
Bernd Ruecker

Practical
Process
 Automation
Orchestration and Integration in Microservices
and Cloud Native Architectures

Bernd Ruecker

Practical Process Automation
Orchestration and Integration in Microservices

and Cloud Native Architectures

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

Practical Process Automation
by Bernd Ruecker

Copyright © 2021 Bernd Ruecker. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Michele Cronin
Production Editor: Deborah Baker
Copyeditor: Rachel Head
Proofreader: Kim Wimpsett

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

March 2021: First Edition

Revision History for the First Edition
2021-03-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492061458 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Practical Process Automation, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Camunda. See our statement of editorial inde‐
pendence.

978-1-098-10645-8

[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492061458
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. ix

1. Introduction. 1
Process Automation 1
Wild West Integrations 4
Workflow Engines and Executable Process Models 7
A Business Scenario 9
Long-Running Processes 10
Business Processes, Integration Processes, and Workflows 11
Business–IT Collaboration 12
Business Drivers and the Value of Process Automation 13
Not Your Parents’ Process Automation Tools 14

A Brief History of Process Automation 14
The Story of Camunda 18

Conclusion 19

Part I. Fundamentals

2. Workflow Engines and Process Solutions. 23
The Workflow Engine 23

Core Capabilities 23
Additional Features of Workflow Platforms 25
Architecture 26

A Process Solution 28
An Executable Example 29
Applications, Processes, and Workflow Engines 37
Typical Workflow Tools in a Project’s Life Cycle 38

iii

Graphical Process Modeler 38
Collaboration Tools 40
Operations Tooling 41
Tasklist Applications 42
Business Monitoring and Reporting 42

Conclusion 44

3. Developing Process Solutions. 45
Business Process Model and Notation (BPMN) 45

Start and End Events 48
The Token Concept: Implementing Control Flow 48
Sequence Flows: Controlling the Flow of Execution 49
Tasks: Units of Work 49
Gateways: Steering Flow 51
Events: Waiting for Something to Happen 52
Message Events: Waiting for a Trigger from the Outside 52

Combining Process Models and Programming Code 54
Publish/Subscribe to a Process 54
Referencing Code in Process Models 57
Using Prebuilt Connectors 58
Model or Code? 59

Testing Processes 62
Versioning of Process Solutions 63

Running Versions in Parallel 63
Conclusion 65

4. Orchestrate Anything. 67
Orchestrate Software 68

Service-Oriented Architecture (SOA) Services 69
Microservices 70
Serverless Functions 71
Modular Monoliths 74
Deconstructing the Monolith 75

Orchestrate Decisions 76
Decision Model and Notation (DMN) 78
Decisions in a Process Model 80

Orchestrate Humans 81
Task Assignment 82
Additional Tool Support 84
The User Interface of User Tasks 85

Orchestrate RPA Bots 88
Orchestrate Physical Devices and Things 91

iv | Table of Contents

Conclusion 92

5. Championing Workflow Engines and BPMN. 93
Limitations of Other Implementation Options 93

Hardcoded Processes 94
Batch Processing 94
Data Pipelines and Streaming 96
The Actor Model 98
Stateful Functions 99

Process Modeling Languages 100
Workflow Patterns 101
Benefits of Graphical Process Visualizations 102
Textual Process Modeling Approaches 104
Typical Concerns About Graphical Modeling 106
Graphical Versus Textual Approaches 108

Process Automation with Blockchain? 108
Conclusion 111

Part II. Process Automation in the Enterprise

6. Solution Architecture. 115
When to Use a Workflow Engine 115
Architecture Trade-Offs 116

Running the Workflow Engine 117
Decentralized Engines 117
Sharing Engines 118
Ownership of Process Models 119
Using the Workflow Engine as a Communication Channel 119
In-House Workflow Platforms 120
Performance and Scalability 121
Developer Experience and Continuous Delivery 122

Evaluating Workflow Engines 123
Conclusion 126

7. Autonomy, Boundaries, and Isolation. 127
Strong Cohesion and Low Coupling 127
Domain-Driven Design, Bounded Contexts, and Services 129
Boundaries and Business Processes 130

Respect Boundaries and Avoid Process Monoliths 131
Foster Your Understanding of Responsibilities 136
Long-Running Behavior Helps You Defend Boundaries 138

Table of Contents | v

How Processes Communicate Across Boundaries 139
Call Activities: Handy Shortcuts Only Within the Boundary 140
Crossing Boundaries Is an API Call 141

Decentralized Workflow Tooling 144
Conclusion 145

8. Balancing Orchestration and Choreography. 147
Event-Driven Systems 147

Emergent Behavior 150
Event Chains 150
The Risk of Distributed Monoliths 154

Contrasting Orchestration and Choreography 155
Introducing Commands 155
Messages, Events, and Commands 157
Terminology and Definitions 158
Avoiding Event Chains by Using Commands 158
The Direction of Dependency 161

Finding the Right Balance 162
Deciding Whether to Use Commands or Events 162
Mixing Commands and Events 162
Designing Responsibilities 165
Evaluating Change Scenarios to Validate Decisions 166

Debunking Common Myths 168
Commands Do Not Require Synchronous Communication 168
Orchestration Does Not Need to Be Central 170
Choreography Does Not Automatically Lead to More Decoupling 170

The Role of Workflow Engines 170
Conclusion 172

9. Workflow Engines and Integration Challenges. 173
Communication Patterns for Service Invocation 173

Synchronous Request/Response 174
Asynchronous Request/Response 176
BPMN and Being Ready to Receive 178
Aggregating Messages 180
Poisoned and Dead Messages 181
Synchronous Facades Hiding Asynchronous Communication 181

Transactions and Consistency 183
Eventual Consistency 185
Business Strategies to Handle Inconsistency 186
The Saga Pattern and Compensation 187
Chaining Resources by Using the Outbox Pattern 189

vi | Table of Contents

Eventual Consistency Applies to Every Form of Remote Communication 191
The Importance of Idempotency 192
Conclusion 193

10. Business–IT Collaboration. 195
A Typical Project 195

The Moral of the Story 199
Including All the People: BizDevOps 200

Development 200
Business 201
Operations 202

The Power of One Joined Model 205
From a Process Pyramid to a House 206

Who Does the Modeling? 209
Creating Better Process Models 211

Extracting (Integration) Logic into Subprocesses 211
Distinguishing Between Results, Exceptions, and Errors 213
Increasing Readability 215

Conclusion 217

11. Process Visibility. 219
The Value of Process Visibility 219
Getting the Data 221

Leverage Audit Data from Your Workflow Engine 221
Model Events to Measure Key Performance Indicators 222

Status Inquiries 223
Understanding Processes That Span Multiple Systems 224

Observability and Distributed Tracing Tools 225
Custom Centralized Monitoring 226
Data Warehouses, Data Lakes, and Business Intelligence Tools 228
Process Mining 229
Process Event Monitoring 230
Current Market Dynamics 231

Setting Up Process Reporting and Monitoring 232
Typical Metrics and Reports 232
Allowing for a Deeper Understanding 233

Conclusion 234

Table of Contents | vii

Part III. Get Going!

12. The Journey to Introduce Process Automation. 237
Understanding the Adoption Journey 238

Failures You Want to Avoid 238
A Success Story 240
The Pattern of Successful Adoption Journeys 242
Different Journeys for Different Scenarios 246

Starting Your Journey 248
Bottom-up Versus Top-down Adoption 249
Proofs of Concepts 250
Presenting the Business Case 251
Don’t Build Your Own Platform 253
Dos and Don’ts Around Reuse 254

From Project to Program: Scaling Adoption 254
Perception Management: What Is Process Automation? 255
Establishing a Center of Excellence 255
Managing Architecture Decisions 256
Decentralized Workflow Tooling 257
Roles and Skill Development 258

Conclusion 259

13. Parting Words. 261
Current Architecture Trends Influence Process Automation 261
Rethinking Business Processes and the User Experience 262
Where to Go from Here 264

Index. 265

viii | Table of Contents

Preface

I remember very clearly when I first decided to use a small open source workflow
engine, implemented in Java, to write a piece of business software for a friend 20
years ago. This decision changed my life. I got very enthusiastic about process auto‐
mation and engaged in the community of that open source project. Ultimately this
experience pushed me toward cofounding my own company, which went on to
become the leading vendor of source-available process automation tooling (I could
never, ever have dreamed of the big names now using our software!). My aim with
this book is not only to share my excitement about process automation, but also to
explain how to apply process automation technology in real life, in a pragmatic and
developer-friendly way.

But first, an anecdote. During high school a good friend of mine started their own
business; a specialized retail store for graphics cards. You may remember these cards
if you’ve assembled a computer—they could be “modded” to get more power out of
the chip, which allowed gamers to buy cheaper cards and achieve better performance.
The business model required handling each physical graphic card as an individual
item and establishing very specific procedures around sales and distribution.

My friend was successful with this business model. Actually, very successful. So suc‐
cessful that the process, which was based on manual handling and emails, broke
down. Orders were delayed, and piles of graphics cards, as well as unprocessed
returned parcels, started filling the rooms.

We discussed remedies to this situation and finally ended up developing a piece of
custom software that automated some of their processes while supporting the
specifics of their business model. It had a pretty narrow focus, but helped them to
remove all the piles of stuff. They reduced the cycle time so that orders were shipped
within a day. Manual work in the redesigned process was reduced to steps that
involved the physical goods (e.g., packing the parcel), while other tasks were automa‐
ted (generating and printing the invoice and the shipping label, sending customer
confirmations, etc.). Customers got transparency into the status of their orders, and

ix

we even provided a very simple self-service tracking portal. The software escalated
issues if some process got stuck for too long, so it was no longer necessary to wait for
customers to complain to take corrective action. Overall, as hands-on as the software
was, it was a huge success.

Back then I would never have phrased it like this, but I experienced the advantages of
process automation firsthand: improved process quality, reduced cycle times, auto‐
mation of boring tasks, ability to scale, and reducing operational spend.

Over the next 20 years, I saw core processes and support processes being automated
in all industries. I saw NASA processing data from the Mars robot using an automa‐
ted process on Earth in order to send back control signals to space. I saw insurance
companies automating onboarding and claim handling processes, including the
reporting of accidents via apps and fully automated handling of these reports. I saw
process automation technology being applied to trading and money transfer use
cases, and to many different processes in telecommunication. I even saw actual lab
robots being controlled by a workflow engine.

Process automation is everywhere, and it is super exciting. The need for automation
is growing almost on a daily basis. Digital transformation is happening, allowing
completely new business models and requiring companies to change business pro‐
cesses at a fundamental level. Recently, the COVID-19 pandemic brought this into
focus: businesses needed to switch from paperwork being signed on-site to electronic
processes basically overnight; companies needed to scale complete processes that had
been relatively uncommon before, like airlines canceling tickets and compensating
for flights; and organizations rapidly pivoted to completely new business models, like
the distribution of face masks.

These are only a few examples of the bigger trend Gartner calls “hyperautomation.”

Companies embark upon this journey for many reasons: existing processes might be
too inefficient, too slow, too expensive to operate, impossible to scale, or simply not
flexible enough to support new business models (or all of those things at the same
time!). And manually executed or poorly automated processes don’t provide enough
data to gain actionable insight into what is going on, making it hard to learn and
adapt. This makes the business vulnerable to competitors that have already embraced
digital transformation and process automation.

Process automation typically addresses processes that need to be tailor-made to an
organization’s needs. Therefore, they cannot be bought as off-the-shelf application
software. Even if these processes are often the same across different organizations
(e.g., customer onboarding, order management, claim settlement), the way each orga‐
nization designs and implements them is unique and can be a differentiator for them
in their market. Process automation enables organizations to be more competitive,

x | Preface

conduct their business more efficiently, save cost, increase revenue, and progress in
their digital transformation.

Chances are high that you work in such a company, maybe as a software architect,
enterprise architect, business analyst, or developer. Process automation will be one of
the key tools in your toolbox.

My mission with this book is to help you on your journey by sharing what I’ve
learned through 20 years of firsthand experience with process automation.

Process Automation Tools and Techniques
There are many ways to automate processes, from plain software development to
batch processing, event-driven microservices, and any other development practice
you can think of.

But automating processes has specific characteristics and requirements, and there is
dedicated software built for addressing these. Analysts define different software mar‐
ket categories that are related to process automation: for example, digital process
automation (DPA), intelligent business process management suites (iBPMSs), low-
code platforms, robotic process automation (RPA), microservice orchestration, pro‐
cess orchestration, process monitoring, process mining, decision support, and
automation.

All the different software categories provide tools and technologies that allow organi‐
zations to coordinate, automate, and improve business processes. These processes can
include people, software, decisions, bots, and things.

That’s a broad scope. So what will we focus on in this book?

The Scope of This Book
This book looks at how process automation can be applied in modern system archi‐
tectures and software development practices. It examines how tool support needs to
look like to become a vital part of every developer’s toolbox. It demonstrates that the
core component to make this happen is a lightweight and developer-friendly work‐
flow engine, which will be explored in great detail throughout the book.

Along the way, we’ll discuss some typical misconceptions. Workflow engines are not
alien in software development, like some people may expect. And even if neither ana‐
lyst reports nor tools from big vendors are particularly developer-focused or
developer-friendly, there are alternative tools available today, as you will see through‐
out this book. Some of these might not fit into the categories mentioned earlier, but
others do.

Preface | xi

That said, I will not dedicate a lot of time to what analysts say about process automa‐
tion software, but focus on giving practical advice about workflow engines in the con‐
text of software development in modern architectures. In this context, I will weave
together ideas from microservices, event-driven systems, and domain-driven design.

This might give you a new perspective on process automation.

Who This Book Is For
This book targets software developers and software or system architects who want to
learn about process automation.

You might prefer to be called a software engineer instead of a
developer, and that is perfectly OK. In this book I use the term soft‐
ware developer, simply because I had to decide on one.

If you are a software developer, you might want to use a workflow engine in your
application, service, or microservice to solve hands-on problems. This book will help
you understand which problems a workflow engine can solve for you, and how to get
started.

If you are a system architect, this book will help you understand opportunities and
pitfalls around process automation. It will guide you through some tough architec‐
tural decisions and trade-offs, including how using a workflow engine compares to
alternative approaches or whether a workflow engine should be operated centrally.

But you can also benefit if you work in other roles. For example:

• If you are an IT manager, this book can help you make better-informed decisions
and ask the right questions internally.

• If you are a business analyst, this book can help you if you are motivated to think
outside the box and understand the technical side of things.

Overall, you will need some general experience in the field of software engineering,
but no other specific knowledge.

xii | Preface

The Architect Always Implements
Discussing concepts is only half the fun if you cannot point to concrete code exam‐
ples. Runnable code forces you to be precise, to think about details you can leave out
on the conceptual level—and, most importantly, it often explains things best. I am
personally a big fan of the motto “the architect always implements.” The downside is
that I have to decide on a concrete technology (which might not be the technology of
your choice) and on concrete products (which might be outdated by the time the
book is printed). I’ve attempted to be as vendor-neutral as possible, but as cofounder
of a process automation vendor, Camunda, I am of course opinionated and tend to
use the tooling I know best, which is that my company provides.

My opinions of course also influence our product, which means some alignment is
unavoidable. But as a process automation addict with 20 years of real-world experi‐
ence, this book is rooted in the frontline customer engagements that have formed
those opinions.

In some places I do use executable source code, as anything else would make it harder
to understand certain concepts. In these cases I use the process automation platform
from Camunda.

Accompanying Website and Code Examples
In addition to this book, you can find supplemental material (code examples, etc.) for
download at https://ProcessAutomationBook.com. This website also links to source
code available on GitHub.

These examples will not only help you better understand the concepts described in
the book, but also give you a great opportunity to play with technology whenever you
are bored with reading.

If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

Preface | xiii

https://ProcessAutomationBook.com
mailto:bookquestions@oreilly.com

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Practical Process Auto‐
mation by Bernd Ruecker (O’Reilly). Copyright 2021 Bernd Ruecker,
978-1-492-06145-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Feedback
I am always happy to take any feedback via feedback@ProcessAutomationBook.com.

How to Read This Book
In general, I recommend that you read Chapter 1 and Chapter 2 first and sequentially.
This gives you the basic knowledge to understand what the book covers and how it
applies to your scenario.

From there on, you might simply continue reading or fast-forward to the chapters
that look most interesting to you. While there is of course some logical plot through‐
out the book, I tried to cross-reference in case you jump over certain parts.

However, there are a few deviations I can recommend:

• If you’ve had bad experiences with business process management (BPM) in the
past, you might want to read “Not Your Parents’ Process Automation Tools” on
page 14 first, as this should assure you that you have the right book in your
hands.

• If you have experience with event-driven systems and believe you don’t need
orchestration, you might want to sneak a peek at Chapter 8 to get a better feeling
for why this book is relevant to you. Also look at Chapter 2 to get a better under‐
standing of what I mean by process automation.

• If you are a fan of microservices or domain-driven design (DDD), you might be
skeptical about how process automation can fit into this world. I recommend
that you read Chapter 7 early on, as this best demonstrates how the thinking
about process automation in this book is different from many traditional
approaches in the field.

• If you are an IT manager who has been pulled into a business or process automa‐
tion project in an off-guard moment, you might want to start with Chapter 12, as
this will give you some guidance on how to shape your journey.

• If you are happy to follow my recommendation to use a BPMN-based workflow
engine, you can skip Chapter 5.

xiv | Preface

mailto:permissions@oreilly.com

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

Preface | xv

http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can access the web page for this book, where we list errata, examples, and any
additional information, at https://oreil.ly/Practical_Process_Automation.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and more information about our books and courses, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
I want to thank all the people who helped me to write this book. First and foremost
that includes all the people I’ve met over the last decade, for example in the Camunda
community, within customer projects, or at conferences. Countless discussions hel‐
ped me understand the world of process automation, and constant feedback shaped
not only the Camunda platform, but also my teaching material around it.

I want to thank each and every person at Camunda. Camunda is not only a great
place to work, especially because of all the great colleagues, but it is also changing the
world of process automation. What we’ve achieved with the company is far more than
I could have ever dreamed of when I cofounded it. And every day is still a lot of fun,
so let’s keep rolling. :-)

Furthermore, I want to thank my good friend Martin Schimak, who helped me shape
the initial thoughts captured in this book. Martin was also a great sparring partner for
structuring the book. I am also very grateful to all the great tech reviewers who pro‐
vided super-helpful feedback. These folks invested a bunch of free time helping to
improve this book, so thank you to (listed alphabetically) Tiese Barrell, Adam

xvi | Preface

https://oreil.ly/Practical_Process_Automation
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Bellamare, Rutger van Bergen, Colin Breck, Joe Bowbeer, Norbert Kuchenmeister,
Kamil Litman, Chris McKinty, Surush Samani, Volker Stiehl, and all the others.

Of course, I also thank my family for having endured not only a pandemic, but also
me working on this book. And last but not least, I want to thank the whole team at
O’Reilly for making the book-writing process not only painless, but pretty enjoyable.

Preface | xvii

CHAPTER 1

Introduction

Let’s get started! This chapter discusses:

• What I mean by process automation
• Specific technical challenges when automating processes
• What a workflow engine can do and why this provides a ton of value
• How business and IT can collaborate when automating processes
• How modern tools differ very much from BPM and SOA tooling from the past

Process Automation
In essence, a process (or workflow) simply refers to a series of tasks that need to be
performed to achieve a desired result.

Processes are everywhere. As a developer, I think of my personal development pro‐
cess as being able to manage certain tasks that go from an issue to a code change that
is then rolled out to production. As an employee, I think of optimizing my process
around handling emails, which involves techniques for prioritizing them quickly and
keeping my inbox empty. As a business owner, I think of end-to-end business pro‐
cesses like fulfilling customer orders, known as “order to cash.” And as a backend
developer, I might also think of remote calls in my code, as these involve a series of
tasks—especially if you consider retry or cleanup tasks, because a distributed system
can fail at any time.

Processes can be automated on different levels. The main distinction is if a human
controls the process, if a computer controls the process, or if the process is fully auto‐
mated. Here are some examples that highlight these different levels of automation.

1

After high school, I helped organize meals-on-wheels deliveries to elderly people in
their homes. There was a daily process going on to handle the meal orders, aggregate
a list of orders that went to the kitchen, package the meals, and finally ensure that all
the orders were labeled correctly so they would be delivered to the correct recipients.
In addition to that, there was the delivery service itself. When I started, the process
was completely paper-driven, and it took an entire morning to accomplish. I changed
that, leveraging Microsoft Excel to automate some tasks. This brought the processing
time down to about 30 minutes—so it was a lot more efficient. But there were still
physical activities involved, like packing and labeling the food as well as driving to the
recipients’ homes.

More importantly, the process was still human-controlled, as it was my job to press
the right buttons and show up in the kitchen at the appropriate times with the appro‐
priate lists. Only some tasks were supported by software.

During my last hospital visit I chatted to the staff about how the meal preparation
worked. The patients were required to fill out a paper card to mark allergies and meal
preferences, and this information was typed into a computer. Then the IT system was
in charge of transporting that information to the right place at the right time, and it
needed to be done in an automatic fashion. People still played a role in the process,
but they did not steer it. This was a computer-controlled, but not fully automated
process.

If you take this example even further, today there are cooking robots available. If you
were to add these robots to the process, it would be possible to task the computer
with not only automating the control flow, but also the cooking tasks. This moves the
process closer to a fully automated process.

As you can see, there is an important distinction between the automation of the con‐
trol flow between tasks, and the automation of the tasks themselves:

Automation of the control flow
The interactions between tasks are automated, but the tasks themselves might not
be. If humans do the work, the computer controls the process and involves them
whenever necessary, for example using tasklist user interfaces. This is known as
human task management. In the previous example, this was the humans cooking
the food. This is in contrast to a completely manual process that works because
people control the task flow, by passing paper or emails around.

Automation of the tasks
The tasks themselves are automated. In the previous example, this would be the
robots cooking the food.

2 | Chapter 1: Introduction

If you combine automation of both the control flow and the tasks you end up with
fully automated processes, also known as straight-through processing (STP). These
processes only require manual intervention if something happens beyond the
expected normal operations.

While there is of course an overall tendency to automate processes as much as possi‐
ble, there are specific reasons that motivate automation:

High number of repetitions
The effort put into automation is worthwhile only if the potential savings exceed
the cost of development. Processes with a high volume of executions are excellent
candidates for automation.

Standardization
Processes need to be structured and repeatable to be easily automated. While
some degree of variance and flexibility is possible with automated processes, it
increases the effort required for automation and weakens some of the advantages.

Compliance conformance
For some industries or specific processes there are strict rules around auditability,
or even rules that mandate following a documented procedure in a repeatable
and revisable manner. Automation can deliver this and provide high-quality, rel‐
evant data right away.

Need for quality
Some processes should produce results of consistent quality. For example, you
might promise a certain delivery speed for customer orders. This is easier to ach‐
ieve and retain with an automated process.

Information richness
Processes that carry a lot of digitized information are better suited to automation.

Automating processes can be achieved by different means, as further examined in
“Limitations of Other Implementation Options” on page 93, but there is special soft‐
ware that is dedicated to process automation. As mentioned in the Preface, this book
will focus on those tools, and especially look at workflow engines.

Process Automation | 3

Automating processes does not necessarily mean doing software
development or using some kind of workflow engine. It can be as
simple as leveraging tools like Microsoft Office, Slack, or Zapier to
automate tasks triggered by certain events. For example, every time
I enter a new conference talk in my personal spreadsheet, it triggers
a couple of automated tasks to publish it on my homepage, the
company event table, our developer relations Slack channel, and so
forth. This kind of automation is relatively easy to implement, even
by non-IT folks in a self-service manner, but of course is limited in
power.
In the rest of this book I will not focus on these office-like work‐
flow automation tools. Instead, we’ll explore process automation
from a software development and architecture perspective.

To help you understand how to automate processes with a workflow engine, let’s
quickly jump into a story that illustrates the kinds of real-life developer problems it
can solve.

Wild West Integrations
Imagine Ash is a backend developer who gets tasked with building a small backend
system for collecting payments via credit card. This doesn’t sound too complex, right?
Ash starts right away and designs a beautiful architecture. In conversations with the
folks doing order fulfillment, they agree that providing a REST API for the order ful‐
fillment service is the easiest option to move forward. So Ash goes ahead and starts
coding it.

Halfway through, a colleague walks in and looks at Ash’s whiteboard, where the
beauty of the architecture is captured. The colleague casually says, “Ah, you’re using
that external credit card service. I used to work with it, too. We had a lot of issues
with leaky connections and outages back then; did that improve?”

This question takes Ash by surprise. This expensive SaaS service is flaky? That means
Ash’s nice, straightforward code is too naive! But no worries, Ash adds some code to
retry the call when the service is not available. After chatting a bit more, the colleague
reveals that their service suffered from outages that sometimes lasted hours. Puh—so
Ash needs to think of a way of retrying over a longer period of time. But darn it, this
involves state handling and using a scheduler! So Ash decides to not tackle this right
away but just add an issue to the backlog in the hopes that the order fulfillment team
can sort it out. For now, Ash’s code simply throws an exception when the credit card
service is unavailable, with fingers crossed that all will work out well.

Two weeks into production, a different colleague from order fulfillment walks over,
alongside the CEO. What the heck? It turns out Ash’s system raises a lot of “credit

4 | Chapter 1: Introduction

card service unavailable” errors, and the CEO is not happy about the amount of
orders not being fulfilled—this issue has resulted in lost revenue. Ash tries to act
immediately and asks the order fulfillment team to attempt retrying the payments,
but they have to iron out other urgent problems and are reluctant to take over
responsibilities that should be handled by Ash’s service (and they are totally right to
be reluctant, as you’ll read about in Chapter 7).

Ash promises to fix the situation and get something live ASAP. Back at their desk,
Ash creates a database table called payment with a column called status. Every pay‐
ment request gets inserted there, with a status of open. On top of that Ash adds a sim‐
ple scheduler that checks for open payments every couple of seconds and processes
them. Now the service can do stateful retries over longer periods of time. This is
great. Ash calls the order fulfillment folks and they discuss the changes needed in the
API, as payments are now processed asynchronously. The original REST API will
hand back HTTP 202 (Accepted) responses, and Ash’s service can either call back the
fulfillment service, send them some message, or let them periodically poll for the pay‐
ment status. The teams agree on the polling approach as a quick fix, so Ash just needs
to provide another REST endpoint to allow querying the payment status.

The change gets rolled out to production and Ash is happy to have dealt with the
CEO’s concerns. But unfortunately, the peace doesn’t last too long. A caravan of peo‐
ple arrive in Ash’s office, including the director of operations. They tell Ash that no
orders can be shipped because no payments are successfully being taken. What? Ash
makes a mental note to add some monitoring to avoid being surprised by these situa‐
tions in the future, and takes a look at the database. Oh no, there are a huge amount
of open payments piling up. Digging a bit into the logs Ash discovers that the schedu‐
ler was interrupted by an exceptional case and crashed. Dang it.

Ash puts the one poisoned payment that interrupted the whole process aside, restarts
the scheduler, and sees that payments are being processed again. Relieved, Ash vows
to keep a closer eye on things and hacks together a small script to periodically look at
the table and send an email alert whenever something unusual happens. Ash also
decides to add some mitigation strategies for the exceptional case to that script.
Great!

After all these stressful weeks, Ash plans to go on vacation. But it turns out that the
boss isn’t too happy about Ash leaving because nobody except Ash actually under‐
stands the tool stack that they just built. Even worse, the boss instead pulls out a list
of additional requirements for the payment service, as some business folks have heard
about the flaky credit card service and want more in-depth reports about availability
and response times. They also want to know if the agreed-on service level agreement
(SLA) is actually being met and want to monitor that in real time. Gosh—now Ash
has to add report generation on top of a database that hadn’t seemed necessary in the
first place. Figure 1-1 shows the resulting mess in its full beauty.

Wild West Integrations | 5

Figure 1-1. Wild West integration at play—the usual chaos you actually find at most
enterprises

Unfortunately, Ash just used a far-too-common approach to automate processes that
I call Wild West integration. It’s an ad hoc approach to creating systems without any
kind of governance. It is very likely that such a system doesn’t serve the business as a
whole well.

Here are some more flavors of Wild West integration:

Integration via database
A service accesses some other service’s database directly in order to communi‐
cate, often without the other service knowing it.

Naive point-to-point integrations
Two components communicate directly with each other, often via REST, SOAP,
or messaging protocols, without properly clarifying all aspects around remote
communication.

Database triggers
Additional logic is invoked whenever you write something to the database.

Brittle toolchains
For example, moving comma-separated (CSV) text files via FTP.

Ash needed to write a lot of code for features that are built-in capabilities of a work‐
flow engine: keeping the current state, scheduling retries, reporting on the current
state, and operating long-running processes. Instead of writing your own code, you
should leverage existing tools. There’s really nothing to gain by rolling your own solu‐
tion. Even if you think that your project doesn’t need the additional complexity of a
workflow engine, you should always give it a second thought.

6 | Chapter 1: Introduction

Coding processes without a workflow engine typically results in
complex code; state handling ends up being coded into the compo‐
nents themselves. This makes it harder to understand the business
logic and business process implemented in that code.

Ash’s story could also easily lead to the development of a homegrown workflow
engine. Such company-specific solutions cause a lot of development and maintanence
effort and will still lack behind what existing tools can deliver.

Workflow Engines and Executable Process Models
So what is the alternative to hardcoded workflow logic or a homegrown workflow
engine? You can use an existing tool, such as one of the products contained in the
curated list on this book’s website.

A workflow engine automates the control of a process. It allows you to define and
deploy a blueprint of your process, the process definition, expressed in a certain mod‐
eling language. With that process definition deployed you can start process instances,
and the workflow engine keeps track of their state.

Figure 1-2 shows a process for the payment example introduced earlier. The process
starts when a payment is required, as indicated by the first circle in the process model
(the so-called start event, marking the beginning of a process). It then goes through
the one and only task, called a service task, indicated by the cog wheels. This service
task will implement the REST call to the external credit card service. You will learn
how this can be done in Chapter 2. For now, simply imagine that you write some nor‐
mal programming code to do this, which I call glue code. After that task, the process
ends in the end event, the circle with the thick border.

Figure 1-2. A very simple process, which can already handle many requirements in the
credit card example

Figure 1-3 visualizes with some pseudocode how you can use this process model to
implement payments. First, you will write some code that reacts to something in the
outside world—for example, a call to the REST endpoint to collect payments. This

Workflow Engines and Executable Process Models | 7

https://ProcessAutomationBook.com

code will then use the workflow engine API to start a new process instance. This pro‐
cess instance is persisted by the workflow engine; Figure 1-3 visualizes this via a rela‐
tional database. You’ll read about different engine architectures, persistence options,
and deployment scenarios later in this book.

Figure 1-3. Workflow engine

Next, you will write some glue code to charge the credit card. This code acts like a
callback and will be executed when the process instance advances to the task to
charge the credit card, which will happen automatically after the process instance is
started. Ideally, the credit card payment is processed right away and the process
instance ends afterward. Your REST endpoint might even be able to return a synchro‐
nous response to its client. But in case of an outage of the credit card service, the
workflow engine can safely wait in the task to charge the credit card and trigger
retries.

We just touched on the two most important capabilities of a workflow engine:

• Persist the state, which allows waiting.
• Schedule things, like the retries.

Depending on the tooling, the glue code might need to be written in a specific pro‐
gramming language. But some products allow arbitrary programming languages, so if

8 | Chapter 1: Introduction

you decide to clean up your Wild West implementation you’ll probably be able to
reuse big parts of your code and just leverage the workflow engine for state handling
and scheduling.

Of course, many processes go far beyond that simple example. When retrieving pay‐
ments, the process model might solve more business problems. For example, the pro‐
cess could react to expired credit cards and wait for the customer to update their
payment information, as visualized in Figure 1-4.

Figure 1-4. The payment process can quickly become more elaborate

So far, the payment process is more of an integration process, which is not the most
typical use for process automation. I like starting with it as it helps technical audien‐
ces to understand core workflow engine capabilities, but we’ll examine a more typical
business process in the next section.

A Business Scenario
Let’s look at a typical (but imaginary) project. ShipByButton Inc. (SBB) is a tech
startup. It provides a small hardware button. Whenever it is pressed, one specific item
is ordered. For example, you could put this button next to your washing powder, and
when you see that the powder is almost empty, you just press the button, and one box
of washing powder will then be ordered and shipped to you (if this reminds you of
the Amazon Dash button, this might be simply coincidence ;-)).

SBB wants to automate its core business process, which is order fulfillment. An elabo‐
rate discussion of the different roles and their collaboration is provided in “A Typical
Project” on page 195. For now, let’s just say SBB starts with drawing out the process

A Business Scenario | 9

relating to the physical steps involved, and work their way down to the level of detail
that can be automated using a workflow engine. They benefit from the fact that the
process modeling language, BPMN, is universal regardless of the level at which you
apply it.

The resulting process model is shown in Figure 1-5.

Figure 1-5. End-to-end business process that is subject to automation

This is of course a bit simplified, as in real life you have more exceptional cases; e.g., if
payment cannot be retrieved or goods are out of stock.

You can see that this process relies on other services, for example the first task invok‐
ing the payment service. This is a typical scenario when applying microservices, as
you will learn later in this book.

Modeling business processes often leads to an interesting by-
product: unexpected insights. In a customer scenario close to SBB’s,
we found that the “business people” did not actually know exactly
what the “on the warehouse floor people” were doing. The visual
process model not only helped to identify but also to resolve this
problem.

Long-Running Processes
Process automation has a broad scope. While it is often about enterprise, end-to-end
business processes like order fulfillment, account opening, or claim settlement, it can
also help with much more technical use cases around orchestration and integration,
as noted in the credit card example.

All these examples share one commonality, though: they involve long-running pro‐
cesses. That means processes that take minutes, hours, weeks, or months to complete.
Handling long-running processes is what workflow engines excel at.

These processes involve waiting for something to happen; for example, for other
components to respond, or simply for humans to do some work. This is why work‐
flow engines need to handle durable state, as mentioned earlier.

Another way to look at it is that long-running behavior is required whenever logic
crosses boundaries. When I say boundaries, this can mean very different things. If you

10 | Chapter 1: Introduction

call a remote service, you cross the boundary of your local program, your local OS,
and your local machine. This leaves you responsible for dealing with problems
around the availability of the service or added latency. If you invoke another compo‐
nent or resource, you also cross the technical transaction boundary. If you integrate
components from other teams you cross organizational boundaries, which means you
need to collaborate with these people more. If you involve external services, like from
a credit card agency, you cross the boundary of your own company. And if you
involve people, this crosses the boundary between automatable and not-automatable
tasks.

Managing these boundaries not only requires long-running capabilities, but also
requires you to think carefully about the sequence of tasks. Failure scenarios and the
proper business strategy to handle them need serious discussion. And you might face
regulatory requirements around data security, compliance, or auditing. These
requirements further motivate graphical process visualizations, which will be covered
in depth in Chapter 11; these allow technical folks to consult with the right non-
technical people to solve any challenges.

Modern systems have more and more boundaries, as there is a growing tendency to
move away from monolithic systems toward fine-grained components, like services,
microservices, or functions. And systems are often assembled out of a wild mix of
internal applications and services consumed in the cloud.

Business Processes, Integration Processes, and Workflows
To summarize, you can automate business processes as well as integration processes.
The boundary between these categories is often not sharp at all, as most integration
use cases have a business motivation. This is why you don’t find “integration pro‐
cesses” discussed as a separate category in this book. Instead, “Model or Code?” on
page 59 will show you that many technical details end up in normal programming
code, not in a process model, and “Extracting (Integration) Logic into Subprocesses”
on page 211 will explain that you can extract some portions of the process model into
child models. This allows you to push technical details into another level of granular‐
ity, which helps to keep the business process understandable.

Furthermore, you’ll have noticed that I use the terms process and workflow. Truth be
told, there is no common, agreed-on understanding of the difference between process
automation and workflow automation. Many people use these terms interchangeably.
Others don’t, and argue that business processes are more strategic and workflows are
more tactical artifacts; thus, only workflows can be modeled and executed on a work‐
flow engine. Similarly, process models can also be called workflow models; some
standards use one term, and others the other. Neither is right or wrong.

Business Processes, Integration Processes, and Workflows | 11

I often recommend adjusting the terminology to whatever works well in your envi‐
ronment. However, for this book I had to make a choice, and I simply went with what
I feel most comfortable with. As a rule of thumb:

• Business process automation is what you want to achieve. It is the goal. It is what
business people care about. I will use the term process (or business process) in
most cases.

• I use the term workflow whenever I talk about the tooling, which is about how
processes are really automated. So, for example, I will talk about a workflow
engine, even if this will automate process models.

In real life, I sometimes adjust these rules. For instance, when talking to technical
folks about the implementation, I might prefer the terms workflow, workflow engine,
or sometimes even orchestration engine or Saga, depending on the context (you will
understand the latter terms when you’ve progressed further in this book).

Business–IT Collaboration
The collaboration of business stakeholders and IT professionals is crucial for the suc‐
cess of modern enterprises. Business stakeholders understand the organization, the
market, the product, the strategy, and the business case for each project. They can
channel all of that into requirements, features, and priorities. IT, on the other hand,
understands the existing IT landscape and organization—constraints and opportuni‐
ties as well as effort and availability. Only by collaborating can both “sides” win.

Unfortunately, different roles often speak different languages. Not literally—both
might communicate in English—but in the way they phrase and understand things.

Putting the business process at the center of this communication helps. It makes it
much easier to understand requirements in the context of a bigger picture and avoids
the misunderstandings that can happen when you discuss features in isolation.

Visual process models facilitate this conversation, especially if they can be understood
by business and IT. All the efficient requirement workshops I’ve seen were filled with
people from business and IT.

A common example is that business folks underestimate the complexity of require‐
ments, but at the same time miss easy picks. A typical dialogue goes like this:

Business: “Why is implementing this small button so much effort?”
IT: “Because we need to untie a gigantic knot in the legacy software to make it possible!
Why can’t we just make a change over here and reach the same result?”
Business: “What, wait, we can change that over there? We thought that was impossible.”

12 | Chapter 1: Introduction

With the right mindset and a good collaboration culture, you will not only progress
faster, but also end up with better solutions and happier people. Process automation
and especially visual process models will help. Chapter 10 will explain this in much
more detail.

Business Drivers and the Value of Process Automation
Organizations apply process automation to:

• Build better customer experiences.
• Get to market faster (with changed or completely new processes, products, or

business models).
• Increase business agility.
• Drive operational cost savings.

This can be achieved by the promises that come with the prospect of process automa‐
tion: increasing visibility, efficiency, cost-effectiveness, quality, confidence, business
agility, and scale. Let’s look at some of these briefly.

Business processes provide direct visibility to business stakeholders. For example, a
business person cares about the sequence of tasks, such as ensuring that payment is
collected before shipping, or knowing what the strategy is for handling failed pay‐
ments. This information is needed to truly understand how the business currently
runs and performs. The data that process automation platforms provides leads to
actionable insights, which is the basis for process optimizations.

Enterprises care about the efficiency and cost-effectiveness of their automated pro‐
cesses, as well as quality and confidence. An online retailer might want to reduce the
cycle time of their order fulfillment process, meaning that a customer will receive a
parcel as fast as possible after hitting the order button. And of course, retailers also
don’t want any orders to fall through the cracks in the system, leaving them not only
with a missed sale, but also an unhappy customer.

Some business models even rely on the possibility of fully automating processes; it is
crucial for companies to make money, or deliver responses as fast as expected, or
scale their business.

Business agility is another important driver. The pace of IT is too fast to really antici‐
pate any trend properly, so it is important for companies to build systems that can
react to changes. As the CIO of an insurance company recently said to me, “We don’t
know what we will need tomorrow. But we do know that we will need something. So
we have to be able to move quickly!” Concentrating on building systems and archi‐
tectures in a way that makes it easy to adopt changes is crucial to the survival of many
businesses. Process automation is one important piece, as it makes it easier to

Business Drivers and the Value of Process Automation | 13

understand how processes are currently implemented, to dive into discussions
around changes, and to implement them.

Not Your Parents’ Process Automation Tools
If process automation and workflow engines are such a great solution for certain
problems, why doesn’t everybody apply them? Of course, some people simply don’t
know about them. But more often, people have either had bad experiences with bad
tools in the past, or they only have a vague association with terms like workflow or
process automation and think they relate to old-school document flows or proprietary
tool suites, which they don’t see as helpful. Spoiler alert: this is wrong!

In order to overcome these misconceptions it’s good to be aware of history and past
failures. This will allow you to free your mind to adopt a modern way of thinking
about process automation.

A Brief History of Process Automation
The roots of dedicated process automation technology date back to around 1990,
when paper-based processes began to be guided by document management systems.
In these systems, a physical or digital document was the “token” (a concept we’ll dis‐
cuss more in Chapter 3), and workflows were defined around that document. So, for
example, the application form to open a bank account was scanned and moved auto‐
matically to the people who needed to work on it.

You can still spot these document-based systems in real life. I recently saw a tool
being used with a lot of phantom PDF documents being created just to be able to kick
off workflow instances that are not based on a real physical document.

This category of systems developed further into human workflow management tools
that were centered around human task management. They reached their zenith
around 2000. With these, you did not need documents to start a workflow. Still, these
systems were built to coordinate humans, not to integrate software.

Then, also around the year 2000, service-oriented architecture (SOA) emerged as an
alternative to large monolithic ecosystems where traditional enterprise application
integration (EAI) tools did point-to-point integrations. The idea was to break up
functionality into services that are offered in a more or less standardized way to the
enterprise, so that others can easily consume them. One fundamental idea of SOA
was to reuse these services and thus reduce development efforts. Hybrid tools
emerged: tools that were rooted in SOA but added human task capabilities, and
human workflow products that added integration capabilities.

Around the same time, business process management (BPM) was gaining traction as a
discipline, taking not only these technical and tooling aspects into account, but also

14 | Chapter 1: Introduction

the lessons around setting up scalable organizations and business process reengineer‐
ing (BPR).

These developments are summarized in Figure 1-6.

Figure 1-6. Historical development of disciplines

Process automation was a hyped topic in the BPM and SOA era. Unfortunately, there
were some major flaws that led to many disappointments, for the following reasons:
BPM was too detached from developers, and the tools were too vendor-driven, too
centralized, and too focused on low code. Let me explain.

BPM in the ivory tower
BPM as a discipline includes methods to discover, model, analyze, measure, improve,
optimize, and automate business processes. In that sense, it is a very broad topic.
Unfortunately, many BPM initiatives were too detached from IT. For a long time, the
folks doing BPM worked in silos, not considering how processes were really automa‐
ted within the given IT infrastructure. This led to process models that could not func‐
tion in real life, and yet these models were given to the IT departments to “simply”
implement. Unsurprisingly, this did not work very well.

Centralized SOA and the ESB
In an instance of unfortunate timing, SOA collided with the high times of very com‐
plex technologies like the Simple Object Access Protocol (SOAP), which made it diffi‐
cult for any development team to offer or consume any other service. This opened up
the space for tool vendors. Since SOA initiatives were typically very centrally
organized and governed, it brought the big vendors into the game, and they sold very
expensive middleware that was placed at the heart of many companies in a top-down
approach. The tooling was called an enterprise service bus (ESB); it was a messaging
system at its core, with multiple tools around it to connect services or transform data.

Not Your Parents’ Process Automation Tools | 15

Looking back at SOA from today’s perspective, it is easy to highlight some of the
shortcomings:

Centralized
SOA and ESB tools were typically installed as centralized systems and were oper‐
ated by their own teams. This very much led to situations where you not only
had to implement and deploy your own service, but also interact with the SOA
team to deploy additional configuration into these tools, which caused a lot of
friction.

Alien to the development process
Tools broke the development workflow, making automated testing or continuous
integration/continuous delivery (CI/CD) pipelines impossible. Many of the tools
did not even allow for automated testing or deployment.

Vendor-driven
The vendors overtook the industry and sold products before best practices exis‐
ted, which forced practices into many companies that simply did not work.

Mixed infrastructure and business logic
Important business logic often ended up in routing procedures that were
deployed on the middleware, leaving it without clear ownership or responsibility.
Different teams implemented various aspects of logic that better belonged in one
place.

But how does this relate to process automation? Great question! SOA typically came
in tandem with BPM suites.

Misguided BPM suites
BPM suites were standalone tools that included a workflow engine at their core, with
tools around it. Like ESBs, these suites were vendor-driven. They were deployed as
centralized tools that were introduced from the top down. In these environments a
central team took care of the platform, and this team often was the only group capa‐
ble of deployment. This dependence on single teams led to a lot of problems.

It’s worth mentioning that BPM suites emerged during a time when most companies
were still running software on physical hardware—automated deployment pipelines
weren’t really a thing then.

The limitations of low code
BPM suites came with the promise of zero code, which was later rebranded as low
code. The idea is as simple as it is appealing to business stakeholders: develop pro‐
cesses without IT being involved so a non-technical person can create an executable
process model without writing programming code.

16 | Chapter 1: Introduction

Low-code approaches involve heavyweight tools that allow these non-developers to
build processes by dragging and dropping prebuilt elements. Sophisticated wizards
enable users to configure them, so it’s possible to build solutions without writing any
source code.

This approach is still sold as desirable by advisory firms and BPM vendors, and the
low-code approach indeed has its upsides. There is a shortage of developers at the
moment, so many companies simply don’t have the resources to do proper software
projects as they would like to. Less tech-savvy people (referred to as citizen developers
by Gartner) begin working on software projects and need these low-code approaches.

But while a low-code approach might work for relatively simple processes, it defi‐
nitely falls short when dealing with complex business processes or integration scenar‐
ios. What I have regularly found is that low-code products do not deliver on their
promise, and less-tech-savvy citizen developers cannot implement core processes
themselves. As a result, companies have to revert back to their IT departments and
ask them to assign professional software developers to finish the job. Those software
developers then need to learn a proprietary, vendor-specific way of application devel‐
opment. Developing this skill takes a long time, and it’s often a frustrating experience.
As a result, there is a lack of sufficiently skilled software developers within the organi‐
zation, which forces companies to look for outside resources.

Those outside resources are system integrators that partner with the BPM vendor and
provide consultants certified by that vendor. Those consultants tend to be either not
as skilled as promised, too expensive, or simply not available, often all at the same
time.

Furthermore:

• You can’t use industry best practices to develop software solutions, like automa‐
ted testing or frameworks that you might need for integration or user interfaces.
You can only do what the vendor has foreseen, as it is hard or even impossible to
break out of the preconceived path.

• You are often blocked from open source or community-driven knowledge and
tool enhancements. For example, instead of being able to pick up a code example
from GitHub, you instead have to watch a video tutorial on how to use the pro‐
prietary wizard to guide you through the low-code interface.

• The tools are typically very heavyweight and do not easily run on modern vir‐
tualized or cloud native architectures.

These unfortunate dynamics caused a lot of companies to give up on process automa‐
tion tools, even though not all approaches involve this type of proprietary software or
low-code development.

Not Your Parents’ Process Automation Tools | 17

https://oreil.ly/ZNfej

Instead of replacing software development with low-code process
automation, the focus should be on bringing software development
and process automation together!
It is important to understand that agility does not come from
implementing processes without the help of developers, but by
using graphical models that different stakeholders can understand
and discuss.

As soon as you can combine process automation with “normal” software develop‐
ment practices, you gain development efficiency and quality, you allow normal devel‐
opers to work on these jobs, and you have a whole universe of existing solutions
available to help you out with all kinds of problems. Additionally, workflow vendors
might prebuild support for certain integrations, which helps to reduce the effort
required to build solutions.

Moving past old-school BPM suites
The good news is that there are now a lot of really useful, lightweight workflow
engines available that integrate well with typical development practices and solve
common problems.

This new generation of tools are most often open source or provided as cloud serv‐
ices. They target developers and support them in the challenges described earlier in
this chapter. They deliver real value and are helping our industry to move forward.

The Story of Camunda
I always like to back this whole development with the story of the company I cofoun‐
ded: Camunda, a vendor that—as marketing nowadays says—reinvented process
automation. As mentioned in the Preface, this book will not be a marketing vehicle
for the company, but its story can help you understand the market’s development.

I started Camunda together with my cofounder in 2008, as a company providing con‐
sultancy services around process automation. We did a lot of workshops and train‐
ings and thus had thousands of customer contacts.

This collided with the peak times of the old BPM and SOA ideas and tools. We were
able to observe various tools in use in different companies. The common theme was
that it wasn’t working out, and it was not too hard to figure out the reasons. I
described them earlier in this chapter: these tools were centralized, complex, low-
code, vendor-driven.

So we began experimenting with the open source frameworks available at the time.
They were much closer to developers, but they couldn’t cut it either, mainly because

18 | Chapter 1: Introduction

they were too basic, lacked important features, and required too much effort to build
your own tooling around them.

At the same time, we collaborated on the development of the Business Process Model
and Notation (BPMN) standard, which defines a visual but also directly executable
process modeling language.

And we saw a huge opportunity: creating an open source workflow engine that was
developer-friendly and fostered business–IT collaboration by using BPMN.

We validated that idea with customers, and soon made a decision to pivot with the
company: in 2013 we transformed Camunda from a consulting firm into an open
source process automation vendor. Our tool was the complete opposite of the com‐
mon low-code BPM suites available back then.

Today, Camunda is growing fast and has hundreds of paying customers and countless
community users. Many big organizations trust in the vision, and are even replacing
tools from big vendors throughout their companies. We accelerate growth globally, as
process automation tooling is strongly needed. This is fueled by digitalization and
automation programs as well as the trend to move toward more fine-grained compo‐
nents and microservices, which then need to be coordinated. In short: we are doing
very well.

