronous calls to other services to get data. For example, if the Order Placement service needs the current inventory and shipping options for a customer’s order, it can simply query that information from the database.

[image: Image]

However, this decoupling comes with a steep price: managing database changes. Because all services share the same database, when you make a change to the structure of one table, it’s difficult to identify all the services that change will affect. Testing and releasing becomes a tricky game—one you will all too often lose. This leads to brittle systems that are difficult to maintain.

What’s more, the shared database becomes a single point of failure, and one that may not be able to scale as the system grows.

Monolithic database topology scorecard

Here’s a scorecard for the monolithic database topology.

[image: Image]

Domain-partitioned databases

With domain-partitioned databases, each domain in the system has its own database. This means any service that belongs to a particular domain will share the database for that domain. For example, the Order Placement, Payment, and Inventory services are all part of the Order Placement domain, so they all share the same physical database.

However, since each domain forms its own broad physical bounded context, a service in one domain can’t directly access a database to get data from another domain. This means it must make a synchronous call to another service to get the data—and now these services are coupled.

Note

See Chapter 10 for a review of the physical bounded context.

[image: Image]

This topology is a well-balanced, middle-of-the-road solution within event-driven architecture.

Domain-partitioned databases topology scorecard

Here’s a scorecard for the domain-partitioned databases topology.

[image: Image]

Database-per-service

Remember the database-per-service pattern from Chapter 10? It isn’t just for microservices—you can use it for EDA as well.

The database-per-service pattern is just what it sounds like. Every service has its own database, forming an even tighter physical bounded context than with the domain-partitioned topology. Here, making database changes is a breeze, because the only service affected is the one that owns the data (that is, does writes to the database). You get better fault tolerance and better scalability, too. What’s not to like?

Note

We hope you have plenty of money! This can get expensive.

Unfortunately, plenty. You see, whenever services need additional data they don’t have, they have to ask for that data from the service that owns it using synchronous calls. That results in a lot of coupling and communication between services, not to mention much slower performance.

[image: Image]

Database-per-service topology scorecard

Here’s a scorecard for the database-per-service topology.

[image: Image]

Exercise

[image: Image]

For each of these business needs, select which topologies you would consider. You can select more than one topology.

We expect anywhere between 20 and 300,000 customers to be on the system at once.

	[image: Image] Monolithic Database
	[image: Image] Domain-Partitioned Databases
	[image: Image] Database-Per-Service

The system must be as fast as possible.

	[image: Image] Monolithic Database
	[image: Image] Domain-Partitioned Databases
	[image: Image] Database-Per-Service

This medical monitoring system can never completely fail—parts of it must always stay running.

	[image: Image] Monolithic Database
	[image: Image] Domain-Partitioned Databases
	[image: Image] Database-Per-Service

We’re anticipating changing the database a lot in this new line of business.

	[image: Image] Monolithic Database
	[image: Image] Domain-Partitioned Databases
	[image: Image] Database-Per-Service

We have to get the new system up and running as soon as possible.

	[image: Image] Monolithic Database
	[image: Image] Domain-Partitioned Databases
	[image: Image] Database-Per-Service

Our data model is extremely large and complex, with lots of interrelated data.

	[image: Image] Monolithic Database
	[image: Image] Domain-Partitioned Databases
	[image: Image] Database-Per-Service

[image: Image] Solution in “Exercise Solution”

[image: Image]

Even though they may appear simliar, EDA and microservices are very different.

We’re glad you noticed some similarities between the two architectural styles. Both are distributed architectures good for scalability, agility, elasticity, and fault tolerance.

Over the next few pages, we’ll show you some important differences. But before we move on, how about trying the short exercise below to see if you can spot any yourself?

Sharpen your pencil

[image: Image]

List any differences you can think of between event-driven architecture and microservices.

Note

If you don’t know, that’s okay—keep reading!

[image: Image] Solution in “Sharpen your pencil Solution”

EDA versus microservices

Welcome to the EDA versus microservices Top Six Differences countdown! Over the next few pages, we’re going to count down six important differences between these architectural styles, starting with number 6. Ready? Let’s go!

Note

It’s time for the Head First differences countdown!

Number 6: Performance

The first difference in our countdown, at number 6, is performance.

In their book Fundamentals of Software Architecture (O’Reilly), two of your authors created star ratings for each architectural style. We gave microservices only two stars out of five for performance, but we gave EDA five stars. Why?

[image: Image]

Well, EDA combines asynchronous processing with the ability to do multiple things at once, creating very fast systems. Microservices, however, because of their bounded contexts and fine-grained nature, frequently need to communicate synchronously. This creates a lot of latency, which slows the system down considerably.

[image: Image]

Number 5: Physical bounded contexts

Coming in at number 5 in our countdown is physical bounded contexts. Microservices won’t work without these.

In EDA, however, while a physical bounded context is nice to have, it’s certainly not foundational (or even required). Because data sharing is pretty typical in EDA, this architecture doesn’t restrict data ownership as strictly as microservices does.

[image: Image]

Number 4: Data granularity

Another constraint with microservices that doesn’t exist in EDA is data granularity.

By definition, a microservices architecture requires each service to own its own data. This means you have to break apart your data into fine-grained databases or database schemas—collections of tables that a service owns (writes to). But in EDA, you can choose a single monolithic database, domain-partitioned databases, or the database-per-service pattern.

Note

You can refresh your memory of this restriction and why it exists by going back to Chapter 10.

[image: Image]

Number 3: Service granularity

Number 3 in our differences countdown has to do with service granularity. Recall from Chapter 10 that a microservice is a single-purpose service that does one thing really well. As a result, microservices tend to be fine-grained.

EDA has no such restrictions. Services in an event-driven architecture (formally called event processors) can be whatever size they need to be—fine-grained, coarse-grained, it doesn’t matter.

[image: Image]

Number 2: Event versus request processing

We’re almost there. Coming in at number 2 is another fundamental difference: event processing versus request processing. Event-driven architecture is built on event processing—responding to something that has happened, and in turn triggering more events. Microservices architecture, on the other hand, is built on request processing—responding to something that needs to happen, like a command or a request, and processing that request.

[image: Image]

Number 1: Communication style

And finally, coming in at number 1 is the most fundamental difference between EDA and microservices: communication style. EDA typically uses asynchronous communication between services, whereas microservices typically rely on synchronous communication using REST. EDA can occasionally use synchronous calls for things like retrieving data it doesn’t have access to, and microservices can use asynchronous communication when commands don’t require a response. But those are exceptions rather than the rule.

[image: Image]

Who Does What?

Oh dear! We tried to organize these facts , but got them all mixed up. Can you help us figure out which statements are about EDA and which are about microservices? Careful—some facts apply to both.

[image: Image]

[image: Image] Solution in “Who Does What? Solution”

Hybrids: Event-driven microservices

Even with all the differences between EDA and microservices, there’s no reason you can’t combine them. Doing this creates a hybrid architecture called event-driven microservices.

Note

A hybrid architecture combines multiple architectural styles.

You might have observed that the EDA database-per-service pattern for Der Nile looks a lot like microservices. However, just using the database-per-service pattern doesn’t make it event-driven microservices. To see what we mean, take a look at this EDA.

[image: Image]

Sharpen your pencil

[image: Image]

The above architecture is an acceptable and well-formed EDA, but not a well-formed microservices architecture. Two fundamental principles are missing that would make it event-driven microservices. Can you list what those two missing things are?

[image: Image]

[image: Image] Solution in “Sharpen your pencil Solution”

To make this architecture an event-driven microservices hybrid, we have to apply two very important principles of microservices: single-purpose services and physical bounded contexts.

The Order Submission service has to accept an order, validate it, apply the payment, and adjust the inventory. It’s certainly not a single-purpose service. That’s perfectly acceptable in EDA, but not in microservices. The same is true of the Order Fulfillment service. To make this an event-driven microservices architecture, we’d have to split these services into separate single-purpose services, each triggering its own events.

[image: Image]

You might have noticed on the previous page that the Email service is accessing the Order Submission database directly. In microservices, this isn’t allowed because of the physical bounded context. In the new hybrid architecture, to retrieve the order data, the Email service needs to call the Order Submission service (now the Order Placement service, since we broke that service up). The implementation of tight physical bounded contexts isolates data access to the owning service.

Event-driven architecture superpowers

It’s time to check out the superpowers of the EDA style.

[image: Image]

Maintainability

Services in EDA are highly decoupled, making them fairly independent and therefore easier to maintain.

[image: Image]

Performance

Because EDA mostly uses asynchronous communication and can multitask, it’s very fast.

[image: Image]

Scalability

Event-driven architectures are highly scalable because of asynchronous processing and service decoupling. Each service can scale independently of others, with the event channels acting as pressure release valves if bottlenecks occur.

Evolvability

EDA services always trigger derived events, onto which we can easily add functionality. This makes EDA highly evolvable.

[image: Image]

Fault tolerance

Because services are highly decoupled in EDA, if one service goes down, it doesn’t bring down other services in the workflow.

Event-driven architecture kryptonite

Kryptonite diminishes a superhero’s powers, just like these system features and characteristics diminish the power of EDA. Watch out for them!

[image: Image]

[image: Image]

Complexity

EDA is highly complex because it typically uses asynchronous communication and parallel event processing, and because of its varied database topologies and their trade-offs.

Testability

It’s really hard to test asynchronous processing and parallel tasks, making testability a weakness in EDA.

[image: Image]

Synchronous calls

If you have lots of synchronous calls between services and workflows that require synchronously dependent services, EDA is not for you.

Databases

Regardless of the database topology you choose, services are coupled: either to the database or to each other. There are not a lot of good trade-offs here.

Note

We know you need a database—what we’re saying here is that databases can couple an otherwise highly decoupled system.

[image: Image]

Event-driven architecture star ratings

Below is a useful chart for better understanding what EDA is good at and what it’s not so good at. One star means that the architectural characteristic is not well supported; five stars means it’s very well supported.

Note

Just like movie reviews.

[image: Image]

EDA is great for operational characteristics like performance, scalability, elasticity, evolvability, and fault tolerance, but struggles when it comes to simplicity and testing. Asynchronous communication is hard to test, and it’s also hard to verify that a change in one service or event hasn’t affected other services.

Exercise

[image: Image]

Which of the following systems might be well suited for the event-driven architectural style, and why? Hint: Think about EDA’s superpowers, its kryptonite, and the problem domain.

[image: Image]

[image: Image] Solution in “Exercise Solution”

Putting it all together

Now, the part you’ve been waiting for—the complete picture of the Der Nile online ordering system using event-driven architecture. Since there are lots of database topologies to choose from, we’ll focus on the core parts of the system: event processors (services) and events.

[image: Image]

Wrapping up

Well done! Thanks to your diligent work and EDA knowledge, Der Nile is scaling up and performing to meet its high customer demand, with room to grow even more. Let’s close this chapter by reviewing some key points about event-driven architecture.

Bullet Points

	An event is something that happens in the system. Events are the fundamental way services communicate with each other in EDA.

	Events are not the same thing as messages—events broadcast some action a service just performed to other services in the system, whereas messages are commands or requests directed to a single service.

	An initiating event originates from a customer or end user and kicks off a business process.

	A derived event is generated by a service in response to an initiating event.

	Any action a service performs should trigger a derived event to provide architectural extensibility—the ability to extend the system to add new functionality.

	EDA is fast because it generally uses asynchronous (async) communication—services don’t wait for a response or acknowledgment from other services when sending them information.

	Asynchronous communication is sometimes called fire-and-forget.

	Architects usually use a dotted line to represent async communication between services and a solid line to represent sync communication.

	Unlike microservices, event-driven architecture can use a variety of database topologies:

	With the monolithic database topology, all services share a single database.

	With the domain-partitioned databases topology, each domain in the system has its own database, shared by all of the services within that domain.

	In the database-per-service pattern, each service has its own database in a bounded context.

	Event-driven architecture and microservices are very different architectural styles:

	EDA relies mostly on asynchronous communication between services, whereas microservices typically rely on synchronous communication using REST.

	EDA is built on event processing—processing things that have already happened. A microservices architecture is built on request processing— processing a command or request about something that needs to happen.

	Microservices are fine-grained and single-purpose, whereas services in EDA can be any size.

	Microservices requires each service to own its own data, whereas in EDA services can (and usually do) share data.

	You can combine microservices and EDA to create a hybrid architecture called event-driven microservices.

	EDA is very complex because it uses asynchronous communication and parallel event processing, and has varied database topologies.

	It’s really hard to test asynchronous processing and parallel tasks, making testability a weakness in EDA.

	Derived events provide hooks to add functionality, making EDA highly evolvable.

	EDA is highly scalable because of asynchronous processing and service decoupling.

Event-Driven Crossword

[image: Image]

Ready to have some fun and test your knowledge about events, asynchronous communication, event processors, and multitasking? Try this crossword puzzle about the event-driven architectural style.

[image: Image]

Across

2. How each part of a process is completed and in what order

3. _____-and-forget communication

5. When you combine a service with a database, you get a physical bounded _____

6. Reducing users’ wait time is the goal of making a system more _____

8. Async communications don’t _____ for a response

12. Type of communication that requires a response

13. Architectural characteristic that deals with speed

18. Some architectures are easier to _____ with new features

19. These communications are sent to a single service using queues

20. Certain conditions may _____ an event

Down

1. A way of organizing databases in an architecture

4. Something important that happens

7. Type of event that kicks off a business process

9. Type of event that flows from other events

10. Abbr. for an external communication hub that an app may call

11. An event is used to _____ news that something has happened

12. Part of an architecture that performs a function

14. _____-partitioned databases

15. Events are delivered via an event _____

16. A message can be a command or a _____

17. Services can _____ for event notifications

[image: Image] Solution in “Event-Driven Crossword Solution”

From “Exercise”

Exercise Solution

[image: Image]

As the architect, how can you modify the current workflow shown in “Exercise” to speed things up a bit? Draw your ideas for a new workflow in the space below. Hint: What can you do at the same time? Here’s our solution.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

It’s time to test your knowledge about events and messages. For each of the quotes below, mark whether it is more likely an event or a message, and indicate why.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Based on the Credit Card Charged initiating event and the corresponding processing below, can you identify what the derived events should be for each service? Think of as many possible outcomes as you can. Here’s our take.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

For each of these tasks, would you use asynchronous or synchronous communication?

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Now’s your chance to test what you’ve learned so far about event-driven architecture, events, and asynchronous processing. Der Nile’s inventory occasionally gets out of sync, as shown below. When this happens, the order cannot be fulfilled and goes into a back-order state. Der Nile never makes a customer pay for items that are back-ordered, and the customer can choose whether to wait or cancel the order.

As the architect for Der Nile, what additional events and services would you create to address this situation?

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

For each of these business needs, select which topologies you would consider. You can select more than one topology.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

List any differences you can think of between event-driven architecture and microservices.

	Performance

	Physical bounded contexts

	Data granularity

	Service granularity

	Event vs. request processing

	Asynchronous versus synchronous processing

Note

These are some of the ones we came up with.

From “Who Does What?”

Who Does What? Solution

Oh dear! We tried to organize these facts, but got them all mixed up. Can you help us figure out which statements are about EDA and which are about microservices? Careful—some facts apply to both.

[image: Image]

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

The architecture in “Sharpen your pencil” is an acceptable and well-formed EDA, but not a well-formed microservices architecture. Two fundamental principles are missing that would make it event-driven microservices. Can you list what those two missing things are?

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Which of the following systems might be well suited for the event-driven architectural style, and why? Hint: Think about EDA’s superpowers, its kryptonite, and the problem domain.

[image: Image]

Event-Driven Crossword Solution

[image: Image]

From “Event-Driven Crossword”

[image: Image]

Chapter 12. Do It Yourself: Testing Your Knowledge

[image: Image]

Ready to test your skills in creating a distributed architecture? In this chapter, you’re the software architect. You’ll be determining architectural characteristics, building a logical architecture, making architectural decisions, and deciding whether to use microservices or event-driven architecture. The exercises in this chapter will give you an end-to-end view of what a software architect does and show you how much you’ve learned. Get ready to create an architecture for a student standardized test–taking system called Make the Grade. Good luck—we hope you get an A on your architecture!

Welcome to Make the Grade

Congratulations—you’ve just been hired by Dataville Public Schools to build a new system for standardized testing. All students in a specific grade level will take the same test to determine how well students, teachers, and the schools are doing.

Make the Grade requirements document

	□ Students will take a web-based test in their homeroom, proctored by their homeroom teacher. Because tests are timed (2 hours), the system must present questions as fast as possible.

	□ Each student is presented with a multiple-choice question on the screen. Once they answer it, the system captures the answer and delivers the next question. Students may skip questions, but may not go back to prior ones—only moving forward is allowed.

	□ Once captured, each answer is automatically graded (correct or incorrect) and the results are stored in a central relational database, which has only 300 database connections available.

	□ Anywhere from 20 to 200,000 students could be taking tests at the exact same time.

	□ The Dataville Public Schools testing administrator is responsible for scheduling tests and for maintaining tests, answer keys, and the list of students (used when students sign in to the system).

	□ Rita, the head of Dataville Public Schools, uses the system to generate student reports, teacher evaluations, and school reports after all testing is complete.

	□ The proctor (teacher) uses the system to find out when tests are scheduled.

[image: Image]

“It’s imperative that no student answers are lost, even if the system crashes.”

Note

Rita has some other important requirements for the system.

“We need this system in place for the start of the next term, which is in six months.”

“You absolutely have to make sure that students cannot hack into the system and steal the test answer keys.”

“Testing doesn’t occur every day. Some days there are only 20 students taking a test; other days there could be 200,000 at the exact same time. Sometimes tests might be staggered throughout the day.”

Student testing workflow

Now that you have the requirements, let’s take a look at the primary workflow of the Make the Grade system so you can better understand those requirements.

[image: Image]

Sharpen your pencil

[image: Image]

Given the requirements for Make the Grade, list some challenges that you will need to address when creating an architectural solution.

[image: Images] Solution in “Sharpen your pencil Solution”

Planning the architecture

[image: Image]

We have to create an architecture first.

As you’ve learned, architecture is a critical part of any software system. Without it, the system will likely fail to achieve any of its goals.

Before you start developing code, you have to create an architecture. This means going back to what you learned in Chapter 1 about the four dimensions of software architecture.

Don’t worry—we’ll get the system done. But first, it’s important to know what we’re building.

The architects’ roadmap

Let’s get the Make the Grade architecture started. You’ll use the steps you’ve learned to translate requirements into an architecture.

[image: Image]

This diagram will serve as your roadmap as you make your way through each of the exercises, so get used to seeing it. The next few pages will walk you through these steps.

Good luck on your journey—Dataville Public Schools is counting on you.

Step 1: Identify architectural characteristics

In this first step, you’ll use the requirements below to identify the architectural characteristics that are critical for the success of the Make the Grade student test-taking system. On the next page, identify up to seven driving characteristics. Then select the three you think are the most critical for the system to be successful.

[image: Image]

Remember, implicit characteristics are those that are implied in virtually every software architecture. (Would you ever not worry about security?) If you see one you feel is critical for the success of the system, move it over to the driving characteristics area.

	“It’s imperative that no student answers are lost, even if the system crashes.”

	“We need this system in place for the start of the next term, which is in six months.”

	“You absolutely have to make sure that students cannot hack into the system and steal the test answer keys.”

	“Testing doesn’t occur every day. Some days there are only 20 students taking a test; other days there could be 200,000 at the exact same time. Sometimes tests might be staggered throughout the day.”

Note

We copied the requirements here to make it easier for you to use them to identify the driving architectural characteristics.

Make the Grade requirements document

	□ Students will take a web-based test in their homeroom, proctored by their homeroom teacher. Because tests are timed (2 hours), the system must present questions as fast as possible.

	□ Each student is presented with a multiple-choice question on the screen. Once they answer it, the system captures the answer and delivers the next question. Students may skip questions, but may not go back to prior ones—only moving forward is allowed.

	□ Once captured, each answer is automatically graded (correct or incorrect) and the results are stored in a central relational database, which has only 300 database connections available.

	□ Anywhere from 20 to 200,000 students could be taking tests at the exact same time.

	□ The Dataville Public Schools testing administrator is responsible for scheduling tests and for maintaining tests, answer keys, and the list of students (used when students sign in to the system).

	□ Rita, the head of Dataville Public Schools, uses the system to generate student reports, teacher evaluations, and school reports after all testing is complete.

	□ The proctor (teacher) uses the system to find out when tests are scheduled.

Exercise

[image: Image]

In Chapter 2, we showed you how to use this template to limit the number of architectural characteristics. Flip back to “Sharpen your pencil” if you need a refresher on how to use it.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Step 2: Identify logical components

Good job! Now that you’ve identified the critical architectural characteristics for Make the Grade, it’s time to apply what you learned in Chapter 4 to create logical components.

Using the requirements and primary workflow on the previous pages, use the actor/action approach to identify the users and their actions. Then identify as many logical components as you can on the next page.

[image: Image]

Here’s some additional information you might find useful for this exercise:

	Students sign in to the system using their student ID. The system will verify the date, student ID, test, and teacher when a student signs in.

	Rita, the head of Dataville Public Schools, will wait at least one day after testing has finished before generating reports.

Note

This gives the system time to record all the answers in the database.

	The classroom teacher acts as the proctor for the test, watching the students to make sure they don’t cheat and providing assistance. The teachers use the system to find out when a test is scheduled for their class.

	When a test is created, the questions and answers are sent to the test administrator, who enters them into the system. The same goes for any modifications to existing tests.

Sharpen your pencil

[image: Image]

Using the actor/action approach, identify the actions for each of these actors.

[image: Image]

[image: Images] Solution in “Sharpen your pencil Solution”

Exercise

[image: Image]

Using the space below, draw your logical components and their interactions.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Step 3: Choose an architectural style

We know that this system will have separate parts that require different architectural characteristics, so it makes sense to use a distributed architecture, such as microservices or event-driven architecture. Leveraging what you’ve learned about both styles, use the next page to analyze their pros and cons with respect to the Make the Grade test-taking system. You will also need to go back to the requirements, your logical architecture, and the star rating charts for each architectural style (we’ve added those for you below). Choose an architectural style based on your analysis.

[image: Image]

[image: Image]

Here are some considerations that might help you decide which architectural style would be better suited for Make the Grade:

	Go back to your logical architecture diagram and count the actions you identified that you would consider events. If you find there aren’t many events, event-driven architecture might not be the right choice.

	Think about the nature of the data in the system. If most of the data is shared, then microservices probably isn’t the right choice.

	Think about how many actions you identified are synchronous and how many are asynchronous. If you have a lot of synchronous actions, event-driven architecture might not be a good fit.

Exercise

[image: Image]

Outline the pros and cons of each architectural style to help you make a choice about which one might be most appropriate for Make the Grade.

[image: Image]

[image: Images] Solution in “Exercise Solution”

Step 4: Document your decision

Good work: you’ve just chosen which architectural style you are going to use for Make the Grade. Now’s your chance to explain why you made the choice you did and document your architectural decision.

[image: Image]

As you learned in Chapter 3, an architectural decision record, or ADR, is an effective way to document your architectural decisions. Use the ADR on the next page to document your architectural style decision. Assume that this is your 11th architectural decision.

Note

Revisit Chapter 3 if you need a refresher on architectural decision records.

[image: Image]

Every architectural decision has consequences.

Maybe it’s cost, or maybe it’s sacrificing a little bit of performance to have better security. Regardless, every architectural decision has consequences.

Think about the trade-off analysis you just did. Each one of those trade-offs implies a consequence—something you were willing to give up (or accept) to get something better. The Consequences section of an ADR is a great place to document your trade-off analysis and the corresponding consequences of your decision.

If you can’t find any consequences in your architectural decision, keep looking, because they’re there.

Exercise

[image: Image]

Architectural Decision Record

[image: Image]

[image: Images] Solution in “Exercise Solution”

Step 5: Diagram your architecture

Now it’s time to combine all four dimensions of software architecture and show us your vision of the Make the Grade architecture. In this last exercise, you’ll diagram your architecture on the following page using the key on this page.

[image: Image]

There’s not a lot of room to diagram your architecture, but that’s intentional. While a lot of detail can go into architecture diagrams, what we’re asking you to do is sketch out a high-level physical view showing the user interfaces, services, databases, communication type (sync or async), and how all of these architectural artifacts connect to each other.

Physical Architecture Key

	[image: Image]
	Draw a computer screen to represent the user interface, and indicate which type(s) of users are interacting with it. For example, if you have separate user interfaces for the test administrator and the education department (for generating reports), show two computer screens. If they share a single user interface, show one computer screen with multiple actors interacting with it.

	[image: Image]
	Use a box to represent a service. Be sure to include the components that the services implement, which should match the logical components you identified in the prior exercise. Also, indicate which user interfaces access the service and which other services communicate with the service. Last, give your service a meaningful and descriptive name.

Note

Feel free to annotate your diagram to clarify points or describe things.

	[image: Image]
	Draw a cylinder to represent each physical database in your solution. Your label should indicate what type of data it stores (for example, Student Answers). Show which services write to the database and which services are read-only by drawing arrows to indicate the data flow to and from the services. (Writes assume reads.)

	[image: Image]
	Draw dotted lines to represent asynchronous communication (such as using a queue, topic, or stream), and solid lines to represent synchronous (blocking) communication between services and user interfaces.

	[image: Image]
	If your architecture uses messages or events, draw a box or an envelope to indicate the data being passed (for example, Student Answer) or the event being triggered (for example, Answer Submitted).

Exercise

[image: Image]

Use this space and refer to the key on the previous page to sketch your physical architecture for Make the Grade.

[image: Images] Solutions in “Exercise Solution”

There are no right (or wrong) answers!

Congratulations—you’ve just created an architecture!

What we’re about to show you are the exercise “solutions.” We’ve used quotes there because our answers are not the only ones possible. You see, there are no right or wrong answers in software architecture: it’s all about analyzing trade-offs and being able to justify your decisions.

Compare your answers with the ones we’re about to show you. See how your solutions differ and think about what you might have done differently, or confirm that you made what seems to you to be the most appropriate choice. We’ll show you our Make the Grade architectures for microservices and event-driven architecture, since both these styles are viable options.

Software architecture is always a learning process. Each new problem brings a whole new set of conditions, constraints, and business and technical concerns. There is no one-size-fits-all architecture—it’s up to you, the architect, to come up with the most appropriate architecture for your situation.

Bullet Points

	When analyzing requirements for a business problem, always gather additional information from the business stakeholders or project sponsor.

	While there’s no “checklist” for creating an architecture, the four dimensions of software architecture (introduced in Chapter 1) provide a good roadmap.

	Identifying driving architectural characteristics requires you to analyze the business requirements and technical constraints.

	Implicit architectural characteristics become driving characteristics if they are critical or important to the success of the system.

	Make sure you can tie each driving characteristic back to some sort of requirement or business need.

	When identifying logical components and creating a corresponding logical architecture, try to avoid adding physical details such as services, databases, queues, and user interfaces—those artifacts go into the physical architecture.

	When choosing an architectural style, make sure you take into account the characteristics of the architectural style, the problem domain, and the driving architectural characteristics you identified.

	Hybrid architectures (those combining two or more different architectural styles) are very common. Just be sure to verify that the hybrid architecture still addresses your critical architectural characteristics.

	Architectural decision records (ADRs) are a great way to document your choices. They communicate the reasons for your architectural decisions as well as your trade-off analyses.

	When diagramming your physical architecture, be sure to include all the components you identified in your logical architecture.

	Remember that there are no right or wrong answers in software architecture. As long as you can provide a reasonable justification for your architectural decisions, you are on the right track for success.

[image: Image]

You are well on your way to thinking architecturally!

We are going to assume that you actually read this book all the way through and didn’t just jump to the end. If so, we congratulate you for it! Job well done.

Congratulations!

You’ve made it to the end.

Though there is still the appendix.

And the index.

And there’s a website...

You aren’t getting away that easily!

(Go ahead, you can admit it—you just can’t get enough of software architecture, can you?)

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Given the requirements for Make the Grade, list some challenges that you will need to address when creating an architectural solution.

	Storing up to 200,000 simultaneous student answers in a relational database that has only 300 connections.

	Delivering the next question to each student as fast as possible while making sure student answers are not lost.

	Coming up with a viable solution that can be delivered within a six-month time frame.

	Making the system elastic to reduce cost and resource use when testing is not happening or there are only a few students taking a test.

From “Sharpen your pencil”

Sharpen your pencil Solution

[image: Image]

Using the actor/action approach, identify the actions for each of these actors.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

In Chapter 2, we showed you how to use this template to limit the number of architectural characteristics. Flip back to “Sharpen your pencil” if you need a refresher on how to use it.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Using the space below, draw your logical components and their interactions.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Outline the pros and cons of each architectural style to help you make a choice about which one might be most appropriate for Make the Grade.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Architectural Decision Record

Title: 011: Use of the microservices architectural style for the Make the Grade system

Status: Proposed

Context:

Make the Grade is a test-taking system that needs high levels of responsiveness, fault tolerance, elasticity, and data integrity. Because there are separate parts of the system (admin, reporting, grading, and test taking) that require different architectural characteristics, a distributed architecture is appropriate. The two choices are microservices and event-driven architecture.

Decision:

We will use the microservices architectural style.

Microservices provides the necessary fault tolerance, elasticity, and scalability.

Performance deficiencies and high responsiveness needs are addressed through minimal inter-service communication, caching to minimize data retrieval needs (student information, test questions, and test answer keys), and asynchronous communication for automatic grading and storing students’ answers.

Data integrity (preventing data loss) is addressed by using persistent queues between the Capture Answer and Automatic Grading components, along with client acknowledgment mode in the Automatic Grading component, to make sure that each student answer stays on the queue until it is persistent in the Student Answer Database.

The test administration functionality will be a single microservice that combines the test scheduling, test maintenance, and student maintenance functionalities. Reporting will be a single microservice as well.

Consequences:

Technically partitioned teams will need to be reorganized into cross-functional teams and will work in parallel in order to finish the system in six months.

We will need to use in-memory caching to address the system’s performance, elasticity, and data sharing needs.

We will need additional infrastructure to support microservices: specifically, a service orchestrator like Kubernetes and a more effective CI/CD deployment pipeline.

From “Exercise”

Exercise Solution

[image: Image]

Use this space and refer to the key on the “Exercise” to sketch your physical architecture for Make the Grade.

[image: Image]

From “Exercise”

Exercise Solution

[image: Image]

Use this space and refer to the key in “Exercise” to sketch your physical architecture for Make the Grade.

[image: Image]

Appendix A. Leftovers: The Top Six Topics We Didn’t Cover

[image: Image]

There’s a lot more to be said about software architecture. We promise, you’re done with this book. But reading this book is just the first step in your journey to thinking architecturally, and we couldn’t in good conscience let you go without a little more preparation. So, we’ve gathered a few additional juicy bits into this appendix. Each of the topics that follow deserves as much attention as the other topics we’ve covered. However, our goal here is just to give you a high-level idea of what they’re all about. And yes, this really is the end of the book. Except for the index, of course—it’s a real page-turner!

[image: Image]

#1 The coding architect

Yes! We firmly believe that software architects should still write source code. Not only does it help you maintain your technical skills, but it also shows you how your architectural decisions play out in real life.

However, it’s not always easy to balance hands-on coding with software architecture. As you’ve seen, there’s a lot to software architecture. It will take up most (if not all) of your time.

Don’t worry though—we’ll share some tips and techniques for writing software while being an effective software architect.

[image: Image]

Don’t become a bottleneck

Be careful not to take ownership of code that is on the product’s critical path. Leave things like the underlying framework code and really complex or crucial parts of the system to your development team. That way, if you get pulled away by architecture-related stuff, you won’t hold up your team.

Write proof-of-concept code

Having trouble making an architectural decision? How about writing some code to demonstrate each option? Writing proof-of-concept code is a great way to better understand the implications of your architectural decisions while maintaining your technical expertise. A word of advice, however—unless you know for sure you’re going to throw it away, take the time to write the best production-ready code you can. It could very well end up in production.

[image: Image]

Pay back some technical debt

Almost every development team accumulates technical debt (needed changes that are deferred to a later time). Help your team out by addressing some of it. They’ll appreciate it, and if you get called away, it won’t hold them up.

Get involved during production outages

When an outage strikes, step in to assist, if you can. Help your development team identify the root cause and make the code changes needed to get the system back up and running. This also gives you an opportunity to see the detailed implementation of your architecture.

[image: Image]

Do lots of code reviews

No one likes doing code reviews. But it’s a good way to stay involved, and it helps you make sure the source code stays aligned with your architectural decisions.

[image: Image]

Note

And here are some ways to stay continuously involved.

#2 Expectations for architects

We’ve talked a lot in this book about architecture, but not so much about the role of a software architect. While the specifics will vary from company to company, here are some things any software architect will be expected to do, regardless of title.

[image: Image]

Make architectural decisions

An architect is expected to define architectural decisions and design principles and use them to guide technology decisions within the team, the department, and/or across the enterprise.

Keep current with the latest trends

To remain relevant (and retain a job!), developers must keep up to date on technical and industry trends. For architects, it’s even more critical to keep current. Doing so helps you prepare for the future and make correct decisions.

Continually analyze the architecture

An architect is expected to always be analyzing the current architecture and technology environment and making recommendations for solutions and improvements. This continuous analysis is a way of checking for architectural vitality—that is, how viable the architecture still is, given constant changes in business and technology.

Ensure compliance with the architecture

Architects should continually verify that the development teams are following the approved architectural decisions and design principles. This is called architectural governance. Regardless of how good the architecture is, the system won’t work unless everyone adheres to your architectural decisions.

Cultivate diverse exposures and experiences

Note

As an architect, it’s important to know a little about a lot of things.

Note

More about this in a few!

An architect is expected to be familiar with technologies, frameworks, platforms, and environments of all sorts. This doesn’t mean you need to be an expert in all of them, but you should have some knowledge of what’s out there.

Possess exceptional interpersonal skills

Having exceptional leadership and interpersonal skills is important. Typically, technologists, developers, and architects prefer to solve technical problems, not people problems. But an architect is expected to provide technical guidance to the team and lead them through implementing the architecture. Leadership skills are at least half of what it takes to become an effective software architect, regardless of your role or title.

Note

The American computer scientist Gerald Weinburg is famous for saying, “No matter how it looks at first, it’s always a people problem” (https://oreil.ly/wyDB8).

Know the business domain

Effective software architects understand the business domain of a problem space. Without knowing what the business does and how, it’s difficult to understand the problem, goals, and requirements well enough to design an effective architecture.

Understand and navigate office politics

Many people will challenge your decisions. Product owners, project managers, and business stakeholders may see a solution as too costly or not fast enough to implement. Developers and other architects may challenge your approach if they feel theirs is better. You’ll be expected to make a case for what you propose. You must navigate office politics and apply basic negotiation skills to get your decisions approved.

#3 The soft skills of architecture

Like we said on the last page, at least half of being a software architect is having great people skills. You’ll need them to lead and guide your development team, gain the respect of your peers, and get everyone to agree to a common vision and direction.

We call these “soft” skills, but they are hard skills to acquire. Using them effectively requires years of practice and trial and error. Here are some soft skill techniques to help you become a more effective software architect.

[image: Image]

Demonstrate, don’t discuss

Rather than arguing a point with another architect or development team, demonstrate it. Every environment is different, which is why simply Googling never yields correct answers. When you compare the options in a production-like environment and show the results, there’s little room for argument.

Note

Say it with us: “Demonstration defeats discussion.”

[image: Image]

Know when to fight and when to let go

Choosing your battles wisely is the mark of a great leader and makes you a reasonable person to work with. It gains you respect. Fight to the death for something that’s crucial to making the architecture work, but let things go if they’re not so important.

Note

Choosing your battles is good advice, even outside of software architecture. You’re welcome.

[image: Image]

Focus on business value

When talking with business stakeholders, describe your decision or solution in terms of its business value. Business stakeholders aren’t interested in things like fault tolerance or testability—they care about things like time to market, regulatory compliance, and mergers and acquisitions. Translate your technical concerns into business ones and you’ll be speaking their language.

[image: Image]

Involve developers in your architectural decisions

We have learned two basic leadership rules over the years:

Rule Number 1: If developers don’t know why you made a decision, they are less likely to agree with it.

Rule Number 2: If developers aren’t involved in a decision, they are less likely to follow it.

Keep your developers involved. Collaborate by asking their opinions about a particular decision, involving them in a risk-storming exercise, or using the Request for Comment status in an ADR. Always justify your architectural decisions—and make sure everyone on the development team understands that justification.

