
Bill Lubanovic

FastAPI
Modern Python Web Development

WEB DEVELOPMENT

“FastAPI made simple!
This book excels at
simplifying FastAPI
concepts, showcasing
the author’s mastery.
Readers will gain
practical knowledge
and hit the ground
running.”

—Ganesh Harke
Senior Software Engineer, Citibank

“This book provides
a comprehensive
overview of the FastAPI
framework and its
surrounding ecosystem,
giving readers a quick
yet comprehensive
view of modern web
development.”

—William Jamir Silva
Senior Software Engineer, Adjust GmbH

FastAPI

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

FastAPI is a young yet solid framework that takes advantage
of newer Python features in a clean design. As its name
implies, FastAPI is indeed fast, rivaling similar frameworks
in languages such as Golang. With this practical book,
developers familiar with Python will learn how FastAPI
lets you accomplish more in less time with less code.

Author Bill Lubanovic covers the nuts and bolts of FastAPI
development with how-to guides on various topics such as
forms, database access, graphics, maps, and more that will
take you beyond the basics. The book also gets you up to
speed on RESTful APIs, data validation, authorization, and
performance. With its similarities to frameworks like Flask
and Django, you’ll find it easy to get started with FastAPI.

Through the course of this book, you will:

• Learn how to build web applications with FastAPI

• Understand the differences between FastAPI, Starlette,
and Pydantic

• Learn two features that set FastAPI apart: asynchronous
functions and data type checking and validation

• Examine new features of Python 3.8+, especially
type annotations

• Understand the differences between sync and async Python

• Learn how to connect with external APIs and services

Bill Lubanovic has been a developer for over 40 years,
specializing in Linux, the Web, and Python. He recently
used FastAPI with his team to rewrite a large biomedical
research API. Bill coauthored Linux System Administration
and wrote Introducing Python, both for O’Reilly.

9 7 8 1 0 9 8 1 3 5 5 0 8

5 5 5 9 9

US $55.99 CAN $69.99
ISBN: 978-1-098-13550-8

Bill Lubanovic

FastAPI
Modern Python Web Development

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13550-8

[LSI]

FastAPI
by Bill Lubanovic

Copyright © 2024 Bill Lubanovic. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Corbin Collins
Production Editor: Kristen Brown
Copyeditor: Sharon Wilkey
Proofreader: Liz Wheeler

Indexer: BIM Creatives, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2023: First Edition

Revision History for the First Edition
2023-11-06: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098135508 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. FastAPI, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

https://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098135508

To the loving memory of my wife, Mary, my parents, Bill and Tillie, and my friend, Rich.
I miss you.

Table of Contents

Preface. xiii

Part I. What’s New?

1. The Modern Web. 3
Preview 3
Services and APIs 4

Kinds of APIs 4
HTTP 5
REST(ful) 5
JSON and API Data Formats 7
JSON:API 7
GraphQL 8

Concurrency 8
Layers 9
Data 12
Review 13

2. Modern Python. 15
Preview 15
Tools 15
Getting Started 16

Python Itself 17
Package Management 17
Virtual Environments 17
Poetry 18
Source Formatting 19

v

Testing 19
Source Control and Continuous Integration 19
Web Tools 19

APIs and Services 20
Variables Are Names 20
Type Hints 21
Data Structures 21
Web Frameworks 21

Django 22
Flask 22
FastAPI 22

Review 23

Part II. A FastAPI Tour

3. FastAPI Tour. 27
Preview 27
What Is FastAPI? 27
A FastAPI Application 28
HTTP Requests 32

URL Path 33
Query Parameters 34
Body 36
HTTP Header 37
Multiple Request Data 38
Which Method Is Best? 39

HTTP Responses 39
Status Code 39
Headers 40
Response Types 40
Type Conversion 41
Model Types and response_model 42

Automated Documentation 43
Complex Data 47
Review 47

4. Async, Concurrency, and Starlette Tour. 49
Preview 49
Starlette 49
Types of Concurrency 50

Distributed and Parallel Computing 50

vi | Table of Contents

Operating System Processes 50
Operating System Threads 51
Green Threads 51
Callbacks 51
Python Generators 52
Python async, await, and asyncio 53

FastAPI and Async 55
Using Starlette Directly 57
Interlude: Cleaning the Clue House 57
Review 59

5. Pydantic, Type Hints, and Models Tour. 61
Preview 61
Type Hinting 61
Data Grouping 64
Alternatives 68
A Simple Example 69
Validate Types 72
Validate Values 73
Review 75

6. Dependencies. 77
Preview 77
What’s a Dependency? 77
Problems with Dependencies 78
Dependency Injection 78
FastAPI Dependencies 78
Writing a Dependency 79
Dependency Scope 80

Single Path 80
Multiple Paths 81
Global 81

Review 82

7. Framework Comparisons. 83
Preview 83
Flask 83

Path 84
Query Parameter 85
Body 85
Header 86

Django 86

Table of Contents | vii

Other Web Framework Features 87
Databases 88
Recommendations 88
Other Python Web Frameworks 88
Review 89

Part III. Making a Website

8. Web Layer. 93
Preview 93
Interlude: Top-Down, Bottom-Up, Middle-Out? 94
RESTful API Design 95
File and Directory Site Layout 97
The First Website Code 98
Requests 100
Multiple Routers 102
Build the Web Layer 103
Define Data Models 103
Stub and Fake Data 104
Create Common Functions Through the Stack 104
Create Fake Data 104
Test! 109
Using the FastAPI Automated Test Forms 110
Talking to the Service and Data Layers 112
Pagination and Sorting 113
Review 114

9. Service Layer. 115
Preview 115
Defining a Service 115
Layout 116
Protection 116
Functions 116
Test! 118
Other Service-Level Stuff 120

Logging 120
Metrics, Monitoring, Observability 120
Tracing 120
Other 121

Review 121

viii | Table of Contents

10. Data Layer. 123
Preview 123
DB-API 123
SQLite 125
Layout 127
Making It Work 127
Test! 131

Full Tests 131
Unit Tests 140

Review 142

11. Authentication and Authorization. 143
Preview 143
Interlude 1: Do You Need Authentication? 144
Authentication Methods 145
Global Authentication: Shared Secret 145
Simple Individual Authentication 148
Fancier Individual Authentication 149

OAuth2 150
User Model 151
User Data Layer 151
User Fake Data Layer 153
User Service Layer 154
User Web Layer 156
Test! 158
Top Layer 158
Authentication Steps 158
JWT 159
Third-Party Authentication: OIDC 159

Authorization 160
Middleware 161

CORS 162
Third-Party Packages 163

Review 163

12. Testing. 165
Preview 165
Web API Testing 165
Where to Test 166
What to Test 166
Pytest 167
Layout 168

Table of Contents | ix

Automated Unit Tests 168
Mocking 168
Test Doubles and Fakes 171
Web 173
Service 175
Data 177

Automated Integration Tests 178
The Repository Pattern 179
Automated Full Tests 180
Security Testing 182
Load Testing 182
Review 183

13. Production. 185
Preview 185
Deployment 185

Multiple Workers 186
HTTPS 187
Docker 187
Cloud Services 188
Kubernetes 188

Performance 188
Async 188
Caches 189
Databases, Files, and Memory 189
Queues 189
Python Itself 190

Troubleshooting 190
Kinds of Problems 190
Logging 191
Metrics 191

Review 191

Part IV. A Gallery

14. Databases, Data Science, and a Little AI. 195
Preview 195
Data Storage Alternatives 195
Relational Databases and SQL 196

SQLAlchemy 197
SQLModel 198

x | Table of Contents

SQLite 199
PostgreSQL 199
EdgeDB 199

Nonrelational (NoSQL) Databases 200
Redis 200
MongoDB 200
Cassandra 200
Elasticsearch 201

NoSQL Features in SQL Databases 201
Database Load Testing 201
Data Science and AI 203
Review 205

15. Files. 207
Preview 207
Multipart Support 207
Uploading Files 207

File() 208
UploadFile 209

Downloading Files 210
FileResponse 210
StreamingResponse 211

Serving Static Files 211
Review 213

16. Forms and Templates. 215
Preview 215
Forms 215
Templates 217
Review 220

17. Data Discovery and Visualization. 221
Preview 221
Python and Data 221
PSV Text Output 222

csv 222
python-tabulate 223
pandas 224

SQLite Data Source and Web Output 225
Chart/Graph Packages 225
Chart Example 1: Test 226
Chart Example 2: Histogram 228

Table of Contents | xi

Map Packages 229
Map Example 230

Review 232

18. Games. 233
Preview 233
Python Game Packages 233
Splitting Game Logic 234
Game Design 234
Web Part One: Game Initialization 235
Web Part Two: Game Steps 236
Service Part One: Initialization 238
Service Part Two: Scoring 238
Test! 239
Data: Initialization 240
Let’s Play Cryptonamicon 240
Review 242

A. Further Reading. 243

B. Creatures and Humans. 247

Index. 253

xii | Table of Contents

Preface

This is a pragmatic introduction to FastAPI—a modern Python web framework. It’s
also a story of how, now and then, the bright and shiny objects that we stumble across
can turn out to be very useful. A silver bullet is nice to have when you encounter a
werewolf. (And you will encounter werewolves later in this book.)

I started programming scientific applications in the mid-1970s. And after I first met
Unix and C on a PDP-11 in 1977, I had a feeling that this Unix thing might catch on.

In the ’80s and early ’90s, the internet was still noncommercial, but already a good
source for free software and technical info. And when a web browser called Mosaic
was distributed on the baby open internet in 1993, I had a feeling that this web thing
might catch on.

When I started my own web development company a few years later, my tools were
the usual suspects at the time: PHP, HTML, and Perl. On a contract job a few years
later, I finally experimented with Python and was surprised at how quickly I was able
to access, manipulate, and display data. In my spare time over two weeks, I was able
to replicate most of a C application that had taken four developers a year to write.
Now I had a feeling that this Python thing might catch on.

After that, most of my work involved Python and its web frameworks, mostly Flask
and Django. I particularly liked the simplicity of Flask and preferred it for many jobs.
But just a few years ago, I spied something glinting in the underbrush: a new Python
web framework called FastAPI, written by Sebastián Ramírez.

As I read his (excellent) documentation, I was impressed by the design and thought
that had gone into it. In particular, his history page showed how much care he had
taken evaluating alternatives. This was not an ego project or a fun experiment, but a
serious framework for real-world development. Now I had a feeling that this FastAPI
thing might catch on.

xiii

https://fastapi.tiangolo.com
https://oreil.ly/Ds-xM

I wrote a biomedical API site with FastAPI, and it went so well that a team of us
rewrote our old core API with FastAPI in the next year. This is still in production and
has held up well. Our group learned the basics that you’ll read in this book, and all
felt that we were writing better code, faster, with fewer bugs. And by the way, some of
us had not written in Python before, and only I had used FastAPI.

So when I had an opportunity to suggest a follow-up to my Introducing Python book
to O’Reilly, FastAPI was at the top of my list. In my opinion, FastAPI will have at least
the impact that Flask and Django have had, and maybe more.

As I’ve mentioned, the FastAPI website itself provides world-class documentation,
including many details on the usual web topics: databases, authentication, deploy‐
ment, and so on. So why write a book?

This book isn’t meant to be exhaustive because, well, that’s exhausting. It is meant to
be useful—to help you quickly pick up the main ideas of FastAPI and apply them. I
will point out various techniques that required some sleuthing and offer advice on
day-to-day best practices.

I start each chapter with a Preview of what’s coming. Next, I try not to forget what I
just promised, offering details and random asides. Finally, there’s a brief digestible
Review.

As the saying goes, “These are the opinions on which my facts are based.” Your expe‐
rience will be unique, but I hope that you will find enough of value here to become a
more productive web developer.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xiv | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/madscheme/fastapi.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “FastAPI by Bill Luba‐
novic (O’Reilly). Copyright 2024 Bill Lubanovic, 978-1-098-13550-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning

Preface | xv

https://github.com/madscheme/fastapi
mailto:support@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com

platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/FastAPI.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
Thanks to many people, at many places, from whom I’ve learned so much:

• Serra High School
• The University of Pittsburgh
• The Chronobiology Laboratories,

University of Minnesota
• Intran
• Crosfield-Dicomed
• Northwest Airlines
• Tela
• WAM!NET
• Mad Scheme

• SSESCO
• Intradyn
• Keep
• Thomson Reuters
• Cray
• Penguin Computing
• Internet Archive
• CrowdStrike
• Flywheel

xvi | Preface

https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/FastAPI
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

1 I actually shook his hand once. I didn’t wash mine for a month, but I’ll bet he did right away.

PART I

What’s New?

The world has benefited greatly from the invention of the World Wide Web by Sir
Tim Berners-Lee,1 and the Python programming language by Guido van Rossum.

The only tiny problem is that a nameless computer book publisher often puts spiders
and snakes on its relevant web and Python covers. If only the web had been named
the World Wide Woof (cross-threads in weaving, also called weft), and Python were
Pooch, this book might have had a cover like Figure I-1.

Figure I-1. FastAPI: Modern Pooch Woof Development

2 Not for the last time.

But I digress.2 This book is about the following:

The web
An especially productive technology, how it has changed, and how to develop
software for it now

Python
An especially productive web development language

FastAPI
An especially productive Python web framework

The two chapters in this first part discuss emerging topics in the web and in Python:
services and APIs; concurrency; layered architectures; and big, big data.

Part II is a high-level tour of FastAPI, a fresh Python web framework that has good
answers to the questions posed in Part I.

Part III rummages deeper through the FastAPI toolbox, including tips learned during
production development.

Finally, Part IV provides a gallery of FastAPI web examples. They use a common data
source—imaginary creatures—that may be a little more interesting and cohesive than
the usual random expositions. These should give you a starting point for particular
applications.

CHAPTER 1

The Modern Web

The Web as I envisaged it, we have not seen it yet. The future is still so much bigger
than the past.

—Tim Berners-Lee

Preview
Once upon a time, the web was small and simple. Developers had such fun throwing
PHP, HTML, and MySQL calls into single files and proudly telling everyone to check
out their website. But the web grew over time to zillions, nay, squillions of pages—
and the early playground became a metaverse of theme parks.

In this chapter, I’ll point out some areas that have become ever more relevant to the
modern web:

• Services and APIs
• Concurrency
• Layers
• Data

The next chapter will show what Python offers in these areas. After that, we’ll dive
into the FastAPI web framework and see what it has to offer.

3

1 I gave up trying a few years ago.

Services and APIs
The web is a great connecting fabric. Although much activity still occurs on the con‐
tent side—HTML, JavaScript, images, and so on—there’s an increasing emphasis on
the application programming interfaces (APIs) that connect things.

Commonly, a web service handles low-level database access and middle-level business
logic (often lumped together as a backend), while JavaScript or mobile apps provide a
rich top-level frontend (interactive user interface). These fore and aft worlds have
become more complex and divergent, usually requiring developers to specialize in
one or the other. It’s harder to be a full stack developer than it used to be.1

These two worlds talk to each other using APIs. In the modern web, API design is as
important as the design of websites themselves. An API is a contract, similar to a
database schema. Defining and modifying APIs is now a major job.

Kinds of APIs
Each API defines the following:

Protocol
The control structure

Format
The content structure

Multiple API methods have developed as technology has evolved from isolated
machines, to multitasking systems, to networked servers. You’ll probably run across
one or more of these at some point, so the following is a brief summary before getting
to HTTP and its friends, which are featured in this book:

• Before networking, an API usually meant a very close connection, like a function
call to a library in the same language as your application—say, calculating a
square root in a math library.

• Remote procedure calls (RPCs) were invented to call functions in other processes,
on the same machine or others, as though they were in the calling application. A
popular current example is gRPC.

• Messaging sends small chunks of data in pipelines among processes. Messages
may be verb-like commands or may just indicate noun-like events of interest.
Current popular messaging solutions, which vary broadly from toolkits to full
servers, include Apache Kafka, RabbitMQ, NATS, and ZeroMQ. Communication
can follow different patterns:

4 | Chapter 1: The Modern Web

https://grpc.io
https://kafka.apache.org
https://www.rabbitmq.com
https://nats.io
https://zeromq.org

2 Style means a higher-level pattern, like client-server, rather than a specific design.

Request-response
One: one, like a web browser calling a web server.

Publish-subscribe, or pub-sub
A publisher emits messages, and subscribers act on each according to some
data in the message, like a subject.

Queues
Like pub-sub, but only one of a pool of subscribers grabs the message and
acts on it.

Any of these may be used alongside a web service—for example, performing a slow
backend task like sending an email or creating a thumbnail image.

HTTP
Berners-Lee proposed three components for his World Wide Web:

HTML
A language for displaying data

HTTP
A client-server protocol

URLs
An addressing scheme for web resources

Although these seem obvious in retrospect, they turned out to be a ridiculously useful
combination. As the web evolved, people experimented, and some ideas, like the IMG
tag, survived the Darwinian struggle. And as needs became clearer, people got serious
about defining standards.

REST(ful)
One chapter in Roy Fielding’s Ph.D. thesis defined Representational State Transfer
(REST)—an architectural style for HTTP use.2 Although often referenced, it’s been
largely misunderstood.

Services and APIs | 5

https://oreil.ly/TwGmX
https://oreil.ly/bsSry

A roughly shared adaptation has evolved and dominates the modern web. It’s called
RESTful, with these characteristics:

• Uses HTTP and client-server protocol
• Stateless (each connection is independent)
• Cacheable
• Resource-based

A resource is data that you can distinguish and perform operations on. A web service
provides an endpoint—a distinct URL and HTTP verb (action)—for each feature that
it wants to expose. An endpoint is also called a route, because it routes the URL to a
function.

Database users are familiar with the CRUD acronym of procedures: create, read,
update, delete. The HTTP verbs are pretty CRUDdy:

POST

Create (write)

PUT

Modify completely (replace)

PATCH

Modify partially (update)

GET

Um, get (read, retrieve)

DELETE

Uh, delete

A client sends a request to a RESTful endpoint with data in one of the following areas
of an HTTP message:

• Headers
• The URL string
• Query parameters
• Body values

In turn, an HTTP response returns these:

• An integer status code indicating the following:

100s
Info, keep going

6 | Chapter 1: The Modern Web

https://oreil.ly/oBena

200s
Success

300s
Redirection

400s
Client error

500s
Server error

• Various headers
• A body, which may be empty, single, or chunked (in successive pieces)

At least one status code is an Easter egg: 418 (I’m a teapot) is supposed to be returned
by a web-connected teapot, if asked to brew coffee.

You’ll find many websites and books on RESTful API design, all with useful rules of
thumb. This book will dole some out on the way.

JSON and API Data Formats
Frontend applications can exchange plain ASCII text with backend web services, but
how can you express data structures like lists of things?

Just about when we really started to need it, along came JavaScript Object Notation
(JSON)—another simple idea that solves an important problem and seems obvious
with hindsight. Although the J stands for JavaScript, the syntax looks a lot like Python
too.

JSON has largely replaced older attempts like XML and SOAP. In the rest of this
book, you’ll see that JSON is the default web service input and output format.

JSON:API
The combination of RESTful design and JSON data formats is common now. But
some wiggle room still remains for ambiguity and nerd tussles. The recent JSON:API
proposal aims to tighten specs a bit. This book will use the loose RESTful approach,

Services and APIs | 7

https://www.google.com/teapot
https://jsonapi.org

3 Around when caveman played hacky sack with giant ground sloths.

but JSON:API or something similarly rigorous may be useful if you have significant
tussles.

GraphQL
RESTful interfaces can be cumbersome for some purposes. Facebook (now Meta)
designed Graph Query Language (GraphQL) to specify more flexible service queries.
I won’t go into GraphQL in this book, but you may want to look into it if you find
RESTful design inadequate for your application.

Concurrency
Besides the growth of service orientation, the rapid expansion of the number of con‐
nections to web services requires ever better efficiency and scale.

We want to reduce the following:

Latency
The up-front wait time

Throughput
The number of bytes per second between the service and its callers

In the old web days,3 people dreamed of supporting hundreds of simultaneous con‐
nections, then fretted about the “10K problem,” and now assume millions at a time.

The term concurrency doesn’t mean full parallelism. Multiple processing isn’t occur‐
ring in the same nanosecond, in a single CPU. Instead, concurrency mostly avoids
busy waiting (idling the CPU until a response is delivered). CPUs are zippy, but net‐
works and disks are thousands to millions of times slower. So, whenever we talk to a
network or disk, we don’t want to just sit there with a blank stare until it responds.

Normal Python execution is synchronous: one thing at a time, in the order specified
by the code. Sometimes we want to be asynchronous: do a little of one thing, then a
little of another thing, back to the first thing, and so on. If all our code uses the CPU
to calculate things (CPU bound), there’s really no spare time to be asynchronous. But
if we perform something that makes the CPU wait for an external thing to complete
(I/O bound), we can be asynchronous.

Asynchronous systems provide an event loop: requests for slow operations are sent
and noted, but we don’t hold up the CPU waiting for their responses. Instead, some
immediate processing is done on each pass through the loop, and any responses that
came in during that time are handled in the next pass.

8 | Chapter 1: The Modern Web

https://graphql.org

4 Choose your own dialect: tier/layer, tomato/tomahto/arigato.
5 You’ll often see the term Model-View-Controller (MVC) and variations. Commonly accompanied by religious

wars, toward which I’m agnostic.

The effects can be dramatic. Later in this book, you’ll see how FastAPI’s support of
asynchronous processing makes it much faster than typical web frameworks.

Asynchronous processing isn’t magic. You still have to be careful to avoid doing too
much CPU-intensive work during the event loop, because that will slow down every‐
thing. Later in this book, you’ll see the uses of Python’s async and await keywords,
and how FastAPI lets you mix both synchronous and asynchronous processing.

Layers
Shrek fans may remember he noted his layers of personality, to which Donkey replied,
“Like an onion?”

Well, if ogres and tearful vegetables can have layers, then so can software. To manage
size and complexity, many applications have long used a so-called three-tier model.4

This isn’t terribly new. Terms differ,5 but for this book I’m using the following simple
separation of terms (see Figure 1-1):

Web
Input/output layer over HTTP, which assembles client requests, calls the Service
Layer, and returns responses

Service
The business logic, which calls the Data layer when needed

Data
Access to data stores and other services

Model
Data definitions shared by all layers

Web client
Web browser or other HTTP client-side software

Layers | 9

Database
The data store, often an SQL or NoSQL server

Figure 1-1. Vertical layers

These components will help you scale your site without having to start from scratch.
They’re not laws of quantum mechanics, so consider them guidelines for this book’s
exposition.

The layers talk to one another via APIs. These can be simple function calls to separate
Python modules, but could access external code via any method. As I showed earlier,
this could include RPCs, messages, and so on. In this book, I’m assuming a single web
server, with Python code importing other Python modules. The separation and infor‐
mation hiding is handled by the modules.

The Web layer is the one that users see, via client applications and APIs. We’re usually
talking about a RESTful web interface, with URLs, and JSON-encoded requests and
responses. But alternative text (or command-line interface, CLI) clients also could be
built alongside the Web layer. Python Web code may import Service-layer modules
but should not import Data modules.

The Service layer contains the actual details of whatever this website provides. This
layer essentially looks like a library. It imports Data modules to access databases and
external services but should not know the details.

The Data layer provides the Service layer access to data, through files or client calls to
other services. Alternative Data layers may also exist, communicating with a single
Service layer.

The Model box isn’t an actual layer but a source of data definitions shared by the lay‐
ers. This isn’t needed if you’re passing built-in Python data structures among them.
As you will see, FastAPI’s inclusion of Pydantic enables the definition of data struc‐
tures with many useful features.

10 | Chapter 1: The Modern Web

6 As viewers know, if your layers get sloppy, you may not return to the tent the next week.

Why make these divisions? Among many reasons, each layer can be:

• Written by specialists.
• Tested in isolation.
• Replaced or supplemented: you might add a second Web layer, using a different

API such as gRPC, alongside a web one.

Follow one rule from Ghostbusters: Don’t cross the streams. That is, don’t let web
details leak out of the Web layer, or database details out of the Data layer.

You can visualize layers as a vertical stack, like a cake in the Great British Bake Off.6

Here are some reasons for separation of the layers:

• If you don’t separate the layers, expect a hallowed web meme: Now you have two
problems.

• Once the layers are mixed, later separation will be very difficult.
• You’ll need to know two or more specialties to understand and write tests if code

logic gets muddled.

By the way, even though I call them layers, you don’t need to assume that one layer is
“above” or “below” another, and that commands flow with gravity. Vertical chauvin‐
ism! You could also view layers as sideways-communicating boxes (Figure 1-2).

Figure 1-2. Sideways-communicating boxes

Layers | 11

However you visualize them, the only communication paths between the boxes/layers
are the arrows (APIs). This is important for testing and debugging. If undocumented
doors exist in a factory, the night watchman will inevitably be surprised.

The arrows between the web client and Web layer use HTTP or HTTPS to transport
mostly JSON text. The arrows between the Data layer and database use a database-
specific protocol and carry SQL (or other) text. The arrows between the layers them‐
selves are function calls carrying data models.

Also, the recommended data formats flowing through the arrows are as follows:

Client ⇔ Web
RESTful HTTP with JSON

Web ⇔ Service
Models

Service ⇔ Data
Models

Data ⇔ Databases and services
Specific APIs

Based on my own experience, this is how I’ve chosen to structure the topics in this
book. It’s workable and has scaled to fairly complex sites, but isn’t sacred. You may
have a better design! However you do it, these are the important points:

• Separate domain-specific details.
• Define standard APIs between the layers.
• Don’t cheat; don’t leak.

Sometimes deciding which layer is the best home for code is a challenge. For exam‐
ple, Chapter 11 looks at authentication and authorization requirements and how to
implement them—as an extra layer between Web and Service, or within one of them.
Software development is sometimes as much art as science.

Data
The web has often been used as a frontend to relational databases, although many
other ways of storing and accessing data have evolved, such as NoSQL or NewSQL
databases.

But beyond databases, machine learning (ML)—or deep learning or just AI—is funda‐
mentally remaking the technology landscape. The development of large models
requires lots of messing with data, which has traditionally been called extract, trans‐
form, load (ETL).

12 | Chapter 1: The Modern Web

As a general-purpose service architecture, the web can help with many of the fiddly
bits of ML systems.

Review
The web uses many APIs, but especially RESTful ones. Asynchronous calls allow bet‐
ter concurrency, which speeds up the overall process. Web service applications are
often large enough to divide into layers. Data has become a major area in its own
right. All these concepts are addressed in the Python programming language, coming
in the next chapter.

Review | 13

CHAPTER 2

Modern Python

It’s all in a day’s work for Confuse-a-Cat.
—Monty Python

Preview
Python evolves to keep up with our changing technical world. This chapter discusses
specific Python features that apply to issues in the previous chapter, and a few extras:

• Tools
• APIs and services
• Variables and type hinting
• Data structures
• Web frameworks

Tools
Every computing language has the following:

• The core language and built-in standard packages
• Ways to add external packages
• Recommended external packages
• An environment of development tools

The following sections list the Python tools required or recommended for this book.

15

These may change over time! Python packaging and development tools are moving
targets, and better solutions come along now and then.

Getting Started
You should be able to write and run a Python program like Example 2-1.

Example 2-1. The Python program that goes like this: this.py

def paid_promotion():
 print("(that calls this function!)")

print("This is the program")
paid_promotion()
print("that goes like this.")

To execute this program from the command line in a text window or terminal, I’ll use
the convention of a $ prompt (your system begging you to type something, already).
What you type after the prompt is shown in bold print. If you saved Example 2-1 to
a file named this.py, you can run it as shown in Example 2-2.

Example 2-2. Test this.py

$ python this.py
This is the program
(that calls this function!)
that goes like this.

Some code examples use the interactive Python interpreter, which is what you get if
you just type python:

$ python
Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:10:52)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

The first few lines are specific to your operating system and Python version. The >>>
is your prompt here. A handy extra feature of the interactive interpreter is that it will
print the value of a variable for you if you type its name:

>>> wrong_answer = 43
>>> wrong_answer
43

16 | Chapter 2: Modern Python

This also works for expressions:

>>> wrong_answer = 43
>>> wrong_answer - 3
40

If you’re fairly new to Python or would like a quick review, read the next few sections.

Python Itself
You will need, as a bare minimum, Python 3.7. This includes features like type hints
and asyncio, which are core requirements for FastAPI. I recommend using at least
Python 3.9, which will have a longer support lifetime. The standard source for Python
is the Python Software Foundation.

Package Management
You will want to download external Python packages and install them safely on your
computer. The classic tool for this is pip.

But how do you download this downloader? If you installed Python from the Python
Software Foundation, you should already have pip. If not, follow the instructions at
the pip site to get it. Throughout this book, as I introduce a new Python package, I’ll
include the pip command to download it.

Although you can do a lot with plain old pip, you’ll likely also want to use virtual
environments and consider an alternative tool like Poetry.

Virtual Environments
Pip will download and install packages, but where should it put them? Although stan‐
dard Python and its included libraries are usually installed in a standard place on
your operating system, you may not (and probably should not) be able to change any‐
thing there. Pip uses a default directory other than the system one, so you won’t step
on your system’s standard Python files. You can change this; see the pip site for details
for your operating system.

But it’s common to work with multiple versions of Python, or make installations spe‐
cific to a project, so you know exactly which packages are in there. To do this, Python
supports virtual environments. These are just directories (folders in the non-Unix
world) into which pip writes downloaded packages. When you activate a virtual envi‐
ronment, your shell (main system command interpreter) looks there first when load‐
ing Python modules.

The program for this is venv, and it’s been included with standard Python since
version 3.4.

Getting Started | 17

https://www.python.org
https://pip.pypa.io
https://oreil.ly/9kv5T

Let’s make a virtual environment called venv1. You can run the venv module as a
standalone program:

$ venv venv1

Or as a Python module:

$ python -m venv venv1

To make this your current Python environment, run this shell command (on Linux or
Mac; see the venv docs for Windows and others):

$ source venv1/bin/activate

Now, anytime you run pip install, it will install packages under venv1. And when
you run Python programs, that’s where your Python interpreter and modules will be
found.

To deactivate your virtual environment, press Control-D (Linux or Mac), or type
deactivate (Windows).

You can create alternative environments like venv2, and deactivate/activate to step
between them (although I hope you have more naming imagination than me).

Poetry
This combination of pip and venv is so common that people started combining them
to save steps and avoid that source shell wizardry. One such package is Pipenv, but a
newer rival called Poetry is becoming more popular.

Having used pip, Pipenv, and Poetry, I now prefer Poetry. Get it with pip install
poetry. Poetry has many subcommands, such as poetry add to add a package to
your virtual environment, poetry install to actually download and install it, and so
on. Check the Poetry site or run the poetry command for help.

Besides downloading single packages, pip and Poetry manage multiple packages in
configuration files: requirements.txt for pip, and pyproject.toml for Poetry. Poetry and
pip don’t just download packages, but also manage the tricky dependencies that pack‐
ages may have on other packages. You can specify desired package versions as min‐
ima, maxima, ranges, or exact values (also known as pinning). This can be important
as your project grows and the packages that it depends on change. You may need a
minimum version of a package if a feature that you use first appeared there, or a max‐
imum if a feature was dropped.

18 | Chapter 2: Modern Python

https://pipenv.pypa.io
https://python-poetry.org

Source Formatting
Source formatting is less important than the topics of the previous sections but still
helpful. Avoid code formatting (bikeshedding) arguments with a tool that massages
source into a standard, nonweird format. One good choice is Black. Install it with pip
install black.

Testing
Testing is covered in detail in Chapter 12. Although the standard Python test package
is unittest, the industrial-strength Python test package used by most Python develop‐
ers is pytest. Install it with pip install pytest.

Source Control and Continuous Integration
The almost-universal solution for source control now is Git, with storage repositories
(repos) at sites like GitHub and GitLab. Using Git isn’t specific to Python or FastAPI,
but you’ll likely spend a lot of your development time with Git. The pre-commit tool
runs various tests on your local machine (such as black and pytest) before commit‐
ting to Git. After pushing to a remote Git repo, more continuous integration (CI)
tests may be run there.

Chapter 12 and “Troubleshooting” on page 190 have more details.

Web Tools
Chapter 3 shows how to install and use the main Python web tools used in this book:

FastAPI
The web framework itself

Uvicorn
An asynchronous web server

HTTPie
A text web client, similar to curl

Requests
A synchronous web client package

HTTPX
A synchronous/asynchronous web client package

Getting Started | 19

https://black.readthedocs.io
https://docs.pytest.org
https://pre-commit.com

APIs and Services
Python’s modules and packages are essential for creating large applications that don’t
become “big balls of mud”. Even in a single-process web service, you can maintain
the separation discussed in Chapter 1 by the careful design of modules and imports.

Python’s built-in data structures are extremely flexible, and very tempting to use
everywhere. But in the coming chapters, you’ll see that we can define higher-level
models to make our interlayer communication cleaner. These models rely on a fairly
recent Python addition called type hinting. Let’s get into that, but first with a brief
aside on how Python handles variables. This won’t hurt.

Variables Are Names
The term object has many definitions in the software world—maybe too many. In
Python, an object is a data structure that wraps every distinct piece of data in the pro‐
gram, from an integer like 5, to a function, to anything that you might define. It speci‐
fies, among other bookkeeping info, the following:

• A unique identity value
• The low-level type that matches the hardware
• The specific value (physical bits)
• A reference count of the number of variables that refer to it

Python is strongly typed at the object level (its type doesn’t change, although its value
might). An object is termed mutable if its value may be changed, immutable if not.

But at the variable level, Python differs from many other computing languages, and
this can be confusing. In many other languages, a variable is essentially a direct
pointer to an area of memory that contains a raw value, stored in bits that follow the
computer’s hardware design. If you assign a new value to that variable, the language
overwrites the previous value in memory with the new one.

That’s direct and fast. The compiler keeps track of what goes where. It’s one reason
languages like C are faster than Python. As a developer, you need to ensure that you
assign only values of the correct type to each variable.

Now, here’s the big difference with Python: a Python variable is just a name that is
temporarily associated with a higher-level object in memory. If you assign a new value
to a variable that refers to an immutable object, you’re actually creating a new object
that contains that value, and then getting the name to refer to that new object. The
old object (that the name used to refer to) is then free, and its memory can be
reclaimed if no other names are still referring to it (i.e., its reference count is 0).

20 | Chapter 2: Modern Python

https://oreil.ly/zzX5T

In Introducing Python (O’Reilly), I compare objects to plastic boxes sitting on mem‐
ory shelves, and names/variables to sticky notes on these boxes. Or you can picture
names as tags attached by strings to those boxes.

Usually, when you use a name, you assign it to one object, and it stays attached. Such
simple consistency helps you understand your code. A variable’s scope is the area of
code in which a name refers to the same object—such as within a function. You can
use the same name in different scopes, but each one refers to a different object.

Although you can make a variable refer to different objects throughout a Python pro‐
gram, that isn’t necessarily a good practice. Without looking, you don’t know if name
x on line 100 is in the same scope as name x on line 20. (By the way, x is a terrible
name. We should pick names that actually confer some meaning.)

Type Hints
All of this background has a point.

Python 3.6 added type hints to declare the type of object to which a variable refers.
These are not enforced by the Python interpreter as it’s running! Instead, they can be
used by various tools to ensure that your use of a variable is consistent. The standard
type checker is called mypy, and I’ll show you how it’s used later.

A type hint may seem like just a nice thing, like many lint tools used by programmers
to avoid mistakes. For instance, it may remind you that your variable count refers to a
Python object of type int. But hints, although they’re optional and unenforced notes
(literally, hints), turn out to have unexpected uses. Later in this book, you’ll see how
FastAPI adapted the Pydantic package to make clever use of type hinting.

The addition of type declarations may be a trend in other, formerly typeless, lan‐
guages. For example, many JavaScript developers have moved to TypeScript.

Data Structures
You’ll get details on Python and data structures in Chapter 5.

Web Frameworks
Among other things, a web framework translates between HTTP bytes and Python
data structures. It can save you a lot of effort. On the other hand, if part of it doesn’t
work as you need it to, you may need to hack a solution. As the saying goes, don’t
reinvent the wheel—unless you can’t get a round one.

The Web Server Gateway Interface (WSGI) is a synchronous Python standard specifi‐
cation to connect application code to web servers. Traditional Python web

Web Frameworks | 21

https://www.typescriptlang.org
https://wsgi.readthedocs.io
https://peps.python.org/pep-3333
https://peps.python.org/pep-3333

frameworks are all built on WSGI. But synchronous communication may mean busy
waiting for something that’s much slower than the CPU, like a disk or network. Then
you’ll look for better concurrency. Concurrency has become more important in recent
years. As a result, the Python Asynchronous Server Gateway Interface (ASGI) specifi‐
cation was developed. Chapter 4 talks about this.

Django
Django is a full-featured web framework that tags itself as “the web framework for
perfectionists with deadlines.” It was announced by Adrian Holovaty and Simon
Willison in 2003, and named after Django Reinhardt, a 20th-century Belgian jazz gui‐
tarist. Django is often used for database-backed corporate sites. I include more details
on Django in Chapter 7.

Flask
In contrast, Flask, introduced by Armin Ronacher in 2010, is a microframework.
Chapter 7 has more information on Flask and how it compares with Django and
FastAPI.

FastAPI
After meeting other suitors at the ball, we finally encounter the intriguing FastAPI,
the subject of this book. Although FastAPI was published by Sebastián Ramírez in
2018, it has already climbed to the third place of Python web frameworks, behind
Flask and Django, and is growing faster. A 2022 comparison shows that it may pass
them at some point.

As of the end of October 2023, here are the GitHub star counts:

• Django: 73.8 thousand
• Flask: 64.8 thousand
• FastAPI: 64 thousand

22 | Chapter 2: Modern Python

https://asgi.readthedocs.io
https://asgi.readthedocs.io
https://www.djangoproject.com
https://flask.palletsprojects.com
https://oreil.ly/36WTQ

After careful investigation into alternatives, Ramírez came up with a design that was
heavily based on two third-party Python packages:

• Starlette for web details
• Pydantic for data details

And he added his own ingredients and special sauces to the final product. You’ll see
what I mean in the next chapter.

Review
This chapter covered a lot of ground related to today’s Python:

• Useful tools for a Python web developer
• The prominence of APIs and services
• Python’s type hinting, objects, and variables
• Data structures for web services
• Web frameworks

Review | 23

https://oreil.ly/JDDOm
https://oreil.ly/zJFTX

PART II

A FastAPI Tour

The chapters in this part provide a thousand-foot view of FastAPI—more like a drone
than a spy satellite. They cover the basics quickly but stay above the water line to
avoid drowning you in details. The chapters are relatively short and are meant to pro‐
vide context for the depths of Part III.

After you get used to the ideas in this part, Part III zooms into those details. That’s
where you can do some serious good, or damage. No judgment; it’s up to you.

CHAPTER 3

FastAPI Tour

FastAPI is a modern, fast (high-performance) web framework for building APIs with
Python 3.6+ based on standard Python type hints.

—Sebastián Ramírez, creator of FastAPI

Preview
FastAPI was announced in 2018 by Sebastián Ramírez. It’s more modern in many
senses than most Python web frameworks—taking advantage of features that have
been added to Python 3 in the last few years. This chapter is a quick overview of
FastAPI’s main features, with emphasis on the first things that you’ll want to know:
how to handle web requests and responses.

What Is FastAPI?
Like any web framework, FastAPI helps you build web applications. Every framework
is designed to make some operations easier—by features, omissions, and defaults. As
the name implies, FastAPI targets development of web APIs, although you can use it
for traditional web content applications as well.

The FastAPI website claims these advantages:

Performance
As fast as Node.js and Go in some cases, unusual for Python frameworks.

Faster development
No sharp edges or oddities.

Better code quality
Type hinting and models help reduce bugs.

27

https://fastapi.tiangolo.com
https://tiangolo.com

Autogenerated documentation and test pages
Much easier than hand-editing OpenAPI descriptions.

FastAPI uses the following:

• Python type hints
• Starlette for the web machinery, including async support
• Pydantic for data definitions and validation
• Special integration to leverage and extend the others

This combination makes a pleasing development environment for web applications,
especially RESTful web services.

A FastAPI Application
Let’s write a teeny FastAPI application—a web service with a single endpoint. For
now, we’re in what I’ve called the Web layer, handling only web requests and respon‐
ses. First, install the basic Python packages that we’ll be using:

• The FastAPI framework: pip install fastapi
• The Uvicorn web server: pip install uvicorn
• The HTTPie text web client: pip install httpie
• The Requests synchronous web client package: pip install requests
• The HTTPX synchronous/asynchronous web client package: pip install

httpx

Although curl is the best known text web client, I think HTTPie is easier to use. Also,
it defaults to JSON encoding and decoding, which is a better match for FastAPI. Later
in this chapter, you’ll see a screenshot that includes the syntax of the curl command
line needed to access a particular endpoint.