Technically, the Camunda workflow engine is engineered the way applications were
engineered in 2013. It is basically a library, built in Java, that uses a relational database
to store state. The engine can be embedded into your own Java application or run
standalone, providing a REST API. And of course, there are a couple of additional
tools to model or operate processes.

This architecture has served Camunda very well and can handle most of today’s per‐
formance and scalability requirements. Nonetheless, a couple of years back we devel‐
oped a new workflow engine in a completely different architecture, which nowadays
is best described as being cloud native. This workflow engine is developed in parallel
and backs the managed service offering within Camunda Cloud. As it scales infin‐
itely, this enables the use of a workflow engine in even more scenarios, which is a
vision we’ve had in mind for a long time.

Conclusion
As this chapter has shown, process automation is a centerpiece of digitalization
efforts. This makes workflow engines a vital building block in modern architectures.
Fortunately, we have great technology available today, which is very different from
old-school BPM suites. It is not only developer-friendly, but also highly performant
and scalable.

Conclusion | 19

Workflow engines solve problems around state handling and allow you to model and
execute graphical process models to automate the control flow of processes. This
helps you to avoid Wild West integration and fosters business–IT collaboration when
automating processes. You saw a first example of a process model here, directly exe‐
cuted on a workflow engine; this is something that will be explained further in the
next chapter.

20 | Chapter 1: Introduction

PART I

Fundamentals

This part of the book will foster a general understanding of process automation with
workflow engines:

Chapter 2
This chapter introduces workflow engines and the execution of process models
on such an engine with a hands-on example.

Chapter 3
This chapter answers practical questions on how to implement executable pro‐
cesses and connect them with other parts of your application. This will give you a
solid understanding of how process automation can work in real life.

Chapter 4
Here, you’ll dive into the various use cases process automation can be applied to,
which include orchestration of humans, bots, software, and decisions. This
should give you a good idea of how process automation is applicable in your con‐
text and which projects qualify for leveraging it. Note that Chapter 9 will look at
further use cases for workflow engines, namely, how they can be applied to solve
certain challenges in distributed systems.

Chapter 5
To conclude the fundamentals, this chapter will give you reasons why workflow
engines and BPMN are a great choice for automating processes. You’ll also read
about alternative implementation approaches and process modeling languages.

CHAPTER 2

Workflow Engines and Process Solutions

After the general introduction to process automation, this chapter:

• Introduces workflow engines and process solutions
• Presents a hands-on, executable example to make things concrete
• Explores the developer experience when using process automation platforms

The Workflow Engine
As you saw in the introduction, a workflow engine is the key component for automat‐
ing the control flow of a long-running process.

If you’re wondering why you should use a workflow engine instead of hardcoding
processes or using batch processing or data streams, you might want to take a peek at
“Limitations of Other Implementation Options” on page 93.

Core Capabilities
The core technical capabilities of a workflow engine are:

Durable state (persistence)
The engine keeps track of all running process instances, including their current
state and historical audit data. While this sounds easy, durable state is still a chal‐
lenge to handle, especially at scale. It also immediately triggers subsequent
requirements around understanding the current state, which means you will
need operations tooling. A workflow engine needs to manage transactions, too,
for example, handling concurrent access to the same process instance.

23

Scheduling
A workflow engine needs to keep track of timing and possibly escalate if a pro‐
cess gets stuck for too long. Therefore, there must be a scheduling mechanism
that allows the engine to become active whenever something needs to be done.
This also allows tasks to be retried in the event of temporary errors.

Versioning
Having long-running processes means that there is no point in time when there
is no process instance running. Remember that in this context “running” might
actually mean waiting. Whenever you want to make a change to a process, such
as adding another task, you need to think about all the currently running instan‐
ces. Most workflow engines support multiple versions of a process definition in
parallel. Good tools allow migrating instances to a new version of the process
definition, in an automatable and testable manner.

These core features are visualized in Figure 2-1.

Figure 2-1. A workflow engine is a state machine that is good at waiting and scheduling

Using a workflow engine removes the burden of storing state yourself, leveraging
bespoke scheduling mechanisms, and ultimately building your own workflow engine,
as described in “Wild West Integrations” on page 4.

Of course, there are trade-offs. The main disadvantage of using a workflow engine is
that you introduce another component in your stack. This never comes for free. For
example, you need to choose a tool, learn how to use it, and sketch an architecture
that makes use of it.

Typically this initially investment pays off quite early, but of course this depends very
much on your scenario. At this point in the book it is too early to discuss when it
makes sense to use a workflow engine—you first have to understand how these tools
work and how they influence your architecture—but we will come back to that ques‐
tion in “When to Use a Workflow Engine” on page 115. To give you a sneak peek, the

24 | Chapter 2: Workflow Engines and Process Solutions

return on investment also depends on the investment, so lightweight tools with a
shallow learning curve can already be helpful for solving “smaller” problems. You can
get up and running with such tools relatively quickly.

Different workflow engines have different architectures and
resource requirements. Modern workflow engines tend to be very
lightweight and integrate well with your existing architecture,
developer experience, and CI/CD pipelines. There are also man‐
aged offerings in the cloud. And some workflow engines can scale
horizontally and thus be used in high-load scenarios, like trading
use cases where latency matters, telecommunications use cases with
huge throughput, or retail use cases with high peak loads to be
mastered.

Additional Features of Workflow Platforms
Along with these core capabilities, most workflow engines provide additional fea‐
tures. Good tools make these features optional or pluggable, which gives you the abil‐
ity to choose whether you want a super-lean workflow engine or if you want to
leverage some of the additional tooling. You can also adopt more features over time,
when you see the need for them.

Typical additional features are:

Visibility
Process models can be expressed graphically, either through relatively simple vis‐
ualizations or powerful graphical languages (discussed in detail in “Process Mod‐
eling Languages” on page 100). Having visibility into how the process is
implemented is beneficial for communication and helpful for different roles,
from developers (“How did I implement this last year?”) to operations (“What
tasks happened before that incident?”) to business stakeholders (“How is the pro‐
cess currently implemented? Can we improve this?”).

Audit data
Workflow engines write a lot of audit data about what is going on, including
timestamps (e.g., when a process instance gets started and when it ends), task
information (when a certain task is entered, how often it needs to be retried, etc.),
and details on any incidents that occur. This data is extremely valuable during
operations; for example, for recognizing and understanding a current failure sit‐
uation, as well as for evaluating the overall performance in order to improve the
process itself. Audit data can also be used in business dashboards to provide
transparency about the work being done, processing costs, and so on.

The Workflow Engine | 25

Tooling
Most tool stacks deliver not only the core engine, but also tools for graphical
modeling, technical operations, or business monitoring. “Typical Workflow Tools
in a Project’s Life Cycle” on page 38 will go into more detail on this.

Architecture
There are two basic options for running the workflow engine itself, visualized in
Figure 2-2:

• The workflow engine is operated as a service, meaning it is a self-contained
application that is separate from your business application. This means that your
business application talks remotely to the workflow engine.

• The workflow engine is embedded as a library and thus runs as part of your own
application.

Figure 2-2. Typical architectures of a business application using a workflow engine

Having the workflow engine as a service should be considered the default nowadays.
It allows you to isolate your application code from the workflow engine, which can
eliminate a lot of problems. When working with support cases around embedded
engines, it often takes a lot of effort to figure out how a customer embedded the
workflow engine, and how that led to the problems described.

As a bonus, running the workflow engine as a service allows you to use it with differ‐
ent programming languages. Modern environments make it easy to spin up such a
workflow engine—via Docker, for example, or by consuming it as cloud service.

Internally, the workflow engine itself implements scheduling, thread handling, and
persistence. This is where there are big differences in the products. For example, let’s
assume that the workflow engine uses a relational database to store state. As
Figure 2-3 visualizes, the workflow engine then keeps a record of all process defini‐
tions as well as all process instances. Whenever a process instance advances, the state
is updated.

26 | Chapter 2: Workflow Engines and Process Solutions

Figure 2-3. Typical architecture of a workflow engine persisting in a relational database

Some workflow engines store state using something other than a relational database;
for example, they might use a more event-sourced approach. This enables scaling
beyond the limitations of a relational database, which allows modern engines to scale
horizontally or to support high-throughput, low-latency, or real-time applications. As
a user of the workflow engine, the way the state is stored is not your problem, but of
course you need to understand the implications that affect you. If a relational data‐
base is used, it is important to know which products are supported as you need to
operate that database. If other state-handling methods are used, they might impose
their own requirements that need to be checked.

One common source of confusion is threading. When I use the terms waiting or long-
running in the context of a workflow engine, I don’t mean that the workflow engine
thread is blocked, waiting for something to happen. Instead, the workflow engine
stores the current state in the persistent database. Then, it’s finished; it returns the
thread and does nothing.

The Workflow Engine | 27

But because the process instance’s state is kept in the database as long as it’s running,
the process instance logically waits for something to happen; some event that will
cause the workflow engine to load the state from the database again and resume
processing. This could be a user pressing a button, which yields an API call on the
workflow engine that completes the corresponding task. It could also be the engine
scheduler that wakes up a process instance because some timer event is due.

A Process Solution
The process model is only one piece of the puzzle to automate a process. You will
need to implement additional logic, typical examples being:

• Connectivity, e.g., to call REST endpoints or send AMQP messages
• Data handling and transformation
• Decisions about which path to take in a process model

The core workflow engine is not responsible for handling these aspects, even if most
vendors will provide some out-of-the-box help for them. There is a thin line between
convenience features you want to use and low-code features that you’d better stay
away from, as described in “The limitations of low code” on page 16.

For this book I assume that most of the additional aspects are handled where they can
be handled best by developers: in programming code.

So for example, instead of using your workflow engine’s proprietary connectors to
implement an HTTP call, it might be easier to code this in Java, C#, NodeJS, or what‐
ever language you are fluent in. “Combining Process Models and Programming
Code” on page 54 goes into more details of combining process models and code.

This code is logically part of the automated process, so the process model, this glue
code and potentially other artefacts form a process solution as visualized in
Figure 2-4. Technically, this could mean a single project using Java and Maven, .NET
Core, or NodeJS, or it could mean a bunch of serverless functions logically bundled
as a process solution.

28 | Chapter 2: Workflow Engines and Process Solutions

Figure 2-4. A process solution encompasses the various artifacts you need to automate a
process, including but not limited to the process model

Note that a workflow engine is not responsible for storing business entities. This data
should be stored by your application, and the workflow engine typically just refers to
it. So while it can technically store data alongside every process instance, the use of
this capability should be limited to keeping references (IDs).

An Executable Example
Let’s walk through a concrete example to make things more tangible. The source code
is available on this book’s website.

For this example, I use the following product stack:

• Java and Spring Boot
• Maven, so my Maven project equates to the process solution
• Camunda Cloud, a managed workflow engine in the cloud

Many of the concepts and steps illustrated here can be related to other products, but I
need to choose a concrete stack to be able to show real source code.

The example will be extended later in the book and is about the onboarding of new
customers in a small telecommunications company. The process model is shown in
Figure 2-5.

An Executable Example | 29

https://ProcessAutomationBook.com

Figure 2-5. Process to onboard new mobile phone customers in a telecommunications
company

When customers sign up for a mobile contract, a new instance of the process is
started. The process first calculates a score for the customer using some Java code.
This is handled by a service task, indicated by the cog wheels. The score is an input
for the decision of whether to accept the customer’s order. This decision is made by
an employee of the telecommunications company, as indicated by the human icon; it
is explicitly not automated.

The result of that decision influences the path of the process instance at the upcom‐
ing XOR gateway, the diamond with the X. This gateway is a decision point, so either
the onboarding process instance continues to automatically process the new cus‐
tomer order, or it ends. Of course, in a real scenario you would add some more tasks,
e.g., to inform rejected customers.

Let’s briefly explore what you need in order to bring this model to life. This is not
about generating code from some business-owned model, but about taking this spe‐
cific process model and executing it on the workflow engine.

Customer onboarding will be its own microservice with a REST API, implemented by
the development project, visualized in Figure 2-6, that contains:

• The onboarding process model. Using BPMN, which will be introduced in “Busi‐
ness Process Model and Notation (BPMN)” on page 45, the process model is sim‐
ply an XML file stored alongside the project’s source code.

• Source code to provide the REST API for clients, which is “normal Java.”
• Some Java code to do the customer scoring.
• Glue code to implement the REST call to the CRM system.
• A form for the user to approve customer orders.

30 | Chapter 2: Workflow Engines and Process Solutions

Figure 2-6. A process solution is a development project containing all of the important
artifacts, like the process model, glue code, and test cases

Let’s see how these pieces look when using Camunda Cloud.

An Executable Example | 31

First, the process model needs to be deployed to the workflow engine. While you
could do that directly via a graphical modeling tool or via the API of the engine, the
easiest option is to hook in the normal deployment mechanism of your microservice.
In this case, this is an auto-deployment during startup of the Spring Boot application,
as shown in the following code snippet:

@SpringBootApplication
@EnableZeebeClient
@ZeebeDeployment(classPathResources="customer-onboarding.bpmn")
public class CustomerOnboardingSpringbootApplication {
}

Now you can use the workflow engine API to create new instances of a process, e.g.,
when a new REST request is received:

@RestController
public class CustomerOnboardingRestController {

 @Autowired
 private ZeebeClient workflowEngineClient;

 @PutMapping("/customer")
 public ResponseEntity onboardCustomer() {
 startCustomerOnboardingProcess();
 return ResponseEntity.status(HttpStatus.ACCEPTED).build();
 }

 public void startCustomerOnboardingProcess() {
 HashMap<String, Object> variables = new HashMap<String, Object>();
 variables.put("automaticProcessing", true);
 variables.put("someInput", "yeah");

 client.newCreateInstanceCommand()
 .bpmnProcessId("customer-onboarding")
 .latestVersion()
 .variables(variables)
 .send().join();
 }

You can find more sophisticated code samples on the website for this book, including
how to return a synchronous response in case the onboarding process returns in
milliseconds.

On the process model, you now need to add an expression to implement the decision
of which path to take in the model, as shown in Figure 2-7.

32 | Chapter 2: Workflow Engines and Process Solutions

https://ProcessAutomationBook.com

Figure 2-7. Gateways in BPMN (decision points) need expression language on the outgo‐
ing sequence flows

Camunda Cloud uses the Friendly Enough Expression Language (FEEL), which is a
business-friendly expression language standardized in the context of decision
engines. It will be described in “Orchestrate Decisions” on page 76. In the example,
the expression simply checks a process variable, automaticProcessing. If it is true,
the process continues on the “yes” path.

Then you have to define your glue code, as shown in the following code snippet:

@Component
public class CustomerOnboardingGlueCode {

 @Autowired
 private RestTemplate restTemplate;

 @ZeebeWorker(type = "addCustomerToCrm")
 public void addCustomerToCrmViaREST(JobClient client, ActivatedJob job) {
 log.info("Add customer to CRM via REST [" + job + "]");

 // TODO some real logic to create the request
 restTemplate.put(ENDPOINT, request);
 // TODO some real logic to process the response

 // let the workflow engine know the task is complete
 client.newCompleteCommand(job.getKey()).send().join();
 }
}

An Executable Example | 33

This code needs to be connected to the process model. In Camunda Cloud this is
done by logical task names, as visualized in Figure 2-8.

Figure 2-8. Service tasks in a process model can be connected to source code

In order to start the microservice, you need the workflow engine up and running. In
the case of Camunda Cloud, this means that you will create a new “Zeebe cluster” via
the cloud console, available online. Zeebe is the name of the workflow engine fueling
Camunda Cloud.

You will receive connection details that you need to add to your application configu‐
ration, which in our example is a file called application.properties. Spring allows you
to overwrite these connection details easily, e.g., via environment properties, which
will be handy when you want to run the application in a production environment
later.

After starting the Java Spring Boot application, you can invoke the REST API with
the REST client of your choice, such as cURL:

curl -X PUT
 -H "Content-Type: application/json"
 -d '{"someVariable":"someValue"}'
 http://localhost:8080/customer

34 | Chapter 2: Workflow Engines and Process Solutions

https://console.cloud.camunda.io

This will execute the REST code shown earlier to start a new process instance in the
workflow engine. A good way to understand the nature of a workflow engine is to
look at the operations tooling. Figure 2-9 gives an example, showing the just-started
process instance and what data is available about that instance.

Figure 2-9. Operations tooling allows you to discover, analyze, and solve technical prob‐
lems related to processes

The process model is source code and implements important parts of the business
logic, so you should test it just like you test other parts of your business logic. In Java,
this means writing unit tests using JUnit. At the time of writing, the assertion API
was still in flux, so please check the book’s website for the latest source code. It will
look like the following:

@Test
void testHappyPath() throws Exception {
 // simulate an incoming REST call that will kick off a new process instance
 customerOnboardingRest.onboardCustomer();

 // assert that a process was started
 ProcessInstanceEvent pi = assertProcessInstanceStarted();

 // Assert that a job (pub/sub mechanism of the workflow engine) for scoring
 // was created
 RecordedJob job = assertJob(pi, "scoreCustomer");
 assertEquals("TaskScoreCustomer", job.getBpmnElementId());
 assertEquals("customer-scoring", job.getBpmnProcessId());

An Executable Example | 35

 // and complete the task, executing some fake logic instead of the real adapter
 execute(job, new JobHandler() {
 public handle(JobClient client, ActivatedJob job) {
 // do some fake behavior instead of the real Java code
 }
 });

 // Verify that human task was created
 RecordedHumanTask task = assertHumanTask(pi);
 assertEquals("TaskApproveCustomerOrder", task.getBpmnElementId());
 // ... maybe do more assertions ...
 // and simulate it being completed with approval
 Map variables = new HashMap();
 variables.put("automaticProcessing", true);
 complete(task, variables);

 // Assert the next job for the call to the CRM system was created
 job = assertJob(pi, "create");
 assertEquals("TaskCreateCustomerInCrm", job.getBpmnElementId());
 // and trigger its execution with the normal behavior
 execute(job);
 // A mock rest server was injected into the glue code by Spring,
 // so we can verify the right request was sent
 mockRestServer
 .expect(requestTo("http://localhost:8080/crm/customer")) //
 .andExpect(method(HttpMethod.PUT))
 .andRespond(withSuccess("{\"transactionId\": \"12345\"}",
 MediaType.APPLICATION_JSON));

 assertEnded(pi);
}

The process solution behaves like a normal Java Spring Boot project. You can check it
into your normal version control system and build it using your normal CI/CD pipe‐
line, like any other Java project. For instance, the sources of this example live in Git‐
Hub and are continuously built by TravisCI.

The full source code is available online, and I recommend that you play around with
it, as this will help you to get a better basic understanding of a workflow engine for
the upcoming discussions.

36 | Chapter 2: Workflow Engines and Process Solutions

Applications, Processes, and Workflow Engines
A typical question is about the relationship between applications, workflow engines,
process definitions, and process instances.

If you use the workflow engine as a service, you can deploy many process definitions
on that workflow engine. For every process definition, you can run zero to many pro‐
cess instances. You can also use that workflow engine from many different applica‐
tions or microservices.

All of this is comparable to a database installation, where you can create multiple
tables and connect many different applications to them.

However, it might be advisable to use separate workflow engines for separate applica‐
tions, as this improves isolation. Especially if you embrace microservices, this is the
way to go, as described in “Decentralized Engines” on page 117.

For example, the team responsible for order fulfillment might operate a workflow
engine. It won’t share this with the team doing payments, as it wants to be isolated
from anything the payment team does—but it will connect not only the order fulfill‐
ment application, but also the order cancellation application to that engine. Both
applications deploy their own process definitions. This example is visualized in
Figure 2-10.

Figure 2-10. A summary of the cardinality of applications, workflow engines, process
definitions, and instances

Applications, Processes, and Workflow Engines | 37

Typical Workflow Tools in a Project’s Life Cycle
Most workflow engines are flanked by tools that help you leverage the full potential of
process automation. Figure 2-11 shows a typical stack that might be provided as an
integrated platform by your vendor. It includes the following tools:

• Graphical process modeler
• Collaboration tool
• Operations tooling
• Tasklist application
• Business monitoring and reporting

Figure 2-11. Most workflow engines are flanked by other tools that might be valuable at
different stages of the project’s life cycle, for different stakeholders

Let’s briefly go over these tools to see how they are used in process automation
projects. Note that good tools allow you to unbundle the platform, so that you aren’t
forced to use a big pile of tools but can select what really helps you.

Graphical Process Modeler
A graphical process modeler allows you to, well, model your processes graphically.
Figure 2-12 shows an example.

38 | Chapter 2: Workflow Engines and Process Solutions

Figure 2-12. Graphical modeling tools allow you to edit process definitions

While a graphical modeler might be a valuable tool for business analysts, the focus in
this book is on executable processes, so we’ll treat the modeler as a tool for the devel‐
oper. This is something some tools do a good job with, and some don’t.

For example, the modeler should be able to work on files in your local filesystem,
allowing you to store the process model along with your version-controlled source
code. This makes it easy to keep it in sync with your source code. Some tools force
you to use a separate repository, which can make the experience more brittle.

Also, the modeler should provide easy ways to edit all technical details that are
important to make a model executable. This includes referencing glue code and other
aspects you saw earlier in this chapter.

Graphical modelers are very handy in process automation projects. Just make sure
you select a developer-friendly tool stack, as the wrong tool might easily become an
obstacle in software development. Look at how the tool fits into your development
environment.

Typical Workflow Tools in a Project’s Life Cycle | 39

Collaboration Tools
During the initial discussion on how to automate a certain process, it is often valuable
to have different people collaborate on process models. This includes people from
many roles, such as business analysts, developers, and methodology or subject matter
experts. So, a good example of a useful feature in a collaboration tool is the ability to
share a diagram with others and let them comment on it, as shown in Figure 2-13.

Figure 2-13. Collaboration tools allow people from different roles to share and discuss
models

Collaboration tools typically have their own repositories where they store process
models. It is important that these models are not treated as part of the source code of
the process solution. Instead, the developer works on a process model stored in their
version control system. We’ll explore this topic in more detail in “The Power of One
Joined Model” on page 205. For now, let’s remember that collaboration tools can help
in discussions around to-be process models, but they are not used to implement the
process solution.

40 | Chapter 2: Workflow Engines and Process Solutions

Operations Tooling
Once you’ve put your process solution into production, you need a tool that allows
you to discover, analyze, and solve problems related to the processes, as shown in
Figure 2-14.

Figure 2-14. Operations tooling allows you to discover, analyze, and solve technical prob‐
lems related to processes

Imagine there is a problem with the service call to the CRM system. You first need
monitoring that will recognize that problem, e.g., because incidents are piling up. You
will also want to send alerts or integrate with your existing APM (application perfor‐
mance monitoring) tool, so the right person gets notified quickly. In addition to alert‐
ing, the tool should support root cause analysis to help you understand the problem
at hand (e.g., some endpoint URL has changed) and fix the issue (e.g., by updating a
configuration option and triggering a retry)—and it should be able to operate at scale,
because there may be a large number of affected process instances. Developers can
also use these tools to play around during development.

Typical Workflow Tools in a Project’s Life Cycle | 41

Tasklist Applications
A process model can include tasks where a human needs to take some action. In these
cases, there must be a way to notify the human that it is their turn. For this purpose,
most vendors ship a tasklist application like the one shown in Figure 2-15.

Figure 2-15. The Camunda Tasklist

These tools allow end users to see all the tasks they have to do in various running
process instances. They can select a task, work on it, and let the workflow engine
know when they are finished. “The User Interface of User Tasks” on page 85 goes into
more detail on this.

Business Monitoring and Reporting
When your process solution is running in production, your business stakeholders
want to monitor processes.

In contrast to operations, these people are much less interested in urgent technical
problems and more interested in the overall performance. For example, this can be
measured in cycle times, waiting times, or in-flight business value. They might also
want to receive some notifications, but typically these are focused on performance

42 | Chapter 2: Workflow Engines and Process Solutions

indicators. For example, they need to be notified if a process instance is taking too
long and thus will miss its SLA.

Business stakeholders also care about optimizing the overall process, which can be
supported by analytics capabilities like a clear view on which process path is used
most often, which paths are slow, which data conditions often lead to cancellations,
and so forth. This information can be derived from the audit data that a workflow
engine stores when executing process instances.

Figure 2-16 shows an example dashboard including different data points around a
hiring process.

Figure 2-16. Business monitoring tools provide reports, alerts, and analytics on perfor‐
mance indicators

Typical Workflow Tools in a Project’s Life Cycle | 43

Conclusion
This chapter described the workflow engine and process automation platforms in
more detail. The hands-on, executable example presented here should give you a bet‐
ter understanding of process solutions and workflow engines.

This equips you for diving into more detail on developing process solutions in the
next chapter.

44 | Chapter 2: Workflow Engines and Process Solutions

CHAPTER 3

Developing Process Solutions

This chapter:

• Introduces Business Process Model and Notation as an executable process mod‐
eling language

• Explains how to execute process models and how to combine process models
with programming code

• Explores important aspects of developing your own process solutions

Business Process Model and Notation (BPMN)
After jumping right into an executable process in the last chapter, let’s take a step back
and explore some of the things you just saw in more detail. We’ll start with the pro‐
cess modeling language, which allows you to design a blueprint of your process that
can be executed on a workflow engine. Such a language can express a sequence of
tasks and all the nuts and bolts around it, like decision points, parallel tasks, and syn‐
chronization points.

Different tools might use different process modeling languages. For this book I will
use BPMN, for two main reasons: it’s an adopted standard, and it’s great. I will elabo‐
rate on why it’s so great in “Process Modeling Languages” on page 100, but I first need
to explain the basics.

45

Not all process models need to be executed on an engine, of course;
sometimes you may simply want to draw a picture to understand
or document certain behavior. While this is a valid use case, it is
not the focus of this book. Still, drawing business processes for dis‐
cussion or documentation can help people in your organization
understand the potential of process automation with a workflow
engine. Make sure you use an executable process modeling lan‐
guage, like BPMN.

A BPMN process can be visually expressed as shown in the example in Figure 3-1.

Figure 3-1. A BPMN process

The BPMN process is also an XML document. In normal life, you might never need
to look at this XML. However, I’ll show it to you here to reassure you that there is
neither magic nor huge complexity hidden within it:

<?xml version="1.0" encoding="UTF-8"?>
<definitions>

 <!-- Execution semantics understood by a workflow engine: -->
 <process id="OrderFulfillment" isExecutable="true">

 <startEvent id="Event_OrderPlaced" name="Order Placed" />
 <sequenceFlow id="1"
 sourceRef="Event_OrderPlaced" targetRef="Task_RetrievePayment" />
 <serviceTask id="Task_RetrievePayment" name="Retrieve payment" />
 <sequenceFlow id="2"
 sourceRef="Task_RetrievePayment" targetRef="Task_FetchGoods" />
 <serviceTask id="Task_FetchGoods" name="Fetch goods" />
 <sequenceFlow id="3"
 sourceRef="Task_FetchGoods" targetRef="Task_ShipGoods" />
 <serviceTask id="Task_ShipGoods" name="Ship goods" />
 <sequenceFlow id="4"
 sourceRef="Task_ShipGoods" targetRef="Event_OrderDelivered" />
 <endEvent id="Event_OrderDelivered" name="Order delivered" />
 </process>

 <!-- Graphical layout information: -->
 <BPMNDiagram id="BPMNDiagram_1">
 <bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="OrderFulfillment">
 <bpmndi:BPMNShape id="_BPMNShape_Event_OrderPlaced"
 bpmnElement="Event_OrderPlaced">
 <dc:Bounds x="179" y="99" width="36" height="36" />

46 | Chapter 3: Developing Process Solutions

 <bpmndi:BPMNLabel>
 <dc:Bounds x="165" y="142" width="65" height="14" />
 </bpmndi:BPMNLabel>
 ...

The XML document contains all the information workflow engines and modeling
tools need to interpret its contents. At the same time, the visual representation con‐
tains just enough information to be quickly understood by humans, including non-
technical people. The BPMN model is source code and documentation in one artifact.
This duality makes BPMN very powerful.

BPMN is an industry standard for process modeling and execution. Originally cre‐
ated in 2004, it had a major overhaul in 2011 and was published by the International
Organization for Standardization (ISO) as ISO/IEC 19510:2013. Since then, the nota‐
tion has deliberately been kept stable, because a proliferation of versions could reduce
some of the advantages of a standard. You can find the specification as a PDF on the
Object Management Group website.

Today, many companies have adopted BPMN; there are numerous books and resour‐
ces about it, and it’s commonly taught in university courses. Many modern workflow
vendors comply with BPMN, and there is no competing standard.

I recommend that anyone entering the field of process automation learn BPMN. It
will help you understand relevant patterns, even if you decide to work with a tool that
uses another process modeling language. (A discussion of different modeling lan‐
guages can be found in “Process Modeling Languages” on page 100.)

The following sections cover the most important patterns for process modeling in
BPMN. This will allow you to understand the examples in this book and the code that
is released along with it, and help you understand the mechanics and the power of
executable process models.

This book does not discuss BPMN in depth; it only covers a subset
of the language. There are many resources available that can teach
you all the nitty-gritty details. You can find starting points on this
book’s website.

Business Process Model and Notation (BPMN) | 47

https://www.omg.org/spec/BPMN
https://ProcessAutomationBook.com
https://ProcessAutomationBook.com

Start and End Events
First things first: every process needs a starting point, which is a start event in BPMN.
This is where the process flow will begin whenever a new process instance is started.
End events are where a flow will end, as shown in Figure 3-2.

Figure 3-2. The start and end event of a process

To better understand a process flow, it’s helpful to know about so-called tokens. We’ll
look at those next.

The Token Concept: Implementing Control Flow
According to the BPMN specification, a token is “a theoretical concept that is used as
an aid to define the behavior of a process that is being performed.” In essence, the
token implements the control flow in BPMN.

You can think of every process instance as a token running through the process
model. When a process is started, one token is spawned at the start event. With every
completed step it advances along the process flow to the next task, as visualized in
Figure 3-3. When a token reaches an end event, its life cycle ends.

Figure 3-3. A BPMN process

Whenever there is a decision point, the token needs to go down exactly one path.
When the token reaches an end event, it is consumed and the process instance ends.
A token is created for every process instance that gets started, so that multiple tokens
flow through the model at the same time.

48 | Chapter 3: Developing Process Solutions

Workflow engines typically persist the status of these tokens, as they depict exactly
where in the process a given instance is waiting.

You can compare the token concept to a car traveling along a road. At each intersec‐
tion, the driver must decide whether to continue in a straight path or to turn left or
right. The road system corresponds to a process model, and any particular route the
car takes represents a process instance. Just note that this metaphor breaks down as
soon as we hit parallel paths, as you can’t easily clone a car so that it continues straight
and left, but you can easily do this with a token in a process model, as you’ll see in
“Gateways: Steering Flow” on page 51.

Sequence Flows: Controlling the Flow of Execution
A BPMN sequence flow defines the order in which steps in the process happen. In
BPMN’s visual representation, a sequence flow is an arrow connecting two elements.
The direction of the arrow indicates their order of execution.

Tasks: Units of Work
The basic elements of BPMN processes are tasks. From the perspective of a BPMN
process, a task is an atomic unit of work. Whenever a token reaches a task, the token
stops until the task is completed; only then does it continue on the outgoing sequence
flow.

Choosing the granularity of a task is up to the person modeling the process. For
example, the activity of processing an order can be modeled as a single task, or as
three individual tasks to retrieve payment, fetch goods, and ship goods. What deter‐
mines the right level of granularity will be discussed in “Extracting (Integration)
Logic into Subprocesses” on page 211.

BPMN defines various task types, which refine what the unit of work is.

One important task type is the service task. When a token passes through a service
task, some software functionality will be executed. Often this means calling a service,
a microservice, a method, a function, or whatever is a first-class citizen in your archi‐
tecture. As you saw in “An Executable Example” on page 29, you might simply con‐
nect glue code you have written in the programming language of your choice to such
a service task, as illustrated in Figure 3-4.

Business Process Model and Notation (BPMN) | 49

Figure 3-4. A service task will lead to functionality being executed, most probably
expressed in some programming code

Another task type is the user task, shown in Figure 3-5. For this example, imagine a
small company where fetching and shipping goods is simply done manually. The pro‐
cess is waiting for humans to do the described work. You could imagine that a to-do
item is generated in a tasklist for the people who do the fetching and shipping. The
workflow engine will wait until those folks tick off the to-do item.

Figure 3-5. A BPMN workflow with service and user tasks

Other commonly used task types include the business rules task, which can involve a
decision engine to evaluate a rule table, and the script task, where the workflow
engine will execute a script in a defined scripting language.

The hard part is often defining which tasks you need and their sequence. As soon as
that is clear, you might start with human tasks for rapid prototyping (to “click
through” a model) and possibly also for a first iteration rolled out to production. You
can then replace human labor step by step with automated tasks.

50 | Chapter 3: Developing Process Solutions

Gateways: Steering Flow
Gateways are elements that route tokens in more complex patterns than plain
sequence flows. The exclusive gateway chooses exactly one sequence flow out of many
based on data. You can see an example in Figure 3-6, where the “retrieve payment”
task is only entered if a prepayment method is selected.

Figure 3-6. A BPMN process with an exclusive gateway that determines the outgoing
flow

We won’t discuss yet whether this decision should be handled by the order fulfillment
process or within the payment task; you will learn more about that in Chapter 7.

The parallel gateway generates new tokens by activating multiple sequence flows in
parallel. For example, you could decide that you want to fetch goods while you are
still retrieving payment, as shown in Figure 3-7.

Figure 3-7. A BPMN process with a parallel gateway that parallelizes work

An important side note here is that this does not necessarily mean that the tasks run
concurrently, in the sense of multithreading. Processes are about waiting, so “in par‐
allel” basically means that you can do something else on one path while you are wait‐
ing on another.

Business Process Model and Notation (BPMN) | 51

Events: Waiting for Something to Happen
Events in BPMN represent things that happen. A process can react to events by
“catching” them. A great example is timer events, which simply wait for a defined
period of time to pass. In Figure 3-8 you can see two different ways to make use of
this type of event.

Figure 3-8. A BPMN process with timer events

The first timer is within the sequence flow, which means the process waits within that
timer event for one day (for example, for the right of withdrawal to expire).

The second timer is a boundary event. In this case, the process can react to this event
as long as it is waiting at that task. Here, that means we will wait five days for the
payment to be retrieved; if that doesn’t happen the workflow engine cancels the task
at hand (retrieve payment) and moves on via the alternative sequence flow to end the
process (which of course might not be the best possible business approach to han‐
dling a payment delay).

Message Events: Waiting for a Trigger from the Outside
The example in Figure 3-9 introduces another important element, the message event.

Figure 3-9. A BPMN process with message events

A message event is sent to a process instance from outside the workflow engine. This
can start a new process instance or lead to the continuation of an existing instance.

Message events sometimes lead to confusion if developers are familiar with message
brokers, as people think that they can connect the BPMN message events with their
message broker. Really, a BPMN message simply refers to a trigger from outside the

52 | Chapter 3: Developing Process Solutions

workflow engine. Technically speaking, this can be anything from a simple method
call in your application via some REST API to a message or event in your message or
event broker.

To make it even more concrete, if you want a process to react to a message in your
message broker, you typically write a piece of glue code to wire this up, as shown in
Figure 3-10. Of course, some vendors provide out-of-the-box connectors for com‐
mon scenarios.

Figure 3-10. You need to connect your “universe” with the workflow engine via applica‐
tion code

Message events are also often used in combination with the event subprocess, which
allows you to interrupt a process instance upon receipt of a message, independent of
which task the process instance is currently waiting at.

Take the example in Figure 3-11. If a cancellation request comes in, this immediately
interrupts the normal order fulfillment flow, whether we just started to retrieve pay‐
ment or whether we’re already about to ship the goods. You will learn about strategies
to restore consistency in this case—for example, to refund already taken payments—
in Chapter 9.

Business Process Model and Notation (BPMN) | 53

Figure 3-11. A BPMN process with event subprocess

Combining Process Models and Programming Code
As seen in the example in Chapter 2 and explained in “The limitations of low code”
on page 16, you want to stay away from low-code approaches and connect process
models with programming code. This allows you to embed process automation tech‐
nology into proven software development practices.

There are differences between vendors in terms of how process models are combined
with programming code, and different projects might use totally different program‐
ming languages and architectures. But there are three common conceptual methods
for adding logic: subscribing to the process, referencing code, and using prebuilt
connectors.

There is executable code available on the book’s website showing examples of all these
options.

Publish/Subscribe to a Process
Publish/subscribe (or pub/sub for short) is a mechanism known from messaging sys‐
tems. Message brokers provide queues. A sender can publish messages to a queue,
and recipients can subscribe to the queue and then receive messages. The recipients
are not known to the sender.

Many workflow engines provide a similar pub/sub mechanism for logic in the pro‐
cess. In this scenario, the workflow engine itself acts as a broker; you don’t need an
actual message broker. Instead, you write some glue code that subscribes to the work‐
flow engine, typically to a service task in BPMN, and executes logic whenever a new
process instance arrives there.

54 | Chapter 3: Developing Process Solutions

https://ProcessAutomationBook.com

Let’s look at the example visualized in Figure 3-12, where the order fulfillment work‐
flow needs to call the payment service. Therefore, it contains a service task and
defines a logical task type named retrieve-payment for it.

Figure 3-12. The workflow engine provides a publish/subscribe mechanism to add logic
to the model, such as glue code to call external services

Let’s assume this model:

<bpmn:serviceTask name="Retrieve Payment"
 vendorExtension:taskType="retrieve-payment">

Then you can imagine the following glue code (of course the exact code used will
depend on the tool, the programming language, and your style) that implements the
REST call to the payment service:

paymentHandler = new WorkflowLogicHandler() {
 public void handle(WorkflowContext context) {
 // Do input mapping of data here
 restRequest = RetrievePaymentRequest
 .paymentReason(context.getVariable('orderId')) // ...

 // The real logic that is executed, e.g. calling a REST endpoint
 restResponse =
 restEndpoint.PUT(paymentEndpoint, restRequest);

 // Do output mapping of data here
 context.setVariable('paymentId', restResponse.getPaymentId()));

 // Let the workflow engine know once we are done

Combining Process Models and Programming Code | 55

 context.completeServiceTask();
}

Now you can open a subscription to the workflow engine, so that the handler will be
called whenever a process instances reaches the service task with the task type name
"retrieve-payment":

subscription = workflowEngineClient
 .subscribeToTaskType("retrieve-payment")
 .handler(paymentHandler)
 .open();

Technically, this subscription might be implemented by different means. A common
option is to use long polling under the hood. Somewhat simplified, you can imagine
the client periodically asking for new work, but in a way that is very efficient and
avoids delays in processing. This makes it easy to use common remote protocols, like
REST, and limit the communication to one direction: from the client to the workflow
engine. Using standardized remote protocols also allows you to write glue code in
almost any programming language.

In Figure 3-12, the glue code was deliberately part of the process solution. The pro‐
cess model and glue code are tightly linked and belong together. This is a pretty com‐
mon design, but as you’ll see in “Microservices” on page 70, it’s not the only possible
one in a microservices architecture.

With the pub/sub mechanism the glue code is fully under your control, which offers a
few important advantages.

First, it makes it easy for you to decide if you are ready to execute any tasks. If, for
example, the external service is not available, you could close the subscription and
wait for the service to become available again, or simply shut down the application
containing the glue code. Any process instance waiting at a service task will keep
waiting there for the work to be pulled and executed by the client, which might hap‐
pen at any time in the future when you reopen the subscription.

Second, you can scale your glue code independently of the workflow engine itself.
Assume you need to do some resource-intensive calculation in the glue code—you
can simply scale up the application containing that glue code, or you can build small
workers focusing on only this glue code and scale those up. It even works the other
way around: if you have a resource where you have to throttle the load, you can also
control that easily. A common example is optical character recognition (OCR) tools
that are licensed for only one parallel OCR job at a time. Independent of the number
of process instances arriving at the service task at the same time, you can create a sub‐
scription where only one task at a time is processed.

Third, your glue code can control when timeouts happen in the BPMN process.
Imagine that you need to implement some logic that takes a long time to complete,
like a video transcoding process. Transcoding a movie will take hours. With the

56 | Chapter 3: Developing Process Solutions

pub/sub design, your glue code can start the transcoding process and only talk to the
workflow engine again when it’s finished. It would not be able to do the transcoding
when running in the context of the workflow engine itself, because it would hit
timeouts.

Referencing Code in Process Models
Another popular option is to reference code directly in a process model. This code is
then executed by the workflow engine when passing through the task in question.

In pseudocode, it could look like this:

<bpmn:serviceTask name="Retrieve Payment"
 vendorExtension:javaClass="io.processbook.RetrievePayment">

And:

 public class RetrievePayment implements WorkflowLogicHandler {
 public void handle(WorkflowContext context) {
 // same as in last example...
 }
}

The big difference from the pub/sub approach is that in this case the workflow engine
executes that code within its own context, meaning within the thread of the engine
and probably also in the same technical transaction. While this may sound simple
and straightforward, it comes with a couple of challenges:

• You have limited technology choices, as you are nailed to the environment the
workflow engine runs in (e.g., Java).

• There is no temporal decoupling, as the code is called whenever the engine rea‐
ches the task in question. Coupling is further discussed in “Strong Cohesion and
Low Coupling” on page 127.

• You have to work with more restrictions regarding computing time, timeouts,
and transactional control.

This leads us to probably the most critical downside: the exact behavior depends not
only on the engine, but also the configuration of that engine and what exactly you are
doing in your glue code. This makes it hard to investigate failure situations.

Over the last decade I have contributed to various open source workflow engines. In
the first few projects we started with referenced code and were super happy with the
simplicity of it. But over time and with increasing adoption of the tools pub/sub
turned out to be preferable in most situations, which is why modern engines focus on
it. This preference is fueled even more by the trends toward cloud native architec‐
tures and polyglot teams.

Combining Process Models and Programming Code | 57

Using Prebuilt Connectors
The third common possibility for adding logic is to use prebuilt connectors that come
with the process automation platform. You can reference and configure them via the
process model. For example, if you want to call some service via REST, you could lev‐
erage an HTTP connector as indicated by the following pseudocode:

<bpmn:serviceTask name="Retrieve Payment">
 <bpmn:extensionElements>
 <vendorExtension:connector type="HTTP" />
 <vendorExtension:connectorConfig key="method" value="PUT" />
 <vendorExtension:connectorConfig key="url"
 value="http://myPayment/retrieval" />
 </bpmn:extensionElements>

Figure 3-13 shows this possibility.

Figure 3-13. Using your workflow engine’s prebuilt connectors to integrate other systems

The amount and type of connectors as well as their power differ between vendors, but
there are common downsides with connectors:

• The possibilities are limited to what the vendor has foreseen. In reality, you might
quickly hit a limitation of a connector, such as the HTTP connector not correctly
handling multipart forms that you need for your service call. In this case the only
hope you have is that your vendor extends the connector quickly enough for you
to move on. As this rarely happens, you should at least have a plan B for these
cases.

58 | Chapter 3: Developing Process Solutions

• Testing is often harder, as the connector is out of the scope of your process solu‐
tion. You are tied to testing possibilities that the vendor has foreseen for this
connector.

• The connector is proprietary to the vendor.

As you’ve probably figured out, connectors are not my preferred option. If I can
easily write a piece of glue code in the programming language of my choice to do a
REST call and attach that to the process model, I prefer to do that.

There are some situations where connectors come in handy, though. A common
example is when you want to stitch together a couple of serverless functions or RPA
bots, which are covered in “Serverless Functions” on page 71 and “Orchestrate RPA
Bots” on page 88.

Model or Code?
So, you have different possibilities: you can express business logic in a process model‐
ing language as well as in the programming language of your choice. You might be
wondering about guidelines, and which type of logic belongs where. Obviously, nei‐
ther of the extremes makes too much sense. On the one hand, you don’t want to end
up with a process model with one task saying, “This is where all the magic happens.”
And on the other hand, you don’t want to do graphical programming, where each
and every piece of logic ends up in a process model. There have been many attempts
to push pure graphical programming in the past, but none of them took off. Writing
code using normal programming languages with today’s IDEs is faster and more effi‐
cient in many ways, and the resulting code is more maintainable. Not only does a
model with too much detail become difficult to maintain, but also the value of the
graphical visualization completely degrades, as you can’t see the forest for the trees
anymore.

Hence, as a rule of thumb, you can make the programming code the default for where
you implement your business logic. However, there are good reasons to put certain
logic into the process model. The following three questions can help you decide what
to put where.

Where do you need to (potentially) wait?
If you need to wait, whether for humans to act, for external services to become avail‐
able, for response messages to arrive, or for some other reason, you need to be able to
store the state safely. This is exactly what the workflow engine does for you, but only
if the task in question is part of your process model.

You can see process instances waiting at tasks in your operations tooling, so you can,
for example, identify which instances are waiting too long and figure out why. You

Combining Process Models and Programming Code | 59

can also model escalation logic for tasks in the process model, for instance involving a
manager when a human task is waiting too long to be completed.

The workflow engine enables this at the granularity of tasks. For instance, if the glue
code attached to one task calls two remote services, you can only proceed if both calls
are successful. But if you design two service tasks that make only one remote call
each, the workflow engine can remember that one service call was already success‐
fully executed and just retry the other.

What do you discuss regularly with other stakeholders?
A good rule of thumb is that everything you need to discuss with other stakeholders
regularly should go in the graphical model. This might be a bit too fuzzy, as you
might need to discuss complex pricing calculations regularly, and this might not be
something you want to include in the graphical process model. But as a general rule
it’s useful, and it is definitely true for the control flow, as there are areas that are inter‐
esting to the business and others that are not.

You might also want to think about what key performance indicators (KPIs) are inter‐
esting to various people. Whatever is part of the model will lead to audit data in the
workflow engine, which can be leveraged to build KPIs.

What crosses boundaries?
A more technical way to look at it is by focusing on boundaries. If you want to invoke
two software components or services that cannot be joined in one technical transac‐
tion, you should separate the two invocations into their own tasks. This not only
allows the workflow engine to retry failed service calls, but also developers to imple‐
ment strategies around reconciling consistency. You will learn more about these top‐
ics in Chapters 7 and 9.

Example
Let’s take a look at a quick example. Suppose you’re tasked with developing a service
that determines whether to accept a new customer. Part of that checking involves
basic data validation and some scoring mechanism. Let’s assume in a first iteration
you program everything in Java, so a simple version of your service looks like this:

public boolean isCustomerDataAcceptable(Customer customer) {
 if (!verifyCustomerData(customer)) {
 return false;
 }
 int score = scoreCustomerData(customer);
 if (score >= SCORE_TRESHOLD) {
 return true;
 } else {
 return false;

60 | Chapter 3: Developing Process Solutions

 }
}

So far, everything is fine. You might need to draw the logic on a whiteboard a couple
of times, but it probably does not yet justify using a workflow engine.

Now assume that the scoring will be done by some external service. So instead of a
local method call, you dive into REST communication and the question of whether
the service is available or not. Remember “Wild West Integrations” on page 4 in
Chapter 1? This could be a good moment to introduce a lightweight workflow engine
to resolve the problems around waiting for the availability of the scoring service. The
easiest option would be the process in Figure 3-14, with one task.

Figure 3-14. If you only want to leverage the long-running capabilities, it might be suffi‐
cient to have a very simple process model

You can then do the whole check in the glue code:

@Task(name="CheckCustomerData")
void checkCustomer(WorkflowContext ctx) {
 Customer customer = loadCustomerFromContext(ctx);
 if (!verifyCustomerData(customer)) {
 ctx.setWorkflowData("accepted", false);
 } else {
 int score = scoreService.scoreCustomer(customer);
 ctx.setWorkflowData("accepted", (score >= SCORE_TRESHOLD));
 }
}

Now assume that the scoring costs money per invocation. There are a lot of discus‐
sions around when you really need to score customers and what checks can be done
beforehand. So instead of explaining over and over again how verification and scor‐
ing is done, you could simply add that information to the process, as shown in
Figure 3-15.

Combining Process Models and Programming Code | 61

Figure 3-15. It is probably beneficial to have the sequence of these tasks visible in the
graphical model

This process model answers a lot of questions for you. As a bonus, you get statistical
data around your process for free; for example, the percentage of orders that are
rejected because of invalid data versus the percentage rejected because of a low score.

Sometimes there are even more specific reasons to add elements to a model, like
compliance, analysis, or intelligence. Be open to these requirements. It is typically
easy to adjust the model accordingly, and this delivers additional value quickly, often
without bloating the diagram.

Testing Processes
As process models are just another kind of source code, they deserve the same atten‐
tion when it comes to testing. This is actually an area where a lot of workflow systems
are more an obstacle than a help—in particular, low-code tools either don’t support
automated testing at all or have some very bespoke way to run tests.

A good workflow tool needs to support unit tests for processes, which should be an
aspect you check when evaluating products. In reality, the best approach is that pro‐
cess testing just hooks into your normal testing procedure (e.g., JUnit tests if you
work in Java). Some tools provide great support, even including assertions to verify
that a process instance ran as expected. “An Executable Example” on page 29 showed
a source code example for JUnit and Camunda Cloud.

The aim is not to test the workflow engine itself—the vendor has already done that—
but rather to verify that your process model, its configuration, the corresponding glue
code, and expressions for gateway decisions behave as you intend them to.

One complexity is that most processes invoke external services, but you don’t want to
make every process test a complete integration test. Instead, you want to mock up
external systems in order to reduce the test scope to the process logic.