[image: Image]

Divide and conquer

In the book The Art of War, the ancient Chinese warrior Sun Tzu advises, “If your enemy’s forces are united, separate them.” You can use this tactic when faced with all-or-nothing situations. Do all parts of the system need 400 ms response times or 99.999% availability? Dividing the problem into parts can help you identify what’s hard to achieve, which makes negotiation easier.

[image: Image]

Keep things simple, clear, and concise

Nothing helps an architect gain respect and trust better than being able to explain things in clear, concise terms. It makes you more approachable. People will want to ask you things and get you involved. We call this the “four Cs” of architecture—be Clear, be Concise, Communicate, and Collaborate. You need all four to become an effective software architect.

[image: Image]

Be available to your development team

Nothing is more frustrating for a developer or business stakeholder than having a critical question come up when you aren’t around to answer it. Make sure not to spread yourself too thin—be there for your team.

Blocking out your calendar early in the morning or late in the afternoon is a great way to ensure you don’t get cooped up in meetings all day. Use that time to collaborate with your development team and be available to answer their questions. They’ll be grateful for it, and you will gain a lot of respect.

[image: Image]

#4 Diagramming techniques

Back in Chapter 3, we discussed ADRs as the best way to document the analysis process that leads to a decision. Another common method architects use to document architecture is diagrams. Architecture diagrams illustrate many important details that team members benefit from visualizing, such as structure, topology, communication, dependencies, and integration points.

This topic can (and does) fill entire books. We’re just here to provide some quick tips to make your diagrams better, regardless of how you create them.

[image: Image]

Keep it simple

Don’t try to create comprehensive architecture diagrams that include every detail. If you do, your diagrams will suffer from the “hairball effect”—becoming too complex and dense to understand.

[image: Image]

Always include a title

Most architecture diagrams represent a view or perspective, and your title should make yours explicit.

Use unidirectional arrows to represent communication

Double-headed arrows are ambiguous. Did the author intend to indicate two-way communications, or is just that the default arrow?

Using unidirectional arrows removes all ambiguity and makes documentation more explicit.

[image: Image]

Use real labels, not acronyms

Only insiders understand acronyms. Spell things out whenever possible to avoid confusion and eliminate the need for extra documentation.

Use solid lines for sync and dotted for async communication

Architects need a way to specify whether communication is synchronous (blocking) or asynchronous (nonblocking). A solid line is common shorthand for synchronous communication, and a dotted one represents the asynchronous alternative.

[image: Image]

Use consistent shapes and colors

Don’t use arbitrary shapes to try to save room; consistent shapes and colors cut down on the visual “noise” created by needless inconsistency.

[image: Image]

Key

	[image: Image]
	Event handler written and maintained by internal team

	[image: Image]
	External system accessed through a standard API

	[image: Image]
	Asynchronous call

	[image: Image]
	Synchronous call

	[image: Image]
	Operational database

Always include a key

Just about the only universal shape in software diagrams is the database cylinder. Pretty much everything else is up for grabs. Don’t make your viewers guess! Adding an explicit key makes the diagram accessible to a broader audience, with less extra documentation.

#5 Knowledge depth versus breadth

An unexpected thing happens to your brain when you become a software architect—the new role changes the kinds of things you seek out and learn. Consider this structure, which categorizes all the information in the world, as far as you know at the beginning of your career.

[image: Image]

As you move along in your career from a junior software developer to a tech lead, the “stuff you know” grows—things like programming languages, frameworks, tools, and platforms. You’re also able to help and mentor other developers in this role.

[image: Image]

Over time, as you gather more expertise and become the go-to person, you start to grow the middle part of the pyramid—the “stuff you know you don’t know.” Because you’re maintaining your hardcore technical skills as well (the “stuff you know”), it takes a lot of effort to get to this point. Congratulations!

[image: Image]

Your technical depth consists of every topic on which you have expertise.

Remaining an expert in any technology requires investing time to keep up with constant change. Thus, maintaining technical depth takes time.

Your technical breadth includes the areas in which you have expertise, what you know about the existence of other solutions, and what you know about some of these solutions’ trade-offs. As an architect, knowing that there are five different ways to solve a problem is better than deeply knowing one way to solve it.

[image: Image]

New architects’ knowledge pyramids start out looking like those of tech leads, but you should make an effort to broaden your experience base. If you have expertise in .NET, for example, see if you can do some work on a Java project, a user interface–heavy Javascript project, or a hard data architecture problem... you get the idea.

[image: Image]

Over time, your expertise will slowly fade a bit (which is extraordinarily painful), but this will have the benefit of increasing your breadth of knowledge. Remember, software architecture decisions are all about trade-offs.

[image: Image]

[image: Image]

#6 Practicing architecture with katas

The legendary martial artist and actor Bruce Lee once said, “I fear not the man who has practiced 10,000 kicks once, but I fear the man who has practiced one kick 10,000 times.” So how do you attain that kind of proficiency with software architecture? Glad you asked! We recommend architectural katas.

A kata is an individual form of exercise used in many martial arts to practice moves until they’re perfected. In the same spirit, architectural katas simulate the process of designing a real architecture.

Architectural katas are intended for several small groups of three to five people. Each group becomes a project team and works on a different kata. (We sometimes get two teams to do each kata, just to see what differences arise.) A moderator keeps track of time and facilitates the exercise.

The moderator assigns each group a project needing development. The team meets for a while, asking questions of the “customer” (the moderator) for clarification. They discuss technology options that could work and sketch out a rough vision of their solution. Then they present their solution to the other project teams and answer challenges (hard but fair questions). Choosing an overall winner is optional.

The key to getting better at software architecture is to practice it—even in a simulated exercise.

Note

Do we have your attention? Keep reading to find out more.

How to run katas

Katas are meant to be an adaptable exercise, so follow the rules below when they make sense for your organization, context, and needs. Any questions not covered by these rules are the domain of the moderator.

Preparation

Gather several teams of three to five people. (We prefer odd numbers, so disputes can be decided by a majority.) Generally, people who work together in the real world should not be on the same teams; this exercise stresses collaborating with other architects you don’t already know.

[image: Image]

Gather supplies like poster paper or whiteboards. The artifacts you produce may be very low-tech, depending on the time, complexity, and resources you commit.

Speaking of time, a kata exercise could take as little as 45 minutes or last as long as several weeks!

Note

Your authors have done several katas for real companies that gave teams eight weeks to work out a solution.

Discussion

The teams get together and work through the exact process outlined in this book: analyzing architectural characteristics, determining logical components, choosing an architectural style, and documenting their decisions.

[image: Image]

Any technology is fair game, although you should honor reasonable constraints (you won’t have an unlimited budget or get to hire new developers). The focus is on architecture and trade-off analysis.

[image: Image]

Presentation

Each team presents its solution and answers questions.

When you are listening to another project team presenting, your job is to ask questions. Try to keep them constructive. Don’t focus on only the good parts of the solution or only the deficiencies. Strive for balanced feedback.

[image: Image]

[image: Image]

Don’t worry. This isn’t goodbye.

Congratulations on reading all the way to the end and doing all the exercises! Job well done.

In case you haven’t noticed, you’ve come a long way in this book—and your software architecture journey is just getting started. We’d like to suggest some next steps.

First, point your browser to https://www.headfirstsoftwarearchitecture.com to learn what’s next! Then check out the books below.

[image: Image]

Index
A
	Accepted status (ADRs), Writing ADRs: What’s your status?
	access control, Why should you make microservices smaller?
	accessibility, Cross-cutting architectural characteristics, Cross-cutting architectural characteristics, Characteristics Crossword
	actor/action approach to logical architecture, Actor/action approach, The entity trap
	ADRs (architectural decision records), Architectural decision records (ADRs), Two Many Sneakers is a success, There are no right (or wrong) answers	benefits of, The benefits of ADRs
	collaboration and, Writing ADRs: Considering the consequences
	Consequences section, Writing ADRs: Considering the consequences, Two Many Sneakers is a success, “Two Laws” Crossword, Step 4: Document your decision
	Context section, Writing ADRs: Establishing the context, Two Many Sneakers is a success
	context versus justification, Writing ADRs: Communicating the decision
	Decision section, Writing ADRs: Communicating the decision, Two Many Sneakers is a success, “Two Laws” Crossword
	decision-capturing tools, Writing ADRs: Closing notes
	documentation and, Step 4: Document your decision
	editing, Writing ADRs: What’s your status?
	exercises, There are no right (or wrong) answers
	file naming, Writing ADRs: Closing notes
	Governance section, Writing ADRs: Ensuring governance, Two Many Sneakers is a success
	immutability, Writing ADRs: What’s your status?
	multiple projects, Writing ADRs: Closing notes
	Notes section, Writing ADRs: Ensuring governance, Two Many Sneakers is a success
	opinion and, Writing ADRs: Communicating the decision
	Status section, Writing ADRs: What’s your status?
	storage, Writing ADRs: Closing notes
	Title section, Writing ADRs: Getting the title right, Two Many Sneakers is a success
	visualization flowchart, Writing ADRs: What’s your status? (recap)

	afferent coupling (CA), Afferent coupling, Some final words about components	measuring, Measuring coupling

	agility, Process architectural characteristics, What do we know so far?
	architects, #1 The coding architect	coding architects, #1 The coding architect
	development team and, #3 The soft skills of architecture
	soft skills, #3 The soft skills of architecture

	architectural characteristics, The dimensions of software architecture, The first dimension: Architectural characteristics, You made it!	abundance, Limit characteristics to prevent overengineering
	accessibility, Cross-cutting architectural characteristics, Cross-cutting architectural characteristics, Characteristics Crossword
	architectural style and, Cubicle conversation
	auditability, What are architectural characteristics?
	balancing, Balancing domain considerations and architectural characteristics
	capabilities and, Architectural characteristics and logical components
	categories, Limit characteristics to prevent overengineering
	composite, Composite architectural characteristics
	consistency, What are architectural characteristics?
	cross-cutting, Cross-cutting architectural characteristics
	data integrity, What are architectural characteristics?
	defining, Defining architectural characteristics, Characteristics are nondomain design considerations
	deployability, Cross-cutting architectural characteristics, Characteristics Crossword
	domain requirements, Sourcing architectural characteristics from the problem domain
	domains, What are architectural characteristics?
	driving, There are no right (or wrong) answers
	explicit, Consider explicit and implicit capabilities
	from environmental awareness and, Sourcing architectural characteristics from environmental awareness
	from holistic domain knowledge, Sourcing architectural characteristics from environmental awareness
	from problem domain, Sourcing architectural characteristics from the problem domain
	implicit, Consider explicit and implicit capabilities, There are no right (or wrong) answers, Step 1: Identify architectural characteristics
	limiting, Limit characteristics to prevent overengineering, Limiting architectural characteristics
	maintainability, Cross-cutting architectural characteristics, Characteristics Crossword
	modular monolithic architecture, Modular monolith kryptonite
	modularity, Cross-cutting architectural characteristics, Characteristics Crossword
	numbers, Balancing domain considerations and architectural characteristics
	operational, Operational architectural characteristics
	overengineering and, Limit characteristics to prevent overengineering
	planning stages, The architects’ roadmap
	priorities, Priorities are contextual
	privacy, Cross-cutting architectural characteristics
	process, Process architectural characteristics
	reliability, What are architectural characteristics?
	robustness, Cross-cutting architectural characteristics, Characteristics Crossword
	scalability, What are architectural characteristics?, Cross-cutting architectural characteristics, Characteristics Crossword
	security, What are architectural characteristics?
	sources, Cross-cutting architectural characteristics
	structural, Structural architectural characteristics
	synergy, Limit characteristics to prevent overengineering
	usability, What are architectural characteristics?, Cross-cutting architectural characteristics
	zoo metaphor, The International Zoo of “-ilities”

	architectural decision records (ADRs) (see ADRs (architectural decision records))
	architectural decisions, The dimensions of software architecture, The second dimension: Architectural decisions, You made it!, Two Many Sneakers is a success	(see also ADRs (architectural decision records))
	architecture/design spectrum, Strategic versus tactical
	as guides versus rules, Making an architectural decision
	examples, Making an architectural decision
	planning stages, The architects’ roadmap
	Second Law of Software Architecture, The second law of software architecture
	strategic, Is it strategic or tactical?
	strategic versus tactical, Strategic versus tactical
	tactical, Is it strategic or tactical?
	trade-offs, Is it strategic or tactical?, Significant versus less-significant trade-offs
	Two Many Sneakers, What else makes a decision architectural?
	whys, The second law of software architecture

	architectural perspective, An architectural perspective
	architectural styles, The dimensions of software architecture, The fourth dimension: Architectural styles, You made it!, There are lots of architectural styles	architectural characteristics and, Cubicle conversation
	distributed (see distributed architectures)
	event-driven architecture, The fourth dimension: Architectural styles
	hybrid, There are no right (or wrong) answers
	layered architecture, The fourth dimension: Architectural styles
	logical components and, Cubicle conversation
	microkernel, Step 3: Choose an architectural style
	microservices, The fourth dimension: Architectural styles, The world of architectural styles
	monolithic (see monolithic architecture)
	planning documentation, Step 4: Document your decision
	planning stages, The architects’ roadmap
	selecting, The fourth dimension: Architectural styles, Step 3: Choose an architectural style, Step 3: Choose an architectural style

	architecture, Building plans and software architecture	building plans, Building plans and software architecture
	distributed, Characteristics influence architectural structure
	gardening exercise, Building your understanding of software architecture
	house, Building your understanding of software architecture
	interconnectedness, Puzzling out the dimensions
	logical versus physical, Logical versus physical architecture
	monolithic, Characteristics influence architectural structure
	need for, Building your understanding of software architecture
	planning, Planning the architecture
	spectrum with design, The spectrum between architecture and design
	structure, Building plans and software architecture
	versus design, The fourth dimension: Architectural styles

	Architecture Tradeoff Analysis Method (ATAM), The first law of software architecture
	asynchronous communication, Asynchronous communication, Wrapping up	architecture style selection and, Step 3: Choose an architectural style
	benefits, Asynchronous for the win
	diagramming, #4 Diagramming techniques
	EDA and, Fire-and-forget
	versus synchronous communication, Fireside Chats

	ATAM (Architecture Tradeoff Analysis Method), The first law of software architecture
	authentication, Cross-cutting architectural characteristics
	authorization, Cross-cutting architectural characteristics

B
	behavior of logical components, Architectural characteristics and logical components
	blueprints, Building plans and software architecture
	broadcasting model, Communicating with downstream services
	building plans, Building plans and software architecture

C
	capabilities, architectural characteristics, Architectural characteristics and logical components
	CBAM (Cost Benefit Analysis Method), The first law of software architecture
	choreography, Choreography: Let’s dance	granularity and, Granularity integrators

	code, #1 The coding architect	proof-of-concept code, #1 The coding architect
	reviews, coding architects and, #1 The coding architect
	shared libraries, Code reuse with a shared service
	shared services, Code reuse with a shared service
	volatility, microservices and, Why should you make microservices smaller?

	code sharing, It’s all about balance	microservices and, It’s all about balance
	shared libraries, Code reuse with a shared library

	coding architects, #1 The coding architect
	cohesion, microservices and, Why should you make microservices smaller?
	collaboration, ADRs and, Writing ADRs: Considering the consequences
	communications, EDA versus microservices, EDA versus microservices
	compliance, Cross-cutting architectural characteristics
	component coupling, The Bid Capture component, Some final words about components	(see also logical components)
	afferent coupling (CA), Afferent coupling
	choreography, Choreography: Let’s dance
	efferent coupling (CE), Efferent coupling, Some final words about components
	First Law of Software Architecture and, A balancing act
	Law of Demeter and, Measuring coupling
	measuring, Measuring coupling
	orchestration and, Orchestration: Conducting microservices
	tightly coupled systems, A tightly coupled system
	total coupling (CT), Measuring coupling

	composite architectural characteristics, Composite architectural characteristics
	Cost Benefit Analysis Method (CBAM), The first law of software architecture
	cross-cutting requirements, Cross-cutting architectural characteristics

D
	data coupling, Why should you make microservices bigger?
	data dependencies, Granularity integrators
	data ownership, It’s my data, not yours
	Database layer, Layering MVC
	database-per-service pattern, Database-per-service, Wrapping up
	databases, Step 5: Diagram your architecture	diagramming, Step 5: Diagram your architecture
	domain-partitioned, Wrapping up
	EDAs, Event-driven architecture kryptonite
	foreign keys, Why should you make microservices bigger?
	modular monolithic architecture, Taking modularity all the way to the database
	topologies, Database topologies, Wrapping up
	transactions, granularity and, Granularity integrators

	DDD (domain-driven design), The entity trap
	deployability, Process architectural characteristics, Cross-cutting architectural characteristics, Characteristics Crossword	layered architecture, Layered architecture kryptonite
	microservices architecture, Microservices architecture superpowers

	deployment models, The world of architectural styles, And that’s a wrap!	distributed systems, Monolithic deployment models: The pros
	monolithic architectures, Monolithic deployment models: The pros
	pros and cons, Monolithic deployment models: The pros, Monolithic deployment models: The pros, Distributed deployment models: The pros

	derived events, Events versus messages, Wrapping up
	design, The spectrum between architecture and design	spectrum with architecture, The spectrum between architecture and design
	versus architecture, The fourth dimension: Architectural styles

	design perspective, A design perspective
	device-assessment service core, Device assessment service core
	diagramming, #4 Diagramming techniques	asynchronous communications, #4 Diagramming techniques
	communications, #4 Diagramming techniques
	key, #4 Diagramming techniques
	labels, #4 Diagramming techniques
	microservices architecture, There are no right (or wrong) answers!
	physical architecture, Step 5: Diagram your architecture
	physical architecture key, Step 5: Diagram your architecture
	shapes and colors, consistency, #4 Diagramming techniques
	title, #4 Diagramming techniques

	dimensions, The dimensions of software architecture, The fourth dimension: Architectural styles
	distributed architectures, Characteristics influence architectural structure, Deployment model: Monolithic versus distributed, And that’s a wrap!	deployment models, Monolithic deployment models: The pros
	pros and cons, Monolithic deployment models: The pros, Distributed deployment models: The pros
	relevance, Distributed deployment models: The cons

	distributed physical architecture, Device assessment service core	plugins, Device assessment service core
	pros and cons, Microkernel Crossword

	distributed plugins, Encapsulated versus distributed plugins	calls, Plugin communication

	documentation, Step 4: Document your decision
	domain-based alignment, Modular monolith superpowers
	domain-driven design (DDD), The entity trap
	domain-partitioned architecture, Partitioning: Technical versus domain
	domain-partitioned databases, Domain-partitioned databases, Wrapping up
	domains, The third dimension: Logical components	characteristics, Characteristics are nondomain design considerations
	holistic domain knowledge, Sourcing architectural characteristics from environmental awareness
	modular monoliths, Modular monolith superpowers
	partitioning, Modular monolith superpowers
	subdomains, Naan & Pop is delivering pizza!

	driving characteristics, There are no right (or wrong) answers!	implicit characteristics, There are no right (or wrong) answers

E
	Eclipse IDE, The spectrum of “microkern-ality”
	EDA (event-driven architecture), The fourth dimension: Architectural styles, Speeding things up	analysis, There are no right (or wrong) answers!
	asynchronous communication, Asynchronous communication, Fire-and-forget, Wrapping up
	complexity, Event-driven architecture kryptonite
	databases, Event-driven architecture kryptonite
	drawbacks, Event-driven architecture kryptonite
	events, What is an event?, Wrapping up
	evolvability, Event-driven architecture superpowers
	extensibility, Events versus messages
	fault tolerance, Event-driven architecture superpowers
	maintainability, Event-driven architecture superpowers
	messages, events, What is an event?
	Notification Analytics, Events versus messages
	performance, Event-driven architecture superpowers
	scalability, Event-driven architecture superpowers
	star ratings, Layered architecture star ratings, Event-driven architecture star ratings
	superpowers, Event-driven architecture superpowers
	synchronous calls, Event-driven architecture kryptonite
	testability, Event-driven architecture kryptonite
	versus microservices, EDA versus microservices, Step 3: Choose an architectural style

	efferent coupling (CE), Efferent coupling, Some final words about components	measuring, Measuring coupling

	elasticity, layered architecture, Layered architecture kryptonite
	electronics recycling program, Step 2: Assign requirements
	embedded/mobile architecture, Layers, meet the real world: Physical architectures
	encapsulated plugins, Encapsulated versus distributed plugins
	encryption, Cross-cutting architectural characteristics
	entity trap, The entity trap
	environmental awareness, Sourcing architectural characteristics from environmental awareness
	error handling, Choreography: Let’s dance	choreography, Choreography: Let’s dance
	orchestration and, Orchestration: Conducting microservices

	event processing, Wrapping up	EDA versus microservices, EDA versus microservices

	event storming, The entity trap
	event-driven architecture (EDA) (see EDA (event-driven architecture)
	event-driven microservices, Hybrids: Event-driven microservices
	events, Events versus messages	compared to messages, Events versus messages, Wrapping up
	derived events, Events versus messages, Wrapping up
	initiating events, Events versus messages, Wrapping up

	evolvability, Event-driven architecture superpowers	EDAs, Event-driven architecture superpowers
	microservices architecture, Microservices architecture superpowers

	explicit architectural characteristics, Consider explicit and implicit capabilities
	extensibility, Process architectural characteristics, Structural architectural characteristics, Wrapping up	EDAs, Events versus messages

F
	fault tolerance, Event-driven architecture superpowers	EDAs, Event-driven architecture superpowers
	microservices and, Why should you make microservices smaller?
	microservices architecture, Microservices architecture superpowers

	file naming, ADRs, Writing ADRs: Closing notes
	fire-and-forget, Wrapping up	(see also asynchronous communication)

	First Law of Software Architecture, The first law of software architecture, Two Many Sneakers is a success	component coupling and, A balancing act
	layered architecture and, One final caveat about domain changes

	foreign keys, Why should you make microservices bigger?
	Fowler, Martin, High versus low levels of effort
	Front Controller pattern, Choreography: Let’s dance

G
	Grains of Sand pattern, How micro is “micro”?
	granularity, microservices, How micro is “micro”?, Wrapping it up	balance, It’s all about balance, Wrapping it up
	disintegrators, How micro is “micro”?, It’s all about balance
	integrators, Granularity integrators, Wrapping it up

H
	heterogeneous, Trade-off analysis: Queue edition
	house architecture, Building your understanding of software architecture
	hybrid architecture, There are no right (or wrong) answers, There are no right (or wrong) answers!	event-driven microservices, Hybrids: Event-driven microservices, Wrapping up

I
	implicit characteristics, Consider explicit and implicit capabilities, Step 1: Identify architectural characteristics	driving characteristics, There are no right (or wrong) answers, There are no right (or wrong) answers!

	infrastructure, queues and, Writing ADRs: Considering the consequences
	initiating events, Events versus messages, Wrapping up
	inventory management, Putting it all together, Logical components revisited
	iterative approach, Cubicle conversation

J
	Jenkins (continuous integration), The spectrum of “microkern-ality”
	joins between databases, Beware of joins
	JPMS (Java Platform Module System), Keeping modules modular (last time!)

K
	katas, #6 Practicing architecture with katas
	knowledge pyramid, #5 Knowledge depth versus breadth

L
	Law of Demeter, Measuring coupling, Some final words about components
	layered architecture, The fourth dimension: Architectural styles	capabilities, sorting by, Domains, components, and layers
	component placement, Domains, components, and layers
	components, Layering it on
	data-intensiveness, Layered architecture superpowers
	Database layer, Layering MVC
	deployability, Layered architecture kryptonite
	diagramming layers, Step 5: Diagram your architecture
	domain changes, One final caveat about domain changes
	downsides, Layered architecture kryptonite
	ease of reuse, Drivers for layered architecture
	elasticity, Layered architecture kryptonite
	feasibility, Layered architecture superpowers
	First Law of Software Architecture, One final caveat about domain changes
	MVC and, Design patterns redux, Drivers for layered architecture
	namespaces, Layering it on
	packages, Layering it on
	performance, Layered architecture superpowers
	Persistence layer, Layering MVC
	physical architecture, Drivers for layered architecture
	Presentation layer, Layering MVC
	quick builds, Layered architecture superpowers
	reasons for layers, Cubicle conversation
	scalability, Layered architecture kryptonite
	specialization, Drivers for layered architecture
	technically partitioned, Translating layers into code, Layered architecture superpowers
	testability, Layered architecture kryptonite
	Workflow layer, Layering MVC

	layered monolithic architecture, There are no right (or wrong) answers	analysis, There are no right (or wrong) answers
	planning stage, Step 3: Choose an architectural style
	uses, There are no right (or wrong) answers

	libraries, shared, Code reuse with a shared library, Fireside Chats, Wrapping it up, Microservices Crossword
	linters, The spectrum of “microkern-ality”
	localization, Structural architectural characteristics
	logical architecture, Actor/action approach	actor/action approach, Actor/action approach, The entity trap
	assigning requirements, Step 2: Assign requirements
	characteristics analysis, Step 4: Analyze characteristics
	cohesion, Sticking to cohesion
	components, Logical versus physical architecture, Step 1: Identifying initial core components, The Bid Capture component
	creating, Creating a logical architecture
	entity trap, The entity trap
	roles and responsibilities, Step 3: Analyze roles and responsibilities
	versus physical architecture, Logical versus physical architecture, Logical Components Crossword
	workflow approach, Workflow approach, The entity trap

	logical component system, Defining architectural characteristics
	logical components, The dimensions of software architecture, The third dimension: Logical components, You made it!, Some final words about components	afferent coupling (CA), Afferent coupling
	architectural style and, Cubicle conversation
	behavior and, Architectural characteristics and logical components
	characteristics analysis, Step 4: Analyze characteristics
	cohesion, Sticking to cohesion
	component coupling, The Bid Capture component
	design and, Defining architectural characteristics
	efferent coupling (CE), Efferent coupling
	entity trap and, The entity trap, Some final words about components
	identifying, Step 2: Identify logical components, Step 2: Identify logical components
	measuring, Measuring coupling
	monolithic architectures, Deployment model: Monolithic versus distributed
	names, The entity trap
	planning stages, The architects’ roadmap
	requirements, Step 2: Assign requirements
	roles and responsibilities, The third dimension: Logical components
	source code repository directory, Logical components revisited
	splitting by capability, Domains, components, and layers

M
	maintainability, Structural architectural characteristics, Cross-cutting architectural characteristics, Characteristics Crossword	EDAs, Event-driven architecture superpowers
	microservices architecture, Microservices architecture superpowers

	microkernel architecture, Microkernel superpowers	adaptability, Microkernel superpowers
	analysis, There are no right (or wrong) answers
	core, The two parts of microkernel architectures
	Decorator design pattern, Cubicle conversation
	device-assessment service core, Device assessment service core
	distributed, Encapsulated versus distributed plugins
	distributed physical architecture, Device assessment service core, Microkernel Crossword
	drawbacks, Microkernel kryptonite
	Eclipse IDE, The spectrum of “microkern-ality”
	evolvability, Microkernel superpowers
	insurance application, The spectrum of “microkern-ality”
	Jenkins Continuous Integration (CI) tool, The spectrum of “microkern-ality”
	linters, The spectrum of “microkern-ality”
	monoliths, Device assessment service core, Encapsulated versus distributed plugins, Wrapping it up, Microkernel Crossword
	partitions, Microkernel superpowers
	performance, Microkernel kryptonite
	planning stages, Step 3: Choose an architectural style
	plugins, The two parts of microkernel architectures, Encapsulated versus distributed plugins, Microkernel kryptonite
	simplicity, Microkernel superpowers
	star ratings, Microkernel star ratings
	synchronous communication, Device assessment service core
	user interface, Cubicle conversation
	uses, There are no right (or wrong) answers, There are no right (or wrong) answers
	volatility, Microkernel kryptonite
	web browsers, The spectrum of “microkern-ality”

	microservices, The world of architectural styles	defined, Wrapping it up
	event-driven microservices, Hybrids: Event-driven microservices, Wrapping up
	versus EDA, EDA versus microservices

	microservices architecture, The fourth dimension: Architectural styles	analysis, There are no right (or wrong) answers!
	balance, It’s all about balance, Wrapping it up
	choreography, Choreography: Let’s dance, Microservices Crossword
	code sharing, It’s all about balance
	common functionality, It’s all about balance
	complexity, Microservices architecture kryptonite
	data ownership, It’s my data, not yours
	deployability, Microservices architecture superpowers
	diagramming, There are no right (or wrong) answers!
	drawbacks, Microservices architecture kryptonite
	evolvability, Microservices architecture superpowers
	fault tolerance, Microservices architecture superpowers
	Grains of Sand pattern, How micro is “micro”?
	granularity, How micro is “micro”?, Wrapping it up
	granularity disintegrators, How micro is “micro”?, Wrapping it up
	granularity integrators, Granularity integrators, Wrapping it up
	maintainability, Microservices architecture superpowers
	monolithic databases, Microservices architecture kryptonite
	orchestration, Orchestration: Conducting microservices, Wrapping it up, Microservices Crossword
	performance, Microservices architecture kryptonite
	physical bounded contexts, It’s my data, not yours
	reasons to use, Cubicle conversation
	scalability, Microservices architecture superpowers
	services, What’s a microservice?, How micro is “micro”?, It’s all about balance
	star ratings, Microservices star ratings
	superpowers, Microservices architecture superpowers
	technically partitioned teams, Microservices architecture kryptonite
	testability, Microservices architecture superpowers
	versus EDA, Step 3: Choose an architectural style
	workflow, Fireside Chats, Microservices architecture kryptonite, Wrapping it up

	modular monolithic architecture, Modular monolith?, Modular monolith?, Naan & Pop is delivering pizza!	analysis, There are no right (or wrong) answers
	architectural characteristics, Modular monolith kryptonite
	databases, Taking modularity all the way to the database
	domain changes and, Why modular monoliths?
	domain partitioning, Modular monolith superpowers
	domain-based alignment, Modular monolith superpowers
	drawbacks, Modular monolith kryptonite
	intermodule communication, Naan & Pop is delivering pizza!
	maintainability, Modular monolith superpowers
	maintaining modularity, Keeping modules modular
	modularity fragility, Modular monolith kryptonite
	namespaces, Show me the code!
	operational characteristics, Modular monolith kryptonite
	partitioning by technical concerns, Modular monolith?
	performance, Modular monolith superpowers
	planning stages, Step 3: Choose an architectural style
	reasons to use, Why modular monoliths?
	reuse in, Modular monolith kryptonite
	star ratings, Modular monolith star ratings
	testability, Modular monolith superpowers
	uses, There are no right (or wrong) answers, There are no right (or wrong) answers

	modularity, Process architectural characteristics, Cross-cutting architectural characteristics, Characteristics Crossword
	monolithic architecture, Characteristics influence architectural structure, The world of architectural styles, Deployment model: Monolithic versus distributed, And that’s a wrap!, Wrapping it up	analysis, There are no right (or wrong) answers, There are no right (or wrong) answers
	deployment models, Monolithic deployment models: The pros
	layered, Step 3: Choose an architectural style, There are no right (or wrong) answers, There are no right (or wrong) answers
	microkernel architecture, Device assessment service core, Microkernel Crossword
	modular (see modular monolithic architecture)
	relevance, Distributed deployment models: The cons
	smartphone as, Deployment model: Monolithic versus distributed

	monolithic databases, Microservices architecture kryptonite, Monolithic database, Wrapping up
	MVC (Model-View-Controller) pattern, Design patterns redux, Translating layers into code, Drivers for layered architecture

N
	namespaces, Layering it on	modular monolithic architecture, Show me the code!

	non-domain design, Characteristics are nondomain design considerations
	nonfunctional requirements, Cubicle conversation, Cross-cutting architectural characteristics
	notifications, Trade-off analysis: Queue edition	trade-off analysis, Trade-off analysis: Queue edition
	Two Many Sneakers, It starts with a sneaker app

O
	operational architectural characteristics, Operational architectural characteristics
	orchestration, Orchestration: Conducting microservices, Wrapping it up
	outages, #1 The coding architect
	overengineering, Limit characteristics to prevent overengineering

P
	packages, Layering it on
	partitioned architecture, Partitioning: Technical versus domain	domain-partitioned, Partitioning: Technical versus domain
	technically partitioned, Partitioning: Technical versus domain

	partitioning, The world of architectural styles, And that’s a wrap!	microkernel architecture, The two parts of microkernel architectures, Microkernel superpowers
	modular monolithic architecture, Modular monolith?, Modular monolith superpowers
	modules, Modular monolith?
	technically partitioned teams, Microservices architecture kryptonite

	performance, The first dimension: Architectural characteristics, Operational architectural characteristics	EDA versus microservices, EDA versus microservices
	EDAs, Event-driven architecture superpowers
	orchestration and, Orchestration: Conducting microservices

	Persistence layer, Layering MVC, Translating layers into code
	physical architecture, Logical versus physical architecture	components, Logical versus physical architecture
	diagramming, Step 5: Diagram your architecture, Step 5: Diagram your architecture
	distributed, Device assessment service core
	embedded/mobile, Layers, meet the real world: Physical architectures
	pros and cons, Microkernel Crossword
	tiered, Layers, meet the real world: Physical architectures
	versus logical architecture, Logical versus physical architecture, Logical Components Crossword

	physical bounded context, EDA versus microservices	EDA versus microservices, EDA versus microservices
	microservices, It’s my data, not yours, Wrapping it up

	planning architecture, Planning the architecture	architectural characteristics, The architects’ roadmap
	architectural decisions, The architects’ roadmap
	architectural style, The architects’ roadmap
	logical components, The architects’ roadmap
	stakeholders input, There are no right (or wrong) answers

	plugins, Device assessment service core	as components, Device assessment service core
	calling, Plugin communication
	communication, Plugin communication, Microkernel kryptonite
	contracts, Plugin contracts
	design, Wrapping it up
	distributed, Encapsulated versus distributed plugins
	encapsulated, Encapsulated versus distributed plugins
	implementing, Device assessment service core
	sharing between, Microkernel kryptonite

	portability, Structural architectural characteristics
	Presentation layer, Layering MVC, Translating layers into code
	priorities, Priorities are contextual
	privacy, Cross-cutting architectural characteristics
	process architectural characteristics, Process architectural characteristics
	proof-of-concept code, #1 The coding architect
	Proposed status (ADRs), Writing ADRs: What’s your status?