Let’s shadow an introverted web developer in Example 3-1 and save this code as the
file hello.py.

Example 3-1. A shy endpoint (hello.py)

from fastapi import FastAPI

app = FastAPI()

@app.get("/hi")
def greet():
 return "Hello? World?"

28 | Chapter 3: FastAPI Tour

https://fastapi.tiangolo.com
https://www.uvicorn.org
https://httpie.io
https://requests.readthedocs.io
https://www.python-httpx.org
https://curl.se

Here are some points to notice:

• app is the top-level FastAPI object that represents the whole web application.
• @app.get("/hi") is a path decorator. It tells FastAPI the following:

— A request for the URL "/hi" on this server should be directed to the following
function.

— This decorator applies only to the HTTP GET verb. You can also respond to a
"/hi" URL sent with the other HTTP verbs (PUT, POST, etc.), each with a sepa‐
rate function.

• def greet() is a path function—the main point of contact with HTTP requests
and responses. In this example, it has no arguments, but the following sections
show that there’s much more under the FastAPI hood.

The next step is to run this web application in a web server. FastAPI itself does not
include a web server but recommends Uvicorn. You can start Uvicorn and the
FastAPI web application in two ways: externally or internally.

To start Uvicorn externally, via the command line, see Example 3-2.

Example 3-2. Start Uvicorn with the command line

$ uvicorn hello:app --reload

The hello refers to the hello.py file, and app is the FastAPI variable name within it.

Alternatively, you can start Uvicorn internally in the application itself, as in
Example 3-3.

Example 3-3. Start Uvicorn internally

from fastapi import FastAPI

app = FastAPI()

@app.get("/hi")
def greet():
 return "Hello? World?"

if __name__ == "__main__":
 import uvicorn
 uvicorn.run("hello:app", reload=True)

In either case, that reload tells Uvicorn to restart the web server if hello.py changes.
In this chapter, we’re going to use this automatic reloading a lot.

A FastAPI Application | 29

Either case will use port 8000 on your machine (named localhost) by default. Both
the external and internal methods have host and port arguments if you’d prefer
something else.

Now the server has a single endpoint (/hi) and is ready for requests.

Let’s test with multiple web clients:

• For the browser, type the URL in the top location bar.
• For HTTPie, type the command shown (the $ stands for whatever command

prompt you have for your system shell).
• For Requests or HTTPX, use Python in interactive mode, and type after the >>>

prompt.

As mentioned in the Preface, what you type is in a

bold monospaced font

and the output is in a

normal monospaced font

Examples 3-4 through 3-7 show different ways to test the web server’s brand-new /hi
endpoint.

Example 3-4. Test /hi in the browser

http://localhost:8000/hi

Example 3-5. Test /hi with Requests

>>> import requests
>>> r = requests.get("http://localhost:8000/hi")
>>> r.json()
'Hello? World?'

Example 3-6. Test /hi with HTTPX, which is almost identical to Requests

>>> import httpx
>>> r = httpx.get("http://localhost:8000/hi")
>>> r.json()
'Hello? World?'

It doesn’t matter if you use Requests or HTTPX to test FastAPI
routes. But Chapter 13 shows cases where HTTPX is useful when
making other asynchronous calls. So the rest of the examples in
this chapter use Requests.

30 | Chapter 3: FastAPI Tour

Example 3-7. Test /hi with HTTPie

$ http localhost:8000/hi
HTTP/1.1 200 OK
content-length: 15
content-type: application/json
date: Thu, 30 Jun 2022 07:38:27 GMT
server: uvicorn

"Hello? World?"

Use the -b argument in Example 3-8 to skip the response headers and print only the
body.

Example 3-8. Test /hi with HTTPie, printing only the response body

$ http -b localhost:8000/hi
"Hello? World?"

Example 3-9 gets the full request headers as well as the response with -v.

Example 3-9. Test /hi with HTTPie and get everything

$ http -v localhost:8000/hi
GET /hi HTTP/1.1
Accept: /
Accept-Encoding: gzip, deflate
Connection: keep-alive
Host: localhost:8000
User-Agent: HTTPie/3.2.1

HTTP/1.1 200 OK
content-length: 15
content-type: application/json
date: Thu, 30 Jun 2022 08:05:06 GMT
server: uvicorn

"Hello? World?"

Some examples in this book show the default HTTPie output (response headers and
body), and others show just the body.

A FastAPI Application | 31

HTTP Requests
Example 3-9 included only one specific request: a GET request for the /hi URL on the
server localhost, port 8000.

Web requests squirrel data in different parts of an HTTP request, and FastAPI lets
you access them smoothly. From the sample request in Example 3-9, Example 3-10
shows the HTTP request that the http command sent to the web server.

Example 3-10. An HTTP request

GET /hi HTTP/1.1
Accept: /
Accept-Encoding: gzip, deflate
Connection: keep-alive
Host: localhost:8000
User-Agent: HTTPie/3.2.1

This request contains the following:

• The verb (GET) and path (/hi)
• Any query parameters (text after any ? in this case, none)
• Other HTTP headers
• No request body content

FastAPI unsquirrels these into handy definitions:

Header

The HTTP headers

Path

The URL

Query

The query parameters (after the ? at the end of the URL)

Body

The HTTP body

32 | Chapter 3: FastAPI Tour

The way that FastAPI provides data from various parts of the
HTTP requests is one of its best features and an improvement on
how most Python web frameworks do it. All the arguments that
you need can be declared and provided directly inside the path
function, using the definitions in the preceding list (Path, Query,
etc.), and by functions that you write. This uses a technique called
dependency injection, which will be discussed as we go along and
expanded on in Chapter 6.

Let’s make our earlier application a little more personal by adding a parameter called
who that addresses that plaintive Hello? to someone. We’ll try different ways to pass
this new parameter:

• In the URL path
• As a query parameter, after the ? in the URL
• In the HTTP body
• As an HTTP header

URL Path
Edit hello.py in Example 3-11.

Example 3-11. Return the greeting path

from fastapi import FastAPI

app = FastAPI()

@app.get("/hi/{who}")
def greet(who):
 return f"Hello? {who}?"

Once you save this change from your editor, Uvicorn should restart. (Otherwise, we’d
create hello2.py, etc. and rerun Uvicorn each time.) If you have a typo, keep trying
until you fix it, and Uvicorn won’t give you a hard time.

Adding that {who} in the URL (after @app.get) tells FastAPI to expect a variable
named who at that position in the URL. FastAPI then assigns it to the who argument in
the following greet() function. This shows coordination between the path decorator
and the path function.

HTTP Requests | 33

Do not use a Python f-string for the amended URL string ("/hi/
{who}") here. The curly brackets are used by FastAPI itself to
match URL pieces as path parameters.

In Examples 3-12 through 3-14, test this modified endpoint with the various methods
discussed earlier.

Example 3-12. Test /hi/Mom in the browser

localhost:8000/hi/Mom

Example 3-13. Test /hi/Mom with HTTPie

$ http localhost:8000/hi/Mom
HTTP/1.1 200 OK
content-length: 13
content-type: application/json
date: Thu, 30 Jun 2022 08:09:02 GMT
server: uvicorn

"Hello? Mom?"

Example 3-14. Test /hi/Mom with Requests

>>> import requests
>>> r = requests.get("http://localhost:8000/hi/Mom")
>>> r.json()
'Hello? Mom?'

In each case, the string "Mom" is passed as part of the URL, passed to the greet() path
function as the who variable, and returned as part of the response.

The response in each case is the JSON string (with single or double quotes, depend‐
ing on which test client you used) "Hello? Mom?".

Query Parameters
Query parameters are the name=value strings after the ? in a URL, separated by &
characters. Edit hello.py again in Example 3-15.

Example 3-15. Return the greeting query parameter

from fastapi import FastAPI

app = FastAPI()

34 | Chapter 3: FastAPI Tour

@app.get("/hi")
def greet(who):
 return f"Hello? {who}?"

The endpoint function is defined as greet(who) again, but {who} isn’t in the URL on
the previous decorator line this time, so FastAPI now assumes that who is a query
parameter. Test with Examples 3-16 and 3-17.

Example 3-16. Test Example 3-15 with your browser

localhost:8000/hi?who=Mom

Example 3-17. Test Example 3-15 with HTTPie

$ http -b localhost:8000/hi?who=Mom
"Hello? Mom?"

In Example 3-18, you can call HTTPie with a query parameter argument (note the
==).

Example 3-18. Test Example 3-15 with HTTPie and params

$ http -b localhost:8000/hi who==Mom
"Hello? Mom?"

You can have more than one of these arguments for HTTPie, and it’s easier to type
these as space-separated arguments.

Examples 3-19 and 3-20 show the same alternatives for Requests.

Example 3-19. Test Example 3-15 with Requests

>>> import requests
>>> r = requests.get("http://localhost:8000/hi?who=Mom")
>>> r.json()
'Hello? Mom?'

Example 3-20. Test Example 3-15 with Requests and params

>>> import requests
>>> params = {"who": "Mom"}
>>> r = requests.get("http://localhost:8000/hi", params=params)
>>> r.json()
'Hello? Mom?'

HTTP Requests | 35

In each case, you provide the "Mom" string in a new way, and get it to the path func‐
tion and through to the eventual response.

Body
We can provide path or query parameters to a GET endpoint, but not values from the
request body. In HTTP, GET is supposed to be idempotent—a computery term for ask
the same question, get the same answer. HTTP GET is supposed to only return stuff.
The request body is used to send stuff to the server when creating (POST) or updating
(PUT or PATCH). Chapter 9 shows a way around this.

So, in Example 3-21, let’s change the endpoint from a GET to a POST. (Technically,
we’re not creating anything, so a POST isn’t kosher, but if the RESTful Overlords sue
us, then hey, check out the cool courthouse.)

Example 3-21. Return the greeting body

from fastapi import FastAPI, Body

app = FastAPI()

@app.post("/hi")
def greet(who:str = Body(embed=True)):
 return f"Hello? {who}?"

That Body(embed=True) is needed to tell FastAPI that, this time, we
get the value of who from the JSON-formatted request body. The
embed part means that it should look like {"who": "Mom"} rather
than just "Mom".

Try testing with HTTPie in Example 3-22, using -v to show the generated request
body (and note the single = parameter to indicate JSON body data).

Example 3-22. Test Example 3-21 with HTTPie

$ http -v localhost:8000/hi who=Mom
POST /hi HTTP/1.1
Accept: application/json, /;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Content-Length: 14
Content-Type: application/json
Host: localhost:8000
User-Agent: HTTPie/3.2.1

36 | Chapter 3: FastAPI Tour

{
 "who": "Mom"
}

HTTP/1.1 200 OK
content-length: 13
content-type: application/json
date: Thu, 30 Jun 2022 08:37:00 GMT
server: uvicorn

"Hello? Mom?"

And finally, test with Requests in Example 3-23, which uses its json argument to pass
JSON-encoded data in the request body.

Example 3-23. Test Example 3-21 with Requests

>>> import requests
>>> r = requests.post("http://localhost:8000/hi", json={"who": "Mom"})
>>> r.json()
'Hello? Mom?'

HTTP Header
Finally, let’s try passing the greeting argument as an HTTP header in Example 3-24.

Example 3-24. Return the greeting header

from fastapi import FastAPI, Header

app = FastAPI()

@app.post("/hi")
def greet(who:str = Header()):
 return f"Hello? {who}?"

Let’s test this one just with HTTPie in Example 3-25. It uses name:value to specify an
HTTP header.

Example 3-25. Test Example 3-24 with HTTPie

$ http -v localhost:8000/hi who:Mom
GET /hi HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Host: localhost:8000
User-Agent: HTTPie/3.2.1

HTTP Requests | 37

who: Mom

HTTP/1.1 200 OK
content-length: 13
content-type: application/json
date: Mon, 16 Jan 2023 05:14:46 GMT
server: uvicorn

"Hello? Mom?"

FastAPI converts HTTP header keys to lowercase, and converts a hyphen (-) to an
underscore (_). So you could print the value of the HTTP User-Agent header like this
in Examples 3-26 and 3-27.

Example 3-26. Return the User-Agent header (hello.py)

from fastapi import FastAPI, Header

app = FastAPI()

@app.post("/agent")
def get_agent(user_agent:str = Header()):
 return user_agent

Example 3-27. Test the User-Agent header with HTTPie

$ http -v localhost:8000/agent
GET /agent HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Host: localhost:8000
User-Agent: HTTPie/3.2.1

HTTP/1.1 200 OK
content-length: 14
content-type: application/json
date: Mon, 16 Jan 2023 05:21:35 GMT
server: uvicorn

"HTTPie/3.2.1"

Multiple Request Data
You can use more than one of these methods in the same path function. That is, you
can get data from the URL, query parameters, the HTTP body, HTTP headers, cook‐
ies, and so on. And you can write your own dependency functions that process and

38 | Chapter 3: FastAPI Tour

combine them in special ways, such as for pagination or authentication. You’ll see
some of these in Chapter 6 and in various chapters in Part III.

Which Method Is Best?
Here are a few recommendations:

• When passing arguments in the URL, following RESTful guidelines is standard
practice.

• Query strings are usually used to provide optional arguments, like pagination.
• The body is usually used for larger inputs, like whole or partial models.

In each case, if you provide type hints in your data definitions, your arguments will
be automatically type-checked by Pydantic. This ensures that they’re both present and
correct.

HTTP Responses
By default, FastAPI converts whatever you return from your endpoint function to
JSON; the HTTP response has a header line Content-type: application/json. So,
although the greet() function initially returns the string "Hello? World?", FastAPI
converts it to JSON. This is one of the defaults chosen by FastAPI to streamline API
development.

In this case, the Python string "Hello? World?" is converted to its equivalent JSON
string "Hello? World?", which is the same darn string. But anything that you return
is converted to JSON, whether built-in Python types or Pydantic models.

Status Code
By default, FastAPI returns a 200 status code; exceptions raise 4xx codes.

In the path decorator, specify the HTTP status code that should be returned if all goes
well (exceptions will generate their own codes and override it). Add the code from
Example 3-28 somewhere in your hello.py (just to avoid showing the whole file again
and again), and test it with Example 3-29.

Example 3-28. Specify the HTTP status code (add to hello.py)

@app.get("/happy")
def happy(status_code=200):
 return ":)"

HTTP Responses | 39

Example 3-29. Test the HTTP status code

$ http localhost:8000/happy
HTTP/1.1 200 OK
content-length: 4
content-type: application/json
date: Sun, 05 Feb 2023 04:37:32 GMT
server: uvicorn

":)"

Headers
You can inject HTTP response headers, as in Example 3-30 (you don’t need to return
response).

Example 3-30. Set the HTTP headers (add to hello.py)

from fastapi import Response

@app.get("/header/{name}/{value}")
def header(name: str, value: str, response:Response):
 response.headers[name] = value
 return "normal body"

Let’s see if it worked (Example 3-31).

Example 3-31. Test the response HTTP headers

$ http localhost:8000/header/marco/polo
HTTP/1.1 200 OK
content-length: 13
content-type: application/json
date: Wed, 31 May 2023 17:47:38 GMT
marco: polo
server: uvicorn

"normal body"

Response Types
Response types (import these classes from fastapi.responses) include the
following:

• JSONResponse (the default)
• HTMLResponse

• PlainTextResponse

40 | Chapter 3: FastAPI Tour

• RedirectResponse

• FileResponse

• StreamingResponse

I’ll say more about the last two in Chapter 15.

For other output formats (also known as MIME types), you can use a generic
Response class, which needs the following:

content

String or bytes

media_type

The string MIME type

status_code

HTTP integer status code

headers

A dict of strings

Type Conversion
The path function can return anything, and by default (using JSONResponse), FastAPI
will convert it to a JSON string and return it, with the matching HTTP response
headers Content-Length and Content-Type. This includes any Pydantic model class.

But how does it do this? If you’ve used the Python json library, you’ve probably seen
that it raises an exception when given some data types, such as datetime. FastAPI
uses an internal function called jsonable_encoder() to convert any data structure to
a “JSONable” Python data structure, then calls the usual json.dumps() to turn that
into a JSON string. Example 3-32 shows a test that you can run with pytest.

Example 3-32. Use jsonable_encoder() to avoid JSON kabooms

import datetime
import pytest
from fastapi.encoders import jsonable_encoder
import json

@pytest.fixture
def data():
 return datetime.datetime.now()

def test_json_dump(data):
 with pytest.raises(Exception):
 _ = json.dumps(data)

HTTP Responses | 41

def test_encoder(data):
 out = jsonable_encoder(data)
 assert out
 json_out = json.dumps(out)
 assert json_out

Model Types and response_model
It’s possible to have different classes with many of the same fields, except one is speci‐
alized for user input, one for output, and one for internal use. Some reasons for these
variants could include the following:

• Remove some sensitive information from the output—like deidentifying personal
medical data, if you’ve encountered Health Insurance Portability and Accounta‐
bility Act (HIPAA) requirements.

• Add fields to the user input (like a creation date and time).

Example 3-33 shows three related classes for a contrived case:

• TagIn is the class that defines what the user needs to provide (in this case, just a
string called tag).

• Tag is made from a TagIn and adds two fields: created (when this Tag was cre‐
ated) and secret (an internal string, maybe stored in a database, but never sup‐
posed to be exposed to the world).

• TagOut is the class that defines what can be returned to a user (by a lookup or
search endpoint). It contains the tag field from the original TagIn object and its
derived Tag object, plus the created field generated for Tag, but not secret.

Example 3-33. Model variations (model/tag.py)

from datetime import datetime
from pydantic import BaseClass

class TagIn(BaseClass):
 tag: str

class Tag(BaseClass):
 tag: str
 created: datetime
 secret: str

class TagOut(BaseClass):
 tag: str
 created: datetime

42 | Chapter 3: FastAPI Tour

You can return data types other than the default JSON from a FastAPI path function
in different ways. One method is to use the response_model argument in the path
decorator to goose FastAPI to return something else. FastAPI will drop any fields that
were in the object that you returned but are not in the object specified by
response_model.

In Example 3-34, pretend that you wrote a new service module called service/tag.py
with the create() and get() functions that give this web module something to call.
Those lower-stack details don’t matter here. The important point is the get_one()
path function at the bottom, and the response_model=TagOut in its path decorator.
That automatically changes an internal Tag object to a sanitized TagOut object.

Example 3-34. Return a different response type with response_model (web/tag.py)

import datetime
from model.tag import TagIn, Tag, TagOut
import service.tag as service

@app.post('/')
def create(tag_in: TagIn) -> TagIn:
 tag: Tag = Tag(tag=tag_in.tag, created=datetime.utcnow(),
 secret="shhhh")
 service.create(tag)
 return tag_in

@app.get('/{tag_str}', response_model=TagOut)
def get_one(tag_str: str) -> TagOut:
 tag: Tag = service.get(tag_str)
 return tag

Even though we returned a Tag, response_model will convert it to a TagOut.

Automated Documentation
This section assumes that you’re running the web application from Example 3-21, the
version that sends the who parameter in the HTTP body via a POST request to http://
localhost:8000/hi.

Convince your browser to visit the URL http://localhost:8000/docs.

You’ll see something that starts like Figure 3-1 (I’ve cropped the following screen‐
shots to emphasize particular areas).

Automated Documentation | 43

Figure 3-1. Generated documentation page

Where did that come from?

FastAPI generates an OpenAPI specification from your code, and includes this page
to display and test all your endpoints. This is just one ingredient of its secret sauce.

Click the down arrow on the right side of the green box to open it for testing
(Figure 3-2).

Figure 3-2. Open documentation page

44 | Chapter 3: FastAPI Tour

Click that “Try it out” button on the right. Now you’ll see an area that will let you
enter a value in the body section (Figure 3-3).

Figure 3-3. Data entry page

Click that "string". Change it to "Cousin Eddie" (keep the double quotes around
it). Then click the bottom blue Execute button.

Now look at the Responses section below the Execute button (Figure 3-4).

The “Response body” box shows that Cousin Eddie turned up.

So, this is yet another way to test the site (besides the earlier examples using the
browser, HTTPie, and Requests).

Automated Documentation | 45

Figure 3-4. Response page

By the way, as you can see in the Curl box of the Responses display, using curl for
command-line testing instead of HTTPie would have required more typing. HTTPie’s
automatic JSON encoding helps here.

This automated documentation is actually a big, furry deal. As your
web service grows to hundreds of endpoints, a documentation and
testing page that’s always up-to-date is helpful.

46 | Chapter 3: FastAPI Tour

Complex Data
These examples showed only how to pass a single string to an endpoint. Many end‐
points, especially GET or DELETE ones, may need no arguments at all, or only a few
simple ones, like strings and numbers. But when creating (POST) or modifying (PUT or
PATCH) a resource, we usually need more complex data structures. Chapter 5 shows
how FastAPI uses Pydantic and data models to implement these cleanly.

Review
In this chapter, we used FastAPI to create a website with a single endpoint. Multiple
web clients tested it: a web browser, the HTTPie text program, the Requests Python
package, and the HTTPX Python package. Starting with a simple GET call, request
arguments went to the server via the URL path, a query parameter, and an HTTP
header. Then, the HTTP body was used to send data to a POST endpoint. Later, the
chapter showed how to return various HTTP response types. Finally, an automati‐
cally generated form page provided both documentation and live forms for a fourth
test client.

This FastAPI overview will be expanded in Chapter 8.

Review | 47

CHAPTER 4

Async, Concurrency, and Starlette Tour

Starlette is a lightweight ASGI framework/toolkit, which is ideal for building async web
services in Python.

—Tom Christie, creator of Starlette

Preview
The previous chapter briefly introduced the first things a developer would encounter
on writing a new FastAPI application. This chapter emphasizes FastAPI’s underlying
Starlette library, particularly its support of async processing. After an overview of
multiple ways of “doing more things at once” in Python, you’ll see how its newer
async and await keywords have been incorporated into Starlette and FastAPI.

Starlette
Much of FastAPI’s web code is based on the Starlette package, which was created by
Tom Christie. It can be used as a web framework in its own right or as a library for
other frameworks, such as FastAPI. Like any other web framework, Starlette handles
all the usual HTTP request parsing and response generation. It’s similar to Werkzeug,
the package that underlies Flask.

But its most important feature is its support of the modern Python asynchronous web
standard: ASGI. Until now, most Python web frameworks (like Flask and Django)
have been based on the traditional synchronous WSGI standard. Because web appli‐
cations so frequently connect to much slower code (e.g., database, file, and network
access), ASGI avoids the blocking and busy waiting of WSGI-based applications.

49

https://www.starlette.io
https://werkzeug.palletsprojects.com
https://asgi.readthedocs.io
https://wsgi.readthedocs.io

As a result, Starlette and frameworks that use it are the fastest Python web packages,
rivaling even Go and Node.js applications.

Types of Concurrency
Before getting into the details of the async support provided by Starlette and FastAPI,
it’s useful to know the multiple ways we can implement concurrency.

In parallel computing, a task is spread across multiple dedicated CPUs at the same
time. This is common in “number-crunching” applications like graphics and machine
learning.

In concurrent computing, each CPU switches among multiple tasks. Some tasks take
longer than others, and we want to reduce the total time needed. Reading a file or
accessing a remote network service is literally thousands to millions of times slower
than running calculations in the CPU.

Web applications do a lot of this slow work. How can we make web servers, or any
servers, run faster? This section discusses some possibilities, from system-wide down
to the focus of this chapter: FastAPI’s implementation of Python’s async and await.

Distributed and Parallel Computing
If you have a really big application—one that would huff and puff on a single CPU—
you can break it into pieces and make those pieces run on separate CPUs in a single
machine or on multiple machines. You can do this in many, many ways, and if you
have such an application, you already know a number of them. Managing all these
pieces is more complex and expensive than managing a single server.

In this book, the focus is on small- to medium-sized applications that could fit on a
single box. And these applications can have a mixture of synchronous and asynchro‐
nous code, nicely managed by FastAPI.

Operating System Processes
An operating system (or OS, because typing hurts) schedules resources: memory,
CPUs, devices, networks, and so on. Every program that it runs executes its code in
one or more processes. The OS provides each process with managed, protected access
to resources, including when they can use the CPU.

Most systems use preemptive process scheduling, not allowing any process to hog the
CPU, memory, or any other resource. An OS continually suspends and resumes pro‐
cesses, according to its design and settings.

For developers, the good news is: not your problem! But the bad news (which usually
seems to shadow the good) is: you can’t do much to change it, even if you want to.

50 | Chapter 4: Async, Concurrency, and Starlette Tour

With CPU-intensive Python applications, the usual solution is to use multiple pro‐
cesses and let the OS manage them. Python has a multiprocessing module for this.

Operating System Threads
You can also run threads of control within a single process. Python’s threading pack‐
age manages these.

Threads are often recommended when your program is I/O bound, and multiple pro‐
cesses are recommended when you’re CPU bound. But threads are tricky to program
and can cause errors that are hard to find. In Introducing Python, I likened threads to
ghosts wafting around in a haunted house: independent and invisible, detected only
by their effects. Hey, who moved that candlestick?

Traditionally, Python kept the process-based and thread-based libraries separate.
Developers had to learn the arcane details of either to use them. A more recent pack‐
age called concurrent.futures is a higher-level interface that makes them easier to use.

As you’ll see, you can get the benefits of threads more easily with the newer async
functions. FastAPI also manages threads for normal synchronous functions (def, not
async def) via threadpools.

Green Threads
A more mysterious mechanism is presented by green threads such as greenlet, gevent
and Eventlet. These are cooperative (not preemptive). They’re similar to OS threads
but run in user space (i.e., your program) rather than in the OS kernel. They work by
monkey-patching standard Python functions (modifying standard Python functions
as they’re running) to make concurrent code look like normal sequential code: they
give up control when they would block waiting for I/O.

OS threads are “lighter” (use less memory) than OS processes, and green threads are
lighter than OS threads. In some benchmarks, all the async methods were generally
faster than their sync counterparts.

After you’ve read this chapter, you may wonder which is better:
gevent or asyncio? I don’t think there’s a single preference for all
uses. Green threads were implemented earlier (using ideas from the
multiplayer game Eve Online). This book features Python’s standard
asyncio, which is used by FastAPI, is simpler than threads, and per‐
forms well.

Callbacks
Developers of interactive applications like games and graphic user interfaces are
probably familiar with callbacks. You write functions and associate them with an

Types of Concurrency | 51

https://oreil.ly/YO4YE
https://oreil.ly/xwVB1
https://oreil.ly/xwVB1
https://oreil.ly/dT150
https://greenlet.readthedocs.io
http://www.gevent.org
https://eventlet.net
https://oreil.ly/1NFYb

event, like a mouse click, keypress, or time. The prominent Python package in this
category is Twisted. Its name reflects the reality that callback-based programs are a bit
“inside-out” and hard to follow.

Python Generators
Like most languages, Python usually executes code sequentially. When you call a
function, Python runs it from its first line until its end or a return.

But in a Python generator function, you can stop and return from any point, and go
back to that point later. The trick is the yield keyword.

In one Simpsons episode, Homer crashes his car into a deer statue, followed by three
lines of dialogue. Example 4-1 defines a normal Python function to return these lines
as a list and have the caller iterate over them.

Example 4-1. Use return

>>> def doh():
... return ["Homer: D'oh!", "Marge: A deer!", "Lisa: A female deer!"]
...
>>> for line in doh():
... print(line)
...
Homer: D'oh!
Marge: A deer!
Lisa: A female deer!

This works perfectly when lists are relatively small. But what if we’re grabbing all the
dialogue from all the Simpsons episodes? Lists use memory.

Example 4-2 shows how a generator function would dole out the lines.

Example 4-2. Use yield

>>> def doh2():
... yield "Homer: D'oh!"
... yield "Marge: A deer!"
... yield "Lisa: A female deer!"
...
>>> for line in doh2():
... print(line)
...
Homer: D'oh!
Marge: A deer!
Lisa: A female deer!

52 | Chapter 4: Async, Concurrency, and Starlette Tour

https://twisted.org

Instead of iterating over a list returned by the plain function doh(), we’re iterating
over a generator object returned by the generator function doh2(). The actual iteration
(for...in) looks the same. Python returns the first string from doh2(), but keeps
track of where it is for the next iteration, and so on until the function runs out of
dialogue.

Any function containing yield is a generator function. Given this ability to go back
into the middle of a function and resume execution, the next section looks like a logi‐
cal adaptation.

Python async, await, and asyncio
Python’s asyncio features have been introduced over various releases. You’re running
at least Python 3.7, when the async and await terms became reserved keywords.

The following examples show a joke that’s funny only when run asynchronously. Run
both yourself, because the timing matters.

First, run the unfunny Example 4-3.

Example 4-3. Dullness

>>> import time
>>>
>>> def q():
... print("Why can't programmers tell jokes?")
... time.sleep(3)
...
>>> def a():
... print("Timing!")
...
>>> def main():
... q()
... a()
...
>>> main()
Why can't programmers tell jokes?
Timing!

You’ll see a three-second gap between the question and answer. Yawn.

But the async Example 4-4 is a little different.

Example 4-4. Hilarity

>>> import asyncio
>>>
>>> async def q():
... print("Why can't programmers tell jokes?")

Types of Concurrency | 53

https://oreil.ly/cBMAc

... await asyncio.sleep(3)

...
>>> async def a():
... print("Timing!")
...
>>> async def main():
... await asyncio.gather(q(), a())
...
>>> asyncio.run(main())
Why can't programmers tell jokes?
Timing!

This time, the answer should pop out right after the question, followed by three sec‐
onds of silence—just as though a programmer is telling it. Ha ha! Ahem.

I’ve used asyncio.gather() and asyncio.run() in Example 4-4,
but there are multiple ways of calling async functions. When using
FastAPI, you won’t need to use these.

Python thinks this when running Example 4-4:

1. Execute q(). Well, just the first line right now.
2. OK, you lazy async q(), I’ve set my stopwatch and I’ll come back to you in three

seconds.
3. In the meantime I’ll run a(), printing the answer right away.
4. No other await, so back to q().
5. Boring event loop! I’ll sit here aaaand stare for the rest of the three seconds.
6. OK, now I’m done.

This example uses asyncio.sleep() for a function that takes some time, much like a
function that reads a file or accesses a website. You put await in front of the function
that might spend most of its time waiting. And that function needs to have async
before its def.

If you define a function with async def, its caller must put an
await before the call to it. And the caller itself must be declared
async def, and its caller must await it, all the way up.
By the way, you can declare a function as async even if it doesn’t
contain an await call to another async function. It doesn’t hurt.

54 | Chapter 4: Async, Concurrency, and Starlette Tour

FastAPI and Async
After that long field trip over hill and dale, let’s get back to FastAPI and why any of it
matters.

Because web servers spend a lot of time waiting, performance can be increased by
avoiding some of that waiting—in other words, concurrency. Other web servers use
many of the methods mentioned earlier: threads, gevent, and so on. One of the rea‐
sons that FastAPI is one of the fastest Python web frameworks is its incorporation of
async code, via the underlying Starlette package’s ASGI support, and some of its own
inventions.

The use of async and await on their own does not make code run
faster. In fact, it might be a little slower, from async setup overhead.
The main use of async is to avoid long waits for I/O.

Now, let’s look at our earlier web endpoint calls and see how to make them async.

The functions that map URLs to code are called path functions in the FastAPI docs.
I’ve also called them web endpoints, and you saw synchronous examples of them in
Chapter 3. Let’s make some async ones. As in those earlier examples, we’ll just use
simple types like numbers and strings for now. Chapter 5 introduces type hints and
Pydantic, which we’ll need to handle fancier data structures.

Example 4-5 revisits the first FastAPI program from the previous chapter and makes
it asynchronous.

Example 4-5. A shy async endpoint (greet_async.py)

from fastapi import FastAPI
import asyncio

app = FastAPI()

@app.get("/hi")
async def greet():
 await asyncio.sleep(1)
 return "Hello? World?"

To run that chunk of web code, you need a web server like Uvicorn.

The first way is to run Uvicorn on the command line:

$ uvicorn greet_async:app

FastAPI and Async | 55

The second, as in Example 4-6, is to call Uvicorn from inside the example code, when
it’s run as a main program instead of a module.

Example 4-6. Another shy async endpoint (greet_async_uvicorn.py)

from fastapi import FastAPI
import asyncio
import uvicorn

app = FastAPI()

@app.get("/hi")
async def greet():
 await asyncio.sleep(1)
 return "Hello? World?"

if __name__ == "__main__":
 uvicorn.run("greet_async_uvicorn:app")

When run as a standalone program, Python names it main. That if __name__...
stuff is Python’s way of running it only when called as a main program. Yes, it’s ugly.

This code will pause for one second before returning its timorous greeting. The only
difference from a synchronous function that used the standard sleep(1) function is
that the web server can handle other requests in the meantime with the async
example.

Using asyncio.sleep(1) fakes a real-world function that might take one second, like
calling a database or downloading a web page. Later chapters will show examples of
such calls from this Web layer to the Service layer, and from there to the Data layer,
actually spending that wait time on real work.

FastAPI calls this async greet() path function itself when it receives a GET request for
the URL /hi. You don’t need to add an await anywhere. But for any other async def
function definitions that you make, the caller must put an await before each call.

FastAPI runs an async event loop that coordinates the async path
functions, and a threadpool for synchronous path functions. A
developer doesn’t need to know the tricky details, which is a great
plus. For example, you don’t need to run methods like
asyncio.gather() or asyncio.run(), as in the (standalone, non-
FastAPI) joke example earlier.

56 | Chapter 4: Async, Concurrency, and Starlette Tour

Using Starlette Directly
FastAPI doesn’t expose Starlette as much as it does Pydantic. Starlette is largely the
machinery humming in the engine room, keeping the ship running smoothly.

But if you’re curious, you could use Starlette directly to write a web application.
Example 3-1 in the previous chapter might look like Example 4-7.

Example 4-7. Using Starlette: starlette_hello.py

from starlette.applications import Starlette
from starlette.responses import JSONResponse
from starlette.routing import Route

async def greeting(request):
 return JSONResponse('Hello? World?')

app = Starlette(debug=True, routes=[
 Route('/hi', greeting),
])

Run this web application with this:

$ uvicorn starlette_hello:app

In my opinion, the FastAPI additions make web API development much easier.

Interlude: Cleaning the Clue House
You own a small (very small: just you) house-cleaning company. You’ve been living
on ramen but just landed a contract that will let you afford much better ramen.

Your client bought an old mansion that was built in the style of the board game Clue
and wants to host a character party there soon. But the place is an incredible mess. If
Marie Kondo saw the place, she might do the following:

• Scream
• Gag
• Run away
• All of the above

Your contract includes a speed bonus. How can you clean the place thoroughly, in the
least amount of elapsed time? The best approach would have been to have more Clue
Preservation Units (CPUs), but you’re it.

Interlude: Cleaning the Clue House | 57

So you can try one of these:

• Do everything in one room, then everything in the next, etc.
• Do a specific task in one room, then the next, etc. Like polishing the silver in the

Kitchen and Dining Room, or the pool balls in the Billiard Room.

Would your total time for these approaches differ? Maybe. But it might be more
important to consider whether you have to wait an appreciable time for any step. An
example might be underfoot: after cleaning rugs and waxing floors, they might need
to dry for hours before moving furniture back onto them.

So, here’s your plan for each room:

1. Clean all the static parts (windows, etc.).
2. Move all the furniture from the room into the Hall.
3. Remove years of grime from the rug and/or hardwood floor.
4. Do either of these:

a. Wait for the rug or wax to dry, but wave your bonus goodbye.
b. Go to the next room now, and repeat. After the last room, move the furniture

back into the first room, and so on.

The waiting-to-dry approach is the synchronous one, and it might be best if time isn’t
a factor and you need a break. The second is async and saves the waiting time for
each room.

Let’s assume you choose the async path, because money. You get the old dump to
sparkle and receive that bonus from your grateful client. The later party turns out to
be a great success, except for these issues:

1. One memeless guest came as Mario.
2. You overwaxed the dance floor in the Ball Room, and a tipsy Professor Plum

skated about in his socks, until he sailed into a table and spilled champagne on
Miss Scarlet.

Morals of this story:

• Requirements can be conflicting and/or strange.
• Estimating time and effort can depend on many factors.
• Sequencing tasks may be as much art as science.
• You’ll feel great when it’s all done. Mmm, ramen.

58 | Chapter 4: Async, Concurrency, and Starlette Tour

Review
After an overview of ways of increasing concurrency, this chapter expanded on func‐
tions that use the recent Python keywords async and await. It showed how FastAPI
and Starlette handle both plain old synchronous functions and these new async funky
functions.

The next chapter introduces the second leg of FastAPI: how Pydantic helps you
define your data.

Review | 59

CHAPTER 5

Pydantic, Type Hints, and Models Tour

Data validation and settings management using Python type hints.
Fast and extensible, Pydantic plays nicely with your linters/IDE/brain. Define how data
should be in pure, canonical Python 3.6+; validate it with Pydantic.

—Samuel Colvin, developer of Pydantic

Preview
FastAPI stands largely on a Python package called Pydantic. This uses models
(Python object classes) to define data structures. These are heavily used in FastAPI
applications and are a real advantage when writing larger applications.

Type Hinting
It’s time to learn a little more about Python type hints.

Chapter 2 mentioned that, in many computer languages, a variable points directly to
a value in memory. This requires the programmer to declare its type, so the size and
bits of the value can be determined. In Python, variables are just names associated
with objects, and it’s the objects that have types.

In standard programming, a variable is usually associated with the same object. If we
associate a type hint with that variable, we can avoid some programming mistakes. So
Python added type hinting to the language, in the standard typing module. The
Python interpreter ignores the type hint syntax and runs the program as though it
isn’t there. Then what’s the point?

You might treat a variable as a string in one line, and forget later and assign it an
object of a different type. Although compilers for other languages would complain,
Python won’t. The standard Python interpreter will catch normal syntax errors and

61

runtime exceptions, but not mixing types for a variable. Helper tools like mypy pay
attention to type hints and warn you about any mismatches.

Also, the hints are available to Python developers, who can write tools that do more
than type error checking. The following sections describe how the Pydantic package
was developed to address needs that weren’t obvious. Later, you’ll see how its integra‐
tion with FastAPI makes a lot of web development issues much easier to handle.

By the way, what do type hints look like? There’s one syntax for variables and another
for function return values.

Variable type hints may include only the type:

name: type

or also initialize the variable with a value:

name: type = value

The type can be one of the standard Python simple types like int or str, or collection
types like tuple, list, or dict:

thing: str = "yeti"

Before Python 3.9, you need to import capitalized versions of these
standard type names from the typing module:

from typing import Str
thing: Str = "yeti"

Here are some examples with initializations:

physics_magic_number: float = 1.0/137.03599913
hp_lovecraft_noun: str = "ichor"
exploding_sheep: tuple = "sis", "boom", bah!"
responses: dict = {"Marco": "Polo", "answer": 42}

You can also include subtypes of collections:

name: dict[keytype, valtype] = {key1: val1, key2: val2}

The typing module has useful extras for subtypes; the most common are as follows:

Any

Any type

Union

Any type of those specified, such as Union[str, int].

62 | Chapter 5: Pydantic, Type Hints, and Models Tour

1 Do I have any detectable imagination? Hmm…no.

In Python 3.10 and up, you can say type1 | type2 instead of
Union[type1, type2].

Examples of Pydantic definitions for a Python dict include the following:

from typing import Any
responses: dict[str, Any] = {"Marco": "Polo", "answer": 42}

Or, a little more specific:

from typing import Union
responses: dict[str, Union[str, int]] = {"Marco": "Polo", "answer": 42}

or (Python 3.10 and up):

responses: dict[str, str | int] = {"Marco": "Polo", "answer": 42}

Notice that a type-hinted variable line is legal Python, but a bare variable line is not:

$ python
...
>>> thing0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name thing0 is not defined
>>> thing0: str

Also, incorrect type uses are not caught by the regular Python interpreter:

$ python
...
>>> thing1: str = "yeti"
>>> thing1 = 47

But they will be caught by mypy. If you don’t already have it, run pip install mypy.
Save those two preceding lines to a file called stuff.py,1 and then try this:

$ mypy stuff.py
stuff.py:2: error: Incompatible types in assignment
(expression has type "int", variable has type "str")
Found 1 error in 1 file (checked 1 source file)

A function return type hint uses an arrow instead of a colon:

function(args) -> type:

Type Hinting | 63

Here’s a Pydantic example of a function return:

def get_thing() -> str:
 return "yeti"

You can use any type, including classes that you’ve defined or combinations of them.
You’ll see that in a few pages.

Data Grouping
Often we need to keep a related group of variables together rather than passing
around lots of individual variables. How do we integrate multiple variables as a group
and keep the type hints?