62 | Chapter 3: Developing Process Solutions

Hooking process testing into the test framework of your choice allows you to leverage
existing frameworks in that area easily.

Versioning of Process Solutions
Processes can be long-running, meaning that one instance can last for hours, days,
weeks, or months. If you want to update your process model, you face the situation
that there are always running process instances in your system. By running, I mean
that they are not yet finished and are paused waiting for the signal to continue, such
as a human deciding on something. These running process instances are persistently
stored somewhere, such as a database, and you have to deal with these instances
whenever you change your process model.

Because this problem is so common, workflow engines provide versioning
capabilities:

• If you deploy a changed process model, a new version is created.
• Active process instances will continue to run in the version they were started in.
• Newly created process instances will run in the new version (unless you explicitly

want to start an older version).

Good tools also support migrating existing process instances to a new version.

Equipped with those possibilities, you can select between two basic strategies regard‐
ing versioning:

• Running process model versions in parallel
• Migrating process instances to the new version

Running Versions in Parallel
You can run several versions of a process model in parallel. The big advantage of that
behavior is that you can deploy changed process definitions without caring about
process instances that are already running. The workflow engine is able to manage
running instances based on different process definitions in parallel. The disadvantage
is that you need to deal with the operational complexity of different versions of the
process running in parallel, as well as the additional complexity in the event that
those processes call subprocesses which have different versions of their own.

Versioning of Process Solutions | 63

Run different versions in parallel for:

• Complying with legal requirements, as some procedures need to remain stable
once started

• Development or test systems for which you do not care about old instances
• Situations in which migration is not advisable, because it is too complex and too

much effort when weighed against its upsides

Migrating process instances to the new version
You can also decide to migrate all process instances to the latest and greatest version
you just deployed. Depending on the tool, it might even be possible to script this and
hook it into your CI/CD pipeline. Do this when:

• You are deploying patches or bug fixes, so you want to stop using the old model
immediately.

• Avoiding operational complexity due to different versions running in production
is a priority.

Versioning glue code and data definitions
Versioning does not stop with the process model. New process models might require
a change in the glue code that is linked to the model. Depending on the situation at
hand, you might either reference new code or adjust your existing code to handle dif‐
ferent process models.

For example, suppose new fields have been added to the customer object, which
should be taken into account when the customer is rated. As you have saved the cus‐
tomer as process data, old process instances will have customers without these new
attributes. First you have to make sure that you can still deserialize the data, e.g., by
making the new attributes optional. Then you could simply copy code for the cus‐
tomer scoring and implement a new version that uses these attributes. The new pro‐
cess model will reference customer-scoring-v2, while the old model still references
customer-scoring.

As an alternative, you could adjust your code to check if the new attributes are set
and only use it then. While this makes the code a bit more complicated, it also has a
clear advantage: it works without further adjustments if you migrate process instan‐
ces to a new version. The drawback is that in order to avoid dead code accumulating
over time you should regularly check if such code is still needed by any version and, if
not, clean it up.

64 | Chapter 3: Developing Process Solutions

There is still another possibility to handle data structure changes: write some upgrade
scripts that adjust the data. For example, you can add some default attributes to old
instances.

Conclusion
This chapter described the elements of process solutions in detail. We looked at
BPMN and how it can be used to model executable process models, and we dove into
what it takes to execute these process models on a workflow engine. In the spirit of
this book, it is not about low code, but about connecting process models with source
code. This results in process solutions that consist of process models and additional
glue code.

This chapter also described best practices to decide when to put business logic into
process models or programming code, and it explored how the whole approach fits
into your software development life cycle, including testing and versioning.

Conclusion | 65

CHAPTER 4

Orchestrate Anything

Now we’ll shift our attention to what problems process automation can solve for you.
This chapter shows that workflow engines can orchestrate anything, especially:

• Software components
• Decisions
• Humans
• RPA bots and physical devices

But what is orchestration? It’s a loaded term with different meanings for different
people. For example, in the cloud native community, orchestration is often connected
to container management, which is what tools like Kubernetes are doing. In the pro‐
cess automation space, orchestration really means coordination.

Looking back at the BPMN examples earlier in the book, you could say that the work‐
flow engine orchestrates the tasks contained in the models. And as these tasks might
call some external services, you could also say the process orchestrates these services.
Whenever you add human tasks to the mix, the workflow engine orchestrates the
humans. While this sounds a bit odd, it is actually accurate (if you prefer, you can
replace orchestrate with coordinate).

In this chapter we’ll use the example of a small telecommunications company. When‐
ever a customer wants a new mobile phone contract, the customer’s data has to be
saved into four different systems: the CRM system, the billing system, the system to
provision the SIM card, and the system to register the SIM card and phone number
in the network.

67

To improve the onboarding process for new customers, the company uses a workflow
engine. Depending on the situation at hand, each task within the onboarding process
might involve:

• Calling a software component
• Evaluating a decision using a decision engine
• A human doing the work manually
• An RPA bot steering some graphical user interface

Each of these options is discussed in more detail in the next sections.

A quick note for the impatient: Chapter 8 will dive into choreography, another
approach to automating processes. You don’t need this knowledge to apply orchestra‐
tion, so we can safely postpone it until you understand more about process automa‐
tion, but it will be handy to help you better understand the spectrum of solution
approaches.

Orchestrate Software
We’ll start with what we as tech folks like most: orchestrating software. A workflow
engine can basically orchestrate anything that has an API.

Let’s assume the onboarding process looks like Figure 4-1.

Figure 4-1. A process orchestrating data entry into different systems

Whenever there is a new customer order, a new instance of the onboarding process is
started. The new customer is saved in the CRM and billing systems in parallel. Only if
both are successful is the SIM card provisioning triggered and the SIM registered in
the network. The service tasks are wired up to API calls, as you saw earlier in this
book.

68 | Chapter 4: Orchestrate Anything

This leads to a fully automated process, also known as straight-through processing
(STP). This has big advantages over manual processing:

• You save manual labor and reduce your operational spend on this process. At the
same time, you increase your capability to scale, as the process can now handle
more load.

• You reduce the potential for human error by making sure the data is always
transferred correctly.

Different architecture patterns exist, which influence the way you operate the work‐
flow engine and design your process. We’ll look at the most important ones in the
next sections: service-oriented architecture, microservices, and functions.

Service-Oriented Architecture (SOA) Services
A typical SOA blueprint is illustrated in Figure 4-2. These blueprints advocate for a
central BPM platform containing the workflow engine, which then communicates
with the services via a central enterprise service bus (ESB). This centralized infra‐
structure is the typical pain point and leads to a lot of problems, as described in “Cen‐
tralized SOA and the ESB” on page 15.

Figure 4-2. A typical SOA and BPM blueprint from around 2010

This kind of architecture is typically not the architecture of choice for new projects.
Of course, there are good reasons to distribute business logic into multiple services,

Orchestrate Software | 69

but ideas around microservices are the more modern way to look at it, avoiding fail‐
ures of the SOA era.

If you are working in a SOA environment, you can still be successful. Make sure that
you avoid the issues around centralized tooling and be extra cautious about owner‐
ship of process definitions—for example, every business process model needs to be
owned by a development team that cares about business logic, and should not be
owned by a central BPM team. We’ll discuss this further in “Decentralized Engines”
on page 117.

Microservices
The movement around microservices took a lot of lessons about SOA into account
and defined what some see as SOA 2.0. Sam Newman provides a useful definition in
his book Building Microservices (O’Reilly): microservices are “small, autonomous
services that work together.”

Regarding them being small, the most important thing to know is that microservices
are clearly scoped and focused. A microservice is purpose-built to solve a specific
domain problem. Chapter 7 will dive more into the boundaries between services and
processes.

To understand the autonomy aspect of a microservice, suppose that your team is fully
empowered to own a microservice around SIM card provisioning. You can freely
choose your tech stack (typically, as long as you stay within the boundaries of your
enterprise architecture) and your team deploys and operates that service itself. This
allows you to implement or change the service at your own discretion (as long as you
don’t break the API). You don’t have to ask other people to do anything for you, or
join a release train. This will make your team fast in delivering changes and actually
also increase motivation, as owning their service makes team members truly feel
empowered.

Applying the microservice architectural style does have an impact on process auto‐
mation. Automating one business process typically involves multiple microservices.
With SOA, the view was that an orchestration process “outside” of the services was
required to piece them together. The microservices style doesn’t allow business logic
outside of the microservices, which means that the collaboration between them is
described within the microservices themselves.

For example, a customer onboarding microservice owns the business logic around
onboarding, which includes the onboarding business process. The team implement‐
ing the microservice can decide to use a workflow engine and BPMN to automate
that process, which then orchestrates other microservices. The decision is internal to
the microservice and not visible from the outside; it is an implementation detail.

70 | Chapter 4: Orchestrate Anything

Communication between the microservices is done via APIs, and not through the
BPM platform, as was the case with SOA. This scenario is sketched in Figure 4-3.

Figure 4-3. Processes are part of the business logic of a microservice; no central workflow
engine is needed

In microservices communities, the argument is often made to not use orchestration,
but to let microservices collaborate in an event-driven way. We’ll table this question
for now and discuss it in Chapter 8.

Serverless Functions
Microservices might be small, but you can disassemble your architecture into even
smaller pieces: functions.

A serverless function is similar to a stateless function in your favorite programming
language, but operated in a hosted cloud infrastructure. This means you don’t have to
provide an environment for the function to run in yourself. A serverless function
takes some input and produces some output, but needs to be completely self-
contained. For example, you can’t hold any data that survives the current invocation
(unless storing it in some external resource). Serverless is popular because it promises
elastic scalability. You don’t pay for computational resources when your functions
aren’t being used. When your traffic skyrockets, those resources are automatically
scaled up to handle it.

But having a bunch of functions raises the question of how they interact to fulfill a
goal. Suppose you want to use this approach for customer onboarding. You imple‐
ment one function to add the customer to the CRM system, one to add them to the
billing system, one for provisioning the SIM card, and so on.

Orchestrate Software | 71

The simplest way to provide the onboarding functionality would be to create a com‐
bined function that includes or calls the other functions:

function onboardCustomer(customer) {
 crmPromise = createCustomerInCrm(customer); // 2 seconds
 billingPromise = createCustomerInBilling(customer); // 100 ms
 // TODO: Wait for 2 promises
 simCard = provisionSimCard(customer); // 1 second
 registerSim(simCard); // 4 seconds
} // --> 7 seconds runtime for onboardCustomer

While this looks simple, it has severe downsides. First, it only works if all of the func‐
tions are available and return fast results. Otherwise, you can easily end up with a
customer created in CRM and billing that never gets a SIM card because the last func‐
tion crashed. Additionally, this solution accumulates latency, as indicated in the pre‐
vious code snippet. Even if a longer response time isn’t a problem, it will add up on
your cloud bill, as serverless providers charge for the computing time consumed by
your function.

So, a combined function is best avoided. Instead, most projects use their cloud pro‐
vider’s messaging capabilities to create a chain of functions. Imagine it like this:

// callback function registered for message "customerOnboardingRequest"
function onboardCustomer(customer) {
 ... do business logic ...
 send('createCustomerInCrmRequest');
}
// callback function registered for message "createCustomerInCrmRequest"
function createCustomerInCrmRequest(customer) {
 ... do business logic ...
 send('createCustomerInBillingRequest');
}
// callback function registered for message "createCustomerInBillingRequest"
function createCustomerInBilling(customer) {
 ... do business logic ...
}

This way, you get rid of the one expensive combined function and make your code
more resilient. The message queue will remember what to do next even if a function’s
code fails.

But now you may end up with problems similar to those associated with batches and
streaming: you don’t have end-to-end visibility of your chain, you have no single
point where you can adjust it, and it is hard to understand and resolve failures. To
mitigate these problems (which will be explained in more detail in “Limitations of
Other Implementation Options” on page 93), you can use a workflow engine to
orchestrate your functions. To do this, you will need a workflow engine that runs as a
managed service. This means that the workflow engine itself is also a serverless
resource for you.

72 | Chapter 4: Orchestrate Anything

In the onboarding example, the team responsible for developing the customer
onboarding function can also define the process model, as visualized in Figure 4-4. In
this process model, every service task is glued to a function call. How this is techni‐
cally done depends on your exact cloud environment; typical examples are native
function calls, HTTP calls via an API gateway, or messages. Your workflow engine of
choice might also provide prebuilt connectors you can use (one of the examples
where connectors, introduced in “Using Prebuilt Connectors” on page 58, make a lot
of sense).

Figure 4-4. A process can orchestrate functions

Whenever the team deploys the onboarding function, it also needs to deploy the pro‐
cess model on the workflow engine, which can probably be automated.

Every major cloud provider today has stateful function orchestration capabilities in
its platform (AWS Step Functions, Azure Durable Functions, GCP Cloud Work‐
flows). Unfortunately, they all miss important workflow engine functionality as
described in this book. Specifically, none of them uses BPMN, which leads to limited
language power (see “Workflow Patterns” on page 101) and no or very poor visualiza‐
tion capabilities (see “Benefits of Graphical Process Visualizations” on page 102).

So there is additional value in leveraging BPMN-based workflow engines to orches‐
trate functions, which is a very promising area to explore. You’ll find an executable
example using Camunda Cloud and AWS Lambda on the book’s website.

Orchestrate Software | 73

https://ProcessAutomationBook.com

Modular Monoliths
Not every company is able or willing to dump its monolith in favor of fine-grained
systems like microservices or functions. In fact, there is even a growing trend toward
embracing the monolith for some of its advantages. Because a monolith is not a dis‐
tributed system, it doesn’t have to constantly fight with remote communication or
consistency issues. And you can still apply modularization strategies so that any
changes only affect small parts of the code.

A monolith can be perfectly fine if it solves your problem, which often has a lot to do
with your internal organization and size. A development team of 10 people might
very well master a monolith, but struggle with the added complexity around working
on 100 microservices. On the other hand, an organization with a thousand develop‐
ers might not be productive if it builds and releases one single monolith.

The interesting observation with regard to processes is that you can still apply the
practices described in this book within your monolith. You will (hopefully) structure
your monolith in a meaningful way, for example by forming components, sorting the
code into packages, and creating interfaces for important services. To design exe‐
cutable processes, you simply orchestrate these internal components—for example,
this might translate to using local method calls instead of remote calls. The workflow
engine itself can be embedded as a library into your monolith. Process definitions
simply become one additional resource in the source code of the monolith. This is
visualized in Figure 4-5.

This way, you can add the benefits of using a workflow engine (long-running capabil‐
ities with state management, visibility of the process) without losing the benefits of a
monolith (not having a distributed system). Adding a workflow engine typically does
not have much impact on performance. Of course, this depends on the tool you
choose and the architecture you set up, but even with a workflow engine operated as
its own service, the overhead can be minimal (like with a database, which is also a
remote service that is consumed).

Furthermore, having a workflow engine might give you the possibility to deploy
changed process models without redeploying the whole monolith. That alone is
sometimes enough motivation for introducing a workflow engine to a large monolith.

74 | Chapter 4: Orchestrate Anything

Figure 4-5. Orchestrating components in a modular monolith

Deconstructing the Monolith
While a modular monolith can be a valid solution, many companies are on a migra‐
tion path, moving away from monoliths and toward a more fine-grained architecture.
Process automation can help with this journey. Imagine you have the telco monolith
from the last section in place, but want to change the customer onboarding proce‐
dure. Instead of squeezing the process into your monolith, you can instead take the
opportunity to create a (micro)service to do the onboarding.

To do this, you have to create APIs for the services required, which means that you
start to add facades to your existing monolith. At the same time, you have to remove
hardwired connections between components; for example, the CRM component
should no longer directly call the billing component for new customers, as you want
to control this connection via the new (micro)service. Figure 4-6 visualizes this
approach.

Orchestrate Software | 75

Figure 4-6. Processes can help to slowly remove unfortunate connections under the
covers

These projects are typically not easy to tackle. And while this might feel like putting
lipstick on a pig, it is a first step in the right direction toward deconstructing the
monolith and increasing agility. If you keep doing this for every process you touch,
you will decrease the monolith’s footprint slowly over time, in favor of a more fine-
grained architecture. The most successful architecture transformation I’ve seen did
exactly this: the developers did not do a sudden transformation, but kept migrating,
one step at a time, with discipline and endurance. The first steps were hardly visible,
but after five years, a huge difference could be seen.

Orchestrate Decisions
Let’s extend the onboarding example to first validate the customer order by invoking
some decision logic or business rules. The resulting process is shown in Figure 4-7.

76 | Chapter 4: Orchestrate Anything

Figure 4-7. A process orchestrating a decision about whether a customer order is valid or
not

A decision involves deriving a result (output) from given facts (input) on the basis of
defined logic. While this decision logic could be executed by a human, it often makes
sense to automate it, especially in automated processes. Of course, it could simply be
hardcoded, but there are certain characteristics that justify the use of specific tooling.

First, decision logic is important business logic and needs to be understood by busi‐
ness stakeholders. And compared to process control flows, decision logic changes
much more rapidly, so it is vital for business agility to be able to easily change this
logic. Whenever you learn about a good reason to not validate certain customer
orders, you want to adjust the decision logic right away before you onboard more
customers with high-risk profiles. You definitely want to avoid situations where
nobody really knows the decision logic because it is buried in tons of code that was
written years ago.

On top of that, you gain visibility into decision instances, so that you can understand
why a certain customer order was successfully validated or not.

This is the domain of decision automation. The core software components here are
decision engines, which take decision logic expressed in a model and apply it to make
decisions based on the given input. These engines typically can also version decision
models and store a history of decisions that have been made. You might recognize
some similarity to workflow engines, but decisions are not long-running; they can be
made in one atomic step.

Orchestrate Decisions | 77

Decision Model and Notation (DMN)
As with BPMN for business processes, there is a globally adopted standard available
for decisions: Decision Model and Notation (DMN). It is close to BPMN, and they’re
often used alongside one another.

Let’s take a quick look at what DMN can do. The two concepts I want to focus on in
this book are:

Decision tables
These are used to define decision logic. Years of experience with various formats
has shown that tables are a great way to express decision logic and business rules.

Expression language
In order to automate decisions, you have to express logic in a format the com‐
puter understands. At the same time, you want to end up with decision logic that
can be read by non-programmers. This is why DMN defined FEEL, the friendly-
enough expression language that is executable, but also human-readable. As
mentioned in Chapter 2, some workflow engines also use FEEL within BPMN
processes, for example to decide which path to take in a process flow.

Let’s look at an example. Assume you want to decide if you can onboard the customer
automatically. For this, you create the DMN model visualized in Figure 4-8.

Figure 4-8. A DMN decision table to find risks

You will use certain data points as input: namely, the payment type, some scoring for
the customer’s neighborhood, and the monthly payment associated with the contract.
This will result in an output, which in this example is one Boolean field that indicates
whether a manual check is necessary.

Every row in such a table is one rule. The cells on the input side contain the rules or
expressions and will resolve to true or false. Checks included in this example are
paymentType == "invoice" and monthlyPayment < 25. These expressions are cre‐
ated by some information in the header of the table and the exact cell value.

78 | Chapter 4: Orchestrate Anything

Most examples in real life are as easy, as shown here, but it is also possible to create
more sophisticated expression logic using FEEL. To give you some examples, the fol‐
lowing expressions are all possible:

Party.Date < date("2021-01-01")
Party.NumberOfGuests in [25..100]
not(Party.Cancelled)

In a DMN table you can have as many input columns as you want. The expressions
are connected using a logical AND. If all expressions resolve to true, one says the
rule “fires.”

A DMN table can control what happens in this case. This is the hit policy you can see
at the top of Figure 4-8. In the example, it is “first”; this means that the first rule
(starting from the top of the table) that fires will determine the result. So in this case,
if a customer selected “prepaid,” the result is clear in the first row: a manual check
does not need to be performed. Other hit policies could be that you expect only one
rule to fire because there is no overlap, or that you sum up the results of all firing
rules, e.g., to sum up risk scores.

While the example table has only one output column, you can have as many as you
want.

Under the hood, a DMN decision table is stored as an XML file, like a BPMN process.
Typical decision engines parse that decision model and then provide an API to make
decisions, as shown in the following pseudocode:

input = Map
 .putValue("paymentType", "invoice")
 .putValue("customerRegionScore", 34)
 .putValue("monthlyPayment", 30);

decisionDefinition = dmnEngine.parseDecision('automaticProcessing.dmn')
output = dmnEngine.evaluateDecision(decisionDefinition, input)

output.get('manualCheckNecessary')

This pseudocode uses a decision engine in a stateless way. It parses a file and then
evaluates the decision directly. While this is very lightweight, you might want to lev‐
erage some further capabilities of a decision engine, like versioning of the decision
models or keeping a history of decisions. So your code might look more like this:

input = Map
 .putValue("paymentType", "invoice")
 .putValue("customerRegionScore", 34)
 .putValue("monthlyPayment", 30);

output = dmnEngine.evaluateDecision('automaticProcessing', input)

output.get('manualCheckNecessary')

Orchestrate Decisions | 79

Decisions in a Process Model
Decision engines can of course be used standalone. While there are good cases for
doing that, this book focuses on decisions in the context of process automation. In
that context, decisions can be hooked into a process.

In BPMN there is even a specific “business rule” task type available for this. It is called
a business rule task instead of a decision task for historical reasons, as these tools
were called business rule engines at the time BPMN was standardized; today, the
industry speaks of decision engines.

While the business rule task defines that a decision shall be made by a decision
engine, it does not specify what this means on a technical level. So, you can write your
own glue code to invoke the decision engine of your choice.

An alternative is to use vendor-specific extensions. For example, Camunda provides a
BPMN workflow engine and a DMN decision engine, and has integrated them under
the hood. This means that you can simply refer to a decision in the process model. In
operations, audit information about why a decision was made is then also available
directly from the history of the process instance.

Figure 4-9. A BPMN process can invoke DMN decisions

80 | Chapter 4: Orchestrate Anything

Decision automation with DMN is a great way to improve business–IT collaboration
and increase agility as decision logic gets easier to change. DMN is a great supple‐
ment to BPMN, as automating decisions helps to automate tasks within processes.

Orchestrate Humans
Of course, not every process is fully automated, even if most companies try to auto‐
mate their processes to the highest possible extent. There are three typical reasons to
let humans work on tasks:

• With automation, you often need to have human task management as a fallback.
Humans can easily work on the 10% of nonstandard cases that would be too
expensive to automate, or deal with exceptional situations.

• Human task management is often a first step toward automation. It allows you to
quickly develop, roll out, and verify a process model, perhaps with only human
tasks. Then you can increase automation by “replacing” humans with machines
task by task.

• Humans continue to play a role in more creative areas of processes, such as han‐
dling rare cases or making decisions. Removing repetitive tasks by automating
them will not only increase their capacity for doing this, but will also remove
friction between manual and automated work.

Please be aware that your business department is unlikely to talk about “orchestrating
humans”; the more common (and psychologically acceptable) term is human task
management.

A process using human task management for the onboarding process could look like
Figure 4-10.

Figure 4-10. A process orchestrating humans

Orchestrate Humans | 81

Even if the tasks themselves are not automated, using the workflow engine to auto‐
mate the control flow still has a lot of benefits, especially if you compare it with the
most likely alternative—passing around new contracts via email, with different peo‐
ple adding data to all these systems manually. For example:

• You can make sure that no customer order gets lost or stuck, thereby increasing
reliability in your services.

• You can control the sequence of tasks. For example, you could parallelize enter‐
ing the CRM and billing data, but still make sure that both need to finish before
anything is provisioned. This speeds up your overall processing time.

• You can make sure that the right data is attached to a process instance, so every‐
body involved always has everything they need right at hand.

• You can monitor cycle times and SLAs, making sure that no customer order
hangs for too long. You can also analyze more systematically where you can make
improvements, which helps you increase efficiency.

• You will get some KPIs around your processes, for example about the number of
customer orders, types of contracts, and so on.

Business departments might not talk about workflow engines,
orchestration, or human task management at all, even if this tech‐
nology is working in the background. For example, take the appro‐
val of incoming invoices. Maybe a manager has a user interface to
see all open invoices where they can approve them easily so that
they get paid. Someone else will do the actual paying. This is a user
experience you might be familiar with from accounting tools. But
in the background, there might still be a workflow engine with a
process model at play, so maybe the list of invoices to be approved
in reality is a list of human tasks created from process instances. In
this case, neither the process model nor the human tasks are obvi‐
ous from a business perspective.

We’ll discuss some interesting aspects of human task management in the next
sections.

Task Assignment
One important question is who should perform a particular task. Most workflow
products provide a life cycle for every human task out of the box, like the one shown
in Figure 4-11.

82 | Chapter 4: Orchestrate Anything

Figure 4-11. Typical life cycle of a human task

This example allows you to differentiate between candidate people and assigned peo‐
ple. Any candidate might do the task, like “somebody from the sales team” or “Joe,
Mary, Rick, or Sandy.” The first of these candidates to start the work claims the task,
and only then is it assigned to them personally. This claiming avoids two people
working on the same task by coincidence. A task can be delegated when the assigned
person wants somebody else to resolve (part of) the work. When they finish, it is
passed back to the assignee. This is different from reassigning the work, which means
handing over the task to another person, who then is fully responsible for completing
the work at hand.

As a general rule, you should route human tasks in your process to groups of people
instead of specific individuals (e.g., “the sales team”). This not only eases assignment
rules, but also accommodates new hires, departures, vacations, sick leave, etc. Of
course, there can be exceptions, like if a certain region has a dedicated salesperson
assigned to it.

Please note that not all humans in your process have to be employees of your com‐
pany. You can also assign work to customers—for example, asking them to upload
missing documents.

In BPMN, the assignment of people is controlled by attributes of every user task.
Here is an example:

<bpmn:userTask id="Check payment"/>
 <potentialOwner>
 <resourceAssignmentExpression>
 <formalExpression>sales</formalExpression>
 </resourceAssignmentExpression>

Orchestrate Humans | 83

 </potentialOwner>
</userTask>

Additional Tool Support
Some tools provide additional capabilities around notifications, timeout handling
and escalation, vacation management, or replacement rules. These capabilities can
typically be configured as attributes of tasks and are as such not graphically visible in
the process model.

It is a good idea to leverage these capabilities and not manually model these aspects
into each and every process. So while you might be tempted to model an email
reminder about work that has been waiting in the queue for too long via BPMN,
please avoid it if your tool can do that out of the box using a simple configuration
option. This will make your models easier to create, read, and understand, as you can
see in Figure 4-12.

Figure 4-12. Don’t model aspects the built-in life cycle of user tasks can address for you

Supporting human task management is its own challenge for workflow engines. In
addition to the vendor needing to provide graphical user interfaces for end users, the

84 | Chapter 4: Orchestrate Anything

engine also needs to support extensive capabilities around filtering and querying of
tasks.

While this might sound easy at first, it can become quite complicated if you need to
deal with thousands of employees working with millions of tasks on a daily basis. You
also face the challenge of providing flexible query possibilities without allowing single
users to bring the performance down for the whole company. How this is imple‐
mented varies between vendors, but it is definitely a very different type of workload
than microservices doing task after task after task.

The User Interface of User Tasks
The workflow engine is controlling the process. It knows for every process instance
what the next activity is that the human needs to perform. But the human needs to
know this too! So the workflow engine needs a way to communicate with real people.

One approach is to use the tasklist application provided by your vendor, as intro‐
duced in “Tasklist Applications” on page 42. These tools often allow end users to filter
tasks. This means they might need to blend in business data, as end users not only
want to see the task name, but also business data like order IDs, products applied for,
or the applicant’s name.

Another important aspect is what kinds of task forms are supported. Some products
allow the creation of only basic forms, by defining simple attributes. Others provide
their own form modeler. Some allow you to embed HTML or to use custom forms
like a one-pager in your custom web application, or a form created by a dedicated
form builder application. Keep in mind that you’ll often need to blend data from the
process with domain data from entities referenced in the task, in a single form, as
shown in Figure 4-13—this results in better usability for your users.

Using your workflow vendor’s tasklist application can be a good way to get started
quickly. You can immediately build a prototype for your process and click through it,
probably even to verify the process model with business stakeholders. Most people
are much better at understanding a process model if they can role play using real-life
forms, instead of reading a formal model.

But there are also situations where you have requirements for a more customized way
of involving humans. For example, you might use email, chat, or voice interaction.
The workflow engine could send an email to a person who needs to do something.
This email contains all relevant information for that person to do the task at hand.
When they are finished, they can indicate that either by replying to the email or by
clicking a link in the email.

Orchestrate Humans | 85

Figure 4-13. In forms for user tasks, data from the workflow engine often needs to be
blended with domain data

Two other common scenarios are using a third-party tasklist application and devel‐
oping a completely customized user interface. Let’s briefly explore both options.

Using an external tasklist application
The workflow engine can invoke the API of an external application, as visualized in
Figure 4-14. This might be a tasklist app that is already widely adopted in the com‐
pany, from the likes of SAP or Siebel, or some very broad application like Trello or
Wunderlist. I’ve also seen one customer using screens on the mainframe to handle
open tasks, as this was the way all clerks did their daily work. Tasklists might also be
referred to as job lists, to-do lists, or inboxes.

Figure 4-14. User tasks lead to to-do entries in a tasklist application

86 | Chapter 4: Orchestrate Anything

Whatever form it takes, this application gives the user possibilities to see all open
tasks, to indicate that they’ve started working on a task, and to mark tasks as comple‐
ted. The status gets reported back to the workflow engine. When implementing such
an integration, you will need to take care of:

• Creating tasks in the tasklist application whenever a process instance enters a
user task

• Completing user tasks in the workflow engine and moving on in the process
when the user is finished

• Canceling tasks, triggered either by the workflow engine or the user in the UI
• Transferring business data to be edited into the to-do application, and vice versa

It’s also proved to be a good idea to think about a problem detection mechanism just
in case the two systems diverge, for example because of inconsistencies caused by fail‐
ures with remote calls.

Using a third-party app is often when there is an existing tasklist application that is
already rolled out to employees, as it allows them to continue using the known appli‐
cation. They might not even recognize that a workflow engine is at play or that a
product is replaced under the hood. In that case, issues of authentication and authori‐
zation are often already solved.

Building a customized tasklist application
If you need a more customized experience than the vendor’s tasklist application can
deliver, you can develop a bespoke application yourself. This can be adapted to your
needs without compromise. You have freedom of choice among development frame‐
works and programming languages, and tasks inside your custom application can fol‐
low your style guide and usability concepts. This is often done if you embed workflow
tooling into your own software product, or if you want to roll out your tasklist to
hundreds or thousands of users and efficiency in the UI is important.

This approach also allows you to satisfy very special requirements. For example, you
might face a situation where you have several user tasks that are heavily interdepend‐
ent from a business point of view and should therefore be completed in one step by
the same person. Imagine a document input management process where you decided
to manage each document with a separate process instance, but present mailings con‐
sisting of several such documents as a bundled task to the user. An example is shown
in Figure 4-15.

Orchestrate Humans | 87

Figure 4-15. A custom tasklist can hide complexity and improve efficiency

In one real-life project I was involved in, this approach allowed an organization’s
employees to work much more efficiently. This kind of grouping is no problem with a
customized tasklist, but might not be doable with out-of-the-box applications.

Orchestrate RPA Bots
Let’s switch our attention from orchestrating humans to orchestrating bots—robotic
process automation (RPA) bots, to be precise. RPA is a solution for dealing with leg‐
acy applications that do not offer an API, as many older systems were developed at a
time where there was not such a big need for connectivity. RPA tools automate the
control of existing graphical user interfaces. Big topics are screen scraping, image
processing, OCR, and robots steering GUIs. It’s like the Windows macro recorder on
steroids.

RPA has experienced rapid growth recently, and become a huge market, recognized
by analysts.

Suppose your billing system is very old and does not provide any kind of API. You
can use the RPA tool of your choice to automate the data entry for your onboarding
process. In RPA lingo this is called a bot. How this bot is developed depends on the

88 | Chapter 4: Orchestrate Anything

specific tool, but typically you record GUI interactions and edit the steps the bot
needs to take in the RPA’s GUI, like “click this button” and “enter text in this text
field.” An example is shown in Figure 4-16.

Figure 4-16. Example of a typical RPA development environment and flow

It is important to note that the bot should implement one function only. In terms of
the BPMN process, the bot is just another way to implement one service task, as
shown in Figure 4-17.

Of course, bots are always much more brittle than a real API call, so whenever possi‐
ble you should prefer to use an API. But unfortunately, real life is full of obstacles.
The system might not provide the API you need, or you might be facing a shortage of
development resources. Suppose entering data in the billing system is getting delayed
because of people being overloaded with onboarding work. The business department
needs to solve this problem quickly, as customers are starting to cancel their orders
due to the long delays (which causes even more manual work, leading to a very
unfortunate downward spiral). But IT is buried in other urgent work, so they cannot
do this integration right away.

Orchestrate RPA Bots | 89

Figure 4-17. A process also orchestrating an RPA bot

Developing an RPA bot can be a good way for the business department to move for‐
ward quickly without the need for IT, which is beneficial for the company at this
stage. But you need to keep in mind that bots are hard to maintain and depend on
user interfaces that might change quickly—and if the RPA solutions and bots are not
governed or operated by IT, this can lead to architecture problems down the road.

So in this example, you should directly plan for replacing the bot with a real API. I’ve
even seen organizations that require projects to report technical debt whenever they
introduce a new RPA bot to make sure this is addressed later.

You can tackle some of the problems around the brittleness of bots by keeping human
tasks as a fallback in case there are errors within the RPA bots. This allows you to
concentrate on automating the 80% of cases and route the exceptions to a human, as
shown in Figure 4-18.

Now, there is one risk you should be aware of. As you saw in Figure 4-16, an RPA
flow is also a kind of process model. This can lead some companies to try to automate
core business processes with RPA tools, especially if they suffer from limited band‐
width in IT. Unfortunately, this does not work out.

90 | Chapter 4: Orchestrate Anything

Figure 4-18. A process orchestrating a bot with humans as a fallback

RPA is not meant to automate core business processes. Using the
RPA tool as a low code process automation platform is a trap.
Using RPA flows to automate whole business processes has severe
downsides and risks. All the disadvantages of low-code apply here,
and additionally RPA flows quickly become a wild mix of granular‐
ities, containing business process flow logic as well as control
sequences for the user interface.

The workflow engine should always be the primary driver that controls the overall
process, and calls RPA bots whenever it needs to integrate with a resource that cannot
be called via an API for whatever reason.

RPA is applied in one step of the process. As soon as you can switch to an API, you
should do that. The beauty of this architecture is that you might not even need to
change your process model: simply call the API instead of the RPA bot.

Orchestrate Physical Devices and Things
But let’s not stop with RPA bots. We can also orchestrate physical devices, like real lab
robots.

Technically speaking, orchestrating devices boils down to orchestrating software, as
devices are integrated via APIs. Still, there are some specific nuances to it. In particu‐
lar there is a common pattern with regard to emerging use cases around the Internet
of Things (IoT), where a myriad of devices connect to the internet and produce data.
This data can lead to actions, which then might involve orchestration.

Let’s understand that by looking at a use case around airplane maintenance. Assume
that an airplane produces a constant stream of sensor data—for example, the current
oil pressure. A stream processor could derive some actual knowledge out of that

Orchestrate Physical Devices and Things | 91

https://oreil.ly/WRBb2
https://oreil.ly/WRBb2

measurement, such as an oil pressure that is too low. This is another stream of data.
But now we have to act on that insight, and schedule maintenance at the next possible
opportunity. This is where a process starts, because now we care that the mechanic
looks into the insight within a defined time frame, decides how to handle the issue,
and schedules the appropriate maintenance actions. This is visualized in Figure 4-19.

Figure 4-19. An example where streams of data lead to workflows being started

The transition from a passive stream to a process reacting to data in the stream is
very interesting. In a concrete real-life project, a stateful connector might be devel‐
oped that starts a process instance for a mechanic only once for every insight. If the
oil pressure keeps being reported as too low for the same hardware, this does not start
additional process instances. If the oil pressure goes back to normal, this insight is
routed to the existing process instance, so that this process instance can take action.
For instance, it might simply be canceled as the maintenance is no longer necessary.

Conclusion
This chapter demonstrated that workflow engines can orchestrate anything, from
software to decisions to bots and devices. This should help you understand what
kinds of problems process automation can solve. Of course, in real life the use cases
overlap, so processes typically involve a mix of components. To implement an end-to-
end process you might need to orchestrate humans, RPA bots, SOA services, micro‐
services, decisions, functions, and other software components, all within the same
process.

Note that some people do not talk about orchestration, but rather about human task
management and straight-through processing. This is a subtle point based in the psy‐
chology of terminology.

92 | Chapter 4: Orchestrate Anything

CHAPTER 5

Championing Workflow Engines and BPMN

This book concentrates on using workflow engines and BPMN to automate pro‐
cesses. Of course, there are other ways of automating processes in the developer’s
toolbox. Also, BPMN is not the only process modeling language you can use.

This chapter gives you the background on why I’ve made these choices. This knowl‐
edge will hopefully not only convince you, but also help you in discussions with your
company or organization about why certain scenarios can benefit from a workflow
engine and BPMN. Feel free to skip this chapter if you simply want to move ahead
and learn more about process automation; you can always come back to it later. This
chapter:

• Explains alternatives to using a workflow engine, and the trade-offs you should
be aware of

• Describes different options for process modeling languages and explains why I
consider BPMN to be the best choice

• Briefly touches on process automation with blockchain, as it often comes up as a
topic that nobody really understands

Limitations of Other Implementation Options
There are many common ways that developers use every day to automate processes.
Each of these implementations has its own shortcomings, and all of them could bene‐
fit from the adoption of a workflow engine. Let’s explore how the typical alternatives
work.

93

Hardcoded Processes
Hardcoded process automation was covered in “Wild West Integrations” on page 4.
There is not much to add, but I wanted to include the headline here for completeness.

Batch Processing
Batch processing is a very popular option to automate processes. Let’s start by explor‐
ing what a batch job is and how you automate processes with a bunch of batch jobs.

Have you ever taken a crowded elevator in a hotel? This is a good analogy for a batch
job. All the items (in this case, you and any other passengers) have to wait until the
elevator arrives; then they’re all packed inside together and processed (in this case,
elevated to various floors).

In a skyscraper hotel, you might even have to switch elevators, so after the first suc‐
cessful batch job (elevator ride), you have to wait in line for the next batch job. If
somebody uses the emergency stop, nobody in the cabin will move on.

The process happening here is you moving from the hotel lobby to your room, and it
is implemented by multiple batch jobs. A single job typically does not really know
about the overall process, even if some architect has hopefully thought about the
whole journey to your room.

The metaphor is friendlier than typical IT batch jobs are. Elevators react to you press‐
ing a button, so the waiting time for your batch job to run is relatively short. Most
real-life batch jobs are time-controlled; assuming there are multiple elevators, eleva‐
tor A could go up at 8 a.m., elevator B at 9 a.m., and so forth. In this scenario, the
whole journey might take a very long time.

So, one batch job only focuses on one task in the process, but the whole process is
implemented by multiple batch jobs in a row. Batch processing is actually orthogonal
to the real processes.

A real-life example of batch processing is shown in Figure 5-1. Here, customers
request an update of their credit limit online. This request is not processed right away
(referred to as online processing), but instead waits in a queue until the next batch is
run, which typically happens at a specific time of day. Then, all the items waiting in
this batch are processed at once.

94 | Chapter 5: Championing Workflow Engines and BPMN

Figure 5-1. Batches are orthogonal to the real process

Batch processing is a very popular approach because this is how computers func‐
tioned when they were first created. At the outset, computers could only run one pro‐
gram at a time, read data from sequential memory like tapes, and so on. Today,
mainframes are still optimized for batch processing and can process large quantities
of data, even in one transaction, very efficiently and quickly. But these orthogonal
batches have severe shortcomings for process automation:

• Batches add processing latency to the individual unit of work, which slows down
process cycle times. While this behavior was often tolerable in the era of sending
letters by mail, it no longer meets customer expectations in the era of smart‐
phones. Some organizations try to reduce latency by running batches more fre‐
quently—even to the point where one batch job starts before the previous one
has finished, leading to all sorts of weird concurrency issues.

• Failure handling gets harder, for three reasons. First, an error can often stop the
whole batch job, and not all batch jobs can be restarted from the exact position
where they stopped. This leads not only to additional latency for all items, but
also to possible double processing. Second, failures don’t expose any context. An
operator might simply see a failure in the batch job and the record that caused it,
with no indication of how this record came to be there, why it contains that
strange data, what will actually happen with that record downstream, and so on.
And third, it is typically unclear how to clean up a failed batch job and revert to

Limitations of Other Implementation Options | 95

the original state to restore consistency. In short: operators don’t know about the
overall process. This makes it very hard to analyze or fix problems.

• The process is not visible, as it is hidden in the connections between batch jobs.
Companies need to invest a lot of effort in scheduling to make sure batches run
in the right order. They have to do archaeology to understand the process. The
whole construct gets brittle and hard to change.

A lot of enterprises have launched “unbatching” initiatives, where they begin phasing
out batch processing to avoid these shortcomings. One recent example I saw was a big
car insurance company that began to replace a couple of batch jobs around contract
renewals for corporate fleets. They designed one end-to-end process for the whole
fleet renewal of one customer, and started subprocesses for each contract. By doing
this, they not only brought down the overall processing time, but also reduced the
problems surrounding failed batch jobs. Whenever there was a failure in one con‐
tract, an incident in the single failing process instance was created, which made it
easy to identify the failure and understand, resolve, and continue the process. While
resolving the incident, the whole renewal process could still continue, so failures
would not affect other contracts or customers.

There are use cases where you need to look at data from all records,
such as when computing totals. In these scenarios the batch job is
not orthogonal to the process, but rather one task in the process.
This is less problematic from a process perspective.

Data Pipelines and Streaming
Data streaming has become increasingly popular in recent years. The idea behind
data streaming is to move away from “data at rest” that is stored somewhere and pro‐
cessed by large, time-controlled batch jobs, and toward sending data in a steady
stream that is constantly flowing—typically through queues or immutable logs. The
data is processed by so-called stream processors as it arrives. This reduces waiting
times (latency) and increases processing speed.

A good example to illustrate this is the detection of double swipes for credit card pay‐
ments, where a merchant swipes the card twice in order to get an additional payment.
While this was traditionally detected by nightly batch jobs that catch the double data,
it can be now discovered in real time by using a streaming architecture. This allows a
notification to be sent to the customer immediately, hopefully even while they are still
in the shop, as illustrated in Figure 5-2.

96 | Chapter 5: Championing Workflow Engines and BPMN

Figure 5-2. Data streams put data in motion, reducing latency

Streaming architectures go hand-in-hand with reactive systems, as stream processors
are reactive—they simply react to new data coming in. (Note that some tools in this
market speak of data pipelines or data flows instead of data streams, while others refer
to events rather than data.)

Streaming can be used for a wide variety of use cases. One common example is
extract, transform, load (ETL) jobs that pump data from one database to another,
such as from your production systems into your data warehouse or data lake.
Another canonical example is the use of serverless functions to create a thumbnail for
every picture uploaded to some kind of storage.

The line between data streaming and process automation can become thin, as you
can implement a process by a couple of stream processors in a row, as shown in
Figure 5-3 for an order fulfillment process.

Figure 5-3. Implementing a process using streams

Using streaming for process automation shares most shortcomings of traditional
batch processing, except the latency aspect. You lack visibility and your ability to
change the process is limited. It is hard to operate such a system and diagnose fail‐
ures, and it is hard to query the current state. Let’s briefly look at these shortcomings
in more detail.

There is a lack of visibility into the process as it is implemented by the topology of
stream processors. Process instances only exist virtually because there is data flowing
through queues. You have no way to inspect how the overall process really works. The
behavior emerges during runtime, which makes it hard to understand, especially in
contrast to an approach where process logic is explicitly defined. I recently heard the
term pinball machine architecture, coined by Neal Ford, and think that captures it very
well.

Limitations of Other Implementation Options | 97

You also have limited ability to change the process, mainly because it is really hard to
change what you don’t understand. But let’s assume you do a good job with the
archaeology and manage to get a clear picture. You still can’t make certain changes
without changing multiple stream processors at the same time, which probably
requires a coordinated deployment. This eventually leads to a degree of coupling
you’d prefer to avoid.

Chapter 8 discusses this subject in more depth and explains what are good and bad
use cases for event-driven communication and streaming architectures. You will see
there that streaming is great in some cases, but it can also degrade your architecture.

Typical tools only allow models that are acyclic, which means you can’t loop back.
While this is a reasonable decision for ETL jobs, it does limit the possible use cases of
these tools for automating processes. In general, you have operational loops in many
processes. For instance, a customer may change their mind about an order, a payment
might bounce, a forklift might drive over your nice little parcel—a lot of things can
happen that mean you have to go back in the process and start over.

To address problems around visibility, some tools allow you to model data flows
graphically. But even with these graphics, it is still hard to operate the solution you’ve
built because the state of the overall business process is distributed amongst data
flowing around in streams, and probably even state in the stream processers them‐
selves. If you need to query the current state of one process instance, you can’t ask a
single component but potentially have to puzzle together pieces of data from various
sources.

This becomes even more challenging if there are failures in the processing. You can’t
simply stop processing one specific instance, capture the problem, and alert some‐
body to resolve the problem. Instead, you have to write the poisoned data item into
some kind of dead letter queue to indicate a fault.

The Actor Model
The actor model is one approach for tackling concurrent computing. It’s based on
messaging: the basic idea is to have a single responsible software component, the so-
called actor, that processes each and every message of a certain type and thus can fully
control threading and the level of parallelism. Actors communicate with each other—
or even with themselves—only via messaging. This allows you not only to leverage
queues but to scale the overall system, as typically parallel processing is limited to a
single actor.

Actors are allowed to have local persistence. Some frameworks explicitly know the
concept of persistent actors, so you can easily build one actor that implements a pro‐
cess, communicating with other actors to fulfill certain tasks.

98 | Chapter 5: Championing Workflow Engines and BPMN

Projects often hardcode their process into such a persistent actor. This has some nice
upsides, especially that the process definition is put in one place where it is easy to
find and change. But it also has severe shortcomings that you should keep in mind:

• There is no modeling language that supports patterns you need for long-running
behavior (described in “Workflow Patterns” on page 101). This means you have
to code all that behavior yourself.

• The process logic is buried in source code and not visible, making it hard to
understand for all stakeholders.

An important observation about the actor model is that there is limited adoption in
the industry, which is more of a practical concern. Even if some tools have advocated
heavily for the actors approach for some time, and the concept is arguably beneficial
for some scenarios, there aren’t many companies that have adopted the approach at a
large scale. Particularly because you would need to go all-in with your architecture to
have an ecosystem of actors to leverage the benefits, this is a rare scenario.

If you apply actors, there is an interesting combination possible: you can build one
actor that implements the process but leverages a workflow engine for handling the
details. This mitigates the downsides and is a great fit. You can find a link to an exam‐
ple on the book’s website.

Stateful Functions
Modern streaming and cloud environments provide a concept called a stateful func‐
tion (e.g. Azure Durable Functions). Such a function can be long-running and persist
its state between executions. This is somewhat comparable to the persistent actors
described in the last section.

While this functionality can also be used to automate long-running processes, it has
severe drawbacks compared to using a dedicated workflow engine:

• There is no modeling language that supports patterns required to express long-
running logic. (Process modeling languages will be covered in detail in the next
section.)

• There is no graphical representation of the process logic, which makes collabora‐
tion between business, developers, and operations harder. Overall, these frame‐
works solely target developers and do not look at other roles.

• The support around scheduling and versioning is very limited. So, for example,
functions cannot easily run different versions of the same orchestration code, or
can do so only by using workarounds.

• The surrounding tooling, e.g., for operations, is very basic.

Limitations of Other Implementation Options | 99

http://ProcessAutomationBook.com

Note that there is currently innovation happening in this area, especially around serv‐
erless architectures. So while the preceding statements are true at the time of writing,
things might have changed slightly by the time you’re reading this. Therefore, it
might be worth double checking on these limitations if you’re considering using
durable functions to automate processes.

Process Modeling Languages
So far you’ve been exposed to BPMN as “the” process modeling language. But there
are various other options out there, and I regularly participate in heated discussions
around which one to choose. Very often these conversations are not based on
expressing facts, but rather opinions and personal preferences. One time, I had a dis‐
cussion with a big Silicon Valley–based company, and the architect told me that they
couldn’t work with BPMN because it is serialized as XML: “XML is legacy, you know.”
So is electricity, but we still use it!

Making decisions based on gut feeling without backing arguments is simply not a
good approach. Instead, try to understand what problems you are trying to solve and
what trade-offs you encounter with the different solutions. In the case of process
models in XML, the common critiques are about problems with diff and merge.
What if a colleague changed the process model at the same time as I did? While it
may seem complicated to do this with XML files, it is actually not such a big problem
in reality. It’s rare that two people change the same elements within the model;
changes are more often far away from each other, even if they are in the same XML
file. So, diffing and merging XML as a text file is normally easy, especially if you com‐
ply with some basic rules. Most importantly, you should not touch elements you don’t
want to change, or just redo the layout without a good reason for it. This is the same
as how you should treat source code: you don’t reformat the whole file without a good
reason, because that makes spotting real differences harder.

Overall, the two arguments against XML—that it is old and that it is hard to merge—
don’t stand up to a proper test.

But let’s take a step back and inspect the really important aspects when choosing a
process modeling language. In the next sections we’ll consider these questions:

• What behavior does the language support? This defines the overall maturity and
will determine if you will encounter situations that can’t be modeled with the lan‐
guage of choice.