Q
	queues, Communicating with downstream services	(see also messages; topics)
	infrastructure and, Writing ADRs: Considering the consequences
	security and, The first law of software architecture
	trade-off analysis, Trade-off analysis: Queue edition

R
	RDD (resume-driven development), Limit characteristics to prevent overengineering
	recoverability, Operational architectural characteristics	choreography and, Choreography: Let’s dance

	reliability/safety, Operational architectural characteristics
	request for comment (RFC), Writing ADRs: What’s your status?
	request processing, EDA versus microservices
	requirements, Causing Lafter	documents, Causing Lafter, Making travel easier, Step 1: Identify architectural characteristics, Are you feeling okay?, Welcome to Make the Grade
	interpreting/translating, Lost in translation
	non-functional, Cubicle conversation
	versus solutions, Sourcing architectural characteristics from holistic domain knowledge

	resume-driven development (RDD), Limit characteristics to prevent overengineering
	return on investment (ROI), The first law of software architecture
	RFC (request for comment), Writing ADRs: What’s your status?
	roadmap for planning, The architects’ roadmap
	robustness, Operational architectural characteristics, Cross-cutting architectural characteristics, Characteristics Crossword
	ROI (return on investment), The first law of software architecture

S
	scalability, The dimensions of software architecture, The first dimension: Architectural characteristics, Operational architectural characteristics, Cross-cutting architectural characteristics, Characteristics Crossword	choreography, Choreography: Let’s dance
	EDAs, Event-driven architecture superpowers
	layered architecture, Layered architecture kryptonite
	microservices and, Why should you make microservices smaller?, Microservices architecture superpowers
	orchestration and, Orchestration: Conducting microservices

	Second Law of Software Architecture, The second law of software architecture, Two Many Sneakers is a success
	security, Structural architectural characteristics, Cross-cutting architectural characteristics	implicit characteristic, Consider explicit and implicit capabilities
	queues and, The first law of software architecture

	service granularity, microservices versus EDA, EDA versus microservices
	shared code, granularity and, Granularity integrators
	shared libraries, Fireside Chats, Wrapping it up, Microservices Crossword	code sharing, Code reuse with a shared library

	shared services, Fireside Chats, Wrapping it up, Microservices Crossword	code reuse, Code reuse with a shared service

	single-purpose, What’s a microservice?
	smartphone as monolith, Deployment model: Monolithic versus distributed
	soft skills for architects, #3 The soft skills of architecture
	solutions versus requirements, Sourcing architectural characteristics from holistic domain knowledge
	source code repository, Logical components revisited
	SQL (Structured Query Language) joins, Beware of joins
	stakeholders, There are no right (or wrong) answers	planning stages and, There are no right (or wrong) answers
	requirements documents, Causing Lafter

	standardization, characteristics and, Limit characteristics to prevent overengineering
	state management, choreography and, Choreography: Let’s dance
	strategic decisions, Is it strategic or tactical?
	structural architectural characteristics, Structural architectural characteristics
	structural design, Characteristics are nondomain design considerations	domain considerations, Characteristics are nondomain design considerations
	internal, Consider explicit and implicit capabilities
	non-domain considerations, Characteristics are nondomain design considerations

	Superseded status (ADRs), Writing ADRs: What’s your status?
	synchronous calls, EDAs, Event-driven architecture kryptonite
	synchronous communication, Step 3: Choose an architectural style	architecture style selection and, Step 3: Choose an architectural style
	benefits, Synchronous for the win
	versus asynchronous communication, Fireside Chats

	system functionality, The third dimension: Logical components
	system quality attributes, Cross-cutting architectural characteristics

T
	tactical decisions, Is it strategic or tactical?
	technical debt, coding architect and, #1 The coding architect
	technical depth of knowledge, #5 Knowledge depth versus breadth
	technically-partitioned architecture, Partitioning: Technical versus domain, And that’s a wrap!
	testability, The dimensions of software architecture, Process architectural characteristics	EDAs, Event-driven architecture kryptonite
	layered architecture, Layered architecture kryptonite
	microservices architecture, Microservices architecture superpowers
	modular monoliths, Modular monolith superpowers

	three-tier architectures, Layers, meet the real world: Physical architectures
	tightly coupled systems, A tightly coupled system
	topics, Communicating with downstream services	(see also events; messages; queues)
	trade-off analysis, Trade-off analysis: Topic edition

	topologies, Wrapping up	database-per-service, Database-per-service
	databases, Wrapping up
	domain-partitioned, Domain-partitioned databases
	monolithic, Monolithic database

	trade-off analysis, Two Many Sneakers is a success	architectural decisions, Two Many Sneakers is a success
	ATAM (Architecture Tradeoff Analysis Method), The first law of software architecture
	EDA (event-driven architecture), Event-driven architecture kryptonite
	First Law of Software Architecture, The first law of software architecture
	layered architecture, Layered architecture kryptonite
	microkernel architecture, Microkernel kryptonite
	microservices architecture, Microservices architecture kryptonite
	modular monolithic architecture, Modular monolith kryptonite
	queues, Trade-off analysis: Queue edition
	selections and, Analyzing trade-offs
	topics, Trade-off analysis: Topic edition

	translating/interpreting requirements, Lost in translation
	two-tier architectures, Layers, meet the real world: Physical architectures

U
	UML (Unified Modeling Language) class diagram, A design perspective
	unknown unknowns, What do we know so far?
	usability, Cross-cutting architectural characteristics
	user interface, Design patterns redux	(see also MVC (Model-View-Controller) pattern)
	diagramming, Step 5: Diagram your architecture
	field arrangement, High versus low levels of effort
	integration, Step 1: Identify architectural characteristics
	microkernel architecture, Cubicle conversation
	public-facing, The benefits of Going Green
	requests and, Layering MVC
	scalability and, Sourcing architectural characteristics from the problem domain
	UI layer, Translating layers into code

V
	version-control system, Writing ADRs: Closing notes

W
	whiteboards, What else makes a decision architectural?, Writing ADRs: Establishing the context
	wikis, Writing ADRs: Closing notes
	workflow, Microservices architecture kryptonite	amount, Microservices architecture kryptonite
	analysis, TripEZ’s user workflow
	granularity and, Granularity integrators
	management, Fireside Chats
	orchestration and, Orchestration: Conducting microservices

	workflow approach to logical architecture, Workflow approach, Some final words about components	actor/action approach and, The entity trap

	Workflow layer, Layering MVC, Translating layers into code

OEBPS/assets/f0239-03.png

OEBPS/assets/f0239-02.png
[T 1]
(T[] 0 M1 O
[T u
[T 0
T O
T TII11] [
[TT1T]]

OEBPS/assets/f0241-01.png
[t [~

— Order —

Credit Card Form

Primary Email
Preference

Fulfillment
Workflow

— Payment —

— Customer —

OEBPS/assets/f0240-02.png
Order

Kecipe Inventory

r = = VPwain -~ — T I Domain T Pomain

A
Place Order

1l 1 |
|I[Kecipes Ul)" Inventory Ul || Presentation
Ml II]

(A) A
Place Order (Veliver Ordea

. Manage X Manage L
IIC Kec,,,gs)”[Invem‘orv) Business rules

Delivery
(Order)(c"mma(l.ocaﬂon

)

I
[Recipe]" (Kﬁgme) I Persistence

- |

OEBPS/assets/f0240-00.png

OEBPS/assets/f0240-01.png

OEBPS/assets/f0243-01.png
'@m\

OEBPS/assets/f0242-03.png

OEBPS/assets/f0242-02.png
Expense Audit User

I_ domain —l |_ domain —l |_ dowain —lﬁ

Both uscrsz:d This Could be
auditors eould be an /den{;{ »

»
managed as “usevs” 4omain weII_

OEBPS/assets/f0242-01.png

OEBPS/assets/f0244-02.png
An onling auction system where users can bid on items.
Why? This system probably needs high deavees
of sealing and elasticity. Monoliths aven't
ideal for such systems.

A large backend financial system for processing and
settling international wire transfers overnight
Why? Financial systems have rich domains;
scalability and elasticity don't sound like

Conterns here

A company entering a new line of business that
expeets constant changes fo its system

Why? A high degree of modularity is qood for

handling chanaes, but it certainly depends
on what kinds of changes are expected

A swall bakery that wants to start taking online orders
Why? Hal We kinda qave £his one away, didn't we?

A trouble ticket system for electronies purehased
with a support plan, in which field technicians
come to customers to fix problems
Why? Lots of moving parts; this system probably
needs high dearees of elasticity and
stalability.

L) Well suited for modular monoliths
(] Might be a fit for modular monoliths
X Not well suited for modular monoliths

X Well suited for modular monliths
[7] Might be a fitfor modular monoliths

[Not well suited for modular monoliths

[] Well suited for modular monoliths
&Mighl be a fit for modular monoliths.

[] Not well suited for modular monoliths

T Well suited for modular monoliths
D Might be a fit for modular monoliths

[] Not well suited for modular monoliths

[Well suited for modular monoliths
[] Might be a fit for modular monoliths
& Not well suited for modular monoliths

OEBPS/assets/f0244-01.png

OEBPS/assets/f0243-02.png
CTInis is a table.

customers order_history

\

recipes

ingredients

delivery addresses

)

order_schewa L recipe_schewa / inventory_schema

R These o the Zvenss

we've identified.

OEBPS/assets/f0248-01.png
Public user
interfaces

Good offer,
send device [{ Going Green attepts the
devite, it pays the customer

based on the quote

4

$$$
\

£ the deviee will
yield a 900d vetuen,

Going Green will /\/

vesell it.. $ $ $
Resell
Recycle @

...otherwise, éoing
Green vill veeyele it.

The Fublut—\ca::ing parts
of the avthiteeture are
a website and in—store

iosks.

Device
assessment

50»15 ércen
evaluates the
device based on its
age and condition
and determines its
value.

Recyeling/

accounting

Based on its vesale
potential, Going Green will
either vesell or veytle the
devite.

OEBPS/assets/f0247-01.png

OEBPS/assets/f0245-02.png
P[L[A[T]|F]|O[R[M|
[
z M
zZl o ol [[
[cTH[AIN]G[E][S D E 0]
T N] [U]S[E[R u
Al [A] [L 7] [AlP[1]
[E]o[O[R[D[IN]A[T[E | L |
Pl [N[8] [ElolDplE 4]
E u| [A] D 0]
[PIE[R[FIO[RIM]AIN]IC][E] [L] 9] D]
LA IRf Al |E]
T L] [P] v] [L
[BIUTS[[N]E[S]S] E| [u] [TIE[AIM][S
0 SlulB| [A]
[BJoJu[N[D[A[R[ITE[S] Ll B
A [
T [A]Y]E[R[E[D] [S[c|H[E[M]A]
S

OEBPS/assets/f0245-01.png

OEBPS/assets/f0249-02.png
Fill in some

Architectural characteristics i;‘h'&fws |
) arattevisties
Public user Sealability

for eath sevviee

interfaces P

Architectural characteristics

Device
assessment

Architectural characteristics

Reeyeling/
accounting

OEBPS/assets/f0249-01.png

OEBPS/assets/f0248-02.png

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/DejaVuSans-Bold.otf

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/f0235-01.png

OEBPS/assets/f0236-02.png
These fave
better than
in the layeved
avchiteetural
style

Most. monolithic
avthiteetures pecform
well, especially i well
designed.

—

Overall, more

expensive than layered
arthitectures. Modular
monoliths vequive more
planning, thought, and
long—tevm maintainance.

Architectural Characteristic

Star Rating

Maintainability * %
Testability *x Kk X
Deployability * k
Simplicity * % % K
Evolvability *x Kk *
Performance * * %
Scalability *

Elasticity *

Fault Tolerance *

Overall Cost 9

OEBPS/assets/f0235-04.png
ONCH/

OEBPS/assets/f0235-03.png

OEBPS/assets/f0235-02.png

OEBPS/assets/f0238-01.png

OEBPS/assets/f0237-03.png

OEBPS/assets/f0237-02.png
An online auction system where users can bid on items
Why?

A large backend financial system for processing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes to its system

Why?

A swall bakery that wants fo start taking online orders
Why?

A trouble ticket systew for electronics purchased
with a support plan, in which field technicians
come to customers to fix problems

Why?

L) Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

[Well suited for modular monoliths
[] Might be a
[] Not well suited for modular monoliths

for modular monoliths

[] Well suited for modular monoliths
[Might be a it for modular monoliths

[] Not wel suited for modular monoliths

[Well suited for modular monoliths
[] Might be a fit for modular monoliths

[7] Not well suited for modular monoliths

[] Well suited for modular monoliths
[] Might be a fit for modular monoliths
[C] Not well suited for modular monoliths

OEBPS/assets/f0237-01.png

OEBPS/assets/f0239-01.png

OEBPS/assets/f0150-03.png

OEBPS/assets/f0266-01a.png
CRT7

OEBPS/assets/f0150-02.png

OEBPS/assets/f0266-01.png

OEBPS/assets/f0150-01.png
defs) T4 are \e
f I-";. "ned in tetrms WfCIt .
Vidug| e onsih heir
The Order Placement CA=1 W

tomponent sure does know a E=4
lot about placing an order. _1/ gT=5 cT=1

Decrement inventory Inventory
Management

Place an order ———>>| Order

Notify the
customer

Raise CT=1
1ot the price y,, 120 Supplier
Email = not nice. Ordering
Notification Item

Pricing Total System Coupling =9

OEBPS/assets/f0265-01.png
The Devicelnterface

provides a common way for
plugins to communicate with
the device assessment core.

Assessment steps (but
not the details) exist
in the stable cove.

Device 1

; ——
Pevice 2 | | <

The ?lugins use \j\

-(—ﬁ

Assessment |
service

[-
< Device 3
—— .
I < Device 4
Device §

synchronous Eommunitation

1o intevact with the core.

LJ-_[/‘T

Plugjins are independently
deployed and decoupled Leom
eath othevr.

OEBPS/assets/f0149-01.png
Okay, now | get coupling and how
tomeasureit. But how do| reduce

component coupling to create loosely
coupled systems?

OEBPS/assets/f0264-02.png

OEBPS/assets/f0150-07.png

OEBPS/assets/f0267-02.png
ONICLY/

OEBPS/assets/f0150-06.png

OEBPS/assets/f0267-01.png

OEBPS/assets/f0150-05.png

OEBPS/assets/f0266-03.png

OEBPS/assets/f0150-04.png

OEBPS/assets/f0266-02.png

OEBPS/assets/f0151-01.png
™ We veduted coupling for this cAt

tomponent, but intreased it heve. 7 g

Order
Placement

Decrement inventory
Place an order

Inventory

Notify the
customer,

\

Less knowledae,

o hente less coupling: Stock low?
Ewail Order more
mail
Notifieation
cT=1

Pricing Sopplier

Ordering

Total System Coupling = 9

OEBPS/assets/f0150-08.png

OEBPS/assets/f0364-25.png

OEBPS/assets/f0364-24.png

OEBPS/assets/f0365-01.png
Wou, that
was fast—only half
asecond to place an
order!

1 Order
Placement
€ Service

600 ms

That took
along time. Two
seconds to place an
order is too slow for
me.

1
——>| Order
<«———| Placement
5 Service

3

600 ms

Although this step
atturs, the user
doesw't have to
wait for it

R

Payment
Service

Async means the Order
Placement sevvice doesnt
need to vait for vesponse

Syne means the
Order Placement
service must stop
and wait for the
Payment sevvice to
Finish its work

1,200 ws

3

Payment
Service

1200 ms

OEBPS/assets/f0364-26.png

OEBPS/assets/f0367-01.png
Oops. Let me
try adifferent
credit card.

— 3
2 [communication
Order Payment
<———| Placement Service
ERROR—Credit | Serviee
Card Expired g ERROR—Credit
Card Expired
Mycardis
expired? Why couldn’t you
have told me that when|
placed the order?
4
Asynchronous
o communitation ERROR—
—> Plaouv::ut R —— Vsavr'"f“f Credit Card
P— ervice
2 Service 3 Expired
i 5
“Please update your credit card ¥ Thisis getting
information so we can process your order.” complicated.
6 Email
€ m e s m e e e e e = = = = Notifioation </
Service

OEBPS/assets/f0366-01.png
Nice! I've
placed my

The Payment
order.

sevvice is down
and unavailable.

Aogne N
Order f tommunieation
—_—
Placement "3 """"" > P vlct
2 Service Q\

The Ovder Placement sevvice doesn’t
care whether the Payment service is
available or not.

What do you mean, “Error, try
again”? All | want to do is place

my order!
0O

— Syne.

1 2 [_ﬁommumta(:\on
————>{ Order Stop | pay
<«—————| Placement || Tc geder Placement oo
ERROR! 3 Service sevvite tan't

function properly /

when the Payment
sexvice is unavailable

OEBPS/assets/f0368-00.png

OEBPS/assets/f0264-01.png
When avthiteets allow inter—plugin
communication, the core system

wust act as an in{cgra{ion hub. AP

P|u5ih/\ doesn't

Core system
tave about an\/ﬂ\iha J

in the world except
itself and its cove. Translation

G = NGy

PluginX and Plug'm‘{ eall each
other, so thanges o one or the
obher, or 4o the mediation layer
within the core sysﬁcm, will
affeet both plugins.

OEBPS/assets/f0364-21.png

OEBPS/assets/f0263-01.png
Im thinking it would
be abad idea to allow
plugins to talk to one

another. Am | right?

OEBPS/assets/f0364-23.png

OEBPS/assets/f0364-22.png

OEBPS/assets/f0152-00c.png

OEBPS/assets/f0271-02.png
d
i | | |

15

OEBPS/assets/f0152-00b.png

OEBPS/assets/f0271-01.png

OEBPS/assets/f0152-00a.png

OEBPS/assets/f0269-03.png

OEBPS/assets/f0152-00.png

OEBPS/assets/f0269-02.png
An online auction system where users can bid on items
Why?

A large backend financial system for processing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes to its system

Why?

A swall bakery that wants fo start taking online orders
Why?

A trouble ticket systew for electronics purchased
with a support plan, in which field technicians
come to customers to fix problems

Why?

L) Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

[Well suited for modular monoliths
[] Might be a
[] Not well suited for modular monoliths

for modular monoliths

[] Well suited for modular monoliths
[Might be a it for modular monoliths

[] Not wel suited for modular monoliths

[Well suited for modular monoliths
[] Might be a fit for modular monoliths

[7] Not well suited for modular monoliths

[] Well suited for modular monoliths
[] Might be a fit for modular monoliths
[C] Not well suited for modular monoliths

OEBPS/assets/f0152-02.png

OEBPS/assets/f0152-01.png
find an expert

This is the expert’s mob,

deviee with g, 3pp on %ile

notify the customer

X
that th_e expert is Ticket upload ticket problem fixed Ticket
on their way Routing Completion
n
Customer | Draw Yo° b
Notifieation | yece \

OEBPS/assets/f0272-02.png
Architectural characteristics
Publie user Sealability

interfaces
Availability

Architectural characteristics

Aajlity (deployability, testability, ete.)
% Maintainability
Going Green needs to
test and deploy new
devite assessments
quickly, without
breaking existing ones.

Architectural characteristics

Seeurity

Reeyeling/ = —
accounting Data intearity

Auditability

Device
assesswent

OEBPS/assets/f0152-00e.png
R

OEBPS/assets/f0272-01.png

OEBPS/assets/f0152-00d.png

OEBPS/assets/f0271-03.png

OEBPS/assets/f0153-01.png

OEBPS/assets/f0372-02.png
Doted lnes
cepresent separate
domains.

The Ovrder Placement
sevvice must synchronously
¢all the Shipping sevvice

4o get the shipping
(options.

Order
Placement
Service

Order
Placement

Order
Placed

Paywent
Service

Inventory
Service

All sevvices in the
Order Platement
domain tan actess
Eheir domain's

database divectly.

,,,,,,,,,,, Order
{ Fulfillment

Fulfillment
Service

Order
Fulfilled

Shipping
Service

OEBPS/assets/f0371-01.png
Menolithic databases are not
netessarly good or bad—it 3l
£ eends on Mhatsimporkant 4o you

& Senvice coupling:
GOOD

& Performance:
GOOD

[} Simplicty:

[X) Ease of change:
BAD

[X] Faulttolerance:
BAD

X Scalability:
BAD

Monolithic Database Topology Scorecard

[Tow T High]
Services are highly decoupled because they don't need to
synchronously communicate with each other to get data.

[Tow I igh]

Data retrieval is fast because services are accessing the database
directly, not through synchronous remote calls to other services.

[Tow I igh]

The monolithic database is a simple topology. Complex oins and
queries are done in the database rather than in the services.

[T High_]
Changing the slructure of a database table can affect lots of
distributed services, making systems hard to test.

: [Low T High |
If the single monolithic database goes down, the entire system goes
down, impacting overall faul tolerance and avalabiliy.

: [ow T High]

Its harder to scale and provide elasticity because the database must
scale along with the services, and because services could run out of
connections to the database.

OEBPS/assets/f0374-02.png
The Ovder Placement

service must
synchronously ¢all the
Wow—that's a Shipping sevviee to get
ot of sevvice the shipping options.
toupling w

[

mm:m Order Payment [Paywent) .1 Rylfillment
Service Placed Service _Applied) Service
Jl l Order
Fulfilled

— .
= 2 =
- Inventory t:_;
. Shipping
The Ocder Placement 11 ™~

Service
E = | Service
sevvite must synthronously ach service and daty

call the [nventory serviee Combination forms its own
to get the curvent % Physical bounded Context, l

inventory. Just like in mitroservices.

OEBPS/assets/f0373-01.png
e domain-partitioned databases
topoloay provides 3 good balance

7

Domain-Partitioned Databases Topology Scorecard

(X senice coupling:
BAD

& Performance:

GOoOoD

[} simplicity:

[X) Ease of change:
BAD

X Faulttolerance:
BAD

X Scalability:
BAD

: [ow T Wigh

While services within a domain are stll highly decoupled because
of shared data, services must make synchronous calls to other
services to get data from outside their domain.

[Tow T igh |

Data erieval is fast for services within a domain because they are
accessing the database directly. However, performance becomes
slower when services access data synchronously outside their domain

[Tow T igh |

Since most data is naturally parttioned by domain, this topology is not
overly complex (but it stll not s simple as a monolithic {opology).

[ow T High |

Changing the structure of a database table only affects services within
the domain, limiting the number of services impacted.

: [Low High |
Database failures only affect services within the domain, making this
topology a little more fault tolerant than the monolithic topology.

: [Tow T High |

While stilla con, scalabilty is a e better here than in the monolithic
topology. Databases only need to scale at the domain level, rather
than across the entire system.

OEBPS/assets/f0376-01.png

OEBPS/assets/f0375-01.png
| nis Topology s the exact opposite of the monolithi
topology, from 3 pros-and—tons perspect; ‘

5

7

Database-Per-Service Topology Scorecard

X service coupling: [Low I High |
BAD Since services only have access to data they own, they must make
synchronous calls o other services to get addiional data. This highly
couples services in a highly decoupled architecture. That's bad.

X Performance: [Tow T High |
BAD Because services must make synchronous calls to retrieve other data,

performance becomes much slower than in the other topologes.

X Simplicity: [Low. T High |
BAD Breaking data apart into small physical bounded contexs is very
hard, due to coupling between data tables and arlifacts (such as
foreign keys, triggers, views, and stored procedures).

™ Ease of change:

[Low | High |
GooD Changing the structure of a database table only affects a single
service within the physical bounded context, making database
changes much easier than in other topologies.
™ Fault tolerance: [Tow T High |
GOOD Database failures only affect the owning service, making this the
most fault tolerant of the three topologies.
[} Scalabilty: [Tow T High |
GOOD

Databases scale at the service level, making this a great topology for
high scalabilty and elasticity needs

OEBPS/assets/f0151-02.png

OEBPS/assets/f0269-01.png

OEBPS/assets/f0368-02.png

OEBPS/assets/f0268-01.png
Testing is

straightforuard
Architectural Characteristic | Star Rating LZ:M?If;:kf::fl
Maintainability * % % the core and
plugins sq:aratdy
Testability * Kk ok ot
Deployability * * K
A mitrokeenel has a . Performane
zzs\i,:p‘unders{iahd_/ Simplicity * Kk ok ok s bebbony
vutture. mbedded plugi
’ Evolvability * * % embedded plugins
} Performance * Kk Kk <—/‘J
SLa!&bnh{\/ is
better when usi .
A.stwb\.{u: Pl‘:{;‘:‘h{;) Scalability *
Elasticity *
Fault Tolerance Y
Simplieity, in
Overall Cost $ ——this case, leads
to affordability.

OEBPS/assets/f0368-01.png
Order Paywment
Placement Service
Service
4
Payment sea!
i Oh dear!
Applied Dt wold
you do now?
—5
Order ERROR—No Stock
Fulfillment

on Hand, Cannot
Service Fulfill Order

Draw Your
solukion in

4his spate:

OEBPS/assets/f0267-03.png

OEBPS/assets/f0370-01.png
dev Placement
2;\&(;{ Lhe turven
menkory ond
Vigping options
ey from e
database That's
casy and fast

Order Order
Placement Placed
Service

Serviees are
decoupled £rom each

other when using a
(_ morlithic database "\

Ny

Fulfillment
Payment ||| Service
Service

Inventory
Service

Order
Fulfilled

Shipping
Service

A single, monolithic E
database to seve A

K ~but the single database £3

Gause issues with sealability,
Fault tolevance, and Lhangz
Control. That's bad.

OEBPS/assets/f0369-01.png
Hang on. All youve talked about so
far are events and services. Data matters
too, Ya know. When are you going to
start talking about databases in event-
driven architecture?

OEBPS/assets/f0252-01.png

OEBPS/assets/f0251-01.png
The tore is singular and
static.

The plugins in .
a mitvokernel b omponents can veside

in either & monolithic or a
arthitecture are

distributed archi —
Plentiful and valatile .<—> Core ; ditrted aahitchre
There's only one tore - (_).

in a mitvokernel
arthitecture.

The core in a microkernel: Plugms in a microkernel:

+ provides minimal functionality * provide all custom behavior

« rarely changes after its initial implementation - « work in isolation from one another
* does not provide custom behavior

+ are deployed independenty

1 How many plugins

in a microkernel?
Anywhcve Leom one

4o many.

OEBPS/assets/f0250-01.png

OEBPS/assets/f0249-03.png

OEBPS/assets/f0254-03.png

OEBPS/assets/f0254-02.png
We did one for you. Eelipse Not familiar vith the BFF pattern?

is an example of a product Check out https://samnewman-iof
defined by its “microkern— patterns/architectural/blE/
aly. IDE with plugin Backend for Frontend
support (BFF) design pattern
(not Eclipse)
Eclipse IDE . ‘Web browser
Mobile device asle:‘:niZn "
operating system service for a

recyling business

v
less H ¥ more
functional Funcﬂo”al functional

< [egree of “wmicrokern-ality” =——————

OEBPS/assets/f0254-01.png

OEBPS/assets/f0253-01.png
Eclipse IDE

The Eclipse IDE is desgined as
a “pure” microkernel, facilitating
different languages and tools via

plugins.

Insurance application
An insurance application has standard rules for
each policy yet allows customization for unique
local rules and regulations, so it has a medium
level of functionality without plugins.

less
functional

Linter
Linters are tools that use
plugins to parse source code
and apply style and syntax
rules to it. Most programming
languages have linters; for
example, JavaScript has
eslint.

Continuous

integration tool

(like Jenkins)
Jenkins works as a standalone
continuous integration (CI) tool, but

it supports a number of plugins for
extensibi

A browser is perfectly
useful without any plugins,
so it's not much of a
mitrokernel.

Web browser

Web browsers support plugins but
don’t rely on them to function.

more
functional

Insurance claims

processing system
These systems are a common
example of customization. They
usually handle most claims in a
standard way but allow developers
0 build custom rules for specific
situations.

OEBPS/assets/f0256-01.png
Icansee thatit’s common
to implement plugins as components

within a monolithic architecture. But doesn’t

having everything in one deployment make

it harder to hot-deploy plugins? It would be

easier if they were distributed. Could we

build distributed plugins?

OEBPS/assets/f0255-01.png
The stable tove holds
the assessment steps
(but not the details).

Pevice 1

 E——

Device 2

| —————

[—>
| ————

The Ylug'ms use

synthionous Communitation

1o inkevact with the cove.

)

Assessment
service

Device 3

Device 4

> Pevice §
le———|

Plugins ave ’j\

independently deployed
and are detoupled
Lrom eath other.

OEBPS/assets/f0376-08.png

OEBPS/assets/f0376-07.png

OEBPS/assets/f0376-10.png

OEBPS/assets/f0376-09.png

OEBPS/assets/f0376-11.png

OEBPS/assets/f0376-02.png

OEBPS/assets/f0376-04.png

OEBPS/assets/f0376-03.png

OEBPS/assets/f0376-06.png

OEBPS/assets/f0376-05.png

OEBPS/assets/f0146-02.png
Kcs\’onsib\c Lor allowing
bidders 4o sign wp for a0
ueti
auttion \' Responsible for managing
all of the information
about a bidder

Bidder
Profile

Auction
Registration

Avtomatic
ﬁ Payment

Responsible for ¢harging
the wihnihg bidder’s
tredit card

OEBPS/assets/f0258-03.png

OEBPS/assets/f0146-01.png
Mom is affevent]
toupled to the family.

OEBPS/assets/f0258-02.png
Monoliths aenerally provide
better performance because
they make fewer network calls

Monolithic

Most monoliths only
load plugins on startup,

& Pros

which ean complicate
deployment ‘)
Cons

Performante

Single deployment

Pros

Cons

OEBPS/assets/f0145-02.png

OEBPS/assets/f0258-01.png

OEBPS/assets/f0257-02.png
Dis{:ribu‘(;cd \’lVSi“s
tan tommunitate
with synchrov\ous
or asynthronous
ealls.

Plugin

Plogin | | ——

Solid lines indicate J\

syndh\ronous ealls;

Core system

dashed lines are
asynt ealls.

Plugin

Plugin

Plugin

OEBPS/assets/f0148-01.png
This logital
avthiteeture b

a total Couplin
€T level of &

ch=l CE=0

e s & CA=0
You can v n to Lrad)
informatio

hekher things a{:ss
ething more o
(4

OEBPS/assets/f0261-01.png

OEBPS/assets/f0147-02.png
Responsible +or
veceiving bids,
determining the
highest one , and
notifying the

auzboncelr/

Bid
Capture

(e)

Responsible for storing cvcvz
bid veceived in a database tor

Luture veporting

OEBPS/assets/f0260-01.png

OEBPS/assets/f0147-01.png
This is Josh.

This is Josh’s
teather. >

OEBPS/assets/f0259-02.png
Plugin | |= = -)@' =->

Plugin actess tan be asynchronous,
s\/nchronous, or mixed within the
same application. Core system

Plugin

REST ———>

& Avthiteets can implement plugins

in diffecent teeh staeks.

OEBPS/assets/f0146-03.png

OEBPS/assets/f0259-01.png
‘ i The core spken con cll

iPhonel5 implements DeviceIntf Core system ICZ:Z?:I% ﬁ::frgf rerts
i i e

,\ The iPhonel5 device plgin

implements the Devieelntf
interface, allowing calls between
the plugin and the core.

OEBPS/assets/f0148-03.png

OEBPS/assets/f0148-02.png
Cowmponent
H

Cowponent
K

J

Total system coupling level:

OEBPS/assets/f0148-01a.png

OEBPS/assets/f0261-02.png
Pros

Availabiliby
Deployability

Sealabiliy

[Pan || >

Core system

[||

= ||

[|

Cons

Less perfornant

More tomplex

OEBPS/assets/f0376-19.png

OEBPS/assets/f0376-18.png

OEBPS/assets/f0377-01.png

OEBPS/assets/f0376-01a.png

OEBPS/assets/f0376-13.png

OEBPS/assets/f0376-12.png

OEBPS/assets/f0257-01.png
(Fan)<
I

Core system

Gl

Monolithie implementations of
mitrokernel arthitectures embed
the plugins as tomponents within
the overall monolith.

)

OEBPS/assets/f0376-15.png

OEBPS/assets/f0376-14.png

OEBPS/assets/f0376-17.png

OEBPS/assets/f0376-16.png

OEBPS/assets/f0070-02.png
Onte You've settled on the most
in.yorIAnt dviving thavaeteristics,

jou get to piek three. Just put
7,1, and 3 next o the ones that
makter the most to you

Implicit characteristies become
driving chavactevisties if they
(influente structural detisions.

Driving characteristies ave
arehitectural thavactevisties that

\[drive important design decisions.

Top3 Driving Characteristics Implicit Characteristics

Jeastbility (cost/time)

security

maintainability

observabulity

/K/ We've found these four 1o
be pretty common implieit

characteristies. Feel free to
veplace these with whatever makes
sense tor yoh-

Jgooood

OEBPS/assets/f0164-00d.png

OEBPS/assets/f0287-02.png
Pros

Pros

Pros

Layered Monolith Architecture Analysis

Cons

Modular Monolith Architecture Analysis

Microkernel Architecture Analysis

Cons

Cons

OEBPS/assets/f0069-03.png
Many systems that try to
su‘)\?o\r{: too many avehiteetural
chavattevistics end up with too 5
little space left to support the ——

domain.

OEBPS/assets/f0164-00c.png

OEBPS/assets/f0287-01.png

OEBPS/assets/f0069-02.png
Remember, arehiteetural
thavacteristies are synergistie
with domain and other

OEBPS/assets/f0164-00b.png

OEBPS/assets/f0286-02.png
Layered Modular Monolith Microkernel

Architectural Characteristic | Star Rating Architectural Characteristic | Star Rating Architectural Characteristic | Star Rating
Maintainability * Maintainability * Kk Kk Maintainability * k k
Testability * * Testability * * Kk Testability * Kk k
Deployability * Deployabilty * % * Deployabilty * * %
Simplicity * % %k % % ||Simplicity * Kk ok ok Simplicity * Kk k k
Evolvability * Evolvability * * k Evolvability * * K
Performance * Kk Kk Performance * * * Performance * ok
Scalability * Scalability * Scalability *
Elasticity * Elasticity * Elasticity *

Fault Tolerance * Fault Tolerance * Fault Tolerance *

Overall Cost $ Overall Cost 3 Overall Cost $

ThemorestarsJ° N Aplogies for the by St bt)

the better that vemember—you tan always £lip back to
chavattevistic is individual chapters to see the star vatings
supported. for a particular style.

OEBPS/assets/f0069-01.png
[magine the left side to be domain
tonsiderations and the vight side to be
avthitectural charactevistics.

I\- Projeets that ignore

needed avchiteetural
thavatteristies tan
deliver Lailuce faster.

OEBPS/assets/f0164-00a.png

OEBPS/assets/f0286-01.png
— architectural characteristics 7

You are heve.

Sjuauodwod 1eajboj
suoisoap lein}oaajyoae

l\ architectural style — |

OEBPS/assets/f0073-01.png

OEBPS/assets/f0071-03.png

OEBPS/assets/f0071-02.png
Driving Characteristics Implicit Characteristics

JSeasibility (cost/time)

security

maintainability

observabulity

/Q— These are implied thavatteristics. Move

them to the Driving Chavacteristies
column if you think they ave eritical to
the success of the system.

Pick the top three most important ones (in any order).

OEBPS/assets/f0164-01.png
This 2
i f““ xpert’s mobile

th an PP on it
notify the customer

that the expert is

‘ Tieket upload ticket problem fixed Ticket
on their way Routing Completion
Customer
Notification Draw Yo olution

find an expert Ticket ‘T"t Tiket Cy,
Assignment
ower Coupling
send ticket to expert /

Ticket | upload ticket problem fixed Ticket
notify the customer Routing Cowpletion
that the expert is
on their way

OEBPS/assets/f0071-01.png
'@m\

OEBPS/assets/f0164-00e.png

OEBPS/assets/f0380-02.png
In microservices, eommunication

is usually done using REST,
which needs a vesponse to

;— continue protessing,

Asyne Syne
Order [— Order [—
Placement | |- = = = = >| Payment 3> | Payment
acement Service Placewent Servi
Service Service erviee

Event-Driven Architecture Microservices Architecture

OEBPS/assets/f0380-01.png
Order
Placement
Service

This is
Event-Driven Architecture something that
has alveady
happened.

This is something
g{ha{ needs to happen.

Order
Placewment

Service

Microservices Architecture

OEBPS/assets/f0381-01.png
I'require a bounded context.

| can use the database-per-service pattern.

Event-Driven
Architecture | create systems that can scale.
| mostly use synchronous communication.
| create high-performance systems.
| save you money because | don’t cost a lot.
We did this
one for you)y | rely mainly on asynchronous communication.
Microservices
rehitecture

| communicate to services using events.

I'm really good at fault tolerance.

| can use a monolithic database

OEBPS/assets/f0284-03.png
x & X X

Traveler System Travel partner Social media

/

Signin

We did this one for you, but
the traveler might perform
other aetions, too.

OEBPS/assets/f0377-02.png
'@m\

OEBPS/assets/f0284-02.png
'@m\

OEBPS/assets/f0378-00.png
Architectural Characteristic

Star Rating

Performance

% %k ok ok

Event-Driven Architecture

OEBPS/assets/f0377-03.png

OEBPS/assets/f0068-01.png
architectural characteristics

Y
=7
RN

U/

N
9]A3s Jean)oajiyoue

SUOISJ9p |eIN}O3}IYydIe

logical components

OEBPS/assets/f0164-00.png

OEBPS/assets/f0285-03.png

OEBPS/assets/f0378-02.png
Event-Driven Architecture

i# HiH g

There ave no
physical bounded
ontexts heve.

These servites and their
data ave eath in a physical
bounded tontext.

Microservices Architecture

OEBPS/assets/f0067-01.png
Not only do my business

analysts not understand the
technicalterms for architectural
characteristics, they ask for way
too many things!

OEBPS/assets/f0163-01.png
CA=0 =1 We did {1:
P gé\:; e did this one Lo v,

cr=1 ot <
Component CA=0
D &
L4 cT=1
cA=2

CA=1

K

% omponent| CA=
Cowponent CE=2 Cowponent
3 CT=2 J CA=1 CA=1
CE=0 CE=0_

CT=1 CT=1

Total system coupling level: 18. This seems high to us.

OEBPS/assets/f0285-02.png
M‘F this key for youy
logieal architeetupe,

<

; ?