Let’s leave behind our tepid greeting example from previous chapters and start using
richer data from now on. As in the rest of this book, we’ll use examples of cryptids
(imaginary creatures) and the (also imaginary) explorers who seek them. Our initial
cryptid definitions will include only string variables for the following:

name

Key

country

Two-character ISO country code (3166-1 alpha 2) or * = all

area

Optional; United States state or other country subdivision

description

Free-form

aka

Also known as…

And explorers will have the following:

name

Key

country

Two-character ISO country code

description

Free-form

64 | Chapter 5: Pydantic, Type Hints, and Models Tour

Python’s historic data grouping structures (beyond the basic int, string, and such)
are listed here:

tuple

An immutable sequence of objects

list

A mutable sequence of objects

set

Mutable distinct objects

dict

Mutable key-value object pairs (the key needs to be of an immutable type)

Tuples (Example 5-1) and lists (Example 5-2) let you access a member variable only
by its offset, so you have to remember what went where.

Example 5-1. Using a tuple

>>> tuple_thing = ("yeti", "CN", "Himalayas",
 "Hirsute Himalayan", "Abominable Snowman")
>>> print("Name is", tuple_thing[0])
Name is yeti

Example 5-2. Using a list

>>> list_thing = ["yeti", "CN", "Himalayas",
 "Hirsute Himalayan", "Abominable Snowman"]
>>> print("Name is", list_thing[0])
Name is yeti

Example 5-3 shows that you can get a little more explanatory by defining names for
the integer offsets.

Example 5-3. Using tuples and named offsets

>>> NAME = 0
>>> COUNTRY = 1
>>> AREA = 2
>>> DESCRIPTION = 3
>>> AKA = 4
>>> tuple_thing = ("yeti", "CN", "Himalayas",
 "Hirsute Himalayan", "Abominable Snowman")
>>> print("Name is", tuple_thing[NAME])
Name is yeti

Dictionaries are a little better in Example 5-4, giving you access by descriptive keys.

Data Grouping | 65

Example 5-4. Using a dictionary

>>> dict_thing = {"name": "yeti",
... "country": "CN",
... "area": "Himalayas",
... "description": "Hirsute Himalayan",
... "aka": "Abominable Snowman"}
>>> print("Name is", dict_thing["name"])
Name is yeti

Sets contain only unique values, so they’re not very helpful for clustering various
variables.

In Example 5-5, a named tuple is a tuple that gives you access by integer offset or
name.

Example 5-5. Using a named tuple

>>> from collections import namedtuple
>>> CreatureNamedTuple = namedtuple("CreatureNamedTuple",
... "name, country, area, description, aka")
>>> namedtuple_thing = CreatureNamedTuple("yeti",
... "CN",
... "Himalaya",
... "Hirsute HImalayan",
... "Abominable Snowman")
>>> print("Name is", namedtuple_thing[0])
Name is yeti
>>> print("Name is", namedtuple_thing.name)
Name is yeti

You can’t say namedtuple_thing["name"]. It’s a tuple, not a dict,
so the index needs to be an integer.

Example 5-6 defines a new Python class and adds all the attributes with self. But
you’ll need to do a lot of typing just to define them.

Example 5-6. Using a standard class

>>> class CreatureClass():
... def __init__(self,
... name: str,
... country: str,
... area: str,
... description: str,
... aka: str):

66 | Chapter 5: Pydantic, Type Hints, and Models Tour

2 Except that small group of yodeling yetis (a good name for a band).

... self.name = name

... self.country = country

... self.area = area

... self.description = description

... self.aka = aka

...
>>> class_thing = CreatureClass(
... "yeti",
... "CN",
... "Himalayas"
... "Hirsute Himalayan",
... "Abominable Snowman")
>>> print("Name is", class_thing.name)
Name is yeti

You might think, what’s so bad about that? With a regular class, you
can add more data (attributes), but especially behavior (methods).
You might decide, one madcap day, to add a method that looks up
an explorer’s favorite songs. (This wouldn’t apply to a creature.2)
But the use case here is just to move a clump of data undisturbed
among the layers, and to validate on the way in and out. Also,
methods are square pegs that would struggle to fit in the round
holes of a database.

Does Python have anything similar to what other computer languages call a record or
a struct (a group of names and values)? A recent addition to Python is the dataclass.
Example 5-7 shows how all that self stuff disappears with dataclasses.

Example 5-7. Using a dataclass

>>> from dataclasses import dataclass
>>>
>>> @dataclass
... class CreatureDataClass():
... name: str
... country: str
... area: str
... description: str
... aka: str
...
>>> dataclass_thing = CreatureDataClass(
... "yeti",
... "CN",
... "Himalayas"
... "Hirsute Himalayan",

Data Grouping | 67

... "Abominable Snowman")
>>> print("Name is", dataclass_thing.name)
Name is yeti

This is pretty good for the keeping-variables-together part. But we want more, so let’s
ask Santa for these:

• A union of possible alternative types
• Missing/optional values
• Default values
• Data validation
• Serialization to and from formats like JSON

Alternatives
It’s tempting to use Python’s built-in data structures, especially dictionaries. But you’ll
inevitably find that dictionaries are a bit too “loose.” Freedom comes at a price. You
need to check everything:

• Is the key optional?
• If the key is missing, is there a default value?
• Does the key exist?
• If so, is the key’s value of the right type?
• If so, is the value in the right range or matching a pattern?

At least three solutions address at least some of these requirements:

Dataclasses
Part of standard Python.

attrs
Third party, but a superset of dataclasses.

Pydantic
Also third party, but integrated into FastAPI, so an easy choice if you’re already
using FastAPI. And if you’re reading this book, that’s likely.

A handy comparison of the three is on YouTube. One takeaway is that Pydantic
stands out for validation, and its integration with FastAPI catches many potential
data errors. Another is that Pydantic relies on inheritance (from the BaseModel class),
and the other two use Python decorators to define their objects. This is more a matter
of style.

68 | Chapter 5: Pydantic, Type Hints, and Models Tour

https://oreil.ly/mxANA
https://www.attrs.org
https://docs.pydantic.dev
https://oreil.ly/pkQD3

In another comparison, Pydantic outperformed older validation packages like marsh‐
mallow and the intriguingly named Voluptuous. Another big plus for Pydantic is that
it uses standard Python type hint syntax; older libraries pre-dated type hints and rol‐
led their own.

So I’m going with Pydantic in this book, but you may find uses for either of the alter‐
natives if you’re not using FastAPI.

Pydantic provides ways to specify any combination of these checks:

• Required versus optional
• Default value if unspecified but required
• The data type or types expected
• Value range restrictions
• Other function-based checks if needed
• Serialization and deserialization

A Simple Example
You’ve seen how to feed a simple string to a web endpoint via the URL, a query
parameter, or the HTTP body. The problem is that you usually request and receive
groups of data, of many types. That’s where Pydantic models first appear in FastAPI.

This initial example will use three files:

• model.py defines a Pydantic model.
• data.py is a fake data source, defining an instance of a model.
• web.py defines a FastAPI web endpoint that returns the fake data.

For simplicity in this chapter, let’s keep all the files in the same directory. In later
chapters that discuss larger websites, we’ll separate them into their respective layers.
First, define the model for a creature in Example 5-8.

Example 5-8. Define a creature model: model.py

from pydantic import BaseModel

class Creature(BaseModel):
 name: str
 country: str
 area: str
 description: str
 aka: str

A Simple Example | 69

https://oreil.ly/gU28a
https://marshmallow.readthedocs.io
https://marshmallow.readthedocs.io
https://github.com/alecthomas/voluptuous

thing = Creature(
 name="yeti",
 country="CN",
 area="Himalayas",
 description="Hirsute Himalayan",
 aka="Abominable Snowman")
)
print("Name is", thing.name)

The Creature class inherits from Pydantic’s BaseModel. That : str part after name,
country, area, description, and aka is a type hint that each is a Python string.

In this example, all fields are required. In Pydantic, if Optional is
not in the type description, the field must have a value.

In Example 5-9, pass the arguments in any order if you include their names.

Example 5-9. Create a creature

>>> thing = Creature(
... name="yeti",
... country="CN",
... area="Himalayas"
... description="Hirsute Himalayan",
... aka="Abominable Snowman")
>>> print("Name is", thing.name)
Name is yeti

For now, Example 5-10 defines a teeny source of data; in later chapters, databases will
do this. The type hint list[Creature] tells Python that this is a list of Creature
objects only.

Example 5-10. Define fake data in data.py

from model import Creature

_creatures: list[Creature] = [
 Creature(name="yeti",
 country="CN",
 area="Himalayas",
 description="Hirsute Himalayan",
 aka="Abominable Snowman"
),
 Creature(name="sasquatch",
 country="US",
 area="*",

70 | Chapter 5: Pydantic, Type Hints, and Models Tour

 description="Yeti's Cousin Eddie",
 aka="Bigfoot")
]

def get_creatures() -> list[Creature]:
 return _creatures

(We’re using "*" for Bigfoot’s area because he’s almost everywhere.)

This code imports the model.py that we just wrote. It does a little data hiding by call‐
ing its list of Creature objects _creatures, and providing the get_creatures()
function to return them.

Example 5-11 lists web.py, a file that defines a FastAPI web endpoint.

Example 5-11. Define a FastAPI web endpoint: web.py

from model import Creature
from fastapi import FastAPI

app = FastAPI()

@app.get("/creature")
def get_all() -> list[Creature]:
 from data import get_creatures
 return get_creatures()

Now fire up this one-endpoint server in Example 5-12.

Example 5-12. Start Uvicorn

$ uvicorn creature:app
INFO: Started server process [24782]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)

In another window, Example 5-13 accesses the web application with the HTTPie web
client (try your browser or the Requests module if you like too).

Example 5-13. Test with HTTPie

$ http http://localhost:8000/creature
HTTP/1.1 200 OK
content-length: 183
content-type: application/json
date: Mon, 12 Sep 2022 02:21:15 GMT
server: uvicorn

A Simple Example | 71

[
 {
 "aka": "Abominable Snowman",
 "area": "Himalayas",
 "country": "CN",
 "name": "yeti",
 "description": "Hirsute Himalayan"
 },
 {
 "aka": "Bigfoot",
 "country": "US",
 "area": "*",
 "name": "sasquatch",
 "description": "Yeti's Cousin Eddie"
 }

FastAPI and Starlette automatically convert the original Creature model object list
into a JSON string. This is the default output format in FastAPI, so we don’t need to
specify it.

Also, the window in which you originally started the Uvicorn web server should have
printed a log line:

INFO: 127.0.0.1:52375 - "GET /creature HTTP/1.1" 200 OK

Validate Types
The previous section showed how to do the following:

• Apply type hints to variables and functions
• Define and use a Pydantic model
• Return a list of models from a data source
• Return the model list to a web client, automatically converting the model list to

JSON

Now, let’s really put it to work validating data.

Try assigning a value of the wrong type to one or more of the Creature fields. Let’s
use a standalone test for this (Pydantic doesn’t apply on any web code; it’s a data
thing).

Example 5-14 lists test1.py.

72 | Chapter 5: Pydantic, Type Hints, and Models Tour

Example 5-14. Test the Creature model

from model import Creature

dragon = Creature(
 name="dragon",
 description=["incorrect", "string", "list"],
 country="*" ,
 area="*",
 aka="firedrake")

Now try the test in Example 5-15.

Example 5-15. Run the test

$ python test1.py
Traceback (most recent call last):
 File ".../test1.py", line 3, in <module>
 dragon = Creature(
 File "pydantic/main.py", line 342, in
 pydantic.main.BaseModel.init
 pydantic.error_wrappers.ValidationError:
 1 validation error for Creature description
 str type expected (type=type_error.str)

This finds that we’ve assigned a list of strings to the description field, and it wants a
plain old string.

Validate Values
Even if the value’s type matches its specification in the Creature class, more checks
may need to pass. Some restrictions can be placed on the value itself:

• Integer (conint) or float:

gt

Greater than

lt

Less than

ge

Greater than or equal to

le

Less than or equal to

Validate Values | 73

multiple_of

An integer multiple of a value

• String (constr):

min_length

Minimum character (not byte) length

max_length

Maximum character length

to_upper

Convert to uppercase

to_lower

Convert to lowercase

regex

Match a Python regular expression

• Tuple, list, or set:

min_items

Minimum number of elements

max_items

Maximum number of elements

These are specified in the type parts of the model.

Example 5-16 ensures that the name field is always at least two characters long. Other‐
wise, "" (an empty string) is a valid string.

Example 5-16. See a validation failure

>>> from pydantic import BaseModel, constr
>>>
>>> class Creature(BaseModel):
... name: constr(min_length=2)
... country: str
... area: str
... description: str
... aka: str
...
>>> bad_creature = Creature(name="!",
... description="it's a raccoon",
... area="your attic")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

74 | Chapter 5: Pydantic, Type Hints, and Models Tour

 File "pydantic/main.py", line 342,
 in pydantic.main.BaseModel.__init__
pydantic.error_wrappers.ValidationError:
1 validation error for Creature name
 ensure this value has at least 2 characters
 (type=value_error.any_str.min_length; limit_value=2)

That constr means a constrained string. Example 5-17 uses an alternative, the
Pydantic Field specification.

Example 5-17. Another validation failure, using Field

>>> from pydantic import BaseModel, Field
>>>
>>> class Creature(BaseModel):
... name: str = Field(..., min_length=2)
... country: str
... area: str
... description: str
... aka: str
...
>>> bad_creature = Creature(name="!",
... area="your attic",
... description="it's a raccoon")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "pydantic/main.py", line 342,
 in pydantic.main.BaseModel.__init__
pydantic.error_wrappers.ValidationError:
1 validation error for Creature name
 ensure this value has at least 2 characters
 (type=value_error.any_str.min_length; limit_value=2)

That ... argument to Field() means that a value is required, and that there’s no
default value.

This is a minimal introduction to Pydantic. The main takeaway is that it lets you
automate the validation of your data. You’ll see how useful this is when getting data
from either the Web or Data layers.

Review
Models are the best way to define data that will be passed around in your web appli‐
cation. Pydantic leverages Python’s type hints to define data models to pass around in
your application. Coming next: defining dependencies to separate specific details from
your general code.

Review | 75

CHAPTER 6

Dependencies

Preview
One of the very nice design features of FastAPI is a technique called dependency injec‐
tion. This term sounds technical and esoteric, but it’s a key aspect of FastAPI and is
surprisingly useful at many levels. This chapter looks at FastAPI’s built-in capabilities
as well as how to write your own.

What’s a Dependency?
A dependency is specific information that you need at some point. The usual way to
get this information is to write code that gets it, right when you need it.

When you’re writing a web service, at some time you may need to do the following:

• Gather input parameters from the HTTP request
• Validate inputs
• Check user authentication and authorization for some endpoints
• Look up data from a data source, often a database
• Emit metrics, logs, or tracking information

Web frameworks convert the HTTP request bytes to data structures, and you pluck
what you need from them inside your Web layer functions as you go.

77

Problems with Dependencies
Getting what you want, right when you need it, and without external code needing to
know how you got it, seems pretty reasonable. But it turns out that consequences
exist:

Testing
You can’t test variations of your function that could look up the dependency
differently.

Hidden dependencies
Hiding the details means that code your function needs could break when exter‐
nal code changes.

Code duplication
If your dependency is a common one (like looking up a user in a database or
combining values from an HTTP request), you might duplicate the lookup code
in multiple functions.

OpenAPI visibility
The automatic test page that FastAPI makes for you needs information from the
dependency injection mechanism.

Dependency Injection
The term dependency injection is simpler than it sounds: pass any specific information
that a function needs into the function. A traditional way to do this is to pass in a
helper function, which you then call to get the specific data.

FastAPI Dependencies
FastAPI goes one step more: you can define dependencies as arguments to your func‐
tion, and they are automatically called by FastAPI and pass in the values that they
return. For example, a user_dep dependency could get the user’s name and password
from HTTP arguments, look them up in a database, and return a token that you use
to track that user afterward. Your web-handling function doesn’t ever call this
directly; it’s handled at function call time.

You’ve already seen some dependencies but didn’t see them referred to as such: HTTP
data sources like Path, Query, Body, and Header. These are functions or Python
classes that dig the requested data from various areas in the HTTP request. They hide
the details, like validity checks and data formats.

78 | Chapter 6: Dependencies

Why not write your own functions to do this? You could, but you would not have
these:

• Data validity checks
• Format conversions
• Automatic documentation

In many other web frameworks, you would do these checks inside your own func‐
tions. You’ll see examples of this in Chapter 7, which compares FastAPI with Python
web frameworks like Flask and Django. But in FastAPI, you can handle your own
dependencies, much as the built-in ones do.

Writing a Dependency
In FastAPI, a dependency is something that’s executed, so a dependency object needs
to be of the type Callable, which includes functions and classes—things that you
call, with parentheses and optional arguments.

Example 6-1 shows a user_dep() dependency function that takes name and pass‐
word string arguments, and just returns True if the user is valid. For this first version,
let’s have the function return True for anything.

Example 6-1. A dependency function

from fastapi import FastAPI, Depends, Params

app = FastAPI()

the dependency function:
def user_dep(name: str = Params, password: str = Params):
 return {"name": name, "valid": True}

the path function / web endpoint:
@app.get("/user")
def get_user(user: dict = Depends(user_dep)) -> dict:
 return user

Here, user_dep() is a dependency function. It acts like a FastAPI path function (it
knows about things like Params, etc.), but doesn’t have a path decorator above it. It’s a
helper, not a web endpoint itself.

The path function get_user() says that it expects an argument variable called user,
and that variable will get its value from the dependency function user_dep().

Writing a Dependency | 79

In the arguments to get_user(), we could not have said user =
user_dep, because user_dep is a Python function object. And we
could not say user = user_dep(), because that would have called
the user_dep() function when get_user() was defined, not when
it’s used. So we need that extra helper FastAPI Depends() function
to call user_dep() just when it’s wanted.

You can have multiple dependencies in your path function argument list.

Dependency Scope
You can define dependencies to cover a single path function, a group of them, or the
whole web application.

Single Path
In your path function, include an argument like this:

def pathfunc(name: depfunc = Depends(depfunc)):

or just this:

def pathfunc(name: depfunc = Depends()):

name is whatever you want to call the value(s) returned by depfunc.

From the earlier example:

• pathfunc is get_user().
• depfunc is user_dep().
• name is user.

Example 6-2 uses this path and dependency to return a fixed user name and a valid
Boolean.

Example 6-2. Return a user dependency

from fastapi import FastAPI, Depends, Params

app = FastAPI()

the dependency function:
def user_dep(name: str = Params, password: str = Params):
 return {"name": name, "valid": True}

the path function / web endpoint:
@app.get("/user")

80 | Chapter 6: Dependencies

def get_user(user: dict = Depends(user_dep)) -> dict:
 return user

If your dependency function just checks something and doesn’t return any values,
you can also define the dependency in your path decorator (the preceding line, start‐
ing with a @):

@app.method(url, dependencies=[Depends(depfunc)])

Let’s try that in Example 6-3.

Example 6-3. Define a user check dependency

from fastapi import FastAPI, Depends, Params

app = FastAPI()

the dependency function:
def check_dep(name: str = Params, password: str = Params):
 if not name:
 raise

the path function / web endpoint:
@app.get("/check_user", dependencies=[Depends(check_dep)])
def check_user() -> bool:
 return True

Multiple Paths
Chapter 9 gives more details on how to structure a larger FastAPI application, includ‐
ing defining more than one router object under a top-level application, instead of
attaching every endpoint to the top-level application. Example 6-4 sketches the idea.

Example 6-4. Define a subrouter dependency

from fastapi import FastAPI, Depends, APIRouter

router = APIRouter(..., dependencies=[Depends(depfunc)])

This will cause depfunc() to be called for all path functions under router.

Global
When you define your top-level FastAPI application object, you can add dependen‐
cies to it that will apply to all its path functions, as shown in Example 6-5.

Dependency Scope | 81

Example 6-5. Define app-level dependencies

from fastapi import FastAPI, Depends

def depfunc1():
 pass

def depfunc2():
 pass

app = FastAPI(dependencies=[Depends(depfunc1), Depends(depfunc2)])

@app.get("/main")
def get_main():
 pass

In this case, you’re using pass to ignore the other details to show how to attach the
dependencies.

Review
This chapter discussed dependencies and dependency injection—ways of getting the
data you need when you need it, in a straightforward way. Coming up in the next
chapter: Flask, Django, and FastAPI walk into a bar…

82 | Chapter 6: Dependencies

CHAPTER 7

Framework Comparisons

You don’t need a framework. You need a painting, not a frame.
—Klaus Kinski, actor

Preview
For developers who have used Flask, Django, or popular Python web frameworks,
this chapter points out FastAPI’s similarities and differences. It does not go into every
excruciating detail, because, otherwise, the binding glue wouldn’t hold this book
together. This chapter’s comparisons can be useful if you’re thinking of migrating an
application from one of these frameworks to FastAPI or are just curious.

One of the first things you might like to know about a new web framework is how to
get started, and a top-down way is by defining routes (mappings from URLs and
HTTP methods to functions). The next section compares how to do this with
FastAPI and Flask, because they’re more similar to one another than Django and are
more likely to be considered together for similar applications.

Flask
Flask calls itself a microframework. It provides the basics, and you download third-
party packages to supplement it as needed. It’s smaller than Django, and faster to
learn when you’re getting started.

Flask is synchronous, based on WSGI rather than ASGI. A new project called quart is
replicating Flask and adding ASGI support.

Let’s start at the top, showing how Flask and FastAPI define web routing.

83

https://flask.palletsprojects.com
https://quart.palletsprojects.com

Path
At the top level, Flask and FastAPI both use a decorator to associate a route with a
web endpoint. In Example 7-1, let’s duplicate Example 3-11 (from back in Chapter 3),
which gets the person to greet from the URL path.

Example 7-1. FastAPI path

from fastapi import FastAPI

app = FastAPI()

@app.get("/hi/{who}")
def greet(who: str):
 return f"Hello? {who}?"

By default, FastAPI converts that f"Hello? {who}?" string to JSON and returns it to
the web client.

Example 7-2 shows how Flask would do it.

Example 7-2. Flask path

from flask import Flask, jsonify

app = Flask(__name__)

@app.route("/hi/<who>", methods=["GET"])
def greet(who: str):
 return jsonify(f"Hello? {who}?")

Notice that the who in the decorator is now bounded by < and >. In Flask, the method
needs to be included as an argument—unless it’s the default, GET. So methods=
["GET"] could have been omitted here, but being explicit never hurts.

Flask 2.0 supports the FastAPI-style decorators like @app.get
instead of app.route.

The Flask jsonify() function converts its argument to a JSON string and returns it,
along with the HTTP response header indicating that it’s JSON. If you’re returning a
dict (not other data types), recent versions of Flask will automatically convert it to
JSON and return it. Calling jsonify() explicitly works for all data types, including
dict.

84 | Chapter 7: Framework Comparisons

Query Parameter
In Example 7-3, let’s repeat Example 3-15, where who is passed as a query parameter
(after the ? in the URL).

Example 7-3. FastAPI query parameter

from fastapi import FastAPI

app = FastAPI()

@app.get("/hi")
def greet(who):
 return f"Hello? {who}?"

The Flask equivalent is shown in Example 7-4.

Example 7-4. Flask query parameter

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route("/hi", methods=["GET"])
def greet():
 who: str = request.args.get("who")
 return jsonify(f"Hello? {who}?")

In Flask, we need to get request values from the request object. In this case, args is a
dict containing the query parameters.

Body
In Example 7-5, let’s copy old Example 3-21.

Example 7-5. FastAPI body

from fastapi import FastAPI

app = FastAPI()

@app.get("/hi")
def greet(who):
 return f"Hello? {who}?"

A Flask version looks like Example 7-6.

Flask | 85

Example 7-6. Flask body

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route("/hi", methods=["GET"])
def greet():
 who: str = request.json["who"]
 return jsonify(f"Hello? {who}?")

Flask stores JSON input in request.json.

Header
Finally, let’s repeat Example 3-24 in Example 7-7.

Example 7-7. FastAPI header

from fastapi import FastAPI, Header

app = FastAPI()

@app.get("/hi")
def greet(who:str = Header()):
 return f"Hello? {who}?"

The Flask version is shown in Example 7-8.

Example 7-8. Flask header

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route("/hi", methods=["GET"])
def greet():
 who: str = request.headers.get("who")
 return jsonify(f"Hello? {who}?")

As with query parameters, Flask keeps request data in the request object. This time,
it’s the headers dict attribute. The header keys are supposed to be case-insensitive.

Django
Django is bigger and more complex than Flask or FastAPI, targeting “perfectionists
with deadlines,” according to its website. Its built-in object-relational mapper (ORM)
is useful for sites with major database backends. It’s more of a monolith than a toolkit.

86 | Chapter 7: Framework Comparisons

https://www.djangoproject.com

Whether the extra complexity and learning curve are justified depends on your
application.

Although Django was a traditional WSGI application, version 3.0 added support for
ASGI.

Unlike Flask and FastAPI, Django likes to define routes (associating URLs with web
functions, which it calls view functions) in a single URLConf table, rather than using
decorators. This makes it easier to see all your routes in one place, but makes it
harder to see what URL is associated with a function when you’re looking at just the
function.

Other Web Framework Features
In the previous sections comparing the three frameworks, I’ve mainly compared how
to define routes. A web framework might be expected to help in these other areas too:

Forms
All three packages support standard HTML forms.

Files
All these packages handle file uploads and downloads, including multipart HTTP
requests and responses.

Templates
A template language lets you mix text and code, and is useful for a content-
oriented website (HTML text with dynamically inserted data), rather than an API
website. The best-known Python template package is Jinja, and it’s supported by
Flask, Django, and FastAPI. Django also has its own template language.

If you want to use networking methods beyond basic HTTP, try these:

Server-sent events
Push data to a client as needed. Supported by FastAPI (sse-starlette), Flask
(Flask-SSE), and Django (Django EventStream).

Queues
Job queues, publish-subscribe, and other networking patterns are supported by
external packages like ZeroMQ, Celery, Redis, and RabbitMQ.

WebSockets
Supported by FastAPI (directly), Django (Django Channels), and Flask (third-
party packages).

Other Web Framework Features | 87

https://jinja.palletsprojects.com
https://oreil.ly/OIbVJ
https://oreil.ly/Hv-QP
https://oreil.ly/oz518
https://oreil.ly/NlBE5
https://channels.readthedocs.io

Databases
Flask and FastAPI do not include any database handling in their base packages, but
database handling is a key feature of Django.

Your site’s Data layer might access a database at different levels:

• Direct SQL (PostgreSQL, SQLite)
• Direct NoSQL (Redis, MongoDB, Elasticsearch)
• An ORM that generates SQL
• An object document/data mapper/manager (ODM) that generates NoSQL

For relational databases, SQLAlchemy is an excellent package that includes multiple
access levels, from direct SQL up to an ORM. This is a common choice for Flask and
FastAPI developers. The author of FastAPI has leveraged both SQLAlchemy and
Pydantic for the SQLModel package, which is discussed more in Chapter 14.

Django is often the framework choice for a site with heavy database needs. It has its
own ORM and an automated database admin page. Although some sources recom‐
mend letting nontechnical staff use this admin page for routine data management, be
careful. In one case, I’ve seen a non-expert misunderstand an admin page warning
message, resulting in the database needing to be manually restored from a backup.

Chapter 14 discusses FastAPI and databases in more depth.

Recommendations
For API-based services, FastAPI seems to be the best choice now. Flask and FastAPI
are about equal in terms of getting a service up and running quickly. Django takes
more time to understand but provides many features of use for larger sites, especially
those with heavy database reliance.

Other Python Web Frameworks
The current big three Python web frameworks are Flask, Django, and FastAPI. Goo‐
gle python web frameworks and you’ll get a wealth of suggestions, which I won’t
repeat here. A few that might not stand out in those lists but that are interesting for
one reason or another include the following:

Bottle
A very minimal (single Python file) package, good for a quick proof of concept

88 | Chapter 7: Framework Comparisons

https://www.sqlalchemy.org
https://sqlmodel.tiangolo.com
https://oreil.ly/eFzZn
https://oreil.ly/_al42
https://bottlepy.org/docs/dev

Litestar
Similar to FastAPI—it’s based on ASGI/Starlette and Pydantic—but has its own
opinions

AIOHTTP
An ASGI client and server, with useful demo code

Socketify.py
A new entrant that claims very high performance

Review
Flask and Django are the most popular Python web frameworks, although FastAPI’s
popularity is growing faster. All three handle the basic web server tasks, with varying
learning curves. FastAPI seems to have a cleaner syntax for specifying routes, and its
support of ASGI allows it to run faster than its competitors in many cases. Coming
next: let’s build a website already.

Review | 89

https://litestar.dev
https://docs.aiohttp.org
https://docs.socketify.dev

PART III

Making a Website

Part II was a quick tour of FastAPI, to get you up to speed quickly. This part will go
wider and deeper into the details. We’ll build a medium-sized web service to access
and manage data about cryptids—imaginary creatures—and the equally fictitious
explorers who seek them.

The full service will have three layers, as I’ve discussed earlier:

Web
The web interface

Service
The business logic

Data
The precious DNA of the whole thing

Plus the web service will have these cross-layer components:

Model
Pydantic data definitions

Tests
Unit, integration, and end-to-end tests

The site design will address the following:

• What belongs inside each layer?
• What is passed between layers?
• Can we change/add/delete code later without breaking anything?
• If something breaks, how do I find and fix it?
• What about security?
• Can the site scale and perform well?
• Can we keep all this as clear and simple as possible?
• Why do I ask so many questions? Why, oh why?

CHAPTER 8

Web Layer

Preview
Chapter 3 was a quick look at how to define FastAPI web endpoints, pass simple
string inputs to them, and get responses. This chapter goes further into the top layer
of a FastAPI application—which could also be called an Interface or Router layer—
and its integration with the Service and Data layers.

As before, I’ll start with small examples. Then I’ll introduce some structure, dividing
layers into subsections to allow for cleaner development and growth. The less code
we write, the less we’ll need to remember and fix later.

The basic sample data in this book concerns imaginary creatures, or cryptids, and
their explorers. You may find parallels with other domains of information.

What do we do with information, in general? Like most websites, ours will provide
ways to do the following:

• Retrieve
• Create
• Modify
• Replace
• Delete

Starting from the top, we’ll create web endpoints that perform these functions on our
data. At first, we’ll provide fake data to make the endpoints work with any web client.
In the following chapters, we’ll move the fake data code down into the lower layers.
At each step, we’ll ensure that the site still works and passes data through correctly.

93

Finally, in Chapter 10, we’ll drop the faking and store real data in real databases, for a
full end-to-end (Web → Service → Data) website.

Allowing any anonymous visitor to perform all these actions will
be an object lesson in “why we can’t have nice things.” Chapter 11
discusses the auth (authentication and authorization) needed to
define roles and limit who can do what. For the rest of the current
chapter, we’ll sidestep auth and just show how to handle the raw
web functions.

Interlude: Top-Down, Bottom-Up, Middle-Out?
When designing a website, you could start from one of the following:

• The Web layer and work down
• The Data layer and work up
• The Service layer and work out in both directions

Do you already have a database, installed and loaded with data, and are just pining
for a way to share it with the world? If so, you may want to tackle the Data layer’s
code and tests first, then the Service layer, and write the Web layer last.

If you’re following domain-driven design, you might start in the middle Service layer,
defining your core entities and data models. Or you may want to evolve the web
interface first, and fake calls to the lower layers until you know what you’ll expect of
them.

You’ll find very good design discussions and recommendations in these books:

• Clean Architectures in Python by Leonardo Giordani (Digital Cat Books)
• Architecture Patterns with Python by Harry J.W. Percival and Bob Gregory

(O’Reilly)
• Microservice APIs by José Haro Peralta (Manning)

In these and other sources, you’ll see terms like hexagonal architecture, ports, and
adapters. Your choices on how to proceed largely depend on what data you have
already and how you want to approach the work of building a site.

I’m guessing that many of you are mainly interested in trying out FastAPI and its
related technologies, and don’t necessarily have a predefined mature data domain that
you want to instrument right away.

94 | Chapter 8: Web Layer

https://oreil.ly/iJu9Q
https://oreil.ly/5KrL9
https://www.cosmicpython.com
https://oreil.ly/Gk0z2

So, in this book I’m taking the web-first approach—step-by-step, starting with essen‐
tial parts, and adding others as needed on the way down. Sometimes experiments
work, sometimes not. I’ll avoid the urge to stuff everything into this Web layer at first.

This Web layer is just one way of passing data between a user and a
service. Alternate ways exist, such as by a CLI or software develop‐
ment kit (SDK). In other frameworks, you might see this Web layer
called a view or presentation layer.

RESTful API Design
HTTP is a way to get commands and data between web clients and servers. But, just
as you can combine ingredients from your refrigerator in ways from ghastly to gour‐
met, some recipes for HTTP work better than others.

In Chapter 1, I mentioned that RESTful became a useful, though sometimes fuzzy,
model for HTTP development. RESTful designs have these core components:

Resources
The data elements your application manages

IDs
Unique resource identifiers

URLs
Structured resource and ID strings

Verbs or actions
Terms that accompany URLs for different purposes:

GET

Retrieve a resource.

POST

Create a new resource.

PUT

Completely replace a resource.

PATCH

Partially replace a resource.

DELETE

Resource goes kaboom.

RESTful API Design | 95

You’ll see disagreement about the relative merits of PUT versus
PATCH. If you don’t need to distinguish between a partial modifica‐
tion and a full one (replacement), you may not need both.

General RESTful rules for combining verbs and URLs containing resources and IDs
use these patterns of path parameters (content between the / in the URL):

verb /resource/
Apply verb to all resources of type resource.

verb /resource/id
Apply verb to the resource with ID id.

Using the example data for this book, a GET request to the endpoint /thing would
return data on all explorers, but a GET request for /thing/abc would give you data for
only the thing resource with ID abc.

Finally, web requests often carry more information, indicating to do the following:

• Sort results
• Paginate results
• Perform another function

Parameters for these can sometimes be expressed as path parameters (tacked onto the
end, after another /) but are often included as query parameters (var=val stuff after
the ? in the URL). Because URLs have size limits, large requests are often conveyed in
the HTTP body.

Most authors recommend using plurals when naming the resource,
and related namespaces like API sections and database tables. I fol‐
lowed this advice for a long time but now feel that singular names
are simpler for many reasons (including oddities of the English
language):

• Some words are their own plurals: series, fish
• Some words have irregular plurals: children, people
• You need bespoke singular to/from plural conversion code in

many places

For these reasons, I’m using a singular naming scheme in many
places in this book. This is against usual RESTful advice, so feel free
to ignore this if you disagree.

96 | Chapter 8: Web Layer

File and Directory Site Layout
Our data mainly concerns creatures and explorers. Initially, we could define all the
URLs and their FastAPI path functions for accessing their data in a single Python file.
Let’s resist that temptation, and start as though we were already a rising star in the
cryptid web space. With a good foundation, cool new things are much easier to add.

First, pick a directory on your machine. Name it fastapi, or anything that will help
you remember where you’ll be messing with the code from this book. Within it, cre‐
ate the following subdirectories:

src
Contains all the website code

web
The FastAPI web layer

service
The business logic layer

data
The storage interface layer

model
Pydantic model definitions

fake
Early hardwired (stub) data

Each of these directories will soon gain three files:

__init__.py
Needed to treat this directory as a package

creature.py
Creature code for this layer

explorer.py
Explorer code for this layer

Many opinions exist on how to lay out sites for development. This design is intended
to show the layer separation and leave room for future additions.

Some explanations are needed right now. First, __init__.py files are empty. They’re
sort of a Python hack, so their directory should be treated as a Python package that
may be imported from. Second, the fake directory provides some stub data to higher
layers as the lower ones are built.

File and Directory Site Layout | 97

In addition, Python’s import logic doesn’t work strictly with directory hierarchies. It
relies on Python packages and modules. The .py files listed in the tree structure
described previously are Python modules (source files). Their parent directories are
packages if they contain an __init__.py file. (This is a convention to tell Python
whether, if you have a directory called sys and you type import sys, you actually
want the system one or your local one.)

Python programs can import packages and modules. The Python interpreter has a
built-in sys.path variable, which includes the location of the standard Python code.
The environment variable PYTHONPATH is an empty or colon-separated string of direc‐
tory names that tells Python which parent directories to check before sys.path to
find the imported modules or packages. So, if you change to your new fastapi direc‐
tory, type this (on Linux or macOS) to ensure that the new code under it will be
checked first when importing:

$ export PYTHONPATH=$PWD/src

That $PWD means print working directory, and saves you from typing the full path to
your fastapi directory, although you can if you want. And the src part means to look
only in there for modules and packages to import.

To set the PWD environment variable under Windows, see “Excursus: Setting Environ‐
ment Variables” at the Python Software Foundation site.

Whew.

The First Website Code
This section discusses how to use FastAPI to write requests and responses for a
RESTful API site. Then, we’ll begin to apply these to our actual, increasingly gnarly,
site.

Let’s begin with Example 8-1. Within src, make this new top-level main.py program
that will start the Uvicorn program and FastAPI package.

Example 8-1. The main program, main.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def top():
 return "top here"

98 | Chapter 8: Web Layer

https://oreil.ly/9NRBA
https://oreil.ly/9NRBA

if __name__ == "__main__":
 import uvicorn
 uvicorn.run("main:app", reload=True)

That app is the FastAPI object that ties everything together. Uvicorn’s first argument
is "main:app" because the file is called main.py, and the second is app, the name of
the FastAPI object.

Uvicorn will keep on running, and restart if any code changes in the same directory
or any subdirectories. Without reload=True, each time you modify your code, you’d
need to kill and restart Uvicorn manually. In many of the following examples, you’ll
just keep changing the same main.py file and forcing a restart, instead of creating
main2.py, main3.py, and so on.

Fire up main.py in Example 8-2.

Example 8-2. Run the main program

$ python main.py &
INFO: Will watch for changes in these directories: [.../fastapi']
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [92543] using StatReload
INFO: Started server process [92551]
INFO: Waiting for application startup.
INFO: Application startup complete.

That final & puts the program into the background, and you can run other programs
in the same terminal window if you like. Or omit the & and run your other code in a
different window or tab.

Now you can access the site localhost:8000 with a browser or any of the test pro‐
grams that you’ve seen so far. Example 8-3 uses HTTPie:

Example 8-3. Test the main program

$ http localhost:8000
HTTP/1.1 200 OK
content-length: 8
content-type: application/json
date: Sun, 05 Feb 2023 03:54:29 GMT
server: uvicorn

"top here"

From now on, as you make changes, the web server should restart automatically. If an
error kills it, restart it with python main.py again.

The First Website Code | 99

Example 8-4 adds another test endpoint, using a path parameter (part of the URL).

Example 8-4. Add an endpoint

import uvicorn
from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def top():
 return "top here"

@app.get("/echo/{thing}")
def echo(thing):
 return f"echoing {thing}"

if __name__ == "__main__":
 uvicorn.run("main:app", reload=True)

As soon as you save your changes to main.py in your editor, the window where your
web server is running should print something like this:

WARNING: StatReload detected changes in 'main.py'. Reloading...
INFO: Shutting down
INFO: Waiting for application shutdown.
INFO: Application shutdown complete.
INFO: Finished server process [92862]
INFO: Started server process [92872]
INFO: Waiting for application startup.
INFO: Application startup complete.

Example 8-5 shows whether the new endpoint was handled correctly (the -b prints
only the response body).

Example 8-5. Test new endpoint

$ http -b localhost:8000/echo/argh
"echoing argh"

In the following sections, we’ll add more endpoints to main.py.

Requests
An HTTP request consists of a text header followed by one or more body sections.
You could write your own code to parse HTTP into Python data structures, but you
wouldn’t be the first. In your web application, it’s more productive to have these
details done for you by a framework.

100 | Chapter 8: Web Layer

FastAPI’s dependency injection is particularly useful here. Data may come from dif‐
ferent parts of the HTTP message, and you’ve already seen how you can specify one
or more of these dependencies to say where the data is located:

Header

In the HTTP headers

Path

In the URL

Query

After the ? in the URL

Body

In the HTTP body

Other, more indirect, sources include the following:

• Environment variables
• Configuration settings

Example 8-6 features an HTTP request, using our old friend HTTPie, and ignoring
the returned HTML body data.