• What value does a graphical representation bring to the table? Should you use a
graphical modeling language, or is a text-based language sufficient?

100 | Chapter 5: Championing Workflow Engines and BPMN

Workflow Patterns
In order to judge if a process modeling language provides the functionality you need,
you can refer to the patterns defined by the Workflow Patterns initiative. According
to the website, the research done by this initiative (which has been around for over 20
years):

Provides a thorough examination of the various perspectives (control flow, data,
resource, and exception handling) that need to be supported by a workflow language
or a business process modelling language. The results can be used for examining the
suitability of a particular process language or workflow system for a particular project.

Workflow patterns simply define the patterns, not any kind of implementation.
BPMN implements most of these patterns. Other languages, such as the Amazon
States Language which is used in AWS Step Functions, implement only some of them.
This can help you judge the power of the process modeling language of your choice.

If you are a pattern type of person, you might even find it useful to read through all
the pattern descriptions online. This will definitely foster your understanding of why
you need a properly designed process modeling language, and why you should not
code your own workflow engine.

You might wonder what such workflow patterns look like. Table 5-1 shows some
basic control-flow patterns and how they are expressed in BPMN.

Table 5-1. Some workflow patterns from http://www.workflowpatterns.com/patterns/
mapped to BPMN

Pattern
number

Pattern name BPMN element Description

1 Sequence A task in a process is enabled after the completion of a
preceding task in the same process.

2 Parallel Split The divergence of a branch into two or more parallel
branches, each of which executes concurrently.

3 Synchronization The convergence of two or more branches into a
single subsequent branch such that the thread of
control is passed to the subsequent branch when all
input branches have been enabled.

4 Exclusive Choice The divergence of a branch into two or more branches
such that when the incoming branch is enabled, the
thread of control is immediately passed to precisely
one of the outgoing branches based on a mechanism
that can select one of the outgoing branches.

Process Modeling Languages | 101

http://workflowpatterns.com
http://www.workflowpatterns.com/patterns/

Pattern
number

Pattern name BPMN element Description

5 Simple Merge The convergence of two or more branches into a
single subsequent branch such that each enablement
of an incoming branch results in the thread of control
being passed to the subsequent branch.

…

14 Multiple Instances
with a Priori Run-
Time Knowledge

Within a given process instance, multiple instances of
a task can be created. The required number of
instances may depend on a number of runtime
factors, including state data, resource availability, and
interprocess communications, but is known before the
task instances must be created. Once initiated, these
instances are independent of each other and run
concurrently. It is necessary to synchronize the
instances at completion before any subsequent tasks
can be triggered.

…

Custom process modeling languages often come with the promise of being simpler
than BPMN. But in reality, claims of simplicity mean they lack important patterns.
Hence, if you follow the development of these modeling languages over time you will
see that they add patterns once in a while, and whenever such a tool is successful it
almost inevitably ends up with a language complexity comparable to BPMN, but in a
proprietary way.

This is why I have never understood the motivation to use a custom modeling lan‐
guage when there is a mature and usable standard like BPMN available.

Benefits of Graphical Process Visualizations
The benefits of graphical process visualizations are prominent. Of course, it’s all
about the visibility and comprehensibility of the model, and how easily it can be dis‐
cussed with different stakeholders.

With regard to business stakeholders, graphical models are a great tool to use when
discussing requirements before and during implementation. This can remedy a con‐
tinuous frustration for many developers that requirements are “obviously incomplete”
and “clearly never going to work.” Graphical models can help to identify potential
problems much earlier, probably even by the business stakeholders themselves.

Graphical models can also be leveraged by operations, for example to mark problems
in a process instance. They allow people who are not developers to get a rough idea
about what is going on, which would be impossible with programming code.

It is noteworthy that graphical models even align developers with other developers.
Close your eyes (metaphorically speaking) and think of the last time a colleague of

102 | Chapter 5: Championing Workflow Engines and BPMN

yours explained to you some process, algorithm, or other complex piece of software.
Did they actually show you a wall full of code? Did they walk you through a long
document containing prose? Or, rather, did they draw a picture on the whiteboard to
explain the core concepts? I bet it was the latter.

There are even arguments for graphical models from the field of
psychology of perception. The saying “A picture is worth a thou‐
sand words” captures this well. The geekier version is that for rec‐
ognizing visual patterns you can use your brain’s GPU, but for
reading you have to use the CPU. Having graphical models helps to
reduce CPU utilization and makes room for thinking about the
content of your models. Of course, this only applies after you’ve
learned a graphical modeling language and have it ready to be used
in your brain, but the core elements of languages like BPMN are
boxes and arrows, and as such they can be intuitively understood
by most people. So, graphical models free up some of your brain’s
CPU to actually develop better models. Isn’t that great?

Let me add a short personal story to reinforce the value of a graphical model that is in
sync with the real implementation. Remember in the Preface, where I told the story
of how my friend started his own business, setting up a specialized retail store for
graphics cards? That was also the first time I learned about process modeling. I
started drawing processes with Microsoft Visio to discuss them with my friend and
the handful of employees he had. While Visio was far from providing a good model‐
ing experience and the resulting pictures were pure documentation, I benefited from
this exercise.

As I was intrigued by process models, I started to search for workflow engines that
could directly execute them. I finally found an open source project that could handle
that, and the process model eventually went live.

Twenty years later, I was astonished to see that the software at my friend’s company
was still in production. And amazingly, the graphical representations of the exe‐
cutable process models are still being used, even as the company continues to evolve
(because graphics card modding is no longer a thing) and as new employees are
onboarded. These models help people to understand the business processes of the
company as well as the behavior of the software.

I am a huge fan of graphical models that are executable artifacts. The Visio diagrams I
created are totally outdated now, but the executable models are source code and still
show exactly what is really executed.

There are two ways to achieve a graphical process visualization. The obvious
approach is to create a process model that includes graphical information, as is done

Process Modeling Languages | 103

with BPMN. Keep in mind that proprietary symbols limit the value of the visuals for
collaboration with other roles, so BPMN is really a good choice.

The other approach is to auto-generate visuals from a process model that might even
be in a textual form, as discussed in the next section. Unfortunately, auto-generation
produces visualizations that are often hard to comprehend.

Textual Process Modeling Approaches
In contrast to graphical process models like those created with BPMN, there are also
textual models. How can you create such a model? The most common approach is to
use some JSON or YAML to define a process model, as shown in the following exam‐
ple taken from Netflix Conductor:

{
 "name": "sample-workflow",
 "version": 1,
 "tasks": [
 {
 "name": "task_1",
 "type": "SIMPLE"
 },
 {
 "name": "someDecision",
 "type": "DECISION",
 "decisionCases": {
 "0": [
 {
 "name": "task_2",
 "type": "SIMPLE"
 }
],
 "1": [
 {
 "name": "fork_join",
 "type": "FORK_JOIN",
 "forkTasks": [
 [
 {
 "name": "task_3",
 "type": "SIMPLE"
 }
],
 [
 {
 "name": "task_4",
 "type": "SIMPLE"
 }
]
]
 }

104 | Chapter 5: Championing Workflow Engines and BPMN

]
 }
 },
 {
 "name": "task_5",
 "type": "SIMPLE"
 }
]
}

The sequence of task definitions in that JSON file also defines the sequence of tasks in
the process. Allowing a different sequence requires you to define explicit transitions,
often by referring to the IDs of elements. This is actually not that different from the
XML serialization format that backs BPMN models.

Typically, the problem with textual modeling is the lack of modeling tools. It is really
hard to express complex workflows in a JSON file like the one just shown, especially
if you add loops or parallel paths.

Another option is to express process models via programming code, as illustrated in
the following example with Spring State Machines:

public void configure() {
 states.withStates()
 .initial(States.START)
 .state(States.RETRIEVE_PAYMENT, new RetrievePaymentAction())
 .state(States.WAIT_FOR_PAYMENT_RETRY)
 .end(States.DONE);

 transitions.withExternal()
 .source(States.START)
 .target(States.RETRIEVE_PAYMENT)
 .event(Events.STARTED)
 .and()
 .withExternal()
 .source(States.RETRIEVE_PAYMENT)
 .target(States.DONE)
 .event(Events.PAYMENT_RECEIVED)
 .and()
 .withExternal()
 .source(States.RETRIEVE_PAYMENT)
 .target(States.WAIT_FOR_PAYMENT_RETRY)
 .event(Events.PAYMENT_UNAVAILABLE)
 .and()
 .withExternal()
 .source(States.WAIT_FOR_PAYMENT_RETRY)
 .target(States.RETRIEVE_PAYMENT)
 .timer(5000l);
}

Process Modeling Languages | 105

This can be directly coded in your IDE, and your compiler can do some checks. Still,
it is not easy to express processes that do not run in a straight sequence. Imagine the
process in Figure 5-4, where invoices are sent in parallel to charging the credit card.
This is hard to express in understandable text.

Figure 5-4. A process model that is hard to express in a textual domain-specific language

In short, all but easy models are hard to express in a textual form. But some tools,
including Camunda, allow you to generate a BPMN XML file from models expressed
in programming code. This allows you to switch to graphical modeling later, for
example if the process gets more complicated.

When giving presentations, I often leverage this functionality and start with Java code
to define a simple process model. This way, the audience can clearly see that there is
no hidden magic behind some modeling tool. I could also do that using a BPMN
XML file, but code is typically easier to digest than an XML file at first. In the back‐
ground, the workflow engine generates a BPMN process model, including graphics,
with auto-layout.

Typical Concerns About Graphical Modeling
So why isn’t the world simply going all-in with graphical process modeling and mak‐
ing graphical models first-class citizens? Good question! In my experience, some
developers are not overly fond of graphical modeling languages. Here is a summary
of some common concerns:

106 | Chapter 5: Championing Workflow Engines and BPMN

They contain hidden magic
After giving a lot of conference talks and live demos, I have learned that develop‐
ers feel uncomfortable if they think they are missing important pieces of the solu‐
tion. And as graphical modeling tools often hide certain logic and configuration
in property panels or wizards, users who don’t know the tools get the feeling that
they are missing something crucial. Even if no secret magic is used (and there is
nothing magic about it), they are never fully confident in these tools.

In contrast, source code does not hide things (OK—it probably does behind
method calls or frameworks—but I do understand the argument). An easy solu‐
tion can be to toggle between the graphical view and the serialized file in XML. In
that file, nothing is hidden. Another handy strategy is to start with coding the
process model in the beginning, as described earlier, and switch to a graphical
modeling approach as soon as it gets more complicated.

They degrade the developer experience or development speed
Developers know how to handle text files very well. They are experts in using
their version control systems of choice and diffing and merging source code in
complicated scenarios. Platforms like GitHub support the typical use cases out of
the box and IDEs offer code completion and sophisticated templates to increase
developers’ productivity, so they’re good places to work in.

Then, the conception is that along comes something strange (the graphical
model) that does not fit into their tooling landscape. This is partly true, as you
might lose some capabilities of the IDE, such as code completion for known
classes and methods, when editing the model. But it is also partly wrong, as we
saw earlier: you can easily diff and merge the serialized format of a graphical
mode (the XML file), which is simply stored in your version control. Some tools
even allow you to do graphical diffing on top of BPMN.

But more importantly, this concern is mostly irrelevant. “Combining Process
Models and Programming Code” on page 54 showed that you can express logic
either in process models or in code and simply combine them, so the process
model expresses “only” the sequence of tasks and all other logic is still contained
in normal programming code.

They threaten the developer’s self-image
I’ve come across another reason for rejecting process models that took me a
while to understand. Some developers actually don’t embrace the fact that normal
human beings can understand what they are doing. They are artists, and of
course there must be some mystery behind a working program. This also guaran‐
tees them job security, or so they think. But having this mindset in your project
will obviously lead to big problems in the future, and you definitely have to
address it.

Process Modeling Languages | 107

Software engineering has changed a lot over the last few decades, and developers
often invest the vast majority of their time into discussing requirements and
sketching the right solution, just to change it again tomorrow. Agile approaches
and collaboration are everywhere, and graphical process models are one impor‐
tant piece of that puzzle.

Another concern is that once you have understandable graphical models, business
stakeholders will interfere with the development all the time and want to join all con‐
versations around the solution design. I have seen this happen. But the solution is not
to avoid graphical models, but rather to learn to apply them correctly. This is mostly
about respecting the different roles in a project. An executable process model is also
source code. It is part of the solution design and thus under the responsibility of the
people who build the solution (i.e., the development team). They need to have the last
call on the design choices, and if there are good technical reasons to change a model
they need to be empowered to do this. Of course, they also need to be able to explain
their reasons to other stakeholders. Similarly, the process model needs to be included
in the software developers’ toolchain and CI/CD pipelines.

Executable process models are also source code and must be owned
and governed by the software development team.

Graphical Versus Textual Approaches
In summary, visuals are beneficial to understanding process logic, for all stakeholders
(including developers themselves). They help to get everybody on board when dis‐
cussing the process and during operations.

The easiest way to create a visual model is to use a graphical modeling language. This
will also help ensure that even complex processes are understood.

Remember that only the sequence of tasks itself is expressed in the process model
graphically, and this is then connected to programming code for other logic. This
gives you the best of both worlds.

Process Automation with Blockchain?
I wanted to include a section about blockchain in this book, because there is so much
confusion around it. Blockchain is often described as a technology that will radically
change business processes. Let’s quickly examine what that means for process auto‐
mation. Spoiler alert: it will not change much for automation of the processes within
a company. It “only” influences the collaboration of multiple parties.

108 | Chapter 5: Championing Workflow Engines and BPMN

But let’s take this step by step. We’ll start with an example. A couple of years back I
had to buy a car. So I went to the internet portal of my choice, searched for a car, and
bought it via email. The platform was just a broker; the buying process was handled
by the dealer directly.

In this scenario, there are two parties who don’t trust one another: I do not trust the
car dealer (a noble profession, but for some weird reason I always think car dealers
want to shaft me) and the car dealer does not trust me, basically because they don’t
know me. At the same time, a car is expensive enough that both sides care about
trust.

This is a stalemate situation: I don’t want to transfer money before getting the car’s
documents, and the dealer does not want to send the documents before receiving the
money. And you can be sure that I don’t want to get into any solution that involves
packing the money in a suitcase.

Partners doing business without mutual trust is the optimal setting for blockchain use
cases. In these situations, the classic approach to solve the problem of lack of trust is
to introduce a trusted intermediate, like a bank, a notary, or some dedicated service.
Blockchain technology can make this intermediary unnecessary.

Blockchain establishes trust without the intermediate party by providing a database
where all data is distributed to everybody joining, and adding some clever cryptogra‐
phy to make it impossible to change or fake data once it is in there. This leads to a
database everybody can trust, as there is no single party in control.

It is possible to implement so-called “smart contracts” in a blockchain. Smart con‐
tracts are automated and long-running programs in the blockchain. Their data as well
as the current state is secured. In a way, a smart contract can be seen as a kind of a
workflow engine with persistence in the blockchain. A specialty is that the process
model and all instances are publicly visible.

A smart contract allows automation of the public parts of the car buying process—
but only the part both parties need to agree on. All aspects of the process that are spe‐
cific to one party will still be either handled manually (in the case of the car cus‐
tomer) or automated, probably using process automation as described in this book
(in the case of a big car dealer). This is visualized by the collaboration model in
Figure 5-5.

Process Automation with Blockchain? | 109

Fi
gu

re
 5

-5
. S

m
ar

t c
on

tra
ct

s i
n

bl
oc

kc
ha

in
s c

an
 b

e s
ee

n
as

 a
 w

or
kfl

ow
 en

gi
ne

 fo
r t

he
 p

ub
lic

 p
ar

ts
of

 a
 p

ro
ce

ss
be

tw
ee

n
pa

rt
ne

rs

110 | Chapter 5: Championing Workflow Engines and BPMN

Collaboration models will be introduced in “The Power of One Joined Model” on
page 205. In short, they allow us to model the processes of different participants and
express how they collaborate; in this example, the buyer (me), the car dealer, and the
smart contract all have their own processes.

Because you can get rid of intermediaries, reduce paperwork, and increase trust with
smart contracts, I am convinced that blockchain has the potential to revolutionize
many business processes. But it is hard to predict when bigger disruptions will hap‐
pen, because there are a lot of hurdles along the way—the biggest being that it
requires radical changes to the way business is done, and no party can start such ini‐
tiatives alone.

Also, note that even with blockchains all over the planet, you will still use workflow
engines to automate the private processes of each party.

Conclusion
This chapter explained alternatives to a workflow engine to automate processes. You
should have a better understanding of their shortcomings and the value a workflow
engine brings you.

It also introduced some other process modeling languages, showed the advantages of
graphical ones, and underlined the importance of BPMN.

Conclusion | 111

PART II

Process Automation in the Enterprise

Process automation is just one piece in the overall enterprise architecture puzzle, and
it needs to support a complex balancing act. If your organization is successful, it
needs to scale. To develop more features faster, it wants to add development teams. To
allow this, you need to cut your applications into smaller pieces and assign teams to
these pieces. This is what is currently happening with microservices, to name the
most prominent approach at the time of writing.

But the customers don’t care about all that—they just want to have their desires fulfil‐
led (e.g., an order to be shipped as fast as possible). The customer cares only about
the end-to-end business process.

Your job is to allow for the modularization that you need to survive as a company, but
at the same time to make sure that the overall end-to-end business process runs
smoothly and can be understood. This includes fitting the processes within the
boundaries of the right modules and making these modules as decoupled as possible.

Sound easy? Yeah, kind of. This part of the book equips you with some important
guidelines to survive this mission:

Chapter 6
This chapter discusses typical architectures and trade-offs, which will help you to
sketch your own architecture.

Chapter 7
This chapter talks about modularization, cohesion, and coupling. The goal is to
equip you with the basics to understand how to define the boundaries of your
services, and how that influences process automation.

Chapter 8
This chapter (re)defines orchestration and choreography as command-driven
and event-driven communication. This allows us to discuss a good balance
between commands and events.

Chapter 9
As typical architectures favor distributed systems, you will need to solve certain
challenges around remote communication. This chapter describes how a work‐
flow engine can help with these by enabling long-running capabilities.

Chapter 10
This chapter discusses the value of graphical process models for collaboration in
enterprise IT projects. You will learn about different stakeholders that may be
interested in these models and how you can get them all on board.

Chapter 11
Learnings in the previous chapter are a good basis for looking at how to enable
process visibility, which we do in this final chapter in this section.

CHAPTER 6

Solution Architecture

By now you should have a better understanding of how to design and execute process
models, and what problems a workflow engine solves. It’s time to think about its place
in your architecture.

This chapter:

• Gives some guidance on when to use a workflow engine
• Covers the most important questions to ask to define your architecture
• Helps you start your own evaluation endeavor

When to Use a Workflow Engine
Now is a good time to come back to a question that I skipped in Chapter 2: when
does it make sense to use a workflow engine?

The way I think about it is visualized in Figure 6-1.

The two main advantages of a workflow engine are that it adds long-running capabil‐
ities to your application or service, and that you make the process logic visible.
Depending on what you want to do with the workflow engine, these capabilities are
of different value for you.

For example, if you want to orchestrate an end-to-end business process (maybe as
part of your microservices endeavor), you will definitely benefit very much from
long-running capabilities and visibility. If you need to implement business transac‐
tions in distributed systems, as will be described in “Transactions and Consistency”
on page 183, these will also be of value, although maybe slightly less so. When you
simply leverage the long-running capabilities to solve very technical challenges, as

115

will be described in Chapter 9, there is limited value in visibility, but still this use case
makes a lot of sense.

Figure 6-1. The value a workflow engine brings might differ for different use cases, but
as long as the return exceeds the investment it is typically worth introducing it

As long as the value (the return) exceeds the effort of introducing the workflow
engine in the first place (the investment), a workflow engine will have a positive
impact on your architecture. The exact threshold depends very much on how easy it
is to introduce the selected tool. I expect that this barrier will drop further over the
next few years, as tools get more and more lightweight or are made available as man‐
aged services. This will increase the applicability of workflow engines for a wider
range of problems.

Still, of course there are use cases that do not make much sense. An example would
be using BPMN to do graphical programming, meaning you simply express program‐
ming code in the graphical model without the need for state handling or collabora‐
tion with other roles.

The return on investment depends on both the return and the
investment. If the investment is low, you can apply workflow
engines to a bigger range of problems.

Architecture Trade-Offs
Deciding on a solution architecture involves a number of trade-offs, as the answer to
the question of which architecture is best is always “it depends.” It depends on your
goals, your architecture and stack, and the tool of choice. And there are no right or
wrong architectures, but rather some that might work better for your situation than
others.

116 | Chapter 6: Solution Architecture

This section will give you a basic understanding of which questions need to be clari‐
fied and the implications your decisions might have.

Running the Workflow Engine
The first and most important question is: how do you run the workflow engine itself?
Is it a managed service? Is it a Docker container that can run side-by-side with your
microservices? Or is the workflow engine an embeddable library that will be part of
your application?

Some other questions you should consider are:

• Is it easy to provision in your environment?
• What resources does it need to run, like databases or application servers?

Make sure your engine of choice fits into your situation. If you’re building a serverless
application, of course you would look for a managed service. If you’re building a
cloud native application, Kubernetes support might be vital. If you run mostly human
task workflows, maybe a standalone workflow server is the easiest option. If you’re
building a monolith, an embedded library may work well.

You also need to understand the level of flexibility of the tools. Some cloud services
are only available with certain cloud providers, and you have no idea how they work
behind the scenes. Some other tools have different distribution options, such as a self-
assembly open source, as a standalone distribution, and as a Docker image, while also
being available as a managed service in the cloud. A certain level of flexibility might
be an advantage, especially if your requirements change over time.

In this entire decision process, you must also take the experience of your team into
account. If the team has never touched Kubernetes or Docker, don’t force introducing
these just to leverage process automation.

Decentralized Engines
One of the most important discussions that always comes up concerns how many
workflow engines should be operated. Does a company run the workflow engine as a
centralized platform? Or does every team that requires a workflow engine run its own
in a decentralized manner? Guess what: it depends.

If you embrace microservices, you’ll want to give teams a lot of autonomy. A team
should be able to act independently of other teams and make changes as required.
Also, each team should be isolated in a way that ensures that another microservice
going crazy does not affect its ability to operate normally. In this setting, the default is
to have decentralized engines—one workflow engine for each microservice that needs
one. This ensures that every team can stay independent, for example when they want

Architecture Trade-Offs | 117

to update or reconfigure a workflow engine. Each team can likely even decide for
itself which tool it wants to use. This setup also enforces the designed boundaries, as
nobody outside of the current microservice can access the workflow engine.

The clear advantages are autonomy and isolation, but the cost is that every team has
to evaluate and operate its own engine. The complexity of this very much depends on
the technical stack. For example, using a managed service is easy if you are already
using the cloud, or a Kubernetes operator can make it easier to spin up workflow
engines if you are already fully committed to using containers.

A remaining challenge is how to gain central visibility over decentralized engines.
Chapter 11 will dive into this very interesting topic. A decentralized engine deploy‐
ment is visualized in Figure 6-2.

Figure 6-2. Decentralized workflow engines provide isolation

Sharing Engines
If you want to simplify operations, you can run a central engine as a service for the
whole company, or at least one engine per department, as visualized in Figure 6-3.

Figure 6-3. Microservices might also share engines; they still own the process model and
you might still operate multiple engines

118 | Chapter 6: Solution Architecture

The workflow engine is a remote resource that applications can connect to in order to
deploy and execute processes. While this is typically easy to set up, it comes with the
downside that you lose isolation of the services, not just in terms of runtime data but
also in terms of product versions. A central workflow tool also needs to be scalable
and resilient to avoid hitting a bottleneck, or a single point of failure.

Ownership of Process Models
There is one really important thought to keep in mind here: there is a difference
between ownership and physical deployment location. You can deploy process mod‐
els from different teams to a central engine. If these models are still owned and gov‐
erned by the various team, this is not too big of a problem. If it means that all models
need to be governed by one central team, it is. This is comparable to a centrally oper‐
ated in-house cloud platform, where each team still owns, configures, and provisions
its own resources.

Actually, if the deployment is properly integrated into your CI/CD pipeline, teams
might not even notice where their processes are physically deployed. This is compara‐
ble to relational databases. Many companies still share a database installation among
different applications, with each of them getting their own schema and being respon‐
sible for the table structure. This works relatively well, but still, one application going
mad can bring performance down for everybody.

Using the Workflow Engine as a Communication Channel
A very different option in a microservices environment is to let different microservi‐
ces directly pub/sub to a central workflow engine, as shown in Figure 6-4. In my
experience, this design polarizes people’s opinions. I’ll discuss why in a minute, but
let’s understand this option first.

As shown in the figure, you don’t need glue code to call the payment service from
within the order fulfillment service. Actually, there is not even any additional com‐
munication channel, like messaging or REST calls, between the services for order ful‐
fillment and payment.

Instead, the payment service directly subscribes to service tasks with the type name
retrieve-payment, and the shipment service subscribes to tasks with the type name
ship-goods. As the task type name is the connection information, the pub/sub mech‐
anism still decouples the two services. Payment doesn’t need to know anything about
order fulfillment; it simply knows that it will execute all retrieve-payment tasks.

Architecture Trade-Offs | 119

Figure 6-4. Different microservices can publish and subscribe to a central workflow
engine

Now the workflow engine becomes a shared system, like the messaging system is in
other architectures. There are pragmatic companies that love the simplicity of that
approach, as they don’t have to introduce an additional messaging system, but still
can benefit from the temporal decoupling of pub/sub. There are also companies that
don’t want to see a workflow engine in such a central position. If these companies
want to leverage the power of pub/sub, they run an additional message or event bus.

Chapter 7 dives a bit more into the reasoning around that question. For now, you can
simply remember that both are valid possibilities that come with trade-offs.

In-House Workflow Platforms
The current industry trend is that companies leave as much freedom as possible to
development teams, so they can, for example, choose the tooling they like. At the
same time, most companies want to provide central guidance around process auto‐
mation to save effort and to share knowledge. You’ll learn more about this later, in
Chapter 12; it might involve providing a curated list of vendors so that the number of
tools in use remains manageable, sharing best practices or success stories on the com‐
pany’s wiki, or even establishing a center of excellence that can support teams with
questions related to process automation.

However, some companies go a step further and start to prebuild their own software
components and platforms on top of specific vendors’ workflow engines. At its sim‐
plest, this might involve creating a facade in order to reduce the dependency on the
vendor. In this scenario, developers program against a bespoke facade, and the work‐
flow engine API is only wired in under the hood. At the other extreme, companies
might assemble a whole SOA or integration stack with a couple of components from

120 | Chapter 6: Solution Architecture

different vendors. The motivation here is to avoid vendor lock-in and to provide
some predeveloped additional functionality.

All of the initiatives like this that I’ve seen have struggled. It’s one thing to set up a
bespoke platform, but quite another to keep this platform up-to-date with new ver‐
sion releases, to fix all bugs that are reported internally, or to make all of the workflow
engine’s features available via a custom-built facade. And users of that platform will
still hit dead ends, because its capabilities typically won’t match those of the underly‐
ing workflow engine. What’s more, you can’t research problems in your own bespoke
platform via Google like you can for well-known commercial products or open
source projects.

Overall, it’s really not worth the effort—especially not to avoid vendor dependencies.
“Dos and Don’ts Around Reuse” on page 254 will look into a more meaningful way to
achieve reusability. I strongly recommend that you skip the undertaking of building a
custom platform. I have seen it fail even with very smart teams that tried hard. Unless
you are a process automation company, don’t build a process automation platform.

Performance and Scalability
An important angle to consider when looking at a workflow engine concerns perfor‐
mance and scalability. Does the workflow engine satisfy your requirements? To judge
this, look at your workload’s characteristics and get clarity on questions like:

• What kind of throughput do you need? For example, how many process instan‐
ces are started per second or day?

• What cycle time is acceptable for single tasks or the complete process? For exam‐
ple, how many milliseconds is a fully automated process with 10 tasks allowed to
take? This might also affect latencies if you need to offer synchronous facades.

• How volatile is your load? Some companies start 90% of their monthly process
instances in the same hour of the month. So, while you should of course look at
your average load, you also need to understand what peaks you need to expect.
The ability to handle those peaks is the more crucial requirement.

So, to determine the characteristics of your workload, it is important to look at how
many process instances are started, how many service tasks need to be executed, how
many events need to be routed to the workflow engine, and so on. Examining these
“actions” is typically more important than looking at the total number of process
instances that are waiting somewhere. Waiting often boils down to records in a data‐
base, which seldom hits limitations.

It is advisable to do a load test with a representative workload in the target architec‐
ture. Such a load test is often easy to set up, especially if you can leverage modern
cloud environments. This will help you get a feeling for whether the workflow engine

Architecture Trade-Offs | 121

can serve your needs. It is especially important not to wait for the production envi‐
ronment to be ready, which is something I often see customers do. Spin up something
that is close enough as early as possible; that’s typically more than sufficient.

Many developers still think that workflow automation tools are mainly designed for
low-throughput scenarios like human tasks. And of course, humans don’t process
tasks within milliseconds. But some process automation tools can also be applied to
high-performance use cases, like in the financial industry where payments or trades
must be processed at scale within super-short time frames.

And I have seen big data use cases that really benefited from process automation—
especially the visibility and failure handling parts, where the teams initially never
thought the workflow engine could handle hundreds of thousands of events per
second.

Developer Experience and Continuous Delivery
In order to judge if a specific tool fits your development approach, you need to look
at how process solutions will be implemented. Process solutions not only include the
process model, but also all the glue code needed to transform data or to invoke serv‐
ices, as described in “Combining Process Models and Programming Code” on page
54. Furthermore, the workflow engine API and the availability of client libraries will
determine whether your developers can work in their preferred environment and
programming language, and use the frameworks they are productive with.

This will directly influence:

How you can develop user interfaces
Some tools allow you to use your preferred UI technology. Others want you to
use something the vendor chose or invented, which may provide convenience
features.

How you can deploy process definitions
Can the deployment be hooked into your CI/CD pipeline easily? While this
sounds obvious, there are tools that require manual deployments of process
models, which is of course not what you want.

How you can test processes
Some tools allow local unit tests, as you saw in “Testing Processes” on page 62.
Other tools force different ways to test process models, and some cannot do
automated testing at all.

How you can store and version process models
Some tools allow you to store process models as files in your normal Git reposi‐
tory; others force you to have a separate repository for models, which then needs
to be synced with the tags in your version control system for code.

122 | Chapter 6: Solution Architecture

Selecting the process automation tooling will have significant impact on the devel‐
oper experience. It is super important to keep a close eye on these factors, as they not
only influence the amount of effort needed to implement a process, they can torpedo
your whole software development approach and demotivate your developers.

Evaluating Workflow Engines
Now that you’re aware of the trade-offs, let’s turn our attention to selecting a work‐
flow engine. Unfortunately, I can’t give you a shortlist of tools here, for three basic
reasons: it won’t be fair, because I might miss some tools; it will become outdated as I
write it; and it might be too long to be useful. On the book’s website, you’ll find a
curated list of tools to use as a starting point.

Unfortunately, the boundaries of the workflow engine category are blurry. There are
very different types of tools available. Some real workflow engines are called “orches‐
trators,” whereas other tools are called workflow engines but actually do something
else. Let’s first explore the different categories.

Foremost are the tools that fit the definition used in this book, meaning they can han‐
dle persistent state and thus enable long-running processes. I categorize them as:

• Developer-friendly workflow engines or workflow automation platforms (e.g.,
Camunda), which are discussed in great detail in this book.

• Managed orchestration or workflow engines (e.g., AWS Step Functions or
Camunda Cloud).

• Homegrown orchestration and workflow engines that are made available open
source (e.g., Netflix Conductor). These open source projects are close to the
lightweight workflow engine category, but they are typically very opinionated
and come without any guarantees.

• BPM suites (e.g., Pega), as discussed in “Misguided BPM suites” on page 16.
• RPA tools (e.g., UiPath), as introduced in “Orchestrate RPA Bots” on page 88.
• Low-code platforms (e.g., Zapier), which target end users looking to automate

tasks within office-like workflows without any software development.

Additionally, there are tools that don’t provide state handling out of the box and thus
don’t qualify as workflow engines. Still, they are often taken into consideration when
workflow tools are evaluated. These include:

• Data pipeline tools (e.g., Apache Airflow) allow data pipelines to be modeled
graphically, but they lack important features, as discussed in “Data Pipelines and
Streaming” on page 96. These tools don’t have their own implementation of per‐
sistence; the state of a process instance is the data item flowing through the pipe.

Evaluating Workflow Engines | 123

https://ProcessAutomationBook.com

• Integration tools (e.g., Apache Camel) can solve certain integration problems
very well. Integration logic can also be chained together to implement a business
process, with the downsides noted in “Data Pipelines and Streaming” on page 96.

Finally, there are categories of tools that are in the realm of process automation, but
focus on the visibility aspect. For example:

• Distributed tracing tools (e.g., Jaeger) can visualize how requests flow through
the system on a technical level. This might help you understand emergent behav‐
ior, which will be introduced in “Emergent Behavior” on page 150.

• Process mining tools (e.g., Celonis) can help you understand how processes are
implemented by the current ping-pong of legacy systems.

You need to clearly understand the category a tool falls into. The website for this book
gives some more guidance on this.

This book focuses on workflow engines, so the first category. When selecting such a
tool, I recommend specifically that you look at:

• The vision and road map of the vendor. The vision tells you where the tool is
headed; it drives direction and future actions.

• The extensibility of the platform. Extension points allow you to stay on top of
things, even if you go beyond what your vendor had in mind. Hitting dead ends
in later projects is often a very painful experience, and it can kill whole projects.

Both aspects, vision and extensibility, are actually more important than specific fea‐
tures. The concrete feature set is always subject to change, but you might stay with a
vendor for a long time. However, this mindset is the exact opposite of what I’ve
observed in countless tenders or requests for proposals (RFPs) in the past.

Be Cautious with RFPs
Very often, requests for proposals are super-long spreadsheets where vendors tick
boxes if they support a feature. From that spreadsheet, customers derive a score, and
the tool with the highest score is selected. While this approach sounds fair and objec‐
tive, it actually is not.

The biggest problem is that vendors often optimize for this buying process. Many fea‐
tures are simply developed to tick a box, and not to be used in real life. That means
that you will hit limitations very soon in your project, which is not at all reflected in
the spreadsheet. And to add insult to injury, these features make the whole product
more complex and harder to maintain, which will lead to even less usable features in
the long run. I don’t want to blame the vendors, though; they are often forced into
this by their prospects.

124 | Chapter 6: Solution Architecture

https://ProcessAutomationBook.com

And in many RFPs the decision is made up front anyway. The spreadsheet is tuned to
select the tool of choice. This is actually more of a positive thing than it sounds, as it
is often a good way to select tools based on their vision when the company requires a
formal spreadsheet evaluation.

My personal highlight was a customer calling me up to discuss my answer to an RFP.
They went through the whole spreadsheet with me. On many lines they told me
answers from our competitors and said: “Look, they said yes here. But I know their
out-of-the-box feature, it will be unusable for us. You said no as you don’t have that
feature. But you have an easy-to-use extension point that allows us to code that fea‐
ture ourselves. This is much more valuable to us. Do you agree that we can switch
your answer to a yes here?”

But of course, you also need to perform a concrete assessment to build your shortlist
of tools. The following list of questions can be used to check the most important
aspects. Keep in mind that the whole endeavor is meant to find the engine that
matches your needs, so you don’t need a “yes” to all questions, but only to the ones
important to you. Your evaluation criteria should include:

Integration possibilities
How can you combine process models with code? Can you use the programming
language of your choice? Do you get the prebuilt connectors you need? Do you
need to use proprietary connectors or can you code everything you need? Can
you integrate with all the technologies you need? Is the platform extensible?

Deployment options and supported environments
How can you run the engine itself? Can you consume it as managed service in
the cloud? Is it a Docker container? Can you run it on Kubernetes? Is it a library,
like a Spring Boot Starter? Does it need some specific environment, like an appli‐
cation server? Does it need other resources to run, like a database?

Tooling
Does it have all the tools you need (as discussed in “Typical Workflow Tools in a
Project’s Life Cycle” on page 38)? Is the platform still lightweight? That is, are
these tools optional when using the core workflow engine?

Process modeling language
Which modeling language is used (as discussed in “Process Modeling Languages”
on page 100)? Is BPMN supported? Does the tool cover the BPMN symbols you
need (as some tools have severe gaps)?

Scalability and resilience
Can the engine provide the performance and scalability you need for your use
case? How complex is it to set up the engine to operate in a fault-tolerant way?

Evaluating Workflow Engines | 125

License and support
Is there support available for the tool? Can you access the source code (just in
case)? What guarantees are there for the future development of the tool (e.g., a
vendor depending on the revenue stream, so it cares about the tool and its
users)? Do you get all the legal guarantees you need (e.g., contracts, SLAs, specific
open source licenses)?

My recommendation is to create a shortlist of tools based on the assessment of these
aspects. Then start on proofs of concept (POCs) as soon as possible, as described in
“Proofs of Concepts” on page 250. Modern tools allow to automate your first process
within hours. This allows you to do POCs with more than one vendor. If necessary,
you can partner with a consulting firm you trust that has some experience with
different vendors; they can help you get started. The hands-on experience of such
POCs will massively help you shape your direction.

Conclusion
Designing a solution architecture and selecting the stack requires careful considera‐
tion of a lot of factors. It’s not an easy task, but on the other hand it is seldom rocket
science.

This chapter equipped you with a basic understanding of architecture questions to
ask. This should be sufficient—to start your journey, and you can learn along the way.
Every architecture is slightly different, and so is every journey. It is impossible to
design the perfect solution up front, and if you try, you will face a high risk of getting
stuck in endless discussions and evaluations right at the beginning.

126 | Chapter 6: Solution Architecture

CHAPTER 7

Autonomy, Boundaries, and Isolation

Modern systems are composed of many smaller components, like microservices.
Microservices architectures value autonomy and isolation of the services. Every ser‐
vice is focused and follows the Unix philosophy: “Do One Thing and Do It Well.”
This raises important questions on how to set the boundaries of a service. What func‐
tionality goes into one service or another, and how many services do you design?
How do you achieve decoupling between these services?

These questions, or more so the answers to them, influence process automation,
which is why it is important to cover these topics in this book. This chapter:

• Introduces domain-driven design and its ideas around coupling as important
basics

• Describes how business processes can help you in designing boundaries
• Examines how boundaries affect your processes
• Discusses how workflow engines can run decentralized to respect boundaries

Strong Cohesion and Low Coupling
Let’s start with some basics around cohesion and coupling, which are opposite forces
and need to be balanced carefully. You should aim for what is known as Constantine’s
law: “A structure is stable if cohesion is high, and coupling is low.”

Cohesion has to do with how code is organized and how strongly the code in each
component is related. As Sam Newman puts it in his book Monolith to Microservices
(O’Reilly), “the code that changes together, stays together.” The idea is that one
desired change in business functionality should lead to changes in (ideally) only one
component.

127

https://en.wikipedia.org/wiki/Larry_Constantine
https://en.wikipedia.org/wiki/Larry_Constantine
https://learning.oreilly.com/library/view/monolith-to-microservices/9781492047834/

Coupling generally means that components need to change together. There are differ‐
ent forms of coupling. The categories and their names vary a bit between different
sources, but in this book we’ll use the four categories Sam Newman defines:

Implementation coupling
If a second component uses internal implementation knowledge of your compo‐
nent, you will end up with implementation coupling. A very common example is
if another component looks into your database structure, making it hard for you
to change that structure later.

Temporal coupling
With synchronous communication in distributed systems, you are dependent on
the current availability of your peer. This is temporal coupling. Messaging sys‐
tems typically mitigate that, as the recipient of a message does not have to be
available at the moment you send the message.

Deployment coupling
In order to run software, you have to build deployment units, which can contain
additional libraries, resources, or process models. A deployment unit always has
to be redeployed in one chunk, even if most of the artifacts are unchanged.
Another example of deployment coupling is release trains, where you force mul‐
tiple projects to deploy in one bigger effort. An example of this is if your com‐
pany does only two big releases a year.

Domain coupling
Some coupling between components is unavoidable when creating a meaningful
business capability for your end customer. For example, even if your shipment
services do not care about payment details, you still have to make sure only paid
orders are shipped.

You might be able to avoid implementation, temporal, or deployment coupling, and it
is often advisable to do so, but domain coupling cannot be eliminated unless you
change your business requirements. Still, you can design your component boundaries
thoughtfully to reduce potential problems. Domain-driven design can help you
define these boundaries, so let’s explore this a bit further.

128 | Chapter 7: Autonomy, Boundaries, and Isolation

Domain-Driven Design, Bounded Contexts, and Services
Let’s take a look at domain-driven design (DDD) and its ideas around bounded con‐
texts. The basic concept is that you need to apply sharp boundaries to any model to
make it focused and unified. This increases your chances that the model is correct
and useful.

This methodology became popular at a time when many companies developed and
deployed software as monoliths, where databases were used to integrate different
parts of applications. In these systems, dependencies often grew to the point where
they became unmaintainable—a small change in one part of the system could lead to
unpredictable side effects in other parts of the system. When such a system grew big,
changes became risky and expensive to deploy, so companies became incapable of
adjusting their IT systems. This was a pain DDD addressed, and bounded contexts
are one of the core ideas in that context.

Let’s discuss an example around order fulfillment. A mail order company might have
five core bounded contexts: checkout, payment, inventory, shipment, and order ful‐
fillment, as shown in Figure 7-1.

Figure 7-1. A mail order company might end up with these core contexts

DDD advocates for a ubiquitous language shared by different stakeholders, in partic‐
ular domain experts and software developers. But with DDD the agreement on lan‐
guage, terms, and concepts is valid only within one bounded context, which is
contradictory to a lot of enterprise architecture approaches where an attempt is made
to define a common language for the whole company, or at least to business units
larger than appropriate. The focus in DDD ensures that terms can be defined consis‐
tently within a single bounded context, even if they may mean different things within
different contexts.

Domain-Driven Design, Bounded Contexts, and Services | 129

For example, an “order” is a concept that’s known in different contexts, but whose
meaning might differ. In the checkout context an order relates to the shopping cart
being filled by a customer. This order can easily be changed. In the order fulfillment
context, an order is an exact instruction of what to charge and send, and it is immuta‐
ble. And in the inventory context an order is something very different: it involves
reordering goods from a supplier to fill up the stock.

Another example is the customer. Most contexts care about this concept, but they
care about different aspects of it: in order fulfillment you only need to know the cus‐
tomer’s identity, in shipment only the address, and in payment only the payment
details. So, different contexts may have different definitions of customers and orders,
even if they use the same terms.

Of course, the design can be different. If the mail order company uses an off-the-shelf
online shop that already can handle payments, inventory, and packaging labels, you
might have one context for that shop, but no separate payment or inventory one. In
this case you also have one bounded context, and terms are not allowed to overlap
anymore.

DDD can help you define your service boundaries. One or more services implement
one context. It doesn’t have to be a one-to-one mapping, but no service is allowed to
span multiple contexts.

Boundaries and Business Processes
All of this discussion is interesting, but why am I writing about it in a process auto‐
mation book? Excellent question! Contexts and boundaries massively affect your
business process design, and vice versa, for the following reasons, that are examined
in more details in the following sections:

• Many end-to-end business processes will touch multiple contexts during their
lifetime. A typical order fulfillment scenario will involve retrieving payments and
shipping goods. Still, you need to avoid designing an omniscient process model
that needs inside knowledge of different contexts in order to function. Instead,
process models must be owned by exactly one context. Process models are
domain logic and thus should be contained within the service implementing the
respective context. And as process models are especially visible to many stake‐
holders, it is very important that they apply the ubiquitous language of their
context.

130 | Chapter 7: Autonomy, Boundaries, and Isolation

• Modeling and discussing business processes, especially on an end-to-end level,
helps you find boundary candidates, understand the resulting responsibilities,
and thus finally decide about your boundaries.

• Having workflow engine capabilities available in a context allows you to
acknowledge the long-running nature of many problems. This will help you to
defend your boundaries.

Respect Boundaries and Avoid Process Monoliths
In the book Real-Life BPMN (CreateSpace Independent Publishing Platform), which I
coauthored, we used the order fulfillment example shown in Figure 7-2. Whenever
you process an order, you first check if the item is in stock. If it is not, you trigger the
procurement for that specific item. This is done using a BPMN call activity that basi‐
cally invokes another process as a subprocess and waits for it to finish. The procure‐
ment process could report delays or unavailability to the order fulfillment process,
which then catches these events and takes action, e.g., to delete unavailable items
from the product catalog.

Figure 7-2. A process model mixing different responsibilities (from Real-Life BPMN)

Boundaries and Business Processes | 131

The example was a good one to explain various BPMN symbols and their semantics
in that book. However, the process design is problematic with regard to the
boundaries.

Let me elaborate. This process design only works well in one scenario, which is most
likely not the one you are facing: a scenario where you fulfill specific orders with cus‐
tomized products that you have to purchase explicitly for each customer order. In this
case, you could decide to put order fulfillment and item procurement in the same
context, and probably even the same service.

But in reality, it is much more likely that you build an order fulfillment service that
expects items to be in stock. If they are not, the order fulfillment process might need
to wait, but that service will definitely not be responsible for procurement or catalog
management. Rather, the inventory service is responsible for monitoring stock and
forecasting demand in order to procure items when needed, probably even independ‐
ent of concrete customer orders.

In this case, process models like the one sketched earlier, become process monoliths.
Figure 7-3 visualizes such a monolith for the order fulfillment example. This process
model violates the boundaries and thus the ownership of the involved services. It
shows details of different contexts that should never be combined within one model.
For example, it contains many internal details from payment.

You will not find a single person in your organization who can own that whole
model. Instead, you will need to call meetings with multiple teams to discuss changes,
or to sync on rollout plans. Additionally, you face a situation where you have to
update this process model with every relevant change in one of the services (or vice
versa). And as you saw earlier, you might also get in trouble with the ubiquitous lan‐
guage if you mix different contexts in one model, as the same term may mean differ‐
ent things within different contexts.

132 | Chapter 7: Autonomy, Boundaries, and Isolation

Fi
gu

re
 7

-3
. A

vo
id

 p
ro

ce
ss

m
on

ol
ith

s l
ik

e t
hi

s

Boundaries and Business Processes | 133

A process like this is clearly something you want to avoid. Instead, you need to cut
the end-to-end process into appropriate “pieces” that fit into the different services.
Figure 7-4 shows an example for order fulfillment, payment, and inventory. In this
example, every process model can be clearly and fully owned by the team responsible
for the respective service.

Figure 7-4. Different services collaborating; each clearly focuses on its own responsibility
having local processes

134 | Chapter 7: Autonomy, Boundaries, and Isolation

It is worth pointing out that cutting the process into pieces means more than just
adding some structure to the process model, like you could do with subprocesses in
BPMN. You need to distribute responsibilities to different services to achieve a level
of isolation that allows scaling development, as described earlier. For example, your
order fulfillment process does not need to care about any details of payment; it can
rely on the payment service to provide a final result (paid or payment canceled).

How you divide things essentially boils down to the question of “who to blame” if
something does not work. While this is a bit exaggerated, and I really hope you don’t
have a culture that is based on blame, it conveys the essence of responsibility and
accountability. In the preceding example, the order fulfillment business owner will
rely fully on the capabilities and performance of the other services. There is no need
for them to think too much about how payment works, but they might want to moni‐
tor SLAs, as a low-performing or faulty payment service might affect the overall order
processing time, which they are responsible for.

How responsibilities are divided should be in harmony with your organization. This
means that there is no universal answer. Take the example of payments: I know com‐
panies where this is one service, and others where it’s divided into multiple services.
You might still have one service that is ultimately responsible for payments, but that
relies on other services that handle credit cards, vouchers, or other types of payments.
Any of these services might have its own process model.

The idea of having multiple process models often gets connected to the question of
whether you run one central or multiple decentralized workflow engines (an architec‐
tural decision we considered in “Decentralized Engines” on page 117). However, I
want to emphasize that the two decisions do not need to be connected. You can prop‐
erly design process models that are owned by different teams and still deploy them on
a central engine, just as many companies deploy multiple schemas in a central data‐
base. This does not lead to the same level of isolation, but it is still doable and
manageable.

Respecting the boundaries of services when designing process
models is a must: don’t let this goal be torpedoed just because your
organization is not yet ready to run decentralized workflow
engines!

Boundaries and Business Processes | 135

Foster Your Understanding of Responsibilities
You need to think about the business responsibilities of every service in your organi‐
zation. Important questions to ask are:

• What is the business output that this service is responsible for?
• What are the SLAs it needs to provide?

Thinking about end-to-end business processes is a great help in understanding
boundaries and responsibilities. You need to clarify what the different services are
doing and how they communicate to complete the process. This results in a better
understanding of how a business capability comes to life.

In BPMN, you can model collaboration diagrams to visualize this logic. These dia‐
grams will be discussed further in “The Power of One Joined Model” on page 205;
they allow you to visualize different participants and how they work together.

Figure 7-5 shows an example for the order fulfillment example. You can see when the
user pushes the Dash button, that the button then communicates with a checkout ser‐
vice via HTTP. This service does some verification and passes a message via AMQP
to the order fulfillment service, which kicks off a process instance. When order fulfill‐
ment is finished, this leads to an event that will be read by a notification service which
in turn sends an email to the customer.

Collaboration diagrams show how the various actors interact, making them a great
tool to think through certain designs and their implications. They are useful for vali‐
dating whether your ideas about responsibilities and APIs hold true, even and espe‐
cially for failure scenarios.