P e—

e —
Data o "o
Jua flow

OEBPS/assets/f0378-01.png
Architectural Characteristic | Star Rating

Performance * *

Microservices Architecture

OEBPS/assets/f0163-00.png

OEBPS/assets/f0285-01.png

OEBPS/assets/f0379-03.png
Event
Processor
Event
Processor
Event
Processor|

These sevvices
¢an be any size

Event
Processor

Event-Driven Architecture

Microservice

These sexvices ave all vequived
to be smgle—\vuryas:-hwc
‘the name “micvo’

Microservice

[Microservice|

Microservices Architecture

OEBPS/assets/f0162-01.png
We did thi - - 1 Start and " _
one for Yoi. Live Auction art and stop the auction

Session <= 2. Show the current trip up for bid
3. Mark a trip as sold and move to the next trip

vaw Your new components

D
w s e b)

.T"il’ =4 Display the details of each trip in this auction
Viewer

/ 5. Keep track of all the bidders currently in the auction

Bidder

Tracker Ying bidders, so they

These two have to do with tracl
\ ol probably be placed wmr)
6. Keep track of each winning bidder for the auction
Winner
Notification \
7. Notify the bidder that they won the trip

Hint: You might eonsider ombining few of these
vequivements when treating new ¢omponents.

OEBPS/assets/f0284-04.png

OEBPS/assets/f0379-02.png
Order
Placement
Sarvioe

Inventory
Servioe

Payment
Serviee

Event-Driven Architecture

==

Order

Inventory Payment
”;::v,'"::" Sarviee Service

Microservices Architecture

OEBPS/assets/f0076-02.png
Users: hundreds of speakers, thousands of users Architectural characteristics

Requirements: Scalabili’cy

Users can register for usernames and approve the privacy policy

Users can add new content on Lafter as a “Joke” (long-form Elas{iti'{'«y

post) or “Pun” (short-form post)

Followers can “HaHa” (indicating strong approval) or “Giggle” Au{hdﬂz&t'on

(a milder approval message) content they like

Speakers at Sillycon Symposia events have a special icon Au{hcn{‘cahon
Speakers can host forums on the platform related to their content lnjccrna{ionaliﬂ‘fjon
Users can post messages of up to 281 characters

Users can also post links to external content CUS‘tOMizabili{y

Additional Context:

International support

Very small support staff

“Bursty” traffic: extremely busy during live conferences

OEBPS/assets/f0170-02.png
o]
T j\ shipping

In domain-—‘?ar{:iﬁoncd
architettures, Yyour tode is
divided with the domain in mind.

customer

OEBPS/assets/f0076-01.png

OEBPS/assets/f0170-01.png
Presentation

Each layer sevves
a particular
technical contern.

OEBPS/assets/f0075-02.png
“We need to get this to market ASAP!” fault tolerance
‘Money’s tight, folks!” scalability

“Oh, wow, this conference is going to be our biggest yet.” | high availability maintainability
“We want to start storing users’ credit card information.” recoverability

“This site is going to be very popular upon launch.” agility

OEBPS/assets/f0169-01.png
well destribe these ares

in the £o“ow\n\3 Eaics

For row 1€

over You

ash

\ >

Partitioning

Technical

Domain

Deployment model

Monolith

Modular monolith

Distributed

[Event-ariven]

Microservices

We have entive

chapters dedicated 4,
each style mentioned

heve.

</

OEBPS/assets/f0075-01.png

OEBPS/assets/f0168-03.png
And there's our

. |
missing piece! W

3TALS WENLOZLIHDZY —

OEBPS/assets/f0078-01.png

OEBPS/assets/f0077-02.png
“We need a system to track user preferences and customizations, then save them between sessions.

requirement [solution
“Do we Yeally need to build our own survey service? Surely we can find one that does what we need.”
EI requirement [0 solution

“An enterprise service bus would solve some of our current problems (albeit with some changes and workarounds)
and it offers extreme extensibility.”

[[] requirement E solution

‘According to the friendly sales rep, this software package does all the things accounting needs, now and in the near
future.”

[] requirement N solution

OEBPS/assets/f0385-01.png

OEBPS/assets/f0077-01.png

OEBPS/assets/f0171-01.png

OEBPS/assets/f0384-04.png

OEBPS/assets/f0384-03.png

OEBPS/assets/f0165-00.png

OEBPS/assets/f0382-02.png
That's a big service.

We'll eall it Papa ;
f Bear. .and this one’s PE cvert protessor
Mama Bear uHills the order, then
f ships and tracks it.
Order
Subo:iises"ion Fulfillment —b@
Service Sl .and this one
o~ Baby Bear.
‘\ " l Ewail
This event protessor ateep Service
l ‘the order fm ‘the customer, $\
validakes it, applies payment Vo A et
{or the oder, and adjusts E 7 protessor does
Lhe inventory. is email the
E © tustomer when
the order is

shipped.

OEBPS/assets/f0381-02.png

OEBPS/assets/f0382-03a.png

OEBPS/assets/f0382-03.png
'@m\

OEBPS/assets/f0074-01.png
Describes how well the components m the system create well-detined
groupings and boundaries between components.

sealability

The system’s ability to recover from problems such as a power, internet
connection, or hardware failure.

deployability

How casy is it for all users to access the system, including those with disabilities

modularity like colorblindness or hearing loss.

Ho casy it is for architects and developers to apply changes to enhance the

robustness and/or fix bugs.

Describes haw well the system handles a large number of concurrent
users while maintaining reasonable performance.

b

)
Lo

acces

escribes the cadence, efficiency, and reproducibility of deployments.

maintainability

OEBPS/assets/f0168-02.png
Each one of these]
skyles exists for a
veason—be that

viskorical, culbural _1 L=
Leehnical- f

OEBPS/assets/f0383-01.png
Order.
Submission
Service

Order

Placewent
Service

These sevvices are now
mitroservites that use events,
eveating an event—driven
itvoseevites avthiteetuve.

his is & physical bounded
context, meaing o
one else can access the

C Payment data divty.

Payment
Service

Inventory

Service

OEBPS/assets/f0073-03.png

OEBPS/assets/f0168-01.png
Theve's a piece
missing.

OEBPS/assets/f0382-04.png

OEBPS/assets/f0073-02.png
[] - 4
|| [T[] |
L1 1] I i
I [[]
[[1] HRERENE
] [
I L

[]

OEBPS/assets/f0167-01.png

OEBPS/assets/f0384-02.png
POWZ

£0

OEBPS/assets/f0165-01.png
-] [2]
al [<| [>]
<=l 5 SER
[a'd —_ w - -
[w]F]<]F[=]o] [F <<Jo]-|o]x]
D BE z — Lo
olu[Swl-lwle] [
=l [o]-[9] [Z]
- (e z O]
z| [H e[z [wl=]o]<]~
olzufwn|-[o]z]| [= [
=1 [© w|_[O] |
= =] [e]=|x]ulo[F]o]x]>] o]
O > =) w (o)
2 5] B [2|
S| [w m
o o [=epEeE

OEBPS/assets/f0384-01.png

OEBPS/assets/f0156-00.png

OEBPS/assets/f0276-02.png
wio[J]—|a|n]u] —
z s
= [w] O]
(o] [oF]<]x]|-][2]a]
B < 0]
>lol=[<[-]-[=[w] [2
o o [o[<[=[-]v]
| (0]
] o] [O]
ol [<[z[o][o]<]o]uw]n] [¢]
EEE o =] [olofe]u]
< EHNE <
Flel<z[o]-[-]-[>w] |[=]-[Z]|w]x]
o o o e
O] <| [w] [w]
MEAMERERME o]
REE <[|- -
= 5 =1

OEBPS/assets/f0155-02.png

OEBPS/assets/f0276-01.png

OEBPS/assets/f0155-01.png
CITTTI _ []
CITTTI []
CLT] [[1]
[HRE
| []] L[]

B | [T
CLLT L] [

OEBPS/assets/f0275-02.png
An online auction system where users can bid on items
Why? This system vequives high sealability but
ot a lot of customization, making it less
Suiable for a micvokernel architeckure,

A large backend financial system for processing and
settling international wire transfers overnight

Why? Rules for wive 4ransfers ave likely 4o
difFer by country of origin. A microkernel
is one way £o address Ehis problem
(However, stalability may be a contern for
a monolithic mierokernel.)

A company entering a new line of business that
expects constant changes to its system

Why? [£ the company ean partition changes to
Plugins and avoid having volabile core, a

mierokernel will allow it to bring out new
Teatures in isolation.
A small bakery that wants to start taking online orders
Why? With no compelling veason for customization

and a simple problem, a mierokernel isn't a
terrific fit heve

A trouble ticket system for electronics purchased
with a support plan, in which field technicians
come to customers fo fix problewms
Why? [£ customers, devices, or other parts
oF The system vequire Customizabions, 3

ane way o imlement Them.

mitvokernel

L] well suited for microkernel
[might be a fit for microkernel
1 Not well suited for microkernel

] W suited for microkemel
[might be a fit for microkernel
[Not well suited for microkernel

4 Wellsuited for microkernel
[might be a fit for microkernel
[Not well suited for microkernel

[Welt suited for microkemel
[might be a fit for microkernel
3] Not wellsuited for microkernel

[Well suited for microkernel
[Might be a it for microkernel
[Not well suited for microkernel

OEBPS/assets/f0155-00.png

OEBPS/assets/f0275-01.png

OEBPS/assets/f0158-01.png

OEBPS/assets/f0158-00.png

OEBPS/assets/f0157-01.png
This is part of implementation shows which pro mming language is used for
not arthitecture. “~> each compone

LQgiOal Maps components to services
architecture

Shows the logical components within the system
and how they communicate with each other

Shows how many databases there are in the
system and which services access them

Shows communication between services and the
protocol they use (like REST)
Physical

En'chortecture Shows the source code files used to implement a
component

Shows the components and their interactions
within the user interface

Shows the API gateways and load balancers used
in the system

OEBPS/assets/f0278-01.png

OEBPS/assets/f0390-02.png

OEBPS/assets/f0156-01.png
" order_entry_app We did

T order / this one —
for youl

=] shopping_cart

E lots_of_source_code_files

{7 fulfillment —7/™ ™
E lots_of_source_code_files

3 history
E recent

lots_of_source_code_files

=) archive \
=] 1ots_of_source_code_files

=7 Payment
credit_card

=] Lots_of_source_code_files
gift_card \
E lots_of_source_code_files
—?customer

=] profile

3 _
=] Lots_of_source_code_files

OEBPS/assets/f0277-01.png

OEBPS/assets/f0390-01.png
15

6

0 T 12] |

T3 17

(— — — . —
1 T8

70

OEBPS/assets/f0390-00.png

OEBPS/assets/f0385-03.png

OEBPS/assets/f0385-02.png
OUCL//4

OEBPS/assets/f0386-02.png
Architectural Characteristic

Star Rating

While ¥'s easy Maintainability * % k %
to find where
o change code, Testability * *
testing and
deployment ave Deployability * * %
visky and hard.
Simplicity *
Evolvability * Kk Kk k Kk
Less sexvice
oupling means
Lol ey | Performance * %k k Kk Kk
and g\mm\)’ Scalability * Kk Kk Kk Kk
Elasticity * * ok &
Fault Tolerance * Kk Kk Kk %k
ﬁ Overall Cost $$9

Betause most things ave

asynchronous and decoupled,
fault tolevance is veally high.

Things like erpor
handling ang
3synthronous
Communieation
make EDA

Complex.

AR

Finally, an
arthitectural
style that

peorms el

OEBPS/assets/f0385-05.png

OEBPS/assets/f0153-03.png
Loosely coupled

Place an order Order Inventory
Placement Management

Supplier
Ordering

Ewail
Notification

Distributed workflow, but less risk with each change

ltem
Pricing

These ave the trade—offs for tight coupling j\

OEBPS/assets/f0274-02.png
Monolithic
Pros

Performante
Simplieity
Single—platform mondliths

are muth simpler than
distributed architectures

Distributed
Pros

" Cons

Single deployment

Sealability

[¥'s harder to stale a
monolithic arehitecture

Cons

Sealability Wﬂ- <---

Choite of communication

e e/ [=] |sncram {1l

Distributed arehitectures
offer more thaites of
Communitation styles (and
Lrade—ofks).

Performance

Complexity

Distributed architectures
are more complex, as you
learned in Chapter 5.

OEBPS/assets/f0387-02.png
An online avction system where users can bid on
items

Why?

A large backend fi ial system for pr ing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes to its system
Why?

A swmall bakery that wants to start taking online
orders
Why?

A social media site where users can post and respond
to comments

Why?

[Well suited for event-driven architecture
[] Might be a fit for event-driven architecture
[_] Not well suited for event-driven architecture

[] Well suited for event-driven architecture
[] Might be a fit for event-driven architecture
[] Not well suited for event-driven architecture

[] well suited for event-driven architecture
[] Might be a fit for event-driven architecture

[] Not well suited for event-driven architecture

[Z] Well suited for event-driven architecture
[] Might be a fit for event-driven architecture
[] Not well suited for event-driven architecture

[C] Well suited for event-driven architecture
[Might be a fit for event-driven architecture
"] Not well suited for event-driven architecture

OEBPS/assets/f0153-02.png
Tightly coupled

Order Inventory
Placement J Management
Ewail Suppli
i pplier
(i)

Pricing

Place an order

Centralized workflow, but more risk with each change

These are the trade—offs for tight coupling. j\

OEBPS/assets/f0274-01.png

OEBPS/assets/f0387-01.png

OEBPS/assets/f0273-02.png
Selections toward this end have movre
skandalone funetionality, vithout the
need for plugins.

Seleetions toward this end vely on
Plugins for significant functionality.

Backend for Frontend

IDE with plugin N
B
support (BFF) design pattern
. (not Eclipse) Device
Eclipse IDE . . assessment Web browser
Mobile device service for a
operating system recyling business
) N\
N
less H more
functional Funcﬂo"al 1 functional

< egree of “wicrokern-ality” =——————

OEBPS/assets/f0388-01.png
Lots of ervors can oceur in
his architecture, which would
generate corvesponding ervor
events. We've not showing
those events heve—only the
“harpy path” events

What
agreat online
ordering system!

0ty Payment Fulfillment
Hacswend Service Service
Service
Order
Inventory Fulfilled
Service

Shipping
Service

Warchouse Inventory
Service Adjusted

Order
Shipped

Email
Notification
Serviee

Customer
Notified

OEBPS/assets/f0273-01.png

OEBPS/assets/f0387-17.png

OEBPS/assets/f0063-02.png
Average v
Maximum vesporse % response

time {J
N
First eontenthul j
paint]

is myy

Performante

sability

\\4

OEBPS/assets/f0160-04.png
The system has only one type of user

The system has well-defined entities

&Workflow
mWorkflow

[C] Actor/Action

KAc(orlAction

You have minimal i qui
The system has many complex user journeys

The system has many types of users

K
X{Workflow

[Iworkflow
Neither approach
vequires lots of
«t«mc{ionahéy to
treate initial logieal
Components.

|

[C] Actor/Action
E\ActorlAction

. .
Remember to aVo\é the
entity trap ever !
Lhe system has well-
defined entities:

OEBPS/assets/f0283-03.png

OEBPS/assets/f0063-01.png

OEBPS/assets/f0160-03.png

OEBPS/assets/f0283-02.png
Iop3 Driving Characteristics

Implicit Characteristics

Jeasibility (cost/time)

security

maintainability

observability

pO0O0O0D0DOO

Pick the top three most important ones (in any order).

A These are impled eharackeisics. Move

them to the Driving Charackeristics
column if you think they ave eritical to
the success of the system.

Common Candidate Architectural Characteristics

performance
Tespo: nsiveness
availability
fault tolerance
scalability

elasticity

data integrity

deployability

data consistency testability

adaptability

extensibility

configurability

customizability

interoperability recoverability

concurrency

auditability

OEBPS/assets/f0062-11.png

OEBPS/assets/f0160-01.png
We did this

one ‘(:or You

worker

utility

supervisor

controller

mediator

agent fdd he worg “)
handler he fropg of . e 4
o youl) See) o€ Words

What
service e meap,

engine

orchestrator
coordinator processor

OEBPS/assets/f0283-01.png

OEBPS/assets/f0062-10.png

OEBPS/assets/f0160-00.png

OEBPS/assets/f0282-01.png
[architectural characteristics /]

You are heve. j

SuoIS99p |eanyoayyose

[—— Sjusuodwoo jeajboy

architectural style — |

OEBPS/assets/f0065-01.png
Wait @ minute. None of
the Lafter subject matter experts
knows what “scalability” and
“elasticity” are. How are they going

to know to ask for this stuff?

OEBPS/assets/f0395-00.png
'@m\

OEBPS/assets/f0062-11a.png

OEBPS/assets/f0162-00.png

OEBPS/assets/f0064-02.png
Performance

Seenario #1 Seenario #2 Seenario #3
An ccommerce site in a A system for an enterpri An application to
competitive market whose goal is to grow via automate standardized
testing and grading for
university admissions

mergers

1 1 1
2 2 2
3 3 3
4 4 4

OEBPS/assets/f0161-01.png
Reeyel
— Physically W fssess the e theold

veceive the deviee's -
Device desice from Peviee condition K”W'lﬁe device.
Reeeiving | the customer Assessment ecycling

Locate the nearest safe disposal facility for destroying the device
[7] Device Receiving [] Device Assessment [Device Recycling [] Other:

Capture and store the customer information (name, address, etc.)
[Device Receiving [] Device Assessment] Device Recycling]ZLomer: Customer Profile

Post the device on a third-party site to resell it on the secondary market
[T Device Receiving ~ [] Device Assessment &Device Recycling [] Other:

Pay the customer for their recycled device
[Device Receiving [Device Assessment [] Device Recycling x[omer; Accounts Payable

Record that the device has been received and is ready for assessment and valuation
E[neviu Receiving [] Device Assessment [] Device Recycling [] Other:

Determine the value (if any) of the recycled device
[Device Receiving E(neviu Assessment [] Device Recycling [] Other:

Determine the monthly profit and loss for recycled and resold devices
Enevice Receiving [] Device Assessment [] Device Recycling XLomer: Financial Reporting

Going Green Corp. needs 4o make a profit, after 3l

OEBPS/assets/f0396-00.png

OEBPS/assets/f0064-01.png
'@m\

OEBPS/assets/f0161-00.png

OEBPS/assets/f0284-01.png
— architectural characteristics]

You ave heve.

Sjuauodwod 1evibo
suoisosp 1ean3os91yose

g architectural style — |

OEBPS/assets/f0395-01.png
Uy (N Paywent 2 3 t

Placement 3 Order Sorvos aymen
Refunded

Service \Placed)

|4
Payment
Applied
=5

Order | | ERROR—No Stock

Fulfillment | | on Hand, Cannot
Service Fulfill Order

|6

8 Email
Notifieation
Service

Backorder
Ewmail Sent

|
Oh dear!
What vould

You do rovi

OEBPS/assets/f0066-01.png
Of course, no

‘When business analysts and Software architects
subject matter experts say: translate:

Good modularity

« Agility allows for faster
“Lafter is constandy changing to meet new . Modulari & change viithout
marketplace demands.” Rl vippling side effects.

+ Extensibility

+ Performance €N We must perform well
but also veeover quiekly

“Due to new regulatory requirements, we must
in tase of ervor

! % we « Recoverability
complete end-of-day processing on time.

+ Scalability

+ Résumé-ability - “The ability to update your
vesume.” Many people would
vather not work in a place
+ Interoperability undergoing tonstant mergers.

Our plan i to engage heavily inmergersand | 1oty
acquisitions in the next three years.

+ Feasibility More of an

- L architect—the-
scope and budget for this project.” Simplicity Ppevson charactevistic.

* Affordability

“We have a very tight time frame and a fixed

one would Feasibility—evaluating .

exer ask for whether something Ardhiteets often

ﬂ\\sb\mvzﬂ\b“ is possible—is an i,
bination.. <

- urderutilized what's possble vithin

arthitethure “-ility”

a given time Lrame.

OEBPS/assets/f0279-01.png
TvipEZ
Confivmation emails donoaed
Lrom travel partners \J

[—
The user tan make
changes, additions,
or deletions.

The user grants TipEZ
atcess to their email
actount so it ean find
£ravel-velated information.

The TeipEZ system
keeps the dashboard
up to date with
thanges made by
travel pavtners and by

users.

</

_An APl layer handles
integration with the
travel vendors. 2

|

Eath travel
Jblishes —1

partner
updates Eor its Q
i Lormation.

|
O O

o

Q Travel partner
integration points

OEBPS/assets/f0391-01.png
These happen at the same time,

The customer Validate the (asyrehronously (dotted line).
submits an order order and
" genevate order [D ---;-==-------------- -
and waits —» v H
Ch:vgz the Adjust current
Enmail the eustomer’s inventory
customer the eredit eard No need for
order D . asyne heve

v
Send the order e o o
to the flbillmert oy 4,

A departnent order more
Email the tustomer <« The order is packed
that the order is and veady to g0
veady to ship !
Ewail the'ustomer F 7
when the order is Ship the order ¢ ___________ 4 Noneed to vait
to the customer for the item to be

delivered shipped (asyne again)

|

Mark the order
as tomplete

OEBPS/assets/f0391-00.png

OEBPS/assets/f0392-01.png
“Adventurous Air tlight 12, furn lett, heading 230 degrees”
[Event]5q Message

Reason: This is a command sent to only one aivplane about something that needs to
happen

“In other news, a winter storm front has just moved into the area.”

4 Event [Message
Reason: This is being broadeast 4o lots of people about something that has just happened.

“Okay, class, turn to page 42 in your workbooks.”
[] Event M Message
Reason: Even though this is being broadeast +o lots of students, it's a command about
something that needs to happen

“Hello, everyone! Sorry I'm late.”
Event [] Message
Reason: This is something that happened that is being broadeast to many people
No vesponse is expected

"Oh no! | just wissed my train!”
X Event [Message
Reason: Even though no one might be listening, this is something that just happened.
[€ isnt divected toward any one individual

“Exeuse me, sir—do you have the time?”

[Event 5 Message
Reason: This is a veauest made 4o a single individual abouk something Ehat needs £o happen

OEBPS/assets/f0392-00.png
'@m\

OEBPS/assets/f0062-09.png

OEBPS/assets/f0159-01.png
Customer
Browse items /
Select items

Pay for items

Receive email that
order is ready

Bakery Coordinator

Receive order

Determine ingredients -_—

Check current stock
Schedule order \

Baker Sehedule
Order
Receive baking
schedule

Mark order as ready Order
for pickup Status

OEBPS/assets/f0281-01.png
Read the rumbered
nokes in Comber—

clotkvise order. © stort here
v 1

— architectural characteristics —/

Finly, ot 8
= ol digy,

o g © ol e 8

eyl to D archegio H

o these g ing 3l ®

get lgical. H imension e

) J £

2 H

é 3

] %

3 1]

2 I

2 g

H H

L 1

architectural style

T You row know enough 4o ()

Pick style

)

Next, you'l
domant oo
brillant. decision

OEBPS/assets/f0393-01.png
Customer wmakes This is the

a credit card \f initiating event
_purchase

Credit Card
Charged

Fraud Credit
Petection Limit
Service Service
Check for Verify credit
fravd limit

These are the
derived events

g @ g
Notify the eustomer

that they're close to J
their evedit limit.

OEBPS/assets/f0159-00.png

OEBPS/assets/f0280-01.png
Ive given you
the requirements, So
what's the big delay? Why
aren’t you developing the
system? We only have six

months!

€~ Even though Travis is
" impatient o see some
Progress, don't et that
stop You From creating 3
sold, well—thought—out
architecture

</

OEBPS/assets/f0393-00.png

OEBPS/assets/f0158-02.png
Draw Joai
his SPZ::_Y. R:?::a! Components iy,

9ood desmp{ivmber o give them

'€ names.

/

Step 1 StepZ Step 3 Step 4 Step 5

Contractor Contractor Create Schedule Contractor
Profile Site Location Project Project Assignment

[t makes sense to have two j
omponents because the profile
is velatively static, wheveas the
location thanges a lot.

The Contrattor Assignment
tomponent ¢an handle both
assigning eontractors (step 4) and
unassigning them (step 5).

OEBPS/assets/f0279-03.png

OEBPS/assets/f0394-01.png
Give me the shipping options tor this order.
[] Asynchronous ‘g Synchronous] Either one would work

Apply paywent for this order and let we know if the payment goes through.
[] Asynchronous)53 Synchronous] Either one would work

Fulfill this order for we by picking the items off the shelf and packing thew in a box.
K Asynchronous (] Synchronous [] Either one would work

Give me the current status of this order.
[] Asynchronous 54 Synchronous [] Either one would work

Our inventory of this item is getting low—please order wore stock.
X Asynchronous [] Synchronous [] Either one would work

Tell the customer that their order has been shipped and is on its way.
4 Asynchronous [] Synchronous [] Either one would work

Update the custower’s profile picture.
[Asynchronous [] Synchronous KL Either one would work

Post a customer’s review on the produet page.
[] Asynchronous [] Synchronous |54 Either one would work

OEBPS/assets/f0279-02.png
'@m\

OEBPS/assets/f0394-00.png
'@m\

OEBPS/assets/f0031-02.png
The OY‘Wk eite

Lhe I"ve"f‘"’)‘ service

Lo the mmenating it
16 W 4o Wh Payment sevuiee,
e ¥R Y 70t the Orger
34802 acement serviee2
Order Inventory w Payment
Placement Adjuster /wx does the Mediator b):“‘ detidey &
] have i Zservr’ce Pa e:k P the
dat?base?‘vn Thent “ervices
Credit 6ift Reward
Card Card Points
- == = Payment Payment Payment
Reporting Order Inventory
Vatabase Vatabase Vatabase \ /
The g,
is d”'e;f/“ lacemeny ser {
Commyy sy SEPVite g ave
© Payment d:é?,'fé'"ﬁ with —j\ A& Yaﬁmcn’ﬁ ‘\;“:M:CY\.AV i
se. Wy & "
" B 50 i
SN ke 49KA02
3 segd"]

scv“‘“‘l'

OEBPS/assets/f0031-01.png

OEBPS/assets/f0137-06.png

OEBPS/assets/f0030-04.png
‘laking Into account time irames, budgets, and
developer skills when making architectural choices

Extensibility
N We did this
one for You. The system'’s ability to keep its other parts
Agility functioning when fatal errors occur
The ease with which the system can be enhanced to
. support additional features and functionality
nteroperability
The amount of time it takes to get a response to the
user

Fault folerance The system’s ability to respond quickly to change
(a function of maintainability, testability, and
deployability)

Feasibili
fty The system’s ability to interface and interact with
other systems to complete a business request

OEBPS/assets/f0137-05.png

OEBPS/assets/f0030-02.png
|| Changing the font size in a window on the user interface screen

: . This is known as agility in
IE Making changes quiekly srehiteckure
This is known as elasticity.

[X] Handling thousands of concurrent users / This s ko 2
| Enerypting user passwords stored in the database / interoperabiiy

KJ Interacting with many external systems to complete a business request

OEBPS/assets/f0137-04.png

OEBPS/assets/f0401-01.png
O]

o[z«

= [=lw

E|
[N

E[x|T[E[N]D]

x[>[-Jo

F[-[z]o]

—[>]w]a]

[WIOIRIK]F]L]O[W]

[cloIN]TTE]X]T]

o[«[a]o]<

T[R[1]G]G]E]R]

[FTIIRTE

[RIE|S[P[O|N]STI]V]E]

‘PIE[R[F[O[R]M[A[N]C][E

lr[wlofo]w

wlz]<]z][z

-

M[E[S[S|A]G]E[S
T

OEBPS/assets/f0401-00.png

OEBPS/assets/f0404-01.png
Meet Rita,
head of
Dataville

Public Sthools.
s

Pay attention,
because these
things are

important.

OEBPS/assets/f0032-01.png

OEBPS/assets/f0403-01.png

OEBPS/assets/f0028-03.png

OEBPS/assets/f0137-09.png

OEBPS/assets/f0397-00.png
'@m\

OEBPS/assets/f0137-00.png

OEBPS/assets/f0396-01.png
We expect anywhere between 20 and 300,000 customers o be on the systewm at once.
[C] Monolithic Database B Domain-Partitioned 1& Database-Per-Service
Databases
The system wust be as fast as possible.

& Monolithic Database Domain-Partitioned [] Database-Per-Service
Databases

This medical monitoring systew can never completely fail—parts of it must always stay
running.
[] Monolithic Database [_] Domain-Partitioned IX Database-Per-Service
Database

We're anticipating changing the database a lot in this new line of business.

["] Monolithic Database Domain-Partitioned ﬁ Database-Per-Service
Databases

We have to get the new systew up and running as soon as possible.
B: Monolithic Database & Domain-Partitioned [[] Database-Per-Service
Databases

Qur data wodel is extremely large and complex, with lots of interrelated data.

jX Monolithic Database [] Domain-Partitioned [T] Database-Per-Service
Databases

OEBPS/assets/f0136-02a.png

OEBPS/assets/f0399-00.png
'@m\

OEBPS/assets/f0398-01.png
I require a bounded context.

| can use the database-per-service pattern.

Event-Driven

Architecture | create systems that can scale.

| mostly use synchronous communication.
| create high-performance systems.
| save you money because | don’t cost a lot.

| rely mainly on asynchronous communication.

I\Q\ierc.’ser‘lices

rehitecture .) .
hitect | communicate to services using events.

I'm really good at fault tolerance.

| can use a monolithic database

OEBPS/assets/f0030-01.png

OEBPS/assets/f0137-03.png

OEBPS/assets/f0400-00.png

OEBPS/assets/f0029-03.png
e szt Lot G o man
o \akeher (‘“\‘\‘ :o: ':\ S‘Z‘ (as yzu”‘""‘s it Where Lhe front door is
ol doont 7 s migh 3:1‘, older, and if the enbrantewdy is
e \ikeher Problem) ¢a wheelehair aetessible
The 528 of Yo The height of eeili
L (i & you o Your ilings

How Yoedvoo™ L\:ELL\ 0);\;5 (especially i you hagrer o

(many bath Yave \9 e ver' £ald

haddihs 3 new b‘;oms it has A Y

ard {o hroom : n attie .

doy oo s veally the sf‘.',cc\cw storivg all of wide d
You never use unless chk or patio
Aeetie, of o i the

Lourse)

OEBPS/assets/f0137-02.png

OEBPS/assets/f0399-01.png
1. Single—purpose sevvites 2. Physical bounded eontext (data ownevship)

OEBPS/assets/f0029-02.png

OEBPS/assets/f0137-01.png

OEBPS/assets/f0029-01.png

OEBPS/assets/f0137-10.png

OEBPS/assets/f0400-01.png
An online auction system where users can bid on items

Why? The problem domain fits EDA, and this system
needs high levels of sealability, elasticity, and

vesponsiveness.

A large backend financial systew for processing and
settling international wire transfers overnight
Why? None of EDA's superpowers ave needed for

this problem

A company entering a new line of business that
expects constant changes to its system

Why? EDA might be a possibility, sinte it makes
thanae easier-

A swall bakery that wants to start taking online
orders
Why? EDA is t0o tomplex and expensive for a small
baker:

A social media site where users can post and respond
to comments

Why? The asyne and broadcast capabilities of EDA
are a qood fit heve.

5 Well suited for event.driven architecture
[] Might be a it for event-driven architecture

[] Not well suited for event-driven architecture

[Well suited for event-driven architecture
[] Might be a fit for event-driven architecture

E Not well suited for event-driven architecture

[Well suited for event-driven architecture
X Might be a it for event.driven architecture

[] Not well suited for event-driven architecture

[Well suited for event-driven architecture
[_] Might be a fit for event-driven architecture

"I Not wel suited for event.riven architecture

IXWen suited for event-driven architecture
[] Might be a it for event.driven architecture

[Not well suited for event-driven architecture

OEBPS/assets/f0036-01.png
e
= =
@

e
IS

=1

OEBPS/assets/f0035-02.png
This vequires a lot of planning, is

involves
. This dcé‘s;oza:\; ..mc visionary, and involves a lot
3 e b e
RN
& &
o’ g x
o Q@ @
o
.ﬁb}‘Jb —7 Picking @ Desiding to get Deploying in the
S progranting your first dog cloud or on prewises
S language for your
& :ewgprojeg' You tan usually make
H\cse decisions alone.
Sl
@ & Choosing a
parsing library
L Migrating Using a design
m“‘?“‘“" your your systemto pattern
user inferface wicroservioes _7°cq//,,

Sowmewhere in
between

OEBPS/assets/f0035-01.png
'@m\

OEBPS/assets/f0140-02.png
Live Auction

Session

1. Start and stop the auction
2. Show the current trip up for bid
3. Mark a trip as sold and move to the next trip

This is a well-designed component and has just the right amount of
responsibility. However, as iterations move forward, the development team
adds some new requirements to the Live Auction Session component:

4. Display the details of each trip in this auction Heys nenk
tomponenty
5. Keep track of all the bidders currently in the auction Lan?ye“ wash

6. Keep track of each winning bidder for the auction my cav oot
7. Notify the bidder that they won the trip

OEBPS/assets/f0034-04.png
This is d“"gn
This

Breaking Up 2 class file
Deciding to use @ graph database 4
Selecting a user interface framework *ﬁl.,-&_l
M / f“*e

Re -
grati
ng to Microseryi
ices

Choosi
ng
framew, 9 a persist
01 fenc Breaki designi
rk o r;'::'g aparta 19ning a wep pag
e
T Choosin .
These are design. 92N XML parsing lirary
19n.

OEBPS/assets/f0140-01.png
Step 1: Identify
initial core
components

Step Z: Assign
requirements to
components

Step 3: Analyze the
role and responsibility

statements

Step 4: Analyze
architectural
characteristics

OEBPS/assets/f0025-26b.png

OEBPS/assets/f0138-01.png
Step 1: Identify
initial core
components

Step 2: Assign
requirements to
components

Step 3: Analyze the
role and respomsibility
statements

Step 4: Analyze
architectoral
characteristics

OEBPS/assets/f0405-00.png
'@m\

OEBPS/assets/f0032-02.png
Customer
Preferences

Customer
Profile
E bu\/_‘Crom__us

l_ ﬁ tustomer

£ profile
L E sourte_ctode_files

\?V‘&Fﬁ‘cnus

E sourte_ctode_files

OEBPS/assets/f0137-11.png

OEBPS/assets/f0405-01.png
1. What is your quest?

A. To cross the Bridge of Death _Get question ' \ Submit answer
—_ _ —_—
émf

B. To seek the Holy Grail

o

C. To answer your silly questions —

T

{ "student_id": "45",
"question": "1",
"answer": "B" }

Get next question

Generate reports once
all testing is complete Store results

Test Answer
Patabase

Auto grade

{ "student_id": "45",
"question": "1",
"answer": "B",
"grade": "Correct" }

OEBPS/assets/f0137-08.png

OEBPS/assets/f0406-01.png
Ive given you the
requirements, Sowhat's the
big delay? Why aren‘t you
developing the system? We only
have six months.

Even though Rita is impatient
to see some PYOE\'css, don't let
that sway you from ereating

a solid and well—thought-out
avehiteeture.

OEBPS/assets/f0137-07.png

OEBPS/assets/f0405-00b.png

OEBPS/assets/f0034-03.png

OEBPS/assets/f0139-02.png

OEBPS/assets/f0408-01.png
— architectural characteristics I

You are heve. 5

SuoISo9p jeimyoayyoe

/f Sjuauodwod 1esjboj

architectural style — |

OEBPS/assets/f0034-02.png
% Somey)
0 . . o i
@] How services communicate with each other d“,;“f’/cmcht’:dﬂ Shouy
n :

s s
Peet, ©

|| The platform and language in which the services are implemented -
Z] Which services can access which databases
E How many services and databases there are

OEBPS/assets/f0139-01.png
 Physieally ¢ Assess the
veceive the device's
Device deviee from
Receiving the customer.

tondition
Locate the nearest safe disposal facility for destroying the device
[] Device Receiving] Device Assessment [] Device Recycling [] Other:

Capture and store customer information (name, address, etc.)
[Devie [other:

Post the device on a third-party site to resell it on the secondary market
[Device Receiving [] Device Assessment [] Device Recycling [] Other:

Pay the customer for their recycled device
[Device Receiving [Device Assessment [] Device Recycling [] Other:

Record that the device has been received and is ready for assessment and valuation
[m} [Devi (] other:

Determine the value (if any) of the recycled device
i v i [other:

Determine the monthly profit and loss for recycled and resold devices

’Gne\nceﬂuew‘mg [pevi] Devi ling [] Other:

Going Green Corp. needs 4o make 3 profit, sCker sl

OEBPS/assets/f0407-01.png
o Start heve.]