Example 8-6. HTTP request and response headers

$ http -p HBh http://example.com/
GET / HTTP/1.1
Accept: /
Accept-Encoding: gzip, deflate
Connection: keep-alive
Host: example.com
User-Agent: HTTPie/3.2.1

HTTP/1.1 200 OK
Age: 374045
Cache-Control: max-age=604800
Content-Encoding: gzip
Content-Length: 648
Content-Type: text/html; charset=UTF-8
Date: Sat, 04 Feb 2023 01:00:21 GMT
Etag: "3147526947+gzip"
Expires: Sat, 11 Feb 2023 01:00:21 GMT
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT
Server: ECS (cha/80E2)
Vary: Accept-Encoding
X-Cache: HIT

Requests | 101

The first line asks for the top page at example.com (a free website that anyone can use
in, well, examples). It asks only for a URL, with no parameters anywhere else. The
first block of lines is the HTTP request headers sent to the website, and the next block
contains the HTTP response headers.

Most test examples from here on won’t need all those request and
response headers, so you’ll see more use of http -b.

Multiple Routers
Most web services handle multiple kinds of resources. Although you could throw all
your path-handling code in a single file and head off to a happy hour somewhere, it’s
often handy to use multiple subrouters instead of the single app variable that most of
the examples up to now have used.

Under the web directory (in the same directory as the main.py file that you’ve been
modifying so far), make a file called explorer.py, as in Example 8-7.

Example 8-7. APIRouter use in web/explorer.py

from fastapi import APIRouter

router = APIRouter(prefix = "/explorer")

@router.get("/")
def top():
 return "top explorer endpoint"

Now, Example 8-8 gets the top-level application main.py to know that there’s a new
subrouter in town, which will handle all URLs that start with /explorer:

Example 8-8. Connect the main application (main.py) to the subrouter

from fastapi import FastAPI
from .web import explorer

app = FastAPI()

app.include_router(explorer.router)

This new file will be picked up by Uvicorn. As usual, test in Example 8-9 instead of
assuming it will work.

102 | Chapter 8: Web Layer

Example 8-9. Test new subrouter

$ http -b localhost:8000/explorer/
"top explorer endpoint"

Build the Web Layer
Now let’s start adding the actual core functions to the Web layer. Initially, fake all the
data in the web functions themselves. In Chapter 9, we will move the fake data stuff to
corresponding service functions, and in Chapter 10, to the data functions. Finally, an
actual database will be added for the Data layer to access. At each development step,
calls to the web endpoints should still work.

Define Data Models
First, define the data that we’ll be passing among levels. Our domain contains explor‐
ers and creatures, so let’s define minimal initial Pydantic models for them. Other
ideas might come up later, like expeditions, journals, or ecommerce sales of coffee
mugs. But for now, just include the two breathing (usually, in the case of creatures)
models in Example 8-10.

Example 8-10. Model definition in model/explorer.py

from pydantic import BaseModel

class Explorer(BaseModel):
 name: str
 country: str
 description: str

Example 8-11 resurrects the Creature definition from earlier chapters.

Example 8-11. Model definition in model/creature.py

from pydantic import BaseModel

class Creature(BaseModel):
 name: str
 country: str
 area: str
 description: str
 aka: str

These are very simple initial models. You’re not using any of Pydantic’s features, such
as required versus optional, or constrained values. This simple code can be enhanced
later without massive logic upheavals.

Define Data Models | 103

For country values, you’ll use the ISO two-character country codes; this saves a little
typing, at the cost of looking up uncommon ones.

Stub and Fake Data
Also known as mock data, stubs are canned results that are returned without calling
the normal “live” modules. They’re a quick way to test your routes and responses.

A fake is a stand-in for a real data source that performs at least some of the same
functions. An example is an in-memory class that mimics a database. You’ll be mak‐
ing some fake data in this chapter and the next few, as you fill in the code that defines
the layers and their communication. In Chapter 10, you’ll define an actual live data
store (a database) to replace these fakes.

Create Common Functions Through the Stack
Similar to the data examples, the approach to building this site is exploratory. Often it
isn’t clear what will eventually be needed, so let’s start with some pieces that would be
common to similar sites. Providing a frontend for data usually requires ways to do
the following:

• Get one, some, all
• Create
• Replace completely
• Modify partially
• Delete

Essentially, these are the CRUD basics from databases, although I’ve split the U into
partial (modify) and complete (replace) functions. Maybe this distinction will prove
unnecessary! It depends on where the data leads.

Create Fake Data
Working top-down, you’ll duplicate some functions in all three levels. To save typing,
Example 8-12 introduces the top-level directory called fake, with modules providing
fake data on explorers and creatures.

Example 8-12. New module fake/explorer.py

from model.explorer import Explorer

fake data, replaced in Chapter 10 by a real database and SQL
_explorers = [

104 | Chapter 8: Web Layer

 Explorer(name="Claude Hande",
 country="FR",
 description="Scarce during full moons"),
 Explorer(name="Noah Weiser",
 country="DE",
 description="Myopic machete man"),
]

def get_all() -> list[Explorer]:
 """Return all explorers"""
 return _explorers

def get_one(name: str) -> Explorer | None:
 for _explorer in _explorers:
 if _explorer.name == name:
 return _explorer
 return None

The following are nonfunctional for now,
so they just act like they work, without modifying
the actual fake _explorers list:
def create(explorer: Explorer) -> Explorer:
 """Add an explorer"""
 return explorer

def modify(explorer: Explorer) -> Explorer:
 """Partially modify an explorer"""
 return explorer

def replace(explorer: Explorer) -> Explorer:
 """Completely replace an explorer"""
 return explorer

def delete(name: str) -> bool:
 """Delete an explorer; return None if it existed"""
 return None

The creature setup in Example 8-13 is similar.

Example 8-13. New module fake/creature.py

from model.creature import Creature

fake data, until we use a real database and SQL
_creatures = [
 Creature(name="Yeti",
 aka="Abominable Snowman",
 country="CN",
 area="Himalayas",
 description="Hirsute Himalayan"),

Create Fake Data | 105

 Creature(name="Bigfoot",
 description="Yeti's Cousin Eddie",
 country="US",
 area="*",
 aka="Sasquatch"),
]

def get_all() -> list[Creature]:
 """Return all creatures"""
 return _creatures

def get_one(name: str) -> Creature | None:
 """Return one creature"""
 for _creature in _creatures:
 if _creature.name == name:
 return _creature
 return None

The following are nonfunctional for now,
so they just act like they work, without modifying
the actual fake _creatures list:
def create(creature: Creature) -> Creature:
 """Add a creature"""
 return creature

def modify(creature: Creature) -> Creature:
 """Partially modify a creature"""
 return creature

def replace(creature: Creature) -> Creature:
 """Completely replace a creature"""
 return creature

def delete(name: str):
 """Delete a creature; return None if it existed"""
 return None

Yes, the module functions are almost identical. They’ll change later,
when a real database arrives and must handle the differing fields of
the two models. Also, you’re using separate functions here, rather
than defining a Fake class or abstract class. A module has its own
namespace, so it’s an equivalent way of bundling data and
functions.

Now let’s modify the web functions from Examples 8-12 and 8-13. Preparing to build
out the later layers (Service and Data), import the fake data provider that was
just defined, but name it service here: import fake.explorer as service

(Example 8-14). In Chapter 9, you’ll do the following:

106 | Chapter 8: Web Layer

• Make a new service/explorer.py file.
• Import the fake data there.
• Make web/explorer.py import the new service module instead of the fake module.

In Chapter 10, you’ll do the same in the Data layer. All of this is just adding parts and
wiring them together, with as little code rework as possible. You don’t turn on the
electricity (i.e., a live database and persistent data) until later in Chapter 10.

Example 8-14. New endpoints for web/explorer.py

from fastapi import APIRouter
from model.explorer import Explorer
import fake.explorer as service

router = APIRouter(prefix = "/explorer")

@router.get("/")
def get_all() -> list[Explorer]:
 return service.get_all()

@router.get("/{name}")
def get_one(name) -> Explorer | None:
 return service.get_one(name)

all the remaining endpoints do nothing yet:
@router.post("/")
def create(explorer: Explorer) -> Explorer:
 return service.create(explorer)

@router.patch("/")
def modify(explorer: Explorer) -> Explorer:
 return service.modify(explorer)

@router.put("/")
def replace(explorer: Explorer) -> Explorer:
 return service.replace(explorer)

@router.delete("/{name}")
def delete(name: str):
 return None

And now, do the same for /creature endpoints (Example 8-15). Yes, this is similar cut-
and-paste code for now, but doing this up front simplifies changes later on—and
there will always be changes later.

Create Fake Data | 107

Example 8-15. New endpoints for web/creature.py

from fastapi import APIRouter
from model.creature import Creature
import fake.creature as service

router = APIRouter(prefix = "/creature")

@router.get("/")
def get_all() -> list[Creature]:
 return service.get_all()

@router.get("/{name}")
def get_one(name) -> Creature:
 return service.get_one(name)

all the remaining endpoints do nothing yet:
@router.post("/")
def create(creature: Creature) -> Creature:
 return service.create(creature)

@router.patch("/")
def modify(creature: Creature) -> Creature:
 return service.modify(creature)

@router.put("/")
def replace(creature: Creature) -> Creature:
 return service.replace(creature)

@router.delete("/{name}")
def delete(name: str):
 return service.delete(name)

The last time we poked at main.py, it was to add the subrouter for /explorer URLs.
Now, let’s add another for /creature in Example 8-16.

Example 8-16. Add creature subrouter to main.py

import uvicorn
from fastapi import FastAPI
from web import explorer, creature

app = FastAPI()

app.include_router(explorer.router)
app.include_router(creature.router)

if __name__ == "__main__":
 uvicorn.run("main:app", reload=True)

108 | Chapter 8: Web Layer

Did all of that work? If you typed or pasted everything exactly, Uvicorn should have
restarted the application. Let’s try some manual tests.

Test!
Chapter 12 will show how to use pytest to automate testing at various levels. Exam‐
ples 8-17 to 8-21 perform some manual Web-layer tests of the explorer endpoints
with HTTPie.

Example 8-17. Test the Get All endpoint

$ http -b localhost:8000/explorer/
[
 {
 "country": "FR",
 "name": "Claude Hande",
 "description": "Scarce during full moons"
 },
 {
 "country": "DE",
 "name": "Noah Weiser",
 "description": "Myopic machete man"
 }
]

Example 8-18. Test the Get One endpoint

$ http -b localhost:8000/explorer/"Noah Weiser"
{
 "country": "DE",
 "name": "Noah Weiser",
 "description": "Myopic machete man"
}

Example 8-19. Test the Replace endpoint

$ http -b PUT localhost:8000/explorer/"Noah Weiser"
{
 "country": "DE",
 "name": "Noah Weiser",
 "description": "Myopic machete man"
}

Example 8-20. Test the Modify endpoint

$ http -b PATCH localhost:8000/explorer/"Noah Weiser"
{
 "country": "DE",

Test! | 109

 "name": "Noah Weiser",
 "description": "Myopic machete man"
}

Example 8-21. Test the Delete endpoint

$ http -b DELETE localhost:8000/explorer/Noah%20Weiser
true

$ http -b DELETE localhost:8000/explorer/Edmund%20Hillary
false

You can do the same for the /creature endpoints.

Using the FastAPI Automated Test Forms
Besides the manual tests that I’ve used in most examples, FastAPI provides very nice
automated test forms at the endpoints /docs and /redocs. They’re two different styles
for the same information, so I’ll just show a little from the /docs pages in Figure 8-1.

Figure 8-1. Generated documentation page

110 | Chapter 8: Web Layer

Try the first test:

1. Click the down-arrow to the right under the top GET /explorer/ section. That
will open up a large light blue form.

2. Click the blue Execute button on the left. You’ll see the top section of the results
in Figure 8-2.

Figure 8-2. Generated results page for GET /explorer/

Using the FastAPI Automated Test Forms | 111

In the lower “Response body” section, you’ll see the JSON returned for the (fake)
explorer data that you’ve defined so far:

[
 {
 "name": "Claude Hande",
 "country": "FE",
 "description": "Scarce during full moons"
 },
 {
 "name": "Noah Weiser",
 "country": "DE",
 "description": "Myopic machete man"
 }
]

Try all the others. For some (like GET /explorer/{name}), you’ll need to provide an
input value. You’ll get a response for each, even though a few still do nothing until the
database code is added. You can repeat these tests near the end of Chapters 9 and 10
to ensure that no data pipelines were punctured during these code changes.

Talking to the Service and Data Layers
Whenever a function in the Web layer needs data that is managed by the Data layer,
that function should ask the Service layer to be an intermediary. This requires more
code and may seem unnecessary, but it’s a good idea:

• As the label on the jar says, the Web layer deals with the web, and the Data layer
deals with external data stores and services. It’s much safer to keep their respec‐
tive details completely separate.

• The layers can be tested independently. Separation of layer mechanisms allows
this.

For a very small site, you could skip the Service layer if it doesn’t
add any value. Chapter 9 initially defines service functions that do
little more than pass requests and responses between the Web and
Data layers. At least keep the Web and Data layers separate, though.

What does that Service layer function do? You’ll see in the next chapter. Hint: it talks
to the Data layer, but in a hushed voice so the Web layer doesn’t know exactly what it’s
saying. But it also defines any specific business logic, such as interactions between
resources. Mainly, the Web and Data layers should not care what’s going on in there.
(The Service layer is a Secret Service.)

112 | Chapter 8: Web Layer

Pagination and Sorting
In web interfaces, when returning many or all things with URL patterns like
GET /resource, you often want to request the lookup and return of the following:

• Only one thing
• Possibly many things
• All things

How do you get our well-meaning but extremely literal-minded computer to do these
things? Well, for the first case, the RESTful pattern that I mentioned earlier is to
include the resource’s ID in the URL path. When getting multiple resources, we may
want to see the results in a particular order:

Sort
Order all the results, even if you get only a set of them at a time.

Paginate
Return only some results at a time, respecting any sorting.

In each case, a group of user-specified parameters indicates what you want. It’s com‐
mon to provide these as query parameters. Here are some examples:

Sort
GET /explorer?sort=country: Get all explorers, sorted by country code.

Paginate
GET /explorer?offset=10&size=10: Return (in this case, unsorted) explorers in
places 10 through 19 of the whole list.

Both
GET /explorer?sort=country&offset=10&size=10

Although you could specify these as individual query parameters, FastAPI’s depend‐
ency injection can help:

• Define the sort and paginate parameters as a Pydantic model.
• Provide the parameters model to the get_all() path function with the Depends

feature in the path function arguments.

Where should the sorting and pagination occur? At first, it may seem simplest for the
database queries to pass full results up to the Web layer, and use Python to carve up
the data there. But that isn’t very efficient. These tasks usually fit best in the Data
layer, because databases are good at those things. I’ll finally get around to some code
for these in Chapter 17, which has more database tidbits beyond those in Chapter 10.

Pagination and Sorting | 113

Review
This chapter filled out more details from Chapter 3 and others. It began the process
of making a full site for information on imaginary creatures and their explorers.
Starting with the Web layer, you defined endpoints with FastAPI path decorators and
path functions. The path functions gather request data from wherever they live in the
HTTP request bytes. Model data is automatically checked and validated by Pydantic.
Path functions generally pass arguments to corresponding service functions, which
are coming in the next chapter.

114 | Chapter 8: Web Layer

CHAPTER 9

Service Layer

What was that middle thing?
—Otto West, A Fish Called Wanda

Preview
This chapter expands on the Service layer—the middle thing. A leaky roof can cost a
lot of money. Leaky software isn’t as obvious but can cost a lot of time and effort.
How can you structure your application so that the layers don’t leak? In particular,
what should and should not go into the Service layer in the middle?

Defining a Service
The Service layer is the heart of the website, its reason for being. It takes requests
from multiple sources, accesses the data that is the DNA of the site, and returns
responses.

Common service patterns include a combination of the following:

• Create / retrieve / change (partially or completely) / delete
• One thing / multiple things

At the RESTful router layer, the nouns are resources. In this book, our resources will
initially include cryptids (imaginary creatures) and people (cryptid explorers).

Later, it will be possible to define related resources like these:

• Places
• Events (e.g., expeditions, sightings)

115

Layout
Here’s the current file and directory layout:

main.py
web
├── __init__.py
├── creature.py
├── explorer.py
service
├── __init__.py
├── creature.py
├── explorer.py
data
├── __init__.py
├── creature.py
├── explorer.py
model
├── __init__.py
├── creature.py
├── explorer.py
fake
├── __init__.py
├── creature.py
├── explorer.py
└── test

In this chapter, you’ll fiddle with files in the service directory.

Protection
One nice thing about layers is that you don’t have to worry about everything. The
Service layer cares only about what goes into and out of the data. As you’ll see in
Chapter 11, a higher layer (in this book, Web) can handle the authentication and
authorization messiness. The functions to create, modify, and delete should not be
wide open, and even the get functions might eventually need some limits.

Functions
Let’s start with creature.py. At this point, the needs of explorer.py will be almost the
same, and we can borrow almost everything. It’s so tempting to write a single service
file that handles both, but, almost inevitably, at some point we’ll need to handle them
differently.

Also at this point, the service file is pretty much a pass-through layer. This is a case in
which a little extra structure at the start will pay off later. Much as you did for web/
creature.py and web/explorer.py in Chapter 8, you’ll define service modules for both,

116 | Chapter 9: Service Layer

and hook both of them up to their corresponding fake data modules for now (Exam‐
ples 9-1 and 9-2).

Example 9-1. An initial service/creature.py file

from models.creature import Creature
import fake.creature as data

def get_all() -> list[Creature]:
 return data.get_all()

def get_one(name: str) -> Creature | None:
 return data.get(id)

def create(creature: Creature) -> Creature:
 return data.create(creature)

def replace(id, creature: Creature) -> Creature:
 return data.replace(id, creature)

def modify(id, creature: Creature) -> Creature:
 return data.modify(id, creature)

def delete(id, creature: Creature) -> bool:
 return data.delete(id)

Example 9-2. An initial service/explorer.py file

from models.explorer import Explorer
import fake.explorer as data

def get_all() -> list[Explorer]:
 return data.get_all()

def get_one(name: str) -> Explorer | None:
 return data.get(name)

def create(explorer: Explorer) -> Explorer:
 return data.create(explorer)

def replace(id, explorer: Explorer) -> Explorer:
 return data.replace(id, explorer)

def modify(id, explorer: Explorer) -> Explorer:
 return data.modify(id, explorer)

def delete(id, explorer: Explorer) -> bool:
 return data.delete(id)

Functions | 117

The syntax of the get_one() function’s return value (Creature |
None) needs at least Python 3.9. For earlier versions, you need
Optional:

from typing import Optional
...
def get_one(name: str) -> Optional[Creature]:
...

Test!
Now that the codebase is filling out a bit, it’s a good time to introduce automated
tests. (The Web tests in the previous chapter have all been manual tests.) So let’s make
some directories:

test
A top-level directory, alongside web, service, data, and model.

unit
Exercise single functions, but don’t cross layer boundaries.

web
Web-layer unit tests.

service
Service-layer unit tests.

data
Data-layer unit tests.

full
Also known as end-to-end or contract tests, these span all layers at once. They
address the API endpoints in the Web layer.

The directories have the test_ prefix or _test suffix for use by pytest, which you’ll start
to see in Example 9-4 (which runs the test in Example 9-3).

Before testing, a few API design choices need to be made. What should be returned
by the get_one() function if a matching Creature or Explorer isn’t found? You can
return None, as in Example 9-2. Or you could raise an exception. None of the built-in
Python exception types deal directly with missing values:

• TypeError may be the closest, because None is a different type than Creature.
• ValueError is more suited for the wrong value for a given type, but I guess you

could say that passing a missing string id to get_one(id) qualifies.
• You could define your own MissingError if you really want to.

118 | Chapter 9: Service Layer

Whichever method you choose, the effects will bubble up all the way to the top layer.

Let’s go with the None alternative rather than the exception for now. After all, that’s
what none means. Example 9-3 is a test.

Example 9-3. Service test test/unit/service/test_creature.py

from model.creature import Creature
from service import creature as code

sample = Creature(name="yeti",
 country="CN",
 area="Himalayas",
 description="Hirsute Himalayan",
 aka="Abominable Snowman",
)

def test_create():
 resp = code.create(sample)
 assert resp == sample

def test_get_exists():
 resp = code.get_one("yeti")
 assert resp == sample

def test_get_missing():
 resp = code.get_one("boxturtle")
 assert data is None

Run the test in Example 9-4.

Example 9-4. Run the service test

$ pytest -v test/unit/service/test_creature.py
test_creature.py::test_create PASSED [16%]
test_creature.py::test_get_exists PASSED [50%]
test_creature.py::test_get_missing PASSED [66%]

======================== 3 passed in 0.06s =========================

In Chapter 10, get_one() will no longer return None for a missing
creature, and the test_get_missing() test in Example 9-4 would
fail. But that will be fixed.

Test! | 119

Other Service-Level Stuff
We’re in the middle of the stack now—the part that really defines our site’s purpose.
And so far, we’ve used it only to forward web requests to the (next chapter’s) Data
layer.

So far, this book has developed the site iteratively, building a minimal base for future
work. As you learn more about what you have, what you can do, and what users
might want, you can branch out and experiment. Some ideas might benefit only
larger sites, but here are some technical site-helper ideas:

• Logging
• Metrics
• Monitoring
• Tracing

This section discusses each of these. We’ll revisit these options in “Troubleshooting”
on page 190, to see if they can help diagnose problems.

Logging
FastAPI logs each API call to an endpoint—including the timestamp, method, and
URL—but not any data delivered via the body or headers.

Metrics, Monitoring, Observability
If you run a website, you probably want to know how it’s doing. For an API website,
you might want to know which endpoints are being accessed, how many people are
visiting, and so on. Statistics on such factors are called metrics, and the gathering of
them is monitoring or observability.

Popular metrics tools nowadays include Prometheus for gathering metrics and
Grafana for displaying metrics.

Tracing
How well is your site performing? It’s common for metrics to be good overall, but
with disappointing results here or there. Or the whole site may be a mess. Either way,
it’s useful to have a tool that measures how long an API call takes, end to end—and
not just overall time, but the time for each intermediate step. If something’s slow, you
can find the weak link in the chain. This is tracing.

A new open source project has taken earlier tracing products like Jaeger and branded
them as OpenTelemetry. It has a Python API and at least one integration with
FastAPI.

120 | Chapter 9: Service Layer

https://prometheus.io
https://grafana.com
https://www.jaegertracing.io
https://opentelemetry.io
https://oreil.ly/gyL70
https://oreil.ly/L6RXV
https://oreil.ly/L6RXV

To install and configure OpenTelemetry with Python, follow the instructions in the
OpenTelemetry Python documentation.

Other
These production issues will be discussed in Chapter 13. Besides these, what about
our domain—cryptids and anything associated with them? Besides bare details on
explorers and creatures, what else might you want to take on? You may come up with
new ideas that require changes to the models and other layers. Here are some ideas
you might try:

• Links of explorers to the creatures that they seek
• Sighting data
• Expeditions
• Photos and videos
• Sasquatch mugs and T-shirts (Figure 9-1)

Figure 9-1. A word from our sponsor

Each of these categories will generally require one or more new models to be defined,
and new modules and functions. Some will be added in Part IV, which is a gallery of
applications added to the base built here in Part III.

Review
In this chapter, you replicated some functions from the Web layer and moved the fake
data that they worked with. The goal was to initiate the new Service layer. So far, it’s
been a cookie-cutter process, but it will evolve and diverge after this. The next chap‐
ter builds the final Data layer, yielding a truly live website.

Review | 121

https://oreil.ly/MBgd5

CHAPTER 10

Data Layer

If I’m not mistaken, I think Data was the comic relief on the show.
—Brent Spiner, Star Trek: The Next Generation

Preview
This chapter finally creates a persistent home for our site’s data, at last connecting the
three layers. It uses the relational database SQLite and introduces Python’s database
API, aptly named DB-API. Chapter 14 goes into much more detail on databases,
including the SQLAlchemy package and nonrelational databases.

DB-API
For over 20 years, Python has included a basic definition for a relational database
interface called DB-API: PEP 249. Anyone who writes a Python driver for a relational
database is expected to at least include support for DB-API, although other features
may be included.

These are the main DB-API functions:

• Create a connection conn to the database with connect().
• Create a cursor curs with conn.cursor().
• Execute a SQL string stmt with curs.execute(stmt).

123

https://oreil.ly/4Gp9T

The execute...() functions run a SQL statement stmt string with optional parame‐
ters, listed here:

• execute(stmt) if there are no parameters
• execute(stmt, params), with parameters params in a single sequence (list or

tuple) or dict
• executemany(stmt, params_seq), with multiple parameter groups in the

sequence params_seq

There are five ways of specifying parameters, and not all are supported by all database
drivers. If we have a statement stmt that begins with "select * from creature
where", and we want to specify string parameters for the creature’s name or country,
the rest of the stmt string and its parameters would look like those in Table 10-1.

Table 10-1. Specifying the statement and parameters

Type Statement part Parameters part
qmark name=? or country=? (name, country)

numeric name=:0 or country=:1 (name, country)

format name=%s or country=%s (name, country)

named name=:name or country=:country {"name": name, "country":
country}

pyformat name=%(name)s or country=%(country)s {"name": name, "country":
country}

The first three take a tuple argument, where the parameter order matches the ?, :N, or
%s in the statement. The last two take a dictionary, where the keys match the names in
the statement.

So, the full call for the named style would look like Example 10-1.

Example 10-1. Using named-style parameters.

stmt = """select * from creature where
 name=:name or country=:country"""
params = {"name": "yeti", "country": "CN"}
curs.execute(stmt, params)

124 | Chapter 10: Data Layer

For SQL INSERT, DELETE, and UPDATE statements, the returned value from execute()
tells you how it worked. For SELECT, you iterate over returned data row(s), as Python
tuples, with a fetch method:

• fetchone() returns one tuple, or None.
• fetchall() returns a sequence of tuples.
• fetchmany(num) returns up to num tuples.

SQLite
Python includes support for one database (SQLite) with the module sqlite3 in its
standard packages.

SQLite is unusual: it has no separate database server. All the code is in a library, and
storage is in a single file. Other databases run separate servers, and clients communi‐
cate with them over TCP/IP, using specific protocols. Let’s use SQLite as the first
physical data store for this website. Chapter 14 will include other databases, relational
and not, as well as more advanced packages like SQLAlchemy and techniques like
ORMs.

First, we need to define how the data structures we’ve been using in the website (mod‐
els) can be represented in the database. So far, our only models have been simple and
similar, but not identical: Creature and Explorer. They will change as we think of
more things to do with them and let the data evolve without massive code changes.

Example 10-2 shows the bare DB-API code and SQL to create and work with the first
tables. It uses named argument strings (values are represented like name), which are
supported by the sqlite3 package.

Example 10-2. Create the file data/creature.py using sqlite3

import sqlite3
from model.creature import Creature

DB_NAME = "cryptid.db"
conn = sqlite3.connect(DB_NAME)
curs = conn.cursor()

def init():
 curs.execute("create table creature(name, description, country, area, aka)")

def row_to_model(row: tuple) -> Creature:
 name, description, country, area, aka = row
 return Creature(name, description, country, area, aka)

def model_to_dict(creature: Creature) -> dict:

SQLite | 125

https://www.sqlite.org
https://oreil.ly/CcYtJ

 return creature.dict()

def get_one(name: str) -> Creature:
 qry = "select * from creature where name=:name"
 params = {"name": name}
 curs.execute(qry, params)
 row = curs.fetchone()
 return row_to_model(row)

def get_all(name: str) -> list[Creature]:
 qry = "select * from creature"
 curs.execute(qry)
 rows = list(curs.fetchall())
 return [row_to_model(row) for row in rows]

def create(creature: Creature):
 qry = """insert into creature values
 (:name, :description, :country, :area, :aka)"""
 params = model_to_dict(creature)
 curs.execute(qry, params)

def modify(creature: Creature):
 return creature

def replace(creature: Creature):
 return creature

def delete(creature: Creature):
 qry = "delete from creature where name = :name"
 params = {"name": creature.name}
 curs.execute(qry, params)

Near the top, the init() function makes the connection to sqlite3 and the database
fake cryptid.db. It stores this in the variable conn; this is global within the data/crea‐
ture.py module. Next, the curs variable is a cursor for iterating over data returned by
executing a SQL SELECT statement; it’s also global to the module.

Two utility functions translate between Pydantic models and DB-API:

• row_to_model() converts a tuple returned by a fetch function to a model object.
• model_to_dict() translates a Pydantic model to a dictionary, suitable for use as a

named query parameter.

The fake CRUD functions that have been present so far in each layer down (Web →
Service → Data) will now be replaced. They use only plain SQL and the DB-API
methods in sqlite3.

126 | Chapter 10: Data Layer

Layout
So far, (fake) data has been modified in steps:

1. In Chapter 8, we made the fake creatures list in web/creature.py.
2. In Chapter 8, we made the fake explorers list in web/explorer.py.
3. In Chapter 9, we moved fake creatures to service/creature.py.
4. In Chapter 9, we moved fake explorers to service/explorer.py.

Now the data has moved for the last time, down to data/creature.py. But it’s not fake
anymore: it’s real live data, persisting in the SQLite database file cryptids.db. Creature
data, again by lack of imagination, is stored in the SQL table creature in this
database.

Once you save this new file, Uvicorn should restart from your top main.py, which
calls web/creature.py, which calls service/creature.py, and finally down to this new
data/creature.py.

Making It Work
We have one small problem: this module never calls its init() function, so there’s no
SQLite conn or curs for the other functions to use. This a configuration issue: how do
we provide the database information at startup time? Possibilities include the
following:

• Hardwiring the database info in the code, as in Example 10-2.
• Passing the info down through the layers. But this would violate the separation of

layers; the Web and Service layers should not know the internals of the Data
layer.

• Passing the info from a different external source, such as
— A config file
— An environment variable

The environment variable is simple and is endorsed by recommendations like the
Twelve-Factor App. The code can include a default value if the environment variable
isn’t specified. This approach can also be used in testing, to provide a separate test
database from the production one.

In Example 10-3, let’s define an environment variable called CRYPTID_SQLITE_DB,
with the default value cryptid.db. Make a new file called data/init.py for the new
database initialization code so it can also be reused for the explorer code.

Making It Work | 127

https://12factor.net/config

Example 10-3. New data initialization module data/init.py

"""Initialize SQLite database"""

import os
from pathlib import Path
from sqlite3 import connect, Connection, Cursor, IntegrityError

conn: Connection | None = None
curs: Cursor | None = None

def get_db(name: str|None = None, reset: bool = False):
 """Connect to SQLite database file"""
 global conn, curs
 if conn:
 if not reset:
 return
 conn = None
 if not name:
 name = os.getenv("CRYPTID_SQLITE_DB")
 top_dir = Path(__file__).resolve().parents[1] # repo top
 db_dir = top_dir / "db"
 db_name = "cryptid.db"
 db_path = str(db_dir / db_name)
 name = os.getenv("CRYPTID_SQLITE_DB", db_path)
 conn = connect(name, check_same_thread=False)
 curs = conn.cursor()

get_db()

A Python module is a singleton, called only once despite multiple imports. So, the ini‐
tialization code in init.py is run only once, when the first import of it occurs.

Last, modify data/creature.py in Example 10-4 to use this new module instead:

• Mainly, drop lines 4 through 8.
• Oh, and create the creature table in the first place!
• The table fields are all SQL text strings. This is the default column type in

SQLite (unlike most SQL databases), so you didn’t need to include text earlier,
but being explicit doesn’t hurt.

• The if not exists avoids clobbering the table after it’s been created.
• The name field is the explicit primary key for this table. If this table ever houses

lots of explorer data, that key will be necessary for fast lookups. The alternative is
the dreaded table scan, where the database code needs to look at every row until it
finds a match for name.

128 | Chapter 10: Data Layer

Example 10-4. Add database configuration to data/creature.py

from .init import conn, curs
from model.creature import Creature

curs.execute("""create table if not exists creature(
 name text primary key,
 description text,
 country text,
 area text,
 aka text)""")

def row_to_model(row: tuple) -> Creature:
 (name, description, country, area, aka) = row
 return Creature(name, description, country, area, aka)

def model_to_dict(creature: Creature) -> dict:
 return creature.dict()

def get_one(name: str) -> Creature:
 qry = "select * from creature where name=:name"
 params = {"name": name}
 curs.execute(qry, params)
 return row_to_model(curs.fetchone())

def get_all() -> list[Creature]:
 qry = "select * from creature"
 curs.execute(qry)
 return [row_to_model(row) for row in curs.fetchall()]

def create(creature: Creature) -> Creature:
 qry = "insert into creature values"
 "(:name, :description, :country, :area, :aka)"
 params = model_to_dict(creature)
 curs.execute(qry, params)
 return get_one(creature.name)

def modify(creature: Creature) -> Creature:
 qry = """update creature
 set country=:country,
 name=:name,
 description=:description,
 area=:area,
 aka=:aka
 where name=:name_orig"""
 params = model_to_dict(creature)
 params["name_orig"] = creature.name
 _ = curs.execute(qry, params)
 return get_one(creature.name)

def delete(creature: Creature) -> bool:
 qry = "delete from creature where name = :name"

Making It Work | 129

 params = {"name": creature.name}
 res = curs.execute(qry, params)
 return bool(res)

By importing conn and curs from init.py, it’s no longer necessary for data/creature.py
to import sqlite3 itself—unless someday it’s necessary to call another sqlite3 method
that isn’t a method of the conn or curs objects.

Again, these changes should goose Uvicorn into reloading everything. From now on,
testing with any of the methods that you’ve seen so far (HTTPie and friends, or the
automated /docs forms) will show data that persists. If you add a creature, it will be
there the next time you get all of them.

Let’s do the same for explorers in Example 10-5.

Example 10-5. Add database configuration to data/explorer.py

from .init import curs
from model.explorer import Explorer

curs.execute("""create table if not exists explorer(
 name text primary key,
 country text,
 description text)""")

def row_to_model(row: tuple) -> Explorer:
 return Explorer(name=row[0], country=row[1], description=row[2])

def model_to_dict(explorer: Explorer) -> dict:
 return explorer.dict() if explorer else None

def get_one(name: str) -> Explorer:
 qry = "select * from explorer where name=:name"
 params = {"name": name}
 curs.execute(qry, params)
 return row_to_model(curs.fetchone())

def get_all() -> list[Explorer]:
 qry = "select * from explorer"
 curs.execute(qry)
 return [row_to_model(row) for row in curs.fetchall()]

def create(explorer: Explorer) -> Explorer:
 qry = """insert into explorer (name, country, description)
 values (:name, :country, :description)"""
 params = model_to_dict(explorer)
 _ = curs.execute(qry, params)
 return get_one(explorer.name)

def modify(name: str, explorer: Explorer) -> Explorer:

130 | Chapter 10: Data Layer

 qry = """update explorer
 set country=:country,
 name=:name,
 description=:description
 where name=:name_orig"""
 params = model_to_dict(explorer)
 params["name_orig"] = explorer.name
 _ = curs.execute(qry, params)
 explorer2 = get_one(explorer.name)
 return explorer2

def delete(explorer: Explorer) -> bool:
 qry = "delete from explorer where name = :name"
 params = {"name": explorer.name}
 res = curs.execute(qry, params)
 return bool(res)

Test!
That’s a lot of code with no tests. Does everything work? I’d be surprised if it all did.
So let’s set up some tests.

Make these subdirectories under the test directory:

unit
Within a layer

full
Across all layers

Which type should you write and run first? Most people write automated unit tests
first; they’re smaller, and all the other layer pieces may not exist yet. In this book,
development has been top-down, and we’re now completing the last layer. Also, we
did manual tests (with HTTPie and friends) in Chapters 8 and 9. Those helped to
expose bugs and omissions quickly; automated tests ensure that you don’t keep mak‐
ing the same errors later. So, I recommend the following:

• Some manual tests as you’re first writing the code
• Unit tests after you’ve fixed Python syntax errors
• Full tests after you have a full data flow across all layers

Full Tests
These call the web endpoints, which take the code elevator down through Service to
Data, and back up again. Sometimes these are called end-to-end or contract tests.

Test! | 131

Get all explorers
Dipping a toe in the test waters, not yet knowing if they’re infested with piranhas, is
brave volunteer Example 10-6.

Example 10-6. The Get All Explorers test

$ http localhost:8000/explorer
HTTP/1.1 405 Method Not Allowed
allow: POST
content-length: 31
content-type: application/json
date: Mon, 27 Feb 2023 20:05:18 GMT
server: uvicorn

{
 "detail": "Method Not Allowed"
}

Eek! What happened?

Oh. The test asked for /explorer, not /explorer/, and there’s no GET-method path
function for the URL /explorer (with no final slash). In web/explorer.py, the path deco‐
rator for the get_all() path function is this:

@router.get("/")

That, plus the earlier code

router = APIRouter(prefix = "/explorer")

means this get_all() path function serves a URL containing /explorer/.

Example 10-7 happily shows that you can have more than one path decorator per
path function.

Example 10-7. Add a nonslash path decorator for the get_all() path function

@router.get("")
@router.get("/")
def get_all() -> list[Explorer]:
 return service.get_all()

Test with both URLs in Examples 10-8 and 10-9.

Example 10-8. Test the nonslash endpoint

$ http localhost:8000/explorer
HTTP/1.1 200 OK
content-length: 2

132 | Chapter 10: Data Layer

content-type: application/json
date: Mon, 27 Feb 2023 20:12:44 GMT
server: uvicorn

[]

Example 10-9. Test the slash endpoint

$ http localhost:8000/explorer/
HTTP/1.1 200 OK
content-length: 2
content-type: application/json
date: Mon, 27 Feb 2023 20:14:39 GMT
server: uvicorn

[]

Now that both of these work, create an explorer, and retry the Get All test after.
Example 10-10 attempts this, but with a plot twist.

Example 10-10. Test explorer creation, with an input error

$ http post localhost:8000/explorer name="Beau Buffette", contry="US"
HTTP/1.1 422 Unprocessable Entity
content-length: 95
content-type: application/json
date: Mon, 27 Feb 2023 20:17:45 GMT
server: uvicorn

{
 "detail": [
 {
 "loc": [
 "body",
 "country"
],
 "msg": "field required",
 "type": "value_error.missing"
 }
]
}

I misspelled country, although my speling is usually impeckable. Pydantic caught this
in the Web layer, returning a 422 HTTP status code and a description of the problem.
Generally, if FastAPI returns a 422, the odds are that Pydantic fingered the perpetra‐
tor. The "loc" part says where the error occurred: the field "country" is missing,
because I’m such an inept typist.

Fix the spelling and retest in Example 10-11.

Test! | 133

Example 10-11. Create an explorer with the corrected value

$ http post localhost:8000/explorer name="Beau Buffette" country="US"
HTTP/1.1 201 Created
content-length: 55
content-type: application/json
date: Mon, 27 Feb 2023 20:20:49 GMT
server: uvicorn

{
 "name": "Beau Buffette,",
 "country": "US",
 "description": ""
}

This time the call returns a 201 status code, which is traditional when a resource is
created (all 2xx status codes are considered to indicate success, with plain 200 being
the most generic). The response also contains the JSON version of the Explorer
object that was just created.

Now back to the initial test: will Beau turn up in the Get All Explorers test?
Example 10-12 answers this burning question.

Example 10-12. Did the latest create() work?

$ http localhost:8000/explorer
HTTP/1.1 200 OK
content-length: 57
content-type: application/json
date: Mon, 27 Feb 2023 20:26:26 GMT
server: uvicorn

[
 {
 "name": "Beau Buffette",
 "country": "US",
 "description": ""
 }
]

Yay.

Get one explorer
Now, what happens if you try to look up Beau with the Get One endpoint
(Example 10-13)?

134 | Chapter 10: Data Layer

Example 10-13. Test the Get One endpoint

$ http localhost:8000/explorer/"Beau Buffette"
HTTP/1.1 200 OK
content-length: 55
content-type: application/json
date: Mon, 27 Feb 2023 20:28:48 GMT
server: uvicorn

{
 "name": "Beau Buffette",
 "country": "US",
 "description": ""
}

I used the quotes to preserve that space between the first and last names. In URLs,
you could also use Beau%20Buffette; the %20 is the hex code for the space character
in ASCII.

Missing and duplicate data
I’ve ignored two main error classes so far:

Missing data
If you try to get, modify, or delete an explorer by a name that isn’t in the database.

Duplicate data
If you try to create an explorer with the same name more than once.

So, what if you ask for a nonexistent or duplicate explorer? So far, the code has been
too optimistic, and exceptions will bubble up from the abyss.

Our friend Beau was just added to the database. Imagine his evil clone (who shares
his name) plots to replace him some dark night, using Example 10-14.