Please note that these diagrams are mainly of help during the design phase. They
should be thrown away afterward, as they are typically incomplete and it’s not worth
the effort to keep them up-to-date. In typical customer engagements, we create these
models for certain scenarios that are currently under discussion and do not aim to
make them entirely accurate; doing so would inevitably make them too large to visu‐
alize. So, in Figure 7-5, some processes are missing details or are hidden. Other pro‐
cesses are not 100% accurate with regard to their internal workings. That is all OK if
the model serves its purpose.

It might happen that your peers in your company reject BPMN collaboration models
as being too complicated. In this case, you still need to discuss and capture the same
information as you would in the models. Techniques like Event Storming, Story‐
storming, and Domain Storytelling might help you discover that information. I am
not covering these techniques in this book and recommend you search the internet
for an introduction if you are interested. The important thing is that at some point in
time you have to gain a deep understanding of business processes and certain

136 | Chapter 7: Autonomy, Boundaries, and Isolation

collaborations. At this point, you not only need discovery techniques, but also an
analytical tool to verify whether your ideas will really work. It’s definitely beneficial to
invest the time to sketch out collaboration models in appropriate detail.

Figure 7-5. BPMN can be used to model a complete collaboration, which is often useful
to model scenarios that help to understand how the services play ping-pong

Boundaries and Business Processes | 137

This is also a useful way to check that exceptions are dealt with in the right context, as
you can see if problems “over there” need to be handled “here” or not. This can help
you improve your boundaries.

Long-Running Behavior Helps You Defend Boundaries
Having a workflow engine available will help you to defend your boundaries. To illus‐
trate this, think back to the example from “Wild West Integrations” on page 4. The
payment service needed to talk to a flaky credit card service under the hood. In the
first step, the service did not store any state, which meant the only possibility in the
event of a problem was to hand over that problem to the client—in that case, the
order fulfillment service.

Without the possibility to store persistent state, the payment service could not send
the user an email and wait for a week until they enter the right data. So the payment
team might be tempted to simply hand over the problem to order fulfillment. This is
what I call the hot potato antipattern—you simply try to get rid of any problems as
quickly as possible. Unfortunately, this leads to payment concepts leeaking into the
API and ultimatively also to the client.

For example, in Figure 7-6 the order fulfillment service needs to know about credit
cards—but this shouldn’t be the case. If your payment service can be long-running,
you can provide an API that simply lets you know when a payment goes through or
fails, as shown in Figure 7-7. A workflow engine is a simple way to enable this long-
running behavior in a service without Wild West integration.

Figure 7-6. If a service cannot be long-running, it has to rethrow certain problems to its
client, leading to internal concepts leaking into the API

Figure 7-7. A long-running service implements everything it is responsible for and pro‐
vides a better API

138 | Chapter 7: Autonomy, Boundaries, and Isolation

If you do not have long-running capabilities available in your serv‐
ices, it is hard to implement certain requirements. This can lead to
internal concepts leaking into your API, which in turn will increase
coupling between your services. A workflow engine helps to miti‐
gate this risk.

Let’s add another perspective to the same example, as the need for long-running capa‐
bilities can also come from business requirements. Sometimes credit cards are
expired or locked, so they can’t be charged. In these scenarios, business stakeholders
want to inform the customer and ask for new payment details. This is especially
important in situations where the customer does not enter the payment data online,
for example, because automatic renewals simply leverage stored payment data from
the account. This also requires the payment service to become potentially
long-running.

How Processes Communicate Across Boundaries
There are two basic options for interprocess communication:

Call activities
Use a BPMN construct to leverage workflow engine capabilities to invoke other
processes.

API calls
Call a normal API to another service that internally starts a process instance.
Consumers of the API don’t even know that a workflow engine is at play.

Which approach you select will influence the degree of coupling of different services.

Let’s explore this with a small example. Recently, I had a meeting with a customer that
applied a workflow engine throughout the whole company. They had an outdated
document management system (DMS) with a very brittle API, which they wanted to
hide from processes that needed to store or update a document.

The customer went ahead and created a BPMN process to communicate with the
DMS. This was a good idea, as the communication was asynchronous and involved a
lot of waiting and retrying. Now they wanted to make this process available for the
whole company.

Let’s explore the two options for this example.

How Processes Communicate Across Boundaries | 139

Call Activities: Handy Shortcuts Only Within the Boundary
BPMN supports call activities that can directly invoke other processes. The calling
process (the parent) will wait until the called process (the child) has finished. A child
process can raise specific events, like errors or escalations, to communicate with its
parent process. Most workflow platforms support call hierarchies in their operations
tooling, for example, by showing the process hierarchy or by dealing gracefully with
cancellation of processes that are part of a hierarchy. In this case the tooling needs to
also cancel all of the process’s children and decide what needs to happen with its
parent.

Figure 7-8 shows an example for the document process. In this case, the workflow
engine will take care of all the nuts and bolts. You can define input and output data
mappings, so the call activity to the document storage process is like an API.

Figure 7-8. A call activity can be used to invoke a process deployed on the same work‐
flow engine

The great thing about this solution is that it is simple to develop and operate. Invok‐
ing the process is as easy as specifying the name of the process definition you want to
call.

But like everything in life, it comes with a price. In this case, the API technology is
your workflow engine. That means you can only use this mechanism if your business
service also uses BPMN. Furthermore, you can only use this mechanism if your busi‐
ness service runs on the same workflow engine as the document service. This should
only be the case if they run in the same boundary.

140 | Chapter 7: Autonomy, Boundaries, and Isolation

In short: if you want to extract the details on how to invoke the document workflow
from your main business process, this solution is great. If you want to reuse the docu‐
ment storage workflow from different business processes within one service, this is
also OK. But if you want to reuse the document storage process across boundaries in
different services, you should not do it.

Crossing Boundaries Is an API Call
When you cross the boundary between services, you should not limit the communi‐
cation technology to your workflow engine. This is typically too narrow for commu‐
nicating across boundaries. You should use common API technologies instead, such
as REST, SOAP, messaging, or whatever the communication standard in your com‐
pany is.

Figure 7-9 shows the same example, but with the document storage process deployed
as a separate service and the business service communicating with it via an API. The
business service doesn’t even have to know that the document storage uses a work‐
flow engine. If in the future you want to change the document storage implementa‐
tion then you are free to do so, as long as the API remains backward compatible.

Figure 7-9. You can invoke another process behind an API, even if you don’t know that a
workflow engine is at play on the other side

How Processes Communicate Across Boundaries | 141

While this is definitely the best approach in theory, in the customer scenario with the
outdated DMS there was one additional practical challenge. I want to describe it here
as a good example of why reality might not follow the textbook.

The customer used SOAP to communicate. Asynchronous responses, like the respon‐
ses from the document storage service, required a SOAP callback. While conceptually
easy, the customer dismissed this approach for very practical reasons: every SOAP
callback required firewall rules to be configured, which was not a nice process to go
through. As document storage was needed by a lot of services, this would have
required too many cyclic communication links. So, they switched to a polling
approach, where the business service asked every minute if the document storage ser‐
vice was finished. Waiting a minute was totally OK in this scenario, as the latency did
not matter at all. Also, the load of the additional polling was no problem. As a result,
all communication was made one-directional toward the document storage service.

But now the polling logic itself yielded some long-running complexity (poll, wait for
a minute, poll again, and so on). Every process talking to the document storage ser‐
vice needed to add that polling logic. To prevent this from polluting all the business
processes, they extracted the polling to a separate process: the document storage
adapter process. This process could then be invoked from the business processes via a
call activity, as shown in Figure 7-10.

To avoid needing to copy and paste that adapter process into every project’s own
codebase, the customer packaged the adapter workflow as a library and embedded
this in every business service deployment that needed to talk to the DMS.

142 | Chapter 7: Autonomy, Boundaries, and Isolation

Figure 7-10. Extracting technical aspects of document storage into an adapter process

Technically, this means that the business service deploys its own document storage
adapter process, but the process model is taken from the library, as visualized in
Figure 7-11. This library also contains the glue code necessary to do all the remote
calls and data conversions. This solution turned out to be very successful for the cus‐
tomer, but note that this flexibility in terms of packaging and deployment is not pos‐
sible with every workflow engine.

How Processes Communicate Across Boundaries | 143

Figure 7-11. The adapter process is individually deployed on every workflow engine, but
comes from a library to reduce duplicate effort

Of course, this solution has the downside that the library needs to be updated in all
clients using it if there are important changes. In this case, this level of deployment
coupling was tolerable, as the library simply implemented a small piece of polling
logic to overcome obstacles with the SOAP callback in the architecture. The main
DMS logic was still kept in the document storage adapter. But if possible, you should
prefer simply using the API of the separately deployed document storage service.

Decentralized Workflow Tooling
In his famous article on microservices, Martin Fowler wrote:

When building communication structures between different processes, we’ve seen
many products and approaches that stress putting significant smarts into the commu‐
nication mechanism itself. A good example of this is the Enterprise Service Bus (ESB),
where ESB products often include sophisticated facilities for message routing, choreog‐
raphy, transformation, and applying business rules.
The microservice community favours an alternative approach: smart endpoints and
dumb pipes. Applications built from microservices aim to be as decoupled and as cohe‐
sive as possible—they own their own domain logic and act more as filters in the classi‐
cal Unix sense—receiving a request, applying logic as appropriate and producing a
response. These are choreographed using simple RESTish protocols rather than com‐
plex protocols such as WS-Choreography or BPEL or orchestration by a central tool.

144 | Chapter 7: Autonomy, Boundaries, and Isolation

https://martinfowler.com/articles/microservices.html

Even though this article is from 2014, it is still relevant. And of course, it basically
expressed a common feeling after doing SOA and centralized BPM, as described in
“Misguided BPM suites” on page 16. One result of this is that you will find many peo‐
ple out there, especially in microservices communities, who instantly connect the
term process automation or orchestration to centralized tooling. They picture a central
spider in the web (I often literally hear this term), which goes against the microser‐
vice values around isolation and autonomy. It introduces single points of failure and
adds organizational friction because everybody has to talk to “the BPM team.”

Reading this far in the book, you should already have gained a better understanding
that process automation does not have to be centralized at all. As you’ve seen:

• Business processes should be designed according to the bounded context and
service boundaries (see “Boundaries and Business Processes” on page 130). Pro‐
cess monoliths can thus be avoided.

• Process models are also domain logic, contained in their boundary alongside
other domain logic that is probably expressed in programming code.

• Workflow engines can be operated in a decentralized manner, which means that
every service team can make its own decisions and operate its own workflow
engine (see “Decentralized Engines” on page 117), or even decide to not use one
at all. An important mind shift is to disconnect the term process automation from
centralized tooling in your brain.

Conclusion
This chapter introduced bounded contexts and service boundaries. You have to find
these boundaries with the domain in mind. There is no right or wrong solution, but
there are different design possibilities.

Business processes often touch multiple contexts and services. This is fine, but you
need to make sure that every executable process is clearly owned by exactly one ser‐
vice, and that you avoid process monoliths. Having a workflow engine available
within your services helps you to deal with long-running requirements in those serv‐
ices, which will allow you to defend these boundaries. Sketching end-to-end pro‐
cesses can help you find or validate your boundaries.

The chapter also discussed that while you can use BPMN mechanisms (the call activ‐
ity) to invoke subprocesses in the same workflow engine, this capability should not be
used to invoke processes from another context. For such a scenario, a normal API
between services should be used.

This is a great foundation for looking at how processes are automated when multiple
contexts or services are involved, which is the topic of the next chapter.

Conclusion | 145

CHAPTER 8

Balancing Orchestration and Choreography

Connected to the rise of microservices are event-driven architectures. In these archi‐
tectures, services emit events whenever something substantial happens; other services
can then react to these events. This is known as choreography.

You might ask yourself why you need to read about this in a book about process auto‐
mation. It’s such a good question that it will take this full chapter to answer.

This chapter:

• Introduces events
• Explains how processes can be implemented solely by choreography and event

chains
• Discusses the trade-offs of event chains when automating processes
• Describes how orchestration differs from choreography and how both communi‐

cation styles can be balanced
• Explains the role of workflow engines in these architectures
• Debunks common myths around orchestration and choreography

Event-Driven Systems
Event-driven systems have become increasingly popular over the last few years. The
main reasons to build event-driven systems are the desire for team autonomy and the
need to build decoupled systems.

Let’s look at an example in order to understand how this can be achieved. Think back
to the order fulfillment example introduced a couple of times in this book already.

147

Assume there is a requirement that customers should receive notifications if anything
of interest happens, like the order having been placed, accepted, or shipped.

All microservices can publish events. Events refer to things that happened in the past.
These can be technical events, like “mouse moved” or “mouse clicked” events in user
interfaces, or they can be about domain events that carry business domain knowl‐
edge. In the order fulfillment example, the order status events are domain events.

You can now build an autonomous notification service that listens to these domain
events and sends customer notifications at its own discretion. This is shown in
Figure 8-1.

Figure 8-1. Events can be used by an autonomous microservice to implement
notifications

This is great, for two reasons. First, during implementation the notification team does
not have to talk to any of the other microservice teams. It can simply use the specifi‐
cations of the events other services emit.

Second, no other microservice team has to think about sending notifications. For
example, the payment service does not need to decide when to send a notification,
and it does not need to know anything about how to send notifications to customers.

So in this situation, using events enables more autonomy in your architecture.

Another example is visualized in Figure 8-2. Assume that the checkout service should
give feedback to the user if the ordered item is in stock and can be shipped right away.
In order to answer the question of whether something is in stock, the checkout ser‐
vice can ask the inventory service about the amount of that item in stock, awaiting
some response (as shown on the left). This leads to at least a temporal coupling, as the
checkout service cannot answer that question if the inventory service is not available.

148 | Chapter 8: Balancing Orchestration and Choreography

Figure 8-2. You can use events to avoid request/response calls

In the event-driven alternative (shown here on the right) the inventory service pub‐
lishes any change to the amount of in-stock items as an event. For example, these
events may be broadcast to a company-wide event bus. The checkout service can lis‐
ten to these events and use that information to calculate and store the current amount
of an item that is in stock itself. This allows it to answer any in-stock questions locally,
without requiring a remote call. This reduces temporal coupling, and it might even
result in a more fortunate load distribution toward the inventory service, since the
company’s website can use the same mechanism—which means if you have millions
of page views, you don’t have to request the amount that is currently in stock millions
of times.

Again, like everything in life, this comes with a price; here the costs are basically
increased storage requirements and eventual consistency. Storage gets cheaper almost
by the hour and is typically not such a big concern, but eventual consistency can
really bite you. In this example, the data on the amount in stock might be milli‐
seconds or seconds old, as some events may not have been processed yet. This can
lead to inconsistencies, such as promising fast delivery for something that just went
out of stock. Some degree of potential inconsistency is typically tolerable and a neces‐
sary trade-off in distributed systems, but still, you have to be aware of it.

The most important characteristic of an event is that the component emitting the
event does not know who reacts to it, or why. And it should not care, either.

For example, the mouse driver definitely does not care if a mouse click leads to a
reaction in the user interface. A sensor does not care if a detected movement leads to
an action. The payment service should not care what happens when it emits a pay‐
ment received event. And the inventory service sends its “stock changed” events
without any expectation that somebody is using them.

This will be explored further in “Designing Responsibilities” on page 165.

Event-Driven Systems | 149

Emergent Behavior
Event-driven systems consist of components emitting events that do not know what
will happen with them, and components reacting to those events. A very important
property of these systems is emergent behavior. This is behavior that is only visible
during runtime through observation. It is not necessarily designed up front, but
emerges out of reactive components at play. This does not have to be bad, and choos‐
ing an event-driven architecture is often a deliberate decision to move in that
direction.

But it comes at a price that you need to understand. There are situations where you
can leverage the flexibility it gives you, but there are also situations where you need to
avoid the chaos it can cause. That chaos can lead to a scenario where you don’t under‐
stand your system anymore. Understanding where this tipping point is can mean the
difference between success and failure. As Martin Fowler warns, “While many pun‐
dits praise the value of serendipitous emergence, the truth is that emergent behavior
can sometimes be a bad thing.”

We as an industry still need to fully understand what a healthy level of emergent
behavior is. Earlier in this chapter, you saw use cases where emergent behavior can be
considered good practice. Let’s also look at some examples where emergent behavior
is problematic. This is basically the case if there are chains of events that implement a
business process, as in the next section.

Event Chains
In the order fulfillment example, domain events could also be used to implement the
order fulfillment business process. In this case, the payment service could listen to
order placed events from the checkout service, retrieving payments for each placed
order. Processing a payment would lead to a payment received event, which the
inventory service would listen to. This scenario is visualized in Figure 8-3.

At first glance, it seems that this would increase autonomy, as the different microser‐
vice teams can each work on their own and the end-to-end order fulfillment func‐
tionality emerges out of the interaction of the microservices. But this scenario is
different; there is a relationship between the event subscriptions, resulting in an event
chain.

150 | Chapter 8: Balancing Orchestration and Choreography

https://martinfowler.com/articles/microservices.html

Figure 8-3. Multiple event subscriptions in a row lead to event chains

An event chain is a series of event subscriptions that really implement a logical flow
or business process, so that these event subscriptions are not independent.

In this case you want the tasks to happen in a certain order, e.g., to make sure you
receive payment before you actually ship anything. But there is no place where you
can understand or even control this sequence.

You also want somebody to be responsible for the end-to-end fulfillment, for example
to make sure every order is delivered within the promised SLA. This is a very impor‐
tant observation: there is someone within the organization who cares about order ful‐
fillment, and it is very likely that this person is responsible and held accountable for
meeting the SLA. From their perspective, it is completely inappropriate that the
implementation of the business process emerges and thus relies on events being
picked up by the right service at the right time.

These characteristics lead to some severe challenges with event chains, as Martin
Fowler has described:

Event notification is nice because it implies a low level of coupling, and is pretty simple
to set up. It can become problematic, however, if there really is a logical flow that runs
over various event notifications. The problem is that it can be hard to see such a flow as
it’s not explicit in any program text. Often the only way to figure out this flow is from
monitoring a live system. This can make it hard to debug and modify such a flow. The
danger is that it’s very easy to make nicely decoupled systems with event notification,
without realizing that you’re losing sight of that larger-scale flow, and thus set yourself
up for trouble in future years. The pattern is still very useful, but you have to be careful
of the trap.

Event-Driven Systems | 151

https://oreil.ly/mHUl6
https://oreil.ly/mHUl6

Changing the chain affects multiple components
Assume that a business department wants to fetch the goods from the warehouse
before payment is received. The reason could be that they want to make sure the
goods are really in stock and can be fetched as expected before taking the customer’s
money.

This requirement affects the sequence of tasks. This is a worst-case scenario for an
event chain, as such changes cannot be made locally in one service. Instead, you have
to change multiple microservices, which is exactly what you want to avoid in a micro‐
services architecture that emphasizes the autonomy of single services.

Now the payment service must not listen to the order placed event (or at least it must
not retrieve the payment when it first receives that event). Instead, it needs to listen to
the order fetched event. At the same time, the inventory service must fetch goods as
soon as the order placed event is received, but it needs to ignore the payment received
event. And finally, the shipment service needs to listen to payment received instead of
goods fetched. The two event flows are visualized in Figure 8-4.

Figure 8-4. A simple change in the sequence requires three services to change (left: old;
right: new event flow)

And not only do you have to understand and make these changes, but you also have
to coordinate their deployment. In essence, this means that three microservice teams
need to get together to discuss this change, come up with a joint time plan, and finally
agree on a collective deployment (or a plan to evolve versions incrementally). If this
reminds you more of a monolith than microservices, I agree.

On top of that, you also have a distributed versioning problem to solve. For every
order flowing through your system, you will need to know if it was started for the old
or new sequence. And especially if orders are long-running and stay in the system for
a couple of hours or days, you will have orders circulating when you deploy changes.

152 | Chapter 8: Balancing Orchestration and Choreography

Of course, you could probably design the event chain differently: perhaps so that the
shipment service listens to both events (payment received and goods fetched), or so
the inventory and payment services both listen to order placed in the first place.
These chains could be a bit more fortunate and lead to fewer changes. But keep in
mind that there are often business reasons to have a certain sequence, and that it’s
also not easy to oversee these dependencies. Also, you often don’t design event flows;
they emerge.

I have seen one pattern occur at various startups that dealt with a handful of micro‐
services and a comprehensible number of events at the beginning. The events and the
event bus helped them to develop the various microservices independently. One
microservice could add new functionalities based on the available events, making this
quick and easy. They created event chains on the way.

But after some time, the tide turned. When the company needed to change existing
functionality, they had a hard time figuring out how to exactly do this. They often did
not know where this or that event was used and what ripple effects a change might
cause. During incidents you heard people saying that “this cannot be done by our sys‐
tem” or “this functionality was never implemented that way.”

Events might make it easy to add new functionality, but this comes
at the price of making it much harder to make changes to an event
chain.

Of course, you can consciously decide to build upon event chains to gain develop‐
ment speed in an early stage, being fully aware of the downsides in the long run. Just
be sure you keep track of the technical debt.

Lack of visibility
Event chains are hard to understand, basically because of the lack of visibility into
these chains. As the interaction of the microservices is decentralized, it is scattered
across multiple codebases. You have to reason over all of them to understand the big
picture.

Many projects actually do this. They run a workshop and draw a picture that is com‐
pletely detached from the real codebase—and thus it is outdated the moment it is
finished.

There are also tools that focus on examining the runtime behavior, and tracking the
events flowing around. Tools in this category with a focus on the business process are
just starting to emerge. Chapter 11 looks into this topic in depth; for now, let’s just
assume that the lack of visibility into how processes work in general is a challenge in
event-driven systems.

Event-Driven Systems | 153

There is a specifically important aspect to visibility when it comes to operating such a
system, however. Whenever something goes wrong, you need to diagnose and fix the
failure. In a choreography, this becomes difficult because of the missing context. A
failure in one microservice cannot easily be traced back to where the event chain
originates. If you have malformed data, it can take a lot of effort to understand why it
is there. And you might not be aware of what next steps are currently blocked by
these incidents, making workarounds very hard. These kind of problems will be fur‐
ther described in “Poisoned and Dead Messages” on page 181.

The Risk of Distributed Monoliths
While systems are typically designed in an event-driven way to reduce coupling, you
can accidentally end up with increased coupling. Let’s look at a real-life anecdote,
where applying a dogmatic event-driven approach led to a distributed monolith.

This project was building a document management system. As part of their domain,
they had pages and attachments. But they also had to clarify authorizations: every
new page that got created required authorization entries to be created, to name an
example.

They started with an event-driven setup. The page microservice simply published a
page created event, and the authorization service could pick it up and create the
required authorization entry, as shown in Figure 8-5.

Figure 8-5. The central authorization service needs to know many concepts from other
contexts

While this looks nicely decoupled, it means that the authorization service has to
know about page created events, document attached events, and so on.

The result was that the microservices were coupled in an unfortunate way. They
ended up in a situation where they had to redeploy the authorization service when‐
ever they made changes in other parts of the system, as this led to new event types

154 | Chapter 8: Balancing Orchestration and Choreography

that the authorization service also needed to understand. This is known as a dis‐
tributed monolith, where you have a codebase that needs to be treated as one, but it’s
kept and deployed in a distributed way. This is not a nice place to be in.

They finally refactored the system so that the authorization service provided a clear
API that all other microservices have a responsibility to call if they need to propagate
changes to the authorizations. This is visualized in Figure 8-6.

Figure 8-6. The authorization service provides a stable API and the other contexts are
responsible for using it

You still have coupling, but this design leads to a very stable authorization service.
The decisions about which actions need to be taken based on which event are moved
to the microservices with the domain knowledge; e.g., the one that cares about pages.

Contrasting Orchestration and Choreography
The API of the authorization service mentioned in the last section is command-
based. This seems to be something different from an event. Let’s explore this a bit fur‐
ther to shed some light on the difference between orchestration and choreography.

Introducing Commands
To recap: an event is something that happened, a fact. Component A emits the event
to let the world know, but it does not have any expectations about what needs to hap‐
pen based on this event. Component B might or might not decide to react to the
event.

In contrast, component A can also send a command to component B. That means
that A wants B to do something. There is a clear intent, and B is not able to simply
ignore that command.

Contrasting Orchestration and Choreography | 155

An event does not know who picks it up or why. The component
emitting the event should not even care. If it wants something to
happen, what it sends is not an event, but a command.

I often use the metaphor of a tweet to explain this distinction. If you tweet that you
just got hungry, this is an event. It is broadcasted to the world, and it might lead to
some action, maybe even having a real impact, such as a follower bringing some food
to you (if you’re luckier than me). But more likely, it is totally ignored, and maybe not
even read by anyone. This is OK for an event.

The situation is different for a command. Imagine that you send an email to your
favorite local restaurant to order a food delivery. Now you have a clear intent: you
expect them to prepare and deliver your food. You would not use a tweet to order
something at a restaurant.

Note that this is independent of the communication protocol. With both Twitter and
email we use asynchronous communication, but we have very different expectations
of what will happen. And the same difference can be observed with synchronous
communication. If you pick up the phone and call someone (synchronous communi‐
cation), you can say, “Hey, I’m hungry” (event) or “Hello, I want to order something”
(command). The type of content is independent of the communication channel.

For some people, the term command suggests that a command cannot be rejected.
This is not true, as the restaurant could very well respond with a rejection of your
order (perhaps because your favorite dish is out of stock today). The important aspect
is that they need to respond, and they cannot ignore your order.

This points out another aspect of commands, which is that most often there is a feed‐
back loop, like an acknowledgment of the command or even a response. While this is
not a necessity for every command, there is a simple logic behind this: if you want
another component to do something for you, you want to make sure it receives the
command and eventually handles it. You don’t feel good if you don’t get any feedback
if the command arrived.

To resume the example of ordering lunch: when you send the order via email, you
might not feel very confident that it will have the desired outcome, unless you get an
email response. Or it also feels better if you order via some shop interface that con‐
firms your order right away. But in both scenarios, the feedback loop is not the final
response, you are only happy if the meal is really prepared and delivered to you.

156 | Chapter 8: Balancing Orchestration and Choreography

Messages, Events, and Commands
Events and commands have very different semantics, but they are both payloads of
some communication, typically a message. It is important to note that events and
commands are characterized by their semantics, not the technical protocol. For
example, you can implement commands via REST, but you can also use REST feeds
to implement events, even if this is rarely done in real life. You can also send com‐
mands via asynchronous messages—typically messages put in a queue for a dedicated
recipient—whereas events are typically messages distributed via topics to an arbitrary
number of recipients.

Now it is really important to be precise what you are talking about, whether it is the
means of transport (message) or the type of payload (event or command). With the
rise of event broker technologies like Apache Kafka, I saw many companies struggling
with mixing up terms.

This is happening because in Kafka itself, there is no notion of messages: Kafka stores
records. The term record is used instead of message because the records are stored
persistently, in contrast to messaging systems that pass on the messages and then for‐
get about them. But a lot of developers are not precise in their language and use the
term event instead of record, as they think of Kafka as an event bus. This means you
will face two different definitions of event in these companies, as visualized in
Figure 8-7.

Figure 8-7. When people say “event” they might be referring to a real event in the pay‐
load or the message containing the event; this can cause confusion

This can lead to the belief that everything is an event and Kafka cannot handle com‐
mands. But this is not true; you can certainly write a command as a Kafka record.

There is a related risk of the anti pattern called commands in disguise. If developers
believe that everything needs to be sent as an event, commands are shoehorned into
(disguised as) events. If you see a “The Customer Needs to Be Sent a Notification
About Their Order Event,” it is clearly not an event, as the sender wants something to
happen. The sender has an intent. It is a command and should be treated as such.
Using “Send Message” would be much clearer.

Contrasting Orchestration and Choreography | 157

Terminology and Definitions
The discussion of events and commands paves the way for defining orchestration and
choreography. Unfortunately, there isn’t a single concise definition of these terms from
a globally accepted source. As misunderstandings can lead to wrong conclusions and
bad decisions, let’s define these terms in the context of this book:

• Command-driven communication = orchestration
• Event-driven communication = choreography

Chapter 4 covered orchestration in great detail and described how a workflow engine
can orchestrate anything, from humans to IT systems and services. In this sense,
orchestration really means coordinating activities or tasks. This is not limited to
workflow engines. Generally, you speak about orchestration if you have a component
that coordinates one or more other components. This means that the component
sends commands.

In a choreography, components interact directly with each other in an event-driven
way in order to get something done.

An important consequence of this definition is that it focuses on a single communica‐
tion link and not on the system as a whole. This means that it seldom makes sense to
say that you designed a “choreographed system.” Still, I hear these oversimplifications
too often.

In a good architecture, you will find both communication styles: orchestration and
choreography. Very often it is a wild mix and you might not even realize that you are
using orchestration, for example when you “just” call this one other service.

I often prefer to talk about event-based or command-based interactions, as the terms
orchestration and choreography can add more confusion than they resolve.

Avoiding Event Chains by Using Commands
Let’s revisit the fulfillment example from the beginning of this chapter and try to
improve the architecture and solve the challenges around the event chain.

In particular, we need to address the responsibility of the overall business process to
fulfill an order. Designing responsibility is a common theme; this chapter will explore
it in more depth soon. In this specific example, it is very likely that this leads to a
separate order fulfillment microservice, as the responsibility does not fit into pay‐
ment, inventory, checkout, or shipment.

It might be OK for the checkout service to emit an order placed event, as the check‐
out team is not at all responsible for making sure an order is delivered. The order

158 | Chapter 8: Balancing Orchestration and Choreography

fulfillment microservice can subscribe to that event, but from there it is responsible
for taking all actions that are required (see Figure 8-8).

The order fulfillment microservice first has to make sure that the payment will be
retrieved for this order. Having an intent translates to a command. So the order ful‐
fillment service sends that command and waits for payment to be received, probably
indicated by the payment received event mentioned earlier. Then the order fulfill‐
ment microservice can send a command to the inventory microservice, telling it what
goods to fetch from the warehouse. This way, the order fulfillment microservice can
control the sequence of things.

Figure 8-8. All important responsibilities need a home, like the overall order fulfillment

Note that the responsibilities are clearly defined. The order microservice is responsi‐
ble for the order fulfillment, and it will command other services on its journey. The
reason for this is that it cares about payment being retrieved, goods being fetched,
and so on.

The payment service is “only” responsible for safely and reliably collecting money.
And by listening to a certain command, the pament team is not forced to understand
events like “order placed.” They don’t need to know what exactly they are retrieving
payments for or when exactly this has to happen in the overall process.

This is also a beneficial design once there is another client retrieving payments. For
example, say that your company also offers some subscriptions, or sells downloadable
assets instead of physically shipped goods, as visualized in Figure 8-9.

Contrasting Orchestration and Choreography | 159

Figure 8-9. The payment team does not need to know who is retrieving payments; its
responsibility is collecting the money reliably when commanded

This change does not need the payment service to adjust at all, whereas an event-
based API would require a change in the payment service. Taking this thought to the
extreme, can you imagine a SaaS payment provider offering an event-based API,
where you even have no guarantee about what happens with that event?

The more general a component is, the less it should be required to
change if other services need to communicate with it. A command-
based API is typically preferrable in this case.

A very different example is the sending of order notifications mentioned at the begin‐
ning of the chapter. In this case, the order fulfillment team might not be responsible
for whether or not the order notification emails are sent out correctly. Exaggerating a
bit, they don’t care.

Hence, event-based communication is great for this. The notification service takes
responsibility for sending notifications to the customers. It will take care of data secu‐
rity concerns and the customer’s preferred way of communication. This frees all other
services of this responsibility.

But if you design a company-wide notification service that can send any type of noti‐
fication, like about orders, payments, subscriptions, news, and so on, this service
should probably not know about events from order fulfillment. So, you might need an
additional order notification service responsible for translating the events into the
right commands, as shown in Figure 8-10.

160 | Chapter 8: Balancing Orchestration and Choreography

Figure 8-10. Notifications can be event- or command-driven, based on their scope and
designed responsibilities

As you can see, you need to understand your organization and the different compo‐
nents’ responsibilities to decide whether to use events or commands for a certain type
of communication.

The Direction of Dependency
Every communication between two services involves some degree of coupling. An
interesting aspect here is that you can choose the direction of dependency, and thus
decide which components are coupled to which other components. This is shown in
Figure 8-11 for aspects of the order fulfillment example.

Figure 8-11. With events you couple the receiver, with commands the sender

When a service listens to an event, the receiver is “domain-coupled” to that event.
This means it knows on which channel the event will be received, what the event
means, and probably the schema of the data attached to it. The direction of depend‐
ency is from the receiver to the sender. As you saw earlier in this chapter, this is a
good choice for some situations, but it is not a good choice in others.

In contrast, one service could send a command to another. In order to do so the
sender has to know what the command means, which channel to send it to, and

Contrasting Orchestration and Choreography | 161

probably what data to attach to it. The direction of dependency is from the sender to
the receiver; the sender is “domain-coupled” to the receiver.

A certain degree of domain coupling is unavoidable if different components need to
interact, but you can deliberately decide if it is on the sending or the receiving side.
This decision determines whether you will use events or commands.

Finding the Right Balance
You will need to apply events and commands, so choreography and orchestration, in
your architecture. Therefore, you have to find the right balance. As complicated as it
sounds, this basically means making a conscious and rational choice about using
events versus commands for every single communication link between microservices.
Let’s explore this.

Deciding Whether to Use Commands or Events
A good litmus test is to ask if it is OK with the component omitting an event if that
event is ignored. If so, then it really is an event; if not, you probably have a command
in front of you. I am not saying that reactions to events are not important. In the
order fulfillment example, sending notification emails is important, and not getting
them might be annoying for the customer. Still, it is not a huge problem if this hap‐
pens, and more importantly, the event approach means that it is not the problem of
the order fulfillment team.

This might be different if you have notifications that are required by law. The order
fulfillment team might be responsible (and held accountable) for that notification in
this case, which motivates using commands.

Of course, you could also design this responsibility differently, but the communica‐
tion type must match your decision. If order fulfillment is responsible, they should
use a command for the notification. Alternatively, you might lay out the responsibili‐
ties differently and make the notification team responsible, in which case an event
will serve you well.

Mixing Commands and Events
Let’s extend the example of the customer onboarding process to find a more balanced
view. In his book Building Microservices (O’Reilly), Sam Newman also uses that exam‐
ple, but basically he looks at the steps after a customer has been created, as you can
see in Figure 8-12.

162 | Chapter 8: Balancing Orchestration and Choreography

https://learning.oreilly.com/library/view/building-microservices/9781491950340/

Figure 8-12. Post-customer creation process using orchestration (from Sam Newman:
Building Microservices)

He notes that:

The downside to this orchestration approach is that the customer service can become
too much of a central governing authority. It can become the hub in the middle of a
web, and a central point where logic starts to live. I have seen this approach result in a
small number of smart “god” services telling anemic CRUD-based services what to do.

Sam further advocates using an event to notify other systems that a customer has
been created, as visualized in Figure 8-13.

Figure 8-13. Post-customer creation process using choreography (from Sam Newman:
Building Microservices)

While I can agree that events might be preferable once a customer is registered, this
might not be the case for the pre-checks. Figure 8-14 shows one possible solution for
the overall customer onboarding process, visualized as a BPMN collaboration
diagram.

Finding the Right Balance | 163

Fi
gu

re
 8

-1
4.

 Th
e fi

na
l c

us
to

m
er

 o
nb

oa
rd

in
g p

ro
ce

ss
ca

n
m

ix
 o

rc
he

str
at

io
n

an
d

ch
or

eo
gr

ap
hy

164 | Chapter 8: Balancing Orchestration and Choreography

Collaboration diagrams will be discussed in more detail in “The Power of One Joined
Model” on page 205; they allow you to model the collaboration between different
components in your system in one big diagram. The onboarding process itself is most
likely implemented in the customer microservice, but possibly also in a separate cus‐
tomer onboarding microservice.

Some parts of the process are best designed using orchestration, whereas others can
benefit from choreography. The process commands the address and credit checks,
which is clearly orchestration. In a later stage of the process, the customer-created
event leads to relevant actions in other microservices, as proposed by Sam. You have
to think about events versus commands for every communication at hand.

Designing Responsibilities
This chapter showed that you really need to think about the responsibilities of each
component when designing communication links. You should omit events in situa‐
tions where the sender is not responsible for what happens next, and use commands
when the sender is and needs to ensure that something is going to happen.

Let’s explore the customer welcome letter in the customer onboarding example a bit
further. As you can see in Figure 8-14, this is done by sending a command. Why is
this? Why is the service that sends the welcome letter not also listening to the
customer-created event?

In this case I assume that the customer onboarding team is responsible for ensuring
that this letter is really sent. This might boil down to a legal requirement, which is not
uncommon. It is not something the customer onboarding team can “let emerge,”
meaning they simply assume it will be sent by some component reacting to the right
event. They are responsible. Your CEO can approach that team at any time and ask
why a certain welcome letter for an important customer was not sent, and they can’t
point to anybody else who may not have picked up their event; it was their responsi‐
bility. Responsibility and accountability go along with the need to control certain
communications. Only if they send a command can they pass on the responsibility to
the notification service; once that service has received the command, it’s then that
team’s fault if the letter isn’t sent.

By contrast, sending the notification email and registering the customer in the loyalty
points program might not be the responsibility of the customer onboarding team.
This allows that team to maintain its focus. In that case, events would be a great way
to go, as the onboarding process does not need to bother about loyalty programs at
all. Instead, the loyalty program team develops its solution independently. If a cus‐
tomer is not getting enrolled correctly, your CEO will approach that team, not the
customer onboarding folks.

Finding the Right Balance | 165

You need to understand how the responsibilities are assigned to the
different components. In other words: you need to know which
team is held accountable for a certain requirement. This will guide
you not only to good boundaries, but also to decisions about events
versus commands. If the sending side is responsible, then it cares
that something is happening, which means you need to use com‐
mands. If the sending side does not care but the receiver is respon‐
sible for taking action, you can typically use an event.

Responsibilities are never fixed. You or your organization can design them, and defi‐
nitely need to do so. This is very much related to designing the boundaries of your
microservices. Determining whether to use events (choreography) or commands
(orchestration) is simply a result of taking the responsibilities into account.

If you ignore responsibilities, you will end up with teams that can’t control what they
are held accountable for. This can lead to fingerpointing and frustration.

If you don’t design responsibilities correctly, you will build systems that require a lot
of discussion and coordination between teams, as you will often have to change mul‐
tiple parts together. This is exactly what you want to avoid when using microservices.

Evaluating Change Scenarios to Validate Decisions
In order to better understand the differences in coupling, it is helpful to discuss
change scenarios. This allows you to predict effects when you need to make changes
later. Suppose that for a customer project, you’re comparing an orchestrated with a
choreographed customer onboarding process.

Initially, the project team strongly believes that the event-driven alternative is less
coupled. They want to implement the event chain shown in Figure 8-15, where the
registration requested event triggers the credit and address check services. Both of
them will eventually emit their results as events, and the customer service will wait
for both to happen in order to create the customer.

166 | Chapter 8: Balancing Orchestration and Choreography

Figure 8-15. Event chain to implement a customer onboarding process

Your observation is that the decision to go down this route was based on lobbying
work and the personal conceptions of some key people. It was definitely not backed
by proper investigation. To stimulate a good discussion, you find a change scenario
that is realistic in this context: adding an additional check to the process. We’ll call it a
criminal check. Figure 8-16 visualizes the change in the event flow and the microser‐
vices that need to be changed accordingly.

Figure 8-16. Changes required to add one additional check in a choreography

As you can see, in addition to deploying the new check as its own microservice, you
also need to adjust and redeploy the customer microservice. This microservice now
needs to wait for the new criminal check to provide a result. Of course, you could
introduce a separate customer onboarding microservice that handles all of that logic,
but that simply moves the problem to another place in the architecture.

In contrast, an orchestrated version of that process is visualized in Figure 8-17. In this
case, the customer microservice (or a specific customer onboarding microservice if
you prefer) reacts to the registration requested event, but then commands the other
checks to do their work.

Finding the Right Balance | 167

Figure 8-17. Changes required to add one additional check in an orchestration

In order to add the check here, you will have to deploy the new microservice and
adjust and redeploy the customer microservice—which are exactly the same changes
as in the choreography. This means that the event-driven process is not more decou‐
pled. And in the orchestrated version, you will have a clear location to get visibility
into the overall process, whereas in the choreography scenario, that knowledge is
spread across the various microservices that are involved.

Note that this example is still overly simplified. In real life, the onboarding process is
more complicated, requiring a certain sequence of steps when doing all of these
checks. For example, you wouldn’t do a credit check if the address were invalid, espe‐
cially given that credit checks cost real money. A more realistic sequence will increase
the number of microservices you have to touch when implementing such a change.
Just remind yourself of the example of Figure 8-4, where the fetching of the goods
should be done before retrieving the payment. It is hard to change the sequence of an
event flow.

Debunking Common Myths
I am regularly confronted with myths about why orchestration should be avoided or
why choreography is the way to go. These stories are so common that it is worth tak‐
ing a quick look at them, not only to be aware of them, but also to understand why
they are myths.

Commands Do Not Require Synchronous Communication
A common myth is that commands require you to communicate synchronously, and
this leads to temporal coupling (which we touched on in “Strong Cohesion and Low
Coupling” on page 127).

But this is not true. As “Messages, Events, and Commands” on page 157 explained,
commands (and events) are independent of the communication protocol. The choice

168 | Chapter 8: Balancing Orchestration and Choreography

between them is not connected to the decision of whether or not to use synchronous
or asynchronous communication. Hence, you can mitigate temporal coupling by
using asynchronous communication. Now component A can send a command in a
message to component B, even if B is not available at that moment. The message will
simply wait in the queue.

It is important to understand that temporal coupling results from synchronous com‐
munication alone, not from choosing to use commands.

I have even seen one other flavor of this myth: orchestration means that there is one
component that coordinates multiple others by using a chain of synchronous block‐
ing requests. Figure 8-18 shows an example, where an order fulfillment service
orchestrates by invoking synchronous blocking calls to other microservices.

Figure 8-18. A misconception of orchestration: one component handling a lot of synchro‐
nous blocking calls

Implementing such a synchronous call chain has severe downsides. First, you will
experience latency creeping into your service calls, meaning all the latencies and pro‐
cessing times for the various service calls will add up. This makes the checkout a
rather slow experience for the user.

Second, you can see that the availability of order fulfillment erodes, as all required
services need to be available at the exact time this call is triggered.

But once again, this problem is not related to the order fulfillment service orchestrat‐
ing other functionalities; it is rooted in using synchronous communication chains.

Orchestration does not introduce temporal coupling; synchronous
communication does. The problem can be solved by going asyn‐
chronous. Orchestration is independent from communication
protocols.

Debunking Common Myths | 169

Orchestration Does Not Need to Be Central
Following up on the discussion in “Decentralized Engines” on page 117 and “Decen‐
tralized Workflow Tooling” on page 144, I want to emphasize once more that orches‐
tration does not need to be centralized in the context of this chapter. You really have
to disconnect the terms orchestration and central in your brain. It sometimes helps to
use terms like local orchestration or distributed orchestration to emphasize this aspect.

Orchestration simply means commanding (or coordinating) another component.
Every component can do this; it is not about having a central orchestrator.

Additionally, orchestration is not connected to specific tooling. A workflow engine is
a great help to implement long-running orchestration processes. However, a compo‐
nent sending out a command using programming code is also coordinating others,
and thus also performs orchestration.

If you succeed in having more open discussions about what orchestration really
means, what role events and commands play, and whether tooling in fact needs to be
central, then you will have a much better foundation for making great decisions.

Orchestration is not centralized, even if it was advocated like this
back in the SOA days. You can implement it locally in a microser‐
vice, probably using a workflow engine.

Choreography Does Not Automatically Lead to More Decoupling
This chapter already described why every communication link between two compo‐
nents leads to coupling. Still, there is a myth that coupling is massively reduced in
event-driven architectures.

As a generalization, this is nonsense.

When you use events, you decide to couple on the receiving end of the communica‐
tion, which of course can be beneficial in some situations. But in others, it is not. You
need to make this choice on a case-by-case basis to create a great architecture.

The Role of Workflow Engines
Workflow engines play a vital role in your architecture, independent of whether you
use choreography or orchestration. This might be surprising at first, because work‐
flow engines are typically connected to orchestration. Sometimes they are even seen
as being in opposition to choreography. But in fact, this is not true. Let’s explore how
workflow engines can also help out in event-driven systems.

170 | Chapter 8: Balancing Orchestration and Choreography

Workflow engines can subscribe to events and start new process instances once a spe‐
cific event arrives. Alternatively, they can let existing process instances wait for events
to happen. For example, suppose you want to wait for two events to happen in a cer‐
tain time frame, but you need to take action if one doesn’t arrive, as visualized in
Figure 8-19.

Figure 8-19. A process can react to events

Truth be told, this scenario could also be implemented using event streaming
approaches that offer a query language that can take time windows into account.
However, not everybody has these technologies at their disposal. And even then, it is
often harder to express complex requirements in these declarative approaches than it
is to describe a process model. In most situations, you will also need long running-
capabilities anyway.

Figure 8-20 shows an example that is typical in real life. The process model reacts to
events, but also issues commands. It simply does both. This relates closely to the defi‐
nitions of orchestration and choreography given in “Contrasting Orchestration and
Choreography” on page 155, as the decision is not a global decision, but very much
local to every communication link.

The Role of Workflow Engines | 171

Figure 8-20. A process model can react to events as well as issue commands

Conclusion
This chapter looked at how events can be used to communicate between components.
You saw that chains of events can be used to automate processes, which leads to a
couple of challenges. These can be better solved with commands.

This led to modern, clear, and precise definitions of orchestration (command-driven
communication) and choreography (event-driven communication). Orchestration
means coordinating others by using commands, and choreography relates to reacting
to events. This is independent of communication protocols and technologies.

You cannot decide whether to use orchestration or choreography on a global level,
but need to make the choice each time components need to communicate. The differ‐
ence comes down to the direction of dependency and the resulting responsibilities of
the individual components. Either way, you will have some domain coupling; this is
unavoidable.

It is not true that choreography always leads to less coupling than orchestration.
While it might be true in some situations, it can also lead to additional coupling and
distributed monoliths. This means you need to learn to balance both communication
styles.

172 | Chapter 8: Balancing Orchestration and Choreography

CHAPTER 9

Workflow Engines and
Integration Challenges

Modern systems are typically designed in such a way that components are located on
different computers, virtual machines, or containers. Connecting these components
requires remote communication, which introduces a lot of new challenges.

This chapter will describe how workflow engines can be applied to some of these
challenges. In this context, it:

• Examines communication patterns for service invocations, specifically looking at
long-running and asynchronous communication

• Explores consistency problems and transactional guarantees
• Emphasizes the importance of idempotency to make all of this work

Even if you don’t plan to use a microservices architecture, reading this chapter will
still be valuable, as almost every system has some remote calls somewhere. The con‐
cepts described here apply even if it’s just one simple REST call.

Communication Patterns for Service Invocation
There are different possible communication patterns when you invoke services from
your process. Let’s first have a look at synchronous communication before we dive
into asynchronous communication.

173

Synchronous Request/Response
The typical example of synchronous request/response is a REST call. In order to
invoke such a REST call in a BPMN process model, you leverage a service task, as
introduced in “Business Process Model and Notation (BPMN)” on page 45 in Chap‐
ter 3. The process will wait in this service task until the REST call returns a response
as indicated in Figure 9-1.

Figure 9-1. BPMN can handle synchronous communication with service tasks

This simple service call can hide quite a bit of complexity under the hood. Remote
communication is inherently unreliable, as illustrated by the fallacies of distributed
computing as described by Peter Deutsch and others at Sun Microsystems. Remote
services might not be available, or might respond very slowly. This quickly imposes a
requirement to make your own service long-running, as you have to wait either for
those services to become available or for the responses to arrive. This is often forgot‐
ten in reality, leading to architecture smells.

In order to explain this, let’s start with a real-life example. I was getting ready to fly to
London. When I got the check-in invitation, I went to the airline’s website, selected
my seat, and hit the button to retrieve my boarding pass. This triggered a synchro‐
nous REST call in the background. It gave me the following response: “We are having
some technical difficulties at the moment, please try again in five minutes.”

Let’s assume for a moment that the airline uses separate services for all the parts of
this process, as shown in Figure 9-2. Let’s further assume that these services commu‐
nicate via REST calls. That means the check-in service will block its thread waiting
for a barcode service to return. But what happens if the barcode service does not
respond? The sketched design offloads failure handling to the client; in this case me. I
personally had to do the retry. In fact, I had to wait until the next day before the prob‐
lems were resolved and I could get my boarding pass. That meant I had to use my
own tooling to persist the retry (my calendar) to make sure I did not forget.

174 | Chapter 9: Workflow Engines and Integration Challenges

https://oreil.ly/1BrI9
https://oreil.ly/1BrI9

Figure 9-2. Errors are often propagated to the first service in the chain that can handle
state; in the example of issuing a boarding pass this is the human making the request

Why wouldn’t the airline just do the retrying themselves? They know the customer’s
contact data and could send the boarding pass asynchronously whenever it was ready.
That would not only be much more convenient but also reduce the overall complex‐
ity, by minimizing the number of components that need to see the failure.

Whenever a service can resolve failures itself, it encapsulates important behavior. This
makes the lives of all clients much easier and the API much cleaner, as Chapter 7
already described. Of course, the behavior of passing errors on to the client can be
just fine in some cases—but it should be a conscious decision that is made according
to business requirements.