— architectural characteristics —

Fina[] o
(2) (s R ot dra 3
avc}.;f“é . &
Then you'l need b all foue of 59 T (4)
aet logical. dimensions, ¢ g Next, you'll
_7 E dotument Your
= brilliant detision.
8
o

‘— sjuauodwod jeaibo]

architectural style

C, \/fw now know enough to e
pick a style.

OEBPS/assets/f0034-01.png

OEBPS/assets/f0139-00.png
'@m\

OEBPS/assets/f0033-01.png
This is about. availabilicy-
This system wust be available for our overseas customers, ————>

We did this
are complainig about the background color one For you

of the new WW -
f IS is aboyt asitty

The product owwer insists that we aet new features and
bug fixes out to our customers as fast as possible.

Our system uses an event-driven architecture.

LOGICAL COMPONENTS

We need to support up to 300,000 concurrent users in
s system. R This s about sealability

The single payment service will be broken apart into
separate services, one for each payment type we aceept.

We are going fo start offering reward points as a new
paywent option when paying for an order.

/\— This ;s aboy ¢ adg
ing 3

Component. 4, the archt €°3‘¢5’

We are breakinig up the orderPlacewent class into
three smaller files.

The user interface shall not comwunicate directly with —/

the database.

OEBPS/assets/f0138-02.png
\/ Represents the live

auttion curvently
¢ taking place
Display the current trip up for bid during the auction . .
Since the Live Auction Session component is responsible for T [Live Auction
controling the auction currently taking place, it makes sense.
to assign this requirement o it

Session

Responsible for
veteiing and

Mark a trip as sold and move to the next trip Bid Y t"ﬁ?ﬂ:ﬁi from

‘This requirement also has to do with controlling the flow of the Capture o

auction session, so let's assign it to the Live Auction Session

component. Responsible £or shoyi

s .- N the video feed fran
end each online bid to the live auctioneer he auct rom

as it's placed, so they can call out the bid Video ton

Since the Bid Capture component receives the bid from the Streamer | &

bidder for a trip, it makes sense to have this component also

forward that bid to the live auctioneer.

This is 3 new componert

Record the live video stream for later playback we added o satisfy the
in case a bid is contested last veauivement.
The Video Streamer component already has the video feed,
Soit makes sense to have it record the video feed as well. Trip
Viewer
Allow bidders to view details about the current / &
trip up for bid
Wait—it doesn't make sense for any of the other components Creating new components is known as
we identified earler to take on ths responsibity. Let's create volving the architecture

a new component to handle it.

OEBPS/assets/f0025-18.png

OEBPS/assets/f0132-02.png
Who knows what this
C’Cak[y'

2 .
this Com| + mp: nent does \ Auction
- lets you look 51 ff: e",i bt :0{ a very g0od Manager
7 tip
]‘rlp <« bemg Auttioned off. This Lov'\Y""”‘jc name-
Viewer 5.3 good ¢omp,

nent name.

OEBPS/assets/f0025-17.png

OEBPS/assets/f0132-01.png
Register tor __ Join the auction » Viewthe o Bidonatrip Yay tor the
an auttion onee it starts live avction you like trip if you win

' ; Au .o“ v " B Amoma :
eqis
Session Streamer Gapture

OEBPS/assets/f0234-04.png
ol

OEBPS/assets/f0025-16.png

OEBPS/assets/f0131-01.png
Creating a logical architecture is all & “guessing game”? That’s the
most ridiculous thing I've ever heard. Isn’t there some way to take
the guesswork out of identifying logical components?

OEBPS/assets/f0234-03.png

OEBPS/assets/f0025-15.png

OEBPS/assets/f0130-04.png
This jar exisks but is cm‘?{:\l, w

like the inmtial tore Lom?oncv\i'} -

'ldcr\{:\(:y. Live Auetion
Spacion

OEBPS/assets/f0234-01.png

OEBPS/assets/f0025-21.png

OEBPS/assets/f0025-20.png

OEBPS/assets/f0025-19.png

OEBPS/assets/f0133-00.png
'@m\

OEBPS/assets/f0129-02.png

OEBPS/assets/f0232-01.png
'@m\

OEBPS/assets/f0231-02.png

OEBPS/assets/f0231-01.png
(Order J (Inventory] ?{illamodular

monolith.

Eath of the lettered boxes

rc\?rcscn{s a sepavate sthema
1o house the Lables for eath
module. (0 stands for Ordex,

and so on’)

We still only have one
database for the

modulav monolith.

OEBPS/assets/f0025-14.png

OEBPS/assets/f0130-03.png
[LivsaAucﬁonj [Video] [cBid j
ession Streamer apture
>

ace
i J .
kS his 7T i i
oner com, This component 1s 5 per
oo : live ""CZ:.M "ePresent, m‘:,o,\g\\,le o streaming : mp%frl:e}t
nd g Parta g plage the live auttion to online Phiring b, ”
Join the oo Participy, [eipants. ;
uetio, oMts 4, pactitipd

OEBPS/assets/f0234-02.png

OEBPS/assets/f0025-13.png

OEBPS/assets/f0130-02.png
This is Frank, the Clo ot
<}Advcn£wous Puctions.

The auction flow is pretty simple. Participants join
a live auction, view the auction, and bid on a trip
they are interested in.

OEBPS/assets/f0233-01.png
I need the details
for recipe_item_id 2.
I'm going to reach out

to the Recipe domain.

(%
°Order
domain

APl

Invoke the Retipe

module AP| by passing

in vetipe_item id.

Hold on! Let
me look this up
for you.

(o]

Q
Recipe
domain

Implementation
(private)

APl

—— order_schema —

orders

id |recipe_item id[...

The Retipe module
vesponds with

+the veeipe details
vequested.

Implementation
(private)

{

recipe_schema ——

recipes

id

ingredients

OEBPS/assets/f0025-12.png

OEBPS/assets/f0130-01.png
Step 1: Identify
initial core
components

Step Z: Assign
requirements to
components

Step 3: Analyze the
role and responsibility
statements

—_—

Step 4: Analyze
architectural
characteristics

OEBPS/assets/f0232-03.png

OEBPS/assets/f0129-03.png

OEBPS/assets/f0232-02.png
CThis is a table.

customers

delivery_ addresses

order_history

recipes

order_schema

recipe_schema —

ingredients

inventory_schema

R These are the Tonenzs 7

we've identified.

OEBPS/assets/f0027-01.png

OEBPS/assets/f0136-04.png
'@m\

OEBPS/assets/f0026-02.png
Significance of trade-ofts Strategic or tactical

Using a queve will increase responsiveness when Not wany people need fo be

placing an order, but inventory way ot be updated The Siﬁ"ﬁc icant involved in this decision, and

in a timely manner, likely creating back-order K__{rade—o&f s push this it doesn’t involve long-terw

conditions. These are pretty significant frade-offs. detision tloser 1o planning, so it’s wore tactical.
arthitecture.

)

Architecture

Design

Taking the mean of all three factors puts the decision
right about here, meaning this decision has some
architectural aspects and an architect should probably

be consulted or involved. We needed all three factors Level of effort
to determine whether this decision was more about It doesn’t take 2 whole lot
architecture or design. of effort fo send a message

10 another service. This is
pretty standard stuff.

OEBPS/assets/f0136-03.png

OEBPS/assets/f0026-01.png
Order
Placement
Service

. are sent w
[nventory adjvsla::\;:’:m“{ sevvite

Lhe Inventory
Lhrough this queve: 1

— e O—>

Inventory
Management
Service

OEBPS/assets/f0136-02.png
This eomponent will be
c hard
(, because it’s doing {00 mur;\. o el

Bid

These are all
Manager

the things the

tomponent does.

Accept a bid /
Display all winning bids

Track bids for auditing purposes
Determine bid winner

Notify auctioneer of online bid
Generate bid reports

OEBPS/assets/f0025-26a.png

OEBPS/assets/f0136-01.png
Okay, so if T identify lots of actions that
have to do with bids, then should I put all of
them together in a single component called

the Bid Manager?

OEBPS/assets/f0028-02.png
P []
(il
; —
- |
]lul 1T
i I |
13 IMI
C [[1]
L [[T 1]
-
(il [[]
I R

OEBPS/assets/f0028-01.png

OEBPS/assets/f0133-02.png

OEBPS/assets/f0133-01.png

OEBPS/assets/f0025-25.png

OEBPS/assets/f0135-02.png

OEBPS/assets/f0025-24.png

OEBPS/assets/f0135-01.png
We s('ar{',cd this

exeveise for
oo il D
in some of the

tomponents. Customer

Browse items

Select items

) The [tem Cheekout
Pay forittems ——e——o tomponent needs

Receive email that 1o attess the
order is ready Shopping Cart
Ctomponent.

OEBPS/assets/f0025-23.png

OEBPS/assets/f0135-00.png

OEBPS/assets/f0025-22.png

OEBPS/assets/f0134-01.png
2 Ghe wants ©@ 9
Remenber Kat:g,“ e a bidder

g on 3 1XiD) 3

We'll start with Kate. As a bidder, here
are a few of her primary

Lok for am auetion ————

actions:

Th
View the live video stream —_— %’P f“’ fa;m,
N "ent hang|
Place a bid Tl gy
it bid g,
fies an cor Bidder 7
~ Thisis Sam. He mponen ker

auttioneer. /

s an auctioneer, here are a few of

s actions: /
Receive a bid from an online bidder N

he Live Puct on
Enter a live in-person bid into the system 1:,45 Vidder imkormat

Lomgonents

nt
Son tomon®
S 4o other

Start the avetion

Mark an itew as sold

Weusc a “system” actor to rep
happen automarically in the sy

@ Charge bidder /

Track bidder activity -_—

¢ things that

OEBPS/assets/f0054-02.png
LW

Usually vepresented as a
number of “ines” (99.999%
uptime = 5 nines, 3 bit
undev b minutes/year).

availability

at percentage of the time the
system needs to be available and, if

24/7, how easy its (o get the system
up and running quickly afier a fa

J

=
&

A g00d example of the
oo hat you can ake any
adjeckive and add “<ility

get

business con

backup stra

$o make 2 new avthiteetural
ehavatteristic!

& robustness
The system’s ability to

E2J) hilsafe, or i c
in a way that affects lives. If it fails,

handle errors and boundary
conditions while running,
such as if the power, internet
connection, or hardware fais,

When these ave
important, they are very

mprkint =)
reliability/safety

Whether the system needs to be
jssion critical

will it endanger people’s lives or cost
the company large sums of money?
Common for medical systems, hospital
software, and airplanc applications.

performance
How well the system

available resourc

Some

nline agai

nuity

gy and requi

and maint

recoverability

How quickly the system can

in case of

a disaster. This will affect the

ments

for duplicated hardware.

As you vill see shortly,
Yeormane” s mary
diffevent aspects

“ilities” ave easier to

athieve than others. This
one is often difficult

Al

scalability

How well the system

performs and operates as

the number of users
requests increases.

or

«

Our Lafter
appleation
vll definitel
need this

OEBPS/assets/f0050-02.png
We need o
Proteet the
Privacy of useys,

ARCHITECTURAL CVHARACTERISTICS

OEBPS/assets/f0052-01.png

OEBPS/assets/f0051-03.png
“Ladies
and gentlemen, boys
and girls, children of
all ages—welcome to

the International Zoo

of -ilities’!”

" Structural

Process enclosure

house

pen Cross-cutting savannah

OEBPS/assets/f0051-02.png

OEBPS/assets/f0051-01.png
Think this is a big list? Check
out h'l:{:ys:/ /15025000.tom/
index.php/en/iso—25000-
standards/iso—-250| 0.

scalability accessibility observability
availability Waintainability testability
interoperability revsability portability
security simplicity feasibility
stability reliability usability
agility inteqrity performance
traceability localizability avditability

This is not the
complete list. Theve
is no COm?IC‘Ec lis‘f‘,.l

OEBPS/assets/f0054-01.png

OEBPS/assets/f0053-02.png
security ¢ S errean ey

application, a5 an implicit

or explieit architectural

holistically. Does the data — chaarteriete

need to be enerypted in the e e 3.
database? How about for /5= maintainability

network communic

How secure the sy

tem s,

on = . How casy it is for architects and

between internal system: S P developers o apply changes to
What type of authentication enhance the system and/or fix
needs o be in place for by
remote user access?

Porkability can apply to any
part of the system, including
the user interface and
This is one of those implementation platform
ehavatkeristies that belony

il
£o more than one tategory- portability

How easy it is to run
the system on more
than one platform (for

extensibility example, Windows
How easy it i for developers and macOs).

0 extend the system. This

may encompass architectural

structure, enginecring

practics, internal design, and

governance. localization
Some arehitectural j

charatteristics cover
development eonterns vather
Ehan purely domain coneerns

How well the s

ystem
supports multiple languages,
w

s of measurcment,

Another flavor ___s,
of loealization is

inkernationalization woed globally
18w, ally.

currencies, and other
factors that allow it to be

OEBPS/assets/f0053-01.png

OEBPS/assets/f0052-02.png
7 modularity

GR The degree to which the o\ testability
software is composed g"* How complete the system’s

of discrete compone | testing is and how easy these

Modularity affects how S| tests are to run, including wnit, —“Testability” vefers
architects partition functional, nce, and - to testing at
behavior and organize exploratory tests. development: time
logical building blocks. (sueh as unif. testing)

j vather than forma|
1 quality assurange
aglhty

rchitectural
that encompasses
Aglity is 3 composite testability, deployability,
a;ﬁh-l:&b.ral chavacteristic ” modularity, and a host of other
welll distuss laer in this characterist
ehapter—stay tuned! able agile

practices.

Look out for this on the
next page. Many avchitectural
chavacteristies eut aevoss
eategories, as you'll see in the
next few pages

extensibility
<. How easy it is for developers
deployability 10 extend the sysiem,. This
How casy and effic a
the software system.

/

itisto

deplo
practices, internal design, and
governance.

This is one of the many
avchitechural characteristics
that make up “agility.

@ decouple-ability K\

Coupling describes how parts of the Yes, we know this is 2 made—
«p word. That. happens a lot
in softuare architecture!

measures the extent (o which this is

possible in a software

OEBPS/assets/f0055-02.png
security

How secure the systenn i,
holistically. Does the data
need 0 be encrypted in the
database? How about for
network communication
between internal sysiems?
What ype of authenticarion
needs o be in place for remote
user aceess?

Atbenticabion 7

and authorization
ve aspecks of
seturity.

ner arewho t

How well the syst

functions withi
web page, bu

e, field level, etc.).

Many government agencies
around the world vequire &
baseline level of aceessiilty.

o

accessibility

How casy i it for all your
users to access the system,
including those with
disabilitics,like colorblindness
or hearing loss.

Thi

ch

“usability” ean also vefer o

use

they are and makes sure they can access only certa

how ambiguous avehitectural

his is one of

arehi these

iteetural Ahsvaderu{wt;
Present. [t gl
Cross-tutting

legal

How well the systen
complics with local lavs
about data protection and
about how the application
should be built or deployed.

authentication/authorization

hey say privacy
How well the system
hides and encrypis
transactions so that
internal employees
like data operators,
architects, and
developers cannot see
them.

Many cownbries and vegions
have strict laws governing
peivacy, making cosisteney
for international
applications ricky.

is is 3 great example of

arackeristics ¢an be

treated as seriously as any

other architectural issue.

ev expeviente design.

OEBPS/assets/f0055-01.png

OEBPS/assets/f0058-03.png

OEBPS/assets/f0058-02.png

OEBPS/assets/f0058-01.png

OEBPS/assets/f0056-01.png

OEBPS/assets/f0059-04.png

OEBPS/assets/f0059-03.png

OEBPS/assets/f0059-02.png

OEBPS/assets/f0059-01.png
I'see that there are lots of
architectural characteristics...
but how do | know which ones are
critical or important to my project?

OEBPS/assets/f0043-02.png
These rcyvcscv&
the problem domain.

These are the nontunctional
(] vequivements.

architectural characteristics

These ave the
detisions we make
a“:cr do'mg a
brade—oft analysis

o

SUOISO3P [eiNn}od}Yoie
31f3s Jeanjoajiyde

logical components

Avehitectural aharajc{cris{ics and logical
components together help us detide on
+the avthitectuval style.

OEBPS/assets/f0043-01.png

OEBPS/assets/f0042-01.png
The good news is that
they've got the logo
(:igwrcd out. The vest

A A\
!’

OEBPS/assets/f0145-01.png
I should probably start thinking about
how the logical components interact
with and depend on each other, right?

OEBPS/assets/f0140-03.png

OEBPS/assets/f0037-02.png
Significant Tradeoffs?
[]Yes @] No
[XYes [INo
[1Ves KJ No
[]VYes @ No
[dves XINo

[T Ne
[T No
[T No
K]No
[1No
[INo
@No

Okay, so maybe this is 5

\f diffieult detision somefimes

Picking out what clothes to wear to work today

Choosing to deploy in the cloud or on premisis
There ave terta?
Selecting a user interface framework € {f: yeve, so this
eikher waY-
Deciding on the name of a variable in a class file

oy brade-
tould 90

Choosing between vanilla and chocolate ice cream

Deciding which architectural style to use ;}m fugack stadbY

e e and ovrdl
Choosing between REST and mzssaglb}g/ ?.:amtama\““W
Using full data or only keys for the message payload)
Selecting an XML parsing library
Deciding whether or not to break apart a service
Choosing between atowic or distributed transactions

Peciding whether or not to go out to dinner tonight

Are
Tougetting hugry yetz j This tan impact data inbegrity
and doba corsisenty, bt 3o
Selabity and performante

OEBPS/assets/f0141-03.png

OEBPS/assets/f0037-01.png

OEBPS/assets/f0141-02.png
We did this 1. Start and stop the auction

one for Yow Session @@=). Show the current trip up for bid
3. Mark a trip as sold and move to the next trip

Live Auction

Draw your ne¥ tomponents

N e heve:
in this space) 4. Display the details of each trip in this auction

5. Keep track of all the bidders currently in the auction
6. Keep track of each winning bidder for the auction
/\ 7. Notify the bidder that they won the trip

Hint: You might consider ¢ombining a Lew of these
vequivements when treating new components.

OEBPS/assets/f0036-02.png
»
Dont beliere o2 Plug “parado® of thoite

inko Your Lavorike seavth engine \—)

Migrating your system to
4 wold 3 cloud environment
of effork and wou!
These f‘“ l\:t o the avehiteckue
cesi
{hercogor:h qetkrom Replacing your user
side interface framework
Ho‘gng from a relational

This would fall vight abot.in the middle 2.zoph database
of the spettrum bebween architecture
and design.

ind desiy Breaking apart a single l

service into separate ones
Resolving a merge
conflict in Gji

These take velatively less ¢ffort ang ﬁ -

would therefore veside more on

“ the design
e of the spectrum 9 _? Breaking apart a class file

Renaning a methog on
function

OEBPS/assets/f0141-01a.png

OEBPS/assets/f0141-01.png

OEBPS/assets/f0041-01.png

OEBPS/assets/f0144-01.png
The Bid Capture
Kate has 4,

. \onger
tomponent tan protess he autkioneer no
Winning £he f?f" Chante of move bids now that it is Sam;; cai{ Tor orline bids ¥
biddi P now that Lhe no longer storing them. has 1 ¥
"9 Process is fastey. 9 9

be saved in the database:
/ N~

This is a new
Lcm\?oncnf»

Bid
Y >\ Tracker

The Bid Capture component

¢an asynchronously send the ’\
bid without having to wait

for it 4o be stored.

The Bid Tracker Component ean

ke as much time as it
d:
save the bids 4o the dlaf:;:s:.b

OEBPS/assets/f0039-02.png
(=]
B
o] [
<| [
[][-]>[=]w O] O]
[— w
- 2] o] [a]
B o) e S P S e
w o |© |
o] MM |
<] 0] [o] [(]
z[oP[ow]| [elule[=[o[z] [2] [u]
» — T O] x|
-] [=[<[elF[=ol<]=] [=] B
z - o o =
o [wlofa[o]w <|ecJolz|=[~[w]o]+]
> - Jo o >
m —[Z]F[wlx]u]<]olu] [a]x][o]v]
o a F
= o]

OEBPS/assets/f0143-01.png

OEBPS/assets/f0039-01.png

OEBPS/assets/f0142-02.png
Sam The
autkioneer

| really want this trip. | see there are
lots of other bidders, so I'm going to
raise my bid to $2,000.

\ Bid
N
N

Kate’s bid wa:
All bids ave stored the :hfghlcst‘/ﬂ ’
in this database for

tratking purposes.

We have $2,000
from online bidder
Kate. Do | hear
$2,100? Going once,
going twice...

OEBPS/assets/f0038-01.png
True

True (False

False

True
False

This is backwayds.
Design is like the structure of a house (walls, roof, layout, and so on), and u
software architecture is like the furniture and decoration.

Most o,
Most decisions are purely about architecture or design. Very few KN W’é'ﬂn éec"’ohx lie
exist along a spectrum between architecture and design. wae he SPCCfrm

The more strategic your decision, the more it's about architecture;
the more tactical, the more it's about design.

The more effort it takes to implement or change your decision, the more
it's about design; the less effort, the more it’s about architecture.

Trade-offs are the pros and cons of a given decision or task. The more
significant the trade-offs become, the more it's about architecture.

OEBPS/assets/f0142-01.png
Step 1: ldentify
initial core
components

Step Z: Assign
requirements to
components

Step 3: Analyze the
role and responsibility
statements

Step 4: Analyze
architectural
characterlstics

OEBPS/assets/f0050-01.png
Explicit

Packages are stacked
outside a door.

The door is locked.

Implicit

No one is home.

This family orders a

bunch of stuff online.

Is this family on
vacation?

OEBPS/assets/f0049-02.png

OEBPS/assets/f0046-02.png

OEBPS/assets/f0046-01.png

OEBPS/assets/f0045-01.png
We cover logical component

design in Chapter 4—stay tuned! D

LOGICAL COMPONENT DESIGN

= 1

This vepresents how
arthiteetural chavacteristies
differ from the domain.

Some problems (like
stalability) ean only be

solved via avehiteeture.

ARCHITECTURAL CHARACTERISTICS

CRITICAL OR IMPORTANT TO APPLICATION SUCCESS

Used as filtering eriteria
4o avoid overengineering.

OEBPS/assets/f0044-01.png
Notice how many of them
end with “ility”.

Auditability

Banks must provide a way

{::mfy Ja::at i Vata integrity
Financial transaetions must

be consistent. and accurate

Security
Barks veagire strinaent

security to protect
Enancial conterrs.

Bank

Both domains have sealability as

on architeckural havackeviskic -

Ehey must support Scalability 5,000 e
numbers of conturvent usevs

Online aukions must. support
a large rumber of bidders.

Usability
Auttion sites must be
£ use for quick and

eas
Bient enbry of bids

\3 .

Online auction
~_ Reliability

Gouslslarw 7 Auttion sites must be
L,aj;: i eac:rh:j . veliable—users don't like it if
onsistently and in orde their connettion drops in the

for auttions to work middle of an auction.

OEBPS/assets/f0049-01.png

OEBPS/assets/f0048-01.png
ARCHITECTURAL CHARACTERISTICS

e

CRITICAL OR IMPORTANT TO APPLICATION SUCCESS

We ave talking about the
JChIY‘d cdgc NMOS‘{‘, {',herc -J\

OEBPS/assets/f0047-02.png
This is @ monolithic

avchitecture. k}

[§ Promotions

needs o ix a bug
in production, the

whole application
needs to be
vedeployed.

‘/\ In a distributed
architecture, each

Add event.
user

’(((0«

Promotions

&

=
L 1]

—

sevvice is deployed
independently. "

[n this case,
Promotions ean
g0 to produttion
anytime they like!

OEBPS/assets/f0047-01.png
WC]VC moved on {')O ‘H’\C
setond edge heve.

OEBPS/assets/f000v-01.png
x4 2L 5 Nl

OEBPS/assets/f000iii-01.png
Wouldn‘t it be dreamy if there was
@ book about software architecture
that was more fun than getting a root
canal and more revealing than reams of
documentation? It’s probably just a fantasy...

OEBPS/assets/f00xxi-01.png
Ican't believe

they put thatina
software architecture
book.

OEBPS/assets/f000vi-01.png
K Neal Ford

Raju Gandhi j

OEBPS/assets/f0062-01.png

OEBPS/assets/f0060-02.png

OEBPS/assets/f0060-01.png

OEBPS/assets/f0062-05.png

OEBPS/assets/f0062-04.png

OEBPS/assets/f0062-03.png

OEBPS/assets/f0062-02.png

OEBPS/assets/f0062-08.png

OEBPS/assets/f0062-07.png

OEBPS/assets/f0062-06.png

OEBPS/assets/fmone.png

OEBPS/assets/fmthreea.png

OEBPS/assets/fmtwoa.png

OEBPS/assets/fmonea.png

OEBPS/assets/fmtwo.png

OEBPS/assets/f00xxv-01.png
T wonder how
T can trick my brain
into remembering
this stuff...

OEBPS/assets/f00xxiii-02.png
Great. Only 450
more dull, dry,
boring pages.

OEBPS/assets/f00xxiii-01.png

OEBPS/assets/f00xxii-01.png

OEBPS/assets/f00xxvii-01.png

OEBPS/assets/f0289-01.png

OEBPS/assets/f0288-02.png

OEBPS/assets/f0288-01.png
— architectural characteristics 1

You ave heve.

N

SuoIsosp Jeinyooyiyose

/— Sjuauodwos 1eaj6oj

architectural style — |

OEBPS/assets/f0287-03.png

OEBPS/assets/f0290-02.png
User nferface

Layer

Database

|

Draw a computer screen to represent the user interface and

indicate which types of wsers are interacting with it. For example,

if you have separate user interfaces for desktops and mobile devices, Feel free 4o

show two computer screens. amotate Your
diagram to C|ari\c\/
points or deseribe
things.

Use a rounded box to represent a component. These should match 4/

the logical components you identified in the previous exercise. Be sure

to give your components a meaningful and descriptive names.

Use a box to a represent a layer (if your architecture needs layers).
Again, be sure to give each layer a meaningful name.

Draw a cylinder to represent each physical database in your solution.

Arrows represent communication to and from the user interface and
database

OEBPS/assets/f0290-01.png
— architectural characteristics]

Y e

o

SuoIs29p feanyoayyoe

/—— Sjusauodwos 1eajbo

architectural style — |

OEBPS/assets/f0289-03.png

OEBPS/assets/f0289-02.png
Title:

7 e did i
Status: Proposed one for you.
Context:
Decision:

& What is the impact of Your decision? What
Consequences: trade-offs are You villing to accept?

OEBPS/assets/f0291-03.png

OEBPS/assets/f0291-01.png

OEBPS/assets/f0304-01.png
Let's hope You don’t get UiJ
“sick” of Lhe project and [

end up heve. \

OEBPS/assets/f0303-01.png

OEBPS/assets/f0302-02.png
Microkernel architecture diagram

The entities that appear

i istente layer / - - \
n ?\Z;::a o fothuce (Web) (08) (Android)

become part of the lavaer
domain's Components,

intluding pevsistence logic ldentify and Merge | Manval

N group trips trips entry
Ewail i
: Email
(providers »—’ gateway Alerts

e) Travel API
e

_ Core system)

||

£

—

gl

Social wedia
-)l(sites

The ore system inthes
all the non-integration
parts of the syskem

OEBPS/assets/f0305-03.png

OEBPS/assets/f0305-02.png

OEBPS/assets/f0305-01.png

OEBPS/assets/f0305-00.png
'@m\

OEBPS/assets/f0305-06.png

OEBPS/assets/f0305-05.png

OEBPS/assets/f0305-04.png

OEBPS/assets/f0188-02.png
O'REILLY" ‘T@(‘o
Head First
Design
Patterns

Building Extensible
& Maintainable
Object-Oriented
Software

Eric Freeman &
Elisaboth Robson
withKothy Sera & Bert Botes

€3 ABrainFriendly Guide "\

You ¢an learn j

more about design
patterns from Lhis
book.

OEBPS/assets/f0305-10.png

OEBPS/assets/f0187-01.png

OEBPS/assets/f0305-09.png

OEBPS/assets/f0305-08.png

OEBPS/assets/f0305-07.png

OEBPS/assets/f0190-01.png

OEBPS/assets/f0307-03.png

OEBPS/assets/f0189-01.png
Presentation =
' The V for “view” in MVC

B @ concernsthe Uland how the
Typical layered architecture user interacts with the system.
77777777777777777777777777777 X4 In a layered architecture,

X4

UlLelements appea
presentation layer.

Presentation = Workflow % 5.

The workflow layer ¢
mostof the applicati
s logic, workflows,

s, and other domain
activities reside in this layer.

-

®
| B Workflow

& Persistence

N o .
Like most layers, this one is Persistence 5.

optional, depending on the
applcation's vequivements

Many teams use a special
persistence layer in thei
architecture (0 map co

~
This dotbed —) A ~
box vepresents “Monolith” implies

£he monolith. R that this is a single le , the
‘ deployment unit: ' i d maps toa

] dutabase or other persitence
Layered Monolith

mechanism. ‘
“The monolithic deployment model, discussed in Chapter 3, is Not all applications use

& Database 5.
\2al

ofien with layered a . While ics
for different teams to work on the code and on the database, a
monolithic architeeture relcases both database and code changes
together.

database, but they may
persist information elsewhere:
a file system, the cloud, and

50 on

OEBPS/assets/f0307-02.png
his is Quite 3 smg] serviee

because it only Pev-forms a
single ‘Funcfion—lcf’s eall it

a mitro”~servige,

—

Monitor
Heart
Rate

OEBPS/assets/f0188-03a.png

OEBPS/assets/f0307-01.png
Monitor
All Vital
Signs

t This large service monitors all
of a patient’s vital signs.

OEBPS/assets/f0188-03.png
The model tontains

business logi¢ and

domain entities. /)

The view ﬁ

vepresents the
usev interface

of the system.

Model \

The tontroller vepresents

| & the workflow of the

updates manipulates
@ View @ Controller
N\
. 7

9,

S, \ /ge

The user intecacts with the
application through the user
intecface, using the workflow
defined by the tontroller to
manipulate the model elements.

application, combining model
elements and fatilitating
their translation into view
elements.

OEBPS/assets/f0306-01.png

OEBPS/assets/f0193-01.png

OEBPS/assets/f0192-01.png
“naanpop” is the

naanpop " system seope.)
“orderapp” is the
orderapp < spplication stope.

Just like for our domain presentation
tomponents, the divettory
shrutture eorvesponds to the

layers: 3 workflow
lots_of_source_code_files

[model
E lots_of_source_code_files

persistence

lots_of_source_code_files

lots_of_source_code_files

The layers of
the architecture
ave vepresented
as packages or
namespates.

OEBPS/assets/f0191-02.png
~and eventually gets

a response.
The user makes

a vequest of the Request m) Response
application... / M /

Presentation
Workflow

Persistence

AN Z

\a/

=
Database E

OEBPS/assets/f0307-05.png

OEBPS/assets/f0191-01.png
But I stilldon’t
understand how it
works. How does a user
request fit into the
laYered structure we've
been building?

OEBPS/assets/f0307-04.png

OEBPS/assets/f0293-01.png

OEBPS/assets/f0294-03.png
X X

Traveler System
Sign in Synt. trip information
Add trip Leom email
Edit trip Send alerts
Delete trip

Reeeive alevts

X

Travel partner

|

Trip segment
status

X

Social wedia

|

Trip updates

OEBPS/assets/f0294-02.png
'@m\

OEBPS/assets/f0294-01.png
'@m\

OEBPS/assets/f0293-02.png
Top 3

O0OX ON KO

Driving Chvavzracteristics Implicit Characteristics
feasibility i (Jeasibility Yeost/time)
performance security

scalability maintainability

elasticity observability

extensible/evolvable < ["FEZ is 30ing to need
lots of integrations

. . with email providers
availability and sotial media sites.

Common Candidate Architectural Characteristics

performance data integrity deployability

responsiveness data consistency testability

availability adaptability configurability
fault tolerance extensibility customizability
scalability interoperability recoverability

elasticity concurrency auditability

OEBPS/assets/f0296-02.png
Layered Monolith Architecture Analysis

Pros
A layered architecture, being a monalith, is faivly
simple, so it provides a high degree of feasibility.
Partitioning by bechnical oncerns makes adding
hivd-party inbegrations easier

Monolithic arehitectures lend themselves to better
performante, which is one of THPEZ's priovities.

Modular Monolith Al

Pros
A modular monolith avchitecture, being a monolith,
is faiely simple, so it provides a high degree of
feasibility.
Paritioning by domains {its better heve, because
it eliminates the need 4o split domain parts aut by
their technical capabilities.
Monolithic avchitectures lend themselves to better
performante, which is one of TepEZ's priorities.
Microkernel Archif

Pros
A monolithic mitrokernel architecture is faivly simple,
o it provides a high degree of feasibility.
A mierokernel is well suited to the job, given
TipEZ’s need for integration Flexibility.
Monolithic mitrokernel arthitectures lend themselves
to better performance, which is one of THpEZ's

priorities.

Making changes o the domain in 2 layered
architecture tan be cumbersome betause the domain
is smeared atross multiple layers

As TpEZ grows, the system vill need o be
monitored continuously o ensure that it can seale

rchitecture Analysis
Cons

Adding more integration partners may vequire
changes £ 3 large nmber of domains

As THpEZ grows, the system will need to be
monitored continuously £o ensure that it ean scale.

itecture Analysis

Any changes that affect the core must be

considered arefuly.

s TpEZ grows, the system vill need 4o be
monitored continucusly o ensure hat it can seale.

o

Turns out any of these would work; show aoyams
they'd just have diffevent trade—offs. seakecbire 359
TN thvee!

List your winning choice here:

OEBPS/assets/f0296-01.png

OEBPS/assets/f0295-02.png
Actor

These entities ave used
with all velated components

O

Trip identification/
qrouping

point

—
—

Information
flow

&~ Transport includes local

ransportation, such as vental
tars and mebro systems, but
not flights.

F
= " ~__

-

The email .
et ["3:;‘,‘3" [Nt] [Sl J
mails and

Td:n;@m /)/

upeoming brips

Email Travel API 1 Data
gateway integrations J analytics
The system will ither

veeeive or need to
vequest updates from
travel partrers. _y

o Push updates. g4

integrations

he analytics sevvice provides thi
vovides third—

Party support for veporting and

other business intelligente.

OEBPS/assets/f0295-01.png

OEBPS/assets/f0297-01.png

OEBPS/assets/f0410-01.png
— architectural characteristics]

You ave heve.

)

Sjuauodwod 1eajboj
Suoisoap jeanyoayyose

,\ architectural style — |

OEBPS/assets/f0409-00b.png

OEBPS/assets/f0410-03.png
L X

Student System Test
/ Adwministrator

Sign in

7

We did this

one for you

x

Teacher
(Proctor)

X

Head of Pataville
Public Schools

OEBPS/assets/f0410-00.png
'@m\

OEBPS/assets/f0410-00a.png

OEBPS/assets/f0410-00b.png

OEBPS/assets/f0411-00b.png

OEBPS/assets/f0411-01.png
Logical Architect
ure Key Use this key kor your

oo oohsynce s o P
e SV C —

% logjical aeehitetture:

Actor

@

OEBPS/toc01.html
		O’Reilly Books

		Authors of Head First Software Architecture

		Table of Contents (the real thing)

		How to use this Book: Intro

		Who is this book for?

		Who should probably back away from this book?

		We know what you’re thinking

		We know what your brain is thinking

		This must be important! Don’t forget it!

		Metacognition: Thinking about thinking

		So just how DO you get your brain to treat software architecture like it’s a hungry tiger?

		Here’s what WE did

		Here’s what YOU can do to bend your brain into submission

		Read me

		We break things down, then build them back again.

		We don’t exhaustively cover everything.

		The activities are NOT optional.

		The redundancy is intentional and important.

		The examples are as generic as possible.

		The Brain Power exercises don’t always have answers.