Example 10-14. Duplicate error: try to create an explorer more than once

$ http post localhost:8000/explorer name="Beau Buffette" country="US"
HTTP/1.1 500 Internal Server Error
content-length: 3127
content-type: text/plain; charset=utf-8
date: Mon, 27 Feb 2023 21:04:09 GMT
server: uvicorn

Traceback (most recent call last):
 File ".../starlette/middleware/errors.py", line 162, in call
... (lots of confusing innards here) ...
 File ".../service/explorer.py", line 11, in create
 return data.create(explorer)
 ^^^^^^^

Test! | 135

 File ".../data/explorer.py", line 37, in create
 curs.execute(qry, params)
sqlite3.IntegrityError: UNIQUE constraint failed: explorer.name

I omitted most of the lines in that error trace (and replaced some parts with ellipses),
because it contained mostly internal calls made by FastAPI and the underlying Star‐
lette. But that last line: a SQLite exception in the Web layer! Where is the fainting
couch?

Right on the heels of this, yet another horror in Example 10-15: a missing explorer.

Example 10-15. Get a nonexistent explorer

$ http localhost:8000/explorer/"Beau Buffalo"
HTTP/1.1 500 Internal Server Error
content-length: 3282
content-type: text/plain; charset=utf-8
date: Mon, 27 Feb 2023 21:09:37 GMT
server: uvicorn

Traceback (most recent call last):
 File ".../starlette/middleware/errors.py", line 162, in call
... (many lines of ancient cuneiform) ...
 File ".../data/explorer.py", line 11, in row_to_model
 name, country, description = row
 ^^^^^^^
TypeError: cannot unpack non-iterable NoneType object

What’s a good way to catch these at the bottom (Data) layer, and communicate the
details to the top (Web)? Possibilities include the following:

• Let SQLite cough up a hairball (exception) and deal with it in the Web layer.
— But: this mixes the layers, which is Bad. The Web layer should not know any‐

thing about specific databases.
• Make every function in the Service and Data layers return Explorer | None

where they used to return Explorer. Then a None indicates failure. (You can
shorten this by defining OptExplorer = Explorer | None in model/explorer.py.)
— But: the function may have failed for more than one reason, and you might

want details. And this requires lots of code editing.
• Define exceptions for Missing and Duplicate data, including details of the prob‐

lem. These will flow up through the layers with no code changes until the Web
path functions catch them. They’re also application specific rather than database
specific, preserving the sanctity of the layers.
— But: actually, I like this one, so it goes in Example 10-16.

136 | Chapter 10: Data Layer

Example 10-16. Define a new top-level errors.py

class Missing(Exception):
 def __init__(self, msg:str):
 self.msg = msg

class Duplicate(Exception):
 def __init__(self, msg:str):
 self.msg = msg

Each of these exceptions has a msg string attribute that can inform the higher-level
code of what happened.

To implement this, in Example 10-17, have data/init.py import the DB-API exception
that SQLite would raise for a duplicate.

Example 10-17. Add a SQLite exception import into data/init.py

from sqlite3 import connect, IntegrityError

Import and catch this error in Example 10-18.

Example 10-18. Modify data/explorer.py to catch and raise these exceptions

from init import (conn, curs, IntegrityError)
from model.explorer import Explorer
from error import Missing, Duplicate

curs.execute("""create table if not exists explorer(
 name text primary key,
 country text,
 description text)""")

def row_to_model(row: tuple) -> Explorer:
 name, country, description = row
 return Explorer(name=name,
 country=country, description=description)

def model_to_dict(explorer: Explorer) -> dict:
 return explorer.dict()

def get_one(name: str) -> Explorer:
 qry = "select * from explorer where name=:name"
 params = {"name": name}
 curs.execute(qry, params)
 row = curs.fetchone()
 if row:
 return row_to_model(row)
 else:
 raise Missing(msg=f"Explorer {name} not found")

Test! | 137

def get_all() -> list[Explorer]:
 qry = "select * from explorer"
 curs.execute(qry)
 return [row_to_model(row) for row in curs.fetchall()]

def create(explorer: Explorer) -> Explorer:
 if not explorer: return None
 qry = """insert into explorer (name, country, description) values
 (:name, :country, :description)"""
 params = model_to_dict(explorer)
 try:
 curs.execute(qry, params)
 except IntegrityError:
 raise Duplicate(msg=
 f"Explorer {explorer.name} already exists")
 return get_one(explorer.name)

def modify(name: str, explorer: Explorer) -> Explorer:
 if not (name and explorer): return None
 qry = """update explorer
 set name=:name,
 country=:country,
 description=:description
 where name=:name_orig"""
 params = model_to_dict(explorer)
 params["name_orig"] = explorer.name
 curs.execute(qry, params)
 if curs.rowcount == 1:
 return get_one(explorer.name)
 else:
 raise Missing(msg=f"Explorer {name} not found")

def delete(name: str):
 if not name: return False
 qry = "delete from explorer where name = :name"
 params = {"name": name}
 curs.execute(qry, params)
 if curs.rowcount != 1:
 raise Missing(msg=f"Explorer {name} not found")

This drops the need to declare that any functions return Explorer | None or
Optional[Explorer]. You indicate type hints only for normal return types, not
exceptions. Because exceptions flow upward independent of the call stack until some‐
one catches them, for once you don’t have to change anything in the Service layer. But
here’s the new web/explorer.py in Example 10-19, with exception handlers and appro‐
priate HTTP status code returns.

138 | Chapter 10: Data Layer

Example 10-19. Handle Missing and Duplicate exceptions in web/explorer.py

from fastapi import APIRouter, HTTPException
from model.explorer import Explorer
from service import explorer as service
from error import Duplicate, Missing

router = APIRouter(prefix = "/explorer")

@router.get("")
@router.get("/")
def get_all() -> list[Explorer]:
 return service.get_all()

@router.get("/{name}")
def get_one(name) -> Explorer:
 try:
 return service.get_one(name)
 except Missing as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

@router.post("", status_code=201)
@router.post("/", status_code=201)
def create(explorer: Explorer) -> Explorer:
 try:
 return service.create(explorer)
 except Duplicate as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

@router.patch("/")
def modify(name: str, explorer: Explorer) -> Explorer:
 try:
 return service.modify(name, explorer)
 except Missing as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

@router.delete("/{name}", status_code=204)
def delete(name: str):
 try:
 return service.delete(name)
 except Missing as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

Test these changes in Example 10-20.

Test! | 139

Example 10-20. Test Get One nonexisting explorer again, with new Missing exception

$ http localhost:8000/explorer/"Beau Buffalo"
HTTP/1.1 404 Not Found
content-length: 44
content-type: application/json
date: Mon, 27 Feb 2023 21:11:27 GMT
server: uvicorn

{
 "detail": "Explorer Beau Buffalo not found"
}

Good. Now, try the evil clone attempt again in Example 10-21.

Example 10-21. Test duplicate fix

$ http post localhost:8000/explorer name="Beau Buffette" country="US"
HTTP/1.1 404 Not Found
content-length: 50
content-type: application/json
date: Mon, 27 Feb 2023 21:14:00 GMT
server: uvicorn

{
 "detail": "Explorer Beau Buffette already exists"
}

The missing checks would also apply to the Modify and Delete endpoints. You can try
writing similar tests for them.

Unit Tests
Unit tests deal only with the Data layer, checking the database calls and SQL syntax.
I’ve put this section after the full tests because I wanted to have the Missing and
Duplicate exceptions already defined, explained, and coded into data/creature.py.
Example 10-22 lists the test script test/unit/data/test_creature.py. Here are some
points to note:

• You set the environment variable CRYPTID_SQLITE_DATABASE to ":memory:"
before importing init or creature from data. This value makes SQLite work
completely in memory, not stomping any existing database file, or even creating a
file on disk. It’s checked in data/init.py when that module is first imported.

• The fixture named sample is passed to the functions that need a Creature object.

140 | Chapter 10: Data Layer

• The tests run in order. In this case, the same database stays up the whole time,
instead of being reset between functions. The reason is to allow changes from
previous functions to persist. With pytest, a fixture can have on the following:

Function scope (the default)
It’s called anew before every test function.

Session scope
It’s called only once, at the start.

• Some tests force the Missing or Duplicate exceptions, and verify that they
caught them.

So, each of the tests in Example 10-22 gets a brand-new, unchanged Creature object
named sample.

Example 10-22. Unit tests for data/creature.py

import os
import pytest
from model.creature import Creature
from error import Missing, Duplicate

set this before data imports below for data.init
os.environ["CRYPTID_SQLITE_DB"] = ":memory:"
from data import creature

@pytest.fixture
def sample() -> Creature:
 return Creature(name="yeti", country="CN", area="Himalayas",
 description="Harmless Himalayan",
 aka="Abominable Snowman")

def test_create(sample):
 resp = creature.create(sample)
 assert resp == sample

def test_create_duplicate(sample):
 with pytest.raises(Duplicate):
 _ = creature.create(sample)

def test_get_one(sample):
 resp = creature.get_one(sample.name)
 assert resp == sample

def test_get_one_missing():
 with pytest.raises(Missing):
 _ = creature.get_one("boxturtle")

def test_modify(sample):

Test! | 141

 creature.area = "Sesame Street"
 resp = creature.modify(sample.name, sample)
 assert resp == sample

def test_modify_missing():
 thing: Creature = Creature(name="snurfle", country="RU", area="",
 description="some thing", aka="")
 with pytest.raises(Missing):
 _ = creature.modify(thing.name, thing)

def test_delete(sample):
 resp = creature.delete(sample.name)
 assert resp is None

def test_delete_missing(sample):
 with pytest.raises(Missing):
 _ = creature.delete(sample.name)

Hint: you can make your own version of test/unit/data/test_explorer.py.

Review
This chapter presented a simple data-handling layer, with a few trips up and down the
layer stack as needed. Chapter 12 contains unit tests for each layer, as well as cross-
layer integration and full end-to-end tests. Chapter 14 goes into more database depth
and detailed examples.

142 | Chapter 10: Data Layer

CHAPTER 11

Authentication and Authorization

Respect mah authoritay!
—Eric Cartman, South Park

Preview
Sometimes a website is wide open, and any visitor can visit any page. But if any of the
site’s content may be modified, some endpoints will be restricted to certain people or
groups. If anyone could alter pages on Amazon, imagine the odd items that would
show up, and the amazing sales some people would suddenly get. Unfortunately, it’s
human nature—for some humans—to take advantage of the rest, who pay a hidden
tax for their activities.

Should we leave our cryptid site open for any users to access any endpoint? No!
Almost any sizable web service eventually needs to deal with the following:

Authentication (authn)
Who are you?

Authorization (authz)
What do you want?

Should the authentication and authorization (auth) code have its own new layer, say
between Web and Service? Or should everything be handled by the Web or Service
layer itself? This chapter dips into auth techniques and where to put them.

Often descriptions of web security seem more confusing than they need to be.
Attackers can be really, really sneaky, and countermeasures may not be simple.

143

As I’ve mentioned more than once, the official FastAPI documen‐
tation is excellent. Try the Security section if this chapter doesn’t
provide as many details as you’d like.

So, let’s take this walk-through in steps. I’ll start with simple techniques that are
intended to only hook auth into a web endpoint for testing, but would not stand up in
a public website.

Interlude 1: Do You Need Authentication?
Again, authentication is concerned with identity: who are you? To implement authen‐
tication, we need a mapping of secret information to a unique identity. There are
many ways to do this, with many variations of complexity. Let’s start small and work
up.

Often books and articles on web development jump right away into the details of
authentication and authorization, sometimes muddling them. They sometimes skip
the first question: do you really need either?

You could allow completely anonymous access to all your website’s pages. But that
would leave you open to exploits like denial-of-service attacks. Although some pro‐
tections like rate limits can be implemented outside the web server (see Chapter 13),
almost all public API providers require at least some authentication.

Beyond security, we want to know how effective websites are:

• How many unique visitors?
• What are the most popular pages?
• Do some changes increase views?
• What page sequences are common?

The answers to these questions require authentication of specific visitors. Otherwise,
you can get only total counts.

If your site needs authentication or authorization, access to it
should be encrypted (using HTTPS instead of HTTP), to prevent
attackers from extracting secret data from plain text. See Chap‐
ter 13 for details on setting up HTTPS.

144 | Chapter 11: Authentication and Authorization

https://oreil.ly/oYsKl

Authentication Methods
There are many web authentication methods and tools:

Username/email and password
Using classic HTTP Basic and Digest Authentication

API key
An opaque long string with an accompanying secret

OAuth2
A set of standards for authentication and authorization

JavaScript Web Tokens (JWT)
An encoding format containing cryptographically signed user information

In this section, I’ll review the first two methods and show you how to traditionally
implement them. But I’ll stop before filling out the API and database code. Instead,
we’ll fully implement a more modern scheme with OAuth2 and JWT.

Global Authentication: Shared Secret
The very simplest authentication method is to pass a secret that’s normally known
only by the web server. If it matches, you’re in. This isn’t safe if your API site is
exposed to the public with HTTP instead of HTTPS. If it’s hidden behind a frontend
site that is itself open, the frontends and backends could communicate using a shared
constant secret. But if your frontend site is hacked, then darn. Let’s see how FastAPI
handles simple authentication.

Make a new top-level file called auth.py. Check that you don’t have another FastAPI
server still running from one of those ever-changing main.py files from previous
chapters. Example 11-1 implements a server that just returns whatever username and
password were sent to it using HTTP Basic Authentication—a method from the orig‐
inal days of the web.

Example 11-1. Use HTTP Basic Auth to get user info: auth.py

import uvicorn
from fastapi import Depends, FastAPI
from fastapi.security import HTTPBasic, HTTPBasicCredentials

app = FastAPI()

basic = HTTPBasic()

@app.get("/who")
def get_user(

Global Authentication: Shared Secret | 145

 creds: HTTPBasicCredentials = Depends(basic)):
 return {"username": creds.username, "password": creds.password}

if __name__ == "__main__":
 uvicorn.run("auth:app", reload=True)

In Example 11-2, tell HTTPie to make this Basic Auth request (this requires the argu‐
ments -a name:password). Here, let’s use the name me and the password secret.

Example 11-2. Test with HTTPie

$ http -q -a me:secret localhost:8000/who
{
 "password": "secret",
 "username": "me"
}

Testing with the Requests package in Example 11-3 is similar, using the auth
parameter.

Example 11-3. Test with Requests

>>> import requests
>>> r = requests.get("http://localhost:8000/who",
 auth=("me", "secret"))
>>> r.json()
{'username': 'me', 'password': 'secret'}

You can also test Example 11-1 with the automatic docs page (http://localhost:8000/
docs), shown in Figure 11-1.

Figure 11-1. Docs page for simple authentication

146 | Chapter 11: Authentication and Authorization

Click that down arrow on the right, then the Try It Out button, and then the Execute
button. You’ll see a form requesting the username and password. Type anything. The
documentation form will hit that server endpoint and show those values in the
response.

These tests show that you can get a username and password to the server and back
(although none of these actually checked anything). Something in the server needs to
verify that this name and password match the approved values. So, in Example 11-4,
I’ll include a single secret username and password in the web server. The username
and password that you pass in now needs to match them (each is a shared secret), or
you’ll get an exception. The HTTP status code 401 is officially called Unauthorized,
but it really means unauthenticated.

Instead of memorizing all the HTTP status codes, you can import
FastAPI’s status module (which itself is imported directly from
Starlette). So you can use the more explanatory status_code=
HTTP_401_UNAUTHORIZED in Example 11-4 instead of a plain
status_code=401.

Example 11-4. Add a secret username and password to auth.py

import uvicorn
from fastapi import Depends, FastAPI, HTTPException
from fastapi.security import HTTPBasic, HTTPBasicCredentials

app = FastAPI()

secret_user: str = "newphone"
secret_password: str = "whodis?"

basic: HTTPBasicCredentials = HTTPBasic()

@app.get("/who")
def get_user(
 creds: HTTPBasicCredentials = Depends(basic)) -> dict:
 if (creds.username == secret_user and
 creds.password == secret_password):
 return {"username": creds.username,
 "password": creds.password}
 raise HTTPException(status_code=401, detail="Hey!")

if __name__ == "__main__":
 uvicorn.run("auth:app", reload=True)

Misguessing the username and password will earn a mild 401 rebuke in
Example 11-5.

Global Authentication: Shared Secret | 147

Example 11-5. Test with HTTPie and a mismatched username/password

$ http -a me:secret localhost:8000/who
HTTP/1.1 401 Unauthorized
content-length: 17
content-type: application/json
date: Fri, 03 Mar 2023 03:25:09 GMT
server: uvicorn

{
 "detail": "Hey!"
}

Using the magic combination returns the username and password, as before, in
Example 11-6.

Example 11-6. Test with HTTPie and the correct username/password

$ http -q -a newphone:whodis? localhost:8000/who
{
 "password": "whodis?",
 "username": "newphone"
}

Simple Individual Authentication
The previous section showed how you could use a shared secret to control access. It’s
a broad approach, not very secure. And it doesn’t tell you anything about the individ‐
ual visitor, just that they (or a sentient AI) know the secret.

Many websites want to do the following:

• Define individual visitors in some way
• Identify specific visitors as they access certain endpoints (authentication)
• Possibly assign different permissions to some visitors and endpoints

(authorization)
• Possibly save specific information per visitor (interests, purchases, and so on)

If your visitors are humans, you may want them to provide a username or email and a
password. If they’re external programs, you may want them to provide an API key
and secret.

148 | Chapter 11: Authentication and Authorization

From here on, I’ll use just username to refer to either a user-
selected name or an email.

To authenticate real individual users instead of a fake one, you’ll need to do a bit
more:

• Pass the user values (name and password) to the API server endpoints as HTTP
headers.

• Use HTTPS instead of HTTP, to avoid anyone snooping the text of these headers.
• Hash the password to a different string. The result is not “de-hashable”—you

can’t derive the original password from its hash.
• Make a real database store a User database table containing the username and the

hashed password (never the original plain-text password).
• Hash the newly input password and compare the result with the hashed pass‐

word in the database.
• If the username and hashed password match, pass the matching User object up

the stack. If they don’t match, return None or raise an exception.
• In the Service layer, fire off any metrics/logging/whatever that are relevant to

individual user authentication.
• In the Web layer, send the authenticated user info to any functions that require it.

I’ll show you how to do all these things in the following sections, using recent tools
like OAuth2 and JWT.

Fancier Individual Authentication
If you want to authenticate individuals, you have to store some individual informa‐
tion somewhere—for example, in a database containing records with at least a key
(username or API key), and a secret (password or API secret). Your website visitors
will provide these when accessing protected URLs, and you need something in the
database to match them with.

The official FastAPI security docs (introductory and advanced) have top-down
descriptions of how to set up authentication for multiple users, using a local database.
But, example web functions fake the actual database access.

Fancier Individual Authentication | 149

https://oreil.ly/kkTUB
https://oreil.ly/biKwy

Here, you’ll do the opposite: starting at the Data layer and working up. You’ll define
how a user/visitor is defined, stored, and accessed. Then you’ll work up to the Web
layer, and how user identification is passed in, evaluated, and authenticated.

OAuth2
OAuth 2.0, which stands for “Open Authorization,” is a standard designed to allow a
website or application to access resources hosted by other web apps on behalf of a user.

—Auth0

In the early trusting web days, you could provide your login name and password of a
website (let’s call it B) to another website (A, of course) and let it access stuff on B for
you. This would give A full access to B, although it was trusted to access only what it
was supposed to. Examples of B and resources were things like Twitter followers,
Facebook friends, email contacts, and so on. Of course, this couldn’t last long, so vari‐
ous companies and groups got together to define OAuth. It was originally designed
only to allow website A to access specific (not all) resources on website B.

OAuth2 is a popular but complex authorization standard, with uses beyond the A/B
example. There are many explanations of it, from light to heavy.

There used to be an OAuth1, but it isn’t used anymore. Some of the
original OAuth2 recommendations are now deprecated (computer‐
ese for don’t use them). On the horizon are OAuth2.1 and, even fur‐
ther into the mist, txauth.

OAuth offers various flows for different circumstances. I’ll use the authorization code
flow here. This section will walk through an implementation, one average-sized step
at a time.

First, you’ll need to install these third-party Python packages:

JWT handling
pip install python-jose[cryptography]

Secure password handling
pip install passlib

Form handling
pip install python-multipart

The following sections start with the user data model and database management, and
work up the familiar layers to the Service and Web, where OAuth pops up.

150 | Chapter 11: Authentication and Authorization

https://oauth.net/2
https://oreil.ly/ehmuf
https://oreil.ly/qAUaM
https://oauth.net/1
https://oauth.net/2.1
https://oreil.ly/5PW2T
https://oreil.ly/kRiWh

User Model
Let’s start with the very minimal user model definitions in Example 11-7. These will
be used in all layers.

Example 11-7. User definition: model/user.py

from pydantic import BaseModel

class User(BaseModel):
 name: str
 hash: str

A User object contains an arbitrary name plus a hash string (the hashed password, not
the original plain-text password), and is what’s saved in the database. We’ll need both
to authenticate a visitor.

User Data Layer
Example 11-8 contains the user database code.

The code creates user (active users) and xuser (deleted users)
tables. Often developers add a Boolean deleted field to a user table
to indicate the user is no longer active, without actually deleting the
record from the table. I prefer moving the deleted user’s data to
another table. This avoids repetitive checking of the deleted field
in all user queries. It can also help speed up queries: making an
index for a low cardinality field like a Boolean does no good.

Example 11-8. Data layer: data/user.py

from model.user import User
from .init import (conn, curs, get_db, IntegrityError)
from error import Missing, Duplicate

curs.execute("""create table if not exists
 user(
 name text primary key,
 hash text)""")
curs.execute("""create table if not exists
 xuser(
 name text primary key,
 hash text)""")

def row_to_model(row: tuple) -> User:
 name, hash = row
 return User(name=name, hash=hash)

Fancier Individual Authentication | 151

def model_to_dict(user: User) -> dict:
 return user.dict()

def get_one(name: str) -> User:
 qry = "select * from user where name=:name"
 params = {"name": name}
 curs.execute(qry, params)
 row = curs.fetchone()
 if row:
 return row_to_model(row)
 else:
 raise Missing(msg=f"User {name} not found")

def get_all() -> list[User]:
 qry = "select * from user"
 curs.execute(qry)
 return [row_to_model(row) for row in curs.fetchall()]

def create(user: User, table:str = "user"):
 """Add <user> to user or xuser table"""
 qry = f"""insert into {table}
 (name, hash)
 values
 (:name, :hash)"""
 params = model_to_dict(user)
 try:
 curs.execute(qry, params)
 except IntegrityError:
 raise Duplicate(msg=
 f"{table}: user {user.name} already exists")

def modify(name: str, user: User) -> User:
 qry = """update user set
 name=:name, hash=:hash
 where name=:name0"""
 params = {
 "name": user.name,
 "hash": user.hash,
 "name0": name}
 curs.execute(qry, params)
 if curs.rowcount == 1:
 return get_one(user.name)
 else:
 raise Missing(msg=f"User {name} not found")

def delete(name: str) -> None:
 """Drop user with <name> from user table, add to xuser table"""
 user = get_one(name)
 qry = "delete from user where name = :name"
 params = {"name": name}
 curs.execute(qry, params)
 if curs.rowcount != 1:

152 | Chapter 11: Authentication and Authorization

 raise Missing(msg=f"User {name} not found")
 create(user, table="xuser")

User Fake Data Layer
The module in Example 11-9 is used in tests that exclude the database but need some
user data.

Example 11-9. Fake layer: fake/user.py

from model.user import User
from error import Missing, Duplicate

(no hashed password checking in this module)
fakes = [
 User(name="kwijobo",
 hash="abc"),
 User(name="ermagerd",
 hash="xyz"),
]

def find(name: str) -> User | None:
 for e in fakes:
 if e.name == name:
 return e
 return None

def check_missing(name: str):
 if not find(name):
 raise Missing(msg=f"Missing user {name}")

def check_duplicate(name: str):
 if find(name):
 raise Duplicate(msg=f"Duplicate user {name}")

def get_all() -> list[User]:
 """Return all users"""
 return fakes

def get_one(name: str) -> User:
 """Return one user"""
 check_missing(name)
 return find(name)

def create(user: User) -> User:
 """Add a user"""
 check_duplicate(user.name)
 return user

def modify(name: str, user: User) -> User:
 """Partially modify a user"""

Fancier Individual Authentication | 153

 check_missing(name)
 return user

def delete(name: str) -> None:
 """Delete a user"""
 check_missing(name)
 return None

User Service Layer
Example 11-10 defines the Service layer for users. A difference from the other Service
layer modules is the addition of OAuth2 and JWT functions. I think it’s cleaner to
have them here than in the Web layer, though a few OAuth2 Web-layer functions are
in the upcoming web/user.py.

The CRUD functions are still pass-throughs for now but could be flavored to taste
with metrics in the future. Notice that, like the creature and explorer services, this
design supports runtime use of either the fake or real Data layers to access user data.

Example 11-10. Service layer: service/user.py

from datetime import timedelta, datetime
import os
from jose import jwt
from model.user import User

if os.getenv("CRYPTID_UNIT_TEST"):
 from fake import user as data
else:
 from data import user as data

--- New auth stuff

from passlib.context import CryptContext

Change SECRET_KEY for production!
SECRET_KEY = "keep-it-secret-keep-it-safe"
ALGORITHM = "HS256"
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")

def verify_password(plain: str, hash: str) -> bool:
 """Hash <plain> and compare with <hash> from the database"""
 return pwd_context.verify(plain, hash)

def get_hash(plain: str) -> str:
 """Return the hash of a <plain> string"""
 return pwd_context.hash(plain)

def get_jwt_username(token:str) -> str | None:
 """Return username from JWT access <token>"""

154 | Chapter 11: Authentication and Authorization

 try:
 payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
 if not (username := payload.get("sub")):
 return None
 except jwt.JWTError:
 return None
 return username

def get_current_user(token: str) -> User | None:
 """Decode an OAuth access <token> and return the User"""
 if not (username := get_jwt_username(token)):
 return None
 if (user := lookup_user(username)):
 return user
 return None

def lookup_user(username: str) -> User | None:
 """Return a matching User from the database for <name>"""
 if (user := data.get(username)):
 return user
 return None

def auth_user(name: str, plain: str) -> User | None:
 """Authenticate user <name> and <plain> password"""
 if not (user := lookup_user(name)):
 return None
 if not verify_password(plain, user.hash):
 return None
 return user

def create_access_token(data: dict,
 expires: timedelta | None = None
):
 """Return a JWT access token"""
 src = data.copy()
 now = datetime.utcnow()
 if not expires:
 expires = timedelta(minutes=15)
 src.update({"exp": now + expires})
 encoded_jwt = jwt.encode(src, SECRET_KEY, algorithm=ALGORITHM)
 return encoded_jwt

--- CRUD passthrough stuff

def get_all() -> list[User]:
 return data.get_all()

def get_one(name) -> User:
 return data.get_one(name)

def create(user: User) -> User:
 return data.create(user)

Fancier Individual Authentication | 155

def modify(name: str, user: User) -> User:
 return data.modify(name, user)

def delete(name: str) -> None:
 return data.delete(name)

User Web Layer
Example 11-11 defines the base user module in the Web layer. It uses the new auth
code from the service/user.py module in Example 11-10.

Example 11-11. Web layer: web/user.py

import os
from fastapi import APIRouter, HTTPException
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from model.user import User
if os.getenv("CRYPTID_UNIT_TEST"):
 from fake import user as service
else:
 from service import user as service
from error import Missing, Duplicate

ACCESS_TOKEN_EXPIRE_MINUTES = 30

router = APIRouter(prefix = "/user")

--- new auth stuff

This dependency makes a post to "/user/token"
(from a form containing a username and password)
and returns an access token.
oauth2_dep = OAuth2PasswordBearer(tokenUrl="token")

def unauthed():
 raise HTTPException(
 status_code=401,
 detail="Incorrect username or password",
 headers={"WWW-Authenticate": "Bearer"},
)

This endpoint is directed to by any call that has the
oauth2_dep() dependency:
@router.post("/token")
async def create_access_token(
 form_data: OAuth2PasswordRequestForm = Depends()
):
 """Get username and password from OAuth form,
 return access token"""
 user = service.auth_user(form_data.username, form_data.password)

156 | Chapter 11: Authentication and Authorization

 if not user:
 unauthed()
 expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
 access_token = service.create_access_token(
 data={"sub": user.username}, expires=expires
)
 return {"access_token": access_token, "token_type": "bearer"}

@app.get("/token")
def get_access_token(token: str = Depends(oauth2_dep)) -> dict:
 """Return the current access token"""
 return {"token": token}

--- previous CRUD stuff

@router.get("/")
def get_all() -> list[User]:
 return service.get_all()

@router.get("/{name}")
def get_one(name) -> User:
 try:
 return service.get_one(name)
 except Missing as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

@router.post("/", status_code=201)
def create(user: User) -> User:
 try:
 return service.create(user)
 except Duplicate as exc:
 raise HTTPException(status_code=409, detail=exc.msg)

@router.patch("/")
def modify(name: str, user: User) -> User:
 try:
 return service.modify(name, user)
 except Missing as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

@router.delete("/{name}")
def delete(name: str) -> None:
 try:
 return service.delete(name)
 except Missing as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

Fancier Individual Authentication | 157

1 If I were paid by the line, fate might have intervened.

Test!
The unit and full tests for this new user component are similar to those that you’ve
already seen for creatures and explorers. Rather than using the ink and paper here,
you can view them at this book’s accompanying website.1

Top Layer
The previous section defined a new router variable for URLs starting with /user, so
Example 11-12 adds this subrouter.

Example 11-12. Top layer: main.py

from fastapi import FastAPI
from web import explorer, creature, user

app = FastAPI()
app.include_router(explorer.router)
app.include_router(creature.router)
app.include_router(user.router)

When Uvicorn autoreloads, the /user/… endpoints should now be available.

That was fun, in a stretched definition of fun. Given all the user code that was just
created, let’s give it something to do.

Authentication Steps
Here’s a review of that heap of code from the previous sections:

• If an endpoint has the dependency oauth2_dep() (in web/user.py), a form con‐
taining username and password fields is generated and sent to the client.

• After the client fills out and submits this form, the username and password
(hashed with the same algorithm as those already stored in the local database) are
matched against the local database.

• If a match occurs, an access token is generated (in JWT format) and returned.
• This access token is passed back to the web server as an Authorization HTTP

header in subsequent requests. This JWT token is decoded on the local server to
the username and other details. This name does not need to be looked up in the
database again.

• The username is authenticated, and the server can do whatever it likes with it.

158 | Chapter 11: Authentication and Authorization

What can the server do with this hard-won authentication information? The server
can do the following:

• Generate metrics (this user, this endpoint, this time) to help study what’s being
viewed, by whom, for how long, and so on.

• Save user-specific information.

JWT
This section contains some details on the JWT. You really don’t need them to use all
the earlier code in this chapter, but if you’re a little curious…

A JWT is an encoding scheme, not an authentication method. The low-level details
are defined in RFC 7519. It can be used to convey authentication information for
OAuth2 (and other methods), and I’ll show that here.

A JWT is a readable string with three dot-separated sections:

• Header: Encryption algorithm used, and token type
• Payload: …
• Signature: …

Each section consists of a JSON string, encoded in Base 64 URL format. Here’s an
example (which has been split at the dots to fit on this page):

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.
SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

As a plain ASCII string that’s also safe to use in URLs, it can be passed to web servers
as part of the URL, a query parameter, HTTP header, cookie, and so on.

JWT avoids a database lookup, but this also means that you can’t detect a revoked
authorization directly.

Third-Party Authentication: OIDC
You’ll often see websites that let you log in with an ID and password, or let you log in
via your account at a different site, like Google, Facebook/Meta, LinkedIn, or many
others. These frequently use a standard called OpenID Connect (OIDC), which is
built atop OAuth2. When you connect to an external OIDC-enabled site, you’ll get
back an OAuth2 access token (as in the examples in this chapter), but also an ID
token.

Fancier Individual Authentication | 159

https://jwt.io
https://oreil.ly/_op1j
https://www.base64url.com
https://openid.net/connect

The official FastAPI docs don’t include example code for integration with OIDC. If
you want to try it, some third-party packages (FastAPI-specific and more generic)
will save time over rolling your own implementation:

• FastAPI OIDC
• fastapi-third-party-auth
• FastAPI Resource Server
• oauthlib
• oic
• OIDC Client
• oidc-op
• OpenID Connect

The FastAPI Repo Issues page includes multiple code examples, and a comment from
tiangelo (Sebastián Ramírez) that FastAPI OIDC examples will be included in the
official docs and tutorials in the future.

Authorization
Authentication handles the who (identity), and authorization handles the what: which
resources (web endpoints) are you allowed to access, and in what way? The number
of combinations of who and what can be large.

In this book, explorers and creatures have been the main resources. Looking up an
explorer, or listing all of them, would typically be more “open” than adding or modi‐
fying an existing one. If the website is supposed to be a reliable interface to some data,
write access should be more limited than read access. Because, grr, people.

If every endpoint is completely open, you don’t need authorization and can skip this
section. The simplest authorization could be a simple Boolean (is this user an admin
or not?); for the examples in this book, you might require admin authorization to
add, delete, or modify an explorer or creature. If your database has lots of entries, you
might also want to limit the get_all() functions with further permissions for non-
admins. As the website gets more complex, the permissions might become more
fine-grained.

Let’s look at a progression of authorization cases. We’ll use the User table, in which
the name can be an email, username, or API key; “pair” tables are the relational data‐
base way of matching entries from two separate tables:

160 | Chapter 11: Authentication and Authorization

https://oreil.ly/TDABr
https://oreil.ly/yGaO6
https://oreil.ly/THByF
https://oreil.ly/J-pDB
https://oreil.ly/AgYKZ
https://oreil.ly/e9QGb
https://oreil.ly/cJCF4
https://oreil.ly/WH49I
https://oreil.ly/ztR3r

• If you want to track only admin visitors and leave the rest anonymous:
— Use an Admin table of authenticated usernames. You’d look up the name from

the Admin table, and if matched, compare the hashed passwords from the User
table.

• If all visitors should be authenticated, but you need to authorize admins for only
some endpoints:
— Authenticate everyone as in the earlier examples (from the User table), and

then check the Admin table to see if this user is also an admin.
• For more than one type of permission (such as read-only, read, write):

— Use a Permission definition table.
— Use a UserPermission table that pairs users and permissions. This is some‐

times called an access control list.
• If permission combinations are complex, add a level and define roles (independ‐

ent sets of permissions):
— Create a Role table.
— Create a UserRole table pairing User and Role entries. This is sometimes

called role-based access control (RBAC).

Middleware
FastAPI enables insertion of code at the Web layer that does the following:

• Intercepts the request
• Does something with the request
• Passes the request to a path function
• Intercepts the response returned by the patch function
• Does something with the response
• Returns the response to the caller

It’s similar to what a Python decorator does to the function that it “wraps.”

In some cases, you could use either middleware or dependency injection with
Depends(). Middleware is handier for more global security issues like CORS, which
brings up…

Middleware | 161

CORS
Cross-origin resource sharing (CORS) involves communication between other trusted
servers and your website. If your site has all the frontend and backend code in one
place, then there’s no problem. But these days, it’s common to have a JavaScript front‐
end talking to a backend written in something like FastAPI. These servers will not
have the same origin:

Protocol
http or https

Domain
Internet domain, like google.com or localhost

Port
Numeric TCP/IP port on that domain, like 80, 443, or 8000

How does the backend know a trustable frontend from a box of moldy radishes, or a
mustache-twirling attacker? That’s a job for CORS, which specifies what the backend
trusts, the most prominent being the following:

• Origins
• HTTP methods
• HTTP headers
• CORS cache timeout

You hook into CORS at the Web level. Example 11-13 shows how to allow only one
frontend server (with the domain https://ui.cryptids.com), and any HTTP headers or
methods.

Example 11-13. Activate the CORS middleware

from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()

app.add_middleware(
 CORSMiddleware,
 allow_origins=["https://ui.cryptids.com",],
 allow_credentials=True,
 allow_methods=["*"],
 allow_headers=["*"],
)

@app.get("/test_cors")

162 | Chapter 11: Authentication and Authorization

def test_cors(request: Request):
 print(request)

Once that’s done, any other domain that tries to contact your backend site directly
will be refused.

Third-Party Packages
You’ve now read examples of how to code authentication and authorization solutions
with FastAPI. But maybe you don’t need to do everything yourself. The FastAPI eco‐
system is growing fast, and packages may be available that do a lot of the work for
you.

Here are some untested examples. There are no guarantees that any package in this
list will still be around and supported over time, but they may be worth a look:

• FastAPI Users
• FastAPI JWT Auth
• FastAPI-Login
• fastapi-auth0
• AuthX
• FastAPI-User-Auth
• fastapi-authz
• fastapi-opa
• FastAPI-key-auth
• FastAPI Auth Middleware
• fastapi-jwt
• fastapi_auth2
• fastapi-sso
• Fief

Review
This was a heavier chapter than most. It showed ways that you can authenticate visi‐
tors and authorize them to do certain things. These are two aspects of web security.
The chapter also discussed CORS, another important web security topic.

Review | 163

https://oreil.ly/ueVfq
https://oreil.ly/ooGSK
https://oreil.ly/oWA3p
https://oreil.ly/fHfkU
https://authx.yezz.me
https://oreil.ly/J57xu
https://oreil.ly/aAGzW
https://oreil.ly/Bvzv3
https://oreil.ly/s-Ui5
https://oreil.ly/jnR-s
https://oreil.ly/RrxUZ
https://oreil.ly/5DXkB
https://oreil.ly/GLTdt
https://www.fief.dev

CHAPTER 12

Testing

A QA engineer walks into a bar. Orders a beer. Orders 0 beers. Orders 99999999999
beers. Orders a lizard. Orders –1 beers. Orders a ueicbksjdhd.
First real customer walks in and asks where the bathroom is. The bar bursts into
flames, killing everyone.

—Brenan Keller, Twitter

Preview
This chapter discusses the kinds of testing that you would perform on a FastAPI site:
unit, integration, and full. It features pytest and automated test development.

Web API Testing
You’ve already seen several manual API testing tools as endpoints have been added:

• HTTPie
• Requests
• HTTPX
• The web browser

And many more testing tools are available:

• Curl is very well known, although in this book I’ve used HTTPie instead for its
simpler syntax.

• Httpbin, written by the author of Requests, is a free test server that provides
many views into your HTTP request.

165

https://curl.se
http://httpbin.org

• Postman is a full API test platform.
• Chrome DevTools is a rich toolset, part of the Chrome browser.

These can all be used for full (end-to-end) tests, such as those you’ve seen in the pre‐
vious chapters. Those manual tests have been useful for quickly verifying code just
after it’s typed.

But what if a change that you make later breaks one of those earlier manual tests (a
regression)? You don’t want to rerun dozens of tests after every code change. That’s
when automated tests become important. The rest of this chapter focuses on these,
and how to build them with pytest.

Where to Test
I’ve mentioned the varieties of tests:

Unit
Within a layer, tests individual functions

Integration
Across layers, tests connectivity

Full
Tests the full API and stack beneath it

Sometimes these are called a test pyramid, with the width indicating the relative num‐
ber of tests that should be in each group (Figure 12-1).

Figure 12-1. Test pyramid

What to Test
What should you test as you’re writing code? Basically, for a given input, confirm that
you get the correct output. You might check the following:

• Missing inputs
• Duplicate inputs
• Incorrect input types

166 | Chapter 12: Testing

https://www.postman.com
https://oreil.ly/eUK_R

• Incorrect input order
• Invalid input values
• Huge inputs or outputs

Errors can happen anywhere:

The Web layer
Pydantic will catch any mismatch with the model and return a 422 HTTP status
code.

The Data layer
The database will raise exceptions for missing or duplicate data, as well as SQL
query syntax errors. Timeouts or memory exhaustion may occur when passing a
huge data result in one piece, instead of in chunks with a generator or pagination.

Any layer
Plain old bugs and oversights can occur.

Chapters 8 through 10 contained some of these tests:

• Full manual tests, using tools like HTTPie
• Unit manual tests, as Python fragments
• Automated tests, using pytest scripts

The next few sections expand on pytest.

Pytest
Python has long had the standard package unittest. A later third-party package called
nose tried to improve on it. Most Python developers now prefer pytest, which does
more than either of these and is easier to use. It isn’t built into Python, so you’ll need
to run pip install pytest if you don’t already have it. Also, run pip install
pytest-mock to get the automatic mocker fixture; you’ll see this later in this chapter.

What does pytest offer? Nice automatic features include the following:

Test discovery
A test prefix or test suffix in a Python filename will be run automatically. This
filename matching goes down into subdirectories, executing as many tests as you
have there.

Assertion failure details
A failing assert statement prints what was expected and what actually happened.

Pytest | 167

https://oreil.ly/3u0M_
https://nose.readthedocs.io
https://docs.pytest.org

Fixtures
These functions can run once for the whole test script, or run for every test (its
scope), providing test functions with parameters like standard test data or data‐
base initialization. Fixtures are a sort of dependency injection, like FastAPI offers
for web path functions: specific data passed to a general test function.