That’s not what I observe in real life. It is much more often the case that teams under‐
stand that this kind of failure resolution requires state handling, and they don’t want
to introduce this complexity, as discussed in “Wild West Integrations” on page 4.

In the boarding pass example, a stateful retry should happen in the check-in service
to keep the error local. Using a workflow engine within that service is one possible
solution to handle that state, as well as the scheduling capabilities to trigger additional
retries. As explained earlier in this book, the state will be held in the workflow engine
that is logically owned by the service.

Making services stateful helps to keep problems local. And while the behavior for
retrying is not baked into the BPMN language, vendors typically provide extensions
that make it easy to handle. You might end up with a very simple processes like the
one in Figure 9-3.

Communication Patterns for Service Invocation | 175

Figure 9-3. Having the responsible service handle retries

You might have recognized that I slowly introduced asynchronicity here. If a service
call to the barcode generator is retried for several minutes, the check-in service can’t
return a synchronous response. If you look at the source code on the book’s website,
you will see that the check-in service will return an HTTP 202 status code in this case,
which means that the service accepted the request and will process it some time later.

So this is already asynchronous communication, which will be described in the next
section. Later in this chapter you’ll also see that you might still be able to keep a syn‐
chronous facade wherever you need it.

Asynchronous Request/Response
Asynchronous communication refers to nonblocking communication; the service
sending a request does not wait for a reply but is happy as long as the sending
worked. Although the REST example in the last section might qualify, asynchronous
communication is typically the domain of messaging systems.

Messaging systems can make systems more robust, as they remove temporal cou‐
pling. If services need to wait for replies, the API of a messaging system makes it clear
that waiting for that reply message can take time. This forces developers to think
about what happens if a response does not arrive within a certain time frame, which
is typically beneficial for the resulting source code.

In essence, asynchronous communication makes it transparent that the communica‐
tion itself can become long-running. Long-running? You got it, this is where a work‐
flow engine can help.

Say you have a business requirement that your service needs to wait for an answer to
a certain request before it can actually continue. That response might take some time
and is delivered asynchronously. You can handle this situation with the BPMN pro‐
cess model shown in Figure 9-4.

176 | Chapter 9: Workflow Engines and Integration Challenges

https://ProcessAutomationBook.com

Figure 9-4. BPMN can handle asynchronous communication and take care of timeouts

This example shows that you can easily model timeouts to act on delays. And having
a workflow engine in place makes it possible to wait not only for milliseconds, but for
minutes or days.

In order to support asynchronous communication, workflow engines offer correla‐
tion mechanisms to find the right waiting process instance. Suppose you send out a
message to retrieve payment that includes a transaction ID. When the response
arrives, it also carries this transaction ID, allowing the workflow engine to identify
the process instance waiting for that response.

The following rules have proven themselves in real life for correlation:

• Use artificial IDs like a UUID that is generated just for that communication.
When you send a payment request, you generate a new UUID in the client and
store it locally in the client (e.g., in its process variables). This ID serves solely for
correlation for that single communication, which means that you won’t get any
interference.

• Don’t use IDs from the workflow engine, like process instance IDs. If you need to
restart a process instance for operations purposes, it might end up with a differ‐
ent ID, or your workflow engine vendor might change how IDs are generated, in
a way that doesn’t work at your end. Think of all the applications that used
numeric IDs and are now confronted with UUIDs, which are strings.

• Be careful with using business data, like the ID of the order for which the pay‐
ment is taken. While this is often straightforward and can work well, it has some
risks. For example, if for some reason you split the payment into two parts, you’ll
have two payments for the same order ID at the same time, and you won’t be able
to correlate the responses distinctly.

Communication Patterns for Service Invocation | 177

BPMN also allows you to combine the send and receive tasks within one service task,
as visualized in Figure 9-5.

Figure 9-5. BPMN makes it possible to hide asynchronous communication behind a sim‐
ple service task

This often makes the process model a bit simpler to understand, and hence commu‐
nication with business stakeholders easier. It can also remove clutter if you use asyn‐
chronous communication all over the place.

BPMN and Being Ready to Receive
There is one small but potentially problematic detail in BPMN related to the timing
of the incoming messages. The BPMN standard defines message correlation in such a
way that a process instance needs to be ready to receive that specific message at the
exact time the message arrives. So, strictly speaking, when no token for a specific pro‐
cess instance is waiting in the receive task, incoming messages cannot be correlated
and are dumped.

Spoiler alert: some workflow engines allow you to buffer incoming messages with a
defined time to live, which gives the process instance enough time to arrive at the
receive task.

But let’s first explore this issue by looking at a real-life scenario I experienced, which
is shown in Figure 9-6. The problem might be a bit surprising at first.

In this case, the process called some external system via SOAP. The SOAP reply just
acknowledged that the request was received. The real response was sent via an asyn‐
chronous message. For some reason, unwrapping the SOAP reply and committing
the process instance at hand took longer than it took for the response to arrive via the
messaging system. This led to errors when the response messages were correlated,
because the process instances were not yet ready to receive them. It was a matter of
milliseconds, but it led to exceptions.

178 | Chapter 9: Workflow Engines and Integration Challenges

Figure 9-6. A process must be ready to receive the response message when it arrives

The biggest problem was that nobody understood this situation. Looking at the oper‐
ations tool showed a process instance waiting for the message, yet response messages
resulted in exceptions stating that there was no process instance waiting for them.

It took me a while to explain the issue to various stakeholders in that project. I could
only convince the developers that this was happening by adding a Thread.sleep
instruction when a message arrived. This code waited 100 ms before actually correlat‐
ing the message, which resolved the problem at hand. The final solution was to retry
correlating the message, as it only took a few milliseconds for the process to become
ready to receive. This way, we leveraged the buffering capabilities of a messaging
system.

But this is an unsatisfying solution, for a few reasons. First, it only works when you
use communication mechanisms that can buffer, like messages; otherwise, you have
to implement some bespoke mechanisms. Second, developers need to understand the
situation and acknowledge that errors during message correlation are kind of normal.

So, message buffering in a BPMN workflow engine is a helpful feature. It frees you
from worrying about all these dirty details. In this example, the response message
would simply have been correlated whenever the process instance arrived in the
receive task. Unfortunately, message buffering is a proprietary vendor addition to the
BPMN standard, so you need to check if your vendor can provide it. Whenever you
have it at your disposal, make use of it!

Communication Patterns for Service Invocation | 179

Aggregating Messages
Process models also allow the expression of more sophisticated patterns around mes‐
sage exchanges, like the aggregator, as described in Enterprise Integration Patterns by
Gregor Hohpe and Bobby Woolf (Addison-Wesley):

Use a stateful filter, an Aggregator, to collect and store individual messages until a com‐
plete set of related messages has been received. Then, the Aggregator publishes a single
message distilled from the individual messages.

As you guessed, the word “stateful” hints at a workflow engine. You can implement
such an aggregator with BPMN as shown in Figure 9-7.

Figure 9-7. An aggregator implemented with BPMN

The workflow engine gives you persistent state as well as easy timeout handling. Of
course, this is not limited to a generic aggregator. Oftentimes, you simply need to col‐
lect a couple of messages in one specific business scenario, as shown in Figure 9-8.

Figure 9-8. Aggregating messages in a process

180 | Chapter 9: Workflow Engines and Integration Challenges

https://oreil.ly/PxzX3

Remember that you might need message buffering at your disposal to safely execute
these models and avoid process instances not being ready to receive at the right
moment in time. If your workflow engine doesn’t support this, you can find some
possible workarounds on the book’s website.

Poisoned and Dead Messages
Speaking of asynchronous communication and messaging systems, I don’t want to
leave you without a word of warning. Don’t get me wrong, I’m a big fan of asynchro‐
nous communication, but I also see a lot of companies and projects struggle with the
complexities around it.

My favorite examples are so-called poisoned messages. Suppose your service receives
new customer orders via messaging. There is a bug in the frontend that puts some
broken data into that message, making it “poisoned.” Your service will throw excep‐
tions when processing the message.

There is no client you can hand this exception to, so the messaging system has to deal
with it. The default is to retry the message, which will not really help, just increase the
load. After all the retries are used up, the message is typically put into the dead letter
queue (DLQ). But now what?

Even today, most tools don’t provide proper user interfaces to monitor the DLQ,
inspect the messages, and redeliver them. Customers are forced to build bespoke
message hospitals to handle these situations well.

But even if you have the tooling, diagnosing failure reasons is not easy, as a failed
message does not provide much context around where that data originally came
from. If you receive orders via different channels and route that data through a cou‐
ple of services, it will take some forensic practices to find the root problem.

This is another great motivation for using executable process models instead of data
flowing through various queues, as described in “Data Pipelines and Streaming” on
page 96. With a workflow engine, a failed process instance gives you a lot of context
about where it started, what path it took, and what data is attached.

Synchronous Facades Hiding Asynchronous Communication
Sometimes you will be forced to provide a synchronous API for certain clients, espe‐
cially frontends. This becomes a challenge if your architecture embraces asynchro‐
nous communication or long-running processes.

Communication Patterns for Service Invocation | 181

https://ProcessAutomationBook.com

The solution to this problem is typically to create a facade that provides a synchro‐
nous API, for example via REST. Internally, this facade needs to block and wait for
the response that is provided asynchronously:

try {
 sendRequestToServiceB(correlationId, ...)
 response = waitForResponseFromServiceB(correlationId, timeout)
 // ...
}
catch (timeoutError) {
 // ?
}

There are three ways to receive that response:

• You subscribe to the channel that delivers a response message.
• You provide a callback API.
• You regularly poll to see if the result is available.

All of them have trade-offs, and which to choose depends on your architecture. One
thing all of these have in common is that you have to think about timeouts, as you
can’t wait and block forever. This also implies that you need to think about what to do
if there is no response within a certain timeout.

One pattern I regularly see is to return synchronously when everything is all right,
and as soon as there is an error fall back to asynchronous processing.

For instance, in the check-in example from “Synchronous Request/Response” on
page 174, the check-in service can return a boarding pass synchronously only when
everything runs smoothly. This could be easily reflected with HTTP return code 200,
meaning “All OK, here is your result.” If there is any glitch that prevents the service
from creating its result immediately, you instead respond with HTTP 202, which
means “Got it, I’ll call you back.” And then you send the boarding pass via email later
on. The source code on this book’s website includes a concrete code example.

Of course, switching to asynchronous responses will affect the user experience. Users
might not get their boarding passes right away. Is this good or bad? You can dive
deeper into that interesting question in “Rethinking Business Processes and the User
Experience” on page 262. Spoiler: it’s a good thing. Isn’t it so much better to receive
your boarding pass successfully later than to get an error message right now leaving
you alone with the problem?

182 | Chapter 9: Workflow Engines and Integration Challenges

https://ProcessAutomationBook.com

Transactions and Consistency
Let’s switch gears and consider the challenges with transactions in distributed sys‐
tems. To do this, we’ll look again at the example of onboarding new customers.

Remember that we need to insert customers into the CRM and billing systems. In a
monolithic application, you simply have different tables in the same database, which
allows you to do this in one transaction as illustrated in Figure 9-9. The database
offers ACID guarantees: transactions are atomic, consistent, isolated, and durable. If
the customer cannot be added into the billing table for whatever reason, such as
duplicate or invalid values, the database can simply roll back the transaction. This
leads to the customer also being nonexistent in the CRM system. ACID transactions
therefore guarantee consistency within the boundary, which monoliths can leverage
to offload complexity to the transaction layer.

Figure 9-9. ACID transactions ensure consistency within the boundary

If two concurrent threads try to write the same data, the database guarantees isola‐
tion, which can be implemented by optimistic or pessimistic locking. This leads to
one thread winning and the other getting an exception. The failed transaction is auto‐
matically rolled back, as database operations are atomic, meaning all of them are
done, or none.

This architecture makes it incredibly easy to implement atomic operations, isolate
different threads, and guarantee consistency of data. The business logic can offload a
lot of complexity onto the transaction layer of the database.

Transactions and Consistency | 183

But in order to do this, the requirements are that all data is in the same database and
the application uses a joined database connection. This is only realistic in a monolith,
not in a distributed system.

In the onboarding example, CRM and billing are more likely to be two separate serv‐
ices. The onboarding service accesses them via remote communication. Now each
service might have its own ACID transaction, but there is no joined one, as illustrated
in Figure 9-10.

Figure 9-10. If you cross boundaries, you can’t do ACID transactions

Therefore, it might happen that a customer exists in the CRM system, even if they
have not yet been created in the billing system. This violates the ACID property of
isolation, as some outside thread (or human) may be able to see this state already.
Furthermore, you have to think about what to do when you hit a problem in billing
because you can’t roll back the CRM system, meaning the entry will remain there.

Such challenges are typical in modern systems, for a few reasons:

• Components get more and more distributed. And even if there are technologies
that offer distributed ACID transactions, like the two-phase commit protocol
known as XA, these technologies are either very expensive, very complex, or
super brittle. So, normal projects should assume that ACID transactions are not
possible when remote communication is involved.

• Different resources, like multiple physical database installations or middleware
like messaging, can often not join a common ACID transaction.

184 | Chapter 9: Workflow Engines and Integration Challenges

• Activities become long-running, because you have to wait for asynchronous
responses or humans. And ACID transactions in the database cannot be held
open; this would not only lead to deadlocks, but also to transaction timeouts.

• Activities get too complex to be handled in one huge transaction.

In summary, work in modern architectures is increasingly separated into multiple
tasks that are not combined in a single ACID transaction, as visualized in Figure 9-11.
This requires a new way of dealing with consistency on the business level.

Figure 9-11. Business transactions need to cross boundaries; technical ACID transac‐
tions can only happen within a boundary

In order to handle this new normal, you must:

• Weaken your consistency expectations, as not all tasks are isolated from each
other during the runtime of a business transaction.

• Make sure that once started, all tasks of a business transaction are either carried
out or rolled back.

We’ll dig into what this means exactly in the next sections.

Eventual Consistency
Let’s recap. Traditional transactions isolate different clients from each other. Nobody
can see changes made by somebody else until they are committed (to be precise, most
databases allow you to configure that with the so-called isolation level). With tasks
spread across multiple remote services, you don’t have the same level of isolation.

That means that changes made in intermediary steps will be immediately visible to
the world. In our example, the customer is already visible in the CRM system, even if
they are not in the billing system yet. This violates the invariant that customers always

Transactions and Consistency | 185

exist in CRM and billing, never only in one system. So this state is considered
inconsistent.

It is now important to be aware that these temporary inconsistencies are possible. You
also have to understand the failure scenarios they can cause. In this example, you
could have created a marketing campaign at a moment when a customer was already
in the CRM system, but not yet in billing, so they got included in that list. Then, even
if their order gets rejected and they never end up as an active customer, they might
still receive an upgrade advertisement.

A good design with the right system boundaries needs to make sure that intermediary
steps are not “harmful” in the outside world, or don’t make inconsistent information
available too early. Or at least, you need to understand the effects of this happening.

Furthermore, you have to think about a strategy to resolve inconsistencies. The term
eventual consistency suggests that you need to take measures to get back to a consis‐
tent state eventually. In the onboarding example, this could mean you need to deacti‐
vate the customer in the CRM system if adding them to the billing system fails. This
leads to the consistent state that the customer is not visible in any system anymore.
We’ll look at these strategies in more detail in the next section.

Business Strategies to Handle Inconsistency
There are three basic strategies if a consistency problem occurs: you can ignore it,
apologize, or resolve it. Selecting the right strategy is a clear business decision, as
none of them is right or wrong, but simply more or less well suited to the situation at
hand. You should always think about the cost/value ratio. Let’s take a closer look at
the three options.

Ignore the inconsistency
While it sounds strange to consider ignoring a consistency issue, it actually can be a
valid strategy. It’s a question of how much business impact the inconsistency may
have.

In the onboarding example, we might decide that a dead entry in the CRM system
isn’t a problem, so we just keep it there. Of course, the consequences will be that some
reports might show incorrect data (including nonexistent customers) and marketing
campaigns might keep hitting rejected customers. But still, the business might decide
that these effects can be ignored, given that in actual fact this happens quite rarely
(e.g., once a month). Sometimes effects pile up over time and require reconciliation
jobs to restore consistency later.

Please note that I am not advising you to ignore consistency problems. It is just obvi‐
ous that ignoring inconsistency is a pretty easy strategy to implement, and in some

186 | Chapter 9: Workflow Engines and Integration Challenges

cases saving the development effort and bearing some inconsistency can be a valid
business decision.

Graphical process models might help with this decision, as they can visualize the pos‐
sible scenarios, and help you see the tasks and their sequences and where failures
might occur.

Apologize
The second strategy is to apologize. This is an extension of the strategy to ignore. You
don’t try to prevent inconsistencies, but you do make sure that you apologize when
their effects come to light.

For example, we could decide to ignore failures in the SIM registrations and just wait
for customers to complain. When they call in, we apologize, send them a $10 voucher,
and trigger the registration manually.

Obviously, this is not a great example, but there are situations where apologies are a
good strategy. Again, this is often about the cost/value ratio; it can be much cheaper
to run without consistency controls in 98% of the cases and accept the cost of a cou‐
ple of expensive apologies. It’s a bit like airlines overbooking their planes.

Resolve the inconsistency
The third strategy is to tackle the problem head-on and actively resolve the inconsis‐
tency. This can be done by different means, such as the reconciliation jobs mentioned
earlier. A reconciliation job typically runs as a batch job, with the downsides
described in “Batch Processing” on page 94.

The following sections present two other strategies that can resolve inconsistencies
on an instance level, without waiting for any batch run: the Saga pattern and the out‐
box pattern.

Deciding which strategy is most appropriate to resolve consistency
issues is a business decision. It typically relates to the volume and
the business value of the processes, as well as the business impact of
potential inconsistencies. This decision needs involvement from
business stakeholders and can’t be made by IT alone. Visibility like
that provided by BPMN will help you.

The Saga Pattern and Compensation
The Saga pattern describes long-running transactions in distributed systems. The
main idea is simple: when you can’t roll back tasks, you undo them. The name Saga
refers back to a paper written in the 1980s about long-lived transactions in databases.

Transactions and Consistency | 187

https://oreil.ly/Bu0iT

BPMN supports this through compensation events, which can link tasks with their
undo tasks. Figure 9-12 shows this for the onboarding example, given that errors can
happen at any time and all affected tasks need to be properly cleaned up. A workflow
engine will make sure to execute all the necessary undo actions.

Figure 9-12. A Saga implemented by a BPMN process: compensating tasks have been
defined

Such an undo does not necessarily mean a full rollback. A SIM card might already
have been shipped to your customer, so you can only deactivate it. The compensation
might involve multiple tasks, like also informing the customer.

Compensation logic will make your process model more complicated. This is
unavoidable and mirrors real life: without ACID properties, business transactions get
more complicated because the rollback is basically moved to the application level.

Of course, you do not necessarily need a workflow engine to implement the Saga pat‐
tern. As noted in “Limitations of Other Implementation Options” on page 93, there
are always other implementation options. But the workflow engine is of great help,
for a few reasons. First, you typically need the long-running capabilities of the engine
in remote communication scenarios. And second, discussions of business

188 | Chapter 9: Workflow Engines and Integration Challenges

transactions or any strategy to resolve inconsistencies can gain from the visibility
graphical process models provide.

Chaining Resources by Using the Outbox Pattern
Another interesting pattern is the outbox pattern. Suppose you’ve built a service that
executes some business logic, persists the result in a relational database, and sends out
an event on an event bus afterward. As explained earlier in this chapter, you can’t use
an ACID transaction for two tasks that work with different resources (here, the data‐
base and the event bus). But it is important that the whole procedure is atomic, mean‐
ing that either the business logic is done and the event is sent, or neither of the two
happen.

The outbox pattern, as visualized in Figure 9-13, can solve this problem. In a typical
implementation of this pattern, the service writes the event that needs to be published
to a separate table in the same relational database where the domain data resides. This
table is called the outbox. Having a table in the same database allows the service to
leverage the ACID transactions of the database, so persisting the results of the busi‐
ness logic and writing the event is atomic. Only after that database transaction suc‐
ceeds is the event actually published, using some kind of scheduling mechanism. This
scheduler will send the event and delete it from the outbox table.

Figure 9-13. The outbox pattern allows elevating consistency to at-least-once

There are two important characteristics to recognize here. First, the outbox guaran‐
tees that events are definitely sent, but it might happen at a later point in time (do you
recognize the eventual consistency again?). Second, in certain failure scenarios it is
possible that events are published twice—for example, if the scheduler reads the out‐
box table entry, publishes the event on the bus, but crashes before it can commit
changes to the outbox table. This transaction semantic is called at-least-once, as the

Transactions and Consistency | 189

design makes sure that the event is definitely sent at least once, but potentially multi‐
ple times due to failure conditions.

Implementing the outbox pattern, as shown in Figure 9-13, involves a table, a sched‐
uling mechanism, and very often some additional monitoring capabilities. You may
have noticed that this sounds a bit like our discussion of “Wild West Integrations” on
page 4.

You can also leverage a workflow engine. In this case you don’t need a separate out‐
box table at all. Instead, you express all the tasks that need to be executed in an
atomic fashion in a process model, as shown in Figure 9-14.

Figure 9-14. You can leverage a workflow engine to eliminate the need for the outbox
pattern

The workflow engine will take care of executing the two tasks. First, the business
logic will be executed and the results committed. Only if this is successful will the
event be published to the event bus in the second task. If something crashes at this
point in time, the workflow engine will have persisted the state and will remember
that the business logic was already done and the event still needs to be published. In
short: the workflow engine will start over at the right task. This leads to the same at-
least-once semantics for all tasks as described with the outbox table.

To summarize, you can express all tasks that need to be executed in an atomic fashion
as tasks in a process model. Of course, there can also be more than two; the workflow
enine will make sure all of these tasks will eventually be executed. There is no need to
implement specific infrastructure like an outbox table or schedulers to make the out‐
box work. At the same time, you can leverage the monitoring and operations capabil‐
ities of the workflow tooling.

190 | Chapter 9: Workflow Engines and Integration Challenges

Eventual Consistency Applies to Every Form of
Remote Communication
In the past there were attempts to hide the nuts and bolts of remote communication
behind frameworks. For example, it is pretty likely that a REST call looks almost like
a local method call in your source code. A developer gets the impression that they get
a result right away, which they can directly use in the next line of code. This can make
developers forget about the complexity of distributed systems.

Let’s examine one quick example to highlight potential problems, starting with a sim‐
ple REST call. Imagine once more a payment service that can charge credit cards as
part of the payment process. To do this, the service needs to call the credit card ser‐
vice via a REST API.

Now assume that this REST call yields a network exception. There is no way to know
if the network problem occurred when sending the request to the credit card service
or when getting the response back. It is even possible that the credit card service
crashed while processing the request. In other words: you have no idea if a credit card
was just charged or not.

You need to decide on a strategy to handle this problem. In this case it is pretty likely
that you don’t want to ignore the problem. Instead, you want to make sure to leave
the system in a consistent state. There are multiple possibilities to achieve this. Maybe
it makes sense to check if a charge was made in order to determine whether a cleanup
is needed. Or you might leverage a cleanup API the credit card service provides. Or
you can cancel the charge and ignore any errors saying that this charge doesn’t exist.
The exact implementation depends on the API of the credit card service, but it is
important that this problem is handled. Figure 9-15 shows a possible process model
for cleaning up when charging the credit card fails. This example illustrates nicely
that you enter the world of eventual consistency with your very first remote call. This
requires you to think about consequences and business strategies to resolve inconsis‐
tencies, as discussed in this chapter.

Eventual Consistency Applies to Every Form of Remote Communication | 191

Figure 9-15. Even in the event of network errors you might have triggered business logic,
so you might need to restore consistency

The Importance of Idempotency
This chapter talked about at-least-once semantics and retrying. In this context, you
also need to learn about idempotency. Idempotent operations are defined by Wikipe‐
dia (https://en.wikipedia.org/wiki/Idempotence) as “operations that can be applied
multiple times without changing the result beyond the initial application.”

In simpler terms, this means that it is not a problem if an operation call is repeated.
And repeating calls is unavoidable in distributed systems. We already looked at delib‐
erate retries for synchronous APIs, and we discussed redelivery of messages. These
are important strategies to deal with the unreliable nature of remote communication.
In other words: you can’t avoid these retries.

Retries always lead to duplicate calls sooner or later. That’s why you have to think
about idempotency for each and every operation you expose remotely.

Some operations are naturally idempotent. Queries don’t cause side effects and thus
can easily be retried. Note that idempotency does not imply that the result must be

192 | Chapter 9: Workflow Engines and Integration Challenges

https://en.wikipedia.org/wiki/Idempotence

exactly the same. A query might return different results a couple of seconds later
because the state of the system might have changed.

Deletions are typically also idempotent, as you simply can’t delete the same entity
again. But the response might be different: instead of a confirmation the retry might
result in an error that the entity is not found.

Other operations are not idempotent by nature, like charging a credit card. In this
case a typical strategy is to generate unique IDs in the client that are handed over to
the credit card charging service. This service can then detect duplicates if it has its
own state to remember calls. Stateless services face a challenge, as you might have to
introduce dedicated state for duplicate detection.

It is advisable not to rely on the business payload for detecting duplicates. If there are
two credit card charges for the same card with the same amount within milliseconds,
it is likely that this is a retry, but you can never be sure. Maybe somebody booked two
flight tickets with the exact same price at the exact same time.

Whenever you design the API for a service, make sure it is
designed to support idempotency. If the service doesn’t provide
this, a client cannot fix it. The result is that you have to guess what
calls might be duplicates, which can lead to a lot of problems.

A good workflow engine also offers idempotent operations, so that you can make
sure that you only start a new process instance for a given key once. Other operations,
like completing a task or correlating a message, are naturally idempotent. If a process
instance has moved on in the process, you cannot complete the same task again. And
even if you have loops in your model and arrive at the same task again, it gets
assigned a different instance ID by the workflow engine. As simple as this may sound,
it is important to always keep idempotency in mind and take it into consideration
whenever you design any API.

Conclusion
Workflow engines help developers to solve challenges around distributed systems and
remote communication.

This chapter described how BPMN can be used to help with typical communication
or message exchange patterns. It further showed how automated processes can be
leveraged to restore consistency or to implement the Saga or outbox pattern, and it
also emphasized the importance of idempotency.

The use cases for workflow engines presented in this chapter were on a smaller scale
than typical business process automation projects, but nonetheless demonstrated
valid reasons to use process automation technology.

Conclusion | 193

CHAPTER 10

Business–IT Collaboration

In every IT project, different roles need to collaborate. Collaboration is the most cru‐
cial aspect of projects. It impacts the development effort, the resulting quality, and the
time to value. In short, it is the critical success factor. But as the Wikipedia entry on
business–IT alignment notes:

IT and business professionals are often unable to bridge the gap between themselves
because of differences in objectives, culture, and incentives and a mutual ignorance for
the other group’s body of knowledge. This rift generally results in expensive IT systems
that do not provide adequate return on investment.

This chapter dives into the subject of collaboration. It:

• Describes a typical project and the roles involved, to establish a common under‐
standing and vocabulary

• Shows how visual models help to improve collaboration, not only between busi‐
ness and IT but also between IT and IT

• Provides some guidance on creating process models that can be better under‐
stood by various stakeholders

A Typical Project
Let’s return to the imaginary ShipByButton (SBB) Inc. project presented back in “A
Business Scenario” on page 9. Assume that SBB started with that idea four years ago
and set up a quick-and-dirty PHP application (note that most parts of this story
wouldn’t differ much if it were instead an insurance company that’s a hundred years
old and uses a large mainframe monolith). The PHP application served the company
well in the beginning when going to market, but quickly became problematic: it did
not scale to a growing number of users, it was really hard to make any changes to the

195

https://oreil.ly/XFJkK
https://oreil.ly/XFJkK

code, and it resisted being broken into smaller pieces that can be maintained by dif‐
ferent teams. This meant that the company could not scale its development forces.

So Charlie, the CEO of SBB, announced a big project to rewrite the whole order ful‐
fillment process from scratch. A microservices architecture would be considered to
distribute the logic into smaller pieces that work together.

As a first step, the inventory and shipment microservices were defined, and logic
from the PHP monolith was refactored out into these services. The communication
with the hardware buttons was pretty much untouched, as these devices had been
widely distributed to existing customers—so this is still PHP.

Charlie wants you to be the project lead for the order fulfillment service, which is the
heart and soul of the company. This sounds exciting and scary at the same time, but
you decide to take the risk and jump right into it.

The first thing you do is call Ash, a great business analyst and one of your oldest allies
in the company. Together, you start to wander around the premises. First you visit
with what feels like a myriad of PHP developers, as you have to do some significant
archeology to find out how the current system is processing orders. You checked the
wiki documentation first, of course, but found that it was quite outdated. Most devel‐
opers are excited to help you with the improvement project and walk you through
what they know. Unfortunately, they often mix details on the as-is implementation
with wishful thinking about the to-be situation. Thankfully, Ash is with you and has
experience in getting people back on track. After a long day you not only have a
headache, but also a first process model. You print it deliberately in the sketchy mode
of your modeling tool; you know this will make it easier to discuss, as people tend to
raise fewer objections about something that looks unfinished. The result is shown in
Figure 10-1.

The next day, you and Ash go to Reese, who is responsible for revenue and thus has a
high interest in order fulfillment. You walk both of them through the process model,
which they are very interested in. Reese points out important milestones as well as
goals and key performance indicators (KPIs) for the process. All in all, you are well
on track and take some time during lunch to thank this book for teaching you about
process automation and BPMN.

Strengthened by some good food, you approach the inventory team and ask how you
can integrate with their service. Using the process model, you can easily show them
where you want to fetch goods from stock, and also explain why you don’t need to
reserve goods up front. They point you to a wiki page that contains precise informa‐
tion on how to call their service. Awesome!

196 | Chapter 10: Business–IT Collaboration

Figure 10-1. Your first sketch of the process

You feel it is time to get started. You remember your colleague Ariel talking about a
process automation vendor they were excited about. You call them right away and
discuss your project and environment. You learn that this vendor executes BPMN
models, which you find essential given that it has served you so well so far. In the end,
you are convinced that this is a good way to go. You approach Charlie to ask for a
proof of concept, and everyone is on board.

Two weeks later, Dani, a consultant from the vendor, pairs up with Kai, one of your
developers. The three of you basically lock yourselves in a room and implement the
process model. You quickly set up a development project and add the process model.
You write some glue code to call the other microservices. You also write an API that
can be invoked from the PHP application speaking to the hardware button. You even
write some unit tests for the whole thing. At the end of day two, you are able to pro‐
cess a real order! Enthusiastically, you plan to put this pilot to work and send a copy
of every real order to it. This way you can easily verify that it can handle your load.

You briefly check what requirements apply to deploying such an application and hap‐
pily learn that your company favors a cloud-first approach that allows you to run
some containers easily. To do so, you ask Kai to set up a CI/CD pipeline to build
Docker images every time a change is made to the process or the code around it.

But you start to worry a bit, because the project concerns the core business process in
your company. You ask yourself: what if a process instance gets stuck? What if certain

A Typical Project | 197

services, like the inventory service, aren’t available? What if customers ask about their
order status?

You arrange lunch with Georgie, head of operations for the legacy PHP application.
You want to learn how it is operated at the moment. Georgie tells you about scraping
log files, finding exceptions, looking into databases directly, and guessing about
potential fixes. It turns out they have a wiki page that lists common problems and
related cures. For anything not on the wiki, they simply open a ticket for a developer
to look into it. You’re not surprised that Georgie is looking quite tired. You quickly
get your tablet and show them your workflow vendor’s operations tool. You’ve pre‐
pared some failed process instances, for the purpose of illustration. You explain how
operations can be automatically notified, how they understand the process model,
and how they can take action. Georgie pays for your lunch.

A few days later, you succeed in getting Reese into a meeting (remember, Reese is
responsible for revenue). You show them the pilot case, but looking into the analytics
tool fed with real data. Figure 10-2 shows the executable model in the context of an
analysis tool.

Figure 10-2. The executable process model showing real-life data

198 | Chapter 10: Business–IT Collaboration

Reese is excited and drills into some data on the spot, discovering that the order can‐
cellation rate is disproportionately high when fetching from stock takes more than six
hours. Equipped with that data, Reese wants to address this issue with the inventory
team and is excited about replacing the legacy system.

Over the next two weeks you manage to get all the missing nuts and bolts developed,
the test coverage increased, the notification and monitoring systems connected, and
everything deployed on an elastically scalable infrastructure in the cloud that serves
the production traffic. Everybody loves you, and the world is unicorns and rainbows.

The Moral of the Story
This story clearly showed how the graphical process model facilitated collaboration
between the different stakeholders.

The project lead (you) loves that the whole project moves quickly and misunderstand‐
ings are reduced. Even if process modeling means more effort in an early phase, e.g.,
to discuss the model, that effort can be saved during implementation, as requirements
are clear. Looking at the whole life cycle, you can also imagine that future changes
will be much easier to incorporate without further archeology sessions.

The business analyst (Ash) loves to get everybody talking about the same model,
which also facilitates a common language. The process model is a great help in gath‐
ering, discussing, and documenting requirement, and using BPMN ensures those
requirements are clear and coherent.

The developers (Dani, Kai) love that it is easy to make the process model executable as
part of a normal development project. They can develop in the stack they know, with
the best practices they are productive with. The visual model helps them to under‐
stand the process intuitively, and probably even helps them navigate through their
sources. They see the advantage of the living documentation, recalling problems in
the past when nobody knew how something was implemented.

The operations or infrastructure person (Georgie) loves that they can understand
where incidents happen, the visibility they have into problems, and that they can
easily resolve them. And even in cases where they can’t help, they can easily share a
deep link showing the problem including context, which makes incident handling
much easier.

And the executives (Charlie, Reese) love that the project runs smoothly, the resulting
process is really working, and everybody is on board. Of course, they also love the
fact that they can now monitor a lot of KPIs that not only allow them to assess the
current performance but also to analyze bottlenecks.

I admit that this story is a bit idealistic, but it is not unrealistic. I have seen many
projects unfold with such a plot.

A Typical Project | 199

Including All the People: BizDevOps
Let’s discuss the value of process automation tools in a bit more detail by looking now
at the collaboration between business, development, and operations, abbreviated Biz‐
DevOps, as shown in Figure 10-3.

Figure 10-3. Visual process models foster the collaboration of business, development, and
operations

Development
Developers can leverage graphical models to communicate with other developers
about current projects, or as a visual aid to help them remember what they did a year
ago. Executable process models are living documentation; they cannot become outda‐
ted when a process is changed, as would happen with any other drawing that’s discon‐
nected from the code. Even the most rigid development procedures can’t avoid some
situations where an urgent fix is rolled out while the documentation is forgotten.

A good example of the value for developers is shown in Figure 10-4. It is a graphical
visualization of a test result, showing the exact scenario executed for a single test case.

This is handy when added to a CI/CD pipeline, as it means that developers can
immediately identify where a failing process test had problems and which path led to
that situation.

200 | Chapter 10: Business–IT Collaboration

Figure 10-4. Graphical models can help developers understand failed test cases

Business
Visibility is also a key enabler of better communication with business analysts and
other business stakeholders, like the project sponsor, the business department, execu‐
tives, or project leads.

A surprising observation is that projects using process models often report a spike in
effort during the first analysis phase. Shouldn’t the model help to reduce effort?

Because graphical models can be easily understood by a large group of people,
projects often discover a lack of clarity or problems with the process design relatively
early in the process. That requires another round of discussion, which takes some
additional time. This is not paralysis in analysis, but rather improves the model and
saves a lot of trouble in later stages of the project. So, the investment in a better model
at the beginning pays off during implementation.

Having said that, you might be reminded of the waterfall approach to software devel‐
opment, where you try to nail down the exact requirements in the very beginning of
the project before starting development. This turned out to be pretty unsuccessful in
most cases. Of course, that’s not what I had in mind when writing the preceding para‐
graph. Agile development approaches, which develop software in increments and
allow learning along the way, proved to be much more successful and should also be
applied to process automation projects.

Including All the People: BizDevOps | 201

But I want to emphasize that Agile does not mean “analysis free.” You should not just
start to hack away, as this seldom leads to the right results. The sweet spot is the mid‐
dle ground where you have a rough understanding of the big picture up front, but
analyze the next increment in detail.

Business roles benefit from the model being living documentation. Whenever you
need to apply new requirements to a process that is already rolled out, you have a
place to go and look at the existing model. If your tooling allows it, you can embed
the always-up-to-date model in a wiki like Confluence. Then everybody can easily
point out where to make a certain change, and nobody needs to do archeology to
understand the status quo.

Another benefit is that workflow engines write a lot of audit data. This can be visual‐
ized as overlay in the graphical model, as shown in Figure 10-5. This is a great basis
for analyzing and discussing bottlenecks, next iterations, or possible improvements.

Figure 10-5. Graphical models provide insights to business analysts to allow for process
improvements

Operations
Operations—often also called infrastructure—are too often forgotten when talking
about business–IT collaboration. These people do a very important job: they make
sure that everything runs smoothly in production. Whenever there is a problem,
somebody has to recognize and fix it.

Too often, operations folks need to work based on log files and data in databases. This
limits their ability to understand the full picture around the process, or to fix prob‐
lems themselves. Then the only way to solve an incident is to involve developers who
know the application by heart.

202 | Chapter 10: Business–IT Collaboration

Using a graphical process visualization helps operations to see incidents in context,
which includes the process model, historical information, data attached to a process
instance, and detailed information about the error or exception. Figure 10-6 shows an
example.

Figure 10-6. Graphical models help technical operators

The workflow tooling allows operators to fix certain scenarios easily. For instance,
they can trigger retries once temporal outages of services are over, possibly for thou‐
sands of process instances at once, or fix the corrupt data of a process instance using
a graphical user interface.

Your company probably embraces DevOps, or might be trying to reduce the opera‐
tions workload by pushing toward the cloud or serverless scenarios. Easing the load
on operations with tooling targeting a wider range of people is even more important
in that case, as it allows everybody in your team to detect, analyze, and fix certain
problems without being a specialist on certain parts of the source code.

In summary, workflow tools ease developers’ work, include business stakeholders in
IT projects, and empower operators to do their job well.

Including All the People: BizDevOps | 203

The Process Automation Life Cycle
This is a good place to talk about the process automation life cycle, as visualized in
Figure 10-7. This figure points out the value of visual process models in the various
stages of the life cycle.

Figure 10-7. The value of visibility in different phases of a project or development
iteration

In a typical project, there are four phases: first you analyze what you need to do, then
you design a process that will support this goal, then you implement it (including
deployment) before you operate it (in production). This will lead to new insights that
you analyze before designing and implementing an improvement, which is then oper‐
ated. And so on. It is a typical PDCA cycle (Plan, Do, Check, Act).

Again, this life cycle does not refer to a waterfall development approach, where you
need to go through months of analysis before you implement the whole application.
On the contrary, rather than it being a lengthy process that is completed once, with a
more Agile software development approach it’s expected that every iteration and
increment will go through this same life cycle. For example, you might analyze and
design for the next sprint in Scrum (a well-known Agile development approach),
implement it in a two-week-long sprint, and put it into production right after; you
then go straight into the next sprint.

You will see such life cycle pictures everywhere—in fact, most process automation
books might even start with one. I personally find it a bit boring, which is why I left it
to such a late chapter in the book. Still, you have it now for reference.

204 | Chapter 10: Business–IT Collaboration

The Power of One Joined Model
One important observation that can be made when looking at successful projects is
that collaboration between business stakeholders and developers does not mean that
one of them forces a model down the others’ throats. It really means collaboration.
Developers should not only think about architecture and technical considerations,
but also about the business aspects of a process. And business analysts must under‐
stand certain technical aspects, such as why a process model needs to change in order
to be executable. This mutual understanding is a big benefit on its own.

Collaboration is not about fighting trench wars to decide who is
right, but about gaining a common understanding of the reasons
for certain modeling decisions. This allows you to design a model
that everybody can agree on.

A critical success factor is that you don’t get trapped in the idea of having two differ‐
ent models: a “business model” that captures the business requirements, and a “tech‐
nical model” that is executable. This idea actually exists in many companies. It is
often fueled by slides about process landscapes that allow you to drill into a hierarchy
of processes until you finally end up at the executable process—a concept popularized
by big consulting companies. It might actually make sense to have a very high-level,
strategic model that fits on one page and can give everybody a rough idea of why the
process is there and what it does. But it is important to note that this model is like the
trailer of a movie: it might highlight some aspects, but it is not a true representation
of the actual plot. How a process is really implemented on an operational level might
be very different.

On the operational level it’s important to have a single, comprehensive model. Of
course, this model could have different versions, and may even live in different envi‐
ronments. For example, the business analyst might work on MightyProcess in their
collaborative BPMN modeler, while the developer works on mighty_process.bpmn in
their Git repository and the operations person works on processes/mightyProcess/1 in
their operations tool. Physically these are different files in different locations, like
source code, which might also be deployed on different servers. Logically, however, it
is one model.

The Power of One Joined Model | 205

Most importantly, this means those files all share the same content. There is no trans‐
lation, no transformation, no tricks required to get from one to the other. Different
people work on different physical “copies” at the same time, but this is like branching
or forking source code—which means you also have to think about the moments in
time when you sync the models again and merge your changes. This is not always the
easiest, but it’s doable. In reality it is often sufficient that there is one leading model,
let’s say in the developers’ Git repository. Whenever business analysts make changes,
these changes are remodeled in the leading model whenever you want to incorporate
them.

Be careful not to get sucked into a never-ending discussion around
how exactly this collaboration should work, how different models
can be automatically synced, or how a round trip from a business
analysis tool to the technical modeler and back works. While this is
all important to get right, too much discussion too early in the pro‐
cess of learning process automation can stop projects from moving
forward. Normally the approach settles after doing a couple of suc‐
cessful projects.

From a Process Pyramid to a House
I have to make a confession: I am guilty of having distributed a picture indicating a
process hierarchy in the past myself! In 2010 I wrote a book about BPMN together
with my Camunda cofounder. We published the pyramid shown on the left in
Figure 10-8, which advocated for different levels of process models.

We later came to understand that this illustration implied that the business throws a
model over the fence for IT to implement, which is exactly what we saw was not suc‐
cessful. So we changed the illustration to a house, as shown on the righthand side of
Figure 10-8, where the operational model simply contains human and technical flows
in one joined model. This works much better.

206 | Chapter 10: Business–IT Collaboration

Figure 10-8. Typical illustrations, like the pyramid on the left, suggest separate business
and IT models—it’s better to use one integrated model like the house on the righthand
side (from Real-Life BPMN, 4th Edition)

But what is a human process flow and what is a technical process flow? A human flow
is completely handled and controlled by a person, while a technical flow is handled by
software—e.g., the workflow engine. Human and technical flows typically interact to
represent all aspects of a business process important to various stakeholders. For
example, a human may trigger a technical flow in the course of doing their work by
clicking a button in their tasklist. Equally, a technical flow may require a human to do
something, thus creating a human task for them.

BPMN allows you to model all different flows in one big diagram, called a collabora‐
tion model. Technically you create separate processes, but place them on one canvas
and express the communication relationships. Figure 10-9 shows an example using
the customer onboarding process from earlier in this book.

The Power of One Joined Model | 207

Figure 10-9. A BPMN model containing human and technical process flows

The three different rectangles are called pools in BPMN. Each pool is a complete pro‐
cess. You can think of every process as one specific perspective on the overall business
process.

The process on the top is a human flow that describes how an office clerk handles
approvals. It allows everybody to understand what really happens and how that
impacts other processes. For example, it clearly shows that an approval letter is sent
manually, and thus must not be part of the automated process (I am not saying this is
the most efficient process, but it’s often reality). The process model of the human flow
can also be used within work instructions; this is why required templates are
mentioned.

208 | Chapter 10: Business–IT Collaboration

The process on the bottom shows details of how the CRM system is implemented.
While this is a technical flow, it is still solely documentation, as the CRM system does
not use a workflow engine. It is still helpful to understand the bigger picture, as often
there are a lot of things going on under the hood that you need to know to design
your executable process. In this example, you can see that the CRM already sends a
customer welcome mail, so you don’t want to do that in other places.

The process in the middle is the executable process on the workflow engine, as
known from previous examples in this book. It is connected to the other processes by
message flows, which could technically mean different things, from user interfaces or
emails to API calls or messages. As this is the only process directly executed on a
workflow engine, it is the only one that needs to be precise. All other processes are
documentation and will solely be interpreted by humans, so they have more freedom
and can for example focus only on aspects important to understand the overall ping-
pong between components.

Note that such a collaboration model leverages a lot of features of BPMN, and creat‐
ing one might not be the first thing you do as part of your own BPMN endeavor. On
the other hand, this way of showing the interaction between different actors—be they
humans, workflow engines, or other software components—is very powerful and
often helps everybody involved to really understand the bigger picture.

Unlike the executable technical flow, this collaboration model is seldom kept up-to-
date over a system’s lifetime. It is more a helpful artifact to use when discovering what
the executable process should look like.

Who Does the Modeling?
By now, you should have a good idea of how process models influence your software
development approach, how they foster collaboration, and how they can be directly
executed.

Against that background, additional questions typically arise: who creates the exe‐
cutable model? Can business folks really model on their own? How do you keep all
the physical copies of a model in sync over time? Who owns the model? What do I
need to learn in order to master all of this?

In order to find some answers, let’s look at the business analyst and the developer and
how they typically work with a process model. But let me add a short disclaimer first.
I’ve learned over the last decade that roles vary across enterprises, not only in their
responsibilities but in what they’re called. Even roles that have the same name can be
completely different. And of course, each person fulfilling the role will perform it in
their own way. What’s more, in smaller projects, one person might fulfill several or
even all roles. That’s all OK, but I do need to name some roles to move forward in this
chapter.

Who Does the Modeling? | 209

The business analyst thinks about the business requirements and focuses on the what
and why, trying to ignore the how (to leave the solution space open, so that develop‐
ers can decide on the option). Business analysts are typically the ones who create the
first drafts of a process model, which of course also shapes the executable process.
This is where they should work together with the developers to get it right. The best
workshops I have seen were staffed with analysts and developers, who together cre‐
ated the first versions of the process model. It is also worth adding some end users,
subject matter experts, and operations people for additional perspectives. These
workshops foster understanding of the problems faced by the other parties. For
example, the business analysts might learn why it is hard to implement a process in
the current IT ecosystem, and the developers might learn that legal requirements are
what led to such a complicated process. These insights alone have huge value.

Developers are responsible for making the models executable. When trying to do the
initial model execution, they often recognize flaws in the model. For example, they
could discover that an API needs additional parameters the process is not aware of,
or that an API cannot be called as envisioned. Developers need to be empowered to
adjust the model if needed. This not only means being able to add attributes to make
the model executable, but also to adjust it so that it can cope with real-world
challenges.

Of course, all changes need to be communicated back to the business analysts. There
must be a reason for every change that can be explained to all stakeholders. This
establishes a joint understanding and language between the business analysts and
developers over time, which is a huge asset on its own. It also allows a discussion
about modeling best practices, which naturally leads to a model that is accepted by
different roles. Once business departments understand the reasons behind technical
tasks in a model, they tend to accept these.

The adjusted model needs to serve as the basis for later improvements. In Agile
projects, you might develop the process solution in increments, meaning you have a
conversation about adjustments in every sprint. This is the moment where you might
sync the different physical model files referred to earlier. How exactly this is done
depends on the tool stack, but generally speaking the simplest approaches work best.
For example, your developers could send each executable model to the analysts as
soon as it is rolled out. The analysts would then apply all the changes to their current
model version to allow for improvements in the next iteration. Some tools provide
assistance with this, like support for versioning of models, diffing of models, merges,
and even automated round trips. This can of course help, but more importantly you
have to find your approach and stick to it. Discipline is more important than tool
features.

210 | Chapter 10: Business–IT Collaboration

Keep an eye on the executable models; you need to avoid having
business analysts overwrite or remove technical attributes that they
might not even see in their tool. That’s why the ownership of the
executable artifact must be with the developers.

Creating Better Process Models
Many people in different roles need to understand your process models (ideally
without much further explanation), and these models are artifacts with a long life‐
time. So there are good reasons to invest thought and time into improving your pro‐
cess models, and this section gives you some hints.

However, you should also make sure not to overdo it. Remember what Winston
Churchill said: “Perfection is the enemy of progress.” In other words: an imperfect
model that is in production might be more valuable than a perfect model that never
gets executed. Of course, this is subjective, and you might disagree. That’s fine, as
long as you push something to production—in the words of a colleague, “There is
never a perfect solution, so go for the model with the fewest unhappy people.”

Extracting (Integration) Logic into Subprocesses
One of the basic questions to ask about any process model is, which aspects belong in
the model at hand, and which might be better off in code, in a separate process model
that is invoked, or in a completely different service?

We already discussed process modeling language versus programming code in
“Model or Code?” on page 59, and we touched on service boundaries in “Respect
Boundaries and Avoid Process Monoliths” on page 131. Both are important aspects to
consider. This section examines the possibility of extracting parts of the process to
create a separate process model within the same service boundary.

Let’s revisit the customer onboarding example. Assume that creating a customer list‐
ing in the CRM system involves much more than a simple service call, as the CRM
system has a clumsy API that demands you create a customer first, and only then can
you pass on all the customer data. All of this is asynchronous, meaning you send a
message and need to wait for the result. Of course, the legacy system is slow, and the
response can take some minutes. As a bonus, sometimes messages get lost on the
channel because of a buggy messaging middleware being used.