		O’Reilly online learning

		Do it yourself chapters

		The technical review team

		Joint acknowledgments

		Individual acknowledgments

		1. Software Architecture Demystified: Let’s Get Started!

		Building your understanding of software architecture

		Building plans and software architecture

		The dimensions of software architecture

		Puzzling out the dimensions

		The first dimension: Architectural characteristics

		The second dimension: Architectural decisions

		The third dimension: Logical components

		The fourth dimension: Architectural styles

		A design perspective

		An architectural perspective

		The spectrum between architecture and design

		Where along the spectrum does your decision fall?

		Is it strategic or tactical?

		How much effort will it take to construct or change?

		Does it have significant trade-offs?

		Strategic versus tactical

		High versus low levels of effort

		Code Magnets

		Significant versus less-significant trade-offs

		Putting it all together

		You made it!

		Software Architecture Crossword

		Code Magnets Solution

		Software Architecture Crossword Solution

		2. Architectural Characteristics: Know Your Capabilities

		Causing Lafter

		Cubicle conversation

		What are architectural characteristics?

		Defining architectural characteristics

		Characteristics are nondomain design considerations

		Characteristics influence architectural structure

		Limit characteristics to prevent overengineering

		Consider explicit and implicit capabilities

		The International Zoo of “-ilities”

		Process architectural characteristics

		Structural architectural characteristics

		Operational architectural characteristics

		Cross-cutting architectural characteristics

		Sourcing architectural characteristics from the problem domain

		Sourcing architectural characteristics from environmental awareness

		Sourcing architectural characteristics from holistic domain knowledge

		Composite architectural characteristics

		Priorities are contextual

		Lost in translation

		Architectural characteristics and logical components

		Architectural characteristics ≈ capabilities

		Logical components = behavior

		Balancing domain considerations and architectural characteristics

		Limiting architectural characteristics

		The magical number 7

		Characteristics Crossword

		Characteristics Crossword Solution

		3. The Two Laws of Software Architecture: Everything’s a Trade-Off

		It starts with a sneaker app

		What do we know so far?

		Communicating with downstream services

		Analyzing trade-offs

		Trade-off analysis: Queue edition

		Trade-off analysis: Topic edition

		The first law of software architecture

		It always comes back to trade-offs

		Making an architectural decision

		What else makes a decision architectural?

		The second law of software architecture

		Architectural decision records (ADRs)

		Cubicle conversation

		Writing ADRs: Getting the title right

		Writing ADRs: What’s your status?

		Writing ADRs: What’s your status? (recap)

		Writing ADRs: Establishing the context

		Writing ADRs: Communicating the decision

		Writing ADRs: Considering the consequences

		Writing ADRs: Ensuring governance

		Writing ADRs: Closing notes

		The benefits of ADRs

		Two Many Sneakers is a success

		“Two Laws” Crossword

		“Two Laws” Crossword Solution

		4. Logical Components: The Building Blocks

		Logical components revisited

		Adventurous Auctions goes online

		Logical versus physical architecture

		Creating a logical architecture

		Step 1: Identifying initial core components

		Workflow approach

		Actor/action approach

		The entity trap

		Step 2: Assign requirements

		Step 3: Analyze roles and responsibilities

		Sticking to cohesion

		Step 4: Analyze characteristics

		The Bid Capture component

		Component coupling

		Afferent coupling

		Efferent coupling

		Measuring coupling

		A tightly coupled system

		Applying the Law of Demeter

		A balancing act

		Some final words about components

		Logical Components Crossword

		Logical Components Crossword Solution

		5. Architectural Styles: Categorization and Philosophies

		There are lots of architectural styles

		The world of architectural styles

		Partitioning: Technical versus domain

		Deployment model: Monolithic versus distributed

		Monolithic deployment models: The pros

		Monolithic: The cons

		Distributed deployment models: The pros

		Distributed deployment models: The cons

		Fireside Chats

		And that’s a wrap!

		Stylin’ Architectures Crossword

		Stylin’ Architectures Crossword Solution

		6. Layered Architecture: Separating Concerns

		Naan & Pop: Gathering requirements

		Cubicle conversation

		Design patterns redux

		Layering MVC

		Layering it on

		Translating layers into code

		Domains, components, and layers

		Drivers for layered architecture

		Layers, meet the real world: Physical architectures

		Physical architecture trade-offs

		Cubicle conversation

		One final caveat about domain changes

		Layered architecture superpowers

		Layered architecture kryptonite

		Layered architecture star ratings

		Wrapping it up

		Layered Architecture Crossword

		Layered Architecture Crossword Solution

		7. Modular Monoliths: Driven by the Domain

		Cubicle conversation

		Modular monolith?

		Domain pains changes

		Why modular monoliths?

		Show me the code!

		Cubicle conversation, continued...

		Keeping modules modular

		Keeping modules modular (last time!)

		Taking modularity all the way to the database

		Beware of joins

		Modular monolith superpowers

		Modular monolith kryptonite

		Modular monolith star ratings

		Naan & Pop is delivering pizza!

		Modular Monolith Crossword

		Modular Monolith Crossword Solution

		8. Microkernel Architecture: Crafting Customizations

		The benefits of Going Green

		Cubicle conversation

		The two parts of microkernel architectures

		The spectrum of “microkern-ality”

		Device assessment service core

		Encapsulated versus distributed plugins

		Plugin communication

		Cubicle conversation

		Plugin contracts

		Going Green goes green

		Microkernel superpowers

		Microkernel kryptonite

		Microkernel star ratings

		Wrapping it up

		Microkernel Crossword

		Microkernel Crossword Solution

		9. Do It Yourself: The TripEZ Travel App

		Making travel easier

		TripEZ’s user workflow

		Planning the architecture

		The architects’ roadmap

		Step 1: Identify architectural characteristics

		Step 2: Identify logical components

		Step 3: Choose an architectural style

		Step 4: Document your decision

		Step 5: Diagram your architecture

		There are no right (or wrong) answers

		10. Microservices Architecture: Bit by Bit

		Are you feeling okay?

		Cubicle conversation

		What’s a microservice?

		It’s my data, not yours

		How micro is “micro”?

		Granularity disintegrators

		Why should you make microservices smaller?

		Granularity integrators

		Why should you make microservices bigger?

		It’s all about balance

		Sharing functionality

		Code reuse with a shared service

		Code reuse with a shared library

		Fireside Chats

		Managing workflows

		Orchestration: Conducting microservices

		Choreography: Let’s dance

		Microservices architecture superpowers

		Microservices architecture kryptonite

		Microservices star ratings

		Wrapping it up

		Microservices Crossword

		Microservices Crossword Solution

		11. Event-Driven Architecture: Asynchronous Adventures

		Too slow

		Speeding things up

		Der Nile flows faster than ever

		What is an event?

		Events versus messages

		Initiating and derived events

		Is anyone listening?

		Asynchronous communication

		Fireside Chats

		Fire-and-forget

		Asynchronous for the win

		Synchronous for the win

		Database topologies

		Monolithic database

		Monolithic database topology scorecard

		Domain-partitioned databases

		Domain-partitioned databases topology scorecard

		Database-per-service

		Database-per-service topology scorecard

		EDA versus microservices

		Hybrids: Event-driven microservices

		Event-driven architecture superpowers

		Event-driven architecture kryptonite

		Event-driven architecture star ratings

		Putting it all together

		Wrapping up

		Event-Driven Crossword

		Event-Driven Crossword Solution

		12. Do It Yourself: Testing Your Knowledge

		Welcome to Make the Grade

		Student testing workflow

		Planning the architecture

		The architects’ roadmap

		Step 1: Identify architectural characteristics

		Step 2: Identify logical components

		Step 3: Choose an architectural style

		Step 4: Document your decision

		Step 5: Diagram your architecture

		There are no right (or wrong) answers!

		A. Leftovers: The Top Six Topics We Didn’t Cover

		#1 The coding architect

		#2 Expectations for architects

		#3 The soft skills of architecture

		#4 Diagramming techniques

		#5 Knowledge depth versus breadth

		#6 Practicing architecture with katas

		How to run katas

		Preparation

		Discussion

		Presentation

		Don’t worry. This isn’t goodbye.

		Index

OEBPS/assets/f0409-01.png
Driving Characteristics

Implicit Gharacteristics

Jeasibility (cost/time)

security

maintainability

observability

Piek the top three most inportant ones (in any order)

These ave implied charackeristits. Move
£hem 4o the Driving Chavackeristics
column if You think they ave eritical to
the success of the system.

T

Possible Candidate Architectural Characteristics

performance data integrity deployability
responsiveness data consistency testability
availability adaptability configurability
fault tolerance extensibility customizability
scalability interoperability recoverability
elasticity concurrency auditability

OEBPS/assets/f0409-00.png

OEBPS/assets/f0298-01.png

OEBPS/assets/f0297-02.png
Architectural Decision Record

Title: Oll: Use of the layeved monclith architectural style for the TpEZ system
Status: Proposed

Context:

TepEZ is a fast—growing startup that vequires a simple architecture to ensive feasibility. Additionally, the
Company needs to ensuve extensibiity 4o accommodate multiple thivd—party integrations

Decision:

We vill use the layered monolith architectural style. Since TipEZ doesn't need separate arehitectural
eharacteristies for difevent parts of its system, a layeved monolith il suffice for the vequived
avchiteetural chavacteristics. The main constraint is sealability.

Additionslly, separating the system by technical eapabiliies makes extensibility casier.

Consequences:
Betause we chose 3 monolithie architecture, scalability may eventually grow to be a contern
Building layered architecture makes some domain-centric changes harder because the effort will affect
multiple layers.

Avchitects vill be able o change bechnical capabilities (such as adding support for new user intevfaces)
easily thanks to this architectural style’s technical partitioning,

OEBPS/assets/f0300-01.png

OEBPS/assets/f0299-02.png
Architectural Decision Record

Title: Oll: Use of the mitrokernel avchitectural style for the TripEZ system.

y hove oticed that, the cantext
Status: Propcet f:r.adl Gieborent, even thasgh s the
Lo T veflcks dileing eam
Context: priorities.
TpEZ is essentially an inkegration avchibeckuve, managing similar information from 3 vavieky of integyation
Parkners. This avchiteckure will casly Lacilitate both tolation and customization for ach inbegyation point
Vi plagns.

Decision:
We il use the mitrokernel architectural style.
Time 4o markek and extensibility are inportant 4o the company, so modeling the architecture around a

simple ¢ore with plugins for future additional integration partners vill make it easy for developers to
wndeestand and implement.

We detided that. the simplicity of & monclithic system oubweighed the benefits (but added complexity) of
distribucted plugins.

Consequences:

In a monolithic arehitecture, sealability may eventually grow to be a contern. The team may consider
diskributing the plugins in the future, but ve detided Ehat it would be overengincering for now.

The tore tan be split so that the U is handled by another micrakevnel with different plugins for different
Ul ypes.

We should avoid adding $ast—chanaing veauivements to the cove. [should be as stable as possible.

OEBPS/assets/f0299-01.png

OEBPS/assets/f0298-02.png
Architectural Decision Recora

Title: Oll: Use of the modular monolith avchitectural style for the TeipEZ system

Status: Proposed

Context:

TeipEZ is a fast-growing startup that wants to make sure 4o model its avthitecture in a way that allows
for the casiest possible migration to a distributed avchiteeture, while still being simple enough to build on a
tight sthedule.

Decision:

We vill use the modular monalith arehitectural style. We've chosen a development process that aligns well vith the
domain partitioning exhibited by this architeeture

Keeping cath bounded context within a component boundary helps developers understand the system's
organization. Additionally, the system can grow in a similar way to the problem domain

Our organization has adopted domain-driven design, and this avchitectural style aligns wicely with that approach

Consequences:
Because we've hosen a monolithic architeeture, scalability may eventually grow to be a contern.

Holistic. changes 4o technital capabilities (such as user interfates) ave move difficult in this avchitecture,
sinte the U] is handled by a part of each bounded tontext.

OEBPS/assets/f0302-01.png

OEBPS/assets/f0301-02.png
Modular monolithic architecture diagram

All of these domains might have
layers just like those in the

Remember, this is a monolith [dentity and Group Trips domain.

with one backing databa%(/ We just aren't showing them. w
ldentify and Merge Manual Email Social

aroup ¥nps mp‘i entry 7 Aerts - gateway - [Travel APL wedia
=

2 5 § S i
E roamion 2 = 5 .‘:; S £
g £ g g s 2 3
3 | s s § £ £ = 3
F [|| (2 2 = = 3 £
3 & £ s =

The persistente layer _/\
in the Manual Extry

domain will manage all
Lhe data entities, like
Flights, Lodgingy €t

({—

You tould detide
o ¢
T sepaate sehors porcote
€3¢h of the domaing i,
the database.

OEBPS/assets/f0301-01.png

OEBPS/assets/f0300-02.png
Layered monolithic architecture diagram

0
]

Web browser [i08) [Android j Presentation

ldentify and Merae Manval]
group trips [frip% entry Alerts Business rules

qae,}‘;“”"av) (Travel API) @ocial mediaD Integration

<Flights> <l.odginq> @ansporb Persistence

|

E—

({00

OEBPS/assets/f0413-00b.png

OEBPS/assets/f0413-01.png
Microservices Architecture Analysis Co

Pros ns

Event-Driven Architecture Analysis
Pros Cons

List your winning choice here:

OEBPS/assets/f0414-03.png
What should | put in the
Consequences section of
my ADRif my architectural

decision doesn’t have any
consequences?

OEBPS/assets/f0414-01.png
[~ architectural characteristics —/

You are heve.

N

SuoIsoap jeinyosyyose

/-— Sjuauodwos 1eaibo]

architectural style — |

OEBPS/assets/f0415-01.png
Title:
Status: Proposed e did i

one for yo

Context:

Decision:

1 What s the impact of your decision? ¥
Consequences: trade-offs are you wl“:fng ﬁefmw fihat

OEBPS/assets/f0415-00.png

OEBPS/assets/f0415-00b.png

OEBPS/assets/f0412-01.png
— architectural characteristics /]

You are heve.

Sjuauodwos Ies16oj
suoisoap 1ein3o9j1yose

i

architectural style — |

OEBPS/assets/f0413-00.png

OEBPS/assets/f0412-02.png
Tt:,: T:: ~ T\, Microservices Event-Driven Architecture
stavs,

bekker thot [AiectualCrarasrste | Sarvatng ReciestralCraractorote | S g

ehavatkeristit [F % K Kk k Vantaiabity * * k *

st Tk A K k| [>k
Deployabiity %k ok k ok Deployabilty * ok k

s [smotety * Simpliity *

Both of By Xk kK Eroaiy * ok k kK

these styles Performance * * Peromance * %%k k Kk

are complex. [scaanity * Kk % Kk K Scalbity J Kk Kk ok |) These theee

hegone o oy F ok kk oy Aok k| | thracteritis

architecture, |tTolaee ok ok ok ok FoutTerrce KA KKK) Lo ot styles
el con $5$$% GGt $59

OEBPS/assets/f0201-02.png

OEBPS/assets/f0316-01.png

OEBPS/assets/f0201-01.png
Iwo-11er

Pros W'l help you gt Cons
£ e RN
Simplicity Sealability

Three-Tier

Pros Cons

Embedded/Mobile
Pros Cons

OEBPS/assets/f0315-04.png
100 muth Communication between
microservices tan make an

architecture look like spaghett;

OEBPS/assets/f0201-00.png

OEBPS/assets/f0315-03.png

OEBPS/assets/f0200-02.png
Two-11er
Pros —— Cons
+ Rich user interface - Medium scalability Reliablity is only
+ High performance - Becomes complex ;”,‘Li‘z'c::j:“'j e
+ Simplecy [anstonse_| when it gets big the nebuork for dats

These avchibechures - Medium reliability access.
everything can typically AN
be implemented 35 3 ~—
single project: e
Three-Tier
Pros _I Cons
+ Detached UL LGSt - Leastreliability ’
i fove complex
(eypically web) + More complex b i s e
+ Highest scalability - Disui nost moving parts
+ Distributed architecture
[Persistence |
Distributed arehitectures Dwenbu&;x ar’n.mt;m
oHer vgper scalabiity o o ot
and similar benefits. L Erlore modes While 3 single stack
€ 2] is nice, it isn't
== always portable o
other platforms
Embedded/Mobile
Pros Cons
Bngle by * Selfcontained - Leastscalable
stack can be an © + 7 Single tech stack - Resource-
ankage for usiiness rules i
ad a‘ L&,?: £ + Highly tunable to constrained
simpliety hardware devices - Oftentied to
_ implementation
Database iy

OEBPS/assets/f0315-02.png
¢

) |
)

OEBPS/assets/f0202-04.png
I CORCIICD)
None of the other layers (or The presentation layer ean

the database) needs o change thange o ateommodate new U]
vhen the team adds a new Ul Eypes.

OEBPS/assets/f0202-03.png
Business rules
Integration
Persistence

The in'[‘,cgra‘f:ion laycvs allow
interattion with {hird—?ar{:\/

dclivcry sevvictes.

O

OEBPS/assets/f0317-01.png
{"patient 1id": "123",
BPM stands for "timestamp": "10452955668",

“beats per minute.” "bpm": "64"}

OEBPS/assets/f0202-02.png
No need to be stingy with

'a e\rs— (4
e You tan have as many as
You need, as long as eath layer
ales 4o caeh et

OEBPS/assets/f0317-00.png

OEBPS/assets/f0202-01.png

OEBPS/assets/f0316-02.png
You auessed it—thee are trade-
offs bebween these two fortes,
which is why you have to £ind

the vight balance bebween them >

Granularity disintegrators
When should you consider making
your services smaller and separating
functionalities?

Granularity integrators

When should you consider making

your services bigger and combining
functionalities?

Making our
microservices
smaller would give
us better scalability,
which is important
tous.

Making our
microservices bigger
would give us better

data integrity, whichis

important tous.

Good jobl The next step is figuring out
which is move important: sealability or
data integrity. As the saying goes, you
can’t have your cake and €at it boo

OEBPS/assets/f0204-01.png

OEBPS/assets/f0416-06.png
Event or Message

OEBPS/assets/f0416-05.png

OEBPS/assets/f0417-01.png

OEBPS/assets/f0417-00.png

OEBPS/assets/f0420-00.png
'@m\

OEBPS/assets/f0419-01.png
You got through the
entire book? Including all
the exercises? Well, then—
we want you!

OEBPS/assets/f0200-01.png

OEBPS/assets/f0315-01.png

OEBPS/assets/f0416-02.png
User Interface

OEBPS/assets/f0314-01.png
Database
transactions

N

Shared
code —
_(‘

These ave the granulavity
integrator forces

Y,
pata —

dependencies

/

Monitor Blood
Pressure

Monitor
Temperature

Monitor
Heart Rate

(

Granularity
integrator fortes
make sevvices bigger-

Monttor Basic
Vital Signs

Workflow and
choreography

OEBPS/assets/f0416-01.png
— architectural characteristics 1

K,

AL

SuoIS29p jeinyooyose

/, Sjusuodwos Ieaj6oj

architectural style — |

OEBPS/assets/f0313-05.png

OEBPS/assets/f0416-04.png
Patabase

OEBPS/assets/f0416-03.png
Service

OEBPS/assets/f0109-01.png

OEBPS/assets/f0205-03.png

OEBPS/assets/f0320-01.png
Monitor Blood
Pressure

Blood Pressure

Monitor
Tewmperature

Temperature

Monitor Heart
Rate

Heart Rate

This mievoservite tontains

shaved Luncti onali‘{:\/ to

alect medical statf of any
C anomalies.

Alert
Staff

g

(Alert)

Somcfhins's w
the patient/

_*|/
o

\ron3 Wifh

OEBPS/assets/f0108-01.png

OEBPS/assets/f0205-02.png
OMCE//

OEBPS/assets/f0319-04.png

OEBPS/assets/f0108-02.png

OEBPS/assets/f0205-01.png

OEBPS/assets/f0319-03.png
'@m\

OEBPS/assets/f0108-00c.png

OEBPS/assets/f0204-04.png

OEBPS/assets/f0319-02.png
Monitor Blood
Pressure

The patients blood

Pressure is

alert the ,,

&

drcppi,,g__
urse/

-

Monitor
Temperature

Monitor
Heart Rate

The patient’s heart vate
is 9oing up—alert the

nuse!

OEBPS/assets/f0110-02.png

OEBPS/assets/f0207-02.png

OEBPS/assets/f0110-01.png
litle

Status

Context

Decision

Consequences

And there you have it: a complete ADR in its full glory.

el kip Governante and f They grow up s auickly]
Notes heve since they've Welve so proud of you all
not part of the standard

Lemplate.

OEBPS/assets/f0207-01.png
An online auction system where users can bid on items
Why?

A large backend financial systew for processing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes fo its system

Why?

A swall bakery that wants to start taking online orders
Why?

A trouble ticket systew for electronics purchased
with a support plaw, in which field technicians
cowe to customers to fix problems

Why?

|_| Well suited for layered monolith
[] Might be a fit for layered monolith

[Not well suited for layered monolith

|:| Well suited for layered monolith
[] Might be a fit for layered monolith

["] Not well suited for layered monolith

] ell suited for layered monolith
["] Might be a fit for layered monolith
["] Not well suited for layered monolith

D Well suited for layered monolith
[] Might be a fit for layered monolith

[] Not well suited for layered monolith

[] Well suited for layered monolith
["1 Might be a fit for layered monolith
[Not well suited for layered monolith

OEBPS/assets/f0110-00.png

OEBPS/assets/f0207-00.png

OEBPS/assets/f0321-02.png
Monitor Blood
Pressure

This is the Alert shaved
Norary 4hat contains the
shaved alecting functionality-

@

Monitor
Temperature

OEBPS/assets/f0109-02.png

OEBPS/assets/f0206-01.png
Layered
architectures ave
vice and simple.

Monoliths in general
don't handle
scalability and
elasticity well, and
layered ones even
ess so.

Architectural Characteristic | Star Rating
Maintainability *

Testability * * <
Deployability *

Simplicity * k k k %k
Evolvability *

Performance * Kk k<
Scalability *

Elasticity *

Fault Tolerance *

Overall Cost $

Testing isn't especially
casy, but. the team
has been dealing with
layered architechures
0 long that they've
bult up many
kethriques

Well-designed layered
architettures can
boast. quite high

performance.

Simpliciby, in this
case, leads o
affordability

OEBPS/assets/f0320-02.png
Pros

Changing common code in a shared service
doesn’t require changing other microservices.

The shared service can be written in any
language and on any platform, which

is handy when you have microservices
implemented in multiple languages.

—>

e of those
bad toupling problems.

This is another on

Cons

Changing a shared service is risky because it
can immediately affect other microservices that
callit.

Because the shared functionality is remote,
network latency can slow its performance.

If the shared service is unavailable,
microservices that need the shared functions
cannot operate.

The shared service must scale whenever other
microservices that call it scale

OEBPS/assets/f0112-02.png

OEBPS/assets/f0112-01.png
ADRs ave vecords of
a system, intluding

how it's steuttured b

and how it works, ~T
that anyone ean ———7 o
veview at any time. Lo

Ah! Here’s
@& Superseded

ADR—apparently
we did at one

Why don’t we just
use a document

ADRs ¢can help prevent
teams from going down
the same voad again and
again, entouraging new

solukions instead. D
7\

Bidivettional linking
between Supevseded
and Accepted ADRs

is a huge boon heve.

7

ADRs answer the
R_question “What
were we Lhinking2”
even if no one :?ho
made the deeisio,
is sti]] around.

ADRs ave key to building
institutional knowledge and
memory. Teams tan vead and
learn from eath other’s ADRs.

OEBPS/assets/f0423-00.png

OEBPS/assets/f0422-01.png
Logical Architecture Rey

These tomponents are
part of the dest-

Student taking functionality

interacts intevacts
mtzvaz(:s
Student Mm Test Capture
Sign-in Question Answer
This is asyne so the

(s student doesn't =
veads e bo vt

smm Tost Test Answer \"?% (* Avtomatic
Schldvlt |Mﬂmaﬂan dw.sﬂnns Key brading
writes
writes writes wites
Student
Answers

Student
veads

inter: Test
‘ et Reporting

The prottor needs % o\ / aenerates

interacts

+to know when the

This is the
test is taking place. administrative B
e stor functionality. Report
Proctor (Teacher) Head of Datavile

Public Sehools

OEBPS/assets/f0424-00.png

OEBPS/assets/f0423-01.png
Pros
A mitroservites architetture provides good
clasticity, sealability, and fault tolerance—things
Make the Grade needs.

Partitioning data, so that eath micvoservice
owns its own data, provides a good level of fault
tolerante and data access tonbrol

Make the Grade has lots of separate, independent.
parts—test taking, grading, maintenance, and
veporting—so it lends itself well 4o separately
deployed, singlepurpose services that don't vequire
muth interaction.

Microservices Architecture Analysis

Cons

Mievoservices gets a low performance vating, bt we
¢ould addvess this by using caching and minimizing
communication between services.

The test administrator’s functionalities write to

3 database that other servites need to vead (for
test questions, student. sign-on information, answer
keys, and so on). This implies that we need 4o share
data, something for whith microservices is not. well
suited. However, this data is faiely static and can
be shared through in-memory cathing,

Event-Driven Architecture Analysis

Pros.
Event-driven architecture (EDA) is highly vesponsive
and provides the elasticity, sealability, and fault
Holerante Make the Grade needs

A stadent submitting an ansver can be considered

an event; the vesponses would be 4o deliver the next
question and avtomatically grade the answer. However,
this is 2 fairly isclsted event—veally the only one in
the system

Cons

The test administrator's functionalties (student
and test maintenane and test scheduling and
veporting) are not veally sited for EDA

There aren't many events in this system—mastly,
vequests ave being made o the system. The only
event we identified was a student submitting
an answier, but that event only has one litener
(the auto-grading Functionality).

o't the orly

Remember, this Yased on oo

answer, just ow Chaite
lrd\jxisv

ist your winning choice here: Based on our analysis, we selected mitroservites for Make the Grade.

OEBPS/assets/f0425-00.png

OEBPS/assets/f0420-00a.png
'@m\

OEBPS/assets/f0204-03.png
0y

08

@(
S

OEBPS/assets/f0319-01.png
N (s 1s Java Code.
package monitorme.common; TC"\Feh;ture

public class AlertNurse { Q /
public static void sendAlert(AlertType type, String data) {

' “41 degrees Celsius”

OEBPS/assets/f0421-00.png

OEBPS/assets/f0204-02.png

OEBPS/assets/f0318-01.png
If microservices is all
about breaking business
functionalities into separate

services, what do you do with
shared functionalities like logging,
authorization, and date utilities?

OEBPS/assets/f0420-02.png
LA X x X

Student System Test Teacher

/ \ Adwinistrator (Pro[torl

Grade Weite to

answer database et best
sthedule
et et Sehedule
* fests
Sign in Mzi’ijm Maintain list
7 ¢ of students
We did this
one for You Submit

answey

A

Head of Pataville
Public Sehools

l

Generate
veports

OEBPS/assets/f0317-03.png

OEBPS/assets/f0422-00.png

OEBPS/assets/f0317-02.png
Option 1: Single Option 2: Separate
microservice microservices

Both options contain all

monikoring funttionalities > | Monitor Blood
Monitor Basic (monitor, vetord, analyze, Pressure
Vital Signs and alert).
Blood Pressure /

Temperature Monitor Monitor
Temperature Heart Rate

Heart Rate Heart Rate

OEBPS/assets/f0421-01.png
Top 3

OXOKK OO

Driving Characteristics Implicit Characteristics

e We only have
Feasibility ~ six months! easibility (cost/time

€ Need 4o protect -
Seeurity the answer key. <—®

There tan be 20 to 200,000 students—
Elasticity the very definition of clasticity. maintain ability

We have to deliver the
Responsiveness next question vight away. obsemabi[i@

1€ the system isn't available,
Pailability " students can't Lake a best

We absolutely cannot
A U ©
Data integrity ~ lose student answevs.

We don't want the students to have to

Recoverability ¢stact the test over if the system erashes.

Possible Candidate Architectural Characteristics

performance data integrity deployability

responsiveness data consistency testability

availability adaptability configurability
fault tolerance extensibility customizability
scalability interoperability recoverability

elasticity concurrency auditability

OEBPS/assets/f0193-04.png
Protess the data
def business_logic layer (data): 1cvom the Ul Iaycr
processed data = process_data(data)
return data_access_layer (processed_data)

t Pass the protessed data to
the data aceess layer.

OEBPS/assets/f0308-01.png
The Monitor

Same with

Heart Rate
mitroservite is

the only one

Monitor
Heart Rate

Monitor
Temperature

that can vead
or update heart

vate data. \\)

the Monitor
Temperature
and Monitor
Blood Pressure
mitroservites.

— S

Monitor
Blood
Pressure

OEBPS/assets/f0193-03.png

OEBPS/assets/f0307-09.png

OEBPS/assets/f0193-02.png
Get the vequest

Leom the user.
data = request.get _data() <-)

def UI_layer (request):

return business_logic_layer (data)
to

Pass the vequest
the workflow layer-.

OEBPS/assets/f0307-08.png

OEBPS/assets/f0307-07.png

OEBPS/assets/f0195-01.png
' Manage Manage
[Plaee Order] [Vehver 0rderj [Recipes j [Inventory j

“Place order” includes
tontepts like payment.

OEBPS/assets/f0309-02.png

OEBPS/assets/f0194-01.png

OEBPS/assets/f0309-01.png
Thisis a

Q‘NLVOS:W\LC

Customer Customer Produet Inventory Order
Wishlist rofile Catalog Control Shipping
Thisis 2
database table ~
We did this
Contains tustomer ¢ $07 Y Ysed to

Wishlist
Items.

Item
Location

calealate

billto and ship-to =
a,,dm; o Contains all Shipping TP €t
Customer product details T :
Address
Item
Detal
Contains items 2
futomer may vank Holds evedit card
! and payment Contains the
Costomar "7 2| mumber of items
Wallet 2] tureently in stotk
Inventory
ontains customer
Contains the D, name, email, and =
warehouse in which 2| Contains all
cach product is hipping details
lotated SHomant © "

Manifest

OEBPS/assets/f0193-06.png
Access the data in
the database.

def data access_layer(data):
retrieved data = retrieve data(data)

return retrieved data

Retwrn the vetrieved data to
the workflow layer-

OEBPS/assets/f0309-00.png
'@m\

OEBPS/assets/f0193-05.png

OEBPS/assets/f0308-03.png
The Monitor Heart Rate
lonitor Heart mitvoservite doesn't aceess the
Tu Mo o e [Sleep Statis database divectly.

doesn't have to “Raju's heart rate seems low. Is he.

change when the —) curtently awake or asleep?”

Sleep Status Monitor o

se changes: Heart Rate anging the

databise chinge R e data skruthure
of a table
only affects
the owning
microservice.

Thsbor 7

vepresents dhe
physical bounded
vonbext.

OEBPS/assets/f0196-00.png
'@m\

OEBPS/assets/f0195-03.png
The ¢oncept of an “order”

<

Sandwich
rF - - Order

Pomain
|

euts aevoss physical layers. physical layers in
layered avehitectures.
Recipe Inventory
— 7 A Domain T Powain

Domains ave typieally

smeaved actross

This is an important point,
so take a moment and let
it soak in. We'll come back
o this at the end of the
¢hapter.

1

| Place Order

|(Kecipes UI] ||l lnventory UDI Presentation

I
| | Place Order @eliverOrdea |("f&'};gf

1
L

1I I
Manage
] Il Invemgry | ek
1
L] T

(Order)Gus’romea[fggﬁ%]

[Recipe

Persistence

L - -

P |

1
@gredlen9
L - .

OEBPS/assets/f0195-02.png
Sandwich ' .
EHEESDES

OEBPS/assets/f0310-01.png
“Single—purpose” Opflon 1
heve means
monitoring
blood pressure, Monitor Blood
whith includes Pressure.
all four of
these funttions.

o

6\

The white
boxes are
the logical
Components.

OEBPS/assets/f0328-01.png

OEBPS/assets/f0429-03.png

OEBPS/assets/f0327-03.png

OEBPS/assets/f0429-02.png
Y

Here are some move
ways to make sure
jou don't become a

\[bottleneck.

OEBPS/assets/f0328-00.png

OEBPS/assets/f0430-01.png

OEBPS/assets/f0328-02.png
Capture Blood Record Blood
> P Pre
ressure 0ssure
Capture) (Resord)
drops
/Q This is called a 1€ the blood pressure

sphygmomanometer—otherwise l \{— below 10070, alert the nurse
known as a blood pressure euff

Analyze Blood Alert Statf
Pressure
—

OEBPS/assets/f0429-04.png

OEBPS/assets/f0329-01.png

OEBPS/assets/f0328-03.png
K_\
Capture Blood This service is now playing two

Pressure voles: blood pressuve monitor and

/ l N}:S{’x a{:o\r .

Record Blood Analyze Blood Alert Staff
Pressure Pressure

OEBPS/assets/f0426-00.png

OEBPS/assets/f0425-01.png
Microservices Architecture Diagram

Onte the answer is on the
€7 pevisted e, bh nest
auestion is presented.

The data each
sevvice needs it Student Interface el use molbiple channels
stored in an in- e dastiity and
memory tathe. sdditiondl fault talevance
Student Information S Snin
Database Test Taker Auto brader
L
Student
Information St
awers
Test
Information
Contains aestions,
answer key, and
/ fest schedle

—

ﬂ Test Database Vatabase

Test Administration

</ -

Student Answer

Reporting

Intertace
Prothors use this i
interfate 4o ok the =

o, schedul
est sehedvle Reporting Inferface

OEBPS/assets/f0307-06.png

OEBPS/assets/f0326-01.png

OEBPS/assets/f0427-01.png

OEBPS/assets/f0325-03.png

OEBPS/assets/f0426-01.png
Event-Priven Architecture Diagram
Prottors use this

nterbate to gt
Vg — =

Student Interface
Test Adwministration / The next

nterfane ¥ questions
Sgn-in pushed to

the student

intevface.

~—>

Answer
Submitted
v

Cache

This event delvers
{he ivst apestion X
P

>| Nest Queston

Signed-in
Event

Cache

All da(zl\} ¢athed on
> startup for cath sevvice
\—4

This database /~ —

contains evevybhind Contral Database

extept the student |
hwm‘ ;

answiers.
Studont Answer
Reporting Interface Patabase

OEBPS/assets/f0327-01.png

OEBPS/assets/f0429-01.png

OEBPS/assets/f0326-02.png
Now there’s a g This is the data, consolidated

healthy patient. Tomp: P o0 into a single vesponse that is
7 | Heart Rate: 63bpm passed back to Juan.
This is the |
data passed Monitor v Usually there's one orchestrator
batk to the Vital Signs Per vequest or major vorkfloy,
orthestrator) Orchestrator so expect a lot J) these.
e
/ BPressure: 12080
Monitor Monitor Monitor Blood
Heart Rate Temperature Pressure
C Heart Rate) (Temvtrafura) (ﬂood Preswu)

OEBPS/assets/f0428-01.png
After reading this book,
I'minterested in becoming
asoftware architect—but | also

really like writing source code. Can
Istill do that as an architect?

OEBPS/assets/f0197-01.png
It seems like every
architecture provides some
benefits but also imposes some
restrictions. If only | could have an
architecture that maps perfectly
‘to my problem domain, without
any pesky trade-offs! But that’s
only a dream...

OEBPS/assets/f0312-01.png
Granvlarity
disintegrator

Lorees make
sevvices smaller.

Code.) Cohesion VorrTied
volatility l Pressure
granularity
disintegrator forces Monitor Basic
Vital Signs
2 Monitor
Temperature
Access
Monitor
Heart Rate
Scalability

and throughput

Fault
tolerance

OEBPS/assets/f0196-03.png

OEBPS/assets/f0311-02.png
Granvlarity Visintegrators
When should you consider making your .
services smaller, with less functionality? D isintegrators

Foree sevvites 4o
_ break apart.

? ? ?

How granular should

your serviee be? — w’n{cgraﬁors foree

. servites to Come
Granvlarity lntegrators — oetie.
When should you consider making your
services bigger, with more functionality?

OEBPS/assets/f0196-02.png
Pelivery
Address

Billing
Address

Sales
Promotion

Frequent

Diner

Rewards

Presentation

Employee

Information

Workflow

Persistence

The 4ypical implementation of
+this architecture assumes that
anything in the pevsistence
layer ends up in the database

—

((l—

We did one for you Employee
information, like drivers’ details,
may be needed by workflows and
persisted, yet not be part of
+the presentation layer

OEBPS/assets/f0311-01.png
Okay, 50 how am | supposed to
know which of those options to use
for monitoring blood pressure? Is
this another one of those “guessing
games,” like with logical components?