Parameterization
This provides multiple test data to a test function.

Layout
Where should you put your tests? There doesn’t seem to be wide agreement, but here
are two reasonable designs:

• A test directory at the top, with subdirectories for the code area being tested (like
web, service, etc.)

• A test directory under each code directory (like web, service, etc.).

Also, within the specific subdirectory like test/web, should you make more directories
for different test types (like unit, integration, and full)? In this book, I’m using this
hierarchy:

test
├── unit
│ ├── web
│ ├── service
│ └── data
├── integration
└── full

Individual test scripts live within the bottom directories. Those are in this chapter.

Automated Unit Tests
A unit test should check one thing, within one layer. This usually means passing
parameter(s) to a function and asserting what should be returned.

Unit tests require isolation of the code being tested. If not, you’re also testing some‐
thing else. So, how do you isolate code for unit tests?

Mocking
In this book’s code stack, accessing a URL via a web API generally calls a function in
the Web layer, which calls a function in the Service layer, which calls a function in the
Data layer, which accesses a database. The results flow back up the chain, eventually
back out of the Web layer to the caller.

168 | Chapter 12: Testing

Unit testing sounds simple. For each function in your codebase, pass in test argu‐
ments and confirm that it returns expected values. This works well for a pure func‐
tion: one that takes input arguments and returns responses without referencing any
external code. But most functions also call other functions, so how can you control
what those other functions do? What about the data that comes from these external
sources? The most common external factor to control is database access, but really it
can be anything.

One method is to mock each external function call. Because functions are first-class
objects in Python, you can substitute one function for another. The unittest package
has a mock module that does this.

Many developers believe that mocking is the best way to isolate unit tests. I’ll first
show examples of mocking here, along with the argument that often mocking
requires too much knowledge of how your code works, rather than the results. You
may hear the terms structural testing (as in mocks, where the tested code is quite visi‐
ble) and behavioral testing (where the code internals are not needed).

Examples 12-1 and 12-2 define the modules mod1.py and mod2.py.

Example 12-1. Called module (mod1.py)

def preamble() -> str:
 return "The sum is "

Example 12-2. Calling module (mod2.py)

import mod1

def summer(x: int, y:int) -> str:
 return mod1.preamble() + f"{x+y}"

The summer() function calculates the sum of its arguments, and returns a string with
a preamble and the sum. Example 12-3 is a minimal pytest script to verify summer().

Example 12-3. Pytest script test_summer1.py

import mod2

def test_summer():
 assert "The sum is 11" == mod2.summer(5,6)

Example 12-4 runs the test successfully.

Automated Unit Tests | 169

Example 12-4. Run the pytest script

$ pytest -q test_summer1.py
. [100%]
1 passed in 0.04s

(The -q runs the test quietly, without lots of extra printed details.) OK, it passed. But
the summer() function got some text from the preamble function. What if we just
want to test that the addition succeeded?

We could write a new function that just returns the stringified sum of two numbers,
and then rewrite summer() to return this appended to the preamble() string.

Or, we could mock preamble() to remove its effect, as shown in multiple ways in
Example 12-5.

Example 12-5. Pytest with a mock (test_summer2.py)

from unittest import mock
import mod1
import mod2

def test_summer_a():
 with mock.patch("mod1.preamble", return_value=""):
 assert "11" == mod2.summer(5,6)

def test_summer_b():
 with mock.patch("mod1.preamble") as mock_preamble:
 mock_preamble.return_value=""
 assert "11" == mod2.summer(5,6)

@mock.patch("mod1.preamble", return_value="")
def test_summer_c(mock_preamble):
 assert "11" == mod2.summer(5,6)

@mock.patch("mod1.preamble")
def test_caller_d(mock_preamble):
 mock_preamble.return_value = ""
 assert "11" == mod2.summer(5,6)

These tests show that mocks can be created in more than one way. The function
test_caller_a() uses mock.patch() as a Python context manager (the with state‐
ment). Its arguments are listed here:

"mod1.preamble"

The full string name of the preamble() function in module mod1.

return_value=""

Makes this mocked version return an empty string.

170 | Chapter 12: Testing

The test_caller_b() function is almost the same, but adds as mock_preamble to
use the mock object on the next line.

The test_caller_c() function defines the mock with a Python decorator. The
mocked object is passed as an argument to test_caller2().

The test_caller_d() function is like test_caller_b(), setting the return_value in
a separate call to mock_preamble.

In each case, the string name of the thing to be mocked must match the way it’s called
in the code that’s being tested—in this case, summer(). The mock library converts this
string name to a variable that will intercept any references to the original variable
with that name. (Remember that in Python, variables are just references to the real
objects.)

So, when Example 12-6 is run, in all four summer() test functions, when summer(5,6)
is called, the changeling mock preamble() is called instead of the real one. The
mocked version drops that string, so the test can ensure that summer() returns a
string version of the sum of its two arguments.

Example 12-6. Run mocked pytest

$ pytest -q test_summer2.py
.... [100%]
4 passed in 0.13s

That was a contrived case, for simplicity. Mocking can be quite
complex; see articles like “Understanding the Python Mock Object
Library” by Alex Ronquillo for clear examples, and the official
Python docs for the harrowing details.

Test Doubles and Fakes
To perform that mock, you needed to know that the summer() function imported the
function preamble() from the module mod1. This was a structural test, requiring
knowledge of specific variable and module names.

Is there a way to perform a behavioral test that doesn’t need this?

One way is to define a double: separate code that does what we want in the test—in
this case, make preamble() return an empty string. One way to do this is with
imports. Apply this to this example first, before using it for unit tests in the layers of
the next three sections.

First, redefine mod2.py in Example 12-7.

Automated Unit Tests | 171

https://oreil.ly/I0bkd
https://oreil.ly/I0bkd
https://oreil.ly/hN9lZ

Example 12-7. Make mod2.py import a double if unit testing

import os
if os.get_env("UNIT_TEST"):
 import fake_mod1 as mod1
else:
 import mod1

def summer(x: int, y:int) -> str:
 return mod1.preamble() + f"{x+y}"

Example 12-8 defines that double module fake_mod1.py.

Example 12-8. Double fake_mod1.py

def preamble() -> str:
 return ""

And Example 12-9 is the test.

Example 12-9. Test script test_summer_fake.py

import os
os.environ["UNIT_TEST"] = "true"
import mod2

def test_summer_fake():
 assert "11" == mod2.summer(5,6)

….which Example 12-10 runs.

Example 12-10. Run the new unit test

$ pytest -q test_summer_fake.py
. [100%]
1 passed in 0.04s

This import-switching method does require adding a check for an environment vari‐
able, but avoids having to write specific mocks for function calls. You can be the judge
of which you prefer. The next few sections will use the import method, which works
nicely with the fake package that I’d been using as I defined the code layers.

To summarize, these examples replaced preamble() with a mock in a test script or
imported a doppelgänger double. You can isolate the code being tested in other ways,
but these work and are not as tricky as others that Google might find for you.

172 | Chapter 12: Testing

Web
This layer implements the site’s API. Ideally, each path function (endpoint) should
have at least one test—maybe more, if the function could fail in more than one way.
At the Web layer, you typically want to see if the endpoint exists, works with the cor‐
rect parameters, and returns the right status code and data.

These are shallow API tests, testing solely within the Web layer. So,
Service-layer calls (which would in turn call the Data layer and the
database) need to be intercepted, along with any other calls that
exit the Web layer.

Using the import idea of the previous section, use the environment variable CRYP
TID_UNIT_TEST to import the fake package as service, instead of the real service.
This stops Web functions from calling Service functions, and instead short-circuits
them to the fake (doubles) version. Then the lower Data layer and database aren’t
involved, either. We get what we want: unit tests. Example 12-11 has the modified
web/creature.py file.

Example 12-11. Modified web/creature.py

import os
from fastapi import APIRouter, HTTPException
from model.creature import Creature
if os.getenv("CRYPTID_UNIT_TEST"):
 from fake import creature as service
else:
 from service import creature as service
from error import Missing, Duplicate

router = APIRouter(prefix = "/creature")

@router.get("/")
def get_all() -> list[Creature]:
 return service.get_all()

@router.get("/{name}")
def get_one(name) -> Creature:
 try:
 return service.get_one(name)
 except Missing as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

@router.post("/", status_code=201)
def create(creature: Creature) -> Creature:
 try:
 return service.create(creature)

Automated Unit Tests | 173

 except Duplicate as exc:
 raise HTTPException(status_code=409, detail=exc.msg)

@router.patch("/")
def modify(name: str, creature: Creature) -> Creature:
 try:
 return service.modify(name, creature)
 except Missing as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

@router.delete("/{name}")
def delete(name: str) -> None:
 try:
 return service.delete(name)
 except Missing as exc:
 raise HTTPException(status_code=404, detail=exc.msg)

Example 12-12 has tests, using two pytest fixtures:

sample()

A new Creature object

fakes()

A list of “existing” creatures

The fakes are obtained from a lower-level module. By setting the environment vari‐
able CRYPTID_UNIT_TEST, the Web module from Example 12-11 imports the fake ser‐
vice version (providing fake data rather than calling the database) instead of the real
one. This isolates the tests, which is the point.

Example 12-12. Web unit tests for creatures, using fixtures

from fastapi import HTTPException
import pytest
import os
os.environ["CRYPTID_UNIT_TEST"] = "true"
from model.creature import Creature
from web import creature

@pytest.fixture
def sample() -> Creature:
 return Creature(name="dragon",
 description="Wings! Fire! Aieee!",
 country="*")

@pytest.fixture
def fakes() -> list[Creature]:
 return creature.get_all()

174 | Chapter 12: Testing

def assert_duplicate(exc):
 assert exc.value.status_code == 404
 assert "Duplicate" in exc.value.msg

def assert_missing(exc):
 assert exc.value.status_code == 404
 assert "Missing" in exc.value.msg

def test_create(sample):
 assert creature.create(sample) == sample

def test_create_duplicate(fakes):
 with pytest.raises(HTTPException) as exc:
 _ = creature.create(fakes[0])
 assert_duplicate(exc)

def test_get_one(fakes):
 assert creature.get_one(fakes[0].name) == fakes[0]

def test_get_one_missing():
 with pytest.raises(HTTPException) as exc:
 _ = creature.get_one("bobcat")
 assert_missing(exc)

def test_modify(fakes):
 assert creature.modify(fakes[0].name, fakes[0]) == fakes[0]

def test_modify_missing(sample):
 with pytest.raises(HTTPException) as exc:
 _ = creature.modify(sample.name, sample)
 assert_missing(exc)

def test_delete(fakes):
 assert creature.delete(fakes[0].name) is None

def test_delete_missing(sample):
 with pytest.raises(HTTPException) as exc:
 _ = creature.delete("emu")
 assert_missing(exc)

Service
In a way, the Service layer is the important one and could be connected to different
Web and Data layers. Example 12-13 is similar to Example 12-11, differing mainly in
the import and use of the lower-level data module. It also doesn’t catch any excep‐
tions that might arise from the Data layer, leaving them to be handled by the Web
layer.

Automated Unit Tests | 175

Example 12-13. Modified service/creature.py

import os
from model.creature import Creature
if os.getenv("CRYPTID_UNIT_TEST"):
 from fake import creature as data
else:
 from data import creature as data

def get_all() -> list[Creature]:
 return data.get_all()

def get_one(name) -> Creature:
 return data.get_one(name)

def create(creature: Creature) -> Creature:
 return data.create(creature)

def modify(name: str, creature: Creature) -> Creature:
 return data.modify(name, creature)

def delete(name: str) -> None:
 return data.delete(name)

Example 12-14 has the corresponding unit tests.

Example 12-14. Service tests in test/unit/service/test_creature.py

import os
os.environ["CRYPTID_UNIT_TEST"]= "true"
import pytest

from model.creature import Creature
from error import Missing, Duplicate
from data import creature as data

@pytest.fixture
def sample() -> Creature:
 return Creature(name="yeti",
 aka:"Abominable Snowman",
 country="CN",
 area="Himalayas",
 description="Handsome Himalayan")

def test_create(sample):
 resp = data.create(sample)
 assert resp == sample

def test_create_duplicate(sample):
 resp = data.create(sample)
 assert resp == sample

176 | Chapter 12: Testing

 with pytest.raises(Duplicate):
 resp = data.create(sample)

def test_get_exists(sample):
 resp = data.create(sample)
 assert resp == sample
 resp = data.get_one(sample.name)
 assert resp == sample

def test_get_missing():
 with pytest.raises(Missing):
 _ = data.get_one("boxturtle")

def test_modify(sample):
 sample.country = "CA" # Canada!
 resp = data.modify(sample.name, sample)
 assert resp == sample

def test_modify_missing():
 bob: Creature = Creature(name="bob", country="US", area="*",
 description="some guy", aka="??")
 with pytest.raises(Missing):
 _ = data.modify(bob.name, bob)

Data
The Data layer is simpler to test in isolation, because there’s no worry about acciden‐
tally calling a function in an even lower layer. Unit tests should cover both the func‐
tions in this layer and the specific database queries that they use. So far, SQLite has
been the database “server” and SQL the query language. But as I mention in Chap‐
ter 14, you may decide to work with a package like SQLAlchemy, and use its SQL‐
Alchemy Expression Language or its ORM. Then these would need full tests. So far,
I’ve kept to the lowest level: Python’s DB-API and vanilla SQL queries.

Unlike the Web and Service unit tests, this time we don’t need “fake” modules to
replace the existing Data layer modules. Instead, set a different environment variable
to get the Data layer to use a memory-only SQLite instance instead of a file-based
one. This doesn’t require any changes to the existing Data modules, just a setting in
Example 12-15’s test before importing any Data modules.

Example 12-15. Data unit tests test/unit/data/test_creature.py

import os
import pytest
from model.creature import Creature
from error import Missing, Duplicate

set this before data import below
os.environ["CRYPTID_SQLITE_DB"] = ":memory:"

Automated Unit Tests | 177

from data import creature

@pytest.fixture
def sample() -> Creature:
 return Creature(name="yeti",
 aka="Abominable Snowman",
 country="CN",
 area="Himalayas",
 description="Hapless Himalayan")

def test_create(sample):
 resp = creature.create(sample)
 assert resp == sample

def test_create_duplicate(sample):
 with pytest.raises(Duplicate):
 _ = creature.create(sample)

def test_get_one(sample):
 resp = creature.get_one(sample.name)
 assert resp == sample

def test_get_one_missing():
 with pytest.raises(Missing):
 resp = creature.get_one("boxturtle")

def test_modify(sample):
 creature.country = "JP" # Japan!
 resp = creature.modify(sample.name, sample)
 assert resp == sample

def test_modify_missing():
 thing: Creature = Creature(name="snurfle",
 description="some thing", country="somewhere")
 with pytest.raises(Missing):
 _ = creature.modify(thing.name, thing)

def test_delete(sample):
 resp = creature.delete(sample.name)
 assert resp is None

def test_delete_missing(sample):
 with pytest.raises(Missing):
 _ = creature.delete(sample.name)

Automated Integration Tests
Integration tests show how well different code interacts between layers. But if you
look for examples of this, you get many different answers. Should you test partial call
trails like Web → Service, Web → Data, and so on?

178 | Chapter 12: Testing

To fully test every connection in an A → B → C pipeline, you’d need to test the
following:

• A → B
• B → C
• A → C

And the arrows would fill a quiver if you have more than these three junctions.

Or should integration tests be essentially full tests, but with the very end piece—data
storage on disk—mocked?

So far, you’ve been using SQLite as the database, and you can use in-memory SQLite
as a double (fake) for the on-disk SQLite database. If your queries are very standard
SQL, SQLite-in-memory may be an adequate mock for other databases as well. If not,
these modules are tailored to mock specific databases:

PostgreSQL
pgmock

MongoDB
Mongomock

Many
Pytest Mock Resources spins up various test databases in Docker containers, and
is integrated with pytest.

Finally, you could just fire up a test database of the same kind as production. An envi‐
ronment variable could contain the specifics, much like the unit test/fake trick you’ve
been using.

The Repository Pattern
Although I did not implement it for this book, the Repository pattern is an interest‐
ing approach. A repository is a simple intermediate in-memory data store—like the
fake Data layer that you’ve seen here so far. This then talks to pluggable backends for
real databases. It’s accompanied by a Unit of Work pattern, which ensures that a group
of operations in a single session is either committed or rolled back as a whole.

So far, the database queries in this book have been atomic. For real-world database
work, you may need multistep queries, and some kind of session handling. The
Repository pattern also dovetails with dependency injection, which you’ve seen else‐
where in this book and probably appreciate a little by now.

The Repository Pattern | 179

https://pgmock.readthedocs.io
https://github.com/mongomock/mongomock
https://pytest-mock-resources.readthedocs.io
https://oreil.ly/3JMKH
https://oreil.ly/jHGV8
https://oreil.ly/0f0Q3

Automated Full Tests
Full tests exercise all the layers together, as close to production use as possible. Most
of the tests that you’ve already seen in this book have been full: call the Web endpoint,
run through Servicetown to downtown Dataville, and return with groceries. These
are closed tests. Everything is live, and you don’t care how it does it, just that it does
it.

You can fully test each endpoint in the overall API in two ways:

Over HTTP/HTTPS
Write individual Python test clients that access the server. Many examples in this
book have done this, with standalone clients like HTTPie, or in scripts using
Requests.

Using TestClient
Use this built-in FastAPI/Starlette object to access the server directly, without an
overt TCP connection.

But these approaches require writing one or more tests for each endpoint. This can
become medieval, and we’re a few centuries past medieval now. A more recent
approach is based on property-based testing. This takes advantage of FastAPI’s auto‐
generated documentation. An OpenAPI schema called openapi.json is created by
FastAPI every time you change a path function or path decorator in the Web layer.
This schema details everything about every endpoint: arguments, return values, and
so on. That’s what OpenAPI is for, as described here by the OpenAPI Initiative’s FAQ
page:

The OAS defines a standard, programming language-agnostic interface description for
REST APIs, which allows both humans and computers to discover and understand the
capabilities of a service without requiring access to source code, additional documenta‐
tion, or inspection of network traffic.

—OAS (OpenAPI Specification)

Two packages are needed:

Hypothesis
pip install hypothesis

Schemathesis
pip install schemathesis

Hypothesis is the base library, and Schemathesis applies it to the OpenAPI 3.0 schema
that FastAPI generates. Running Schemathesis reads this schema, generates gobs of
tests with varying data (that you don’t need to come up with!), and works with pytest.

180 | Chapter 12: Testing

https://www.openapis.org/faq
https://www.openapis.org/faq
https://hypothesis.works
https://schemathesis.readthedocs.io

To keep this brief, Example 12-16 first slims main.py down to its base creature and
explorer endpoints.

Example 12-16. Bare-bones main.py

from fastapi import FastAPI
from web import explorer, creature

app = FastAPI()
app.include_router(explorer.router)
app.include_router(creature.router)

Example 12-17 runs the tests.

Example 12-17. Run Schemathesis tests

$ schemathesis http://localhost:8000/openapi.json
===================== Schemathesis test session starts =====================
Schema location: http://localhost:8000/openapi.json
Base URL: http://localhost:8000/
Specification version: Open API 3.0.2
Workers: 1
Collected API operations: 12

GET /explorer/ . [8%]
POST /explorer/ . [16%]
PATCH /explorer/ F [25%]
GET /explorer . [33%]
POST /explorer . [41%]
GET /explorer/{name} . [50%]
DELETE /explorer/{name} . [58%]
GET /creature/ . [66%]
POST /creature/ . [75%]
PATCH /creature/ F [83%]
GET /creature/{name} . [91%]
DELETE /creature/{name} . [100%]

I got two F’s, both in PATCH calls (modify() functions). How mortifying.

This output section is followed by one marked FAILURES, with detailed stack traces of
any tests that failed. Those need to be fixed. The final section is marked SUMMARY:

Performed checks:
 not_a_server_error 717 / 727 passed FAILED

Hint: You can visualize test results in Schemathesis.io
by using `--report` in your CLI command.

That was fast, and multiple tests were not needed for each endpoint, imagining inputs
that might break them. Property-based testing reads the types and constraints of the

Automated Full Tests | 181

input arguments from the API schema, and generates a range of values to shoot at
each endpoint.

This is yet another unexpected benefit of type hints, which at first seemed to be just
nice things:

type hints → OpenAPI schema → generated documentation and tests

Security Testing
Security isn’t one thing, but everything. You need to defend against malice but also
against plain old mistakes, and even events that you have no control over. Let’s defer
scaling issues to the next section and deal mainly here with the analysis of potential
threats.

Chapter 11 discussed authentication and authorization. These factors are always
messy and error-prone. It’s tempting to use clever methods to counteract clever
attacks, and it’s always a challenge to design protection that’s easy to understand and
implement.

But now that you know about Schemathesis, read its documentation on property-
based testing for authentication. Just as it vastly simplified testing most of the API, it
can automate much of the tests for endpoints that need authentication.

Load Testing
Load tests show how your application handles heavy traffic:

• API calls
• Database reads or writes
• Memory use
• Disk use
• Network latency and bandwidth

Some can be full tests that simulate an army of users clamoring to use your service;
you want to be ready before that day arrives. The content in this section overlaps with
that in “Performance” on page 188 and “Troubleshooting” on page 190.

Many good load testers out are there, but here I’ll recommend Locust. With Locust,
you define all your tests with plain Python scripts. It can simulate hundreds of thou‐
sands of users, all pounding away at your site, or even multiple servers, at once.

182 | Chapter 12: Testing

https://oreil.ly/v_O-Q
https://locust.io

Install it locally with pip install locust. Your first test may be how many concur‐
rent visitors your site can handle. This is like testing how much extreme weather a
building can withstand when faced with a hurricane/earthquake/blizzard or other
home insurance event. So, you need some website structural tests. Follow the Locust
docs for all the details.

But, as they say on TV, there’s more! Recently, Grasshopper extended Locust to do
things like measuring time across multiple HTTP calls. To try this extension out,
install with pip install locust-grasshopper.

Review
This chapter fleshed out the types of testing, with examples of pytest performing
automated code testing at the unit, integration, and full levels. API tests can be auto‐
mated with Schemathesis. This chapter also discussed how to expose security and
performance problems before they strike.

Review | 183

https://docs.locust.io
https://github.com/alteryx/locust-grasshopper

CHAPTER 13

Production

If builders built buildings the way programmers wrote programs, the first woodpecker
that came along would destroy civilization.

—Gerald Weinberg, computer scientist

Preview
You have an application running on your local machine, and now you’d like to share
it. This chapter presents many scenarios on how to move your application to produc‐
tion, and keep it running correctly and efficiently. Because some of the details can be
very detailed, in some cases I’ll refer to helpful external documents rather than stuff‐
ing them in here.

Deployment
All the code examples in this book so far have used a single instance of uvicorn run‐
ning on localhost, port 8000. To handle lots of traffic, you want multiple servers,
running on the multiple cores that modern hardware provides. You’ll also need some‐
thing above these servers to do the following:

• Keep them running (a supervisor)
• Gather and feed external requests (a reverse proxy)
• Return responses
• Provide HTTPS termination (SSL decryption)

185

Multiple Workers
You’ve probably seen another Python server called Gunicorn. This can supervise
multiple workers, but it’s a WSGI server, and FastAPI is based on ASGI. Luckily,
there’s a special Uvicorn worker class that can be managed by Gunicorn.

Example 13-1 sets up these Uvicorn workers on localhost, port 8000 (this is adapted
from the official documentation). The quotes protect the shell from any special inter‐
pretation.

Example 13-1. Use Gunicorn with Uvicorn workers

$ pip install "uvicorn[standard]" gunicorn
$ gunicorn main:app --workers 4 --worker-class \
uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000

You’ll see many lines as Gunicorn does your bidding. It will start a top-level Gunicorn
process, talking to four Uvicorn worker subprocesses, all sharing port 8000 on local
host (0.0.0.0). Change the host, port, or number of workers if you want something
else. The main:app refers to main.py and the FastAPI object with the variable name
app. The Gunicorn docs claim the following:

Gunicorn should only need 4-12 worker processes to handle hundreds or thousands of
requests per second.

It turns out that Uvicorn itself can also fire up multiple Uvicorn workers, as in
Example 13-2.

Example 13-2. Use Uvicorn with Uvicorn workers

$ uvicorn main:app --host 0.0.0.0 --port 8000 --workers 4

But this method doesn’t do process management, so the gunicorn method is usually
preferred. Other process managers exist for Uvicorn: see its official docs.

This handles three of the four jobs mentioned in the previous section, but not HTTPS
encryption.

186 | Chapter 13: Production

https://gunicorn.org
https://oreil.ly/Svdhx
https://oreil.ly/TxYIy
https://www.uvicorn.org/deployment

HTTPS
The official FastAPI HTTPS docs, like all of the official FastAPI docs, are extremely
informative. I recommend reading them, followed by Ramírez’s description of how to
add HTTPS support to FastAPI by using Traefik. Traefik sits “above” your web
servers, similar to nginx as a reverse proxy and load balancer, but it includes that
HTTPS magic.

Although the process has many steps, it’s still much simpler than it used to be. In par‐
ticular, you used to regularly pay big bucks to a certificate authority for a digital cer‐
tificate that you could use to provide HTTPS for your site. Luckily, those authorities
have been largely replaced by the free service Let’s Encrypt.

Docker
When Docker burst on the scene (in a five-minute lightning talk by Solomon Hykes
of dotCloud at PyCon 2013), it was the first time most of us had ever heard of Linux
containers. Over time, we learned that Docker was faster and lighter than virtual
machines. Instead of emulating a full operating system, each container shared the
server’s Linux kernel, and isolated processes and networks into their own namespa‐
ces. Suddenly, by using the free Docker software, you could host multiple independ‐
ent services on a single machine, without worrying about them stepping all over one
another.

Ten years later, Docker is universally recognized and supported. If you want to host
your FastAPI application on a cloud service, you’ll usually need to create a Docker
image of it first. The official FastAPI docs include a thorough description of how to
build a Dockerized version of your FastAPI application. One step is to write a Docker‐
file: a text file containing Docker configuration info, like what application code to use
and what processes to run. Just to prove that this isn’t brain surgery during a rocket
launch, here’s the Dockerfile from that page:

FROM python:3.9
WORKDIR /code
COPY ./requirements.txt /code/requirements.txt
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
COPY ./app /code/app
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]

I recommend reading the official docs, or other links that a Google search of fastapi
docker will produce, such as “The Ultimate FastAPI Tutorial Part 13—Using Docker
to Deploy Your App” by Christopher Samiullah.

Deployment | 187

https://oreil.ly/HYRW7
https://oreil.ly/zcUWS
https://traefik.io
https://letsencrypt.org
https://oreil.ly/25oef
https://oreil.ly/QnwOW
https://oreil.ly/7TUpR
https://oreil.ly/7TUpR

1 Wait, those keep cigars fresh.

Cloud Services
Many sources of paid or free hosting are available on the Net. Some walk-throughs on
how to host FastAPI with them include the following:

• “FastAPI—Deployment” by Tutorials Point
• “The Ultimate FastAPI Tutorial Part 6b—Basic Deployment on Linode” by

Christopher Samiullah
• “How to Deploy a FastAPI App on Heroku for Free” by Shinichi Okada

Kubernetes
Kubernetes grew from internal Google code for managing internal systems that were
becoming ever more godawfully complex. System administrators (as they were called
then) used to manually configure tools like load balancers, reverse proxies, humidors1

and so on. Kubernetes aimed to take much of this knowledge and automate it: don’t
tell me how to handle this; tell me what you want. This included tasks like keeping a
service running, or firing up more servers if traffic spikes.

There are many descriptions of how to deploy FastAPI on Kubernetes, including
“Deploying a FastAPI Application on Kubernetes” by Sumanta Mukhopadhyay.

Performance
FastAPI’s performance is currently among the highest of any Python web framework,
even comparable to frameworks in faster languages like Go. But much of this is due
to ASGI, avoiding I/O waiting with async. Python itself is a relatively slow language.
The following are some tips and tricks to improve overall performance.

Async
Often a web server doesn’t need to be really fast. It spends much of its time getting
HTTP network requests and returning results (the Web layer in this book). In
between, a web service performs business logic (the Service layer) and accesses data
sources (the Data layer), and again spends much of its time on network I/O.

Whenever code in the web service has to wait for a response, it’s a good candidate to
use an async function (async def rather than def). This lets FastAPI and Starlette
schedule the async function and do other things while waiting for it to get its
response. This is one of the reasons FastAPI’s benchmarks are better than WSGI-
based frameworks like Flask and Django.

188 | Chapter 13: Production

https://oreil.ly/DBZcm
https://oreil.ly/s8iar
https://oreil.ly/s8iar
https://oreil.ly/A6gij
https://oreil.ly/ktTNu
https://oreil.ly/mxabf

Performance has two aspects:

• The time to handle a single request
• The number of requests that can be handled at once

Caches
If you have a web endpoint that ultimately gets data from a static source (like a data‐
base record that changes rarely or never), it’s possible to cache the data in a function.
This could be in any of the layers. Python provides the standard functools module
and the functions cache() and lru_cache().

Databases, Files, and Memory
One of the most common causes of a slow website is a missing index for a database
table of sufficient size. Often you won’t see the problem until your table has grown to
a particular size, and then queries suddenly become much slower. In SQL, any col‐
umn in a WHERE clause should be indexed.

In many examples in this book, the primary key of the creature and explorer tables
has been the text field name. When the tables were created, name was declared the
primary key. For the tiny tables that you’ve seen so far in this book, SQLite would
ignore that key anyhow, since it’s faster just to scan the table. But once a table gets to a
decent size—say a million rows—a missing index will make a noticeable difference.
The solution: run a query optimizer.

Even if you have a small table, you can do database load testing with Python scripts or
open source tools. If you’re making numerous sequential database queries, it may be
possible to combine them in a single batch. If you’re uploading or downloading a
large file, use the streaming versions rather than a giant gulp.

Queues
If you’re performing any task that takes longer than a fraction of a second (like send‐
ing a confirmation email or downsizing an image), it may be worth handing it off to a
job queue like Celery.

Performance | 189

https://oreil.ly/8Kg4V
https://oreil.ly/YPR3Q
https://docs.celeryq.dev

Python Itself
If your web service seems slow because it does significant computing with Python,
you may want a “faster Python.” Alternatives include the following:

• Use PyPy instead of the standard CPython.
• Write a Python extension in C, C++, or Rust.
• Convert the slow Python code to Cython (used by Pydantic and Uvicorn

themselves).

A very intriguing recent announcement was the Mojo language. It aims to be a com‐
plete superset of Python, with new features (using the same friendly Python syntax)
that can speed up a Python example by thousands of times. The main author, Chris
Lattner, had previously worked on compiler tools like LLVM, Clang, and MLIR, plus
the Swift language at Apple.

Mojo aims to be a single-language solution to AI development, which now (in
PyTorch and TensorFlow) requires Python/C/C++ sandwiches that are hard to
develop, manage, and debug. But Mojo also would be a good general-purpose lan‐
guage aside from AI.

I coded in C for years and kept waiting for a successor that was as performant but as
easy to use as Python. D, Go, Julia, Zig, and Rust were possibilities, but if Mojo can
live up to its goals, I would use Mojo extensively.

Troubleshooting
Look bottom-up from the time and place where you encounter a problem. This
includes time and space performance issues, but also logic and async traps.

Kinds of Problems
At a first glance, what HTTP response code did you get?

404

An authentication or authorization error.

422

Usually a Pydantic complaint about use of a model.

500

The failure of a service behind your FastAPI one.

190 | Chapter 13: Production

https://www.pypy.org
https://oreil.ly/BElJa
https://cython.org
https://oreil.ly/C96kx
https://llvm.org
https://clang.llvm.org
https://mlir.llvm.org
https://www.swift.org
https://oreil.ly/EojvA

Logging
Uvicorn and other web servers typically write logs to stdout. You can check the log to
see what call was actually made, including the HTTP verb and URL, but not data in
the body, headers, or cookies.

If a particular endpoint returns a 400-level status code, you can try feeding the same
input back and see if the error reoccurs. If so, my first caveman debugging instinct is
to add print() statements in the relevant Web, Service, and Data functions.

Also, wherever you raise an exception, add details. If a database lookup fails, include
the input values and specific error, like an attempt to double a unique key field.

Metrics
The terms metrics, monitoring, observability, and telemetry may seem to overlap. It’s
common practice in Pythonland to use the following:

• Prometheus to gather metrics
• Grafana to display them
• OpenTelemetry to measure timing

You can apply these to all your site’s layers: Web, Service, and Data. The Service ones
may be more business-oriented, and the others more technical, and useful for site
developers and maintainers.

Here are some links to gather FastAPI metrics:

• Prometheus FastAPI Instrumentator
• “Getting Started: Monitoring a FastAPI App with Grafana and Prometheus—A

Step-by-Step Guide” by Zoo Codes
• “FastAPI Observability” page of Grafana Labs website
• OpenTelemetry FastAPI Instrumentation
• “OpenTelemetry FastAPI Tutorial—Complete Implementation Guide” by Ankit

Anand
• OpenTelemetry Python documentation

Review
It’s pretty clear that production is not easy. Problems include the web machinery
itself, network and disk overloading, and database problems. This chapter offered
hints on how to get the information you need, and where to start digging when prob‐
lems pop up.

Review | 191

https://prometheus.io
https://grafana.com
https://opentelemetry.io
https://oreil.ly/EYJwR
https://oreil.ly/Gs90t
https://oreil.ly/Gs90t
https://oreil.ly/spKwe
https://oreil.ly/wDSNv
https://oreil.ly/ZpSXs
https://oreil.ly/ZpSXs
https://oreil.ly/nSD4G

PART IV

A Gallery

In Part III, you built a minimal website with some basic code. Now let’s do something
fun with it. The following chapters apply FastAPI to common web uses: forms, files,
databases, charts and graphics, maps, and games.

To tie these applications together and make them more interesting than the usual dry
computing book examples, we’ll plunder data from an unusual source, some of which
you’ve already glimpsed: imaginary creatures from world folklore and the explorers
who pursue them. There will be yetis, but also more obscure—though no less
striking—members.

CHAPTER 14

Databases, Data Science, and a Little AI

Preview
This chapter discusses how to use FastAPI to store and retrieve data. It expands on
the simple SQLite examples of Chapter 10 with the following:

• Other open source databases (relational and not)
• Higher-level uses of SQLAlchemy
• Better error checking

Data Storage Alternatives
The term database is unfortunately used to refer to three things:

• The server type, like PostgreSQL, SQLite, or MySQL
• A running instance of that server
• A collection of tables on that server

To avoid confusion—referring to an instance of the last bulleted
item above as a “PostgreSQL database database database”—I’ll
attach other terms to indicate which one I mean.

The usual backend for a website is a database. Websites and databases are like peanut
butter and jelly, and although you could conceivably store your data in other ways (or
pair peanut butter with pickles), for this book we’ll stick with databases.

195

Databases handle many problems that you would otherwise have to solve yourself
with code, such as these:

• Multiple access
• Indexing
• Data consistency

The general choices for databases are as follows:

• Relational databases, with the SQL query language
• Nonrelational databases, with various query languages

Relational Databases and SQL
Python has a standard relational API definition called DB-API, and it’s supported by
Python driver packages for all the major databases. Table 14-1 lists some prominent
relational databases and their main Python driver packages.

Table 14-1. Relational databases and Python drivers

Database Python drivers
Open source

SQLite sqlite3

PostgreSQL psycopg2 and asyncpg

MySQL MySQLdb and PyMySQL

Commercial

Oracle python-oracledb

SQL Server pyodbc and pymssql

IBM Db2 ibm_db

The main Python packages for relational databases and SQL are as follows:

SQLAlchemy
A full-featured library that can be used at many levels

SQLModel
A combination of SQLAlchemy and Pydantic, by the author of FastAPI

Records
From the author of the Requests package, a simple query API

196 | Chapter 14: Databases, Data Science, and a Little AI

https://oreil.ly/StbE4
https://www.sqlite.org
https://oreil.ly/TNNaA
https://www.postgresql.org
https://oreil.ly/nLn5x
https://oreil.ly/90pvK
https://www.mysql.com
https://oreil.ly/yn1fn
https://oreil.ly/Cmup-
https://www.oracle.com
https://oreil.ly/gynvX
https://www.microsoft.com/en-us/sql-server
https://oreil.ly/_UEYq
https://oreil.ly/FkKUn
https://www.ibm.com/products/db2
https://oreil.ly/3uwpD
https://www.sqlalchemy.org
https://sqlmodel.tiangolo.com
https://github.com/kennethreitz/records

SQLAlchemy
The most popular Python SQL package is SQLAlchemy. Although many explanations
of SQLAlchemy discuss only its ORM, it has multiple layers, and I’ll discuss these
bottom-up.

Core
The base of SQLAlchemy, called Core, comprises the following:

• An Engine object that implements the DB-API standard
• URLs that express the SQL server type and driver, and the specific database col‐

lection on that server
• Client-server connection pools
• Transactions (COMMIT and ROLLBACK)
• SQL dialect differences among various database types
• Direct SQL (text string) queries
• Queries in the SQLAlchemy Expression Language

Some of these features, like the dialect handling, make SQLAlchemy the package of
choice for working with various server types. You can use it to execute plain DB-API
SQL statements or use the SQLAlchemy Expression Language.

I’ve been using the raw DB-API SQLite driver so far and will continue. But for larger
sites or those that might need to take advantage of a special server feature, SQL‐
Alchemy (using basic DB-API, SQLAlchemy Expression Language, or the full ORM)
is well worth using.

SQLAlchemy Expression Language
The SQLAlchemy Expression Language is not the ORM, but another way of express‐
ing queries against relational tables. It maps the underlying storage structures to
Python classes like Table and Column, and operations to Python methods like
select() and insert(). These functions translate to plain SQL strings, and you can
access them to see what happened. The language is independent of SQL server types.
If you find SQL difficult, this may be worth trying.

Let’s compare a few examples. Example 14-1 shows the plain SQL version.

Example 14-1. Straight SQL code for get_one() in data/explorer.py

def get_one(name: str) -> Explorer:
 qry = "select * from explorer where name=:name"
 params = {"name": name}

Relational Databases and SQL | 197

 curs.execute(qry, params)
 return row_to_model(curs.fetchone())

Example 14-2 shows a partial SQLAlchemy Expression Language equivalent to set up
the database, build the table, and perform the insertion.

Example 14-2. SQLAlchemy Expression Language for get_one()

from sqlalchemy import Metadata, Table, Column, Text
from sqlalchemy import connect, insert

conn = connect("sqlite:///cryptid.db")
meta = Metadata()
explorer_table = Table(
 "explorer",
 meta,
 Column("name", Text, primary_key=True),
 Column("country", Text),
 Column("description", Text),
)
insert(explorer_table).values(
 name="Beau Buffette",
 country="US",
 description="...")

For more examples, some alternative documentation is a bit more readable than the
official pages.

ORM
An ORM expresses queries in terms of domain data models, not the relational tables
and SQL logic at the base of the database machinery. The official documentation goes
into all the details. The ORM is much more complex than the SQL expression lan‐
guage. Developers who prefer fully object-oriented patterns usually prefer ORMs.

Many books and articles on FastAPI jump right into SQLAlchemy’s ORM when they
come to the database section. I understand the appeal but also know that it requires
you to learn another abstraction. SQLAlchemy is an excellent package, but if its
abstractions don’t always hold, then you have two problems. The simplest solution
may be to just use SQL, and move to the Expression Language or ORM if the SQL
gets too hairy.

SQLModel
The author of FastAPI combined aspects of FastAPI, Pydantic, and SQLAlchemy to
make SQLModel. It repurposes some development techniques from the web world to
relational databases. SQLModel matches SQLAlchemy’s ORM with Pydantic’s data
definition and validation.

198 | Chapter 14: Databases, Data Science, and a Little AI

https://oreil.ly/ZGCHv
https://oreil.ly/x4DCi
https://sqlmodel.tiangolo.com

SQLite
I introduced SQLite in Chapter 10, using it for the Data layer examples. It’s public
domain—you can’t get more open sourcey than that. SQLite is used in every browser
and every smartphone, making it one of the most widely deployed software packages
in the world. It’s often overlooked when choosing a relational database, but it’s possi‐
ble that multiple SQLite “servers” could support some large services as well as a beefy
server like PostgreSQL.

PostgreSQL
In the early days of relational databases, IBM’s System R was the pioneer, and off‐
shoots battled for the new market—mainly open source Ingres versus commercial
Oracle. Ingres featured a query language named QUEL, and System R had SQL.
Although QUEL was considered better than SQL by some, Oracle’s adoption of SQL
as a standard, plus IBM’s influence, helped push Oracle and SQL to success.