Figure 10-10 shows a separate process handling these specifics, to avoid polluting the
main application process. The technical details to call the CRM system are extracted
into a separate model and invoked from the application process. This way, you keep
the same level of details for all tasks in the onboarding process, making that model
much easier to consume. This is an application of the divide and conquer strategy,
which helps you end up with models that people can read more easily.

Creating Better Process Models | 211

Figure 10-10. A possible process to implement customer onboarding

There is another clear reason to extract logic into a separate model: reusability. For
example, imagine that you need to create a customer in the CRM system in multiple
places in your process model.

This use case brings up a quite interesting question: do you want to support this kind
of reusability on a process model level, or would it be better to create a separate ser‐
vice for customer creation that is globally usable, with a proper API, so that nobody
needs to know that it even runs a workflow engine? Yes, that might be the case, as
discussed in Chapter 7. Remember that a subprocess in BPMN is only a valid choice
if all logic is contained within the same boundary.

Other than that, there are no hard rules available about when to extract logic into
separate models. It’s like programming—there are no hard rules about refactoring
code into separate methods. Still, it influences the readability of the resulting code.

Sometimes, it is a matter of taste. Some people prefer to have bigger models with all
details, and then apply modeling conventions to keep them readable. This bears the
risk of those process models being too daunting for some viewers. Others like to cre‐
ate a lot of subprocesses to have a clean main process, which on the other side bears
the risk that a reader needs to navigate through a lot of models. It also makes it harder

212 | Chapter 10: Business–IT Collaboration

to model some circumstances, like going backwards in a process model if a cancella‐
tion request comes in.

My recommendation is to avoid using subprocesses if possible, but to introduce them
if you clearly have logic at different levels of granularity, as this yields process models
that are easier to understand.

Distinguishing Between Results, Exceptions, and Errors
There is another area that is the source of so many discussions in real life that it
deserves its own section: dealing with deviations from the happy path. The happy
path is kind of the default scenario with a positive outcome, so no exceptions or
errors or deviations are experienced. But real life is full of exceptions, so let’s talk
about them.

BPMN defines the error event as something that allows a process model to react to
errors within a task. Figure 10-11 shows an example where the scoring service might
raise the error that the customer data is invalid. You can also see that instead of using
error events, you can write a problematic result into the process context and model
an exclusive gateway later in the process, as is done with customers where no rating is
available. This also allows your process to take a different path if that problem occurs.
In this case, from a business perspective the underlying problem looks less like an
error and more like the result of a task.

Figure 10-11. Processes can react to errors in services, which is semantically a bit differ‐
ent than getting a negative result and deciding on it

In this example, it might be a valid result from the scoring that a customer cannot be
scored, so this should be handled not as an error but as an expected result. It’s a thin
line, but it’s worth giving it some thought as this decision will influence how easy
your model will be to understand.

Creating Better Process Models | 213

As a rule of thumb, deal with expected results of tasks by means of
gateways, but model exceptions (which hinder us in reaching the
expected result) via error events.

In real life, you’ll also have to deal with technical problems. You can’t treat them in
quite the same way. Suppose the rating service becomes temporarily unavailable. You
might not want to model the retrying, as you would have to add that to each and
every service task. This will bloat the visual model and confuse business folks.
Instead, you need to configure some technical attributes for retrying rules, or handle
incidents in operations. This is hidden in the visual. If you want the retrying to be
visible to everyone, you can add text annotations as shown in Figure 10-12.

Figure 10-12. Retrying service calls upon failure is typically hidden in attributes; if this is
important, text annotations allow you to add information for humans reading the model

The terms business error and technical error can be confusing, as they emphasize the
source of the error too much. This can lead to long discussions about whether a cer‐
tain problem is technical or not, and if you are allowed to see technical errors in a
business process model. Actually, it is much more important to look at how you react
to certain errors. Even a technical problem can qualify for a business reaction. For
example, you could decide that you continue a process in the event that the scoring
service is not available, and simply give every customer a good rating instead of
blocking all progress. The error is clearly technical, but the reaction is a business
decision.

So, I prefer to talk about business reactions, which are modeled in your process, and
technical reactions, which are handled generically in the tooling, like retries or inci‐
dents in operations.

214 | Chapter 10: Business–IT Collaboration

Figure 10-13 shows an example where there is a technical reaction (retrying) to the
unavailability of the scoring service. But after a certain time, the reaction is escalated
to a business level, to avoid breaking any SLA the scoring service has to comply with.

Figure 10-13. Technical reactions like retries are not visible in the model, but business
reactions are

Increasing Readability
You want to use visual models to better understand, discuss, and remember pro‐
cesses. Hence, it pays off to invest some effort in making the models easy to read and
understand, which boils down to following modeling conventions. Most enterprises
define their own conventions over time. You can find example modeling conventions
linked on the website for this book.

This section gives you two typical examples: labeling elements and modeling to fol‐
low the happy path.

Labeling elements
Using labels for all process model elements will make sure that your readers really
understand the business semantics of a process. The clarity of a process is often
directly linked to how well chosen its labels are.

In Figure 10-14 you can see:

• The start event is labeled with a description in passive voice (“Order placed”).
• All tasks are clearly labeled to inform the reader what piece of work needs to be

carried out, typically using the pattern verb + object (e.g., “Retrieve payment”).

Creating Better Process Models | 215

https://ProcessAutomationBook.com

• A labeled gateway makes it clear under which conditions the process continues
on what sequence flow, typically by posing a question at the gateway and adding
the answer to the sequence flow.

• Labeled end events characterize the end results of the process from a business
perspective, typically in the event style (“Order delivered”).

Figure 10-14. A process model sticking to labeling and naming conventions

Model from left to right and emphasize the happy path
Model process diagrams from left to right (or the other way around if that is how you
write in your culture), and especially not from top to bottom. This supports the read‐
ing direction and also takes the human field of vision into account, which prefers
wide screens. Can you imagine a cinema having a screen that is higher than it is wide?

You can further improve the readability of diagrams by carefully positioning symbols
from left to right according to the typical point in time at which they happen. While
this is not always easy, it makes a big difference.

You may also want to emphasize the “happy path” leading to the delivery of a success‐
ful result by placing the tasks, events, and gateways belonging to the happy path on a
straight line in the center of your diagram, as shown in Figure 10-15. At least you can
try, as this will not always be feasible.

Figure 10-15. A very readable process modeled from left to right, which respects timing
and emphasizes the happy path

216 | Chapter 10: Business–IT Collaboration

Conclusion
This chapter highlighted the importance of graphical process models for different
stakeholders. This was examined in the context of a typical project, naming project
roles and life cycle phases.

You should now have a better understanding of who does the modeling, how differ‐
ent stakeholders can work with a joined model, and what actually makes a good
model.

In the next chapter, we’ll explore process visibility in practice.

Conclusion | 217

CHAPTER 11

Process Visibility

This chapter:

• Doubles down on the value of process visibility
• Explains how to achieve process visibility, both when using a workflow engine

and in heterogeneous environments
• Shows typical metrics and reports that you might want to set up

The Value of Process Visibility
Visibility actually influences process performance on two dimensions:

• (Continuous) process improvement
• Process operation

Process improvement means making the process better. “Better” can mean many
things; for example, making it cheaper to operate, reducing cycle times, or allowing
for a bigger scale, meaning more instances can be processed in the same amount of
time. Sometimes it also means supporting business models that were not possible
before. Process visibility is an essential tool for these improvements because it makes
it possible to identify bottlenecks in existing processes as well as facilitating discus‐
sions of improvement alternatives.

Process operation is about “keeping the lights on.” This involves business-oriented
operations roles, who are interested in SLAs or instances that are stuck because of
business problems. It also involves more technical operations roles who care about
incidents with technical causes, for example because required systems are down or
input data is corrupt.

219

In most companies, operations roles cannot be clearly marked as
business or technical; it is much more a continuum of being more
business or more technical. That’s why I decided to just talk about
operations in this book.

Process visibility helps all operations roles. One interesting element of this is provid‐
ing what is called situation awareness. There is a lot of research from cognitive psy‐
chology in this area that proves that situation awareness is crucial for an operator’s
decision outcome.

An interesting example of this was studied in the context of air traffic control and the
control rooms of nuclear power plants. The authors of the report, “The Impact of
Process Visibility on Process Performance”, found that “the operator must have
knowledge of the current process state at all times, and the ability to use this knowl‐
edge effectively in predicting future process states and controlling the process to
attain operational goals.” This study further reinforced the value of visibility and its
influence for process performance by looking at the lean movement: “Visual controls
that create immediate transparency about abnormalities are a crucial part of lean pro‐
duction systems, and they are essential for banishing waste to continuously improve
processes.”

So research confirms the importance of process visibility—but let’s conclude this
detour and get more practical. Table 11-1 lists typical use cases of various stakehold‐
ers where visibility provides a benefit in terms of process improvement or process
operation. The use cases are further sorted by the process automation life cycle pha‐
ses, which were introduced in “The Process Automation Life Cycle” on page 204. This
table also indicates how many process instances the person typically needs to look at
and (where relevant) how to find that subset. This is an interesting aspect when
thinking about the user experience and tool support.

Table 11-1. Use cases that benefit from process visibility

Who? What? Phase in life cycle Benefit How many instances?
Business
analyst

Understand currently
implemented process from living
documentation

Analysis Process
improvement

All

Business
analyst,
developer

Collaborate to discuss and
document requirements

Design Process
improvement

All

Developer Understand process during
implementation

Implementation Process
improvement

All

Operator Understand and resolve incidents Operation Process operation One to many (filter for
incidents)

220 | Chapter 11: Process Visibility

https://oreil.ly/gPTjq
https://oreil.ly/gPTjq

Who? What? Phase in life cycle Benefit How many instances?
Operator,
service desk

Understand status of selected
process instance

Operation Process operation One (find dedicated
instance based on business
criteria)

Business
analyst

Analyze and communicate
changes, weaknesses, or
improvement potential

Analysis Process
improvement

All or subset filtered by
date or business data

Process Owner Understand process performance Operation, analysis Process operation
and improvement

All or subset filtered by
date or business data

You might want to return to the ShipByButton discussed at the beginning of Chap‐
ter 10 to map these use cases to that story.

Getting the Data
Your next question might be, how can I get the right data to achieve the required level
of process visibility? Let’s look at some options.

Leverage Audit Data from Your Workflow Engine
When using a workflow engine, you get visibility for free. Most products use graphi‐
cal models and leverage them for design, implementation, and operations.

Nevertheless, you should make sure that the visuals are suitable for all target groups.
This book emphasizes BPMN, which does a great job at this. Be cautious with other
notations, especially if they claim to be lightweight, as was explained in “Process
Modeling Languages” on page 100. Some tools only autogenerate visuals during run‐
time, which provide very limited help, meaning that you might miss out on a lot of
the value.

There are different ways to access the audit data from your workflow engine. The
easiest option is to make use of existing monitoring and reporting tools from your
vendor, as discussed in “Business Monitoring and Reporting” on page 42. They pro‐
vide a great starting point and should work out of the box. The power depends on the
concrete tool.

Another option is to access the data via the API of the workflow engine. This allows
you either to build your own user interface on top of that API or, probably better, to
load the data into your own database to analyze it later.

Sometimes you might also read data directly from the database of the workflow
engine, bypassing the API. Typical reasons for that design choice are the lack of a
proper API or performance issues with using the API for mass data. If you limit your‐
self to read access to the data, this might be OK. But it should always be a last resort,
as a database schema is an implementation detail of the engine and should be treated

Getting the Data | 221

as such. For example, you don’t get the same guarantees in terms of backward com‐
patibility as you would for an API.

If you want to create an ETL job to transfer the data into your own data warehouse
(DWH) or business intelligence (BI) solution, this job can also either access the API
or fall back to the database.

Some workflow tools also allow history data to be published as an event stream. You
can then subscribe to that stream in order to store the data in the format of choice.

So what’s the best way to access audit data? As always, it depends. In this case, the
“best” option mostly depends on your overall architecture and stack. Your workflow
vendor might be able to make recommendations.

Model Events to Measure Key Performance Indicators
With every process execution within a workflow engine you can immediately collect
important KPI metrics, for example about the number of process instances per time
unit or cycle times.

But often you want to analyze additional performance indicators. For example, you
may want to understand how long it takes to deliver an order after payment is
received. To support this, you can explicitly add more business milestones to your
process model. In BPMN this means adding intermediate events, as shown in
Figure 11-1.

Figure 11-1. You can add measuring points to your process model, often used as
milestones

These milestones do not have any execution semantics other than to leave a trace in
the audit trail of the workflow engine. A milestone is met as soon as the process has
passed the event; its status can therefore be passed or not passed.

Another approach is to model phases. In BPMN you can use embedded subprocesses,
as shown in Figure 11-2.

222 | Chapter 11: Process Visibility

Figure 11-2. You can add phases to your model

In contrast to a milestone, a phase can have a third status: active.

You can leverage business milestones and phases for monitoring and reporting, as
described throughout this chapter. Most typically, they are used to enable business
roles to get an aggregated view or to provide simplified views for end users or cus‐
tomers. Let’s briefly investigate the latter a bit more.

Status Inquiries
Imagine you want to answer status inquiries about orders, like “Where is my order?”
You probably offer this information in the customer self-service portal. In this case,
you can’t just use the executable BPMN process, as this typically shows too many
internal details that you don’t want to disclose, or that may confuse customers.

There are two basic ways to solve this: you can design a custom simplified process
model that is specifically intended for the customer (or support agent), or you can
leverage milestones or business phases to create a bespoke visualization.

Figure 11-3 shows an example of a custom process model using BPMN. This process
model is only used to visualize the status; it is not executed on any engine. This
means that the model does not have to be correct, as long as it serves its purpose. In
this example, the model simply shows the audit data from certain tasks (including
phases) that exist in the real process. Other tasks are removed. As you can see, this
model is simply a different visualization—the data can still be accessed from the
workflow engine directly, making this easy to implement. A code example is included
on the book’s website.

Status Inquiries | 223

https://ProcessAutomationBook.com

Figure 11-3. A process model only used for status inquiries

However, it’s often easier to create a bespoke visualization to show milestones or pha‐
ses to customers or customer support agents. For example, checklists are very popu‐
lar for visualizing milestones, as the example in Figure 11-4 shows.

Figure 11-4. Status visibility for customers often has the form of a checklist

A big challenge in this context is finding the right process instances. Customers who
call in may not know their process instance IDs. In fact, they might not even know
their order number or customer IDs. This means that you need to provide some
search capabilities. If this is to be based on workflow engine data alone, you need to
make sure to attach the required data to the process instance.

Another observation with status inquiries is that you quickly leave the scope of one
process instance. Typically, you want to look at the end-to-end process, and that
might start before the workflow engine is involved. As the topic of heterogeneous
end-to-end processes is not limited to status inquiries, we’ll look at it in a broader
scope next.

Understanding Processes That Span Multiple Systems
As you read about in Chapter 7, end-to-end processes are seldom executed in just
one context, microservice, or component. Instead, processes cross boundaries. That
means end-to-end processes are often not entirely executed on one workflow engine.
Take a typical onboarding process—it might start with a paper document (the cus‐
tomer order) being sent, scanned, OCRed, and categorized before a process instance

224 | Chapter 11: Process Visibility

is started in a workflow engine to handle the onboarding flow. In fact, the process
might even start earlier, when a prospect downloads the order form.

This means you need to take further action to gain visibility into the end-to-end pro‐
cess. This also applies if your event-driven architecture favors choreography to imple‐
ment certain parts of the process, as explained in Chapter 8.

This section will briefly introduce approaches used in real life, and their trade-offs.
Interestingly enough, many tools in this area are still emerging at the time of writing,
so expect some movement in the market.

Observability and Distributed Tracing Tools
A common idea is to leverage existing observability tools from the microservices
community. These tools often focus on understanding emergent behavior, as
explained in “Emergent Behavior” on page 150, in hindsight.

A common example is distributed tracing, which strives to trace call stacks across dif‐
ferent systems and services. This is done by creating unique trace IDs that are added
to all remote calls (e.g., in HTTP or messaging headers). If everybody in your uni‐
verse understands or at least forwards these headers, you can leave breadcrumbs
while a request hops through different services. Figure 11-5 shows an example.

Figure 11-5. Distributed tracing shows distributed stack traces (source: https://zipkin.io)

Distributed traces help you understand how requests flow through the system. This is
great for pinpointing failures or investigating the root of performance bottlenecks.

Understanding Processes That Span Multiple Systems | 225

https://zipkin.io

And as there are several mature tools, it is relatively easy to get started, even if you
have to instrument your applications or containers to support the traces.

But two factors make it hard to apply distributed tracing tools to the problem of
understanding end-to-end business processes:

• Traces are hard for non-engineers to understand. My personal experiments
where I showed traces to non-tech people all failed miserably. It was far better to
invest some time in redrawing the same information with boxes and arrows. And
even if all the information about method calls and messages is useful to under‐
stand communication behaviors, it is too fine-grained to understand the essence
of cross-service business processes.

• To manage the overwhelming mass of fine-grained data, distributed tracing uses
sampling. This means only a small portion of all requests are collected. Typically,
more than 90% of the requests are never recorded, so you never have a complete
view of what’s happening.

Custom Centralized Monitoring
Instead of collecting technical traces, you’re better off collecting meaningful business
or domain events. This allows you to get the right granularity of information. You can
then build your own centralized monitoring tool on top of these events, which is basi‐
cally a service that listens to all events and stores them in a separate data store. The
important aspect is to use technology that can handle the required load and perform
the desired queries. This is visualized in Figure 11-6.

Figure 11-6. Custom centralized monitoring allows you to monitor end-to-end processes
in heterogeneous architectures

226 | Chapter 11: Process Visibility

Events can originate from multiple sources; they can include existing events from
your event-driven architecture, custom events emitted for monitoring purposes, or
events extracted from legacy systems. Furthermore, good workflow engines support
sending relevant events automatically (e.g., that a process instance started, that a
milestone was reached, that a process instance failed, or that an instance just ended).

In the easiest case, the centralized monitoring solution shows a list of events, process
instances, and current incidents for every end-to-end process instance. This view
might provide links to the right operational support tool of the respective workflow
engine, which allows you to dive into all the details or to resolve incidents.
Figure 11-7 shows an example.

Figure 11-7. Central tooling can provide all the relevant information for an end-to-end
process, including links to the decentralized operating tools

You can also leverage graphical process models to visualize this information. Light‐
weight and open source JavaScript frameworks like those from the bpmn.io project
make it easy to create HTML pages, as shown in Figure 11-8.

Of course, you can also build multiple models highlighting different aspects of the
same end-to-end process. This is especially handy for business analysts who want to
focus on a certain hypothesis or process phase.

Understanding Processes That Span Multiple Systems | 227

http://bpmn.io

Figure 11-8. A simple HTML page leveraging a BPMN viewer to show status on a
graphical process model

Custom monitoring solutions are a powerful mechanism, but need additional effort
to build. And a big barrier to introduction in large enterprises can be lack of clarity
on the ownership of such a component: who will build, operate, and maintain it?

Data Warehouses, Data Lakes, and Business Intelligence Tools
Of course, you can also leverage existing data warehouses or data lakes. In fact, maybe
your existing business intelligence, analytics, or reporting tools can even handle some
requirements for end-to-end process monitoring out of the box. This might be a good
starting point, as it means you can avoid the hassle of introducing a central tool. This
approach is visualized in Figure 11-9.

228 | Chapter 11: Process Visibility

Figure 11-9. Data warehouses can be leveraged to provide insights and therefore collect
data from workflow engines

But this approach comes at the price of losing process context and typically also the
visualization as process models.

Loading audit data from workflow engines into these tools is often a challenge, as it is
hard to preprocess and store the relevant data in a way that leads to actionable data in
the DWH.

It might be a good compromise to leverage the DWH as the data store, but still
develop a custom user interface on top of it. This has more flexibility when it comes
to providing process context, e.g., by showing process diagrams.

Process Mining
A completely different breed of tool is process mining tools. They solve the problem
of understanding how a process is actually automated using a mixture of different
tools like ERP or CRM systems. Typically, this involves loading and analyzing a
bunch of log files from these systems to discover correlations and process flows.

Process mining tools can discover a process model and visualize it graphically. They
also allow you to dig into detailed data, especially around bottlenecks or optimization
opportunities. A sample is shown in Figure 11-10.

Understanding Processes That Span Multiple Systems | 229

Figure 11-10. Exploring data in a process mining tool (source: https://www.prom
tools.org/doku.php)

Process mining adds interesting capabilities for achieving visibility into your business
processes. Unfortunately, the focus of most of the tools is on discovering process
flows within legacy architectures.

That means these tools are good at log file analysis but not really good at ingesting
live event streams. They enable analysis of the discovered process models, but do not
serve monitoring or reporting use cases. And they typically leverage direct follower
graphs instead of BPMN, making it hard to show these graphics to all stakeholders
involved.

Furthermore, in most scenarios, process mining tools are used in extensive analysis
projects intended to discover, understand, and analyze a big legacy chaos. In these
projects, it can take weeks to discover what events can be leveraged and where to find
them.

So, while process mining is valuable, it has a different focus than allowing real-time
process monitoring and reporting.

Process Event Monitoring
An emerging category for solving this problem is process event monitoring. The idea
is that you can define a process model for monitoring and then map events to certain
tasks, as visualized in Figure 11-11.

230 | Chapter 11: Process Visibility

https://www.promtools.org/doku.php
https://www.promtools.org/doku.php

Figure 11-11. Process event monitoring

Events carry a unique trace ID (as described with distributed tracing) and can be
ingested from various sources. This solution is comparable to custom monitoring,
with the main difference that a lot of functionality comes prebuilt from the vendor.

Current Market Dynamics
By the time you’re reading this these categories might have blurred: typical process
mining tools might have gotten better at process event monitoring and vice versa;
observability tools might add business perspectives; and lightweight tooling might be
used as a basis for custom monitoring solutions, reducing implementation effort.

In summary, there are already a few options available today, and in the future I expect
this to get a lot easier. I’m excited myself to see exactly how this happens.

Understanding Processes That Span Multiple Systems | 231

Setting Up Process Reporting and Monitoring
To be successful with your process automation project, you have to set up the right
reports and metrics. Let’s explore this in a bit more detail.

Typical Metrics and Reports
The most important metrics are relatively straightforward. Some are based on process
duration. These include:

• Cycle time, which refers to the duration of the entire process (either a process
running in one workflow engine, or the end-to-end process). This is a key indica‐
tor when judging process performance. It is further interesting to analyze trends
and outliers, for example in order to understand the reason behind and impact of
extremely slow process instances.

• Duration of specific parts or phases of the process. This can be useful if you want
to limit your analysis to a smaller part of the process.

• Duration of a single tasks. For example, you might want to verify SLAs or analyze
improvement potential for individual steps.

Other typical metrics are based on count. For example:

• Number of started and ended instances
• Number of instances visiting a specific path
• Number of instances reaching a specific end state (end event in BPMN)

Ideally, you want to access these metrics in (near) real time, at a large scale, and of
course they must be accurate. Furthermore, you might need some alerting in case
metrics pass a certain threshold—for example, if delivery time for orders spikes and
you need to investigate why. Ideally, all stakeholders involved should be able to access
relevant information in a self-service form, possibly even creating their own process-
focused visualizations and reports.

This is quite a wish list. But it is actually feasible, if you have monitoring and report‐
ing tools that know about the process context. These tools can spit out all of these
numbers and do analysis around them out of the box. However, if you miss the pro‐
cess context, for example because you base your reporting on your own DWH, this
analysis might get cumbersome, if not impossible. Typically, real-life projects have to
tweak their DWH loading jobs (ETL) to precalculate metrics, like the cycle time for
processes, in order to have them available in the DWH. This impedes the business
agility you want to achieve with process visibility.

232 | Chapter 11: Process Visibility

This is why setting up dedicated process monitoring and reporting tools makes a lot
of sense. Ideally, you can even provide real-time dashboards with process context.
Figure 11-12 shows a real-life example from a customer.

Figure 11-12. Example dashboard for real-time visibility

Allowing for a Deeper Understanding
These generic metrics, aggregated at a relatively high level, are not always enough to
facilitate process improvement. You also need to provide more fine-grained data to
allow for deeper analysis.

For instance, you might want to be able to distinguish differences depending on the
process context, meaning that you need to examine the data attached to process
instances. Or you might want the ability to track changes over time; for example, to
analyze trends. It can be useful to incorporate the process state when doing reports, as
it makes a difference if processes are still running, if they completed, or if they were
canceled. Furthermore, you also want to be able to look into the path a process took,
as certain special cases will need investigation.

Imagine an insurance onboarding process, where people can apply for a new car
insurance contract. An example is shown in Figure 11-13. In this process, some con‐
tracts need manual approval. This means that the overall cycle time also varies
greatly, as customers are served very fast in the fully automated case, but relatively
slowly in the manual case.

Setting Up Process Reporting and Monitoring | 233

Figure 11-13. With process context knowledge you can make sense out of the data, like
analyzing outliers

Now suppose that you investigate the data and learn quickly that even the duration
for the human task instances also varies widely. You’re curious as to why this is the
case, especially as you want to discover how to speed things up. So, you analyze the
outliers with regard to the duration of that task. You get some insights as soon as you
look into the data attached to the process instances, because all of the slow processes
involve older drivers applying for fast sports cars. This gives you a good basis to talk
to the team lead of the clerks, to clarify why these cases seem to be more complicated
than others. The process context helps you to find the important indicators to
improve process performance and thus customer satisfaction.

Conclusion
You get some degree of process visibility for free when using workflow engines to
automate processes.

However, many processes, especially end-to-end processes, are heterogeneous. This
chapter described how to gain visibility in this case, either by using off-the-shelf
products geared toward process event monitoring or process mining, or by imple‐
menting a custom monitoring solution. Typical DWH and BI tools don’t cut it, as the
process context is missing, which makes generating even simple reports hard and
flexible, deep analysis impossible. Finally, this chapter gave you some starting points
regarding what metrics and reports you want to set up.

234 | Chapter 11: Process Visibility

PART III

Get Going!

This last part of the book will focus your attention on introducing process automa‐
tion successfully in your company.

Chapter 12
Here, you’ll learn what a successful adoption journey can look like, highlighting a
pragmatic, Agile, and iterative process to introduce process automation. This
chapter describes the difference between top-down directives and bottom-up
success stories; it will help you understand not only how to set up your first
project for success, but also how to scale adoption later.

Chapter 13
The concluding chapter of the book presents some closing thoughts.

CHAPTER 12

The Journey to Introduce
Process Automation

This chapter will answer questions like: how can you introduce process automation
into your organization? How can you make your first project successful? And how do
you establish a company-wide practice to scale adoption?

To achieve this, it:

• Sketches two typical adoption journeys and derives a pattern from them
• Describes the first steps in this journey, which are the crucial ones (particularly in

the first one to three process automation projects)
• Dives into scaling adoption across the entire organization, and all the challenges

that come with that

You might wonder why you’re reading about these topics in a technical book. The
reason is twofold. First, as a developer or software architect, you need be aware of
certain challenges to be able to address them. Even if politics are beyond your direct
control, you will be affected by them, and you need to take actions that will help
avoid major problems with your projects.

Second, if you are an enterprise architect, it is vital to learn best practices on how to
introduce process automation into your enterprise. Your job is not only to under‐
stand capabilities and architecture, but also to find the right balance between giving
important guidance, defining necessary guardrails, and letting projects breathe.
Instead of defining “the right architecture” for your company, you will much more
likely end up as an internal consultant and facilitator. This chapter will equip you
with the basics to achieve that.

237

Understanding the Adoption Journey
But first things first, let’s understand the typical journey to adopt process automation.
I find it most helpful to learn from examples, so we’ll look at two stories here. One is
a made-up failure story that contains many elements from real life. It will help you
understand failures you definitely want to avoid. The second is a real-life story from a
customer I have observed over many years. This story will emphasize the elements
that led to their success.

Failures You Want to Avoid
Imagine you are an IT executive at the fictional company DontDoItAtHome Inc.
DontDoItAtHome provides a marketplace for handcrafted goods that customers
don’t want to build themselves at home.

After a vendor event, your CIO returns to the office enthusiastically talking about the
potential of process automation and the great impact workflow automation platforms
can have on the productivity of your developers. They explain how process orienta‐
tion is a strategic topic and suggest that you should set up a central workflow engine
to enable broad adoption throughout your enterprise.

You ask them how they want to start that initiative—and what project should first
adopt the new methodology. They tell you that process automation is too strategic to
start with a trivial project. No—they plan to set up a whole program for it! They even
promise all of the funding—isn’t that great? Although you do wonder where that
money will come from; they told you just last month that there was no budget left for
an important feature your customers are begging for.

Your CIO assembles a team to evaluate a workflow tool, specifically asking that they
don’t forget the vendor that hosted the great event they attended. After choosing a
product, this team will build a company-specific platform around the core product to
support your specific IT infrastructure. The plan is that once this platform is in place,
projects can race through automating important business processes.

In order to prepare input for this race, another team is pulled together. They collect
all the relevant business processes and sketch them on a process landscape. As pro‐
posed by a big consultancy company, they follow a layered approach for the process
architecture. They describe relevant business processes down to a very detailed level,
which should serve as input for the automation projects that will soon implement the
executable processes on the new platform.

Six months into this endeavor, your CEO starts to get nervous and wants to see
results. Neither the workflow platform nor the process architecture team has deliv‐
ered any immediate business value. Your CIO is being pressured to show real ach‐
ievements that translate into a proper business case for such a huge investment.

238 | Chapter 12: The Journey to Introduce Process Automation

The CIO wants to make a statement and decides to automate the most crucial process
first, which is the order fulfillment process. This will get a lot of visibility in the busi‐
ness, and they are convinced that they’ll be able to show how great and important the
workflow platform is for the company.

A new project team is formed to implement order fulfillment. They have no experi‐
ence with workflow engines, and certainly not with the new internal platform. And
learning about that internal platform is difficult because it is poorly documented.
They need to consult the platform team regularly.

Upon learning more about the underlying workflow product by doing some research
on the internet, the project team discovers that the in-house platform blocks them
from using more than half of its features. On top of that, it uses a version of the tool
that is a year old and has severe shortcomings, all of which the vendor has fixed in the
latest version.

And the platform team has no time to work on any of their requests: several addi‐
tional process automation projects have been kicked off, and the platform team’s
capacity is fully consumed by simply explaining the platform to everybody involved.

As a result, the order fulfillment team has to work with half the features of an already
outdated engine, plus bespoke features that are either useless, undocumented, or
unstable (or all three at the same time).

On top of that, they get a process model from the process landscape project as a
requirement. The expectation is that they just need to implement it. How hard can
that be? As it turns out, it is impossibly hard. That process model is basically not usa‐
ble. It’s missing a lot of details needed for implementation and also contains a lot of
wishful thinking about what a to-be process could look like. The project team discov‐
ers that the process model needs severe changes that will also influence how a lot of
employees throughout the organization will work in the future.

At the same time, business departments are tired of discussing the process model, as
they’ve already held too many meetings six months ago to model the process as part
of the process landscape setup. Unfortunately, these efforts did not yield tangible
results or improvements for the business.

Of course, nobody in the company wants to hear this reality, especially given the fact
that the same workflow tool works nicely for other companies, and that a ton of
money was just invested in this program. As a result, the organization might not even
learn from their failures, so it will be doomed soon after.

Understanding the Adoption Journey | 239

You can derive a lot of insights from this example:

• Don’t start with big strategic endeavors too early in your journey. Start with a
project, not a program.

• Avoid a top-down adoption motion; create an environment that allows bottom-
up growth instead. A great balance is to have an environment where grass-roots
initiatives can start, and then support the most promising ones to drive adoption.
Scaling adoption should always come as a second step.

• Resist the temptation to create your own platform.
• Pick the right processes to be automated first. The most important core process

in its entirety might be a bit too big, too risky, and too complicated to attempt as
a first step.

• Don’t start too many projects at once.
• Concentrate on delivering business value. Your process solution needs to solve a

real business pain.
• Don’t start with process architecture or process landscape initiatives. You cannot

expect to derive ready-to-be-used process models for your process automation
projects up front. You’ll be better able to sketch process architectures later, when
you know how process automation really works.

• Let your own learnings influence your target picture, which includes embracing a
culture where failures are openly discussed to learn from them. Vendors’ or con‐
sulting companies’ best practices (or books) can serve as a good starting point,
but can’t replace finding your own way.

• Make sure to let project teams breathe and make their own decisions.

A Success Story
Let’s contrast DontDoItAtHome with a real-life success story. This story is about an
insurance company with around 7,000 employees, which I won’t name here. I also
can’t deliver the same amount of detail as in the fictional story, but will concentrate
on a summary instead.

In 2014, the insurance company formed a team to automate the handling of specific
car insurance claims. There was a real pain point here, as the existing claim handling
was mainly manually driven and spanned a couple of organizational units. This made
it easy to build a business case for the project and get buy-in from top management.
This was further backed (not driven) by the strategic initiative to intensify “process
orientation,” which was a hot topic for insurance companies back then.

240 | Chapter 12: The Journey to Introduce Process Automation

As part of this project they:

• Evaluated a workflow tool
• Analyzed and modeled the one executable process
• Implemented the whole process solution
• Integrated it with their existing user interface
• Integrated it with their existing SOA infrastructure
• Exported relevant data into their data warehouse
• Put it into production and operated it

The big secret to the success of that initial project was that the focus was on solving a
business pain. Introducing workflow automation technology was an important step
in that project for strategic reasons, but they managed to keep a good level of prag‐
matism. For example, when they discussed process reporting in their DWH, the
project manager cut off discussions that went into too much detail. Instead, they
pushed for implementing the minimum viable feature set required for this project in
a timely manner.

I also remember one nice anecdote around that project. During the evaluation phase,
some big vendors pitched their workflow tooling, but so did my company, as the only
open source vendor. We were small at that time, and could not yet show long lists of
insurance references. Still, we were invited to a first sales meeting. I only heard later
that the project team was deeply impressed by the pre-sales consultant (me) choosing
not to focus on slide shows and white papers, but insisting instead on showing a
demo, explaining source code, and kicking off a proof of concept as soon as possible.
It was the exact opposite of the big vendors’ pitches, and this resonated with them so
well that they also convinced their CEO. The rest is history.

After the initial project, the team was reorganized into its own department. They
were given the responsibility of helping other teams with the design and development
of process solutions. In the first two or three years, they did a lot of the implementa‐
tion work for these teams, but over time evolved into an internal consulting task force
that “just” helped other teams to get started.

In an organic way, they became the go-to place for any questions or discussions
around workflow tooling. As such, they not only made sure experiences and insights
were kept, but also facilitated knowledge sharing across the entire organization.
Today, they also run an internal BPM blog, organize their own training classes, and
manage an annual internal community event where different teams can share best
practices.

While they did develop some tools on top of the workflow engine, they never forced
anybody in the company to use them. And while they started operating a central BPM

Understanding the Adoption Journey | 241

platform back in 2015, they moved away from this model soon after and now allow
solution teams to run their own engines. They still provide reusable components
around the engine, e.g., to hook into Active Directory or to talk to their internal ESB,
but these are provided as additional libraries.

They are now in the process of starting an internal service to provide managed work‐
flow engines, to ease provisioning and operations for their project teams.

By the end of 2019, this company had almost one hundred different process solutions
running in production. Not only is the BPM team super satisfied, but so too are
upper management.

The key takeaways from this story are:

• Go step-by-step until you are ready to scale.
• Get buy-in from the decision makers, which requires your process solution to

solve some real business pain.
• Make sure to give experienced people the opportunity to help in follow-on

projects.
• Capture best practices and ensure knowledge sharing.
• Provide reusable components if they increase productivity, but as libraries that

teams want to adopt.
• Establish an internal consulting approach, perhaps organized as a center of excel‐

lence. At least identify and nurture one well-known champion in the enterprise
that can drive the topic.

• Define learning paths for new people or teams.

Having looked at these two very different examples, let’s dig deeper into what defines
successful adoption journeys.

The Pattern of Successful Adoption Journeys
From hundreds of real-life stories like the two sketched here, my colleagues and I
have derived a simple pattern that is most successful when introducing workflow
tooling into an organization. It is shown in Figure 12-1.

242 | Chapter 12: The Journey to Introduce Process Automation

Figure 12-1. Typical adoption journey

While evaluating your stack you need to setup a proof of concept project. The goal of
this project is to define and validate the architecture and stack, the exact code is most
often thrown away.

Right after this POC, start with a pilot project. It is essential to go live with the pilot to
really learn about all aspects of the process solution throughout the full software
development life cycle. You should choose a scenario where you can show at least
some of the benefits of process automation (e.g., increased efficiency, effectiveness,
compliance), as many people, including decision makers, will be interested in quanti‐
fiable results.

Favor Agile development approaches to develop process solutions iteratively and
incrementally. This allows you to learn fast and let these learnings correct your
course. This is a very positive and motivating spiral that I have seen working often.
It’s especially important for projects using new tools or architectures.

While this is the case in some organizations, the pilot project might not be centrally
planned as “the process automation starting point.” Very often these projects simply
start as projects intending to solve a business pain, and adopt process automation
technology along the way. This is totally fine and might even make it easier for the
project to avoid too much politics in the beginning.

After running a successful pilot, start a lighthouse project. This is either a deliberate
step in your journey to introduce process automation, or it naturally follows a suc‐
cessful grassroots pilot initiative where you recognized the potential of process
automation.

A lighthouse project has a broader, more realistic scope and can be leveraged to show
off architecture, tooling, and the value of process automation to other people and
teams within your organization. It acts as a lighthouse to guide other peers in the

Understanding the Adoption Journey | 243

company toward the value of process automation. Make sure that you select a rele‐
vant use case.

Ideally, the team that did the pilot also works on the lighthouse, as this allows all of
their learnings to be taken into account. This is important as the lighthouse might
serve as a template for later projects. This is why you should also plan some time to
review the lighthouse project after it has been completed and gone live. Keep in mind
that it is far better to invest in that overhaul than to try to make things perfect in the
first run.

Make sure that the lighthouse gets visibility within the company. Follow a “show and
tell” approach, giving internal presentations, sharing the source code (including doc‐
umentation), and inviting people to discussions. Typically you should prefer live
demos over slideware and concrete company projects over generic vendor showcases.

Only then should you take the next step, which is to scale process automation across
your enterprise. You should enter this phase slowly. Make sure not to go too broad
before you have gathered enough relevant experience from a handful of projects. Ide‐
ally, this scaling works in a “pull” manner, meaning that project teams hear of the
advantages of process automation and decide they want to apply it in their own
projects.

The whole journey is visualized in more detail in Figure 12-2, which is taken from a
best practice called the customer success path.

244 | Chapter 12: The Journey to Introduce Process Automation

https://oreil.ly/CF44F

Fi
gu

re
 1

2-
2.

 C
us

to
m

er
 su

cc
es

s p
at

h
(b

as
ed

 o
n

Ca
m

un
da

 b
es

t p
ra

ct
ice

s)

Understanding the Adoption Journey | 245

Different Journeys for Different Scenarios
Of course, some specifics about the adoption journey will vary depending on your
status quo at your organization and your main driver for introducing process auto‐
mation. Let’s quickly discuss some typical situations.

Replacing existing workflow products
In my consulting engagements, I work with a lot of companies that already have some
workflow product in place and want to replace it. This might be a tool that’s been dis‐
continued by its vendor, an open source framework that has proved too low-level for
the company’s needs, or simply a tool that did not deliver on its promise. As part of
digital transformation or IT modernization programs, companies might also deliber‐
ately decide to replace “old-school BPMS” or homegrown workflow engines that will
not be maintained any longer.

This is a special situation, as the organization is already aware of what process auto‐
mation means and what a workflow engine is. Teams already have experience with
process modeling and know what it means to execute such a model. Even if they need
to adjust in terms of architecture and stack, a lot of the basics concepts are familiar,
which can make the whole journey much easier.

However, you need to keep an eye on preconceptions. Remember “Not Your Parents’
Process Automation Tools” on page 14? Other people might have a different view of
process automation than you have after reading this book. You might need to have
some strong discussions.

An additional challenge might be that you need to justify why you want to introduce
a new tool. I have seen many companies that required sophisticated studies to justify
replacing an old tool, even if everybody hated it and nobody was productive with it.
This can be an important consideration, as it might shift the focus of a pilot or light‐
house project. You might not need to make a case for process automation, but you
might need to justify the migration to a new tool.

Finally, you might need to investigate the root of the problems with the old tool.
Sometimes the issue is not so much the tool itself, but mistakes in how it was used;
e.g., applying it to the wrong problems or setting up weird architectural patterns. In
this case, you need to avoid the same mess occurring with the new tool, so people
might need to unlearn some of their practices or be made aware of and admit mis‐
takes made in the past.

Introducing process automation in SOA environments
If you work for a company that has adopted SOA, the strategy for introducing process
automation will depend on the internal viewpoint on this architecture. There are
plenty of companies that are basically happy with SOA and want to keep going with

246 | Chapter 12: The Journey to Introduce Process Automation

it. That’s fine; you don’t have to switch to a microservices approach to apply process
automation! But you should be careful about introducing a process automation
approach that is too centralized, even if that can also work out if it fits into your orga‐
nization and culture.

Introducing process automation in event-driven architectures
Maybe you work for a company that embraced event-driven microservices, and
you’re now facing an unmanageable amount of services with a lot of emerging behav‐
ior, as described in Chapter 8. In this case your journey might be very different.

For example, you could first try to gain some visibility without the need to change too
much. You could create a process model that expresses your expectation of what hap‐
pens. You will make that model executable, but special in the sense that it is only
tracking events, and not doing anything actively itself. It does not steer anything—it
simply records.

This will allow you to leverage the complete toolchain around your workflow engine,
including monitoring, so you can see what’s currently going on, monitor SLAs and
detect stuck instances, or do extensive analysis on historical audit data.

And this model can be the first step in a journey toward more orchestration. A simple
example is that you start to monitor timeouts for your end-to-end process. Whenever
a timeout is hit, some action is taken automatically. In the example in Figure 12-3,
you would inform the customer of a delay after 14 days—but still keep waiting. After
21 days, you give up and cancel the order.

Figure 12-3. A BPMN model that tracks events can also get active in certain scenarios

Understanding the Adoption Journey | 247

This is a good basis to evolve the process to take over end-to-end responsibility for
order fulfillment. You can do this step-by-step. For example, you might start with
orchestrating payment deliberately from this process, removing a part of the ongoing
event chain.

I know of many real-life examples where such a tracking process was the beginning of
a modernization project. More often than replacing a choreography, these processes
pick up events from various legacy systems, where connections under the hood are
slowly removed and replaced by orchestration.

Strategic initiatives driving process automation
Another situation is if your company has started a strategic program that drives the
adoption of process automation. At the time of writing, these are typically digital
transformation programs.

These programs own budget. This gives you a great opportunity to introduce process
automation and solve some real business problems—but it is super important to fol‐
low the advice to start small and with a concrete project fulfilling a business need.
Too often, I see strategic programs end up in the situation sketched with
DontDoItAtHome.

In that context, I even see many successful process automation projects deliberately
flying under the radar of these programs, to avoid them getting in the way. Flying
under the radar can make sense.

As a summary, every situation is a bit different. Try to become aware of the status
quo, the history, and of course the goal of your process automation endeavor and
adjust accordingly.

Starting Your Journey
Whatever your journey will look like, at some point in time you always have to start
it. And the first steps are the most important, so let’s examine these in more depth.

Of course, when starting any process automation endeavor you have to select a tool
stack first, described in “Evaluating Workflow Engines” on page 123. The recommen‐
dation is to start creating POCs as soon as possible. Modern tools allow you to auto‐
mate your first process within hours, so you can do POCs with more than one
vendor. You might want to partner with a consulting firm you trust that has some
experience with different vendors, as they can help you get started right away. The
hands-on experience of doing POCs will greatly help you shape your direction.

248 | Chapter 12: The Journey to Introduce Process Automation

Bottom-up Versus Top-down Adoption
Before diving into the characteristics of the POCs themselves, let’s consider the two
typical motions that are in play in bigger enterprises when it comes to the adoption of
methods and tools: bottom up and top down.

Adoption can start at the bottom and work its way up. This often happens with open
source components. Developers might learn about a tool somewhere and start to play
around with it. Once they understand the possibilities, they become enthusiastic
about it; they might apply the tool right away to solve a problem at hand, or even
push it into production.

At this point, a proper evaluation of the tool has not been done; basically the com‐
pany jumped into a POC right away. If it is successful, this project gets noticed and
serves as a lighthouse, and other projects start adopting the tooling.

If the project scope or visibility grows bigger, at some point in time a business, legal,
or compliance department might kick in and ask for guarantees. Or someone might
request support, or the company might find that it really needs features that are only
available in a paid version of the tool.

In this case, the company basically starts the procurement process at a stage where the
tool is already settled and an evaluation does not make much sense. This isn’t neces‐
sarily a bad thing, as the tool has proven its value. Personally, I’m a big fan of this
motion as I have often seen it be very successful.

This is in contrast to a top-down adoption motion, where the tooling is basically
decided on at the top and handed over to development projects. In an extreme form,
an enterprise decides on a company-wide process automation tool stack that every
project has to use. This is the adoption motion that was typically in play with SOA
projects. Looking at the history of SOA, you can see that developers still played a
decisive role, though—in this case usually by either just not using these tools or fail‐
ing to use them successfully.

So even if this top-down motion often plays to my own company’s advantage (if
Camunda is chosen as the platform), I recommend being very careful with it. You can
define company-wide recommendations, but you should still leave the projects
enough room to decide on their own. This will increase the chances of tools being
embraced, rather than rejected.

Starting Your Journey | 249

Proofs of Concepts
Now let’s explore what makes a good POC, and how you can prepare and run it prop‐
erly. With a POC, you typically create a prototype application within no more than
three to five days. The result is intended to be thrown away, which is very important
to keep in mind. Its sole purpose is to try to show that your project will fly, including
all aspects relevant for your specific situation. Questions to consider might be:

• Is it possible to use the workflow tooling in your own architecture and stack?
• Does the development approach fit into your organization?
• Can you model the specific business domain problem?
• What kinds of know-how are needed for the different roles?
• How much effort will be needed for these kinds of projects?
• What is the impact of process automation for operations?

Often it makes sense to implement a POC together with the workflow vendor or a
specialized consultant, in order to get quick results and focused feedback with respect
to your specific challenges. However, you should always at least co-develop in order
to really understand what is going on. A team size of two to four people has proven to
be quite optimal.

Before planning a POC, you need to consciously clarify the specific goals you want to
achieve. This will have a great influence on the POC, so make up your mind about
what really matters. Often it’s better to make a clear choice about whether, for exam‐
ple, it is more important to be able to show off a nice user interface at the end of the
week or to have clarified all the technical questions and to understand the workflow
engine of choice in depth, maybe using nothing more than unit tests.

Typical goals for a POC include:

• To verify that the approach or the tool works under specific circumstances
• To show a case that convinces internal stakeholders that the approach makes

sense
• To work through a complete example and get specific questions sorted out
• To learn more about the tool and understand how it works

When planning your team, consider that you need knowledge about the business
domain, the targeted technical solution, and the modeling language (e.g., BPMN), as
well as analytical and moderation skills. Define a moderator to avoid too many
detours and keep your POC on track. Let people learn on the job by developing the
POC together with an experienced consultant.

250 | Chapter 12: The Journey to Introduce Process Automation

In some companies, people want to build a minimum viable product (MVP) instead
of a POC. An MVP is basically a first simple version that already delivers some value.
The big difference is that it is not thrown away. While I see great value in putting such
an MVP into production and learning throughout the entire life cycle, I would still
only do it after creating an initial POC. The POC can also be seen as a quick proto‐
type to validate the architecture. It is almost always better to throw it away and start
from scratch after, as this allows the POC to focus on learning instead of production-
quality code. And with a POC taking just a few days, the time investment is not too
big either.

Make sure to present the results of the POC internally. Select a speaker who is com‐
fortable with presenting, prepare a set of focused slides illustrating your progress and
the lessons learned, and test your solution and presentation at least once. It is surpris‐
ing how often teams do some awesome work over the course of a week and then
expect that a spontaneous demo will speak for itself. It typically does not—invest
some extra time to think about a storyline so that people can follow and understand
why and how you applied process automation.

Presenting the Business Case
A proper presentation should also talk about the business case. A great example I saw
recently was a meeting where a customer was discussing the start of their process
automation adoption journey. They described their first use case, a process that
replaced a couple of emails and one spreadsheet with a BPMN process that had five
tasks. So far, that sounds kind of boring. But then they presented a slide where they
calculated their ROI. This was the exact opposite of boring!

The company had invested roughly $100,000 in this project, which took three months
to go live. By saving manual labor, they were able to assign several people to new
roles. The savings in salaries alone amounted to roughly $1 million every year! Of
course, nobody in the company questioned this project’s success, and it helped them
greatly in fostering adoption of process automation practices.

Another great example I saw was at a large bank that replaced a legacy application for
tax operations operated by an external service provider with a workflow engine-based
in-house solution. This saved them service and licensing costs of roughly €1 million
in the first year and about €3 million in each year that followed. Additionally, they
were able to bring the ownership of and capability for a key regulatory system in-
house. The new system has received glowing feedback from its users, with comments
that it is a “night and day difference” to its predecessor enables them to serve custom‐
ers much more effectively and efficiently.

If you have such numbers, make sure to present them. Important decision makers
internally need to be aware of the business case.

Starting Your Journey | 251

But often, I see scenarios where the value is more qualitative and harder to calculate.
For instance, one customer with a microservices architecture told me that they would
have been in serious trouble if they had not introduced process automation, because
pure choreography would have resulted in chaos.