OEBPS/assets/f0196-01.png
a Hint: Some tomponents may end
up in several layevs.

Components

OEBPS/assets/f0310-04.png

OEBPS/assets/f0198-04.png

OEBPS/assets/f0313-04.png
N

OEBPS/assets/f0198-03.png

OEBPS/assets/f0313-03.png

OEBPS/assets/f0198-02.png

OEBPS/assets/f0313-02.png

OEBPS/assets/f0198-01.png

OEBPS/assets/f0313-01.png

OEBPS/assets/f0199-02.png
Presentation

Business rules

Persistence
Database

Embedded/Mobile

Often, because of physical constraints, all the logical layers end up in a
single physical deployment. This physical architecture commonly appears
in embedded systems and mobile applications, where a network connection
may not be consistent or even possible.

Examples: a mobile
o game o soda-machine
softwave

OEBPS/assets/f0199-01.png
Example: corporate
actounting sof tware
that vuns as a vich
deskop application >
using a shaved

database

Three-Tier

A threcatier architecture placcscachiof he > | |_BUSihess rules

responsibilities into its own physical layer. A good

Presentation
Business rules
Persistence

“1ifl

((

Exanple: 2 high-seale Presentation

web application with
a vith web—based Ul,
like a streaming video

J sevvite

v Two-Tier
A two-tier architecture places the
presentation, business rules, and persistence
layers into a single deployment unit,
communicating with the database via a
local network. This physical architecture
is common in desktop and client/server
applications.

example of this architecture would be a web-based
application, with an application server to handle the
middle tier and a presentation layer often written
using a different technology stack. For example, the
development team might write the business rules and
persistence in Java while the U consists of HTML
and JavaScript, all using a relational database for
persistence.

Persistence

(CE—

OEBPS/assets/f0332-02.png

OEBPS/assets/f0434-01.png
Con Communication
'gz’otrt’;r \inication Patterns b\/
oo Jaequi Read is 3
great V'Csouvtc,
if you'd like 4o

learn movre.

OEBPS/assets/f0332-01.png

OEBPS/assets/f0433-04.png
January 2023
S MTWTF S
123 45 6 7
8 9 10 11213 14
15 16 17 18 19 20 2\
22 23 24 25 26 27 23

OEBPS/assets/f0332-04.png

OEBPS/assets/f0332-03.png
SPOWZ

05

OEBPS/assets/f0434-02.png
Trading platform:
Major information flows

Use clear titles for
Your diagram _j\

OEBPS/assets/f0333-01.png

OEBPS/assets/f0432-01.png

OEBPS/assets/f0329-02.png

OEBPS/assets/f0432-04.png

OEBPS/assets/f0432-02.png

OEBPS/assets/f0310-03.png
Single-purpose” here
only means veeordiy

i the blood pressar
Option 3 Pressore)

Capture Blood Record Blood
Pressure Pressure

Analyze Blood Alert Staff
Pressure

(Analyzz) (Mert)

OEBPS/assets/f0330-01.png
These ave
Choreography I fhe steps
Create 3 > | Assign Ticket to 4 5| Upload Ticket fo Mark Ticket as
Ticket Expert Am Fixed
1 2 \
Whith workflow should The expert uses their
Jun use 4o submit 3 [mobile deviee 4o mark
V' broble ticket? 3 ticket as fived

1 ————r Orchestration
—_—— Ticket
Orchestrator
Create Assign Ticket fo Upload Ticket fo Mark Ticket as
Ticket Expert App
G\A
7

] Choreography A The expert uses bheir
[Orchestration poble app to tell

the orthestrator the
Reason: tieket is Fixed.

OEBPS/assets/f0433-01.png
Arshitosturs Docisicn Record

Tile: st f o Mmsi et Sl b s Tho Ginde Syt

Satus:poscssc e s
ot

Contet:

T .3 kg3 500 s SAcrens, R, Wity .
i i, e o e o s (4 v e, et i

plts—y

Oecison:

[prR———,
[————

o b el 73503 S S o s
o gy s

s
ey s v o 15 gt et oo o

ket s s P e s s el

L ik of s et kg

- mw_n.,.,.._‘.‘,.m,

This is the ADR
Leom Chapter 12

OEBPS/assets/f0310-02.png
“Single—purpose” here
means analyzing the
blood pressure data
and alecting staff if

something is wrong.

Option 2 \2

Capture Blood
Pressure

Analyze Blood
Pressure

(Capture)

(Avalyze)

(Reeord)

(Mert)

OEBPS/assets/f0330-00.png

OEBPS/assets/f0432-06.png

OEBPS/assets/f0331-01.png
The microservices
architecturalstyle seems overly
complex to me. There are so
many hard decisions to make.
Whywould | ever bother to use
microservices?

OEBPS/assets/f0433-03.png
communication \

clarity
\

\‘ collaboration

uoIsIDUOD

o

OEBPS/assets/f0330-02.png

OEBPS/assets/f0433-02.png

OEBPS/assets/f0123-01.png

OEBPS/assets/f0224-03.png
Ah, | seel The layers are an
implementation detail, not
an architectural concern.

OEBPS/assets/f0122-01.png
[M] [SINJEJATKIE]RTS
[FIOo[RIGIE]T] E]
]]
I STUIP[EIRISIEIDIE] [U] [C]
WHTTTIE] [1] R| [O
0 G [IETC1]s[1[o]N
RIR[R]S] [N] o™ [T [T
E [[U] Y] [E]
DlITF[FIEIRIEIN]T] [P] [A] 1X]
[L] [s 7]
[S[CIA[L[A[BII]L]I]T]Y
S| [A] INJ [N
El_IN 5] [C]
[F]I[R[S]T]L]ATW]
E v [H|
HRENEE Y]
|A] C
(7] [(N[E[UTIRIA[L]
Y]
S[HIINTY]

OEBPS/assets/f0224-02.png
naanpop
orderapp
order L——There’s one module.

[J presentation
E lots_of_source_code_files
workflow
lots_of_source_code_files
persistence
lots_of_source_code_files

— I reci p‘eg_,Therc‘s another module.
[presentation
E] 1ots_of_source_code_files

l&Wc aven’t showing the

entive strutture here, but
we know You 5:{: it

OEBPS/assets/f0122-00.png

OEBPS/assets/f0224-01.png
Flip back to page 192 in the
previous thapter and compare
com.naanpop.orderapp.order these to the namespaces Eor

com.naanpop .orderapp.recipe the |a\/ercd anthiteeture.

com.nhaanpop.orderapp.inventory

OEBPS/assets/f0121-01.png
litle

Ol2: Use of queues for asynthronous messaging between order and downstream services

Status

Accepted

Context

The trading service must inform downstream sevvites (namely the notification and analytics sevvices, for now)
about new items available for sale and about all transactions. This tan be done through synthronous messaging
(using REST) or asynthronous messaging (using queues or fopics).

Decision

We will use queues for asynthronous messaging between the trading and downstream sevvites.

Using aueues makes the system more extensible, since each queve ean deliver a different kind of message.
Furthermore, since the trading sevvice is atutely aware of any and all substribers, adding a mew consumer involves
modifying #t—which improves £he security of the system

Consequences

Queves mean a higher degree oF oupling bebween services

We will need o provision queuing infrastructure. [£ will vequire elustering to provide for high availability.

I£ additional downstream sevvites (in addition to the ones we know about) need to be notified, we will have to
make modifications to the trading service.

And there you have it! A complete ADR in its full glory.

OEBPS/assets/f0223-01.png
Hold up. I still see
layers in each module.

Is this some kind of Jedi
mind trick? How is this any
different from alayered
architecture?

OEBPS/assets/f0124-03.png
This is the subdomain: \
5 . ea
The diveetory strueture { Jorder This is the \og — order

dentifies the lajeal 7 L tracking < et Tracking

tomponents and is therefore
=] source_code_file

part of the architecture.
The sourte tode identifies

how the logical tomponent is
implemented and is thevefore
part of the desion.

E| source_code_file

[E] source_code_file
: This sourte tode implements the
Bl source_code_file order tracking functionality

OEBPS/assets/f0124-02.png
A o knese ¥ _edog 0o*T
\'c‘(\'csm\& ne Voo gorer nak
Lo ne B¢ dord™ \
Ord
er
Placement
paymant
0cessing
Ord
rder
Shipping

Inventory

M
anagement

OEBPS/assets/f0436-03.png
We can tell you—

Stuff
Finding out about
ki 9 out abow
youkiow this stuff is

pretty humbling

Stuff you know -

you dowt know expeviente.

Stuff you don’t know
you don’t know

Junior architect

OEBPS/assets/f0124-01.png

OEBPS/assets/f0225-01.png

OEBPS/assets/f0337-00.png

OEBPS/assets/f0436-02.png
Pa\/ing attention to
projects over Lime makes
Yyou Y\ro(:icicn{ with more
Lethnical S{',u‘(:‘c

Stuff
\$ you know

Stuff you know
you don’t know

Stuff you don’t know
you don't know

Senior developer/tech lead

OEBPS/assets/f0335-17.png

OEBPS/assets/f0436-01.png
['he knowledge base of
2 super—excited junior

Stuff developer—"{ can't.
you know believe l 5:{ paid to

do this
Stutf you know °
you dow't know
Early in your caveer,
there’s a lot y: ~ Stuff you don't know
don’t know th you dow’t know
duib o

Junior developer knowledge pyramid

OEBPS/assets/f0337-02.png

OEBPS/assets/f0337-01.png
12

T

13

15

OEBPS/assets/f0220-01.png
Shopping Cart

Order

Credit Card Form

Primary Ewail
Preference

— Payment —

Fulfillment
Workflow

Order History

— Customer —

OEBPS/assets/f0435-01.png
This is g
synthronous

(Hotkina) eall.

. | Originating trades | Advanced
Portfolio] Trading
d trades Platform
Manager | _Adjusted trades | latf
And this is an
asynthronous

(nonb'otking) eall.

OEBPS/assets/f0434-03.png
Trades

™

AtP

Did the arthitect mean

Ehat this is two-way

communieation?

(?

Don't use mysterious

atronyms, either!

Single—headed
arvrows vemove

ambi5ui£\/.
Originating trades
™ Adjusted trades AP
Originating trades
Portfolio | raivatirgir A%:m;d
Manager |_Adustedtrades | platform

R Use veal labels. S

[sn't this muth
eleaver than “PM”
and “ATP"2

OEBPS/assets/f0333-03.png

OEBPS/assets/f0435-02a.png
Event
handler

OEBPS/assets/f0333-02.png
OUCL//4

OEBPS/assets/f0435-02.png
-~ iainating trad The Ad
Record- | fransactions | portfolio |-rianeting trades A}’,‘ﬁ?::d Pl;t\fﬂo:h;clldsmdmﬂ

| Transaction 3|
Keeping Manager Platform Adjustment. Rules
service and waits

< -4

The Advanced Trading
Platform writes to
+the database.

Stock Rating ~_Ratings
Systes
e Rebalancing Adjustment
Tool K j Rules

These seviices only vead

Lrom the database.

System
‘[(blotks) for the vesult

OEBPS/assets/f0121-00.png

OEBPS/assets/f0222-01.png
—

Individual domains
make up the modules

of your application. F\

Order Recipe Inventory
domain domain domain
=
% :
§ Presentation £ | Presentation & | Presentation
=
=3 [=
. q S q
§_ Business rules § Business rules £ | Business rules
>
> ® <
| CPersistence 'g Persistence €| Persistonce
= z
LN N 2

These “slices” vepresent a particular set

of business funttions within 3 domain.

OEBPS/assets/f0334-02.png
These charatteristies
contribute to
agility—the ability
$o vespond qickly to
thange.

We tan stale
mitvoservices ata

funckion levd

ﬁ

1| cost is igh due
Overall eos s, bredking

1o ltensing

Architectural Characteristic

Star Rating

Maintainability * Kk Kk Kk
Testability * ok ok Kk X
Deployability * Kk K Kk ok
Simplicity *

Evolvability * Kk Kk Kk ok
Performance *

Scalability * Kk Kk ok *k
Elasticity * k kX
Fault Tolerance * Kk Kk Kk k
Overall Cost $ $ $ $ $

apart data, opbmi=r

Soployment. pipcin

veorgarizing teams

es, and

Mitvosers
ites ave
IARD.

(S

AEERN

Too muth
Communitd
mitroservite:
down m\ucs’cs

jon bety

s slows

OEBPS/assets/f0435-02c.png

OEBPS/assets/f0120-03.png

OEBPS/assets/f0221-02.png

OEBPS/assets/f0333-05.png

OEBPS/assets/f0435-02b.png
External
system

OEBPS/assets/f0120-02.png

OEBPS/assets/f0221-01.png
r 7 Powain = T — T Dowmain

Order

Recipe

Inventory

T Pomain

A (Components
That Change

1

A
Place Order

II(Keclpes Ul)ll Inventory U)| Presentation

A A
Place Order @eliver Ordea

Manage)
Recipes Il

Manage
Inventory

j| Business rules

Delivery
(Order](cummea(l.oeaﬁon

)

Coe 1

Recipe
Item

I
I Persistence

- |

OEBPS/assets/f0335-02.png

OEBPS/assets/f0435-02e.png
)}

OEBPS/assets/f0220-02.png

OEBPS/assets/f0335-01.png

OEBPS/assets/f0435-02d.png

OEBPS/assets/f0025-07.png

OEBPS/assets/f0128-01.png
Shows which programming language Is used for
each component

Maps components to services

Logical
architecture Shows the logical components within the syster
and how they communicate with each other
Shows how many databases there are in the
system and which services access them
We did thie >
ane for yau Shows communication between services and the
protocol they use (like REST)
Phys‘ical Shows the source code files used to implement a
: component
m'cfnteeture

Shows the components and their interactions
within the user interface

Shows the APl gateways and load balancers used
in the system

OEBPS/assets/f0230-01.png
Yowve given me some great
ideas for how to modularize the
code by business concern. But if all
modules share the same database,
aren't they still coupled at the
data level? Should I think about
modularizing the database too?

OEBPS/assets/f0025-06.png

OEBPS/assets/f0127-03.png
A LN

l Logical components)

N

Qevvite -

OEBPS/assets/f0229-03.png
9
@20
~
=

OEBPS/assets/f0025-05.png

OEBPS/assets/f0127-02.png
Avction Auction
Maintenance Scheduler
Her Ye are .

I Some ,,; . . Bidder
°9ical ¢ the Auction Auction Bidder Pl
Hdvent, o’:fo;:,.? for Search Viewer Registration Sign-on

lons,

OEBPS/assets/f0229-02.png

OEBPS/assets/f0025-04.png

OEBPS/assets/f0126-02.png
This jg Kate. She

Wants

tobid £,

OEBPS/assets/f0229-01.png

OEBPS/assets/f0025-11.png

OEBPS/assets/f0025-10.png

OEBPS/assets/f0025-09.png

OEBPS/assets/f0129-01.png
Step 1: [dentify

initial core
components

Step 2: Assign
requirements fo
components

Next, we make sure each
tomponent should handle
its new vesponsibility

Then we assign some
vesponsibilities to those
tomponents.

Step 3: Analyze the
role and responsibility
statements

Step 4: Analyze
architectural
characteristies

t Oops—we might need o veadjust and vefactor our
¢tomponents. That would happen in these steps.

OEBPS/assets/f0025-08.png

OEBPS/assets/f0128-02.png

OEBPS/assets/f0440-02.png
What's next? So much more!

OREILLY" OREILLY"

Start here. While Software

some of the Architecture:

matevial may seem The Hard Parts

amiliar, it's a Hoder Tade Off Anses o Dstuted

vorthy secessor o This 4itle is most

L_) Fundamentals of apropos. Dive deep

Software into the veally hard
Architecture parks of sofbuare

An Engineering Approsch o architeeture with
var ichorgg, this book
b Promod Sadalage &

Mark Richords & Neal Ford Zhamok Dehghont

OEBPS/assets/f0342-01.png
'@m\

OEBPS/assets/f0341-01.png
{"patient_1 "
BPM stands for "timestamp": "10452955668",
beats per minute. "bpm": "64"}
~—">
Option 1: Single Option 2: Separate
microservice microservices
Both options contain all 1
mZn\{ming funckionalities — > | Monitor Blood
Monitor Basie (monitor, vetord, analyze, Pressure
Vital Signs

and alert)-

o

Monitor
Tewperature

™

Which of these two options would you choose, and why? Option 2: Separate mitroservices.
Having separate sevvites provides better fault tolerante in tase one of the monitoring funttions causes the

Heve’s our Lake

sevvite to go down. Also, data is vecorded and stored separately, whith works well with physical bounded
contexts in separate databases to provide better fault tolerante. Finally, each separate sevvice tan stale

as needed based on the varying input vates (onte a setond for heart vate, every 5 minutes for others).

OEBPS/assets/f0440-01.png
| feellike there’s so much
more to know. Are there
are any other resources |
can reach for?

You don’t know
about the website? It has

updates, interesting links

and posts, and much more!

OEBPS/assets/f0343-00.png
'@m\

OEBPS/assets/f0226-01.png
Does the modular
monolith make more
sense how?

OEBPS/assets/f0338-00.png
'@m\

OEBPS/assets/f0437-02.png
Stuff
you know

Stuff you know
you don’t know

Stuff you don't know
you don’t know

Junior architect

OEBPS/assets/f0225-02.png

OEBPS/assets/f0437-01.png
Technical breadth

T

_eT S‘(’,u-q: o
83 P— haveho
§;§_ mam{:am

Technical depth versus breadth

OEBPS/assets/f0339-00.png

OEBPS/assets/f0438-01.png
How do you get
better at anything
in life? Practice,

practice, practice.

OEBPS/assets/f0338-01.png
& Testability (the ease of and completeness of testing)
Reason: Because this is a eritical medical system, we tan't let bugs aet into the system (completeness)

ﬂ Responsiveness (the time it takes to get a response to the wedical professional)
Reason: A patient’s life could depend on how fast the medical professional is notified of a problem

(] Deployability (the frequency and ceremony involved with releasing changes)
Reason: Not critical—there ave no vequivements stating there il be many changes in the system

(] Abstraction (the level of isolation and knowledge between parts of the systew)
Reason: Not evitical—there are no requivements vegavding abstraction

(] Scalability (the systew’s ability fo grow to accommodate more users or patients)
Reason: Not eritical—the system is seoped to a sinale hospital only (hospital beds are the limiting factor)

& Fault tolerance (the system’s ability fo continue operating when parts of the system fail)
Reason: One vital siqn monitoring failuve can't sop the other vital signs funcions from monitoring the patient

EI Data inteqrity (the data is consistent and correct across the system and there is no data loss)
Reason: The data about a patient’s health must be as aceurate as possible

] Workflow (the system’s ability to handle complex business workflows)
Reason: Not exitieal—each vital sian is monitored separately and no complex workflows are vequived

& Concurrency (the system’s ability to process concurrent requests or operations)
Reasom: The system must be able to monitor many diffevent vital sians at the exact same time

OEBPS/assets/f0437-03.png
Losing expertise is 2

necessary but painful part
?F shifting your \Com.sY

The sweet spot for Stuff vom depth to breadth.

architetts is 5vcat£ you kinow

breadth: knowing the

options and tr:fe—oﬁs—\g

for a variety of situations

and ‘.mylemez{a{ms Stuff you know

you don't know

Stuff you don’t know you don't know

Senior architect

OEBPS/assets/f0025-03.png

OEBPS/assets/f0126-01.png

OEBPS/assets/f0228-01.png
Calls to any module
happen only 4o their
vespetkive AP

Order [Recipe Inventory
dowain &/ domain domain
API API API
Implementation Implementation Implementation
(private) (private) (private)

OEBPS/assets/f0340-00.png
'@m\

OEBPS/assets/f0439-03.png

OEBPS/assets/f0025-02.png

OEBPS/assets/f0125-03.png

OEBPS/assets/f0227-03.png

OEBPS/assets/f0339-01.png
& Add a movie to your personal “to watch” list .

& Pay for an order using your credit card \/_ bé;:; Zﬁtiﬁ: L‘Zifif .
[C] 6enerate sales forecasting and financial performance reports (/

[Subwit and process a loan application to get that new car you've always wanted

& Peterwining the shipping cost for an online order

OEBPS/assets/f0439-01.png

OEBPS/assets/f0125-01.png
" order_entry_app We did
F order this one —

=) shopping_cart for you!
=] lots_of _source_code_files

= fulfillment
lots_of_source_code_files

3 history
ﬁ recent

lots_of_source_code_files

=7 archive
=] Lots_of _source_code_files

Payment

) credit_card

E lots_of_source_code_files
) gift_card

E lots_of_source_code_files

-—?customer‘
] profile

=] 1ots_of_source_code_files

OEBPS/assets/f0227-02.png

OEBPS/assets/f0341-00.png

OEBPS/assets/f0439-05.png

OEBPS/assets/f0125-00.png

OEBPS/assets/f0227-01.png
-

These arrows vepresent talls
from one layer in a module

o a layer in another module.

One Second Another
dowain AT dowain T 7T T dowain
Presentation Ll Presentation 1 Presentation
Business rules ‘J/ Business rules [Business rules
Persistence 11 Persistence 11 Persistence

IK 1€ left unchecked, :achmjmiulc's _j

¢ode becomes more closely coupled
with the other modules’ tode, and
+4heir boundaries start to disappear.

OEBPS/assets/f0340-01.png
Customer Customer Product Inventory Order
Wishlist Profile Catalog
P

Control Shipping
This is 3
datab: ble.
’ We did this

Contains £ one for you
billto and Yip—to
addresses

Contains all
product details

Gustomer Shippivg
Address

Pricing

Detail
Contains tbems 3
bt Hlds eredtcord
! S| and payment
Troms 2= i formation

=1 Contains the
Customer 2| number of ite
Wallet 2= eurvently in sbick

Inventory

2] Contains the
27 | warehouse in whith
=] cach produtt is
e Jocated

Location

D, name, email, ond it
shipping details

for an order

Shipment
Manifest

OEBPS/assets/f0439-04.png

OEBPS/assets/f0116-00.png

OEBPS/assets/f0211-01.png
Pros L short time to mavket

Simplicity

Performante

Geparation supports
one of the driving

goals.
Pros

Avchitectural separation

Sealabilit:

Bekter seababiity

supports mare usevs.

Pros
Self—¢ontained

ITwo-11er
Simplicity facilitates

Fewer tiers tends
£o vesulk in poorer

Cons sealabiliy
Sealabilit,
While performance !
isn't 3 driving contern,
fever Liers tends
to lead to better
performance.
Three-Tier
Move Hiers treates
move parts to Cons
{he arehitecture, Complexity TN
complicating PR ko — which leads to.
dependenties and Slower time o market
ommunitation
[¥'s hard 4o extend
Embedded/mobile an embedded system,
tounter to
1 pure manolith has Cons [foesioted ;::1:;
the fewest parts.

Less extensible

/_’ Sealabilit:
[£s hard 4o make Perlormante
ol emoroke o Perbormance
monolith with high
stalability and/ov
Pertormante.

OEBPS/assets/f0325-01.png
uan is in tharge of
the Fobent. oy

Let's
see how the patient
is doing today...

Juam ks 4 get this data
vith a single vequest.

)

Juan needs information

i e -l Srom all three micvoservites,
—_ = Prore whith means they need o
C Heart Rate) (\'empmwn) (llwd m:w) be in 3 workblow

U

OEBPS/assets/f0115-03.png

OEBPS/assets/f0211-00.png

OEBPS/assets/f0324-01.png
Suppose | need
information from multiple
services. Canldo thatina

microservices architecture?

OEBPS/assets/f0115-02.png
|| CITTTITT
[[[T L
[I I I N A B
(]] | (
L CLT]
L] | L L
I [TTT1 [[[
- [[[T -
il L[-
| 1 [
L C [[[[]
[TT]

OEBPS/assets/f0210-01.png
<

Components

Hint: Some components may end
up in several layevs.

Delivery
Address

Billing Sales
Address Prowmotion

Frequent

Diner
Rewards

N

ot |((Presentation
Delivery Viner
Addresy Rewards Address [Promotion

Employee
information

\

Workflow

i

Persistence

L

Example: Employee
information like drivers’
details may be needed by
workflows and persisted but
not part of presentation

\

The £ypical implementation of
this arehitecture assumes that
anything in the persistence
layer ends up in the database

OEBPS/assets/f0323-04.png

OEBPS/assets/f0115-01.png

OEBPS/assets/f0210-00.png

OEBPS/assets/f0323-03.png

OEBPS/assets/f0117-00.png
'@m\

OEBPS/assets/f0116-02.png
Requirements

"Security is important to us.’ Towi
opies

"Different downstream services need different kinds of information.” .
/ Topics

"We'll be adding other downstream services in the future.” Queues / OPic

OEBPS/assets/f0213-00.png

OEBPS/assets/f0116-01a.png
'@m\

OEBPS/assets/f0212-01.png
An onling auction system where users can bid on items

Why? fin online auction will vequire more
scalability and performante than most

Toyered architeckores can suppork

A large backend financial systew for processing and
settling international wire transfers overnight
Why? This system veauires high throughput
and high availability, both difficult for
layered monoliths.

A company entering a new line of business that
expects constant changes fo its system
Why? Layeved architectues separate conterns
by techrical eapabilities, making some
changes easier.

A small bakery that wants to start taking online orders

Why? A small bakery has a simple problem
and small scale, well sited for a simple
arehitecture.

A trouble ticket systewm for electronics purchased
with a support plan, in which field technicians
come o customers to fix problems
Why? A trouble ticket system vill need to support
diffevent avehitectural chavacteristies (for
users and technicians, for example), which is
diffieult in monolithie arehitectuves.

L) el suited for layered monolith
[CI Might be a fit for layered monolith
] Not well suited for layered monolit

[Well suited for layered monolith
[CI Might be a fit for layered monolith

Not well suited for layered monolith

(] Well suited for layered monolith
&Migm be a fit for layered monolith

[Not well suited for layered monolith

&w;u suited for layered monolith
["I might be a fit for layered monolith
[Not well suited for layered monolith

[Well suited for layered monolith
[might be afit for layered monolith
lZ(No: well suited for layered monolith

OEBPS/assets/f0350-02.png

OEBPS/assets/f0116-01.png
Lots of downstream

sevvices need to know

v (abwf sneaker brades, MOdularity upgradability
inte buS\:‘:“ ': \a(‘extensibility) This sounds important!
booming, this to

be something 0 low coupling
look out ror-

securi
= pertormance v

OEBPS/assets/f0212-00.png

OEBPS/assets/f0325-02.png

OEBPS/assets/f0117-01.png
respon. eness transactions
P I error handling |

coordination

consistency

deployability

extensibility

fault tolerance

OEBPS/assets/f0350-01.png
—> 1. Take the next customer’s lunch order (1 minute;
2. Accept payment from the customer (1 minute)
3. Cook the grilled cheese sandwich (4 minutes)
4. Cook the french fries (5 minutes)

5. Make the chocolate milkshake (4 minutes)

L—— 6. Plate the food and serve the customer

D

Each order takes |5 minutes,
meaning the diner tan only
sevve tour Lusﬁomcrs during

the lunth hour vush.

OEBPS/assets/f0349-01.png

OEBPS/assets/f0321-03.png
Pros Cons

Performance, availability, and scalability are You'll need multiple shared libraries if your
better because the shared functionality is not microservices are written in different programming
remote. Instead, it's bound at compile time to languages or use different platforms.

each microservice.
Managing dependencies between microservices

Changing code in a shared library is less and shared libraries can become difficult if you
risky, because shared libraries can be have a lot of microservices (which is typical in this
versioned to provide agility and backward architectural style).

compatibility.

If you change a shared functionality, you must
Betause shaved libvaries can be versioned, retest and redeploy the microservices that use it.

vou don't have to do this allabonte. >

OEBPS/assets/f0344-00.png

OEBPS/assets/f0343-01.png
Option 1: Shared service Option Z2: Shared library

Monitor Blood
Monitor Blood Monitor
U0 Pressure Temperature
\ Alert
Staff
Monitor Alert Alert Alert
Temperature
Something’s v
' with the pationt]

o

o -
o -

This is our decision and veasoning

N

[Option 1: Shared service
TX| Option Z: Shared library
Reason: We chose option 2 (shaved library) because it provides:

—better performante (the medical professional will be alerted faster)

—better veliability and fault tolerance (if the Alert Stakf shaved sevvite went down, the

system couldn’t alert the medical professional)

betber conturventy i multiple problems oteur ot the same time)

OEBPS/assets/f0345-01.png
These ave

Choreography I fhe steps
traate 3 [asson ket [|_4 Uk Toket o Mark Ticket as
Tiket Expert A Fixed

1|
Which workflow should

Juan use Lo submit a
trouble ticket?

A

1

R 6/’
The expert uses their

Ticket
Orchestrator

mabile device 4o mark
RS 3 ket as fixed

Orchestration

Create
Ticket

Assign Ticket to
Expert

Upload Ticket to
A

Mark Ticket as
Fixed

X Choreography
] Orchestration

Bl

Reason: Choreography is a simpler solution with less ovevall sevvice

7

/t The expert uses their
mobile app o tell
the orthestrator the
ticket is fixed.

communitation. Also, this is not 3 complicated workflow ith lots

of evvor conditions, so using orthestration seems like overkill

OEBPS/assets/f0345-00.png

OEBPS/assets/f0113-01.png
Just got the email
from the finance
team: they want the
trading service to keep the
compliance service in the

know. That should be an
easy change.

Learning about the
two laws of software
architecture sure made this
easy. Not only do we know
we've made the right decision,
butwe've also captured itinan
ADR. | feel so much better.

OEBPS/assets/f0209-02.png

OEBPS/assets/f0323-02.png

OEBPS/assets/f0346-01.png
An online auction systew where users can bid on items
Why? High sealability and elastieity needs; high
conturventy; independent funeions

A large backend financial system for processing and
settling international wire transfers overnight
Why? Mieroservites’ superpowers aven't needed
in this kind of eomplex system

A company entering a new line of business that
expects constant changes to its system

Why? High agility and evolvability mean
mitvoservites tould £it, but we need more info

A small bakery that wants to start taking online orders
Why? The high cost and complexity of microsevvices
would be 400 muth for a small baker

A trouble ticket system for electronics purchased
with a support plan, in which field technicians
come to custowers to fix pmhlems

Why? Independent functions; qood scalability
and elastitity; simple workflows

[5d well suited for microservices
] Might be a ft for microservices

[] Not well suited for microservices

[] Well suited for microservices
[] Might be a fit for microservices

X1 Not wellsuited for microservices

[Well suited for microservices
muigm be a fit for microservices

[] Not well suited for microservices

[] Well suited for microservices
[] Might be a fit for microservices

152 Not wellsuited for microservices

RWeu suited for microservices
[] Might be a fit for microservices

[Not well suited for microservices

OEBPS/assets/f0209-01.png
i [[
L N

Ill

L i
S P |
—
— H H . T
I I B i il B
- L
g

— 2

OEBPS/assets/f0323-01.png
Option 1: Shared service

Moitor Blood
Pressure

Option 2: Shared hibrary

Monitor Blood Monitor
Pressure Temperature
Nert Blood Pressure ((Temperature
Staft
Alert Alert

Monitor
Te

N
7

Something’s won
vith the patient/

o

OEBPS/assets/f0346-00.png

OEBPS/assets/f0209-00.png

OEBPS/assets/f0323-00.png
'@m\

OEBPS/assets/f0347-01.png
(] [e]e]<]e]>
T [w]
[0] o] =
EEEE N
= = O] (| = _I_
[w]x[o]z]H] O x| [of |-
<] 0] [=[o[ojw]nln] [Z]
=] [=[oa[z]efula] [=] [O]
) o =| 2] =
—[z[F[w[o]e]<]F[o]x] [x] m
wl < T =]
> [x] Olx|o|z[w[w]-[x|[<][-[o]x
—[olo]-[o]<]= EHENE
S o] B
> [a]z[>[n][-]o]<
IEECH o

OEBPS/assets/f0322-01.png

OEBPS/assets/f0347-00.png

OEBPS/assets/f0118-04.png
Title: OZI: Use o topies for asynthronous messaging between order and downstream sevvices

Status: Ateepted, Supersedes 012

OEBPS/assets/f0218-01.png

OEBPS/assets/f0118-03.png
Title: O12: Use of queues tor asynthronous messaging between order and downstream sevvices

Status: Superseded by 02

OEBPS/assets/f0217-03.png

OEBPS/assets/f0118-02.png
itle: Ol 2:
Title: Use of queues for asynthronous messaging between order and downstrea it
m servites

Status: Aceepted

OEBPS/assets/f0217-02.png
Order Recipe Inventory
F = = Pomain = — — T Dowmain T Pomain !

1l | |
|(Kaeipes Ul] Il Inventory UD| Presentation

I I I
Place Order (Veliver Ordea |("é‘é“‘o’l‘ggg] Il Img:?gfv | Business rules
1

Persistence

T} L
LL] LI}

Deliver ; Recipe

| Order]GusfomeD I.oeafiortjll(Recipe)" H‘eﬂll)l)
_— o Al

T
|
L — — — — — — — s — — 4

Use s
Pace o
L oy thoug)t

OEBPS/assets/f0118-01a.png

OEBPS/assets/f0217-00.png

OEBPS/assets/f0120-01.png

OEBPS/assets/f0120-00.png
'@m\

OEBPS/assets/f0119-01.png

OEBPS/assets/f0219-02.png
Modular monolith
is also a monolithic

deployment model. \\

Order Inventory

r Placewent —| [Managemenf]

|: Payment :I

Modular monoliths <:¢7q
also use a monolithie d

database. ~—

Rather than organizing
the a‘??hta{ion b\/
tethnical tonterns,

we organize them by
business domain.

OEBPS/assets/f0354-05.png
Order
Subwmitted
Order ID: 123

This event
only passes
alon5 the
order [D.

This event passes
along all the
information about

the ovder that was

just submitted.

e

Order
Submitted

Order ID: 123
Customer ID: 99876
Date Placed: 22 May
Item List: [Items]
Street: 123 Main St
City: Anytown

OEBPS/assets/f0119-00.png
'@m\

OEBPS/assets/f0219-01.png
L ayered architetture

is @ monolithie Pl’esen T2 ﬁOM
dcvlo\/mcn£ model...
Workflow
Persistence
¢ ...baeked by a

% ¥ monolithic database.

OEBPS/assets/f0354-02.png
These are the things the system

This is the This is an event that does as a vesponse £o the event:
wser ackion is genevated from the
user action.
Submit an / Charge custowers credit
onlin order card

Order
Q/ — Submitted ————> Adjust current inventory
\ Prepare the order

OEBPS/assets/f0353-02.png

OEBPS/assets/f0351-01.png

OEBPS/assets/f0350-03.png

OEBPS/assets/f0351-04.png
This is a sevvice
that trigaevs

an event.

N

Lunch
Order
Service

This is
the event.

—_—

This is the event channel 5 \

where the event is sent

Grilled
Cheese
Service

French
Fries
Service

(\

These ave sevvices
that vespond to

an event.

</

OEBPS/assets/f0351-02.png
l: 1. Take the next customer’s lunch order (1 minute)

2. Accept payment from the customer (1 minute) / Now cach order anly takes T minutes

meaning the diner tan serve more

L tustomers.
3. Cook the grilled cheese sandwich (4 minutes)
4. Cook the french fries (5 minutes) These are done at the same
5. Make the chocolate milkshake (4 minutes) time, only takmg 5 minutes
l_ R because of the Fries.

6 Plate the food and serve the customer

OEBPS/assets/f0118-01.png

OEBPS/assets/f0217-01.png

OEBPS/assets/f0352-02.png
This is Ana—she’s going to
(be our Der Nile tustomer.

The customer Validate the order Charge the Adjust the If the stock
submits an order —> and generate —> customer’s —> current —> gets too low,
and waits order ID credit card inventory order more
Email the Send the order
B customer the to the fulfillment
order ID department to pack
Email the customer l
that the order is ready The order is packed
to ship and ready to ship

Email the customer l

B Ship the order to
<—— whentheorderis <«——
. the customer
delivered

|

Mark the order
as complete

OEBPS/assets/f0117-02.png
Using syne. communications

Pros Cons
eonsistency extensibility
ervor handling £ault tolevante

transattions responsiveness

Msing asyne Communications
Pros

C
responsiveness consid:enc\/ ™
cx\‘;ensibili{:y error handling
fault tolevance transactions

OEBPS/assets/f0216-01.png
By popular demand, we're
introducing pizzas to our
menu! Before | announce
it, 1 think | should talk to
our software development
group...