Years later, Michael Stonebraker returned to migrate Ingres to PostgreSQL. Nowa‐
days, open source developers tend to choose PostgreSQL, although MySQL was pop‐
ular a few years ago and is still around.

EdgeDB
Despite the success of SQL over the years, it does have some design flaws that make
queries awkward. Unlike the mathematical theory that SQL is based on (relational cal‐
culus by E. F. Codd), the SQL language design itself is not composable. Mainly, this
means that it’s hard to nest queries within larger ones, leading to more complex and
verbose code.

So, just for fun, I’m throwing in a new relational database here. EdgeDB was written
(in Python!) by the author of Python’s asyncio. It’s described as Post-SQL or graph-
relational. Under the hood, it uses PostgreSQL to handle the tough system stuff.
Edge’s contribution is EdgeQL: a new query language that aims to avoid those sharp
SQL edges; it’s actually translated to SQL for PostgreSQL to execute. “My Experience
with EdgeDB” by Ivan Daniluk handily compares EdgeQL and SQL. The readable
illustrated official documentation parallels the book Dracula.

Could EdgeQL spread beyond EdgeDB and become an alternative to SQL? Time will
tell.

Relational Databases and SQL | 199

https://www.postgresql.org
https://www.edgedb.com
https://oreil.ly/sdK4J
https://oreil.ly/ciNfg
https://oreil.ly/ciNfg
https://oreil.ly/ce6y3

Nonrelational (NoSQL) Databases
Biggies in the open source NoSQL or NewSQL world are listed in Table 14-2.

Table 14-2. NoSQL databases and Python drivers

Database Python drivers
Redis redis-py

MongoDB PyMongo, Motor

Apache Cassandra DataStax Driver for Apache Cassandra

Elasticsearch Python Elasticsearch Client

Sometimes NoSQL means literally no SQL, but sometimes not only SQL. Relational
databases enforce structures on data, often visualized as rectangular tables with col‐
umn fields and data rows, similar to spreadsheets. To reduce redundancy and
improve performance, relational databases are normalized with normal forms (rules
for data and structures), such as allowing only a single value per cell (row/column
intersection).

NoSQL databases relax these rules, sometimes allowing varying column/field types
across individual data rows. Often the schemas (database designs) can be ragged
structures, as you could express in JSON or Python, rather than relational boxes.

Redis
Redis is a data structure server that runs completely in memory, although it can save
to and restore from disk. It closely matches Python’s own data structures and has
become extremely popular.

MongoDB
MongoDB is sort of the PostgreSQL of NoSQL servers. A collection is the equivalent of
a SQL table, and a document is the equivalent of a SQL table row. Another difference,
and the main reason for a NoSQL database in the first place, is that you don’t need to
define what a document looks like. In other words, there’s no fixed schema. A docu‐
ment is like a Python dictionary, with any string as a key.

Cassandra
Cassandra is a large-scale database that can be distributed across hundreds of nodes.
It’s written in Java.

An alternative database called ScyllaDB is written in C++ and claims to be compatible
with Cassandra but more performant.

200 | Chapter 14: Databases, Data Science, and a Little AI

https://redis.io
https://github.com/redis/redis-py
https://www.mongodb.com
https://pymongo.readthedocs.io
https://oreil.ly/Cmgtl
https://cassandra.apache.org
https://github.com/datastax/python-driver
https://www.elastic.co/elasticsearch
https://oreil.ly/e_bDI
https://www.scylladb.com

Elasticsearch
Elasticsearch is more like a database index than a database itself. It’s often used for
full-text search.

NoSQL Features in SQL Databases
As noted previously, relational databases were traditionally normalized—constrained
to follow different levels of rules called normal forms. One basic rule was that the
value in each cell (row-column intersection) had to be a scalar (no arrays or other
structures).

NoSQL (or document) databases supported JSON directly and were usually your only
choice if you had “uneven” or “ragged” data structures. They were often denormal‐
ized: all the data needed for a document was included with that document. In SQL,
you often needed to join across tables to build a full document.

However, recent revisions of the SQL standard have allowed JSON data to be stored
in relational databases also. Some relational databases now let you store complex
(nonscalar) data in table cells, and even search and index within them. JSON func‐
tions are supported in various ways for SQLite, PostgreSQL, MySQL, Oracle, and
others.

SQL with JSON can be the best of both worlds. SQL databases have been around
much longer and have really useful features such as foreign keys and secondary
indexes. Also, SQL is fairly standardized up to a point, and NoSQL query languages
are all different.

Finally, new data design and query languages are trying to combine SQL and NoSQL
advantages, like EdgeQL that I mentioned earlier.

So, if you can’t fit your data into the rectangular relational box, look at a NoSQL data‐
base, a relational database with JSON support, or a “Post-SQL” database.

Database Load Testing
This book is mainly about FastAPI, but websites are so frequently tied to databases.

The data examples in this book have been tiny. To really stress-test a database, mil‐
lions of items would be great. Rather than think of things to add, it’s easier use a
Python package like Faker. Faker can generate many kinds of data quickly—names,
places, or special types that you define.

In Example 14-3, Faker pumps out names and countries, which are then loaded by
load() into SQLite.

Database Load Testing | 201

https://www.elastic.co/elasticsearch
https://oreil.ly/h_FNn
https://oreil.ly/awYrc
https://oreil.ly/OA_sT
https://oreil.ly/osOYk
https://faker.readthedocs.io

Example 14-3. Load fake explorers in test_load.py

from faker import Faker
from time import perf_counter

def load():
 from error import Duplicate
 from data.explorer import create
 from model.explorer import Explorer

 f = Faker()
 NUM = 100_000
 t1 = perf_counter()
 for row in range(NUM):
 try:
 create(Explorer(name=f.name(),
 country=f.country(),
 description=f.description))
 except Duplicate:
 pass
 t2 = perf_counter()
 print(NUM, "rows")
 print("write time:", t2-t1)

def read_db():
 from data.explorer import get_all

 t1 = perf_counter()
 _ = get_all()
 t2 = perf_counter()
 print("db read time:", t2-t1)

def read_api():
 from fastapi.testclient import TestClient
 from main import app

 t1 = perf_counter()
 client = TestClient(app)
 _ = client.get("/explorer/")
 t2 = perf_counter()
 print("api read time:", t2-t1)

load()
read_db()
read_db()
read_api()

You’re catching the Duplicate exception in load() and ignoring it, because Faker
generates names from a limited list and is likely to repeat one now and then. So the
result may be less than 100,000 explorers loaded.

202 | Chapter 14: Databases, Data Science, and a Little AI

Also, you’re calling read_db() twice, to remove any startup time as SQLite does the
query. Then read_api() timing should be fair. Example 14-4 fires it up.

Example 14-4. Test database query performance

$ python test_load.py
100000 rows
write time: 14.868232927983627
db read time: 0.4025074450764805
db read time: 0.39750714192632586
api read time: 2.597553930943832

The API read time for all explorers was much slower than the Data layer’s read time.
Some of this is probably overhead from FastAPI’s conversion of the response to
JSON. Also, the initial write time to the database wasn’t very zippy. It wrote one
explorer at a time, because the Data layer API has a single create() function, but not
a create_many(); on the read side, the API can return one (get_one()) or all
(get_all()). So, if you ever want to do bulk loading, it might be good to add a new
Data load function and a new Web endpoint (with restricted authorization).

Also, if you expect any table in your database to grow to 100,000 rows, maybe you
shouldn’t allow random users to get all of them in one API call. Pagination would be
useful, or a way to download a single CSV file from the table.

Data Science and AI
Python has become the most prominent language in data science in general, and
machine learning in particular. So much data massaging is needed, and Python is
good at that.

Sometimes developers have used external tools like pandas to do the data manipula‐
tion that’s too tricky in SQL.

PyTorch is one of the most popular ML tools, because it leverages Python’s strengths
in data manipulation. The underlying computations may be in C or C++ for speed,
but Python or Go are well-suited for the “higher” data-integration tasks. (The Mojo
language, a superset of Python, may handle both the high and low ends if it succeeds
as planned. Although a general-purpose language, it specifically addresses some of
the current complexity in AI development.)

A new Python tool called Chroma is a database, similar to SQLite, but tailored to
machine learning, specifically large language models (LLMs). Read the Getting
Started page to, you know, get started.

Data Science and AI | 203

https://oreil.ly/WFHo9
https://pytorch.org
https://www.modular.com/mojo
https://www.trychroma.com
https://oreil.ly/W59nn
https://oreil.ly/W59nn

Although AI development is complex and moving fast, you can try out some AI with
Python on your own machine without spending the megabucks that were behind
GPT-4 and ChatGPT. Let’s build a small FastAPI web interface to a small AI model.

Model has different meanings in AI and Pydantic/FastAPI. In
Pydantic, a model is a Python class that bundles related data fields.
AI models cover a broad range of techniques for determining pat‐
terns in data.

Hugging Face provides free AI models, datasets, and Python code to use them. First,
install PyTorch and Hugging Face code:

$ pip install torch torchvision
$ pip install transformers

Example 14-5 shows a FastAPI application that uses Hugging Face’s transformers
module to access a pretrained mid-sized open source machine language model and
try to answer your prompts. (This was adapted from a command-line example on the
YouTube channel CodeToTheMoon.)

Example 14-5. Top-level LLM test (ai.py)

from fastapi import FastAPI

app = FastAPI()

from transformers import (AutoTokenizer,
 AutoModelForSeq2SeqLM, GenerationConfig)
model_name = "google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
config = GenerationConfig(max_new_tokens=200)

@app.get("/ai")
def prompt(line: str) -> str:
 tokens = tokenizer(line, return_tensors="pt")
 outputs = model.generate(**tokens,
 generator_config=config)
 result = tokenizer.batch_decode(outputs,
 skip_special_tokens=True)
 return result[0]

Run this with uvicorn ai:app (as always, first make sure you don’t have another web
server still running on localhost, port 8000). Feed the /ai endpoint questions and get
answers, like this (note the double == for an HTTPie query parameter):

$ http -b localhost:8000/ai line=="What are you?"
"a sailor"

204 | Chapter 14: Databases, Data Science, and a Little AI

https://huggingface.co

This is a fairly small model, and as you can see, it doesn’t answer questions especially
well. I tried other prompts (line arguments) and got equally noteworthy answers:

• Q: Are cats better than dogs?
• A: No
• Q: What does bigfoot eat for breakfast?
• A: A squid
• Q: Who comes down the chimney?
• A: A squealing pig
• Q: What group was John Cleese in?
• A: The Beatles
• Q: What has nasty pointy teeth?
• A: A teddy bear

These questions may get different answers at different times! Once the same endpoint
said that Bigfoot eats sand for breakfast. In AI-speak, answers like this are called hal‐
lucinations. You can get better answers by using a larger model, like google/flan-75-
xl, but it will take longer to download model data and respond on a personal
computer. And of course, models like ChatGPT were trained on all the data they
could find (using every CPU, GPU, TPU, and any other kind of PU), and will give
excellent answers.

Review
This chapter expanded on the use of SQLite we went over in Chapter 10 to other SQL
databases, and even NoSQL ones. It also showed how some SQL databases can do
NoSQL tricks with JSON support. Finally, it talked about the uses of database and
special data tools that have become more important as machine learning continues its
explosive growth.

Review | 205

CHAPTER 15

Files

Preview
Besides fielding API requests and traditional content like HTML, web servers are
expected to handle file transfers in both directions. Very large files may need to be
transferred in chunks that don’t use too much of the system’s memory. You can also
provide access to a directory of files (and subdirectories, to any depth) with Static
Files.

Multipart Support
To handle large files, FastAPI’s uploading and downloading features need these extra
modules:

Python-Multipart
pip install python-multipart

aio-files
pip install aiofiles

Uploading Files
FastAPI targets API development, and most of the examples in this book have used
JSON requests and responses. But in the next chapter you’ll see forms, which are han‐
dled differently. This chapter covers files, which are treated like forms in some ways.

FastAPI offers two techniques for file uploads: File() and UploadFile.

207

https://oreil.ly/FUBk7
https://oreil.ly/OZYYR

File()
File() is used as the type for a direct file upload. Your path function may be synchro‐
nous (def) or asynchronous (async def), but the asynchronous version is better
because it won’t tie up your web server while the file is uploading.

FastAPI will pull up the file in chunks and reassemble it in memory, so File() should
be used for only relatively small files. Instead of assuming that the input is JSON,
FastAPI encodes a file as a form element.

Let’s write the code to request a file and test it. You can grab any file on your machine
to test with, or download one from a site like Fastest Fish. I grabbed a 1 KB file from
there and saved it locally as 1KB.bin.

In Example 15-1, add these lines to your top main.py.

Example 15-1. Handle a small file upload with FastAPI

from fastapi import File

@app.post("/small")
async def upload_small_file(small_file: bytes = File()) -> str:
 return f"file size: {len(small_file)}"

After Uvicorn restarts, try an HTTPie test in Example 15-2.

Example 15-2. Upload a small file with HTTPie

$ http -f -b POST http://localhost:8000/small small_file@1KB.bin
"file size: 1000"

Here are a few notes on this test:

• You need to include -f (or --form), because files are uploaded like forms, not as
JSON text.

• small_file@1KB.bin:

small_file

Matches the variable name small_file in the FastAPI path function in
Example 15-1

@

HTTPie’s shorthand to make a form

1KB.bin

The file that is being uploaded

208 | Chapter 15: Files

https://oreil.ly/EnlH-

Example 15-3 is an equivalent programmatic test.

Example 15-3. Upload a small file with Requests

$ python
>>> import requests
>>> url = "http://localhost:8000/small"
>>> files = {'small_file': open('1KB.bin', 'rb')}
>>> resp = requests.post(url, files=files)
>>> print(resp.json())
file size: 1000

UploadFile
For large files, it’s better to use UploadFile. This creates a Python SpooledTemporary
File object, mostly on the server’s disk instead of in memory. This is a Python file-
like object, which supports the methods read(), write(), and seek(). Example 15-4
shows this, and also uses async def instead of def to avoid blocking the web server
while file pieces are uploading.

Example 15-4. Upload a big file with FastAPI (add to main.py)

from fastapi import UploadFile

@app.post("/big")
async def upload_big_file(big_file: UploadFile) -> str:
 return f"file size: {big_file.size}, name: {big_file.filename}"

File() created a bytes object and needed the parentheses. Upload
File is a different class of object.

If Uvicorn’s starter motor isn’t worn out yet, it’s test time. This time, Examples 15-5
through 15-6 use a 1 GB file (1GB.bin) that I grabbed from Fastest Fish.

Example 15-5. Test a big file upload with HTTPie

$ http -f -b POST http://localhost:8000/big big_file@1GB.bin
"file size: 1000000000, name: 1GB.bin"

Uploading Files | 209

Example 15-6. Test a big file upload with Requests

>>> import requests
>>> url = "http://localhost:8000/big"
>>> files = {'big_file': open('1GB.bin', 'rb')}
>>> resp = requests.post(url, files=files)
>>> print(resp.json())
file size: 1000000000, name: 1GB.bin

Downloading Files
Sadly, gravity doesn’t make files download faster. Instead, we’ll use equivalents of the
upload methods.

FileResponse
First, in Example 15-7, is the all-at-once version, FileResponse.

Example 15-7. Download a small file with FileResponse (add to main.py)

from fastapi.responses import FileResponse

@app.get("/small/{name}")
async def download_small_file(name):
 return FileResponse(name)

There’s a test around here somewhere. First, put the file 1KB.bin in the same directory
as main.py. Now, run Example 15-8.

Example 15-8. Download a small file with HTTPie

$ http -b http://localhost:8000/small/1KB.bin

NOTE: binary data not shown in terminal

If you don’t trust that suppression message, Example 15-9 pipes the output to a utility
like wc to ensure that you got 1,000 bytes back.

210 | Chapter 15: Files

Example 15-9. Download a small file with HTTPie, with byte count

$ http -b http://localhost:8000/small/1KB.bin | wc -c
 1000

StreamingResponse
Similar to FileUpload, it’s better to download large files with StreamingResponse,
which returns the file in chunks. Example 15-10 shows this, with an async def path
function to avoid blocking when the CPU isn’t being used. I’m skipping error check‐
ing for now; if the file path doesn’t exist, the open() call will raise an exception.

Example 15-10. Return a big file with StreamingResponse (add to main.py)

from pathlib import path
from typing import Generator
from fastapi.responses import StreamingResponse

def gen_file(path: str) -> Generator:
 with open(file=path, mode="rb") as file:
 yield file.read()

@app.get("/download_big/{name}")
async def download_big_file(name:str):
 gen_expr = gen_file(file_path=path)
 response = StreamingResponse(
 content=gen_expr,
 status_code=200,
)
 return response

gen_expr is the generator expression returned by the generator function gen_file().
StreamingResponse uses it for its iterable content argument, so it can download the
file in chunks.

Example 15-11 is the accompanying test. (This first needs the file 1GB.bin alongside
main.py, and will take a little longer.)

Example 15-11. Download a big file with HTTPie

$ http -b http://localhost:8000/big/1GB.bin | wc -c
 1000000000

Serving Static Files
Traditional web servers can treat server files as though they were on a normal
filesystem. FastAPI lets you do this with StaticFiles.

Serving Static Files | 211

For this example, let’s make a directory of (boring) free files for users to download:

• Make a directory called static, at the same level as main.py. (This can have any
name; I’m calling it static only to help remember why I made it.)

• Put a text file called abc.txt in it, with the text contents abc :).

Example 15-12 will serve any URL that starts with /static (you could also have used
any text string here) with files from the static directory.

Example 15-12. Serve everything in a directory with StaticFiles (add to main.py)

from pathlib import Path
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles

Directory containing main.py:
top = Path(__file__).resolve.parent

app.mount("/static",
 StaticFiles(directory=f"{top}/static", html=True),
 name="free")

That top calculation ensures that you put static alongside main.py. The __file__
variable is the full pathname of this file (main.py).

Example 15-13 is one way to manually test Example 15-12.

Example 15-13. Get a static file

$ http -b localhost:8000/static/abc.txt
abc :)

What about that html=True argument that you passed to StaticFiles()? That makes
it work a little more like a traditional server, returning an index.html file if one exists
in that directory, but you didn’t ask for index.html explicitly in the URL. So, let’s cre‐
ate an index.html file in the static directory with the contents Oh. Hi!, and then test
with Example 15-14.

Example 15-14. Get an index.html file from /static

$ http -b localhost:8000/static/
Oh. Hi!

212 | Chapter 15: Files

You can have as many files (and subdirectories with files, etc.) as you want. Make a
subdirectory xyz under static and put two files there:

xyx.txt
Contains the text xyz :(.

index.html
Contains the text How did you find me?

I won’t include the examples here. Try them yourself, with I hope more naming
imagination.

Review
This chapter showed how to upload and download files—small, large, even giganti‐
ferous. Plus, you learned how to serve static files in nostalgic (non-API) web style
from a directory.

Review | 213

CHAPTER 16

Forms and Templates

Preview
Although the API in FastAPI is a hint of its main focus, FastAPI can also handle tra‐
ditional web content. This chapter talks about standard HTML forms and templates
for inserting data into HTML.

Forms
As you’ve seen, FastAPI was mainly designed to build APIs, and its default input is
JSON. But that doesn’t mean that it can’t serve standard banana HTML, forms, and
friends.

FastAPI supports data from HTML forms much as it does from other sources like
Query and Path, using the Form dependency.

You’ll need the package Python-Multipart for any FastAPI forms work, so run pip
install python-multipart if you need to. Also, the static directory from Chapter 15
will be needed to house the test forms in this chapter.

Let’s redo Example 3-11, but provide the who value via a form instead of a JSON
string. (Call this path function greet2() to avoid clobbering the old greet() path
function if it’s still around.) Add Example 16-1 to main.py.

Example 16-1. Get a value from a GET form

from fastapi import FastAPI, Form

app = FastAPI()

@app.get("/who2")

215

def greet2(name: str = Form()):
 return f"Hello, {name}?"

The main difference is that the value comes from Form instead of Path, Query, and the
others from Chapter 3.

Try an initial form test with HTTPie in Example 16-2 (you need that -f to upload
with form encoding rather than as JSON).

Example 16-2. Form GET request with HTTPie

$ http -f -b GET localhost:8000/who2 name="Bob Frapples"
"Hello, Bob Frapples?"

You could also send a request from a standard HTML form file. Chapter 15 showed
how to make a directory called static (accessed under the URL /static) that could
house anything, including HTML files, so in Example 16-3, let’s put this file
(form1.html) there.

Example 16-3. Form GET request (static/form1.html)

<form action="http://localhost:8000/who2" method="get">
Say hello to my little friend:
<input type="text" name="name" value="Bob Frapples">
<input type="submit">
</form>

If you ask your browser to load http://localhost:8000/static/form1.html, you’ll see a
form. If you fill in any test string, you’ll get this back:

"detail":[{"loc":["body","name"],
 "msg":"field required",
 "type":"value_error.missing"}]}

Huh?

Look at the window where Uvicorn is running to see what its log says:

INFO: 127.0.0.1:63502 -
 "GET /who2?name=rr23r23 HTTP/1.1"
 422 Unprocessable Entity

Why did this form send name as a query parameter when we had it in a form field?
That turns out to be an HTML weirdness, documented on the W3C website. Also, if
you had any query parameters in your URL, it will erase them and replace them with
name.

So, why did HTTPie handle it as expected? I don’t know. It’s an inconsistency to be
aware of.

216 | Chapter 16: Forms and Templates

https://oreil.ly/e6CJb

The official HTML incantation is to change the action from a GET to a POST. So let’s
add a POST endpoint for /who2 to main.py in Example 16-4.

Example 16-4. Get a value from a POST form

from fastapi import FastAPI, Form

app = FastAPI()

@app.post("/who2")
def greet3(name: str = Form()):
 return f"Hello, {name}?"

Example 16-5 is stuff/form2.html, with get changed to post.

Example 16-5. Form POST request (static/form2.html)

<form action="http://localhost:8000/who2" method="post">
Say hello to my little friend:
<input type="text" name="name">
<input type="submit">
</form>

Ask your browser to get off its digital haunches and get this new form for you. Fill in
Bob Frapples and submit the form. This time, you’ll get the result that you got from
HTTPie:

"Hello, Bob Frapples?"

So, if you’re submitting forms from HTML files, use POST.

Templates
You may have seen the word game Mad Libs. You ask people to provide a sequence of
words—nouns, verbs, or something more specific—and you enter them into labeled
places in a page of text. Once you have all the words, you read the text with the inser‐
ted values, and hilarity ensues, sometimes with embarrassment.

Well, a web template is similar, though usually without the embarrassment. A
template contains a bunch of text with slots for data to be inserted by the server. Its
usual purpose is to generate HTML with variable content, unlike the static HTML of
Chapter 15.

Users of Flask are very familiar with its companion project, the template engine Jinja
(also often called Jinja2). FastAPI supports Jinja, as well as other template engines.

Make a directory called template alongside main.py to house Jinja-enhanced HTML
files. Inside, make a file called list.html, as in Example 16-6.

Templates | 217

https://jinja.palletsprojects.com

Example 16-6. Define a template file (template/list.html)

<html>
<table bgcolor="#eeeeee">
 <tr>
 <th colspan=3>Creatures</th>
 </tr>
 <tr>
 <th>Name</th>
 <th>Description</th>
 <th>Country</th>
 <th>Area</th>
 <th>AKA</th>
 </tr>
{% for creature in creatures: %}
 <tr>
 <td>{{ creature.name }}</td>
 <td>{{ creature.description }}</td>
 <td>{{ creature.country }}</td>
 <td>{{ creature.area }}</td>
 <td>{{ creature.aka }}</td>
 </tr>
{% endfor %}
</table>

<table bgcolor="#dddddd">
 <tr>
 <th colspan=2>Explorers</th>
 </tr>
 <tr>
 <th>Name</th>
 <th>Country</th>
 <th>Description</th>
 </tr>
{% for explorer in explorers: %}
 <tr>
 <td>{{ explorer.name }}</td>
 <td>{{ explorer.country }}</td>
 <td>{{ explorer.description }}</td>
 </tr>
{% endfor %}
</table>
</html>

I don’t care how it looks, so there’s no CSS, just the ancient pre-CSS bgcolor table
attribute to distinguish the two tables.

218 | Chapter 16: Forms and Templates

Double curly braces enclose Python variables that should be inserted, and {% and %}
enclose if statements, for loops, and other controls. See the Jinja documentation for
the syntax and examples.

This template expects to be passed Python variables called creatures and explorers,
which are lists of Creature and Explorer objects.

Example 16-7 shows what to add to main.py to set up templates and use the one from
Example 16-6. It feeds creatures and explorers to the template, using modules
under the fake directory from previous chapters, which provided test data if the data‐
base was empty or not connected.

Example 16-7. Configure templates and use one (main.py)

from pathlib import Path
from fastapi import FastAPI, Request
from fastapi.templating import Jinja2Templates

app = FastAPI()

top = Path(__file__).resolve().parent

template_obj = Jinja2Templates(directory=f"{top}/template")

Get some small predefined lists of our buddies:
from fake.creature import fakes as fake_creatures
from fake.explorer import fakes as fake_explorers

@app.get("/list")
def explorer_list(request: Request):
 return template_obj.TemplateResponse("list.html",
 {"request": request,
 "explorers": fake_explorers,
 "creatures": fake_creatures})

Ask your favorite browser, or even one that you don’t like very well, for http://local‐
host:8000/list, and you should get Figure 16-1 back.

Figure 16-1. Output from /list

Templates | 219

https://jinja.palletsprojects.com

Review
This chapter was a quick overview of how FastAPI handles non-API topics like forms
and templates. Along with the previous chapter on files, these are traditional bread-
and-butter web tasks that you’ll encounter often.

220 | Chapter 16: Forms and Templates

CHAPTER 17

Data Discovery and Visualization

Preview
Although FastAPI does have API in its name, it can serve more things than APIs.
This chapter shows you how to generate tables, plots, graphs, and maps from data,
using a small database of imaginary creatures from around the world.

Python and Data
Python has become very popular in the last few years for many reasons:

• Ease of learning
• Clean syntax
• Rich standard library
• Huge number of high-quality third-party packages
• Special emphasis on data manipulation, conversion, and introspection

The last point has always been relevant for traditional ETL tasks for database cre‐
ation. A nonprofit group called PyData even organizes conferences and develops
tools for open source data analysis with Python. The popularity of Python also
reflects the recent surge in AI and the need for tools to prepare the data that feeds AI
models.

In this chapter, we’ll try some Python data packages and see how they relate to
modern Python web development and FastAPI.

221

https://pydata.org

1 If there are any trees like Tolkien’s Ents, we don’t want them lumbering up to our doors some night to have a
word.

PSV Text Output
In this section, we’ll use the creatures listed in Appendix B. The data is in this book’s
GitHub repo, in the pipe-separated file cryptid.psv and the SQLite database cryptid.db.
Comma-separated (.csv) and tab-separated (.tsv) files are common, but commas are
used within the data cells themselves, and tabs are sometimes hard to distinguish
from other whitespace. The pipe character (|) is distinct, and rare enough in standard
text to serve as a good separator.

Let’s try the .psv text file first, using just text output examples for simplicity, and then
go on to full web examples using the SQLite database.

The initial header line of the .psv file contains the names of the fields:

• name

• country (* means many countries)
• area (optional, US state or other country area)
• description

• aka (also known as)

The rest of the lines in the file describe one creature at a time, with the fields in that
order, separated by a | character.

csv
Example 17-1 reads the creature data into Python data structures. First, the pipe-
separated file cryptids.psv can be read with the standard Python csv package, yielding
a list of tuples, where each tuple represents a line of data from the file. (The csv pack‐
age also includes a DictReader that returns a list of dicts instead.) The first line of this
file is a header with the names of the columns; without this, we could still supply the
headers through arguments to csv functions.

I’m including type hints in the examples, but you can drop these if you have an older
version of Python, and the code will still work. Let’s print only the header and first
five lines, to save a few trees.1

222 | Chapter 17: Data Discovery and Visualization

Example 17-1. Read PSV file with csv (load_csv.py)

import csv
import sys

def read_csv(fname: str) -> list[tuple]:
 with open(fname) as file:
 data = [row for row in csv.reader(file, delimiter="|")]
 return data

if __name__ == "__main__":
 data = read_csv(sys.argv[1])
 for row in data[0:5]:
 print(row)

Now run the test in Example 17-2.

Example 17-2. Test CSV database loading

$ python load_csv.py cryptid.psv
['name', 'country', 'area', 'description', 'aka']
['Abaia', 'FJ', ' ', 'Lake eel', ' ']
['Afanc', 'UK', 'CYM', 'Welsh lake monster', ' ']
['Agropelter', 'US', 'ME', 'Forest twig flinger', ' ']
['Akkorokamui', 'JP', ' ', 'Giant Ainu octopus', ' ']
['Albatwitch', 'US', 'PA', 'Apple stealing mini Bigfoot', ' ']

python-tabulate
Let’s try one more open source tool, python-tabulate, that is specifically designed for
tabular output. You’ll need to run pip install tabulate first. Example 17-3 shows
the code.

Example 17-3. Read PSV file with python-tabulate (load_tabulate.py)

from tabulate import tabulate
import sys

def read_csv(fname: str) -> list[tuple]:
 with open(fname) as file:
 data = [row for row in csv.reader(file, delimiter="|")]
 return data

if __name__ == "__main__":
 data = read_csv(sys.argv[1])
 print(tabulate(data[0:5]))

Run Example 17-3 in Example 17-4.

PSV Text Output | 223

https://oreil.ly/L0f6k

Example 17-4. Run the tabulate load script

$ python load_tabulate.py cryptid.psv
----------- ------- ---- ------------------- ---
Name Country Area Description AKA
Abaia FJ Lake eel
Afanc UK CYM Welsh lake monster
Agropelter US ME Forest twig flinger
Akkorokamui JP Giant Ainu octopus
----------- ------- ---- ------------------- ---

pandas
The two previous examples were mostly output formatters. Pandas is an excellent tool
for slicing and dicing data. It goes beyond the standard Python data structures with
advanced constructs like the DataFrame: a combination of a table, dictionary, and
series. It can also read .csv and other character-separated files. Example 17-5 is like
the previous examples, but pandas returns a DataFrame instead of a list of tuples.

Example 17-5. Read PSV file with pandas (load_pandas.py)

import pandas
import sys

def read_pandas(fname: str) -> pandas.DataFrame:
 data = pandas.read_csv(fname, sep="|")
 return data

if __name__ == "__main__":
 data = read_pandas(sys.argv[1])
 print(data.head(5))

Run Example 17-5 in Example 17-6.

Example 17-6. Run the pandas load script

$ python load_pandas.py cryptid.psv
 name country area description aka
0 Abaia FJ Lake eel
1 Afanc UK CYM Welsh lake monster
2 Agropelter US ME Forest twig flinger
3 Akkorokamui JP Giant Ainu octopus
4 Albatwitch US PA Apple stealing mini Bigfoot

Pandas has a metric boatload of interesting functions, so take a look.

224 | Chapter 17: Data Discovery and Visualization

https://pandas.pydata.org
https://oreil.ly/j-8eh

SQLite Data Source and Web Output
For the rest of the examples in this chapter, you’ll read creature data from the SQLite
database, using some of the website code from earlier chapters. Then you’ll slice, dice,
and marinate the data with different recipes. Instead of simple text output, you’ll
install each example into our ever-growing cryptid website. You’ll need a few addi‐
tions to our existing Web, Service, and Data levels.

First, you need a Web-level function and an associated HTTP GET route to return all
the creature data. And you already have one! Let’s make a web call to get everything,
but again show only the first few lines (trees, you know). That’s Example 17-7, right
here.

Example 17-7. Run the creature download test (truncated; trees are watching)

$ http -b localhost:8000/creature
[
 {
 "aka": "AKA",
 "area": "Area",
 "country": "Country",
 "description": "Description",
 "name": "Name"
 },
 {
 "aka": " ",
 "area": " ",
 "country": "FJ",
 "description": "Lake eel",
 "name": "Abaia"
 },
...
]

Chart/Graph Packages
Now we can go beyond text to GUIs. Some of the most useful and popular Python
packages for graphical data displays include the following:

Matplotlib
Extensive, but needs some fiddling to get the prettiest results

Plotly
Similar to Matplotlib and Seaborn, with an emphasis on interactive graphs

Dash
Built on Plotly as a sort of data dashboard

SQLite Data Source and Web Output | 225

https://matplotlib.org
https://plotly.com/python
https://dash.plotly.com

Seaborn
Built on Matplotlib and offers a higher-level interface, but with less graph types

Bokeh
Integrates with JavaScript to provide dashboard views of very large datasets

How can you decide? You can consider the following criteria:

• Graph types (e.g., scatter, bar, line)
• Styling
• Ease of use
• Performance
• Data limits

Comparisons like “Top 6 Python Libraries for Visualization: Which One to Use?” by
khuyentran1476 can help you choose. In the end, the choice often comes down to the
one that you figure out enough about first. For this chapter, I chose Plotly, which can
create attractive plots without too much coding.

Chart Example 1: Test
Plotly is an open source (free) Python library with multiple levels of control and
detail:

Plotly Express
A minimal Plotly library

Plotly
The main library

Dash
Data application tools

There is also Dash Enterprise, which, like almost anything with Enterprise in its name
(including spaceship models) costs money.

What can we actually show from the creature data? Charts and graphs have some
common forms:

• Scatter
• Line
• Bar

• Histogram
• Box (statistical)

226 | Chapter 17: Data Discovery and Visualization

https://seaborn.pydata.org
http://bokeh.org
https://oreil.ly/10Nsw
https://plotly.com/python/plotly-express
https://plotly.com/python
https://dash.plotly.com
https://dash.plotly.com/dash-enterprise

Our data fields are all strings, intentionally minimal to keep the examples from over‐
whelming the logic and integration steps. For each example, we’ll read all the creature
data from the SQLite database using code from previous chapters, and adding Web
and Service functions to select particular data to feed to the plot library functions.

First, install Plotly, and a library needed by Plotly to export images:

• pip install plotly

• pip install kaleido

Then, in Example 17-8, add a test function to web/creature.py to see if we have the
right pieces, in the right places.

Example 17-8. Add a test plot endpoint (edit web/creature.py)

(insert these lines in web/creature.py)

from fastapi import Response
import plotly.express as px

@router.get("/test")
def test():
 df = px.data.iris()
 fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")
 fig_bytes = fig.to_image(format="png")
 return Response(content=fig_bytes, media_type="image/png")

The documentation routinely recommends calling fig.show() to show the image
that you just created, but we’re trying to fit in with how FastAPI and Starlette do
things.

So first you get fig_bytes (the actual bytes content of the image); then you return a
custom Response object.

After you’ve added this endpoint to web/creature.py and restarted the web server
(automatically if you ran Uvicorn with --reload), try accessing this new endpoint by
typing localhost:8000/creature/test into your browser’s location bar. You should
see Figure 17-1.

SQLite Data Source and Web Output | 227

Figure 17-1. Test Plotly image

If you got a weird error from Uvicorn like ValueError: 'not' is not a valid
parameter name, then update Pydantic to fix a bug: pip install -U pydantic.

Chart Example 2: Histogram
If all is well, let’s start playing with our creature data. We’ll add a plot() function to
web/creature.py. We’ll get all the creature data from the database via the get_all()
functions in service/creature.py and data/creature.py. Then we’ll extract what we want
and use Plotly to display various images of the results.

For our first trick (Example 17-9), we’ll just use the name field and make a bar chart
indicating the number of creatures’ names that start with each letter.

Example 17-9. Bar chart of creature name initials

(insert these lines in web/creature.py)

from collections import Counter
from fastapi import Response
import plotly.express as px
from service.creature import get_all

@router.get("/plot")
def plot():
 creatures = get_all()

228 | Chapter 17: Data Discovery and Visualization

 letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 counts = Counter(creature.name[0] for creature in creatures)
 y = { letter: counts.get(letter, 0) for letter in letters }
 fig = px.histogram(x=list(letters), y=y, title="Creature Names",
 labels={"x": "Initial", "y": "Initial"})
 fig_bytes = fig.to_image(format="png")
 return Response(content=fig_bytes, media_type="image/png")

Type localhost:8000/creature/plot into your browser’s location bar. You should
see Figure 17-2.

Figure 17-2. Creature name initial histogram

Map Packages
If you try to Google Python and maps, you’ll get many links about Python dictionar‐
ies, which are a built-in mapping type in the language, and not the same thing. So you
may need to try synonyms like GIS, geo, cartography, spatial, and so on. Popular pack‐
ages, some of them built atop others in the list, include the following:

PyGIS
References for spatial data processing in Python

PySAL
Python Spatial Analysis Library

SQLite Data Source and Web Output | 229

https://oreil.ly/3QvCz
https://pysal.org

Cartopy
Analyzes and maps geospatial data

Folium
Integrated with JavaScript

Python Client for Google Maps Services
API access to Google Maps

Geemap
Google Earth support

Geoplot
Extends Cartopy and Matplotlib

GeoPandas
An extension of our friend pandas

ArcGIS and ArcPy
Esri’s open source interface

Similar to the criteria for plot/graph packages, choices may depend on the following:

• Map types (e.g., choropleth, vector, raster)
• Styling
• Ease of use
• Performance
• Data limits

Like charts and graphs, maps come in many types and can be used for various
purposes.

Map Example
I’ll use Plotly again for these mapping examples; it’s neither too basic nor too com‐
plex, and this helps show how to integrate a small web-based map with FastAPI.

Example 17-10 gets the two-letter ISO country codes of our creatures. But it turns out
that the function that draws Plotly maps (a choropleth, which sounds like a shape-
changing cryptid itself) wants to use another three-letter ISO country code standard
instead. Grrr. So we could redo all the codes in the database and PSV file, but it’s eas‐
ier to run pip install country_converter and map one set of country codes to
another.

230 | Chapter 17: Data Discovery and Visualization

https://oreil.ly/YnUow
https://oreil.ly/72luj
https://oreil.ly/LWfS5
https://geemap.org
https://oreil.ly/Slfvc
https://geopandas.org
https://oreil.ly/l7M5C

Example 17-10. Map countries with cryptids (edit web/creature.py)

(insert these lines in web/creature.py)

import plotly.express as px
import country_converter as coco

@router.get("/map")
def map():
 creatures = service.get_all()
 iso2_codes = set(creature.country for creature in creatures)
 iso3_codes = coco.convert(names=iso2_codes, to="ISO3")
 fig = px.choropleth(
 locationmode="ISO-3",
 locations=iso3_codes)
 fig_bytes = fig.to_image(format="png")
 return Response(content=fig_bytes, media_type="image/png")

Ask your browser to pretty please get localhost:8000/creature/map, and with any
luck you’ll see a map in which cryptid-bearing countries stick out (Figure 17-3).

Figure 17-3. Map of cryptid countries

You could expand this map to focus on the US by using the area field, which is a two-
character state code if country is US. Use locationmode="USA-states", and assign
those area values to the locations parameter of px.choropleth().

SQLite Data Source and Web Output | 231

Review
Have any cryptids been snuffling around near your house? You found out in this
chapter, where various plotting, graphing, and mapping tools poked at a database of
worrisome creatures.

232 | Chapter 17: Data Discovery and Visualization

CHAPTER 18

Games

Preview
Games cover a lot of ground, from simple text to multiplayer 3D extravaganzas. This
chapter will demonstrate a simple game and how the web endpoint can interact with
the user across multiple steps. This process is different from the familiar one-shot
request-response web endpoints that you’ve seen so far.

Python Game Packages
If you really want to get into Python for games, here are some useful tools:

• Text:
— Adventurelib

• Graphic:
— PyGame, primer
— pyglet
— Python Arcade
— HARFANG
— Panda3D

But I’m not going to use any of these in this chapter. The example code can get so
large and complex that it overshadows the goal of this book: creating websites—APIs
and traditional content—with FastAPI, as simply as possible.

233

https://adventurelib.readthedocs.io
https://www.pygame.org
https://realpython.com/pygame-a-primer
https://pyglet.org
https://api.arcade.academy
https://www.harfang3d.com
https://docs.panda3d.org

Splitting Game Logic
There are so many ways to write a game. Who does what, and who keeps what
where—the client or the server? The web is stateless, so each time the client calls the
server, the server is a total amnesiac and swears it’s never seen this client before. So
we need to keep state somewhere: data retained across game steps to thread them all
together.

We could write a game completely in JavaScript on the client side, and keep all the
state there. If you know JavaScript well, that’s a good solution, but if you don’t (a pos‐
sibility, because you’re reading a Python book), let’s give Python something to do too.

At the other extreme, we could write a server-heavy application: generate some dis‐
tinct id for this particular game on an initial web call, and pass that id with other data
to the server in subsequent game steps, and maintain all that changing state in some
server-side data store, like a database.