This is hard to put in numbers, as it is more about avoiding risk or technical debt.
Fortunately, upper management understood that reasoning and backed the introduc‐
tion of process automation.

Sometimes it helps to search for success or failure stories in the same industry. Your
process automation vendor of choice may be able to help with this. As a summary,
Table 12-1 shows typical value propositions with examples for inspiration.

Table 12-1. Value propositions of workflow automation

Value
proposition

Type Measurability Example

Reducing
development
effort around
state handling

Quantitative Hard to measure Implementing and maintaining bespoke state handling was estimated
to account for roughly 10 person years over the lifetime of the
software, which corresponds to around $1,000,000. A workflow engine
is used now out of the box. License, training, and ramp-up costs
summed up to roughly $100,000. As a bonus, your best developers can
focus on important things.

Automating
manual tasks

Quantitative Easy to measure A new onboarding workflow is going live that does a first validation
automatically. This saves four hours of work in sales on every business
day. Additionally, the tracking of the onboarding workflow is
automated, and customers can see their current status in a self-service
portal online. This sums up to saved effort equivalent to one person.
You save roughly $100,000 and improve quality for everybody involved.

Building the right
thing

Qualitative Hard to measure Process visibility allows a variety of people to understand the process
design in early phases. So, while implementing a process to provision
new mobile phone contracts, a developer from another team is able to
spot a fundamental flaw in the process model: a particular service
cannot be used “that way,” as they know from previous projects where
they learned this the hard way. The problem is discussed and the
model updated right away, taking about a person day of effort. That
problem could have stayed hidden until the rollout, when it would
have cost many days of effort to discuss the required change, plan it,
implement it, retest everything, and so on and so forth.

Avoiding stuck
process instances

Qualitative Hard to measure Whenever there is some failure in processing, an order does not simply
get stuck and wait for the customer to ask for their goods. Instead,
operations gets notified of any incidents and can easily look into the
problems and fix the instances before the customers even notice the
delay.

Understanding
the current status

Qualitative Hard to measure Getting set up with cable internet can be a time-consuming process.
Gaining visibility into the exact current status is important to keep
customers and support agents happy. The alternative is frustrating,
when customers call the company and they can’t give a good answer
about the status of an order.

252 | Chapter 12: The Journey to Introduce Process Automation

Value
proposition

Type Measurability Example

Saving effort by
using prebuilt
functionality

Quantitative Easy to measure Workflow tools come with ready-to-use components like GUIs for
operations and for human task management. The latter can actually be
a huge gain, as they involves task life cycle support, extensive APIs, and
prebuilt user interfaces. You can save the cost of a team of full-time
developers, quickly summing up to $500,000 or more every year.

Scaling processes Qualitative Hard to measure Your latest commercial went viral, and people are storming your
service. You couldn’t keep the lights on without process automation, as
you would simply be overwhelmed by manual work. A workflow
engine makes sure you stay in control when incidents occur on a bigger
scale.

Note that process automation technology is an enabler for certain architecture para‐
digms that would not be possible without it. When organizations want to apply these
paradigms for strategic reasons—say, moving toward a microservices architecture in
order to handle organizational scale and allow for business agility—this can be suffi‐
cient motivation to introduce a tool, even if there is not a concrete business case in
the first project.

Don’t Build Your Own Platform
Having talked so much about the business case, let’s briefly discuss the exact opposite
of providing immediate business value: building a company-wide process automation
platform on top of a vendor’s tool. Some companies even assemble a whole SOA or
integration stack with components from different vendors.

I see this happen so often that it is worth its own section. The reason to build such a
platform is typically twofold: companies don’t want to be dependent on the vendor,
and they need some integration into company specifics that all projects can leverage.

But building such a platform is a risky endeavor, for multiple reasons. It is quite hard
to set up a process automation platform, and attempting it will distract you from
delivering business value. It makes it hard to include learnings gleaned from later
projects, as you settle on certain architecture primitives very early in your journey.
Also, it is complicated and time-consuming to keep this platform up-to-date or to fix
bugs—or simply to make all the features of the underlying products available, or to
include new features introduced in new versions. And finally, users can’t do internet
searches for help with problems in the bespoke platform, which they can do for well-
known open source products.

So far, every one of these initiatives that I have seen has struggled. You should not
think about creating a bespoke platform before you have a couple of projects live, as
only then can you really understand the common characteristics and what is likely to
be valuable and applicable in all projects.

Starting Your Journey | 253

Of course, you might still do some work in the initial projects to make operations or
enterprise architects happy. For example, you might integrate with your authentica‐
tion and authorization infrastructure, or make sure the workflow tooling adds its logs
into your central logging facility. This kind of code may be valuable for upcoming
projects, and you might want to reuse it.

Dos and Don’ts Around Reuse
Reuse can make a lot of sense, as it means you can save effort and costs. If all of your
process solutions need to communicate with your messaging infrastructure or your
mainframe, you don’t want to reinvent that wheel in every project.

But instead of building a bespoke platform, another pattern usually turns out to be
more successful. Think of reusable components or libraries as internal open source
projects. You offer them to your company and provide some resources and help. If a
library is helpful, most people will happily apply it. But nobody has to. These libraries
can develop and evolve in the very first projects. If later projects need some addi‐
tional feature, then they are not locked out from extending the library themselves—as
they can always provide pull requests—or fork the project.

This kind of reuse scales really well and helps your developers. At the same time, it
does not block anybody from being productive.

Always focus on providing helpful guidelines instead of putting
constraints in place.

Many process automation initiatives also take up the idea of extracting process frag‐
ments that can be reused in different business processes. I am skeptical about this. If
the scope is limited to one project team, it’s fine, but these fragments should not be
shared across teams. In the latter case you are better off extracting this logic into its
own service with properly defined capabilities and APIs that can be used in different
contexts, as discussed in Chapter 7.

From Project to Program: Scaling Adoption
After the first five or six successful projects, including the pilot and lighthouse, it
starts to make sense to think about a more structured approach to scaling adoption
within your organization. Make sure not to start scaling earlier, as you will miss
important learnings and risk making the same mistakes in parallel projects, possibly
even leading to friction between these projects.

This section discusses some challenges and proven practices around scale.

254 | Chapter 12: The Journey to Introduce Process Automation

Perception Management: What Is Process Automation?
Customers use workflow engines for very different use cases. In my company’s cus‐
tomer base, a common theme is to build solutions that are essentially Java applica‐
tions, but also contain an executable process. Internally these applications are seen as
“Camunda projects,” even if the process part of the application is very small.

While this is not a problem, it comes with a risk. If customers build huge bespoke
applications, it can take a lot of time before they are actually put it into production.
This kind of project tends to get very expensive, or might even be canceled due to too
many problems in the implementation. These factors are not at all related to the
workflow engine, but because the projects are “Camunda projects,” this ends up dam‐
aging the reputation of process automation.

So, be careful about what you connect to the topic of “process automation.”

Establishing a Center of Excellence
If you have one team doing the pilot and probably also the lighthouse project, they
will not only become very familiar with the technology and architecture, but also
learn a lot of valuable lessons. Make sure these learnings can be leveraged in the
projects that follow.

One option is for these people to simply continue building process solutions as a
team. This is definitely efficient, but does not scale. You could also split up the team
and send the individual people to work on different projects. This is an approach I
have seen work very well, but it means you need to have some flexibility in team
assignments. A third possibility is the one sketched in the success story presented ear‐
lier: transform the project team into a center of excellence (COE), as visualized in
Figure 12-4.

Figure 12-4. A center of excellence can help you scale the adoption of process automation

From Project to Program: Scaling Adoption | 255

This can be set up as dedicated tool-specific COE, but more often it is a general pro‐
cess automation COE charged with evaluating process automation technology and
helping decide what is the right tool for the job at hand. Typically, these COEs also
manage technologies around robotic process automation (RPA) or skill-based routing
for human tasks.

The COE creates and maintains internal best practices, often leaning on vendor doc‐
umentation and best practices as a basis. You should also document decisions, con‐
straints, or additions that apply to your company. For example, you might want
projects to always use a specific distribution of a tool. You can describe how the tool
is hooked into your central Active Directory. You can also link a couple of internal
projects that provide integration into messaging, SOAP web services, or FTP.

One big bank told me how it had developed a “self-service portal” within the COE
over the course of two years. This portal contains getting started guides, Java project
templates, and some reusable components as maintained libraries. This setup allows
most projects to get going on their own, including projects staffed by big offshore IT
integrators. The COE team developed the first six workflow solutions themselves, but
seven additional projects have already been completed via self-service, which proves
the efficacy of their approach.

The COE can also foster a community, simply by being available to talk to. They
might provide a forum or a Slack channel, or run regular face-to-face or web meet‐
ings. The right approach depends heavily on your company’s culture.

It is also worth investing in internal marketing, as it is important that other projects
know about the COE. You might even want to talk publicly about your use case, if
possible.

Managing Architecture Decisions
I am not a fan of rigid standardization. Project teams need some freedom to choose
the right tools. In many situations it is even best if the team can, for example, decide if
it needs a workflow engine at all. Your COE and lighthouse projects might have gen‐
erated enough internal marketing for people to know the benefits of using one, so
they should be able to decide for themselves.

But of course, it is risky to let every team choose whatever they fancy in that moment,
as those decisions may be swayed by trends, hype, personal preferences, or simply
people having a go with something they’ve “wanted to try for ages.” It is important for
everybody to understand that certain technology decisions are a commitment for
years, and sometimes even decades. So these decisions and the resulting maintenance
will affect more than just the current team.

What works well is to combine the freedom of choice with the responsibility to oper‐
ate and support the software solution in production, which is known as “you build it,

256 | Chapter 12: The Journey to Introduce Process Automation

you run it.” This important primitive makes teams aware that they will be held
accountable for their decisions. When this is truly the case, teams tend to make more
sensible decisions and are more likely to choose what Dan McKinley calls “boring
technology”.

Another common approach is to establish an architecture board that defines some
guardrails. Ideally, this board does not dictate arbitrary standards but maintains a list
of approved tools and frameworks. Whenever a team wants to use something that is
not (yet) on the list, they have to discuss it with that board. Teams need to present the
framework and the reasons why they need exactly this tool. This can even lead to a
fruitful sparring around the tool choice. Teams might learn about alternatives that are
better suited, or they might get questions around maintenance they have not thought
of. But of course, they can also convince the board and get a green light. These boards
should not block progress, so either they must decide very fast or allow teams to go
ahead without permission but understanding that if they do something outrageous,
they might be asked to rethink their approach.

I have also seen more rigid gatekeeping, especially around bridge technologies that
can easily be abused. For example, one big customer requires every team that wants
to use RPA to pitch its use case first. The goal is that these teams are fully aware that
they’re increasing technical debt. They need to present a strategy to pay the debt back
(e.g., to migrate to proper APIs later).

Decentralized Workflow Tooling
This book suggests that you should prefer an approach where every team runs its
own workflow engine, especially in a microservices context. The main advantage is to
allow for scale by isolating teams. This also means that you deliberately accept the
potential of a wild mix of workflow platform installations.

This raises questions. How can you get an overview of what is actually running? How
can you make sure the installations have all the important patches? Are all engines
doing well? How do you collect metrics from various engines to check if you are
within your license limits? Typically, these questions are asked by the center of excel‐
lence, your workflow champion, or an enterprise architect with responsibility for
process automation.

How these questions are answered depends on the tool at hand, but often it is as sim‐
ple as automatically harvesting the relevant data from different engines within the
company using APIs the tool provides. You might even go further and allow updating
or patching engines with the click of a button.

Of course, all of this gets even easier if you use managed services in the cloud, as they
already have control planes built-in that provide these capabilities. This might also
apply to private cloud installations.

From Project to Program: Scaling Adoption | 257

https://mcfunley.com/choose-boring-technology
https://mcfunley.com/choose-boring-technology

Roles and Skill Development
In order to scale you need to actively develop the right skills internally, some on the
job, some in training. The exact needs depend on the tool in use. As a rule of thumb,
the more developer-friendly a tool is, the less proprietary training you need.

Let’s quickly sketch typical learning paths for different personas in a project. For
developers, I differentiate between different types.

Rockstar developers
These are the early adopters who can sometimes perform miracles. They are
highly motivated and passionate. You simply give them the workflow engine and
a getting started guide, and get out of their way. They will most probably Google
their way through. These folks are probably best suited to the early projects and
perhaps the COE. They come with the challenge that they always want the latest
and greatest technology and sometimes tend to overengineer. They are not
always good at coaching others. And please pay attention, as such people are
easily distracted.

Professional developers
These developers are trained software engineers. They are productive in their
environment of choice with a very individual selection of tools. In order to be
productive with a workflow engine, they need to learn the basics of the process
modeling language (e.g., BPMN) as well as get a solid foundation in core work‐
flow engine concepts and APIs. Having a training session with your tool vendor
is recommended, maybe flanked by some ongoing consulting hours so they can
ask questions in case of any problems. These people often make good coaches as
part of your COE.

Within the process automation space, you often hear about low-code developers (as
discussed in “The limitations of low code” on page 16). Low-code developers are not
trained software engineers, but often have a business background. They likely slipped
into development using Microsoft Office tools, macros, or RPA. They often dedicate
their working time to developing solutions in these environments. For some compa‐
nies, the key to scaling their process automation efforts is enabling these developers
to model executable workflows. Low-code developers need a very constrained envi‐
ronment and a highly customized training course in the exact environment they will
be working in.

You might also have heard of citizen developers. These folks are not software engi‐
neers, but typically end users with some IT affinity. They want to solve an active pain
with a technology they can master. These solutions are outside the scope of this book.

Business analysts basically need to learn the process modeling language (BPMN).
While they might use different techniques to discover and discuss workflow models

258 | Chapter 12: The Journey to Introduce Process Automation

(e.g., creativity techniques), they should be able to create a process model as input for
development, as well as understand models built by developers.

Operations (or infrastructure) people need to understand what it takes to deploy and
run the tooling as well as how to troubleshoot failure situations. Most vendors have a
dedicated training for this target group.

Enterprise architects need to understand the role of process automation in the bigger
picture and the overall architecture. If possible, architects should also have some
training in the tool of choice to understand its specifics.

Some customers also report that they have additional process methodology experts that
are really good at checking if a particular process design is the most reasonable one.
They try to get to the bottom of all design decisions, with the goal of simplifying pro‐
cess models. These people are typically organized within the COE.

Of course, roles and responsibilities can vary, and every person fulfilling a role will
“live” it in their own way.

Note that a good training course can only be effective if you start using the knowl‐
edge for a real-life project right after. Try to have the training as close as possible to
your project start.

Also, you should always try to organize some additional coaching on the job. This can
be delivered by the vendor, a partner, or your own COE. A remote consulting offering
often works well.

Conclusion
As this chapter showed, a successful adoption journey is typically a step-by-step
approach that starts with a pilot, followed by a lighthouse project that really showca‐
ses the benefits. Lessons learned are used to guide the next projects. Think about scale
after the first five or six projects have successfully gone live.

Experience suggests that offering guidance, for example, in the form of a center of
excellence or reusable libraries, tends to be more successful than imposing rigid rules,
as does a bottom-up path to tool adoption. You should also think about learning
paths for your key roles, to give your process automation journey the best chance of
success.

Conclusion | 259

CHAPTER 13

Parting Words

You’ve reached the end of the book—I hope you enjoyed the experience, and that it
has improved your understanding of process automation. For me, as a process auto‐
mation enthusiast, there are still many things left unsaid. This final chapter provides a
very quick look at a few topics that I felt needed to be mentioned. It:

• Summarizes how architecture trends influence process automation, and where
this is covered in this book

• Looks at how modern architectures influence user experience, customer jour‐
neys, and business processes

• Gives you some advice on what to do next

Current Architecture Trends Influence Process Automation
Currently there is a big trend toward using more fine-grained components that run in
a distributed fashion. This is a key necessity to master the growing complexity and
scale of modern systems.

It also has a few interesting implications, which were touched on in various places in
the book:

• Business logic is distributed, and many components need to interact to fulfill cus‐
tomer demands and to implement end-to-end business processes. This was intro‐
duced in Chapter 7.

• Systems get more reactive and event-driven and thus need to balance choreogra‐
phy and orchestration, as described in Chapter 8.

261

• Remote communication introduces new challenges, especially around consis‐
tency, as described in Chapter 9.

• In order to enable developing, operating, and maintaining a large number of
components, companies need to improve their practices around continuous
delivery. Workflow engines need to be flexible enough to support this, as dis‐
cussed in Chapter 6. Testing procedures for executable processes are an impor‐
tant piece of that puzzle, as described in “Testing Processes” on page 62.

• Components move to the cloud quickly, basically because it eases operations and
deployment. A shift to a microservices architecture often goes hand in hand with
a shift to running things in a public (or private) cloud. This means that workflow
automation technology needs to be available in the cloud, as was touched on in
Chapter 6.

• Developers have more freedom than ever to choose technology stacks for single
components. This makes architectures more polyglot, and as mentioned in
“Combining Process Models and Programming Code” on page 54, good work‐
flow engines should support writing glue code in different languages.

• There is more automation happening in general. This means that workflow
engines need to support the required scale, as well as near real-time applications,
as touched on in “Performance and Scalability” on page 121.

The need for workflow engines will certainly increase over the next years, and the
tooling needs to be lightweight and flexible. If and how workflow technology achieves
nonfunctional requirements will differ between vendors and products, but it is possi‐
ble and I personally have seen workflow engines being applied in modern architec‐
tures and at a huge scale.

Rethinking Business Processes and the User Experience
As architectures undergo the changes described here, I regularly observe that busi‐
ness departments don’t understand the opportunities that arise as a consequence. On
the contrary, long-running capabilities are often shoehorned into synchronous
facades to avoid altering familiar customer experiences.

Let’s take an example. Assume you want to book a train ticket. This is often a syn‐
chronous user experience. You select the route, select a seat for your reservation,
choose the ticket type and fare, and finally provide your personal details together
with a payment method. After you have entered all the data and hit the checkout but‐
ton, you can watch some animated GIF while waiting for your booking to go through.

Providing this synchronous user experience is actually hard to implement in modern
architectures, as you saw in Chapter 9.

262 | Chapter 13: Parting Words

But that’s not the point I want to make here. The problem is the strong desire to have
this synchronous user experience in the first place. When discussing this, I am often
confronted with a strong opinion from business departments that such a communi‐
cation needs to be synchronous. In the train ticket example, there are two typical rea‐
sons for this:

• “If there is a problem during the booking process, then we need to talk to the
customer. This is only possible with a synchronous experience.”

• “We need to create a ticket as a PDF for the customer to print out. This needs to
be displayed right after the booking has succeeded.”

I totally challenge both.

Concerning the first point, when there is a problem in the booking process, you can
pause that process in some intermediary step and inform the customer. They might
still be waiting on the website, but the site does not need to be blocked by a loading
wheel. Maybe customers can be shown a nice status overview page instead, that is
constantly updated in the background. The customer knows they can walk away and
come back later, still seeing their progress, perhaps using a unique deep link. They
might get an email or a notification in the app whenever something goes wrong and
needs their attention.

There is an interesting observation to make here. You have to think about the prob‐
lem anyway, even if you provide a synchronous behavior. If, for example, you reserve
a seat for a customer and the service crashes right afterward, you ideally offer a way
for the customer to regain their reservation, or at least you need to make sure the res‐
ervation times out.

Whenever requirements sit in between asynchronous architectures and synchronous
customer experiences, you can see their weird effects even as a customer. Has your
browser ever crashed while you were in the middle of booking a flight? Mine has. Do
you think I was able to get the same seat I’d selected during that first session, which
was never completed? Of course not.

Why not tackle these eventual consistency issues head-on and give the customer the
opportunity to finalize their booking within a certain time frame?

As for the second argument about printing out tickets, I’m sorry, but this is 2021.
Who prints out tickets anymore? Smartphones, apps, and the ubiquity of computers
have changed the customer experience. Customers want tickets in their apps. And
even if they prefer to print them, customers will happily take them via email. This
makes the customer experience much more resilient. If for some reasons PDFs can‐
not be generated at the moment of booking, everything works fine and the customer
simply gets their ticket a couple of minutes later.

Rethinking Business Processes and the User Experience | 263

With a synchronous user experience, however, the whole booking would fail. What
do you think customers will like better?

As a bonus, you don’t have to translate between synchronous and asynchronous
worlds all the time, which makes it easier to implement your system. The only thing
you have to do is get your business folks to rethink the customer experience from the
ground up. Yes, this is a hard undertaking, but a growing number of successful indus‐
try examples might help you on the way. Surprisingly often, I can make progress by
simply asking what Amazon would do. In the words of Eliyahu Goldratt:

You’ve deployed an amazing technology, but because you haven’t changed the way you
work, you haven’t actually diminished a limitation.

Where to Go from Here
Congratulations, you made it! Thank you for reading this book. I hope I’ve been able
to pass on some of my enthusiasm to you.

My goal in writing the book was to equip you with the most important knowledge
around process automation, to help you get started on your journey. Using new con‐
cepts and technologies is never possible without making your own mistakes, but I
hope what you’ve read here will reduce their number and effect.

With that being said, the best advice I can give you is to practice. Use process automa‐
tion technology now. Literally, now. Stop reading and automate a process. Setup a
process solution and apply what you just read—ideally in a real-life use case, but a
fun or hobby project will also do. The examples and links on the book’s website might
help you get started.

I wish you all the best with your endeavors and hope to hear about your experiences
one day, via email (feedback@ProcessAutomationBook.com), on the Camunda forums,
on the O’Reilly learning platform, or at some conference somewhere in the world.

264 | Chapter 13: Parting Words

https://ProcessAutomationBook.com
mailto:feedback@ProcessAutomationBook.com

Index

A
ACID transactions, 183-185, 189
actor model, limitations of, 98
adoption journey

about, 238
failures to avoid, 238-240
pattern of successful, 242-244
scaling adoption, 254-259
starting your journey, 248-254
success story of an, 240-242

aggregating messages, 180
aggregator pattern, 180
API calls, 139, 141-144
applications

external tasklist, 86
relationship between processes, workflow

engines and, 37
tasklist, 42, 87

architecture (see solution architecture)
artificial IDs, 177
asynchronous communication, 181
asynchronous request/response, 176-178
audit data, 25, 221
auto-deployment, 32
auto-generate/generation, of graphical repre‐

sentation, 104
automation, 2

(see also process automation)
motivations for, 3
of control flow, 2
of tasks, 2

autonomy
about, 127
bounded contexts, 129

cohesion, 127
coupling, 127
decentralized workflow tooling, 144
domain-driven design, 129
services, 129

AWS Step Functions, 73
Azure Durable Functions, 73

B
batch processing, 94-96
behaviors, 138, 150
bespoke platform, 254
BizDevOps

about, 200
business, 201
development, 200
operations, 202
process automation life cycle, 204

blockchain, process automation with, 108-111
boring technology, 256
bottom-up adoption, 249
boundaries

about, 127
bounded contexts, 129
business processes and, 130-139
call activities and, 140
cohesion, 127
coupling, 127
crossing, 10, 60
crossing as an API call, 141-144
decentralized workflow tooling, 144
defending, 138
domain-driven design, 129

265

how processes communicate across,
139-144

respecting, 131-135
services, 129
understanding of responsibilities, 136-138

boundary event, 52
bounded contexts, 129
BPM (business process management)

about, 14
as a discipline, 15
misguided suites, 16
suites, 123

BPMN (Business Process Model and Notation)
about, 19, 45-47, 93
call activities, 139, 140
compensation events, 188
events, 52
gateways, 51
implementing control flow, 48
limitations of alternative implementation

options, 93-100
message events, 52-53
pools, 208
process modeling languages, 100-111
sequence flows, 49
steering flow, 51
tasks, 49
token concept, 48
units of work, 49
universality of, 9

brittle toolchains, Wild West integration and, 6
Building Microservices (O’Reilly), 70, 162
business analysts, 199, 258
business case, presenting, 251
business drivers, 13-19
business error, 214
business intelligence tools, 228
business monitoring and reporting, 42
business people, 10
business process management (see BPM (busi‐

ness process management))
Business Process Model and Notation (see

BPMN (Business Process Model and Nota‐
tion))

business processes (see processes)
business reactions, 214
business rules task, 50
business-IT collaboration

about, 195

BizDevOps, 200-204
creating process models, 211-216
modeling, 209-211
power of one joined model, 205-209
typical project, 195-199

C
call activities, 139, 140
Camunda, 18-19
Camunda Cloud, 33
center of excellence (COE), 255
centralized orchestration, 170
chaining resources, using Outbox pattern,

189-190
change scenarios, evaluating, 166
choreography

avoiding event chains using commands,
158-161

balancing with orchestration, 147-171
decoupling and, 170
definitions, 158
designing responsibilities, 165
direction of dependency, 161
evaluating change scenarios to validate deci‐

sions, 166
event-driven systems, 147-155
events, 157, 162-165
messages, 157
myths about, 168-170
terminology, 158

Churchill, Winston, 211
citizen developers, 17, 258
cloud native, 57, 67, 117
code

limitations of low, 16
models versus, 59-62
referencing in process models, 57

COE (center of excellence), 255
cohesion, 127
collaboration diagrams, 136
collaboration model, 207
collaboration tools, 40
command-driven communication (see orches‐

tration)
commands

about, 155-161
avoiding event chains using, 158-161
events versus, 162
mixing with events, 162-165

266 | Index

synchronous communication and, 168
communication

asynchronous, 181
between microservices, 71
patterns for service invocation, 173-182
processes across boundaries, 139-144
remote, 191
using workflow engines as channels for, 119

compensation events, 188
compliance conformance, as a motivation for

automation, 3
consistency, 183-190
Constantine’s law, 127
continuous delivery, solution architecture and,

122
control flow, 2, 48
count metrics, 232
coupling, 127
creating

customized tasklist applications, 87
process models, 211-216
process solutions, 45-65
user interfaces, 122
workflow platforms, 253

crossing boundaries, 10, 60, 141-144
custom centralized monitoring, 226-228
cycle time, 232

D
data

audit, 25, 221
getting, 221-223

data lakes, 228
data pipelines, 96-98, 123
data streaming limitations, 96-98
data warehouses, 228
database triggers, Wild West integration and, 6
DDD (domain-driven design), 129
dead letter queue (DLQ), 181
dead messages, 181
decentralized workflow engines, 117
decentralized workflow tooling, 144, 257
decision engines, 77
decision logic, 77
Decision Model and Notation (DMN), 78-79
decision tables, 78
decisions

Decision Model and Notation (DMN),
78-79

in process models, 80
orchestration, 76-81
validating, 166

decoupling, choreography and, 170
defending boundaries, 138
delegating tasks, 83
deletions, 193
dependency, direction of, 161
deployment, 122, 125
deployment coupling, as a coupling category,

128
designing responsibilities, 165
detecting duplicates, 193
Deutsch, Peter, 174
developer experience, 107, 122
developers

about, 199
citizen, 17, 258
low-code, 258
professional, 258
rockstar, 258
self-image of, 107

development
in BizDevOps, 200
of roles, 258
of skills, 258
speed of, 107

DevOps, 203
diff, diffing, 100, 107, 210
distributed computing, 174
distributed monoliths, risk of, 154-155
distributed tracing tools, 124, 225
DLQ (dead letter queue), 181
DMN (Decision Model and Notation), 78-79
DMS (document management system), 139
document management system (DMS), 139
domain coupling, as a coupling category, 128
Domain Storytelling, 136
domain-driven design (DDD), 129
duplicates, detecting, 193
durable state (persistence), as a core capability

of workflow engines, 23
duration, of processes, 232

E
EAI (enterprise application integration) tools,

14
elements, labeling, 215
emergent behavior, 150

Index | 267

end events, 7, 48
enterprise application integration (EAI) tools,

14
enterprise architects, 259
Enterprise Integration Patterns (Hohpe and

Woolf), 180
enterprise service bus (ESB), 15, 69
errors, compared with exceptions and results,

213-215
ESB (enterprise service bus), 15, 69
ETL (extract, transform, load) jobs, 97, 222
evaluating

change scenarios to validate decisions, 166
key performance indicators using model

events, 222
workflow engines, 123-126

event chains
avoiding using commands, 158-161
changing, 152
lack of visibility, 153

Event Storming, 136
event-driven communication (see choreogra‐

phy)
event-driven systems

about, 147-149
emergent behavior, 150
event chains, 150-154
process automation in, 247
risk of distributed monoliths, 154-155

events
about, 52, 157
commands versus, 162
compensation, 188
mixing with commands, 162-165
model, 222

examples, 4-7, 29-36
exceptions, compared with results and errors,

213-215
exclusive gateway, 51
executable process models, 7-9, 210
executed on a workflow engine, 11, 209, 223
execution, controlling flow of, 49
executives, 199
expression language, 78

(see also FEEL (Friendly Enough Expression
Language))

extensibility, of workflow platforms, 124
external tasklist applications, 86
extract, transform, load (ETL) jobs, 97, 222

extracting logic into subprocesses, 211-213

F
failure handling, 95
FEEL (Friendly Enough Expression Language),

33
flow

control, 2, 48
of execution, 49
sequence, 49
steering, 51

Fowler, Martin, 144, 150, 151
Freund, Jakob

Real-Life BPMN, 131
Friendly Enough Expression Language (FEEL),

33
fully automated processes, 3, 69

G
Gartner, 17
gateways, 51
GCP Cloud Workflows, 73
getting started guide, 256, 258
graphical process model, 38, 108
graphical process visualizations, benefits of,

102-104

H
happy path, 216
hardcoded process, limitations of, 94
history, of process automation, 14-18
Hohpe, Gregor

Enterprise Integration Patterns, 180
hooking, 62
hot potato antipattern, 138
HTTP connector, 58
human process flow, 207
human task management, 81
humans

about, 81-82
additional tool support, 84
orchestration, 81-88
task assignment, 82
user interface of user tasks, 85-88

I
idempotency, importance of, 192
IDs, 177

268 | Index

implementation, 48, 93-100
implementation coupling, as a coupling cate‐

gory, 128
in-house workflow platforms, 120
inconsistencies, handling business strategies

using, 186
increasing readability, 215
information richness, as a motivation for auto‐

mation, 3
infrastructure, 199
infrastructure people, 199, 202, 259
integration

as RFP criteria, 125
communication patterns for service invoca‐

tion, 173-182
eventual consistency and remote communi‐

cation, 191
importance of idempotency, 192
logic into subprocesses, 211-213
processes for, 11
solving challenges with workflow engines,

173-193
tools for, 124
transactions and consistency, 183-190
via database, Wild West integration and, 6

IoT (Internet of Things), 91
isolation

about, 127
bounded contexts, 129
cohesion, 127
coupling, 127
decentralized workflow tooling, 144
domain-driven design, 129
services, 129

isolation level, 185

J
JUnit tests, 62

K
Kafka, 157
KPIs (key performance indicators), 60, 222

L
labeling elements, 215
latency, processing, 95
leveraging audit data from workflow engines,

221

license, as RFP criteria, 126
life cycles, 38-43, 204
logic, extracting into subprocesses, 211-213
long-running behavior, 138
long-running processes, 10
low code, 16
low-code approach/developers, 258
low-code platforms, 123

M
market dynamics, current, 231
McKinley, Dan, 256
message events, 52-53
messages

about, 157
aggregating, 180
dead, 181
poisoned, 181

metrics, 232
microservice team, 148, 150, 152
microservices, 70
microservices architecture, 56, 127, 152, 173,

196, 252, 262
migrating process instances, 64
minimum viable product (MVP), 251
modeling, 209-211
models, 38

(see also process models)
actor, 98
code versus, 59-62
collaboration, 207
executable, 210
executable process, 7-9, 210
graphical process, 38, 108

modular monoliths, 74-76
monitoring

architecture decisions, 256
custom centralized, 226-228
flow of execution, 49
process event, 230
processes, 232-234
workflow engines, 117

Monolith to Microservices (O’Reilly), 127
monoliths, modular, 74-76
MVP (minimum viable product), 251
myths, about orchestration and choreography,

168-170

Index | 269

N
naive point-to-point integrations, Wild West

integration and, 6
Newman, Sam, 127, 162
non-developers, 17
non-programmers, 78
non-technical people, 16

O
Object Management Group, 47
observability, 225
OCR (optical character recognition) tools, 56
onboarding process, 68
operations people, 199, 202, 259
operations tooling, 41
optical character recognition (OCR) tools, 56
orchestration

about, 67
avoiding event chains using commands,

158-161
balancing with choreography, 147-171
centralized, 170
commands, 155-157, 158-165, 168
decisions, 76-81
designing responsibilities, 165
direction of dependency, 161
evaluating change scenarios to validate deci‐

sions, 166
event-driven systems, 147-155
events, 157, 162-165
humans, 81-88
messages, 157
myths about, 168-170
physical devices and things, 91
RPA (robotic process automation) bots,

88-91
software for, 68-76
terminology, 158

Outbox pattern, chaining resources using,
189-190

ownership, of process models, 119

P
Parallels, running versions in, 63
perception management, 255
performance, solution architecture and, 121
persistence (durable state), as a core capability

of workflow engines, 23

physical devices, 91
POCs (proofs of concept), 126, 249-251
poisoned messages, 181
pools, in BPMN, 208
prebuilt connectors, 58
presenting business cases, 251
process automation

about, 1-4, 255
adoption journey, 238-248
architecture trends and, 261
business drivers, 13-19
business processes, 11
business scenario, 9
business-IT collaboration, 12
examples of, 4-7
executable process models, 7-9
history of, 14-18
in event-driven architectures, 247
in SOA, 246
integration processes, 11
journey to introduce, 237-259
life cycle, 204
long-running processes, 10
scaling adoption, 254-259
starting your journey, 248-254
strategic initiatives in, 248
tools for, 14-19
value of, 13-19
value propositions of, 252
with blockchain, 108-111
workflow engines, 7-9
workflows, 11

process definitions, 7, 122
process event monitoring, 230
process improvement, 219
process instances, 7, 64
process methodology experts, 259
process mining tools, 124, 229
process modeling languages, 100-111

about, 100
as RFP criteria, 125
benefits of graphical process visualizations,

102-104
textual process modeling approaches,

104-111
Workflow Patterns, 101

process models
combining with programming code, 54-62
creating, 211-216

270 | Index

decisions in, 80
ownership of, 119
referencing code in, 57
storing, 122
versioning, 122

process monoliths, avoiding, 131-135
process operation, 219
process pyramid, 206
process solutions

about, 28
BPMN (Business Process Model and Nota‐

tion), 45-47
combining process models and program‐

ming code, 54-62
developing, 45-65
examples, 29-36
versioning, 63

process visibility
about, 219
getting data, 221-223
multiple system spans, 224-231
setting up process reporting and monitor‐

ing, 232-234
status inquiries, 223
value of, 219-221

processes
about, 11
boundaries and, 130-139
business, 11
duration of, 232
hardcoded, 94
how they communicate across boundaries,

139-144
integration, 11
long-running, 10
publish/subscribe to, 54-56
relationship between applications, workflow

engines and, 37
setting up reporting and monitoring of,

232-234
spanning multiple systems, 224-231
testing, 62, 122
user experience and, 262-264
visibility of, 96

processing latency, 95
professional developers, 258
programming code, combining with process

models, 54-62
project lead, 199

proofs of concept (POCs), 126, 249-251
publish/subscribe, to processes, 54-56

Q
quality need, as a motivation for automation, 3
queries, 192

R
readability, increasing, 215
Real-Life BPMN (Freund and Ruecker), 131
receiving, BPMN and, 178
referencing code in process models, 57
remote communication, 191
repetitions, high, as a motivation for automa‐

tion, 3
replacing existing workflow products, 246
reporting processes, 232-234
requests for proposals (RFPs), 124
resilience, as RFP criteria, 125
resources, chaining using Outbox pattern,

189-190
respecting boundaries, 131-135
responsibilities, 136-138, 165
REST endpoint, 7
results, compared with exceptions and errors,

213-215
retries, 192
reuse, 254
RFPs (requests for proposals), 124
robotic process automation (RPA) bots, 88-91
rockstar developers, 258
roles, development of, 258
round trip, 206, 210
RPA (robotic process automation) bots, 88-91,

123
Ruecker, Bernd

Real-Life BPMN, 131

S
Saga pattern, 187
scaling/scalability

adoption journey, 254-259
as RFP criteria, 125
solution architecture and, 121

scenarios, adoption journey and, 246-248
scheduling, as a core capability of workflow

engines, 24
script task, 50

Index | 271

Scrum, 204
self-image, of developers, 107
sequence flows, 49
sequence of tasks, 11
serverless functions, 71-73
service level agreement (SLA), 5, 82, 126, 135,

151, 219, 247
service task, 7, 49
service-oriented architecture (see SOA (service-

oriented architecture))
services, 69, 129
sharing workflow engines, 118
shortlist, 123, 126
Simple Object Access Protocol (SOAP), 15, 141,

178
situation awareness, 220
skills, development of, 258
SLA (service level agreement), 5, 82, 126, 135,

151, 219, 247
smart endpoints and dumb pipes, 144
SOA (service-oriented architecture)

about, 14
centralized, 15
process automation in, 246
services, 69

SOAP (Simple Object Access Protocol), 15,
141-144, 178

software
for orchestration, 68-76
microservices, 70
modular monoliths, 74-76
serverless functions, 71-73
SOA (service-oriented architecture), 69

solution architecture
about, 115
continuous delivery and, 122
decentralized workflow engines, 117
developer experience and, 122
evaluating workflow engines, 123-126
in-house workflow platforms, 120
influence of current trends on process auto‐

mation, 261
managing decisions, 256
of workflow engines, 26-28
ownership of process models, 119
performance and, 121
running workflow engines, 117
scalability and, 121
sharing workflow engines, 118

trade-offs for, 116-123
using workflow engines as communication

channels, 119
when to use workflow engines, 115

spanning multiple systems, processes, 224-231
Spring Boot, 29, 32, 36, 125
stakeholders, 60
standardization, as a motivation for automa‐

tion, 3
start events, 7, 48
stateful functions, 99
stateless functions, 71
status inquiries, 223
steering flow, 51
storing process models, 122
Storystorming, 136
STP (straight-through processing), 3, 69
stream processors, 96
streaming, limitations of, 96-98
subprocesses, extracting logic into, 211-213
support, as RFP criteria, 126
supported environments, as RFP criteria, 125
synchronous communucation, commands and,

168
synchronous facades, 181
synchronous request/response, 174-176

T
task assignment, 82
tasklist applications, 42, 87
tasks

about, 49
automation of, 2
business rules, 50
delegating, 83
human, 81
service, 7, 49

technical error, 214
technical process flow, 207
technical reactions, 214
telecommunications company, 29-30, 67
temporal coupling, as a coupling category, 128
terminology, 158
testing processes, 62, 122
textual approach, graphical process model ver‐

sus, 108
textual process modeling approaches, 104-111
third-party apps, 87
threading, 27

272 | Index

timer events, 52
token concept, 48
toolbox, 93
toolchain, 6, 108, 247
tooling

as a feature of workflow platforms, 26
as RFP criteria, 125
decentralized workflow, 144, 257

tools
additional support, 84
business intelligence, 228
collaboration, 40
data pipeline, 123
distributed tracing, 124, 225
for process automation, 14-19
for workflow in project life cycles, 38-43
integration, 124
OCR (optical character recognition), 56
operations tooling, 41
process mining, 124, 229
RPA, 123

top-down adoption, 249
transactions, consistency and, 183-190
triggers, waiting for outside, 52-53

U
unbatching initiatives, 96
units of work, 49
user experience, business processes and,

262-264
user interfaces, 85-88, 122
user tasks, 50, 85-88
UUID, 177

V
validating decisions, 166
value propositions, of workflow automation,

252
value(s), 13-19, 219-221
vendors, vision and roadmap of, 124
versioning

as a core capability of workflow engines, 24
process models, 122
process solutions, 63
running versions in Parallels, 63

visibility, 25
(see also process visibility)
as a feature of workflow platforms, 25
lack of, 153

of processes, 96

W
waterfall development approach, 204
Wild West integrations, 4-7
Woolf, Bobby

Enterprise Integration Patterns, 180
workflow engines, 93-100

about, 7-9, 23, 93
additional features of workflow platforms,

25
architecture, 26-28
communication patterns for service invoca‐

tion, 173-182
core capabilities, 23-25
decentralized, 117
eventual consistency and remote communi‐

cation, 191
importance of idempotency, 192
integration challenges with, 173-193
leveraging audit data from, 221
process modeling languages, 100-111
relationship between applications, processes

and, 37
role of, 170
running, 117
sharing, 118
tools in project life cycles, 38-43
transactions and consistency, 183-190
using as communication channels, 119
when to use, 115

workflow patterns, 101
workflow platforms

additional features of, 25
building, 253
extensibility of, 124
in-house, 120

workflow products, replacing existing, 246
workflow tooling, decentralized, 257
workflows (see processes)

X
XML, arguments against, 100

Z
Zeebe cluster, 34
zero code, 16

Index | 273

About the Author
Bernd Ruecker is a software developer at heart who has been innovating in the field
of process automation for two decades. Solutions based on his work have been
deployed in a range of organizations, from “normal” companies to highly scalable
and Agile environments of industry leaders such as T-Mobile, Lufthansa, ING, and
Atlassian. He has been contributing to various open source workflow engines for
more than 15 years and is the cofounder and chief technologist of Camunda—an
open source software company reinventing process automation to automate any pro‐
cess, anywhere. Along with his cofounder, he also wrote Real-Life BPMN (Create‐
Space Independent Publishing Platform), a popular book about process modeling
and automation that is now in its sixth edition and available in English, German, and
Spanish.

Bernd loves to write code, especially to prove concepts. He regularly speaks at inter‐
national conferences and writes for various magazines. He focuses on new process
automation paradigms that fit into modern architectures around distributed systems,
microservices, domain-driven design, event-driven architecture, and reactive
systems.

Colophon
The animal on the cover of Practical Process Automation is the barred rabbitfish
(Siganus doliatus). These fish inhabit the reefs of the Western Pacific, from the Philip‐
pines south to northwestern Australia.

Barred rabbitfish are sky blue with white bellies and two dark bands over the eyes and
gill slits. They have luminous yellow striping as well as darker yellow patches over
their mouths and on their dorsal fin and tail. They can grow up to 10 inches long, and
can live up to 12 years. Another common name for them is “spinefoot,” from the
envenomed spines in their rear fins; they also have protective spines in their dorsal
fin. They use their short, sharp teeth to feed on algae.

Juveniles swim in schools to find food and as protection against predators. They
exhibit the classic schooling behavior, with many individuals swimming together in a
coordinated way as to speed and direction, as though they were a single entity. Matur‐
ing fish form pairs for breeding.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Cuvier. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font
is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Process Automation Tools and Techniques
	The Scope of This Book
	Who This Book Is For
	The Architect Always Implements
	Accompanying Website and Code Examples
	Feedback
	How to Read This Book
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Process Automation
	Wild West Integrations
	Workflow Engines and Executable Process Models
	A Business Scenario
	Long-Running Processes
	Business Processes, Integration Processes, and Workflows
	Business–IT Collaboration
	Business Drivers and the Value of Process Automation
	Not Your Parents’ Process Automation Tools
	A Brief History of Process Automation
	The Story of Camunda

	Conclusion

	Part I. Fundamentals
	Chapter 2. Workflow Engines and Process Solutions
	The Workflow Engine
	Core Capabilities
	Additional Features of Workflow Platforms
	Architecture

	A Process Solution
	An Executable Example
	Applications, Processes, and Workflow Engines
	Typical Workflow Tools in a Project’s Life Cycle
	Graphical Process Modeler
	Collaboration Tools
	Operations Tooling
	Tasklist Applications
	Business Monitoring and Reporting

	Conclusion

	Chapter 3. Developing Process Solutions
	Business Process Model and Notation (BPMN)
	Start and End Events
	The Token Concept: Implementing Control Flow
	Sequence Flows: Controlling the Flow of Execution
	Tasks: Units of Work
	Gateways: Steering Flow
	Events: Waiting for Something to Happen
	Message Events: Waiting for a Trigger from the Outside

	Combining Process Models and Programming Code
	Publish/Subscribe to a Process
	Referencing Code in Process Models
	Using Prebuilt Connectors
	Model or Code?

	Testing Processes
	Versioning of Process Solutions
	Running Versions in Parallel

	Conclusion

	Chapter 4. Orchestrate Anything
	Orchestrate Software
	Service-Oriented Architecture (SOA) Services
	Microservices
	Serverless Functions
	Modular Monoliths
	Deconstructing the Monolith

	Orchestrate Decisions
	Decision Model and Notation (DMN)
	Decisions in a Process Model

	Orchestrate Humans
	Task Assignment
	Additional Tool Support
	The User Interface of User Tasks

	Orchestrate RPA Bots
	Orchestrate Physical Devices and Things
	Conclusion

	Chapter 5. Championing Workflow Engines and BPMN
	Limitations of Other Implementation Options
	Hardcoded Processes
	Batch Processing
	Data Pipelines and Streaming
	The Actor Model
	Stateful Functions

	Process Modeling Languages
	Workflow Patterns
	Benefits of Graphical Process Visualizations
	Textual Process Modeling Approaches
	Typical Concerns About Graphical Modeling
	Graphical Versus Textual Approaches

	Process Automation with Blockchain?
	Conclusion

	Part II. Process Automation in the Enterprise
	Chapter 6. Solution Architecture
	When to Use a Workflow Engine
	Architecture Trade-Offs
	Running the Workflow Engine
	Decentralized Engines
	Sharing Engines
	Ownership of Process Models
	Using the Workflow Engine as a Communication Channel
	In-House Workflow Platforms
	Performance and Scalability
	Developer Experience and Continuous Delivery

	Evaluating Workflow Engines
	Conclusion

	Chapter 7. Autonomy, Boundaries, and Isolation
	Strong Cohesion and Low Coupling
	Domain-Driven Design, Bounded Contexts, and Services
	Boundaries and Business Processes
	Respect Boundaries and Avoid Process Monoliths
	Foster Your Understanding of Responsibilities
	Long-Running Behavior Helps You Defend Boundaries

	How Processes Communicate Across Boundaries
	Call Activities: Handy Shortcuts Only Within the Boundary
	Crossing Boundaries Is an API Call

	Decentralized Workflow Tooling
	Conclusion

	Chapter 8. Balancing Orchestration and Choreography
	Event-Driven Systems
	Emergent Behavior
	Event Chains
	The Risk of Distributed Monoliths

	Contrasting Orchestration and Choreography
	Introducing Commands
	Messages, Events, and Commands
	Terminology and Definitions
	Avoiding Event Chains by Using Commands
	The Direction of Dependency

	Finding the Right Balance
	Deciding Whether to Use Commands or Events
	Mixing Commands and Events
	Designing Responsibilities
	Evaluating Change Scenarios to Validate Decisions

	Debunking Common Myths
	Commands Do Not Require Synchronous Communication
	Orchestration Does Not Need to Be Central
	Choreography Does Not Automatically Lead to More Decoupling

	The Role of Workflow Engines
	Conclusion

	Chapter 9. Workflow Engines and
Integration Challenges
	Communication Patterns for Service Invocation
	Synchronous Request/Response
	Asynchronous Request/Response
	BPMN and Being Ready to Receive
	Aggregating Messages
	Poisoned and Dead Messages
	Synchronous Facades Hiding Asynchronous Communication

	Transactions and Consistency
	Eventual Consistency
	Business Strategies to Handle Inconsistency
	The Saga Pattern and Compensation
	Chaining Resources by Using the Outbox Pattern

	Eventual Consistency Applies to Every Form of
Remote Communication
	The Importance of Idempotency
	Conclusion

	Chapter 10. Business–IT Collaboration
	A Typical Project
	The Moral of the Story

	Including All the People: BizDevOps
	Development
	Business
	Operations

	The Power of One Joined Model
	From a Process Pyramid to a House

	Who Does the Modeling?
	Creating Better Process Models
	Extracting (Integration) Logic into Subprocesses
	Distinguishing Between Results, Exceptions, and Errors
	Increasing Readability

	Conclusion

	Chapter 11. Process Visibility
	The Value of Process Visibility
	Getting the Data
	Leverage Audit Data from Your Workflow Engine
	Model Events to Measure Key Performance Indicators

	Status Inquiries
	Understanding Processes That Span Multiple Systems
	Observability and Distributed Tracing Tools
	Custom Centralized Monitoring
	Data Warehouses, Data Lakes, and Business Intelligence Tools
	Process Mining
	Process Event Monitoring
	Current Market Dynamics

	Setting Up Process Reporting and Monitoring
	Typical Metrics and Reports
	Allowing for a Deeper Understanding

	Conclusion

	Part III. Get Going!
	Chapter 12. The Journey to Introduce
Process Automation
	Understanding the Adoption Journey
	Failures You Want to Avoid
	A Success Story
	The Pattern of Successful Adoption Journeys
	Different Journeys for Different Scenarios

	Starting Your Journey
	Bottom-up Versus Top-down Adoption
	Proofs of Concepts
	Presenting the Business Case
	Don’t Build Your Own Platform
	Dos and Don’ts Around Reuse

	From Project to Program: Scaling Adoption
	Perception Management: What Is Process Automation?
	Establishing a Center of Excellence
	Managing Architecture Decisions
	Decentralized Workflow Tooling
	Roles and Skill Development

	Conclusion

	Chapter 13. Parting Words
	Current Architecture Trends Influence Process Automation
	Rethinking Business Processes and the User Experience
	Where to Go from Here

	Index
	About the Author
	Colophon