Remember Avthana, founder of
Naan ¢ Pop and aspiing project
manager from Chapter 62

OEBPS/assets/f0352-01.png
C Dev Nile wants to make

online shopping fun.

OEBPS/assets/f0215-01.png

OEBPS/assets/f0353-01.png
(Start here.

The customer
submits an order —>
and waits

OEBPS/assets/f0213-01.png
(]
o] (0]
H (0]
<] [w] [w]
[a [T]>]n]-[o]«]~
wl| o z (0]
= [a[wln[-[o]z]]
= o] = >[=]w[Z]
@ S| [» - -
a]xloa[a[ulz] [=] Elw]a]<|e]<=]w]
= [» z
@ ol Bl [ECoE
z w| [+ w -
x| [x| [O]o[Ela]o[z[u[z[~|v]
[x]u[o]n]w] [© <
| 5] EREFECE]
[z |w]x]<[o]~ w
< Ll 2l [c[z[F]wle]u<]o]w]

OEBPS/assets/f0353-00.png

OEBPS/assets/f0001-01.png

OEBPS/assets/f0091-00.png
'@m\

OEBPS/assets/f00xxxiii-03.png

OEBPS/assets/f0090-02.png

OEBPS/assets/f00xxxiii-02.png

OEBPS/assets/f0090-01.png
3

One of Your authovs
often sports this
T—shirt in publie. (|£
Yyou 5:{: any ?Vin{Cd;
please send us one
medium and two
extra—largel)

OEBPS/assets/f0186-04.png

OEBPS/assets/f00xxxiii-01.png

OEBPS/assets/f0089-04.png

OEBPS/assets/f0186-03.png

OEBPS/assets/f0359-01.png
Customer makes This is the

a credit card \ﬁ_ initiating event
purchase
) Credit Card
f. o o Charged
Fravd Credit
Detection Limit
Service Service
Check for Use as many of these Verify eredit
fravd as you need. You may limit These are the

not need all of them derived events

Fill in what you think J
the devived events

might be for cach of = >

these sevvices.

OEBPS/assets/f0002-03.png
Not onl\/ is this house
wly, it's not very
Lunctional either.

OEBPS/assets/f0360-02.png
Sevvites tan vespond o

move than one cven{)

Order Shipped
Event -
Ewail

Notification | [——————>

Service
Order Delivered
Event l
Ni Str!tic;s iar‘;h.
interested in 1S
devived event, so it Notified Event

Jjust disappears. [t's a
very lonely event.

My orderis
onitsway!

OEBPS/assets/f0002-02.png
This house has a
nice avthitetture

G

Load—bearing

column

OEBPS/assets/f0359-02.png

OEBPS/assets/f0088-01.png
Just a ("ricnd|y veminder
of what using queues would
look like, so You don’t have

to £lip back and for’ch.l

/m

\(—C)—>

OEBPS/assets/f0184-00.png

OEBPS/assets/f0356-01.png
/ Service é\
Service | |————> i) Both these

- services veceive
Topie \ the same event.
Service
You leavned j\ ‘/

about these in

Chapter 3. \/
This is the only

—
Service ——)-) ———>|Service || sevvice that

Queve veceives the

" message.

OEBPS/assets/f0087-01.png

OEBPS/assets/f0183-02.png
Distributed

Pros Cons
Coupling—I£ my phone’s camera breaks, | ean still Upgradability—Everything has to be managed
make ¢alls or track my workout. separately, like upgrading.
Modularity—Eath device does one thing and one Complexity—There’s much move to manage (| need
thing only, so it's easier to test. multiple battevies, thargers, and so on).
Evolvability—| can buy an SLR camera if | want Reliability—Network onnectivity can be unreliable
to take veally nice pictures. devites might dvop tonnettions or have spotty

tonnections.

OEBPS/assets/f0355-01.png
Hold on—in Chapter 3 you talked
about using messages to pass
information from one service to
another. Now you're talking about
using events. Is an event is the same
thing as a message?

OEBPS/assets/f0183-01.png
Pros

Conveniente—| only need to earvy one device.

Upgradability—| don’t have to deal with
patehing and upgrading multiple deviees

Ease of use—[£ 'm in a vush or going on a trip,
| only need to cavry one device.

Monolithic
Cons

Availability—I€ my phone dies or is damaged, |
can't do any of these functions.

Cost—Smartphones tan be expensive to veplace.

Portabiliby—| ean only use apps that work on my
Phone's operating system

OEBPS/assets/f0357-00.png
'@m\

OEBPS/assets/f0183-00.png

OEBPS/assets/f0356-02.png
Order
Placement
Service

Payment
Service

Shipping
Service

These are events. w

Order
— (s)
— (Payment
Rejected
—_— Order
Shipped \

Events ave always
stated in past tense.

These are messages. \/
Order

Placement]| | =————>> PAPNV
Service ayment

Packing
Service

Shipping || —— (Nofify
Service Customer

Messages ave always j
stated as tommands.

OEBPS/assets/f00xxxii-01.png
The brilliant
Savah Grey

OEBPS/assets/f0089-03.png
'@m\

OEBPS/assets/f0186-02.png

OEBPS/assets/f0357-01a.png

OEBPS/assets/f00xxxi-01.png
Nate Sehutta

Clave Sudbery

Mare Loy

Tanya Reilly

Christine
Sehutta

Venkat

Patyick
Viafore

OEBPS/assets/f0089-02.png
P——

Using Topies
PV'OS CO'\S

- Homogcncous message

— Low t,ouylins (hc|\7$ for all sevvices

extensibility)
Teadi e l — Can't monitor or stale
— [vading sevvice only a topi¢ independent!
has one ?!ar,c +o Fubhsh (hurds sealabili {',\/) Y
mcssascs
— Less seture (hurts
security)

“i—‘_=

OEBPS/assets/f0186-01.png
This is Avehana, /
vestaurateuwr and
aspiring projeet manager.

OEBPS/assets/f0357-01.png
"Adventurous Air tlight 12, turn lett, heading 220 degrees.”
[] Event [7] Message
Reason:

“In other news, a winter storm front has just wmoved into the area.”

[] Event [7] Message
Reason:

"Okay, class, turn to page 42 in your workbooks” ¥ >~ E: ckaje\ful-{h'-s one’s
vieky
[] Event [] Message

Reason:

"Hello, everyone! Sorry I'm late.”

[] Event [] Message
Reason:

"Oh no! I just missed my train!”

[Event [] Message
Reason:

"Excuse me, sir—do you have the time?”
[] Event [] Message
Reason:

OEBPS/assets/f00xxx-03.png

OEBPS/assets/f0089-01.png
This is what using a
topie looks like.

)

OEBPS/assets/f0185-01.png

OEBPS/assets/f0359-00.png

OEBPS/assets/f00xxx-02.png

OEBPS/assets/f0088-02.png
Heterogeneous.
is just @ F-MY\
way of saying

“dikfevent.”

— Move seture (improves
seturity)

Using Queues

Pros Cons |

— Supports heterogeneous — Higher degree ‘i‘

5 messages for different of coupling (hurts |

Consumers extensibility) “ |

— Allows independent — Teading sevvice must “

monitoring and sealing conneet 4o multiple “
(helps sealability)

queues ||

— Reqives additional ‘
infrastruture

Whiteboards are great for

brainstorming trade—offs
vith your team.

OEBPS/assets/f0184-01.png
[F] [H]
o] o[oo]H]
[g]w]olwla]o[o]>] [2]
3 a
z] [Z[w][-[Z[o]x]x]
(=] [T] O] - x
[Olo]z[o[w]x]z] [0] o] [O]
= = M EEEE M D]
EEEEEMEE F »] (o]
HEE m™ | ST<] o] o]
=] [w] O] w wl o
5| 5] EoERREEE (8] -
<| o o] [x]
BEEEEnEEEERnES
2
] <> [l]
Eand

OEBPS/assets/f0358-01.png
0

Customer
submits an
order

—>

This is the initiating
event that kicks
everything off.

S

Order
Placement
Service

Order
Placed

Servies ean vespond to
an event and in tun
trigaer move events.

N

Paywment
Service

These are derived
events triggered
by the Order
Submitted

initiating event. 2

Credit Card
Expired

—

—

Email
Notification
Service

- These ave all the things that
¢an possibly happen in the
Payment sevvite.

—

Paywment
Applied

Order
Fulfillment
Service

OEBPS/assets/f0004-04.png

OEBPS/assets/f0004-03.png

OEBPS/assets/f0094-03.png

OEBPS/assets/f0004-02.png

OEBPS/assets/f0094-02.png
We will use Node.js as the development framework for
the MVP.

o MVP skands for “minimum viable product.”

Perhaps you need to get to
&— mavket quickly, or maybe you
have a large pool of engineers
vith expertise in this
partieular technology stack.

OEBPS/assets/f0004-01.png

OEBPS/assets/f0094-01.png
We will use queues for asynchronous communication
between services.

This decision isnt about structure—it's driven by the
need for security. Since theves a queue Tor every
<ubstribev, we know who the tonsumers ave.

Recall that topies are 5
broadcasting methanism,
allowing any service 4o
substribe and listen in on 3

topic.

OEBPS/assets/f0364-02.png

OEBPS/assets/f0364-01.png
'@m\

OEBPS/assets/f0364-04.png

OEBPS/assets/f0004-05.png

OEBPS/assets/f0364-03.png

OEBPS/assets/f0002-04.png

OEBPS/assets/f0091-03.png

OEBPS/assets/f0361-01.png
Ithought you said
this architecture
was really fast. How
is this any faster than
microservices?

OEBPS/assets/f0091-02.png
Using synt. communications V
Pros Cons

Using asyne Communitations

Pros

responsiveness

OEBPS/assets/f0360-03.png
This event is no /_\/

longer lonely. Customer
Notified Event

Notification
Analytics
Service

This new service ean
simply subseribe +
he CXES{ina C"S{‘nmek

Notified event.

«

OEBPS/assets/f0091-01.png
respon eness I

coordination

transactions I
error handling '

consistency

deployability

extensibility

fault tolerance

OEBPS/assets/f0361-03.png
Fﬂfﬁ /} Not having to wait
,ﬂr/ i means You £an 9o
T/M: 1 S— do other things.

OEBPS/assets/f0361-02.png
traving fo wait
for a vesponse
is veally slow

OEBPS/assets/f0003-03.png

OEBPS/assets/f0093-03.png
We will build the reporting service as a

modular monolith.

This one is pretty obvious— /\
it literally desevibes the
sbrutture of a sevvice.

OEBPS/assets/f0363-01.png
Dotted lines

Order
Placement
Service

signi'(:‘/ asynthronous
tommunitation.

AN —— <

Payment
Service

The Ovder Placement sevvice
doesn't wait for a vesponse
Leom the Payment sevvice
onte it sends an event..

The Payment sevviee
ev:n{:ua”\/ veceives the
event and vesponds
when it’s ready.

OEBPS/assets/f0003-02.png

OEBPS/assets/f0093-02.png
We will use a cache to reduce the load on
the database and improve performance.

Notice how this detision introdutes an
additional piece of infrastructure. [’
also somc{hing the implcmcn{:ing team
must keep in the back of theiv minds
when ateessing or wri*(:ing data.

OEBPS/assets/f0362-01.png

OEBPS/assets/f0003-01.png
o
/\Bcﬂ» of these dnagra»xs_j

vepresent building plans:

OEBPS/assets/f0093-04.png

OEBPS/assets/f0002-05.png

OEBPS/assets/f0093-01.png
You 50{: it we've
talking sbout the
setond dimension

04(: SO‘(:{:WaY.C

acehitecture. L}

— SNOISID3a WANLO3LIHOZVY —,

OEBPS/assets/f0363-02.png
Order

Solid lines indicate

synthronous
tommunitation.

Placement| Stop
Service

The Order Placement service must stop and j

wait for a vesponse from the Payment service
before it ean complete its work.

Payment
Service

The Payment sevvice must
be available when the Order
Placement sevvice sends it
information.

OEBPS/assets/f0082-01.png
Two Many Sneakevs’ ')
s|ogani ou onl\/ have two
feet, but You €an never
have too many sneakevs!

OEBPS/assets/f0175-03.png
Pros Cons

Hint: Think about things like auditability
seportability, the “vight to be foraotten,” elc.

OEBPS/assets/f0081-01.png

OEBPS/assets/f0175-02.png

OEBPS/assets/f0080-02.png
DEEEm
o -l
> 5| [elolE=-1=]
lel<]-[<] [~)
[>] — o[>]oJofuln]x]
E B) () R 2 -
— o] El[x[-[>I<[o]>
x| = W T
[=]>]| = =]
o] [=I=le]=[=]o]=TH]
w <
(o|F[x[o[o[-[o]xw] [v]
[m < (0]
> B O]
o] [Olo]zlo|o]x|x|w][z]+
O] = o —
> R
m El<-=H]
] m

OEBPS/assets/f0175-01.png
scalability

reliability ,—

=3
%\EI@ Because monolithic applications
deploy as a single unit, any bug

that degrades the service will
affect the whole monolith.

There’s veliability again!

If you ever need to scale

one part of the application
independently of the others,
well, you're in trouble. It’s all or
nothing with monoliths.

Lhis isn't the entive
lisk—iust a few cons we

thought we'd point. out.

)ﬁ’ﬁt % evolvability

As monolithic applications grow,
making changes becomes harder.
Furthermore, since the whole
application is one codebase, you
can’t adapt different technology
stacks to different domains if
you need to.

deployability
Implementing any change

will require redeploying the
whole application, which could
introduce a lot of risk.

OEBPS/assets/f0364-11.png

OEBPS/assets/f0080-01.png

OEBPS/assets/f0174-01.png
i Q°

eano|

simplicity
Typically, monolithic
applications have a single
codebase, which makes them
casier to develop and to

feasibility

7 . .
Rushing to market? Monoliths

understand. are simple and relatively cheap,
P frecing you to experiment and
deliver systems faster.
cost

Monoliths are cheaper to build
and operate because they tend
(o be simpler and require less
infrastructure.

These are
Just a few of 4,
things monoliths are good EZ many
U debuggability
If you spot a bug or get an error
stack trace, debugging is casy,
since all the code is in one place.

reliability

A monolith is an island. It makes
few or no network calls, which
usually means more reliable
applications. K
Keep an eye out for this point.
when we distuss ons on the

next page.

OEBPS/assets/f0364-13.png

OEBPS/assets/f0364-12.png

OEBPS/assets/f0083-02.png
Piece of cake! lljust
use messaging to inform
the notification and
analytics services every
time & new pair of shoes
is listed on the app.

Genius!

OEBPS/assets/f0364-15.png

OEBPS/assets/f0082-02.png
have Too many sneakers!

The Two Many
Sneakers app talks to
the t\radmg sevvite.

This is the

\
I e 8 et
' rading
| Service
J :
. & -
i
.
.
.
.
i
'
.
i
'
'
i
N

The 4rading sevvice, in buvn,
4alks o the database

Two Many Sneakers Two Many Sneakers

backend

OEBPS/assets/f0364-14.png

OEBPS/assets/f0172-01.png
This is @ monolithic
application,

Lfm-.h-mg all tm’%
logical eomponents

in one deployment.
unit

Distributed
avchitettures

deploy lots °£)

smaller units.

CCosystem, or as

an executable
in the NET world,

e~ Recall that architeetural

chavacteristics influence
the structure of the
application.

OEBPS/assets/f0364-06.png

OEBPS/assets/f0171-02.png

OEBPS/assets/f0364-05.png

OEBPS/assets/f0364-08.png

OEBPS/assets/f0364-07.png

OEBPS/assets/f0079-02.png
Top 3

000 XOXK

Driving Characteristics

Sealability

Implicit Characteristics

Jeasibility (cost/time)

SCCIAY"I{\/ —— Je€uri2y

Elasticity maintainability

Responsiveness observability

Performance

Portability ST Remenber o

Accessibilit it e e

: ion is:

Y can You Justify Your choic;?‘s

OEBPS/assets/f0173-03.png

OEBPS/assets/f0364-10.png

OEBPS/assets/f0079-01.png

OEBPS/assets/f0173-02.png
Distributed

Pros Cons

OEBPS/assets/f0364-09.png

OEBPS/assets/f0078-03.png
Stenavio #I Seenavio 21 Seenario #3

An application to
automate standardized
testing and grading for
university admissions

An ecommerce site in a

A system for an enterprise
competitive market

whose goal s to grow via
mergers

1 Seewrity 1 Extensibility 1 Data integrity

2 Pecformance 2 Sealability 2 Seeuwrity
3 Scalabilik\/ 3 3 Performante
4 4 4

OEBPS/assets/f0173-01.png
Monolithic

Pros Cons

OEBPS/assets/f0078-02.png
Extensibility

OEBPS/assets/f0173-00.png

OEBPS/assets/fmsevenb.png

OEBPS/assets/f0086-01.png
This is 3 message.

Trading
Service

ﬁ/

Thisis a 7Y

tonsumevr.

Notification
Service

For cvcr\/ COHSIAMCY‘, \/ou

need a separate queue.

Analytics
Service

This is anot\hch

tonsumey.

OEBPS/assets/fmsixb.png

OEBPS/assets/f0085-02.png

OEBPS/assets/f0182-01.png

OEBPS/assets/fmfiveb.png

OEBPS/assets/f0085-01a.png

OEBPS/assets/f0181-02.png

OEBPS/assets/fmfourb.png

OEBPS/assets/f0085-01.png
Lots of downstream
sevvices need to know

(abmﬁc sneakev trades. modularity o
extensibility) This sounds important/ upgradability

low coupling .
security

OEBPS/assets/f0181-01.png
ANEEEE

i [T TT1 |

HEN _

b |

—

1T i -
[[]

OEBPS/assets/f00xxx-01.png

OEBPS/assets/fmnineb.png

OEBPS/assets/fmeightb.png

OEBPS/assets/f0086-02.png
The publisher publishes a
message to the topic.—,

Trading
Service

Notification
Service

Anyone intevested in the messages
¢an subseribe to the topic.

The topic, in tuen,
notifies all subseribers.

Analytics e

Service

OEBPS/assets/f0083-01.png
The database 1 New Air Jordans just
j h ew fiv Jordans ju
i‘\\h";ta:tiuf&{wz g0t listed? [nform
e St ot in CYOTyone intevested
:)“s{: lekt N u‘,da{c.

Lhis diagram- & Notification
/ Service
Trading
Service .
Analytics
Service
Ay and all trades

need to be sent to the
analyties service. Nobody
likes being seammed.

OEBPS/assets/f0177-02.png

OEBPS/assets/f0364-17.png

OEBPS/assets/f0177-01.png
)

e

VAN
o

performance
Distributed architectures

involve lots of small services

that communicate with each
other over the network to do
their work. This can affect
performance, and although there
are ways to improve this, it’s
certainly something you should
keep in mind.

: de o’

carp,

simplicity

Distributed systems are the
opposite of simple. Everything
from understanding how they
work to debugging errors
becomes challenging.

We_eannot,_emphasize
enough how complex
distributed arthitectures
can bel

cost

Deploying multiple units means
more servers. Not to mention,
these services need to talk to one
another—which entails setting
up and maintaining network
infrastructure.

Debugging distributed systems
involves thinking deeply about
logging, and usually requires
399veqating logs. This also
adds to the tost.

debuggability

Errors could happen in any
service involved in servicing

a request. Since logical
components are deployed in
separate units, tracing errors can
get very tricky.

OEBPS/assets/f0364-16.png

OEBPS/assets/f0176-01.png
scalability

Distributed architectures deploy

different logical components

scparaely from one another 585 modularity
Need to scale one? Go ahead! XD Disibuted architecures
encourage a high degree of
5\ testability modularity because their logical
T components must be loosely
| Each deployment only serves o
o | a select group of logical

| components. This makes

testing a lot easier—even as ‘hcﬁ

application grows.
Distributed avehitectures
are a lot move testable
than monolithic
applieations.

deployability
Distributed architectures
encourage lots of small units.
They evolved after modern
<7 fault tolerance engineering principles like

S continuous integration,
continuous deployments, and
automated testing became the
norm.

Even if one piece of the system
fails, the rest of the system can
continue functioning.

Having lots of small wnits
vith good testability
veduces the visk assotiated
with deploying thanges.

OEBPS/assets/f0364-19.png

OEBPS/assets/f0364-18.png

OEBPS/assets/fmthreeb.png

OEBPS/assets/f0085-00.png

OEBPS/assets/f0181-00.png

OEBPS/assets/fmtwob.png

OEBPS/assets/f0084-03.png
"sellerId": 12345, What should
"buyerId": 6789, this look like?
"itemId": 1492092517, |~

"price" . u$125 . 00"

OEBPS/assets/f0178-01.png

OEBPS/assets/f0364-20.png

OEBPS/assets/fmoneb.png
3

OEBPS/assets/f0084-02.png
Notification

/ Service
Trading

Service |’

N Analytics
Service

What does finance need to o

know? Will Ehis even happen? NN

OEBPS/assets/f0178-01a.png
Pros Cons

OEBPS/assets/f0084-01.png
Trading
Service

A

Notification
Service

Analytics
Service

OEBPS/assets/f0178-00.png

OEBPS/assets/f0012-02.png

OEBPS/assets/f0012-01.png
— ARCHITECTURAL STYLE —,

OEBPS/assets/f0105-02.png
Decision Notice the
authovitative voice!
We will use a document database for the customer survey.

The marketing department requires a faster, more flexible way to make changes
to the customer surveys.

Moving to a document database will provide better flexibility and speed, and will
better facilitate changes by simplifying the customer survey user interface.

The Detision se¢tion
covers the “why” of the
detision itself: vemember
the Second Law?

OEBPS/assets/f0105-01.png

OEBPS/assets/f0011-01.png

OEBPS/assets/f0107-01.png
Title

Statug
COntext
Decision
Conseq“ences

GOVEPnanC e

Notes

OEBPS/assets/f0010-03.png
Order
Trackin
Al of these boxes / ing

\/ vepresent logieal tomponents:
Order Payment i <—\
Placement

Processing

. We dive into 4
Shipping details of Ioai::I
Components g g
ow to ¢
The Payment. Protessing hem 1 C':;(:z
logical tomponent is £ app Pter 4-
Inventory identified through this
Management diveetory structure and is order
implemented ‘Ehroual\h these
three sourte tode files. __7) payment
—[E] pay_with_creditcard.py
?:::ie;tv:l" —[E] pay_with_giftcard.py
language-agnostic. _El fund
ie. process_refund.py
We just happen to
be using Python ~—

heve.

OEBPS/assets/f0106-01.png

OEBPS/assets/f0010-02.png
BEDROOM {

BEDROOM 2

OEBPS/assets/f0106-00.png

OEBPS/assets/f0010-01.png
LOGICAL COMPONENTS

OEBPS/assets/f0105-03.png

OEBPS/assets/f0011-04.png

OEBPS/assets/f0108-00b.png

OEBPS/assets/f0011-03.png
This tomponent is responsible
for “pick and pack.” [t loca{cs/_l/

items in a warehouse (that’s the Order
“pick” part), then determines 8

the corveet box size for the Fulfillment
items so they ¢an be shipped
(that's the “pack” part).

This is the vole and
vesporsibility statement
for the Ovder
Fulfillment component.

OEBPS/assets/f0108-00a.png

OEBPS/assets/f0025-26.png

OEBPS/assets/f0108-00.png
'@m\

OEBPS/assets/f0011-02.png
r
Custome
ces
Customer Preteren
Profile
Hse his e 1
Write e do

Wn Youp.
nswey.

OEBPS/assets/f0107-02.png
Highlight the
Consequentes
of the decision
for the
implementation
team

Consequences

Since we will be using a single representation for all surveys, multiple documents
will need to be changed when a common survey question is updated, added, or
removed.

The IT team will need to shut down survey functionality during the data migration
from the relational database to the document database, causing downtime.

s important
o note "
Consequent
that mial,{“
affect
Customers o

users,

OEBPS/assets/f0016-02.png
Order

+ viewOrder()
+ placeOrder()
+ cancelOrder()

Orders tan have one or
two payment types, and
payment types can be
assotiated with zevo or
move orders.

KJ PaymentMethod
0..* 1.2

+ applyPayment()

+ refundPayment()

The CreditCard and
Zﬁe— GiftCard tlasses inherit
behavior from the

Pa\/"“"'('—MC{hod ¢lass.
CreditCard GiftCard
+ addNewCard() + getBalance()
+ removeCard()

OEBPS/assets/f0012-04.png
microservices

\a‘{e"'“'

There are a number oF different
arthitettural styles, but Fortuna(::\y
not as many as theve ave house styles.

OEBPS/assets/f0013-04.png
Fun £act: A lion doesn
only vun fast in o
than the lion ¢ha:

"t have much staming and tan
hort bursts. (£ you ean last longer
5ing You, then you Just might suevive

OEBPS/assets/f0013-03.png

OEBPS/assets/f0013-02.png
Y Vietorian
very di'p\citulf b

Structures g, so diwfxceken{:-

would be
eCause the

OEBPS/assets/f0013-01.png

OEBPS/assets/f0016-01.png
Lueky you. You've been put in
K tharge of building the new order

Protessing system. This is the big
break You've been looking for, and
You've anxious 4o get started.

OEBPS/assets/f0015-01.png
If 'm responsible for the
design of & software system,
does that mean I'm responsible
for its architecture as well?
Aren't those the same thing?

OEBPS/assets/f0014-02.png

OEBPS/assets/f0014-01.png
This is about availability
This systew must be available for our overseas customers, —————— >

AR We did s

one for You

Customers are complaining about the backaround color
of the new user interface.

The produet owner insists that we get new features and
bug fixes out o our customers as fast as possible.

ZLOGICAL COMPONENTS

Our system uses an event-driven architecture.

We need fo support up to 00,000 concurrent users in
this system.

The single payment service will be broken apart into
separate services, one for each paywent type we accept.

We are going to start offering reward points as a new
paywent option when paying for an order.

We are breaking up the orderPlacement class into
three smaller class files.

The user interface shall not communicate directly with
the database.

OEBPS/assets/f0006-08.png

OEBPS/assets/f0006-07.png

OEBPS/assets/f0006-06.png

OEBPS/assets/f0100-02.png
]

OEBPS/assets/f0006-05.png

OEBPS/assets/f0100-01.png

OEBPS/assets/f0005-01.png
We've going 4o el
Fieces and buld 5

/ what software ar,

T re—

cuRCTERSTS
 AROATECTURAL

w5 mrsosow

LosicaL couponETS

1P You take the puzsle j

complete picture of
ehitecture is ol abou,

OEBPS/assets/f0098-01.png

OEBPS/assets/f0004-06.png
— architectural characteristics “

2

S
< 5
= (2]
ot S
@ &
(2]
ct o
s g
5 g
S 2
0o, 3
2. <
o [0)
S
1]

logical components

OEBPS/assets/f0097-01.png
A sinole a\’L\\\(‘,cL‘b;ra\ detision
Sin

d destribes W
:L:\:wn was made and “\‘tl This log sevves as a
< 1 Over time, you build the memory store
g Title up a log of decision — of Your project,
vetords—one for every explaining how and why
Status detision. the project got 4o
) where i
These Context
settions make ~
up an ADR. Decision over time ~+=1 " leads to
o e — =
Consequences “
e
Governance
Notes Together, these
ADRs form the
Don't worry if this “story” of your
architeeture.

is confusing now—we'll
be diving into the
details in the next
\CEW FJBCS,

OEBPS/assets/f0096-01.png
THE SECOND LAW
OF
SOFTWARE
ARCHITECTURE:

WHY

IS MORE
IMPORTANT
THAN
HOW

OEBPS/assets/f0095-01.png
Hold up. Whiteboards are great,
but there has to be a more permanant
way of recording the trade-off analysis,
the decision, and most importantly, why
that choice was made. Whiteboards seem
awfully temporary, no?

OEBPS/assets/f0006-04.png

OEBPS/assets/f0102-02.png

OEBPS/assets/f0006-03.png

OEBPS/assets/f0099-03.png

OEBPS/assets/f0006-02.png
:)
orwmance aVallabi' sca\a““ M oo
pe ke e s @By ¥
g o000 wme <2 amount of Uptime of Thesys response fime
oystom 10 PYO%® VSTt Usually g s e of 18
for e Hines” (59 99 g 2 or el in s
pusiness ved\ ree “ringg) > Would p ey osts {norease;

Here are some of the move common avehitectural
ehavactevistics. You'll be learning all about these
in Chapter 2.

OEBPS/assets/f0099-02.png
['hese two pieces together

make up the title.
B)

042: ' Use relational store for customer survey service

A three—digit The title of the ADR

numevieal F\“C‘ciﬁ,

followed b\/ a tolon

OEBPS/assets/f0006-01.png
«— ARCHITECTURAL CHARACTERISTICS —;

OEBPS/assets/f0099-01.png

OEBPS/assets/f0009-04.png

OEBPS/assets/f0009-03.png
Heres 3 hint—do you have questions
about why certain things are done

the vay they are? N

Order Inventory

Placewent Adjuster

Roporting Order ventor
Database Database Vatabas:

Payment
Mediator
Credit Gift Reward
Card Card Points
Paywent Payment Payment.

Payment
Patabase

OEBPS/assets/f0009-02.png

OEBPS/assets/f0104-04.png

OEBPS/assets/f0100-03.png

OEBPS/assets/f0007-03.png
Extensibility
N_ We did this

one for You.

Agility

Interoperability

Fault tolerance

Feasibility

‘IaKing Into account time frames, budgets, and
developer skills when making architectural choices

The system's ability to keep its other parts
functioning when fatal errors occur

The ease with which the system can be enhanced to
support additional features and functionality

The amount of time it takes to get a response to the
user

The system’s ability to respond quickly to change
(a function of maintainability, testability, and
deployability)

The system’s ability to interface and interact with
other systems to complete a business request

OEBPS/assets/f0102-02a.png

OEBPS/assets/f0007-01.png

OEBPS/assets/f0102-01.png

OEBPS/assets/f0006-09.png

OEBPS/assets/f0101-01.png
The previous ADR
L_) 042: Use relational store for customer survey service Only an Acecpted ADR can
become Superseded.

Status: Aeeepted Superseded by 068)

This updated status mentions the _7
number of the new ADR.

This ADR overrides Note: We'll be showing
(H.c previous ADR. You ADR 068 for the
068: Use document store for customer survey service ":f of {:CI Lh:: (:c;:,
while you help the Two
Status: Accepted, Supersedes 042 Many Sneakers team
with their ADR.
Now the new ADR has the -J\ K_ Notice how we mention the number

status Accepted. of th ded he
e superseded ADR heve. Linkina ADR< i< an

OEBPS/assets/f0100-04.png

OEBPS/assets/f0009-01.png

OEBPS/assets/f0104-03.png
'@m\

OEBPS/assets/f0008-03.png
fteve's an example
of an arthitectural

detision.

Architectural

decision

The user interface must
go through the data
access service to read

or write data; it cannot
communicate directly with
the database.

You'll be learning a |o£j

about architectural
detisions in Chapter 3.

This arthitectural / M
detision imposes —

a tonstraint and

d
aets as a quide .
Access
Service

This image } \
vepresents 3

sevvice. You'll be
seeing it a lot in
the book.

B

This is the
database.

OEBPS/assets/f0104-02.png
Let’s tontinue working on the
ADR we started with in the
Status seetion.

Context

We need to simplify how we store customer survey responses. The data

¢, and its rigid schema requirements

Ive the surveys (for example, introducing
¢ premium customers).

currently resides in a relational stor
have become challenging as we evo
different or extended surveys for ow

There are various options available to s, like the JSONB data type in
PostgreSQL or document stores such as

ke Lhis op o

4—/ l"ﬁin wi{i,_;»home 4o
ﬁ:f".“ aren't

¥ibing oy detision

5t yetl U e

a wh,
e section £,

OEBPS/assets/f0008-02.png
What should Your home look
like? This kind of decision

/ is an architectural one.

OEBPS/assets/f0104-01.png

OEBPS/assets/f0008-01.png
—— ARCHITECTURAL DECISIONS —

OEBPS/assets/f0103-01.png
Start hm
This cald be 35 casy s
Buery ADR starks bt confimatin
~RCabe | sy i
Dacs s ADR affect
wultiple $eams or
eyl Do e
c approved by an
adwsary board? [F yes, g0

vight; else, go left.

Heve, you ave
secking approvals
£rom others. You
ave allowed to make

edits as needed.

all skakeholders on
C;:rd ith bhis decision? IF
Did something change?

5, tontinue
M Sl
Has a later ADR

O vendered bhis ADR

ireelevant?
Yes
Superseded
®

T End heve.

OEBPS/assets/f0022-04.png
Changjing the layou®
of the %\c\ds ond
e page is Mo
sbout, aprearance
fhan sbructure—yet

another veason

why s would
deved desio™

o

3

onsi

(]
From
Depart
E—

Return

To
Find Flights

q

Find Flights

OEBPS/assets/f0022-03.png

OEBPS/assets/f0022-02.png
Architecture — Design

High effort < > Low effort

OEBPS/assets/f0021-03.png

OEBPS/assets/f0024-01.png
Architecture j_ Design

More-significant <«—— ——> Less-significant
trade-offs Trade-offe

OEBPS/assets/f0023-03.png

OEBPS/assets/f0023-02.png
high—ekrort
gv ;; t:: o and e High effort

e B e botkom o \
o eeeblor

Migrating your system to
2 cloud environment

Renaming a method or
function

single
te ones

e a
Breming L e

service

Moving from a relational
o a graph database

Breaking apart a class file

i

OEBPS/assets/f0023-01.png
2 =
E@RED
EDE@
—

OEBPS/assets/f0025-01.png

OEBPS/assets/f0024-02.png
Iwonder
if microservices
might be a good fit
for this project.

« Stalablity A7
+ Agility {‘:
+ Bastotty Na =

+ Fault folerance @ R

Should | break
my class file
apart?

+ Maintainability
+ Readability

%W\
Serigys ;€ re o
Copg) rade__pime
;Zi" This ,-:ifs b
hitery, e ore
- Cost
- Cowplexity
- Performance
- Workflow

7
N

OEBPS/assets/cover.png
Head First

Software
Archltectu/re

A Learner's Guide to
Architectural Thinking

Raju Gandhi,
Mark Richards
& Neal Ford

A Brain-Friendly Guide

OEBPS/assets/f0017-02.png

OEBPS/assets/f0017-01.png
As a gentle veminder,
eath of these boxes
vepresents a “sevvice.”

N

pay
Order Payment h
Placement Mediator ;,'cz‘
Service Service P

=
-

Eath sevvite would have
its own ¢lass diagram
vepresenting the design
of the servite.

YA

Gift
o
Service Service

£1]

OEBPS/assets/f0017-06.png

OEBPS/assets/f0017-05.png

OEBPS/assets/f0017-04.png

OEBPS/assets/f0017-03.png

OEBPS/assets/f0018-02.png
Selecting @ user interface framework

Breaking up 2 class file
Ch Deciding to usé agraph database
00sin, R
framewo 9 a persiste, Breaki edesignjj Migrati
nc ing a ing a grating to i
e servie T2 eb page 9 to microseryige,
. s
Choosing an XML parsing library

OEBPS/assets/f0018-02a.png

OEBPS/assets/f0018-01.png
Things on this side are Things on this side are
f move about architecture. move about dcsign. \,

Architecture —_— Pesign

You'll £ind most of Your detisions Lall
within the specteum vight about here.

OEBPS/assets/f0017-07.png

OEBPS/assets/f0019-01.png

OEBPS/assets/f0018-04.png
Why should | care
where in the spectrum
between architecture and
design my decision lies?
Does it really matter that
much?

OEBPS/assets/f0018-03.png

OEBPS/assets/f0020-01.png
Architecture — Design

Strateaic Tactical

OEBPS/assets/f0019-04.png

OEBPS/assets/f0019-03.png

OEBPS/assets/f0019-02.png

OEBPS/assets/f0021-02.png
Q

Picking a
programming
language for your
new project

Q

Redesigning your
user interface

O O

Deciding to get Deploying in the
your first dog cloud or on prewmises
& Choosing a &
parsing library
Migrating Uum; a design
your system fo
wicroservices

Somewhere in
between

OEBPS/assets/f0021-01.png

OEBPS/assets/f0020-02.png
How
can | determine
whether a decision
is more strategic or
moretactical?