Finally, we could structure the game as a sequence of client-server web endpoint calls,
in a so-called single-page application (SPA). Writing an SPA would typically have
JavaScript making Ajax calls to a server, and targeting the web responses to refresh
parts of the page instead of the whole display. The client JavaScript and HTML do
some of the work, and the server handles some of the logic and data.

Game Design
First, what’s the game? We’ll build a simple Wordle-like game, but using only the
names of the creatures from the cryptid.db database. This makes it quite a bit easier
than Wordle, especially if you cheat and look at Appendix B.

We’ll use the final, balanced, design approach above:

1. Let’s use vanilla JavaScript in the client instead of well-known JavaScript libraries
like React, Angular, or even jQuery.

2. A new FastAPI endpoint, GET /game, initializes the game. It gets a random crea‐
ture’s name from our cryptid database, and returns that, embedded as a hidden
value in a Jinja template file of HTML, CSS, and JavaScript.

3. On the client, the newly returned HTML and JavaScript display a Wordle-type
interface. A sequence of boxes appears, one for each letter in the hidden creature
name.

4. The player types a letter into each box, then submits this guess and the hidden
true name to the server. This is in an AJAX call, using the JavaScript fetch()
function.

234 | Chapter 18: Games

https://oreil.ly/PuD-Y

5. A second new FastAPI endpoint, POST /game, takes this guess and actual secret
name and scores the guess against that name. It returns the guess and score to the
client.

6. The client displays the guess and score with appropriate CSS colors in a newly
generated table row: green for a letter in the correct place, yellow for a letter in
the name but another position, and gray for a letter not occurring in the hidden
name. The score is a string of single characters, which are used as CSS class
names to display the correct colors for the guess’s letters.

7. If all the letters are green, then celebrate accordingly. Otherwise, the client dis‐
plays a new sequence of text input boxes for the next guess, and repeats the steps
4 and later until the name is guessed or you give up. Most of the cryptid names
are not household words, so check Appendix B as needed.

These rules are slightly different from official Wordle, which allows only five-letter
dictionary words and a limit of six steps.

Don’t get your hopes up. Like most of the examples in this book, the game logic and
design are minimal—just enough to get the pieces to work together. You can impart
much more style and grace, given a working base.

Web Part One: Game Initialization
We want two new web endpoints. We’re using creature names, so we might think of
naming endpoints like GET /creature/game and POST /creature/game. But that
won’t work, because we already have similar endpoints GET /creature/{name} and
POST /creature/{name}, and FastAPI will match those first. So let’s make a new top-
level routing namespace /game, and place both new endpoints under it.

The first endpoint in Example 18-1 initializes the game. It needs to get a random
creature name from the database, and return this with all the client code to imple‐
ment the multistep game logic. For this, we’ll use a Jinja template (which you saw in
Chapter 16) that contains HTML, CSS, and JavaScript.

Example 18-1. Web game initialization (web/game.py)

from pathlib import Path

from fastapi import APIRouter, Body, Request
from fastapi.templating import Jinja2Templates

from service import game as service

router = APIRouter(prefix = "/game")

Initial game request

Web Part One: Game Initialization | 235

@router.get("")
def game_start(request: Request):
 name = service.get_word()
 top = Path(__file__).resolve().parents[1] # grandparent
 templates = Jinja2Templates(directory=f"{top}/template")
 return templates.TemplateResponse("game.html",
 {"request": request, "word": name})

Subsequent game requests
@router.post("")
async def game_step(word: str = Body(), guess: str = Body()):
 score = service.get_score(word, guess)
 return score

FastAPI requires the game_start() path function to have a request parameter, and
to pass it to the template as an argument.

Next, in Example 18-2, hook this /game subrouter into the main module that has
been overseeing the /explorer and /creature routes.

Example 18-2. Add /game subroute (web/main.py)

from fastapi import FastAPI
from web import creature, explorer, game

app = FastAPI()

app.include_router(explorer.router)
app.include_router(creature.router)
app.include_router(game.router)

if __name__ == "__main__":
 import uvicorn
 uvicorn.run("main:app",
 host="localhost", port=8000, reload=True)

Web Part Two: Game Steps
The largest component of the client side template (HTML, CSS, and JavaScript) can
be seen in Example 18-3.

Example 18-3. Working Jinja template file (template/game.html)

<head>
<style>
html * {
 font-size: 20pt;
 font-family: Courier, sans-serif;

236 | Chapter 18: Games

}
body {
 margin: 0 auto;
 max-width: 700px;
}
input[type=text] {
 width: 30px;
 margin: 1px;
 padding: 0px;
 border: 1px solid black;
}
td, th {
 cell-spacing: 4pt;
 cell-padding: 4pt;
 border: 1px solid black;
}
.H { background-color: #00EE00; } /* hit (green) */
.C { background-color: #EEEE00; } /* close (yellow) */
.M { background-color: #EEEEEE; } /* miss (gray) */
</style>
</head>
<body>
<script>
function show_score(guess, score){
 var table = document.getElementById("guesses");
 var row = table.insertRow(row);
 for (var i = 0; i < guess.length; i++) {
 var cell = row.insertCell(i);
 cell.innerHTML = guess[i];
 cell.classList.add(score[i]);
 }
 var word = document.getElementById("word").value;
 if (guess.toLowerCase() == word.toLowerCase()) {
 console.log("matched");
 document.getElementById("status").innerHTML = "😀";
 }
}

async function post_guess() {
 var word = document.getElementById("word").value;
 var vals = document.getElementsByName("guess");
 var guess = "";
 for (var i = 0; i < vals.length; i++) {
 guess += vals[i].value;
 }
 console.log("guess=", guess);
 console.log("word=", word);
 var req = new Request("http://localhost:8000/game", {
 method: "POST",
 headers: {"Content-Type": "application/json"},
 body: JSON.stringify({"guess": guess, "word": word})
 }

Web Part Two: Game Steps | 237

)
 fetch(req)
 .then((resp) => resp.json())
 .then((score) => {
 show_score(guess, score);
 for (var i = 0; i < vals.length; i++) {
 vals[i].value = "";
 }
 });
}
</script>
<h2>Cryptonamicon</h2>

<table id="guesses">
</table>

<hr>

<div>
{% for letter in word %}<input type=text name="guess">{% endfor %}
<input type=hidden id="word" value="{{word}}">

<input type=submit onclick="post_guess()">
</div>

</body>

Service Part One: Initialization
Example 18-4 shows the Service code to connect the Web layer’s game start function
to the Data layer’s provision of a random creature name.

Example 18-4. Calculate score (service/game.py)

import data.game as data

def get_word() -> str:
 return data.get_word()

Service Part Two: Scoring
Add the code from Example 18-5 (next) to that of Example 18-4. The score is a string
of single characters that indicate whether the guessed letter matched in the correct
position, matched in another position, or was a miss. The guess and word are both
converted to lowercase to make matching case-insensitive. If the guess is not the same
length as the hidden word, an empty string score is returned.

238 | Chapter 18: Games

Example 18-5. Calculate score (service/game.py)

from collections import Counter, defaultdict

HIT = "H"
MISS = "M"
CLOSE = "C" # (letter is in the word, but at another position)

def get_score(actual: str, guess: str) -> str:
 length: int = len(actual)
 if len(guess) != length:
 return ERROR
 actual_counter = Counter(actual) # {letter: count, ...}
 guess_counter = defaultdict(int)
 result = [MISS] * length
 for pos, letter in enumerate(guess):
 if letter == actual[pos]:
 result[pos] = HIT
 guess_counter[letter] += 1
 for pos, letter in enumerate(guess):
 if result[pos] == HIT:
 continue
 guess_counter[letter] += 1
 if (letter in actual and
 guess_counter[letter] <= actual_counter[letter]):
 result[pos] = CLOSE
 result = ''.join(result)
 return result

Test!
Example 18-6 contains some pytest exercises for the service score calculation. It uses
pytest’s parametrize feature to pass in a sequence of tests, rather than writing a loop
inside the test function itself. Remember from Example 18-5 that H is a direct hit, C is
close (wrong position), and M is a miss.

Example 18-6. Test score calculation (test/unit/service/test_game.py)

import pytest
from service import game

word = "bigfoot"
guesses = [
 ("bigfoot", "HHHHHHH"),
 ("abcdefg", "MCMMMCC"),
 ("toofgib", "CCCHCCC"),
 ("wronglength", ""),
 ("", ""),
]

Test! | 239

@pytest.mark.parametrize("guess,score", guesses)
def test_match(guess, score):
 assert game.get_score(word, guess) == score

Run it:

$ pytest -q test_game.py
..... [100%]
5 passed in 0.05s

Data: Initialization
We only need one function in the new data/game.py module, shown in Example 18-7.

Example 18-7. Get random creature name (data/game.py)

from .init import curs

def get_word() -> str:
 qry = "select name from creature order by random() limit 1"
 curs.execute(qry)
 row = curs.fetchone()
 if row:
 name = row[0]
 else:
 name = "bigfoot"
 return name

Let’s Play Cryptonamicon
(Someone, please come up with a better name.)

In your browser, go to http://localhost:8000/game. You should see an initial dis‐
play like this:

240 | Chapter 18: Games

Let’s type a few letters and submit them as a guess to see what happens:

The letters b, f, and g are yellow (if you’re not viewing this in color, you’ll have to take
my word for it!), meaning they’re in the hidden name but in the wrong position:

Let’s take a stab at the name, but flub the last letter. We see lots of green on the second
line. Oh, so close!

Let’s fix that last letter, and just for fun, capitalize some of the letters to ensure that we
get case-insensitive matching. Submit that one now, and golly gee:

Let’s Play Cryptonamicon | 241

Review
We used HTML, JavaScript, CSS, and FastAPI to build a (very!) simple interactive
Wordle-style game. This chapter demonstrated how to manage multiple threaded
conversations between a web client and server, using JSON and Ajax.

242 | Chapter 18: Games

APPENDIX A

Further Reading

Many great resources are available if you’d like to learn more and fill in the areas that
I didn’t cover in enough depth or at all. This appendix lists resources for Python,
FastAPI, Starlette, and Pydantic.

Python
These are some prominent Python websites:

Python Software Foundation
The mothership

Real Python Tutorials
Detailed Python tutorials

Reddit
Python subreddit

Stack Overflow
Questions tagged “Python”

Pycoder’s Weekly
A weekly email newsletter

Anaconda
Scientific distribution

243

https://www.python.org
https://realpython.com
https://www.reddit.com/r/Python
https://stackoverflow.com/questions/tagged/python
https://pycoders.com
https://www.anaconda.com

These are only some of the Python books that I’ve found useful while writing this
one:

• Introducing Python, 2nd edition, by Bill Lubanovic (O’Reilly)
• Python Distilled by David Beazley (Pearson Education)
• Fluent Python by Luciano Ramalho (O’Reilly)
• Robust Python by Patrick Viafore (O’Reilly)
• Architecture Patterns with Python by Harry J. W. Percival and Bob Gregory

(O’Reilly)

FastAPI
The following are some FastAPI websites:

Home
The official site, and the best technical documentation that I’ve seen

External links and articles
From the official site

FastAPI GitHub
The FastAPI code repository

Awesome FastAPI
A curated list of resources

The Ultimate FastAPI Tutorial
A detailed, multipart walk-through

The Blue Book: FastAPI
A detailed overview of FastAPI

Medium
Articles tagged “FastAPI”

Using FastAPI to Build Python Web APIs
Condensed FastAPI docs

Twitter
Tweets with @FastAPI or #FastAPI

Gitter
Help requests and answers

GitHub
Repos with FastAPI in their names

244 | Appendix A: Further Reading

https://fastapi.tiangolo.com
https://fastapi.tiangolo.com/external-links
https://github.com/tiangolo/fastapi
https://github.com/mjhea0/awesome-fastapi
https://oreil.ly/vfvS3
https://lyz-code.github.io/blue-book/fastapi
https://medium.com/tag/fastapi
https://realpython.com/fastapi-python-web-apis
https://oreil.ly/kHJm_
https://oreil.ly/-56rC
https://oreil.ly/NXTU1

Even though FastAPI arrived late in 2018, not many books have popped up yet. Here
are some that I’ve read and learned from:

• Building Data Science Applications with FastAPI by François Voron (Packt)
• Building Python Microservices with FastAPI by Sherwin John C. Tragura (Packt)
• Microservice APIs by José Haro Peralta (Manning)

Starlette
Top links for Starlette include the following:

• Home
• GitHub

Pydantic
The main Pydantic links are listed here:

• Home
• Docs
• GitHub

Further Reading | 245

https://www.starlette.io
https://github.com/encode/starlette
https://pydantic.dev
https://docs.pydantic.dev
https://github.com/pydantic/pydantic

APPENDIX B

Creatures and Humans

From ghoulies and ghosties
And long-leggetty beasties
And things that go bump in the night
Good Lord deliver us.

—Verse from a Cornish litany

Imaginary creatures, or cryptids, have been reported everywhere. Some animals, once
considered imaginary—like the panda, platypus, and black swan—turned out to be
real. So we won’t speculate. Intrepid explorers are seeking them out. Together, they
provide data for the examples in this book.

247

Creatures
Table B-1 lists the creatures that we’ll investigate.

Table B-1. A mini-bestiary

Name Country Area Description AKA
Abaia FJ Lake eel

Afanc UK CYM Welsh lake monster

Agropelter US ME Forest twig flinger

Akkorokamui JP Giant Ainu octopus

Albatwitch US PA Apple-stealing mini Bigfoot

Alicanto CL Gold-eating bird

Altamata-ha US GA Swamp creature Altie

Amarok CA Inuit wolf spirit

Auli CY Ayia Napa Sea Monster The Friendly Monster

Azeban CA Trickster spirit The Raccoon

Batsquatch US WA Flying sasquatch

Beast of Bladenboro US NC Dog bloodsucker

Beast of Bray Road US WI Wisconsin werewolf

Beast of Busco US IN Giant turtle

Beast of Gevaudan FR French werewolf

Beaver Eater CA Lodge flipper Saytoechin

Bigfoot US Yeti’s Cousin Eddie Sasquatch

Bukavac HR Lake strangler

Bunyip AU Aquatic Aussie

Cadborosaurus CA BC Sea serpent Caddie

Champ US VT Lake Champlain lurker Champy

Chupacabra MX Goat bloodsucker

Dahu FR French cousin of Wampahoofus

Doyarchu IE Dog-otter Irish crocodile

Dragon * Wings! Fire!

Drop Bear AU Carnivorous koala

Dungavenhooter US Pounds prey to vapor, then inhales

Encantado BR Frisky river dolphin

Fouke Monster US AR Stinky bigfoot Boggy Creek Monster

Glocester Ghoul US RI Rhode Island dragon

Gloucester Sea Serpent US MA American Nessie

Igopogo CA ON Canadian Nessie

Isshii JP Lake monster Issie

248 | Appendix B: Creatures and Humans

Name Country Area Description AKA
Jackalope US * Antlered rabbit

Jersey Devil US NJ Snowy roof leaper

Kodiak Dinosaur US AK Giant ocean saurian

Kraken * Megasquid

Lizard Man US SC Swamp creature

LLaammaa CL Head of a llama, body of a llama. But not the same
llama.

Loch Ness Monstera UK SC Famed loch beastie Nessie

Lusca BS Giant octopus

Maero NZ Giants

Menehune US HI Hawaiian elves

Mokele-mbembe CG Swamp monster

Mongolian Death Worm MN Arrakis visitor

Mothman US WV Only cryptid in a Richard Gere movie

Snarly Yow US MD Hellhound

Vampire * Bloodsucker

Vlad the Impala KE Savannah vampire

Wendigo CA Cannibal bigfoot

Werewolf * Shapeshifter Loup-garou, Rougaroub

Wyvern UK Hind-legless dragon

Wampahoofus US VT Asymmetric mountain dweller Sidehill Gouger

Yeti CN Hirsute Himalayan Abominable Snowman
a I once met Peter MacNab, who took one of the purported photos of Nessie.
b French. Or Scooby-Doo: “Ruh-roh! Rougarou!”

Creatures and Humans | 249

Explorers
Our investigative team, from far and wide, is listed in Table B-2.

Table B-2. Humans

Name Country Description
Claude Hande UK Scarce during full moons

Helena Hande-Basquette UK Damea with a claim to fame

Beau Buffette US Never removes his pith helmet

O. B. Juan Cannoli MX Wise in the ways of the forest

Simon N. Glorfindel FR Curly haired, keen-eared woodsman

“Pa” Tuohy IE Explorer/expectorator

Radha Tuohy IN Mystic earth mother

Noah Weiser DE Myopic machete man
a In noblesse, not ans.

Explorer Publications
Here are the imaginary publications of our imaginary explorers:

• The Secret of Rat Island by B. Buffette
• What Was I Thinking? by O. B. J. Cannoli
• “Spiders Never Sleep,” Journal of Disturbing Results, by N. Weiser
• “Sehr Böse Spinnen,” Zeitscrift für Vergleichende Kryptozoologie, by N. Weiser

250 | Appendix B: Creatures and Humans

Other Sources
Cryptid lore has many sources. Some cryptids might be categorized as imaginary
creatures, and some may be seen in fuzzy photographs taken at a great distance. My
sources included the following:

• “List of Cryptids” Wikipedia page
• “List of Legendary Creatures by Type” Wikipedia page
• The Cryptid Zoo: A Menagerie of Cryptozoology
• The United States of Cryptids by J. W. Ocker (Quirk Books)
• In the Wake of the Sea-Serpents by Bernard Heuvelmans (Hill & Wang)
• Abominable Snowmen: Legend Come to Life by Ivan T. Sanderson (Chilton)
• “Every Country Has a Monster” by Mystery Science Theater
• Bigfoot sightings resources

— Data on Bigfoot sightings by Tim Renner
— Bigfoot Sightings Dash App
— Finding Bigfoot with Dash Part 1, Part 2, Part 3
— “If It’s There, Could It Be a Bear?” by Floe Foxon

Creatures and Humans | 251

https://oreil.ly/7e1ED
https://oreil.ly/1AVfx
http://www.newanimal.org
https://oreil.ly/yQP7Q
https://oreil.ly/1wMDb
https://oreil.ly/b5IKt
https://oreil.ly/0gjCT
https://oreil.ly/Lespw
https://oreil.ly/aDV8K
https://oreil.ly/TlYn7

Index

A
Adventurelib, 233
AI (artificial intelligence), 12, 203-205

external tools, 203
hallucinations, 205
models, 204

aio-files, 207
AIOHTTP, 89
Anand, Ankit, 191
Apache Kafka, 4
APIs (application programming interfaces)

communication between layers/boxes, 10,
12

defined, 4
in Python, 20
kinds of, 4-5

ArcGIS, 230
ArcPy, 230
artificial intelligence (see AI)
ASGI (Asynchronous Server Gateway Inter‐

face), 22
async keyword and function, 53-54, 188
asynchronous processing, 8

asynchronous web standard, 49
Clue house cleaning example, 57-58
event loops, 56
FastAPI and, 55-56

asyncio, 53-54
asyncpg, 196
attrs, 68
authentication, 94

Data layer, 151-153
global, 145-148
implementing, 144

individual, 148-150
JWT, 159
methods, 145
OAuth2, 150
OpenID Connect, 159-160
Service layer, 154
steps of, 158
testing, 158
top layer, 158
user model, 151
Web layer, 156

authorization, 94
cross-origin resource sharing, 162-163
defined, 160
middleware, 161
permissions, 161
third-party packages, 163

AuthX, 163
automated documentation, 43-46
await keyword and function, 53-54

B
backend, 4
behavioral testing, 169
Berners-Lee, Tim, 1, 3, 5
Black, 19
Bokeh, 226
Bottle, 88
busy waiting, 8

C
caches, 189
callbacks, 51
Cartopy, 230

253

Cassandra, 200
Celery, 189
chart/graph packages, 225-229
ChatGPT, 205
Christie, Tom, 49
Chroma, 203
Chrome DevTools, 166
CI (continuous integration), 19
Clang, 190
CLI (command-line interface), 10, 95
cloud services, 188
concurrency, 8-9, 22, 50-54
constrained strings, 75
context managers, 170
CORS (cross-origin resource sharing), 162-163
CRUD (create, read, update, delete), 6
cryptids

creatures, 248-250
defined, 93
explorers, 250
information resources, 251

csv package, 222-223
curl, 28, 165
Cython, 190

D
Dash, 225, 226
Dash Enterprise, 226
data discovery and visualization, 221-232

PSV text output, 222-224
SQLite data source and web output, 225-231

data grouping, 64-69
Data layer, 9, 10, 12, 123-142

authentication, 151-153
database information at startup time,

127-130
DB-API, 123-125
duplicate error, 135
full tests, 131-140
layout, 127
missing data error, 135
SQLite, 125-126
testing, 131-142, 167, 177
unit tests, 140-142
Web layer and, 112

data models, defining, 103-104
data science, 203-205
databases, 10, 12, 88, 195-205

confusing terminology, 195

load testing, 201-203
NoSQL databases, 200-201
NoSQL features in relational databases, 201
performance and, 189
relational databases, 196-199

dataclasses, 67, 68
DB-API

Data layer, 123-125
main functions of, 123-124
specifying parameters, 124

decorators, 171
deep learning, 12
dependencies, 77-82

code duplication, 78
defined, 77
FastAPI and, 78
hidden, 78
OpenAPI visibility, 78
problems with, 78
scope of, 80-82
testing, 78
writing, 79

dependency injection, 33, 78, 179
deployment, 185-188

cloud services, 188
Docker, 187
HTTPS, 187
Kubernetes, 188
multiple workers, 186

design approach, 94-95
dicts (dictionaries), 65-66
distributed computing, 50
Django, 86

databases, 88
defined, 22

Django EventStream, 87
Docker, 187
duplicate data error, 135

E
EdgeDB, 199
EdgeQL, 199
Elasticsearch, 201
endpoints (routes), 6
Esri, 230
ETL (extract, transform, load), 12, 221
event loops, 8, 56
Eventlet, 51

254 | Index

F
fake data, 104-109
Faker, 201
FastAPI, 27-47, 87

advantages of, 27
asynchronous processing and, 55-56
automated documentation, 43-46
automated test forms, 110-112
defined, 19, 27
dependencies, 78
downloading files, 210-211
Flask versus, 84-86
Hello? World? application, 28-31
help resources, 244
HTTP requests, 32-39
HTTP responses, 39-43
installing, 28
rise of, 22
uploading files, 207-209

FastAPI Auth Middleware, 163
FastAPI JWT Auth, 163
FastAPI OIDC, 160
FastAPI Repo Issues page, 160
FastAPI Resource Server, 160
FastAPI Users, 163
fastapi-auth0, 163
fastapi-authz, 163
fastapi-jwt, 163
FastAPI-key-auth, 163
FastAPI-Login, 163
fastapi-opa, 163
fastapi-sso, 163
fastapi-third-party-auth, 160
FastAPI-User-Auth, 163
fastapi_auth2, 163
Fastest Fish, 208
Fielding, Roy, 5
file and directory layout

Service layer, 116
Web layer, 97-98

File(), 208
FileResponse, 210
files, 207-213

downloading, 87, 210-211
multipart support, 207
performance and, 189
static files, 211-213
uploading, 87, 207-209

Flask, 22, 83-86, 87

body, 85
headers, 86
query parameters, 85
URL paths, 84

Folium, 230
forms, 215-217

GET forms, 215-216
POST forms, 217

frontend, 4
full (end-to-end; contract) tests

automated, 180-182
Data layer, 131-140
defined, 166

function return type hints, 63
functools, 189

G
games, 233-242

example game, 234-242
game packages, 233
splitting logic, 234-242

Geemap, 230
generators, 52-53
GeoPandas, 230
Geoplot, 230
gevent, 51
Git, 19
global authentication, 145-148
Grafana, 191
GraphQL, 8
Grasshopper, 183
green threads, 51
greenlet, 51
gRPC, 4
Gunicorn, 186

H
HARFANG, 233
histograms, 228-229
Holovaty, Adrian, 22
HTML, 5
HTML forms, 87
HTTP, 5
HTTP requests, 6, 32-39

body, 36-37
headers, 37-38
multiple request data, 38
query parameters, 34-36
URL paths, 33-34

Index | 255

Web layer, 100-102
HTTP responses, 6, 39-43

headers, 40
model types, 42-43
status codes, 39
troubleshooting response codes, 190
type conversion, 41
types of, 40-41

HTTP verbs, 6, 95-96
httpbin, 165
HTTPie

calling with query parameter arguments, 35
defined, 19
downloading files, 210, 211
installing, 28
testing, 165
uploading files, 208, 209

HTTPS, 187
HTTPX

defined, 19
installing, 28
testing with, 30

Hugging Face, 204
Hykes, Solomon, 187
Hypothesis, 180

I
IBM Db2, 196
ibm_db, 196
idempotency, 36
individual authentication, 148-150
integration tests, 166, 178-179

J
Jinja, 217
JSON (JavaScript Object Notation), 7

SQL and, 201
type conversion, 41

JSON:API proposal, 7
JWT (JavaScript Web Tokens), 159

K
Kafka, Apache, 4
Keller, Brenan, 165
Kubernetes, 188

L
Lattner, Chris, 190

layers, 9-12
separation of, 11
sideways-communicating boxes, 11
vertical, 10, 11

Let's Encrypt, 187
libraries, 4
lists, 65
Litestar, 89
LLVM, 190
load testing, 182, 201-203
Locust, 182
logging, 120, 191

M
map packages, 229-231
Matplotlib, 225
memory and performance, 189
messaging, 4
metrics, 120, 191
middleware, 161
MIME types, 41
missing data error, 135
ML (machine learning), 12
MLIR, 190
mocking, 104, 168-171
Model box, 9, 10
models, 61
Mojo, 190, 203
MongoDB, 179, 200
Mongomock, 179
Mukhopadhyay, Sumanta, 188
MVC (Model-View-Controller), 9
mypy, 21, 63
MySQL, 196
MySQLdb, 196

N
NATS, 4
NewSQL, 200
normal forms, 201
nose, 167
NoSQL (nonrelational) databases, 200-201

Cassandra, 200
Elasticsearch, 201
MongoDB, 200
Redis, 200

256 | Index

O
OAuth2, 150
oauthlib, 160
objects, 20-21
oic, 160
OIDC (OpenID Connect), 159-160
OIDC Client, 160
oidc-op, 160
Okada, Shinichi, 188
OpenTelemetry, 191
Oracle, 196
ORM (object-relational mapper), 86, 198
OSs (operating systems)

processes, 50
threads, 51

P
pagination, 113
Panda3D, 233
pandas, 203, 224
parallel computing, 50
path decorators, 29
path functions (web endpoints), 29, 55
path parameters, 96
performance, 188-190

async function, 188
caches, 189
databases, 189
files, 189
memory, 189
Python and, 190
queues, 189

permissions, 161
pgmock, 179
pip, 17, 18
Pipenv, 18
Plotly, 225, 226-228
Poetry, 18
PostgreSQL, 179, 196, 199
Postman, 166
pre-commit tool, 19
preemptive process scheduling, 50
presentation layer (see Web layer)
primer, 233
print working directory (PWD) environment

variable, 98
processes, 50
production, 185-191

deployment, 185-188

performance, 188-190
troubleshooting, 190-191

Prometheus, 191
PSV text output, 222-224

csv package, 222-223
pandas, 224
python-tabulate, 223

psycopg2, 196
pub-sub (publish-subscribe), 5
PWD (print working directory) environment

variable, 98
Pydantic, 68-69

help resources, 245
simple example using, 69-72
validating types, 72-73
validating values, 73-75

pydata, 221
PyGame, 233
PyGIS, 229
pyglet, 233
pymssql, 196
PyMySQL, 196
pyodbc, 196
PyPy, 190
PySAL, 229
pytest, 19, 167-168
Pytest Mock Resources, 179
Python, 15-23

APIs and services, 20
asyncio, 53-54
creator of, 1
data and, 221
game packages, 233
generators, 52-53
help resources, 243
models, 61
modules, 98
NoSQL database drivers, 200-201
objects, 20-21
packages, 17, 98
performance and, 190
process-based and thread-based libraries, 51
relational database and SQL packages,

196-199
source control, 19
source formatting, 19
synchronous processing, 8
testing, 19
type hinting, 21, 61-64

Index | 257

variables, 20
versions of, 17
virtual environments, 17-18
web frameworks, 21-23

Python Arcade, 233
Python Client for Google Maps Services, 230
Python Software Foundation, 17
Python-Multipart, 207, 215
python-oracledb, 196
python-tabulate, 223
PYTHONPATH environment variable, 98
PyTorch, 203

Q
query optimizers, 189
query parameters, 32, 34-36, 85, 96
queues, 5, 87, 189

R
RabbitMQ, 4
Ramírez, Sebastián, 22, 27, 187
RBAC (role-based access control), 161
Records package, 196
Redis, 200
relational databases, 88, 196-199

EdgeDB, 199
NoSQL features in, 201
PostgreSQL, 199
SQLAlchemy, 196-198
SQLite, 199
SQLModel, 198

remote procedure calls (RPCs), 4
Repository pattern, 179
request-response, 5
Requests package

defined, 19
installing, 28
testing with, 30
uploading files, 209

resources, 6
response_model argument, 43
RESTful API design, 5-7

core components, 95
Web layer, 95-96

role-based access control (RBAC), 161
Ronacher, Armin, 22
Ronquillo, Alex, 171
routes (endpoints), 6
RPCs (remote procedure calls), 4

S
Samiullah, Christopher, 187
Schemathesis, 180, 182
Seaborn, 226
security testing, 182
server-sent events, 87
Service layer, 9, 10, 12, 115-121

authentication, 154
common service patterns, 115
file and directory layout, 116
functions, 116-118
logging, 120
metrics, 120
monitoring, 120
observability, 120
protection, 116
testing, 118-119, 175-176
tracing, 120-121
Web layer and, 112

services, 4, 20
sets, 65
single-page application (SPA), 234
singletons, 128
Socketify.py, 89
sorting, 113
source control, 19
source formatting, 19
SPA (single-page application), 234
SQL, 196-199, 201
SQL Server, 196
SQLAlchemy, 177, 196-198

Core, 197
ORM, 198
SQLAlchemy Expression Language, 197-198

SQLite, 196, 199
chart/graph packages, 225-229
Data layer, 125-126
data source and web output, 225-231
map packages, 229-231

sqlite3, 125, 196
SQLModel, 196, 198
Starlette, 49-50

defined, 49
help resources, 245
writing apps directly, 57

static files, 211-213
Stonebraker, Michael, 199
StreamingResponse, 211
structural testing, 169

258 | Index

stubs (mock data), 104
subrouters, 102
Swift, 190
synchronous processing, 8

synchronous web standard, 49
threadpools, 56

T
templates, 87, 217-219

configuring and using, 219
defining template files, 218-219

test pyramid, 166
testing, 19, 165-183

authentication, 158
Data layer, 131-142, 167, 177
integration tests, 166, 178-179
layout, 168
load testing, 182
pytest, 167-168
Repository pattern, 179
security testing, 182
Service layer, 118-119, 175-176
unit tests, 140-142, 166, 168-177
varieties of, 166
web API testing, 165-166
Web layer, 109-112, 167, 173-174
what to test, 166-167

threadpools, 56
threads, 51
three-tier model, 9
Tonks, adorable pooch, 1
tracing, 120-121
Traefik, 187
troubleshooting, 190-191

HTTP response codes, 190
logging, 191
metrics, 191

tuples, 65, 66
Twelve-Factor App, 127
Twisted package, 52
txauth, 150
type hinting, 21, 61-64

function return type hints, 63
variable type hints, 62

type validation, 72-73

U
Unit of Work pattern, 179
unit tests, 166, 168-177

Data layer, 140-142, 177
mocking, 168-171
Service layer, 175-176
test doubles and fakes, 171-172
Web layer, 173-174

unittest, 167
UploadFile, 209
URL paths, 33-34, 84
URLs, 5
Uvicorn

defined, 19
installing, 28
starting externally, 29
starting internally, 29

V
value validation, 73-75
van Rossum, Guido, 1
variable type hints, 62
variables, 20
venv, 17
view functions, 87
view layer (see Web layer)
virtual environments, 17-18

W
web API testing, 165-166
web endpoints (path functions), 29, 55
web frameworks, 21-23, 83-89

AIOHTTP, 89
Bottle, 88
databases, 88
Django, 86
Flask, 83-86
Litestar, 89
Socketify.py, 89

Web layer, 9, 10, 12, 93-114
authentication, 156
building, 103-109
creating common functions, 104
Data layer and, 112
defining data models, 103-104
design approach, 94-95
fakes, 104, 104-109
FastAPI automated test forms, 110
file and directory site layout, 97-98
first website code, 98-100
HTTP requests, 100-102
pagination, 113

Index | 259

RESTful API design, 95-96
Service layer and, 112
sorting, 113
stubs, 104
subrouters, 102
testing, 109-112, 167, 173-174

WebSockets, 87
Weinberg, Gerald, 185

Werkzeug, 49
Willison, Simon, 22
WSGI (Web Server Gateway Interface), 21

Z
ZeroMQ, 4

260 | Index

About the Author
Bill Lubanovic has been a developer for over 40 years, specializing in Linux, the web,
and Python. He coauthored the O’Reilly book Linux System Administration and wrote
both editions of Introducing Python. He discovered FastAPI a few years ago and, with
his team, used it to rewrite a large biomedical research API. The experience was so
positive that they’ve adopted FastAPI for all new projects. Bill lives with his family
and cats in the Sangre de Sasquatch mountains of Minnesota.

Colophon
The animal on the cover of FastAPI is a spiny-tailed iguana (of the genus Ctenosaura).
The name Ctenosaura comes from two Greek words: ctenos (meaning comb, for the
comblike spine on their back and tail) and saura (lizard). There are 15 recognized
types of spiny-tailed iguana, including five-keeled, black-chested, Motagua, Oaxaca,
Roatán, and Útila.

Spiny-tailed iguanas can range in size from 4.9 to 39 inches long. Each species has a
different color that can change based on their body temperature, mood, health, and
habitat temperature. Some of the colors include brown, black, gray, pink, green, and
yellow. In general, spiny-tailed iguanas are omnivores that eat a variety of fruits, flow‐
ers, foliage, and small animals.

While iguanas can be found in a variety of habitats, spiny-tailed iguanas are native to
Mexico and Central America. They can be found in tropical and subtropical dry for‐
ests, scrubland, and occasionally in human-altered habitats and urban areas. Some
species, like Roatán (only found on the Honduran Bay island of Roatán), Útila (only
found on Útila, a Bay Island archipelago off of the Caribbean coast of Honduras, in
swamps and mangrove ecosystems), and Motagua (found only in Guatemala) are
endemic to very specific areas.

Several species of spiny-tailed iguanas are listed as endangered or critically endan‐
gered. A few are also known to be invasive species in the United States (western and
black spiny-tailed iguanas). They face a number of threats, including habitat loss due
to agriculture and cattle grazing, illegal pet trade and poaching, habitat fragmenta‐
tion, introduced predators, and fear-based killing. Many of the animals on O’Reilly
covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique engraving from
Museum of Animated Nature. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. What’s New?
	Chapter 1. The Modern Web
	Preview
	Services and APIs
	Kinds of APIs
	HTTP
	REST(ful)
	JSON and API Data Formats
	JSON:API
	GraphQL

	Concurrency
	Layers
	Data
	Review

	Chapter 2. Modern Python
	Preview
	Tools
	Getting Started
	Python Itself
	Package Management
	Virtual Environments
	Poetry
	Source Formatting
	Testing
	Source Control and Continuous Integration
	Web Tools

	APIs and Services
	Variables Are Names
	Type Hints
	Data Structures
	Web Frameworks
	Django
	Flask
	FastAPI

	Review

	Part II. A FastAPI Tour
	Chapter 3. FastAPI Tour
	Preview
	What Is FastAPI?
	A FastAPI Application
	HTTP Requests
	URL Path
	Query Parameters
	Body
	HTTP Header
	Multiple Request Data
	Which Method Is Best?

	HTTP Responses
	Status Code
	Headers
	Response Types
	Type Conversion
	Model Types and response_model

	Automated Documentation
	Complex Data
	Review

	Chapter 4. Async, Concurrency, and Starlette Tour
	Preview
	Starlette
	Types of Concurrency
	Distributed and Parallel Computing
	Operating System Processes
	Operating System Threads
	Green Threads
	Callbacks
	Python Generators
	Python async, await, and asyncio

	FastAPI and Async
	Using Starlette Directly
	Interlude: Cleaning the Clue House
	Review

	Chapter 5. Pydantic, Type Hints, and Models Tour
	Preview
	Type Hinting
	Data Grouping
	Alternatives
	A Simple Example
	Validate Types
	Validate Values
	Review

	Chapter 6. Dependencies
	Preview
	What’s a Dependency?
	Problems with Dependencies
	Dependency Injection
	FastAPI Dependencies
	Writing a Dependency
	Dependency Scope
	Single Path
	Multiple Paths
	Global

	Review

	Chapter 7. Framework Comparisons
	Preview
	Flask
	Path
	Query Parameter
	Body
	Header

	Django
	Other Web Framework Features
	Databases
	Recommendations
	Other Python Web Frameworks
	Review

	Part III. Making a Website
	Chapter 8. Web Layer
	Preview
	Interlude: Top-Down, Bottom-Up, Middle-Out?
	RESTful API Design
	File and Directory Site Layout
	The First Website Code
	Requests
	Multiple Routers
	Build the Web Layer
	Define Data Models
	Stub and Fake Data
	Create Common Functions Through the Stack
	Create Fake Data
	Test!
	Using the FastAPI Automated Test Forms
	Talking to the Service and Data Layers
	Pagination and Sorting
	Review

	Chapter 9. Service Layer
	Preview
	Defining a Service
	Layout
	Protection
	Functions
	Test!
	Other Service-Level Stuff
	Logging
	Metrics, Monitoring, Observability
	Tracing
	Other

	Review

	Chapter 10. Data Layer
	Preview
	DB-API
	SQLite
	Layout
	Making It Work
	Test!
	Full Tests
	Unit Tests

	Review

	Chapter 11. Authentication and Authorization
	Preview
	Interlude 1: Do You Need Authentication?
	Authentication Methods
	Global Authentication: Shared Secret
	Simple Individual Authentication
	Fancier Individual Authentication
	OAuth2
	User Model
	User Data Layer
	User Fake Data Layer
	User Service Layer
	User Web Layer
	Test!
	Top Layer
	Authentication Steps
	JWT
	Third-Party Authentication: OIDC

	Authorization
	Middleware
	CORS
	Third-Party Packages

	Review

	Chapter 12. Testing
	Preview
	Web API Testing
	Where to Test
	What to Test
	Pytest
	Layout
	Automated Unit Tests
	Mocking
	Test Doubles and Fakes
	Web
	Service
	Data

	Automated Integration Tests
	The Repository Pattern
	Automated Full Tests
	Security Testing
	Load Testing
	Review

	Chapter 13. Production
	Preview
	Deployment
	Multiple Workers
	HTTPS
	Docker
	Cloud Services
	Kubernetes

	Performance
	Async
	Caches
	Databases, Files, and Memory
	Queues
	Python Itself

	Troubleshooting
	Kinds of Problems
	Logging
	Metrics

	Review

	Part IV. A Gallery
	Chapter 14. Databases, Data Science, and a Little AI
	Preview
	Data Storage Alternatives
	Relational Databases and SQL
	SQLAlchemy
	SQLModel
	SQLite
	PostgreSQL
	EdgeDB

	Nonrelational (NoSQL) Databases
	Redis
	MongoDB
	Cassandra
	Elasticsearch

	NoSQL Features in SQL Databases
	Database Load Testing
	Data Science and AI
	Review

	Chapter 15. Files
	Preview
	Multipart Support
	Uploading Files
	File()
	UploadFile

	Downloading Files
	FileResponse
	StreamingResponse

	Serving Static Files
	Review

	Chapter 16. Forms and Templates
	Preview
	Forms
	Templates
	Review

	Chapter 17. Data Discovery and Visualization
	Preview
	Python and Data
	PSV Text Output
	csv
	python-tabulate
	pandas

	SQLite Data Source and Web Output
	Chart/Graph Packages
	Chart Example 1: Test
	Chart Example 2: Histogram
	Map Packages
	Map Example

	Review

	Chapter 18. Games
	Preview
	Python Game Packages
	Splitting Game Logic
	Game Design
	Web Part One: Game Initialization
	Web Part Two: Game Steps
	Service Part One: Initialization
	Service Part Two: Scoring
	Test!
	Data: Initialization
	Let’s Play Cryptonamicon
	Review

	Appendix A. Further Reading
	Python
	FastAPI
	Starlette
	Pydantic

	Appendix B. Creatures and Humans
	Creatures
	Explorers
	Explorer Publications
	Other Sources

	Index
	About the Author
	Colophon

